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Summary 

Metabolomics provides a holistic approach to investigate the perturbations in human metabolism 

with respect to a specific exposure. In nutritional metabolomics, the research question is generally 

related to the effect of a specific food intake on metabolic profiles commonly of plasma or urine. 

Application of multiple analytical strategies may provide comprehensive information to reach a 

valid answer to these research questions. In this thesis, I investigated several analytical 

technologies and data handling strategies in order to evaluate their effects on the biological 

answer. 

In metabolomics, one of the crucial steps is data preprocessing, which is particularly cumbersome 

for complex liquid chromatography mass spectrometry (LC-MS) data. Accordingly, in PAPER I, 

different LC-MS data preprocessing tools, MarkerLynx, MZmine, XCMS and a customised method 

(spectral binning and chromatographic collapsing) were compared using a simple dataset of 

plasma samples collected from rats in the fed or fasting state. The methods were compared in 

terms of the total number and identity of the features discriminating the metabolic states 

(markers). 32 to 40 % of the markers were selected by all three tools (MarkerLynx, MZmine and 

XCMS) and 16 to 40 % were specific to each tool. Two reasons for these differences were pointed 

out: (1) changing the parameter settings of each software tool has a great impact on the number 

of detected features; (2) each software tool employs different methods in their peak detection 

and alignment algorithms, such that each has pros and cons. Thus, the use of more than one 

software tool and/or the use of several parameter settings during data preprocessing are likely to 

decrease the risk of failing to detect features (potential marker candidates) in untargeted 

metabolomics. On the other hand, customised methods lead to many false positives and 

negatives. 

Data preprocessing is followed by data analysis. In metabolomics, large amount of complex data 

characterise few samples, thus data analysis becomes a critical step as well. Principal component 

analysis (PCA) is useful for exploratory purposes and partial least squares discriminant analysis 

(PLSDA) for classification and variable selection purposes; both have been used in PAPER I and II. 

In PAPER III, the application potential of sparse principal component analysis (SPCA) on LC-MS 

based metabolomics data as a pattern recognition and variable selection tool have been 

investigated. The results suggested SPCA performs well in terms of extracting time since last meal 

related patterns, yet it provides more easily interpreted loadings for selection of relevant 

metabolites. 
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One of the conclusions of this thesis is that the data handling strategy influences the patterns 

identified as important for the nutritional question under study. Therefore, in depth 

understanding of the study design and the specific effects of the analytical technology on the 

produced data is extremely important to achieve high quality data handling.  

Besides data handling, this thesis also deals with biological interpretation of postprandial 

metabolism and trans fatty acid (TFA) intake. Two nutritional issues were objects of investigation: 

1) metabolic states as a function of time since the last meal and 2) markers related to intakes of 

cis- and trans-fat.  

Plasma samples are usually taken in the fasting state, typically following an overnight fast, as it is 

considered to be more reproducible and it can be defined as a baseline level for metabolic studies. 

On the other hand, the postprandial response reveals multiple aspects of metabolic health that 

would not be apparent from studying the fasting state. To investigate this issue two studied are 

involved, initially LC-MS plasma profiles of rats at fasting and fed states are compared (PAPER I), 

and later LC-MS plasma profiles of subjects from as observational study has been explored with 

the aim of identifying the overall response to food intake and its clearance rate in free-living 

humans (PAPER III).  

The adverse health effects of industrial TFA is accepted, still the responsible physiological 

mechanisms are not fully understood. With the aim of contributing to this issue, the changes in 

plasma LC-MS profiles due to TFA intake (16 weeks) and its depletion (12 weeks) were examined in 

order to identify metabolic patterns affected by this potentially toxic fat using a parallel 

intervention study. In addition, the impact of cis- vs. trans-fat intake on a glucose challenge was 

investigated (PAPER II).  

The postprandial state has been identified with a higher abundance of lyso-lipids and amino acids 

in plasma LC-MS profiles of rats compared to the fasting state in a controlled study design (PAPER 

I) and the same metabolites were characterised in humans in an observational study (PAPER III). 

The higher amino acid concentration after the meal is linked to the protein source present in the 

last meal and the declining trend thereafter is related to insulin stimulation of amino acids uptake 

from the plasma to liver and muscles for protein synthesis. The other typical fasting state 

metabolites such as fatty acids, acyl-carnitines and ketone bodies were only detected in the rat 

study (PAPER I). The study group in PAPER III were from a largely un-controlled observational 

setting with varying quality and quantity of food intake as well as varying time from last meal. This 
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may be the cause why fewer compounds were extracted in this study but differences between rats 

and humans may also influence the findings.  

In PAPER II, Nuclear magnetic resonance spectroscopy (NMR) plasma profiles revealed increased 

LDL-C (low-density lipoprotein cholesterol) levels and increased unsaturation after TFA intake. LC-

MS profiles, on the other hand, demonstrated elevated levels of a few specific polyunsaturated 

(PUFA) long chain phosphatidylcholines (PCs) and a sphingomyelin (SM). The preferential 

integration of trans18:1 into the sn-1 position of PCs all containing PUFA in the sn-2 position may 

be explained by a general up-regulation in the formation of long-chain PUFAs after TFA intake 

and/or by specific mobilisation of these fats into PCs as a result of TFA exposure. These findings 

provide a unique insight to morphological abnormalities in membrane lipids caused by TFA intake 

which may lead to a better understanding of its detrimental impact upon health.  
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1 Aim of the Thesis 

In this thesis the aim was to establish the metabolomics workflow starting with data handling, 

through identification of relevant metabolites, to interpretation of results in biological terms for 

three independent studies, which are presented as three papers. The aim of each paper is given in 

Table 1. 

Table 1. The purpose of each study involved in PAPER I, II & III. 

PAPERS DATA PURPOSE 

PAPER I 

 
LC-MS plasma profiles of rat 

collected in the fasted and fed 

states. 

 

 To investigate the effect of different 

LC-MS data preprocessing tools on the 

selection of metabolites representing 

fasting and fed states. 

 To identify the relevant metabolites. 

 To interpret the patterns in relation to 

fasting and fed state metabolism.  

PAPER II  

LC-MS and NMR plasma profiles 

of overweight subject from 

double-blinded parallel 

intervention study where 

subjects received either oil 

containing TFA or control oil with 

mainly oleic and palmitic acid for 

16 weeks. 

 To extract the metabolic patterns 

associated with TFA intake from 

plasma LC-MS and NMR profiles. 

 To identify the relevant metabolites 

 To interpret the patterns related to 

TFA in terms of its adverse health 

effects. 

PAPER III 

 

Plasma LC-MS profiles of subjects 

from a cross-sectional cohort 

where each subject’s time since 

last meal is recorded. 

 To evaluate the applicability of SPCA as 

a pattern recognition and metabolite 

selection tool for LC-MS based 

metabolomics data. 

 To interpret the patterns related to 

time since last meal in biological terms.  
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2 Metabolomics 

Metabolomics is the field concerned with the systemic quantification of small molecule 

intermediates and products of metabolism present in a given biospecimen (e.g. biofluid, biological 

tissue etc.). By measuring and evaluating the alterations in the levels of small molecules in 

biological samples involved in biochemical processes, metabolomics provides a new perspective to 

the effects of diet, drugs and disease. The idea that biological fluids reflect the health of an 

individual has existed for a long time. In the Middle Ages, "urine charts" were used to link the 

colours, tastes and smells of urine to various medical conditions, which are metabolic in origin.  

The term ‘metabolomics’ was introduced by Oliver Fiehn, in 2001, as ‘a comprehensive and 

quantitative analysis of all metabolites’ [1]. Formerly, the term ‘metabonomics’ is defined in 1999 

by Jeremy Nicholson and colleagues as ‘the quantitative measurement of the dynamic 

multiparametric metabolic response of living systems to pathophysiological stimuli or genetic 

modification’ [2]. Initially, the term ‘metabolomics’ has been applied more to plant science, 

whereas ‘metabonomics’ has referred to studies involving animal models. Nowadays, the 

distinction between two terms blurred, with ‘metabolomics’ emerging as the most widely 

accepted term in the literature. 

The modern-day metabolomics came with the advances in analytical platforms. By mid-1980s, 

NMR was sensitive enough to detect metabolites in biological fluids. Development of mass 

spectrometry in the early 20th century, as well as of different molecular separation techniques 

such as gas chromatography (GC) and liquid LC, afforded the detection of small molecules in 

biological matrices. Initial studies leading to modern metabolomics date to back to the 1970s 

when Arthur B. Robinson and his colleagues profiled urine vapour by GC. They related the 

chemical profile differences of the urine to gender and other variables [3]. The idea behind this 

study coincides with the aims of modern-day metabolomics. 

Metabolites are the small molecule intermediates and products of metabolism. Metabolomics 

allows identification and quantification of low molecular weight (<1500 Da) metabolites in 

biological samples. The current estimate of identified metabolites in the human metabolome is 

over 8,500, given by the human metabolome database (HMDB) [4]. This is not a number that will 

remain unchanged. The improvement of analytical technologies will allow detection of lower 

abundance metabolites, leading to new entries. The human metabolome can be divided into 

compartments as described by Manach et al. [5]: 1) the endogenous metabolome covers all 

metabolites produced by a cell, a tissue or an organism 2) the microbial metabolome produced by 
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the microbiota and 3) the xenometabolome, which includes all foreign metabolites derived from 

drugs, pollutants and dietary compounds.  

Metabolomics have been applied in different fields such as disease diagnosis, toxicology, plant 

science and pharmaceutical, environmental and human nutrition research. This thesis covers some 

metabolomics applications in relation to human nutrition.  

3 Metabolomics in Human Nutrition 

In human nutrition, the classical approaches are hypothesis-driven. Basically, the human biofluids 

are routinely analysed for a range of physiological markers, including many macro- and 

micronutrients as well as a limited number of known metabolites. Later, evaluating these markers, 

the information on nutritional status and risk factors for health and disease can be assessed. 

However, nutrients interact with a number of metabolic pathways which may induce alterations in 

many other metabolites than traditionally targeted ones. Metabolomics offer a more holistic 

approach with the potential of measuring hundreds of metabolites in a given biological sample 

with  the perspective of metabolic pathway analyses. Its application in nutrition may lead to 

disclosure of underlying patterns in the interface between the nutrients and biological systems to 

understand the nutrient influence in assessment of individual’s health and disease status. 

Furthermore, metabolomics is a promising tool for discovery of new biomarkers. In nutrition 

biomarkers are used as a biochemical indicator of dietary intake/nutritional status (recent or long 

term), or an index of nutrient metabolism, or a marker of the biological consequences of dietary 

intake [6]. Metabolomics may provide new biomarkers as specific metabolites or even metabolic 

profiles which are specific to various dietary/nutrient intake patterns or dietary changes.  

Many studies have demonstrated the potential of metabolomics in the nutrition field. It has been 

employed to characterize the effects of specific foods such as apples [7], both a deficiency of and 

supplementation with different nutrients [8,9], the influence of specific diets or food components 

particularly on the gut microbiota [10,11], to compare the metabolic effect of closely related foods 

such as whole grain and refined flours [12]. Metabolomics also has been suggested as a 

prospective tool for differentiation of individuals’ diet and their effects on specific health 

outcomes [13].  
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4 Metabolomics Pipeline 

Metabolomics involves multiple steps for investigation of specific research questions. The typical 

workflow of a nutrition-based metabolomics study is illustrated in Figure 1. Some of these steps 

are particularly important for this thesis will be further discussed in detail.  

 

Figure 1. Metabolomics workflow pipeline. 
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4.1 Study Design 

In nutritional studies, the selection of particular study design depends on the nature of the 

question, time needed and resources available. The same criteria works as well for metabolomics 

based nutritional studies. Most importantly, nutritional metabolomics studies deal with subtle 

changes, thus, it is very important to be aware of the factors contributing to the variation in the 

data while deciding on study design. Furthermore, the number of samples used in metabolomics is 

usually much smaller than the number of variables. This can be problematic, particularly in data 

analysis. Thus, the highest possible number of samples should be included in the study design.  

The two commonly applied dietary intervention studies, parallel and cross-over designs, are both 

suitable in metabolomics. In parallel design, subjects are randomly assigned to one of at least two 

groups, one of these acting as control, and subjects are followed up over a time period [14]. The 

effect of the intervention in human studies is preferably assessed as the change between selected 

parameters from start to the end of the intervention period compared with the control group, 

whereas in animal studies samples are most often only collected at the termination of the study. 

However, the parallel study design which is essentially the same as the first period of a cross-over 

design, does not consider the possible variation between subjects response to the treatment. In a 

cross-over study, each subject receives all treatments, so that inter-individual variation is reduced 

[15]. On the other hand, cross over studies require longer time and are more sensitive to drop-

outs compared to parallel studies. PAPER I in this thesis serves an example of metabolomics 

applications on an animal study with parallel study design. Compared to humans, animal models 

offer full control of the food intake. Since inter-individual variation in animal model are less 

pronounced than human (e.g. standardised phenotype rats in PAPER I), the patterns of interest 

becomes less cumbersome to extract. On the other hand, the genetic differences between rats 

and humans may result in some effects and physiological responses of interest to be covered. For 

instance, basic metabolic rate varies roughly with surface area in mammals and an overnight 

fasting period in rats having an eight times higher rate of energy metabolism than humans may 

therefore represent a more extreme condition than overnight fasting in humans (PAPER II). PAPER 

II represents an example to a parallel design human intervention study. 

In cohort studies the dietary intake and other relevant exposures are measured in a population of 

people identified at baseline and they are followed to determine diet-disease associations. Cohort 

studies can also be investigated by metabolomics, either cross-sectionally by comparing with other 

data collected at baseline, or prospectively by comparing with endpoints measured at a later time 

point, e.g. a disease outcome. Metabolic profiles from cohort studies offer many patterns from 
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several exposures, yet it is more challenging due to the tremendous individual diversity and lack of 

dietary control at the time of sampling. In PAPER III, we have performed a metabolomics based 

profiling strategy to investigate cross-sectionally the time since last patterns in a pilot cohort 

study. Metabolomics profiles combined with genetic information, dietary and other lifestyle 

exposure data from large cohorts provide invaluable information. The number of studies 

investigating this issue is rapidly increasing and the findings are promising [16–19].  

Considering the study designs within the publications included in this thesis the inter-individual 

variations is in increasing order, PAPER I, a well-controlled animal study; PAPER II, double-blind 

parallel intervention study; PAPER III, a cross-sectional cohort study.  

4.2 Biological Samples 

In metabolomics, the selection of biological samples depends on a number of factors: (1) 

accessibility, (2) relevance to biochemical question, (3) the previous knowledge of the biological 

system, and (4) suitability for the available analytical platform.  

Biological fluids, particularly plasma, serum and urine, are relatively easy to obtain and have been 

used in the majority of nutrition-based metabolomics studies. They are particularly informative as 

they reflect the global state of an individual. Plasma/serum carries the small molecules 

informative in relation to the metabolic state at the time of collection, and reflecting catabolic and 

anabolic processes, whereas urine provides an averaged pattern of easily excreted polar 

metabolites discarded from the body as a result of catabolic processes [20]. Only plasma samples 

were used as biological samples for the studies discussed in this thesis. 

Many other liquid and non-liquid biological samples such as saliva, breast milk, seminal plasma, 

bile, digestive fluids, cerebrospinal fluid, or tissue can provide valuable information, in the 

discovery of patterns for diet-disease associations [21]. Indeed each biological fluid has its own 

characteristic metabolic profile, recovering many different biological fluids from specific samples 

offering complementary information and leading to more comprehensive overview of metabolic 

perturbations.  

  Sample preparation 4.2.1

Sample preparation for further analysis depends on type of sample, the analytical method and 

whether a targeted or a non-targeted approach is of interest. The targeted approach is a method 

involving quantitative measurement of only a specific, pre-defined group of metabolites as the 



7 
 

interest is to examine one or more related metabolic pathways. It is often used to test a specific 

biological question or hypothesis rather than hypothesis generating. As the focus is to quantify a 

specific group of metabolites, sample preparation builds on extraction of those. The non-targeted 

approach has a global scope; to analyse as many metabolites as possible in a sample with at least 

differential quantification. So, the sample preparation should be suitable for global profiling, 

considering the analytical platform. Under non-targeted approach, also a group of metabolites 

preferred to be profiled in more targeted applications, such as in lipidomics studies, may be 

selected by special sample preparation. This thesis focuses on only non-targeted applications in 

metabolomics.  

Plasma sample preparation for LC-MS basically involves precipitation of proteins. The large 

number of proteins in plasma samples interferes with MS, causing metabolite losses. The most 

commonly used method is protein precipitation with organic solvent. The method developed by 

our laboratory uses 90% methanol 0.1% formic acid solution, and details are described in PAPER I. 

An overview of methods for sample preprocessing prior to LC-MS analysis have been described by 

Vuckovic [22]. Additional internal and external standards may be added and a pooled sample may 

be included in each batch to assess the data quality. 

Regarding samples for NMR, the initial step may be protein precipitation but it is optional. Next 

step is the optimization of plasma samples for NMR by buffering the sample pH to stabilize 

chemical shifts. For this, deuterated water is added to provide frequency lock for the 

spectrometer, followed by addition of a reference compound such as 3-trimethylsilylpropionic acid 

(TSP) chemical standard [23]. This procedure is also used for plasma sample preparation for NMR 

analysis in PAPER II [24].  

4.3 Analytical Platforms 

The rapid development of the metabolomics field is linked to the advances in analytical 

methodologies, making it possible to qualify/quantify the metabolites in biological samples. A 

wide range of analytical platforms such as infrared spectroscopy and fluorescence spectroscopy 

has been employed in metabolomics studies, yet NMR spectroscopy and MS have the leading role 

today. These two technologies outperform the others because they offer the possibility of 

measuring the largest number of metabolites.  

The basic principle of NMR spectrometry relies on utilization of magnetic spinning properties of 

certain atomic nuclei to determine the physical and chemical properties of atoms or molecules. 
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For biological samples the most commonly used nuclei are 1H and 13C. The chemical environment 

of the nuclei in different chemical environments absorbs energy at slightly different resonance 

frequencies, and this effect is referred to as the chemical shift [25]. Ultra performance liquid 

chromatography-quadruple time of flight/mass spectrometry (UPLC-QTOF/MS) utilizing electro-

spray ionisation (ESI) and NMR spectroscopy were the platforms utilised in this research project. 

These two techniques will be briefly discussed.  

UPLC-QTOF-MS is a hyphenated technique, utilizing physical separation capabilities of LC and the 

mass analysis capabilities of mass spectrometry. UPLC provides sharper peaks, high sensitivity and 

high resolution columns by using columns packed with smaller particles and/or higher flow rates 

for increased speed compared to high performance liquid chromatography (HPLC) [26]. The 

analytes eluting from the column are ionised (i.e. ESI). A wide range of biomolecules can be readily 

ionised by ESI so that LC-MS employing this technology has become commonly used in 

metabolomics. Some characteristic properties of NMR and UPLC-MS have been given in Table 2. 

Table 2. A comparison of NMR and UPLC-MS approaches used in metabolomics [27]. 

 High Resolution NMR LC-MS 

Metabolome coverage 

Less sensitive 

30–40 in blood plasma 

40–100 in urine 

Higher sensitivity 

Hundreds to thousands? 

Throughput  ~10 min 6-25 min (UPLC vs. HPLC) 

Reproducibility 

High reproducibility. 

NMR spectrometer does not  

get dirty - the sample is physically 

isolated from the instrument. 

Lower reproducibility 

Identification 
Good libraries of spectra  

 

Metabolite identification is a 

major challenge.  

Destructiveness 
Nondestructive.  

Sample can be reanalysed. 
Sample destructive 

Disadvantages 

Crowded spectra - discrimination 

of resonances from the various 

compounds in complex mixtures can 

be difficult 

ion suppression where a high-

abundance analyte reduces, or 

eliminates, the response for a 

weaker analyte 

 

http://en.wikipedia.org/wiki/Mass_spectrometry
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Nevertheless none of the single technologies can detect the entire range of metabolites within a 

biological sample. Therefore, integration of MS, NMR, and other modern analytical techniques 

provides much broader information of analysed samples and thus, leads to a better understanding 

of biological interest. Utilizing combined targeted and non-targeted NMR, GC-MS and LC-MS 

methods, Psychogios et al. [4] performed comprehensive identification and quantification of the 

human serum metabolome. Recently, many more studies have emerged in metabolomics studies 

employing more than one analytical platform to investigate varying scientific questions of interest 

[28–30]. In PAPER II, both plasma NMR and LC-MS profiles has been utilised to uncover the effect 

of TFA intake. The complimentary findings from these two analytical platforms strengthen the 

identification of trans-fat related patterns.  

4.4 Data Preprocessing 

  LC-MS  4.4.1

LC-MS based metabolomics experiments usually produce large amounts of complex data. Due to 

its complexity, it is not suitable for application of any data analysis tool in its raw form for 

extraction of relevant information. This brings out the data preprocessing concept which aims to 

extract easy-to-access characteristics of each detected ion. These characteristics include m/z, 

retention time of the compound, and intensity measurement. This representation of an ion is 

denoted as a ‘feature’ (Figure 2, preprocessed data).  

Data preprocessing is crucial for the quality of the identification and quantification relevant 

information, and therefore the resulting biological interpretation. Typical data preprocessing 

includes multiple steps as shown in Figure 2. Many software packages are available for 

preprocessing LC-MS based metabolomics data both commercial (MarkerLynx) and freely available 

such as XCMS and MZmine [31–35]. Some performs only specific steps in the preprocessing 

pipeline, whereas others cover many steps. A nice overview of the algorithms and tools for 

preprocessing of LC-MS metabolomics data has been given by Castillo et al. [36]. In the next 

sections each step of the preprocessing pipeline will be discussed briefly. In this thesis, the aim 

was to have a general understanding of each preprocessing software to achieve correctly 

preprocessed data. There was no intention to dig into details of the algorithms. As PAPER II 

focuses on MZmine, XCMS and MarkerLynx software, those will be referred in the discussions.  

 



10 
 

 

Figure 2. Schematic overview of the metabolomics pipeline in LC–MS data preprocessing from raw data to 

preprocessed data.  

 Raw data 4.4.1.1

The raw data can be acquired in continuum mode or centroided mode. In continuum mode each 

spectrum is represented by a distribution of m/z (mass to charge ratio) values, each representing 

the hits of ionized molecules on the detector. Due to large size and complexity of continuum data, 

centroiding is frequently applied either during data acquisition or preprocessing. Centroiding aims 

to convert multiple data points representing the same peak in the distribution into a single data 

point with a single m/z and intensity value. After centroiding the data size per sample is reduced 

approximately 7 fold.  

The raw data file of each sample consists of a set of mass spectra, each recorded at a given time 

point or scan. Each scan point in time is represented by a pair of m/z and intensity vector. 

Handling LC–MS data in its raw form is difficult because the vector length varies from scan to scan 

based on the number of detected peaks. Furthermore, the four decimal digit m/z values of an ion 

deviate in subsequent scans even if the same compound(s) is represented.  
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The raw data proprietary format differs between instrument vendors but there are different tools 

available for the conversion of the raw data to an open format such as mzXML, NetCDF or mzML 

[37,38].  

  Filtering 4.4.1.2

Filtering aims to remove the noise so that in the subsequent peak detection step less false 

positives are detected. Most methods combines filtering with peak detection steps on extracted 

ion chromatograms with signal processing techniques such as Gaussian filtering (XCMS) and others 

applies a user defined cut off value on each mass spectrum (MZmine, XCMS, MarkerLynx).  

  Peak detection 4.4.1.3

Peak detection is one of the most crucial steps in LC-MS data preprocessing. It aims to characterise 

each ion in a sample with one m/z, retention time and intensity value (a feature). A peak detection 

algorithm should detect true signals while avoiding the noise. It should be flexible to detect peaks 

in varying shapes.  

Generally, the initial step of peak detection is combining the ions representing the same 

compound in subsequent scans. This can be performed by binning such that the m/z axis is divided 

into equal size intervals. As a result the data for each sample is transformed into a two-

dimensional matrix. However, defining a fixed bin window has some drawbacks. If the bin size is 

too small, the ion representing the same compound may split into adjacent bins, thus 

chromatographic peak shape is lost; or if the bin size is too large more than one compound and/or 

noise can be included in the same bin so that the chromatographic peak shape may be distorted 

[39]. Some examples of these issues have been shown in PAPER I. 

 In general, software tools utilise parameters such as minimum peak width, mass accuracy (or m/z 

window), minimum peak height or signal to noise ratio while combining m/z values in subsequent 

scans.  

MZmine initially creates continuous chromatograms within a user defined minimum time range 

for each m/z value (within a user defined window), and then deconvolutes peaks based on local 

minimums (or by another of three deconvolution methods available). The XCMS centWave [40] 

algorithm does not require a fixed bin size, instead directly provides the potential region of 

interest (Figure 3) based on mass accuracy and minimum peak width. Later, it constraints the 

peaks’ shapes with a Gaussian filter or continuous wavelet transform. This method has also been 
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recently implemented in MZmine. As the last step, the peak can be either integrated or peak 

height can be used as its magnitude.  

MarkerLynx initially determines the regions of interest in the m/z domain based on mass accuracy 

(mass tolerance). The ApexPeakTrack algorithm controls peak detection by peak width (peak width 

at 5% height) and baseline threshold (peak to peak baseline ratio) parameters which can be either 

set by the user or calculated automatically. The algorithm finds the inflection points (peak width at 

5% height), local minima and peak apex to decide peak area and height. It also calculates the 

baseline noise level using the slope of inflection points. Compared to peak detection algorithms of 

other software, the ApexPeakTrack algorithm produces much higher number of peaks, so an 

additional peak removal step (denoted by user defined peak intensity threshold and noise 

elimination level parameters) is implemented into the alignment algorithm by its developers. 

Basically a few variables should be defined for the peak detection step of any preprocessing tool. 

Selection of reasonable parameters is vital for the detection of peaks representing the true signals.  

Figure 3. Detection of a peak with a specific mass accuracy (top) and chromatographic width (bottom) [40].  
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  Deisotoping 4.4.1.4

Most elements are naturally present in different isotopic forms. A particular metabolite may 

produce an isotopic pattern and the relative heights and m/z difference between isotopic peaks 

may provide valuable information for identification of elemental composition of the metabolite. 

On the other hand inclusion of all isotopic peaks during data analysis increases the size of the data 

with redundant information. Therefore, deisotoping can be preferably performed prior to 

alignment. In general, for each charge state, peaks within the m/z and retention time limits are 

considered as isotopes, and the most abundant isotope is kept. MZmine and MarkerLynx have 

optional deisotoping step, yet they store the isotopic patterns for identification purposes, whereas 

XCMS allows annotation of isotopes but keep them in the preprocessed data.  

  Alignment 4.4.1.5

Peak detection is performed sample-wise. Thus, a feature representing the same compound may 

have different m/z and retention time values in different samples due to small random shifts. 

Alignment aims to match features across the samples so that the whole data can be transferred 

into a two dimensional matrix for subsequent data analysis. The m/z shifts are easier to deal with 

as the accuracy of the MS is known. XCMS utilise this fact and initially groups the features only 

using their m/z values within a fixed bin of 0.25 m/z. If the retention time shifts are linear and 

relatively small, a peak matching algorithm with defined m/z and retention time window can be 

sufficient (MZmine). For instance, the retention time of the peaks of the samples analysed with 

UPLC (PAPER I, II and III) have only slight drifts between samples, even across two years of 

analysis. However, retention time shifts can be more problematic for HPLC. It is frequently caused 

by multiple factors such as pressure, temperature and flow rate fluctuations. Thus, an alignment 

algorithm that can deal with non-linear shifts is usually required to correct retention time 

differences between samples. Different methodologies have been proposed for alignment of non-

linear shifts. XCMS calculates the overall retention time distribution of peaks in each m/z bin in 

order to estimate the boundaries of regions where many peaks have similar retention times 

(Figure 4). In addition, XCMS provides an optional algorithm to deal with non-linear shifts, using a 

group of ‘well-behaved’ peaks as temporary standards to calculate the retention time for each 

sample and correct it [31]. For non-linear shifts, MZmine creates a model of the retention time 

shift for each peak list (i.e. sample) with respect to a master peak list. Using that model it 

estimates the corrected retention time for each sample [41]. 

 



14 
 

 

 

Figure 4. Example of retention time matching across samples (12 samples) within one m/z bin. Individual peaks are 

shown as sticks indicating relative intensity. The peak density profiles were smoothed with Gaussian functions of SD 

30 and 10 s, respectively (solid line). Identified groups are flanked by dashed lines. Note how decreased smoothing 

eliminates a peak from the second group [31]. 

  Gap filling  4.4.1.6

In the final feature table, some features will be missing in some samples. The missing features 

occur in peak detection due to low intensity peaks, bad peak shapes, and peak detection mistakes. 

