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Resumé 

Denne ph.d. afhandling har til formål at undersøge de praktiske implikationer og 

beregningsmæssige aspekter af anvendelsen af multilineære modeller til analyse af 

kemiske data. Multilineære modeller som principal komponent analyse (PCA) og parallel 

faktor analyse (PARAFAC) er blevet mere og mere populære i kemometri, såvel i 

eksplorative studier og til kalibreringsformål. Men datasæt, der stammer fra kemiske 

eksperimenter og målinger, lever ikke altid op til de krav, modellerne stiller for at give 

meningsfyldte resultater. For eksempel, kan dataanalyse umuliggøres af for stor en 

fraktion af manglende værdier eller underliggende fænomener, der ændrer form fra prøve 

til prøve. Dette kan føre til misvisende resultater ved efterfølgende anvendelse af 

multilineære modeller. Visse modeller, som f.eks. PARAFAC, kan være vanskelige at 

beregne, og der er konstant behov for forbedringer for at udvide deres anvendelighed. 

Der er derfor undersøgt to hovedemner i dette arbejde: 

- Beregning af PARAFAC-modeller (Publikationer I, II og III) 

- Anvendelsen af alignment algoritmer baseret på dynamisk programmering som 

et forbehandlingstrin forud for anvendelsen af multilineære modeller 

(Publikationer IV, V og VI). 
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Indledningen skitserer begge emner og nogle relaterede problemer med omfattende 

reference til eksisterende litteratur. Publikationerne I, II og III går i detaljer omkring 

beregning af PARAFAC-modeller og viser, hvordan alternating least squares algoritmen 

(ALS) ikke nødvendigvis er den bedste metode i en række tilfælde almindeligt 

forekommende i kemi. På grundlag af resultater fra reelle og simulerede datasæt er det 

vist, hvorledes andre ikke-lineære mindste kvadraters metoder (f.eks. Levenberg-

Marquardt metoden) kan være mere effektive end ALS, for højere ordens data eller når 

store fraktioner og specifikke mønstre af manglende værdier forekommer. Derudover 

opnår man bedre performance med andre algoritmer i tilfælde af høj kollinearitet mellem 

faktorer eller forkert specifikation af model rang. 

De samme resultater tyder på, at ikke-mindste kvadrater kriterier, der straffer 

løsninger med lav core consistency, kan give hurtigere algoritmer og bedre forudsigelser i 

kalibreringsmodeller (f.eks. Self-Weighted Alternating Trilinear Decomposition – SWATLD). 

Det konkluderes imidlertid, at yderligere undersøgelser er nødvendige for at fastslå 

grunden til stabiliteten forbundet med disse algoritmers tabsfunktioner og at SWATLD skal 

anvendes med yderste forsigtighed og hovedsagelig for at give startparametre for ALS 

eller andre algoritmer.    

Publikation II fokuserer på problemet med at beregne PARAFAC modeller, når der er 

manglende værdier, hvilket er almindeligt inden for kemometrisk dataanalyse. Især 

effekten af mønstret og fraktionen af manglende værdier er undersøgt. Det er vist, 

hvorledes PARAFAC er betydeligt mere resistent end bilineære modeller som PCA over for 

manglende værdier og hvordan relativt gode estimater af modelparametrene kan opnås 

med op til 70 % manglende værdier. Endvidere er det vist, at mønstret af manglende 

værdier er langt vigtigere end deres fraktion for omfanget af artefakter i løsningerne og at 

tilstedeværelse af sådanne artefakter ikke nødvendigvis medfører dårlige forudsigelser, når 

PARAFAC-modeller er anvendt til kalibrering. 

I Publikation III er undersøgt egenskaberne af det kolonne-vise Khatri-Rao produkt 

som et middel til forbedring af den beregningsmæssige effektivitet af en række ikke-

lineære mindste kvadraters metoder. Hurtige algoritmer er blevet udviklet til at beregne 

Jacobian matricen og dens produkt med en vektor, samt Hessian og gradient matricer for 
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PARAFAC-modellen. Derudover er udviklet optimerede metoder til ALS og til eksakt line-

search for PARAFAC algoritmer. 

Den anden del af afhandlingen handler om effekten af såkaldte shifts i kemiske data 

(f.eks. retentionstids-variationer i kromatografi). Der er fokuseret på to algoritmer 

(Correlation Optimised Warping – COW og Dynamic Time Warping – DTW). I 

introduktionen såvel som Publikation IV beskrives de to algoritmer såvel som deres 

forbindelse til andre alternativer. I Publikation IV undersøges betydningen af forskellige 

mulige restriktioner i forbindelse med warping som forbehandling før PCA af 

gaskromatografiske data (GC-FID). Studiet viste, at rigide restriktioner er nødvendige i 

DTW såvel som i COW for denne type data. 

I Publikation V anvendes COW som forbehandling før PCA-modellering af GC-MS 

data af olieprøver. En simpel metode er udviklet til at optimere warpingen ved hjælp af 

gentagne målinger. I samme artikel og Publikation VI undersøges også metoder til at 

eliminere basislinie og koncentrations-problemer.  

Endelig viser Publikation VI, hvordan PARAFAC modeller og warping tilsammen kan 

anvendes til kalibrering. HPLC data med UV-Vis detektion er anvendt til at bestemme 

koncentration af antibiotika i biologiske prøver. I publikationen vises, at DTW ikke kan 

håndtere koelutionsproblemer samt at PARAFAC2 modellen kan. 

I korte træk dækker afhandlingen algebraiske egenskaber forbundet med beregning 

af PARAFAC-modeller og numeriske aspekter i dynamisk programmering specielt i 

forbindelse med kromatografisk dataanalyse. Men en mere overordnet konklusion på 

afhandlingen er, at kemometrien kan have stor gavn af et mere udtalt samarbejde med 

eksperter fra andre områder, specielt inden for numerisk analyse og scientific computing. 

Af denne grund er de fleste implementerede algoritmer lagt på www.models.kvl.dk i form 

af MATLAB® rutiner. Derved er de lettilgængelige for det videnskabelige samfund. 
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Summary 

The objective of this Ph.D. dissertation is to study the practical implications and some 

computational aspects of the use of multilinear models for the analysis of chemical data. 

Multilinear models like PCA and PARAFAC have grown increasingly popular in chemom-

etrics both in the context of exploratory studies and for calibration purposes. However, 

data sets arising from chemical experiments do not always meet the conditions that are 

required to yield useful results in a reasonable time. For example, they can contain rela-

tively large fractions of missing values or features like shifted factors between measure-

ments that can confound the interpretation of low rank multilinear models. Moreover, the 

fitting of some of these models, and particularly of PARAFAC, is inherently difficult and 

there is a constant need for improvements to further extend their applicability. Hence, 

there are two main subjects investigated in this work: 

- the fitting of the PARAFAC model (Papers I, II and III) 

- the use of alignment algorithms based on dynamic programming as a preproc-

essing step prior to the fitting of multilinear models (Papers IV, V and VI).  

The introductory part of this thesis outlines both subjects and some of the related 

problems and draws extensively from the existing literature from different fields.  
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Papers I, II and III further elaborate on the subject of fitting PARAFAC models and 

show how the alternating least squares algorithm (ALS) is not necessarily the best method 

in a number of cases that are common in chemistry. Based on the results on real and 

simulated data sets, it is shown how other nonlinear least squares solvers (e.g., the Leven-

berg-Marquardt method) can be more efficient than ALS when PARAFAC is fitted to 

higher-order arrays or when large fractions and specific patterns of missing values occur. 

Moreover, better performances are obtained with other algorithms in case of high collin-

earity between factors or wrong specification of the model rank with respect to the 

pseudo-rank of the data array.   

The same results suggest that non-least squares fitting criteria that penalise solutions 

with low core consistency may yield faster algorithms and better predictions in calibration 

models (as in, for example, the Self-Weighted Alternating Trilinear Decomposition algo-

rithm – SWATLD). However, it is concluded that further investigations are necessary in or-

der to determine the reason for the stability associated with these loss functions and that 

SWATLD should be used with great care and mostly to provide initial values for ALS or 

other algorithms employing standard fitting criteria. 

Paper II focuses on the problem of fitting PARAFAC in the presence of missing val-

ues, which are a common occurrence in chemometric data analysis. In particular, the ef-

fect of the pattern and fraction of missing values on two different approaches for fitting 

PARAFAC is studied. Based again on tests on real and simulated data sets, it is shown 

how PARAFAC is considerably more robust than bilinear models such as PCA to missing 

values and how relatively good estimates of the model parameters can be obtained with 

up to 70% missing values. Moreover, it is shown that the pattern of the missing values is 

far more important than their fraction in determining the magnitude of the associated ar-

tefacts and that the presence of such artefacts does not necessarily imply bad predictions 

when PARAFAC models are used for calibration purposes. 

In Paper III, the properties of the column-wise Khatri-Rao product are investigated as 

a means to improve the computational efficiency of several nonlinear least squares 

solvers. In particular, fast routines have been obtained for computing the Jacobian and its 

products with a vector, the Hessian and the gradient of the PARAFAC model. Furthermore, 
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a method that can greatly reduce the computational load of a single ALS iteration and a 

relatively efficient procedure to solve the exact line-search problem for PARAFAC for the 

general N-way case have been devised. 

In the second part of this work, the effect of so-called shift in chemical data (e.g., re-

tention time shift in chromatography) on the fitting of low-rank multilinear models has 

been studied. In particular, two algorithms based on dynamic programming (namely, Cor-

relation Optimised Warping – COW, and Dynamic Time Warping – DTW) are investi-

gated as a means to remove such an effect. In the introductory part as well as in Paper IV 

the two algorithms are described also in connection to the numerous methods that have 

been proposed for the alignment of shifted signals. Moreover, in Paper IV, the effect of 

different constraints on the basic warping algorithms has been analysed in relation to PCA 

modelling of chemical data obtained through gas chromatography with flame ionisation 

detection (GC-FID). As a result of this study, it was concluded that rigid slope constraints 

are necessary in DTW as well as in COW in order to successfully employ PCA on this type 

of chromatographic data.  

In Paper V, COW is used in combination with PCA for an oil fingerprinting study on 

data obtained with gas chromatography and mass spectrometry detection (GC-MS). 

Moreover, a simple method based on standard quality assurance practices (i.e., the fre-

quent measurement of a reference oil) has been used to find the optimal parameters for 

the warping procedure. In the same paper and in Paper VI, other preprocessing methods 

including numerical differentiation and normalisation have also been investigated in order 

to remove baseline problems and the effect of the concentration (as opposed to the com-

position) of the analysed samples.  

Paper VI represents the link between the two subjects of this thesis and shows an ap-

plication of DTW together with PARAFAC and PARAFAC2 models for a calibration prob-

lem. In particular, the data was obtained with high performance liquid chromatography 

with diode array detection (HPLC-DAD) and the purpose of the analysis was to determine 

the concentration of antibiotics in a biological matrix (kidney samples). Among others, it is 

shown that DTW cannot deal with heavily coeluting peaks that correspond to separate 

components in a PARAFAC model and that PARAFAC2 is preferable in this case.  



 x

The relevant aspects of this work span several levels in chemometrics. For example, 

the algebraic properties of a basic operation connected to PARAFAC have been studied to 

develop computationally efficient procedures (although still rather primitive from a nu-

merical point of view) that were used to improve the existing methods for fitting this model. 

Thereafter, the usefulness of such methods has been tested in connection with common 

problems in chemometric data analysis (e.g., high collinearity or presence of missing val-

ues) on real as well as simulated data sets. Likewise, two alignment procedures based on 

dynamic programming have been studied to determine their connection and their suit-

ability as preprocessing methods for chromatographic data. Subsequently, such algo-

rithms have been employed for both exploratory studies and calibration problems.  

Perhaps, the main conclusion of this thesis is that chemometrics would greatly benefit 

from a more strict collaboration with experts from other fields of investigation, and par-

ticularly with numerical analysts and computer scientists. For this reason, most of the 

MATLAB® routines used in the course of this thesis were made available to the scientific 

community on www.models.kvl.dk. 
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1. Introduction 

Chemometrics is a relatively recent branch of science that has received great impe-

tus in the last twenty years from the development of new analytical techniques as well as 

powerful mathematical and statistical methods. The process was also made possible by 

the increasing power and storage capacity of personal computers, which are now capable 

of handling sets of data and of applying algorithms that only a few years ago were limited 

to computation centres and mainframes. One of the main consequences of such devel-

opments has been the constant increase of size and complexity of data sets. On the one 

hand, automation allows the analysis of a large number of samples while speed and reso-

lution of analytical instruments allow measuring hundreds or thousands of variables per 

sample in a reasonable time. On the other, new modes (ways) are added to data arrays 

when distinct analytical procedures are combined in so-called ‘hyphenated methods’ 

[e.g., Gas Chromatography with Mass Spectrometry detection (GC-MS), High Perform-

ance Liquid Chromatography with Diode Array Detection (HPLC-DAD), etc.] or for certain 

techniques such as fluorescence, which may yield matrices (namely Emission/Excitation 

Matrices - EEM) of data for each analysed sample or even three-way arrays (e.g., Emis-

sion/Excitation/Lifetime). 
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One of the most favoured approaches in dealing with multivariate and multi-way 

data is to approximate the systematic variation by linear combinations of a relatively small 

number of parameters representing underlying phenomena (factors/components). The 

foremost example in this sense is Principal Component Analysis (PCA), whereby data are 

modelled by bilinear (and mutually orthogonal) components. One of the main advantages 

of such techniques is that the number of variables to look at is reduced to only a few, sim-

plifying interpretation and removing the (often confusing) non-systematic variation. How-

ever, even though bilinear models such as PCA and other related methods like Partial 

Least Squares (PLS) are extremely powerful, they may still be redundant when applied to 

matricised multi-way arrays, which often present additional structural relations between 

variables that may help reduce the number of estimated parameters and further facilitate 

interpretation. This advantage is not limited to exploratory or qualitative studies, but has 

very direct consequences on quantitative analyses. The more parsimonious multi-way 

methods have proved to be more robust than their bilinear counterparts, provided that the 

chosen model structure is adequate for describing the sources of systematic variation.  

Among multi-way methods, PARAFAC is extremely appealing for various reasons. 

Firstly, upon convergence to the least squares solution, the PARAFAC solution is unique 

under rather mild conditions, i.e., it can be rotated only at the price of yielding a model 

that does not fit the data equally well. Secondly, it is structurally simpler and more parsi-

monious than other models (e.g., the Tucker models), which makes interpretation easier 

and possibly enhances robustness. Finally, for certain types of data (e.g., EEM fluores-

cence), the underlying physical model can be approximated by a PARAFAC model.  

In spite of its conceptual simplicity, the fitting of PARAFAC to real data sets is often 

troublesome. Over the years, several methods have been proposed for this task, each with 

advantages and drawbacks. Paper I is a review of some of the most interesting ones. Of 

the many reasons for the slowness of the fitting procedure, Paper II analyses the effect of 

fraction and pattern of missing values on the performances of two different algorithms and 

on the quality of the corresponding solutions.  

Size of data sets, model complexity (i.e., the number of components in the model) 

and consequently number of estimated parameters hinder the application of the most effi-
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cient algorithms in optimisation theory to the problem of fitting the PARAFAC model. This 

remains true even when the ever increasing performances of modern computers are taken 

into account and, if one considers that certain validation techniques (e.g., jack-knifing) 

require the fitting of a considerable number of separate models, it is evident how great the 

need is for computational efficiency for this specific problem. In Paper III, several alge-

braic expressions are introduced that exploit the inherent structure of the PARAFAC model 

and speed up certain key steps for optimisation methods such as Gauss-Newton, Newton 

and Preconditioned Conjugate Gradients.  

Not all data that could potentially be described by low-rank multilinear models fulfill 

the most basic assumption for low-rank multilinearity, i.e., that each variable describes the 

same phenomenon in all samples. Exemplary in this sense is the retention-time shift prob-

lem for chromatographic data. When analysing this type of data, the concentrations of the 

constituents related to the single peaks need to be determined before any chemometric 

method is applied to account for the fact that in different runs the position of the same 

peak may vary. Especially when complex systems are investigated and whenever the sys-

tem is not well known beforehand (i.e., in exploratory studies), this step is extremely time 

consuming and implies a loss of significant information because not all peaks can easily 

be resolved and/or quantified. Per contra, a correct alignment of the chromatograms of 

different samples would render most of the tools currently available for multivariate data 

analysis, prominently PCA and the other multilinear models, directly applicable to chro-

matograms without a quantitative (or semi-quantitative) intermediate step. As no informa-

tion would be rejected before the data analysis starts, such an approach is particularly 

attractive in exploratory terms and would bear the non-secondary advantage of a large 

reduction of time expense and degree of subjectivity for the data analysis.  

A number of proposals have appeared in recent years to correct for shift or more 

general shape-changes. One of the most promising, or at least most popular, is warping. 

In the second part of this thesis, two warping algorithms (Correlation Optimised Warping 

and Dynamic Time Warping) are studied with specific reference to chromatographic data 

(Paper IV). Furthermore, they are applied to complex hydrocarbon mixtures prior to Princi-

pal Component Analysis for pattern recognition purposes (Paper V) and in combination 
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with PARAFAC and PARAFAC2 for the quantitation and confirmation of drug residues in 

biological samples (Paper VI). 

1.1 Content outline 

The main part of the thesis is divided into three chapters.  

Chapter 2 contains an introduction to PARAFAC modelling of multi-way chemical 

data. Useful characteristics like uniqueness and adherence to the underlying physical 

model of certain types of data are outlined in sections 2.2 and 2.3, while section 2.4 is 

dedicated to possible deviations from the ideality (e.g., the presence of missing values –

also discussed in Paper II). Sections 2.5 and 2.6 briefly discuss some issues related to the 

use of different fitting criteria and the problem of the proper characterisation of data sets 

used for testing different algorithms. Finally, a review of some of the most successful 

methods for fitting the PARAFAC model to N-way data sets is presented in section 2.7 

based on the results in Paper I, II and III.  Throughout the chapter, special emphasis will 

be given to the advantages in terms of notation and speed obtained for PARAFAC fitting 

algorithms through the use of the Khatri-Rao and Kronecker products.  

Chapter 3 describes the shift problem (section 3.1) with specific reference to chro-

matographic data and the fitting of PCA and PARAFAC models in combination with some 

preprocessing method aimed at removing shift from signals. The principals of alignment 

algorithms are introduced in section 3.2, while section 3.3 is dedicated to Dynamic Pro-

gramming and to two alignment algorithms based on it (namely Correlation Optimised 

Warping and Dynamic Time Warping). In the papers related to this chapter, examples will 

be given of the application of these two methods for exploratory data analysis of food 

process data (Paper IV), environmental data (Paper V) and for determination of drug resi-

dues in biological samples (Paper VI). 

Finally, Chapter 4 presents the conclusions and perspectives. 

 



 5

2. PARAFAC model 

2.1 Model structure 

The principles of the PARAFAC model date back to Cattell55, who introduced the 

concept of “parallel proportional profiles”, but the current mathematical formulation and 

main algorithm were proposed independently by Harshman114 and by Carroll and 

Chang51, the latter under the name of CANDECOMP (from CANonical DECOMPosition).  

The basic rationale of the PARAFAC model is that the systematic variation occurring 

in an N-way data set X  of dimensions × ×…1 NI I can be adequately described by an N-

linear model expressed as: 

( )
1 2

1 1
N n

NF
n

i i i i f
f n

x a
= =

≅ ∑∏…  (2.1) 

where ( )
n

n
i fa  denotes the model parameters, in identifies the running index for the n-th 

mode and F is the number of fitted factors (components). The model parameters are typi-

cally grouped in loading matrices: 

( ){ }1 , 1
n

n
n i f n Na i I f F= = =A … … , 

one referring to each mode. For a three-way array X  of dimensions I × J × K, a PARAFAC 
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model of rank F can be visualised as in Figure 2.1. 

Note that the expression ‘N-linear for an N-way array’ is more specific to PARAFAC 

than just multilinear; for example, Tucker models are multilinear, but may involve the 

products of a number of terms that is different from N for an N-way array178,278. Since this 

chapter is dedicated to PARAFAC, the two terms are used as synonyms. 

Several alternative notations, often functional to the algorithm employed for the fit-

ting, have been developed over the years to express this model31. One that proved par-

ticularly useful for its compactness and to obtain efficient implementationsPI-PIII expresses 

the model in terms of the matricised N -way array and loading matrices31,PIII:  

( ) ( )1 2 T
1 2

NI I I
N

× ≅X A A A… … , (2.2) 

c1

+ ... +

a1

b1

+

aF

bF

A

B

C

+

X R

R

cFc1

+ ... +

a1

b1

+

aF

bF

A

B

C

+

X R

R

cF

Figure 2.1. Graphical representation of the PARAFAC decomposition of a 3-way array X. The 
loading matrices [ ]1 F=A a a , [ ]1 F=B b b  and [ ]1 F=C c c  have dimen-
sions I ×F, J ×F and K ×F respectively. 
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where the superscript ( )1 2 NI I I× …  refers to the way the array is matricised31,154,PIII and  

denotes the column-wise Khatri-Rao product244.  

The smallest number of PARAFAC components whose sum is exactly X  is said to be 

the rank of X 69,93,165,278. This definition is the natural extension of one of the possible ways 

to define the rank of a matrix278. However, in spite of the similarities between ranks of 

N-way arrays and matrices, finding the rank of a multi-way array has proved to be a 

rather elusive task and some sparse and not general results are available only for three-

way arrays93,166,292,293. For example, the rank of a multi-way array is not upper-bounded by 

any of its dimensions and the rank of arrays of purely random numbers is not necessarily 

the theoretical maximum rank that an array of similar size would allow278. Thus, the con-

cept of typical rank has been introduced to denote the rank of almost all the arrays of 

specific size292,294. But even the typical rank need not be unique294, and for certain dimen-

sions more than one rank can arise with non-zero probability from random numbers (e.g., 

2×2×2 arrays can have both rank 2 and 3 with non-zero probability in the real-valued 

case).  

The question of the rank of a multi-way array is relevant, e.g., to establish the num-

ber of degrees of freedom for a statistical evaluation of the results270,278. However, for 

practical purposes, the general assumption for real data sets is that the rank of the sys-

tematic part of the variation (which in chemometrics is often referred to as pseudo-rank278 ) 

is relatively small compared to the actual rank of the array (i.e., its typical rank) because 

of the presence of noise or other disturbances and because of the redundancy of the 

measurements. 

2.2 Uniqueness  

Multilinear models are in general not unique. However, some of the indeterminacies 

that cause non-uniqueness do not affect the interpretation of the model or its application 

apart from some minor practical aspects. Four types of ambiguities can be found in multi-

linear models: rotational, scaling, permutational and sign278,291.  
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The last two are trivial and can usually be removed by setting appropriate conven-

tions. Thus, permutational indeterminacy can be fixed by sorting the factors according to 

their norms, and sign indeterminacy can be eliminated by enforcing a positive sign for the 

largest element or for the sum of the third powers of all elements in all but one of the 

loading vectors forming a factor278,PI. Both these ambiguities are in fact irrelevant for the 

convergence of the fitting algorithms and are typically addressed only once convergence 

is attained. 

The scaling indeterminacyPI may have to be explicitly addressed depending on the 

algorithm being used and its purpose. For example, it leads to rank deficiency of the 

Jacobian (i.e., the matrix holding the value of the first derivative of the residuals with re-

spect to each model parameter195) and thus to the lack of global convergence of fitting 

algorithms where an update for all parameters is reckoned in a single step at each itera-

tion23,193,224 [e.g., Gauss-Newton (GN)224,PI-PIII and Preconditioned Conjugate Gradients 

(PCG)225,322,PIII]. Likewise, the Jacobian’s rank deficiency (and the scaling indeterminacy) 

has to be removed when variance estimates for the model parameters are sought190,200,224. 

On the contrary, scaling indeterminacy as such does not prevent convergence of most 

alternating fitting algorithms [e.g., Alternating Least Squares31,51,114 (ALS) and Alternating 

Slice-wise Decomposition (ASD)139]. Hence, with the relevant exception of Self-Weighted 

Alternating Trilinear Decomposition (SWATLD)57,PI, it is sometimes disregarded during the 

fitting. The scaling indeterminacy can be directly eliminated by fixing the norm of all load-

ing vectors except for one in each factor190,225 or as a consequence of some constraints 

(e.g., closure279). Alternatively, the problems associated with the scaling indeterminacy can 

be removed indirectly using the same solutions employed to deal with rank deficiency, e.g., 

by means of a damping parameter in the Levenberg-Marquardt algorithmPI or of an addi-

tional regularisation term in the loss function224,PI. In any case, it is important to point out 

that the adopted scaling convention can have a remarkable impact on both numerical 

stability and speed of convergence of all fitting algorithms (thus including ALS) and the 

issue should be addressed carefully23,102,131,PI.  

Rotational indeterminacy means that there exist an infinite number of solutions that 

can be obtained from one another through non-trivial linear transformations (i.e., not lim-



 9

ited to combinations of permutation and scaling matrices) and fit the data equally well278. 

When a model has no rotational indeterminacy, it is said to be (essentially) ‘unique’278,294 

or ‘identifiable’224,225. Even if numerous algorithms exist to find the best rotation according 

to a predefined criterion, rotational ambiguity often precludes a straightforward interpreta-

tion of the estimated parameters because it is necessary to ensure that the employed crite-

rion is adequate for the problem at hand and is not only conceptually or visually appeal-

ing31,121. Moreover, especially in exploratory studies, where the underlying model may not 

be known in advance, different criteria may lead to rather different conclusions, all equally 

acceptable31,121.  

In a number of cases, (essential) uniqueness can be attained by constraining the so-

lution. However, while constraints (e.g., non-negativity, unimodality and selectivity31) are 

often used to yield estimates that are consistent with an underlying physical or chemical 

model, only a few of them (e.g., selectivity and symmetry31) are sufficient to yield unique 

solutions. In particular, non-negativity and unimodality can, in most cases, only produce 

feasible ranges for the factors100,173,278. In general, for models that are not structurally 

unique, additional external knowledge about the underlying process (e.g., the spectrum of 

one or more of the chemical species involved) is necessary to obtain univocally interpret-

able solutions22,110,240,296.  

2.2.1 Uniqueness of PARAFAC 

The PARAFAC model can be considered both as an extension to the N-way case of 

various bilinear models [e.g., Principal Component Analysis (PCA)31,278 and several Self-

Modelling Curve Resolution (SMCR)100,173,291] and as a special case of several Tucker 

models for arrays with an identical number of modes278. However, unlike them, the 

PARAFAC solution is essentially unique (hereafter often just termed unique) under rather 

mild conditions pertaining to the linear independence of the loading vectors271. This 

uniqueness property was the main reason behind the introduction of the concept of paral-

lel proportional profiles55,114,121,278. The uniqueness conditions for the PARAFAC model are 

discussed at length in numerous publications114,116,158,166,190,271,295, a general sufficient one 

is: 
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1

2 1
N

n
n

k F N
=

≥ + −∑ , (2.3) 

where kn (referred to as the k-rank) is the largest value of k such that every subset of k col-

umns of An has full column rank271.  

One can observe from (2.3) that simple rank deficiency of the loading matrices 

(e.g., arising from closure effects due to mass balance278,279) is compatible with unique-

ness. Conversely, uniqueness is lost in the three-way case if two columns in the same 

loading matrix are proportional (i.e., the matrix has k-rank one). However, even when the 

decomposition is not unique, some of the loading vectors can still be uniquely re-

solved36,116,158; this allows for example the quantitative determination of the analytes of 

interest even in presence of multiple interferents158,278,280 or when the contribution of the 

single constituent does not have rank one282,327.  

It is significant that a PARAFAC model (intended as a low-rank N-linear decomposi-

tion for an N -way array) would still be appropriate even in the presence of proportional 

columns (cf. section 2.3), but, since the model is not identifiable, the algorithms may fail 

to converge to meaningful solutions110,157,282. In this sense, loss of uniqueness may arise 

also on purely numerical basis and, if the factors are very collinear, uniqueness may be 

weakly determined129,163. In this case, the enforcement of constraints (e.g., equality be-

tween some of the loading vectors or orthogonality) may be of some help to yield more 

interpretable solutions at the cost of a slightly worse fit36,86,163.  

The restricted Tucker models that are sometimes used in this situation operate exactly 

in this fashion as they are mathematically identical to PARAFAC models with equality con-

straints36,121. With relatively few modifications (e.g., the projection of gradient and Hessian 

matrix on the null space of the constraint matrix102), a Levenberg-Marquardt algorithmPI,PII 

can be employed for these types of problems and may constitute an alternative to the ALS 

algorithm typically used157.  

Demonstrating analytically that a certain model is structurally unique involves rather 

complex and lengthy reasoning and general results are difficult to obtain157,165,278,295,296. 

Even condition (2.3) has been recently found to be necessary and sufficient only when the 
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rank of the array is at most equal to three295. Numerical verifications are also possible and 

can be used when theoretical results are not available159,295. Most of the approaches en-

tail fitting the same model repeatedly to the same data set with different starting points or 

to different arrays of identical rank obtained from the original one through a selection of 

samples or variables (i.e., split-half analysis117 ). However, these methods can be compu-

tationally expensive and do not guarantee that the model is unique: most algorithms may 

converge to local minima and the solutions are affected by other aspects such as devia-

tions from multilinearity, missing values and noise36. Therefore, it is possible for the algo-

rithm to converge always to the same solution even though the underlying model is not 

unique36. Condition (2.3) can also be used to verify the identifiability of a specific solution, 

but this option can be rather expensive if F is large because the rank of all subsets of 2 to 

F columns of each loading matrix may have to be calculated in order to ascertain the 

k-rank of each of the loading matrices190. 

Since any right singular vector of the Jacobian corresponding to a zero singular 

value is a direction (and thus a transformation) along which the parameters can be up-

dated without any loss of fit225, the number of zero singular values of the Jacobian has 

been advocated as a means to establish local uniqueness (i.e., pertaining to a specific 

minimum) 225. Notice that in this case one must account for the fact that unless additional 

constraints are enforced, scaling indeterminacy leads to a rank deficient Jacobian with at 

least ( )1N F− trivially zero singular values31,225,PI. Consequently, concise expressions for 

computing the Jacobian and its cross product may be some help in establishing unique-

ness, both analytically and for practical purposes. For example, one can observe that the 

rank of the partition of the Jacobian relative to the N-th modePIII  

( )
nn n I n−= − ⊗J M I Z , (2.4) 

where Mn is an appropriate permutation matrix, 
nII is an In ×In identity matrix, Z-n  denotes 

the Khatri-Rao product of all the loading matrices but the n -th and ⊗  is the Kronecker 

product195, depends solely on ( )
nI n−⊗I Z because M

n
 is a permutation matrix and thus has 

full rank195. Since ( ) ( ) ( )rank rank rank⊗ =A B A B 195, if n−Z  does not have full column 

rank, there are at least In additional zero singular values in the Jacobian. This necessary 
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condition for uniqueness was originally demonstrated in an alternative way by Liu & Sidi-

ropoulos190 and can be considerably less expensive to verify than (2.3) for large F. More-

over, since the rank of J is the same as that of JTJ and the latter matrix can be computed 

without the explicit formation of JPIII, the number of non-zero singular values (or eigenval-

ues) of JTJ could also be used for problems that are too large for their Jacobian to be ex-

plicitly calculated. The main shortcoming for such an approach is that the squaring of the 

singular values of the cross-product compared to the original matrix increases the risk of 

diagnosing rank deficiency on a purely numerical basis (Figure 2.2)23.  

It is worth mentioning here that the same numerical techniques to assess uniqueness 

based on the Jacobian are valid and applicable to equality constrained PARAFAC mod-

els157,278 or if some of the array’s elements are missing224,PII.  

Since an optimisation problem subject to linear equality constraints can be trans-

formed to an unconstrained problem upon the projection of J on the null space of a 

suitably defined constraints matrix102, any right singular vector associated to a zero singu-

lar value of the projected Jacobian would correspond to a direction that does not violate 

the equality constraints and leads to a different solution of equal fit. This can be rather 

straightforward to implement when very simple equality constraints are needed whereby 

one or more model parameters are fixed (e.g., to one in order to remove offsets in one or 
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more dimensions38,42,120,310, to zero to impose selectivity31, or to a specific value when 

some model parameters are known in advance110,248 ).  Projecting the Jacobian on their 

null space simply corresponds to removing the columns relative to these parameters from 

J.  

With respect to arrays with missing elements, these are given zero weights and the 

Jacobian for the associated model is obtained by removing the rows of J that correspond 

to the missing values. In this case, bad conditioning (and sometimes non-uniqueness) may 

ensue purely from the number and pattern of the missing valuesPII. 

In terms of uniqueness, there are obvious advantages in increasing the number of 

modes and in treating N-way arrays as such, without decreasing their order by collapsing 

one or more modes (e.g., limiting the number of slabs in such modes to one) or by simple 

rearrangement (e.g., matricising).  For example, the decomposition can still be unique 

even if one of the loading matrices has proportional columns, when the array is at least of 

order four and the k-rank in the other modes is sufficiently high271. Consequently, if an-

other dimension is added to the array (e.g., the fluorescence decay), two fluorophores 

could still be uniquely identified and quantified even if they have identical emission or ex-

citation spectra6,216. Likewise, in the four-way case, it is possible to uniquely resolve the 

spectra of constituents having the same concentration profile in all the samples6,36,158,176, 

something that is likely to happen if several fluorophores are attached to the same mac-

romolecule in biological samples253. Some relatively novel curve resolution methods [e.g., 

the Direct Exponential Curve Resolution Algorithm (DECRA) and its generalisation, the 

‘slicing’ procedure77,230,335] take direct advantage of this by rearranging the data matrix 

and “artificially” increasing the order of the data array22,229,248,335.  

2.3 Appropriateness of the PARAFAC model 

Every N-way array can be decomposed exactly in a PARAFAC model of sufficiently 

high rank69,93,165,278. In this sense, a PARAFAC model is by definition appropriate. How-

ever, as mentioned in section 2.1, the typical rank of an array is affected by noise and is 

commonly much larger than its pseudo-rank278.  Hence, the appropriateness of PARAFAC 
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is generally intended with respect to low-rank models and a PARAFAC model can be said 

to be appropriate if it approximates reasonably well the underlying phenomena associated 

to the data. From this point of view, it is necessary that these phenomena be also N -linear 

for an N-way array (for 2N > ) and that no interactions exist between the underlying fac-

tors39,163,177.  

Spectroscopy, chromatography or their combination are typical cases where this type 

of data arises26,177,263,278; and fluorescence spectroscopy provides perhaps the ideal ex-

ample to show how a PARAFAC model can correspond to the underlying physical 

model177. For sufficiently diluted solutions, Beer’s law holds277 and the amount of light 

absorbed by a certain molecule (chromophore) at a specific wavelength can be expressed 

as: 

χε=i ix , (2.5) 

where χ and εi are respectively proportional to the chromophore’s concentration and to its 

molar extinction coefficient at the i -th wavelength (i.e., the fraction of incident light ab-

sorbed per unit of concentration). For fluorescent species, chromophores are renamed 

fluorophores and part of the energy they absorb is reemitted by radiative decay277. Equa-

tion (2.5) can be modified accordingly, and the intensity of the light emitted by a fluores-

cent species at the j -th emission wavelength can be expressed as: 

χϕε λ=ij i jx , (2.6) 

where, λj indicates the fraction of fluorescence photons emitted at the j -th emission wave-

length and ϕ denotes the fluorescence quantum yield, i.e., the fraction of absorbed en-

ergy that is reemitted by radiative decay. If the solution is sufficiently diluted and there are 

no interactions between fluorophores, the signal from F different fluorophores is additive 

and equation (2.6) becomes: 

1

F

ij f f if jf
f

x χ ϕ ε λ
=

≅ ∑ , (2.7) 



 15

where f identifies the fluorophore. Finally, when several solutions are analysed and by in-

corporating the quantum yield in the concentration term, one obtains for the k-th solution: 

1

F

ijk kf if jf
f

x χ ε λ
=

≅ ∑ . (2.8) 

Consequently, as equations (2.1) and (2.8) are identical, fitting a PARAFAC model 

to the measured intensities xijk corresponds to estimating the parameters for the physical 

model of the fluorescence signal. Moreover, the uniqueness property of PARAFAC models 

guarantees that, if model (2.8) is adequate, the correct number of factors (fluorophores) F 

is chosen and the global minimum of the loss function is attained, the estimated loading 

vectors for the f -th component are readily interpretable as concentration profiles (cf ) and 

emission and excitation spectra (af and bf respectively) of the f-th fluorophorea. Many ap-

plications use EEM fluorescence data because they are reasonably simple and cheap to 

obtain, are well modelled by PARAFAC and are sufficient to solve a great variety of prob-

lems6,278,PI-PIII. 

