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Summary

Metabolomics provides a holistic approach to investigate the perturbations in human metabolism
with respect to a specific exposure. In nutritional metabolomics, the research question is generally
related to the effect of a specific food intake on metabolic profiles commonly of plasma or urine.
Application of multiple analytical strategies may provide comprehensive information to reach a
valid answer to these research questions. In this thesis, | investigated several analytical
technologies and data handling strategies in order to evaluate their effects on the biological

answer.

In metabolomics, one of the crucial steps is data preprocessing, which is particularly cumbersome
for complex liquid chromatography mass spectrometry (LC-MS) data. Accordingly, in PAPER I,
different LC-MS data preprocessing tools, MarkerLynx, MZmine, XCMS and a customised method
(spectral binning and chromatographic collapsing) were compared using a simple dataset of
plasma samples collected from rats in the fed or fasting state. The methods were compared in
terms of the total number and identity of the features discriminating the metabolic states
(markers). 32 to 40 % of the markers were selected by all three tools (MarkerLynx, MZmine and
XCMS) and 16 to 40 % were specific to each tool. Two reasons for these differences were pointed
out: (1) changing the parameter settings of each software tool has a great impact on the number
of detected features; (2) each software tool employs different methods in their peak detection
and alignment algorithms, such that each has pros and cons. Thus, the use of more than one
software tool and/or the use of several parameter settings during data preprocessing are likely to
decrease the risk of failing to detect features (potential marker candidates) in untargeted
metabolomics. On the other hand, customised methods lead to many false positives and

negatives.

Data preprocessing is followed by data analysis. In metabolomics, large amount of complex data
characterise few samples, thus data analysis becomes a critical step as well. Principal component
analysis (PCA) is useful for exploratory purposes and partial least squares discriminant analysis
(PLSDA) for classification and variable selection purposes; both have been used in PAPER | and Il.
In PAPER llI, the application potential of sparse principal component analysis (SPCA) on LC-MS
based metabolomics data as a pattern recognition and variable selection tool have been
investigated. The results suggested SPCA performs well in terms of extracting time since last meal
related patterns, yet it provides more easily interpreted loadings for selection of relevant

metabolites.



One of the conclusions of this thesis is that the data handling strategy influences the patterns
identified as important for the nutritional question under study. Therefore, in depth
understanding of the study design and the specific effects of the analytical technology on the

produced data is extremely important to achieve high quality data handling.

Besides data handling, this thesis also deals with biological interpretation of postprandial
metabolism and trans fatty acid (TFA) intake. Two nutritional issues were objects of investigation:
1) metabolic states as a function of time since the last meal and 2) markers related to intakes of

cis- and trans-fat.

Plasma samples are usually taken in the fasting state, typically following an overnight fast, as it is
considered to be more reproducible and it can be defined as a baseline level for metabolic studies.
On the other hand, the postprandial response reveals multiple aspects of metabolic health that
would not be apparent from studying the fasting state. To investigate this issue two studied are
involved, initially LC-MS plasma profiles of rats at fasting and fed states are compared (PAPER I),
and later LC-MS plasma profiles of subjects from as observational study has been explored with
the aim of identifying the overall response to food intake and its clearance rate in free-living

humans (PAPER Ill).

The adverse health effects of industrial TFA is accepted, still the responsible physiological
mechanisms are not fully understood. With the aim of contributing to this issue, the changes in
plasma LC-MS profiles due to TFA intake (16 weeks) and its depletion (12 weeks) were examined in
order to identify metabolic patterns affected by this potentially toxic fat using a parallel
intervention study. In addition, the impact of cis- vs. trans-fat intake on a glucose challenge was

investigated (PAPER II).

The postprandial state has been identified with a higher abundance of lyso-lipids and amino acids
in plasma LC-MS profiles of rats compared to the fasting state in a controlled study design (PAPER
I) and the same metabolites were characterised in humans in an observational study (PAPER Ill).
The higher amino acid concentration after the meal is linked to the protein source present in the
last meal and the declining trend thereafter is related to insulin stimulation of amino acids uptake
from the plasma to liver and muscles for protein synthesis. The other typical fasting state
metabolites such as fatty acids, acyl-carnitines and ketone bodies were only detected in the rat
study (PAPER [). The study group in PAPER Ill were from a largely un-controlled observational

setting with varying quality and quantity of food intake as well as varying time from last meal. This



may be the cause why fewer compounds were extracted in this study but differences between rats

and humans may also influence the findings.

In PAPER I, Nuclear magnetic resonance spectroscopy (NMR) plasma profiles revealed increased
LDL-C (low-density lipoprotein cholesterol) levels and increased unsaturation after TFA intake. LC-
MS profiles, on the other hand, demonstrated elevated levels of a few specific polyunsaturated
(PUFA) long chain phosphatidylcholines (PCs) and a sphingomyelin (SM). The preferential
integration of trans18:1 into the sn-1 position of PCs all containing PUFA in the sn-2 position may
be explained by a general up-regulation in the formation of long-chain PUFAs after TFA intake
and/or by specific mobilisation of these fats into PCs as a result of TFA exposure. These findings
provide a unique insight to morphological abnormalities in membrane lipids caused by TFA intake

which may lead to a better understanding of its detrimental impact upon health.
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1 Aim of the Thesis

In this thesis the aim was to establish the metabolomics workflow starting with data handling,

through identification of relevant metabolites, to interpretation of results in biological terms for

three independent studies, which are presented as three papers. The aim of each paper is given in

Table 1.

Table 1. The purpose of each study involved in PAPER I, Il & III.

PAPERS

PAPER |

0

DATA

LC-MS plasma profiles of rat
collected in the fasted and fed

states.

PURPOSE

¢ To investigate the effect of different
LC-MS data preprocessing tools on the
selection of metabolites representing
fasting and fed states.

¢ To identify the relevant metabolites.

e To interpret the patterns in relation to

fasting and fed state metabolism.

CTR
(XX

fin
U

PAPERII

LC-MS and NMR plasma profiles
of overweight subject from
double-blinded parallel
intervention study where
subjects received either oil
containing TFA or control oil with
mainly oleic and palmitic acid for

16 weeks.

e To extract the metabolic patterns
associated with TFA intake from
plasma LC-MS and NMR profiles.

e To identify the relevant metabolites

e To interpret the patterns related to
TFA in terms of its adverse health

effects.

PAPER Il

Plasma LC-MS profiles of subjects
from a cross-sectional cohort
where each subject’s time since

last meal is recorded.

e To evaluate the applicability of SPCA as
a pattern recognition and metabolite
selection tool for LC-MS based
metabolomics data.

e To interpret the patterns related to

time since last meal in biological terms.




2  Metabolomics

Metabolomics is the field concerned with the systemic quantification of small molecule
intermediates and products of metabolism present in a given biospecimen (e.g. biofluid, biological
tissue etc.). By measuring and evaluating the alterations in the levels of small molecules in
biological samples involved in biochemical processes, metabolomics provides a new perspective to
the effects of diet, drugs and disease. The idea that biological fluids reflect the health of an
individual has existed for a long time. In the Middle Ages, "urine charts" were used to link the

colours, tastes and smells of urine to various medical conditions, which are metabolic in origin.

The term ‘metabolomics’ was introduced by Oliver Fiehn, in 2001, as ‘a comprehensive and
guantitative analysis of all metabolites’ [1]. Formerly, the term ‘metabonomics’ is defined in 1999
by Jeremy Nicholson and colleagues as ‘the quantitative measurement of the dynamic
multiparametric metabolic response of living systems to pathophysiological stimuli or genetic
modification’” [2]. Initially, the term ‘metabolomics’ has been applied more to plant science,
whereas ‘metabonomics’ has referred to studies involving animal models. Nowadays, the
distinction between two terms blurred, with ‘metabolomics’ emerging as the most widely

accepted term in the literature.

The modern-day metabolomics came with the advances in analytical platforms. By mid-1980s,
NMR was sensitive enough to detect metabolites in biological fluids. Development of mass
spectrometry in the early 20th century, as well as of different molecular separation techniques
such as gas chromatography (GC) and liquid LC, afforded the detection of small molecules in
biological matrices. Initial studies leading to modern metabolomics date to back to the 1970s
when Arthur B. Robinson and his colleagues profiled urine vapour by GC. They related the
chemical profile differences of the urine to gender and other variables [3]. The idea behind this

study coincides with the aims of modern-day metabolomics.

Metabolites are the small molecule intermediates and products of metabolism. Metabolomics
allows identification and quantification of low molecular weight (<1500 Da) metabolites in
biological samples. The current estimate of identified metabolites in the human metabolome is
over 8,500, given by the human metabolome database (HMDB) [4]. This is not a number that will
remain unchanged. The improvement of analytical technologies will allow detection of lower
abundance metabolites, leading to new entries. The human metabolome can be divided into
compartments as described by Manach et al. [5]: 1) the endogenous metabolome covers all

metabolites produced by a cell, a tissue or an organism 2) the microbial metabolome produced by



the microbiota and 3) the xenometabolome, which includes all foreign metabolites derived from

drugs, pollutants and dietary compounds.

Metabolomics have been applied in different fields such as disease diagnosis, toxicology, plant
science and pharmaceutical, environmental and human nutrition research. This thesis covers some

metabolomics applications in relation to human nutrition.

3  Metabolomics in Human Nutrition

In human nutrition, the classical approaches are hypothesis-driven. Basically, the human biofluids
are routinely analysed for a range of physiological markers, including many macro- and
micronutrients as well as a limited number of known metabolites. Later, evaluating these markers,
the information on nutritional status and risk factors for health and disease can be assessed.
However, nutrients interact with a number of metabolic pathways which may induce alterations in
many other metabolites than traditionally targeted ones. Metabolomics offer a more holistic
approach with the potential of measuring hundreds of metabolites in a given biological sample
with the perspective of metabolic pathway analyses. Its application in nutrition may lead to
disclosure of underlying patterns in the interface between the nutrients and biological systems to
understand the nutrient influence in assessment of individual’s health and disease status.
Furthermore, metabolomics is a promising tool for discovery of new biomarkers. In nutrition
biomarkers are used as a biochemical indicator of dietary intake/nutritional status (recent or long
term), or an index of nutrient metabolism, or a marker of the biological consequences of dietary
intake [6]. Metabolomics may provide new biomarkers as specific metabolites or even metabolic

profiles which are specific to various dietary/nutrient intake patterns or dietary changes.

Many studies have demonstrated the potential of metabolomics in the nutrition field. It has been
employed to characterize the effects of specific foods such as apples [7], both a deficiency of and
supplementation with different nutrients [8,9], the influence of specific diets or food components
particularly on the gut microbiota [10,11], to compare the metabolic effect of closely related foods
such as whole grain and refined flours [12]. Metabolomics also has been suggested as a
prospective tool for differentiation of individuals’ diet and their effects on specific health

outcomes [13].



4  Metabolomics Pipeline
Metabolomics involves multiple steps for investigation of specific research questions. The typical
workflow of a nutrition-based metabolomics study is illustrated in Figure 1. Some of these steps

are particularly important for this thesis will be further discussed in detail.

Research question

Biological ® f ? ,-

interpretation

preparation

0y

Analytical
platforms

-

Figure 1. Metabolomics workflow pipeline.



4.1 Study Design

In nutritional studies, the selection of particular study design depends on the nature of the
guestion, time needed and resources available. The same criteria works as well for metabolomics
based nutritional studies. Most importantly, nutritional metabolomics studies deal with subtle
changes, thus, it is very important to be aware of the factors contributing to the variation in the
data while deciding on study design. Furthermore, the number of samples used in metabolomics is
usually much smaller than the number of variables. This can be problematic, particularly in data

analysis. Thus, the highest possible number of samples should be included in the study design.

The two commonly applied dietary intervention studies, parallel and cross-over designs, are both
suitable in metabolomics. In parallel design, subjects are randomly assigned to one of at least two
groups, one of these acting as control, and subjects are followed up over a time period [14]. The
effect of the intervention in human studies is preferably assessed as the change between selected
parameters from start to the end of the intervention period compared with the control group,
whereas in animal studies samples are most often only collected at the termination of the study.
However, the parallel study design which is essentially the same as the first period of a cross-over
design, does not consider the possible variation between subjects response to the treatment. In a
cross-over study, each subject receives all treatments, so that inter-individual variation is reduced
[15]. On the other hand, cross over studies require longer time and are more sensitive to drop-
outs compared to parallel studies. PAPER | in this thesis serves an example of metabolomics
applications on an animal study with parallel study design. Compared to humans, animal models
offer full control of the food intake. Since inter-individual variation in animal model are less
pronounced than human (e.g. standardised phenotype rats in PAPER 1), the patterns of interest
becomes less cumbersome to extract. On the other hand, the genetic differences between rats
and humans may result in some effects and physiological responses of interest to be covered. For
instance, basic metabolic rate varies roughly with surface area in mammals and an overnight
fasting period in rats having an eight times higher rate of energy metabolism than humans may
therefore represent a more extreme condition than overnight fasting in humans (PAPER 1l1). PAPER

Il represents an example to a parallel design human intervention study.

In cohort studies the dietary intake and other relevant exposures are measured in a population of
people identified at baseline and they are followed to determine diet-disease associations. Cohort
studies can also be investigated by metabolomics, either cross-sectionally by comparing with other
data collected at baseline, or prospectively by comparing with endpoints measured at a later time

point, e.g. a disease outcome. Metabolic profiles from cohort studies offer many patterns from



several exposures, yet it is more challenging due to the tremendous individual diversity and lack of
dietary control at the time of sampling. In PAPER Ill, we have performed a metabolomics based
profiling strategy to investigate cross-sectionally the time since last patterns in a pilot cohort
study. Metabolomics profiles combined with genetic information, dietary and other lifestyle
exposure data from large cohorts provide invaluable information. The number of studies

investigating this issue is rapidly increasing and the findings are promising [16—19].

Considering the study designs within the publications included in this thesis the inter-individual
variations is in increasing order, PAPER |, a well-controlled animal study; PAPER II, double-blind

parallel intervention study; PAPER Ill, a cross-sectional cohort study.

4.2 Biological Samples
In metabolomics, the selection of biological samples depends on a number of factors: (1)
accessibility, (2) relevance to biochemical question, (3) the previous knowledge of the biological

system, and (4) suitability for the available analytical platform.

Biological fluids, particularly plasma, serum and urine, are relatively easy to obtain and have been
used in the majority of nutrition-based metabolomics studies. They are particularly informative as
they reflect the global state of an individual. Plasma/serum carries the small molecules
informative in relation to the metabolic state at the time of collection, and reflecting catabolic and
anabolic processes, whereas urine provides an averaged pattern of easily excreted polar
metabolites discarded from the body as a result of catabolic processes [20]. Only plasma samples

were used as biological samples for the studies discussed in this thesis.

Many other liquid and non-liquid biological samples such as saliva, breast milk, seminal plasma,
bile, digestive fluids, cerebrospinal fluid, or tissue can provide valuable information, in the
discovery of patterns for diet-disease associations [21]. Indeed each biological fluid has its own
characteristic metabolic profile, recovering many different biological fluids from specific samples
offering complementary information and leading to more comprehensive overview of metabolic

perturbations.

4.2.1 Sample preparation
Sample preparation for further analysis depends on type of sample, the analytical method and
whether a targeted or a non-targeted approach is of interest. The targeted approach is a method

involving quantitative measurement of only a specific, pre-defined group of metabolites as the



interest is to examine one or more related metabolic pathways. It is often used to test a specific
biological question or hypothesis rather than hypothesis generating. As the focus is to quantify a
specific group of metabolites, sample preparation builds on extraction of those. The non-targeted
approach has a global scope; to analyse as many metabolites as possible in a sample with at least
differential quantification. So, the sample preparation should be suitable for global profiling,
considering the analytical platform. Under non-targeted approach, also a group of metabolites
preferred to be profiled in more targeted applications, such as in lipidomics studies, may be
selected by special sample preparation. This thesis focuses on only non-targeted applications in

metabolomics.

Plasma sample preparation for LC-MS basically involves precipitation of proteins. The large
number of proteins in plasma samples interferes with MS, causing metabolite losses. The most
commonly used method is protein precipitation with organic solvent. The method developed by
our laboratory uses 90% methanol 0.1% formic acid solution, and details are described in PAPER I.
An overview of methods for sample preprocessing prior to LC-MS analysis have been described by
Vuckovic [22]. Additional internal and external standards may be added and a pooled sample may

be included in each batch to assess the data quality.

Regarding samples for NMR, the initial step may be protein precipitation but it is optional. Next
step is the optimization of plasma samples for NMR by buffering the sample pH to stabilize
chemical shifts. For this, deuterated water is added to provide frequency lock for the
spectrometer, followed by addition of a reference compound such as 3-trimethylsilylpropionic acid
(TSP) chemical standard [23]. This procedure is also used for plasma sample preparation for NMR

analysis in PAPER Il [24].

4.3 Analytical Platforms

The rapid development of the metabolomics field is linked to the advances in analytical
methodologies, making it possible to qualify/quantify the metabolites in biological samples. A
wide range of analytical platforms such as infrared spectroscopy and fluorescence spectroscopy
has been employed in metabolomics studies, yet NMR spectroscopy and MS have the leading role
today. These two technologies outperform the others because they offer the possibility of

measuring the largest number of metabolites.

The basic principle of NMR spectrometry relies on utilization of magnetic spinning properties of

certain atomic nuclei to determine the physical and chemical properties of atoms or molecules.



For biological samples the most commonly used nuclei are *H and 13C. The chemical environment
of the nuclei in different chemical environments absorbs energy at slightly different resonance
frequencies, and this effect is referred to as the chemical shift [25]. Ultra performance liquid
chromatography-quadruple time of flight/mass spectrometry (UPLC-QTOF/MS) utilizing electro-
spray ionisation (ESI) and NMR spectroscopy were the platforms utilised in this research project.

These two techniques will be briefly discussed.

UPLC-QTOF-MS is a hyphenated technique, utilizing physical separation capabilities of LC and the
mass analysis capabilities of mass spectrometry. UPLC provides sharper peaks, high sensitivity and
high resolution columns by using columns packed with smaller particles and/or higher flow rates
for increased speed compared to high performance liquid chromatography (HPLC) [26]. The
analytes eluting from the column are ionised (i.e. ESI). A wide range of biomolecules can be readily
ionised by ESI so that LC-MS employing this technology has become commonly used in

metabolomics. Some characteristic properties of NMR and UPLC-MS have been given in Table 2.

Table 2. A comparison of NMR and UPLC-MS approaches used in metabolomics [27].
High Resolution NMR LC-MS

Less sensitive ) o
Higher sensitivity
Metabolome coverage 30-40 in blood plasma

40-100 in urine

Hundreds to thousands?

Throughput ~10 min 6-25 min (UPLC vs. HPLC)

High reproducibility.
NMR spectrometer does not

Reproducibility Lower reproducibility
get dirty - the sample is physically

isolated from the instrument.

Good libraries of spectra Metabolite identification is a
Identification
major challenge.

. Nondestructive. .
Destructiveness Sample destructive
Sample can be reanalysed.

Crowded spectra - discrimination ion suppression where a high-

) of resonances from the various abundance analyte reduces, or
Disadvantages _ _ o

compounds in complex mixtures can eliminates, the response for a

be difficult weaker analyte
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Nevertheless none of the single technologies can detect the entire range of metabolites within a
biological sample. Therefore, integration of MS, NMR, and other modern analytical techniques
provides much broader information of analysed samples and thus, leads to a better understanding
of biological interest. Utilizing combined targeted and non-targeted NMR, GC-MS and LC-MS
methods, Psychogios et al. [4] performed comprehensive identification and quantification of the
human serum metabolome. Recently, many more studies have emerged in metabolomics studies
employing more than one analytical platform to investigate varying scientific questions of interest
[28-30]. In PAPER Il, both plasma NMR and LC-MS profiles has been utilised to uncover the effect
of TFA intake. The complimentary findings from these two analytical platforms strengthen the

identification of trans-fat related patterns.

4.4 Data Preprocessing

4.4.1 LC-MS

LC-MS based metabolomics experiments usually produce large amounts of complex data. Due to
its complexity, it is not suitable for application of any data analysis tool in its raw form for
extraction of relevant information. This brings out the data preprocessing concept which aims to
extract easy-to-access characteristics of each detected ion. These characteristics include m/z,
retention time of the compound, and intensity measurement. This representation of an ion is

denoted as a ‘feature’ (Figure 2, preprocessed data).

Data preprocessing is crucial for the quality of the identification and quantification relevant
information, and therefore the resulting biological interpretation. Typical data preprocessing
includes multiple steps as shown in Figure 2. Many software packages are available for
preprocessing LC-MS based metabolomics data both commercial (MarkerLynx) and freely available
such as XCMS and MZmine [31-35]. Some performs only specific steps in the preprocessing
pipeline, whereas others cover many steps. A nice overview of the algorithms and tools for
preprocessing of LC-MS metabolomics data has been given by Castillo et al. [36]. In the next
sections each step of the preprocessing pipeline will be discussed briefly. In this thesis, the aim
was to have a general understanding of each preprocessing software to achieve correctly
preprocessed data. There was no intention to dig into details of the algorithms. As PAPER Il

focuses on MZmine, XCMS and MarkerLynx software, those will be referred in the discussions.
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Figure 2. Schematic overview of the metabolomics pipeline in LC-MS data preprocessing from raw data to
preprocessed data.

4.4.1.1 Raw data

The raw data can be acquired in continuum mode or centroided mode. In continuum mode each
spectrum is represented by a distribution of m/z (mass to charge ratio) values, each representing
the hits of ionized molecules on the detector. Due to large size and complexity of continuum data,
centroiding is frequently applied either during data acquisition or preprocessing. Centroiding aims
to convert multiple data points representing the same peak in the distribution into a single data
point with a single m/z and intensity value. After centroiding the data size per sample is reduced

approximately 7 fold.

The raw data file of each sample consists of a set of mass spectra, each recorded at a given time
point or scan. Each scan point in time is represented by a pair of m/z and intensity vector.
Handling LC—MS data in its raw form is difficult because the vector length varies from scan to scan
based on the number of detected peaks. Furthermore, the four decimal digit m/z values of an ion

deviate in subsequent scans even if the same compound(s) is represented.
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The raw data proprietary format differs between instrument vendors but there are different tools
available for the conversion of the raw data to an open format such as mzXML, NetCDF or mzML
[37,38].

4.4.1.2 Filtering

Filtering aims to remove the noise so that in the subsequent peak detection step less false
positives are detected. Most methods combines filtering with peak detection steps on extracted
ion chromatograms with signal processing techniques such as Gaussian filtering (XCMS) and others

applies a user defined cut off value on each mass spectrum (MZmine, XCMS, MarkerLynx).

4.4.1.3 Peak detection

Peak detection is one of the most crucial steps in LC-MS data preprocessing. It aims to characterise
each ion in a sample with one m/z, retention time and intensity value (a feature). A peak detection
algorithm should detect true signals while avoiding the noise. It should be flexible to detect peaks

in varying shapes.

Generally, the initial step of peak detection is combining the ions representing the same
compound in subsequent scans. This can be performed by binning such that the m/z axis is divided
into equal size intervals. As a result the data for each sample is transformed into a two-
dimensional matrix. However, defining a fixed bin window has some drawbacks. If the bin size is
too small, the ion representing the same compound may split into adjacent bins, thus
chromatographic peak shape is lost; or if the bin size is too large more than one compound and/or
noise can be included in the same bin so that the chromatographic peak shape may be distorted

[39]. Some examples of these issues have been shown in PAPER I.

In general, software tools utilise parameters such as minimum peak width, mass accuracy (or m/z
window), minimum peak height or signal to noise ratio while combining m/z values in subsequent

scans.

MZmine initially creates continuous chromatograms within a user defined minimum time range
for each m/z value (within a user defined window), and then deconvolutes peaks based on local
minimums (or by another of three deconvolution methods available). The XCMS centWave [40]
algorithm does not require a fixed bin size, instead directly provides the potential region of
interest (Figure 3) based on mass accuracy and minimum peak width. Later, it constraints the

peaks’ shapes with a Gaussian filter or continuous wavelet transform. This method has also been
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recently implemented in MZmine. As the last step, the peak can be either integrated or peak

height can be used as its magnitude.

MarkerLynx initially determines the regions of interest in the m/z domain based on mass accuracy
(mass tolerance). The ApexPeakTrack algorithm controls peak detection by peak width (peak width
at 5% height) and baseline threshold (peak to peak baseline ratio) parameters which can be either
set by the user or calculated automatically. The algorithm finds the inflection points (peak width at
5% height), local minima and peak apex to decide peak area and height. It also calculates the
baseline noise level using the slope of inflection points. Compared to peak detection algorithms of
other software, the ApexPeakTrack algorithm produces much higher number of peaks, so an
additional peak removal step (denoted by user defined peak intensity threshold and noise

elimination level parameters) is implemented into the alignment algorithm by its developers.

Basically a few variables should be defined for the peak detection step of any preprocessing tool.

Selection of reasonable parameters is vital for the detection of peaks representing the true signals.
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Figure 3. Detection of a peak with a specific mass accuracy (top) and chromatographic width (bottom) [40].
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4.4.1.4 Deisotoping

Most elements are naturally present in different isotopic forms. A particular metabolite may
produce an isotopic pattern and the relative heights and m/z difference between isotopic peaks
may provide valuable information for identification of elemental composition of the metabolite.
On the other hand inclusion of all isotopic peaks during data analysis increases the size of the data
with redundant information. Therefore, deisotoping can be preferably performed prior to
alignment. In general, for each charge state, peaks within the m/z and retention time limits are
considered as isotopes, and the most abundant isotope is kept. MZmine and MarkerLynx have
optional deisotoping step, yet they store the isotopic patterns for identification purposes, whereas

XCMS allows annotation of isotopes but keep them in the preprocessed data.

4.4.1.5 Alignment

Peak detection is performed sample-wise. Thus, a feature representing the same compound may
have different m/z and retention time values in different samples due to small random shifts.
Alignment aims to match features across the samples so that the whole data can be transferred
into a two dimensional matrix for subsequent data analysis. The m/z shifts are easier to deal with
as the accuracy of the MS is known. XCMS utilise this fact and initially groups the features only
using their m/z values within a fixed bin of 0.25 m/z. If the retention time shifts are linear and
relatively small, a peak matching algorithm with defined m/z and retention time window can be
sufficient (MZmine). For instance, the retention time of the peaks of the samples analysed with
UPLC (PAPER |, Il and Ill) have only slight drifts between samples, even across two years of
analysis. However, retention time shifts can be more problematic for HPLC. It is frequently caused
by multiple factors such as pressure, temperature and flow rate fluctuations. Thus, an alignment
algorithm that can deal with non-linear shifts is usually required to correct retention time
differences between samples. Different methodologies have been proposed for alignment of non-
linear shifts. XCMS calculates the overall retention time distribution of peaks in each m/z bin in
order to estimate the boundaries of regions where many peaks have similar retention times
(Figure 4). In addition, XCMS provides an optional algorithm to deal with non-linear shifts, using a
group of ‘well-behaved’ peaks as temporary standards to calculate the retention time for each
sample and correct it [31]. For non-linear shifts, MZmine creates a model of the retention time
shift for each peak list (i.e. sample) with respect to a master peak list. Using that model it

estimates the corrected retention time for each sample [41].
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Grouping of Peaks in Mass Bin: 337.975 — 338.225 m/z

SD=10s

Peak Density/Relative Intensity

Seconds

Figure 4. Example of retention time matching across samples (12 samples) within one m/z bin. Individual peaks are
shown as sticks indicating relative intensity. The peak density profiles were smoothed with Gaussian functions of SD
30 and 10 s, respectively (solid line). Identified groups are flanked by dashed lines. Note how decreased smoothing
eliminates a peak from the second group [31].