The missing values are usually zeros where ‘true’ zeros as well as smaller and larger peaks missed 

by the algorithm are given the same zero value. This may cause misinterpretations in the data 

analysis part. Some examples illustrating this situation have been shown in PAPER II. Both XCMS 

and MZmine fill the gaps from the raw data. MarkerLynx, on the other hand, does not have a gap 

filling algorithm; approximately 50% of the values in the feature table are filled with zeros.  

  Traditional methods for data preprocessing (customised methods)  4.4.1.7

Initially, the m/z axis is binned, for instance the bin size used in PAPER I was 0.1 min. As a result 

data for each sample is transformed into a two-dimensional matrix. Later, a rough filtering is 

applied to eliminate very low signals. Then, the matrix is summed across all retention times, which 

eliminates the necessity of retention time alignment. The final data matrix includes samples in its 

rows and m/z bins in its columns filled with summed intensities [42]. There are some drawbacks of 

this method: 
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(1) Selection of the bin size is critical. If the bin size is too small, the ion representing the same 

compound may split into adjacent bins, or else - if the bin size is too large - more than one 

compound can be included in the same bin [39]. In both cases the final identification of 

relevant information can be effected. 

(2) After chromatographic collapsing the compounds with the same m/z will be concatenated 

together (e.g. isomers). Furthermore, if the baseline level within one bin varies sample to 

sample, it may bury the relevant information. 

(3) After extraction of significant bins with data analysis, for identification of interesting 

features, the accurate m/z and retention time is necessary. Thus, the bins should be 

resolved in order to determine the peak retention time.  

In PAPER I, it is shown that this method leads to identification of many false positives and false 

negatives. On the positive side it should be mentioned that this approach is all-purpose and allows 

a fast data preprocessing.  

  Comparison of Software tools 4.4.1.8

Considering the large number of peaks with varying peak shapes, so far there is no common 

method to evaluate the preprocessing algorithms from different software. Even with the same 

feature detection algorithm, using different parameter settings usually lead to different results. In 

PAPER I, the number of features detected by MZmine, XCMS and MarkerLynx are compared. As 

shown in Figure 5, 22 to 42% of the features detected by one of the software, also detected by the 

other two, whereas 14 to 42% of the features were software specific. This was not surprising since 

not only the peak detection methods of preprocessing tool differ but also their parameter settings. 

Tautenhahn et al. [40] found a higher number of common features (80 %) from leaf and seed 

extracts comparing MZmine and XCMS (centWave) peak detection algorithms. The difference can 

be a result of the more complex nature of plasma samples compared to plant extracts or the 

chromatographic method employed.  
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Figure 5. Venn diagrams illustrating the number of common and method specific features extracted from three 

software tools (right: positive mode; left: negative mode). (Data from PAPER I) 

Based on the complex nature of the analyzed samples, the number of features is not known, more 

features may mean inclusion of false positives (e.g. noise) or true positives. Therefore, the 

absolute number of detected features is not really suitable to characterize data preprocessing 

software. Accordingly, in PAPER I from three different software tools the number of features 

selected as representative of relevant phenomena (markers) have been compared. 32 to 40 % of 

markers are in common whereas 16 to 40 % are specific to each tool. The potential sources of low 

number of overlapping markers can be listed as follows: 

 Software specific detected features. Major cause is peak detection algorithms and its 

parameter settings. 

 Differences in peak height assignments or errors that may occur during gap filling.  

The loss of information and potential introduction of noise during feature selection by a single 

preprocessing method would therefore seem to be a potential source of error in metabolomics. 

Thus, the use of more than one software and/or the use of several settings during data 

preprocessing with any software is likely to improve marker detection in untargeted 

metabolomics.  

The selection of a specific preprocessing software tool depends on programming skills, and easy 

visualization of the results to allow optimal parameter settings, quality control and coverage of 

steps in the pipeline. Furthermore, its ability to make use of available memory and CPU of the PC 

is another important factor which is particularly important when larger number of samples is to be 

preprocessed. Some of the practical properties of XCMS, MZmine and MarkerLynx have been 

given in Table 1. 
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Table 3. Practical properties of MZmine, XCMS and MarkerLynx  

 MZmine XCMS MarkerLynx 

Availability Free Free Commercial 

User interface 

 GUI* 

 No requirement of 

programming skills 

 R software command 

line 

 Some programming 

skills is required 

 GUI* 

 No requirement 

of programming 

skills 

Memory usage 

 Adjustable to maximum 

available memory in the 

PC. 

 Less efficient than 

XCMS e.g. 16 GB RAM = 

maximum ~2000 samples 

 Adjustable to 

maximum available 

memory in the PC 

 e.g. 16 GB RAM = 

maximum ~5000 samples 

 Fixed 

 e.g. maximum 

~1000 samples 

CPU usage 
 Adjustable to maximum 

available CPU in the PC  

 Adjustable to 

maximum available CPU 

in the PC 

 Fixed 

Identification 

 Basic identification 

tools. 

 Automated advanced 

tool CAMERA is 

incorporated from XCMS 

 Automated advanced 

identification tool 

CAMERA 

 Basic 

identification tools 

Coverage of 

preprocessing 

pipeline 

 All steps 
 Final feature table 

includes isotopic peaks 
 All steps 

Visualization of 

the results  
Yes Yes No 

* Graphical User Interface 

Recently, a web based Graphical User Interface version of XCMS has been released [43]. It allows 

the application of R package based XCMS tools. It requires the data to be uploaded which can be 

time demanding with large sample sizes.  
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 NMR 4.4.2

NMR signals are collected as a function of time. The chemical shift can be derived from free 

induction decay, which is the decaying signal that follows a pulse, by utilizing a Fourier 

transformation [25]. The first step of preprocessing is phase correction and baseline correction 

which can be performed by the tools provided by machine-vendor software.  

Due to pH, overall dilution of samples and relative concentrations of specific metabolites, the 

chemical shift of the same analyte peak usually varies across the samples. In order to correct for 

these variations a simple and common approach, spectral binning, has been widely used. Note 

that the same approach has been used during LC-MS data preprocessing to correct m/z variation 

as mentioned in the previous section. On the NMR side, the main disadvantage of binning is loss of 

spectral resolution. To avoid this problem more sophisticated alignment tools have been 

proposed, utilizing varying procedures such as genetic algorithms [44], partial linear fit [45] and 

correlations [46,47]. Correlation based alignment methods recursive segment-wise peak alignment 

[46] and interval correlated shifting (icoshift) [47] use the efficient fast Fourier transform engine to 

handle the large data sets. Icoshift splits the spectra into intervals and shifts the spectra to get the 

maximum correlation toward a target (reference or an average spectrum) in that interval. The 

recursive segment-wise peak alignment also relies on maximizing the correlation between target 

and spectra on interval-wise basis, but it relies on peak-picking.  

Icoshift has been employed for spectral alignment in PAPER II. As an example, NMR spectra before 

and after alignment with icoshift has been shown in Figure 6. 
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Figure 6. 600 MHz 1H NMR spectra of human plasma pre- and post-alignment using icoshift function. (Data from 

PAPER II) 

Icoshift requires user defined interval boundaries requiring careful examination of the data 

whereas for recursive segment-wise peak alignment the choice of interval boundaries is often only 

decided by the total number of segments desired, potentially resulting in a boundary dividing a 

resonance leading to significant peak distortion. In a recent study, a method for automated 

determination of intervals has been proposed. This protocol aims to generate spectral intervals 

sharing a common target spectrum. Its potential application for icoshift and recursive segment-

wise peak alignment has been demonstrated [48]. 
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4.5 Data Analysis 

In general, the central aim of data analysis in metabolomics is to extract the metabolites that 

specify the difference between sample groups. Metabolomics data can be analysed with a variety 

of chemometric and statistical tools [49,50]. Indeed, PCA and PLS are the most widely used ones 

and those were employed to analyse the data in the PAPERS I, II and III. 

   Data pre-treatment  4.5.1

Prior to PCA and PLS, normalization can be applied, if necessary, to correct for unwanted variation 

between samples. Later, the data is commonly transformed to a more suitable format for PCA and 

PLS based methods by scaling and centering procedures.  

  LC-MS - normalization 4.5.2

Systematic error arising from sample preparation and/or instrumental issues can bring out 

unwanted variation between samples that may hinder the extraction of relevant biological 

variation. Sample preparation related issues can be caused by inhomogeneity of the samples, 

concentration differences (e.g. common problem, particularly for urine samples), different 

recoveries during sample extraction and other inevitable minor differences in sample preparation 

(e.g. pipetting errors). Ion suppression/enhancement or ions source variations constitute the 

major part of the instrumental issues. This is mainly caused by matrix effect which is defined as 

alterations of ionization efficiency of analytes by the presence of coeluting substances [51]. Matrix 

effects vary between samples based on differences in their biological constituents or differences 

during sample preparation.  

The unwanted variation may appear in two forms:  

(1) Overall concentration variations between samples, i.e. the signal increase in all analytes of 

one sample, compared to another sample. 

(2) Analyte specific fluctuations between samples, i.e. a signal increase for one analyte while 

decreasing for another analyte, compared to the same analytes in another sample.  

If the first situation is the case, scaling factor based normalization methods can be used for 

correction of between sample variations. Scaling factor based normalization is performed by 

dividing each analyte in a sample by a factor such as unit norm, total area, or total sum of 

intensities calculated for that sample. For instance while acquiring the data from PAPER I, a 

potential signal suppression effect from a build-up of non-volatile contaminants in the ionization 
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source throughout the course of the entire analysis caused a steady decrease in the signal. 

Normalization to unit length lead to partially removal of the pattern related to signal loss, so that 

the fasting vs. fed pattern became easier to capture by PCA (Figure 7).  

 

 

Figure 7. PC1 vs. PC2 scores plots illustrating the effect normalisation on the extraction of fasting vs. fed related 

patterns. Before normalization (left), after normalization to unit norm (right). Blue: fasting state, orange: fed state. 

(Data from PAPER I, negative mode data)  

However, analyte specific fluctuations are more frequently observed. This is mainly caused by 

analyte specific ion suppression issues due to the complex nature of the biological samples and 

cannot be corrected by scaling factor based normalization methods. An example illustrating this 

issue is shown in Figure 8.  
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Figure 8. Total ion chromatogram of duplicative measurements shown in different colours. The initially acquired 
samples had higher signal between 4 to 5.5 min, but lower 5.5 to 6 min compared to their duplicates. Thus, scaling 
factor (total signal basis) is not representative of the between sample variation and does not correct for it. (Data from 
PAPER I, positive mode data)  

In some situations, applying scaling factor normalization may also introduce further obscuring 

variation. For instance, for the data from PAPER II, the unit length normalization caused an 

increase in coefficient of variation (CV) for three out of four internals standards (Figure 9). Thus, 

careful examination of the dataset is required when using scaling factor based normalization. 

Figure 9. Effect of unit length normalization on CV of internal standards, glycholic acid, hippuric acid, L-tyroptaphan, 

lysophosphatidylcholine (LPC17:0). (Data from PAPER II). 

In order deal with metabolite level fluctuations between samples, utilization of isotopically 

labelled internal standards has been suggested where each internal standard is added to each 

sample in identical concentration. As the internal standard represents a known quantity, the 

estimated analyte signal can be expressed as relative to the internal standard with the aim of 
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removing the error. However, a fully labelled reference metabolome is not feasible. Instead, 

multiple internal standards, each representing metabolites from chemically related groups, can be 

used for correction of systematic errors on metabolite level. Although there is no specific method 

to employ those to correct for each metabolite, some studies have explored the issue. Bijlsma et 

al. [52] performed internal standards based normalization by using each standard to correct the 

metabolites in its corresponding retention time region. Sysi-Aho et al. [53] utilized multiple linear 

regression (MLR) to remove the correlated variance between the metabolites and the internal 

standards. A modified version has been suggested by Redestig et al. [54]. In their method it is 

assumed that the variation between samples on analyte level can be represented by internal 

standards. Initially, structured variance in internal standards (Z) is estimated by PCA. Later, PC 

scores (TZ) were used to remove the Z from the samples (YA) by MLR. The final equation evaluated 

for normalization can be expressed as  

                   
    

    
     

where they used PCA and to extract the variation in internal standards and MLR to remove the 

correlated variance in samples. It has been argued that this method is efficient to remove between 

batch and within batch differences. The batch-to-batch variation is quite problematic particularly 

when dataset includes many batches. As batch-to-batch variation is not caused by overall 

response differences between batches, scaling factor based normalization does not correct for it. 

The previously mentioned method by Redestig et al. [54] has been applied to the data from PAPER 

II, where four internal standards were previously added (given internal standards in Figure 9). The 

data included 12 batches where PCA explained batch differences in the first eight components. 

The batch-to-batch variation was partially removed, yet the results indicated that proper 

correction requires a larger number of internal standards representing chemically related 

metabolite groups. In this case, after normalization, batch-to-batch related variation decreased 

captured by the first four components.  

In summary, two different strategies are suggested for correction of unwanted variation between 

samples: (1) scaling factor and (2) internal standard based normalizations. Scaling factor based 

normalization assumes the unwanted variation is caused by overall concentration changes 

between samples. Thus, it uses the same scaling factor to correct for each analyte in a sample 

(row-wise correction). On the other hand, internal standard based normalization performs the 

correction on metabolite level which means metabolites are corrected with their representative 

internal standards in a sample. As metabolite level fluctuations are very common for LC-MS based 
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metabolomics data, internal standard based normalization may be a more reasonable choice but a 

large number of internal standards providing overall coverage of metabolite groups is necessary.  

  LC-MS - Scaling and centering 4.5.2.1

Particularly in LC-MS based metabolomics, the metabolite levels differ in a wide range, yet this 

may not correspond to the biological interest. For instance, two metabolites with signals of 5000 

and 50 are usually of equal importance. However, PCA tends to gravitate upon the larger variation 

that is provided by larger peaks. Thus, scaling is necessary prior to PCA or PLS, to put metabolites 

on similar or equal basis.  

Centering adjusts for differences in the offset between high and low abundant metabolites. Mean 

centering forces the corrected (centered) metabolite concentrations to fluctuate around zero as 

the mean (Figure 10B). In most cases, centering is applied in combination to scaling. 

Autoscaling and pareto scaling are the most commonly employed scaling strategies in 

metabolomics. Autoscaling, which is a combination of unit scaling and mean centering, uses 

standard deviation as the scaling factor (Figure 10C). After unit scaling, all metabolites have 

standard deviation of one so that they have equal chance to influence the model. The main 

disadvantage of autoscaling is that it also inflates the noise, thus it may complicate the extraction 

of relevant patterns. Pareto scaling utilises square root of standard deviation as scaling factor. As a 

result, it reduces large scale differences between metabolites but still they are close to the original 

measurements (Figure 10D).  

Although some studies in LC-MS based metabolomics pareto scales the data, in most cases 

autoscaling has been shown as a better choice unless there is a specific interest or situation (e.g. 

very noisy data) [55]. The reason is that the magnitude of metabolite concentration differences 

are not representative of biological relevance and that can only be provided by autoscaling. 

Accordingly, the datasets investigated in PAPER I, II and III were autoscaled.  

Note that after preprocessing of LC-MS data, elution profile of each analyte is converted to a 

discrete value such that each chromatographic peak is represented by its height or area. In cases 

where elution profiles are used (e.g. LC-FID), autoscaling may inflate the baseline and is not 

recommended.  
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Figure 10. Effect of mean centering (B), autoscaling (C), pareto scaling (D) on deconvoluted GC-MS based 

metabolomics data (A) [55]. 

   NMR - Normalization  4.5.3

Normalization of NMR spectra is especially important for urine samples to correct for variations of 

the overall concentrations of samples caused by different dilutions. The scaling factors mentioned 

in the previous section can also be applied to NMR data. Some other more advanced procedures 

includes Probabilistic Quotient Normalization [56] and Quantile Normalization [57].  

Probabilistic Quotient Normalization was utilised for NMR data in PAPER II. Scaling factor based 

normalizations calculate the scaling factor for each sample based on contributions from all signals 

in that sample. On the other hand, Probabilistic Quotient Normalization calculates a most 

probable quotient between the signals of the corresponding spectrum and of a reference 

spectrum (mean or median of spectrum in the study) and uses that as scaling factor. Probabilistic 

Quotient Normalization can be applied to raw spectra or binned spectra. Its algorithm has been 

summarized as: 

(1) Perform scaling factor normalization (described in section 2.5.1.1). 

(2)  Choose/calculate the reference spectrum (median or mean spectrum). 

(3)  Calculate the quotients of all variables of interest of the test spectrum with those of the 

reference spectrum. 
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(4) Calculate the median of these quotients. 

(5) Divide all variables of the test spectrum by this median. 

It has been shown that compared other scaling factor normalizations, Probabilistic Quotient 

Normalization is more robust against strong metabolite specific changes as it does not have 

constraints such as a total integral or a total vector length [56].  

 NMR - Scaling and centering 4.5.3.1

In case NMR spectral profiles are used, autoscaling of NMR spectra leads to inflated noise as 

shown in Figure 11, PCA loadings plot. Thus, it may become difficult to extract the relevant 

biological phenomena. On the other hand, as peak shapes are already distorted and the data is 

reduced, binned spectral profiles can be autoscaled.  

 

Figure 11. PC1 and PC2 loadings vs. chemical shifts for centered simulated spectral data (left). PC1 and PC2 loadings 

vs. chemical shifts loadings for the autoscaled true data (right) [58]. 

   Principal Component Analysis  4.5.4

PCA was first defined in statistics as finding ‘lines and planes of the closest fit to systems of points 

in space’ by Pearson in 1901 [59] and further developed by Hotelling to its present stage [60]. 

Since then, PCA has been employed in a wide range of scientific fields as a well-established 

multivariate data analysis method.  

PCA aims to extract the dominant patterns in a data matrix consisting of a large number of 

interrelated variables in terms of lower dimensional variables called principal components. 

Principal components represent linear combinations of original variables. The components are 

approximated as orthogonal directions in original variable space with the aim of capturing 
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maximum variance. Considering a data matrix X with n rows and k columns, PCA decomposes X 

into linear sum vector products,     . In general we need more than one component to explain 

the data matrix. For i components, PCA can be formulated as 

       
       

         
                    

where ti is the score vector (n X 1), pi is the loading vector with (k X 1) for each component and E 

contains the residuals, the part of the data that is not explained by principal components. The 

loading vector p defines the new directions in original variable space and the projection of samples 

onto that provides the score vector t. A more compact representation of PCA is given as  

            

where T is the score matrix (n X i) and P is the loadings matrix (k X i)  

The sample patterns are commonly visualized by a scatter plot of scores, for instance t1 vs. t2 for 

the first two components. The corresponding variable patterns are represented by a loadings plot 

p1 vs. p2. Principal components are orthogonal to each other which means they are uncorrelated 

so that we can talk about one component independently from the others.  

  Application of PCA in metabolomics 4.5.4.1

Wold et al. [61] listed the goals of PCA on a data matrix as simplification, data reduction, 

modelling, outlier detection, classification, prediction, classification and unmixing. On the basis of 

metabolomics, PCA has been used for data reduction [62], outlier detection [7], classification [63] 

and variable selection [64,65].  

PCA provides an overview of the data and gives an idea about the dominating patterns. This is 

usually done by a visual inspection of scores and loading plots. For any kind of metabolomics data, 

it is a very good idea to start with PCA, since it will help you to get to know your data. In addition, 

PCA is very useful to identify potential outliers, which you can decide to exclude or not after 

inspecting those in the raw data. The data from PAPER I, II and III were subjected to initial PCA for 

outlier detection and explorative purposes.  

Variations caused by sample collection/preparation or instrumental issues will also be reflected on 

PCA. For instance, Rasmussen et al. [66] used PCA on urine samples analysed by NMR to evaluate 

the effects of sample storage conditions. PCA has been widely utilised to assess the analytical 

performance in metabolomics studies [67,68]. As an example, Eva et al. [69] evaluated PCA in 
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terms of repeatability and robustness of quality control samples in order to optimise the UPLC-MS 

method for metabolomics analysis. Another example for application of PCA for analytical quality 

check has been shown in PAPER I. As shown in Figure 12, some samples were positioned apart 

from their instrumental replicates according to PC1, which was further justified to be caused by 

instrumental signal drift. 

 

Figure 12. Score plot of PC1 vs. PC2. The instrumental replicates are separated in PC1. The same numbers indicate the 

replicative measurements. (Data from PAPER I) 

The above mentioned applications of PCA are either for optimisation of analysis methods or for 

evaluating the normalization. Indeed, the core aim of data analysis in metabolomics is to extract 

metabolites related to specific exposure (e.g. disease vs. healthy, case vs. control), which boils 

down to application of PCA for variable selection purposes. For instance, OuYang et al. [70] 

analysed NMR profiles of serum samples from cancer patients and healthy controls with PCA. PCA 

score plot revealed a clear distinction between the control and cancer groups so that the 

representative metabolites were selected from the corresponding loading plot.  

However, there are not so many PCA based metabolomics applications for selection of significant 

metabolites. The reasons for this are based on two drawbacks of PCA:  

 (1) PCA searches the global patterns and it is not efficient in finding local patterns which is very 

common in metabolomics data due to its complex nature [71].  

 (2) Principal components are linear combinations of all variables, thus, considering the large 

number of variables, it is not easy to point out a group of metabolites among many irrelevant 
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ones. Sparse PCA has been suggested to overcome this issue by forcing less effective metabolites 

to have zero loadings [72].This method has been employed in PAPER III and is further discussed in 

the proceeding section.  

   Sparse Principal Component Analysis  4.5.5

In 1996, Tibshirani [73] developed a method called Lasso, for estimation of linear models. The 

lasso is a penalized least squares method, imposing a constraint on the L1 norm of the regression 

coefficients. Bounding L1 norm of PCA model parameters results in a sparse model which makes it 

favourable for variable selection. Several methods have been proposed for estimating SPCA, based 

on either the regression error property [74] or the maximum variance property of principal 

components [75]. In the context of maximizing variance, SPCA can be formulated as a penalized 

optimization problem with the main objective being a minimization problem similar to PCA but 

with L1 norm penalties imposed on the loadings: 

       ‖     ‖ 
   

subject to ‖  ‖ 
    and ‖  ‖ 

   , for i = 1,…,k 

where X(n x p), is the data matrix, ‖  ‖ 
  is the sum of absolute values (L1 norm) of the columns of 

loading matrix P, and T is the score matrix. The tuning parameter c is a positive penalty parameter 

bounding the sum of absolute values of the normalized loading vector (‖  ‖   ). Thus, it leads 

to some loadings being exactly zero [76]. If c is chosen large enough, it will lead to unconstrained 

solution, which will be identical to PCA decomposition. A meaningful sparse solution can be found 

when c is chosen in between 0 and the sparsity level producing unconstrained solution [76].  

Solution of the constrained optimization problem can be solved by deflation where calculation of 

components is based on the current residual [75]. Alternatively, the calculation of the entire set of 

components can be done simultaneously by iterating between scores and loadings [76]. For the 

latter, an alternating least squares-based approach with induced L1 norm penalty is used for 

component estimation [76]. Nevertheless, the alternating least square solution may provide local 

minima. In order to avoid the local minimum, in PAPER III we initialized multiple times with 

random loadings. It is assumed that a global minimum is achieved if the solution with maximum 

explained variation (or minimum loss function) is observed multiple times. 

Unlike PCA, SPCA does not impose othogonality constraint between components. In SPCA, 

components are correlated and the loadings are not orthogonal.  
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Cross-validation has been suggested for the optimization of sparsity penalty selection [76].  

  Application of SPCA in metabolomics 4.5.5.1

As mentioned previously, PCA with the aim of variable selection can perform poorly for 

metabolomics data due to large number of irrelevant variables. SPCA allows selection of a limited 

number of metabolites by penalizing many irrelevant ones to have zero loadings.  

Allen et al. [77] developed a modified form of SPCA with non-negativity constraints and showed its 

potential on NMR based metabolomics data. Furthermore, in Paper III, LC-MS data is subjected to 

SPCA and PCA. Based on our findings, both SPCA and PCA capture time since last meal patterns 

from plasma LC-MS profiles (Figure 2-3-4, PAPER III). However, SPCA provided results that were 

easier to interpret compared to PCA. 

Not SPCA, but coupled matrix factorization with imposed sparsity in the variable modes has been 

developed and the application potential of this tool has been demonstrated on a metabolomics 

study utilizing two analytical platforms LC-MS and NMR, and a dataset including several clinical 

end points such as lipoproteins and lipids [78].  

   Partial Least Square 4.5.6

PLS is a linear regression based method for relating a set of predictor variables, X, with one or 

more independent variables, Y [79]. The significance of PLS is related to its ability to deal with 

strongly collinear X variables which makes it suitable for analysis of metabolomics data such as 

spectral and chromatographic profiles. Like PCA, PLS is a projection based method. PCA aims to 

find a subspace that explains the maximum amount of variation in X. PLS, on the other hand, tries 

to find a small dimensional subspace that describes the X well but at the same time the 

coordinates of this new subspace are good predictors of Y. Similar to PCA, the components are 

orthogonal. PLS can be formulated as  

         

         

such that X loadings, P, are good summaries of X and X scores, T, are good predictors of Y.  

In metabolomics, PLS has been applied in classification problems where class labels (e.g. case vs. 

control, exposed vs. unexposed) are used as Y vector. In this case, it is called PLSDA. For the two-
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class case, the Y variable is set to have 0 and 1 entries for each class, respectively. PLSDA aims to 

improve the separation between the two groups by using the class information. 

The orthogonal PLSDA (OPLSDA) has been developed as an extension of PLS and it is extensively 

used in metabolomics [80]. In OPLSDA, the Y unrelated (orthogonal) variation has been removed 

from X. In this way, OPLSDA attempts to describe classification information in one component. 

However, the prediction power of PLS and OPLS are usually the same [80,81].  

In metabolomics datasets, irrelevant variation is dominant in many cases. As mentioned earlier, 

PCA tends to gravitate towards to that variation, whereas PLS provides more discriminating latent 

variables. Thus, PLSDA have been extensively applied in metabolomics both for classification and 

variable selection.  

 Model validation  4.5.6.1

Unlike PCA, PLSDA is a supervised data analysis method. Particularly, for metabolomics data, 

where the number of variables is much larger than the number of samples, there is a potential 

danger of over-fitting. Thus, careful validation is critical.  

In some metabolomics papers, PLSDA scores and loadings plots from models without any 

indication of validation diagnostic statistics have been presented. However, scores and loadings 

cannot be trusted if validation shows that the model is not valid. To point out this issue, 

Westerhuis et al. [82] illustrated that cross-validation of NMR spectra of 23 health volunteers 

arbitrarily divided into two classes revealed Q2 values of -0.18, which is considered not to be a 

good classification. However the PLSDA scores plot showed a clear separation.  

The initial step, while building a PLSDA model, is the selection of component number providing the 

optimal model complexity. Cross-validation has been as a standard tool to determine the number 

of components. In cross-validation, the samples are divided into training and validation sets. The 

training set is used to develop models with different number of components (i.e. from 1 to n). 

These models are evaluated based on their performance for correctly classifying the validation set. 

Then, the number of components providing the minimum number misclassifications (NMC) is 

selected. However, assessment of the classification performance of the final model by NMC of the 

training may lead to over-optimistic validation results. The model is optimised for the samples that 

are left out, so, those do not assess the validity of the final model [83]. For proper validation, the 

total data can be divided into training, validation and test sets. The model optimisation is done on 

training and validation sets and the test set is used to evaluate model performance.  
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Double cross-validation has been suggested for reducing over-optimism in cross-validation [84,85]. 

It consists of two nested cross-validation loops as shown in Figure 13. The inner loop cross-

validation is used to determine the number of components providing the model with optimum 

complexity. Then, the final model prediction performance is evaluated by the samples in the test 

set. The inner and outer loops are repeated N and M times while training, validation and test sets 

were selected randomly from each class. The number of samples within each set is kept the same 

for each repetition. 

 

Figure 13. Double cross-validation scheme. In the inner loop, the number of components is determined based on 

minimum validation set NMC from PLSDA models that are constructed with N different validation and test sets. The 

number of components that leads to the lowest cross-validation NMC is selected and used to build a model with the 

corresponding training set. Later, the test set in the outer loop is predicted with this model to give an NMC. The NMC 

calculated in the M different outer test sets are combined. 

In order to decide whether there is a difference between the groups, NMC or other statistic 

diagnostics (e.g. Q2 and area under receiver operating characteristic curve) are evaluated. 

Although it is said that if NMC is lower than 0.5, then there is a difference, it is not known which 

value of these NMC really corresponds to a good discrimination between groups. Comparison of 

original classification (two classes) NMC with NMC obtained from the same data but with 

randomly assigned class labels may provide a better assessment of PLSDA classification 

performance. This procedure is called permutation test [82]. In general, PLSDA is calculated with 

random class assignment many times, so that a distribution of NMC can be obtained. The 

significance level of original classification can be calculated compared to random ones. In case of 

significance, it can be concluded the original model performs better than random classification. In 
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permutation test the models with permuted classes is obtained from the same number of samples 

that also show the same amount of variation, outliers and missing data. Thus, it provides a strong 

comparison basis. An example of permutation test histogram is given in Figure 14.  