Model (2.8) can be extended further. For example, one could take into account fluo-

rescence decay47,171,201,255-257,268,300 or that quantum yield may be affected by the concen-

tration of a quencher171,176,177,252,253,328. If all these relations were considered at once, the 

underlying model would become177: 

1

F

ijklm kf if jf lf mf
f

x χ ε λ ϕ τ
=

≅ ∑ , (2.9) 

where ϕlf is the quantum yield at the l -th quencher concentration and τmf expresses the 

dependency on time. Likewise, one could use a spectrofluorometer to monitor a certain 

reaction in time216,217,289 or  the elution from a chromatographic column10,11,34.  

Depending on the experimental conditions and the objectives of the analysis, various 

modes are often collapsed so that the data array becomes three-way and the final model 

                                                   

a Given the permutational indeterminacy, in order to correctly assign a PARAFAC component to a 
fluorophore additional knowledge is necessary6,16. 
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trilinear10,18,19,47,201,300. However, such a reduction is often not necessary and several ad-

vantages can derive from maintaining the original number of modes or from increasing it 

when possible26,271 (cf. section 2.2). The reasons for the relative lack of applications with 

arrays with more than three modes are not obvious26, but most often depend on repro-

ducibility problems34,268,278, size of the fitting problem216,224,225 or specific aspects pertain-

ing to the algorithms (e.g., the fact that some methods only work for three-way ar-

rays263,264 or cannot be straightforwardly generalised to the N-way case31,57,82,190,PI, or their 

use for higher order arrays is cumbersome or inefficient119 ). Furthermore, the feasibility of 

a certain analysis also depends on the right choice of the fitting algorithm, which is not at 

all obvious (cf. section 2.7)23,94,102,193,PI-PIII.    

For a great variety of data, the parameters of the underlying physical or chemical 

model can be estimated via the PARAFAC model. Only to cite some that do not regard 

fluorescence: UV-VIS absorption spectrometry74,79,111,180,269, HPLC-DAD65,332, 

GC-MS/LC-MS49,89,97,276, GC-GC91,92,307, spectroscopic monitoring of chemical reac-

tions22,79,126, low- and high-field Nuclear Magnetic Resonance (NMR)112,222,223, Multichan-

nel Evoked Potentials for electroencephalographic (EEG) analysis5,86,205, and signal proc-

essing for blind source separation190,272,273. In addition, when the underlying factors in one 

dimension are exponentials or sum of exponentials, it is possible to increase the order of 

the data array (e.g., to rearrange a matrix in a three-array that can be described through 

a trilinear model)22,216,229,248,335. It is noteworthy that this represents an exception to the fact 

that while one can always reduce the order of an array (e.g., by matricising it), the oppo-

site is not possible26.  

The PARAFAC model can also be used to study data arising from designed experi-

ments37,38,123. GEMANOVA38 (GEneralized Multiplicative ANalysis Of VAriance) treats all 

factors as qualitative and do not regress the response variable on the design factors as 

standard ANOVA. Instead, it seeks to describe the data with few higher order interactions 

assuming a multiplicative model. In other words, it decomposes the N-way array (where N 

is the number of design factors) holding in each element the value of the response vari-

able using F factors (where F is the desired number of interactions or main effects). The 

resulting model is simply a PARAFAC one whereby main effects or interactions of order 
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lower than N (when required) are obtained by fixing the loading vectors in some of the 

modes for selected components38. However, it is significant that, theoretically, enforcing 

this type of constraints leads to loss of uniqueness (specifically, if two different fac-

tors/effects, have columns of ones in the same mode120 ) and problems in convergence to 

meaningful solutions38. 

2.4 Deviations from ideality 

Ideally, one should expect that the pseudo-rank of a data array be lower than the 

mathematical rank and mostly equal to the number of sources of variation in the data, 

which in chemometrics is often referred to as the chemical rank278. Hence, deviations from 

ideality can be defined as those conditions arising in certain data that require the fitting of 

a PARAFAC model whose rank is different from the actual number of underlying phenom-

ena (e.g., number of constituents in a solution of different compounds). Any such depar-

ture has an effect on the extracted components and can affect the interpretation as well as 

the quality of the predictions in regression models. Thus, one should take special care in 

verifying that the underlying conceptual model follows the same assumptions as the 

PARAFAC one113,121,278.  

Deviations from the ideal are often encountered in practice. Some of them can be 

accounted for by constraining the PARAFAC model (directly or indirectly); some others 

require the use of different models6,39,67,177,282,PVI.   

2.4.1 Presence of non low-rank background components 

Some types of real data contain features that cannot be adequately modelled by 

low-rank PARAFAC models6 (e.g., Rayleigh and Raman scatter in EEM fluorescence 

measurements171).  Several ways of dealing with this problem have been devised: using 

weights41,141,248, subtracting a standard218,328, setting the corresponding values to miss-

ing15,16,32, using of zeros15,60,297, low rank background modelling and removal through 

bilinear factors27,58,207,248.  
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Not all these methods work equally well248. Thus, blank subtraction is often not suffi-

cient to remove all the background, thereby affecting loadings and quality of the predic-

tions6,PII, and not all weighting schemes yield optimal results248. Missing values can also be 

problematic as they can slow down convergence and induce substantial distortions in the 

loading matrices, especially for specific patterns (cf. section 2.4.6)6,297,PII.  

With respect to background modelling, the results are still not conclusive248. How-

ever, it is worth mentioning that by fixing one (or more) loading vector to a constant value, 

thereby removing the corresponding columns from the Jacobian (thus columns and rows 

from the Hessian and elements from the gradient), bilinear factors and offsets can be effi-

ciently fitted through the Hessian based methods (cf. section 2.7.4)PI-PIII. 

2.4.2 Rank overlap 

Especially for curve resolution purposes and second-order calibrationb,26,278, one of 

the assumptions is that the contribution of each constituent in a mixture can be modelled 

by one fitted PARAFAC component (which is again a rank one array). In this respect, the 

uniqueness property of PARAFAC (when it holds) bears important consequences, as no 

additional constraints are necessary to yield meaningful and readily interpretable solutions 

(cf. section 2.2). On the other hand, for several analytical methods [e.g., tandem mass 

spectrometry (MS-MS)327,334 or multidimensional NMR112,222,223] this condition is violated 

and the pseudo-rank of the array can largely exceed its chemical rank (i.e., the number of 

analytes). In these instances, each analyte is typically associated to more than one factor 

and complete uniqueness is lost (for three-way arrays) because such components have the 

same concentration profiles157,158,327. If no additional external knowledge is available, only 

partial uniqueness can be attained in these cases and only the components relative to 

analytes with rank one contribution can be uniquely resolved158,296. A similar problem 

emerges when the loading matrices are rank deficient and condition (2.3) does not hold 

(e.g., as a consequence closure effects linked to mass balance in a chemical reac-

                                                   
b Intended as the process of generating a regression model that allows to compute the concentra-
tion of one or more analytes in a sample from a two-way array of recorded signals26.  
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tion157,247 ). In this case, although single components may be associated with only one 

analyte, the solution is no longer unique and ordinary PARAFAC solutions are often not 

satisfactory36,278. 

Theory and formulation of models are quite more complicated in case of rank over-

lap36,157,158,278,282, but it is important to remark that the PARAFAC model in itself is still ap-

propriate even for this type of problems. An F component PARAFAC model is the array of 

rank F that best approximates the data43,93 and no additional restrictions are necessary on 

any of the loading matrices for it to be appropriate. Thus, for example, if one considers 

the vectorised array which underlying model has structure 

1 1 1 1 2 2 3 3 3⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗c b a c b a c b a , one can easily see that its pseudo-rank is 3 and 

that a PARAFAC model of rank 3 can adequately approximate it. Indeed, owing to non-

uniqueness, external additional constraints (e.g., non-negativity or equality if some of the 

other loading vectors are known) may be required to obtain directly interpretable solu-

tions6,31,35,40,281. However, non-negativity and other constraints need not be imposed dur-

ing the fitting procedure and could be applied as postprocessing in those cases when the 

subspaces spanned by two (or more) components are uniquely identified rather than the 

components themselves112,222,223,281. Thus, the problem of rank overlap pertains to the al-

gorithm used to fit PARAFAC and how (and which) additional constraints are imposed to 

yield uniqueness or to narrow the range of possible solutions rather than the appropriate-

ness of PARAFAC models per se.  

Several algorithms exist and can be employed with various degrees of success to 

solve this type of problems: Non-Bilinear Rank Annihilation247,327,334 method (NBRA), which 

is an extension of the Generalized Rank Annihilation Method (GRAM)264 to fit the 

PARAFAC model; Residual BiLinearization (RBL)221,247,326, restricted Tucker models157,280,282, 

PARAfac with LINear Dependencies (PARALIND) models36,c and Multivariate Curve Resolu-

tion (MCR)281,290, which are all fitted by means of an Alternating Least Squares (ALS) algo-

rithm157. Moreover, an algorithm to fit PARAFAC on three-way arrays with two propor-

                                                   
c The restricted PARATUCK2 model that has been used to fit this type of data belongs to the PARA-
LIND family, which is a more general class36. 
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tional columns in one mode was already proposed by Krijnen as a means to study 

uniqueness163 (cf. section 2.2).  

The implementation of linear equality constraints in a PARAFAC context has been re-

cently investigated31,36, but the subject of which algorithm is the most efficient has not 

been addressed. For example, a Levenberg-Marquardt algorithm for PARAFAC using 

compressionPI-PIII and Jacobian projection on the null space of a suitably defined con-

straints matrix102 could provide a valid alternative to ALS for ill-conditioned problemsPI,PII. 

More in general, in numerical analysis there is a wealth of different options in terms of 

equality constrained optimisation102,194 that could be applied to the PARAFAC case and 

could exploit its structure and the gains in efficiency associated with the properties of the 

Khatri-Rao productPIII.  

2.4.3 Zero signal, nonlinear responses and deviations from multilinearity 

One of the basic assumptions of low-rank multilinear modelling is that the variation 

in all the vectorised sub-arrays obtained by fixing the indices in one or more modes can 

be approximated by a weighted sum of the Khatri-Rao (or Kronecker) products of the 

loading vectors for the modes whose indexes are not fixed178. For example, this infers that 

the emission spectrum of a fluorescent species is required to remain the same at all excita-

tion wavelengths and for all the samples, and that the kinetic profile for a specific analyte 

must not change between samples when a reaction is being monitored.  

Several features may be present in the data that can violate this condition. For ex-

ample, owing to the fact that there is no emission at wavelengths lower than the excitation 

wavelength171, the corresponding measurements in an EEM matrix are zeroes (or just 

noise) and the recorded emission spectra would depend on the wavelength of the exciting 

light (because the number of zeros changes at each excitation wavelength). Thus, the 

loadings in the emission and excitation mode would need to accommodate for the fact 

that their outer products (i.e., the fluorescence landscapes for the single constituent) have 

to be zero in the area of no emission and considerable distortions could ensue6. Similar 
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distortions in the signal may occur because of a nonlinear response of a sensor (e.g., be-

cause it is close to saturation)8. 

More or less subtle deviations from exact N-linearity (e.g., minor shape changes in 

the recorded emission spectrum between different EEM measurements of the same speci-

men39 or peak shifts due to matrix effects in chromatography25,97 ) are typical of experi-

mental data and have been suggested as the reason for larger variances in the concentra-

tion estimates for calibration problems184. These deviations may give rise to problems be-

cause they contribute to the variation in the data and need to be accounted for by any 

best low-rank approximation of the data array39. Increasing the model’s rank to account 

for these additional sources of variation and improve the results can hardly be considered 

a solution to this problem because the supplementary components would likely be too 

small in magnitude compared to the bulk of the signal, too collinear with the “true” fac-

tors in some of the modes or too unstable to be reliably isolated39. Thus, the model’s rank 

is almost necessarily wrongly specified with respect to this type of systematic variation and 

it seems plausible that these departures from low-rank N-linearity could be partly respon-

sible for slow the convergence of some algorithms and for the emergence of two-Factor 

Degeneracies (2FD’s)d, both temporary (i.e., as in the so-called ‘swamps’) or in the final 

solution. Moreover, these deviations necessarily induce some alteration in the loading 

vectors and their presence often shows as dents, shoulders, or even spurious peaks in cor-

respondence with other components (Figure 2.3)6,PII. A decrease in the diagonality of the 

core (i.e., of the core consistency39 ) associated to a specific PARAFAC solution has also 

been observed in this case, which hints a possible explanation for the relatively good per-

formances of algorithms that yield solutions with higher core consistencyPI.  

                                                   
d 2FD’s are regions in the convergence process where two or more factors grow increasingly collin-
ear maintaining opposite sign and almost cancelling each other’s contributionPI,168,245. Sometimes 
the degeneracies slowly disappear and the algorithm starts converging again at a higher rate (these 
regions are typically referred to as ‘swamps’)203,245. 2FD’s and swamps have been the subject of 
numerous studies203,224,226,245,347 and are perhaps the main driving force for continuous introduction 
new algorithms for fitting the PARAFAC model22,50,56,57,81,82,93,138,139,155,179,181,224,225,245,289, 322,342,343,PI,PII. 
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One of the possible procedures to obviate the problems associated with the violation 

of N-linearity due to specific data elements is to treat them as missing values (or equiva-

lently to assign them zero weights)6,8,PII. However, pattern and fraction of missing values 

may themselves cause the formation of artefacts in the loadings and may have a consid-

erable effect on the speed of convergence of the fitting algorithmPII. Thus, more complex 

patterns of missing values and zeros have been devised recently in order to yield an ac-

ceptable trade off8,15,60,141,297. 

With respect to subtler deviations that cannot be ascribed to specific data values, it 

has been suggested that fitting according to a weighted least squares criterion (cf. section 

2.5) may help reduce their effect120. However, this possibility has not been thoroughly in-

vestigated. 

2.4.4 Presence of interactions 

A relevant condition for a (low-rank and unconstrained) PARAFAC model to be ap-

propriate is that interactions between different underlying factors should be limited or ab-

sent32,119,177. These can be real interactions between the physical elements corresponding 

to the PARAFAC components or may be artefactual. An example of the first type is the 

‘inner-filter effect’ in fluorescence spectroscopy: the light emitted by a certain fluorophore 
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can be absorbed by another fluorophore in the same solution171. Per contra, specific pat-

terns of missing values may allow interactions between factors that do not correspond to 

physical phenomena and which typically emerge during the fitting procedure6,PII.  

Constraints often work well when interactions are artefactual; depending on problem 

and type of data, one could enforce non-negativity and/or unimodality6 on some load-

ings, can impute zeros in selected areas of the data array15,60,297 or can directly force cer-

tain model parameters to be zero31. It is noteworthy that the latter solution can be straight-

forwardly implemented in derivative based methods (cf. section 2.7) and entails a reduc-

tion in the size of the problem. Conversely, if a real interaction is occurring it may be nec-

essary to opt for a different model than PARAFAC 177 

2.4.5 Shift 

Another possible violation of low-rank N -linearity may arise for shifted data, i.e., 

data whereby an identical phenomenon (e.g., a peak in a chromatographic run) occurs in 

separate samples (or, more generally, slabs) at different stages, or has different dura-

tions49,118,149. In such cases, the change in the profiles between different slabs may be-

come a relevant source of variation, entailing the use of additional components not re-

lated to the underlying phenomena with often detrimental effects on interpretation and 

usefulness of the model (cf. Chapter 3)9,196,344. Typical examples of shift are found in 

chromatography34,49,91,PIV-PVI and kinetic studies67,149, but shift is common also for 

NMR299,316,337-339 and fluorescence signals171. 

The shift problem can be pursued by modifying the model structure allowing for 

some deviations from strict multilinearity (e.g., PARAFAC234,PVI, Tucker267, shifted factor 

models118,127,128 or constrained multivariate curve resolution67,265 – MCR) or by applying 

suitable preprocessing methods aimed at realigning the signal in the different slabs such 

as warping48,49 (cf. Chapter 3). An interesting alternative to these common strategies arises 

when the data array is at least of order four, because one could concatenate the slabs 

relative to the mode in which the shift occurs retaining at the same the uniqueness proper-

ties of PARAFAC. Per contra, if the original data set is three-way this procedure corre-
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sponds to matricising it, thus resorting to bilinear models and likely loosing unique-

ness67,290.  

2.4.6 Missing values 

Missing values are a fairly common occurrence in chemometrics and can emerge for 

different reasons. In certain types of analyses, some values are intentionally not measured 

(e.g., in Selected Ion Monitoring Mass Spectrometry – SIM or because of irregular sam-

pling schemes when monitoring a chemical process211). Alternatively, missing values may 

be purely incidental (e.g., because of some sensor failure211 or saturation319,320 ). In other 

cases, certain elements of a multi-way array are set to missing because the actual values 

would lead to a violation of low rank N-linearity (cf. sections 2.4.1 and 2.4.3)8,248,278,PII.  

Although they do not directly determine a change in the rank of the array, missing 

values can exacerbate the problems related to some other deviations6,60,248,297,PII.  

In recent years, the effect of missing values on the quality of the final model and on 

the rate of convergence for different fitting algorithms has been the subject of substantial 

investigation and has been shown to be potentially quite dramatic for systematic patterns 

of missing elements15,41,60,248,297,PII.  

Two different algorithmic approaches to the problem of missing values are com-

monly used: weighted regression (cf. section 2.5) and single imputation31,PII. In the former, 

the model is fitted only on the elements that are not missing; in the latter, new estimates 

for the missing values are obtained at each iteration using the values in the interim 

modelPII. Under some assumptions on the distribution of the residuals, the second method 

can also be referred to as ‘Expectation Maximisation’ and the imputed values represent an 

additional set of parameters that is estimated conditionally on the loading matri-

ces31,71,202,PII.  

Even though upon convergence the two methods should yield identical solutions156, 

the two approaches are not equivalent and there are some indications that the weighted 

least squares approach is more effective for large amounts of missing values and specific, 

problematic patterns of missing valuesPII. Regardless of the method, the more elements are 
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missing, the slower the convergence. In this respect, exploiting certain properties of the 

Khatri-Rao product may prove beneficialPII,PIII. Constraints are also helpful to improve con-

vergence, whether applied directly to the loading matrices (e.g., non-negativity and uni-

modality) or indirectly, by substituting the missing value with some expected value (e.g., 

zeros in EEM fluorescence landscapes)6,15,297. 

The pattern of missing values has a much more visible effect than for example their 

fraction and it is remarkable that PARAFAC models can still be reliably estimated with as 

many as 70% of the array elements set as missingPII. This is at variance with the two-way 

case, in which PCA becomes rather unstable already at 25-40% missing values107,319. One 

of the reasons for this stability is clearly the fact that the number of data points for the fit-

ting largely exceeds the number of model parameters. This ratio further increases with the 

order of the array and, for higher orders, one may be able to use several million data 

points to estimate a few hundreds model parametersPIII. A second reason is likely to be the 

rigid model structure of PARAFAC and the requirement that the variation be multilinear.  

This stability is not shared by all patterns of missing values and randomly missing 

values (RMV) are less problematic than the systematically missing spectra (SMS) pattern 

found in fluorescence spectroscopyPII. In this respect, however, one could envision an al-

gorithm based on the weighted least squares approach that deliberately ignores a large 

fraction of values (that is, treats them as missing) in a perfectly random pattern, thereby 

reducing the computational load per iteration. Such an algorithm could for example be 

used to provide initial estimates to fit the PARAFAC model on the whole array, although 

some care needs to be paid to avoid that the pattern of missing values could interfere with 

multilinearityPII. 

2.5 Fitting criteria 

Fitting a model to a set of data typically implies certain assumptions on the distribu-

tion of the measurement errors (also referred to as noise)235,310.  
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In general, noise is assumed normally distributed with zero mean and is identified 

with the fitted model’s residuals235. Depending on variance and covariance of noise in the 

array’s elements, Least Squares (LS), Weighted Least Squares (WLS) and Maximum Likeli-

hood (ML) fitting criteria naturally emerge41,235,310. The corresponding optimisation prob-

lems can be written respectively as: 
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…
… … , (2.10c) 

where ( ) ( )1 1 1vecN N F≡ −r A A X A A 1… …  denotes the vectorised model’s residuals, 

W is a diagonal matrix of non-negative weights (e.g., the inverse of the variance of the 

single elements of r) and S−1 denotes the inverse of a generic variance/covariance matrix 

of the measurement errorse.  

Obviously, the three cases are equivalent when S− 1= W = σ − 2I, where I denotes an 

identity matrix of suitable size and σ 2 is the noise variance. Thus, upon convergence to the 

global minima and for the right choice of model rank, LS fitting yields the maximum likeli-

hood estimates of the model parameters under the condition that the errors/residuals are 

normally distributed, uncorrelated and have identical variance (i.e., that noise is homo-

scedastic). Likewise, WLS yields estimates that are optimal in a maximum likelihood sense 

under the condition that W= S−1, viz. that S is diagonal and the weights are the inverses of 

the variance of the corresponding elements of r. In this case, the criterion is often referred 

                                                   
e Note that ML fitting also entails the estimation of the variance/covariance matrix S195. Thus, the 
appellation of ML fitting for equation (2.10c) is correct only if one assumes that the noise variance-
covariance matrix be known in advance. This is sometimes possible because the distribution of noise 
is known for a specific analytical technique (e.g., single photon counting fluorescence220 ). Alterna-
tively estimates for S can be obtained from replicate measurements310.  
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to as χ 2-fitting235. WLS fitting allows departures from the assumption of identical variance 

for all data elements and should be preferred whenever reliable estimates of S are avail-

able or significant deviations from homoscedasticity are expected310. Finally, the ML crite-

rion with non-diagonal S is the most appropriate when the measurement errors are corre-

lated41,310. 

These considerations notwithstanding, LS solutions are often reasonably good for 

both qualitative and quantitative purposes even when there are deviations from the ideal 

conditions31,PI, and the difference between the least squares solution and the actual maxi-

mum likelihood estimates is expected to be small if the signal to noise ratio is sufficiently 

high41,PI. Furthermore, reliable estimates of S are seldom available as they require a num-

ber of replicates that is often not feasible41,310. Therefore, least squares algorithms have 

generally been favoured when fitting PARAFAC models. Besides, WLS and ML algorithms 

are often slower than their least squares counterparts because of their increased complex-

ity41,129,310,PII,PIII. In this sense, it is even more important to exploit as much as possible the 

structure of the PARAFAC model and of the noise variance-covariance matrix93,310,PIII.  For 

example, if S is diagonal, the Jacobian matrix J need not be explicitly computed in order 

to calculate JTS−1J (or the partitions used for, e.g., ALS algorithms310) and matrix-matrix 

products of full matrices can be used instead .PIII    

Great savings can also be achieved when S can be expressed as a Kronecker prod-

uct, regardless of its being diagonal. For instance, given N (positive
P
definite) vari-

ance/covariance matrices Sn of size n nI I×  for 1n N= … and if 1,N≡ ⊗ ⊗S S S… the gen-

eral ML loss function L(A1,…,AN)  can be written as: 
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where SS
∼

n  denotes the Cholesky factor267 (or, alternatively, the square root41) of Sn  and the 

last equality holds for a well known property of the Khatri-Rao product278. Thus, in this 

case, the ML estimates of the loading matrices can be found by fitting in an LS sense a 
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PARAFAC model to an appropriately pre-processed arrayf42,93,120,197. Unfortunately, pre-

processing as a means to yield ML estimates cannot be employed when the noise is corre-

lated across several modes (whereby the word ‘across’ is used in the same way as in 

Smilde et al278)42,120,310. In the latter case, only one simplification seems possible; that is, 

when the noise is independent across one or more modes, the variance/covariance matrix 

S becomes block diagonal for some permutation of the modes of the array, with some 

advantages in terms of storage and when computing its inverse23,195,310,PIII. 

It is important to mention that S and W need not be specified on a statistical base 

and that the only condition for problems (2.10b) and (2.10c) to have a solution is that 

both matrices be positive semi-definite. Hence, they can also be derived from a priori 

knowledge and employed to downscale the effect of certain elements of the data array on 

the final model and in this sense they have been used extensively8,41,62,120,140,248,PV. For ex-

ample, weights can be used to prevent the fitted model from being heavily influenced by 

features that may deviate from low-rank N-linearity (cf. section 2.4.3)6,31,41,141,248,PII. A WLS 

criterion is also used to deal with missing values (cf. section 2.4.6)31,107,211,319,320,PII. 

In recent years, a number of methods have been introduced that do not fit PARAFAC 

models according to any well established criterion and that are loosely based on the con-

cepts underlying PARAFAC-ALS50,56-58,82,138,139,181,PI.  

The mathematical relation between the loss functions minimised by these algorithms, 

if any, and the least squares one is not always clear and does not necessarily lead to im-

proved efficiency or robustness82,PI. All these methods do not minimise only one loss func-

tion (i.e., a more or less penalised distance between a model, however related to the 

PARAFAC one, and the data), but solve a different minimisation problem depending on 

which loading matrix is being estimated at a specific sub-step. Thus, they lack any well-

characterised convergence property in terms of PARAFAC least squares loss function, 

which is not bound to decrease (or, more precisely, not to increase) as it is for ALS56,57,82. 

                                                   
f viz. ( )1 1

1 1 1vec vecN
− −≡ ⊗ ⊗X S S X… . Note also that 1 1

1N
− −⊗ ⊗S S… need not be formed to calcu-

late X  thanks to the associativity of  the Kronecker product and to its well known property: 
( ) Tvec vec⊗ =C A B ABC 195.

P
 



 29

Additionally, most of these methods have more restrictive requirements for identifiability 

than the theoretical ones; consequently, they are most often not applicable when the load-

ing matrices are rank deficient165,271. 

On the other hand, at least one of these algorithms (namely SWATLD57,82,PI ) does 

yield models that are reasonably close to the least squares ones and could be used when 

high precision and statistical properties of the solution are not main requirements for the 

decomposition (for example, to provide initial estimates for a least squares algorithm)82,PI. 

SWATLD appears to be a rather stable and fast algorithm (cf. section 2.7); however, the 

unorthodoxy of its fitting criterion makes it very difficult to ascertain what renders SWATLD 

so stable in many respects and to understand whether some of its advantageous features 

could be implemented in other, theoretically sounder, algorithms82,PI. 

2.6 Difficulty of the fitting problem 

The performances of the different algorithms for fitting the PARAFAC model are in-

fluenced by some well known factors (e.g., collinearity between the underlying compo-

nents and the signal to noise ratio129,155,PI,PII ) as well as some peculiar ones which are still 

not completely understood theoretically (e.g., factor degeneracies and swamps168,203,226,347  ). 

Therefore, in order to correctly assess the behaviour of the different methods, it is very 

important that the data sets on which they are tested be as well-characterised as possible.  

In general, time and effort necessary to generate appropriate real data sets favoured 

tests for PARAFAC fitting algorithms chiefly based on artificial data81,82,129,155,PI-PIII. Simu-

lated arrays are typically designed according to the features that are expected to yield an 

effect on both quality of the results and efficiency of the algorithms. Furthermore, they al-

low a more refined control over the varied factors than real sets and do not contain un-

wanted disturbances that may obscure the effects in which one is inter-

ested39,82,155,226,295,PI,PII. Thus, methods to generate synthetic data sets for PARAFAC algo-

rithms abound in the chemometrics literature39,80,82,129,155,159,PI,PII.  
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In general, all methods boil down to creating loading matrices according to the re-

quirements of the simulations, computing an N-way array based on the PARAFAC model 

and such loading matrices, and summing it with an array of random errors of appropriate 

distribution and magnitudePI. The loading matrices can be constructed to be rank defi-

cient, or such that the PARAFAC model is not unique or that a PARAFAC decomposition of 

given rank would yield factor degeneracies168,226. In most cases, this is accomplished by 

using simple linear transformations applied to column-wise orthogonal matrices. Hence, 

said U an nI F× column-wise orthogonal matrix, the loading matrix An is calculated 

as ,n =A UR where R is a matrix of suitable size159,226,267,295,PI. For example, R can be cho-

sen as the Cholesky factor or as the square root of the desired cross-product for An (e.g., 

having identical off-diagonal elements)159,248,267PI,PII. Added noise, if any, is often normally 

distributed with zero mean. The single values of the array representing the noise may be 

multiplied by a scalar to yield a specific variance, or signal to noise ratio or contribution 

to the total sum of squares of the final array190,PI,PII. Further manipulations are necessary 

when studying the effect of heteroscedastic or correlated noise on a least squares solu-

tion310,PI, the efficiency of an algorithm using a weighted loss function41,310 or the effect of 

model error on the parameters’ estimates39,184. In this sense, there are some indications 

that, in order for the simulated sets to be realistic, some small deviations from low-rank 

multilinearity should be allowed (e.g., giving a Tucker structure to the noise)39. 

Great attention should be paid to the procedure used to generate the data set. For 

instance, choosing the loading matrices solely on the basis of their resemblance with those 

commonly encountered when fitting PARAFAC models (e.g., excitation and emission spec-

tra or chromatograms) may be advantageous when interpreting some results from the 

chemistry point of view and visually expedient, but is not sufficient to properly characterise 

the data set from a numerical point of view129,PII. Likewise, smooth loading vectors make 

the results more pleasant to the eye and may help detecting artefacts in the solution129,PII, 

but, ceteris paribus, they bear neither consequence nor advantage on the fitting procedure 

unless smoothing constraints are being tested31.  

Regardless of the method used to generate a data set, some indications about the 

conditioning of the problem and the magnitude and distribution of noise are necessary to 
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properly characterise the problem from a numerical point of view. Several diagnostic pa-

rameters have been used in the chemometric literature to measure the difficulty of the fit-

ting problems, but many seem to fall short of giving consistent and concise information. 

Over the years, the condition number of the loading matrices or of their Khatri-Rao prod-

ucts82,155, the congruence between factors (i.e., the cosine of the angle between the vec-

torised factors) or loading vectors82,PI,PII, the selectivity82, the singular values for the loading 

matrices129,PI,PII, a diagnostic referred to as the ‘array’s condition number’129 and the Jaco-

bian’s condition number and singular values225,226,PI,PII have been used to characterise the 

problem. 

Not all of these are equally informative and some can provide conflicting evi-

dencesPII. For instance, while the condition number of the loading matrices affects conver-

gence rate and quality of the solution129,82,155, it may vary considerably between the differ-

ent modes and relatively high values for one or more loading matrices do not necessarily 

imply that the fitting problem is difficult to solve129,PI,PII. In this sense, the conditioning of the 

Khatri-Rao products of all loading matrices but one (i.e., that of 

1 1 1n N n n− + −≡Z A A A A… … ) seems much more relevant for the numerical stability of 

most algorithms. This is easy to see for the ALS algorithm, which entails the computation 

of the pseudo-inverse of Z-n  rather than that of the single loading matrices.  

However, diagnostics that refer to fewer loading matrices than the order of the array 

may miss significant relations implying or excluding uniqueness, and thus ill-conditioning 

of the problem271,295.  Hence, if any single number should be used to determine the condi-

tioning, the most natural choice among those listed seems the Jacobian’s condition num-

ber, which is related to the convergence rate of several methods23,225,PI,PII. Additionally, the 

Jacobian’s condition number can directly account for the effect of the pattern of missing 

valuesPII. This diagnostic parameter seems also preferable to the ‘array’s condition num-

ber’129, which relies on the estimation of two separate models of different rank, one of 

which is necessarily wrongly specified. 

The main drawback of the Jacobian’s condition number is that it is not affected by 

amount and nature of noise in the array, which also influences the rate of convergence of 

some algorithms23,102,193. In order to take this into account, one could use the Hessian 
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matrix instead23,226. It is noteworthy then, that, since JTJ approximates the Hessian matrix 

for least squares problems and the difference between these two matrices depends on the 

residuals, using the condition number of J is reasonable for problems characterised by 

small residualsPI,PII.  

From the computational point of view, it is worth mentioning that the sparsity of J 

and of the second-order contribution to the Hessian (Q)PIII and the availability of efficient 

routines to compute the products of J (and JT) with a vectorPIII suggest the possibility of us-

ing iterative methods to calculate the extremal eigenvalues of the Hessian (or singular val-

ues of J), overcoming storage limitations105.  

Another useful diagnostic for noise that is more specific to PARAFAC is the core con-

sistency at the solution, which is again a measure of the appropriateness of a PARAFAC 

model of given rank39. This becomes particularly important for experimental data sets, 

which almost necessarily depart from the basic assumptions for employing PARAFAC. 

Whether or not these deviations from low-rank N-linearity represent a problem is deter-

mined by their magnitude and nature (cf. section 2.4) and sometimes they are compatible 

with the computation of reasonable estimates of model’s parameters or of some related 

values31,39,120,184. Nonetheless, their presence often entails a worsening of the solution and 

slower convergence because the model’s rank is almost inherently different from the rank 

for the systematic part of the variation168,184,226,PI. 

2.7 Algorithms for fitting PARAFAC models 

The need for fitting PARAFAC models on data sets of increasing size and complexity 

and the use of resampling techniques (e.g., jack-knifing198,249 and bootstrapping75,113,278) 

require efficient algorithms.  

In spite of several well known shortcomings83-85,155,203,PI,PII, most of the work pertaining 

to the computational aspects of fitting PARAFAC models has been restricted to two classes 

of algorithms: ALS51,114,278, which is iterative, and direct procedures based on solving a 
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generalised eigenvalue problem [e.g., GRAM264 or the Direct TriLinear Decomposition 

(DTLD)263].  

Over the years, several other methods have been tested, but only few of them ap-

peared to be able to perform as well as PARAFAC-ALS82,PI. For example, a steepest de-

scent procedure102,193 was used for preliminary studies on the PARAFAC model, but was 

soon abandoned in favour of ALS as it was found unfeasible when the model’s rank was 

relatively high and for larger arrays114. More recently, a modified version of the conjugate 

directions method235 based on fast computation of gradient and exact line search has 

been tested to refine an initial solution obtained with ALS and to attain a quadratic con-

vergence in the final stages93. It was concluded that the method is rather inefficient and 

that its convergence rate is long from being quadratic93.  

Consequently, most of the newly proposed methods for fitting PARAFAC models 

comprise more or less complex additions to the ALS basic procedure aiming at accelerat-

ing its convergence rate or loosely rely on an underlying ALS scheme whereby the fitting 

criterion is modified in an attempt to cope with some problems encountered with the least 

squares one (cf. section 2.5).  

Per contra, many efficient methods for solving general optimisation problems23,102,193 

have only seldom been employed in the PARAFAC context10,22,93,122,185,190,224,225,322,PI,PII and 

the development of fitting procedures that are not based on the ALS idea has been rather 

limited. The fact that most of the implementations of such alternative procedures lack the 

generality and the simplicity of ALS based ones is likely one of the reasons why these 

methods received limited attention31,155,278,PI.  

In this section, a brief and as objective as possible account of the current state of the 

art on PARAFAC fitting procedures is rendered, and some alternatives are pointed out that 

would reap great benefit from the peculiar structure of PARAFAC and from the properties 

of the Khatri-Rao productPIII.  

The idea is not to exhaust the subject of which method is the absolute best, nor is it 

to compare all the available algorithms. There are simply too many of them (especially if 

one considers those made available from the numerical optimisation field) and, more im-
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portantly, the matter has likely no ultimate (or trivial) answer102. For example, if one con-

siders only the problem’s size (i.e., the number of estimated parameters), some algorithms 

are more suited for small problems (e.g., Levenberg-Marquardt and Newton meth-

ods193,224,PI ) while others are expected to be faster for large scale ones (e.g., PCG, trun-

cated-Newton and limited memory quasi-Newton methods102,193,225,322 ).  