4.4.1.6 Gap filling

In the final feature table, some features will be missing in some samples. The missing features
occur in peak detection due to low intensity peaks, bad peak shapes, and peak detection mistakes.
The missing values are usually zeros where ‘true’ zeros as well as smaller and larger peaks missed
by the algorithm are given the same zero value. This may cause misinterpretations in the data
analysis part. Some examples illustrating this situation have been shown in PAPER Il. Both XCMS
and MZmine fill the gaps from the raw data. MarkerLynx, on the other hand, does not have a gap

filling algorithm; approximately 50% of the values in the feature table are filled with zeros.

4.4.1.7 Traditional methods for data preprocessing (customised methods)

Initially, the m/z axis is binned, for instance the bin size used in PAPER | was 0.1 min. As a result
data for each sample is transformed into a two-dimensional matrix. Later, a rough filtering is
applied to eliminate very low signals. Then, the matrix is summed across all retention times, which
eliminates the necessity of retention time alignment. The final data matrix includes samples in its
rows and m/z bins in its columns filled with summed intensities [42]. There are some drawbacks of

this method:
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(1) Selection of the bin size is critical. If the bin size is too small, the ion representing the same
compound may split into adjacent bins, or else - if the bin size is too large - more than one
compound can be included in the same bin [39]. In both cases the final identification of
relevant information can be effected.

(2) After chromatographic collapsing the compounds with the same m/z will be concatenated
together (e.g. isomers). Furthermore, if the baseline level within one bin varies sample to
sample, it may bury the relevant information.

(3) After extraction of significant bins with data analysis, for identification of interesting
features, the accurate m/z and retention time is necessary. Thus, the bins should be

resolved in order to determine the peak retention time.

In PAPER |, it is shown that this method leads to identification of many false positives and false
negatives. On the positive side it should be mentioned that this approach is all-purpose and allows

a fast data preprocessing.

4.4.1.8 Comparison of Software tools

Considering the large number of peaks with varying peak shapes, so far there is no common
method to evaluate the preprocessing algorithms from different software. Even with the same
feature detection algorithm, using different parameter settings usually lead to different results. In
PAPER I, the number of features detected by MZmine, XCMS and MarkerLynx are compared. As
shown in Figure 5, 22 to 42% of the features detected by one of the software, also detected by the
other two, whereas 14 to 42% of the features were software specific. This was not surprising since
not only the peak detection methods of preprocessing tool differ but also their parameter settings.
Tautenhahn et al. [40] found a higher number of common features (80 %) from leaf and seed
extracts comparing MZmine and XCMS (centWave) peak detection algorithms. The difference can
be a result of the more complex nature of plasma samples compared to plant extracts or the

chromatographic method employed.
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MarkerLynx

Figure 5. Venn diagrams illustrating the number of common and method specific features extracted from three
software tools (right: positive mode; left: negative mode). (Data from PAPER 1)

Based on the complex nature of the analyzed samples, the number of features is not known, more
features may mean inclusion of false positives (e.g. noise) or true positives. Therefore, the
absolute number of detected features is not really suitable to characterize data preprocessing
software. Accordingly, in PAPER | from three different software tools the number of features
selected as representative of relevant phenomena (markers) have been compared. 32 to 40 % of
markers are in common whereas 16 to 40 % are specific to each tool. The potential sources of low

number of overlapping markers can be listed as follows:

e Software specific detected features. Major cause is peak detection algorithms and its
parameter settings.

e Differences in peak height assignments or errors that may occur during gap filling.

The loss of information and potential introduction of noise during feature selection by a single
preprocessing method would therefore seem to be a potential source of error in metabolomics.
Thus, the use of more than one software and/or the use of several settings during data
preprocessing with any software is likely to improve marker detection in untargeted

metabolomics.

The selection of a specific preprocessing software tool depends on programming skills, and easy
visualization of the results to allow optimal parameter settings, quality control and coverage of
steps in the pipeline. Furthermore, its ability to make use of available memory and CPU of the PC
is another important factor which is particularly important when larger number of samples is to be
preprocessed. Some of the practical properties of XCMS, MZmine and MarkerLynx have been

given in Table 1.
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Table 3. Practical properties of MZmine, XCMS and MarkerLynx

MZmine XCMS MarkerLynx
Availability Free Free Commercial
. e Rsoftware command e GUI"
e GUI
line e No requirement
User interface e No requirement of

programming skills

e Some programming

of programming

skills is required skills
e Adjustable to maximum
. _ e Adjustable to
available memory in the
maximum available e Fixed

PC.
Memory usage
o Less efficient than

memory in the PC

e e.g. maximum

e e.g.16 GBRAM = ~1000 samples
XCMS e.g. 16 GB RAM =
maximum ~5000 samples
maximum ~2000 samples
e Adjustable to
e Adjustable to maximum
CPU usage maximum available CPU e Fixed
available CPU in the PC
in the PC
e Basic identification
tools. e Automated advanced
e Basic
Identification e Automated advanced identification tool

tool CAMERA is
incorporated from XCMS

CAMERA

identification tools

Coverage of

e Final feature table

preprocessing o All steps o All steps
includes isotopic peaks
pipeline
Visualization of
Yes Yes No

the results

* Graphical User Interface

Recently, a web based Graphical User Interface version of XCMS has been released [43]. It allows

the application of R package based XCMS tools. It requires the data to be uploaded which can be

time demanding with large sample sizes.
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4.4.2 NMR

NMR signals are collected as a function of time. The chemical shift can be derived from free
induction decay, which is the decaying signal that follows a pulse, by utilizing a Fourier
transformation [25]. The first step of preprocessing is phase correction and baseline correction

which can be performed by the tools provided by machine-vendor software.

Due to pH, overall dilution of samples and relative concentrations of specific metabolites, the
chemical shift of the same analyte peak usually varies across the samples. In order to correct for
these variations a simple and common approach, spectral binning, has been widely used. Note
that the same approach has been used during LC-MS data preprocessing to correct m/z variation
as mentioned in the previous section. On the NMR side, the main disadvantage of binning is loss of
spectral resolution. To avoid this problem more sophisticated alignment tools have been
proposed, utilizing varying procedures such as genetic algorithms [44], partial linear fit [45] and
correlations [46,47]. Correlation based alignment methods recursive segment-wise peak alignment
[46] and interval correlated shifting (icoshift) [47] use the efficient fast Fourier transform engine to
handle the large data sets. Icoshift splits the spectra into intervals and shifts the spectra to get the
maximum correlation toward a target (reference or an average spectrum) in that interval. The
recursive segment-wise peak alignment also relies on maximizing the correlation between target

and spectra on interval-wise basis, but it relies on peak-picking.

Icoshift has been employed for spectral alignment in PAPER Il. As an example, NMR spectra before

and after alignment with icoshift has been shown in Figure 6.
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Figure 6. 600 MHz 1H NMR spectra of human plasma pre- and post-alignment using icoshift function. (Data from
PAPER II)

Icoshift requires user defined interval boundaries requiring careful examination of the data
whereas for recursive segment-wise peak alignment the choice of interval boundaries is often only
decided by the total number of segments desired, potentially resulting in a boundary dividing a
resonance leading to significant peak distortion. In a recent study, a method for automated
determination of intervals has been proposed. This protocol aims to generate spectral intervals
sharing a common target spectrum. Its potential application for icoshift and recursive segment-

wise peak alignment has been demonstrated [48].
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4.5 Data Analysis

In general, the central aim of data analysis in metabolomics is to extract the metabolites that
specify the difference between sample groups. Metabolomics data can be analysed with a variety
of chemometric and statistical tools [49,50]. Indeed, PCA and PLS are the most widely used ones

and those were employed to analyse the data in the PAPERS |, Il and IlI.

4.5.1 Data pre-treatment
Prior to PCA and PLS, normalization can be applied, if necessary, to correct for unwanted variation
between samples. Later, the data is commonly transformed to a more suitable format for PCA and

PLS based methods by scaling and centering procedures.

4.5.2 LC-MS - normalization

Systematic error arising from sample preparation and/or instrumental issues can bring out
unwanted variation between samples that may hinder the extraction of relevant biological
variation. Sample preparation related issues can be caused by inhomogeneity of the samples,
concentration differences (e.g. common problem, particularly for urine samples), different
recoveries during sample extraction and other inevitable minor differences in sample preparation
(e.g. pipetting errors). lon suppression/enhancement or ions source variations constitute the
major part of the instrumental issues. This is mainly caused by matrix effect which is defined as
alterations of ionization efficiency of analytes by the presence of coeluting substances [51]. Matrix
effects vary between samples based on differences in their biological constituents or differences

during sample preparation.
The unwanted variation may appear in two forms:

(1) Overall concentration variations between samples, i.e. the signal increase in all analytes of
one sample, compared to another sample.
(2) Analyte specific fluctuations between samples, i.e. a signal increase for one analyte while

decreasing for another analyte, compared to the same analytes in another sample.

If the first situation is the case, scaling factor based normalization methods can be used for
correction of between sample variations. Scaling factor based normalization is performed by
dividing each analyte in a sample by a factor such as unit norm, total area, or total sum of
intensities calculated for that sample. For instance while acquiring the data from PAPER I, a

potential signal suppression effect from a build-up of non-volatile contaminants in the ionization
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source throughout the course of the entire analysis caused a steady decrease in the signal.
Normalization to unit length lead to partially removal of the pattern related to signal loss, so that

the fasting vs. fed pattern became easier to capture by PCA (Figure 7).
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Figure 7. PC1 vs. PC2 scores plots illustrating the effect normalisation on the extraction of fasting vs. fed related
patterns. Before normalization (left), after normalization to unit norm (right). Blue: fasting state, orange: fed state.
(Data from PAPER I, negative mode data)

However, analyte specific fluctuations are more frequently observed. This is mainly caused by
analyte specific ion suppression issues due to the complex nature of the biological samples and
cannot be corrected by scaling factor based normalization methods. An example illustrating this

issue is shown in Figure 8.
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Figure 8. Total ion chromatogram of duplicative measurements shown in different colours. The initially acquired
samples had higher signal between 4 to 5.5 min, but lower 5.5 to 6 min compared to their duplicates. Thus, scaling
factor (total signal basis) is not representative of the between sample variation and does not correct for it. (Data from
PAPER |, positive mode data)

In some situations, applying scaling factor normalization may also introduce further obscuring
variation. For instance, for the data from PAPER IlI, the unit length normalization caused an
increase in coefficient of variation (CV) for three out of four internals standards (Figure 9). Thus,

careful examination of the dataset is required when using scaling factor based normalization.
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Figure 9. Effect of unit length normalization on CV of internal standards, glycholic acid, hippuric acid, L-tyroptaphan,
lysophosphatidylcholine (LPC17:0). (Data from PAPER Il).

In order deal with metabolite level fluctuations between samples, utilization of isotopically
labelled internal standards has been suggested where each internal standard is added to each
sample in identical concentration. As the internal standard represents a known quantity, the

estimated analyte signal can be expressed as relative to the internal standard with the aim of
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removing the error. However, a fully labelled reference metabolome is not feasible. Instead,
multiple internal standards, each representing metabolites from chemically related groups, can be
used for correction of systematic errors on metabolite level. Although there is no specific method
to employ those to correct for each metabolite, some studies have explored the issue. Bijlsma et
al. [52] performed internal standards based normalization by using each standard to correct the
metabolites in its corresponding retention time region. Sysi-Aho et al. [53] utilized multiple linear
regression (MLR) to remove the correlated variance between the metabolites and the internal
standards. A modified version has been suggested by Redestig et al. [54]. In their method it is
assumed that the variation between samples on analyte level can be represented by internal
standards. Initially, structured variance in internal standards (Z) is estimated by PCA. Later, PC
scores (T;) were used to remove the Z from the samples (Y4) by MLR. The final equation evaluated

for normalization can be expressed as
Y;l,Norm =Y, Ty (TZTTZ)_lTZTYA

where they used PCA and to extract the variation in internal standards and MLR to remove the
correlated variance in samples. It has been argued that this method is efficient to remove between
batch and within batch differences. The batch-to-batch variation is quite problematic particularly
when dataset includes many batches. As batch-to-batch variation is not caused by overall
response differences between batches, scaling factor based normalization does not correct for it.
The previously mentioned method by Redestig et al. [54] has been applied to the data from PAPER
Il, where four internal standards were previously added (given internal standards in Figure 9). The
data included 12 batches where PCA explained batch differences in the first eight components.
The batch-to-batch variation was partially removed, yet the results indicated that proper
correction requires a larger number of internal standards representing chemically related
metabolite groups. In this case, after normalization, batch-to-batch related variation decreased

captured by the first four components.

In summary, two different strategies are suggested for correction of unwanted variation between
samples: (1) scaling factor and (2) internal standard based normalizations. Scaling factor based
normalization assumes the unwanted variation is caused by overall concentration changes
between samples. Thus, it uses the same scaling factor to correct for each analyte in a sample
(row-wise correction). On the other hand, internal standard based normalization performs the
correction on metabolite level which means metabolites are corrected with their representative

internal standards in a sample. As metabolite level fluctuations are very common for LC-MS based
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metabolomics data, internal standard based normalization may be a more reasonable choice but a

large number of internal standards providing overall coverage of metabolite groups is necessary.

4.5.2.1 LC-MS - Scaling and centering

Particularly in LC-MS based metabolomics, the metabolite levels differ in a wide range, yet this
may not correspond to the biological interest. For instance, two metabolites with signals of 5000
and 50 are usually of equal importance. However, PCA tends to gravitate upon the larger variation
that is provided by larger peaks. Thus, scaling is necessary prior to PCA or PLS, to put metabolites

on similar or equal basis.

Centering adjusts for differences in the offset between high and low abundant metabolites. Mean
centering forces the corrected (centered) metabolite concentrations to fluctuate around zero as

the mean (Figure 10B). In most cases, centering is applied in combination to scaling.

Autoscaling and pareto scaling are the most commonly employed scaling strategies in
metabolomics. Autoscaling, which is a combination of unit scaling and mean centering, uses
standard deviation as the scaling factor (Figure 10C). After unit scaling, all metabolites have
standard deviation of one so that they have equal chance to influence the model. The main
disadvantage of autoscaling is that it also inflates the noise, thus it may complicate the extraction
of relevant patterns. Pareto scaling utilises square root of standard deviation as scaling factor. As a
result, it reduces large scale differences between metabolites but still they are close to the original

measurements (Figure 10D).

Although some studies in LC-MS based metabolomics pareto scales the data, in most cases
autoscaling has been shown as a better choice unless there is a specific interest or situation (e.g.
very noisy data) [55]. The reason is that the magnitude of metabolite concentration differences
are not representative of biological relevance and that can only be provided by autoscaling.

Accordingly, the datasets investigated in PAPER |, Il and IIl were autoscaled.

Note that after preprocessing of LC-MS data, elution profile of each analyte is converted to a
discrete value such that each chromatographic peak is represented by its height or area. In cases
where elution profiles are used (e.g. LC-FID), autoscaling may inflate the baseline and is not

recommended.
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Figure 10. Effect of mean centering (B), autoscaling (C), pareto scaling (D) on deconvoluted GC-MS based
metabolomics data (A) [55].

4.5.3 NMR - Normalization

Normalization of NMR spectra is especially important for urine samples to correct for variations of
the overall concentrations of samples caused by different dilutions. The scaling factors mentioned
in the previous section can also be applied to NMR data. Some other more advanced procedures

includes Probabilistic Quotient Normalization [56] and Quantile Normalization [57].

Probabilistic Quotient Normalization was utilised for NMR data in PAPER Il. Scaling factor based
normalizations calculate the scaling factor for each sample based on contributions from all signals
in that sample. On the other hand, Probabilistic Quotient Normalization calculates a most
probable quotient between the signals of the corresponding spectrum and of a reference
spectrum (mean or median of spectrum in the study) and uses that as scaling factor. Probabilistic
Quotient Normalization can be applied to raw spectra or binned spectra. Its algorithm has been

summarized as:

(1) Perform scaling factor normalization (described in section 2.5.1.1).
(2) Choose/calculate the reference spectrum (median or mean spectrum).
(3) Calculate the quotients of all variables of interest of the test spectrum with those of the

reference spectrum.
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(4) Calculate the median of these quotients.

(5) Divide all variables of the test spectrum by this median.

It has been shown that compared other scaling factor normalizations, Probabilistic Quotient
Normalization is more robust against strong metabolite specific changes as it does not have

constraints such as a total integral or a total vector length [56].

4.5.3.1 NMR - Scaling and centering

In case NMR spectral profiles are used, autoscaling of NMR spectra leads to inflated noise as
shown in Figure 11, PCA loadings plot. Thus, it may become difficult to extract the relevant
biological phenomena. On the other hand, as peak shapes are already distorted and the data is

reduced, binned spectral profiles can be autoscaled.
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Figure 11. PC1 and PC2 loadings vs. chemical shifts for centered simulated spectral data (left). PC1 and PC2 loadings
vs. chemical shifts loadings for the autoscaled true data (right) [58].

4.5.4 Principal Component Analysis

PCA was first defined in statistics as finding ‘lines and planes of the closest fit to systems of points
in space’ by Pearson in 1901 [59] and further developed by Hotelling to its present stage [60].
Since then, PCA has been employed in a wide range of scientific fields as a well-established

multivariate data analysis method.

PCA aims to extract the dominant patterns in a data matrix consisting of a large number of
interrelated variables in terms of lower dimensional variables called principal components.
Principal components represent linear combinations of original variables. The components are

approximated as orthogonal directions in original variable space with the aim of capturing
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maximum variance. Considering a data matrix X with n rows and k columns, PCA decomposes X
into linear sum vector products, t - p'. In general we need more than one component to explain

the data matrix. For i components, PCA can be formulated as
X=t;'p1+typo+..+ti'p,+E =12 ..,i

where t; is the score vector (n X 1), p; is the loading vector with (k X 1) for each component and E
contains the residuals, the part of the data that is not explained by principal components. The
loading vector p defines the new directions in original variable space and the projection of samples

onto that provides the score vector t. A more compact representation of PCA is given as
min(X —T-P")
where T is the score matrix (n X i) and P is the loadings matrix (k X i)

The sample patterns are commonly visualized by a scatter plot of scores, for instance t; vs. t, for
the first two components. The corresponding variable patterns are represented by a loadings plot
p1Vs. p. Principal components are orthogonal to each other which means they are uncorrelated

so that we can talk about one component independently from the others.

4.5.4.1 Application of PCA in metabolomics

Wold et al. [61] listed the goals of PCA on a data matrix as simplification, data reduction,
modelling, outlier detection, classification, prediction, classification and unmixing. On the basis of
metabolomics, PCA has been used for data reduction [62], outlier detection [7], classification [63]

and variable selection [64,65].

PCA provides an overview of the data and gives an idea about the dominating patterns. This is
usually done by a visual inspection of scores and loading plots. For any kind of metabolomics data,
it is a very good idea to start with PCA, since it will help you to get to know your data. In addition,
PCA is very useful to identify potential outliers, which you can decide to exclude or not after
inspecting those in the raw data. The data from PAPER |, Il and Il were subjected to initial PCA for

outlier detection and explorative purposes.

Variations caused by sample collection/preparation or instrumental issues will also be reflected on
PCA. For instance, Rasmussen et al. [66] used PCA on urine samples analysed by NMR to evaluate
the effects of sample storage conditions. PCA has been widely utilised to assess the analytical

performance in metabolomics studies [67,68]. As an example, Eva et al. [69] evaluated PCA in
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terms of repeatability and robustness of quality control samples in order to optimise the UPLC-MS
method for metabolomics analysis. Another example for application of PCA for analytical quality
check has been shown in PAPER I. As shown in Figure 12, some samples were positioned apart
from their instrumental replicates according to PC1, which was further justified to be caused by

instrumental signal drift.
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Figure 12. Score plot of PC1 vs. PC2. The instrumental replicates are separated in PC1. The same numbers indicate the
replicative measurements. (Data from PAPER I)

The above mentioned applications of PCA are either for optimisation of analysis methods or for
evaluating the normalization. Indeed, the core aim of data analysis in metabolomics is to extract
metabolites related to specific exposure (e.g. disease vs. healthy, case vs. control), which boils
down to application of PCA for variable selection purposes. For instance, OuYang et al. [70]
analysed NMR profiles of serum samples from cancer patients and healthy controls with PCA. PCA
score plot revealed a clear distinction between the control and cancer groups so that the

representative metabolites were selected from the corresponding loading plot.

However, there are not so many PCA based metabolomics applications for selection of significant

metabolites. The reasons for this are based on two drawbacks of PCA:

(1) PCA searches the global patterns and it is not efficient in finding local patterns which is very

common in metabolomics data due to its complex nature [71].

(2) Principal components are linear combinations of all variables, thus, considering the large

number of variables, it is not easy to point out a group of metabolites among many irrelevant
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ones. Sparse PCA has been suggested to overcome this issue by forcing less effective metabolites
to have zero loadings [72].This method has been employed in PAPER Ill and is further discussed in

the proceeding section.

4.5.5 Sparse Principal Component Analysis

In 1996, Tibshirani [73] developed a method called Lasso, for estimation of linear models. The
lasso is a penalized least squares method, imposing a constraint on the L; norm of the regression
coefficients. Bounding L; norm of PCA model parameters results in a sparse model which makes it
favourable for variable selection. Several methods have been proposed for estimating SPCA, based
on either the regression error property [74] or the maximum variance property of principal
components [75]. In the context of maximizing variance, SPCA can be formulated as a penalized
optimization problem with the main objective being a minimization problem similar to PCA but

with L, norm penalties imposed on the loadings:
argmin(||X — TPT||%)
subject to ||p;|l} < cand||p;ll53 =1, fori=1,..k

where X(n x p), is the data matrix, ||p;||} is the sum of absolute values (L; norm) of the columns of
loading matrix P, and T is the score matrix. The tuning parameter c is a positive penalty parameter
bounding the sum of absolute values of the normalized loading vector (||p;|l; < c). Thus, it leads
to some loadings being exactly zero [76]. If c is chosen large enough, it will lead to unconstrained
solution, which will be identical to PCA decomposition. A meaningful sparse solution can be found

when c is chosen in between 0 and the sparsity level producing unconstrained solution [76].

Solution of the constrained optimization problem can be solved by deflation where calculation of
components is based on the current residual [75]. Alternatively, the calculation of the entire set of
components can be done simultaneously by iterating between scores and loadings [76]. For the
latter, an alternating least squares-based approach with induced L; norm penalty is used for
component estimation [76]. Nevertheless, the alternating least square solution may provide local
minima. In order to avoid the local minimum, in PAPER Il we initialized multiple times with
random loadings. It is assumed that a global minimum is achieved if the solution with maximum

explained variation (or minimum loss function) is observed multiple times.

Unlike PCA, SPCA does not impose othogonality constraint between components. In SPCA,

components are correlated and the loadings are not orthogonal.
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Cross-validation has been suggested for the optimization of sparsity penalty selection [76].

4.5.5.1 Application of SPCA in metabolomics
As mentioned previously, PCA with the aim of variable selection can perform poorly for
metabolomics data due to large number of irrelevant variables. SPCA allows selection of a limited

number of metabolites by penalizing many irrelevant ones to have zero loadings.

Allen et al. [77] developed a modified form of SPCA with non-negativity constraints and showed its
potential on NMR based metabolomics data. Furthermore, in Paper Ill, LC-MS data is subjected to
SPCA and PCA. Based on our findings, both SPCA and PCA capture time since last meal patterns
from plasma LC-MS profiles (Figure 2-3-4, PAPER Ill). However, SPCA provided results that were

easier to interpret compared to PCA.

Not SPCA, but coupled matrix factorization with imposed sparsity in the variable modes has been
developed and the application potential of this tool has been demonstrated on a metabolomics
study utilizing two analytical platforms LC-MS and NMR, and a dataset including several clinical

end points such as lipoproteins and lipids [78].

4.5.6 Partial Least Square

PLS is a linear regression based method for relating a set of predictor variables, X, with one or
more independent variables, Y [79]. The significance of PLS is related to its ability to deal with
strongly collinear X variables which makes it suitable for analysis of metabolomics data such as
spectral and chromatographic profiles. Like PCA, PLS is a projection based method. PCA aims to
find a subspace that explains the maximum amount of variation in X. PLS, on the other hand, tries
to find a small dimensional subspace that describes the X well but at the same time the
coordinates of this new subspace are good predictors of Y. Similar to PCA, the components are

orthogonal. PLS can be formulated as
X=T-P+E
Y=T-C'+F
such that X loadings, P, are good summaries of X and X scores, T, are good predictors of Y.

In metabolomics, PLS has been applied in classification problems where class labels (e.g. case vs.

control, exposed vs. unexposed) are used as Y vector. In this case, it is called PLSDA. For the two-
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class case, the Y variable is set to have 0 and 1 entries for each class, respectively. PLSDA aims to

improve the separation between the two groups by using the class information.

The orthogonal PLSDA (OPLSDA) has been developed as an extension of PLS and it is extensively
used in metabolomics [80]. In OPLSDA, the Y unrelated (orthogonal) variation has been removed
from X. In this way, OPLSDA attempts to describe classification information in one component.

However, the prediction power of PLS and OPLS are usually the same [80,81].

In metabolomics datasets, irrelevant variation is dominant in many cases. As mentioned earlier,
PCA tends to gravitate towards to that variation, whereas PLS provides more discriminating latent
variables. Thus, PLSDA have been extensively applied in metabolomics both for classification and

variable selection.

4.5.6.1 Model validation
Unlike PCA, PLSDA is a supervised data analysis method. Particularly, for metabolomics data,
where the number of variables is much larger than the number of samples, there is a potential

danger of over-fitting. Thus, careful validation is critical.

In some metabolomics papers, PLSDA scores and loadings plots from models without any
indication of validation diagnostic statistics have been presented. However, scores and loadings
cannot be trusted if validation shows that the model is not valid. To point out this issue,
Westerhuis et al. [82] illustrated that cross-validation of NMR spectra of 23 health volunteers
arbitrarily divided into two classes revealed Q® values of -0.18, which is considered not to be a

good classification. However the PLSDA scores plot showed a clear separation.

The initial step, while building a PLSDA model, is the selection of component number providing the
optimal model complexity. Cross-validation has been as a standard tool to determine the number
of components. In cross-validation, the samples are divided into training and validation sets. The
training set is used to develop models with different number of components (i.e. from 1 to n).
These models are evaluated based on their performance for correctly classifying the validation set.
Then, the number of components providing the minimum number misclassifications (NMC) is
selected. However, assessment of the classification performance of the final model by NMC of the
training may lead to over-optimistic validation results. The model is optimised for the samples that
are left out, so, those do not assess the validity of the final model [83]. For proper validation, the
total data can be divided into training, validation and test sets. The model optimisation is done on

training and validation sets and the test set is used to evaluate model performance.
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Double cross-validation has been suggested for reducing over-optimism in cross-validation [84,85].
It consists of two nested cross-validation loops as shown in Figure 13. The inner loop cross-
validation is used to determine the number of components providing the model with optimum
complexity. Then, the final model prediction performance is evaluated by the samples in the test
set. The inner and outer loops are repeated N and M times while training, validation and test sets
were selected randomly from each class. The number of samples within each set is kept the same

for each repetition.

Outer cross validation, M times

Inner cross validation, N times

v

Validation set

- Models

Training set

DATA >

Minimum NMC - # of components

Prediction
> Test set - Model
errors

Figure 13. Double cross-validation scheme. In the inner loop, the number of components is determined based on

minimum validation set NMC from PLSDA models that are constructed with N different validation and test sets. The
number of components that leads to the lowest cross-validation NMC is selected and used to build a model with the
corresponding training set. Later, the test set in the outer loop is predicted with this model to give an NMC. The NMC
calculated in the M different outer test sets are combined.