 

Figure 14. Permutation test. Histogram of the number of misclassifications in 10,000 permutations. Misclassifications 

are obtained from double cross-validation. The arrows indicate the number of misclassifications in the original 

problem. From 10,000 permutations none had NMC lower than the original classification [85]. 

Westerhuis et al. [86] employed permutation test, to illustrate the over-optimistic results when 

validation set based NMC is used to assess the overall model performance. They used urine NMR 

profiles of 22 subjects. When there is no difference between the classes, half of the samples are 

expected to be misclassified. Thus the validation procedure should on average give 11.5 

misclassifications for the permuted datasets. As shown in Figure 15, validation set based model 

evaluation provided over-optimistic results whereas the double cross validation provided the 

expected NMC.  
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Figure 15. Permutation test applied on a proteomics data. Histogram of the number of misclassifications in 2,000 

permutations. NMC are obtained from cross-validation (up) and double cross-validation (down). The expected 

permuted data NMC is estimated correctly, only by double cross-validation [82].  

Both for the datasets PAPER I and II (LC-MS and NMR data) double cross-validation and 

permutation tests were employed to evaluate the classification performance of the PLSDA models.  

 Variable selection 4.5.6.2

The metabolite selection in PLSDA is usually based on regression coefficients and variables 

importance for the projection (VIP) [79]. Regression coefficients represent the importance of a 

given metabolite for modelling class assignments (Y) whereas VIP summarise its importance for 

both metabolic profiles (X) and class assignment (Y). Regression coefficients have been employed 

for selection of discriminating metabolites for PAPER I.  

As described in the model validation section, when double cross-validation is employed, the 

assessment of the model has been performed on multiple subsets of samples, each with its own 

number of components, variables selected, scaling etc. However, there is no consensus on how to 

choose the overall model based on sub-model results or which model is to be used for variable 

selection [83]. In this sense, in PAPER I, firstly, the rank of each feature is recorded based on its 

absolute regression coefficients from each calculated sub-model (double cross-validation). Then, 

for each feature, the rank product from all sub-models is calculated which is used to demonstrate 

the feature’s overall importance [85]. This perspective allows each sub-model to contribute in 

variable selection, yet if one out of many sub-models performs poorly, its effect will be 

depreciated. Thereby, the features that appear as influential for classification in many models will 

be selected.  
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Rajalahti et al. [87] developed a new tool, selectivity ratio, for variable selection in spectral data. 

Selectivity ratio of a metabolite is calculated as the ratio between explained and residual variance 

on the target projected component which is a single latent variable explaining the covariance of 

the X variables with the Y. They have shown on spectral data that variables selected by regression 

coefficients compared to selectivity ratio may include a larger number of false discoveries. Thus, 

we have used selectivity ratio as a variable selection tool in PAPER II.  

4.6 Identification 

In metabolomics studies, data analysis provides a number of metabolites with known m/z and 

retention time for LC-MS or with chemical shifts for NMR, related to specific exposures. In order to 

interpret and understand the associated metabolic perturbations in biological systems, the 

chemical identity of these metabolites should be determined. Four levels of chemical compound 

identification have been defined by the Metabolomics Standards Initiative as shown in Table 4 

[88].  

Table 4. Levels for validation of non-novel compounds defined by Metabolomics Standards Initiative [88]. 

Level Name Minimum requirements 

1 Identified compounds At least two independent and orthogonal data relative to an 

authentic compound analysed under identical experimental 

conditions. 

 (e.g. retention time/index and mass spectrum, retention 

time and NMR spectrum, accurate mass and tandem MS, 

accurate mass and isotope pattern, full 1H and/or 13C NMR, 

2-D NMR spectra) 

2 Putatively annotated 

compounds 

Without chemical reference standards. 

Based upon physicochemical properties and/or spectral 

similarity with public/commercial spectral libraries. 

3 Putatively characterized 

compound classes 

Based upon characteristic physicochemical properties of a 

chemical class of compounds, or by spectral similarity to 

known compounds of a chemical class 

4 Unknown compounds These metabolites can still be differentiated and quantified 

based upon spectral data 
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   LC-MS 4.6.1

The identification of the compounds from LC-MS based methods is both analytically and 

computationally challenging. It is often time-consuming, laborious and considered as a bottleneck 

in interpretation of metabolomics data. The three main strategies for identification of LC-MS 

based metabolites include: 

 Accurate mass based identification using high-resolution instruments. In combination with 

accurate mass isotopic distribution may reveal elemental composition of the compound.  

 Application of tandem MS where the instrument performs an MS1 survey scan, and selects 

one or more ions for subsequent MS2 or even MSn scans. This provides the structural 

information of a compound by exploiting the fragmentation patterns.  

 Comparison of retention time and spectra with authentic standards.  

Each specific chemical compound gives rise to one or more ion species during ESI, which are 

included in the same mass spectrum. Those ion species include isotope, fragment, adduct and 

cluster ions. Inclusion of all ions representing one compound brings out redundancy issues in the 

data analysis part. Recently, a new R based package called CAMERA [89] has been released which 

aims to automatically group the features derived from the same analyte and annotates isotope 

and adducts peaks by utilizing correlations across the samples and similarity of the peak shapes. 

The assignments may also ease the identification step in the sense that the ion species to search 

for the accurate mass in spectral databases will be known.  

In order to cope with the challenges in metabolite identification, many compound databases have 

been developed including chemical and physical properties of the compounds. For accurate mass 

and spectral search the databases, HMDB [4], METLIN [90] and Lipid Maps [91] have been 

systematically searched in this thesis. The other databases such as Manchester Metabolomics 

Database [92] contains 42,687 endogenous and exogenous metabolites retrieved from primary 

sources such as HMDB, Lipid Maps, BioCyc [93] and DrugBank [94]. The MassBank [95] database 

maintains the spectral information from a wide variety of commonly used mass spectrometry 

platforms. The spectral database and visualization tools are publicly available and web-accessible 

which was regularly used for the present work.  

For identification of the LC-MS based features from metabolomics studies, additional experiments 

have been performed. For instance in PAPER I, the authentic standard of sn-2 LPC(18:1) was 

produced by phospholipase A1 based hydrolysis. Furthermore, post-column lithium infusion was 
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performed to increase the abundance of PC fragments with lithium adduct formation and thereby 

improve the structural characterization of PC species in PAPER II. 

   NMR  4.6.2

NMR identification in PAPER II has been limited to peak assignment from comparison of chemical 

shift with previously published blood plasma metabolites [96]. However, database libraries used 

for MS searches such as HMDB [4], KEGG [97] and MetaCyc [98] also contain 1H and 13C NMR 

assignment of the metabolites. These sources provide reliable assignments of NMR spectra for 

identification of metabolites.  

Nevertheless, 1D 1H NMR spectra suffers from peak overlap thereby complicating the 

identification and quantification of metabolites. 2-D NMR methods offer the benefits of 1-D NMR 

but additionally resolving the overlapping resonances into a second dimension, and increasing 

metabolite specificity. Thus 2-D NMR methods have the potential for application in metabolomics 

with the advantage of improved identification. Recently, Birmingham Metabolite Library have 

been established with the database of 1-D and 2-D J-resolved NMR spectra [99].  

4.7 Biological Interpretation 

The final step in the metabolomics pipeline is interpretation of the identified compounds 

reflecting a specific exposure in biological terms. In the next sections, the biology behind the 

identified compounds from studies involved in PAPER I, II and III will be discussed. 

   Meal responses 4.7.1

Human metabolism shifts constantly between anabolic (fed) conditions after food intake and 

catabolic states between meals or during extended starvation periods. Insulin is the main 

coordinator of this shift where high levels of insulin modulate energy storage in the anabolic state 

and low levels of insulin and high levels of glucagon control energy expenditure in the catabolic 

state [100].  

In the anabolic state, after food intake, insulin enhances utilization of glucose as a prime energy 

substrate by muscle, adipose tissue and liver and promotes hepatic synthesis of glycogen while 

inhibiting gluconeogenesis and glycogenolysis. Furthermore, triacylglyceride formation is favoured 

with uptake of fatty acids from plasma for energy storage. Also, protein synthesis increases by 

amino acid uptake from plasma into muscle and liver. The catabolic state involves a series of 
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adaptations to ensure adequate fuels for body tissues in the absence of exogenous substrate. 

When the insulin level drops, the liver becomes an organ of glucose production to provide energy. 

In addition, lipolysis and proteolysis increases for energy production. Plasma fatty acid levels rise 

to maintain energy levels via ß-oxidation and acetyl-CoA production. Branched chain amino acids 

are fuels for energy production and plasma levels decrease initially during the first hours after a 

meal whereas increased levels after prolonged fasting (>8-16hrs) are indicators of a high rate of 

protein breakdown [100,101]. The schematic representation of the dynamics of plasma metabolite 

changes is given in Figure 16.  

Carnitine is required to assist the transport and metabolism of long-chain fatty acids in 

mitochondria, where they are oxidized as a major source of energy. Thus, during fasting, long-

chain and short chain acylcarnitines increase with a decrease in free carnitine [102]. After 

oxidation of fatty acids, acetyl-CoA is produced and gives rise to formation of the so-called ketone 

bodies, acetone, acetoacetate and β-hydroxybutyric acid. Ketone bodies provide an alternative 

fuel to body tissues, especially to the brain during fasting. The brain can utilise only ketone bodies 

as an energy source when glucose levels are not sufficient [103].  

The above mentioned metabolic patterns reflecting the body’s shift from anabolism to catabolism 

has been confirmed in PAPER I. During fasting state compounds characteristic to lipolysis such as 

fatty acids, β-hydroxybutyric acid (ketone body), acetyl-carnitine and acyl-carnitines are increased, 

whereas L-carnitine is decreased. The amino acids and lyso-lipids were higher in plasma at fed 

state.  
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Figure 16. Dynamics of plasma metabolite changes between anabolic (fed) and catabolic (fasted) states. Detailed 

explanation is in the text [100]. 

The response to food intake and metabolite clearance rates vary depending on the quality and 

quantity of the food source [104] and the physiological differences between subjects such as 

gender, age and weight [105]. The metabolic responses to food intake and metabolite clearance 

rates are usually measured by postprandial challenge tests. These may be performed by glucose 

tolerance tests (OGTT or clamps), lipid challenges, or by specific foods or whole meal challenges, 

depending on the specific metabolite group of interest. However, time-resolved changes of the 

human metabolome in response to a challenge have been very rarely investigated in 

metabolomics studies. Instead, fasting state plasma samples have been used, typically following 

an overnight fast, as it is considered to be more reproducible. Nevertheless, recent metabolomics 

studies have demonstrated that challenge tests increase metabolite variability between 

volunteers, allowing discrete metabotypes to be identified that would not be seen in normal 
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fasting conditions. Zhao et al. [106] and Shaham et al. [107] were the first to utilize metabolomics 

to investigate the physiological changes during an OGTT. They identified major concentration 

changes in compounds, such as bile acids, that have not been reported previously. In addition, 

Shaham et al. [107] demonstrated that time-resolved metabolic profiling has the potential to 

define an individual’s ‘insulin response profile’, which could have value in predicting diabetes. This 

has been shown by pre-diabetic individuals’ selective resistance to suppression of either 

proteolysis or lipolysis. Wopereis et al. [108] have shown the effect of the diclofenac treatment 

can only be revealed by investigating metabolic patterns with OGTT and time course. Krug et al. 

[109] submitted 15 young healthy male volunteers to a highly controlled 4 d challenge protocol, 

including 36 h fasting, OGTT and lipid test, liquid test meals, physical exercise, and cold stress. 

They have shown that physiological challenges increased inter-individual variation even in 

phenotypically similar volunteers, revealing metabotypes not observable in baseline metabolite 

profiles. Another study investigated the metabolic perturbation in response to a postprandial 

challenge in a controlled intervention study [29]. All these studies provided unique findings 

illustrating that the profiles obtained from metabolic challenge tests are more informative than 

using fasting state profiles.  

In PAPER III, based on a cross-sectional study group, time since last meal related pattern, revealed 

higher levels of amino acids and LPCs in volunteers who were considered to be in postprandial 

state, so even under free-living conditions it is possible to reproduce part of the patterns observed 

in controlled settings (PAPER I). 

    Trans fatty acids  4.7.2

Industrially produced TFAs are formed during the partial hydrogenation of vegetable oil that 

changes cis configuration of double bond(s) to trans, resulting in semi-solid fats for use in 

margarines, commercial cooking, and manufacturing processes. Partially hydrogenated vegetable 

oils are appealing because of their long shelf life, their stability during deep-frying, and their semi-

solidity, which is utilised to enhance the palatability of baked goods and sweets. 

Partially hardened vegetable oils mainly contain trans isomers of oleic acid (Figure 17, left), the 

major one being C18:1 trans-9 or elaidic acid (Figure 17, right) and C18:1 trans-10. In addition, 

smaller amounts of C18: 1 trans-8, and C18:1 trans-11, and trans isomers of alpha-linolenic acid 

may arise during deep-fat frying [110].  
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Figure 17. Chemical structure of cis and TFA. Both oleic acid and elaidic acid has 18 carbons. In cis configuration (e.g. 

oleic acid) the carbon chain extends from the same side of the double bond, causing a bent molecule, whereas in trans 

configuration (e.g. elaidic acid) the carbon chain extends from opposite sides of the double bond, providing a straight 

molecule [111]. 

 Health effects 4.7.2.1

TFA intake has been identified as a modifiable dietary risk factor of coronary heart disease (CHD). 

Consumption of TFA, on a per-calorie basis, potentially increases the risk of CHD more than any 

other micronutrient. In a meta-analysis of four prospective cohort studies involving nearly 140,000 

subjects Mozaffarian et al. [111] have demonstrated that a 2 % increase in energy intake from 

TFAs raised the incidence of CHD with 23 %. 

The adverse effects of TFA consumption on serum lipids in humans has been demonstrated by 

randomised, controlled trials. In a meta-study of eight selected trials [112], isoenergetic 

replacement of saturated or cis unsaturated fats with TFAs raised the level of total cholesterol (TC) 

to high-density lipoprotein cholesterol (HDL-C) in the blood. In relation to that, in PAPER II, LDL-C is 

increased with TFA intake based on plasma NMR profiles. Also, TFA intake has been shown to have 

unfavourable effects on triglycerides, apolipoprotein (Apo) B/ApoAI ratio and C-reactive protein 

[113]. Although alteration of blood lipids, particularly an increase in TC/HDL-C ratio, is associated 

with CHD, the relation of TFA intake with the incidence of CHD has been greater than that 

predicted by changes in blood lipid levels alone [113,114]. This implies that the mechanisms 

behind the adverse effects of TFAs are not fully understood. Bendsen et al. [115] have shown that 

TFA consumption may involve in activation of TNF-α as a possible mechanism leading to 
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development of CHD (study group and design from PAPER II). In some studies TFA intake in the 

human diet has also been associated with type 2 diabetes. Two prospective studies found positive 

associations of TFA intake and type 2 diabetes [116,117] whereas no association has been 

observed in two other prospective cohort studies [118,119]. Moreover, in a 16-week randomised 

controlled trial, there was no relation between TFA intake and glucose metabolism (study group 

and design from PAPER II) [120]. Furthermore, higher plasma phospholipid and erythrocyte 

membrane particularly including 18:2 TFA (trans-18:2) are associated with higher risks of fatal 

ischemic heart disease [121] and sudden cardiac death [122].  

 TFAs effects membrane properties 4.7.2.2

Fatty acids are incorporated into phospholipids in all cell membranes of the body so dietary TFA 

level was reported to directly reflect the TFA uptake to the membrane [123]. The fatty acid 

composition of the membrane can strongly influence its physical characteristics. It has been shown 

that TFAs convey membrane properties such as lateral lipid packing, fluidity and permeability 

more similar to saturated fatty acids than their cis forms [124]. The trans double bond (Figure 17) 

produces a linear conformation resembling more a saturated chain, which provides better chain 

packing than a cis double bond [125]. It may be assumed that more tightly packed (trans isomer) 

membranes should be less permeable than membranes whose lipids are loosely packed (cis 

isomer). Depending on the similar basis, cis-PC membranes are more ‘fluid’ than trans containing 

membranes. The efficiency of molecular signal transduction is highly dependent on the orientation 

and positioning of various proteins within the cell membrane, which can be related to adverse 

health effects of TFAs.  

In PAPER II, indications of preferential incorporation of TFAs to PCs with longer chain and higher 

saturation have been observed which could potentially cause membranes dysfunctioning of the 

cell.  
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5 Conclusions 

This thesis aimed to examine the whole process involved in LC-MS and NMR based nutritional 

metabolomics studies, from data preprocessing, through data analysis and compound 

identification to interpretation of results in biological terms. For this purpose three independent 

datasets involving different study designs - an animal study, a human intervention with parallel 

design and a prospective cohort - were analysed. In the first study (PAPER I), the influence of LC-

MS data preprocessing on the marker selection has been investigated. The data was preprocessed 

with three different tools MZmine, XCMS, MarkerLynx and a customised method (binning and 

summation through retention time index). The main conclusions from the study are as follows: 

 A customised method which is considered as a more primitive data preprocessing 

approach leads to identification of a few false positives and false negatives but at the same 

time allows fast preprocessing.  

 Each software tool employs different methods in their peak detection and alignment 

algorithms such that each has pros and cons to detect specific features. 

 The selection of proper parameters for each tool based on the characteristics of the 

dataset is the key for obtaining high quality preprocessed data. Furthermore, the use of 

more than one software and/or the use of several settings during data preprocessing with 

any software is likely to improve marker detection in untargeted metabolomics.   

Analysis of metabolomics data is challenging because large amounts of complex data is generated 

from relatively few samples. In order to analyse the complex datasets in this thesis, PCA has been 

an extremely useful tool not only for providing an overview of the dominant patterns but also for 

detection of outliers, and evaluation of preprocessing and pre-treatment methods. However, PCA 

is not very efficient for extraction of relevant metabolites from the vast number of irrelevant ones 

which is the core aim of data analysis in metabolomics studies. PAPER III explores this issue and 

aims to compare PCA with its modified version SPCA. The results suggest that SPCA and PCA are 

equally good to capture relevant patterns, yet the selection of representative metabolites is much 

easier with SPCA. Therefore, SPCA can potentially be applied for variable selection purposes in LC-

MS based metabolomics. In metabolomics studies, the relevant patterns are rarely the dominant 

ones, thus unsupervised methods such as PCA (or SPCA) do not always work. Therefore, a 

supervised approach, PLSDA, has been employed for PAPER I and II. PLSDA is prone to overfitting 

particularly for datasets where the number of variables is much larger than the number of 
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samples. To overcome this problem, double cross-validation routine is applied. The selection of 

relevant patterns is based on regression coefficients and selectivity ratio.   

In order to identify the selected compounds from LC-MS data besides the routines, enzymatic 

reactions has been performed when the compounds were not commercially available (PAPER I). 

Furthermore, it has been demonstrated that lithiated adducts of phospholipids have enhanced 

ionization and class specific fragmentation in MS/MS scan modes (PAPER II). 

The identified compounds have been interpreted in terms of biological interest. In the first study 

(PAPER I) the aim was to extract the metabolic patterns related to fasting (12h) and fed states 

from rat LC-MS plasma profiles. This was further extended to a prospective cohort with the slightly 

different focus to identify time since last meal related patterns (PAPER III). Although similar 

purposes were involved, a rat model offers full control of the food intake whereas a cohort study 

provides un-controlled observational settings. The major conclusions from these two studies can 

be summarized as follows: 

 Only for fasted rats, compounds such as fatty acids, β-hydroxybutyric acid (ketone body), 

acetyl-carnitine and acyl-carnitines in plasma increased, which suggests an upregulated 

energy production via lipolysis. The promoted lipolysis indicates body’s shift to catabolism. 

However in the cohort study, the few subjects had the last meal more than 12 h, yet most 

of them had a drink independently of their recorded TSLM. Thus, most were probably not 

in the fasting state. On the other hand, the rats have higher rate of energy metabolism 

than humans and for that reason, overnight fasting represents a more extreme condition 

than in humans.  

 In both studies, high levels of amino acids with recent food intake (fed state) were found, 

which is linked to protein sources introduced from the last meal.  

 In both studies, lyso-lipids were higher after food intake and decreased with time.  

In PAPER II, NMR and LC-MS untargeted metabolomics has been used as an approach to explore 

the effect of industrially produced TFA intake on plasma metabolites. The well-known adverse 

effects of TFA on serum lipids were confirmed by NMR in terms of increased LDL cholesterol levels. 

On the other hand, LC-MS findings have demonstrated that in overweight healthy women, intake 

of industrially produced TFA affects lipid metabolism by increasing the concentration of specific 

PCs and an SM. The indications for preferential integration of trans18:1 into the sn-1 position of 

phosphatidylcholines, all containing PUFA in the sn-2 position, could be explained by a general up-

regulation in the formation of long-chain PUFAs after TFA intake and/or by specific mobilisation of 



45 
 

these fats into phosphatidylcholines as a result of TFA exposure. NMR supported these findings by 

revealing increased unsaturation of plasma lipids in the TFA group.  

In conclusion, the utilization of metabolomics to disentangle the metabolic perturbations requires 

detailed understanding of the system under study, of the analytical technologies and their specific 

effects on the data produced, so that suitable data preprocessing and analysis strategies can be 

applied.  

In terms of biology, lyso-lipids and amino acids emerged as the most dominating patterns for 

identification of recent food intake. On the other hand, TFA intake caused specific changes in 

membrane lipid species which may be related to the mechanisms of trans fat-induced diseases. 
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6 Future Perspectives 

In this thesis LC-MS and NMR based metabolomics has been demonstrated as a powerful tool to 

disclose the underlying metabolic patterns reflecting the (1) postprandial response to food intake 

and its clearance rate and (2) TFA intake.  

The postprandial response reveals multiple aspects of metabolic health that would not be 

apparent from studying the fasting parameters. Thus, investigating the effect of specific food 

intake or disease by utilising postprandial response of individuals has the potential to identify the 

discrete metabolic profiles that would not be seen in normal fasting conditions. In fact, this issue 

was explored with data from pilot DCH (Diet, Cancer and Health) cohort with the aim of resolving 

cancer and postprandial response interactions (PAPER III). However, the number of subjects was 

not sufficient to describe the group specific trends. Potentially, the same principle can be applied 

to the larger cohort of DCH, where LC-MS plasma profiles of ~3000 individuals have been 

recorded. Indeed using this set, metabolic profiles in terms of postprandial response can be 

examined to assess the incidence of diseases such as overweight, diabetes and CHD. In order to 

analyse this data advanced methods (e.g. multi-way data analysis tools) is required, as the purpose 

is the identification of time series metabolite evaluations in discrete classes (e.g. healthy/disease). 

The samples of DCH cohort were collected in the '90s before TFA was banned in Denmark, making 

this data set suitable to investigate the impacts of long term exposure to TFAs. TFA intake of each 

individual can be assigned from plasma LC-MS profiles using previously identified TFA exposure 

markers (PAPER II). Then, the associations between long term exposure to TFA and the incidence 

of diseases such as CVD and diabetes can be explored.   
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Abstract: The metabolic composition of plasma is affected by time passed since the last 

meal and by individual variation in metabolite clearance rates. Rat plasma in fed and fasted 

states was analyzed with liquid chromatography quadrupole-time-of-flight mass 

spectrometry (LC-QTOF) for an untargeted investigation of these metabolite patterns. The 

dataset was used to investigate the effect of data preprocessing on biomarker selection 

using three different softwares, MarkerLynxTM, MZmine, XCMS along with a customized 

preprocessing method that performs binning of m/z channels followed by summation 

through retention time. Direct comparison of selected features representing the fed or 

fasted state showed large differences between the softwares. Many false positive markers 

were obtained from custom data preprocessing compared with dedicated softwares while 

MarkerLynxTM provided better coverage of markers. However, marker selection was more 

reliable with the gap filling (or peak finding) algorithms present in MZmine and XCMS. 

Further identification of the putative markers revealed that many of the differences 

between the markers selected were due to variations in features representing adducts or 

daughter ions of the same metabolites or of compounds from the same chemical 

subclasses, e.g., lyso-phosphatidylcholines (LPCs) and lyso-phosphatidylethanolamines 

(LPEs). We conclude that despite considerable differences in the performance of the 

preprocessing tools we could extract the same biological information by any of them. 

Carnitine, branched-chain amino acids, LPCs and LPEs were identified by all methods as 

markers of the fed state whereas acetylcarnitine was abundant during fasting in rats. 
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1. Introduction 

In nutritional studies, blood samples are frequently collected in order to relate dietary conditions 

with metabolic markers. Blood may be obtained either in the fasted or postprandial state, depending on 

the hypothesis being tested. The fasting state, typically following an overnight fast, is considered to be 

more reproducible and can be defined as a baseline level for metabolic studies. However, imbalances 

in diet-dependent metabolism may not be detectable in the fasted state [1]. On the other hand, 

determination of the metabolic response in the extended postprandial state, which is the normal 

metabolic situation of human beings throughout the day, is more challenging as individual variability 

is high [2]. The basic metabolic rate varies roughly with surface area in mammals and an overnight 

fasting period in rats having an eight times higher rate of energy metabolism than humans may 

therefore represent a more extreme condition than overnight fasting in humans. A rat model may 

therefore be convenient to study the major differences between fasting and fed states, the latter defined 

as the state of rats following a normal ad libitum meal pattern. A rat model also offers full control of 

the food intake in the study subjects. 

In this study, an untargeted metabolomics based approach to study the metabolic differences 

between rat plasma at fasted and fed states was performed. Metabolomics is defined as the process of 

monitoring and evaluating changes in metabolites during biochemical processes and has become an 

emerging tool to understand responses of cells and living organisms with respect to their gene expression 

or alterations in their lifestyles and diets of biochemical variation, during or after food intake [3]. 

A wide range of metabolites and other compounds can be detected in various biofluids by nuclear 

magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). These approaches can be 

either untargeted through total data capture or highly targeted, such as measuring a large number of 

defined lipids. MS based instruments, with higher sensitivity compared to NMR [4,5], have become a 

widely used technique in metabolomics studies. Liquid chromatography (LC) coupled with time-of-

flight (TOF) MS offers high resolution, reasonable sensitivity and improved data acquisition for 

complex sample mixture analyses. The system has served as a powerful tool in many other studies 

focusing on untargeted metabolic profiling of biofluids [6–8]. 

LC-MS analysis produces large amounts of data with complex chemical information. An important 

task is to arrange data in a way so that relevant information can be extracted. The complexity of LC-MS 

data brings out the concept of data handling which can be roughly summarized in two basic steps: data 

preprocessing and data analysis. Data preprocessing covers the methods to go from complex raw data 

to clean data. Raw data are comprised of retention times and mass to charge ratios of thousands of 

chemical compounds. Several software tools (commercial or freely available) have emerged for LC-MS 

data preprocessing. These tools typically include specific algorithms for the two key steps in data 

preprocessing, (1) peak detection and (2) alignment. Each software tool creates a list of peaks denoted 

by a specific mass and retention time. Each entry has a signal intensity denoting peak height or area. 
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Alignment corrects retention time and mass differences across samples so that a peak, considered as 

one chemical compound, is represented by the same mass and retention time across all samples. The 

peak detection and alignment result in a data table providing the detected peaks across samples which 

can be denoted as clean data. All of these tools aim to provide high speed, automated data 

preprocessing. The basic principles of the many LC-MS data preprocessing software tools have 

recently been summarized [9,10]. To be able to obtain high efficiency in data preprocessing, the software 

tool employed should have the parameter settings required to match the structure of the specific dataset. 

Existence of various data preprocessing tools brings out concerns about what are the characteristics 

of the software tools and what are the pros and cons of their algorithms. There are some studies 

attempting to define quality parameters for comparison of peak detection [11,12] or alignment [13] 

algorithms of different data preprocessing tools, but a direct comparison of the overall performance of 

the most commonly used data preprocessing tools has not so far been attempted. The question to be 

addressed in this study is whether there is agreement between the biological information as represented 

by the biomarkers extracted by preprocessing the same dataset with different data preprocessing 

methods. Therefore we compare here the potential biomarkers extracted from the current small dataset 

using four different softwares for preprocessing; (1) MarkerLynxTM (MassLynx (Waters, Milfold, MA, 

USA)); (2) MZmine [14]; (3) XCMS [15,16] and (4) a customized method that is implemented in 

MATLAB (The Mathworks, Inc., MA, USA). MarkerLynxTM is a commercial software whereas 

XCMS and MZmine are freely available software tools. The customized method included m/z binning 

and retention time collapsing which can be considered as a more old-fashioned method for LC-MS 

data preprocessing. The applicability of this method for LC-MS data has been evaluated in other 

studies [17] but an extensive comparison with other approaches has not been published previously. 

Thus, in this study the UPLC-QTOF profiles of rat plasma collected in the fasted and fed states 

were analyzed for two different purposes: (1) to investigate the effect of different data preprocessing 

tools on biomarker selection; and (2) to interpret the biology behind the biomarkers identified for the 

two states. 