Besides, the performances of each method are influenced by several aspects pertain-

ing to the data array rather than the algorithm in itself129,PI. Hence, factors like deviations 

from low-rank N-linearity39,PI (cf. section 2.4), collinearity between the underlying compo-

nents and model’s identifiability [i.e., more simply Jacobian’s rank deficiency (cf. section 

2.2.1)]23,129,155,225, adequate pretreatment49,117,120,347,PVI, amount and type of noise102,193,PI-PIII 

and presence and pattern of missing values129,278,PII play an important role in determining 

which algorithm should be usedPI,PII. In this respect, it seems also advisable to properly 

characterise the data sets that are used for testing a new algorithm through some sensible 

diagnostics129,PI,PII (cf. section 2.6). 

The matter of choosing the most suitable algorithm is further complicated if one  

considers that other criteria than the least squares one may be more suited for specific 

types of data41,310 (cf. section 2.5) and that constraining a PARAFAC model is sometimes 

necessary or at least advantageous6,31,36,110,163,192,224,240,296. Implementing such modifica-

tions or combining them in a single procedure may be overtly difficult or numerically un-

stable depending on the approach31. Hence, algorithms that work finely in the simple least 

squares case may be unsuitable mutatis mutandis for constrained problems or to minimise 

non-least squares loss functions (e.g., combining compression and non-negativity con-

straints is still an unresolved problem at this stage)31.    

2.7.1 Alternating Least Squares 

ALS is a relatively old method, known in the field of mathematical programming as 

nonlinear Gauss-Seidel algorithm23,70,346. In this approach, the nonlinear problem repre-

sented by fitting a PARAFAC model is split in smaller linear least squares problems that 

are solved iteratively. At each step, a subset of the model parameters is estimated condi-
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tionally on the remaining ones and a single iteration is completed when all the sub-

problems have been solved. Hence, each complete iteration is comprised of a number of 

sub-steps that depends on the partitioning of the model parameters. Most often, the un-

knowns in the linear problems are the loading matrices and the number of sub-steps 

equals the order of the array, but, for specific constraints, also single loading vectors may 

serve this purpose and the number of sub-steps may increase31,52. 

There are numerous methods to solve linear (weighted) least squares problems23, but 

the properties of the Khatri-Rao and opportune matricisations can help to reduce the 

computational expense for the single iteration of PARAFAC-ALS278,PI-PIII.  

For example, the estimate for the n-th loading matrix at the ( )1 -ths + iteration in the 

least squares case is computed as: 

( ) ( ) ( ) ( ) ( )( ) ( )( )T T1 1 1
1 1 1

s s s s s s
n n N n n n n

+ ++ + +
+ − −= ≡A X A A A A X Z… …  (2.12) 

where + denotes the Moore-Penrose inverse267. One can easily verify that the most ex-

pensive steps of this algorithm are the computation of n
+
−Z  (where the iteration number is 

dropped for clarity) and the products T
n n

+
−X Z ; accelerating these steps may significantly 

improve the speed of the algorithm. Therefore, n
+
−Z  is often calculated as31,51,114,PII: 

( )T T T T
1 1 1 1 1 1n n n n n n N N

++
− − − − + += ∗ ∗ ∗Z Z A A A A A A A A… … , (2.13) 

where * denotes the element-wise (Hadamard) product and the iteration number is 

dropped for clarity.  

Notwithstanding the reduction in the computational time, reckoning n
+
−Z  in this fash-

ion can induce some numerical instability because of the squaring of the condition num-

ber23. Thus, unless some type of regularisation is applied, such approach should be 

avoided when the Z-n’s are ill-conditioned (e.g., because of factor degeneracies)23,31,245. 

For the same reasons, one should not substitute the pseudo-inverse in the rightmost term 

of (2.13) with an ordinary inverse, something that is possible if Z-n has full column rank. 

Besides, this substitution would also bring a limited advantage because the model’s rank 
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is usually rather small (in the order of a few units) and gain is almost negligible compared 

to the cost of computing n n−X Z .  

Each n n−X Z  product requires in theory 2 nn
F I∏  operations and a permutation of 

the array’s modes. The permutation can be accelerated through appropriate matricisa-

tionsPIII or avoided altogether by expressing the algorithm in terms of frontal slabs of X 278,  

but while computationally more efficient, both these procedures do not reduce the number 

of operations necessary to complete a single iteration. Per contra, computing 

for 2n n n N− =X Z …  as 

( )n n n F n− −=X Z X I Z , (2.14) 

where ( )2 T
1 1

NF I I× ≡X A X… , { }( )1,n nI I F

n
−×

≡X X  and 1 1 2n N n n− + −≡Z A A A A… … , allows a 

reduction that is proportional to the ratio between the largest mode (assumed here and 

without lack of generality to be the first) and the rank of the model. In fact, if one ignores 

the operations necessary to compute ( )T
n n

+

− −Z Z , the cost of one ALS iteration using (2.14) 

is approximately equal to the cost of computing JTv using the chain rulePIII. Again, appro-

priate matricisations or using frontal slabs may increase the efficiency. An immediate pos-

Table 2.1. Scheme of a naïve and an optimised formulation of the PARAFAC-ALS algorithm 
for a 3-way array X  of size I × J × KPIII. s denotes the iteration number. 

Without optimisation With optimization 

0) Set 0s =  and inititalise B0 and C0 

1) ( ) ( ) T
1

I JK
s s s

+×
+ =A X C B  

2) ( ) ( ) T
1 1

J IK
s s s

+×
+ +=B X C A  

3) ( ) ( ) T
1 1 1

K IJ
s s s

+×
+ + +=C X B A  

4) Check convergence 

5) If not converged repeat from 1) 

0) Set 0s =  and inititalise B0 and C0 

1) ( ) ( ) T
1

I JK
s s s

+×
+ =A X C B  

2) ( ) ( ) ( )T T
1

I JK
s s s s s s s

+×
+

⎡ ⎤= ∗⎣ ⎦A X C B C C B B  

3) ( ) ( )T
1

F JK I JK
s

× ×
+=X A X  

4) ( ) ( ) ( )T T
1 1 1

J KF
s F s s s s s

+×
+ + +

⎡ ⎤= ∗⎣ ⎦B X I C C C A A  

5) ( ) ( ) ( )T T
1 1 1 1 1 1

K FJ
s s F s s s s

+×
+ + + + + +

⎡ ⎤= ∗⎣ ⎦C X B I B B A A  

6) Check convergence 

7) If not converged repeat from 2) 
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sibility to further accelerate the calculation of n n−X Z  is to operate column-wise. Namely, 

the f -th column of n n−X Z  is equal to , ,n f n f−X z , where ,n fX  is the 

matricised ( )1 -arrayN − obtained by fixing to f the index for the first mode of X and ,n f−z  

denotes the f-th column of n−Z . Table 2.1 reports the PARAFAC-ALS algorithm for a 

three-way array with and without the optimisations just illustrated. 

ALS becomes less efficient than Hessian based methods (cf. section 2.7.4) as the 

order of the array increasesPIII. At the same time, its computational complexity grows line-

arly with the number of factors whereas for Gauss-Newton (or Newton) methods based on 

Cholesky decomposition it depends on the third power of the rank of the model and for 

quasi-Newton algorithms on its square94,102,193. Therefore, ALS is likely to be faster for 

relatively high ranksPI-PIII.  

The convergence rate of PARAFAC-ALS is at most linear and in practice, this algo-

rithm can be extremely slow, especially in case of high collinearity between the fac-

tors129,155,PI, when factors degeneracies emerge203,226,245 or for large fractions of missing 

elementsPII. Several modifications have been proposed to accelerate convergence31; 

amongst them: line search extrapolation/relaxation10,31,114,253,PI,PIII, regularisation31,224,245,PI 

and compression33,155,PI. 

 Line search extrapolation and relaxation procedures work by extending the optimal 

steps by a certain factor α. α can be a fixed value, or can be calculated on the basis of 

the similarity between the last two updates or, more simply, can be based on the number 

of iterations10,31,114,235,253,PI. The effect this procedure has on the number of iterations nec-

essary to reach convergence can be quite dramatic and, although it adds to the complex-

ity of the algorithm, the reduction in terms of time can be remarkable even for quite com-

plicated extrapolation schemes129,226,251. While in most PARAFAC-ALS implementations the 

choice of α is based on heuristics, a method that solves analytically the line search prob-

lem was proposed already in 199293 and it was recently implemented in MATLABPIII. Pre-

liminary tests on three-way arrays indicate that the exact line search method yields a large 

reduction in the number of ALS iterations. Nonetheless, an ALS iteration using the proce-

dure described in Paper III is approximately twice as costly as one of a standard ALS (for 

the three-way case) where α depends on the number of iterations31. Thus, the exact line 



 38

search algorithm appears to be more time consuming than procedures based on simpler 

schemes. Clearly, these results have to be validated with a more extensive study, but they 

also suggest that it might be worthwhile to investigate on line search procedures that ap-

proximate the exact solution at lower cost. 

ALS has been reported to be more sensitive than other algorithms (apart from direct 

methods) to over-factoringPI. In particular, when the rank of the model exceeds the rank of 

the systematic variation, the number of 2FD’s recorded in the solution increasesPI. This is 

consistent with theoretical considerations on the relation between rank of the model and 

of the array and emergence of factor degeneracies226 and suggests that modifications to 

the basic ALS algorithm that are intended to reduce the occurrence of 2FD’s (e.g., regu-

larisation) may be helpful also in improving the resistance to over-factoring. Regularisation 

is a common strategy when solving least squares problems23 and can reduce the number 

of iterations spent in a swamp and accelerate convergence129,131,245. However, it may also 

introduce some bias and yield solutions that visibly differ from the least squares one, thus 

some care should be paid in evaluating the results129,245. 

Compression (cf. section 2.7.6) allows a great reduction in the size of the problem 

and seems to improve the resistance of ALS (and of other methods) to mild over-factoring. 

However, more ALS iterations are required on the compressed array and the reduced size 

of the problem does not always imply a reduction of computational timePI. 

In general, ALS seems to work quite well for three-way arrays so long as the rank of 

the model is known and the underlying factors are not too collinear. For relatively difficult 

problems, several restarts or better initial estimates (e.g., like those obtained from com-

pression – cf. section 2.7.6) may be necessary to obtain fast convergence or convergence 

to a meaningful solution203. 

2.7.2 Direct methods 

The only alternative to PARAFAC-ALS that has received much attention is the GRAM-

DTLD algorithm263,264, which is based on a generalised eigenvalue problem and has fixed 

computational complexity83-85. Unfortunately, what is gained in speed is lost in accuracy, 
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and while in the noise-free case the model underlying GRAM-DTLD is identical to the 

PARAFAC model, this is not the case for real experimental data. In fact, the optimisation 

criterion of the GRAM-DTLD is not strictly well defined in terms of the PARAFAC loss func-

tion82, and the two solutions may differ considerably, especially when the signal to noise 

ratio is low. The GRAM-DTLD algorithm per se has been repeatedly proven to be inferior 

to PARAFAC-ALS in terms of quality of the solution82,179,204,PI. Nonetheless, because of the 

fixed complexity and its speed, it has been often advocated as to provide initial estimates 

of the loading matrices for PARAFAC-ALS31,179,204. In particular, since most iterative 

nonlinear least squares algorithms are sensitive to the initial estimates of the parameters 

and convergence is ensured only if the initial guess is reasonably close to the final solu-

tion94,102,193, a rational start obtained, e.g., via GRAM-DTLD may lead to faster conver-

gence compared to purely random values. However, since GRAM-DTLD gives the same 

solution every time, using it as the sole option does not give any information on whether 

the main algorithm has converged to a local minima31 and does not help in case the cor-

responding values lead to a degenerate solution or a swamp155,203,226. Other algorithms 

can be used to provide further rational starts, e.g., curve resolution methods68,290,291, NI-

PALS or SVD31, some alternative GRAM-DTLD like procedure179 or iterative non-least 

squares algorithms (e.g., SWATLD57 – cf. section 2.7.3)82,PI. 

Another direct method based on singular value decomposition (hereafter named 

PARAFAC-SVD) can be used for calibration purposes for three-way arrays. In PARAFAC-

SVD, the loading vectors in the sample mode are assumed known and equal (apart from 

the different scaling) to the matrix (U1) holding the concentrations for the calibrations 

samples184,185. In essence, PARAFAC-SVD approximates the loadings for each factor with 

the first left and right singular vectors of F suitably calculated matrices (viz. 

( ) ( )2 3

2

T I F I
f f I

×= ⊗V d I X , where df denotes the f -th column of ( ) 1T
1 1

−
U U  and 

( )2 3 T
1 1

F I I× ≡X U X g)185.  

                                                   
g The notation has been changed to be consistent with the one employed herein. 
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Like DTLD-GRAM this method does not perform as well as a PARAFAC-ALS184,185, 

but could provide good initial values for iterative algorithms. An interesting aspect of 

PARAFAC-SVD though is that it can be straightforwardly extended to higher orders, al-

though in this case it becomes iterative. It is easily verified that for N-way X, Vf is a matri-

cised ( )1 -wayN −  array (i.e., ( ) ( ) ( )2 3 2 3

2

TN NI I I I F I I
f f I

× ×= ⊗V d I X… … ) and its best rank one ap-

proximation is a rank one PARAFAC model. Currently, neither references nor record exist 

on the application of this method for arrays of order higher than three. 

2.7.3 Iterative Non-least squares methods 

A relatively large number of new iterative methods for fitting PARAFAC has been 

proposed in recent years50,56,57,138,139,181,342,343 that do not solve (2.10a), but “related” 

problems containing various kinds of adjustments. In recent reviews, most of these algo-

rithms have been found wanting, both theoretically and in practice, in terms of quality of 

the solution, reliability and computational expense82,PI (cf. section 2.5). 

Of all these methods, only Alternating Slice-wise Diagonalization (ASD) and 

SWATLD (Self-Weighted Alternating Tri-Linear Decomposition) yield solutions of accept-

able quality82,PI. However, ASD has turned out to be rather unsatisfactory with respect to 

most of the design factors taken into account in some Monte Carlo simulations (namely 

noise, degree of collinearity and mild over-factoring). Moreover, the original claim that 

ASD would avoid factor degeneracies139 has been shown to be not truePI, and this method 

yields a much higher number of 2FD’s in the solution than several other methods (includ-

ing ALS)PI. 

SWATLD has been shown to be fast, relatively resistant to mild collinearity and sur-

prisingly stable with respect to over-factoringPI. Moreover, it did not yield solutions with 

2FD’s in test conducted on both real and simulated data setsPI and it has been reported in 

several instances (though not all) to lead to better predictions in calibration problems than 

the standard PARAFAC-ALS12,13,78,PI. 

However, SWATLD hardly ever finds the least squares solution, even when it recovers 

the correct solution more often than least squares algorithms (e.g., in case of mild 
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over-factoring)PI. It has been reported that SWATLD yields solutions that are slightly biased 

towards higher core consistencyPI, which is a measure of how appropriate a PARAFAC 

model of given rank is39. This may indicate that SWATLD finds a solution that is less af-

fected by model error39 and would at least partly justify the improved predictions for some 

calibration problems12,13,78,PI. The idea that some limited bias may be beneficial is also 

corroborated by the fact that, for at least one fluorescence data set, ASD yields a solution 

with higher core consistency than SWATLD’s and improved calibration models for two 

(three when the rank is over-estimated) analytes out of fourPI. 

Neither SWATLD nor ASD explicitly penalise lower core consistency and introducing 

an explicit penalty in this sense to the least squares loss function seems rather problematic 

as the expression to compute the core consistency includes the pseudo-inverse of all the 

loading matrices23,39. In fact, there is an algorithm, namely PARAFAC-PDE (PARAFAC with 

Penalty Diagonalization Error ) that purports a similar goal by introducing a penalty term in 

the loss function regulated by a user-defined parameter λ50. Unfortunately, PARAFAC-PDE 

has analogous conceptual flaws of all the other methods that at each sub-step (and 

sought loading matrix) optimise a distinct loss function82. Hence, its reliability and the 

quality of its results suffer from the ill-defined optimisation criterionh. 

It has been suggested that ASD could be preferred to SWATLD because it is much 

faster82. On the other hand, when the data array is sufficiently small, a carefully imple-

mented SWATLD has been found to be as fast as ASDPI. Thus, the compression step em-

bedded in ASD could be regarded as the likely reason for the good performances this 

algorithm yields on larger arrays. However, compression can be used with success to-

gether with many algorithms (cf. section 2.7.6), which suggests that also SWATLD could 

be made faster. Given the unknown properties of the SWATLD fitting criterion, additional 

studies will be necessary to verify this claim.  

                                                   
h Albeit the convergence properties of this algorithm have not been studied in detail, preliminary 
tests on both EEM fluorescence and simulated data sets showed that PARAFAC-PDE converges to 
different minima and visibly different solutions depending on the initial value; that the core-
consistency of its solutions does not change monotonically with the value of λ as one would expect; 
and, more importantly, that this method hopelessly diverges for certain values of λ. 
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SWATLD is exemplary in showing the conciseness and the efficiency achievable 

through the Khatri-Rao product. Table 2.2a shows the original algorithm57 and Table 

2.2b one based on the Khatri-Rao and used in PI. The latter formulation is highly vector-

ised and particularly efficient in the MATLAB® environment and may also partly justify the 

discrepancies in time expense between PI and Ref. [82].  

Even if the advantage in terms of time expense compared to least squares algo-

rithms is apparent many problems remain unsolved. Apart from the lack of proper under-

standing of the workings of SWATLD, it is not clear how one could implement weighted 

Table 2.2a. Original SWATLD algorithm. DA, DB and DC are diagonal matrices holding the 
norms of the columns of A, B and C respectively; ia denotes the i -th row of A, jb  the j -th of B 
and kc  the k-th of C; Xi, Xj and Xk are the ( ) ( ) ( ), and J K I K I J× × × slabs of X  obtained by 
fixing the running index in the first, second and third mode respectively, and 

( ) [ ]11diag FFm m=M  for an F × F matrix M. 

0) Initialise A0 and B0 

1) ( ) ( )T 2 20.5diag for 1k k k k K+ += ∗ + ∗ =⎡ ⎤⎣ ⎦A Bc B X A D A X B D …  

2) ( ) ( )T 2 20.5diag for 1j j j j J+ += ∗ + ∗ =⎡ ⎤⎣ ⎦A Cb C X A D A X C D …  

3) ( ) ( )T 2 20.5diag for i 1i i i I+ += ∗ + ∗ =⎡ ⎤⎣ ⎦B Ca C X B D B X C D …  

4) Check convergence. 

5) If not converged repeat from 1) 

Table 2.2b. SWATLD algorithm using the Khatri-Rao product. 

0) Initialise A0 and B0 so that they are column-wise normalised 

1) ( ) ( )T T0.5 K IJ× + += +C X B A B A  

2) Column-wise normalise C 

3) ( ) ( )T T0.5 J KI× + += +B X A C A C  

4) Column-wise normalise B 

5) ( ) ( )T T0.5 I JK× + += +A X C B C B  

6) Check convergence. 

7) If not converged column-wise normalise A and repeat from  1) 
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least squares fit and how the algorithm would behave, should the data array contain some 

missing values. Most importantly, there is no mathematical characterisation of the 

SWATLD solution and of its bias. This severely limits the use of this method, but seem to 

justify its use to provide initial estimates for other algorithms. 

2.7.4 Hessian based methods 

Most of the algorithms for solving nonlinear least squares problems are based on a 

quadratic model of the optimised loss function (i.e., on a Taylor series of the loss function 

truncated at the quadratic term)94,102. Thus, given the Hessian H and the gradient g of the 

loss function at the current point, an update ∆p for the vector of model parameters p is 

found as a solution to the linear least squares problem 

∆ = −H p g . (2.15) 

The different methods differ in the way H is computed and how (2.15) is solved. 

Thus, in the Newton method, H is the true Hessian; in quasi-Newton methods, an ap-

proximation of H (or of its inverse) is obtained via low rank updates to the same matrix at 

the previous iteration; and in Gauss-Newton algorithms H is approximated by JTJ94,102. 

The Gauss-Newton method is one of the most effective algorithms for nonlinear least 

squares problems23,102,193. It has been employed (albeit in a slightly modified version) to fit 

a PARAFAC model to 3-way array as early as in 1982122 and a first comparison with ALS 

was published a few years later (in Japanese164). No further mention seems to have been 

made until the introduction of PMF3 (Positive Matrix Factorization for 3-way arrays) some 

fifteen years later224,PI.  

PMF3 uses in fact a damped Gauss-Newton193  algorithm that both employs soft line 

search and a Levenberg-Marquardt scheme to cope with high residuals and model non-

identifiability (cf. section 2.2)23,102,193,224,PI. PMF3 also allows  weighted least squares fitting 

and implements non-negativity constraints, a regularisation scheme and a so-called 

nonlinear update that is meant to improve the convergence rate in case of large residu-

als224,PI. In its original formulation, PMF3 was limited to 3-way arrays31,224, but this restric-
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tion has been recently overcomePI,PIII. PMF3 has been shown to be more efficient than ALS 

in presence of highly collinear underlying factors, but only for relatively small arrays and 

ranks129.  

In fact, although PMF3 normally requires fewer iterations to converge, it appears to 

be slower (in terms of computation time) than a standard Levenberg-Marquardt algorithm 

and requires a more experienced user because of the numerous settings and additional 

parameters31,155,PI. Since performances in terms of stability and quality of the solution are 

very similar, this clearly advocates for the simpler method.  

The main drawback of the Gauss-Newton method is that, especially for larger ar-

rays, it is more demanding than PARAFAC-ALS in terms of memory and number of opera-

tions31,224,PI. However such assertion is rather simplistic, as there are several factors to take 

into accountPIII.  

First of all, so long as H can be stored in the physical memory, the Levenberg-

Marquardt algorithm can be approximately as fast as (or faster than) a single ALS iteration 

when the order of the array is sufficiently largePIII. The simple explanation for this is that the 

number of array’s elements increases with the product of the sizes in the different orders, 

whereas the number of model parameters grows linearly with their sum. This also implies 

that GN is likely more suitable for higher order arrays with similar sizes in the different 

dimensions while its advantage decreases when some dimensions are larger than the oth-

ersi.  

Secondly, the fact that solving (2.15) via direct methods has a computational cost 

proportional to the cube of the model’s rank whereas for ALS the cost grows linearly with it 

indicates that one may expect that Hessian based methods should be faster if the rank of 

the model is not large129,PIII. However, the solution of (2.15) represents a problem in its 

own right and certainly deserves further investigations. For instance, owing to the sparsity 

of J (and of the second order part of the Hessian23,102,PIII), iterative methods to solve the 

                                                   
i This is easy to see if one considers that a 20 × 20 × 20 × 20 × 20 array requires 100 parame-
ters per unit rank while a 10 × 10 × 10 × 20 × 160 array (which has the same number of ele-
ments) requires 210 parameters per component. 
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system of normal equations may be much faster23,306. Indeed, this option leads to the trun-

cated Newton methods102, whereby an approximate solution to (2.15) is found by limiting 

the accuracy or the number of iterations of the linear least squares solver102. In this case, 

preconditioning becomes crucial to obtain good approximations of the update direction 

within few iterations. If the number of estimated parameters and the residuals are large, 

quasi-Newton methods, and particularly limited memory quasi-Newton methods, should 

be preferred94,102,193, because at each step they require a number of operations that is 

proportional to the square of the number of parameters. Such methods are mentioned 

only briefly in the PARAFAC literature10,253 and, although they are among the most efficient 

algorithms for nonlinear optimisation, they were found to be slower10 or approximately as 

fast253 as ALS with line search extrapolation. However, substantial improvements have 

been accomplished for quasi-Newton methods since these results were obtained162,193 and 

further analyses are indicated. 

Thirdly, Hessian based methods typically require fewer iterations to converge (in the 

worst cases few hundreds) than ALS, which may need several thousands, even when line 

search extrapolation is used129,PI,PII. This gap is broadened for ill-conditioned problems and 

when the data array contains larger fractions of missing elements, in which cases 

Gauss-Newton is likely to be much faster than ALS even if the single iterations are more 

expensive129,155. For example, Table 2.3. reports the performances of the Levenberg-

Marquardt and ALS for two high collinearity problems129 and a relatively large EEM fluo-

rescence data set31. 

Finally, the explicit formulation of the nonlinear part of the Hessian and its being 

relatively inexpensive to compute, may represent a great advantage for damped Newton 

methods, particularly in the solution of relatively small problems (e.g., the difficult GE-

MANOVA models described in section 2.338). It has been reported that, for PARAFAC, 

Newton methods do not determine a reduction in the number of iterations compared to 

damped Gauss-Newton224. An interesting possibility, then, would be to use a hybrid 

method based on Levenberg-Marquardt that switches to Newton (or quasi-Newton) only 

when this is expected to perform better (e.g., to attain quadratic convergence at the final 

stages even in case of large residuals).  
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2.7.5 Preconditioned Conjugate Gradient  

Preconditioned Conjugate Gradient (PCG) algorithms have been advocated already 

in 1995 to fit PARAFAC models entailing the estimation of thousands of parameters253; 

two general purpose software packages currently use PCG algorithm for fitting user-

defined models and amongst them PARAFAC (viz. the ‘Multilinear Engine’225 and the 

‘Equation Oriented System322). The convergence rate of this method is at most superlin-

ear102 and the number of necessary iterations tends to be in the same order as the number 

of estimated parameters unless the Hessian’s eigenvalues are clustered102; modifications 

and additional constraints are also required when the Hessian (or JTJ) is not positive defi-

nite102,225. A suitable preconditioning step is crucial to obtain fast convergence with 

PCG94. An immediate and simple preconditioner corresponds to column-wise normalisa-

tion of J23,102,225,322. Since the nonzero elements of each column of the Jacobian are 

formed as a Kronecker product, it is easy to see that this type of preconditioning simply 

entails the column-wise normalisation of all the loading matrices, with some savings in 

Table 2.3. Median (over five random starts) of number of iterations and computation time for 
three data sets from literature155. The relative fit decrease convergence criterion was set at 
10-8. γJ denotes the Jacobian’s condition number. Fluorescence is an EEM fluorescence data 
set of size 5 × 201 × 61 and rank 3, PP1 and PP2 are synthetic data sets having size 10 × 8 
× 5 and rank 3 and 4 respectively. ALSc denotes alternating least squares with compression, 
LM is the Levenberg-Marquardt algorithm and LMc is the Levenberg-Marquardt method with 
compression. 

Algorithm 
Data set γJ  

ALS ALSc LM LMc 

Fluorescence 9.7 Iterations 144 98 (4) 9 13 (2) 

  Time (s) 5.46 0.83 5.36 0.86 

PP1 206.2 Iterations 3188 3400 (162) 18 15 (4) 

  Time (s) 19.97 20.19 0.44 0.48 

PP2 331.1 Iterations 8064 15068 (2) 25 31 (2) 

  Time (s) 48.44 105.61 1.03 1.45 
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terms of computational load.  

Conjugate gradients methods have stricter requirements for the line search proce-

dure than other nonlinear least squares solvers94,102. Although soft line search can still be 

used94,225, it has been shown that the line search problem for an N-way PARAFAC model 

can be solved by finding the minimum of a polynomial of degree 2N 93,PIII. The coefficients 

of such polynomial can be found by fitting one of the same degree to 2 1N +  points (at 

the cost of an identical number of loss function evaluation), or directly93. Using some 

properties of the Khatri-Rao product allows one to reduce the cost of the direct procedure 

of the original 2N loss function evaluations to N function evaluations and 12N −  Khatri-Rao 

products of 1N −  loading matrices. Even though this makes the direct option preferable 

for arrays of order 3 or 4, the fitting approach is faster for higher ordersPIII. 

Some preliminary tests have shown that a standard implementation of Precondi-

tioned Conjugate gradients with exact line search requires more iterations than ALS with 

line search extrapolation, but to this day, apart from some theoretical observations in the 

original publications concerning only PCG and PARAFAC-ALS225,322, there has been no 

systematic and thorough comparison between PCG and other methods. 

2.7.6 Compression 

Compression is a procedure that can render Hessian based methods applicable for 

large problems and most other algorithms more well-behaved with respect to over-

factoring33,131,155,PI (see Table 3). The theoretical base for compression is the CANDELINC 

theorem53. In essence, given an orthogonal basis Un that spans the systematic variation in 

the n-th mode, the loading matrix An for the same mode can be expressed as n n n=A U T , 

for some Tn , and the PARAFAC model for the N-way array X becomes: 

( )
( )( )

1 1 1 1

1 1 1

vec vec

vec
N N F

N N F

= + =

= ⊗ ⊗ +

X U T U T 1 E

U U T T 1 E

…

… …
. (2.16) 

Premultiplying by ( )TT
1N≡ ⊗ ⊗U U U…  one obtains: 

( )T T
1 1 1vec vecN F= +U X T T 1 U E… . (2.17) 
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The CANDELINC theorem demonstrates that 
2 2T

1 1 22
vec vec C= +U E E , where C is a 

constant independent of T1…TN
53. Thus, the loading matrices of a PARAFAC model fitted 

on T
1vecU X  identify the linear transformations T1…TN, and the loading matrices An give 

the least squares solution for the projection of the array on the selected bases. In order to 

obtain the least squares solution on the original array (and not only on its projection), a 

refining step is required whereby the loading matrices obtained in this fashion are used as 

initial values33,PI. 

The various compression algorithms differ on how the bases for compression are 

found and how many modes are compressed33,131,155. For example, the first F left singular 

vectors of Xn can be used to compress all modes10,255 or only some of them139,263,334; simi-

larly, a Tucker2 model has been fitted on a three-way array to obtain compression bases 

for two modes47,300; Bro and Andersson explored some of these alternatives and con-

cluded that the best results are obtained using a compression based on Tucker models 

and operating on all modes33. More recently a compression procedure has been pro-

posed that is specifically designed to deal with high collinearity between factors155. No 

comparison has been made between such an algorithm and one that retains orthogonality 

of the compression bases but uses, e.g., Hessian based methods.  

An interesting case arises when one desires to extend compression to reduce the size 

of χ 2 and ML problems195,PI. Several possibilities have been submitted31,255-257. Under the 

assumption that the measurement errors are normally distributed there is a simple solution 

to this problem and the variance/covariance matrix SG for the fitting errors on the ele-

ments of a compressed N-way array X_ is 

( )

( )
( )

T
1

T T T
1 1

T T

var vec

var vec

var vec

N

N N F

F

⎡ ⎤= − =⎣ ⎦
⎡ ⎤= − =⎣ ⎦
⎡ ⎤= − =⎣ ⎦

GS U X T T

U X U A U A 1

U X Z1 U SU

…

… .  (2.18) 

where the last equality is applicable because TU  has full row rank195. The computation of 

SG can be further simplified if S is a Kronecker product of matrices of appropriate size310. 

One can immediately see that even if S is diagonal, SG need not be so. Consequently, 
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apart from the trivial case where S = σ 2I (which implies that SG is also a multiple of an iden-

tity matrix), the residuals for the compressed array are not independently distributed even 

when independence is assumed for the fitting errors in the original array. It is noteworthy 

that this approach circumvents possible problems with orthogonality between the trun-

cated bases used for compression and the weights array W_ 31. 
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3. Alignment and  
Dynamic Programming 

Low-rank multilinear models are widespread in the scientific community both for 

qualitative and quantitative analyses31,143,199,278, but, like any model, they are only a 

simplified representation of the data and work under a number of assumptions67,196,278,291. 

In order for a model to be useful, though, it is not necessary that all the underlying 

conditions be exactly met and limited departures from ideality are often tolerated31,235. In 

fact, such deviations are almost unavoidable in common practice and sometimes their 

magnitude and nature require the choice of a different model that can accommodate for 

them31,143,195,235,267,278 (cf. section 2.4 for PARAFAC). Alternatively, appropriate data pre-

treatments can be applied as to remove them or at least reduce their influence on the 

results.  

Shift is a well known issue in chemistry and in signal processing and, in many 

problems, entails a violation of one of the assumptions of low-rank multilinear modelling, 

namely, that one variable must relate to the same phenomenon in all samples. When 

fitting low-rank multilinear models, the presence of shift in the data constitutes an 

additional source of systematic variation that needs to be accounted for118,196,317,PIV-PVI. 

Hence, unless appropriate preprocessing is applied, the pseudo-rank of the data array is 
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increased by shift and the chemical information may be confounded with it, preventing the 

useful interpretation of the extracted multilinear factors or their application for calibration 

purposes196,317,PIV,PV. The aim of alignment procedures, which are also referred to as 

‘warping’150,214,PIV-VI or ‘registration’242 methods, is to correct the shift so that the data 

analysis is limited to the variation relevant to the study. Such procedures, and especially 

those based on dynamic programming17, are the main subject of this chapter.  

Dynamic programming (DP)17,125 is an algorithmic technique that allows to efficiently 

solve optimisation problems that can be expressed through a recursive relationship and 

which meet certain assumptions (cf. section 3.3.1). The peculiarities of DP-based 

alignment methods have thus been investigated in order to establish the feasibility of two 

such algorithms, namely Correlation Optimised Warping (COW)214 and (rigidly) slope-

constrained Dynamic Time Warping (DTW)259, for the alignment of chromatographic data 

as a pretreatment step before the fitting of low-rank multilinear modelsPIV-VI. 

One important remark is that, while shift may be a problem when one desires to fit a 

multilinear model, it can also provide useful information (e.g., the chemical shift in NMR 

spectrometry66,305, the shift due to molecular structural changes in fluorescence171). 

Therefore, pretreatment algorithms to remove it should not be used indiscriminately and, 

especially in those cases where part of the shift is meaningful for the purpose of the 

analysis, one should be as conservative as possible and concentrate only on removing the 

fraction of shift that represents an actual disturbance305. The conservativeness of 

alignment algorithms has been, perhaps, the main criterion used in this work to evaluate 

the performances of registration methods based on dynamic programmingPIV-VI. 

Finally, it is necessary to point out that this chapter treats the case in which shift 

occurs only in one mode. For some types of chemical data (e.g., obtained through 

tandem gas chromatography or 2D electrophoresis) shift may be present in two modes 

and different algorithms should be employed91,103,147,301,302,307.  



 53

3.1 Shift 

‘Shift’ denotes the change in place or position of a certain feature (e.g., a spectral 

line or band in spectroscopy or a peak in chromatography) in a measurement. Thus, for 

any two samples, the values in the ( )1 -wayN − array obtained by fixing the index in the 

mode along which shift is observed should not be directly compared as they may contain 

the signal of unrelated features.  

Borrowing the terminology from functional data analysis, given two curves ( )x t and 

( ),y t where t may identify time, wavelength, chemical shift or even a geographical 

coordinate, one can distinguish range and domain variation. Range variation refers to the 

fact that x and y may differ at values of t at which they can be compared (viz. the intensity 

of the signal at a specific value of t  may differ). Domain variation, or shift, denotes the 

fact that x and y should not be compared at a fixed value t0, but at two different ones (t 1 

and t2) at which the two curves are in comparable states (for example at the same station-

ary point). In many cases, the focus of the analysis is solely on range variation and conse-

quently the unwanted domain variation represents a disturbance242,243,274. 

In general, shift occurs in sequential data, i.e., data where ‘the order or relative 

position of the measurements carries important meaning’118. Spectra and time series are 

typical examples sequential data encountered in chemistry. Limiting oneself to these types 

of data, shift problems can emerge when monitoring environmental, chemical or 

biological processes3,64,86,149-151,241, performing chromatographic or electrophoretic 

separations14,59,109,142,196,214,246,250,277,299,321 and in certain spectral measurements (e.g., 

Fluorescence, Raman, NIR and NMR spectroscopy)28,87,171,233,299,316,317,337-339,344. 

Retention time shift in chromatographic data is a recurrent problem in chemometrics 

and can be used to outline the different problems associated to shift and some possible 

solutions. Due to column deterioration, nonlinear variations in flow, pH or composition of 

the mobile phase, temperature fluctuations, etc., the peak associated to a compound 

seldom appears at the same retention time in different chromatograms, even when these 

are obtained from the same sample (see Figure 3.1)61. 
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Traditional treatment of chromatographic data is comprised of peak identification, 

normalization (e.g., to correct for changes in sensitivity of the detector or for the amount 

of sample injected in the chromatograph), and integration62,63,73,96. Once the quantitative 

information (e.g., concentration or peak area) is thus extracted, multivariate methods can 

be employed to further analyse the data if deemed useful for the purpose of the 

investigation61. Untreated (or insufficiently treated) shift may lead to incorrect peak 

identification and integration. Failing to assign a peak to the correct analyte (hence, 

column in a data matrix) may also imply that the corresponding concentration is assigned 

to a different and most likely adjacent column (analyte), thereby introducing spurious 

information in a data set. Obviously, this alters the results of multilinear models applied to 

the quantitative data63,PV and also shows how the shift problem can carry over to data that 

do not contain actual curves or strictly sequential data. 