In order to decide whether there is a difference between the groups, NMC or other statistic
diagnostics (e.g. Q® and area under receiver operating characteristic curve) are evaluated.
Although it is said that if NMC is lower than 0.5, then there is a difference, it is not known which
value of these NMC really corresponds to a good discrimination between groups. Comparison of
original classification (two classes) NMC with NMC obtained from the same data but with
randomly assigned class labels may provide a better assessment of PLSDA classification
performance. This procedure is called permutation test [82]. In general, PLSDA is calculated with
random class assignment many times, so that a distribution of NMC can be obtained. The
significance level of original classification can be calculated compared to random ones. In case of

significance, it can be concluded the original model performs better than random classification. In
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permutation test the models with permuted classes is obtained from the same number of samples
that also show the same amount of variation, outliers and missing data. Thus, it provides a strong

comparison basis. An example of permutation test histogram is given in Figure 14.
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Figure 14. Permutation test. Histogram of the number of misclassifications in 10,000 permutations. Misclassifications
are obtained from double cross-validation. The arrows indicate the number of misclassifications in the original
problem. From 10,000 permutations none had NMC lower than the original classification [85].

Westerhuis et al. [86] employed permutation test, to illustrate the over-optimistic results when
validation set based NMC is used to assess the overall model performance. They used urine NMR
profiles of 22 subjects. When there is no difference between the classes, half of the samples are
expected to be misclassified. Thus the validation procedure should on average give 11.5
misclassifications for the permuted datasets. As shown in Figure 15, validation set based model
evaluation provided over-optimistic results whereas the double cross validation provided the

expected NMC.
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Figure 15. Permutation test applied on a proteomics data. Histogram of the number of misclassifications in 2,000
permutations. NMC are obtained from cross-validation (up) and double cross-validation (down). The expected
permuted data NMC is estimated correctly, only by double cross-validation [82].

Both for the datasets PAPER | and Il (LC-MS and NMR data) double cross-validation and

permutation tests were employed to evaluate the classification performance of the PLSDA models.

4.5.6.2 Variable selection

The metabolite selection in PLSDA is usually based on regression coefficients and variables
importance for the projection (VIP) [79]. Regression coefficients represent the importance of a
given metabolite for modelling class assignments (Y) whereas VIP summarise its importance for
both metabolic profiles (X) and class assignment (Y). Regression coefficients have been employed

for selection of discriminating metabolites for PAPER I.

As described in the model validation section, when double cross-validation is employed, the
assessment of the model has been performed on multiple subsets of samples, each with its own
number of components, variables selected, scaling etc. However, there is no consensus on how to
choose the overall model based on sub-model results or which model is to be used for variable
selection [83]. In this sense, in PAPER |, firstly, the rank of each feature is recorded based on its
absolute regression coefficients from each calculated sub-model (double cross-validation). Then,
for each feature, the rank product from all sub-models is calculated which is used to demonstrate
the feature’s overall importance [85]. This perspective allows each sub-model to contribute in
variable selection, yet if one out of many sub-models performs poorly, its effect will be
depreciated. Thereby, the features that appear as influential for classification in many models will

be selected.
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Rajalahti et al. [87] developed a new tool, selectivity ratio, for variable selection in spectral data.
Selectivity ratio of a metabolite is calculated as the ratio between explained and residual variance
on the target projected component which is a single latent variable explaining the covariance of
the X variables with the Y. They have shown on spectral data that variables selected by regression
coefficients compared to selectivity ratio may include a larger number of false discoveries. Thus,

we have used selectivity ratio as a variable selection tool in PAPER II.

4.6 Identification

In metabolomics studies, data analysis provides a number of metabolites with known m/z and
retention time for LC-MS or with chemical shifts for NMR, related to specific exposures. In order to
interpret and understand the associated metabolic perturbations in biological systems, the
chemical identity of these metabolites should be determined. Four levels of chemical compound
identification have been defined by the Metabolomics Standards Initiative as shown in Table 4

[88].

Table 4. Levels for validation of non-novel compounds defined by Metabolomics Standards Initiative [88].

Level Name Minimum requirements

1 Identified compounds At least two independent and orthogonal data relative to an
authentic compound analysed under identical experimental
conditions.
(e.g. retention time/index and mass spectrum, retention
time and NMR spectrum, accurate mass and tandem MS,
accurate mass and isotope pattern, full *H and/or **C NMR,

2-D NMR spectra)

2 Putatively annotated Without chemical reference standards.
compounds Based upon physicochemical properties and/or spectral

similarity with public/commercial spectral libraries.

3 Putatively characterized Based upon characteristic physicochemical properties of a
compound classes chemical class of compounds, or by spectral similarity to

known compounds of a chemical class

4 Unknown compounds These metabolites can still be differentiated and quantified

based upon spectral data
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4.6.1 LC-MS

The identification of the compounds from LC-MS based methods is both analytically and
computationally challenging. It is often time-consuming, laborious and considered as a bottleneck
in interpretation of metabolomics data. The three main strategies for identification of LC-MS

based metabolites include:

e Accurate mass based identification using high-resolution instruments. In combination with
accurate mass isotopic distribution may reveal elemental composition of the compound.

e Application of tandem MS where the instrument performs an MS* survey scan, and selects
one or more ions for subsequent MS? or even MS" scans. This provides the structural
information of a compound by exploiting the fragmentation patterns.

e Comparison of retention time and spectra with authentic standards.

Each specific chemical compound gives rise to one or more ion species during ESI, which are
included in the same mass spectrum. Those ion species include isotope, fragment, adduct and
cluster ions. Inclusion of all ions representing one compound brings out redundancy issues in the
data analysis part. Recently, a new R based package called CAMERA [89] has been released which
aims to automatically group the features derived from the same analyte and annotates isotope
and adducts peaks by utilizing correlations across the samples and similarity of the peak shapes.
The assignments may also ease the identification step in the sense that the ion species to search

for the accurate mass in spectral databases will be known.

In order to cope with the challenges in metabolite identification, many compound databases have
been developed including chemical and physical properties of the compounds. For accurate mass
and spectral search the databases, HMDB [4], METLIN [90] and Lipid Maps [91] have been
systematically searched in this thesis. The other databases such as Manchester Metabolomics
Database [92] contains 42,687 endogenous and exogenous metabolites retrieved from primary
sources such as HMDB, Lipid Maps, BioCyc [93] and DrugBank [94]. The MassBank [95] database
maintains the spectral information from a wide variety of commonly used mass spectrometry
platforms. The spectral database and visualization tools are publicly available and web-accessible

which was regularly used for the present work.

For identification of the LC-MS based features from metabolomics studies, additional experiments
have been performed. For instance in PAPER |, the authentic standard of sn-2 LPC(18:1) was

produced by phospholipase Al based hydrolysis. Furthermore, post-column lithium infusion was
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performed to increase the abundance of PC fragments with lithium adduct formation and thereby

improve the structural characterization of PC species in PAPER II.

4.6.2 NMR

NMR identification in PAPER Il has been limited to peak assignment from comparison of chemical
shift with previously published blood plasma metabolites [96]. However, database libraries used
for MS searches such as HMDB [4], KEGG [97] and MetaCyc [98] also contain 'H and C NMR
assignment of the metabolites. These sources provide reliable assignments of NMR spectra for

identification of metabolites.

Nevertheless, 1D 'H NMR spectra suffers from peak overlap thereby complicating the
identification and quantification of metabolites. 2-D NMR methods offer the benefits of 1-D NMR
but additionally resolving the overlapping resonances into a second dimension, and increasing
metabolite specificity. Thus 2-D NMR methods have the potential for application in metabolomics
with the advantage of improved identification. Recently, Birmingham Metabolite Library have

been established with the database of 1-D and 2-D J-resolved NMR spectra [99].

4.7 Biological Interpretation
The final step in the metabolomics pipeline is interpretation of the identified compounds
reflecting a specific exposure in biological terms. In the next sections, the biology behind the

identified compounds from studies involved in PAPER |, Il and Il will be discussed.

4.7.1 Meal responses

Human metabolism shifts constantly between anabolic (fed) conditions after food intake and
catabolic states between meals or during extended starvation periods. Insulin is the main
coordinator of this shift where high levels of insulin modulate energy storage in the anabolic state
and low levels of insulin and high levels of glucagon control energy expenditure in the catabolic

state [100].

In the anabolic state, after food intake, insulin enhances utilization of glucose as a prime energy
substrate by muscle, adipose tissue and liver and promotes hepatic synthesis of glycogen while
inhibiting gluconeogenesis and glycogenolysis. Furthermore, triacylglyceride formation is favoured
with uptake of fatty acids from plasma for energy storage. Also, protein synthesis increases by

amino acid uptake from plasma into muscle and liver. The catabolic state involves a series of
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adaptations to ensure adequate fuels for body tissues in the absence of exogenous substrate.
When the insulin level drops, the liver becomes an organ of glucose production to provide energy.
In addition, lipolysis and proteolysis increases for energy production. Plasma fatty acid levels rise
to maintain energy levels via R-oxidation and acetyl-CoA production. Branched chain amino acids
are fuels for energy production and plasma levels decrease initially during the first hours after a
meal whereas increased levels after prolonged fasting (>8-16hrs) are indicators of a high rate of
protein breakdown [100,101]. The schematic representation of the dynamics of plasma metabolite

changes is given in Figure 16.

Carnitine is required to assist the transport and metabolism of long-chain fatty acids in
mitochondria, where they are oxidized as a major source of energy. Thus, during fasting, long-
chain and short chain acylcarnitines increase with a decrease in free carnitine [102]. After
oxidation of fatty acids, acetyl-CoA is produced and gives rise to formation of the so-called ketone
bodies, acetone, acetoacetate and B-hydroxybutyric acid. Ketone bodies provide an alternative
fuel to body tissues, especially to the brain during fasting. The brain can utilise only ketone bodies

as an energy source when glucose levels are not sufficient [103].

The above mentioned metabolic patterns reflecting the body’s shift from anabolism to catabolism
has been confirmed in PAPER |. During fasting state compounds characteristic to lipolysis such as
fatty acids, B-hydroxybutyric acid (ketone body), acetyl-carnitine and acyl-carnitines are increased,
whereas L-carnitine is decreased. The amino acids and lyso-lipids were higher in plasma at fed

state.
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Figure 16. Dynamics of plasma metabolite changes between anabolic (fed) and catabolic (fasted) states. Detailed
explanation is in the text [100].

The response to food intake and metabolite clearance rates vary depending on the quality and
guantity of the food source [104] and the physiological differences between subjects such as
gender, age and weight [105]. The metabolic responses to food intake and metabolite clearance
rates are usually measured by postprandial challenge tests. These may be performed by glucose
tolerance tests (OGTT or clamps), lipid challenges, or by specific foods or whole meal challenges,
depending on the specific metabolite group of interest. However, time-resolved changes of the
human metabolome in response to a challenge have been very rarely investigated in
metabolomics studies. Instead, fasting state plasma samples have been used, typically following
an overnight fast, as it is considered to be more reproducible. Nevertheless, recent metabolomics
studies have demonstrated that challenge tests increase metabolite variability between

volunteers, allowing discrete metabotypes to be identified that would not be seen in normal
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fasting conditions. Zhao et al. [106] and Shaham et al. [107] were the first to utilize metabolomics
to investigate the physiological changes during an OGTT. They identified major concentration
changes in compounds, such as bile acids, that have not been reported previously. In addition,
Shaham et al. [107] demonstrated that time-resolved metabolic profiling has the potential to
define an individual’s ‘insulin response profile’, which could have value in predicting diabetes. This
has been shown by pre-diabetic individuals’ selective resistance to suppression of either
proteolysis or lipolysis. Wopereis et al. [108] have shown the effect of the diclofenac treatment
can only be revealed by investigating metabolic patterns with OGTT and time course. Krug et al.
[109] submitted 15 young healthy male volunteers to a highly controlled 4 d challenge protocol,
including 36 h fasting, OGTT and lipid test, liquid test meals, physical exercise, and cold stress.
They have shown that physiological challenges increased inter-individual variation even in
phenotypically similar volunteers, revealing metabotypes not observable in baseline metabolite
profiles. Another study investigated the metabolic perturbation in response to a postprandial
challenge in a controlled intervention study [29]. All these studies provided unique findings
illustrating that the profiles obtained from metabolic challenge tests are more informative than
using fasting state profiles.

In PAPER llI, based on a cross-sectional study group, time since last meal related pattern, revealed
higher levels of amino acids and LPCs in volunteers who were considered to be in postprandial
state, so even under free-living conditions it is possible to reproduce part of the patterns observed

in controlled settings (PAPER I).

4.7.2 Trans fatty acids

Industrially produced TFAs are formed during the partial hydrogenation of vegetable oil that
changes cis configuration of double bond(s) to trans, resulting in semi-solid fats for use in
margarines, commercial cooking, and manufacturing processes. Partially hydrogenated vegetable
oils are appealing because of their long shelf life, their stability during deep-frying, and their semi-
solidity, which is utilised to enhance the palatability of baked goods and sweets.

Partially hardened vegetable oils mainly contain trans isomers of oleic acid (Figure 17, left), the
major one being C18:1 trans-9 or elaidic acid (Figure 17, right) and C18:1 trans-10. In addition,
smaller amounts of C18: 1 trans-8, and C18:1 trans-11, and trans isomers of alpha-linolenic acid

may arise during deep-fat frying [110].
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Figure 17. Chemical structure of cis and TFA. Both oleic acid and elaidic acid has 18 carbons. In cis configuration (e.g.
oleic acid) the carbon chain extends from the same side of the double bond, causing a bent molecule, whereas in trans
configuration (e.g. elaidic acid) the carbon chain extends from opposite sides of the double bond, providing a straight
molecule [111].

4.7.2.1 Health effects

TFA intake has been identified as a modifiable dietary risk factor of coronary heart disease (CHD).
Consumption of TFA, on a per-calorie basis, potentially increases the risk of CHD more than any
other micronutrient. In a meta-analysis of four prospective cohort studies involving nearly 140,000
subjects Mozaffarian et al. [111] have demonstrated that a 2 % increase in energy intake from

TFAs raised the incidence of CHD with 23 %.

The adverse effects of TFA consumption on serum lipids in humans has been demonstrated by
randomised, controlled trials. In a meta-study of eight selected trials [112], isoenergetic
replacement of saturated or cis unsaturated fats with TFAs raised the level of total cholesterol (TC)
to high-density lipoprotein cholesterol (HDL-C) in the blood. In relation to that, in PAPER Il, LDL-C is
increased with TFA intake based on plasma NMR profiles. Also, TFA intake has been shown to have
unfavourable effects on triglycerides, apolipoprotein (Apo) B/ApoAl ratio and C-reactive protein
[113]. Although alteration of blood lipids, particularly an increase in TC/HDL-C ratio, is associated
with CHD, the relation of TFA intake with the incidence of CHD has been greater than that
predicted by changes in blood lipid levels alone [113,114]. This implies that the mechanisms
behind the adverse effects of TFAs are not fully understood. Bendsen et al. [115] have shown that

TFA consumption may involve in activation of TNF-a as a possible mechanism leading to
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development of CHD (study group and design from PAPER Il). In some studies TFA intake in the
human diet has also been associated with type 2 diabetes. Two prospective studies found positive
associations of TFA intake and type 2 diabetes [116,117] whereas no association has been
observed in two other prospective cohort studies [118,119]. Moreover, in a 16-week randomised
controlled trial, there was no relation between TFA intake and glucose metabolism (study group
and design from PAPER IlI) [120]. Furthermore, higher plasma phospholipid and erythrocyte
membrane particularly including 18:2 TFA (trans-18:2) are associated with higher risks of fatal

ischemic heart disease [121] and sudden cardiac death [122].

4.7.2.2 TFAs effects membrane properties

Fatty acids are incorporated into phospholipids in all cell membranes of the body so dietary TFA
level was reported to directly reflect the TFA uptake to the membrane [123]. The fatty acid
composition of the membrane can strongly influence its physical characteristics. It has been shown
that TFAs convey membrane properties such as lateral lipid packing, fluidity and permeability
more similar to saturated fatty acids than their cis forms [124]. The trans double bond (Figure 17)
produces a linear conformation resembling more a saturated chain, which provides better chain
packing than a cis double bond [125]. It may be assumed that more tightly packed (trans isomer)
membranes should be less permeable than membranes whose lipids are loosely packed (cis
isomer). Depending on the similar basis, cis-PC membranes are more ‘fluid’ than trans containing
membranes. The efficiency of molecular signal transduction is highly dependent on the orientation
and positioning of various proteins within the cell membrane, which can be related to adverse

health effects of TFAs.

In PAPER I, indications of preferential incorporation of TFAs to PCs with longer chain and higher
saturation have been observed which could potentially cause membranes dysfunctioning of the

cell.
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5 Conclusions

This thesis aimed to examine the whole process involved in LC-MS and NMR based nutritional
metabolomics studies, from data preprocessing, through data analysis and compound
identification to interpretation of results in biological terms. For this purpose three independent
datasets involving different study designs - an animal study, a human intervention with parallel
design and a prospective cohort - were analysed. In the first study (PAPER I), the influence of LC-
MS data preprocessing on the marker selection has been investigated. The data was preprocessed
with three different tools MZmine, XCMS, MarkerLynx and a customised method (binning and

summation through retention time index). The main conclusions from the study are as follows:

e A customised method which is considered as a more primitive data preprocessing
approach leads to identification of a few false positives and false negatives but at the same
time allows fast preprocessing.

e Each software tool employs different methods in their peak detection and alignment
algorithms such that each has pros and cons to detect specific features.

e The selection of proper parameters for each tool based on the characteristics of the
dataset is the key for obtaining high quality preprocessed data. Furthermore, the use of
more than one software and/or the use of several settings during data preprocessing with

any software is likely to improve marker detection in untargeted metabolomics.

Analysis of metabolomics data is challenging because large amounts of complex data is generated
from relatively few samples. In order to analyse the complex datasets in this thesis, PCA has been
an extremely useful tool not only for providing an overview of the dominant patterns but also for
detection of outliers, and evaluation of preprocessing and pre-treatment methods. However, PCA
is not very efficient for extraction of relevant metabolites from the vast number of irrelevant ones
which is the core aim of data analysis in metabolomics studies. PAPER Ill explores this issue and
aims to compare PCA with its modified version SPCA. The results suggest that SPCA and PCA are
equally good to capture relevant patterns, yet the selection of representative metabolites is much
easier with SPCA. Therefore, SPCA can potentially be applied for variable selection purposes in LC-
MS based metabolomics. In metabolomics studies, the relevant patterns are rarely the dominant
ones, thus unsupervised methods such as PCA (or SPCA) do not always work. Therefore, a
supervised approach, PLSDA, has been employed for PAPER | and Il. PLSDA is prone to overfitting

particularly for datasets where the number of variables is much larger than the number of
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samples. To overcome this problem, double cross-validation routine is applied. The selection of

relevant patterns is based on regression coefficients and selectivity ratio.

In order to identify the selected compounds from LC-MS data besides the routines, enzymatic
reactions has been performed when the compounds were not commercially available (PAPER I).
Furthermore, it has been demonstrated that lithiated adducts of phospholipids have enhanced

ionization and class specific fragmentation in MS/MS scan modes (PAPER II).

The identified compounds have been interpreted in terms of biological interest. In the first study
(PAPER 1) the aim was to extract the metabolic patterns related to fasting (12h) and fed states
from rat LC-MS plasma profiles. This was further extended to a prospective cohort with the slightly
different focus to identify time since last meal related patterns (PAPER Ill). Although similar
purposes were involved, a rat model offers full control of the food intake whereas a cohort study
provides un-controlled observational settings. The major conclusions from these two studies can

be summarized as follows:

e Only for fasted rats, compounds such as fatty acids, B-hydroxybutyric acid (ketone body),
acetyl-carnitine and acyl-carnitines in plasma increased, which suggests an upregulated
energy production via lipolysis. The promoted lipolysis indicates body’s shift to catabolism.
However in the cohort study, the few subjects had the last meal more than 12 h, yet most
of them had a drink independently of their recorded TSLM. Thus, most were probably not
in the fasting state. On the other hand, the rats have higher rate of energy metabolism
than humans and for that reason, overnight fasting represents a more extreme condition
than in humans.

e In both studies, high levels of amino acids with recent food intake (fed state) were found,
which is linked to protein sources introduced from the last meal.

e In both studies, lyso-lipids were higher after food intake and decreased with time.

In PAPER Il, NMR and LC-MS untargeted metabolomics has been used as an approach to explore
the effect of industrially produced TFA intake on plasma metabolites. The well-known adverse
effects of TFA on serum lipids were confirmed by NMR in terms of increased LDL cholesterol levels.
On the other hand, LC-MS findings have demonstrated that in overweight healthy women, intake
of industrially produced TFA affects lipid metabolism by increasing the concentration of specific
PCs and an SM. The indications for preferential integration of trans18:1 into the sn-1 position of
phosphatidylcholines, all containing PUFA in the sn-2 position, could be explained by a general up-

regulation in the formation of long-chain PUFAs after TFA intake and/or by specific mobilisation of
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these fats into phosphatidylcholines as a result of TFA exposure. NMR supported these findings by

revealing increased unsaturation of plasma lipids in the TFA group.

In conclusion, the utilization of metabolomics to disentangle the metabolic perturbations requires
detailed understanding of the system under study, of the analytical technologies and their specific
effects on the data produced, so that suitable data preprocessing and analysis strategies can be

applied.

In terms of biology, lyso-lipids and amino acids emerged as the most dominating patterns for
identification of recent food intake. On the other hand, TFA intake caused specific changes in

membrane lipid species which may be related to the mechanisms of trans fat-induced diseases.

45



6  Future Perspectives

In this thesis LC-MS and NMR based metabolomics has been demonstrated as a powerful tool to
disclose the underlying metabolic patterns reflecting the (1) postprandial response to food intake

and its clearance rate and (2) TFA intake.

The postprandial response reveals multiple aspects of metabolic health that would not be
apparent from studying the fasting parameters. Thus, investigating the effect of specific food
intake or disease by utilising postprandial response of individuals has the potential to identify the
discrete metabolic profiles that would not be seen in normal fasting conditions. In fact, this issue
was explored with data from pilot DCH (Diet, Cancer and Health) cohort with the aim of resolving
cancer and postprandial response interactions (PAPER Ill). However, the number of subjects was
not sufficient to describe the group specific trends. Potentially, the same principle can be applied
to the larger cohort of DCH, where LC-MS plasma profiles of ~3000 individuals have been
recorded. Indeed using this set, metabolic profiles in terms of postprandial response can be
examined to assess the incidence of diseases such as overweight, diabetes and CHD. In order to
analyse this data advanced methods (e.g. multi-way data analysis tools) is required, as the purpose

is the identification of time series metabolite evaluations in discrete classes (e.g. healthy/disease).

The samples of DCH cohort were collected in the '90s before TFA was banned in Denmark, making
this data set suitable to investigate the impacts of long term exposure to TFAs. TFA intake of each
individual can be assigned from plasma LC-MS profiles using previously identified TFA exposure
markers (PAPER II). Then, the associations between long term exposure to TFA and the incidence

of diseases such as CVD and diabetes can be explored.
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Abstract: The metabolic composition of plasma is affected by time passed since the last
meal and by individual variation in metabolite clearance rates. Rat plasma in fed and fasted
states was analyzed with liquid chromatography quadrupole-time-of-flight mass
spectrometry (LC-QTOF) for an untargeted investigation of these metabolite patterns. The
dataset was used to investigate the effect of data preprocessing on biomarker selection
using three different softwares, MarkerLynx'", MZmine, XCMS along with a customized
preprocessing method that performs binning of m/z channels followed by summation
through retention time. Direct comparison of selected features representing the fed or
fasted state showed large differences between the softwares. Many false positive markers
were obtained from custom data preprocessing compared with dedicated softwares while
MarkerLynx™ provided better coverage of markers. However, marker selection was more
reliable with the gap filling (or peak finding) algorithms present in MZmine and XCMS.
Further identification of the putative markers revealed that many of the differences
between the markers selected were due to variations in features representing adducts or
daughter ions of the same metabolites or of compounds from the same chemical
subclasses, e.g., lyso-phosphatidylcholines (LPCs) and lyso-phosphatidylethanolamines
(LPEs). We conclude that despite considerable differences in the performance of the
preprocessing tools we could extract the same biological information by any of them.
Carnitine, branched-chain amino acids, LPCs and LPEs were identified by all methods as
markers of the fed state whereas acetylcarnitine was abundant during fasting in rats.
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1. Introduction

In nutritional studies, blood samples are frequently collected in order to relate dietary conditions
with metabolic markers. Blood may be obtained either in the fasted or postprandial state, depending on
the hypothesis being tested. The fasting state, typically following an overnight fast, is considered to be
more reproducible and can be defined as a baseline level for metabolic studies. However, imbalances
in diet-dependent metabolism may not be detectable in the fasted state [1]. On the other hand,
determination of the metabolic response in the extended postprandial state, which is the normal
metabolic situation of human beings throughout the day, is more challenging as individual variability
is high [2]. The basic metabolic rate varies roughly with surface area in mammals and an overnight
fasting period in rats having an eight times higher rate of energy metabolism than humans may
therefore represent a more extreme condition than overnight fasting in humans. A rat model may
therefore be convenient to study the major differences between fasting and fed states, the latter defined
as the state of rats following a normal ad libitum meal pattern. A rat model also offers full control of
the food intake in the study subjects.

In this study, an untargeted metabolomics based approach to study the metabolic differences
between rat plasma at fasted and fed states was performed. Metabolomics is defined as the process of
monitoring and evaluating changes in metabolites during biochemical processes and has become an
emerging tool to understand responses of cells and living organisms with respect to their gene expression
or alterations in their lifestyles and diets of biochemical variation, during or after food intake [3].

A wide range of metabolites and other compounds can be detected in various biofluids by nuclear
magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). These approaches can be
either untargeted through total data capture or highly targeted, such as measuring a large number of
defined lipids. MS based instruments, with higher sensitivity compared to NMR [4,5], have become a
widely used technique in metabolomics studies. Liquid chromatography (LC) coupled with time-of-
flight (TOF) MS offers high resolution, reasonable sensitivity and improved data acquisition for
complex sample mixture analyses. The system has served as a powerful tool in many other studies
focusing on untargeted metabolic profiling of biofluids [6—8].

LC-MS analysis produces large amounts of data with complex chemical information. An important
task is to arrange data in a way so that relevant information can be extracted. The complexity of LC-MS
data brings out the concept of data handling which can be roughly summarized in two basic steps: data
preprocessing and data analysis. Data preprocessing covers the methods to go from complex raw data
to clean data. Raw data are comprised of retention times and mass to charge ratios of thousands of
chemical compounds. Several software tools (commercial or freely available) have emerged for LC-MS
data preprocessing. These tools typically include specific algorithms for the two key steps in data
preprocessing, (1) peak detection and (2) alignment. Each software tool creates a list of peaks denoted
by a specific mass and retention time. Each entry has a signal intensity denoting peak height or area.
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Alignment corrects retention time and mass differences across samples so that a peak, considered as
one chemical compound, is represented by the same mass and retention time across all samples. The
peak detection and alignment result in a data table providing the detected peaks across samples which
can be denoted as clean data. All of these tools aim to provide high speed, automated data
preprocessing. The basic principles of the many LC-MS data preprocessing software tools have
recently been summarized [9,10]. To be able to obtain high efficiency in data preprocessing, the software
tool employed should have the parameter settings required to match the structure of the specific dataset.

Existence of various data preprocessing tools brings out concerns about what are the characteristics
of the software tools and what are the pros and cons of their algorithms. There are some studies
attempting to define quality parameters for comparison of peak detection [11,12] or alignment [13]
algorithms of different data preprocessing tools, but a direct comparison of the overall performance of
the most commonly used data preprocessing tools has not so far been attempted. The question to be
addressed in this study is whether there is agreement between the biological information as represented
by the biomarkers extracted by preprocessing the same dataset with different data preprocessing
methods. Therefore we compare here the potential biomarkers extracted from the current small dataset
using four different softwares for preprocessing; (1) MarkerLynx"™ (MassLynx (Waters, Milfold, MA,
USA)); (2) MZmine [14]; (3) XCMS [15,16] and (4) a customized method that is implemented in
MATLAB (The Mathworks, Inc., MA, USA). MarkerLynx™ is a commercial software whereas
XCMS and MZmine are freely available software tools. The customized method included m/z binning
and retention time collapsing which can be considered as a more old-fashioned method for LC-MS
data preprocessing. The applicability of this method for LC-MS data has been evaluated in other
studies [17] but an extensive comparison with other approaches has not been published previously.