2. Results and Discussion 

2.1. Comparison of Data Preprocessing Methods 

The number of features obtained from each preprocessing method is given in the Supplementary 

information 3. We succeeded in extracting a similar number of features with optimized parameter 

settings (positive or negative), except for the custom method in negative mode where we have an 

approximate doubling compared with the other software tools. 

Primarily, common and unique extracted features from three different softwares were illustrated in 

Figure 1. We found 37%–46% of the features extracted by each software to be in common. Rauf et al. [16] 

found higher number for common features (46%–52%) from leaf and seed extracts comparing 

MZmine and XCMS (centWave) peak detection algorithms. The difference can be the result of more 

complex nature of plasma samples compared to plant extracts. 
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Figure 1. Venn diagrams illustrating the number of common and method specific features 

extracted from three software tools (right: positive mode; left: negative mode). 

 

All three software tools and the customized method employed here were able to produce a feature 

set showing substantial separation of samples from the fasted and fed states in a PCA scores plot 

(Figure 2 for negative mode data and Supplementary information 5 for positive mode data). 

Figure 2. PCA scores plots of negative mode data processed with MarkerLynx (a), 

MZmine (b), XCMS (c) and customized methods (d). 

 

PLSDA model of each preprocessed data on independent test sets provided an average classification 

error rate of 0–0.02 (Supplementary information 6) indicating that all models resulted in good 

classification performance. The classification error rates were very similar for datasets obtained from 
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different data preprocessing methods. On the other hand, the average classification error rates of 

datasets where classes were permuted were calculated as 0.49–0.51, corresponding to misclassification 

of half of the samples, which is an expected value for permuted data [18]. None of the 2,000 permutations 

had classification error lower than 0.00–0.02, indicating original fasted vs. fed discrimination was 

significant. Histograms of permutation test are given in Supplementary Information 7. 

As previously mentioned, autoscaling is applied in this study to detect possible variation between 

two states for any feature, regardless of its concentration. Nevertheless, autoscaling complicates 

variable selection as it gives the same chance to all peaks to influence the PLSDA model, and the 

decision of a regression coefficient cut-off value for selection of important features becomes difficult. 

Hereby, we decided to select of 25 features only but there is no proof to say the feature with 26th 

highest regression coefficient was not a potential biomarker. Thus, the 25 markers from each method 

and their various ranks from other softwares were included in Tables 1 and 2 for the negative and 

positive modes, respectively. While there is no way to say which software is the more correct, the 

consequence of the differences observed here is that there is no basis for putting too much emphasis on 

the rank in PLS-DA methods. Howeverin many metabolomics studies, PLS-DA regression coefficients 

or VIP cut-offs have commonly been employed for marker selection, even without the rigorous 

iteration used here. 

Table 1. Retention times and measured masses of the markers obtained from MarkerLynx, 

MZmine, XCMS and custom data processing of negative mode data that contributed most 

to the separation of samples in fasted and fed states. 

NO RT 

(min) 

Measured 

m/z 

MX 

Rank 

MZ 

Rank 

XCMS 

Rank 

Custom 

rank 

Group Suggested 

Compound 

Adduct Monoisotopic 

mass 

1 0.64 105.02 57 17 14 194 fed U1   

2 0.82 116.07 91 26 17 507 fed U2   

3 1.15 180.06 67 28 21 27 fed U3   

4 1.15 383.12 40 80 25 624 fed U3   

5 1.36 59.01 21 34 9 7 fasted 3-

hydroxybutanoic 

acid F 

 104.0473 

6 1.36 260.00 49 68 nd 22 fasted 3-

hydroxybutanoic 

acid F 

 104.0473 

7 1.37 229.07 20 35 nd 72 fasted 3-

hydroxybutanoic 

acid A 

[2M+Na-

H] 

104.0473 

8 1.37 103.04 39 15 nd 20 fasted 3-

hydroxybutanoic 

acid 

[M-H] 104.0473 

9 1.37 261.18 1424 nd 18 14 fed Isoleucine [2M-H] 131.0946 

10 1.37 130.09 25 nd 24 65 fed Isoleucine [M-H]- 131.0946 

11 1.80 178.05 nd 22 nd 166 fed U4   
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Table 1. Cont. 

NO RT 

(min) 

Measured 

m/z 

MX 

Rank 

MZ 

Rank 

XCMS 

Rank 

Custom 

rank 

Group Suggested 

Compound 

Suggested 

Adduct 

Monoisotopic 

mass 

12 1.88 134.06 14 9 6 40 fasted Hippuric acid * F  179.0582 

13 1.88 178.05 15 7 4 116 fasted Hippuric acid * [M-H] 179.0582 

14 2.02 344.10 383 nd 222 12 none U5   

15 2.46 365.07 3 6 nd 43 fed U6   

16 2.46 623.36 8 nd 3 94 fed U6   

17 2.46 343.08 2 2 1 6 fed U6   

18 2.47 623.87 4 nd nd 16 fed U7   

19 3.00 185.12 793 23 77 284 fed U8   

20 3.50 505.30 1833 nd nd 10 none U9   

21 4.11 586.31 nd 13 nd 13 fed LPC(20:5) [M+FA-H] 541.3168 

22 4.12 309.20 1 10 7 1802 fed LPC(20:5) F  541.3168 

23 4.15 452.28 22 30 22 1006 fed LPC(14:0) F  467.3012 

24 4.16 512.30 17 21 19 45 fed LPC(14:0) A [M+FA-H] 467.3012 

25 4.16 979.60 19 nd nd 33 fed LPC(14:0) A [2M+FA-H] 467.3012 

26 4.17 502.29 13 11 nd 25 fed LPC(18:3) F  517.3168 

27 4.18 562.31 5 8 51 17 fed LPC(18:3) [M+FA-H] 517.3168 

28 4.18 818.50 16 nd nd 1672 fed U10   

29 4.18 526.30 11 19 11 912 fed LPC(20:5) F  541.3168 

30 4.19 586.31 7 18 8 13 fed LPC(20:5) [M+FA-H] 541.3168 

31 4.23 563.32 nd nd 13 15 fed U11   

32 4.34 476.28 23 1 nd 1 fed 2-acyl LPC(18:2) F  519.3325 

33 4.35 564.33 10 12 nd 3 fed 2-acyl LPC(18:2) [M+FA-H] 519.3325 

34 4.35 504.31 147 3 nd 2 fed 2-acyl LPC(18:2) F  519.3325 

35 4.35 578.30 nd 5 nd 35 fasted U12   

36 4.36 632.33 120 25 nd 113 fed U13   

37 4.38 281.25 33 nd 15 nd fasted U14   

38 4.43 476.28 105 4 2 1 fed 1-acyl LPC(18:2) F  519.3325 

39 4.44 168.35 6 nd nd 1512 fed 1-acyl LPC(18:2) F  519.3325 

40 4.44 995.59 60 nd nd 4 fed 1-acyl LPC(18:2) F  519.3325 

41 4.44 168.63 18 nd nd 170 fed 1-acyl LPC(18:2) F  519.3325 

42 4.44 504.31 65 14 32 2 fed 1-acyl LPC(18:2) F  519.3325 

43 4.45 457.10 12 nd 561 2332 fasted U15   

44 4.45 564.33 32 31 20 3 fed 1-acyl LPC(18:2) [M+FA-H] 519.3325 

45 4.45 335.40 nd nd nd 8 none none   

46 4.45 335.70 nd nd nd 9 none none   

47 4.45 477.28 nd nd nd 21 fed 1-acyl LPC(18:2) 

iso1  

  

48 4.45 564.10 nd nd nd 23 none none   

49 4.45 565.34 nd nd nd 5 fed 1-acyl LPC(18:2) 

iso2 

  

50 4.45 587.30 nd nd nd 11 none none   
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Table 1. Cont. 

NO RT 

(min) 

Measured 

m/z 

MX 

Rank 

MZ 

Rank 

XCMS 

Rank 

Custom 

rank 

Group Suggested 

Compound 

Suggested 

Adduct 

Monoisotopic 

mass 

51 4.45 996.59 nd nd nd 19 fed 1-acyl LPC(18:2) 

iso3 

  

52 4.50 552.33 24 46 63 320 fed U16   

53 4.62 452.28 48 55 23 1006 fasted U17   

54 4.65 566.35 374 24 nd 138 fed 1-acyl LPC(18:1) [M+FA-H] 521.3481 

55 4.73 478.29 9 16 12 18 fed LPE(18:1) * [M-H] 479.3012 

56 4.88 445.33 76 20 10 1206 fasted U19   

57 5.14 277.22 85 106 5 98 fasted Gamma-Linolenic 

acid * 

[M-H] 278.2246 

58 5.22 338.30 100 nd nd 24 none U20   

59 5.38 279.23 145 nd 16 177 fasted Linoleic acid * [M-H] 280.2402 

MX: MarkerLynx; MZ: MZmine; ‘U’, Unidentified compound; A: Adduct; F: Fragment *, identity confirmed with 

authentic standards; ‘nd’, not detected by the software peak-finding algorithm. 

Table 2. Retention times and measured masses of the markers obtained from MarkerLynx, 

MZmine, XCMS and custom data processing of positive mode data that contributed most 

to the separation of samples in fasted and fed states. 

NO RT 

(min) 

Measured 

m/z 

MX 

Rank 

MZ 

Rank 

XCMS 

Rank 

Custom 

rank 

Group Suggested 

Compound 

Suggested 

Adduct 

Monoisotopic 

mass 

1 0.53 112.11 nd 12 13 301 fasted U1   

2 0.57 730.70 276 nd nd 25 fasted U2   

3 0.61 103.04 46 nd 19 2901 fed L-Carnitine *F  161.1052 

4 0.61 102.09 1368 nd 21 481 fed L-Carnitine *F  161.1052 

5 0.61 162.11 31 41 10 10 fed L-Carnitine * [M+H] 161.1052 

6 0.66 70.07 12 11 25 22 fed D-proline *F  115.0633 

7 0.66 116.07 13 14 12 11 fed D-proline * [M+H] 115.0633 

8 0.86 130.09 24 521 44 838 fasted U3   

9 0.90 144.10 23 nd 16 455 fasted L-Acetylcarnitine*F  203.1158 

10 0.90 204.12 28 18 6 8 fasted L-Acetylcarnitine* [M+H] 203.1158 

11 0.90 145.05 21 13 11 41 fasted L-Acetylcarnitine*F  203.1158 

12 1.17 248.15 49 23 7 38 fasted U4   

13 1.64 231.12 nd 100 1 649 fasted U5   

14 1.90 105.03 1 17 2 78 fasted Hippuric Acid*F  179.0582 

15 1.90 77.04 3 19 3 578 fasted Hippuric Acid*F  179.0582 

16 2.23 316.21 19 46 nd 179 fasted U6   

17 2.42 899.43 nd nd nd 17 fed U7   

18 2.42 287.20 nd nd nd 1 fed U7   

19 2.42 286.20 7 3 50 4 fed U7   
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Table 2. Cont. 

NO RT 

(min) 

Measured 

m/z 

MX 

Rank 

MZ 

Rank 

XCMS 

Rank 

Custom 

rank 

Group Suggested 

Compound 

Suggested 

Adduct 

Monoisotopic 

mass 

20 3.42 536.34 35 nd nd 24 fed U8   

21 3.49 158.16 338 222 63 19 fasted U9   

22 4.11 542.33 16 16 nd 21 fed LPC(20:5) [M+H] 541.3168 

23 4.12 564.31 nd 15 nd 43 fed LPC(20:5) A [M+Na] 541.3168 

24 4.16 312.03 151 nd 17 2659 fed U10   

25 4.16 468.31 20 24 23 15 fed LPC(14:0) [M+H] 467.3012 

26 4.19 540.31 25 64 nd 47 fed LPC(18:3) A [M+Na] 517.3168 

27 4.19 518.33 15 6 81 62 fed LPC(18:3) [M+H] 517.3168 

28 4.23 445.40 nd nd nd 12 fasted octadecanoylcarnitineIso   

29 4.23 444.37 18 33 47 33 fasted octadecanoylcarnitine   

30 4.35 337.28 9 9 5 57 fed 2-acyl LPC(18:2) F  519.3325 

31 4.35 520.34 6 1 nd 2 fed 2-acyl LPC(18:2) [M+H] 519.3325 

32 4.36 542.33 4 2 nd 21 fed 2-acyl LPC (18:2) A [M+Na] 519.3325 

33 4.36 819.96 22 nd nd 950 fed U11   

34 4.36 502.33 nd 10 nd 28 fed 2-acyl LPC(18:2) F [M+Na] 479.3376 

35 4.42 566.32 1024 2058 15 50 fasted U12   

36 4.42 844.47 219 233 20 1312 fasted U13   

37 4.44 519.90 nd nd nd 18 fed U14   

38 4.44 521.35 nd nd nd 5 fed 1-acyl LPC(18:2) Iso1 [M+H] 519.3325 

39 4.45 523.35 nd 7 nd 89 fed 1-acyl LPC(18:2)Iso2 [M+H] 519.3325 

40 4.45 519.70 316 nd nd 7 fed U15   

41 4.45 997.64 14 20 9 3 fed 1-acyl LPC(18:2) A  519.3325 

42 4.45 819.97 2 21 835 950 fasted U16   

43 4.45 520.34 8 4 18 2 fed 1-acyl LPC(18:2) [M+H] 519.3325 

44 4.45 998.64 30 nd nd 6 fed U17   

45 4.45 460.29 59 54 14 612 fed 1-acyl LPC(18:2) F  519.3325 

46 4.45 520.10 nd nd nd 13 none U18   

47 4.45 520.90 nd nd nd 23 none U18   

48 4.45 521.55 nd nd nd 20 none U18   

49 4.45 521.80 nd nd nd 16 none U18   

50 4.45 807.97 5 8 4 2664 fed U19   

51 4.63 949.64 34 25 48 85 fasted U20   

52 4.64 454.30 32 22 22 1425 fasted U20   

53 4.65 975.70 76 nd nd 14 fed U21   

54 4.65 522.36 10 nd nd 70 fed 2-acyl LPC(18:1) * [M+H] 521.3481 

55 4.65 339.29 17 5 8 573 fed 2-acyl LPC(18:1) *F   

56 4.68 520.34 11 nd 24 2 fed U22 [M+H] 519.3325 

MX: MarkerLynx; MZ: MZmine; ‘U’, Unidentified compound; A: Adduct; F: Fragment *, identity confirmed with 

authentic standards; ‘nd’, not detected by the software peak-finding algorithm. 
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2.2. Custom Method vs. Software Tools 

The algorithm of the custom preprocessing method differs from the others by not having any peak 

detection and alignment steps. It can therefore be considered as more independent, albeit more 

primitive and simple. 

We compared first the m/z bins selected by the custom method with the markers from the three 

dedicated softwares (Figure 3a). Out of 25, only five of them were common for all data preprocessing 

tools in the positive mode and three in the negative. On the other hand, 48% (positive mode) and 58% 

(negative mode) of the m/z bins were identified also as markers by at least one of the software tools. 

Figure 3. (a) Pie chart illustrating the number of custom data preprocessing markers that 

are unique and that are detected as markers by the other software tools (CS:Custom, 

MZ:MZmine, XC:XCMS, MX:Markerlynx); (b) Venn diagrams illustrating the number of 

common and method specific markers extracted from three software tools (right: positive mode; 

left: negative mode). 

(a) 

 

(b) 

 

Another perspective in the comparison of different data preprocessing methods is illustrated in 

Figure 4 where, each row represents the rank of one marker from Table 1 (columns 4–7) for all four 

different data preprocessing methods. The first impression from this figure may be that the number of 

black regions (undetected peaks) might seem alarmingly high for some of the methods. It is important 

here to state that the custom data preprocessing leads to a number of false positives. The major causes of 

false positives are splitting of analytes into two adjacent bins or chromatographic collapsing. 
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Figure 4. Heatmap comparing the importance of each marker based on four different data 

preprocessing tools for (a) negative and (b) positive mode data. Each row represents the 

lowest value rank of a metabolite for four different methods (Table 1, 3rd column). The 

markers were sorted in ascending order based on the rank obtained with MarkerLynx  

(red: rank 1–25; orange: rank 26–50; yellow: rank > 50; black: not detected). 

(a) 

 

(b) 
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An additional point from Figure 4 is the large area of yellow regions for the custom method, which 

presents markers detected with higher than 50 as rank in PLS-DA. This is explained mainly by 

retention time collapse causing peaks to be added with other peaks having the same mass but different 

retention time. For instance, the chromatogram of m/z bin = 820 as illustrated in Supplementary 

information 8 includes two peaks. The sample track signals of the peak at retention time = 4.32–4.38 

(No. = 33, Table 2) is higher in the fed state while the peak with retention time = 4.4–4.48 38 (No. = 42, 

Table 2) is higher in the fasted state, indicating that they are actually markers. As these two different 

peaks are in the same m/z bin, the retention times collapsing leads to the loss of these markers. In other 

cases a small peak representing a marker is added with a larger one without marker characteristics 

thereby diluting the effect so that the bin escapes selection. 

2.3. Comparison of the Dedicated Software Tools 

Further comparison of the 25 markers for positive and negative mode data from each of the three 

dedicated software tools is illustrated in two Venn diagrams (Figure 3b). In general these three tools 

seem to have 8–10 markers in common among the selected 25 markers detected in the negative and 

positive mode (Figure 3b). There is a trend towards a larger difference between XCMS and each of the 

other methods in the pairwise comparisons. So all of the data preprocessing methods seem to miss out 

potentially important markers observed to be ranked among the top-25 markers by the other methods. 

In fact, only 8–10 markers would be observed to be in common if three different research groups were 

to investigate the same biological phenomenon using different softwares for data preprocessing, 

provided they had recorded similar LC-MS data. There are three possible explanations of the 

differences between detected markers: 

(1) The marker is not included in the feature list of the other softwares. The potential cause is 

differences between peak detection algorithms. The number of detected features is different as shown 

in Figure 1. This condition is illustrated by Figure 4 as black regions. 

(2) The marker is detected but the peak height assignment was not the same among software tools, 

which did not result in significant difference between fasted and fed states. One reason of this is shown 

in the next section as influence of gap filling. This condition is illustrated as yellow in Figure 4. 

(3) The data analysis method affected the marker selection. This was discussed as an effect of 

autoscaling previously. This condition is illustrated by orange in Figure 4. 

Additional differences might be caused by optimization of parameter settings and other factors from 

the metabolomics experiment. The loss of information and potential introduction of noise from feature 

selection by a single preprocessing method would therefore seem to be a potential source of error in 

metabolomics. 

2.4. The Influence of Gap Filling 

An important drawback for MarkerLynxTM is that it does not contain any gap filling algorithm 

resulting in many zero values in the final extracted feature set. Zeros may obscure the later data 

analysis step and may result in incorrect grouping of ‘effect markers’ and ‘exposure markers’, because 

‘true’ zeros as well as smaller and larger peaks missed by the algorithm are given the same zero value [19]. 

Consequences of this lacking gap filling algorithm is illustrated with two real cases. In the first case, 
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MarkerLynxTM algorithm records the signal of some samples from the group with a lower signal as 

zero, thereby increasing the differences between groups and the chance that the feature is selected as a 

marker. For instance, marker number 42 (Table 2) has rank 2 for MarkerLynxTM whereas it came out 

with higher ranks by the others (Supporting Information 6) due to this phenomenon. In the second 

case, the signal of some samples recorded as zero while those samples belong to the group with higher 

signal. In this way, the true difference between the two groups was deflated and those markers had 

higher rank number (lower importance) with MarkerLynxTM. Many examples (Supplementary 

information 9) of this situation is observed, particularly in the negative mode data where the signal 

intensity is generally lower, thereby explaining the large yellow region for MarkerLynxTM in Figure 4a. 

Another observation particularly in Figure 4a is that MarkerLynxTM has fewer black regions, 

meaning very few undetected peaks and several markers that are detected by MarkerLynxTM but not by 

the other two softwares. Since the total number of features obtained from preprocessing the data was 

similar for all three softwares, one possible explanation could be the differences in the filtering step. 

The 80% rule applied to the MarkerLynxTM dataset differs from that of the others by retaining features 

with many non-zero observations in at least one sample group. The filtering algorithm of MZmine 

does not allow the user to define the filter for each sample group. By filtering away features with many 

zeros, there is a risk of removing perfect markers that appear only in one of the sample groups. 

Therefore the filter has to be set to no more than 80% of the number of observations in the smallest 

sample group in order to be equivalent to the 80% rule. Another possible reason could be the 

differences between the peak detection algorithms. MarkerLynxTM provides an automated peak 

detection algorithm whereas many parameters are user-defined for the others. Although we optimized 

the selection of parameters carefully by testing several settings, we cannot rule out that better overlap 

could have been obtained with a different parameter set. 

2.5. Software Preprocessing Settings 

The number of detected peaks depends very much on the data preprocessing settings of each 

software algorithm. Although we attempted to attain the largest possible similarity in the preprocessing 

parameters of MarkerLynxTM, MZmine and XCMS, we were aware that it is not possible to obtain 

exactly the same results, since each method is based on different algorithms. To illustrate this point, 

we preprocessed the data with MZmine using less conservative settings for many peak detection 

parameters and constructed the heat map again, leading to a new pattern much more similar to XCMS 

(figure not shown). So, in reality, it may be possible to obtain similar patterns, at least with MZmine 

and XCMS where gap filling is available, depending on their individual parameter settings. 

In this study the contrasts between the fasted and fed states were very clear, whereas such strong 

contrasts may not be seen in many other metabolomics studies. Improper settings of data preprocessing 

parameters may therefore obscure the extraction of relevant information, and several settings and/or 

softwares should be applied. Proper settings are based on careful inspection of raw data as well as 

insight into the functionalities of software parameters. It could seem like an appealing option to allow 

a much larger number of peaks by being less conservative with many peak detection parameters. 

However, the consequence of detecting many peaks will be the inclusion of more noise and will 

complicate not only the alignment but also the data analysis step for the detection of biomarkers. 
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MarkerLynxTM and MZmine are both user friendly tools for users who do not want to go into R, 

MATLAB, or similar programming tools. Preprocessing data with MarkerLynxTM requires just a few 

user-defined settings. However the software does not provide any possibility for checking the success 

of any data preprocessing step. In comparison, MZmine provides a powerful visualization side that can 

be considered as quite useful for tuning the settings. Algorithms for visualization of peak detection 

results are also included in the XCMS package in R. 

2.6. Biomarker Patterns 

Three patterns are immediately visible for markers of the fed state in Tables 1 and 2. The first of 

these is the presence of sets of isomers having very similar masses but slightly different retention 

times, indicating that some specific groups of isomers are typical markers. The slight mass difference 

may be attributed to the mass accuracy of the instrument. Some examples are clusters at 512.29, 

478.29 and 590.35 in the negative mode, and at 468.32, 520.34, and 522.36 in the positive mode. In 

many cases the earlier eluting isomeric form was not detected in the XCMS preprocessed dataset, 

possibly because they are much smaller peaks. Considering the parameters set while preprocessing the 

data with XCMS (Supplementary Information 10), additional filtering or a too high bw parameter (for 

setting the RT shift) might be the cause of not detecting those peaks. Furthermore, these patterns are 

always spotted with the custom data preprocessing as they were included into the same m/z bin, 

thereby intensifying their relative importance. As can be seen from Tables 1 and 2, the possible 

isomers were therefore given the same rank for the custom data preprocessing. 

Another pattern in the marker sets is the presence of peaks with mass differences corresponding to 2 

or 4 hydrogen atoms but with different retention times. These pairs are observed in both modes  

(e.g., 476/478, 562/564/566 in the negative mode, and 506/508 or 520/522 in the positive, Tables 1 and 2). 

These clusters and patterns are all observed for compounds with retention times in the same (unpolar) 

range pointing towards a series of lipids with varying levels of saturation (2 for each double 

bond).Similar patterns can also be observed for changes in chain lengths (+26 for adding –CH=CH–) 

as the underlying biomarkers.  

Pattern recognition therefore identified lipids as potential discriminative markers between plasma 

samples collected at fasted and fed states. This confirms an expected finding and further identification 

of some of the lipids as well as some of the more polar peaks was therefore perused. 

2.7. Biomarkers of Fasted and Fed State 

Most of the masses belonging to the lipid-related patterns and clusters in the positive mode fit with 

the masses expected for positively charged lysophosphatidylcholines (LPCs) of varying chain lengths 

and degrees of saturation. LPC is a plasma lipid that has been recognized as an important cell signaling 

molecule and it is produced by the action of phospholipases A1 and A2, by endothelial lipase or by 

lecithin-cholesterol acyltransferase (LCA).LCA has a well-known function in catalyzing the transfer of 

fatty acids from phosphatidylcholine to free cholesterol in plasma for the formation of cholesteryl 

esters [20]. In the rat, the LPCs with more saturated acids are formed mainly in the plasma whereas 

unsaturated LPC is formed from PCs in the liver. We observe here a mixture of both saturated and 

unsaturated LPCs, indicating that the source may be dual. The cytolytic and pro-inflammatory effects 
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of LPCs are well-known so their level is closely regulated. However, in blood plasma the LPCs form 

complexes with albumin and lipoproteins, especially LDL, and are therefore not as likely to cause 

direct cell injury [21]. Another action of LPCs seems to be related to increased insulin resistance [22]. 

A slow clearance of postprandial lipids is known to be a risk factor for diabetes but the LPCs might be 

a lipid fraction contributing more strongly to this action. It is interesting in this context to note that 

Kim et al. identified LPCs as the major discriminative compounds of plasma species separating fasting 

plasma from obese/overweight and lean men [7]. They reported lower levels of saturated LPCs and 

higher level of unsaturated LPCs in the plasma of lean as compared to obese or overweight men. We 

found a similar profile here in lean rats. The unsaturated LPCs have also been found to pass the blood-

brain barrier and to be important vehicles for delivering unsaturated lipids to the brain [23]. We 

speculate that the high level of unsaturated LPCs in the postprandial state of healthy individuals might 

be part of the satiety signaling system which is malfunctioning in obesity. 

The LPCs appear usually in two isomeric forms, as 1-acyl or 2-acyl LPCs. The true separation of 

isomeric groups of LPC(18:1) in a fed state plasma sample is illustrated in Supplementary information 

11. These isomers were unstable and spontaneously isomerized positionally, as also recognized in  

1-acyl authentic standards of LPC and LPE(18:1), where 9% of the authentic standard was detected as 

the peak belonging to the 2-acyl form. For the confirmation of the 2-acyl LPC form, standards of PC 

and PE(16:0/18:1) were hydrolyzed by phospholipase A1. In addition to the 2-acyl LPC and 

LPE(18:1) we observed that 7% of the acyl group had spontaneously migrated to the 1-acyl position 

(Supplementary information 11). Croset et al. studied the significance of positional acyl isomers of 

unsaturated LPCs in blood [24]. They concluded that 50% of PUFA was located at the 2-acyl position 

where they are available for tissue uptake, and that they can be re-acylated at the 1-acyl position to 

form membrane phospholipids.  

With the applied methodology we would only be able to extract the more polar lipids and detect 

lipids with m/z below 1,000 daltons. Therefore, we cannot conclude here that the LPCs, LPEs and free 

fatty acids are the major discriminative lipid species. Lipidomics studies have previously reported less 

polar lipid classes which may have m/z above 1,000 daltons, such as PCs, sphingomyelins and 

triacylglycerols as potentially reflecting the time since last meal [25,26]. With our current method, we 

were able to identify PCs but they were not discriminative in this study, possibly due to incomplete 

extraction. 

A group of carnitine based compounds was also detected as markers in the positive mode data. The 

main function of carnitine is to assist the transport and metabolism of fatty acids in mitochondria, 

where they are oxidized as a major source of energy [27]. In the plasma samples from the fasting state, 

the level of L-carnitine was found to be lower whereas acetyl-L-carnitine was higher. During fasting an 

elevated concentration of acetyl coenzyme A favors the production of acetyl-L-carnitine and the ketone 

body, 3-hydroxybutanic acid [28], and these were identified as characteristic markers for the fasting state. 

Two of the amino acids, isoleucine and proline, were found to be strongly discriminating between 

the fed and fasted states. Isoleucine belongs to the group of branched-chain amino acids which have 

been implicated in altered protein catabolism, insulin resistance and obesity [29,30]. However, leucine 

may have contributed to the signal since separation by our current UPLC-method was not efficient. It 



Metabolites 2012, 2             

 

 

91

seems therefore that isoleucine, and possibly other specific amino acids, may be markers of recent 

food ingestion and decrease with fasting. 

Many adduct or daughter ions were also observed among our markers as shown in Tables 1 and 2. 