Even though several attempts have been made to automate the standard procedure 

and technological advancement has improved instrumental precision and experimental 

repeatability63,73,142,314,315, traditional chromatographic data analysis usually relies on 

heuristic and on skill and experience of the analyst as means to cope with retention time 

shift. This is true especially in case of univariate signals, but also extends, albeit to a lesser 

degree, to second- (or higher) order instruments (e.g., using diode array or mass 

spectrometry detection instead of univariate sensors), which are now widely available  and 

Figure 3.1. Example of shift in 
chromatographic data. Detail of 
the chromatograms of four 
samples of coffee powder with 
identical composition but having 
slightly shifted peaks because of 
column aging. The maximum 
shift recorded for these mea-
surements is in the order of 20 
data points, compared to a 
peak width at the baseline of 
approximately 30 pointsPIV. 
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can facilitate peak identification96,234,278. Hence, poor repeatability in terms of retention 

time may introduce much subjectivity in the subsequent data analysis, which also becomes 

rather time consuming and expensive, and may induce considerable errors. Therefore, 

automated procedures as well as analysts would greatly benefit from a reduction, by 

appropriate pre-treatment, of the time shift between two chromatograms61,PVI (cf. section 

3.2). 

An aspect that adds to the complications of classic chromatographic data analysis is 

that the peaks of interest are not always known at the time of the investigation and their 

identification may actually be the purpose of the study62,124,333,PV-VI. Since analysts can only 

dedicate a limited amount of time to each sample, their attention often concentrates on a 

restricted number of peaks. This sometimes leads to disregarding substantial amounts of 

information that could be useful for exploratory purposes15,31,62,199,278,PIV,PV. Moreover, even 

when peaks can be identified, it is not always possible to reliably integrate all of them 

because of some assumptions on their shape (e.g., Gaussian, exponentially modified 

Gaussian, Lorentzian, etc.) that are indispensable to integrate insufficiently resolved 

peaks21,63,314,315.  

A natural way to cope with these problems is to analyse the entire chromatogram (or 

subsections) by means of low-rank multilinear models, whose usefulness for both 

calibration and qualitative studies is well documented and which can improve the 

objectivity of the analysis31,62,96,199,278. Unfortunately, their application is severely affected 

by shift, which leads to a violation of a basic assumption of low-rank multilinearity118,196. 

Figure 3.2 shows the effect of shift on a PARAFAC model. The landscapes in Figure 3.2a 

were produced using the spectrum and the slightly shifted chromatographic profiles 

reported in Figure 3.2b. No noise was added. Without shift, the rank of this simple array 

would be one, but it is apparent that it is not possible to model such data using only one 

component. A rank one model explains only 88.48% of the variation in an array with just 

two replicates and the peak in the time loading does not correspond to any of the peaks 

in the different replicates (Figure 3.2c-d). Only by adding a second factor, (Figure 3.2e-f) 

can one explain 100% of the variation.  
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Figure 3.2. Effect of shift on a PARAFAC model. a-b) Two landscapes are generated using two 
Gaussian time profiles centred at t1 and t2, the same absorption spectra and different “con-
centrations”; c-d) a rank-1 PARAFAC model extract a component whose time loading is a 
Gaussian centred somewhere in between t1 and t2; e-f) a second component is necessary to 
explain 100% of the variation.  
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In this specific case, the second factor has the same loading in the spectral mode as 

the first, whereas its loading in the time mode looks like the first derivative of the time 

loading of the first. Thus, the maximum in the time loading of the first component 

corresponds approximately to the zero in the second factor (Figure 3.2f). It follows that the 

second factor describes the shift and its loadings in the sample mode change sign 

depending on whether the shift is towards the left or the right for the actual peak 

compared to the first factor196,PIV.  
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Figure 3.3. Effect of residual shift (±1 point at the peak tops) on principal components analy-

sis. a) data (40 × 80) prior to centring. b) The first three PC’s of centred data do not contain 

any visible effect of shift. c) PC’s 4 to 6 describe the residual shift, which still explains slightly 

less than 10% of the variance. Note that even though PC 7 mostly describes noise, the deriva-

tive like pattern is still visible. d) PC 4 describes more than 7% of the variation. Hence, in this 

case, shift related patterns in the loading vectors seem more informative with respect to the 

pseudo-rank than explained variance. 
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The first derivative aspect of additional factors in case of shift is well documented 

and has been proposed as a means to correct for shift in two-way data45,86,196,287,344 (cf. 

section 3.2.1), but is applicable only when the shift is limited196,287,337. Moreover, it should 

be noticed that, for an unconstrained PARAFAC model, the decomposition for the array 

described in the figure is not unique, because the two factors have the same loading in 

the spectral mode (viz. the displayed solution was preferred because it represents a 

common result when shift is present). Therefore, the extension of such registration methods 

to the general N-way case may be problematic. However, the idea of aligning a signal 

using its derivative with respect to the shifted variable (i.e., time in case of 

chromatography) is also present in other pretreatment methods, which appear more 

amenable to extensions to higher orders1,106,337.  

When the shift is not one of the most relevant sources of variation, it may not appear 

in low-rank models (e.g., within the first few principal components), but may become 

visible if the rank of the model is sufficiently high (Figure 3.3a-c)61,317,PV. This often occurs 

for the so-called ‘coarse alignment’ methods, whose maximum precision in the alignment 

is limited to the sampling rate of the instrumental scanning299,PV. In these cases, explained 

variance or related parameters like the Root Mean Squared Error (RMSE) may be less 

useful for determining the correct model rank than observing in which component the 

effect of shift is first visible (Figure 3.3d)61,PV. 

The length of each chromatographic run may vary from sample to sample (e.g., in 

order to let all constituents elute from the column, certain runs may need to be 

unpredictably longer than others), and, more generally, between different batches of 

analysis, where the instrument may have been cleaned, or the column changed or cut, 

etc.. A similar problem occurs in batch process monitoring, where changes in the initial 

recipe may induce significant variations in the length of process times, and is further 

aggravated by sampling rates that vary from batch to batch98,149,219,241. Different length 

and unequal sampling, if left untreated, impede the very formation of a data matrix/array 

comprising measurements for several samples and thus the application of the vast majority 

of the multivariate and multilinear models. 
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Because of the generality of the shift problem, different methods have been 

developed to deal with the specific aspects depending on the field of application and type 

of data (e.g., univariate or multivariate signal, existence of features – landmarks – that 

can be used for the alignment, etc.). Two main strategies exist to account for shift in the 

data: modifying the structure of the model in order to accommodate for the shift (e.g., 

PARAFAC231,96,115,336,PVI, ‘shifted factors’ models64,118,127,128 and, in some instances, 

Multivariate Curve Resolution67,68) or pre-process the data as to align the trajectories (or 

the spectra). Either strategy has its drawbacks and it seems unlikely that there is a better 

method overall. As it is often the case, there are problems and algorithms (or models) that 

are more or less adequate to deal with them, rather than one method that always works. 

3.2 Alignment procedures 

Given two curves ( )x u  and ( )y v , where [ ]0,u U∈  and [ ]0, ,v V∈ a warping path 
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Figure 3.4 a) Warping paths are typically shown in a graph u versus v. Here u here is the time 
of the target and v is the time of the sample that is being aligned with the target. b) GC-FID 
chromatograms of coffee powder extractsPIV relative to the warping paths of a). The chroma-
tograms are 2550 points long and are shown with an artificial offset on the ordinates for clar-
ity. For the same reason, shifts are artificially induced and have been accentuated compared 
to those of original publication. 
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or warping function F is a mapping:  

( ) ( )( ) [ ]f , f for 0,x yt t t T≡ ∈F , (3.1) 

where ( )fx t  and ( )fy t  are strictly increasing functions of t in the interval [ ]0,T  (for 

arbitrary T ), that connects the points of the two curves. In general, ( )fx t  and ( )fy t  are 

constrained so that the initial and final points in the curves correspond (that is, 

( ) ( )f 0 f 0 0,yx = = ( )fx T U= and ( )f )y T V= , although these constraints can be re-

laxed49,149,239,242,324. Without loss of generality, u and v will henceforth be referred to as 

time (axes) and t as the common time (axis). Note that this definition also applies when the 

two curves take values in a multidimensional space and the single points ( )x u  and ( )y v  

are vectors, matrices or even tensors. 

The purpose of alignment (or registration) algorithms is to remove the unwanted 

domain variation (i.e., over u and v) so that the subsequent data analysis may focus on 

the range variation of x and y 242. The idea is thus to seek a warping path F *, optimal in 

some sense, such that 

( )( ) ( )( )* *f fyxx t y t≅ . (3.2) 

This is typically done by minimising some distance measure Q (or, equivalently, by 

maximising some similarity one) between the two curves: 

( )
( )( ) ( )( )( ) [ ]*

f ,f

argmin Q f , f for 0,
x y

x yx t y t t T= ∈F 169. (3.3) 

Note that the objective of the warping problem as expressed in (3.2) does not 

explicitly consider the fact that the two curves may differ because of range variation 

instead of domain variation. In fact, simply solving (3.3) without limiting the behaviour of 

the warping path may lead to unsatisfactory results, especially when the two curves are 

very different from one another (cf. section 3.3.2)169,PIV.  

Warping paths can be represented as curves on the ( ),u v  plane (Figure 3.4a). The 

region in this system of axes in which the warping paths are sought is referred to as the 

search area (grid in the discrete case)208,PIV. When only standard end-point constraints (viz. 
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( ) ( )f 0 f 0 0,yx = =  ( )fx T U= and ( )f )y T V=  are imposed to the warping path, the 

search area is the rectangle delimited by the lines 0,u = 0,v =  u U= and .v V= The 

dimension of the search area has a great influence on the computational cost of the 

alignment algorithms and additional constraints can be imposed on F to reduce it (cf. 

section 3.3). The main diagonal of the search area denotes a linear relation between the 

time axes of the two curves and, if these have the same length, the absence of correction. 

The solution to the warping problem is inherently non-unique because of the arbi-

trariness of the variable t and of the interval [ ]0,T  that are used to define F 169,188,324,325. 

More precisely, given ( )h t  a strictly monotonic invertible function such that ( )h 0 0=  and 

( )h ,T R=  the optimal warping path ( )( ) ( )( )( )* * 1 * 1f h , f hx yr r− −≡G  for ( )hr t=  and 

[ ]0,r R∈  yields the same alignment as F *169. In other words, * * and F G  result in the 

same correspondence between time points in the two curves x and y  and are referred to 

as ‘equivalent warpings’169.  

Hence, while equations (3.2) and (3.3) express the warping problem in a symmetric 

fashion (viz. warping x towards y and y towards x yield the same results), if ( )*fx t is also 

invertible, an asymmetric formulation in terms of u alone can be obtained by set-

ting ( )* 1fxt u−= . The optimal warping path would then be ( )( )( )* * * 1, f fy xu u−≡G . The latter 

formulation is particularly useful to obtain an aligned curve y : 

( ) ( )( ) [ ]*g for 0, ,y u y u u U≡ ∈  (3.4) 

where ( ) ( )( )* * * 1g f fy xu u−≡ . One can express mutatis mutandis the optimal warping path 

as a function of v alone, only in this case the result would be a curve ( )x v   for [ ]0,v V∈  

that is aligned to the original y and defined on its domain. Therefore, the intrinsic asym-

metry of alignment procedures is apparent, as are the distinct roles of the curves involved: 

the target (or reference), which is the curve towards which the other is aligned, and the 

sample, which is the curve that is being alignedj. When several curves need to be aligned, 

                                                   
j Note that asymmetry may also emerge from some choices of Q or from the constraints imposed to 
the warping path (cf. sections 3.2.3 and 3.2.1 respectively),PIV. 
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each sample is warped towards the same reference, which may be an actual measure-

ment or constructed from the original curves4,149,324,PIV-PVI.  

A formulation of the warping problem that does not require an actual measurement 

as a reference curve is common in statistics95,101,174,188,242,243,250,324,325. More specifically, it 

is assumed that all the observed curves are expressions of a common shape function and 

that a functional relationship exists between the time of this template and the time of the 

single curves. Thus, if the data set is comprised of I curves yi for 1, , ,i I= … the following 

model is expected to hold: 

( ) ( )( )hi i iy t a tψ≅ , (3.5) 

where ψ is the common template, ai accounts for the signal’s intensity, and the time-

synchronising mapping (or shift function) ( )hi t  corresponds in essence to the inverse of 

the warping function as defined in equation (3.4)188,324,325. Hence, ψ has a role similar to 

the reference in the standard formulation of the warping problem. However, from a statis-

tical point of view, ψ also constitutes a set of parameters that need to be estimated and 

alignment methods differ in how this estimation is performed and according to which crite-

rion (cf. sections 3.2.4 and 3.2.3 respectively)95,135,250,325. 

Equations (3.2) to (3.4) formulate the warping problem in a continuous setting, while 

the data one works with are most often obtained through the sampling of the curves and 

are thus discrete. The modifications required to go from a continuous formulation to a 

discrete one are simple and are well described in the literature169,324; therefore, they will 

not be shown in detail. Nonetheless, it is important to mention that in the discrete case 

neither ( )fx t nor ( )fy t  is invertible as they need no longer be strictly monotonous169,324. 

Consequently, a different procedure may be required to obtain y (or )x from the original 

signal. Particularly in chemometric literature, such step goes under the name of synchroni-

sation (cf. section 3.3.2) 149,233,PIV,PVI. 

In essence, alignment algorithms differ in few basic aspects: the way F  is defined 

(e.g., parametrically or non-parametrically – cf. section 3.2.1), whether landmarks are 

used or not to recover it (cf. section 3.2.2), the distance or similarity measure that is 
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optimised (e.g., Euclidean distance or correlation coefficient – cf. section 3.2.3) and the 

algorithmic technique that is used to find the optimal F (for example, dynamic 

programming20,125,283, graph searching algorithms24,125 or simplex optimisation235 – cf. 

section 3.2.4). 

3.2.1 Models for the warping path 

Different ways of expressing F have been proposed and several aspects can be 

considered for their systematic description.  

A first distinction can be made based on whether the method is parametric or non-

parametric. In parametric models, the warping path is an explicit function (e.g., linear or 

polynomial) of the time and of some parameters (e.g., shift or amplitude of the signals), 

whose optimal values are found via appropriate estimation algorithms95,250. Depending on 

the optimisation criterion (e.g., maximum likelihood), parametric models for F’s may 

require additional assumptions about the statistical distribution of some parameters95,250. 

Conversely, in non-parametric methods, no assumptions are made about this functional 

relationship and the definition of F is parameter free242,250,324,325,PIV.  

However, this classification becomes more complex if one takes into account the 

estimation of the reference or of the common template that is assumed to have given rise 

to the data101,174,189,250,324,325. Alignment methods that combine a parametric part (e.g., for 

F) with a non-parametric one (e.g., estimating the target curve based on the aligned 

signals) are referred to as semi-parametric174,250,324. Most DP-based alignment methods 

are entirely non-parametric250,324,325,PIV-VI. A known exception is the Continuous Profile 

Model (CPM)186,187, which is based on hidden Markov models (HMM)236-238,275 and 

requires the estimation of a number of distribution parameters. 

Another distinctive characteristic of warping paths is whether they are linear or not. 

Linear warpings are possibly the simplest choice and, in the parametric form, the 

corresponding warping path is typically defined by ( )fx t t=  and ( )f ,y t bt a= + where a 

results in a time translation and b is a time scaling factor. These warpings are sometimes 

referred to as ‘affine transformations’95. The simple linear warping defined by −= 1b VU  
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and = 0a  can be used to obtain signals of identical length while by imposing 1b = , one 

avoids stretching and compression of the time axis and limits oneself to time 

translations95,144,250,331. Especially the latter considerably simplifies the estimation 

procedures and can lead to great improvements in terms of computation time95,250,341. 

However, linear warpings are often insufficient for practical purposes even when rather 

complex estimation procedures are employed (Figure 3.5b-c)95,250. Therefore, they often 

represent only an initial correction that is further refined using more flexible 

schemes7,15,95,196,305,341. 

Linear warping has a strict relationship with the ‘shape invariant model’ when this is 

applied to the entire curve or signal174,324. This model assumes that the i -th curve in a 

data set yi can be expressed as: 

( ) i
i i i

i

t a
y t c d

b
ψ

⎛ ⎞−
≅ +⎜ ⎟

⎝ ⎠
, (3.6) 

where ( )tψ  is again the common template, ci denotes the intensity variation and di the 

baseline for the i -th curve. Obviously, equation (3.6) is a case of the more general model 

given by equation (3.5) and consequently the function that relates the time in actual 

curves to the time in the template is the inverse of the linear warping function. 

In chromatography, linear warping is implicitly used when the retention time for the 

single peaks in a chromatogram is corrected based on the retention time of a known 

substance (viz. an internal standard) that can be already present in the sample or that has 

been added for this specific purpose59,196. The normalization parameters a and b are 

found so that the peak relative to the internal standard always occurs at the same time in 

all samples. More generally, the optimal parameters are estimated employing ordinary 

nonlinear least squares solvers or expectation maximisation algorithms9,59,95,243,250. 

Also some relatively recent methods that can correct for shifts in spectral data (e.g., 

NMR or Raman45,287,337-339) with a precision greater than the instrumental one are in fact 

instances of the shape invariant model where 1ib =  and 0id = .  The novelty of these 

methods pertains to the algorithm that is used to calculate ai  rather than the underlying 
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model for F. In particular, ai  is sought via standard multiple least squares based on the 

Taylor expansion of equation (3.6): 

( ) ( ) ( ) ( )i i i i iy t c t a c t t aψ ψ ψ ′≅ + ≅ + +⎡ ⎤⎣ ⎦… , (3.7) 

where the template ψ is either the loading vector of the first principal component of the 

data matrix, an actual measurement or an analytical function suitable for the data (e.g.,  

Gaussian or a Lorentzian peak functions)45,287,337-339. Better approximations of the aligned 

curves (and thus of the template, where it applies) are obtained iterating the procedure 

aligning the yi’s with the (provisional) template until the shift parameter ai is sufficiently 

small337.  

Nonlinear warping paths are often necessary to correct for complex shift patterns 

(Figures 3.5a) and several possibilities have been investigated. Inter alia: quadratic or 

higher order polynomial relationships76, splines101,134,135,242,243,274 (Figures 3.5f and 3.6b) 

and piece-wise linear warpings9,87,142,214,231,262,305,333,341,PIV-PV (Figures 3.5d-e and 3.6b). 

Particularly the latter are very common in chemistry applications, both in the parametric 

(e.g., time normalization according to several internal standards9,59,196) and non-

parametric form (e.g., DTW15,124,149,246,259,PIV,PVI, COW124,214,233,308,309,PIV-V and Peak Align-

ment by Fast Fourier Transform – PAFFT341). 

A special case of nonlinear (and non-parametric) warping method is encountered in 

batch process monitoring when the observed curves are multivariate and one of the 

observed variables is strictly monotonic. If one such variable exists, it can be used to de-

fine the warping path and goes under the appellation of indicator variable98,219. More 

formally, let the two monotonic invertible functions ( )fa u  and ( )fb v  with 

image [ ]0,S and domains [ ]0,U  and [ ]0,V  give the value of the indicator variable as a 

function of time for batches a and b respectively, then F is straightforwardly defined as 

( )( )( )1, f fb au u− , if batch a is used as a reference or ( )( )( )1f f ,a b v v−≡F  if batch b is the 

target (Figure 3.7b). Hence, indicator variables correspond to the time-synchronising 

mappings mentioned in the previous section. Examples of indicator variables are the 

culture volume in an industrial bioprocess304 or the reaction extent212. 
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Figure 3.5. a) Simulated target and signal with three Gaussian peaks centred at 

1 2 310, 30, 50t t t= = =  and 1 2 310.5, 31.7, 49.2t t t= = =  respectively. Best alignments with 
b) time translation; c) shape invariant model; d) piece-wise linear alignment with local time 
translation and deletion/insertion; e) piece-wise linear alignment with local time scaling and 
without deletion/insertion; f) monotone nonlinear regression242 
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Figure 3.7. Nonlinear warping using the normal-
ised area under the curve as indicator variable. 
a) Target (x ), signal (y ) and aligned signal (y * ) 
y * is normalised to the same integral as y ; b) 
indicator variables and correspondence; c) warp-
ing path. 

Figure 3.6. Examples of a) linear and b) 
nonlinear warping paths corresponding 
to the raw and warped data displayed in 
Figure 3.5b-f; c) detail of the nonlinear 
warping paths, in the box the local dif-
ferences are further highlighted. 
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The indicator variable need not be an actual one, it can also be calculated from the 

data. The normalized area under one curve 

( ) ( ) ( )
0 0

f d d
t T

x t x s s x s s= ∫ ∫  (3.8) 

is a simple example of an indicator variable (Figure 3.7)188. Note however that even 

though an indicator variable like (3.8) is also defined on chromatographic data, it is not 

generally applicable to complex chromatograms when the composition, and thus the 

height of the peaks, changes (Figure 3.8). 

Another possibility for nonlinear warping that has been investigated in the area of 

process monitoring is to predict the time at which a measurement is taken using the infor-

mation contained in the measurement itself using a simple linear model145,304,340. More in 

detail, let Xk denote the Ik × J matrix of the Ik measurements of J variables for the k-th 

batch (sample) and tk the Ik × 1vector of times at which such measurements were taken. 

Moreover, let tk be monotonic and scaled to the closed interval [ ]0,T  (i.e., 1 0t =  and 

kI
t T= ). Then, a linear model is sought that predicts tk from Xk for 1k K= … : 

1 1

K K

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥≅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

t X
b

t X
, (3.9) 

where b is the J × 1 vector of regression coefficients and is typically calculated using Par-

tial Least Squares Regression145,304,340.  

The predicted time for the k-th batch, k̂ k=t X b  constitutes then a time-synchronising 

mapping (indicator variable) that can be used to align the signal. In batch process moni-

toring, b is found on a calibration set comprised of batches with normal operating condi-

tions and can be applied to any new measurement, even single data vectors. The main 

problem of this approach is that the model that is used to predict the process time may 

induce reversions in the time axis complicating the analysis145,330. An obvious way to over-

come this problem would be monotone regression, but, to the author’s knowledge, there 

has been no such an application. 
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When there is no indicator variable (or model like (3.9)) that is valid throughout a 

chemical reaction, distinct variables (or models) can be used at different stages of the 

process98,304. In this respect, the knowledge of the system that produced the data may help 

distinguish the different phases98,304. Note that a method that uses different time scales for 

separate phases of the process is a close relative to landmark registration (cf. section 

3.2.2), whereby the end of each stage in the process constitutes a landmark and is 

assumed to occur at the same time in all batches. 

 Although extremely flexible, nonlinear warpings based on indicator variables or 

models such as (3.9) seem inapplicable to most chromatographic or spectral data at least 

in a naïve form (Figure 3.8). Similarly, quadratic models have been found insufficient for 

correcting complex shift patterns, with obvious limitations for several types of chemical 

data. Conversely, for schemes based on splines (Figure 3.5f), the risk is that of overfitting, 

i.e., admitting too much flexibility in the warping path (e.g., by using too many splines to 

model the warping path) with the result of yielding distorted curves and 

misalignments101,242. Artefacts are also common in non-parametric nonlinear alignment 

algorithms often because excessive flexibility is allowed for the warping path124,233,324,PIV. 

Various solutions have been proposed to solve this problem either based on different op-

timisation criteria or additional constraints on F (cf. sections  3.2.3 and 3.3). 

Figure 3.8. Indicator variable warping using the area under the curve. Target and signal are 
the same as in Figure 3.5a. a) Target and aligned signal; b) warping path. The vertical and 
horizontal areas in the warping path correspond to the artefacts in the aligned signal. 

0 20 40 60
0

20

40

60

target [t ]

si
gn

al
 [

t ]

b)
I.V. Warping
Linear Warping

0 10 20 30 40 50 60 70
0

5

10

15

20

25

time 

[A
.U

.]
 

a)
Target
Signal

0 20 40 60
0

20

40

60

target [t ]

si
gn

al
 [

t ]

b)
I.V. Warping
Linear Warping

0 20 40 60
0

20

40

60

target [t ]

si
gn

al
 [

t ]

b)
I.V. Warping
Linear Warping

0 10 20 30 40 50 60 70
0

5

10

15

20

25

time 

[A
.U

.]
 

a)
Target
Signal

0 10 20 30 40 50 60 70
0

5

10

15

20

25

time 

[A
.U

.]
 

a)
Target
Signal



 70

3.2.2  Landmarks 

Landmarks, which are also referred to as ‘singular points’284 or ‘structural’ points160, 

324, are salient features such as local extrema or discontinuities that are expected to occur 

at the same place in all signals and thus can be used to synchronise them. The process of 

aligning signals using such features also goes under the name of landmark registra-

tion46,101. Typical examples of landmarks in chemical data are peaks in chromatography, 

electrophoresis and NMR299,333. Peak matching, i.e. the operation by which peaks relative 

to the same substance in different samples are matched (manually or by automated 

procedures4,73,88,299 ), is implicitly a form of landmark registration. The same can be ob-

served about time normalization using reference peaks59,196, which also sets the base for 

more elaborate methods9,142,333,345.  

Some landmark registration algorithms that have been used in chemistry are listed in 

Table 3.1a, whereas few alternatives that do not require the identification of these features 

are reported in Table 3.1b. As can be seen, few procedures exist in both forms and even 

the distinction between these two classes of pretreatments is quite thin: some hybrid 

methods exist that, depending on the choice of optimisation criterion, can penalise the 

absence of landmark’s matching134,135,324,325. The computational effort between the two 

classes may be quite different and typically to the advantage of landmark-based 

algorithms284,299.  

By and large, use of landmarks leads to better alignments and faster algorithms 

under the condition that these features are effectively and correctly identified88,101,299. How-

ever, the correct identification of landmarks is not necessarily a simple task, and this can 

severely limit the applicability of these alignment methods101,PV-VI. In particular, it may rely 

on some external information (e.g., the phases in the utterance of a word262 or in a batch 

chemical process98,304) or from additional orders in the data108,234, but often cannot be 

automated and manual intervention of a specialist is required63,99,307. Numerous proposals 

to attain robust unsupervised landmark identification exist,  e.g., based on wavelets46, 

matched filters148, identification of extrema, sharp changes or changes in trends284,299, and 

statistical methods333.  
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In some instances, like for data arising from the analysis of complex mixtures 

associated to biological and environmental processes, reliable landmark identification 

may be unfeasible and other methods have to be used to align the signals61,PV. In particu-

lar, missing and heavily overlapping features may prevent correct identification and are 

major hindrances for landmark based methods (and more in general to most alignment 

algorithmsPVI )88. Algorithmic techniques such as dynamic programming or graph searching 

procedures have been tested in order to deal with the problem284,299. Additional orders in 

the data array may help remove all ambiguities and thus obtain perfect alignment in a 

rather automated fashion provided that the profiles in the additional dimension are suffi-

ciently different for the single landmark234. The rank alignment algorithm relies exactly on 

this principle and uses a PARAFAC model based on the GRAM-DTLD algorithm to yield 

optimal alignments even in case of heavily coeluting peaks234. A quite obvious limitation 

of this algorithm and of some of its close relatives108 is that it works only for second (or 

higher) order data. 

3.2.3 Distance choice 

The quality of the results for alignment procedures heavily depends on the loss 

function Q that one tries to optimise. The Euclidean distance between the two warped 

curves or Pearson’s correlation coefficient are perhaps the two most natural choices, but 

numerous alternatives have been investigated in order to yield better results54,72,101,104,109, 

149,150,152,153,187,191,208,214,234,241,242,250,284,286,298,299,318,324,325,341,PIV.  

More in detail, ( )Q , ,x yF  is normally defined as the integration (or summation in 

the discrete case) over the warping path F of a local distance measure 

( )( ) ( )( )( )q f , fyxx t y t  between any two points of x and y : 

( ) ( )( ) ( )( )( )
0

Q , , q f , f
T

yxx y x t y t dt= ∫F . (3.10) 
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Apart from the (possibly weighted) Euclidean distance, other local measures have 

been considered like the logarithm of the dot product of the two observed data vector44 or 

some combination of the Euclidean distance between the derivatives of the curves and the 

Euclidean distance between the actual curves232,324,325.  

The relation between the local distance and Q is more complex than it may appear 

at first sight and great care should be paid to its definition. First of all, the inherent non-

uniqueness of the solution to problem (3.3) affects the choice of a suitable loss function. 

In particular, it can be demonstrated that the value of loss function (3.10) for two equiva-

lent warpings need not be the same169. If one considers a strictly monotonous invertible 

function ( )ht r=  such that ( )h 0 0=  and ( )h ,R T=  then the two warping paths 

( ) ( )( )f , fx yt t≡F  for [ ]0,t T∈  and ( ) ( )( )g ,gx yr r≡G  for [ ]0,Rr ∈  are equivalent if 

( ) ( )( )g fx xr h r=  and ( ) ( )( )g fy yr h r= . Operating the variable substitution ( )ht r=  on 

(3.10),  one obtains169: 

( ) ( )( )( ) ( )( )( )( ) ( )

( )( ) ( )( )( ) ( ) ( )

′= =

′= ≠

∫
∫

0

0

Q , , q f h , f h h

q g , g h Q , ,

R

yx

R

yx

x y x r y r r dr

x r y r r dr x y

F

G
, 

because ( )h .dt t dr′=  

In order for Q to be invariant over equivalent warpings, it must have the general 

form 

( ) ( )( ) ( )( )( ) ( ) ( )( )
0

Q , , q f , f s f , f
T

y yx xx y x t y t t t dt′ ′= ∫F , (3.11) 

where ( ) ( )( )s f , fyx t t′ ′  denotes some family of functions of the derivatives of components of 

the warping path (e.g., their sum or either of the two derivatives alone)169. Hence, if 

( )s fx t′≡  and operating an identical substitution as before on equation (3.11), one yields: 

( ) ( )( )( ) ( )( )( )( ) ( )( ) ( )

( )( ) ( )( )( ) ( )
( ) ( ) ( )

0

0

Q , , q f h , f h f h h

g
q g , g h Q , ,

h

R

yx x

R x
yx

x y x r y r r r dr

r
x r y r r dr x y

r

′ ′=

′
′= =

′

∫

∫

F

G
, 

where the simple relation ( ) ( )( ) ( )( ) ( )g f h f h r hx x x
d

r r r
dr

′ ′ ′= =  is used169. 
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Expressing equation (3.11) in a discrete setting is useful to provide a mathematical 

explanation for some weighting schemes commonly found in symmetric Dynamic Time 

Warping and on why such weights are absent in other formulations of the warping 

problem. Specifically, let ( )nx x nτ=  for 1, ,n N= …  denote the n-th element of the 

1N ×  vector x obtained by sampling x at equally spaced points and ( )my y mτ=  for 

1, ,m M= …  the m-th element of vector y obtained through sampling y at the same rate 

as x. Then, the warping path takes the form ( ) ( )( ){ }, 1, ,n k m k k K≡ = …F (see Figure 3.9), 

and, by defining the function ‘s’ as the sum of ( )fx t  and ( )fy t , equation (3.11) becomes: 

( ) ( ) ( )( ) ( )
1

, , q , ,
K

n k m k
k

Q x y x y w kτ
=

= ∑F 169 (3.12) 

where ( ) ( ) ( ) ( ) ( )1 1w k n k n k m k m k= − − + − −  is one of the most common weights used 

in Dynamic Time Warping (cf. section 3.3.2)149,208,PIV,PVI, τ denotes the sampling interval 

and K is the length of the warping path. ( )0n  and ( )0m  are defined as equal to zero.  

Figure 3.9. Illustration of the discrete warping problem. a) Sample signal, a Gaussian curve 
centred at 10, sampled 20M =  times in the interval [ ]1,20 . b) Reference signal (length 

21).N =  c) Mapping grid, the bold line connecting ( )1,1  with ( )21,20 is the optimal warping 
path ( ) ( )( ){ }≡ = …* , 1 ;n k m k k KF in this example 22K = ; d) components of the warping 
path. 

1 6 11 16 21
1

10

20

k

m
/ 

n

( )n k

( )m k

d)

1 6 11 16 21
1

10

20

k

m
/ 

n

( )n k

( )m k

( )n k

( )m k

d)

1 12 21
0

0.1

0.2

0

0.
1

0.
2

1
10

20

N

1

M

Reference [n]

Sa
m

pl
e 

[m
 ]

1

a)

b)

c)

1 12 21
0

0.1

0.2

0

0.
1

0.
2

1
10

20

N

1

M

Reference [n]

Sa
m

pl
e 

[m
 ]

1

1 12 21
0

0.1

0.2

1 12 21
0

0.1

0.2

0

0.
1

0.
2

1
10

20
0

0.
1

0.
2

1
10

20

N

1

M

Reference [n]

Sa
m

pl
e 

[m
 ]

1 N

1

M

Reference [n]

Sa
m

pl
e 

[m
 ]

1

a)

b)

c)



 76

Other weighting schemes in the discrete case can be derived from the continuous 

setting in a similar fashion169,208. In particular, the weighting factor disappears if one ex-

presses the warping function asymmetrically and defines ‘s’ as the derivative of only one of 

the two components of the warping path. For example, if one imposes ( )fx t t=  and s is 

chosen as ( )f 1,x t′ = equation (3.11) becomes: 

( ) ( ) ( )( )( )
0

Q , , q , f
T

yx y x t y t dt= ∫F , (3.13) 

which is still invariant over equivalent warpings. Note that, while this asymmetric 

formulation allows avoiding explicit weighting, requiring ( )fx t t=  infers in the discrete 

case that ( )n k k=  and thus that a specific additional constraint be imposed to the 

warping path (i.e., that ( ) 1n k∆ =  for 1k N= … ). Loss function (3.13) is often used in 

functional data analysis for the warping in the continuous case243,324. 

When the reference is not an actual measurement, but corresponds to the template 

ψ of equation (3.5), it represents a further set of parameters that needs to be estimated 

and all the recorded signals need be taken into account in the loss function242,250,324,325.  

Thus, given a data set of I curves ( )iy t  for 1,i I= …  and [ ]0, ,t T∈  an example of loss 

function for an asymmetric warping may be: 

( ) ( )( ) ( )( )2

1 1 0
1

Q g , ,g , , , g
I T

I I i i i
i

y y a y t t dtψ
=

= −∑∫… … , (3.14) 

where ( )gi t  and ai  respectively denote the warping path and the amplitude factor for the 

i -th curve. The minimisation of (3.14) often requires iterative procedures that seek esti-

mates for the warping path, the template and the amplitude parameters95,101,134,135,189,243. 

This procedure is sometimes referred to as the ‘Procrustes method’ and, under additional 

considerations on the distribution of the residuals, can be classified as an Expectation 

Maximisation method71,95. Loss function (3.14) has been used, for example, to determine 

the optimal alignment between replicate electropherograms according to a Maximum 

Likelihood criterion250. A similar loss function has been used by the methods based on a 

Taylor expansion of the template with respect to t (cf. equation (3.7)), which are concep-

tually identical to the Procrustes method just outlined45,287,337-339.    
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The loss functions for the warping problem frequently include a penalty term to avoid 

extreme warpings and deformations of the sample curve134,135,161,241,242,254,286,324. By and 

large, the penalty is a (convex) function of the derivatives of the warping path286,324, but 

can also be implemented as explicit (fixed) weights whenever the warping path deviates 

from a linear relation241,254. Note that a more direct way of avoiding extreme warpings is 

to directly constrain F (cf. section 3.3) 104,161,170,259,PIV-VI. 

In order to achieve better alignments, the optimised loss function is sometimes 

defined on preprocessed data (e.g., smoothed, filtered or derivatised134,135,142,182,231,PV,PVI). 

The main reason for this is to avoid that features such as baseline in chromatographic 

data or low-frequency noise could result in worse alignments4,7,233,PIV-VI.  