Thus, in this study the UPLC-QTOF profiles of rat plasma collected in the fasted and fed states
were analyzed for two different purposes: (1) to investigate the effect of different data preprocessing
tools on biomarker selection; and (2) to interpret the biology behind the biomarkers identified for the
two states.

2. Results and Discussion
2.1. Comparison of Data Preprocessing Methods

The number of features obtained from each preprocessing method is given in the Supplementary
information 3. We succeeded in extracting a similar number of features with optimized parameter
settings (positive or negative), except for the custom method in negative mode where we have an
approximate doubling compared with the other software tools.

Primarily, common and unique extracted features from three different softwares were illustrated in
Figure 1. We found 37%—46% of the features extracted by each software to be in common. Rauf ef al. [16]
found higher number for common features (46%—-52%) from leaf and seed extracts comparing
MZmine and XCMS (centWave) peak detection algorithms. The difference can be the result of more
complex nature of plasma samples compared to plant extracts.
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Figure 1. Venn diagrams illustrating the number of common and method specific features

extracted from three software tools (right: positive mode; left: negative mode).
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All three software tools and the customized method employed here were able to produce a feature
set showing substantial separation of samples from the fasted and fed states in a PCA scores plot
(Figure 2 for negative mode data and Supplementary information 5 for positive mode data).

Figure 2. PCA scores plots of negative mode data processed with MarkerLynx (a),

MZmine (b), XCMS (c¢) and customized methods (d).
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PLSDA model of each preprocessed data on independent test sets provided an average classification
error rate of 0-0.02 (Supplementary information 6) indicating that all models resulted in good
classification performance. The classification error rates were very similar for datasets obtained from
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different data preprocessing methods. On the other hand, the average classification error rates of
datasets where classes were permuted were calculated as 0.49-0.51, corresponding to misclassification
of half of the samples, which is an expected value for permuted data [18]. None of the 2,000 permutations
had classification error lower than 0.00-0.02, indicating original fasted vs. fed discrimination was
significant. Histograms of permutation test are given in Supplementary Information 7.

As previously mentioned, autoscaling is applied in this study to detect possible variation between
two states for any feature, regardless of its concentration. Nevertheless, autoscaling complicates
variable selection as it gives the same chance to all peaks to influence the PLSDA model, and the
decision of a regression coefficient cut-off value for selection of important features becomes difficult.
Hereby, we decided to select of 25 features only but there is no proof to say the feature with 26th
highest regression coefficient was not a potential biomarker. Thus, the 25 markers from each method
and their various ranks from other softwares were included in Tables 1 and 2 for the negative and
positive modes, respectively. While there is no way to say which software is the more correct, the
consequence of the differences observed here is that there is no basis for putting too much emphasis on
the rank in PLS-DA methods. Howeverin many metabolomics studies, PLS-DA regression coefficients
or VIP cut-offs have commonly been employed for marker selection, even without the rigorous
iteration used here.

Table 1. Retention times and measured masses of the markers obtained from MarkerLynx,
MZmine, XCMS and custom data processing of negative mode data that contributed most
to the separation of samples in fasted and fed states.

NO | RT |[Measured| MX | MZ | XCMS |Custom | Group Suggested Adduct | Monoisotopic
(min) m/z Rank [Rank| Rank | rank Compound mass
1 0.64 | 105.02 57 17 14 194 fed Ul
2 0.82 | 116.07 91 26 17 507 fed U2
3 1.15 | 180.06 67 28 21 27 fed U3
4 1.15 | 383.12 40 80 25 624 fed U3
5 1.36 59.01 21 34 9 7 fasted 3- 104.0473
hydroxybutanoic
acid F
6 1.36 | 260.00 49 68 nd 22 fasted 3- 104.0473
hydroxybutanoic
acid F
7 1.37 | 229.07 20 35 nd 72 fasted 3- [2M+Na-| 104.0473
hydroxybutanoic H]
acid A
8 1.37 | 103.04 39 15 nd 20 fasted 3- [M-H] 104.0473
hydroxybutanoic
acid
9 1.37 | 261.18 | 1424 | nd 18 14 fed Isoleucine [2M-H] 131.0946
10 | 1.37 | 130.09 25 nd 24 65 fed Isoleucine [M-H]- 131.0946
11 1.80 | 178.05 nd 22 nd 166 fed U4
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Table 1. Cont.
NO| RT |Measured| MX MZ | XCMS |Custom | Group Suggested Suggested | Monoisotopic
(min) m/z Rank | Rank | Rank | rank Compound Adduct mass

12 | 1.88 | 134.06 14 9 6 40 fasted | Hippuric acid * F 179.0582
13| 1.88 | 178.05 15 7 4 116 | fasted | Hippuric acid * [M-H] 179.0582
14 | 2.02 | 344.10 383 nd 222 12 none U5

15 ] 246 | 365.07 3 6 nd 43 fed U6

16 | 246 | 623.36 8 nd 3 94 fed U6

17 | 246 | 343.08 2 1 6 fed U6

18 | 247 | 623.87 nd nd 16 fed u7

19 | 3.00 | 185.12 793 23 77 284 fed U8

20 | 3.50 | 505.30 1833 nd nd 10 none U9

21 | 411 | 586.31 nd 13 nd 13 fed LPC(20:5) [M+FA-H] 541.3168
22 | 4.12 | 309.20 1 10 7 1802 fed LPC(20:5) F 541.3168
23 | 415 | 452.28 22 30 22 1006 fed LPC(14:0) F 467.3012
24 | 4.16 | 512.30 17 21 19 45 fed LPC(14:0) A [M+FA-H] 467.3012
25 | 4.16 | 979.60 19 nd nd 33 fed LPC(14:0) A [2M+FA-H] | 467.3012
26 | 417 | 502.29 13 11 nd 25 fed LPC(18:3) F 517.3168
27 | 4.18 | 562.31 5 8 51 17 fed LPC(18:3) [M+FA-H] 517.3168
28 | 4.18 | 818.50 16 nd nd 1672 fed ul0

29 | 4.18 | 526.30 11 19 11 912 fed LPC(20:5) F 541.3168
30 | 4.19 | 586.31 7 18 8 13 fed LPC(20:5) [M+FA-H] 541.3168
31 | 423 | 563.32 nd nd 13 15 fed uUll

32 | 434 | 476.28 23 1 nd 1 fed |2-acyl LPC(18:2) F 519.3325
33 | 435 | 564.33 10 12 nd 3 fed 2-acyl LPC(18:2) | [M+FA-H] 519.3325
34 | 435 | 504.31 147 3 nd 2 fed |2-acyl LPC(18:2) F 519.3325
351435 | 578.30 nd 5 nd 35 fasted uU12

36 | 436 | 632.33 120 25 nd 113 fed Ul13

37 | 438 | 281.25 33 nd 15 nd fasted Ul4

38 | 443 | 476.28 105 4 2 1 fed | 1-acyl LPC(18:2) F 519.3325
39 | 444 | 168.35 6 nd nd 1512 fed | 1-acyl LPC(18:2) F 519.3325
40 | 444 | 995.59 60 nd nd 4 fed | l-acyl LPC(18:2) F 519.3325
41 | 444 | 168.63 18 nd nd 170 fed | l-acyl LPC(18:2) F 519.3325
42 | 444 | 504.31 65 14 32 2 fed | l-acyl LPC(18:2) F 519.3325
43 | 445 | 457.10 12 nd 561 2332 | fasted uUl5

44 | 445 | 564.33 32 31 20 3 fed l-acyl LPC(18:2) | [M+FA-H] 519.3325
45 | 445 | 33540 nd nd nd 8 none none

46 | 445 | 335.70 nd nd nd 9 none none

47 | 445 | 477.28 nd nd nd 21 fed 1-acyl LPC(18:2)

isol
48 | 445 | 564.10 nd nd nd 23 none none
49 | 445 | 565.34 nd nd nd 5 fed I-acyl LPC(18:2)
iso2
50 | 445 | 587.30 nd nd nd 11 none none
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Table 1. Cont.
NO| RT |Measured| MX MZ | XCMS |Custom | Group Suggested Suggested | Monoisotopic
(min) m/z Rank | Rank | Rank | rank Compound Adduct mass
51| 445 | 996.59 nd nd nd 19 fed | l-acyl LPC(18:2)
iso3
52 | 450 | 552.33 24 46 63 320 fed uUl16
53 | 4.62 | 452.28 48 55 23 1006 | fasted ul17
54 | 465 | 566.35 374 24 nd 138 fed | l-acyl LPC(18:1) | [M+FA-H] 521.3481
55| 4.73 | 478.29 9 16 12 18 fed LPE(18:1) * [M-H] 479.3012
56 | 4.88 | 44533 76 20 10 1206 | fasted U19
57 | 5.14 | 277.22 85 106 5 98 fasted | Gamma-Linolenic [M-H] 278.2246
acid *
58 | 5.22 | 338.30 100 nd nd 24 none U20
59 | 5.38 | 279.23 145 nd 16 177 | fasted | Linoleic acid * [M-H] 280.2402
MX: MarkerLynx; MZ: MZmine; ‘U’, Unidentified compound; A: Adduct; F: Fragment *, identity confirmed with
authentic standards; ‘nd’, not detected by the software peak-finding algorithm.
Table 2. Retention times and measured masses of the markers obtained from MarkerLynx,
MZmine, XCMS and custom data processing of positive mode data that contributed most
to the separation of samples in fasted and fed states.
NO| RT |Measured| MX | MZ |XCMS | Custom | Group Suggested Suggested | Monoisotopic
(min) m/z Rank |Rank| Rank | rank Compound Adduct mass
1 | 0.53 112.11 nd 12 13 301 | fasted Ul
2 | 057 730.70 276 nd nd 25 fasted U2
3 ] 0.61 103.04 46 nd 19 2901 fed L-Carnitine *F 161.1052
4 | 0.61 102.09 1368 | nd 21 481 fed L-Carnitine *F 161.1052
5 ] 0.61 162.11 31 41 10 10 fed L-Carnitine * [M+H] 161.1052
6 | 0.66 70.07 12 11 25 22 fed D-proline *F 115.0633
7 | 0.66 116.07 13 14 12 11 fed D-proline * [M+H] 115.0633
8 | 0.86 130.09 24 521 44 838 | fasted U3
9 | 090 144.10 23 nd 16 455 | fasted | L-Acetylcarnitine*F 203.1158
10 | 0.90 204.12 28 18 6 8 fasted | L-Acetylcarnitine™ [M+H] 203.1158
11| 0.90 145.05 21 13 11 41 fasted | L-Acetylcarnitine*F 203.1158
12 | 1.17 248.15 49 23 7 38 fasted u4
13 | 1.64 231.12 nd 100 1 649 | fasted uUs
14| 1.90 105.03 1 17 2 78 fasted Hippuric Acid*F 179.0582
15| 1.90 77.04 3 19 3 578 | fasted Hippuric Acid*F 179.0582
16 | 2.23 316.21 19 46 nd 179 | fasted U6
17 | 2.42 899.43 nd nd nd 17 fed u7
18 | 2.42 287.20 nd nd nd fed u7
19 | 242 286.20 7 3 50 4 fed u7
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Table 2. Cont.
NO| RT |Measured| MX | MZ |XCMS | Custom | Group Suggested Suggested | Monoisotopic
(min) m/z Rank |Rank| Rank | rank Compound Adduct mass
20 | 3.42 536.34 35 nd nd 24 fed U8
21| 3.49 158.16 338 | 222 63 19 fasted U9
22 | 4.11 542.33 16 16 nd 21 fed LPC(20:5) [M+H] 541.3168
23 | 4.12 564.31 nd 15 nd 43 fed LPC(20:5) A [M+Na] 541.3168
24 | 4.16 312.03 151 nd 17 2659 fed Ul10
25 | 4.16 468.31 20 24 23 15 fed LPC(14:0) [M+H] 467.3012
26 | 4.19 540.31 25 64 nd 47 fed LPC(18:3) A [M+Na] 517.3168
27 | 4.19 518.33 15 6 81 62 fed LPC(18:3) [M+H] 517.3168
28 | 4.23 445.40 nd nd nd 12 fasted | octadecanoylcarnitine'
29 | 4.23 44437 18 33 47 33 fasted | octadecanoylcarnitine
30 | 4.35 337.28 9 5 57 fed 2-acyl LPC(18:2) F 519.3325
31 | 435 520.34 1 nd 2 fed 2-acyl LPC(18:2) [M+H] 519.3325
32 | 436 542.33 2 nd 21 fed 2-acyl LPC (18:2) A | [M+Na] 519.3325
33 | 4.36 819.96 22 nd nd 950 fed Ull
34 | 4.36 502.33 nd 10 nd 28 fed 2-acyl LPC(18:2) F [M+Na] 479.3376
35| 442 566.32 1024 | 2058 | 15 50 fasted Ul2
36 | 442 844.47 219 | 233 20 1312 | fasted Ul13
37 | 444 519.90 nd nd nd 18 fed Ul4
38 | 4.44 521.35 nd nd nd 5 fed l-acyl LPC(18:2) ! [M+H] 519.3325
39 | 445 | 523.35 nd 7 nd 89 fed 1-acyl LPC(18:2)"2 [M+H] 519.3325
40 | 445 519.70 316 nd nd 7 fed Ul15
41 | 445 997.64 14 20 9 3 fed l-acyl LPC(18:2) A 519.3325
42 | 445 819.97 2 21 835 950 | fasted ul6
43 | 445 520.34 8 4 18 2 fed l1-acyl LPC(18:2) [M+H] 519.3325
44 | 445 998.64 30 nd nd 6 fed ul17
45 | 445 460.29 59 54 14 612 fed l-acyl LPC(18:2) F 519.3325
46 | 4.45 520.10 nd nd nd 13 none Ul18
47 | 4.45 520.90 nd nd nd 23 none Ul18
48 | 4.45 521.55 nd nd nd 20 none Ul18
49 | 4.45 521.80 nd nd nd 16 none Ul18
50 | 4.45 807.97 5 8 4 2664 fed U19
51| 4.63 949.64 34 25 48 85 fasted U20
52 | 4.64 454.30 32 22 22 1425 | fasted U20
53 | 4.65 975.70 76 nd nd 14 fed U21
54 | 4.65 522.36 10 nd nd 70 fed 2-acyl LPC(18:1) * [M+H] 521.3481
55| 4.65 339.29 17 5 8 573 fed 2-acyl LPC(18:1) *F
56 | 4.68 520.34 11 nd 24 2 fed U22 [M+H] 519.3325

MX: MarkerLynx; MZ: MZmine; ‘U’, Unidentified compound; A: Adduct; F: Fragment * identity confirmed with

authentic standards; ‘nd’, not detected by the software peak-finding algorithm.
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2.2. Custom Method vs. Software Tools

The algorithm of the custom preprocessing method differs from the others by not having any peak
detection and alignment steps. It can therefore be considered as more independent, albeit more
primitive and simple.

We compared first the m/z bins selected by the custom method with the markers from the three
dedicated softwares (Figure 3a). Out of 25, only five of them were common for all data preprocessing
tools in the positive mode and three in the negative. On the other hand, 48% (positive mode) and 58%
(negative mode) of the m/z bins were identified also as markers by at least one of the software tools.

Figure 3. (a) Pie chart illustrating the number of custom data preprocessing markers that
are unique and that are detected as markers by the other software tools (CS:Custom,
MZ:MZmine, XC:XCMS, MX:Markerlynx); (b) Venn diagrams illustrating the number of
common and method specific markers extracted from three software tools (right: positive mode;
left: negative mode).

(a)

CS&XC&MZ&MX CS&XC&MZ&MX

CS&MZ&MX

CS&XC&MX  Cs
CS&XCaMZ

CS&MX

Cs

CS&XC

(b)

MarkerLynx MZmine MarkerLynx Zmine

Another perspective in the comparison of different data preprocessing methods is illustrated in
Figure 4 where, each row represents the rank of one marker from Table 1 (columns 4—7) for all four
different data preprocessing methods. The first impression from this figure may be that the number of
black regions (undetected peaks) might seem alarmingly high for some of the methods. It is important
here to state that the custom data preprocessing leads to a number of false positives. The major causes of
false positives are splitting of analytes into two adjacent bins or chromatographic collapsing.
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Figure 4. Heatmap comparing the importance of each marker based on four different data
preprocessing tools for (a) negative and (b) positive mode data. Each row represents the
lowest value rank of a metabolite for four different methods (Table 1, 3rd column). The
markers were sorted in ascending order based on the rank obtained with MarkerLynx
(red: rank 1-25; orange: rank 26—50; yellow: rank > 50; black: not detected).
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Fotential biomarkers

MarkerLynx MZmine ACMS Custom
Data preprocessing tools

(b)

Faotential biomarkers

MarkerLynx MImine ACME Custom
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An additional point from Figure 4 is the large area of yellow regions for the custom method, which
presents markers detected with higher than 50 as rank in PLS-DA. This is explained mainly by
retention time collapse causing peaks to be added with other peaks having the same mass but different
retention time. For instance, the chromatogram of m/z bin = 820 as illustrated in Supplementary
information 8 includes two peaks. The sample track signals of the peak at retention time = 4.32—4.38
(No. =33, Table 2) is higher in the fed state while the peak with retention time = 4.4—4.48 38 (No. =42,
Table 2) is higher in the fasted state, indicating that they are actually markers. As these two different
peaks are in the same m/z bin, the retention times collapsing leads to the loss of these markers. In other
cases a small peak representing a marker is added with a larger one without marker characteristics
thereby diluting the effect so that the bin escapes selection.

2.3. Comparison of the Dedicated Software Tools

Further comparison of the 25 markers for positive and negative mode data from each of the three
dedicated software tools is illustrated in two Venn diagrams (Figure 3b). In general these three tools
seem to have 8-10 markers in common among the selected 25 markers detected in the negative and
positive mode (Figure 3b). There is a trend towards a larger difference between XCMS and each of the
other methods in the pairwise comparisons. So all of the data preprocessing methods seem to miss out
potentially important markers observed to be ranked among the top-25 markers by the other methods.
In fact, only 8—10 markers would be observed to be in common if three different research groups were
to investigate the same biological phenomenon using different softwares for data preprocessing,
provided they had recorded similar LC-MS data. There are three possible explanations of the
differences between detected markers:

(1) The marker is not included in the feature list of the other softwares. The potential cause is
differences between peak detection algorithms. The number of detected features is different as shown
in Figure 1. This condition is illustrated by Figure 4 as black regions.

(2) The marker is detected but the peak height assignment was not the same among software tools,
which did not result in significant difference between fasted and fed states. One reason of this is shown
in the next section as influence of gap filling. This condition is illustrated as yellow in Figure 4.

(3) The data analysis method affected the marker selection. This was discussed as an effect of
autoscaling previously. This condition is illustrated by orange in Figure 4.

Additional differences might be caused by optimization of parameter settings and other factors from
the metabolomics experiment. The loss of information and potential introduction of noise from feature
selection by a single preprocessing method would therefore seem to be a potential source of error in
metabolomics.

2.4. The Influence of Gap Filling

An important drawback for MarkerLynx™ is that it does not contain any gap filling algorithm
resulting in many zero values in the final extracted feature set. Zeros may obscure the later data
analysis step and may result in incorrect grouping of ‘effect markers’ and ‘exposure markers’, because
‘true’ zeros as well as smaller and larger peaks missed by the algorithm are given the same zero value [19].
Consequences of this lacking gap filling algorithm is illustrated with two real cases. In the first case,
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MarkerLynx™ algorithm records the signal of some samples from the group with a lower signal as
zero, thereby increasing the differences between groups and the chance that the feature is selected as a
marker. For instance, marker number 42 (Table 2) has rank 2 for MarkerLynx' " whereas it came out
with higher ranks by the others (Supporting Information 6) due to this phenomenon. In the second
case, the signal of some samples recorded as zero while those samples belong to the group with higher
signal. In this way, the true difference between the two groups was deflated and those markers had
higher rank number (lower importance) with MarkerLynx ™. Many examples (Supplementary
information 9) of this situation is observed, particularly in the negative mode data where the signal
intensity is generally lower, thereby explaining the large yellow region for MarkerLynx"™ in Figure 4a.

Another observation particularly in Figure 4a is that MarkerLynx'" has fewer black regions,
meaning very few undetected peaks and several markers that are detected by MarkerLynx™ but not by
the other two softwares. Since the total number of features obtained from preprocessing the data was
similar for all three softwares, one possible explanation could be the differences in the filtering step.
The 80% rule applied to the MarkerLynx™ dataset differs from that of the others by retaining features
with many non-zero observations in at least one sample group. The filtering algorithm of MZmine
does not allow the user to define the filter for each sample group. By filtering away features with many
zeros, there is a risk of removing perfect markers that appear only in one of the sample groups.
Therefore the filter has to be set to no more than 80% of the number of observations in the smallest
sample group in order to be equivalent to the 80% rule. Another possible reason could be the
differences between the peak detection algorithms. MarkerLynx™ provides an automated peak
detection algorithm whereas many parameters are user-defined for the others. Although we optimized
the selection of parameters carefully by testing several settings, we cannot rule out that better overlap
could have been obtained with a different parameter set.

2.5. Software Preprocessing Settings

The number of detected peaks depends very much on the data preprocessing settings of each
software algorithm. Although we attempted to attain the largest possible similarity in the preprocessing
parameters of MarkerLynx"", MZmine and XCMS, we were aware that it is not possible to obtain
exactly the same results, since each method is based on different algorithms. To illustrate this point,
we preprocessed the data with MZmine using less conservative settings for many peak detection
parameters and constructed the heat map again, leading to a new pattern much more similar to XCMS
(figure not shown). So, in reality, it may be possible to obtain similar patterns, at least with MZmine
and XCMS where gap filling is available, depending on their individual parameter settings.

In this study the contrasts between the fasted and fed states were very clear, whereas such strong
contrasts may not be seen in many other metabolomics studies. Improper settings of data preprocessing
parameters may therefore obscure the extraction of relevant information, and several settings and/or
softwares should be applied. Proper settings are based on careful inspection of raw data as well as
insight into the functionalities of software parameters. It could seem like an appealing option to allow
a much larger number of peaks by being less conservative with many peak detection parameters.
However, the consequence of detecting many peaks will be the inclusion of more noise and will
complicate not only the alignment but also the data analysis step for the detection of biomarkers.
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MarkerLynx™ and MZmine are both user friendly tools for users who do not want to go into R,
MATLAB, or similar programming tools. Preprocessing data with MarkerLynx™™ requires just a few
user-defined settings. However the software does not provide any possibility for checking the success
of any data preprocessing step. In comparison, MZmine provides a powerful visualization side that can
be considered as quite useful for tuning the settings. Algorithms for visualization of peak detection
results are also included in the XCMS package in R.

2.6. Biomarker Patterns

Three patterns are immediately visible for markers of the fed state in Tables 1 and 2. The first of
these is the presence of sets of isomers having very similar masses but slightly different retention
times, indicating that some specific groups of isomers are typical markers. The slight mass difference
may be attributed to the mass accuracy of the instrument. Some examples are clusters at 512.29,
478.29 and 590.35 in the negative mode, and at 468.32, 520.34, and 522.36 in the positive mode. In
many cases the earlier eluting isomeric form was not detected in the XCMS preprocessed dataset,
possibly because they are much smaller peaks. Considering the parameters set while preprocessing the
data with XCMS (Supplementary Information 10), additional filtering or a too high hw parameter (for
setting the RT shift) might be the cause of not detecting those peaks. Furthermore, these patterns are
always spotted with the custom data preprocessing as they were included into the same m/z bin,
thereby intensifying their relative importance. As can be seen from Tables 1 and 2, the possible
isomers were therefore given the same rank for the custom data preprocessing.

Another pattern in the marker sets is the presence of peaks with mass differences corresponding to 2
or 4 hydrogen atoms but with different retention times. These pairs are observed in both modes
(e.g., 476/478, 562/564/566 in the negative mode, and 506/508 or 520/522 in the positive, Tables 1 and 2).
These clusters and patterns are all observed for compounds with retention times in the same (unpolar)
range pointing towards a series of lipids with varying levels of saturation (2 for each double
bond).Similar patterns can also be observed for changes in chain lengths (+26 for adding -CH=CH-)
as the underlying biomarkers.

Pattern recognition therefore identified lipids as potential discriminative markers between plasma
samples collected at fasted and fed states. This confirms an expected finding and further identification
of some of the lipids as well as some of the more polar peaks was therefore perused.

2.7. Biomarkers of Fasted and Fed State

Most of the masses belonging to the lipid-related patterns and clusters in the positive mode fit with
the masses expected for positively charged lysophosphatidylcholines (LPCs) of varying chain lengths
and degrees of saturation. LPC is a plasma lipid that has been recognized as an important cell signaling
molecule and it is produced by the action of phospholipases Al and A2, by endothelial lipase or by
lecithin-cholesterol acyltransferase (LCA).LCA has a well-known function in catalyzing the transfer of
fatty acids from phosphatidylcholine to free cholesterol in plasma for the formation of cholesteryl
esters [20]. In the rat, the LPCs with more saturated acids are formed mainly in the plasma whereas
unsaturated LPC is formed from PCs in the liver. We observe here a mixture of both saturated and
unsaturated LPCs, indicating that the source may be dual. The cytolytic and pro-inflammatory effects
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of LPCs are well-known so their level is closely regulated. However, in blood plasma the LPCs form
complexes with albumin and lipoproteins, especially LDL, and are therefore not as likely to cause
direct cell injury [21]. Another action of LPCs seems to be related to increased insulin resistance [22].
A slow clearance of postprandial lipids is known to be a risk factor for diabetes but the LPCs might be
a lipid fraction contributing more strongly to this action. It is interesting in this context to note that
Kim et al. identified LPCs as the major discriminative compounds of plasma species separating fasting
plasma from obese/overweight and lean men [7]. They reported lower levels of saturated LPCs and
higher level of unsaturated LPCs in the plasma of lean as compared to obese or overweight men. We
found a similar profile here in lean rats. The unsaturated LPCs have also been found to pass the blood-
brain barrier and to be important vehicles for delivering unsaturated lipids to the brain [23]. We
speculate that the high level of unsaturated LPCs in the postprandial state of healthy individuals might
be part of the satiety signaling system which is malfunctioning in obesity.

The LPCs appear usually in two isomeric forms, as 1-acyl or 2-acyl LPCs. The true separation of
isomeric groups of LPC(18:1) in a fed state plasma sample is illustrated in Supplementary information
11. These isomers were unstable and spontaneously isomerized positionally, as also recognized in
1-acyl authentic standards of LPC and LPE(18:1), where 9% of the authentic standard was detected as
the peak belonging to the 2-acyl form. For the confirmation of the 2-acyl LPC form, standards of PC
and PE(16:0/18:1) were hydrolyzed by phospholipase Al. In addition to the 2-acyl LPC and
LPE(18:1) we observed that 7% of the acyl group had spontaneously migrated to the 1-acyl position
(Supplementary information 11). Croset et al. studied the significance of positional acyl isomers of
unsaturated LPCs in blood [24]. They concluded that 50% of PUFA was located at the 2-acyl position
where they are available for tissue uptake, and that they can be re-acylated at the 1-acyl position to
form membrane phospholipids.

With the applied methodology we would only be able to extract the more polar lipids and detect
lipids with m/z below 1,000 daltons. Therefore, we cannot conclude here that the LPCs, LPEs and free
fatty acids are the major discriminative lipid species. Lipidomics studies have previously reported less
polar lipid classes which may have m/z above 1,000 daltons, such as PCs, sphingomyelins and
triacylglycerols as potentially reflecting the time since last meal [25,26]. With our current method, we
were able to identify PCs but they were not discriminative in this study, possibly due to incomplete
extraction.

A group of carnitine based compounds was also detected as markers in the positive mode data. The
main function of carnitine is to assist the transport and metabolism of fatty acids in mitochondria,
where they are oxidized as a major source of energy [27]. In the plasma samples from the fasting state,
the level of L-carnitine was found to be lower whereas acetyl-L-carnitine was higher. During fasting an
elevated concentration of acetyl coenzyme A favors the production of acetyl-L-carnitine and the ketone
body, 3-hydroxybutanic acid [28], and these were identified as characteristic markers for the fasting state.