In many cases, different adducts or fragment ions of the same metabolite may emerge with a higher or 

lower rank than the parent ion, and this is an important cause of differences in the ranking orders 

between the preprocessing softwares. So at the metabolite level, the differences between the 

preprocessing methods are actually much smaller. To illustrate the higher concordance at the 

metabolite level, we established a new rank for each metabolite (giving each metabolite the lowest 

rank value from among its representative adducts, fragments or isomers). The unidentified features 

were considered as representing the same metabolite as long as they are within the range of 0.02 min 

retention time window. The metabolite ranks of different methods are represented in Supplementary 

information 12, which illustrates that the rank patterns were much more similar between different 

methods at the metabolite level than at the feature level (Figure 4). Thus, it seems reasonable to 

conclude that different data preprocessing methods employed in this study provide around 50% 

common markers, but the agreement is actually much higher at the metabolite level since different 

markers (adducts or fragment ions) selected from the different preprocessing softwares represent the 

same metabolites. 

The observation that all these related ions come up with low rank numbers, i.e., high importance, 

and that their low ranks are shared between positive and negative modes as in this study strengthens 

not only the confidence in the identification step but also in our variable selection method. 

3. Experimental Section  

3.1. Animal Study and Sample Collection 

Eighty male Fisher 344 rats (4 weeks old) were obtained from Charles River (Sulzfeld, Germany). 

The animals had a one week run-in period to adapt to the standardized diet. The rats were subsequently 

randomized into five groups of 16 rats, each with equal total body weights and then fed five different 

diets which were all nutritionally balanced to give exactly the same amounts of all important macro- 

and micronutrients [31]. After 16 weeks, all rats were sacrificed by decapitation after CO2/O2 

anesthesia. Before sacrifice, 56 of the animals had fasted for 12 h and 24 of the animals were given 

access to food up until termination. Blood samples were collected immediately after sacrifice directly 

from the vena jugularis into a heparin coated funnel drained into 4 mL vials containing heparin as an 

anticoagulant. The blood was centrifuged at 3,000 g, 4°C for 10 min. The plasma fraction was aliquoted 

into 2 mL cryotubes and stored at −80°C until further processing. The animal experiment was carried 

out under the supervision of the Danish National Agency for Protection of Experimental Animals. 

3.2. Plasma Preprocessing and LC-QTOF Analysis 

Removal of plasma proteins was performed before LC-MS analysis of the plasma metabolites. The 

plasma samples were thawed on ice and 40 µL of each sample was added into a 96-well Sirocco™ 

plasma protein filtering plate (#186002448, Waters) containing 180 µL of 90% methanol 0.1% formic 

acid solution, and the plates were vortexed for 5 min to extract metabolites from the plasma protein 
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precipitate. A 96-well plate for the ultra-performance liquid chromatograms UPLC autosampler 

(Waters, cat # 186002481) was placed underneath the protein filtering plate and vacuum was applied 

to the plates (using a manifold) whereby the rubber wells in the Sirocco™ plates opened and the crash 

solvent including metabolites dripped into the 96-well UPLC plate. When the filtering plates were dry, 

180 µL of a 20:80 acetone/acetonitrile solution containing 0.1% formic acid was added to each well to 

further extract metabolites from the precipitated protein and vacuum was connected until dryness. The 

solvent was evaporated from the UPLC plates by using a cooled vacuum centrifuge and the dry 

samples were redissolved in 200 µL milliQ acidic water before analysis. A blank sample (0.1% formic 

acid) and a standard sample containing 40 different physiological compounds (metabolomics standard) 

was also added to spare wells to evaluate possible contamination and/or loss of metabolites in the 

filtering procedure. 

Each sample (10 µL) was injected into the UPLC equipped with a 1.7 µm C18 BEH column 

(Waters) operated with a 6.0 min gradient from 0.1% formic acid to 0.1% formic acid in 20:80 

acetone/acetonitrile. The eluate was analyzed in duplicates by TOF-MS (QTOF Premium, Waters). 

The instrument voltage was 2.8 or 3.2 kV to the tip of the capillary and analysis was performed in 

negative or positive mode, respectively. In the negative mode desolvation gas temperature was 400 °C, 

cone voltage 40 V, and Ar collision gas energy 6.1 V; in the positive mode we used the same settings 

except for collision energy of 10 V. A blank (0.1% formic acid) and the metabolomics standard were 

analyzed after every 50 samples during the run. 

3.3. Authentic Standards 

L-carnitine, linoleic acid and gamma-linolenic acid were purchased from Sigma Aldrich 

(Copenhagen, Denmark). 1-acyl LPC(18:1), 1-acyl LPE(18:1), PC(16:0/18:1) and PE(16:0/18:1) were 

obtained from Avanti Lipids (Alabaster, AL, USA). For the synthesis of acetyl L-carnitine, carnitine 

acetyltransferase from pigeon and acetyl coenzyme A were purchased from Sigma Aldrich. 

Acetylation of L-carnitine was performed as described by Bergmeyer et al. [32]. The 2-acyl lyso-forms 

were synthesized with phospholipase A1 from Thermomyces lanuginosus (Sigma Aldrich). 

Phospholipase A1 hydrolyzes the acyl group attached to the 1-position of PC(16:0/18:1) and 

PE(16:0/18:1) so that acyl-2 LPC(18:1) and LPE(18:1) were produced. The description of the method 

has been given by Pete et al. [33]. For the chemical verification of identified metabolites, one plasma 

sample from a rat in the fasted and another from the fed state were spiked with LPC(18:1) and 

LPE(18:1) individually, before analysis by the procedure outlined above. 

3.4. Raw Data 

The MassLynxTM (Version 4.1, Waters, Milford, MA, USA) software collected centroided mass 

spectra in real time using leucine-enkephalin as a lock-spray standard injected every 10 s to calibrate 

mass accuracy. Each of the 80 samples was analyzed in duplicates. For negative mode both 

measurements were included in the data analysis. However, for positive mode 64 sample 

measurements were excluded, which leaves 65 and 31 sample measurements for fasting and fed states, 

respectively. The exclusion criterion was based on an instrumental error occurred during analysis. In 

this case, the outliers had very low intensity due to injection errors. 
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The software stores data as non-uniform sample data files, each comprised of three vectors; 

retention time (0–6 min), m/z and intensity. The raw data was converted to an intermediate netCDF 

format with the DataBridgeTM utility provided with the MassLynx software. 

3.5. Software Tools for Data Preprocessing 

Raw data was transferred to MarkerLynxTM (Version 4.1, Waters, Milford, MA, USA) directly from 

MassLynx whereas netCDF files were imported to MZmine [14] and XCMS [15]. 

 The available information regarding the principle of algorithms used in MarkerLynxTM, MZmine 

and XCMS and the selected data preprocessing parameters are shown in electronic Supplementary 

information 1. The raw data was inspected while selecting the parameters for each software tool. For 

the peak detection step parameters such as minimum peak width included in MZmine (minimum and 

maximum peak width included in XCMS) and m/z tolerance included in MZmine (ppm in XCMS) 

were chosen by inspecting the raw data in a 2D sample plot (retention vs. m/z). For the alignment step 

(or peak grouping) TIC of at least 10 samples were overlapped to decide maximum retention time shift 

between samples. On the other hand, some parameters such as noise level or required peak shape were 

not straightforward to decide. Thus, at least 10 different parameter settings slightly varying were 

evaluated for each software tool. The optimum parameters were selected based on the best separation 

in a PCA scores plot. Deisotoping is performed in MATLAB for XCMS preprocessed data. The final 

outcome from each software tool is a feature set where each feature is denoted by the mass over charge 

(m/z) ratio and a retention time. The feature sets from the three software tools were transferred to 

MATLAB for further data analysis. 

3.6. Custom Methods for Data Preprocessing 

An alternative data preprocessing was performed directly on the raw data using MATLAB (Version 7, 

The Mathworks, Inc., MA, USA). To import netCDF files to MATLAB, the iCDF function [17,34] 

was employed. The steps of the custom data preprocessing are shown in Figure 5. As the first step, 

binning was performed on the m/z dimension as described by Nielsen et al. [17]. 

Alignment and offset correction were applied only to positive mode data as the instrumental 

response was observed to be significantly lower during the duplicate runs in the positive mode. To 

correct for instrumental response differences, prior alignment was performed using ICOshift [35]. The 

lower response of duplicates was corrected by calculating the difference matrices between each 

duplicate set, averaging and adding the average difference to the matrix with the lower response. Here 

it is assumed that the first injection of a sample holds the correct instrumental response whereas its 

duplicate with lower response is the one being corrected. The effect of this procedure is shown in 

Supplementary Information 2. 

A threshold level was applied for the elimination of small peaks/intensities lower than the analytical 

detection level. Values lower than a certain threshold level were considered as zero. The strategy to 

define the threshold was as follows: (1) The first median value of the whole dataset (excluding zeros) 

was calculated; (2) That median was evaluated as a threshold (by the ability of principal component 

analysis (PCA) score plots to fully separate the fasted vs. the fed state (data not shown); (3) The next 

median was calculated by using only those data from the whole dataset that were higher than the 
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previous median, and again the corresponding PCA scores plot (not shown) was evaluated; (4) This 

procedure was iterated until an improved separation was achieved by PCA. The threshold levels of the 

fourth median with the value of 16.17 cps (count per second) in the negative mode and 24.85 cps in the 

positive mode were selected as adequate. 

To enable the application of subsequent two-dimensional data analysis methods, the intensity values 

of each sample matrix were summed (or collapsed) throughout the retention time index. The resulting 

data matrix (two-dimensional) is described by samples vs. m/z bins (Figure 5) and is also referred to as 

feature sets throughout this paper. 

Figure 5. Custom data preprocessing scheme. 
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3.7. Data Analysis 

The feature sets preprocessed by the three different softwares and the customized method were 

normalized to unit length and autoscaled. Autoscaling refers to combination of mean centering and 

unit scaling.  

The PLS_Toolbox (Version 5.3, Eigenvector Research, Inc., MA, USA) was used to implement the 

data analysis. PCA [36] was applied individually on feature sets obtained from each data preprocessing 

method for general visualization of discrimination of samples from rats in fasted vs. fed state. 

PLS-DA is based on the development of a PLS model [37] to predict class membership of a dataset 

X with a y vector including only 0 and 1 (1 indicates that one sample belongs to a given class). 

Validation of PLSDA classification models was performed by cross model validation as recommended 

by Westerhuis et al. [18]. 25% of the samples were divided as an independent test set. The remaining 

samples were cross validated (4-fold) to determine optimal number of latent variables that offers 

minimum cross validation classification errors. In addition, permutation test is applied with 2,000 

random assignments of classes. The test set sample classification errors were evaluated to qualify the 

classification results. 

3.7.1. Variable Reduction 

A rough and effective variable reduction procedure was performed specifically during 

MarkerLynxTM and custom data preprocessing by only keeping a feature if it had a nonzero 

measurement in at least 80% of the intensity values recorded within one of the sample groups (fasting 

vs. fed in this case); otherwise the feature was removed (80% rule) [38]. Gap filling (or peak finding) 

algorithms implemented in MZmine and XCMS softwares resulted in few zero entries. However, 

additional filtering algorithm was enabled in MZmine and XCMS prior to gap filling, which removes 

any feature if it appears in less than 10 samples (settings are defined in Supplementary information 3). 

3.7.2. Variable (Feature) Selection 

Further variable selection was performed with PLS-DA. The features or m/z bins with larger 

regression coefficients were considered as more discriminative between fasted and fed states and were 

regarded as potential biomarkers. Due to the fact that PLS-DA is very prone to overfitting, instead of 

applying only a single cross-validated PLS-DA model for variable selection on all samples, we 

performed repeated submodel testing. This implies removing samples randomly (here 10% were taken 

out at a time), constructing a PLS-DA model on the remaining 90% samples and repeating this  

1,000 times. By performing many models the importance of each feature for class separation is tested. 

The number of latent variables (LV) for each model was determined to minimize the classification 

errors using cross validation (CV). For each model the features are given a ‘rank’ in the order of their 

regression coefficients and the final rank of each feature for all the 1,000 submodels were summarized 

with one number using the median of the 1,000 ranks per feature. This method has the potential of 

reducing false positives so that the features appearing with higher rank in only a few of the submodels 

were not considered as markers. We arbitrarily selected the 25 top rank features from each feature set, 

i.e., those with highest absolute regression coefficient products as potentially representing biomarkers. 
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However, since these features might be daughter ions, adducts, summed ions, etc., we chose here to 

simply call them ‘markers’ whereas after identification the compounds represented by these markers in 

the top rank feature sets will be termed ‘biomarkers’.  

3.8. Marker Identification 

The initial identification of markers was performed according to their exact mass compared with 

those that were registered in the Human Metabolome Database [39]. Possible fragment ions were 

investigated by an automated tool using a mol-file format of a candidate compound (MassFragmentTM, 

Waters). Further confirmation of candidate biomarkers was obtained by verification of the retention 

time and fragmentation pattern of an authentic standard (see authentic standards section above). The 

authentic standards were in some cases selected as one representative of biomarkers belonging to the 

same chemical compound class, i.e., only one LPC out of a series was confirmed by a standard. 

Additionally, acyl-1 and acyl-2 LPC(18:1) and LPE(18:1) were spiked into two plasma samples 

collected in the fed and fasted states, respectively, at a concentration of 0.5 mg/L for a more reliable 

confirmation. 

4. Conclusions 

We aimed here to explore the effect of four data preprocessing methods on the pattern of final 

biomarkers for the fasting and fed states in a small rat study. In our custom method, the binning 

followed by collapsing across retention time gives rise to false positives and negatives. Even so, half of 

the marker bins selected contained markers detected by at least one of the other softwares. 

The less selective peak picking algorithm for MarkerlynxTM and the avoidance of peak picking 

algorithms for the custom method gave rise to detection of some markers that could not be detected by 

MZmine or XCMS. On the other hand, the gap filling algorithms in MZmine and XCMS improves 

marker selection because the true signal differences between groups becomes more correct, i.e., in 

accordance with the raw data. 

The selection of proper software parameters based on the specifics of the dataset is the key for 

obtaining a high quality data analysis, regardless of the applied software. The better parameter setting 

is a matter of experience and wrong settings may obscure the extraction of relevant information. The 

use of more than one software and/or the use of several settings during data preprocessing with any 

softwareare likely to improve marker detection in untargeted metabolomics. 

Although the comparison of the selected marker ions from different data preprocessing methods 

revealed some differences, further chemical identification revealed that they were often just adducts or 

daughter ions representing the same biomarker compound. Many of the biomarkers identified were 

chemically closely related so that any of the softwares and procedures applied here could identify 

biomarkers explaining a major part of the biological processes differing between the fasting and the 

fed states in our dataset. Thus, all data preprocessing methods agree that specific lipids, carnitines and 

amino acids are of importance for discriminating plasma samples from the fed and fasting states. Three 

major lipid classes, LPCs, LPEs and free fatty acids, emerged as discriminative markers in the rats. 

The high level in the postprandial state of LPCs, generally known to be pro-inflammatory, is 

interesting and their possible importance for low-grade inflammation in humans should be further 
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explored. L-carnitine and acyl carnitines were also found as important markers and the shift from free 

to acylated carnitine during fasting might be useful as a marker to follow the switch from postprandial 

lipid storage to the lipid degradation during fasting. Finally, proline and possibly branched chain 

amino acids seem to be important amino acid markers that decrease in the fasting state when protein 

catabolism is necessary for their availability. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/2218-1989/2/1/77/s1. 
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Supplementary information1: Principles of algorithms of data preprocessing softwares 

XCMS offers two different peak detection algorithms, matchedFilter and centWave. The latest 

developed, centWave, was recommended for very complex mixtures which can be represented as 

plasma in our case. The algorithm first detects the regions of interest in m/z domain based on 

user defined parameters for mass accuracy (ppm) and maximum and minimum expected 

chromatographic peak width (peakwidth). Next, chromatographic peaks with different widths 

were detected using continuous wavelet transform. Finally, features are excluded based on user 

defined signal to noise ratio (snth). The XCMS alignment algorithm groups peaks together across 

samples using overlapping m/z bins and calculation of smoothed peak distributions in 

chromatographic time [9,10] .  

MZmine performs peak detection in two steps. The first step is chromatogram builder, which 

creates continuous chromatograms for each mass within the user-defined mass range (m/z 

tolerance) based on mass accuracy of the employed instrument. The width of each peak is 

determined within the range of the chromatogram limited by the user-defined minimum peak 

width (min time span) and its absolute height is determined with a restriction on  height (min 

absolute height. Each chromatogram is then deconvoluted using one of the four available 

algorithms. In this study we applied local minimum search for deconvolution of the 

chromatograms. This algorithm is based on separation of peaks based on their local minima. For 

alignment MZmine offers linear (join aligner) and nonlinear (ransac peak list aligner) methods. 

In this study, limited shifts in retention time favored the use of join aligner where its algorithm 

requires user-defined mass and retention time windows (m/z and retention time tolerance). The 

algorithm tries to match each peak in a master peak list with the peaks in the sample lists and 

finds the best match based on the retention time and mass windows [14].   

MarkerLynx as a commercial software is using algorithms which are not publicly revealed and is 

thus a kind of black box. In the manual it is stated that the software is applying peak detection by 

the ApexPeakTrack peak detection algorithm. MarkerLynx initially determines the regions of 

interest in the m/z domain based on mass accuracy (mass tolerance). The ApexPeakTrack 

algorithm controls peak detection by peak width (peak width at 5% height) and baseline 

threshold (peak to peak baseline ratio) parameters which can be either set by user or calculated 

automatically. The algorithm finds the inflection points (peak width at 5% height), local minima 



and peak apex to decide peak area and height. It also calculates the baseline noise level using the 

slope of inflection points. Compared to peak detection algorithms of other softwares, the 

ApexPeakTrack algorithm produces a much higher number of peaks, so an additional peak 

removal step (denoted by user defined peak intensity threshold and noise elimination level 

parameters) is conjugated to the alignment algorithm by its developers. The basic principle of 

peak removal is described in the accompanying materials: “If a peak is above threshold in one 

sample and if it is lower than threshold in another sample it lowers the threshold for that sample 

until it reaches the noise elimination level”. The MarkerLynx alignment algorithm performs 

alignment of peaks across samples within the range of user-defined mass and retention time 

windows. (MassLynx (Waters, Milfold, MA)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary information 2: TIC of the samples obtained from positive mode (a) before and (b) after 

alignment and normalization using the average difference between replicates that are shifted. The two 

small inserts below each graph show zoomed parts at two retention time intervals. 

Supplementary information 3. Data preprocessing steps and its parameters settings for 

MarkerLynx,MZmine and Custom preprocessing (pos: positive mode data; neg: negative mode data). 

 MarkerLynx MZmine XCMS Custom 

Peak 
Detection 

ApexPeakTrack 

Peak width at 5% height = 

Highest data Point 

Min time span = 0:01 

centWave 

ppm = 30 (neg); 

No peak 
detection 



default 
Peak-to-peak baseline ratio 
= default 

Noise elimination = 4 
Intesity threshold = 30 (neg); 
60 (pos)  

Min absolute height = 
20 (neg); 60 (pos) 
m/z tolerance = 0.04 
(neg); 0.03 (pos) 

Local minimum 
search  

Min RT range = 0:01 
Min absolute height = 
30 (neg) - 60 (pos)  
Min peak top/edge = 
1.5  
 

40 (pos) 
peakwidth = 
(2,10) 
snth = 4 (neg); 5 
(pos) 
prefilter = c(1,40) 
(neg); c(1,80) 
(pos) 
 

 

Normalization � - - - 

Deisotoping � � �  �  

Alignment 
m/z window = 0.05 
 r/t window = 0.05  

 

Join aligner 

M/Z tolerance = 0.05 
RT tolerance = 0:03 

Group 

bw = 4 
mxwid = 0.05 

Retcor  

obiwarp 
profStep = 0.1 

 

ICOshift 
(pos) 

Filtering 80 % rule Peak list row filter 

Min peaks in a row = 10 

Duplicate peak 
filter 

M/Z tolerance = 0.01 
RT tolerance = 0.01 

Implemented 
in previous 
group function 

minfrac = 0.1 

 

80 % rule 

 Gap filling 

 

- Peak finder 

M/Z tolerance = 0.02 
RT tolerance = 0:02 

Fillpeaks - 

 

 

 

 

 

 



Supplemantary infomation4: Number of features extracted from each data processing method. 

 

MarkerLynx MZmine XCMS Custom 

NEG 
Before 80% rule: 3780 

1501 1562 
Before 80% rule: 9500 

After 80% rule: 1852 After 80% rule: 3700 

POS 
Before 80% rule: 6065 

3272 2714 
Before 80% rule: 9500 

After 80% rule: 2981 After 80% rule: 3894 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Supplemantary infomation5: PCA scores plot of MarkerLynx (A), MZmine (B), XCMS (C) custom 

preprocessed (D) positive mode data. 

Supplementary information 6: PLSDA model classification error rates of test sets.   

 Classification Error Rates 

Negative mode data 0.00 0.01 0.01 0.01 

Positive mode data 0.00 0.02 0.02 0.02 
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Supplemantary information 7: Classification error rates based on cross model validation 

predictions of the correct classes (gray arrow) and permuted class labels (black bars) for 

MarkerLynx (1), MZmine (2), XCMS (3) custom preprocessed negative (A) and positive mode 

(B). 

 

 

Supplemantary infomation8: The chromatogram of m/z bin = 819.6  from  4.3 to 4.5 min.  The peaks are 

detected as two separate features by the other softwares (Peak no: 42 and 33, positive mode). Red tracks, 

fasting state; black tracks fed state. 
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Supplemantary infomation9: (A) MZmine and (B) MarkerLynx  recorded peak heights of samples in 

fasted and fed groups for marker number 42. The difference between the two groups in (B) is inflated as 

MarkerLynx recorded the signal as zero for many of the samples in fed group.  Thus this marker has 

lower rank in MarkerLynx. 

 

Supplemantary infomation10: (A) MZmine and (B) MarkerLynx  recorded peak heights of samples in 

fasted and fed groups for marker number 38. The difference between the two groups in (B) is deflated as 

MarkerLynx recorded the signal as zero for some of the samples in the fed group.  Thus this marker has 

higher rank in MarkerLynx. 
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Supplemantary infomation11:  XIC of 1-acyl and 2-acyl LPC(18:1) detected in positive mode ionization. 
The panels in sequence from top to buttom show the extracted ion chromatogram for m/z 522.358 of 1. an 
authentic rat plasma sample; 2. The same sample spiked with 1-acyl LPC(18:1); 3. The sample spiked 
with 2-acyl LPC(18:1); 4. A 1-acyl LPC(18:1) standard; 5. A 2-acyl LPC(18:1) standard. 
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Supplemantary infomation12: Heatmap comparing the importance of  metabolite based on 

four different data preprocessing tools.  (MarkerLynx,  MZmine,  XCMS and Custom data 

processing) for (a) negative and (b) positive mode data. Each row represents the rank 

(importance) of a marker for four different methods (from Table 1 or 2, 3rrd column). The 

markers selected had a rank below 25 with at least one of the four methods. The markers 

were sorted in ascending rank order of MarkerLynx. (red: rank 1-25; orange: rank 26-50; 

yellow: rank>50; black: not detected).  
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Abstract 

Background: The consumption of high levels of industrial trans fatty acids (TFA) has been related 

to cardiovascular disease, diabetes and sudden cardiac death but the causal mechanisms are not well 

known. In this study, NMR and LC-MS untargeted metabolomics has been used as an approach to 

explore the impact of TFA intake on plasma metabolites. 

Methodology/Principle Findings: In a double-blinded randomized controlled parallel-group study, 

52 overweight postmenopausal women received either partially hydrogenated soybean oil, 

providing 15.7 g/day of TFA (trans18:1) or control oil with mainly oleic acid for 16 weeks. 

Subsequent to the intervention period, the subjects participated in a 12-week dietary weight loss 

program. Before and after the TFA intervention and after the weight loss programme, volunteers 

participated in an oral glucose tolerance test. PLS-DA revealed elevated lipid profiles with TFA 

intake. NMR pointed out an up-regulated LDL cholesterol levels and unsaturation. LC-MS profiles 

demonstrated elevated levels of specific polyunsaturated (PUFA) long-chain phosphatidylcholines 

(PCs) and a sphingomyelin (SM) which were confirmed with a lipidomics based method. Plasma 

levels of these markers of TFA intake declined to their baseline levels, after the weight loss 

program for the TFA group and did not fluctuate for the control group. The marker levels were 

unaffected by OGTT. 

Conclusions/Significance: This study demonstrated that intake of TFA affects lipid metabolism. 

The preferential integration of trans18:1 into the sn-1 position of PCs, all containing PUFA in the 

sn-2 position, could be explained by a general up-regulation in the formation of long-chain PUFAs 

after TFA intake and/or by specific mobilisation of these fats into PCs as a result of TFA exposure. 

NMR supported these findings by revealing increased unsaturation of plasma lipids in the TFA 
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group. These specific changes in membrane lipid species may be related to the mechanisms of trans 

fat-induced disease. 

Introduction 

Industrially produced trans fatty acids (TFA) are formed by partial hydrogenation of vegetable oil 

that changes cis configuration of double bond(s) to trans, resulting in solid fat for use in margarines, 

commercial cooking, and manufacturing processes. Partially hardened oils are appealing for food 

industry owing to their properties such as long shelf life, their stability during deep-frying and their 

semisolidity. However, consumption of TFA in the human diet have been shown to increase the 

individual’s risk for developing cardiovascular disease [1,2], diabetes [3], and sudden death from 

cardiac causes [4]. This increased risk has been linked to the impact of TFA on lipoprotein 

metabolism, inflammation, and endothelial function [5]. It has been well documented that TFA 

intake increases low-density lipoprotein (LDL) cholesterol, reduces high-density lipoprotein (HDL) 

cholesterol, and increases the risk of cardiovascular disease [6,7]. Nevertheless, the incidence of 

CHD reported in prospective studies has been greater than that predicted by serum lipids alone. 

Thus, the observed associations between TFA consumption and cardiovascular disease events 

cannot be explained only by changes in lipoprotein levels, triglycerides, apolipoprotein (Apo) 

B/ApoAI ratio and C-reactive protein [8], implying that the mechanisms behind the adverse effects 

of TFAs are not fully understood. TFA exposure has also been associated with a higher risk of fatal 

ischemic heart disease [9] and sudden cardiac death [10]. Although the potential mechanism 

between TFA and sudden cardiac death is unclear, some have suggested that TFA may modulate 

cardiac membrane ion channel function [11] or have proarrhythmic properties, affecting 

cardiovascular electrophysiology [2].  
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In order to fill the gap between TFA intake and its detrimental health impacts, an untargeted 

metabolomics approach by allowing quanlification/quatification of hundreds of metabolites can 

provide a unique insight to potential underlying mechanisms. Many studies have demonstrated 

metabolomics as a powerful tool to understand responses of individuals with respect to their gene 

expression or alterations in their lifestyles and diets [12]. The application of liquid chromatography 

mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) in metabolomics for 

measurement of a wide range of metabolites in various biofluids has been well established. NMR 

provides high reproducibility and is a powerful tool in terms of quantification, whereas LC-MS is 

more sensitive, allowing detection of a larger number of chemical compounds.  

Here, we aimed to contribute to the on-going research interest for identifying the adverse effects of 

TFA intake by introducing an LC-MS and NMR based metabolomics investigation of a specific 

TFA intake through 16 weeks. The dietary intervention study was conducted by Bendsen et al. [13] 

for examining the effect of a high intake of industrially produced TFAs (trans18:1) compared to 

their cis analogs (cis18:1). Our results revealed an increased presence of membrane-derived, 

specific long chain polyunsaturated fatty acid (PUFA)-containing PCs and SM with TFA intake, 

suggesting the possibility of using those compounds as individual markers of TFA integration into 

plasma membranes. 

Materials and Methods 

Subjects 

52 healthy, moderately overweight (body mass index between 25 and 32 kg m-2), postmenopausal 

women, between 45 to 70 years of age, were recruited in this study. Detailed description of 

participant recruitment and enrolment, inclusion and exclusion criteria, and compliance were 

published previously [13].  
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The subjects were given both verbal and written information, whereupon all gave written consent. 

The study was carried out at the Department of Human Nutrition, Faculty of Life Sciences, 

University of Copenhagen, Frederiksberg, Denmark, between April 2008 and March 2009 and was 

approved by the Municipal Ethical Committee of The Capital Region of Denmark in accordance 

with the Helsinki-II declaration (H-B_2007-089) [13].  

Study Design 

The dietary intervention study had a randomized, double-blind, parallel design. Subjects were given 

26 g/d of partially hydrogenated soybean oil with approximately 60% trans fats (TFA group; n = 

25) or 50/50% mix of palm oil and high oleic sunflower oil as the control oil (CTR group; n = 27) 

for 16 weeks. Both test oils were supplied by Aarhus Karlshamn, Aarhus C, Denmark. The fatty 

acid composition in the oils has been described elsewhere [13]. Briefly, the two fats differed in the 

content of TFA (18:1 trans-9, 18:1 trans-8, 18:1 trans-7), palmitic (16:0), oleic (18:1 cis-9) and 

linoleic acid (18:2 cis-6). The fats were incorporated into bread rolls providing a total of 600 kcal/d 

(41 E% from fat), equivalent to 28% of the subjects' energy requirements on average. Frozen rolls 

were handed out to the subjects every 1–4 weeks from the department for consumption at home.  