3.2.4 Optimisation algorithms for alignment 

A wide array of optimization algorithms exists for all the different ways of expressing 

F and all the choices for the loss function. Thus,  exhaustive enumeration142,148,316,341, dy-

namic programming109,149-151,214,284, graph searching procedures44,175,284,299, nonlinear 

optimization methods such as simplex and gradient based algorithms9,66,76,137,337-339, ge-

netic algorithms87,170, neural networks303 and expectation maximisation95 (EM) have all 

been used to align signals. Not all these methods are suitable for all the possibilities out-

lined in the previous sections. Hence, for example, nonlinear least squares methods are 

common for parametric registration and are often preferred for fine alignments because 

they can achieve a precision for discrete signals that exceeds the instrumental sampling 

rate299,337. Conversely, graph searching, exhaustive enumeration and dynamic program-

ming are used for non-parametric registration methods limited by instrumental preci-

sion299.  

Given the different characteristics of the aligned signals (e.g., noisy process variables 

as opposed to smooth spectral measurements), the choice of which form to use for the 

warping path and thus which algorithm to employ also depends on the area of applica-

tion.  
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In chromatography, landmark-based parametric warpings using either artificial in-

ternal standards or natural markers are widely accepted and employed as a standard pro-

cedure (cf. Table 3.1a). The corresponding estimation algorithms are often direct or, in 

more elaborate cases, based on the simplex method and the warping path is assumed 

linear between successive landmarks9,59,63,66,137. Interesting results have also been ob-

tained with the Procrustes method based on PCA337-339 and the Maximum Likelihood 

alignment through an EM algorithm250. Nonlinear non-parametric warpings are less well 

established in this area of analytical chemistry and in spectroscopy, even though promis-

ing results have been obtained through piece-wise linear, non-parametric warping func-

tions sought using graph searching procedures88,175,299, exhaustive enumeration142,231,341, 

and dynamic programming186,187,266,308,309,321,PIV-PVI. Nonlinear non-parametric time warp-

ings based on splines and using gradient methods have also been used with success, al-

though to a lesser extent183.  

In process monitoring, nonlinear non-parametric warpings are often preferred. They 

are typically found by either direct methods based on indicator variables, when available, 

or using DP-based alignments under relatively mild constraints (cf. section 

3.3.2)104,145,149,150,182,241,284,304,340.  

Quite some literature exists in terms of comparison of the computational aspects of 

the different algorithms, both applied to real chemical data and on more general 

terms20,44,88,231,299,341.  

With specific reference to the algorithms based on dynamic programming, which are 

the main subject of this chapter, a common consideration is that they are slow and expen-

sive compared to other methods142,231,299,341. While true for some methods and implemen-

tations, the relative slowness of some algorithms is sometimes dictated by aspects that 

prescind dynamic programming and rather pertain to the underlying model for F, the 

choice of the loss function or even the programming environment. 

For example, interpolation makes up for a considerable fraction of the computation 

time (around 50% in MATLAB) in COW and avoiding it can bring great savings142,231,341. 

Nonetheless, interpolation is a necessary operation when local time scalings are admitted 
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because the warping path is not bound to pass through the discrete points in the mapping 

grid when its slope is not equal to one (cf. section 3.3.3). The question is then which 

model for F is more adequate for the observed shifts, and whether the correct warping 

path is sufficiently well approximated by a simpler model that does not require interpola-

tion (Figure 3.5d-f)142,231.  

Likewise, DP is sometimes rejected on the ground that its computational complexity 

and memory consumption are ( )2O N , for N equal to the number of points in the curves 

being aligned341. However, real data hardly ever require that the search area be the entire 

rectangle delimited by the endpoint constraints (Figures 3.4 and 3.6)149,208,228,299,PIV. For 

example, recent technology in gas chromatography allows for a more refined control over 

the retention time, and the maximum observed shift (±A) tends to be small compared to 

both peak width and length of the chromatogram142,PIV-PVI. More in general, it is safe to say 

that when good laboratory practice and strict quality controls are observed, the quadratic 

complexity of DP algorithms can be brought down to ( )2O AN  with A N  (cf. section 

3.3). Under similar conditions, memory consumption can also be reduced to AN bytes, 

where  is equal to one or two depending on algorithm and implementation (cf. section 

3.3). To give a measure of the difference, for a signal 32768 points long and allowing 

±192 points of maximum correction (i.e., ±0.6%), a DP-based algorithm would require 

at most 12MB (24MB) of memory for  equal to one (two) as opposed to 8GB if the whole 

search grid were to be stored in double precision. 

In general, many registration algorithms based on DP, and thus COW and DTW, 

solve ’shortest path problems’ (i.e., they seek the optimal path traversing a directed graph 

from an initial node to a final one in which each arc is associated to a cost) with a com-

putational complexity that depends on the number of arches that can be part of the opti-

mal path (cf. section 3.3.1)125. For example, in COW, the computational complexity of 

the DP step is proportional to the number of segments of which the warping path is com-

prised and to how much their endpoints are allowed to move,  whereas the cost of the 

whole procedure is, in large part, due to computing the cost of associated to each arc in 

the directed graph that represents the problem (cf. section 3.3.3). Similarly, it can be eas-

ily demonstrated that the computational complexity of a DP optimisation in a landmark 
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based method is not proportional to the length of the signal, but to the number of land-

marks and to how many matches for each landmark need to be checked299. Therefore, it 

seems inappropriate to hold DP responsible for the relative slowness of a registration 

method that recognises landmarks in order to define the loss function but does not make 

explicit use of them in finding the optimal path and thus has complexity, for the DP part, 

proportional to the length of the signal299. 

Finally, an important factor that needs to be considered is that most algorithmic 

techniques and programming structures perform differently depending on the computa-

tional environment (e.g., compiled or interpreted languages). In general, computational 

efficiency improves with code vectorisation and by increasing the recourse to highly opti-

mised routines for computing vector and matrix products and other operations like Fast 

Fourier Transform105,235. This is especially true in the MATLAB environment, where, in spite 

of recent optimisations, long and nested loops are particularly inefficient and speed of 

computation benefits from the exploitation of built-in functions2.  

This type of optimisation has not been explored for the most widespread DP-based 

alignment methods (namely, DTW and COW) and even the effect of running compiled 

optimised routines, i.e., the most obvious option to speed up the computations in MAT-

LAB, has not been tested. Considering also that dedicated hardware exists for DP, that this 

method can be parallelized285, and that several algorithmic techniques can be used to 

further reduce the search space or vectorise the code227,261,PIV, a great margin for 

improvements seems to exist.  

3.3 Dynamic Programming 

Dynamic programming (DP) is a very general optimisation technique that has 

originated in the field of operations research17 and is now widespread in many other areas 

of investigation20,125,237,288.  
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With specific reference to shift and alignment problems, DP was introduced in the 

speech recognition field in the late sixties/early seventies260,311-313. While still common in 

this area and more in general in that of signal processing30,146,237,275, the application of 

DP-based alignment algorithms has extended to several other fields (e.g., analytical 

chemistry49,104,124,149,187,214,241,246,284,321,PIV-PVI, genetics3,167 and physiology29,323). In particular, 

the need for automated methods for treating chemical data containing shift and the 

diffusion of multilinear modelling in chemistry has greatly increased the interest in time 

warping algorithms and several solutions based on DP have been proposed in recent 

years.  

The first use of DP for the alignment of chromatographic data dates back to 1979 

and was mainly aimed at pattern recognition and classification246. The main focus of the 

paper, though, was on the distance measure provided by the algorithm rather than on the 

quality of the aligned signals or on applying multilinear models. In a subsequent attempt, 

Figure 3.10. Scheme of a classic discrete dynamic programming problem. The circles are the 
states; the arrows denote the policies and ( ),kc s s ′ the cost for the policy that changes the 
state from s at the k-th stage to state s ′  at the (k+1)-th stage. The objective is to minimise the 
total cost from S to T. 
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the chromatograms from two different instruments (namely, GC-MS and Gas 

Chromatography-Fourier Transform Infrared – GC-FTIR) were aligned using an  

asymmetric DTW algorithm with mild slope constraints (cf. section 3.3.2) and more 

attention was paid to the quality of the alignment as the procedure was aimed at peak 

matching321. However, it was only in the past few years that several succesful applications 

were documented in chromatography for slope-constrained DTW, COW and other DP-

based algorithms (see Table 3.1a-b) combined with multilinear modelling. Likewise, the 

first application of DP for the alignment of batch process monitoring dates 199272, but 

only some years later were more extensive studies published where alignment was 

combined with fitting low-rank multilinear models149-151,241.  

One of the advantages of DP is that, if the principle of optimality holds (see below), 

the global optimum is found for the loss function and is thus preferable to methods that 

cannot guarantee this125. The main hindrance to its extensive use in chemistry is that it can 

be considerably more expensive than other search methods unless specific measures are 

taken (cf. section 3.2.4)44,299. For example, unconstrained DTW has complexity ( )2O N  

and is clearly unfeasible for chromatographic and NMR signals, whose length may well be 

on the order of tens of thousands88,299. The unsuitability of this method for 

chromatographic data (and, most likely, spectral ones) is well  documented also in terms 

of quality of the alignment124,233,PIV. However, this does not remove the usefulness of DP 

for other registration algorithms for many chemistry applications49,124,136,186,187,241,266, 

308,309,PIV-PVI.  
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3.3.1 Principals k 

Unlike other optimisation methods, there is no standard formulation of the DP 

problem, but problems that can be solved using DP have some common characteristics 

that can also be interpreted as requirements for its application125. 

First of all, the optimisation problem can be decomposed in stages, and each stage 

is associated with a (possibly infinite) number of states (Figure 3.10). The set of all 

possible states for the problem is denoted as S (e.g., { }S,1,2, ,9,T≡ …S  in the figure) and 

the set of states associated to the k-th stage is Sk (e.g., { }2 4,5,6≡S ). A policy decision 

taken at each stage (an arrow in the figure) transforms the current state to a state 

associated with the subsequent stage. If this choice is done according to a probability 

distribution (i.e., if only the probability is known that a certain state will follow from the 

present one), DP is referred to as probabilistic, or stochastic125, as opposed to 

deterministic. Each policy decision has an immediate contribution ssc ′  to the loss function, 

where ks ∈ S  and 1ks +′ ∈ S  identify the initial and final state resulting from the policy. The 

objective of DP is to find an optimal policy (e.g., the warping path for DTW) for the overall 

problem.  

A fundamental aspect of problems that can be solved through DP is well described 

by the Principle of Optimality: “An optimal policy has the property that whatever the initial 

state and initial decisions are, the remaining decisions must constitute an optimal policy 

with regard to the state resulting from the first decision”17. In other words, an optimal 

policy for the remaining stages given the current state needs to be independent of the 

policy decisions adopted in preceding stages. Therefore, the optimal immediate decision 

depends only on the current state and not on how one got there. This principle defines the 

recursive relationship that is the basis of DP and the reason for its computational effi-

                                                   
k The description given here is restricted to those aspects that are useful to describe registration 
methods that have been used in chemistryPIV-PVI, which, with few exceptions, employ deterministic DP 
to solve a ’shortest path problem’ for discrete data (cf. sections 3.3.2 and 3.3.3). More general 
treatments can be found on the numerous textbooks on the subject20,125,283. 
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ciency. Thus, the loss function for the optimal policy at the k-th stage is typically of the 

form 

( ) ( )
1

* *
1min for 1 1

k
k k sss

Q s Q s c k K
+

′+′∈
′= + = −…

S
 (3.15a) 

or  

( ) ( )
1

* *
1max for 1 1

k
k k sss

Q s Q s c k K
+

′+′∈
′= + = −…

S
 (3.15b) 

where ( )*
kQ s  denotes the the contribution of the stages from the k-th to the K-th if one 

starts at state s, applies a policy that leads to state 1ks +′ ∈ S  and follows an optimal policy 

thereafter125.  

While it is customary to formulate the recursive relationship in a backward fashion 

(i.e., starting with *
KQ  and moving backwards), the direction in which the stages are con-

sidered does not change the overall optimal policy and its cost in deterministic DP. For 

example, the recursive relationship 

( ) ( )
−

′−′∈
′= + = …

1

* *
1min for 2, ,

j
j j sss

Q s Q s c j K
S

 (3.16) 

produces the same overall optimal policy as equation (3.15a)125. Note that in this case 

( )*
jQ s  denotes the contribution of all stages from the first to the j -th if one follows an 

optimal policy up to state 1js −′ ∈S  and then actuates a policy that brings to state s.  

DP yields the optimal policy decision at each stage for each of the possible states 

and not only the overall optimal policy. Thus, the DP solution also provides the optimal 

warping path from any point in the allowed search grid, even suboptimal ones. While this 

can be useful for for sensitivity analysis (i.e., to evaluate how, and if, the results change 

depending on the model parameters), it also implies an added workload compared to 

other methods, like graph search algorithmic techniques, that are not forced to examine 

all states20,125,206. Since the difference in performance grows with the size of S, such 

techniques may be more suitable than DP for some of the alignment problems described 

in this chapter (and especially DTW – cf. section 3.3.2) in which the number of states may 

well be in the order of millions44.     
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The applications in chemistry of dynamic programming have been limited to its 

deterministic form72,109,149-151,182,214,237,246,275,321,PIV. Probabilistic DP, while a standard in 

speech recognition237, is considerably less common in chemistry and has recently been 

proposed for the alignment of LC-MS data186,187.  

3.3.2 Dynamic Time Warping 

Dynamic Time Warping (DTW) is the oldest alignment method based on dynamic 

programming260,311-313. However, apart from two early publications246,321, its application in 

analytical chemistry is considerably more recent 104,149,246,321,PIV,PVI. Only the discrete version 

of this algorithm is outlined in this section; more details on the continuous case are avail-

able in the cited literature149,208,259. 

Basic algorithm 

Given two vectors x (the reference) and y (the sample to be aligned) of lengths N 

and M respectively obtained from sampling at the same regular rate the two curves ( )x u  

and ( )y v , the discrete DTW algorithm seeks a warping path of the form 

( ) ( )( ){ }, 1, ,m k n k k K≡ = …F by solving the following minimisation problem132,149,208, 

259,PIV: 

( ) ( )( ) ( )
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where ( )q ,n mx y  denotes the distance  (e.g., the Euclidean one) between xn and ym and 

( )w k  a weighting function (cf. section 3.2.3). This discrete warping problem is depicted 

in Figure 3.9. The first two constraints impose (weak) monotonicity on the two components 

of the warping path and avoid sudden jumps of more than a or b points along the sam-

ple’s or the reference’s time axis208. The last three constraints fix the endpoints of the 

warping path and so that the first and last elements in x and y correspond. Note that K 
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depends on the warping path and, unless additional constraints are imposed, it is larger 

than both N and M. The weights and the normalization factor in (3.17) are essential when 

one has to compare several loss function values in order to assign a signal to a certain 

Figure 3.11. Graphical rendition of the (forward) DTW algorithm for 4M N= =  and subject 
to  basic constraints 0 1n≤ ∆ ≤ , 0 1m≤ ∆ ≤ , ( ) ( )1 1 1m n= = , ( )n K N= and 

( )m K M= . a) to f) illustrate the intermediate stages of the algorithm. The state being 
evaluated is coloured in black, grey symbols denote states that have already been evaluated 
and empty ones are for states that have not been evaluated yet. Lines identify the optimal 
policy, dotted arrows stem from allowed predecessors (in light grey). g) All states have been 
evaluated and are connected to state (1,1). h-i) Starting from state (4,4) the optimal 
predecessors are backtraced until (1,1) is reached and the whole F * has been retrieved. 
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class because they remove the effect of the length of the warping path and of the signals 

involved149,208,237,275.  

In order to use dynamic programming to solve (3.17), it is necessary that the sum of 

the weights (i.e., the denominator of the loss function) is constant over any warping 

path208,259. While standard choices of weights have this property (e.g., for 

( ) ( ) ( )w k m k n k= ∆ + ∆ , the sum over any F is equal to ),M N+  alternative schemes 

may require ad hoc procedures for the normalisation which result in bias towards longer 

or shorter F’s208. For example, if no weights are used (or, equivalently, if ( ) 1w k =  for all 

transitions in the warping path), the normalisation factor is equal to K and depends on the 

warping path. Thus, again, DP cannot be used to solve the problem, unless the loss func-

tion is modified disregarding the denominator or by fixing it to a constant (e.g., M or 

N )149,208. In both cases, the optimisation will be biased towards shorter paths, which entail 

the summations of fewer terms149,208,PIV. It is also worth mentioning that, when DTW is used 

to remove shift prior to multilinear modelling, there is no actual need to compare two 

warping distances that have been obtained using signals of different lengths and, conse-

quently, normalisation is commonly skipped241. One interesting exception may occur when 

the endpoint constraints are relaxed and there is a need to compare the warping distances 

obtained at different endpoints for the same sample and reference149.  

By comparing the numerator of (3.17) with equation (3.15a), one can immediately 

see that the DP stages in DTW are the discrete time points along the warping path and the 

set of states contains all the discrete points ( ),n m  in the search area delimited by the 

endpoint constraints (i.e., ( ) ( ) ( ){ }1,1 , 1,2 , , ,N M≡ …S ). The decision policies are the tran-

sitions ( ),n m∆ ∆  allowed by the constraints and the cost associated to a policy starting 

from state ( ),s n m=  to reach state ( ) ( ), ,n m n n m m′ ′ ≡ + ∆ + ∆  is 

( ) ( ) ( )q , q ,n mn m x y w k′ ′′ ′ ≡ . The local distance ( )q ,n mx y  is typically the Euclidean dis-

tance between the measurements at points xn and ym, but weighted distances have been 

used as well for multivariate signals 04,149,241,PIV.  

The warping path F * is then the overall optimal policy sought, which can be repre-

sented as the graph that connects state ( )1,1  to state ( ),M N  with the minimum cost (Fig-

ure 3.9c). The (forward) recursive relationship for the DTW algorithm is: 
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where  ( )
*

,n mQ  denotes the cost of the optimal policy that leads to state ( ),n m  from state 

( )1,1  and ( ),n mP is the set of allowed policies that lead to state ( ),n m  from its immediate 

predecessors125,283,PIV. Note that, with this notation, it is necessary to include the q  term in 

the minimisation because it depends on the policy through the weighting term.  

Equation (3.18) shows why problem (3.17) cannot be correctly solved using DP if 

normalisation is required and the denominator varies depending on the warping path. 

Since the optimal F is unknown at the time when the optimal loss function at state ( ),n m  

is evaluated, so is the normalisation factor. Consequently, it is not possible to identify its 

optimal predecessor (or the corresponding policy) because the choice would depend also 

on the remaining path, clearly violating the optimality principle. 

Figure 3.11 provides an example of how the DTW algorithm works when 

4M N= =  and F is subject to the basic constraints 0 , 1,n m≤ ∆ ∆ ≤ ( ) ( )1 1 1n m= = , 

( )n K N=  and ( )m K M= . The set of allowed policies that lead to state ( )1,1s ≠  is in 

this example: 

( ) ( ) ( ){ }1,1 , 1,0 , 0,1s ≡P . (3.19) 

Note that not all policies are applicable at each state: only vertical transitions are al-

lowed for 1n =  and only horizontal ones for 1m = . Thus, the (forward) recursive relation-

ship to find the optimal value of the loss function at point ( ),n m  in the search grid is 
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In order for the forward algorithm to work correctly, it is necessary that the optimal 

values of the cost function at all the allowed predecessors of the current state have been 

calculated. Thus, the algorithm must proceed column-wise (or row-wise); and within each 

column (or row) the index must be increasing (Figure 3.11a-f). The optimal overall policy 

F * can be backtraced from state ( ),N M  since its optimal predecessor is known (Figure 

3.11h-i). Thus, until the last state is reached, F * remains undefined and, in general, it is 

not possible to discard any intermediate state.  

Note that the optimal overall policy need not be unique and all possible optimal 

paths should be returned by the procedure125,241. This event is likely to occur in the case of 

long stretches of identical values both in the sample and in the reference (viz. if ( )q ,n m  is 

identical for numerous consecutive values of both n and m). In practice, this situation 

seems unlikely to become a problem, because the chances that two (or more) very differ-

ent paths lead to the exactly the same loss function in double precision appear to be 

rather small. The numerical stability of this alignment method in chemistry applications, 

though, has not been studied yet and any conclusion in this sense appears highly specula-

tive.  

The great computational efficiency of DTW follows from the fact that all states must 

be visited only once. However, it is apparent that the complexity of this algorithm is 

( )O MN  when the signals are univariate, and ( )O LMN  if L values are measured at 

each time point. Moreover, even though only a code identifying the optimal policy among 

the few (three for 1a b= = ) admitted by the continuity constraints need to be stored for 

each state, such a value has to be stored for all the discrete points in the search area in 

order to retrieve F *. Thus, the memory consumption is also in the order of MN. Since in 

spectral and chromatographic data M and N can be in the order of 104 and L in the order 

of 102, the basic DTW algorithm is hardly feasible without additional measures to limit the 

search area (i.e., the number of visited states). The fact that only limited corrections are 

often sufficient to align both chromatographic and spectral data (cf. section 3.2.1) infers 

that it is possible to restrict the search area without consequences on the retrieval of the 

correct path.  
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The basic DTW algorithm may lead to severe artefacts that discourage its use for 

spectral and chromatographic data even when the dimensions of the problem would not 

be an obstacle124,233,PIV. Again, more severe constraints must be imposed on F than the 

basic continuity ones to yield acceptable resultsPIV. 

Constraints 

Three types of constraints can be applied to DTW: local, global and endpoint con-

straints. Local constraints define the local behaviour of the warping path and correspond 

to a generalisation of the continuity constraints of problem (3.17), global constraints affect 

the area in which the warping path is sought and endpoint constraints fix the initial and 

final point in the warping path208. 

Most local constraints can be described as sets of more or less complex policies 

(‘rules’PIV) that can be followed to arrive at (or, equivalently, to depart from) a given state 

in the search grid208. Such sets of rules are denoted by the letter T and are here termed 

‘lookup tables’PIV. More precisely, let ( )p ,i i in m≡ ∆ ∆  denote an elementary transition 

(i.e., a single arc) connecting consecutive points in the warping path, then a rule th ∈ T  is 

an allowed sequence of h elementary transitions and is written as th ≡ p1… p
h
. For exam-

ple, according to this definition, the basic local continuity constraints 0 , 1m n≤ ∆ ∆ ≤  cor-

respond to the lookup table: ( ) ( ) ( ){ }1,0 , 1,1 , 0,1≡T  (cf. Table 3.2a).  

Every fraction of the warping path F must comply with one of the rules in the lookup 

table T  to which it is subject and a valid warping path must be writable as a sequence of 

rules of the lookup table208,259. For example, starting from state ( )1,1  the optimal warping 

path of the example of Figure 3.11 can be expressed as: ( )( )( )( )2 1 2 3t t t t 1,1 1,0 1,1 0,1 .≡   
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Table 3.2. Graphs of some of the constraints that have been used for DTW in chemistry. Dif-
ferent line styles denote the distinct rules:  t1,  t2,  t3, t4 and  t5. In f) 
and g), the crosses indicate that a transition is forbidden if the optimal path up to the prede-
cessor is formed by 1 horizontal transition or c consecutive horizontal/vertical transitions, re-
spectively. 
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The most common family of local constraints requires that at most c  consecutive 

horizontal or vertical transitions (i.e., ( )1,0  and ( )0,1  respectively) can occur and that 

these must be followed by a minimum of d diagonal transitions of the type ( )1,1 149,208,259. 

Note that the second condition is an active restriction that excludes the presence of right 

angles (i.e., sequences like ( ) ( )0,1 1,0  or ( ) ( )1,0 0,1 ) in the warping path169,259. 

The net result of these constraints is that the slope of the warping path must lie in the 

interval ( ) ( )1 1,d c d d c d− −⎡ ⎤+ +⎣ ⎦ . Hence, they are referred to as ‘slope con-

straints’149,208,259,PIV. For example, the condition 1c d= =  corresponds to the lookup table  

( )( ) ( ) ( )( ){ }1,0 1,1 , 1,1 , 0,1 1,1≡T  and imposes that the slope of the warping path must lie in 

Figure 3.12. Itakura/Kassidas constraints are not equivalent to slope constraints and can yield 
a suboptimal warping path. Here it is shown for 2c = and 1.d =  a) Mapping grid; the two 
data vectors are reported at the bottom ( 7)N = and on the left ( 4)M =  of the graph. The 
numbers in the circles are the (local) Euclidean distances and shadowed circles cannot be 
reached given the constraints. b) Warping path (bold) with standard slope constraints; the 
values in the circles are the optimal distance up to the corresponding state.  and  
indicate the optimal local policies leading to states (5,3) and (7,3), respectively. c) Due to the 
way Itakura/Kassidas constraints are enforced, a policy that belongs to the optimal warping is 
rejected and a transition that might result in a right angle is permitted. The arrows denote the 
available policies in T (cf. Table 4). d) A suboptimal path (bold line) is thus determined. 
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the range [ ]0.5,2  (Table 3.1b).  

Slope constraints have proven to be essential for the successful application of DTW 

to the alignment of chromatographic as well as batch process data prior to analysis with 

multilinear modelling149,PIV. In particular, mild slope constraints in which 1d =  and c is in 

the order of a few units (typically 1 to 3) (cf. Table 3.2c) have been found more appropri-

ate to treat batch process data, whereas the treatment of chromatographic (and spectral) 

data benefits from more rigid constraints in which d c (Table 3.2d)149,PIV.  

Extending slope constraints and DTW algorithms to the general case of arbitrary c 

and d may yield rather complex lookup tables and recursive relationships in which the 

number of predecessors to look at for each stage grows larger and larger. Consequently, 

another formulation with seemingly equivalent constraints has been devised that is easier 

to implement and is likely to be faster because it only looks at the three immediate prede-

cessors ( )1, ,n m− ( ), 1n m −  and ( )1, 1n m− −  of the current state ( ),n m . Specifically, 

state ( )1,n m−  is not considered an allowed predecessor of ( ),n m  if it has been reached 

through c horizontal transitions, and state ( ), 1n m −  is not an allowed predecessor of 

( ),n m  if it has been reached through c vertical transitions149 (Table 3.2g). 

These constraints are an extension to the symmetric warping problem of those pro-

posed by Itakura (Table 3.2f)132 and, unlike other slope constraints, cannot be represented 

as sequences of elementary transitions (i.e., they are not associated to any lookup ta-

ble)208. Unfortunately, like Itakura’s, these constraints do not necessarily yield the same 

optimal warping as the slope constraints they are expected to replace (Figure 3.12). First, 

because the transitions that are locally rejected may be parts of an optimal warping path 

that does not violate the conditions imposed by standard slope constraints, and second 

because they implicitly allow right angles in the warping path208. 
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A family of asymmetric constraints that is particularly popular in the field of speech 

recognition and has occasionally been employed for chemical data imposes that the only 

admissible transitions have the form ( )1, m∆  for 0 m c≤ ∆ ≤ 208. The graph for 2c =  can 

be seen in Table 3.2h and the associated lookup table is ( ) ( ) ( ){ }1,0 , 1,1 , 1,2 .≡T Impos-

ing such constraints implies that the reference time axis is the one along which the loss 

function is calculated and that the warping path is of the form 

( )( ){ }, 1, ,nn m n N≡ = …F . Clearly, the sample time axis could have the same role, 

should transitions ( ),1n∆  for 0 n c≤ ∆ ≤  be allowed208. Like in the symmetric case, slope 

constraints are often imposed on the warping path to avoid extreme behaviours. In this 

Figure 3.13. a) Effect of local and global constraints on the search area; the dotted lines have 
either maximum or minimum slope. b) Standard boundaries for search area with lookup table 

( )( ) ( ) ( )( ){ }0,1 1,1 , 1,1 , 1,0 1,1≡T . c) Extended boundaries taking into account the presence of 
horizontal and vertical transitions some of the rules of T. 
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case, this is done by requiring that c horizontal transitions ( )1,0  must be followed by a 

diagonal one in which 1 m c≤ ∆ ≤ (cf. Table 3.2i)132,149,208,259.  

There is, of course, the possibility of combining several types of constraints in the 

same lookup table (Table 3.2e). The choice depends on the data at hand and, once 

again, on the model for the warping path that one is using (cf. section 3.2.1). In this re-

spect, it is important to understand how the warping path and the constraints to which it is 

subject affect the signal after the alignment233,PIV. Since this effect depends on the synchro-

nisation step, it is treated in detail in the corresponding section on page 99.  

Because of slope and endpoint constraints, not all points within the search grid can 

be reached149,208. By and large, for endpoints ( )1,1  and ( ),N M , the legal search area is 

the lozenge comprised between four lines passing from ( )1,1  and ( ),N M  and having 

either the maximum or the minimum allowed slope (Figure 3.13a). Hence: 

( ) ( )( )
( ) ( )( )

min max

max min

max 1 1,

min 1 1, for 1,

n n N M m

n n N M n N

α α

α α

− + − + ≤

≤ − + − + = …
 , (3.20)  

where minα  and maxα  are the minimum and maximum slope allowed by the local con-

straints in the ( ),n m plane. However, the search area defined in this fashion would be 

stricter than necessary and would prevent a number of valid paths from being investigated 

if any of the rules in T  contained horizontal or vertical transitions. For example, a path 

that starts with a horizontal transition followed by a diagonal one would not violate any 

rule in the lookup table ( )( ) ( )( ) ( ){ }1,0 1,1 , 0,1 1,1 , 1,1≡T  but would not be allowed using 

(3.20) because the intermediate point ( )2,1  lies below the line ( )0.5 1m n= +  (Figure 

3.13b). In order to avoid this, the four lines delimiting the search area must pass at ch and 

cv points from the corresponding endpoint, where ch and cv denote respectively the maxi-

mum number of consecutive horizontal and vertical transitions allowed by any rule in the 

lookup table. Thus, equation (3.20) becomes: 

( ) ( )( )
( ) ( )( )

min max

max min

max 1 1,

min 1 1, for 1,
h v

v h

n c n N M c m

n c n N c M n N

α α

α α

+ − + − + − ≤

≤ − + + − + + = …
 . (3.21) 
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For example, using lookup table ( )( ) ( )( ) ( ){ }1,0 1,1 , 0,1 1,1 , 1,1≡T , the boundaries of 

the allowed search area should pass through points ( )2,1  and ( )1,N M−  with slope 0.5, 

and points ( )1,2  and ( ), 1N M −  with slope 2 (Figure 3.13c).  

The search area can be more directly delimited using global constraints149,259. For 

example, if one knows that the maximum shift observed in a data set is A points, it would 

be sensible to restrict the search area so that m does not differ from n by more than the 

same amount149,259. Similarly, when M and N  are different, it may be useful to require that 

the deviation from the linear path be limited to A points (i.e., 1m MN n A−− ≤  for 

1n N= … )227,PIV (Figure 3.13a). Standard band constraints are often formulated so that 

the width of the band remains constant for all values of M and N; however, for some data 

it may be preferable to allow this band to change. For example, the retention time shift in 

chromatographic data typically increases with the retention time and this could easily be 

implemented in the band constraints. Perhaps the most important effect of band con-

straints is to reduce the computational complexity from ( )O MN  to ( )O AN . Since A can 

be as small as 1 or 2% of M  (or N ), the advantage in this sense can be remarkable. 

Another global constraint that has been found useful is to require that the warping 

path must pass through specific points in the mapping grid149,284. This has been done, for 

example, for process monitoring when comparing autocorrelation patterns of two stochas-

tic faults and can easily find application when the position of feature that is known to oc-

cur (e.g., an internal standard in chromatography) can be determined with great precision 

and is expected to appear at the same time in all signals. This also shows how DTW can 

be applied in the context of landmark registration. Most alignment algorithms based on 

landmark matching used in chemistry correct the signal under the assumption that the 

warping path is linear between any two landmarks148,333. However, this is not necessarily 

the case in practice and DTW may be useful to provide a non-parametric nonlinear warp-

ing path that aligns the signal between landmarks284.  

Note that, when the warping path is known to pass through a certain point, the 

warping problem is effectively split in two smaller ones. Whether or not they can also be 

solved separately depends on the presence and nature of local constraints. This point can 

be further clarified considering that, if the warping path is subject to slope constraints with 
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1c d= =  and the first part terminates with a vertical or a horizontal transition, the second 

must start with a diagonal one. Finally, it is worth mentioning that DTW has been used, in 

combination with an additional level based on dynamic programming, to align process 

data when some landmarks are missing284. This way of operating the DTW resembles the 

algorithms for solving the “connected word recognition” problem209,213,258. 

With respect to endpoints, the standard choice is to impose that ( )1,1  and ( ),N M  

are the initial and final point149,239. The combination of these constraints with the local 

constraints just described implies that the search area for the warping path is the lozenge 

depicted in Figure 3.13a and prevents relatively large corrections at the beginning and at 

the end of the signal. However, this limitation is often impractical for chemistry problems 

and the endpoints must be relaxed. For example, when aligning a spectrum, it makes little 

Figure 3.14 Endpoint constraints. a) adding initial state ( )0,0  with ( ) =*
0,0 0Q  to relax initial 

endpoint; b) all points on the top and right border are possible final endpoints and solution to 
a smaller warping problem when denominator does not depend on the warping path; c) at-
taching to the reference and signal sequences of constant values expands the search area. 
The rectangle in the centre delimits the standard mapping grid. 
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sense to expect that the maximum shift is smaller (and in fact nearly absent when the local 

constraints are particularly rigid) at the beginning than in the rest of the signal. Likewise, 

the retention time shift is likely to be larger at the end than in the middle part of a chroma-

togram and the initial point of two chromatograms may not correspond because the ana-

lytical conditions have changed15,PIV-PVI. Interestingly, the two endpoints are handled differ-

ently depending on whether DP is implemented in a forward or a backward manner. Only 

the application to the forward algorithm is explained here since it is more common for 

DTW and the backward one can be obtained straightforwardly. 

Endpoint ( )1,1  can be relaxed by including an artificial initial state ( )0 0,0s ≡  whose 

value of the loss function is fixed to zero and by allowing only transitions of the type 

( )1, m∆  and ( ),1n∆  with 1 Mm δ≤ ∆ ≤  and 1 Nn δ≤ ∆ ≤  to depart from it (Figure 3.14a). 

In this way, the first point in the reference is allowed to correspond to any of the first δM 

points in the sample, and the first point in the sample is allowed to correspond to the first 

δN in the reference. Moreover, using state s0 is consistent with the generally imposed con-

dition that ( ) ( )*
1 11,1 2 ,Q q x y=  for a choice of weighting function 

( ) ( ) ( )w k m k n k= ∆ + ∆ 149. 

It is worth mentioning that, if one uses the weighting function ( )w k n= ∆ , the opti-

mal cumulated distance for the allowed endpoints on the left border on the mapping grid 

(in black in Figure 3.14a) are equal to the local distances between such points and the 

first point in the reference. The same observation was made by Kassidas149 without making 

reference to state s0. Using this additional state, though, allows a straightforward treat-

ment of the relaxation of the initial endpoint such that it is valid also for the points on the 

bottom border (in light grey in Figure 3.14a). This option seems more consistent than 

permitting  ( )1, m∆  transitions to relax the endpoint on the left border while allowing δN 

consecutive horizontal transitions to handle the relaxation at the bottom of the mapping 

grid149. In fact, relaxing the slope constraints at the bottom and left borders and allowing 

up to δN and δM horizontal or vertical transitions from point ( )1,1 , respectively, represents 

an alternative to admitting ( )1, m∆  and ( ),1n∆  transitions from ( )0,0 149. Unfortunately, 

both options are associated with artefacts that largely depend on the subsequent synchro-

nisation step (see next section) and which one to chose depends mostly on the data.  
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With respect to the final point in the warping path, one should consider that the op-

timal value of the loss function and a warping path leading to state s0 are obtained for 

any point that belongs to the search area. Therefore, the warping problem is solved for 

the same initial point at any of the boundary points on the right and top boundary of the 

mapping grid, if the warping path is allowed to reach them. In other words, the optimal 

value of the loss function for state ( ),N n M′−  is the optimal value for the warping prob-

lem between a sample of length M and a reference that has been truncated at length 

N n′− (Figure 3.14b). Similarly, the value of Q * at state ( ),N M m′−  is the solution to a 

warping problem in which the sample being aligned has been truncated to length 

.M m′−  Thus, unlike the general case, in which the normalisation factor can be disre-

garded, normalisation is necessary to eliminate the effect of the length of the warping path 

and decide which is the best endpoint.  