Two of the amino acids, isoleucine and proline, were found to be strongly discriminating between
the fed and fasted states. Isoleucine belongs to the group of branched-chain amino acids which have
been implicated in altered protein catabolism, insulin resistance and obesity [29,30]. However, leucine
may have contributed to the signal since separation by our current UPLC-method was not efficient. It
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seems therefore that isoleucine, and possibly other specific amino acids, may be markers of recent
food ingestion and decrease with fasting.

Many adduct or daughter ions were also observed among our markers as shown in Tables 1 and 2.
In many cases, different adducts or fragment ions of the same metabolite may emerge with a higher or
lower rank than the parent ion, and this is an important cause of differences in the ranking orders
between the preprocessing softwares. So at the metabolite level, the differences between the
preprocessing methods are actually much smaller. To illustrate the higher concordance at the
metabolite level, we established a new rank for each metabolite (giving each metabolite the lowest
rank value from among its representative adducts, fragments or isomers). The unidentified features
were considered as representing the same metabolite as long as they are within the range of 0.02 min
retention time window. The metabolite ranks of different methods are represented in Supplementary
information 12, which illustrates that the rank patterns were much more similar between different
methods at the metabolite level than at the feature level (Figure 4). Thus, it seems reasonable to
conclude that different data preprocessing methods employed in this study provide around 50%
common markers, but the agreement is actually much higher at the metabolite level since different
markers (adducts or fragment ions) selected from the different preprocessing softwares represent the
same metabolites.

The observation that all these related ions come up with low rank numbers, i.e., high importance,
and that their low ranks are shared between positive and negative modes as in this study strengthens
not only the confidence in the identification step but also in our variable selection method.

3. Experimental Section
3.1. Animal Study and Sample Collection

Eighty male Fisher 344 rats (4 weeks old) were obtained from Charles River (Sulzfeld, Germany).
The animals had a one week run-in period to adapt to the standardized diet. The rats were subsequently
randomized into five groups of 16 rats, each with equal total body weights and then fed five different
diets which were all nutritionally balanced to give exactly the same amounts of all important macro-
and micronutrients [31]. After 16 weeks, all rats were sacrificed by decapitation after CO,/O,
anesthesia. Before sacrifice, 56 of the animals had fasted for 12 h and 24 of the animals were given
access to food up until termination. Blood samples were collected immediately after sacrifice directly
from the vena jugularis into a heparin coated funnel drained into 4 mL vials containing heparin as an
anticoagulant. The blood was centrifuged at 3,000 g, 4°C for 10 min. The plasma fraction was aliquoted
into 2 mL cryotubes and stored at —80°C until further processing. The animal experiment was carried
out under the supervision of the Danish National Agency for Protection of Experimental Animals.

3.2. Plasma Preprocessing and LC-QTOF Analysis

Removal of plasma proteins was performed before LC-MS analysis of the plasma metabolites. The
plasma samples were thawed on ice and 40 pL of each sample was added into a 96-well Sirocco™
plasma protein filtering plate (#186002448, Waters) containing 180 uL of 90% methanol 0.1% formic
acid solution, and the plates were vortexed for 5 min to extract metabolites from the plasma protein
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precipitate. A 96-well plate for the ultra-performance liquid chromatograms UPLC autosampler
(Waters, cat # 186002481) was placed underneath the protein filtering plate and vacuum was applied
to the plates (using a manifold) whereby the rubber wells in the Sirocco™ plates opened and the crash
solvent including metabolites dripped into the 96-well UPLC plate. When the filtering plates were dry,
180 pL of a 20:80 acetone/acetonitrile solution containing 0.1% formic acid was added to each well to
further extract metabolites from the precipitated protein and vacuum was connected until dryness. The
solvent was evaporated from the UPLC plates by using a cooled vacuum centrifuge and the dry
samples were redissolved in 200 pL milliQ acidic water before analysis. A blank sample (0.1% formic
acid) and a standard sample containing 40 different physiological compounds (metabolomics standard)
was also added to spare wells to evaluate possible contamination and/or loss of metabolites in the
filtering procedure.

Each sample (10 pL) was injected into the UPLC equipped with a 1.7 um C18 BEH column
(Waters) operated with a 6.0 min gradient from 0.1% formic acid to 0.1% formic acid in 20:80
acetone/acetonitrile. The eluate was analyzed in duplicates by TOF-MS (QTOF Premium, Waters).
The instrument voltage was 2.8 or 3.2 kV to the tip of the capillary and analysis was performed in
negative or positive mode, respectively. In the negative mode desolvation gas temperature was 400 °C,
cone voltage 40 V, and Ar collision gas energy 6.1 V; in the positive mode we used the same settings
except for collision energy of 10 V. A blank (0.1% formic acid) and the metabolomics standard were
analyzed after every 50 samples during the run.

3.3. Authentic Standards

L-carnitine, linoleic acid and gamma-linolenic acid were purchased from Sigma Aldrich
(Copenhagen, Denmark). 1-acyl LPC(18:1), 1-acyl LPE(18:1), PC(16:0/18:1) and PE(16:0/18:1) were
obtained from Avanti Lipids (Alabaster, AL, USA). For the synthesis of acetyl L-carnitine, carnitine
acetyltransferase from pigeon and acetyl coenzyme A were purchased from Sigma Aldrich.
Acetylation of L-carnitine was performed as described by Bergmeyer et al. [32]. The 2-acyl lyso-forms
were synthesized with phospholipase Al from Thermomyces lanuginosus (Sigma Aldrich).
Phospholipase Al hydrolyzes the acyl group attached to the 1-position of PC(16:0/18:1) and
PE(16:0/18:1) so that acyl-2 LPC(18:1) and LPE(18:1) were produced. The description of the method
has been given by Pete et al. [33]. For the chemical verification of identified metabolites, one plasma
sample from a rat in the fasted and another from the fed state were spiked with LPC(18:1) and
LPE(18:1) individually, before analysis by the procedure outlined above.

3.4. Raw Data

The MassLynxTM (Version 4.1, Waters, Milford, MA, USA) software collected centroided mass
spectra in real time using leucine-enkephalin as a lock-spray standard injected every 10 s to calibrate
mass accuracy. Each of the 80 samples was analyzed in duplicates. For negative mode both
measurements were included in the data analysis. However, for positive mode 64 sample
measurements were excluded, which leaves 65 and 31 sample measurements for fasting and fed states,
respectively. The exclusion criterion was based on an instrumental error occurred during analysis. In
this case, the outliers had very low intensity due to injection errors.
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The software stores data as non-uniform sample data files, each comprised of three vectors;
retention time (0—6 min), m/z and intensity. The raw data was converted to an intermediate netCDF
format with the DataBridge™ utility provided with the MassLynx software.

3.5. Software Tools for Data Preprocessing

Raw data was transferred to MarkerLynx™ (Version 4.1, Waters, Milford, MA, USA) directly from
MassLynx whereas netCDF files were imported to MZmine [14] and XCMS [15].

The available information regarding the principle of algorithms used in MarkerLynx "™, MZmine
and XCMS and the selected data preprocessing parameters are shown in electronic Supplementary
information 1. The raw data was inspected while selecting the parameters for each software tool. For
the peak detection step parameters such as minimum peak width included in MZmine (minimum and
maximum peak width included in XCMS) and m/z tolerance included in MZmine (ppm in XCMS)
were chosen by inspecting the raw data in a 2D sample plot (retention vs. m/z). For the alignment step
(or peak grouping) TIC of at least 10 samples were overlapped to decide maximum retention time shift
between samples. On the other hand, some parameters such as noise level or required peak shape were
not straightforward to decide. Thus, at least 10 different parameter settings slightly varying were
evaluated for each software tool. The optimum parameters were selected based on the best separation
in a PCA scores plot. Deisotoping is performed in MATLAB for XCMS preprocessed data. The final
outcome from each software tool is a feature set where each feature is denoted by the mass over charge
(m/z) ratio and a retention time. The feature sets from the three software tools were transferred to
MATLAB for further data analysis.

3.6. Custom Methods for Data Preprocessing

An alternative data preprocessing was performed directly on the raw data using MATLAB (Version 7,
The Mathworks, Inc., MA, USA). To import netCDF files to MATLAB, the iCDF function [17,34]
was employed. The steps of the custom data preprocessing are shown in Figure 5. As the first step,
binning was performed on the m/z dimension as described by Nielsen et al. [17].

Alignment and offset correction were applied only to positive mode data as the instrumental
response was observed to be significantly lower during the duplicate runs in the positive mode. To
correct for instrumental response differences, prior alignment was performed using ICOshift [35]. The
lower response of duplicates was corrected by calculating the difference matrices between each
duplicate set, averaging and adding the average difference to the matrix with the lower response. Here
it is assumed that the first injection of a sample holds the correct instrumental response whereas its
duplicate with lower response is the one being corrected. The effect of this procedure is shown in
Supplementary Information 2.

A threshold level was applied for the elimination of small peaks/intensities lower than the analytical
detection level. Values lower than a certain threshold level were considered as zero. The strategy to
define the threshold was as follows: (1) The first median value of the whole dataset (excluding zeros)
was calculated; (2) That median was evaluated as a threshold (by the ability of principal component
analysis (PCA) score plots to fully separate the fasted vs. the fed state (data not shown); (3) The next
median was calculated by using only those data from the whole dataset that were higher than the
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previous median, and again the corresponding PCA scores plot (not shown) was evaluated; (4) This
procedure was iterated until an improved separation was achieved by PCA. The threshold levels of the
fourth median with the value of 16.17 cps (count per second) in the negative mode and 24.85 cps in the

positive mode were selected as adequate.
To enable the application of subsequent two-dimensional data analysis methods, the intensity values

of each sample matrix were summed (or collapsed) throughout the retention time index. The resulting
data matrix (two-dimensional) is described by samples vs. m/z bins (Figure 5) and is also referred to as

feature sets throughout this paper.

Figure 5. Custom data preprocessing scheme.
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3.7. Data Analysis

The feature sets preprocessed by the three different softwares and the customized method were
normalized to unit length and autoscaled. Autoscaling refers to combination of mean centering and
unit scaling.

The PLS Toolbox (Version 5.3, Eigenvector Research, Inc., MA, USA) was used to implement the
data analysis. PCA [36] was applied individually on feature sets obtained from each data preprocessing
method for general visualization of discrimination of samples from rats in fasted vs. fed state.

PLS-DA is based on the development of a PLS model [37] to predict class membership of a dataset
X with a y vector including only 0 and 1 (1 indicates that one sample belongs to a given class).
Validation of PLSDA classification models was performed by cross model validation as recommended
by Westerhuis ef al. [18]. 25% of the samples were divided as an independent test set. The remaining
samples were cross validated (4-fold) to determine optimal number of latent variables that offers
minimum cross validation classification errors. In addition, permutation test is applied with 2,000
random assignments of classes. The test set sample classification errors were evaluated to qualify the
classification results.

3.7.1. Variable Reduction

A rough and effective variable reduction procedure was performed specifically during
MarkerLynx™ and custom data preprocessing by only keeping a feature if it had a nonzero
measurement in at least 80% of the intensity values recorded within one of the sample groups (fasting
vs. fed in this case); otherwise the feature was removed (80% rule) [38]. Gap filling (or peak finding)
algorithms implemented in MZmine and XCMS softwares resulted in few zero entries. However,
additional filtering algorithm was enabled in MZmine and XCMS prior to gap filling, which removes
any feature if it appears in less than 10 samples (settings are defined in Supplementary information 3).

3.7.2. Variable (Feature) Selection

Further variable selection was performed with PLS-DA. The features or m/z bins with larger
regression coefficients were considered as more discriminative between fasted and fed states and were
regarded as potential biomarkers. Due to the fact that PLS-DA is very prone to overfitting, instead of
applying only a single cross-validated PLS-DA model for variable selection on all samples, we
performed repeated submodel testing. This implies removing samples randomly (here 10% were taken
out at a time), constructing a PLS-DA model on the remaining 90% samples and repeating this
1,000 times. By performing many models the importance of each feature for class separation is tested.
The number of latent variables (LV) for each model was determined to minimize the classification
errors using cross validation (CV). For each model the features are given a ‘rank’ in the order of their
regression coefficients and the final rank of each feature for all the 1,000 submodels were summarized
with one number using the median of the 1,000 ranks per feature. This method has the potential of
reducing false positives so that the features appearing with higher rank in only a few of the submodels
were not considered as markers. We arbitrarily selected the 25 top rank features from each feature set,
i.e., those with highest absolute regression coefficient products as potentially representing biomarkers.
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However, since these features might be daughter ions, adducts, summed ions, etc., we chose here to
simply call them ‘markers’ whereas after identification the compounds represented by these markers in
the top rank feature sets will be termed ‘biomarkers’.

3.8. Marker Identification

The initial identification of markers was performed according to their exact mass compared with
those that were registered in the Human Metabolome Database [39]. Possible fragment ions were
investigated by an automated tool using a mol-file format of a candidate compound (MassFragment' ",
Waters). Further confirmation of candidate biomarkers was obtained by verification of the retention
time and fragmentation pattern of an authentic standard (see authentic standards section above). The
authentic standards were in some cases selected as one representative of biomarkers belonging to the
same chemical compound class, i.e., only one LPC out of a series was confirmed by a standard.
Additionally, acyl-1 and acyl-2 LPC(18:1) and LPE(18:1) were spiked into two plasma samples
collected in the fed and fasted states, respectively, at a concentration of 0.5 mg/L for a more reliable
confirmation.

4. Conclusions

We aimed here to explore the effect of four data preprocessing methods on the pattern of final
biomarkers for the fasting and fed states in a small rat study. In our custom method, the binning
followed by collapsing across retention time gives rise to false positives and negatives. Even so, half of
the marker bins selected contained markers detected by at least one of the other softwares.

The less selective peak picking algorithm for Markerlynx™ and the avoidance of peak picking
algorithms for the custom method gave rise to detection of some markers that could not be detected by
MZmine or XCMS. On the other hand, the gap filling algorithms in MZmine and XCMS improves
marker selection because the true signal differences between groups becomes more correct, i.e., in
accordance with the raw data.

The selection of proper software parameters based on the specifics of the dataset is the key for
obtaining a high quality data analysis, regardless of the applied software. The better parameter setting
is a matter of experience and wrong settings may obscure the extraction of relevant information. The
use of more than one software and/or the use of several settings during data preprocessing with any
softwareare likely to improve marker detection in untargeted metabolomics.

Although the comparison of the selected marker ions from different data preprocessing methods
revealed some differences, further chemical identification revealed that they were often just adducts or
daughter ions representing the same biomarker compound. Many of the biomarkers identified were
chemically closely related so that any of the softwares and procedures applied here could identify
biomarkers explaining a major part of the biological processes differing between the fasting and the
fed states in our dataset. Thus, all data preprocessing methods agree that specific lipids, carnitines and
amino acids are of importance for discriminating plasma samples from the fed and fasting states. Three
major lipid classes, LPCs, LPEs and free fatty acids, emerged as discriminative markers in the rats.
The high level in the postprandial state of LPCs, generally known to be pro-inflammatory, is
interesting and their possible importance for low-grade inflammation in humans should be further
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explored. L-carnitine and acyl carnitines were also found as important markers and the shift from free
to acylated carnitine during fasting might be useful as a marker to follow the switch from postprandial
lipid storage to the lipid degradation during fasting. Finally, proline and possibly branched chain
amino acids seem to be important amino acid markers that decrease in the fasting state when protein
catabolism is necessary for their availability.

Supplementary Materials
Supplementary materials can be accessed at: http://www.mdpi.com/2218-1989/2/1/77/s1.
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Supplementary informatidn Principles of algorithms of data preprocessioftygares

XCMS offers two different peak detection algorithmstchedFilter and centWave. The latest
developedcentWave, was recommended for very complex mixtures whichlmanepresented as
plasma in our case. The algorithm first detectsréggons of interest in m/z domain based on
user defined parameters for mass accuracy (ppm)naaximum and minimum expected
chromatographic peak width (peakwidth). Next, chatographic peaks with different widths
were detected using continuous wavelet transfoimallly, features are excluded based on user
defined signal to noise ratio (snth). The XCMS mitigent algorithm groups peaks together across
samples using overlapping m/z bins and calculattdnsmoothed peak distributions in

chromatographic time [9,10] .

MZmine performs peak detection in two steps. Thst fstep is chromatogram builder, which
creates continuous chromatograms for each massnwille user-defined mass range (m/z
tolerance) based on mass accuracy of the employsdument. The width of each peak is
determined within the range of the chromatogramtdichby the user-defined minimum peak
width (min time span) and its absolute height isedwined with a restriction on height (min
absolute height. Each chromatogram is then decatewlusing one of the four available
algorithms. In this study we applietbcal minimum search for deconvolution of the
chromatograms. This algorithm is based on separafipeaks based on their local minima. For
alignment MZmine offers lineajdin aligner) and nonlinearr@nsac peak list aligner) methods.

In this study, limited shifts in retention time faed the use gbin aligner where its algorithm
requires user-defined mass and retention time wisd@n/z and retention time tolerance). The
algorithm tries to match each peak in a master fisakvith the peaks in the sample lists and

finds the best match based on the retention tindensass windows [14].

MarkerLynx as a commercial software is using akipons which are not publicly revealed and is
thus a kind of black box. In the manual it is stiafeat the software is applying peak detection by
the ApexPeakTrack peak detection algorithm. MarkerLynx initially éemines the regions of
interest in the m/z domain based on mass accunaasy tolerance). The ApexPeakTrack
algorithm controls peak detection by peak widthafpevidth at 5% height) and baseline
threshold (peak to peak baseline ratio) parametbish can be either set by user or calculated

automatically. The algorithm finds the inflectionipts (peak width at 5% height), local minima



and peak apex to decide peak area and heighsdtcalculates the baseline noise level using the
slope of inflection points. Compared to peak d@&wectalgorithms of other softwares, the
ApexPeakTrack algorithm produces a much higher rundf peaks, so an additional peak
removal step (denoted by user defined peak interbiteshold and noise elimination level
parameters) is conjugated to the alignment algorily its developers. The basic principle of
peak removal is described in the accompanying nadgerlf a peak is above threshold in one
sample and if it is lower than threshold in anotsemple it lowers the threshold for that sample
until it reaches the noise elimination level”. TMarkerLynx alignment algorithm performs
alignment of peaks across samples within the rasfgeser-defined mass and retention time
windows. (MassLynx (Waters, Milfold, MA))
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Supplementary information Bata preprocessing steps and its parametemsgseftr
MarkerLynx,MZmine and Custom preprocessing (positp@ mode data; neg: negative mode data).

MarkerLynx MZmine XCMS Custom
Peak ApexPeakTrack Highest data Point | centWave No peak
Detection detection
Peak width at 5% height = Min time span = 0:01 ppm = 30 (neg);




default
Peak-to-peak baseline ratio
= default

Noise elimination = 4
Intesity threshold = 30 (neg);
60 (pos)

Min absolute height =
20 (neg); 60 (pos)
m/z tolerance = 0.04
(neg); 0.03 (pos)

Local minimum
search

Min RT range = 0:01
Min absolute height =
30 (neg) - 60 (pos)
Min peak top/edge =
1.5

40 (pos)
peakwidth =
(2,10)

snth = 4 (neg); 5
(pos)

prefilter = ¢(1,40)
(neg); c(1,80)
(pos)

Normalization | v - - -
Deisotoping v v v v
Alignment Join aligner Group ICOshift
m/z window = 0.05 (pos)
r/t window = 0.05 M/Z tolerance = 0.05 bw =4
RT tolerance = 0:03 mxwid = 0.05
Retcor
obiwarp
profStep = 0.1
Filtering 80 % rule Peak list row filter Implemented 80 % rule
in previous
Min peaks in a row = 10 .
group function
l?ugllcate peak minfrac = 0.1
filter
M/Z tolerance = 0.01
RT tolerance = 0.01
Gap filling - Peak finder Fillpeaks -

M/Z tolerance = 0.02
RT tolerance = 0:02




Supplemantary infomation4: Number of features exéhfrom each data processing method.

MarkerLynx MZmine XCMS Custon
Before80% rule 378( Before 80% rule 950(
NEG 1501 1562
After 80% rule 1852 After 80% rule 370(
Before 80% rule 606¢ Before 80% rule 950(
POS 3272 2714

After 80% rule 298] After 80% rule 389¢
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Supplemantary infomation5: PCA scores plot of Mdtkax (A), MZmine (B), XCMS (C) custom

preprocessed (D) positive mode data.

Scores on PC 3 (5 75%)

Supplementary information 6: PLSDA model classtima error rates of test sets.

Classification Error Rates

Negative mode data

Positive mode data

0.00

0.00

0.01 0.01

0.02 0.02

0.01

0.02




Frequency

Frequency

Frequency

Frequency

500

400

300

200

100

400

300

200

100

350
300
250
200
150
100

400

300

200

100

400

0

300

200

Frequency

100

0.2 04 0.6
Classification error rate

0.8

400

300

200

Frequency

100

0 0.2 04 0.6 0.8
Classification error rate
400
Bl

300
g 200
g

100

0

0.2 0.4 0.6
Classification error rate

0.8

500

0

400

300

200

Frequency

100

0.2 0.4 0.6
Classification error rate

0.8

A2

0 0.2 0.4 0.6

Classification error rate

0 0.2 0.4 0.6

Classification error rate

B2

0 0.2 0.4 0.6

Classification error rate

0.8

0

0.2 0.4 0.6
Classification error rate

0.8



Supplemantary information 7: Classification errates based on cross model validation
predictions of the correct classes (gray arrow) @erthuted class labels (black bars) for
MarkerLynx (1), MZmine (2), XCMS (3) custom prepessed negative (A) and positive mode
(B).
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Supplemantary infomation8: The chromatogram of niviz= 819.6 from 4.3 to 4.5 min. The peaks are
detected as two separate features by the othevaseft (Peak no: 42 and 33, positive mode). Reéigrac
fasting state; black tracks fed state.
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Supplemantary infomation9: (A) MZmine and (B) Maikgnx recorded peak heights of samples in
fasted and fed groups for marker number 42. THereifice between the two groups in (B) is inflated a
MarkerLynx recorded the signal as zero for manghefsamples in fed group. Thus this marker has

lower rank in MarkerLynx.
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Supplemantary infomation10: (A) MZmine and (B) Markynx recorded peak heights of samples in
fasted and fed groups for marker number 38. THereifice between the two groups in (B) is deflated a
MarkerLynx recorded the signal as zero for somiefsamples in the fed group. Thus this marker has

higher rank in MarkerLynx.
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Supplemantary infomation11XIC of 1-acyl and 2-acyl LPC(18:1) detected irsitiwe mode ionization.
The panels in sequence from top to buttom shovexb@cted ion chromatogram for m/z 522.358 of 1. an
authentic rat plasma sample; 2. The same samedspiith 1-acyl LPC(18:1); 3. The sample spiked
with 2-acyl LPC(18:1); 4. A 1-acyl LPC(18:1) standigs. A 2-acyl LPC(18:1) standard.
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Supplemantary infomation12: Heatmap comparing theortance of metabolite based on
four different data preprocessing tools. (Markerty MZmine, XCMS and Custom data
processing) for (a) negative and (b) positive modéa. Each row represents the rank
(importance) of a marker for four different methqét®m Table 1 or 2, "8 column). The
markers selected had a rank below 25 with at leastof the four methods. The markers
were sorted in ascending rank order of MarkerLym&d: rank 1-25; orange: rank 26-50;
yellow: rank>50; black: not detected).
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Abstract

Background: The consumption of high levels of industriedns fatty acids (TFA) has been related
to cardiovascular disease, diabetes and suddemcatehth but the causal mechanisms are not well
known. In this study, NMR and LC-MS untargeted rhetamics has been used as an approach to

explore the impact of TFA intake on plasma metdéesli

Methodology/Principle Findings. In a double-blinded randomized controlled paraijedup study,
52 overweight postmenopausal women received eifraatially hydrogenated soybean oill,
providing 15.7 g/day of TFAt(ansl8:1) or control oil with mainly oleic acid for l@&eeks.
Subsequent to the intervention period, the subjpatficipated in a 12-week dietary weight loss
program. Before and after the TFA intervention afigr the weight loss programme, volunteers
participated in an oral glucose tolerance test.-BliSrevealed elevated lipid profiles with TFA
intake. NMR pointed out an up-regulated LDL chadest levels and unsaturation. LC-MS profiles
demonstrated elevated levels of specific polyunsggd (PUFA) long-chain phosphatidylcholines
(PCs) and a sphingomyelin (SM) which were confirmeth a lipidomics based method. Plasma
levels of these markers of TFA intake declined heirt baseline levels, after the weight loss
program for the TFA group and did not fluctuate foe control group. The marker levels were

unaffected by OGTT.

Conclusiong/Significance: This study demonstrated that intake of TFA affdigigl metabolism.
The preferential integration #fansl18:1 into the sn-1 position of PCs, all containRigFA in the
sn-2 position, could be explained by a generalagutation in the formation of long-chain PUFAs
after TFA intake and/or by specific mobilisationtb&se fats into PCs as a result of TFA exposure.

NMR supported these findings by revealing increasesaturation of plasma lipids in the TFA



group. These specific changes in membrane lipidiepenay be related to the mechanismisafs

fat-induced disease.

I ntroduction

Industrially producedrans fatty acids (TFA) are formed by partial hydrogeomatof vegetable oil
that changesis configuration of double bond(s) tans, resulting in solid fat for use in margarines,
commercial cooking, and manufacturing processegiala hardened oils are appealing for food
industry owing to their properties such as londfdife, their stability during deep-frying and tine
semisolidity. However, consumption of TFA in thenan diet have been shown to increase the
individual’'s risk for developing cardiovascular el#se [1,2], diabetes [3], and sudden death from
cardiac causes [4]. This increased risk has bedwedi to the impact of TFA on lipoprotein
metabolism, inflammation, and endothelial functi®h. It has been well documented that TFA
intake increases low-density lipoprotein (LDL) obstierol, reduces high-density lipoprotein (HDL)
cholesterol, and increases the risk of cardiovascdisease [6,7]. Nevertheless, the incidence of
CHD reported in prospective studies has been grélade that predicted by serum lipids alone.
Thus, the observed associations between TFA cortswmpnd cardiovascular disease events
cannot be explained only by changes in lipoprotewels, triglycerides, apolipoprotein (Apo)
B/ApoAl ratio and C-reactive protein [8], implyirtgat the mechanisms behind the adverse effects
of TFAs are not fully understood. TFA exposure as® been associated with a higher risk of fatal
ischemic heart disease [9] and sudden cardiac dd&fh Although the potential mechanism
between TFA and sudden cardiac death is uncleare $@mve suggested that TFA may modulate
cardiac membrane ion channel function [11] or hagwearrhythmic properties, affecting

cardiovascular electrophysiology [2].



In order to fill the gap between TFA intake and distrimental health impacts, an untargeted
metabolomics approach by allowing quanlificatiorgfication of hundreds of metabolites can
provide a unique insight to potential underlyingcmanisms. Many studies have demonstrated
metabolomics as a powerful tool to understand mesg® of individuals with respect to their gene
expression or alterations in their lifestyles ametsd[12]. The application of liquid chromatography
mass spectrometry (LC-MS) and nuclear magnetic neaste (NMR) in metabolomics for
measurement of a wide range of metabolites in uarlwofluids has been well established. NMR
provides high reproducibility and is a powerful koo terms of quantification, whereas LC-MS is

more sensitive, allowing detection of a larger nemdf chemical compounds.

Here, we aimed to contribute to the on-going regeanrterest for identifying the adverse effects of
TFA intake by introducing an LC-MS and NMR basedtabelomics investigation of a specific
TFA intake through 16 weeks. The dietary intervemistudy was conducted by Bendsen et al. [13]
for examining the effect of a high intake of indisty produced TFAstfansl8:1) compared to
their cis analogs ¢is18:1). Our results revealed an increased presehamembrane-derived,
specific long chain polyunsaturated fatty acid (R)M#eontaining PCs and SM with TFA intake,
suggesting the possibility of using those compoursigsdividual markers of TFA integration into

plasma membranes.