The women visited the department for four examinations during the study: at screening (1–8 weeks 

prior to baseline), baseline (w0), mid-intervention (week 8) and at the end of treatment (w16). In 

addition, the subjects attended the department for control weighing at weeks 4 and 12. Subjects 

were instructed to maintain their habitual activity level throughout the dietary intervention period. 

Subsequent to the dietary intervention period, the subjects participated in a 12-week (w28) dietary 

weight loss program.  The blood samples for metabolomics analysis were collected only at w0, w16 

and w28.  
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Dietary intake was measured using 3-day weighed food records at baseline and in the last week of 

the intervention. The only significant dietary differences between diet groups during the 

intervention were the contributions of energy from monounsaturated fatty acids (MUFA) and TFA, 

indicating that the diets were overall comparable apart from the fatty acid composition. The intake 

of TFA was higher (7.0 ± 0.2 E% [mean ± SEM] vs. 0.3 ± 0.0 E%) and the intake of MUFA was 

lower (10.3 ± 0.4 E% vs. 13.4 ± 0.8 E%) in the TFA group compared with the CTR group [13]. The 

trial was registered at clinicaltrials.gov as NCT00655902.  

Ethics statement 

The subjects were given both verbal and written information, whereupon all gave written consent. 

The study was carried out at the Department of Human Nutrition, Faculty of Life Sciences, 

University of Copenhagen, Frederiksberg, Denmark, between April 2008 and March 2009 and was 

approved by the Municipal Ethical Committee of The Capital Region of Denmark in accordance 

with the Helsinki-II declaration (H-B_2007-089). Subjects received B900 US$ as compensation on 

completion of all the tests. Lean reference subjects received B500 US$.  

Blood sampling 

Prior to each visit, the subjects were told to fast for at least 10 hours (except for 0.5 L water). They 

were instructed to avoid alcohol consumption and vigorous exercise on the day before and to 

consume similar carbohydrate-rich evening meals on the evening before each visit. Body weight 

and height were measured by standard procedures. 

Insulin sensitivity was assessed by use of frequent sampling 3-hour oral glucose tolerance tests 

(OGTTs) where subjects ingested a solution of 75 g glucose dissolved in 300 mL water. Venous 

blood samples were collected before and during the OGTT at −10, 30 and 120 minutes into 4 mL 
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coated tubes. The blood was centrifuged at 3000 g at 4oC for 10 min. The plasma fraction was 

portioned into 2 mL cryotubes and stored at -80oC until further processing. 

Chemicals 

Authentic standards PC(18:0/18:2), PC(cis18:1/cis18:1), trans PC(trans18:1/trans18:1), 

PC(18:0/18:2) and PC(18:0/20:4), PC(18:0/22:6) were purchased from Avanti Polar Lipids Inc. 

(Alabaster, AL, USA). 

LC-QTOF-MS analysis 

Plasma protein precipitation was performed, as described earlier [14]. An ultra-performance liquid 

chromatography (UPLC) system coupled to quadruple time-of-flight (Premier QTOF) mass 

spectrometer (Waters Corporation, Manchester, UK) was used for sample analysis. The mobile 

phase was 0.1% formic acid in water (A) and 0.1% formic acid in 70% acetonitrile and 30% 

methanol (B). Five µL of each sample were injected into a HSS T3 C18 column (2.1 x 100 mm, 

1.8µm) coupled with a VanGuard HSS T3 C18 column (2.1 x 5mm, 1.8µm) operated for 7.0 min. 

The eluate was analyzed by electrospray ionization (ESI)-QTOF-MS (Premium QTOF, Waters) in 

positive and negative mode, applying a capillary voltage of 3.2 kV and 2.8 kV, respectively and 

cone voltage of 20 kV. Ion source and desolvation gas (nitrogen) temperatures were set at 120 and 

400°C, respectively. More detailed UPLC-QTOF analysis conditions were explained previously 

[15]. Blanks (5% of acetonitrile:methanol 70:30 v/v in water) and external metabolomics standard 

mixtures were injected every 30 plasma samples throughout each analytical batch. 

In order to identify relevant metabolites, MS/MS fragmentation analyses were performed by post-

column infusion experiments conducted as follows: 1.6 mM solution lithium formate dissolved in 

1:1 mixture water-propanol was infused at 4uL/min using a Waters built-in syringe pump. Both 
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flows, from the UPLC column and the infusion pump, were combined using a zero-dead-volume 

‘T’ union and introduced into the mass spectrometer. The MS/MS experiment was conducted in 

positive ion mode operating in product ion scan. The collision-induced dissociation (CID) energy 

was set at 25 eV and the MS/MS scan range at m/z 100-850. All other parameters were set to the 

same values with the MS experiment. 

In order to verify the findings of lipophilic markers, we performed a lipidomics analysis of 12 

samples from each treatment group at baseline and at the end of the intervention. Each sample was 

added with the internal standards, PC(17:0/0:0), PC(17:0/17:0), PE (17:0/17:0), PG(17:0/17:0), 

Cer(d18:1/17:0), PS(17:0/17:0), PA(17:0/17:0) (Avanti Polar Lipids, Inc., Alabaster, AL, USA), 

recemic MG(17:0/0:0/0:0), racemic DG(17:0/17:0/0:0) and TG(17:0/17:0/17:0) (Larodan Fine 

Chemicals, AB, Malmö, Sweden). The concentration of each standard was approximately 0.1 

µg/sample. The samples were extracted as described previously [14], but an additional extraction 

with 200uL chloroform:methanol (2:1 v/v) was performed on the SiroccoR filter support by gentle 

shaking with the precipitated protein for 5 min followed by opening of the valves to collect the 

additional extract. The combined extract was evaporated to dryness and redissolved in 190uL water-

saturated chloroform-methanol (2:1). Before injection 0.1 µg of the following additional standards 

were added in 10µL of the same solvent: PC(16:1/0:0-D3), PC(16:1/16:1-D6), and 

TG(16:0/16:0/16:0-13C3) (Larodan Fine Chemicals), as described by Nygren et al (2011). The 

samples were injected on the UPLC-QTOF system using a HSS T3 C18 column (2.1 x 100 mm, 

1.8µm) coupled with a VanGuard HSS T3 C18 column (2.1 x 5mm, 1.8µm). Solvent A was 1% 1 M 

NH4Ac and 0.1% HCOOH in water and solvent B was acetonitrile:2-propanol (1:1, v/v), 1% 1 M 

NH4Ac and 0.1% HCOOH. A 6 min gradient from 100% A to 100% B was used. A gradient in 

flow was also applied starting from 0.2mL/min, increasing to 0.5mL/min over 3min and going back 

to starting conditions at 10min with 2min re-equilibration time before next injection. 
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Identification of lipids.  Authentic standards PC(18:0/18:2), PC(18:1/18:1), 

PC(trans18:1/trans18:1), PC(18:0/18:2), PC(18:0/20:4), and PC(18:0/22:6) purchased from were 

analysed by LC-MS with sample analysis instrumental conditions. As it was not possible to 

purchase the standard compound for each PC and SM, we developed a simple algorithm to extract 

the PCs and SMs species utilizing their retention time and m/z. The algorithm was based on well-

known principle of reversed phase chromatography and predicted based on the m/z values observed 

for plasma samples. An increased number of carbon atoms results in decreased polarity and 

increased retention time. In addition, for a PC, SM or lysophosphatidylcholine (LPC) with a 

specific carbon number, an increasing number of double bonds in the fatty acyl chain reduce the 

retention time. Since each of the lipid species appear with its Na+ adduct, this information is utilized 

to remove irrelevant matches for positive mode data. The samples were analysed two years prior to 

the authentic standards which resulted in +0.1min linear shift in retention time. Thus, 0.1 min was 

added to the retention time of each compound in the data set. As shown in Figure 1 for PCs, the 

retention times of authentic standards were matching almost precisely with the predicted ones (+0.1 

min), validating the model. Equally good matching was observed for retention times of authentic 

standard of SM (36:2) and the observed SM (36:2) (not shown). A few PCs appeared as two 

isomers, illustrated in Figure 1, corresponding to structural differences. 

The structural characterization of compounds reflecting TFA intake was performed by their parent 

mass information and characteristic fragments in the CID spectrum of their lithated ions. 

PC(18:1/20:3) and PC(18:1/22:5) are identified with two orthogonal data; retention time and 

spectral information. PC(18:1/22:6) is putatively annotated whereas SM(18:1/18:2) is putatively 

characterised. Further information about spectral fragmentation patterns (MS/MS) of the 

PC(18:1/20:3), PC(18:1/22:5), PC(18:1/22:6) and SM(18:1/18:2) were explained in detail in as 

follows.  
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The product ion spectrum of lithated [M+Li]+ ions for PC(18:0/22:6) and PC(18:0/20:4) standards 

were comparable with the product ion spectrum of lithated [M+Li]+ ions of those, in the samples, 

confirming their structural identity. A few PCs appeared as two isomers, illustrated in Figure 1, 

corresponding to structural differences. The ions arising from loss of trimethylamine [M-59], 

ethylene phosphate [M-183] and lithium ethylene phosphate [M-189] were common fragments for 

CID spectra of PCs and SMs. The earlier eluting isomer of PC(38:4) gave rise to the fragment ions 

504.3, 528.3 and 534.3, matching with the potential fragmentation pattern of PC(18:1/20:3). The 

ions 504.3 and 528.3 represents the neutral loss of sn-2 fatty acyl substituent as a lithium salt 

[M+Li-R2CO2Li]+ and as a ketene [M+Li-R2’CHCO]+, respectively [25,26]. Moreover, the loss 

of sn-1 fatty acyl as a free fatty acid yielded the ion 534.3 corresponding to ([LPC(20:3)-

H2O+Li]+). The later eluting isomer of PC(38:4) coeluted with our standard, PC(18:0/20:4). 

MS/MS spectra of the earlier eluting isomer of PC(40:6) implied contribution of multiple species 

(PC(18:1/20:5) and PC(20:2/20:4)) to a single chromatographic peak. The ions 552.3 and 526.3 

resulted from loss of the sn-1 acyl group as a lithium salt from PC(18:1/22:5) and PC(20:2/20:4), 

respectively. The most abundant fragment was arising from the removal of the sn-1 substituent as a 

ketene. The later eluting isomer of PC(40:6) coeluted with our standard, PC(18:0/22:6). MS/MS 

fragmentation of PC(40:7) lead to its identification as PC(18:1/22:6) based on the fragment ions 

550.3 ([M+Li-R1’CHCO]+) and 556.3 ([M+Li-R1CO2Li]+). MS/MS fragmentation of 

pseudomolcular ion of PC(40:7) [M+H] on Waters Synapt of supported its identity with fragments 

445.3 ([LPC(18:1)-OH]+), 504.3 ([M+H-R1CO2H] +), 568.3([M+H-R1’CHCO]+) and 522.3 

([M+H-R2’CHCO]+). However, the CID spectrum of SM(36:3) did not reveal any abundant ions 

that identify the fatty acyl substituents. 
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We putatively characterized PC(44:9), which is observed only with potassium adduct, and we could 

therefore not include it into our prediction model in Figure 1. However, extrapolation of the model 

agrees with the observed retention time, 5.34 min. 

1H NMR Analysis  

Plasma samples were slowly thawed overnight at 4 °C. Samples where then centrifuged 20 min at 

12k RPM and 300 µl plasma were transferred into a 5 mm NMR tube together with 300 µl of 

phosphate buffer at pH 7.4 containing at least 10% w/w D2O and gently mixed in order to avoid 

formation of bubbles/foam. 1D NOESY 1H NMR spectra were acquired on a Bruker DRX 

spectrometer (Bruker Biospin Gmbh, Rheinstetten, Germany) operating at 600,00 MHz for protons 

(14.09 Tesla) using a TCI cryo-probe head and equipped with a SampleJet autosampler. All samples 

were individually and automatically tuned, matched and shimmed. FIDs were Fourier transformed 

using a 0.3 Hz line broadening. The resulting spectra were automatically phased and baseline 

corrected using Topspin™ (Bruker Biospin), and the ppm scale was referenced towards the TSP 

peak at 0.00 ppm [16]. Assignment of resonances was done by comparison to literature values [17]. 

Data Preprocessing 

LC-MS.   The raw data was converted to an intermediate netCDF format with the 

DataBridgeTM utility provided with the MassLynx software. MZmine 2.7 [18] was employed for 

data preprocessing including following steps: mass detection, chromatogram builder, chromatogram 

deconvolution (local minimum search), isotopic peaks grouper, peak alignment (join aligner) and 

gap filling. The final outcome from MZmine is a feature set where each feature is denoted by the 

mass over charge (m/z) ratio and a retention time. 
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MZmine preprocessed data was imported to MATLAB (Version 7.2, The Mathworks, Inc., MA, 

US). Peak filtering was applied based on two criteria. First, if a feature has a reasonable peak area 

(>60) in the first run blank sample, it is removed. Second, if a feature has a peak area lower than 5 

(considered as noise level or gap filling errors), in more than 60% of the samples within both 

sample groups (TFA vs. CTR, in this case), it is excluded (percent rule, [19]).  

To remove intra-individual variation, each feature is normalized with the mean of the two 

recordings (before and after intervention) for each subject at each OGTT time point (-10, 30 or 120 

min) [19].  

1H NMR.  The spectral alignment was performed by icoshift algorithm [20]. Only the spectral 

region between 8.5 and 0.2 ppm was considered, and the spectral region containing the residual 

resonance from water (4.7-5.1 ppm) was removed. Spectral data set was normalized by using 

probabilistic quotient normalization [21] and reduced by an in-house implementation of the 

adaptative intelligent binning algorithm [22]. Varying bin size, within the boundaries of minimum 

0.002 to a maximum 0.02 ppm, was used, depending on the peak width.  

Data Analysis.  The PLS_Toolbox (version 6.5, Eigenvector Research, Inc., MA, US) was used to 

implement the data analysis. Initially, principal component analysis (PCA) was applied to visualize 

grouping patterns and detection of outliers as an unsupervised multivariate data analysis method. 

Then, data was subjected to partial least squares-discriminant analysis (PLS-DA) for classification 

purposes. PLS-DA attempts to separate two groups of samples by regressing on a so-called dummy 

y-vector consisting of zeros and ones in the PLS decomposition. Permutation test [23] was applied 

with 1000 random assignment of classes. The test set sample classification errors were evaluated to 

qualify the classification results. Selectivity ratio [24], which provides a simple numerical 

assessment of the usefulness of each variable in a regression model, was chosen as the criteria for 
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variable selection. Briefly, using the y-vector as a target, PLS components (in many cases more than 

one) are transformed into a single target-projected component. The variance explained by the target 

component is calculated for each variable and compared with the residual variance for the same 

variable. The ratio between explained and residual variance, called the selectivity ratio, represents a 

measure of the ability of a variable to discriminate different groups [24]. 

Data analysis was performed on baseline adjusted metabolite levels after intervention (w16-w0). 

Figure 2A illustrates data structure and baseline adjustment schema.  

Results  

Three subjects did not complete the intervention, eventually resulting in 24 for the TFA group and 

25 for the CTR group.  

Plasma 1H NMR profiles – extraction of TFA related patterns  

Based on sample preparation issues, 42 NMR spectra were excluded, leaving 105 spectra (51 for 

TFA group, 54 for CTR group) for further analysis. Subsequent to binning, spectral data set was 

condensed into 1493 binned ppm regions. Primarily, PLS-DA was applied individually for the data 

including only one OGTT time point with the aim of discriminating of CTR and TFA groups. The 

original classifications errors were barely significantly lower than the permuted ones (not shown). 

The classification performance was improved when we concatenated OGTT time points in the 

sample direction. The original and permuted data classification errors are given in Figure 3, none of 

the permutations had lower classification errors than the original ones. 

The resonances reflecting TFA intake was selected based on evaluation of selectivity ratios from 

PLS-DA model (i.e. the resonances that have high selectivity ratio are more influential in 

discriminating between TFA and CTR groups). Annotation of discriminative resonances revealed 
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elevated unsaturated lipids (δ 5.3) and LDL & VLDL (δ 1.28) methylenic protons for TFA group 

and an unassigned quartet (δ 3.23) for CTR group. 

Plasma LC-MS profiles – extraction of TFA related patterns  

Based on instrumental issues, 29 sample measurements were excluded. In all, 59 and 60 samples 

measurements were remained for TFA group and CTR groups, respectively. A total of 2260 

features in ESI positive mode and 1689 in ESI negative mode were detected by MZmine. After 

exclusion of noise and irrelevant features, by using blank and the percent rule, 767 and 710 features 

for positive and negative modes, respectively, remained for data analysis.  

Initially, samples from each OGTT time point was analysed individually by PLSDA with the aim of 

discriminating CTR and TFA groups. Permutation test was applied to investigate the potential 

PLSDA over-fitting issues. Classification error distributions from models with 1000 times permuted 

class identifiers together with the original classification error are presented in Figure 4. In case there 

were no differences between the groups, the expected classification error would be 0.5. Figure 4 

perfectly matches this requirement. The comparison of classification error of the original model 

against the permutations was evaluated on the basis of p-values. Original classification errors were 

significantly lower than the permutations with p-values of 0.01 for TOGTT = -10, 0.04 for TOGTT = 

30, and 0.03 for TOGTT = 120 (α = 0.05).  

Variable selection was performed based on the selectivity ratio from the PLSDA model using 

datasets from each OGTT time point. Features with the highest selectivity ratio were extracted 

(Table 1). Many of the discriminating features were common for the three OGTT time points 

indicating that TFA related patterns were not affected by OGTT. Identification of these features (as 

described in Materials and Methods section) pointed out that those were compounds from the lipid 

classes; PCs and SMs.  
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A similar variable selection procedure was applied for negative mode, though PLSDA classification 

performance was lower compared to positive mode. Still, identical PC species (Table 1) were 

associated with TFA intake (not shown). However, SM(36:3) was not detected in the negative mode 

which could be a potential reason for the lower classification performance. 

Since metabolites responding to the TFA exposure did not seem to be affected by OGTT, we 

concatenated the time points into a new data set, to increase the power of classification model with 

larger number of samples. In this case each subject was represented by three time points from 

OGTT measurements as illustrated in Figure 2B. Furthermore, as we have already demonstrated 

that only lipids were associated with TFA intake, features from the lipid classes (PC, SM and LPC) 

were included as variables (Figure 2B). The idea behind targeting the lipids was to explore whether 

only the specific PCs and the SM mentioned in Table 1 respond to TFA intake or if there are other 

lipids that could be blurred due to the large number of variables. The PCA scores plot is shown in 

Figure 5. The control group clearly separated from the TFA group in the second principal 

component. Samples from different time points were quite spread in both CTR and TFA clusters 

and none of the principal components explained OGTT (not shown). Later, PLS-DA was applied to 

select the main contributing lipids. The classification errors, sensitivity and specificity of cross 

validated samples were 0.04, 0.85 and 0.88, respectively. The calculated selectivity ratios were the 

largest for the lipid compounds given in Table 1 (Figure 6) which were all increased with TFA 

intake.  

In order to investigate whether the increase in specific lipids is temporary or those are remained for 

longer period, the measurements at w28 (i.e.12 weeks after the end of the intervention) were 

included. As mentioned earlier in this period all subjects were under a weight loss program. The 

levels of SM(36:3) and PC(40:7) were increased at w16 and declined to levels before intervention 

(w0) at w28 for the TFA group, whereas there was no clear fluctuation for the CTR group (Figure 
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7). The other markers in Table 1 exhibited similar trends (not shown). The standard deviation for 

the TFA group was higher at w16, which is related to varying individual responses to TFA intake.  

Finally, to ascertain that the two major markers identified, SM(36:3) and PC(40:7), were genuine 

TFA markers in plasma we quantified them by a targeted lipidomics analysis of a subset of 12 

samples from each group using appropriate internal standards. Under the lipidomics conditions used 

here the two markers emerged as significantly higher by factors of 16-40 in the period with trans-fat 

exposure and were very low before intervention or during control conditions. No other features 

emerged with similar strong contrasts and other PCs such as two PC(36:2) isomers did not differ 

between the two treatments. Some weaker markers of TFA exposures may possibly exist but that 

would need more extensive analysis of the full set to ascertain. 

Discussions 

TFA has been banned in Denmark since 2003 and background levels of TFA in Danish citizens are 

therefore low, resulting only from residual exposures from ruminant fats [27]. This has made 

Denmark an ideal place for interventions to investigate the short-term effects of TFA with a low 

background exposure. Several TFAs exist and in the current study, trans18:1 was almost 

exclusively given as the intervention [13]. From this well-controlled study of trans vs. cis C18:1 fat 

in overweight women we report that both 1H NMR and LC-MS plasma metabolic profiles were 

altered with TFA intake. In this as in many other studies consumption of TFA is related with an 

increased LDL to HDL ratio and it is considered as a powerful predictor of cardiovascular disease 

[28]. Another outcome from NMR was elevated unsaturated lipid signals for the TFA group, which 

can be attributed to an increased level of unsaturated fatty acyl side chains in lipid species. The fatty 

acid composition of phospholipids in red blood cell membranes was reported by Bendsen et al. [13] 

Their results did not reveal any significant alteration between the CTR and TFA groups with respect 
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to the PUFA (or monounsaturated) levels, except for a different content of TFA. Thus, this 

difference may be arising from unsaturation of other lipid groups such as triglycerides in the 

lipoproteins. Similarly, an elevated unsaturation in the NMR spectrum (δ 5.3-5.4 and δ 1.9-2.5) of 

HepG2 cell extracts exposed to TFA was mentioned by Najbjerg et al. [29] in which they concluded 

disturbed lipid storage efficiency with TFA intake. 

The LC-MS profiles demonstrated elevated levels of a limited number of polyunsaturated long 

chain PCs (PC(40:7), PC(40:6), PC(38:4)) and of SM(36:3), which has the longest chain and the 

highest unsaturation among all detected SMs. Increased double bond formation has also been 

supported by NMR results. None of these markers were affected by the OGTT test, revealing that 

they are not necessarily fasting state markers. TFA intake did not seem to have long term effects on 

the composition of plasma lipids, as their levels at w28 after intervention (weight loss period) were 

comparable to baseline (w0) levels as shown in Figure 7. We observed here a SM as a marker of 

TFA intake. This SM was almost not present in the non-TFA group indicating a special structure. 

An increased level of total plasma SMs has been associated with increased risk of atherosclerosis 

[30,31] although the consequence in terms of cardiovascular risk has been debated [32]. In this 

study we observed an increase in only a single, minor SM having two C18 chains with one and two 

double bonds, respectively, either SM(d18:2/18:1) or SM(d18:1/18:2). The configuration (cis or 

trans) around the double bonds in these markers is unresolved and so is the atherogenic potential of 

this specific SM. There was no correlation between the concentration of this SM and any other 

compound from this class. We speculate that the marker observed here has a ∆9 or ∆ 11 trans-fatty 

sphingosine chain containing a cis-double bond in the 3-position. This would result from ∆7 or ∆9- 

and other trans-hexadecanoic acids being a substrate for the slightly promiscuous serine 

palmitoyltransferase (EC 2.3.1.50) [33] to form a 3-ketodehydrosphingosine which would then be 

reduced and acylated by oleyl-CoA followed by desaturation to form Cer(d18:2/18:1). This 
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ceramide would act as a precursor to the SM(d18:2/18:1) formed by SM synthase (EC 2.7.8.27). 

We are not able to see the less polar products postulated here not even by lipidomics, but the 

consequence of this hypothesis would be that after intakes of trans16:1 fatty acids it would be 

possible to observe the formation of a whole series of sphingolipids containing the unusual ∆ 9 or ∆ 

11- trans- ∆3-cis C18:2 and other similar sphingosines with the trans double bond in other 

positions. In the current study trans16:1 was below detection limit in the diet but it is likely that it is 

formed by β-oxidation of ∆9 or ∆ 11-trans-18:1. In a study of 16:1 ruminant TFAs, the ∆9 was the 

dominating isomer but trans double bond isomers with the double bond at any carbon from position 

3 up to14 also existed [34]. The identity of our SM(d18:2/18:1) marker needs to be finally proven in 

separate studies, and if the assignment is correct the biological and especially neurological 

consequence of changing the usual cis-∆3-sphingosines by an aberrant backbone must be 

elucidated.  

We succeeded in identifying several PCs based on authentic standards and by a systematic pattern 

of RTs depending on chain length and saturation. Based on this pattern we could identify two PC’s, 

PC(40:6) and PC(40:7), which were specifically increased in plasma following dietary TFAs, and 

PC(38:4), which tended to be increased as well. These PCs carry a C18:1 acyl side chain in one 

position and a long-chain PUFA chain in the other based on their CID fragmentation patterns. Since 

C20 and C22 acyl side chains in PCs are almost exclusively found in the sn-2 position in humans 

[35], it is most likely that the 18:1 is found in sn-1. TFAs, including trans-vaccenic acid (∆11-

trans-18:1), sterically resemble saturated fatty acids and might therefore substitute for these in the 

sn-1 position. In agreement, the preferential incorporation of elaidic acid to sn-1 chain of 

phospholipids have been reported in hepatocytes by Woldseth et al. [36]. In accordance, Wolf and 

Entressangles et al. [37] showed that phospholipids from rat liver mitochondria modified in vivo 

had large quantities of elaidic acid esterified at the sn-1 position. We therefore propose that the 
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species observed here are PC(trans18:1/22:5), PC(trans18:1/22:6) and PC(trans18:1/20:3). This 

hypothesis is supported by the previously reported elevated trans-18:1 residue levels in red blood 

cell phospholipids in the TFA group [13]. 

It is well known that TFA incorporate membrane phospholipids into plasma altering the packing of 

phospholipid and influencing the physical properties and responses of membrane receptors [38,39]. 

TFA produce membrane properties more similar to those of saturated chains than those of acyl 

chains containing cis double bonds [39]. When incorporated into membrane phospholipids, TFA 

either replace existing saturated or cis unsaturated acyl chains. Harvey et al. [40] showed that both 

elaidic and linoelaidic acid integrated into phospholipids, mainly in the expense of myristic, 

palmitic, and stearic acids, without causing any net gain in total fatty acid levels. In our study, the 

published membrane phospholipids levels [13] revealed significantly decreased stearic acid 

(P=0.04) and oleic acid (P=0.02) in the TFA group compared to CTR, suggesting replacement of 

those with elaidic acid. Although LC-MS based metabolomics did not show any decrease in PCs 

having one saturated fatty acyl chain, elaidic acid-containing specific PCs potentially increased in 

the TFA group. Many other researchers have investigated the variation of fatty acid composition in 

red blood cells PCs with TFA intake; however none of them reported the effect of TFA intake on 

specific PCs. Here, LC-MS based metabolomics demonstrated up-regulation of specific PCs with 

TFA.  

The TFA markers PC(trans18:1/20:3), PC(trans18:1/22:4) and PC(trans18:1/22:5) preferentially 

integrated into PCs all contain PUFA in the sn-2 position. There was no difference in the dietary 

intake of PUFAs in the two diet groups [13], so the preferred presence of these specific acyl chains 

together with trans18:1 would need an explanation. The two minor markers have peaks with a RT 

slightly different from the main, 18:0 containing PC(40:6) and PC(38:4) peaks (Figure 1), 

indicating that they may be detectable due to better signal-to-noise ratio for these specific 
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compounds, but the more prominent PC(40:7) marker is actually dominating the only PC(40:7) 

peak observed and the level in the non-TFA group is quite low. This is not surprising since this 

compound in general would be a minor PC because it violates the general rule of saturated sn-1 and 

unsaturated sn-2 acyl chains and because no C22 fatty acid with seven double bonds exists in 

human lipids. Other minor TFA-containing PCs may therefore exist but with RTs that fall on top of 

major PCs so that they are not detected as markers. However, it is still noticeable that PC(40:7) is so 

abundant. It forms a large peak comparable to other major PCs, indicating a facilitated formation. 

We also found putatively the even longer, PC(44:9). These observations could either indicate that 

there is a general up-regulation in the formation of long-chain PUFAs after TFA intakes and/or that 

these fats are specifically mobilised into PC as a result of TFA exposures. It has been shown that 

the acyl chain distribution is almost completely similar in plasma and erythrocyte membranes, 

indicating that plasma PCs may be a surrogate marker for membrane composition. Indeed, most 

plasma PCs may be abstracted from the membranes in contact with blood. Increased formation of 

long-chain PUFAs has been observed in adipose tissue membranes in overweight individuals [41], 

resulting from increased elongase and desaturase activities. This phenomenon is likely due to 

compensation for the increased fat load in the adipocytes in order for them to remain functional, 

despite their enlargement during weight gain [41]. TFA resembling saturated fatty acids may 

therefore negatively affect adipose tissue function leading to a response similar to that seen during 

weight gain with increased formation of long-chain PUFA’s. This is supported also by an increased 

unsaturation in the NMR spectra for the TFA group, yet the FA composition of red blood cell 

phospholipids did not show any overall significant increase in PUFA [13]. Further investigation of 

the PUFA distribution among specific membrane PCs is therefore needed in order to confirm this 

hypothesis. 
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As previously mentioned, phospholipids with TFA behave similar to saturated fatty acids rather 

than their cis monounsaturated isomers. It has been reported that trans-acyl chains adopt extended 

configurations similar to saturated acyl chains, allowing better interaction with the cholesterol 

molecule compared with their cis analogs [42]. These effects could be contributing factors in 

modulating cholesterol homeostasis, and as such, may be part of the explanation of the elevation of 

LDL cholesterol by a TFA-rich diet [42] which was demonstrated by NMR. Although TFA has 

properties similar to those of saturated fatty acids and also substitute for saturated fatty acids in 

membrane lipids, it has been confirmed in a meta-analysis that TFA raises levels of LDL more than 

an equal amount of saturated fatty acids. The effect on LDL levels is much larger when TFAs are 

compared with their cis analogs [6].  