Finally, an empirical but effective way of relaxing the endpoint constraints is to ap-

pend more or less long stretches of data points at the beginning or at the end of the sam-

ple and/or the reference (Figure 3.14c). This solution turned out to be quite useful in 

practice even though it increases the computational cost because it does not require any 

additional modification of the algorithmPIV,PVI. In particular, if the last (or the first) point in 

the sample and/or the signal is replicated in the padded sections, the results will be al-

most equivalentl to relaxing the slope constraints at the border of the mapping grid and 

allowing a certain number of consecutive horizontal/vertical transitions at the end of the 

warping path.  

Synchronisation 

When alignment algorithms are used as a preprocessing step prior to the fitting of 

multilinear models, it is necessary that the resulting signals have the same length so that 

they can be stacked in a matrix or in a multi-way array. This is not the case with the data 

resulting from symmetric DTW, because the length of the warping path K depends on the 

                                                   
l Complete equivalence depends on the choice of the weighting scheme. 
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sample being aligned. Synchronisation is the procedure that is used to yield aligned sam-

ples of length identical to that of the reference149,233,241,PIV,PVI and is by definition asymmetric 

in that it treats sample and reference differently. 

For example, synchronisation is necessary when the same point in the reference cor-

responds to several points in the sample (i.e., when vertical transitions occur in the warp-

ing path). In this case, a straightforward and common way of synchronising a sample to a 

reference is to take the average of the points in the sample interested by the consecutive 

vertical transitions (Figure 3.15a). Unfortunately, this operation is also responsible for 

Figure 3.15 a) Averaging data points spanned by vertical transitions (open circles) yields a 
synchronised sample having the same length as the reference. b) If local constraints allow 
skipping data points along the reference time axis (e.g. between open circles) averaging is not 
sufficient for synchronisation and interpolation is required. c) Interpolation can be used to deal 
with all types of lookup tables. The solid line is the warping path, the dashed lines denote the 
optimal synchronisation path and the dotted lines are all the possible synchronisation paths. 
The black dots identify the locations along the sample of the points corresponding to the 
reference points spanned with segments of slope  34  or  4 3 . 
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most of the artefacts observed when basic or mildly constrained DTW is applied to chro-

matographic and spectral data233,PIV. These range from merging smaller peaks that are 

absent in the reference into larger ones, to reducing the height of peaks that are taller in 

the sample than in the reference and creating plateaus at the top of peaks that are smaller 

in the sample than in the reference233,PIV. 

Another problem of averaging is that it does not work for all types of transitions. For 

example, T  may admit transitions that skip one or more points in the reference (e.g., 

( )2,1 – Figure 3.15b), which would result in a shortened synchronised sample even after 

averaging (four points instead of five in Figure 3.15b). A more general option that also 

works in this case is to treat the points spanned by the optimal rule that constitute a frac-

tion of the warping path as a segment and to use interpolationPIV,PVI. For example, if the 

optimal rule spans 4 distinct points on the sample and 3 on the reference, one can inter-

polate the original 4 points into 3, thus removing the additional one (Figure 3.15c)PIV,PVI. 

This solution has been used on chromatographic data and is preferable particularly be-

cause the smoothness of the original signals is maintainedPIV,PVI. 

Interpolation and averaging operate in two different ways and lead to two distinct 

ways of aligning a signal. In essence, interpolation corresponds with local time scaling, 

whereas averaging (as well as asymmetric constraints of the type ( )1, m∆  with 

0 m c≤ ∆ ≤ ) corresponds to insertion (i.e., the horizontal segments in the warping path) 

and deletion of time points. Figures 3.5d and 3.5e show a clear example of the difference 

that the two different approaches have on the quality of the final result.  

In order to yield good results it is crucial that the warping path after the synchronisa-

tion be a good estimation of the “true” warping path. For example, the shifts observed for 

peaks 2 and 3 in Figure 3.5a do not correspond to a proportional change in width. Thus, 

it seems unlikely that the shift is determined by a local (different) timescale. This is con-

firmed in Figure 3.5e, in which interpolation allows the alignment of peak tops but results 

in an unrealistic widening of peak 3. It is certainly difficult to establish when deletion is 

preferable to scaling as it depends on the data. However, it is important to point out that 

Euclidean distance or other local distance measures that consider only single observations 

along the curve cannot give an indication on which is the best choice. For example, dele-
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tion would allow removing entire peaks from the sample if they were missing in the refer-

ence since this would lead to a lower value of the loss function compared to scaling. In 

this respect, interpolation and rigid slope constraints appear as a working palliative rather 

than a cure and other local distance measures (e.g., Pearson’s correlation coefficient, 

cross-correlation341 or the residuals from a local modelling106 ) may be more effective. 

One of the aspects of synchronising using interpolation that requires further investi-

gation is that the warping path is not found by minimising a loss function based on the 

interpolated sample (i.e., after synchronisation) as it is done for example in COW (cf. sec-

tion 3.3.3). Hence, there is no guarantee that the aligned sample after synchronisation is 

the one that yields the minimum distance from the reference. For example, in the case of 

standard slope constraints, the fact that c consecutive vertical (or horizontal) transitions are 

followed by at least d diagonal ones implies that there are at least d possible sections in 

the warping path that contain only c consecutive vertical/horizontal transitions (Figure 

3.15c) and can be used for interpolation. All of these must be checked in order to deter-

mine the one that yields the best alignment. In this sense, it is apparent that using only the 

optimal rule of the lookup table to define the points that are involved in the interpola-

tionPIV,PVI may lead to suboptimal solutions. Since there may be some conflicts between the 

possible endpoints of adjacent segments (Figure 3.15c), an additional DP step could be 

used to find the optimal solution, also allowing to find the optimal choice between local 

time scalings or deletions/insertions. In such two-level algorithm, the first DP step, which 

operates on the original data points, would essentially restrict the search area for the sec-

ond DP step which could also achieve a precision that exceeds that of the original signal. 

In this sense, there is some similarity with the method proposed by Salvador to speed up 

DTW261.  

3.3.3 Correlation Optimised Warping 

Correlation Optimised Warping (COW) is a warping algorithm based on DP that 

finds a piece-wise linear warping path. The segments that compose the warping path span 

a fixed number of data points along one of the two time axes and are allowed to assume 

a limited number of distinct slopes. The optimisation criterion is the sum of the Pearson’s 



 103

correlation coefficients between the interpolated sections of sample and reference 

spanned by the same segments of the warping path.  This method was first presented in 

Figure 3.16. Graphical representation of the backward DP algorithm for COW. a-c) Dotted 
lines are the evaluated segments that reach the black point in the mapping grid. Solid lines 
are the segments that maximise the correlation for the relative sections of sample and 
reference. d) Once all the possible endpoints have been evaluated, the optimal warping path 
(dashed line) can be retrieved. 
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1998214 and has been used in chromatography both alone (for pattern recognition) and 

in combination with multilinear models49,61,124,136,233,308,309,PIV-V.  

COW operates on discrete signals by aligning a sample y to a reference x of length 

M and N respectively. Both reference and sample are split into K segments and the seg-

ment boundaries in either the reference or the sample have fixed positions. While these 

can be defined based on prior knowledge (e.g., they could be fixed at some landmark 

feature), in the original COW algorithm a more generic criterion is preferred to avoid fea-

ture recognition (namely, it is required that all segments have fixed length on the sample 

time axis)214,233,PIV,PV. More in general, there are two different ways of implementing COW 

depending on whether the segment boundaries are fixed on the reference or on the sam-

ple time axis. In some literature and in the original publication136,214,215,233, the latter op-

tion was used, whereas in this thesis and in some recent publications the former has been 

preferred61,PIV-PV. There seems to be no particular reason to choose one or the other al-

though the search areas for the warping path are different in the two cases. However, 

there has been little or no investigation in this direction.  

In the basic COW algorithm, the first and last point of the reference and sample are 

forced to match, and the remaining K – 1  boundaries in the sample are the subject of the 

optimisation. However, the endpoint constraints can be relaxed similarly to the DTW algo-

rithm (cf. page 97)49,214,PIV. The length of the segments in the reference is fixed to x time 

points. Conversely, the length of the segments in the sample is allowed to change and 

may assume all integer values in a fixed interval ,y yt t⎡ ⎤= − +⎣ ⎦I , where y is the aver-

age length of the segments in the sample (i.e., y M K= ⎢ ⎥⎣ ⎦ ) and t is referred to as the 

slack parameter214,PIV. t may be equal for all segments or change depending on the need 

and non-integer values can be picked in I49,214,PIV. 

The loss function is the sum over the segments of the Pearson’s correlation coeffi-

cient ρ between corresponding segments in the sample and the reference. The sample 

segment is (linearly) interpolated to x points if its length is different. The loss function is 

expressed as: 
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where b is the vector of 1K +  boundaries for the segment in the sample whose k-th ele-

ment is the position of the first point in the k-th segment, and 
1:k kb b +

y  denotes the vector 

obtained by interpolating the k-th segment in the sample to length x. The elements of b 

are strictly monotonically increasing with 1 0b =  and 1 .Kb M+ =  

By comparing equation (3.22) with (3.15b), it is apparent that the problem of maxi-

mising Q can be solved using DP. The stages in the DP algorithm are then the segments, 

the states are the possible segment boundaries and the policy decisions are the segment 

lengths. Figure 3.16 visualises on a mapping grid the process of finding the optimal warp-

ing path according to COW when M and N are equal to 22 and 21 respectively and both 

x and y are equal to 5. The slack parameter t is set to 1. As can be seen, the segments 

need not pass through the points (i.e., integer values) in the mapping grid as is the case 

with DTW and the sample points at which the correlation coefficient is calculated are in-

terpolated at the integer values of n in the interval spanned by the warping path segment 

on the reference time axis (Figure 3.15). 

As (3.17), problem (3.22) can be considered a shortest path problem. Thus, other 

algorithms may be more efficient than DP if the number of states grows extremely 
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Figure 3.17. Graph of the 
COW as a shortest path prob-
lem. The slack is limited to 1; 
therefore there are three arrows 
departing from each point. The 
‘cost’ of each policy is the corre-
lation coefficient between the 
interpolated sample segment 
and the corresponding segment 
in the reference. The path is not 
allowed to pass through the 
empty circles. 
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large20,125. The graph corresponding to problem (3.22) can be seen in Figure 3.17 for 

t =1. Each circle corresponds to the position of a boundary and the arrows are associated 

with one of the possible segment lengths: y   and y ±1. This graph shows the storage 

requirements for COW, which are in the order of ( )2O tK , i.e., much smaller than 

( )2O N . However, while memory consumption can hardly be considered a problem for 

COW, the computational load is heavily affected by the interpolation step. The time con-

sumption can be reduced using band constraints similar to those described for DTW (cf. 

section 3.3.2)214. 

A final note regards some implementations, in which adjacent segments in both 

sample and reference do not share the boundary they have in commonPIV; instead, the last 

point in the k-th segment is next to the first point in the ( )1 -thk + . This condition forces 

the warping path to have transitions of slope 1 between connecting the last point in one 

segment and the first point in the nextPIV and may induce some visible discontinuity in the 

warping path. However, even though imposing this additional condition is undesirable 

and not necessary, hardly any visible artefact or discontinuity has been observed when x 

and y are much larger than the slack (i.e., for rigid constraints)61,PIV-PV.  
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4. CONCLUSIONS AND PERSPECTIVES 

In the course of this thesis two main subjects have been investigated: 1) the fitting of 

the PARAFAC model to multi-way arrays and  2) the correction of shift in chemical data by 

means of warping algorithms based on dynamic programming as a preprocessing step 

prior to the fitting of multilinear models.  

Perhaps the most basic conclusion is the confirmation that the mathematical and 

computational aspects are fundamental in chemometric data analysis as to understand 

why certain methods do (or do not) yield the desired results on chemical data and how to 

improve the existing methods. In particular, it has become apparent that some algorithmic 

choices (e.g., SWATLD for PARAFAC and COW for warping) infer modifications of the 

model used to analyse the data that should be taken into account when evaluating the 

results or when comparing several methods. Therefore, a stricter collaboration between 

chemometricians, chemical and numerical analysts and experts in information science 

seems urgent for both PARAFAC fitting and warping algorithms as to improve the existing 

algorithms and avoid the spreading of (possibly harmful) misconceptions. One of the most 

ambitious objectives of this work has been to give a general framework for the two inves-

tigated subjects that, by making reference to both chemical and computational aspects, 
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allows both chemists/chemometricians and mathematicians/computer scientists to draw 

useful information from it.  

A more detailed account on the specific results and some of the perspectives on 

PARAFAC and on warping methods is given in ensuing sections. 

4.1 PARAFAC 

With specific reference to the fitting of PARAFAC models, the following results are 

worth mentioning: 

• PARAFAC-ALS  performed well in tests based on real as well as simulated data 

sets and appears more stable with respect to over-factoring than it has recently 

been suggestedPI. However, other methods such as the Levenberg-Marquardt al-

gorithm have been shown to be more efficient when the problem is characterised 

by high collinearity between factorsPI,PII, again in case of over-factoringPI and when 

the fraction of missing values (if any) is relatively large or their pattern is particu-

larly problematicPII. Moreover, for higher order arrays and when the number of 

estimated parameters is sufficiently small, it has been shown how PARAFAC-ALS 

(without recurring to compression) is more expensive than Hessian based meth-

ods so long as the model rank is not particularly highPIII.  

• The Levenberg-Marquardt method (PARAFAC-LM) appears to be more stable 

than PARAFAC-ALS with respect to collinearity and over-factoringPI. The higher 

cost per iteration can be mitigated using compressionPI, but, even without it, 

PARAFAC-LM has been shown to be preferable to ALS for higher order arrays (for 

N larger than 4-5) and sufficiently small model ranks based on purely computa-

tional considerationsPIII.  

• While the least squares fitting criterion has well known statistical properties, other 

loss functions (for example yielding solutions with a higher value of core consis-

tencyPI ) may lead to faster algorithms and better predictionsPI. In particular, fur-

ther research is necessary on  SWATLD in order to establish the exact mathemati-
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cal properties of its solution and the source of its relative stabilityPI. On the con-

trary, other non-least squares algorithms (e.g., the iterative PARAFAC-PDE and 

ASD and the direct method GRAM/DTLD) appeared unsatisfactory. 

• Compression based on Tucker models helps to reduce the computational cost of 

the fitting procedure so long as the original array is sufficiently large and can be 

beneficial in case of over-factoring for both ALS and the Levenberg-Marquardt 

algorithmPI. Its application in combination with an expensive algorithm (e.g., 

Gauss-Newton) seems particularly useful so long as the rank of the model, which 

determines the size of the compressed array, is relatively smallPI,PIII.  

Interestingly, compression is compatible with equality constraints operating on the 

columns of the loading matrices, which are sometimes necessary to deal with 

rank overlaps and the corresponding lack of uniqueness. In this sense, compres-

sion in combination with, for example, PARAFAC-LM may provide a useful alter-

native to ALS for the so-called restricted Tucker models or for models that belong 

to the PARALIND family. Conversely, the problem of combining compression with 

other, more common, constraints like non-negativity and unimodality remains 

open.  

Finally, it has been shown how the properties of the Khatri-Rao and of the 

Kronecker products can be used to extend compression in order to deal with a 

weighted least squares fitting criterion and maximum likelihood (with known error 

variance/covariance matrix) estimation. Whether these expressions are also asso-

ciated to useful algorithms remains to be seen, especially given the difficulty of 

obtaining reliable estimates of variances in chemical data.   

• The data one deals with in chemometrics often contain missing values and 

PARAFAC has been found to be more stable in this respect than bilinear model-

sPII. In particular, acceptable results have been obtained with up to 70% missing 

values for problems of 30 × 30 × 30 and it was possible to correctly predict the 

concentration of several analytes in specimens containing up to five compo-

nentsPII. Moreover, it has been shown that the presence of artefacts in the spectral 
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loadings does not necessarily correspond to worse predictionsPII. Thus, although 

less pleasant to the eye, the presence of such artefacts does not appear sufficient 

to reject a model or to justify the use of additional constraints.  

The reason for the stability of PARAFAC with respect to missing values can intui-

tively be found in the number of elements in a data array, which is much larger 

than the number of parameters that needs to be estimated for most chemical 

problems. Combined with the rigid structure of PARAFAC, this infers that a large 

fraction of array elements can be safely set to missing without much influence on 

the estimates of the model parameters so long as their pattern does not ”inter-

fere” with the model structurePII. 

• The pattern of missing values has been found to have a much greater influence 

on the quality of the results and the speed of convergence of the fitting algorithms 

than their fraction. For example, the most common pattern of missing values in 

EEM fluorescence data has been shown to be responsible for particularly slow 

convergence and for the presence of artefacts in the loading vectorsPII. Further-

more, such a pattern has been shown to interfere with multilinearity allowing ficti-

tious interactions between factors and enhancing the effect of slight deviations 

from strict N -linearityPII. Since the multilinear nature of the components may re-

quire that some of the values be set to missing (or assigned zero weight in the 

loss function), the correct trade off has to be found between setting certain values 

to missing, to zero or any other ”expected value” in order to yield the correct re-

sults. In general, this means that the pattern of  missing values could be carefully 

designed in order to reduce the magnitude of the artefacts and the impact on the 

speed of convergencePII. 

• It has been shown how strict is the connection between the column-wise Khatri-

Rao product and PARAFAC. The exploitation of the properties of the Khatri-Rao 

product leads to concise expressions of matrices (e.g., the Hessian) and vectors 

(like the gradient) associated with PARAFAC and to more efficient fitting algo-

rithmsPIII.  
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• The Jacobian matrix J relative to the PARAFAC model is specially structured and 

very sparsePIII. Its cross product JTJ and its products with a vector JTv  and Jv can 

be formed using only products of full matrices, with great savings in terms of time 

and memory consumptionPIII. The use of so-called ‘sub-expressions’ has been 

formalised in terms of the chain rule for vector functions and has been shown to 

be able to further reduce the computational load for the products JTv  and Jv. The 

corresponding advantage has been shown to grow with the ratio between the 

largest dimension in the data array and the rank of the fitted model. Moreover, it 

has been demonstrated how formulae identical to those derived using the chain-

rule can be used in PARAFAC-ALS yielding a similar reduction in the computa-

tional costPIII.  

• An efficient procedure for the solution of an exact line-search problem (in the 

MATLAB® environment) for PARAFAC has been devised based on the work by 

Franc93. The algorithm has been extended to the general N -way case and its cost 

has been shown to increase exponentially with the order of the array. In this re-

spect, when this thesis work had already been completed, it was found that, by 

exploiting the common sub-terms in the Khatri-Rao products involved in the direct 

procedure, its cost can be brought down to ( )( )2 1N N− +  Khatri-Rao products 

of two terms (equivalent to ( )[ ]
2

1 1

2 3
NN

n
m n m

F N m I
−

= = +

− +∑ ∏ operations) plus N loss func-

tion evaluations. The corresponding algorithm though has not been implemented 

yet and no information is currently available on its time expense. 

4.2 Dynamic Programming and Shift 

Two DP-based warping methods, namely DTW and COW, have been studied in de-

tail as preprocessing steps prior to the fitting of multilinear models. 

• It has been shown that COW and rigidly constrained DTW are compatible with 

the subsequent fitting of multilinear models, with examples in the context of ex-
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ploratory data analysis on environmentalPV and food dataPIV and for calibration 

problemsPVI. 

• In the standard DTW algorithm, the warping path F is expressed symmetrically 

and an asymmetric synchronisation step is necessary to obtain aligned signals 

having the same length. This step has been shown to be responsible for several 

artefacts that make basic DTW (i.e., without slope constraints) unsuitable for 

chromatographic dataPIV. Mild slope constraints have been found unable to avoid 

such artefacts and thus also not appropriate to treat chromatographic dataPIV. Ar-

tefacts also appear when mild asymmetric constraints are imposed in order to 

avoid the asymmetric synchronisation step. The nature of the artefacts and the 

reasons for their appearance in the aligned data indicate that both unconstrained 

and mildly constrained DTW (either symmetric or asymmetric) are also unfit for 

spectral data. These conclusions are consistent with the observations of other au-

thors124,233. 

• Rigid slope constraints have been found necessary in order to properly align 

chromatographic (and spectral) data using either COW or DTWPIV-PVI. Moreover, 

it has been found that under rigid slope constraints both algorithms seek piece-

wise linear warping paths and yield similar resultsPIV. The concept that the length 

of the segments should not be smaller than the width of the features one desires 

to align (e.g., peaks in chromatography), which was originally expressed only for 

COW214, has been extended to DTWPIV,PVI.  

• A simple method has been proposed to optimise the warping parameters when-

ever replicates of the same reference sample are availablePV. The results also in-

dicate that, for specific types of data, the optimal length of the segments can 

largely exceed the width of the features that are to be aligned. The simplest ex-

planation is that COW and rigidly constrained DTW produce piece-wise linear 

estimates of the ”true” warping path and local slope ranges allowed by the con-

straints, together with the length of the segments, determine how close these es-

timates are to the correct paths. Thus, for GC data and signals relative to com-

pounds with similar physical/chemical properties, the shift pattern is unlikely to be 
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particularly complex and long segments and small slope ranges for the single 

segments yield good estimates of the true warping pathsPIV,PV. Other analytical 

methods (e.g., LC) may be characterised by more complex shift patterns that re-

quire more flexibility and thus shorter segments and larger slope ranges.  

• The effect of global (band) and endpoint constraints on the warping path has 

been investigated in relation to the type of data that are affected by shiftPIV. In 

particular, it has been determined that band constraints alone are insufficient to 

guarantee the absence of artefacts for chromatographic data, but determine a 

considerable reduction in the computational cost.  

With respect to endpoint constraints, padding the signal with a leading and a 

trailing section repeating the first and last element in the signal (in DTW) or con-

taining just noise (in COW) has been shown to be a simple empirical solution to 

the problem of relaxing the endpoints of the warping pathPIV,PVI. Although compu-

tationally more expensive, padding has the advantage of not requiring any major 

modification of the basic DTW and COW algorithms.   

• The warping paths obtained using DTW and COW have been thoroughly charac-

terised and a connection between them has been establishedPIV. It has been 

shown that the COW algorithm operates using solely time scaling and that, in 

fact, there are at least two distinct implementations of COW described in the lit-

erature in which the search area for the warping path changes214,PIV.  

The characterisation of DTW in terms of local time scaling and time translation 

has been found to be more elusive, especially given the additional options of-

fered by the asymmetric synchronisation step. In practice, using averaging only 

time translations are allowed and the alignment is achieved by ”deletion” (i.e., 

when several data points in the sample signal are averaged into one) and ”inser-

tion” (i.e., the replication of the signal recorded at a specific time point). Alterna-

tively, one can introduce interpolation as a more general means to perform 

asymmetric synchronisation, which results in allowing time scalingsPIV.  
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An important conclusion is that neither COW nor DTW need to be restricted to 

using only time scalings or time translations and that one can straightforwardly 

implement both options and verify which warping path yields the best value of the 

loss function. Such an alignment algorithm has not been implemented yet, al-

though it has already been proposed some years ago169. 

• Both DTW and COW are not landmark based and thus, almost by definition, 

cannot deal correctly with factors whose features overlap, but are differently 

shifted in each analysed signals (e.g., coeluting peaks in chromatography). The 

issue becomes more critical if some of these features are missing in either the 

sample or the reference. In this case, neither DTW nor COW has been found ca-

pable of properly removing shift, which infers that basic multilinear models like 

PARAFAC may have to be abandoned depending on the characteristics of the 

specific data set in favour of other models that can account for this behaviour like 

PARAFAC2PVI, MCR or shifted factors models. 

In theory, at least for multi-way data, one could also devise a warping method 

that combines rank alignment with dynamic programming. However, the fact that 

the local rank is typically unknown is likely to be a hard problem to solve. Several 

attempts have been made to automatically find the rank of an N-way array (as 

required by rank alignment), but the results do not seem conclusive. 

• With specific reference to the alignment of chromatographic data, neither COW 

nor DTW take into account the change in area under the peak, which is expected 

to be constant for equal concentrations of the substance in a sample. For exam-

ple, a large peak may be matched with a more narrow one and its width 

changed accordingly. However, its height has to be changed as well in order not 

to underestimate the concentration and not to affect the factors of the fitted multi-

linear model. This has not represented a problem for the work conducted in this 

thesis because of the rigid constraints imposed to the warping paths, but it may 

have to be addressed when more flexible warping paths are requiredPV. A solution 

that has been only marginally investigated is to maintain the area under the curve 
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in the warped signals constant for the parts corresponding to the segments that 

form the warping path.  

• Dynamic Programming (DP) is an optimisation method that can be used in regis-

tration algorithms to find a warping path according to some fitting criterion and 

represents only one of several aspects that determine the usefulness of an align-

ment method. In this respect, the characteristics of the warping path (i.e., whether 

it is linear, piece-wise linear or nonlinear), whether or not landmarks are used to 

define it, and the criterion according to which the warping path is sought (e.g., 

the Euclidean distance or the Pearson’s correlation coefficient) have been found 

as important as the choice of the optimisation algorithm.  

Especially in the chemometric literature, there seems to be a little confusion be-

tween dynamic programming and the alignment methods in which this technique 

is used and the better results obtained with other algorithms are sometimes the 

result of aspects that prescind DP. Per contra, this distinction played an important 

role in the studies conducted in the course of this thesis on DTW and COW and 

seems even more relevant to improve the existing alignment methods. 

• As a part of this work, a series of MATLAB routines to apply DTW and COW to 

chemical data have been produced and made available to the chemometrics 

community. Much work is left to do with respect to the computational efficiency of 

these routines, especially because this study was aimed mostly at determining the 

feasibility in terms of quality of the alignment rather than its cost. In this sense, 

any consideration about the effect of DP or its relative inefficiency based on MAT-

LAB routines would be somewhat biased and not conclusive (especially consider-

ing that DP cannot be easily vectorised and would benefit from the use of com-

piled modules in this specific environment).  

In terms of computational efficiency, it is noteworthy that many registration algo-

rithms (and thus COW and DTW) based on DP solve shortest path problems and 

that specially designed algorithms exist to solve these types of problems125. Their 

use in the context of alignment methods seems at least worth investigating. 



 116

• The results also indicate that the Euclidean distance is unsatisfactory as a local 

distance choice because it focuses solely on the intensity (or rather the difference 

in intensity) in the two signals interested by warping and do not account for their 

shape. Although rigid slope constraints mitigate this effectPIV,PVI, other choices must 

be studied that define the local distance (or more appropriately the cost of pass-

ing through a certain state in the optimal path) using the information contained in 

several time points like the cross-correlation using the Fourier transform. Alterna-

tively, one could envision an algorithm using as a local distance measure the 

value of the residuals obtained after local modelling of shift106,196,338. In this re-

spect, DP could represent an improvement over methods that are not guaranteed 

to yield a minimum of the loss function (e.g., genetic algorithms). Another inter-

esting advantage of this possibility is that local modelling may lead to better final 

results as it could deal with fractional shifts and moderate changes in shape, 

which represent additional sources of variations that need to be accounted for by 

multilinear modelsPV.  
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Abstract

A multitude of algorithms have been developed to fit a trilinear PARAFAC model to a three-way
array. Limits and advantages of some of the available methods (i.e. GRAM-DTLD, PARAFAC-ALS,
ASD, SWATLD, PMF3 and dGN) are compared. The algorithms are explained in general terms
together with two approaches to accelerate them: line search and compression. In order to compare
the different methods, 720 sets of artificial data were generated with varying level and type of noise,
collinearity of the factors and rank. Two PARAFAC models were fitted on each data set: the first
having the correct number of factors F and the second with F + 1 components (the objective being to
assess the sensitivity of the different approaches to the over-factoring problem, i.e. when the number of
extracted components exceeds the rank of the array). The algorithms have also been tested on two real
data sets of fluorescence measurements, again by extracting both the right and an exceeding number
of factors. The evaluations are based on: number of iterations necessary to reach convergence, time
consumption, quality of the solution and amount of resources required for the calculations (primarily
memory).
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1. Introduction

The PARAFAC (PARallel FACtor analysis) model was introduced in 1970 by Harshman
(1970) and simultaneously by Carroll and Chang (1970) under the name CANDECOMP.
For a three-way data array X, the PARAFAC model is defined as

xijk =
F∑

f =1

aif bjf ckf + rijk, i = 1 · · · I, j = 1 · · · J, k = 1 · · · K , (1)

where xijk is the measured value, aif , bjf , and ckf represent the parameters to estimate,
rijk are the residuals and F is the number of factors extracted.

In general terms, fitting model (1) boils down to minimising (usually in a least squares
sense) the fitting error made. This means finding the parameters a11, a12, . . . , cKF that
minimise the loss function:

L (a11, a12, . . . , cKF ) =
I∑

i=1

J∑
j=1

K∑
k=1

⎛
⎝xijk −

F∑
f =1

aif bjf ckf

⎞
⎠

2

. (2)

Several algorithms for solving such problems are described in the literature (Faber et al.,
2003; Hayashi and Hayashi, 1982; Paatero, 1997; Tomasi and Bro, 2004). Some of those
tested in this work (DTLD, ASD and SWATLD) do not minimise (2) and in fact their loss
functions are not strictly well-defined (Faber et al., 2003).

While the PARAFAC model remains the same, the different methods of fitting it to a
three-way array X can be better explained introducing distinct notations. The parameters
can be gathered in three loading matrices A (also referred to as scores matrix), B and C
defined as

A = {
aif

∣∣ i = 1 · · · I, f = 1 · · · F} = [a1 a2 · · · aF ] , (3a)

B = {
bjf

∣∣ j = 1 · · · J, f = 1 · · · F} = [b1 b2 · · · bF ] (3b)

and

C = {
ckf

∣∣ k = 1 · · · K, f = 1 · · · F} = [c1 c2 · · · cF ] , (3c)

where af , bf and cf denote the columns of A, B and C respectively.
Using the matricised format for multi-way arrays (Bro, 1998) and with the introduction

of the column-wise Khatri–Rao product � (Rao and Mitra, 1971) (see Appendix C), the
model can be written as

X(I×JK) = A(C � B)T + R(I×JK), (4)

where “T” means the transpose and (I × JK) refers to the way the multi-way array is
matricised (K slabs of size I ×J are put one beside the other forming a matrix of dimension
I × JK).
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Another possibility is to express the model in a slab-wise form as:

X..k = ADkBT + R..k , (5)

where Dk is a diagonal matrix containing the k-th row of C, X..k is the I × J matrix
representing the k-th frontal slab and R..k is the corresponding matrix of the residuals. Eqs.
(4) and (5) have to be trivially modified in case other matricisations (e.g. J × IK) or slabs
(e.g. the horizontal slab Xi.. of size K × J ) are required (Bro, 1998).

The algorithms fitting the PARAFAC model can be classified in three main groups: al-
ternating algorithms, which update only a subset of the parameters at each step; derivative-
based methods, seeking an update for all the parameters simultaneously by successive
approximations; and direct (non-iterative) procedures. To the first group belong PARAFAC-
ALS (Alternating Least Squares (Harshman, 1970)), ASD (Alternating Slice-wise Diago-
nalisation (Jiang et al., 2000)) and SWATLD (Self Weighted Alternating TriLinear De-
composition (Chen et al., 2000)). The second set is represented by PMF3 (Positive Matrix
Factorisation for 3-way arrays (Paatero, 1997)) and dGN (damped Gauss–Newton, also
known as Levenberg–Marquadt (Paatero, 1997; Tomasi and Bro, 2004)). As for the third
grouping of algorithms, the most known implementations are the Generalised Rank An-
nihilation Method (GRAM (Sanchez and Kowalski, 1986)) and the Direct TriLinear De-
composition method (DTLD), both based on a generalized eigenvalue problem. All these
algorithms will only be described in general terms as more details are available in the original
papers.

Fitting the PARAFAC model presents numerous problems. One aspect affecting speed of
convergence and retrieval of the underlying solutions is the condition number of the loading
matrices, which reflects both collinearity and relative magnitude of the factors (Hopke et al.,
1998; Kiers, 1998). Compression, which is outlined in Section 2.5, has been reported to be
beneficial in this respect and has the added advantage of reducing the computational expense
(Bro and Andersson, 1998; Kiers, 1998). Another problem is the so-called two factor degen-
eracy (2FD), i.e. the presence in the solution of two factors that are almost perfectly collinear
but have opposite signs and almost cancel out each others’ contribution. The essential prob-
lem with 2FDs is that the degenerate factors can grow arbitrarily large while the loss function
continuously (and very slowly) decreases. 2FDs may appear in the final solution as a conse-
quence of e.g. a wrong estimation of the rank of the array, or some aspects specific to the data
set at hand, (Kruskal et al., 1989; Paatero, 2000).A connection has been established between
some of the possible causes of 2FDs in the final solution and the so-called swamps (Mitchell
and Burdick, 1994; Rayens and Mitchell, 1997), which are sequences of iterations where
the interim solutions contain features similar to 2FDs of increasing severity and the loss
function decreases very slowly. When an (iterative) algorithm encounters a swamp, it either
emerges from it (i.e. after an unpredictably large number of iterations, the loss function starts
decreasing more rapidly again and the 2FD slowly disappears) or it reaches an earlier stop
because one of the convergence criteria is suddenly met. Great attention has been given in the
development of new methods capable of dealing effectively with swamps and more in gen-
eral with the more frequent high collinearity case. Two examples are regularisation (Paatero,
1997; Rayens and Mitchell, 1997) and line search (Bro, 1998; Harshman, 1970) (described
in Section 2.4).
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2. Algorithms

2.1. DTLD

Ho et al. (1978, 1980, 1981) developed an algorithm called RAFA (Rank Annihilation
Factor Analysis) for estimating the concentration of a chemical analyte in an unknown
sample-matrix solely using the measurements of the unknown sample and of a pure standard.
This property was coined the second-order advantage, as it is obtained by using the second-
order or two-way structure of the individual sample measurements instead of vectorising the
corresponding matrix.The second-order advantage is in essence equivalent to the uniqueness
of the trilinear structure. The idea behind RAFA was based on reducing the rank of the
calibration sample by subtracting the contribution from the analyte of interest. That is, if
the signal from the analyte of interest is subtracted from the sample data, then the rank of
this matrix will decrease by one as the contribution of the analyte of interest is one in case
of ordinary bilinear data such as chromatographic or fluorescence data. This was intuitively
appealing, but the method itself was somewhat unsatisfactory and slow. Later, Lorber (1985)
showed that it was possible to automate this search for rank-reduction and extended the
method. This new automated method was called Generalized Rank Annihilation Method
(GRAM) and works with two samples. Using only two samples, there is a direct solution
to the PARAFAC model based on solving a generalized eigenvalue problem. Despite the
fact that this solution is not a least squares solution, it has been found to work well for
data that are well approximated by a PARAFAC model. From a GRAM solution for any
two samples, the loading matrices in the two variable modes are obtained (as well as the
two scores for the sample mode). For more than two samples, the two loading matrices
obtained from any two samples can be used for calculating the score-values for all samples
in a simple regression step. This is the principle behind DTLD (Sanchez and Kowalski,
1990), whereby there are alternative strategies for selecting the two samples used in the
GRAM step. Thus, DTLD is a direct method using a generalized eigenvalue problem of
fixed known complexity. The required storage is represented in essence by the sole data
array X, the three loading matrices and three matrices (two with the same size of the loading
matrices and one having only two columns) used to compress the array and to select the
two samples used for GRAM step.

2.2. Alternating Least Squares

Alternating least squares is a relatively old method (its principles were introduced in
1933 by Yates (1933)) and it is based on the idea of reducing the optimisation problem
to smaller sub-problems that are solved iteratively. The parameters to be determined are
separated in different groups and, by fixing all of the groups but one, a new loss function
depending only on the set left free to vary is minimised. The solution of this (linear) least
squares problem is known and relatively simple to calculate. The subsequent stages of the
algorithm consist of applying the same principle on the other groups of parameters. The
algorithm iterates, alternating from one set to the next, until the variation of the loss function
or of the parameters is less than a predefined convergence criterion. Since all the steps are
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optimisations in the least squares sense, the loss function is bound not to increase at any
step and tends asymptotically to a minimum.