Materials and M ethods

Subjects

52 healthy, moderately overweight (body mass indetween 25 and 32 kg ) postmenopausal
women, between 45 to 70 years of age, were redruitethis study. Detailed description of
participant recruitment and enrolment, inclusiord axclusion criteria, and compliance were

published previously [13].



The subjects were given both verbal and writteorimfation, whereupon all gave written consent.
The study was carried out at the Department of HurNatrition, Faculty of Life Sciences,

University of Copenhagen, Frederiksberg, Denmagkwben April 2008 and March 2009 and was
approved by the Municipal Ethical Committee of Thapital Region of Denmark in accordance

with the Helsinki-1l declaration (H-B_2007-089) 13

Study Design

The dietary intervention study had a randomizedbtkblind, parallel design. Subjects were given
26 g/d of partially hydrogenated soybean oil wigpximately 60%rans fats (TFA group; n =
25) or 50/50% mix of palm oil and high oleic suniter oil as the control oil (CTR group; n = 27)
for 16 weeks. Both test oils were supplied by Aaridarlshamn, Aarhus C, Denmark. The fatty
acid composition in the oils has been describeemgisre [13]. Briefly, the two fats differed in the
content of TFA (18:ltrans-9, 18:1trans-8, 18:1trans-7), palmitic (16:0), oleic (18:tis9) and
linoleic acid (18:Zis-6). The fats were incorporated into bread rollsving a total of 600 kcal/d
(41 E% from fat), equivalent to 28% of the subjeetsergy requirements on average. Frozen rolls

were handed out to the subjects every 1-4 weeks thhe department for consumption at home.

The women visited the department for four examoreiduring the study: at screening (1-8 weeks
prior to baseline), baseline (w0), mid-interventioveek 8) and at the end of treatment (w16). In
addition, the subjects attended the departmentdatrol weighing at weeks 4 and 12. Subjects
were instructed to maintain their habitual activigyel throughout the dietary intervention period.
Subsequent to the dietary intervention period,sthigiects participated in a 12-week (w28) dietary
weight loss program. The blood samples for metahals analysis were collected only at w0, w16

and w28.



Dietary intake was measured using 3-day weighed fecords at baseline and in the last week of
the intervention. The only significant dietary diftnces between diet groups during the
intervention were the contributions of energy fromanounsaturated fatty acids (MUFA) and TFA,
indicating that the diets were overall comparalgarafrom the fatty acid composition. The intake
of TFA was higher (7.0 £ 0.2 E% [mean + SEM] vs3 &.0.0 E%) and the intake of MUFA was
lower (10.3 £ 0.4 E% vs. 13.4 £ 0.8 E%) in the Tyup compared with the CTR group [13]. The

trial was registered at clinicaltrials.gov as NC%88902.
Ethics statement

The subjects were given both verbal and writteormfation, whereupon all gave written consent.
The study was carried out at the Department of HurNatrition, Faculty of Life Sciences,
University of Copenhagen, Frederiksberg, Denmagkwben April 2008 and March 2009 and was
approved by the Municipal Ethical Committee of Thapital Region of Denmark in accordance
with the Helsinki-1l declaration (H-B_2007-089). I3ects received B900 US$ as compensation on

completion of all the tests. Lean reference subjesteived B500 US$.
Blood sampling

Prior to each visit, the subjects were told to fastat least 10 hours (except for 0.5 L water)eyh
were instructed to avoid alcohol consumption angbrous exercise on the day before and to
consume similar carbohydrate-rich evening mealshenevening before each visit. Body weight

and height were measured by standard procedures.

Insulin sensitivity was assessed by use of freqgsampling 3-hour oral glucose tolerance tests
(OGTTs) where subjects ingested a solution of Fugose dissolved in 300 mL water. Venous

blood samples were collected before and during@aT at —10, 30 and 120 minutes into 4 mL



coated tubes. The blood was centrifuged at 3000 4Gy for 10 min. The plasma fraction was

portioned into 2 mL cryotubes and stored afé8Qntil further processing.
Chemicals

Authentic standards PC(18:0/18:2), BGI8:1kis18:1), trans PCg¢ransl8:1transl8:1),
PC(18:0/18:2) and PC(18:0/20:4), PC(18:0/22:6) wamechased from Avanti Polar Lipids Inc.

(Alabaster, AL, USA).

LC-QTOF-MS analysis

Plasma protein precipitation was performed, asrdest earlier [14]. An ultra-performance liquid
chromatography (UPLC) system coupled to quadrupiee-of-flight (Premier QTOF) mass
spectrometer (Waters Corporation, Manchester, UK} wsed for sample analysis. The mobile
phase was 0.1% formic acid in water (A) and 0.1%nfo acid in 70% acetonitrile and 30%
methanol (B). Five pL of each sample were injedted a HSS T3 ¢ column (2.1 x 100 mm,
1.8um) coupled with a VanGuard HSS T3g@olumn (2.1 x 5mm, 1,8n) operated for 7.0 min.
The eluate was analyzed by electrospray ionizg®)-QTOF-MS (Premium QTOF, Waters) in
positive and negative mode, applying a capillaritage of 3.2 kV and 2.8 kV, respectively and
cone voltage of 20 kV. lon source and desolvatias @itrogen) temperatures were set at 120 and
400°C, respectively. More detailed UPLC-QTOF anaslysonditions were explained previously
[15]. Blanks (5% of acetonitrile:methanol 70:30 wivwater) and external metabolomics standard

mixtures were injected every 30 plasma samplesigirout each analytical batch.

In order to identify relevant metabolites, MS/M&dmentation analyses were performed by post-
column infusion experiments conducted as follows: hM solution lithium formate dissolved in

1:1 mixture water-propanol was infused at 4uL/mging a Waters built-in syringe pump. Both



flows, from the UPLC column and the infusion pumgre combined using a zero-dead-volume
‘T’ union and introduced into the mass spectromeiére MS/MS experiment was conducted in
positive ion mode operating in product ion scane Ebllision-induced dissociation (CID) energy
was set at 25 eV and the MS/MS scan range at n988%0. All other parameters were set to the

same values with the MS experiment.

In order to verify the findings of lipophilic markise we performed a lipidomics analysis of 12
samples from each treatment group at baseline tatie @nd of the intervention. Each sample was
added with the internal standard3C(17:0/0:0), PC(17:0/17:0), PE (17:0/17:0), PQqi177:0),
Cer(d18:1/17:0), PS(17:0/17:0), PA(17:0/17:0) (Avdpolar Lipids, Inc., Alabaster, AL, USA)
recemic MG(17:0/0:0/0:0), racemic DG(17:0/17:0/0&)d TG(17:0/17:0/17:0) (Larodan Fine
Chemicals, AB, Malmo, Sweden). The concentrationeath standard was approximately 0.1
ug/sample. The samples were extracted as descrileetbpsly [14], but an additional extraction
with 200uL chloroform:methanol (2:1 v/v) was perfard on the Siroc&ofilter support by gentle
shaking with the precipitated protein for 5 minldaled by opening of the valves to collect the
additional extract. The combined extract was evafigorto dryness and redissolved in 190uL water-
saturated chloroform-methanol (2:1). Before in@etD.1 pg of the following additional standards
were added in 10puL of the same solvent: PC(16:A08) PC(16:1/16:1-D6), and
TG(16:0/16:0/16:0-13C3) (Larodan Fine Chemicals),dascribed by Nygren et al (2011). The
samples were injected on the UPLC-QTOF system usiftsS T3 Gg column (2.1 x 100 mm,
1.8um) coupled with a VanGuard HSS T3s€olumn (2.1 x 5mm, 18n). Solvent A was 1% 1 M
NHsAc and 0.1% HCOOH in water and solvent B was aggten2-propanol (1:1, viv), 1% 1 M
NH4Ac and 0.1% HCOOH. A 6 min gradient from 100%4A100% B was used. A gradient in
flow was also applied starting from 0.2mL/min, ieasing to 0.5mL/min over 3min and going back

to starting conditions at 10min with 2min re-eduiéition time before next injection.



Identification  of lipids. Authentic  standards  PC(18:0/18:2), PC(18:1/18:1),
PCg¢ransl8:1transl8:1), PC(18:0/18:2), PC(18:0/20:4), and PC(18:@pRpurchased from were
analysed by LC-MS with sample analysis instrumemi@hditions. As it was not possible to
purchase the standard compound for each PC andv8Meveloped a simple algorithm to extract
the PCs and SMs species utilizing their retentioretand m/z. The algorithm was based on well-
known principle of reversed phase chromatograpliypaadicted based on the m/z values observed
for plasma samples. An increased number of carbomsaresults in decreased polarity and
increased retention time. In addition, for a PC, ®Mlysophosphatidylcholine (LPC) with a
specific carbon number, an increasing number obtobonds in the fatty acyl chain reduce the
retention time. Since each of the lipid speciessapwith its Naadduct, this information is utilized

to remove irrelevant matches for positive mode .det@ samples were analysed two years prior to
the authentic standards which resulted in +0.1ini@al shift in retention time. Thus, 0.1 min was
added to the retention time of each compound indtta set. As shown in Figure 1 for PCs, the
retention times of authentic standards were magchimost precisely with the predicted ones (+0.1
min), validating the model. Equally good matchingsaobserved for retention times of authentic
standard of SM (36:2) and the observed SM (36:®t 6hown). A few PCs appeared as two

isomers, illustrated in Figure 1, correspondingttactural differences.

The structural characterization of compounds réflgcTFA intake was performed by their parent
mass information and characteristic fragments ia @ID spectrum of their lithated ions.
PC(18:1/20:3) and PC(18:1/22:5) are identified witho orthogonal data; retention time and
spectral information. PC(18:1/22:6) is putativelynatated whereas SM(18:1/18:2) is putatively
characterised. Further information about spectralgrhentation patterns (MS/MS) of the
PC(18:1/20:3), PC(18:1/22:5), PC(18:1/22:6) and B\/18:2) were explained in detail in as

follows.



The product ion spectrum of lithated [M+Li]+ ionsrfPC(18:0/22:6) and PC(18:0/20:4) standards
were comparable with the product ion spectrumtbited [M+Li]+ ions of those, in the samples,
confirming their structural identity. A few PCs agged as two isomers, illustrated in Figure 1,
corresponding to structural differences. The ionsiray from loss of trimethylamine [M-59],
ethylene phosphate [M-183] and lithium ethylene gptate [M-189] were common fragments for
CID spectra of PCs and SMs. The earlier elutingnisoof PC(38:4) gave rise to the fragment ions
504.3, 528.3 and 534.3, matching with the poteritegmentation pattern of PC(18:1/20:3). The
ions 504.3 and 528.3 represents the neutral losndf fatty acyl substituent as a lithium salt
[M+Li-R2CO2Li]+ and as a ketene [M+Li-R2’'CHCO]+, spectively [25,26]. Moreover, the loss
of sn-1 fatty acyl as a free fatty acid yielded tioe 534.3 corresponding to ([LPC(20:3)-
H20O+Li]+). The later eluting isomer of PC(38:4) aded with our standard, PC(18:0/20:4).
MS/MS spectra of the earlier eluting isomer of REGI implied contribution of multiple species
(PC(18:1/20:5) and PC(20:2/20:4)) to a single clatmgraphic peak. The ions 552.3 and 526.3
resulted from loss of the sn-1 acyl group as auithsalt from PC(18:1/22:5) and PC(20:2/20:4),
respectively. The most abundant fragment was arisom the removal of the sn-1 substituent as a
ketene. The later eluting isomer of PC(40:6) casluvith our standard, PC(18:0/22:6). MS/MS
fragmentation of PC(40:7) lead to its identificatias PC(18:1/22:6) based on the fragment ions
550.3 ([M+Li-R1’'CHCO]J]+) and 556.3 ([M+Li-R1COZ2Li]+) MS/MS fragmentation of
pseudomolcular ion of PC(40:7) [M+H] on Waters Syinaf supported its identity with fragments
445.3 ([LPC(18:1)-OH]+), 504.3 ([M+H-R1CO2H] +), 88([M+H-R1'CHCO]+) and 522.3
([IM+H-R2’CHCO]+). However, the CID spectrum of SMi3) did not reveal any abundant ions

that identify the fatty acyl substituents.
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We putatively characterized PC(44:9), which is obsé only with potassium adduct, and we could
therefore not include it into our prediction modeFigure 1. However, extrapolation of the model

agrees with the observed retention time, 5.34 min.
'H NMR Analysis

Plasma samples were slowly thawed overnight at.4Sdnples where then centrifuged 20 min at
12k RPM and 300 pl plasma were transferred intoran® NMR tube together with 300 pl of
phosphate buffer at pH 7.4 containing at least 10% D,O and gently mixed in order to avoid
formation of bubbles/foam. 1D NOESYH NMR spectra were acquired on a Bruker DRX
spectrometer (Bruker Biospin Gmbh, Rheinstetterrn@ay) operating at 600,00 MHz for protons
(14.09 Tesla) using a TCI cryo-probe head and gmapvith a SampleJet autosampler. All samples
were individually and automatically tuned, matclaed shimmed. FIDs were Fourier transformed
using a 0.3 Hz line broadening. The resulting gpevtere automatically phased and baseline
corrected using Topspin™ (Bruker Biospin), and pipen scale was referenced towards the TSP

peak at 0.00 ppm [16]. Assignment of resonancesdwas by comparison to literature values [17].
Data Preprocessing

LC-MS. The raw data was converted to an intermediate netG@rmat with the
DataBridge" utility provided with the MassLynx software. MZneir2.7 [18] was employed for
data preprocessing including following steps: naetection, chromatogram builder, chromatogram
deconvolution (local minimum search), isotopic Eegkouper, peak alignment (join aligner) and
gap filling. The final outcome from MZmine is a faee set where each feature is denoted by the

mass over charge (m/z) ratio and a retention time.
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MZmine preprocessed data was imported to MATLAB réien 7.2, The Mathworks, Inc., MA,
US). Peak filtering was applied based on two datefirst, if a feature has a reasonable peak area
(>60) in the first run blank sample, it is remov&econd, if a feature has a peak area lower than 5
(considered as noise level or gap filling erroig),more than 60% of the samples within both

sample groups (TFA vs. CTR, in this case), it islested (percent rule, [19]).

To remove intra-individual variation, each featuse normalized with the mean of the two
recordings (before and after intervention) for esghject at each OGTT time point (-10, 30 or 120

min) [19].

'H NMR. The spectral alignment was performed by icoshifiodthm [20]. Only the spectral

region between 8.5 and 0.2 ppm was considered trendpectral region containing the residual
resonance from water (4.7-5.1 ppm) was removedctBpedata set was normalized by using
probabilistic quotient normalization [21] and reddcby an in-house implementation of the
adaptative intelligent binning algorithm [22]. Varg bin size, within the boundaries of minimum

0.002 to a maximum 0.02 ppm, was used, dependirigeopeak width.

Data Analysis. The PLS_Toolbox (version 6.5, Eigenvector Resedrah, MA, US) was used to
implement the data analysis. Initially, principalngponent analysis (PCA) was applied to visualize
grouping patterns and detection of outliers as rsupervised multivariate data analysis method.
Then, data was subjected to partial least squasesitdinant analysis (PLS-DA) for classification
purposes. PLS-DA attempts to separate two grougaraples by regressing on a so-called dummy
y-vector consisting of zeros and ones in the PL&position. Permutation test [23] was applied
with 1000 random assignment of classes. The tésiaseple classification errors were evaluated to
qualify the classification results. Selectivity icat[24], which provides a simple numerical

assessment of the usefulness of each variableegrassion model, was chosen as the criteria for
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variable selection. Briefly, using the y-vectoraatarget, PLS components (in many cases more than
one) are transformed into a single target-projectadponent. The variance explained by the target
component is calculated for each variable and coetpwith the residual variance for the same
variable. The ratio between explained and residaaince, called the selectivity ratio, represents

measure of the ability of a variable to discrimendifferent groups [24].

Data analysis was performed on baseline adjustddbolge levels after intervention (w16-w0).

Figure 2A illustrates data structure and baseldjestment schema.
Results

Three subjects did not complete the interventimeneually resulting in 24 for the TFA group and

25 for the CTR group.
Plasma'H NMR profiles — extraction of TFA related patterns

Based on sample preparation issues, 42 NMR speetra excluded, leaving 105 spectra (51 for
TFA group, 54 for CTR group) for further analys&ubsequent to binning, spectral data set was
condensed into 1493 binned ppm regions. PrimaPihs-DA was applied individually for the data
including only one OGTT time point with the aim a@itcriminating of CTR and TFA groups. The
original classifications errors were barely sigrafitly lower than the permuted ones (not shown).
The classification performance was improved whenoeacatenated OGTT time points in the
sample direction. The original and permuted dadasification errors are given in Figure 3, none of

the permutations had lower classification erroetthe original ones.

The resonances reflecting TFA intake was selectsgd on evaluation of selectivity ratios from
PLS-DA model (i.e. the resonances that have higbectety ratio are more influential in

discriminating between TFA and CTR groups). Anriotaibf discriminative resonances revealed
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elevated unsaturated lipids $.3) and LDL & VLDL © 1.28) methylenic protons for TFA group

and an unassigned quart&t3(23) for CTR group.
Plasma LC-MS profiles — extraction of TFA relatedtprns

Based on instrumental issues, 29 sample measuremwent¢ excluded. In all, 59 and 60 samples
measurements were remained for TFA group and CTdrpgr; respectively. A total of 2260
features in ESI positive mode and 1689 in ESI negahode were detected by MZmine. After
exclusion of noise and irrelevant features, by gifilank and the percent rule, 767 and 710 features

for positive and negative modes, respectively, ragthfor data analysis.

Initially, samples from each OGTT time point waslgsed individually by PLSDA with the aim of
discriminating CTR and TFA groups. Permutation tesis applied to investigate the potential
PLSDA over-fitting issues. Classification errortdisutions from models with 1000 times permuted
class identifiers together with the original cléissition error are presented in Figure 4. In chsed
were no differences between the groups, the expadsssification error would be 0.5. Figure 4
perfectly matches this requirement. The comparisbnolassification error of the original model
against the permutations was evaluated on the bagisvalues. Original classification errors were
significantly lower than the permutations with guaes of 0.01 for §err = -10, 0.04 for §err =

30, and 0.03 for detr= 120 ¢ = 0.05).

Variable selection was performed based on the thatgcratio from the PLSDA model using

datasets from each OGTT time point. Features wWith highest selectivity ratio were extracted
(Table 1). Many of the discriminating features wemmmon for the three OGTT time points
indicating that TFA related patterns were not a#ddoy OGTT. Identification of these features (as
described in Materials and Methods section) poimtgidthat those were compounds from the lipid

classes; PCs and SMs.
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A similar variable selection procedure was appf@degative mode, though PLSDA classification
performance was lower compared to positive mod#l, #tentical PC species (Table 1) were
associated with TFA intake (not shown). However,(3843) was not detected in the negative mode

which could be a potential reason for the lowessiecation performance.

Since metabolites responding to the TFA exposudendit seem to be affected by OGTT, we
concatenated the time points into a new data sénctease the power of classification model with
larger number of samples. In this case each subyjast represented by three time points from
OGTT measurements as illustrated in Figure 2B.Heunbore, as we have already demonstrated
that only lipids were associated with TFA intakeatlures from the lipid classes (PC, SM and LPC)
were included as variables (Figure 2B). The iddaruktargeting the lipids was to explore whether
only the specific PCs and the SM mentioned in Tdbtespond to TFA intake or if there are other
lipids that could be blurred due to the large nundfevariables. The PCA scores plot is shown in
Figure 5. The control group clearly separated frdtma TFA group in the second principal
component. Samples from different time points wguée spread in both CTR and TFA clusters
and none of the principal components explained OGIBE shown). Later, PLS-DA was applied to
select the main contributing lipids. The classtiica errors, sensitivity and specificity of cross
validated samples were 0.04, 0.85 and 0.88, raspbctThe calculated selectivity ratios were the
largest for the lipid compounds given in Table ig@fe 6) which were all increased with TFA

intake.

In order to investigate whether the increase irtifipdipids is temporary or those are remained for
longer period, the measurements at w28 (i.e.12 svedter the end of the intervention) were
included. As mentioned earlier in this period albgcts were under a weight loss program. The
levels of SM(36:3) and PC(40:7) were increased B and declined to levels before intervention

(w0) at w28 for the TFA group, whereas there waglear fluctuation for the CTR group (Figure
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7). The other markers in Table 1 exhibited simitends (not shown). The standard deviation for

the TFA group was higher at w16, which is relatddrying individual responses to TFA intake.

Finally, to ascertain that the two major markemnitified, SM(36:3) and PC(40:7), were genuine
TFA markers in plasma we quantified them by a t@ddipidomics analysis of a subset of 12
samples from each group using appropriate inteata@dards. Under the lipidomics conditions used
here the two markers emerged as significantly higlgdactors of 16-40 in the period with trans-fat
exposure and were very low before intervention wirdy control conditions. No other features
emerged with similar strong contrasts and other iieh as two PC(36:2) isomers did not differ
between the two treatments. Some weaker marker$Afexposures may possibly exist but that

would need more extensive analysis of the fulkgetscertain.
Discussions

TFA has been banned in Denmark since 2003 and baokg levels of TFA in Danish citizens are
therefore low, resulting only from residual expasufrom ruminant fats [27]. This has made
Denmark an ideal place for interventions to invge the short-term effects of TFA with a low
background exposure. Several TFAs exist and in dhgent study,transl8:1 was almost
exclusively given as the intervention [13]. Fronstivell-controlled study ofrans vs. cis C18:1 fat

in overweight women we report that bdtHi NMR and LC-MS plasma metabolic profiles were
altered with TFA intake. In this as in many oth&rdses consumption of TFA is related with an
increased LDL to HDL ratio and it is consideredaagowerful predictor of cardiovascular disease
[28]. Another outcome from NMR was elevated unsated lipid signals for the TFA group, which
can be attributed to an increased level of unstdratty acyl side chains in lipid species. Thgyfa
acid composition of phospholipids in red blood cembranes was reported by Bendsen et al. [13]

Their results did not reveal any significant altena between the CTR and TFA groups with respect
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to the PUFA (or monounsaturated) levels, except &odifferent content of TFA. Thus, this
difference may be arising from unsaturation of otheid groups such as triglycerides in the
lipoproteins. Similarly, an elevated unsaturatiorthe NMR spectrumd(5.3-5.4 and 1.9-2.5) of

HepG2 cell extracts exposed to TFA was mentioneNdgpjerg et al. [29] in which they concluded

disturbed lipid storage efficiency with TFA intake.

The LC-MS profiles demonstrated elevated levelsadimited number of polyunsaturated long
chain PCs (PC(40:7), PC(40:6), PC(38:4)) and of 3\), which has the longest chain and the
highest unsaturation among all detected SMs. Isegtalouble bond formation has also been
supported by NMR results. None of these markereafflected by the OGTT test, revealing that
they are not necessarily fasting state markers. ifkgke did not seem to have long term effects on
the composition of plasma lipids, as their levelsva8 after intervention (weight loss period) were
comparable to baseline (w0) levels as shown inrE€igu We observed here a SM as a marker of
TFA intake. This SM was almost not present in tba-FA group indicating a special structure.
An increased level of total plasma SMs has beeac&ged with increased risk of atherosclerosis
[30,31] although the consequence in terms of caedicular risk has been debated [32]. In this
study we observed an increase in only a singlepnM having two C18 chains with one and two
double bonds, respectively, either SM(d18:2/18:1)56(d18:1/18:2). The configuratiorti§ or
trans) around the double bonds in these markers is alvex$ and so is the atherogenic potential of
this specific SM. There was no correlation betwé®n concentration of this SM and any other
compound from this class. We speculate that th&kenarbserved here has\8 or A 11 trans-fatty
sphingosine chain containingces-double bond in the 3-position. This would resubini A7 or A9-

and other trans-hexadecanoic acids being a subsftat the slightly promiscuous serine
palmitoyltransferase (EC 2.3.1.50) [33] to form-&e3odehydrosphingosine which would then be

reduced and acylated by oleyl-CoA followed by desston to form Cer(d18:2/18:1). This
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ceramide would act as a precursor to the SM(d18:2Jlformed by SM synthase (EC 2.7.8.27).
We are not able to see the less polar productauulptsti here not even by lipidomics, but the
consequence of this hypothesis would be that aftakes oftransl6:1 fatty acids it would be
possible to observe the formation of a whole sexfesphingolipids containing the unusuab or A

11- trans- A3-cis C18:2 and other similar sphingosines with tihans double bond in other
positions. In the current studivans16:1 was below detection limit in the diet butsilikely that it is
formed byp-oxidation ofA9 or A 114rans-18:1. In a study of 16:1 ruminant TFAs, the was the
dominating isomer butans double bond isomers with the double bond at amyarafrom position

3 up tol4 also existed [34]. The identity of our @B:2/18:1) marker needs to be finally proven in
separate studies, and if the assignment is cothextbiological and especially neurological
consequence of changing the usu#éd-A3-sphingosines by an aberrant backbone must be

elucidated.

We succeeded in identifying several PCs based threatic standards and by a systematic pattern
of RTs depending on chain length and saturatiose8an this pattern we could identify two PC'’s,
PC(40:6) and PC(40:7), which were specifically @aged in plasma following dietary TFAs, and
PC(38:4), which tended to be increased as wells@HeCs carry a C18:1 acyl side chain in one
position and a long-chain PUFA chain in the othesda on their CID fragmentation patterns. Since
C20 and C22 acyl side chains in PCs are almosusixelly found in the sn-2 position in humans
[35], it is most likely that the 18:1 is found im-4&. TFAs, includingtrans-vaccenic acid A11-
trans-18:1), sterically resemble saturated fatty acigd might therefore substitute for these in the
sn-1 position. In agreement, the preferential ipocation of elaidic acid to sn-1 chain of
phospholipids have been reported in hepatocyted/blglseth et al. [36]. In accordance, Wolf and
Entressangles et al. [37] showed that phospholipmi® rat liver mitochondria modifiedh vivo

had large quantities of elaidic acid esterifiedts sn-1 position. We therefore propose that the
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species observed here are #&1(s18:1/22:5), PQfansl8:1/22:6) and P@@nsl8:1/20:3). This
hypothesis is supported by the previously repoeiedated trans-18:1 residue levels in red blood

cell phospholipids in the TFA group [13].

It is well known that TFA incorporate membrane gitodipids into plasma altering the packing of
phospholipid and influencing the physical properiad responses of membrane receptors [38,39].
TFA produce membrane properties more similar tesehof saturated chains than those of acyl
chains containingis double bonds [39]. When incorporated into membnanespholipids, TFA
either replace existing saturatedoms unsaturated acyl chains. Harvey et al. [40] shothet both
elaidic and linoelaidic acid integrated into phasighids, mainly in the expense of myristic,
palmitic, and stearic acids, without causing antygan in total fatty acid levels. In our studygeth
published membrane phospholipids levels [13] reackasignificantly decreased stearic acid
(P=0.04) and oleic acid (P=0.02) in the TFA grommpared to CTR, suggesting replacement of
those with elaidic acid. Although LC-MS based metamics did not show any decrease in PCs
having one saturated fatty acyl chain, elaidic aadtaining specific PCs potentially increased in
the TFA group. Many other researchers have inva®jthe variation of fatty acid composition in
red blood cells PCs with TFA intake; however nofh¢hem reported the effect of TFA intake on
specific PCs. Here, LC-MS based metabolomics detraied up-regulation of specific PCs with

TFA.