 

Conclusions 

We conclude that several specific markers of TFA intake have been observed in this study and 

propose that SM(d18:2/18:1) may be a general plasma marker of exposure to TFAs as well as that 

the presence of PC(trans18:1/22:6) may be a specific marker of C18:1 TFA exposure. This study 

was established to investigate the effect of 18:1 TFA intake on plasma metabolites using an 

untargeted approach. As the results demonstrate, specific lipid molecular species in plasma were 

formed as a result of TFA exposure and all belong to the SM and PC polar lipids that exist in 

plasma in equilibrium with the plasma membranes. We could also confirm that TFA exposure leads 

to increased plasma LDL. Further studies with other specific exposures to 16:1 and 18:2 TFAs 

would give further insight into the general and specific lipid markers of TFA exposure.  
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Figure Legends 

Figure 1. The observed retention time values of identified PCs (empty circles). Filled circles 

illustrate retention time of the authentic standards, PC(18:1/18:1), PC(18:0/20:4) and PC(18:0/22:6) 

confirming the predicted pattern 

Figure 2. Data structure and arrangement schema. Baseline subtraction (A) concatenation of 

time points (applied on LC-MS and NMR profiles), and selection of lipid classes (B) (applied on 

LC/MS data)  

Figure 3. Permutation test results for NMR profiles. Class prediction results for NMR profiles 

based on test set predictions of the original labelling compared to the permuted data assessed using 

the classification error. P-values were calculated based on the comparison of classification error of 

the original model against the permutations 

Figure 4. Permutation test results for LC-MS profiles at each OGTT time point. Class 

prediction results for LC-MS profiles based on test set predictions of the original labelling 

compared to the permuted data assessed using the classification errors. TOGTT = -10 (A) TOGTT = 30 

(B) TOGTT = 120 (C) 

Figure 5. PC1 vs. PC2 scores plot of LC-MS based lipid profiles. The LC-MS profiles with 

concatenated time points including only LPCs, PCs and SMs as variables. Filled circles: TFA, 

empty circles: CTR 

Figure 6. Selectivity ratio of each lipid species from PLS-DA model. 

Figure 7. Normalized intensity for metabolites reflected by TFA intake. PC(40:7) (A) and 

SM(36:3) (B) at w0, w16 and w28. The values are the mean of samples in CTR and TFA groups. 

Each variable is normalized with the mean of the 9 recordings (at week 0, 16 and 28 with three 

OGTT time point recordings) for each subject  
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Table 1. Features with the highest selectivity ratio based on PLSDA models. The importance of 

each feature was represented by its rank. The rank is based on each features sorted selectivity ratio 

in descending order.   

 

*0.1 min was added to the retention time of each compound. 

 

Figures 

 

Figure 1  

 

Measured 
m/z 

Retention 
time* (min) 

Suggested 
Compound 

Suggested 
Adduct 

Monoisotopic 
mass 

Rank  
TOGTT=-10 

Rank  
TOGTT=30 

Rank   
TOGTT=120 

749.5614 5.31 SM(36:3) [M+Na]+ 726.5676 1 1 4 
727.5781 5.31 SM(36:3) [M+H] + 726.5676 2 4 7 
832.5887 5.33 PC(18:1/22:6) [M+H] + 831.5778 3 18 6 
810.6072 5.52 PC(18:1/20:3) [M+H] + 809.5934 4 9 25 
854.5728 5.33 PC(18:1/22:5) [M+Na]+ 831.5778 5 2 1 
922.5617 5.34 PC(44:9) [M+K] + 883.6091 12 3 2 
856.5728 5.41 PC(18:1/22:5) [M+Na]+ 833.5934 6 5 5 
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Abstract 

 In metabolomics studies, liquid chromatography mass spectrometry (LC-MS) provides 

comprehensive information on biological samples. However, extraction of few relevant metabolites 

from this large and complex data is cumbersome. To resolve this issue, we have employed sparse 

principal component analysis (SPCA) to capture the underlying patterns and select relevant 

metabolites from LC-MS plasma profiles. The study involves a small pilot cohort with 270 subjects 

where each subject’s time since last meal (TSLM) has been recorded prior to plasma sampling. Our 

results have demonstrated that both PCA and SPCA can capture the TSLM patterns. Nevertheless, 

SPCA provides more easily interpretable loadings in terms of selection of relevant metabolites, 

which are identified as amino acids and lyso-lipids. 

 This study demonstrates the utility of SPCA as a pattern recognition and variable selection tool 

in metabolomics. Furthermore, amino acids and lyso-lipids are determined as dominating 

compounds in response to TSLM.  

Keywords Metabolomics .  SPCA . LC-MS . Plasma . time since last meal . Observational Study 

1 Introduction 

 Based on the recent advances in analytical technologies, metabolomics evolved as a powerful tool, allowing 

qualification/quantification of hundreds of metabolites in biological samples. Particularly, mass spectrometry (MS)-

based methods have been widely employed with the advantage of broader metabolome coverage. However, in MS-

based metabolomics, large amount of complex data characterize few samples. Thus, extracting a small set of relevant 

features from this complex data is challenging.  

 Principal component analysis (PCA) has been widely used for both dimension reduction and for exploratory 

analysis of complex datasets (Wold et al. 1987). PCA provides features representing the dominating characteristics of 

the data. Nevertheless, only few LC-MS based metabolomics studies employ PCA for feature selection. One of the 

reasons for this is that PCA represents each principal component (PC) as the linear combination of all original variables. 
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Particularly in cases where the number of variables exceeds the number of samples as in metabolomics, this complicates 

interpretation of PCs such that it becomes unclear to extract only a few relevant features from the many irrelevant ones. 

To overcome this issue, sparse principal component analysis (SPCA) was introduced by Zou et al. (2006a) using the 

lasso (elastic net) to produce modified PCs with sparse loadings. SPCA allowed the less influential variables to have 

zero influence on the model by imposing lasso (elastic net) constraint on the regression coefficients. Allen and Maletic-

Savatic (2011) have demonstrated applicability of SPCA with non-negativity constraints on an NMR based 

metabolomics dataset. Sparsity penalty has also been applied for some studies of metabolomics-based multi-block data 

analysis (Acar et al. 2012;Van et al. 2011). However, a direct application of SPCA for metabolite selection from LC-

MS based metabolomics data has not been shown.  

 The metabolic responses to food intake and metabolite clearance rates are usually measured by postprandial 

challenge tests. These may be performed by glucose tolerance tests (OGTT or clamps), lipid challenges, or by specific 

foods or whole meal challenges, depending on the specific metabolite group of interest. In traditional clinical nutrition, 

the postprandial tests have been evaluated based on a response pattern of established biomarkers, such as plasma 

glucose in OGTT and plasma triacylglycerides in lipid challenges. On the other hand, metabolomics offers a more 

holistic view by comprehensive coverage of metabolites in biological samples. Zhao et al. (2009) and Shaham et al. 

(2008) were the first to utilize metabolomics to investigate the physiological changes during an OGTT. They identified 

major concentration changes in compounds, such as bile acids, that have not been reported previously. A more recent 

metabolomics study demonstrated the dynamics of the human metabolome in response to diverse challenges, a 

prolonged fasting period of 36 h, a standard liquid diet, an OGTT, an oral lipid tolerance test, a physical activity test, 

and a cold pressure stress test (Krug et al. 2012). Another study investigated the metabolic perturbation in response to 

postprandial challenge in a controlled intervention study (Pellis et al. 2012). Our perspective, on the other hand, is to 

explore whether the plasma LC-MS metabolic profiles reflecting the TSLM can be extracted from a small cohort where 

subjects had various quality and quantity of food during their last meal. In observational studies, there are many life-

style factors which influence each other and that may lead to confounding. Metabolic profiles may be useful to study 

relationships between diets and metabolism and may eventually reveal disease patterns, yet they may be severely biased 

by patterns related to sampling such as the TSLM. In the current study, to uncover TSLM-related patterns in a first 

attempt to disentangle some of the factors affecting the metabolic profiles in the un-controlled observational setting, we 

employed SPCA as a pattern recognition and feature selection tool and compared its performance with PCA.  
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2 Materials and Methods 

2.1 Subjects 

 Data from the Danish prospective cohort study, Diet, Cancer and Health, was used for this study. Briefly, a total of 

57,053 men and women were enrolled into the cohort between December 1993 and May 1997. Participants were 

eligible for inclusion if they fulfilled the following criteria: age between 50-64 years, born in Denmark (living in the 

Copenhagen or Aarhus areas) and no previous cancer diagnosis in the Danish Cancer Registry. A detailed food 

frequency questionnaire (FFQ) and a lifestyle questionnaire were completed by each participant. Biological and 

anthropometric measurements were taken, including a non-fasting 30-ml blood sample. The blood samples were 

centrifuged and divided into fractions of plasma, serum, red blood cells, and buffy coat and stored in 1-ml tubes. All 

samples were processed and frozen within 2 hours at -20°C and were ultimately transferred to liquid nitrogen vapor 

(max. -150°C), where they were stored until needed. Citrate was used as the anticoagulant. A thorough description of 

the data collection procedure has been published elsewhere (Tjonneland et al. 2007).  

 

Fig. 1 TSLM distribution of the subjects. Subjects are grouped into four intervals based on the time passed 

since their last meal has been taken, denoted by int1, int2, int3 and int4. 
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 For the present study, we considered a sub-cohort of female colorectal cancer cases and matched controls. A total 

of 175 colon and rectal cancer cases among females were identified during a median follow-up of 5.9 years. An 

identical number of controls was selected randomly.  

2.2 Study design 

 Prior to blood sampling, the number of hours passed since subjects had taken their last meal was recorded. Besides 

breakfast, lunch and dinner, solid snacks were considered as the last meal but not liquid intake. The subject’s whose 

TSLM has not been reported or with a BMI lower than 20 were excluded. The remaining dataset contained 270 

subjects. Fig. 1 represents the TSLM distribution of the subjects. Later, subjects were grouped into four time intervals; 1 

to 2.1 h, 2.1 to 3.5 h, 3.5 to 5 h and 5 to 18.6 h (Fig. 1).  

2.3 LC-MS analysis 

 Plasma protein precipitation was performed as described earlier (Gürdeniz et al. 2012). Samples were randomized 

and placed in 96-well plates. An ultra-performance liquid chromatography (UPLC) system coupled to quadruple time-

of-flight (Premier QTOF) mass spectrometer (Waters Corporation, Manchester, UK) was used for sample analyses. 

Each sample (10 µL) was injected into the UPLC equipped with a 1.7µm C18 BEH column (Waters) operated with a 6-

min linear gradient from 0.1% formic acid in water to 0.1% formic acid in 20% acetone: 80% acetonitrile. The capillary 

probe voltage was set at 2.8 and 3.2 kV for negative (ESI-) and positive (ESI+) electrospray ionization (ESI) modes, 

respectively. In the ESI- mode, desolvation gas temperature 400°C, cone voltage 40 V, and Ar collision gas energy 6.1 

V were used. In the ESI+ mode, we used the same settings except for collision energy of 10 V). Samples of blank (0.1% 

formic acid) and metabolomics standard mixture of 44 metabolites were analyzed after every 50 samples during the 

sample sequence.  

 Amino acids (i.e.tyrosine, leucine/isoleucine, tryptophan, phenylalanine), lysophosphatidylcholines  (LPC18:1, 

LPC18:0, LPC17:0, LPC16:0, and C18:2) and lysophosphatidylethanolamine (LPE18:1) were identified by using an in-

house metabolite database containing retention time information and MS spectra of reference substances (Gürdeniz et 

al. 2012). LPC15:0, LPC18:3, LPC20:2 and LPC20:3 were putatively identified based on spectra and retention time 

relative to the identified LPCs and LPEs. 

2.4 Data pre-processing and pre-treatment 
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 The centroided raw data was converted to an intermediate netCDF format with the DataBridgeTM utility provided 

with the MassLynx software. MZmine 2.7 (Pluskal et al. 2010) was employed for data preprocessing including the 

following steps: mass detection, chromatogram builder, chromatogram deconvolution (local minimum search), isotopic 

peaks grouper, peak alignment (using join aligner) and gap filling. The term ‘feature’ is used to refer to a chemical 

compound with a specific retention time and mass over charge ratio (m/z) throughout this paper.   

 MZmine-preprocessed data was imported into MATLAB R2012a (ver. 7.17.0.739). Peak filtering was applied 

based on two criteria. First, if a feature has a reasonable peak area (>60) in the first blank sample in at least one of the 

four analytical batches, the feature is removed from the entire set. Second, if a feature has a peak area lower than 5 

(considered as noise level or gap filling errors), in more than 60% of the samples within every sample group (TSLM 

intervals), the feature is excluded (percent rule, (Bijlsma et al. 2006)). Afterwards, the few remaining missing entries 

were filled with a number within a random range of 0-70 % of the smallest value for each feature. 

 Systematic error caused by experimental conditions was corrected based on two normalization approaches. 

Initially, samples were normalized to unit length to correct for decreasing instrumental response during sample 

acquisition batches. Second, to remove inter-batch variation, each feature was normalized within each batch with the 

overall mean of its recordings throughout the entire set. This approach is justified by the randomization of the samples 

between the plates prior to analysis.  

 Data preprocessing was automated by a MATLAB function which can be provided upon request.  

2.5 Data analysis 

 Autoscaled data was subjected to PCA (Wold et al. 1987) and SPCA. SPCA can be formulated as a penalized 

optimization problem with the main objective being a minimization problem similar to PCA with L1 norm penalties 

imposed on the parameters, in this case the loading vectors, to achieve sparsity. The formulation of SPCA can be shown 

as: 

argmin	(‖X − TP�‖�
�) 

        subject to ‖p�‖� ≤ c and ‖p�‖�
� = 1, for i=1,…,k 

where X (n x p), is the data matrix, ‖p�‖� is the sum of absolute values (L1 norm) of the i’th column of the loading 

matrix P, and T is the scores matrix. The tuning parameter c is a positive penalty parameter bounding the sum of 

absolute values of the normalized loading vector (‖p�‖� ≤ c). It controls the degree of sparsity in the loading vector, 
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i.e., the number of nonzero loadings. A meaningful sparse solution can be found when the parameter is chosen between 

1 (univariate decomposition, one variable pr. component) and the square root of the number of variables (unconstrained 

PCA decomposition) (Rasmussen and Bro 2012). 

 The calculation of the entire set of components was done simultaneously by iterating between scores and loadings. 

An alternating least squares-based approach with induced L1 norm penalty was used for component estimation. 

Relative change in function values is used as a stopping condition and it is set to 10-10. Each step of the alternating 

procedure is a convex optimization problem, and hence provides the global minima. However, the entire problem is not 

convex and in order to avoid local minimum issues, we initialized multiple times with random loadings. Unlike PCA, 

SPCA does not impose othogonality constraint between components.  

 SPCA requires the selection of the number of components and the degree of sparsity. The number of components 

was varied from 4 to 20 incrementing by 3. The tuning parameter c was varied from 1.5 to 6 with 0.5 intervals. In this 

study, we evaluated SPCA scores and chose the sparsity level and the number of components that sufficiently explained 

the TSLM patterns. 

 PCA is implemented in PLS_Toolbox (ver. 6.5.1, Eigenvector Research, Inc., MA, US) for MATLAB® R2012a 

(ver. 7.17.0.739). SPCA was conducted using a freely available SPCA algorithm from (http://models.life.ku.dk/sparsity) 

for MATLAB together with a web tutorial, describing details of the algorithm(Rasmussen and Bro 2012).  

3 Results and Discussions 

 Initially we would like to mention the reasons why an unsupervised method has been selected to investigate this 

data. For instance, a regression method such as PLS (Partial Least Squares) could have been a natural choice to predict 

TSLM patterns or a classification approach such as PLS-DA (Partial Least Squares Discriminant Analysis) could have 

been applied using the determined TSLM intervals. However, the subjects had their habitual diets varying in quantity as 

well as quality of foods and drinks during each meal. Furthermore, many of the subjects additionally had a drink which 

was not further specified (e.g., water, juice, coffee, etc.) independently of their recorded TSLM. As a matter of fact, for 

many subjects TSLM was approximate rather than a very certain value. Thus, using PLS with approximate labels 

corresponding to TSLM was not very accurate. Furthermore, we have attempted to group subjects into intervals based 

on their TSLM (Fig. 1) in order to ease the visualization. However, the interval boundaries were not clear, as the 

metabolic response to TSLM is an ongoing process. Therefore, classification-based methods like PLS-DA are not very 

appropriate. On the other hand, an explorative data analysis method aims to capture underlying dominating patterns 
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without any predictor variables. Thus, PCA-based methods provide the necessary basis to explore all systematic 

variation and especially TSLM-related patterns.  

3.1 Interpretation of models from SPCA vs. PCA  

 A total of 1199 features in ESI+ mode and 1324 in ESI- mode were detected by MZmine. After exclusion of noise 

and irrelevant features as described in the section on data pre-processing, 547 and 681 features for ESI+ and ESI- 

modes, respectively, remained for data analysis. Furthermore, 10 samples in ESI+ and 13 samples in ESI- were 

excluded as outliers in PCA. These samples also had either instrumental (i.e. very low response) or sample preparation 

issues (i.e. too little sample left for analysis).  

 PCA captured the slight TSLM trend by PC1 (11.3%) and PC4 (3.2%) for ESI- mode, as shown in Fig. 2a and 2c. 

The TSLM trends are not very obvious, which was expected as each subject’s last meal differed in quality and quantity. 

Based on Fig. 2b and 2d the loading plots are difficult to interpret. LPCs and LPEs for PC1 (Fig. 2b) and a group of 

amino acids for PC4 (Fig. 2d) tend to have relatively higher loadings (i.e., coefficients with high magnitudes), yet those 

are not clearly distinguishable from many others. 
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Fig. 2 TSLM vs. scores on PC 1 (a) and PC 4 (c) scores. Retention time vs. PC 1 (c) and PC 4 (d) loadings. 

(Data acquired in ESI- mode) 

   Among the different number of components and sparsity levels considered, the SPCA model with 14 

components and sparsity level of 2.5 i. e. , (‖p�‖� ≤ 2.5) was determined to be the appropriate model capturing the 

TSLM trend in ESI- mode. SPCA score plots for SPC2 (0.82%), SPC6 (0.78%) and SPC12 (0.7%) (Fig. 3a, 3c, 3e) 

illustrate similar trends for TSLM patterns compared to PC1 (Fig. 2a). However, unlike PCA loadings (Fig. 2b), we can 

clearly see the compounds reflecting the patterns from SPCA loadings (Fig. 3b, 3d, 3f). Furthermore, the TSLM trend is 

also described by scores on SPC14 (0.62%) (Fig. 4a), even slightly better than the corresponding PC4 (Fig. 2c). It 

seems PC4 is reflecting also other irrelevant patterns (Fig. 2d). SPC14, on the other hand, is able to extract the TSLM 

related part.  
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Fig. 3 TSLM vs. scores on SPC 1 (a). Retention time vs. SPC 1 (b) loadings. (Data acquired in ESI- mode)  
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Fig. 4 TSLM vs. scores on SPC 3 (a), SPC 9 (c) and SPC 13 (e). Retention time vs. SPC 3 (b), SPC 9 (d) and 

SPC 13 (f) loadings. Spearman correlations between components are r2-6= 0.69, r2-12 = 0.72 and r2-12 = 0.73 

[CI = 95%]) (Data acquired in ESI- mode)   

 The explained variation for SPCA is much lower than PCA, yet this was not surprising especially when the level of 

sparsity is low and large number of component is included.  

 Scores on SPC2, SPC6 and SPC12 are highly correlated with each other (Fig. 3). When SPCA is performed with 

decreased degree of sparsity	(‖p�‖� ≤ 4	for i=1,..,14) the same pattern is explained with only one component. 

Nevertheless, the pattern explained by SPC1 disappeared. This problem can be solved by further improvement of the 

SPCA algorithm using component-wise sparsity penalties. 

 For the data acquired in ESI+ mode, we used SPCA with eight components and a sparsity degree of four (‖p�‖� ≤

4, for i=1,..,8). The TSLM is captured by SPC8 (1.7%) as shown in Fig. 5. Using lower than 8 components and 

decreasing the degree of the sparsity penalty, the model did not reveal TSLM related patterns.  
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Fig. 5 TSLM vs. scores on SPC1 (a). Retention time vs. SPC 1 (b) loadings. (Data acquired in ESI+ mode) 

 Our results clearly show that SPCA outperforms PCA by providing more easily interpretable results, yet with the 

explained variance trade off. SPCA encouraged features with negligible contributions in standard PCA to have zero 

loadings. Thus, the significant metabolites could be identified easily by the loadings of the SPCA model.  

 It was interesting to see the groups of metabolites reflecting TSLM patterns, i.e., amino acids and LPCs/LPEs, 

appearing in different components. The correlation coefficients between the SPC scores corresponding to amino acids 

and LPCs/LPEs is 0.3 (Spearman’s correlations [CI = 95%]), meaning that they are not correlated. This can provide 

another perspective for interpretation such that the compounds from different chemical groups behaved differently in 

relation to TSLM. Once one variable is selected, SPCA tends to select a group of variables correlated with that one. In 

this case, the metabolites from the same chemical class, LPCs/LPEs and amino acids, were correlated within their group 

and had group specific influence on TSLM patterns (Fig. 3). Rasmussen & Bro (2012) had similar findings where 

selection of inter-correlated variables was favored by SPCA from proteomics based MS data. 

 In this study, we have tested the performance of SPCA as a feature selection tool for LC-MS based metabolomics 

data. The main obstacle is selection of the optimum number of components and the sparsity tuning parameter. In some 

other studies, cross validation (Rasmussen and Bro 2012) and Bayesian information criteria (Allen and Maletic-Savatic 

2011) have been suggested for selection of the sparsity penalty. However, for our problem class boundaries were not 

very clear, which makes these solutions unsuitable. In this case, we selected the minimum number of components that 

we can observe TSLM related patterns, yet as a future perspective in-depth sensitivity analysis can be performed to 

select number of components and sparsity level.  

3.2 Metabolic reflections of TSLM  

 The overview of identified compounds reflecting TSLM in ESI- and ESI+ mode is given in Table 1. As shown in 

Table 1, SPCA revealed compounds from two different chemical classes, amino acids and lyso-lipids (LPCs and LPEs) 

as reflecting TSLM patterns.  

Table 1 The identified plasma metabolites reflecting the TSLM. The ESI mode in which the metabolites 

have been found as significant by SPCA is indicated. 

Coumpound Name ESI Mode  
Tyrosine ESI-,ESI+ 
Leucine/Isoleucine ESI-,ESI+ 
Phenylalanine ESI-,ESI+ 
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Tryptophan ESI-,ESI+ 
LPC (18:3)A ESI+ 
LPC (16:1) ESI+ 
sn2-LPC (18:2) ESI-,ESI+ 
sn2-LPE (18:2) ESI- 
LPC (15:0) ESI-,ESI+ 
sn1-LPC (18:2) ESI+ 
sn1-LPE (18:2) ESI-,ESI+ 
sn2-LPC (16:0) ESI-,ESI+ 
LPC (20:3) ESI+ 
sn1-LPC (16:0) ESI- 
LPC (18:1) ESI-,ESI+ 
LPC (17:0) ESI+ 
LPE (18:1) ESI-,ESI+ 
LPC (20:2)A ESI-,ESI+ 
LPC (17:0) ESI-,ESI+ 
sn2-LPC (18:0) ESI-,ESI+ 
sn1-LPC (18:0) ESI- 

 

The scores of the components describing each group are observed in different components meaning that the TSLM 

responses of lyso-lipids and amino acids diverge. The reflected amino acids are four essential amino acids, 

phenylalanine, leucine/isoleucine and tryptophan and one nonessential amino acid, tyrosine (Fig. 3B). Amino acids 

increase with recent food intake and decrease until 18h after the last meal has been taken (Fig. 3A) yet, there is a large 

variation particularly within the 1 to 2.1 h cluster. In fact, it has been shown that plasma amino acid concentration can 

fluctuate widely in response to many factors such as type of food consumed (Boirie et al. 1997;Wurtman et al. 1968), 

obesity (Shaham et al. 2008) and diabetes (Wang et al. 2011). Thus, considering the varying characteristics of the 

subjects as well as the qualitative and quantitative differences of the last meals taken by the subjects in this study, the 

large variation is not surprising. Nevertheless, in a more controlled intervention study, Pellis et al. (2012) observed 

approximately the same TSLM responses for a wide range of amino acids (0-6h). The higher amino acid concentration 

during the first 1-2h is linked to the compositions of the protein source present in the last meal. The declining trend after 

2h is related to insulin stimulation of amino acid uptake from the plasma to liver and muscle for protein synthesis 

(Fukagawa et al. 1985). The decrease in plasma branched-chain amino acids has been shown to start earlier after a 

glucose challenge without a concomitant protein load, starting at 30 min, which is most likely related to a strong, 

immediate impact of glucose on insulin secretion (Shaham et al. 2008). Prolonged fasting causes a later increase in 

branched chain amino acids levels starting at 10-20 hours due to increased proteolysis (Rubio-Aliaga et al. 2011). We 
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did not observe this phenomenon in the current study although some subjects had their last meal even as much as 12-18 

hours earlier; those were very few and they were not subjected to prolonged-fasting as TSLM is determined without 

considering the last drink. All of these participants reported having consumed a drink but we do not have records of 

what the participants were drinking in this study and some may have taken nutritious drinks such as milk.  

 Both sn-1 and sn-2 isomers of a wide range of LPCs and LPEs exhibit a steady decrease with increasing TSLM 

(Fig. 3a, 3c, 3e). LPC is a plasma lipid that has been recognized as an important cell signaling molecule and it is 

produced by the action of phospholipases A1 and A2, by endothelial lipase or by lecithin-cholesterol acyltransferase 

(LCAT) which transfers one of the fatty acids from phosphatidylcholine to cholesterol. LCAT has a well-known 

function in catalyzing the transfer of fatty acids to free cholesterol in plasma for the formation of cholesteryl esters 

(Schmitz and Ruebsaamen 2010). In our previous rat study, we have seen a wide range of LPCs and a few LPEs 

decrease in the fasted state compared to the fed state, in support of our findings in the current study (Gürdeniz et al. 

2012). In a study of prolonged fasting (12h to 36h) a reduction in plasma LPCs (C18:0, C18:1 and C18:2) was also 

observed as shown by (Rubio-Aliaga et al. 2011). Another study investigating the effects of an oral glucose tolerance 

test, plasma LPCs (C16:0, C18:0, C16:1, C18:1, and C18:2) increased from fasting levels up to 1h with a slight further 

increase until 2h. (Pellis et al. 2012) in a postprandial challenge test observed an increase in one specific LPC, (C18:2), 

with a somewhat longer time course of 1 to 6h. In their study fasting for 1-2h response for LPC (18:2), was not clear. 

This discrepancy might be related to the specific challenge meal that the subjects were given in the intervention study.  

 LPCs have been related to increased insulin resistance (Han et al. 2011); however, their effect compared to other 

related lipids such as PCs and SMs has not been reported. A recent lipidomics study demonstrated a reduction of fasting 

plasma LPC levels in obese and type 2 diabetic obese subjects stronger than for other PCs and SMs (Barber et al. 2012). 

These findings suggest that LPCs have an important role in insulin regulation. A further investigation of plasma LPC 

responses to a postprandial challenge test on diabetic obese subjects can reveal if the reduction is specific to the fasting 

state or if the time course response is affected. The unsaturated LPCs have been found also to pass the blood-brain 

barrier and to be important vehicles for delivering unsaturated lipids to the brain (Sekas et al. 1985). We speculate that 

the high level of unsaturated LPCs in the postprandial state of healthy individuals might be a part of the satiety 

signaling system which is malfunctioning in obesity.  

 Although LPEs indicate similar trends to LPCs, the previous discussions were attributed to LPCs. The reason is 

that not so much is known regarding to physiological functions of the plasma LPEs. LPEs, in analogy to LPCs, can be 

generated from phosphatidylethanolamine (PE), a component of the cell membrane via a phospholipase A-type reaction 
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(Makide et al. 2009). In this study, LPCs and LPEs seem to have similar functions based on their parallel response to 

TSLM and LPEs have the same fatty acyl groups as LPCs. The specific chain length and saturation level of LPCs and 

LPEs in plasma may primarily be related to the distribution of fatty acyl chains in the food consumed most recently.  