2.2.1. PARAFAC-ALS (ALS)
In the PARAFAC case (Carroll and Chang, 1970; Harshman, 1970) and having a three-

way array X, there are three sets of parameters (A, B, and C) and the loss function (2), using
(4), can be written as

L(A, B, C) =
∥∥∥X(I×JK) − A(C � B)T

∥∥∥2

F
, (6)

where ‖•‖F denotes the Frobenius norm. While calculating all the three loading matrices
that minimise L at the same time is a rather complicated non-linear problem (and it is treated
as such in other algorithms), if initial approximations of B and C (respectively B(0) and
C(0)) are available, the interim optimal A can be easily calculated as

A(1) = X(I×JK)

((
C(0) � B(0)

)+)T

, (7a)

where ‘+’ denotes the Moore–Penrose inverse. B(1) and C(1) are determined in a similar
fashion. That is

B(1) = X(J×IK)

((
C(0) � B(1)

)+)T

(7b)

and

C(1) = X(K×IJ )

((
B(1) � A(1)

)+)T

. (7c)

The three steps in Eq. (7) are repeated until a predefined convergence criterion is met.
Eq. (7) shows the general approach of PARAFAC-ALS. In the actual implementation

of the algorithm (Jiang et al., 1999), certain properties of the Khatri–Rao product and line
search (Section 2.4) are employed in order to accelerate the calculations (Bro, 1998).

This algorithm has several advantages: it is easy to implement, guaranteed to converge
and simple to extend to higher order arrays. The shortcomings are mainly in the occasional
slowness of the convergence process in presence of swamps (Mitchell and Burdick, 1994;
Paatero, 2000; Rayens and Mitchell, 1997) or high collinearity (Kiers, 1998). Furthermore,
the loss function decreases almost linearly with the iterations while other methods can
provide, at least in principle, superlinear or even quadratic convergence rate. It is also
worth mentioning, even if it is not relevant for the purposes of this work, that several types
of constraints can be imposed to the loading vectors in a relatively straightforward way
(Bro, 1998).

The memory consumption for PARAFAC-ALS is limited; in essence: two arrays (one for
X and one for the model/residuals) of size I ×J ×K , a matrix of size max(IJ , JK, IK)×F

for the Khatri–Rao products and the three loading matrices.
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2.2.2. SWATLD and ASD
Recently, several algorithms (ASD (Jiang et al., 2000), SWATLD (Chen et al., 2000)

ATLD (Wu et al., 1998), PALS (Chen et al., 2001), ACOMAR (Li et al., 2000), ACOVER
(Jiang et al., 1999)) based on ideas similar to PARAFAC-ALS have been proposed. A
comparison between these methods and standard ALS already exists in the literature (Faber
et al., 2003). Therefore, based also on some preliminary tests, only SWATLD and ASD have
been chosen to represent this group of new algorithms.

As mentioned by its authors, SWATLD does not attempt to find the minimum of (6),
instead it alternates between minimising three different (non-least squares) loss functions,
one per each of the loading matrices. Such loss functions are structured in the following
way (shown here with respect to C):

LC(C) =
K∑

k=1

∥∥∥∥
(

A+Xk − DkBT
)T

D−1
B

∥∥∥∥
2

F
+

K∑
k=1

∥∥∥(
Xk

(
B+)T − ADk

)
D−1

A

∥∥∥2

F
, (8)

where DA and DB are F × F diagonal matrices holding the norm of the loading vectors of
respectively A and B, X..k is the k-th frontal slab of X and Dk is an F × F diagonal matrix
with the elements of the k-th row of C on the diagonal. Thus, given A and B, a new estimate
for C can be found as (cf. Appendix B):

C = 0.5 · X(K×IJ )
[(

B+T � AD−2
A

)
+

(
BD−2

B � A+T
)]

. (9)

The update evidently depends on the values of DA and DB and thus on the scaling convention
applied to the interim loading matrices. Hence, the loading matrices were scaled so that
DA = DB (cf. Appendix A). Equivalent equations are developed mutatis mutandis for the
updates of A and B. It is apparent that the solution is not found in the least squares sense

as 0.5 ·
[(

B+T � AD−2
A

)
+

(
BD−2

B � A+T
)]

�= (B � A)+T. In fact, SWATLD typically

yields solutions that are less affected by deviations from exact trilinearity than the least
squares ones (see the experimental part), which seems to bear some advantages in terms of
convergence speed and resistance to over-factoring. However, since its optimisation criterion
is not well-defined, this algorithm must be used with care.

One important remark about SWATLD regards the three matrices A, B and C, which
must have full column rank in order for the algorithm to resolve uniquely the components
of interest. In other words, the maximum number of components that can be extracted is
upper-bounded by any of the dimensions of X. Such conditions for uniqueness are stricter
than the theoretical ones (Sidiropoulos and Bro, 2000).

With regard to memory consumption, SWATLD is approximately as demanding as ALS.
ASD is based on the hypothesis of A and B having full column rank (hence also stricter

than the theoretical conditions for uniqueness (Sidiropoulos and Bro, 2000)) and thus on
the existence of two matrices P and Q for which it holds PTA = IF and BTQ = IF , where
I denotes the identity matrix of appropriate size.

Eq. (5) can then be written as

PTX..kQ = Dk + PTR..kQ ≡ Dk + R̃..k . (10)
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Loss function (6) is minimised by ASD using an alternating algorithm of the form

LASD(A, B, C, P, Q) =
K∑

k=1

∥∥∥PTX..kQ − Dk

∥∥∥2

F

+ �

(∥∥∥PTA − IF

∥∥∥2

F
+

∥∥∥BTQ − IF

∥∥∥2

F

)
, (11)

where � is a predefined constant (Faber et al., 2003; Jiang et al., 2000).
It is apparent that LASD is a function of R̃..k , not of the residuals, and that it contains a

penalty term that does not necessarily decrease to a negligible magnitude. Consequently,
as it is the case for SWATLD, the final solution is not providing a least squares fit and must
be assessed with care.

A final observation is thatASD employs a compression procedure based on singular value
decomposition that allows a significant reduction in the number of operations per single
iteration (Faber et al., 2003; Jiang et al., 2000). This compression step further reduces the
memory consumption of the algorithm, which requires, beside the original array and the
loading matrices, an array R̃ of size F ×F ×K , four matrices of size F ×F and 2 matrices
holding the bases for the compression and having size I × F and J × F .

2.3. Gauss–Newton method

As mentioned in Section 2.2.1, minimising (6) is a relatively difficult non-linear least
squares problem: several authors (Hayashi and Hayashi, 1982; Paatero, 1997; Tomasi and
Bro, 2004) have proposed the use of algorithms usually employed for such optimisation
problems. All these algorithms are based on the Gauss–Newton method (Björck, 1996).
However, in order to deal with some of the peculiarities of the PARAFAC model it is
necessary to introduce some modifications to the basic algorithm.

Defining the model values as

yijk(A, B, C) =
F∑

f =1

aif bjf ckf , (12)

loss function (6) can be written as

L(A, B, C) =
I∑

i=1

J∑
j=1

K∑
k=1

(
xijk − yijk(A, B, C)

)2

=
I∑

i=1

J∑
j=1

K∑
k=1

r2
ijk(A, B, C), (13)

where rijk(A, B, C) are the residuals. By stringing out X and Y in two vectors x =
vec X(I×JK) and y = vec

(
A(C � B)T)

of length M = IJK (the vec operator is defined
as in Magnus and Neudecker (1999)) and considering a vector p = vec

[
AT

∣∣ BT
∣∣ CT

]
of length N = (I + J + K) F with all the sought parameters, loss function (13) can be
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expressed as

L(p) =
M∑

m=1

(xm − ym(p))2 =
M∑

m=1

r2
m(p) = r(p)Tr(p), (14)

where m = IJ (k − 1) + I (j − 1) + i and r = [ r1 · · · rM ]T.
The Gauss–Newton method works under the assumption that the residuals in the neigh-

bourhood of a point p0 can be approximated by a Taylor expansion truncated after the linear
term:

rm(p) = rm

(
p0

)
+

N∑
n=1

�rm

�pn

(
pn − p0

n

)
+ O

(∥∥∥p − p0
∥∥∥2

2

)

� rm

(
p0

)
−

N∑
n=1

�ym

�pn

(
pn − p0

n

)
≡ r̃m (p) , m = 1, . . . , M . (15)

Thus, by defining an M × N matrix J
(
p0

)
, the Jacobian, having as elements jmn

jmn = �rm
(
p0

)
�pn

= − �ym

(
p0

)
�pn

and if the linear approximation (15) suffices, (14) can be expressed as a function of �p =
p − p0:

L̃(�p) = r̃(�p)Tr̃(�p) =
∥∥∥r

(
p0

)
+ J

(
p0

)
�p

∥∥∥2

2
. (16)

A new approximation of the parameter-vector is then calculated as p(s+1) = ps + �p(s),
where the update �p(s) for the s-th iteration is computed as a solution to the linear problem

min
�p

∥∥∥r
(

p(s)
)

+ J
(

p(s)
)

�p(s)
∥∥∥2

2
. (17)

This can be done by solving for �p(s) the system of normal equations:

(
JTJ

)
�p(s) = −JTr ≡ g, (18)

where g is the gradient of L̃(�p). At this point, convergence is checked and if the loss
function has not decreased in relative terms for less than a predefined convergence criterion
or the number of iterations has not reached the maximum, the algorithm computes a new
Jacobian and a new update �p and keeps on iterating. Note that, as the minimum of a function
is a stationary point, the algorithm should stop if ‖g‖∞ is smaller than a sufficiently small
number (Madsen et al., 2004).
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This iterative method for fitting the PARAFAC model (i.e. the Gauss–Newton algorithm)
corresponds to the one proposed by Hayashi and Hayashi (1982).

H̃ = JTJ is in fact an approximation of the Hessian matrix H, which holds the second
derivatives of the loss function (Madsen et al., 2004). The smaller the residuals rm are, the
better is the approximation. This implies that if the elements of r are small enough, the
update �p(s) is close to the one calculated with the Newton method (requiring H), which
guarantees, under the same conditions, quadratic convergence (Madsen et al., 2004). On the
other hand, if the behaviour of L is far from linear (e.g. QS the number of modes of the array
increases) or the elements of rm are relatively large, the approximation is not appropriate
and the Newton method should be preferred (Madsen et al., 2004). Line search procedures
and trust region methods (Björck, 1996; Madsen et al., 2004) can be used to deal with this
problem without requiring the full calculation of the Hessian, as outlined in the ensuing
sections.

The very sparse structure of J in the PARAFAC case (Paatero, 1997) induces some
observations regarding whether or not it is advantageous to exploit it in solving (17) without
using the system of normal equations. By partitioning the Jacobian as [JA| JBC] where JA
and JBC refer to the parameters in A and in B and C respectively and by a simple row
permutation, it is apparent that problem (17) has a block angular form (i.e. JA is block
diagonal, each block being JK × F ). A substantial reduction in the number of operations
could be attained by using a QR algorithm specifically designed for this type of problems
(Björck, 1996). Even greater savings may be achieved considering that the I blocks in JA
are identical. It is important to notice, though, that such savings are significant if one of the
dimensions of X is much larger than the others (Björck, 1996; Paatero, 1997). The fill relative
to JBC as the QR decomposition progresses, makes the use of sparse QR function impractical
in most of the other cases: after JA part has been treated, JBC is full, sparse storage is
consequently less effective and bears no advantage in terms of number of operations. For
this reason, the artificial data sets employed in the experimental part are not designed to test
this aspect and the implementation of a block angular QR algorithm specific for PARAFAC
is left for future developments. Hence, problem (17) is solved by means of the system of
normal equations (19) using the Matlab (www.themathworks.com) built-in (full) Cholesky
decomposition and back-substitution. Since J is typically a very thin and tall matrix, this
solution is particularly advantageous. Furthermore, if no weights are required, the Jacobian
J need not be formed and both JTJ and JTr can be computed directly without recurring to
sparse matrices (Liu and Sidiropoulos, 2001), whose creation and update are rather slow.

2.3.1. dGN
The algorithm as outlined in the previous section is not sufficient to yield a globally con-

vergent algorithm for fitting the PARAFAC model, which is intrinsically indeterminate with
respect to factor scaling (cf. Appendix A). This phenomenon leads to rank deficiency of the
Jacobian, which has always at least 2F zero singular values, and consequently to singular-
ity of H̃, a problem that can be successfully handled by the damped Gauss Newton (dGN)
algorithm devised by Levenberg and Marquadt (Björck, 1996; Levenberg, 1944; Marquadt,
1963). In dGN, the update �p(s) is calculated from the modified normal equations:

(
H̃ + �(s)IN

)
�p(s) = −g, (19)

http://www.themathworks.com
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which is equivalent to solving problem (17) under the constraint:

∥∥∥�p(s)
∥∥∥2

2
��

(
�(s)

)
. (20)

That is to say, the minimum is sought within a region (the trust region) of radius �
(
�(s)

)
(Madsen et al., 2004). If the damping parameter �(s) is large enough compared to the singular

values of H̃, the matrix
(

H̃ + �IN

)
is non-singular and system (19) can be efficiently solved

(Björck, 1996; Madsen et al., 2004).
The updating strategy for �(s) is crucial for the efficiency of the algorithm. The scheme

used in the implemented dGN algorithm is thoroughly described in Madsen et al. (2004)
and is based on the ratio between the actual variation of the loss function (�L) and the linear
decrease �L̃ = L̃(0) − L̃(�p). E.g., if this ratio is less than 0 (which, if �p(s) is a descent
direction, implies �L < 0), the step is rejected and �(s) is increased. The idea behind such
updating scheme is that if the ratio is small, the linear approximation does not hold and
thus the region must be shrunk. Vice versa, if the ratio is very large the linear model holds
and the region can be enlarged. This strategy allows dealing effectively with non-linearities
and, as can be seen from Eq. (20), the damping parameter can determine the shortening or
the elongation of the step by acting on the trust region size. Thus, it produces results similar
to those expected by a line search procedure, which consequently was not implemented in
the dGN algorithm.

The intrinsic scaling indeterminacy poses another problem that may affect the numerical
stability of the algorithm: if the conventional scaling used for the PARAFAC model is
applied

(
i.e.

∥∥bf

∥∥ = ∥∥cf

∥∥ = 1
)
, the values of the norms of the columns of J may differ

by several orders of magnitude (typically aif bjf �aif ckf?bjf ckf ) depending on the data.
Such problem is reflected in the practical condition number of J (i.e. computed disregarding
the last 2F zero singular values (Tomasi and Bro, 2004)) and thus in the accuracy of the
solution of the system of normal equations and can be avoided by employing a different
scaling convention (see Appendix A), whereby the different loading vectors for the same
factor are given the same norm

(
i.e.

∥∥af

∥∥ = ∥∥bf

∥∥ = ∥∥cf

∥∥)
. The rescaling is performed

at each step as it represents a small additional overhead compared to other steps of the
algorithm.

With specific reference to memory consumption, dGN is the most expensive method
together with PMF3 (cf. the next section). It requires, besides the original array X, three
vectors of size M × 1, N × 1 and N × 1 for respectively r, g and p, and two NF × NF

matrices, one for H̃ and one for the Cholesky factor of
(

H̃ + �IN

)
. Both the matrices are

almost full and are treated as such (Paatero, 1997).

2.3.2. PMF3
Paatero (1997) proposed several modifications to dGN in the PMF3 algorithm: the pres-

ence of a regularisation factor and a very specific non-linear update. Besides, PMF3 employs
a line search procedure that is called whenever the algorithm diverges. In its original form,
PMF3 also includes a weighted least squares loss function and possible non-negativity con-
straints on the parameters, but these are of no concern in this work. Since they can both be
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safely removed from PMF3, they will be ignored in the brief description given here as well
as in the simulations.

The loss function of PMF3 differs from (13) by the presence of a regularisation term:

LPMF3(p) =
M∑

m=1

r2
m(p) + �

N∑
n=1

�
p

2

n = r(p)Tr(p) + �
�
p

T �
p , (21)

where
�
pn = (

pn − p•
n

)
and p•

n is the target value (0 in this case) for the pn parameter. � is
a coefficient that varies depending on the problem at hand. Eq. (21) leads to the following
modified system normal equations (see Appendix B):

˜̃H�p′(s) ≡
(

H̃ +
(
�(s) + �(s)

)
IN

)
�p′(s) = −JTr + �(s)

�
p

(s)

, (22)

which is again solved for �p′(s) (the apex is to distinguish this update from the non-linear
one described below).

As p• = 0, the regularisation term is a scalar � times the norm of the vector p, and thus
penalises high absolute values for the parameters. The goal of this procedure is to correct
the loss function for the scaling indeterminacy as well as non-identifiability (Paatero, 1997).
Paatero also suggests equating the influence of the different slabs in the penalty term by
using different �s for each estimated parameter when there are essential scale differences
between the slabs of array X. The scaling convention illustrated in Section 2.3.1 attains a
similar result in the sense that the three modes have exactly the same weight in the penalty,
thus one � was deemed sufficient.

The update strategy for � followed the scheme suggested in Paatero (1997): � is decreased
by a factor �update when the loss function decreased (in relative terms) by less than a certain
threshold for at least �it consecutive iterations. No indications are given in Paatero (1997)
about the magnitude of � (which is problem dependent) or the spacing of the thresholds.
An initial value for � that seemed reasonable and that heuristically appeared to be good for
the analysed problems was 1. By similar means, five thresholds were set so that their base
10 logarithms were equally spaced between −1 and the log10 of five times the convergence
criterion in terms of relative fit (e.g. −5.3 for a 10−6 criterion).

The non-linear update �p′′ is computed by solving the system:

˜̃H�p′′(s) = −J
(
p′)Tr

(
p′) + �(s)

�
p

(s)

, (23)

where p′ =p(s) +0.5�p′(s). The final update is chosen as the one between �p′(s) and �p′′(s)
that provides the largest reduction in the loss function. The main reason for this rather
complicated procedure seems to be avoiding to compute the full Hessian (which may not
be positive definite (Madsen et al., 2004)) and still obtain an update that may be a better
approximation of the Newton direction, which again is more appropriate than the dGN step
in case of e.g. large residuals (Madsen et al., 2004). Furthermore, the Cholesky factor of
˜̃H need not be recomputed to solve (23), which allows for some savings in the number of
operations, and J

(
p′)Tr

(
p′) can be efficiently determined without having to compute J (Liu

and Sidiropoulos, 2001). However, no reference or reason are given for the 0.5 coefficient
to obtain p′.
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The actual implementation of PMF3 employs a soft line search procedure (described in
Section 2.4) for both the linear and the non-linear update whenever the algorithm diverges.
In the original algorithm, should the line search procedure fail to retrieve a step-length
yielding a reduction of LPMF3, a special step optimising one parameter at a time would
follow. The strategy followed in the implementation of PMF3 used for the tests is slightly
different and if 10 iterations of the line search fail, the step is rejected and the damping
parameter is increased using the standard dGN procedure.

The memory requirements of PMF3 are the same as for the dGN algorithm.

2.4. Line search

Line search procedures are applicable for all iterative methods with a well-defined
loss function. The reasons and the implementation vary depending on the algorithm. In
PARAFAC-ALS, line search is employed solely to speed up the algorithm. After the s-th it-
eration, the variation of the three loading matrices with respect to iteration s−1 is calculated(
e.g. �A = A(s) − A(s−1)

)
and is used to linearly predict the corresponding matrix d iter-

ations ahead
(
e.g. A(s+d) = A(s) + d�A

)
, where d is determined empirically as a function

of the number of iterations (Bro, 1998).
In the case of derivative based methods, this procedure copes with non-linearities of the

loss function and with high residuals (Madsen et al., 2004). The basic idea is to consider
the update �p(s) as a direction along which a step of length �(s) is taken; the step length
can be found as a solution to the univariate minimisation problem

min
�

L̃(p + ��p) = min
�

L′(�). (24)

The search for the solution minimiser �∗, which need not be determined with great accuracy
(Madsen et al., 2004), is performed in the implemented PMF3 algorithm by a simple proce-
dure interpolating a quadratic model on at least three values of L′(�) calculated at �=0, 0.5
and 1. If these three initial points bracket a minimum there are sufficient conditions for �∗
to be estimated; otherwise new points are added until a minimum is bracketed.

2.5. Compression

The main problem with derivative based methods is that, even though they typically
require fewer iterations than ALS, the number of operations per step and the memory
requirements are significantly higher, up to the point of being inapplicable for larger arrays
(Paatero, 1997). A possible solution is to reduce the dimensions of the array on which the
Gauss–Newton method is used. The compression based on the Tucker3 model fulfills this
task (Bro and Andersson, 1998; Kiers, 1998). Although it introduces additional complexity
in the algorithm, this part eventually provides a large reduction in the number of operations.
Furthermore, it needs only be done once, whereas several alternative PARAFAC models are
usually fitted to find the most feasible one. Once the PARAFAC model has been calculated
on the core extracted by the Tucker3 algorithm, the solution can be expanded to its original
dimensions providing very good starting values for the PARAFAC-ALS standard algorithm,
which is used only to refine it.
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The compression of the array X is based on the search for three truncated bases spanning
the variation in each mode and the projection of X on them. Calling these bases U (I ×L),
V (J × M) and Z (K × N) for the first, the second and the third mode respectively, the
loadings of the PARAFAC model can be expressed as

A = UP, (25a)

B = VQ (25b)

and

C = ZR, (25c)

where P is a L × F matrix, Q is a M × F and R is N × F . The CANDELINC theorem
(Carroll et al., 1980) states that, if a PARAFAC model is sought under the linear constraints
expressed in (25a–c), it is only necessary to estimate P, Q and R, which can be done by
fitting a PARAFAC model to the array G calculated as

G(L×MN) = UTX(I×JK)(Z ⊗ V). (26)

Typically G is much smaller than X due to the redundancy of information in the latter. The
three bases and G are found by applying the Tucker3 model, which is both fast and efficient,
to X. The G array is the core produced by Tucker3 while the bases are the three loading
matrices.

For this application, it is not necessary to calculate an exact Tucker3 model because
the compressed array is only an approximation of the original one and the final model
would need to be refined anyhow. Hence, several simplifications are utilised to minimise
computational cost of this step: first of all the number of iterations for Tucker3 is limited
both by fixing a relatively small maximum number of allowed iterations and by increasing
the convergence criterion. Tucker3 is initialised by using orthogonal matrices of random
numbers. In order to balance the lower fit deriving from the low number of iterations, the
number of components extracted in each mode (that is the number of vectors forming the
truncated bases) is slightly increased; it has been observed empirically that a reasonable
choice is equal to the number of factors sought by PARAFAC plus 2 (of course upper limited
by the dimensions of the array) (Andersson and Bro, 2000; Bro, 1998).

With respect to memory consumption, the expressions given in Sections 2.2.1 and 2.3 are
applicable here, with the sole difference that the array upon which the algorithm is applied
has dimensions (F + 2) × (F + 2) × (F + 2).

3. Experimental part

Nine algorithms are studied in this section using both simulated and real data: DTLD-
GRAM, PARAFAC-ALS, ASD, SWATLD, dGN, PMF3, PARAFAC-ALS with compres-
sion, dGN with compression and PMF3 with compression. For space reasons the single
implementations will not be discussed in detail; in general, the MATLAB 6.5
(www.themathworks.com) guidelines for improving performances were followed (e.g. max-
imising the use of built-in functions). DTLD and PARAFAC-ALS are part of the N-Way

http://www.themathworks.com
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Table 1
Design factors and levels for the artificial data sets

Rank 3,5
Noisea Homoscedastic 1,5,10

Heteroscedastic 0,1,5
Congruence 0.5,0.9

aPercent of
∥∥∥X(I×JK)

∥∥∥2

F
(i.e. % of total variation).

Table 2
Condition number for A, B and C in the artificial data sets

Congruence

0.5 0.9

Rank 3 2 5.29
5 2.44 6.78

toolbox (Andersson and Bro, 2000).ASD was implemented according to Faber et al. (2003).
The other m-files are available for download at www.models.kvl.dk.

3.1. Simulated data

Simulated data sets have the advantage that important features can be controlled so that
their effect on the different methods may be assessed. Hence, a Monte Carlo study has been
carried out based on 720 arrays of dimension 20×20×20 considering the following aspects:
rank of the systematic part of the multi-way array (F ), congruence of the true components
(see Appendix C) and amount and type of noise (Table 1). For each combination of these
conditions 20 replicates were generated to counterpoise minor statistical fluctuations. The
final number of data sets amounted to 2 ranks ×3 levels of homoscedastic noise ×3 levels
of heteroscedastic noise ×2 congruences ×20 replicates, which is again equal to 720.

As to provide the proper collinearity, the components were generated according to the
following scheme, applied to all the required loading matrices (Kiers et al., 1999):

• The Cholesky factor R is calculated of an F × F (where F is the number of factors)
matrix having ones on the diagonal and the desired values of congruence between the
loading vectors as off-diagonal elements.

• A column-wise orthogonal matrix U of size I ×F (where I here represents the dimension
in the mode the loading matrix refers to) is generated.

• The loading matrix is then defined as L = UR.

One thing to notice is that for all the data sets having the same number of underlying
components and equal congruence, the condition number of the loadings matrices is the
same (see Table 2). In particular, according to Kiers (1998), for congruence 0.5 the level

http://www.models.kvl.dk
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of collinearity is relatively low while for congruence 0.9 the underlying factors are only
mildly collinear. With the employed method, higher values for the condition number are
only attainable by increasing the congruence among the factors to an extremely high value
(viz. to yield a condition number of 11, the average for severely collinear set in Kiers (1998),
the congruence has to be 0.9956) or by reducing the numerical relevance of one or more
of the factors. The first option was ruled out because such high values of congruence are
seldom found in practice, while the second option was avoided to limit the number of design
factors in the simulation.

Homoscedastic and heteroscedastic noise were generated from random identically (and
normally) distributed numbers and two distinct arrays were added to the noise-less ar-
ray X : Rho for the homoscedastic part and Rhe for the heteroscedastic one. In order to
make the latter proportional, each element of Rhe was multiplied by the corresponding
element in X. Both Rho and Rhe were also normalised to a Frobenius norm of

∥∥X(I×JK)
∥∥

F
and multiplied by two suitable scalars depending on the desired level of noise (see
Appendix D).

Finally, for each experimental set up two models were fitted, extracting F or F +1 factors.
The aim was to acquire information on the stability of the methods when the wrong number
of components is extracted. A total of 1440 models were fitted using each algorithm.

3.2. Real data sets

The algorithms were tested on two real data sets both constituted by fluorescence mea-
surements:

1. Twenty-two solutions containing different amounts of four compounds (DOPA, hy-
droquinone, tryptophan and phenylalanine) were analysed on a Perkin-Elmer LS50 B
spectrofluorometer. The excitation wavelengths ranged between 245 and 305 nm, with
a step of 5 nm while in the emission mode the interval was: 260–390 nm with a step of
1 nm (Baunsgaard et al., 2000). The Rayleigh scatter was removed by subtracting from
each sample a model for the scatter.
Three replicates from each sample were then generated by excluding every third wave-
length in the emission mode, i.e replicate one the wavelengths 260, 263 nm, etc. were
removed, in replicate two the wavelengths 261, 264 nm, etc. were kept out while in the
third the left out wavelengths started at 262 nm again with 3 nm increments. Hence, the
data set consisted of three different arrays having dimensions 22 × 87 × 13, for the first
two replicates, and 22 × 88 × 13 for the last.

2. Fifteen solutions containing DOPA, hydroquinone, tyrosine and tryptophan in different
amounts were examined using a Cary Eclipse spectrofluorometer. The excitation wave-
lengths ranged between 230 and 300 nm measured at intervals of 5 nm, the emission was
measured at 282–412 nm with 2 nm steps and the scatter was removed by subtracting
a blank from each sample. Six replicates of each solution were analysed leading to six
different arrays of dimensions 15 × 66 × 15.

In both data sets, the different replicates have been modelled separately to give different
realisations of the same model.As for the simulated data, the effect of over-factoring has been
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Table 3
Condition numbers for the loading matrices and congruences between factors

Condition number Congruence (min − max)

A B C A B C

Data set I 2.83 5.96 20.44 0.31–0.49 0.002–0.88 0.15–0.94
Data set II 8.99 12.24 8.07 0.46–0.51 0.15–0.86 0.54–0.94

Table 4
Tested algorithms and relative parameters for the simulated data

Algorithma Convergence criterion Value Max n. iterations Other parameters

DTLD — — — —
ALSb, ALSc, SWA Relative fit 10−6 10000 —
ASD Relative fit 10−6 10000 � = 10−3

dGN, dGNc Relative fit 10−6 1000 �(0) = max
(

diag
(

H̃(0)
))

c

Gradient 10−9

PMF3, PMF3c Relative fit 10−6 1000 �(0) = max
(

diag
(

H̃(0)
))

c

Gradient 10−9 � = 1, �update = 5, �it = 3

aDTLD: DTLD-GRAM; ALS: PARAFAC-ALS; SWA: SWATLD; ALSc: PARAFAC-ALS with compression;
dGNc: damped Gauss–Newton with compression; PMF3c: PFM3 with compression.

bCovers also the refining step for ALSc, dGNc and PMF3c.
cdiag(H) = [h11 h22 · · · hNN ]T for an N × N matrix.

analysed by fitting both 4 (the expected rank, represented by the number of constituents)
and 5 components.

Table 3 shows congruence and condition numbers of the estimated loading matrices when
4 components are extracted; as it can be seen, both data sets are mildly collinear according
to Kiers (1998). In fact, data set II is more problematic then data set I if the evaluation is
based on the Jacobian’s practical condition number (Tomasi and Bro, 2004), hence likely
giving rise to greater numerical problems.

3.3. Initialisation and conventions

Initial estimations for the parameters were necessary for all the algorithms but DTLD-
GRAM and were obtained by running five standard PARAFAC-ALS iterations (the ‘relative
fit decrease’ convergence criterion set to 10−4) starting with ten different sets of matrices of
uniformly distributed values and then choosing the best fitting set to continue the process
with the main algorithm.

The settings for the different tuning parameters, namely convergence criteria, �s and �s,
are shown in Tables 4and 5 for respectively the artificial and the real data. The different
choices were due to the number of models that needed to be calculated. Hence, for the
real data sets it was possible to make the convergence criteria stricter without making the
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Table 5
Modified convergence criteria for the real data sets

Convergence criterion Iterations

ALSa, SWA, ASD, ALSc Relative fit 10−8 20000
dGN, PMF3, Relative fit 10−8 1000
dGNc, PMF3c Gradient 10−10

For dGN, PMF3 and ALs the criteria are applied also when the method is used on the compressed array.
aCovers also to the refining step for ALSc, dGNc and PMF3c.

calculation time intolerably long.
With respect to the scaling indeterminacy the components were scaled and given a sign

according to the convention described in Appendix A: the loading vectors belonging to the
same component were scaled so that their norm was the same and the sign of the loading
vectors in B and C was chosen so that the sign of the sum of the elements for each factor
was positive.

3.4. Criteria of interest

The initial assessment regarded the quality of the solution. In this respect, four different
parameters have been considered: value of the loss function, occurrence of full recoveries
(defined below) and of 2FDs and mean squared error (MSE) of the parameter estimates.
For the real data sets, the concentration of the different constituents was available and the
Root Mean Squared Error in Calibration (RMSEC—cf. Appendix D) relative to predicting
the concentrations from the first mode loadings (scores) using linear regression was used
as an additional evaluation parameter.

Due to the large number of models, a graphical comparison and control was not fea-
sible. Therefore, the quality of the factor estimates was assessed numerically in terms of
congruence between the known underlying factors and the extracted factors (Mitchell and
Burdick, 2004; Tomasi and Bro, 2004). Specifically, one can consider a factor as completely
recovered if there is one component in the estimated model having a congruence greater
than a certain ‘recovery threshold’ (close to 1). Congruence tends to be quite an optimistic
method and a limit lower than 0.99 for the single loading vector may not be good enough
for automated procedures. Besides, the aim of this threshold was to provide a common
comparison ground for the different algorithms and thus a value of 0.99, which ensures that
the full recovery occurred, was preferred. For the single component the threshold was thus
set to 0.993 	 0.97 (Tomasi and Bro, 2004).

Due to the permutation indeterminacy (Bro, 1998), the order of the factors in the three
loading matrices is not determined beforehand, but comes as a consequence of the initial
estimations provided to the algorithm. All the possible permutations of extracted factors (up
to F) were compared with the correct loading matrices and the final choice (the ‘winning
permutation’, represented by the permutation matrix P) was the one associated to the highest
sum of the congruences for all the original factors (Mitchell and Burdick, 1994). Finally,
full recovery occurs if all the F congruences in the latter permutation were greater than the
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recovery threshold.
The occurrence of a 2FD is established when the congruence between two components

within the same solution is less than or equal to −0.8.
The MSE can be calculated separately for each of the loading matrices and is an indication

of the distance between the extracted factors and the actual ones. For A, MSE can be
calculated as

MSE
(

A, Â, P, SA

)
=

∥∥∥A − ÂPSA

∥∥∥2

F

IF
, (27)

where A refers to the underlying factors and has been adequately scaled (see Appendix A),
A is the extracted I ×F (or I ×F +1) loading matrix, and SA is an F ×F scaling (diagonal)
matrix solving the problem (Riu and Bro, 2003):

min
SA,SB,SC

L
(

A, B, C, Â, B̂, Ĉ, P, SA, SB, SC

)

=
∥∥∥A − ÂPSA

∥∥∥
F

+
∥∥∥B − B̂PSB

∥∥∥
F

+
∥∥∥C − ĈPSC

∥∥∥
F
,

subject to SASBSC = IF (28)

In case of over-factoring, P is represented by the first F columns of the F + 1 × F + 1
winning permutation matrix (thus P is F × F when F factors are extracted and F + 1 × F ,
if a F + 1 components model is fitted). It has been observed that, if the variation captured
by each factor is equally spread over the three corresponding loading vectors, the MSEs for
the different loading matrices are similar in magnitude. For simplicity the MSE is presented
as an average among the MSEs of A, B and C.

The second main aspect considered in the tests was the computational efficiency, which
is relatively complex to define. In general, one may say that the best method is the one that
produces the solution using as few floating point operations (FLOPs) as possible. Neverthe-
less, with the advent of vector machines and the implementation of block algorithms, this
parameter is inadequate to give a clear picture; other aspects such as memory traffic and
data access are in fact equally important and very machine dependent (Golub and Van Loan,
1996). As mentioned, the algorithms were implemented as to yield (to the authors’ knowl-
edge) optimal performances in terms of time consumption under MatLab 6.5 and used only
built-in functions. All the tests were performed on the same dedicated machine (mounting
a 2.6 GHz Pentium IV processor, 512 MB of memory and running on WindowsXP) and the
attention was concentrated on the time consumption and the number of iterations necessary
to reach convergence.

3.5. Results and discussion

3.5.1. Simulated data
The first aspect to be considered was recovery capability (factor congruence). Overall,

all the iterative algorithms managed to retrieve the correct solution (with a congruence
threshold of 0.97) in more than 50% of the cases (Table 6). The best algorithm in this
respect is SWATLD, with 63.6% of correct solutions, followed by damped Gauss–Newton
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Table 6
Percentage of full recoveries (threshold 0.97) for the different algorithms on the simulated data sets

Rank 3 5 Global

Congruence 0.5 0.9 0.5 0.9

Extr. Factors 3 4 3 4 5 6 5 6

DTLD 89 68 8 7 23 13 0 0 26.1
ASD 100 79 19 12 99 87 4 1 50.1
SWA 100 100 46 40 99 99 12 12 63.6
ALS 100 59 51 36 99 70 12 11 54.7
dGN 100 82 52 41 99 86 13 11 60.5
PMF3 100 91 52 40 99 91 13 13 62.4
ALSc 100 64 51 39 99 76 12 12 56.8
dGNc 100 94 50 42 99 92 12 12 62.7
PMF3c 100 90 49 42 99 91 12 13 62.0

All the noise levels have are considered. The last column (Global) reports the percentage of full recoveries for
each algorithm over the 1440 models of the Monte Carlo simulations.

with compression (62.7%) and PMF3 (62.4%). DTLD, the only direct method, attained the
correct solution in only 26.1% of the cases and yielded the worst performance, followed by
ASD with 50.1%. ALS falls in the lower part of the range with 54.7% full recoveries.