The TFA markers P@@nsl8:1/20:3), PQfansl8:1/22:4) and P@@nsl8:1/22:5) preferentially
integrated into PCs all contain PUFA in the sn-8ippon. There was no difference in the dietary
intake of PUFASs in the two diet groups [13], so fneferred presence of these specific acyl chains
together withtrans18:1 would need an explanation. The two minor markewve peaks with a RT
slightly different from the main, 18:0 containingC@0:6) and PC(38:4) peaks (Figure 1),

indicating that they may be detectable due to bedignal-to-noise ratio for these specific
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compounds, but the more prominent PC(40:7) markeactually dominating the only PC(40:7)
peak observed and the level in the non-TFA grouquige low. This is not surprising since this
compound in general would be a minor PC becauseldtes the general rule of saturated sn-1 and
unsaturated sn-2 acyl chains and because no CBRdetd with seven double bonds exists in
human lipids. Other minor TFA-containing PCs magréiore exist but with RTs that fall on top of
major PCs so that they are not detected as matkevgever, it is still noticeable that PC(40:7) @& s
abundant. It forms a large peak comparable to attegor PCs, indicating a facilitated formation.
We also found putatively the even longer, PC(44T®ese observations could either indicate that
there is a general up-regulation in the formatibtong-chain PUFAs after TFA intakes and/or that
these fats are specifically mobilised into PC assalt of TFA exposures. It has been shown that
the acyl chain distribution is almost completelyngar in plasma and erythrocyte membranes,
indicating that plasma PCs may be a surrogate mdokemembrane composition. Indeed, most
plasma PCs may be abstracted from the membran@mtact with blood. Increased formation of
long-chain PUFAS has been observed in adiposeetisembranes in overweight individuals [41],
resulting from increased elongase and desaturasétias. This phenomenon is likely due to
compensation for the increased fat load in the cayifes in order for them to remain functional,
despite their enlargement during weight gain [40FA resembling saturated fatty acids may
therefore negatively affect adipose tissue functeauing to a response similar to that seen during
weight gain with increased formation of long-chRdFA’s. This is supported also by an increased
unsaturation in the NMR spectra for the TFA groyet the FA composition of red blood cell
phospholipids did not show any overall significamdrease in PUFA [13]. Further investigation of
the PUFA distribution among specific membrane PCiherefore needed in order to confirm this

hypothesis.
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As previously mentioned, phospholipids with TFA aeé similar to saturated fatty acids rather
than theircis monounsaturated isomers. It has been reportedrdratacyl chains adopt extended
configurations similar to saturated acyl chaindoveing better interaction with the cholesterol
molecule compared with thegis analogs [42]. These effects could be contributiagtors in
modulating cholesterol homeostasis, and as suchbegart of the explanation of the elevation of
LDL cholesterol by a TFA-rich diet [42] which wagmonstrated by NMR. Although TFA has
properties similar to those of saturated fatty si@dd also substitute for saturated fatty acids in
membrane lipids, it has been confirmed in a metdyais that TFA raises levels of LDL more than
an equal amount of saturated fatty acids. The effed_.DL levels is much larger when TFAs are

compared with theicis analogs [6].

Conclusions

We conclude that several specific markers of TFfaka have been observed in this study and
propose that SM(d18:2/18:1) may be a general plasar&er of exposure to TFAs as well as that
the presence of P€&nsl18:1/22:6) may be a specific marker of C18:1 TFAasure. This study
was established to investigate the effect of 18FA Tintake on plasma metabolites using an
untargeted approach. As the results demonstragejfplipid molecular species in plasma were
formed as a result of TFA exposure and all belanghe SM and PC polar lipids that exist in
plasma in equilibrium with the plasma membranes.cidd also confirm that TFA exposure leads
to increased plasma LDL. Further studies with othecific exposures to 16:1 and 18:2 TFAs

would give further insight into the general andape lipid markers of TFA exposure.
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Figure Legends

Figure 1. The observed retention time values of identified PCs (empty circles). Filled circles
illustrate retention time of the authentic standafiC(18:1/18:1), PC(18:0/20:4) and PC(18:0/22:6)

confirming the predicted pattern

Figure 2. Data structure and arrangement schema. Baseline subtraction (A) concatenation of
time points (applied on LC-MS and NMR profiles)daselection of lipid classes (B) (applied on
LC/MS data)

Figure 3. Permutation test results for NMR profiles. Class prediction results for NMR profiles
based on test set predictions of the original lalgetompared to the permuted data assessed using
the classification errolP-values were calculated based on the comparisctasdification error of

the original model against the permutations

Figure 4. Permutation test results for LC-MS profiles at each OGTT time point. Class
prediction results for LC-MS profiles based on test predictions of the original labelling
compared to the permuted data assessed usingagsgficlation errors. derr = -10 (A) Toetr = 30
(B) Toecrr= 120 (C)

Figure 5. PC1 vs. PC2 scores plot of LC-MS based lipid profiles. The LC-MS profiles with
concatenated time points including only LPCs, P69 8Ms as variables. Filled circles: TFA,

empty circles: CTR
Figure 6. Selectivity ratio of each lipid speciesfrom PLS-DA model.

Figure 7. Normalized intensity for metabolites reflected by TFA intake. PC(40:7) (A) and
SM(36:3) (B) at w0, wl6 and w28. The values arerttean of samples in CTR and TFA groups.
Each variable is normalized with the mean of thee@rdings (at week 0, 16 and 28 with three

OGTT time point recordings) for each subject
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Table 1. Features with the highest selectivity ratio based on PL SDA models. The importance of

each feature was represented by its rank. Theisab&sed on each features sorted selectivity ratio

in descending order.

M easur ed Retention Suggested Suggested M onoisotopic Rank Rank Rank
m/z time* (mln) Compound Adduct mass Toett=-10 Toert=30 Toer7=120

749.5614 5.31 SM(36:3) [M+Na]* 726.5676 1 1 4
727.5781 5.31 SM(36:3)  [M+H]" 726.5676 2 4 7
832.5887 5.33 PC(18:1/22:6) [M+H]" 831.5778 3 18 6
810.6072 5.52 PC(18:1/20:3) [M+H]" 809.5934 4 9 25
854.5728 5.33 PC(18:1/22:5) [M+Na]" 831.5778 5 2 1
922.5617 5.34 PC(44:9) [M+K]" 883.6091 12 3 2
856.5728 5.41 PC(18:1/22:5) [M+Na]" 833.5934 6 5 5

*0.1 min was added to the retention time of eaaghaund.
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Abstract

In metabolomics studies, liquid chromatography magectrometry (LC-MS) provides
comprehensive information on biological samplesweieer, extraction of few relevant metabolites
from this large and complex data is cumbersomerebolve this issue, we have employed sparse
principal component analysis (SPCA) to capture timelerlying patterns and select relevant
metabolites from LC-MS plasma profiles. The stualyolves a small pilot cohort with 270 subjects
where each subject’s time since last meal (TSLM)lteen recorded prior to plasma sampling. Our
results have demonstrated that both PCA and SPGAaature the TSLM patterns. Nevertheless,
SPCA provides more easily interpretable loadingserms of selection of relevant metabolites,

which are identified as amino acids and lyso-lipids

This study demonstrates the utility of SPCA astigon recognition and variable selection tool
in metabolomics. Furthermore, amino acids and Iy#ds are determined as dominating

compounds in response to TSLM.

Keywords Metabolomics SPCA'LC-MS ' Plasmatime since last meaDbservational Study

1 Introduction

Based on the recent advances in analytical teolgied, metabolomics evolved as a powerful toolvelig
gualification/quantification of hundreds of metabesd in biological samples. Particularly, mass smpagetry (MS)-
based methods have been widely employed with tlvaradge of broader metabolome coverage. Howevel]Sn
based metabolomics, large amount of complex dadsacterize few samples. Thus, extracting a smalbseclevant
features from this complex data is challenging.

Principal component analysis (PCA) has been widedgd for both dimension reduction and for explomat
analysis of complex datasets (Wadal. 1987). PCA provides features representing the datimg characteristics of
the data. Nevertheless, only few LC-MS based métafios studies employ PCA for feature selectione @ the

reasons for this is that PCA represents each pahcomponent (PC) as the linear combination ob@adjinal variables.



Particularly in cases where the number of variableseds the number of samples as in metabolothisssomplicates
interpretation of PCs such that it becomes undeaxtract only a few relevant features from thenyniarelevant ones.
To overcome this issue, sparse principal compoapatysis (SPCA) was introduced by Zetal. (2006a) using the
lasso (elastic net) to produce modified PCs withrsg loadings. SPCA allowed the less influentialaldes to have
zero influence on the model by imposing lasso fielaset) constraint on the regression coefficieAlfen and Maletic-
Savatic (2011) have demonstrated applicability ¢fC8 with non-negativity constraints on an NMR based
metabolomics dataset. Sparsity penalty has also &eplied for some studies of metabolomics-baselti-iviock data
analysis (Acaet al. 2012;Vanet al. 2011). However, a direct application of SPCA fogtabolite selection from LC-
MS based metabolomics data has not been shown.

The metabolic responses to food intake and madtabolearance rates are usually measured by postiata
challenge tests. These may be performed by glumbseance tests (OGTT or clamps), lipid challengedyy specific
foods or whole meal challenges, depending on tkeifip metabolite group of interest. In traditiordihical nutrition,
the postprandial tests have been evaluated based response pattern of established biomarkers, ascplasma
glucose in OGTT and plasma triacylglycerides indliphallenges. On the other hand, metabolomicsroffemore
holistic view by comprehensive coverage of metabslin biological sampleZhaoet al. (2009)and Shahanet al.
(2008) were the first to utilize metabolomics teastigate the physiological changes during an OQJTey identified
major concentration changes in compounds, suchl@asdids, that have not been reported previouslynore recent
metabolomics study demonstrated the dynamics ofhilmman metabolome in response to diverse challerges
prolonged fasting period of 36 h, a standard licdiet, an OGTT, an oral lipid tolerance test, agitgl activity test,
and a cold pressure stress test (Ketugl. 2012). Another study investigated the metaboli¢ysbation in response to
postprandial challenge in a controlled interventsbudy (Pellis et al. 2012). Our perspective, am dther hand, is to
explore whether the plasma LC-MS metabolic profifiecting the TSLM can be extracted from a sroahort where
subjects had various quality and quantity of foadirth their last meal. In observational studiegréhare many life-
style factors which influence each other and thay mead to confounding. Metabolic profiles may lseful to study
relationships between diets and metabolism andewagtually reveal disease patterns, yet they maekerely biased
by patterns related to sampling such as the TSltivthé current study, to uncover TSLM-related paten a first
attempt to disentangle some of the factors affgdtie metabolic profiles in the un-controlled olvs¢ional setting, we

employed SPCA as a pattern recognition and fealextion tool and compared its performance withPC



2 Materialsand Methods

2.1 Subjects

Data from the Danish prospective cohort studyt,0iancer and Health, was used for this study.fBria total of
57,053 men and women were enrolled into the cobettveen December 1993 and May 1997. Participants we
eligible for inclusion if they fulfilled the folloimg criteria: age between 50-64 years, born in Dengliving in the
Copenhagen or Aarhus areas) and no previous catiagnosis in the Danish Cancer Registry. A detafieod
frequency questionnaire (FFQ) and a lifestyle daestire were completed by each participant. Bimialgand
anthropometric measurements were taken, includingpfasting 30-ml blood sample. The blood samplese
centrifuged and divided into fractions of plasmasusn, red blood cells, and buffy coat and stored-ml tubes. All
samples were processed and frozen within 2 hour808C and were ultimately transferred to liquidrogen vapor
(max. -150°C), where they were stored until needttate was used as the anticoagulant. A thoralegcription of

the data collection procedure has been publisheivblere (Tjonneland et al. 2007).
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Fig. 1 TSLM distribution of the subjects. Subjects areugred into four intervals based on the time passed

since their last meal has been taken, denotedtbyiim?2, int3 and int4.



For the present study, we considered a sub-cafideimale colorectal cancer cases and matchedatenk total
of 175 colon and rectal cancer cases among fenvedes identified during a median follow-up of 5.9aye An

identical number of controls was selected randomly.

2.2 Study design

Prior to blood sampling, the number of hours paissece subjects had taken their last meal wagdedo Besides
breakfast, lunch and dinner, solid snacks wereidensd as the last meal but not liquid intake. Shbject’'s whose
TSLM has not been reported or with a BMI lower th2zt were excluded. The remaining dataset contaitl
subjects. Fig. 1 represents the TSLM distributibthe subjects. Later, subjects were grouped oo fime intervals; 1

to2.1h,2.1t03.5h,3.5to5hand5 to 18(6ip. 1).
23LC-MSanalyss

Plasma protein precipitation was performed asrdest earlier (Gurdeniz et al. 2012). Samples warglomized
and placed in 96-well plates. An ultra-performaltigaid chromatography (UPLC) system coupled to quptk time-
of-flight (Premier QTOF) mass spectrometer (Wal€osporation, Manchester, UK) was used for samplayaes.
Each sample (10 uL) was injected into the UPLC goed with a 1.7um C18 BEH column (Waters) operatitial a 6-
min linear gradient from 0.1% formic acid in water0.1% formic acid in 20% acetone: 80% acetoritfllhe capillary
probe voltage was set at 2.8 and 3.2 kV for negatSl-) and positive (ESI+) electrospray ionizat{&SI) modes,
respectively. In the ESI- mode, desolvation gaspnature 400°C, cone voltage 40 V, and Ar collisiais energy 6.1
V were used. In the ESI+ mode, we used the sartiageexcept for collision energy of 10 V). Sampdéblank (0.1%
formic acid) and metabolomics standard mixture #frdetabolites were analyzed after every 50 sangileisg the
sample sequence.

Amino acids (i.e.tyrosine, leucine/isoleucine,ptophan, phenylalanine), lysophosphatidylcholinésPC18:1,
LPC18:0, LPC17:0, LPC16:0, and C18:2) and lysophasgylethanolamine (LPE18:1) were identified byngsan in-
house metabolite database containing retention itnfiaemation and MS spectra of reference substa(@ésdeniz et
al. 2012). LPC15:0, LPC18:3, LPC20:2 and LPC20:3ewgutatively identified based on spectra and t&prtime

relative to the identified LPCs and LPEs.

2.4 Data pre-processing and pre-treatment



The centroided raw data was converted to an irgdiaite netCDF format with the DataBridgeTM utilgyovided
with the MassLynx software. MZmine 2.7 (Pluskalatt 2010) was employed for data preprocessing dhctu the
following steps: mass detection, chromatogram leujldhromatogram deconvolution (local minimum skgrisotopic
peaks grouper, peak alignment (using join aligmer) gap filling. The term ‘feature’ is used to refe a chemical
compound with a specific retention time and mass aharge ratio (m/z) throughout this paper.

MZmine-preprocessed data was imported into MATLRBO12a (ver. 7.17.0.739). Peak filtering was ajpplie
based on two criteria. First, if a feature hasasoaable peak area (>60) in the first blank sarmpé least one of the
four analytical batches, the feature is removednftbe entire set. Second, if a feature has a pesk lawer than 5
(considered as noise level or gap filling errons)more than 60% of the samples within every sangpteip (TSLM
intervals), the feature is excluded (percent r(Bijlsma et al. 2006)). Afterwards, the few remaiimissing entries
were filled with a number within a random rangéef0 % of the smallest value for each feature.

Systematic error caused by experimental conditivas corrected based on two normalization appr@ache
Initially, samples were normalized to unit lengil ¢orrect for decreasing instrumental responsendusample
acquisition batches. Second, to remove inter-batetation, each feature was normalized within ebatch with the
overall mean of its recordings throughout the ensiet. This approach is justified by the randormnadf the samples
between the plates prior to analysis.

Data preprocessing was automated by a MATLAB fiemcivhich can be provided upon request.

2.5 Data analysis

Autoscaled data was subjected to PCA (Wold efl@R7) and SPCA. SPCA can be formulated as a pexdaliz
optimization problem with the main objective beiagminimization problem similar to PCA with L1 norpenalties
imposed on the parameters, in this case the loadiowmrs, to achieve sparsity. The formulation BC2 can be shown

as:

argmin (||X — TPT||})

subject td|p;|l; < c and||p;ll3 = 1, fori=1,...,k

where X (n x p), is the data matrilp;||, is the sum of absolute values (L1 norm) of the €blumn of the loading
matrix P, and T is the scores matrix. The tuningapeeter c is a positive penalty parameter bountliegsum of

absolute values of the normalized loading vecligs|l; < c). It controls the degree of sparsity in the logdirector,



i.e., the number of nonzero loadings. A meaningfidrse solution can be found when the parametdmisen between
1 (univariate decomposition, one variable pr. congmt) and the square root of the number of varsaflaconstrained
PCA decomposition) (Rasmussen and Bro 2012).

The calculation of the entire set of components dane simultaneously by iterating between scandd@adings.
An alternating least squares-based approach wiluced L1 norm penalty was used for component estma
Relative change in function values is used as pp#tg condition and it is set to 10-10. Each stéphe alternating
procedure is a convex optimization problem, andcchegarovides the global minima. However, the ergi@blem is not
convex and in order to avoid local minimum issues,initialized multiple times with random loadindgnlike PCA,
SPCA does not impose othogonality constraint betveeenponents.

SPCA requires the selection of the number of camepts and the degree of sparsity. The number opoaents
was varied from 4 to 20 incrementing by 3. The tgrnparameter ¢ was varied from 1.5 to 6 with OtBrirals. In this
study, we evaluated SPCA scores and chose thdtgdavel and the number of components that sudfidy explained
the TSLM patterns.

PCA is implemented in PLS_Toolbox (ver. 6.5.1,dfigector Research, Inc., MA, US) for MATLAB® R2012a
(ver. 7.17.0.739). SPCA was conducted using ayfreehilable SPCA algorithm from (http://models.lKa.dk/sparsity)

for MATLAB together with a web tutorial, describimtptails of the algorithm(Rasmussen and Bro 2012).

3 Results and Discussions

Initially we would like to mention the reasons wag unsupervised method has been selected to igatesthis
data. For instance, a regression method such agfPir8al Least Squares) could have been a nathoite to predict
TSLM patterns or a classification approach sucRIaS-DA (Partial Least Squares Discriminant Analysisuld have
been applied using the determined TSLM intervatswelver, the subjects had their habitual diets vayyn quantity as
well as quality of foods and drinks during each mEarthermore, many of the subjects additionalig la drink which
was not further specified (e.g., water, juice, eeffetc.) independently of their recorded TSLM.aAmatter of fact, for
many subjects TSLM was approximate rather thanrg wertain value. Thus, using PLS with approximiaeels
corresponding to TSLM was not very accurate. Funtioee, we have attempted to group subjects inenats based
on their TSLM (Fig. 1) in order to ease the viszation. However, the interval boundaries were rear; as the
metabolic response to TSLM is an ongoing proceksrdfore, classification-based methods like PLSd)& not very

appropriate. On the other hand, an explorative datlysis method aims to capture underlying dorimigapatterns



without any predictor variables. Thus, PCA-basedhwods provide the necessary basis to explore afesyatic

variation and especially TSLM-related patterns.
3.1 Interpretation of models from SPCA vs. PCA

A total of 1199 features in ESI+ mode and 132&$81- mode were detected by MZmine. After exclusibmoise
and irrelevant features as described in the sedaiiomlata pre-processing, 547 and 681 features $+ Bnd ESI-
modes, respectively, remained for data analysisthEtmore, 10 samples in ESI+ and 13 samples in B8te
excluded as outliers in PCA. These samples alseelhadr instrumental (i.e. very low response) angl preparation
issues (i.e. too little sample left for analysis).

PCA captured the slight TSLM trend by PC1 (11.28%) PC4 (3.2%) for ESI- mode, as shown in Fig.rith2c.
The TSLM trends are not very obvious, which waseexed as each subject’s last meal differed in tuatid quantity.
Based on Fig. 2b and 2d the loading plots areddiffito interpret. LPCs and LPEs for PC1 (Fig. 2by a group of
amino acids for PC4 (Fig. 2d) tend to have reldivegher loadings (i.e., coefficients with high gmtudes), yet those

are not clearly distinguishable from many others.
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Fig. 2 TSLM vs. scores on PC 1 (a) and PC 4 (c) scoreterfdon time vs. PC 1 (c) and PC 4 (d) loadings.
(Data acquired in ESI- mode)

Among the different number of components andrspa levels considered, the SPCA model with 14
components and sparsity level of 2.b., (||pill; < 2.5) was determined to be the appropriate model caygfuttie
TSLM trend in ESI- mode. SPCA score plots for SHGB2%), SPC6 (0.78%) and SPC12 (0.7%) (Fig. 3a38¢
illustrate similar trends for TSLM patterns comghte PC1 (Fig. 2a). However, unlike PCA loadingg(Rb), we can
clearly see the compounds reflecting the patteoms SPCA loadings (Fig. 3b, 3d, 3f). Furthermohe, TSLM trend is
also described by scores on SPC14 (0.62%) (Fig.el&n slightly better than the corresponding PE{.(2c). It

seems PC4 is reflecting also other irrelevant patéFig. 2d). SPC14, on the other hand, is abkextmact the TSLM

related part.
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The explained variation for SPCA is much lowemtiRCA, yet this was not surprising especially whenlevel of
sparsity is low and large number of componentdtuied.

Scores on SPC2, SPC6 and SPC12 are highly caueldth each other (Fig. 3). When SPCA is performétth
decreased degree of spargify;|l, < 4 for i=1,..,14) the same pattern is explained withlyoone component.
Nevertheless, the pattern explained by SPC1 dismpgde This problem can be solved by further impneset of the
SPCA algorithm using component-wise sparsity péslt

For the data acquired in ESI+ mode, we used SP{IAeight components and a sparsity degree of (o], <
4, for i=1,..,8). The TSLM is captured by SPC8 (1)78 shown in Fig. 5. Using lower than 8 componertd

decreasing the degree of the sparsity penaltyntheel did not reveal TSLM related patterns.
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Fig. 5 TSLM vs. scores on SPC1 (a). Retention time v& $Pb) loadings. (Data acquired in ESI+ mode)

Our results clearly show that SPCA outperforms RfyAproviding more easily interpretable results, wéh the
explained variance trade off. SPCA encouraged featwith negligible contributions in standard PGAhave zero
loadings. Thus, the significant metabolites cowdddentified easily by the loadings of the SPCA elod

It was interesting to see the groups of metalmlitflecting TSLM patterns, i.e., amino acids armRICk/LPEs,
appearing in different components. The correlatiogfficients between the SPC scores correspondiragmino acids
and LPCs/LPEs is 0.3 (Spearman’s correlations [@5%]), meaning that they are not correlated. Tais provide
another perspective for interpretation such thatabmpounds from different chemical groups behaliéidrently in
relation to TSLM. Once one variable is selectedCSRends to select a group of variables correlatitd that one. In
this case, the metabolites from the same chenligs$ cLPCs/LPEs and amino acids, were correlatddnitheir group
and had group specific influence on TSLM patterfig.(3). Rasmussen & Bro (2012) had similar findinghere
selection of inter-correlated variables was favdrg &P CA from proteomics based MS data.

In this study, we have tested the performanceR&#/% as a feature selection tool for LC-MS basedabm@bmics
data. The main obstacle is selection of the optinmumber of components and the sparsity tuning petermin some
other studies, cross validation (Rasmussen an®8t@) and Bayesian information criteria (Allen avidletic-Savatic
2011) have been suggested for selection of thesispanenalty. However, for our problem class boureawere not
very clear, which makes these solutions unsuitdhl¢his case, we selected the minimum number ofpmnents that
we can observe TSLM related patterns, yet as aduyterspective in-depth sensitivity analysis campbdgormed to

select number of components and sparsity level.

3.2 Metabolic reflections of TSLM

The overview of identified compounds reflectingLMsin ESI- and ESI+ mode is given in Table 1. A®win in
Table 1, SPCA revealed compounds from two diffecdr@mical classes, amino acids and lyso-lipids @.Bad LPES)

as reflecting TSLM patterns.

Table 1 The identified plasma metabolites reflecting theL WS The ESI mode in which the metabolites

have been found as significant by SPCA is indicated

Coumpound Name ESI Mode

Tyrosine ESI-,ESI+
Leucine/lsoleucine ESI-,ESI+
Phenylalanine ESI-,ESI+

12



Tryptophan ESI-,ESI+
LPC (18:3)A ESI+

LPC (16:1) ESI+
sn2-LPC (18:2) ESI-,ESI+
sn2-LPE (18:2) ESI-

LPC (15:0) ESI-,ESI+
snl-LPC (18:2) ESI+
snl-LPE (18:2) ESI-,ESI+
sn2-LPC (16:0) ESI-,ESI+
LPC (20:3) ESI+
snl-LPC (16:0) ESI-

LPC (18:1) ESI-,ESI+
LPC (17:0) ESI+

LPE (18:1) ESI-,ESI+
LPC (20:2)A ESI-,ESI+
LPC (17:0) ESI-,ESI+
sn2-LPC (18:0) ESI-,ESI+
snl-LPC (18:0) ESI-

The scores of the components describing each gaoeipbserved in different components meaning thatniSLM
responses of lyso-lipids and amino acids divergbe Teflected amino acids are four essential amiciolsa
phenylalanine, leucine/isoleucine and tryptophad ane nonessential amino acid, tyrosine (Fig. 3Bhino acids
increase with recent food intake and decrease 18lilafter the last meal has been taken (Fig. 24)there is a large
variation particularly within the 1 to 2.1 h clustén fact, it has been shown that plasma amind eoncentration can
fluctuate widely in response to many factors sughyae of food consumed (Boirie et al. 1997;Wurtrneaal. 1968),
obesity (Shaham et al. 2008) and diabetes (Warg). 2011). Thus, considering the varying charasties of the
subjects as well as the qualitative and quantiatifferences of the last meals taken by the stjecthis study, the
large variation is not surprising. Neverthelessaimore controlled intervention study, Pellis et(@012) observed
approximately the same TSLM responses for a widgeaf amino acids (0-6h). The higher amino acidceatration
during the first 1-2h is linked to the compositiafghe protein source present in the last mead déclining trend after
2h is related to insulin stimulation of amino acigtake from the plasma to liver and muscle for girosynthesis
(Fukagawa et al. 1985). The decrease in plasmachedrchain amino acids has been shown to staiteafter a
glucose challenge without a concomitant proteird)ostarting at 30 min, which is most likely related a strong,
immediate impact of glucose on insulin secretiohaf@am et al. 2008). Prolonged fasting causes a ilateease in

branched chain amino acids levels starting at 10@s due to increased proteolysis (Rubio-Aliagale2011). We
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did not observe this phenomenon in the currentysalitiough some subjects had their last meal esenuch as 12-18
hours earlier; those were very few and they wertesnbjected to prolonged-fasting as TSLM is detasdi without
considering the last drink. All of these particitmneported having consumed a drink but we do awttrecords of
what the participants were drinking in this studig some may have taken nutritious drinks such és mi

Both sn-1 and sn-2 isomers of a wide range of LR@s LPEs exhibit a steady decrease with increabBigV
(Fig. 3a, 3c, 3e). LPC is a plasma lipid that hasrbrecognized as an important cell signaling muédeand it is
produced by the action of phospholipases Al andA2endothelial lipase or by lecithin-cholesteroylransferase
(LCAT) which transfers one of the fatty acids frgzhosphatidylcholine to cholesterol. LCAT has a vkelbwn
function in catalyzing the transfer of fatty acidsfree cholesterol in plasma for the formationcbblesteryl esters
(Schmitz and Ruebsaamen 2010). In our previousttaty, we have seen a wide range of LPCs and alfeias
decrease in the fasted state compared to the di¢el & support of our findings in the current st&urdeniz et al.
2012). In a study of prolonged fasting (12h to 3&heduction in plasma LPCs (C18:0, C18:1 and Q1&&% also
observed as shown by (Rubio-Aliaga et al. 2011 )otAer study investigating the effects of an oralcgke tolerance
test, plasma LPCs (C16:0, C18:0, C16:1, C18:1,GHR8t2) increased from fasting levels up to 1h witslight further
increase until 2h. (Pellis et al. 2012) in a paatplial challenge test observed an increase in paafie LPC, (C18:2),
with a somewhat longer time course of 1 to 6h.hkirtstudy fasting for 1-2h response for LPC (18v23s not clear.
This discrepancy might be related to the specli@lenge meal that the subjects were given inrtervention study.