Conclusions 

 The results here suggest that SPCA is able to capture TSLM patterns with loadings which are much easier to 

interpret compared to PCA. Also, it is able to extract inter-correlated variables from the same biochemical classes. 

Based on these results we believe SPCA can be potentially applied for variable selection in LC-MS based metabolomics 

studies.   

 In spite of the variability and the uncontrolled nature of an observational setting, amino acids and LPCs/LPEs 

emerged as TSLM reflecting patterns in this relatively small pilot study. In larger studies within observational settings it 

should be possible also to disentangle the influence of factors such as diabetes, waist circumference, or BMI and 

possibly to find cancer-related patterns. We have recently analyzed more than 3000 samples from the DCH cohort and 

will proceed to analyze at the metabolome level the confounding effect of recent food intake, food intake patterns and 

current health status. 
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Abstract—Metabolomics focuses on the detection of chemical
substances in biological fluids such as urine and blood using
a number of analytical techniques including Nuclear Magnetic
Resonance (NMR) spectroscopy and Liquid Chromatography-
Mass Spectroscopy (LC-MS). Among the major challenges
in analysis of metabolomics data are (i) joint analysis of
data from multiple platforms and (ii) capturing easily inter-
pretable underlying patterns, which could be further utilized
for biomarker discovery. In order to address these challenges,
we formulate joint analysis of data from multiple platforms
as a coupled matrix factorization problem with sparsity con-
straints on the factor matrices. We develop an all-at-once
optimization algorithm, called CMF-SPOPT (Coupled Matrix
Factorization with SParse OPTimization), which is a gradient-
based optimization approach solving for all factor matrices
simultaneously. Using numerical experiments on simulated
data, we demonstrate that CMF-SPOPT can capture the
underlying sparse patterns in data. Furthermore, on a real
data set of blood samples collected from a group of rats, we
use the proposed approach to jointly analyze metabolomic data
sets and identify potential biomarkers for apple intake.

Keywords-Coupled matrix factorization; sparsity; gradient-
based optimization; missing data; metabolomics

I. INTRODUCTION

With the ability to collect massive amounts of data

as a result of technological advances, we are commonly

faced with data sets from multiple sources. For instance,

metabolomics studies focus on detection of a wide range of

chemical substances in biological fluids such as urine and

plasma using a number of analytical techniques including

Liquid Chromatography-Mass Spectroscopy (LC-MS) and

Nuclear Magnetic Resonance (NMR) Spectroscopy. NMR,

for example, is a highly reproducible technique and powerful

in terms of quantification. LC-MS, on the other hand,

allows the detection of many more chemical substances in

biological fluids but only with lower reproducibility. These

techniques often generate data sets that are complementary

to each other [1]. Data from these complementary meth-

ods, when analyzed together, may enable us to capture a

larger proportion of the complete metabolome belonging

to a specific biological system. However, currently, there

is a significant gap between data collection and knowledge

extraction: being able to collect a vast amount of relational

data from multiple sources, we cannot still analyze these

data sets in a way that shows the overall picture of a specific

problem of interest, e.g., exposure to a specific diet.
To address this challenge, data fusion methods have been

developed in various fields focusing on specific problems

of interest, e.g., missing link prediction in recommender

systems [2], and clustering/community detection in social

network analysis [3], [4]. Data fusion has also been studied

in metabolomics mostly with a goal of capturing the under-

lying patterns in data [5] and using the extracted patterns

for prediction of a specific condition [6] (see [1] for a

comprehensive review on data fusion in omics).
Matrix factorizations are the common tools in data fusion

studies in different fields. An effective way of jointly ana-

lyzing data from multiple sources is to represent data from

different sources as a collection of matrices. Subsequently,

this collection of matrices can be jointly analyzed using

collective matrix factorization methods [7], [8].
Nevertheless, applicability of available data fusion tech-

niques is limited when the goal is to identify a limited

number of variables, e.g., a few metabolites as potential

biomarkers. Matrix factorization methods, without specific

constraints on the factors, would reveal dense patterns,

which are difficult to interpret. Therefore, motivated by the

applications in metabolomics, in this paper, we formulate

data fusion as a coupled matrix factorization model with

penalties to enforce sparsity on the factors in order to

capture sparse patterns. Our contributions in this paper can

be summarized as follows:

• Formulating a coupled matrix factorization model with

penalties to impose sparsity on factor matrices,

• Developing a gradient-based optimization algorithm for

solving the smooth approximation of the coupled matrix

factorization problem with sparsity penalties,

• Demonstrating the effectiveness of the proposed

model/algorithm in terms of capturing the underlying

sparse patterns in data using simulations,

• Identifying potential apple biomarkers based on joint

analysis of metabolomics data sets collected on blood

samples of a group of rats.

The rest of the paper is organized as follows. In Section II,
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we introduce our coupled matrix factorization model with

penalties to impose sparsity and a gradient-based optimiza-

tion algorithm for fitting the model. Section III demonstrates

the performance of the proposed approach on both simulated

and real data. In Section IV, we survey the related work, and,

finally, conclude in Section V.

II. CMF-SPOPT

In this section, we first introduce our model for coupled

matrix factorization (CMF) with penalty terms to enforce

sparsity on the factor matrices and discuss the extension

of the model to coupled analysis of incomplete data. We

then present our algorithmic framework called CMF-SPOPT

(Coupled Matrix Factorization with SParse OPTimization),

which fits the proposed model using a gradient-based opti-

mization method.

A. Model

We consider joint analysis of multiple matrices with one

mode in common using coupled matrix factorization to

capture the underlying sparse factors. We first discuss the

formulation of coupled matrix factorization, which has previ-

ously been studied in various data fusion studies [2], [8], [9].

Without loss of generality, suppose matrices X ∈ R
I×J and

Y ∈ R
I×K have the first mode in common. The objective

function for their joint factorization can be formulated as:

f(A,B,C) =
∥∥∥X−ABT

∥∥∥2 + ∥∥∥Y −ACT
∥∥∥2 (1)

where ||.|| denotes the Frobenius norm for matrices and

the 2-norm for vectors. The goal is to find the matrices

A ∈ R
I×R, B ∈ R

J×R and C ∈ R
K×R that minimize

(1). Note that A, i.e., the factor matrix extracted from the

shared mode, is common in factorization of both X and Y.

In this paper, we extend the formulation in (1) by adding

penalty terms in order to impose sparsity on factor matrices

B and C, and reformulate the objective function as:

f(A,B,C)

=
∥∥∥X−ABT

∥∥∥2 + ∥∥∥Y −ACT
∥∥∥2

+ λ
R∑

r=1

‖br ‖1 + λ
R∑

r=1

‖ cr ‖1 + α
R∑

r=1

‖ar ‖2
(2)

where br and cr correspond to the rth column of B and C,

respectively. ‖x ‖1 denotes 1-norm of a vector and is defined

as
∑ |xi|. λ and α are penalty parameters with λ, α ≥ 0.

This formulation is motivated by metabolomics applica-

tions, where we often have different types of measurements

on the same samples. For instance, X may correspond to a

samples by features matrix constructed using LC-MS mea-

surements while Y may be a matrix in the form of samples
by chemical shifts constructed using NMR measurements.

In most metabolomics applications, we need the underlying

sparse patterns in variables dimensions, e.g., metabolites, in

order to relate diseases or dietary interventions with a small

set of variables. Therefore, we impose sparsity only in the

variables modes by adding the 1-norm penalty, which has

shown to be an effective way of enforcing sparsity [10].

The 2-norm penalty on the factors in the samples mode,

i.e., the last term in (2), is added to handle the scaling

ambiguity. Since there is a scaling ambiguity in the matrix

factorization given above, i.e., X̂ = (ηA)( 1ηB) = AB,

without penalizing the norm of the factors in the samples

mode, the sparsity penalty would not have the desired effect.

1) Smooth Approximation: In order to minimize the ob-

jective function (2), we need to deal with a non-differentiable

optimization problem due to the 1-norm terms. However, by

replacing the 1-norm terms with differentiable approxima-

tions, it can be converted into a differentiable problem. Here,

we approximate the terms with 1-norm using the “epsL1”

function [11] and rewrite (2) as:

f(A,B,C)

=
∥∥∥X−ABT

∥∥∥2 + ∥∥∥Y −ACT
∥∥∥2

+ λ
R∑

r=1

J∑
j=1

√
b2jr + ε+ λ

R∑
r=1

K∑
k=1

√
c2kr + ε

+ α
R∑

r=1

‖ar ‖2

(3)

where bjr denotes the entry in the jth row, rth column of

B. Note that, for sufficiently small ε > 0,
√

x2
i + ε = |xi|.

2) Missing Data: In the presence of missing data, we can

still jointly factorize matrices and extract sparse patterns by

fitting the coupled model only to the known data entries.

Suppose X has missing entries and let W ∈ R
I×J indicate

the missing entries of X such that

wij =

{
1 if xij is known,

0 if xij is missing,

for all i ∈ {1, . . . , I} and j ∈ {1, . . . , J}. To jointly analyze

matrix Y and the incomplete matrix X, we can then modify

the objective function (3) as

fW(A,B,C)

=
∥∥∥W ∗ (X−ABT)

∥∥∥2 + ∥∥∥Y −ACT
∥∥∥2

+ λ
R∑

r=1

J∑
j=1

√
b2jr + ε+ λ

R∑
r=1

K∑
k=1

√
c2kr + ε

+ α
R∑

r=1

‖ar ‖2

(4)

where ∗ denotes the Hadamard (element-wise) product.

The formulations in (3) and (4) easily generalize to

joint factorization of more than two matrices, each with
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underlying sparse factors in the variables mode. In our

objectives, we give equal weights to the factorization of each

data matrix, and in the experiments, we divide each data

set by its Frobenius norm so that the model does not favor

one part of the objective. However, determining the right

weighting scheme remains to be an open research question.

B. Algorithm

With the smooth approximation, we have obtained dif-

ferentiable objective functions in (3) and (4), which can be

solved using any first-order optimization algorithm [12]. In

order to use a first-order optimization method, we only need

to derive the gradient. The gradient of fW in (4), which is

a vector of size P = R(I + J + K), can be formed by

vectorizing the partial derivatives with respect to each factor

matrix and concatenating them all, i.e.,

∇fW =

⎡
⎢⎢⎢⎢⎣
vec

(
∂fW
∂A

)
vec

(
∂fW
∂B

)
vec

(
∂fW
∂C

)

⎤
⎥⎥⎥⎥⎦

Let Z = ABT. Assuming each term of fW in (4) is

multiplied by 1
2 for the ease of computation, the partial

derivatives of fW with respect to factor matrices, A, B and

C, can be computed as:

∂fW
∂A

= (W ∗ Z−W ∗X)B−YC+ACTC+ αA

∂fW
∂B

= (W ∗ Z−W ∗X)TA+
λ

2
B/(B ∗B+ ε)

1
2

∂fW
∂C

= −YTA+CATA+
λ

2
C/(C ∗C+ ε)

1
2

where the operator / denotes element-wise division.

Traditional approaches for coupled matrix factorizations

are based on alternating algorithms [8], [9], where the

optimization problem is solved for one factor matrix at a

time by fixing the other factor matrices. While alternating

algorithms are widely-used, direct nonlinear optimization

methods solving for all factor matrices simultaneously have

better convergence properties within the context of matrix

factorizations with missing entries [13] and shown to be

more accurate in the case of tensor factorizations [14].

Therefore, we use a gradient-based optimization algorithm

to solve the non-convex optimization problem in (4). Neither

alternating nor all-at-once approaches can guarantee to reach

the global optimum. The computational cost per iteration is

the same for both alternating and gradient-based approaches

(See [13], [14] for in-depth comparison of alternating and

all-at-once approaches).

Once the gradient, ∇fW, is computed, we then use

the Nonlinear Conjugate Gradient (NCG) method with

Hestenes-Steifel updates [12] and the Moré-Thuente line

search as implemented in the Poblano Toolbox [15].

III. EXPERIMENTS AND RESULTS

In this section, performance of the proposed approach in

terms of capturing the underlying sparse patterns in coupled

data sets, is demonstrated using both simulated and real data.

A. Simulated Data

The goal of simulations is two-fold: (i) to demonstrate

that underlying sparse factors used to generate coupled

data sets can be accurately captured using the proposed

model/algorithm (ii) to study the sensitivity of the proposed

approach to different parameter values.

1) Experimental Set-up: We generate coupled matrices,

X ∈ R
I×J and Y ∈ R

I×K computed as X = ABT and

Y = ACT, where A ∈ R
I×R has entries randomly drawn

from the standard normal distribution; matrices B ∈ R
J×R

and C ∈ R
K×R, similarly, have entries randomly drawn

from the standard normal but S% of the entries in each

column of B and C is set to zero to have sparse factors.

Columns of A,B and C are normalized to unit norm.

We then add noise to X and Y to form coupled noisy

matrices, i.e., Xnoisy = X + η N1

‖N1 ‖‖X ‖ and Ynoisy =

Y + η N2

‖N2 ‖‖Y ‖, where entries of N1 ∈ R
I×J and N2 ∈

R
I×K are randomly drawn from the standard normal.

In order to assess the performance of CMF-SPOPT in

terms of capturing the underlying sparse patterns, we gen-

erate data sets with (i) sparsity levels: S = 30, 50, 70,

(ii) noise levels: η = 0.1, 0.5, and (iii) sizes: (I, J,K) ∈
{(20, 30, 40), (20, 300, 400), (20, 3000, 4000)}. We use R =
2 as the number of components.

Once coupled matrices are generated, CMF-SPOPT

is used to capture Â ∈ R
I×Rext , B̂ ∈ R

J×Rext

and Ĉ ∈ R
K×Rext for different values of penalty

parameters: λ ∈ {10−4, 10−3, 10−2, 10−1} and α ∈
{10−4, 10−3, 10−2, 10−1, 1, 5}. Rext indicates the number

of extracted components.

We compare the extracted matrices B̂ and Ĉ with the

original sparse matrices B and C used to generate the

coupled data, in terms of sparsity patterns. For instance,

the first column of B, b1, is compared with the matching1

column of B̂, e.g., b̂1. If a nonzero in b1 corresponds to

a nonzero in b̂1, then it is a true-positive; if a zero in b1

corresponds to a nonzero in b̂1, it is a false-positive.

As stopping conditions, CMF-SPOPT uses the relative

change in function value (set to 10−10) and the 2-norm of the

gradient divided by the number of entries in the gradient (set

to 10−10). For initialization, we use multiple random starts

and choose the run with the minimum function value.

2) Results: CMF-SPOPT can capture the underlying

sparse patterns accurately for varying levels of sparsity;

in particular, the recovery is perfect for higher sparsity.

We illustrate the performance of CMF-SPOPT in terms of

1Due to the permutation ambiguity, we look for the best permutation to
match the columns.
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(a) S = 30 (b) S = 70

Figure 1. Performance of CMF-SPOPT for different levels of sparsity and different values of penalty parameters.

(a) η = 0.1 (b) η = 0.5

Figure 2. Performance of CMF-SPOPT for different levels of noise and different values of penalty parameters.

true-positive rates (TPR) and false-positive rates (FPR) for

different sparsity levels in Figure 1. The best performance,

i.e., exact recovery of the underlying sparsity patterns,

corresponds to TPR=1 and FPR =0. The top and bottom

rows of Figure 1(a) show the performance of CMF-SPOPT

in terms of capturing the sparsity pattern of the first column

of B and C, respectively, for sparsity level S = 30. We

observe that underlying patterns can be captured accurately

but not perfectly as the best FPR values are around 0.1 - 0.2

with corresponding TPR values around 0.8-0.9. However, for

higher sparsity, underlying sparsity patterns can be perfectly

captured (Figure 1(b)). For all sparsity levels, the best

performance is achieved for α = 0.1 and λ = 0.1. Here,

we set (I, J,K) = (20, 30, 40), η = 0.5 and Rext = 2, and

present the average performance on 15 different sets of data.

CMF-SPOPT performs well in terms of capturing the

underlying sparse patterns even at high amounts of noise.

Figure 2 shows the performance of CMF-SPOPT at differ-

ent noise levels. While TPR is high and FPR is low for

low noise level, i.e., η = 0.1, with increasing noise we

observe the degradation in performance. However, TPR is

still high and FPR is low when η = 0.5. Here, we set

(I, J,K) = (20, 30, 40), S = 50, and Rext = 2, and again

report the average performance on 15 sets of data.
As we change data set sizes, best performing penalty pa-

rameters change drastically. Figure 3 shows the performance

of CMF-SPOPT for varying sizes of coupled data sets for

S = 50, η = 0.5, and Rext = 2. We observe that for small

number of dimensions in the variables mode, i.e., small

values of J and K, α = 0.1 and λ = 0.1 can accurately

capture the sparse factors in B and C. As J and K increase,

though, higher α and lower λ values become effective.
We have only reported the results for the first component

of B and C. Results for the second component are similar

and omitted here. Also note that matrix factorizations have
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(a) (I, J,K) = (20, 30, 40) (b) (I, J,K) = (20, 300, 400) (c) (I, J,K) = (20, 3000, 4000)

Figure 3. Performance of CMF-SPOPT for varying sizes of coupled data sets and different values of penalty parameters.

Table I
PERFORMANCE OF CMF-SPOPT FOR Rext ∈ {2, 3, 4} WHEN R = 2.

Matrix B Matrix C
Component Weight (σ̂r) Component 1 Component 2 Component 1 Component 2

Rext 1 2 3 4 TPR FPR TPR FPR TPR FPR TPR FPR
2 0.98 0.92 0.99 0.07 0.98 0.04 0.99 0.04 0.98 0.02
3 0.98 0.92 0.00 0.99 0.07 0.97 0.04 0.99 0.04 0.98 0.02
4 0.98 0.92 0.00 0.00 0.99 0.07 0.98 0.04 0.99 0.04 0.98 0.02

rotational ambiguity; in other words, they can capture the

factor matrices uniquely only up to a rotation. For certain

combination of penalty values, the factor matrices, though,

are uniquely captured by CMF-SPOPT, i.e., unique up to

scaling and permutation. Reported TPR and FPR values

correspond to those cases, where we can uniquely capture

the factor matrices up to scaling and permutation.

Finally, we show that CMF-SPOPT is robust to the

selection of the component number. Here, we generate data

using R = 2 but fit the model using Rext ∈ {2, 3, 4}. We

set η = 0.5, S = 50, λ = α = 0.1, (I, J,K) = (20, 30, 40).
Table I shows the weight of each coupled component,

calculated as follows: We can rewrite X = ABT and

Y = ACT as X =
∑R

r=1 βrarb
T
r and Y =

∑R
r=1 γrarc

T
r ,

where βr and γr are the weights of component r in X
and Y, respectively, and ‖ar ‖ = ‖br ‖ = ‖ cr ‖ = 1, for

r = 1, 2, ...R. We define the weight of a coupled component

r as σr = βr+γr. Similarly, when Â, B̂ and Ĉ are extracted

using CMF-SPOPT, columns are normalized and σ̂r is

computed. Table I shows that when there are two common

components, i.e., R = 2, and data sets are overfactored using

Rext = 3, 4, weights of the extra components are 0. Besides,

sparsity patterns of common components are still accurately

captured as indicated by high TPR and low FPR.

In summary, simulation studies demonstrate that CMF-

SPOPT is quite effective in terms of capturing the underlying

sparse patterns in coupled data; however, we also observe

that the method is sensitive to penalty parameter values.

B. Metabolomics Data Analysis

Next, we use CMF-SPOPT to jointly analyze

metabolomics data measured using different analytical

techniques and identify potential markers for apple intake.
1) Data: The data consists of blood samples collected

from a group of rats, which was part of a study on the effect

of apple feeding on colon carcinogenesis [16]. Here, we use

the samples from forty-six male Fisher 344 rats (5-8 weeks

old) obtained from Charles River (Sulzfeld, Germany). After

one week of adaptation on a purified diet, the animals were

randomized to two experimental groups: fed either the same

purified diet (group 1: Apple 0) or the purified diet added

10 g raw whole apple (group 2: Apple 10) for 13 weeks. At

the end of the study, rats were sacrificed after an overnight

fasting (16hrs). Animal experiments were carried out under

the supervision of the Danish National Agency for Protection

of Experimental Animals.

The rat plasma samples were analyzed by untargeted

liquid chromatography - time-of-flight (LC-QTOF) mass

spectrometry [17] and NMR [18]. In LC-MS analysis, raw

data is converted into a feature set, where each feature is

denoted by the mass over charge (m/z) ratio and a retention

time (see [17] for details). In NMR analysis, the spectra were

preprocessed (see [18] for details) and then converted into

a set of peaks using an in-house automated peak detection

algorithm. We also have a third data set containing Total
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cholesterol (chol), low density cholesterol (LDL), very low

density cholesterol (VLDL) and high density cholesterol

(HDL) lipoproteins (computed based on the NMR data [18])

and triacylglycerol (TG) concentrations (measured using

the rat plasma samples). In summary, our data can be

represented using the following three matrices:

• X ∈ R
I×J of type samples by features corresponding

to LC-MS data, where I = 46, and J = 1086.

• Y ∈ R
I×K of type samples by chemical shifts corre-

sponding to NMR measurements, where K = 115.

• Z ∈ R
I×M of type samples by quality variables

corresponding to quality measurements, where M = 9.

Matrix Z has missing entries.

2) Model: Based on the formulation in (4), we jointly

analyze X,Y and Z by minimizing the following objective:

fW(A,B,C,D)

=
∥∥∥X−ABT

∥∥∥2 + ∥∥∥Y −ACT
∥∥∥2 + ∥∥∥W ∗ (Z−ADT)

∥∥∥2
+ λ

R∑
r=1

J∑
j=1

√
b2jr + ε+ λ

R∑
r=1

K∑
k=1

√
c2kr + ε

+ λ
R∑

r=1

M∑
m=1

√
d2mr + ε+ α

R∑
r=1

‖ar ‖2

and extract the factor matrices A ∈ R
I×R, B ∈ R

J×R,

C ∈ R
K×R and D ∈ R

M×R corresponding to the samples,

features, chemical shifts and quality variables, respectively.

Using simulation data of similar sizes (with sparsity levels

of S = 50 and S = 70), best performing penalty parameter

values are determined as λ = 0.01 and α = 0.1.

3) Results: Before discussing the sparse patterns captured

using CMF-SPOPT, we first illustrate the factors extracted

using the Singular Value Decomposition (SVD) of matrix

X. SVD decomposes X as X = UΣVT, where U and

V are orthogonal matrices corresponding to the left and

right singular vectors, respectively, and Σ is a diagonal

matrix with singular values on the diagonal. Figure 4(a)

shows the scatter plot of u1 and u7 demonstrating that two

apple groups can be almost separated using the seventh left

singular vector. The goal in metabolomics studies is often

to understand the reason for the separation; in other words,

the metabolites responsible for the separation. Therefore,

we plot the seventh right singular vector in Figure 4(b)

to identify the significant features. However, capturing the

significant features is difficult since this vector is dense.

In Figure 5, we illustrate the performance of CMF-SPOPT

in terms of apple group separation by coupled analysis of

X,Y and Z. The scatter plot of a1 vs. a3 in Figure 5(a)

shows that the first component can almost separate the

two groups. In Figure 5, we can see the sparse patterns,

i.e., b1, c1 and d1, responsible for this separation. Unlike

Figure 4(b), we can clearly identify the significant features

(a) Scatter plot of u1 vs. u7. (b) The right singular vector v7.

Figure 4. Separation of apple groups using SVD of X.

in Figure 5(b). Through coupled analysis, we also get the

sparse patterns relevant to apple groups in each data set.

Results illustrated in Figure 5 are based on a 5-component

CMF-SPOPT model, i.e., R = 5. If we decrease R, none of

the components can separate the apple groups. For R = 5
and R = 6, we get almost the exact same component for

apple separation. As R increases, we lose the component

responsible for the separation. In real data, unlike simulation

studies, there are both common and uncommon components

in coupled data sets; therefore, robustness of CMF-SPOPT

to overfactoring (shown in Table I) is not enough to deal

with the problem of determining R. In this study, since we

are interested in apple markers, we use a component number

that captures the apple group separation.

In order to make sure that the sparse pattern in Figure 5(b)

is really meaningful, we form a small matrix, X̄ ∈ R
I×L,

using only the features identified in b1, where L = 14,

and check the separation achieved by its SVD. We observe

that using only 14 out of 1086 features, we can still

separate the apple groups (results not shown but separation is

similar to Figure 5(a)); therefore, these features are potential

candidates for markers of apple intake.

We further study the sparse patterns captured by CMF-

SPOPT from a biological perspective. Metabolites identi-

fied in the sparse patterns are shown in Figure 5(b) and

Figure 5(c). Some of these have been verified by chemical

standards while some of them are tentative identifications,

further to be explored. Based on the identifications, we find

that patterns in Figure 5 are related to apple-induced changes

in the endogenous metabolism. These changes include an

increase in circulating branched-chain and aromatic amino

acids, an increase in circulating glycerol- and choline con-

taining lipids, a decrease in corticosteroids and possibly in

androgens, and a decrease in lactate, hypoxanthin and free

fatty acids. Several elements of this pattern indicate that

the transition from the postprandial to the fasting state was

delayed in apple-fed rats, with a slower increase in lactate

and free fatty acids and a slower loss of amino acids and

lipids from the blood. Moreover, apple feeding seems to
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(a) Scatter plot of a1 vs. a3.

(b) Sparse pattern b1 extracted from LC-MS.

(c) Sparse pattern c1 extracted from NMR.

(d) Sparse pattern d1 extracted from Quality Measurements.

Figure 5. Separation of apple groups using CMF-SPOPT.

suppress the increase in corticosteroids and possibly also

of androgens with fasting in support of an effect on genes

involved in steroid metabolism that we have observed in

these rats.

Using CMF-SPOPT, we were able to extract meaningful

sparse patterns from LC-MS and NMR complementing

each other and describing apple-induced changes in the

metabolism.

IV. RELATED WORK

Simultaneous analysis of multiple matrices dates back to

one of the earliest models aiming to capture the common

variation in data sets, i.e., Canonical Correlation Analysis

(CCA) [19]. CCA looks for the patterns in each data set that

correlate well and it is, in that sense, different from coupled

matrix factorization. This difference has been illustrated in

a recent metabolomics study [20].

More in line with the formulation in (1), Levin [21]

studied simultaneous factorization of Gramian matrices.

Similarly, in signal processing, joint diagonalization of sym-

metric and Hermitian matrices has been a topic of interest

[22]. Furthermore, principal component analysis of multiple

matrices has been widely studied in chemometrics using

various models, some with clear objective functions while

some are based on heuristic multi-level approaches [5].

Badea [23] extended the formulation in (1) to simultaneous

nonnegative matrix factorizations by extracting nonnegative

factor matrices. Another line of work related to simultaneous

matrix factorization is Generalized SVD and its extention to

multiple matrices [24].

With the increasing interest in the analysis of multi-

relational data, Singh and Gordon [8] and Long et al. [7]

studied Collective Matrix Factorization for joint factorization

of matrices. We can also consider tensor factorizations as

simultaneous factorization of multiple matrices (see a recent

survey for various tensor models [25]).

While coupled matrix factorization has been widely stud-

ied in many disciplines, a recent study by Deun et al. [26] is

the only study that enforces sparsity on the factors within the

coupled matrix factorization framework, to the best of our

knowledge. This work considers various penalty schemes

such as the lasso, elastic net, group lasso, etc., and it is

the most related to what we propose, or more specificially

to (2). The main differences are (i) we do not enforce

orthogonality constraints on factor matrix A, as in [26], (ii)

while alternating least squares is used in [26], we use an

all-at-once approach solving a smooth approximation of the

objective in (2), and (iii) we extend our formulation to joint

analysis of incomplete data as in (4).

V. CONCLUSIONS

While we can collect huge amounts of data using different

platforms in metabolomics, we are still lacking the data

mining tools for the fusion and analysis of these data sets.

In this paper, we have formulated data fusion as a coupled

matrix factorization model with penalties to enforce sparsity

with a goal of capturing the underlying sparse patterns in

coupled data sets. We have also discussed the extension

of the proposed model to coupled analysis of incomplete

data. In order to fit the model to coupled data sets, we have

developed a gradient-based optimization algorithm solving

for all factor matrices simultaneously. Using numerical ex-

periments on simulated data, effectiveness of the proposed
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approach in terms of capturing the underlying sparse patterns

is demonstrated. We have also illustrated the usefulness of

the proposed method in a metabolomics application, where

potential markers for apple intake are identified through

coupled analysis of LC-MS and NMR data. The main

limitation of our formulation is to impose the same level

of sparsity on different data sets. We plan to extend our

model to different levels of sparsity in coupled data sets; in

other words, to use different λ values for different matrices.

This may require reformulation of the model in order to deal

with the scaling ambiguity problem.
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