LPCs have been related to increased insulin eggist(Han et al. 2011); however, their effect camgdo other
related lipids such as PCs and SMs has not beenteep A recent lipidomics study demonstrated aicédn of fasting
plasma LPC levels in obese and type 2 diabeticeobaljects stronger than for other PCs and SMdbBat al. 2012).
These findings suggest that LPCs have an importdatin insulin regulation. A further investigatiaf plasma LPC
responses to a postprandial challenge test ontitiadizese subjects can reveal if the reductiopéiic to the fasting
state or if the time course response is affectdet Onsaturated LPCs have been found also to passldabd-brain
barrier and to be important vehicles for deliveringsaturated lipids to the brain (Sekas et al. 198 speculate that
the high level of unsaturated LPCs in the postpanstate of healthy individuals might be a parttbé satiety
signaling system which is malfunctioning in obesity

Although LPEs indicate similar trends to LPCs, thievious discussions were attributed to LPCs. iHason is
that not so much is known regarding to physioldgiaactions of the plasma LPEs. LPEs, in analogyR&s, can be

generated from phosphatidylethanolamine (PE), gpoment of the cell membrane via a phospholipasgpg-teaction
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(Makide et al. 2009). In this study, LPCs and LRREem to have similar functions based on their [gna@sponse to
TSLM and LPEs have the same fatty acyl groups asLHhe specific chain length and saturation le¥dlPCs and

LPEs in plasma may primarily be related to thertigtion of fatty acyl chains in the food consunmedst recently.

Conclusions

The results here suggest that SPCA is able tousadiSLM patterns with loadings which are much eash
interpret compared to PCA. Also, it is able to agtrinter-correlated variables from the same biotbal classes.
Based on these results we believe SPCA can bet@dgapplied for variable selection in LC-MS bdsmetabolomics
studies.

In spite of the variability and the uncontrolledture of an observational setting, amino acids lAR@s/LPEs
emerged as TSLM reflecting patterns in this retdivsmall pilot study. In larger studies within ebgational settings it
should be possible also to disentangle the inflaeoicfactors such as diabetes, waist circumfereaceBMI and
possibly to find cancer-related patterns. We haeoemtly analyzed more than 3000 samples from thel Bahort and
will proceed to analyze at the metabolome leveldbefounding effect of recent food intake, foocakd patterns and

current health status.
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Abstract—Metabolomics focuses on the detection of chemical
substances in biological fluids such as urine and blood using
a number of analytical techniques including Nuclear Magnetic
Resonance (NMR) spectroscopy and Liquid Chromatography-
Mass Spectroscopy (LC-MS). Among the major challenges
in analysis of metabolomics data are (i) joint analysis of
data from multiple platforms and (ii) capturing easily inter-
pretable underlying patterns, which could be further utilized
for biomarker discovery. In order to address these challenges,
we formulate joint analysis of data from multiple platforms
as a coupled matrix factorization problem with sparsity con-
straints on the factor matrices. We develop an all-at-once
optimization algorithm, called CMF-SPOPT (Coupled Matrix
Factorization with SParse OPTimization), which is a gradient-
based optimization approach solving for all factor matrices
simultaneously. Using numerical experiments on simulated
data, we demonstrate that CMF-SPOPT can capture the
underlying sparse patterns in data. Furthermore, on a real
data set of blood samples collected from a group of rats, we
use the proposed approach to jointly analyze metabolomic data
sets and identify potential biomarkers for apple intake.

Keywords-Coupled matrix factorization; sparsity; gradient-
based optimization; missing data; metabolomics

I. INTRODUCTION

With the ability to collect massive amounts of data
as a result of technological advances, we are commonly
faced with data sets from multiple sources. For instance,
metabolomics studies focus on detection of a wide range of
chemical substances in biological fluids such as urine and
plasma using a number of analytical techniques including
Liquid Chromatography-Mass Spectroscopy (LC-MS) and
Nuclear Magnetic Resonance (NMR) Spectroscopy. NMR,
for example, is a highly reproducible technique and powerful
in terms of quantification. LC-MS, on the other hand,
allows the detection of many more chemical substances in
biological fluids but only with lower reproducibility. These
techniques often generate data sets that are complementary
to each other [1]. Data from these complementary meth-
ods, when analyzed together, may enable us to capture a
larger proportion of the complete metabolome belonging
to a specific biological system. However, currently, there
is a significant gap between data collection and knowledge
extraction: being able to collect a vast amount of relational

978-0-7695-4925-5/12 $26.00 © 2012 IEEE
DOI 10.1109/ICDMW.2012.17

data from multiple sources, we cannot still analyze these
data sets in a way that shows the overall picture of a specific
problem of interest, e.g., exposure to a specific diet.

To address this challenge, data fusion methods have been
developed in various fields focusing on specific problems
of interest, e.g., missing link prediction in recommender
systems [2], and clustering/community detection in social
network analysis [3], [4]. Data fusion has also been studied
in metabolomics mostly with a goal of capturing the under-
lying patterns in data [5] and using the extracted patterns
for prediction of a specific condition [6] (see [1] for a
comprehensive review on data fusion in omics).

Matrix factorizations are the common tools in data fusion
studies in different fields. An effective way of jointly ana-
lyzing data from multiple sources is to represent data from
different sources as a collection of matrices. Subsequently,
this collection of matrices can be jointly analyzed using
collective matrix factorization methods [7], [8].

Nevertheless, applicability of available data fusion tech-
niques is limited when the goal is to identify a limited
number of variables, e.g., a few metabolites as potential
biomarkers. Matrix factorization methods, without specific
constraints on the factors, would reveal dense patterns,
which are difficult to interpret. Therefore, motivated by the
applications in metabolomics, in this paper, we formulate
data fusion as a coupled matrix factorization model with
penalties to enforce sparsity on the factors in order to
capture sparse patterns. Our contributions in this paper can
be summarized as follows:

o Formulating a coupled matrix factorization model with
penalties to impose sparsity on factor matrices,
Developing a gradient-based optimization algorithm for
solving the smooth approximation of the coupled matrix
factorization problem with sparsity penalties,

o Demonstrating the effectiveness of the proposed
model/algorithm in terms of capturing the underlying
sparse patterns in data using simulations,

Identifying potential apple biomarkers based on joint
analysis of metabolomics data sets collected on blood
samples of a group of rats.

The rest of the paper is organized as follows. In Section II,
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we introduce our coupled matrix factorization model with
penalties to impose sparsity and a gradient-based optimiza-
tion algorithm for fitting the model. Section III demonstrates
the performance of the proposed approach on both simulated
and real data. In Section IV, we survey the related work, and,
finally, conclude in Section V.

II. CMF-SPOPT

In this section, we first introduce our model for coupled
matrix factorization (CMF) with penalty terms to enforce
sparsity on the factor matrices and discuss the extension
of the model to coupled analysis of incomplete data. We
then present our algorithmic framework called CMF-SPOPT
(Coupled Matrix Factorization with SParse OPTimization),
which fits the proposed model using a gradient-based opti-
mization method.

A. Model

We consider joint analysis of multiple matrices with one
mode in common using coupled matrix factorization to
capture the underlying sparse factors. We first discuss the
formulation of coupled matrix factorization, which has previ-
ously been studied in various data fusion studies [2], [8], [9].
Without loss of generality, suppose matrices X € R’*7 and
Y € R™X have the first mode in common. The objective
function for their joint factorization can be formulated as:

f(A,B,C) = H X — AB" H2 + H Y — ACT H2 1)

where ||.|| denotes the Frobenius norm for matrices and
the 2-norm for vectors. The goal is to find the matrices
A € RIXE B ¢ R/*E and C € REXE that minimize
(1). Note that A, i.e., the factor matrix extracted from the
shared mode, is common in factorization of both X and Y.

In this paper, we extend the formulation in (1) by adding
penalty terms in order to impose sparsity on factor matrices
B and C, and reformulate the objective function as:

f(A,B,C)
2 2
=[x - aBT[ 4]y -acT]

R R R

2

+AD bl A el +a) llal
r=1 r=1 r=1

where b, and ¢, correspond to the rth column of B and C,
respectively. || x ||, denotes 1-norm of a vector and is defined
as »_ |z;|. A and « are penalty parameters with \, o« > 0.
This formulation is motivated by metabolomics applica-
tions, where we often have different types of measurements
on the same samples. For instance, X may correspond to a
samples by features matrix constructed using LC-MS mea-
surements while Y may be a matrix in the form of samples
by chemical shifts constructed using NMR measurements.
In most metabolomics applications, we need the underlying
sparse patterns in variables dimensions, e.g., metabolites, in

@)

order to relate diseases or dietary interventions with a small
set of variables. Therefore, we impose sparsity only in the
variables modes by adding the 1-norm penalty, which has
shown to be an effective way of enforcing sparsity [10].
The 2-norm penalty on the factors in the samples mode,
i.e., the last term in (2), is added to handle the scaling
ambiguity. Since there is a scaling ambiguity in the matrix
factorization given above, ie., X = (nA)(%B) = AB,
without penalizing the norm of the factors in the samples
mode, the sparsity penalty would not have the desired effect.

1) Smooth Approximation: In order to minimize the ob-
jective function (2), we need to deal with a non-differentiable
optimization problem due to the 1-norm terms. However, by
replacing the 1-norm terms with differentiable approxima-
tions, it can be converted into a differentiable problem. Here,
we approximate the terms with 1-norm using the “epsL1”
function [11] and rewrite (2) as:

f(A,B,C)
T 2 T 2
=[x - a7 + [y -acT|

R J R K
FAD D e+ A D /e e 3

r=1j=1 r=1k=1

R
+ay fa |
r=1

where b, denotes the entry in the jth row, rth column of
B. Note that, for sufficiently small € > 0, \/2? + € = |z;].

2) Missing Data: In the presence of missing data, we can
still jointly factorize matrices and extract sparse patterns by
fitting the coupled model only to the known data entries.
Suppose X has missing entries and let W € R?*/ indicate
the missing entries of X such that

1
wij = 0

foralli e {1,....I}and j € {1,...,J}. To jointly analyze
matrix Y and the incomplete matrix X, we can then modify
the objective function (3) as

if x;; is known,

if x;; is missing,

Jw(A,B,C)
- HW*(X—ABT) Hz+ HY—ACTH2

R J R K
FAD D R e+ A D /e, e @

r=1j=1 r=1k=1

R
+a) a|?
r=1

where * denotes the Hadamard (element-wise) product.
The formulations in (3) and (4) easily generalize to
joint factorization of more than two matrices, each with



underlying sparse factors in the variables mode. In our
objectives, we give equal weights to the factorization of each
data matrix, and in the experiments, we divide each data
set by its Frobenius norm so that the model does not favor
one part of the objective. However, determining the right
weighting scheme remains to be an open research question.

B. Algorithm

With the smooth approximation, we have obtained dif-
ferentiable objective functions in (3) and (4), which can be
solved using any first-order optimization algorithm [12]. In
order to use a first-order optimization method, we only need
to derive the gradient. The gradient of fw in (4), which is
a vector of size P = R(I + J + K), can be formed by
vectorizing the partial derivatives with respect to each factor
matrix and concatenating them all, i.e.,

vec(%)
Viw = vec(ac{—]‘é")

vec(%)

Let Z = AB Assuming each term of fyw in (4) is
multiplied by for the ease of computation, the partial

derivatives of fw with respect to factor matrices, A, B and
C, can be computed as:

?%:(W*Z—W*X)B—YC—FACTC—kaA
W _ (Waz - W+X)TA+ 2B/(B+B o)
9B 2

ag%v :—YTA+CATA+gC/(C*C+e)%

where the operator / denotes element-wise division.

Traditional approaches for coupled matrix factorizations
are based on alternating algorithms [8], [9], where the
optimization problem is solved for one factor matrix at a
time by fixing the other factor matrices. While alternating
algorithms are widely-used, direct nonlinear optimization
methods solving for all factor matrices simultaneously have
better convergence properties within the context of matrix
factorizations with missing entries [13] and shown to be
more accurate in the case of tensor factorizations [14].
Therefore, we use a gradient-based optimization algorithm
to solve the non-convex optimization problem in (4). Neither
alternating nor all-at-once approaches can guarantee to reach
the global optimum. The computational cost per iteration is
the same for both alternating and gradient-based approaches
(See [13], [14] for in-depth comparison of alternating and
all-at-once approaches).

Once the gradient, V fw, is computed, we then use
the Nonlinear Conjugate Gradient (NCG) method with
Hestenes-Steifel updates [12] and the Moré-Thuente line
search as implemented in the Poblano Toolbox [15].

III. EXPERIMENTS AND RESULTS

In this section, performance of the proposed approach in
terms of capturing the underlying sparse patterns in coupled
data sets, is demonstrated using both simulated and real data.

A. Simulated Data

The goal of simulations is two-fold: (i) to demonstrate
that underlying sparse factors used to generate coupled
data sets can be accurately captured using the proposed
model/algorithm (ii) to study the sensitivity of the proposed
approach to different parameter values.

1) Experimental Set-up: We generate coupled matrices,
X e R and Y € R/*K computed as X = AB' and
Y = ACT, where A € R’*% has entries randomly drawn
from the standard normal distribution; matrices B € R/ %%
and C € RExA, similarly, have entries randomly drawn
from the standard normal but S% of the entries in each
column of B and C is set to zero to have sparse factors.
Columns of A, B and C are normalized to unit norm.

We then add noise to X and Y to form coupled noisy
matrices, i.e., Xpoisy = X + 77”N i I X and Yioisy =
Y + UH%EHH Y ||, where entries of N; € R’*/ and N, €
R/*X are randomly drawn from the standard normal.

In order to assess the performance of CMF-SPOPT in
terms of capturing the underlying sparse patterns, we gen-
erate data sets with (i) sparsity levels: S = 30,50, 70,
(ii) noise levels: n = 0.1,0.5, and (iii) sizes: (I,J,K) €
{(20, 30, 40), (20, 300, 400), (20, 3000,4000) }. We use R =
2 as the number of components.

Once coupled matrices are generated, CMF-SPOPT
is used to capture A € RIXFeet B ¢ RIXFen
and C € RE*Fer for different values of penalty
parameters: A € {107%,1073,1072,107!} and a €
{1074,1072,1072,107%,1,5}. R, indicates the number
of extracted components.

We compare the extracted matrices B and C with the
original sparse matrices B and C used to generate the
coupled data, in terms of sparsity patterns. For instance,
the first column of B, by, is compared with the matchingl
column of ]3, e.g., E)l. If a nonzero in by corresponds to
a nonzero in Bl, then it is a true-positive; if a zero in by
corresponds to a nonzero in f)l, it is a false-positive.

As stopping conditions, CMF-SPOPT uses the relative
change in function value (set to 107'°) and the 2-norm of the
gradient divided by the number of entries in the gradient (set
to 10~19). For initialization, we use multiple random starts
and choose the run with the minimum function value.

2) Results: CMF-SPOPT can capture the underlying
sparse patterns accurately for varying levels of sparsity;
in particular, the recovery is perfect for higher sparsity.
We illustrate the performance of CMF-SPOPT in terms of

'Due to the permutation ambiguity, we look for the best permutation to
match the columns.
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true-positive rates (TPR) and false-positive rates (FPR) for
different sparsity levels in Figure 1. The best performance,
i.e., exact recovery of the underlying sparsity patterns,
corresponds to TPR=1 and FPR =0. The top and bottom
rows of Figure 1(a) show the performance of CMF-SPOPT
in terms of capturing the sparsity pattern of the first column
of B and C, respectively, for sparsity level S = 30. We
observe that underlying patterns can be captured accurately
but not perfectly as the best FPR values are around 0.1 - 0.2
with corresponding TPR values around 0.8-0.9. However, for
higher sparsity, underlying sparsity patterns can be perfectly
captured (Figure 1(b)). For all sparsity levels, the best
performance is achieved for &« = 0.1 and A = 0.1. Here,
we set (I, J, K) = (20,30,40), n = 0.5 and R.,+ = 2, and
present the average performance on 15 different sets of data.

CME-SPOPT performs well in terms of capturing the
underlying sparse patterns even at high amounts of noise.
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Performance of CMF-SPOPT for different levels of sparsity and different values of penalty parameters.
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Performance of CMF-SPOPT for different levels of noise and different values of penalty parameters.

Figure 2 shows the performance of CMF-SPOPT at differ-
ent noise levels. While TPR is high and FPR is low for
low noise level, i.e., n = 0.1, with increasing noise we
observe the degradation in performance. However, TPR is
still high and FPR is low when = 0.5. Here, we set
(I, J,K) = (20,30,40), S = 50, and R+ = 2, and again
report the average performance on 15 sets of data.

As we change data set sizes, best performing penalty pa-
rameters change drastically. Figure 3 shows the performance
of CMF-SPOPT for varying sizes of coupled data sets for
S =50,n7 = 0.5, and R.;+ = 2. We observe that for small
number of dimensions in the variables mode, i.e., small
values of J and K, o = 0.1 and A = 0.1 can accurately
capture the sparse factors in B and C. As J and K increase,
though, higher o and lower A values become effective.

We have only reported the results for the first component
of B and C. Results for the second component are similar
and omitted here. Also note that matrix factorizations have
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Matrix B

False Positive Rate

Matrix C

Component Weight (6)

Component 1

Component 2

Component 1

Component 2

Reat 1 2 3 4 TPR  FPR

TPR FPR | TPR FPR TPR FPR

2 098 0.92 0.99 0.07
3 098 092 0.00 0.99 0.07
4 098 092 000 0.00 | 099 0.07

0.98 0.04 0.99 0.04 0.98 0.02
0.97 0.04 0.99 0.04 0.98 0.02
0.98 0.04 0.99 0.04 0.98 0.02

rotational ambiguity; in other words, they can capture the
factor matrices uniquely only up to a rotation. For certain
combination of penalty values, the factor matrices, though,
are uniquely captured by CMF-SPOPT, i.e., unique up to
scaling and permutation. Reported TPR and FPR values
correspond to those cases, where we can uniquely capture
the factor matrices up to scaling and permutation.

Finally, we show that CMF-SPOPT is robust to the
selection of the component number. Here, we generate data
using R = 2 but fit the model using R.,; € {2,3,4}. We
set n=0.5, S =50, \=a=0.1, (I, J, K) = (20, 30, 40).
Table I shows the weight of each coupled component,
calculated as follows: We can rewrite X = ABT and
Y=AC as X =" Babl andY =" ~a.cl,
where (3, and ~, are the weights of component r in X
and Y, respectively, and || a,. | = || b, || = || ¢ || = 1, for
r =1,2,...R. We define the weight of a coupled component
ras o, = B.+7,. Similarly, when A, B and C are extracted
using CMF-SPOPT, columns are normalized and &, is
computed. Table I shows that when there are two common
components, i.e., R = 2, and data sets are overfactored using
Rexr = 3,4, weights of the extra components are 0. Besides,
sparsity patterns of common components are still accurately
captured as indicated by high TPR and low FPR.

In summary, simulation studies demonstrate that CMF-
SPOPT is quite effective in terms of capturing the underlying
sparse patterns in coupled data; however, we also observe

that the method is sensitive to penalty parameter values.

B. Metabolomics Data Analysis

Next, we use CMF-SPOPT to jointly analyze
metabolomics data measured using different analytical
techniques and identify potential markers for apple intake.

1) Data: The data consists of blood samples collected
from a group of rats, which was part of a study on the effect
of apple feeding on colon carcinogenesis [16]. Here, we use
the samples from forty-six male Fisher 344 rats (5-8 weeks
old) obtained from Charles River (Sulzfeld, Germany). After
one week of adaptation on a purified diet, the animals were
randomized to two experimental groups: fed either the same
purified diet (group 1: Apple 0) or the purified diet added
10 g raw whole apple (group 2: Apple 10) for 13 weeks. At
the end of the study, rats were sacrificed after an overnight
fasting (16hrs). Animal experiments were carried out under
the supervision of the Danish National Agency for Protection
of Experimental Animals.

The rat plasma samples were analyzed by untargeted
liquid chromatography - time-of-flight (LC-QTOF) mass
spectrometry [17] and NMR [18]. In LC-MS analysis, raw
data is converted into a feature set, where each feature is
denoted by the mass over charge (m/z) ratio and a retention
time (see [17] for details). In NMR analysis, the spectra were
preprocessed (see [18] for details) and then converted into
a set of peaks using an in-house automated peak detection
algorithm. We also have a third data set containing Total



cholesterol (chol), low density cholesterol (LDL), very low
density cholesterol (VLDL) and high density cholesterol
(HDL) lipoproteins (computed based on the NMR data [18])
and triacylglycerol (TG) concentrations (measured using
the rat plasma samples). In summary, our data can be
represented using the following three matrices:

o X € R™¥J of type samples by features corresponding
to LC-MS data, where I = 46, and J = 1086.

e Y € RIXE of type samples by chemical shifts corre-
sponding to NMR measurements, where K = 115.

e Z € RIXM of type samples by quality variables
corresponding to quality measurements, where M = 9.
Matrix Z has missing entries.

2) Model: Based on the formulation in (4), we jointly

analyze X,Y and Z by minimizing the following objective:

fw(A,B,C,D)
2 2 2
:HXfABTH +HY7ACTH +HW*(Z—ADT)H

R J R K
FAD D B e+ AD D R e

r=1j=1 r=1k=1

R M R
A D VAR, Feta) |a

r=1m=1 r=1

and extract the factor matrices A € R/™*E B ¢ R/*RH,
C € REX% and D € RM*® corresponding to the samples,
features, chemical shifts and quality variables, respectively.
Using simulation data of similar sizes (with sparsity levels
of S =50 and S = 70), best performing penalty parameter
values are determined as A = 0.01 and a = 0.1.

3) Results: Before discussing the sparse patterns captured
using CMF-SPOPT, we first illustrate the factors extracted
using the Singular Value Decomposition (SVD) of matrix
X. SVD decomposes X as X = UEVT, where U and
V are orthogonal matrices corresponding to the left and
right singular vectors, respectively, and 3 is a diagonal
matrix with singular values on the diagonal. Figure 4(a)
shows the scatter plot of u; and u; demonstrating that two
apple groups can be almost separated using the seventh left
singular vector. The goal in metabolomics studies is often
to understand the reason for the separation; in other words,
the metabolites responsible for the separation. Therefore,
we plot the seventh right singular vector in Figure 4(b)
to identify the significant features. However, capturing the
significant features is difficult since this vector is dense.

In Figure 5, we illustrate the performance of CMF-SPOPT
in terms of apple group separation by coupled analysis of
X,Y and Z. The scatter plot of a; vs. ag in Figure 5(a)
shows that the first component can almost separate the
two groups. In Figure 5, we can see the sparse patterns,
i.e., b1, ¢; and d;, responsible for this separation. Unlike
Figure 4(b), we can clearly identify the significant features
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(a) Scatter plot of u; vs. uz. (b) The right singular vector v7.

Figure 4. Separation of apple groups using SVD of X.

in Figure 5(b). Through coupled analysis, we also get the
sparse patterns relevant to apple groups in each data set.
Results illustrated in Figure 5 are based on a 5-component
CMF-SPOPT model, i.e., R = 5. If we decrease I, none of
the components can separate the apple groups. For R = 5
and R = 6, we get almost the exact same component for
apple separation. As R increases, we lose the component
responsible for the separation. In real data, unlike simulation
studies, there are both common and uncommon components
in coupled data sets; therefore, robustness of CMF-SPOPT
to overfactoring (shown in Table I) is not enough to deal
with the problem of determining R. In this study, since we
are interested in apple markers, we use a component number
that captures the apple group separation.

In order to make sure that the sparse pattern in Figure 5(b)
is really meaningful, we form a small matrix, X € R/*L,
using only the features identified in by, where L = 14,
and check the separation achieved by its SVD. We observe
that using only 14 out of 1086 features, we can still
separate the apple groups (results not shown but separation is
similar to Figure 5(a)); therefore, these features are potential
candidates for markers of apple intake.

We further study the sparse patterns captured by CMF-
SPOPT from a biological perspective. Metabolites identi-
fied in the sparse patterns are shown in Figure 5(b) and
Figure 5(c). Some of these have been verified by chemical
standards while some of them are tentative identifications,
further to be explored. Based on the identifications, we find
that patterns in Figure 5 are related to apple-induced changes
in the endogenous metabolism. These changes include an
increase in circulating branched-chain and aromatic amino
acids, an increase in circulating glycerol- and choline con-
taining lipids, a decrease in corticosteroids and possibly in
androgens, and a decrease in lactate, hypoxanthin and free
fatty acids. Several elements of this pattern indicate that
the transition from the postprandial to the fasting state was
delayed in apple-fed rats, with a slower increase in lactate
and free fatty acids and a slower loss of amino acids and
lipids from the blood. Moreover, apple feeding seems to
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Figure 5. Separation of apple groups using CMF-SPOPT.

suppress the increase in corticosteroids and possibly also
of androgens with fasting in support of an effect on genes
involved in steroid metabolism that we have observed in
these rats.

Using CMFE-SPOPT, we were able to extract meaningful
sparse patterns from LC-MS and NMR complementing
each other and describing apple-induced changes in the
metabolism.

IV. RELATED WORK

Simultaneous analysis of multiple matrices dates back to
one of the earliest models aiming to capture the common
variation in data sets, i.e., Canonical Correlation Analysis
(CCA) [19]. CCA looks for the patterns in each data set that
correlate well and it is, in that sense, different from coupled
matrix factorization. This difference has been illustrated in
a recent metabolomics study [20].

More in line with the formulation in (1), Levin [21]
studied simultaneous factorization of Gramian matrices.
Similarly, in signal processing, joint diagonalization of sym-
metric and Hermitian matrices has been a topic of interest
[22]. Furthermore, principal component analysis of multiple
matrices has been widely studied in chemometrics using
various models, some with clear objective functions while
some are based on heuristic multi-level approaches [5].
Badea [23] extended the formulation in (1) to simultaneous
nonnegative matrix factorizations by extracting nonnegative
factor matrices. Another line of work related to simultaneous
matrix factorization is Generalized SVD and its extention to
multiple matrices [24].

With the increasing interest in the analysis of multi-
relational data, Singh and Gordon [8] and Long et al. [7]
studied Collective Matrix Factorization for joint factorization
of matrices. We can also consider tensor factorizations as
simultaneous factorization of multiple matrices (see a recent
survey for various tensor models [25]).

While coupled matrix factorization has been widely stud-
ied in many disciplines, a recent study by Deun et al. [26] is
the only study that enforces sparsity on the factors within the
coupled matrix factorization framework, to the best of our
knowledge. This work considers various penalty schemes
such as the lasso, elastic net, group lasso, etc., and it is
the most related to what we propose, or more specificially
to (2). The main differences are (i) we do not enforce
orthogonality constraints on factor matrix A, as in [26], (ii)
while alternating least squares is used in [26], we use an
all-at-once approach solving a smooth approximation of the
objective in (2), and (iii) we extend our formulation to joint
analysis of incomplete data as in (4).

V. CONCLUSIONS

While we can collect huge amounts of data using different
platforms in metabolomics, we are still lacking the data
mining tools for the fusion and analysis of these data sets.
In this paper, we have formulated data fusion as a coupled
matrix factorization model with penalties to enforce sparsity
with a goal of capturing the underlying sparse patterns in
coupled data sets. We have also discussed the extension
of the proposed model to coupled analysis of incomplete
data. In order to fit the model to coupled data sets, we have
developed a gradient-based optimization algorithm solving
for all factor matrices simultaneously. Using numerical ex-
periments on simulated data, effectiveness of the proposed



approach in terms of capturing the underlying sparse patterns
is demonstrated. We have also illustrated the usefulness of
the proposed method in a metabolomics application, where
potential markers for apple intake are identified through
coupled analysis of LC-MS and NMR data. The main
limitation of our formulation is to impose the same level
of sparsity on different data sets. We plan to extend our
model to different levels of sparsity in coupled data sets; in
other words, to use different A values for different matrices.
This may require reformulation of the model in order to deal
with the scaling ambiguity problem.
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