While DTLD did consistently worse than the other algorithms in all setups, the perfor-
mances of ALS were equivalent to those of the derivative based algorithms and SWATLD
when the rank was correctly estimated (Table 6). Conversely, ALS was heavily affected
by an incorrect estimation of the rank and this sensitivity was reduced, but not eliminated,
by compression. It can be seen from both Table 6 and Fig. 1 that the most robust method
in this respect is SWATLD, whose performance is remarkably good: when the rank was
overestimated, SWATLD performed equally or better than when rank was correctly set in 30
out of the 36 setups while for example ALS did worse in 21 setups in case of over-factoring.
Also the derivative based methods seem considerably more robust than PARAFAC-ALS
with respect to over-factoring. This is true also when the algorithms are applied together
with compression, even though ALS’ performance improves considerably.

The higher resistance of the derivative based methods to over-factoring is likely to be
associated to the regularisation terms (both the damping parameter � and the PMF3 regu-
larisation term). A link has been established between rank of the array, rank of the model,
occurrence of 2FDs (Krijnen, 1993; Kruskal et al., 1989; Paatero, 2000) and swamps, which
are characterised by 2FDs and may lead to a premature stop of an algorithm. Regularisation
may help in dealing with 2FDs (Paatero, 2000; Rayens and Mitchell, 1997) and thus it
seems reasonable that it operates favourably when the rank is overestimated. 2FDs (with a
congruence threshold of −0.8) could be observed considerably more often when the rank
is overestimated (e.g. 55 cases against 4 for ALS for overestimated and correct rank and
125 against 15 for dGN). The sole exception in this sense was SWATLD, which did not
yield any 2FD in any of the models, regardless of over-factoring. This may help explaining
the efficiency of the latter method with respect to over-factoring, and that avoiding 2FDs
during the early stages of the fitting procedure may significantly help retrieving the correct
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Fig. 1. Recovery (threshold 0.97) with correct number of factors (F ) and in case of over-factoring (F + 1). All
the conditions and replicates have been considered.

solution. The SWATLD solutions typically have a higher core consistency (Bro and Kiers,
2003) than the corresponding least squares solution (not shown), i.e. they seem to be biased
towards describing only the strictly trilinear contributions and are likely less affected by
possible interactions between factors that may emerge during convergence (e.g. the fact
that part of the variation is associated to a factor is described by another). Nonetheless, it
is difficult to establish what makes SWATLD so resistant to 2FDs and over-factoring. The
fact that the algorithm uses three different loss functions and that its actual optimisation
criterion is not known makes any conclusion in this direction rather inappropriate. Further
analyses will be necessary to understand these reasons and will be the subject for future re-
search. With respect to 2FDs, ALS yielded fewer in the final solution than any other method
except SWATLD (4.1% of all models). The worst algorithm was ASD with 11.0% and this
clearly contrasts with the claim of the original authors on the capability of this algorithm
of avoiding 2FDs (Jiang et al., 2000). At the same time, PMF3 yields slightly fewer 2FDs
than dGN (8.7% and 8.8% respectively—without compression) and compression increases
their occurrence in all the methods to which it was applied (6.6% for ALSc, 9.7% for dGNc
and 9.0% for PMF3c). The number of 2FDs for the least squares algorithms seems to fol-
low the performances in terms of recovery capability, which suggests that the number of
degeneracies is simply the consequence of the higher efficiency of some methods. Setting
a smaller threshold to establish degeneracy (viz. −0.5) more or less equalises the number
of 2FDs for ALS and the derivative based methods to approximately 20% of all models
and seems to confirm that 2FDs become generally worse for dGN and PMF3. The small
difference between dGN and PMF3 can be explained as an effect of regularisation.

The effect of the compression step on ALS, dGN and PMF3 is rather different. Particu-
larly, the recovery capability of ALS and dGN visibly improves in case of over-factoring
(plus 4.2% and 5.3% respectively when all ranks and degrees of collinearity are consid-



1720 G. Tomasi, R. Bro / Computational Statistics & Data Analysis 50 (2006) 1700–1734

ered) remaining approximately the same (unchanged for ALS and −0.8% for dGN) when
the rank is correctly set. On the contrary, PMF3 recovery capability remains largely unal-
tered (−1% and 0.3% respectively for correct tank and over-factoring). While the beneficial
effects of compression may be explained in terms of removal of noise and spurious infor-
mation, the different behaviour of PMF3 compared to dGN is not clearly understood yet.
There are several differences between the two algorithms. In particular, dGN implements
a more refined damping parameter’s updating scheme (Madsen et al., 2004) than PMF3
(Paatero, 1997), whereas the second employs soft line search and a regularisation factor
that operates in a similar fashion as the damping parameter, possibly supplementing to
the shortcomings of its simple trust region implementation. In fact, preliminary additional
results show that using the � updating scheme of dGN for PMF3 yields results similar to
those of dGN, with a reduction in the number of full recoveries for PMF3 and better results
for PMF3c.

Collinearity between the underlying factors is the feature that most affects the number
of full recoveries. For both ranks and when the number of components of the array is
correctly set, a significant drop in the performance can be observed for all algorithms as
collinearity increases (Table 6 and (Kiers, 1998)). It is particularly relevant that DTLD and
ASD, which explicitly assume linear independence of loading vectors, are the most affected
by collinearity. SWATLD, which works under similar basic assumptions, is affected to a
much lesser extent and although visibly inferior to the least squares methods when the
correct number of components is fit, it still performs slightly better than e.g. ALS in case
of over-factoring. Again, the non-least squares criterion and the variety of ad-hoc solutions
of this method make it difficult to explain this additional stability.

With respect to noise levels, the different algorithms (again with the exception of DTLD
and ASD) are affected in a similar way (Fig. 2). An increase in the level of noise always
leads to a worsening in the recovery capability when the rank is correctly set. This is partly
due to lack of convergence to a meaningful solution, but also to the inclusion of some noise
in the components that makes their congruence with the original factors smaller than the
threshold (Kiers, 1998). Heteroscedastic noise has a greater effect than homoscedastic noise
and considering the setups where the total amount of noise is the same (viz. 1 − 5/5 − 1
and 5 − 5/10 − 0), the recovery capability is worse when heteroscedastic noise is larger,
dropping from 65% to 70% to approximately 50%. Conversely, an improvement could be
observed for low or intermediate homoscedastic noise as heteroscedastic noise increased
and the model rank exceeded the correct one. This was found true in the low collinearity
case for all algorithms apart from DTLD. The improvement is consistent over the amount of
heteroscedastic noise and is quite dramatic for ALS and ALSc, with an increase from 30%
of full recoveries at 1% homoscedastic and no heteroscedastic noise to 90% (80% without
compression) at 5% heteroscedastic noise and 95% (with and without compression) when
both types of noise were fixed at 5%. In the high congruence case, this behaviour could
be observed at 1% homoscedastic and heteroscedastic noise, in which case the extraction
of an additional component brought to an improvement between 5% (for dGN and PMF3)
and 12.5% (ALS) in the occurrence of full recoveries. A possible explanation is that part
of the noise is retained in the additional component and that a certain degree of systematic
behaviour in the noise facilitates its extraction. At the same time, the additional factor
prevents noise from altering the loadings, which explains the increased number of full
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Fig. 2. Effect of noise on recovery capability (threshold 0.97) when the correct number of factors is extracted. All
congruences and ranks are considered.

recoveries.
The second aspect on the quality of the solution to be analysed was how close the cal-

culated solution was to the real underlying factors. Fig. 3 shows the median MSE for the
case of correct model rank and low collinearity. The solution provided by the two non-least
squares iterative algorithms (i.e. ASD and SWATLD) are noisier than the others. The use
of the median penalises DTLD in the rank 5 case since this method does not yield the
correct solution in at least 50% of cases. Nevertheless, it can still be seen that for rank 3
data sets characterised by low collinearity, when the performances in terms of recovery are
sufficiently good, the MSE is still higher, albeit not by much, than for the least squares
methods.

Similar conclusions can be drawn by studying the value of the loss function, or, more
precisely, the occurrence of values of the loss function (6) that differ by less than 10−4 in
relative terms from the minimum yielded by any of the algorithms (results not shown). Only
in a negligible number of cases (0.4%, all of them in the low rank, low collinearity case
with over-factoring) SWATLD reached the same minimum as the least squares methods.
This is surprising considering the higher recovery capability of this algorithm, but confirms
that this method does not find the least squares solution but rather one that is biased towards
a higher core consistency. Analogous observations can be made for ASD, which never



1722 G. Tomasi, R. Bro / Computational Statistics & Data Analysis 50 (2006) 1700–1734

Fig. 3. Median MSE for the parameters estimates when the correct number of components is fitted. Only the low
congruence case is depicted in the figure.

yields the lowest value of a least squares loss function. It is interesting to notice how the
use of compression improves the results of all the algorithms in this respect. The most
significant improvement is that of PARAFAC-ALS (plus 9.5% of attained minima), but
also the two derivative methods (plus 8.5% and 6.0% respectively for dGN and PMF3)
perform appreciably better.

The final assessment of the algorithms regarded their convergence rate and the computa-
tional costs expressed in terms of number of iterations and time consumption respectively.
Although the number of iterations for the different methods varies significantly, particularly
between alternating methods and derivative based ones (Paatero, 1997; Tomasi and Bro,
2004), it is still possible to assess the effect of the various design factors on convergence
rate, the effect of compression on the various algorithms, and whether PMF3 (and corre-
spondingly PMF3c) converges more rapidly than the standard dGN method (and dGNc).

All the considered design factors have an influence on the number of iterations in fitting,
which increases with rank, congruence and over-factoring (Table 7), confirming previous
results (Hopke et al., 1998; Kiers, 1998). With respect to noise, though, the behaviour is
different and all the methods apart from SWATLD and PMF3 use fewer iterations when
the rank is overestimated in at least 50% of the cases as heteroscedastic noise increase. The
reason for this may be again that especially the heteroscedastic noise simplifies the fitting
of an additional component holding the systematic part of the noise.

When using as initial values those found by fitting a model on the compressed space (Table
7), the number of PARAFAC-ALS full data iterations (FDIs (Kiers, 1998)) in 93–100% of
the cases approximately 21.5% (median over all conditions). In particular, 2 FDIs were
sufficient to refine the solution in 17.6% of the cases for PMF3c and in 19% for LMc, all
but one for correctly estimated rank. The number of FDIs does not vary much depending
on the algorithm used in fitting, and is identical to the minimum attained with any method
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Table 7
Median number of iterations. All levels of noise are considered in each cell

Rank 3 5

Congruence 0.5 0.9 0.5 0.9

Extr. Factors 3 4 3 4 5 6 5 6

ASD 8 25 83 85 8 19 99 122
SWA 7 41 35 55 8 38 72 96
ALS 10 48 60 80 12 46 91 110
dGN 6 70 16 54 7 54 53 91
PMF3 7 63 17 51 7 55 47 85
ALSc 10 (2) 82 (8) 97 (5) 156 (16) 12 (2) 70 (10) 195 (28) 243 (34)
dGNc 7 (2) 75 (10) 17 (5) 61 (16) 7 (2) 67 (12) 54 (26) 87 (33)
PMF3c 8 (2) 51 (10) 18 (5) 50 (16) 8 (3) 47 (12) 47 (26) 78 (34)

The number in parenthesis for ALSc, dGNc and PMF3c indicates the number of PARAFAC-ALS iterations in the
refinement step.

in 75.8% of the cases for PMF3c, 77.6% for dGNc and 79.7% for ALSc (not shown).
This is particularly true for dGNc and PMF3c: the maximum difference in the number
of FDIs for the refinement step is less than or equal to ten in 95.3% of the cases. With
respect to the various design factors, the refinement step is affected by the same features as
the PARAFAC-ALS algorithm, namely rank, congruence, noise and overfactoring, which
determine an increase in the number of iterations necessary to attain convergence (results
not shown).

The number of compressed data iterations (CDIs (Kiers, 1998)) for ALSc, dGNc and
PMF3c depends on the varied conditions and is normally larger than the number of FDIs
for the same algorithm (Table 7). However, whereas for ALSc the number of CDIs increases
(or remains the same) in 89% of the cases compared to ALS, the same holds for the two
derivative-based algorithms only when the rank is correctly set (84% and 81% for dGNc and
PMF3c respectively). The opposite is true instead for PMF3, which requires fewer CDIs in
case of over-factoring in more than one case out of two (i.e. 54.2%).

The fastest iterative methods were clearly ASD and SWATLD (Fig. 4). They required
less time than any other iterative algorithm in 44.2% and 41.7% of all models respectively
(not shown). ALS (13.6%) and dGN (0.5%) accounted for the remaining cases. As pointed
out in Section 2.2.2, ASD employs compression by means of singular value decomposition,
which explains the good performances of this method. On the other hand, as for the recovery
capability, ASD is heavily affected by the collinearity of the underlying components and
performs worse than SWATLD in more than one case out of two (Fig. 4) of the models with
high congruence between the underlying factors. The 196 models (13.6%) for which ALS
is the fastest method are more or less equally scattered between the various conditions, with
a slight dominance for the high congruence cases (122 compared to 74).

In terms of time expense, ALSc was found slower than ALS 94.4% of the times (Table
8). The reason for this is that the cheaper iterations deriving from compression are counter-
acted for ALS by their increased number. On the contrary, the advantage of compression is
apparent for the two derivative-based methods, which (without compression) are clearly the
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Fig. 4. Median time consumption. a,b) low congruence, c,d) high congruence case. All noise levels are considered.

most expensive ones (Fig. 4). Since compression makes the fitting step independent of the
dimensions of X, the bad performances of ALSc compared to ALS are likely caused by the
small dimensions of the X array used in the tests (Bro and Andersson, 1998; Kiers, 1998).
However, ALSc is also slower than dGNc for 55% of the models and is only faster than
dGN, PMF3, and PMF3c (Table 8). The advantage of using dGNc is particularly evident
for the high congruence case (Fig. 4). Nevertheless, compression heightens the dependence
of time expense on the rank of the fitted model and, for larger values of model’s rank, ALSc
might be faster than the derivative based methods owing to the longer time required by the
Cholesky decomposition.

Finally, with respect to PMF3 and dGN, the latter required as many or fewer iterations in
59.1% of the cases when employed without compression and 55.5% if PMF3c and dGNc are
considered (not shown). The ratio becomes even less favourable to PMF3 when the model’s
rank is known (82.5% and 81.1% for PMF3 and PMF3c respectively), but is inverted in
case of over-factoring (29.7% and 35.7%). However, since the PMF3 iterations are more
expensive, this algorithm was found to be slower in 94.1% of the cases (Table 8) and the
difference in time consumption between the two algorithms is, in relative terms less than
10% only for 1.9% of the models.

3.5.2. Real data set I



G. Tomasi, R. Bro / Computational Statistics & Data Analysis 50 (2006) 1700–1734 1725

Table 8
Comparison of time consumption for the different algorithms

ASD SWA ALS dGN PMF3 ALSc dGNc PMF3c

ASD — 49.5 72.8 92.2 96.9 94.4 90.6 94.8
SWA 49.7 — 72.3 97.5 99.7 97.1 97.3 99.0
ALS 27.2 27.7 — 89.0 98.2 94.4 84.9 93.3
dGN 7.7 2.4 11.0 — 94.1 43.1 30.6 58.5
PMF3 3.1 0.3 1.8 5.9 — 14.4 5.3 18.2
ALSc 5.6 2.9 5.6 56.9 85.6 — 44.9 71.7
dGNc 9.4 2.7 15.0 69.2 94.7 55.0 — 98.2
PMF3c 5.2 1.0 6.7 41.5 81.7 28.3 1.8 —

The value reported in each cell is the occurrence (expressed as a percentage over all 1440 models) of strictly lower
time consumption for the algorithm on the row compared to that on the column.

Fig. 5. Median of RMSEC over the three replicates for data set I.

Figs. 5 and 6 show the results from the analysis of data set I. All least-squares methods
attain an almost identical solution for each of the replicates, both in terms of loss function
and RMSEC. It is also apparent that theALS algorithm is not as sensitive to over-factoring as
the results on the simulated data may have suggested. The non-least squares algorithms (i.e.
DTLD, SWATLD and ASD) retrieve factors that, although very close to the underlying ones
(still full recovery occurs for all the methods), are visually identifiable as different (Fig.
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Fig. 6. Residual variation

(
as % of

∥∥∥X(1×JK)
∥∥∥2

F

)
for data set I.

Fig. 7. Emission loadings for data set I (replicate 3) obtained with dGN and SWATLD. It can be noticed that the
latter produces noisier profiles and that one of the loadings vectors present systematic differences at high emission
wavelengths.

7) and result in different predictions and errors. In particular, SWATLD gives the worst
performance for this data set, both in terms of the value of the loss function and of predicted
concentrations. As for the simulated data, SWATLD yielded solutions with higher core
consistency (mean over the replicates 99.48%) than the least squares ones (99.29%). The
core consistency diagnostic may be regarded as an indication of the relevance of the ‘model
error’, which includes the effect of small deviations from perfect trilinearity (Bro and Kiers,
2003). Such deviations are not present in simulated data sets that are not specifically designed
to test this aspect, but are inherent to real data and are accounted for in the correct least
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Fig. 8. Median of RMSEC over the six replicates for data set II.

squares solution (Bro and Kiers, 2003). The SWATLD algorithm seems to somewhat ignore
such deviations, which results in different solutions and predictions. Similar arguments can
be used forASD, which attains the highest core consistency when the rank is over-estimated,
although the differences in the loadings are considerably smaller. The fact that the smallest
sum of squared residuals are obtained with the LS methods (both for correctly and over-
estimated rank) makes evident once again that the actual optimisation criterion for DTLD,
ASD and SWATLD in terms of PARAFAC loss function is not known or easily predictable.

3.5.3. Real data set II
The results for data set II (Figs. 8 and 9) do not differ much from those for data set I.

All methods apart from DTLD managed to retrieve the correct solution and the residual
variation for this algorithm is larger than for any other. The concentrations predicted using
SWATLD are not as bad as for data set I, but this method yields once again a solution with
larger residuals and better core consistency (mean over the replicates 99.1% compared to
98.9% for the least squares solutions).

If one excludes DTLD, the performance of ASD in predicting the four concentrations is
the worst for three of the analytes. Note that the residual variation for these two methods
increases with the number of extracted components. Over-factoring does not seem to hinder
the retrieval of the correct components and the RMSEC remains largely unchanged.Yet, for
the LS algorithms, it was necessary sometimes to restart the calculations from a new random
estimation for the loading matrices (that is, more than 10 random starts were necessary)
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Fig. 9. Residual variation

(
as % of

∥∥∥X(I×JK)
∥∥∥2

F

)
for data set II.

as they tended to get stuck in degenerate solutions. This illustrates how these methods are
sensitive to the initialisation values, apparently more than the non-least squares techniques.
In any case, the correct solution has always been attained within a three attempts with further
starts.

The high collinearity of some of the underlying factors did not impede the recovery of
the correct components. As was the case for the simulated data sets, when the noise is small,
the right components can be extracted also when their congruence is very high.

4. Conclusions

The tests on the nine algorithms showed quite clearly that the advantages of some of the
recently proposed alternatives to PARAFAC-ALS were somewhat overestimated.

In particular,ASD appeared consistently inferior to the other iterative methods on both the
simulated and the real data sets. Conversely, SWATLD showed a good capability of finding
the real underlying components, albeit biased by the fact that it yields solutions with higher
core consistency than the least squares one. The distortion induced in the loadings by the
non-least squares criterion gives rise to conflicting performances of this algorithm on the
real and the simulated data sets. However, the fact that SWATLD neither finds least squares
solution nor explicitly optimises with respect to a well-characterised criterion (e.g. the core-
consistency) should discourage the use of this algorithm alone for fitting a PARAFAC model
and suggests that additional care should be used when evaluating the results it provides.
On the other hand, its computational efficiency and resistance to a wrong estimation of the
model’s rank make this method an excellent candidate for the initialisation of least squares
algorithms. The derivative-based methods showed better convergence properties than ALS,
especially in case of highly collinear factors, but are too expensive (for time and memory
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consumption) to be a feasible option in case of large data sets, such as those commonly
encountered in spectroscopy and in most of the fields where the PARAFAC model is a
possible choice. Consequently, their viability in these cases seems to require a preliminary
compression step, which appears to have the advantage of improving the resistance to over-
factoring. With respect to the latter point, dGNc with compression appears as more efficient
than PMF3c (and PMF3) and ALS confirmed to be more sensitive to over-factoring than all
the other methods apart from DTLD.

In conclusion, for difficult problems and when the quality of the solution is very im-
portant or the number of factors unknown, dGNc appears as the best choice, albeit more
expensive than ALS. On the other hand, when the rank of the array is not known beforehand
and one is interested in exploring the underlying trilinear phenomena linked to a given
set of data, SWATLD can give some insight on the factors. For all other cases, the stan-
dard ALS represents a good trade-off between computational expense and quality of the
solution.

An interesting possibility is to combine the different algorithms to exploit their best
features and compensate their shortcomings. E.g. SWATLD could be used to provide the
initial values for a PMF3/dGN algorithm with compression and a final refinement could be
performed using the standard ALS algorithm.
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Appendix A. Factor norm distribution over the loading vectors

Due the scaling indeterminacy each factor of a PARAFAC model with F components can
be expressed as

X̂ = A(C � B)T =
F∑

f =1

rf af

(
tf cf � sf bf

)T ≡
F∑

f =1

ãf

(
c̃f � b̃f

)T
, (A.1)

where af , bf and cf are the f-th columns of respectively A, B and C, rf , sf and tf are
arbitrary non-zero scalars such that rf sf tf = 1 and ãf = rf af , b̃f = sf bf and, c̃f = tf cf .
To avoid this ambiguity, rf , sf and tf are normally defined as

rf = ‖b‖2 · ‖c‖2, (A.2a)

sf = ‖b‖−1
2 (A.2b)
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and

tf = ‖c‖−1
2 , (A.2c)

or, in other words, such that
∥∥∥b̃f

∥∥∥
2
=∥∥c̃f

∥∥
2 =1. In order to equally weight the three loading

matrices, a different choice was made for the implementation of dGN, PMF3 and SWATLD.
By defining qf = (∥∥af

∥∥
2 · ∥∥bf

∥∥
2 · ∥∥cf

∥∥
2

)1/3 and calculating rf , sf and tf as qf

∥∥af

∥∥−1
2 ,

qf

∥∥bf

∥∥−1
2 and qf

∥∥cf

∥∥−1
2 respectively, it holds that

rf sf tf = q3
∥∥af

∥∥−1
2 · ∥∥bf

∥∥−1
2 · ∥∥cf

∥∥−1
2

= ∥∥af

∥∥
2 · ∥∥bf

∥∥
2 · ∥∥cf

∥∥
2

∥∥af

∥∥−1
2 · ∥∥bf

∥∥−1
2 · ∥∥cf

∥∥−1
2 = 1 (A.3)

and that the norms of the three loading vectors ãf ,b̃f and c̃f are identical and equal to qf .
It is worth noticing that no mention is made about the sign of the three scalars in Eqs.

(A.2a–c). This problem is normally referred to as ‘sign indeterminacy’ and no specific
convention is generally preferred. For the implemented algorithms, the choice has been to
set the sign of each loading vector of B and C so that the sign of the sum of its elements
was positive.

Appendix B. Improved updates for SWATLD

The loss function LC(C) for the SWATLD algorithm with respect to C can be split in:

L1(C) =
K∑

k=1

∥∥∥∥
(

A+X..k − DkBT
)T

D−1
B

∥∥∥∥
2

F

=
J∑

j=1

∥∥∥D−1
B

(
A+X.j. − Dj CT

)∥∥∥2

F
(B.1)

and

L2(C) =
K∑

k=1

∥∥∥(
X..kB+T − ADk

)
D−1

A

∥∥∥2

F

=
I∑

i=1

∥∥∥(
XT

j..B
+T − CDi

)
D−1

A

∥∥∥2

F
, (B.2)

where Xi.., X.j., Di and Dj are defined similarly to X..k and Dk . Using the relation ‖R‖2
F =

tr
(
RTR

)
, where tr(R) denotes the trace of R, the derivative of L1 with respect to C
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is (Magnus and Neudecker, 1999):

�L1(C)

�C
= �

�C

⎡
⎣ J∑

j=1

tr
(

XT
j A+TD−2

B A+Xj

)
+

J∑
j=1

tr
(

CD−2
B D2

j CT
)

−2
J∑

j=1

tr
(

D−2
B Dj A+Xj C

)⎤
⎦

=
J∑

j=1

[
0 + 2CD−2

B D2
j − 2

(
D−2

B Dj A+Xj

)T
]

= 2C − 2

⎛
⎝ J∑

j=1

(
Dj A+Xj

)T

⎞
⎠ D−2

B , (B.3)

where the last equality stems from
∑J

j=1 D2j = D2
B. Since

∑J
j=1

(
Dj A+Xj

)T = X(K×IJ )(
B � A+T

)
, Eq. (B.3) becomes

�L1(C)

�C
= 2C − 2X(K×IJ )

(
B � A+T

)
D−2

B . (B.4)

Eq. (9) follows by applying the analogous derivation to L2(C) and by solving for C the
equation

�LC(C)

�C
= �L1(C)

�C
+ �L2(C)

�C
= 0, (B.5)

which holds because one is looking for a stationary point.

Appendix C. Derivation of the system of normal equations for PMF3

The loss function for PMF3 can be expressed as

LPMF3(p) = rTr + �
(
p − p•)T (

p − p•) , (C.1)

where p• is the target value (0 in case of the regularisation: the penalty can be considered
as some sort of equality soft constraint operating towards p = p• = 0 ).

A Taylor expansion truncated after the linear term yields:

L̃PMF3(�p) =
(

r0 + J�p
)T (

r0 + J�p
)

+ �
(

p0 + �p − p•)T (
p0 + �p − p•) , (C.2)
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where r0 = r
(
p0

)
. Expanding:

L̃PMF3(�p)

= r0T
r0 + 2�pTJTr0 + �pTJTJ�p + �

(
�
p

0T
�
p

0 + 2�pT�
p

0 + �pT�p
)

= r0T
r0 + �

�
p

0T
�
p

0 + 2�pT
(

JTr0 + �
�
p

0
)

+ �pT
(

JTJ + �IN

)
�p, (C.3)

where
�
p

0 = p0 − p•. The first derivative is then:

�L̃PMF3(�p)

��p
= 0 + 0 + 2

(
JTr0 + �

�
p

0
)

+ 2
(

JTJ + �IN

)
�p = 0, (C.4)

where the last holds because one is looking for a stationary point. Hence
(

JTJ + �IN

)
�p = −

(
JTr0 + �

�
p

0
)

. (C.5)

Finally, including the Levenberg–Marquadt modification one yields Eq. (22).
The regularisation term operates to reduce the step length (provided that the � has a

suitable value), but also has the effect of preventing exceedingly high parameters (i.e. one
of the possible effects of scaling indeterminacy and 2FDs), which are penalised.

Appendix D. Helpful definitions and equations

1. Given two matrices A and B with the same number f of columns the Khatri–Rao product
� is defined as

A � B = [a1 ⊗ b1 a2 ⊗ b2 · · · aF ⊗ bF ]

= [vec b1aT
1 · · · vec bF aT

F ] , (D.1)

where ⊗ is the Kronecker product (Magnus and Neudecker, 1999).
2. The congruence (also referred to as ‘uncorrected correlation’ or ‘Tucker congruence

coefficient’) between the f-th factor zf = af ⊗ bf ⊗ cf and the g-th factor zg =
ag ⊗ bg ⊗ cg , can be written as

cong
(
zf , zg

) = cos
(
zf , zg

) = aT
f ag∥∥af

∥∥
2

∥∥ag

∥∥
2

· bT
f bg∥∥bf

∥∥
2

∥∥bg

∥∥
2

· cT
f cg∥∥cf

∥∥
2

∥∥cg

∥∥
2

. (D.2)

3. The relation between the scalar Ln multiplying an array R and the level of noise Noise%
(expressed as percentage of the total sum of squares) associated to it is the following:

Noise% = L2
n‖R‖2

F · ‖X‖2
F

‖X‖2
F + L2

n‖R‖2
F · ‖X‖2

F

100 = L2
n

1 + L2
n

100, (D.3)
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where Noise% is the level, R is the matricised array containing the noise normalised to
a Frobenius norm of 1 and X is the noiseless data.
Ln assumes values of 0.1005, 0.2294 and 0.3333 to attain respectively 1%, 5% and 10%
noise.

4. Given the score matrix A (i.e. the first loading matrix) and assumed that the f-th com-
ponent corresponds to the g-th constituent in the analysed data set (i.e. g-th column yg

of the concentration matrix Y), the root mean squared error in calibration (RMSEC) for
the g-th constituent is defined as

RMSEC = I−0.5 · ∥∥yg − ŷg

∥∥
2, (D.4)

where ŷg = [af 1 ] [af 1 ]+yg holds the predicted concentrations for the g-th con-
stituent.

References

Andersson, C.A., Bro, R., 2000. The N-way Toolbox for MATLAB. Chemometrics Intell. Lab. Systems 52 (1),
1–4.

Baunsgaard, D., Munck, L., Norgaard, L., 2000. Analysis of the effect of crystal size and color distribution on
fluorescence measurements of solid sugar using chemometrics. Appl. Spectrosc. 54 (11), 1684–1689.
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Abstract

Missing values are a common occurrence in chemometrics data, and different approaches have been proposed to deal with them. In this

work, two different concepts based on two algorithms are compared in their efficiency in dealing with incomplete data when fitting the

PARAFAC model: single imputation (SI) combined with a standard PARAFAC-alternating least squares (ALS) algorithm, and fitting the

model only to the existing elements using a computationally more expensive method (Levenberg–Marquadt) appropriately modified and

optimised.

The performance of these two algorithms and the effect of the incompleteness of the data on the final model have been evaluated on the

basis of a Monte Carlo study and real data sets with different amounts and patterns of missing values (randomly missing values, randomly

missing spectra/vectors, and systematically missing spectra/vectors).

The evaluation is based on the quality of the solution as well as on computational aspects (time requirement and number of iterations).

The results show that a PARAFAC model can be correctly determined even when a large fraction of the data is missing (up to 70%), and that

the pattern matters more than the fraction of missing values. Computationally, the Levenberg–Marquadt-based approach appeared superior

for the pattern of missing values typical of fluorescence measurements when the fraction of missing elements exceeded 30%.

D 2004 Elsevier B.V. All rights reserved.

Keywords: PARAFAC; Missing values; INDAFAC; Fluorescence
1. Introduction

In chemometrics, incomplete observations and missing

values can be found in a large number of applications

ranging from calibration problems to statistical process

control. Recent studies have pursued the algorithmic

problem in connection with missing values for two-way

models [1–4], with specific focus on PCA and PLS and,

to a certain extent, three-way models [1,5,6]. The aim of

this paper is to study the effect of non-observed values

on fitting a PARAFAC model and to compare the

performances of two algorithms fitting such model in

presence of missing values: PARAFAC-alternating least

squares (ALS) with single imputation (ALS-SI) and the

least squares approach called INcomplete DAta paraFAC
0169-7439/$ - see front matter D 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.chemolab.2004.07.003
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(INDAFAC) based on a suitably modified Levenberg–

Marquadt algorithm.

This study is based on a Monte Carlo simulation where

2400 data sets were generated varying a specific set of

conditions (rank of the array, percentage of missing

elements and their pattern in the array, collinearity between

factors, and level of noise) and on three real data sets

comprising fluorescence measurements and having known

rank.

1.1. PARAFAC model

If one considers a three-way array X of dimensions

I�J�K, the PARAFAC model can be expressed as

xijk ¼
XF
f¼1

aif bjf ckf þ rijk i ¼ 1 N I ; j ¼ 1 N J ; k ¼ 1 N K

ð1Þ
ory Systems 75 (2005) 163–180
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where xijk is the measured value, aif, bjf, and ckf represent

the parameters to estimate, rijk are the residuals, and F is the

number of sought factors.

By defining the three loading matrices:

A ¼ aif ji ¼ 1 N I ; f ¼ 1 N F
� �

B ¼ bjf j j ¼ 1 N J ; f ¼ 1 N F
� �

C ¼ ckf jk ¼ 1 N K; f ¼ 1 N F
� �

ð2Þ

and employing the column-wise Khatri–Rao product (O)

[7], Eq. (1) can be written as

XðI�JKÞ ¼ AðCOBÞT þ R I�JKð Þ; ð3Þ

where X(I�JK) is the matricised form of the data array [the

superscript (I�JK) identifying the way the array is

matricised; [7], and the superscript T indicates the transpose

operation.

Fitting the PARAFAC model to X in the least squares

sense can be expressed as the minimisation problem:

arg min
A;B;C

OX I�JKð Þ � AðCOBÞTO
2

F ð4Þ

where OYOF is the Frobenius norm (i.e., the squared root

of the sum of the squared elements of the matrix Y).

Solving problem (4) corresponds to fitting the PARAFAC

model in the maximum likelihood sense provided that the

residuals r=vecR(I�JK) (where the vec operator is defined as

in Ref. [8]) are normally distributed with mean 0 and

variance r2I [9], viz. that the noise is uncorrelated and

homoscedastic. Albeit for real life problems this is hardly

ever the case, it has been shown in several applications that

such fitting is adequate also when slight deviations occur

[7].

Numerous algorithms have been proposed for solving

problem (4) [10,11], two of them, namely, PARAFAC-ALS

with single imputation and PARAFAC-LM (where LM

stands for Levenberg–Marquadt) can be effectively

employed in presence of missing values and are described

in Section 2.

1.2. Missing values patterns

Missing values may occur in data sets for a number

of reasons: glitches and malfunctions of one or more

sensors, irregular measurement intervals between sam-

ples, or different sampling frequencies for the various

sensors. In some cases (e.g., fluorescence Emission/

Excitation Matrices—EEM), the missing values are not
necessarily present originally in the data as obtained

from the instrument, but are inserted as a postprocessing

to yield data more suitable for being described by a

multilinear model [6,7]. Depending on the cause for the

missing values, their pattern within the array may change

considerably, having different effects on the model fitting

process.

In the simplest case to treat, but also the one that is

most seldom found in practice, the missing elements are

randomly scattered over the array without any specific

pattern (Fig. 1a). One such situation may occur when

several, distinct sensors are used to monitor one process

in time and there are momentary malfunctions in the

single sensor. Analogously, a survey of several variables

both in time and space may not follow a particularly

regular pattern, and certain sites (e.g., the least accessible

ones) may be visited with lower frequency. Such a

pattern is referred to as randomly missing values (RMV).

A second pattern, here denoted as randomly missing

spectra (RMS), encompasses the case of entirely missing

btubesQ (Fig. 1b), once again completely at random. This

situation may occur when a process is monitored in time

by means of a multivariate instrument (e.g., a spectrom-

eter). If the measurement is not taken, either due to

malfunctioning or caused by an irregular sampling

scheme, a whole spectrum (i.e., a tube) will be missing.

An analogous situation would present itself if a certain

sensor or channel stops working and is not replaced until

the process is terminated; only in this case the btubeQ
would be missing in the time mode of the array rather

than in the spectral one.

Finally, the missing values pattern may be completely

systematic, as, for example, would happen if the sensors

used for the monitoring of a process have a different

sampling frequency. Indeed, many cases of systematically

missing values (SMV) can be identified. One that is

particularly interesting, because it is common for the kind

of data to which PARAFAC is often applied, is

represented by EEM fluorescence measurements. In

fluorescence, the signal registered at emission wavelengths

lower than the excitation wavelength is physically zero

(Fig. 1c). The presence of these zeros, however, may

interfere with the multilinearity of the data [6], provoking

artefacts in the final solution. At the same time, Raman

and Rayleigh scatter (Fig. 1c), cannot be adequately

modelled by PARAFAC components as they are not

low-rank trilinear [5,6,12]. Because both these parts of the

recordings are not connected to chemical information, the

values in this range are normally set to missing, although

this is also often suboptimal and associated with other

kinds of modelling problems [5,12]. The pattern of the

missing values within the array in the latter case is

systematic and constant over the samples: entire tubes are

missing across the sample mode (Fig. 1d). In the

remaining part of this work, this pattern will be referred

to as systematically missing spectra (SMS).
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2. Algorithms

2.1. Alternating least squares with single imputation

(ALS-SI)

2.1.1. PARAFAC-ALS

The most common algorithm used to fit a PARAFAC

model is based on the alternating least squares idea [13]: the

nonlinear problem (4) is split into smaller, linear subpro-

blems that are solved iteratively until convergence is

established. Because all the steps are optimised in the least

square sense, the loss function L A;B;Cð Þ ¼ XO
I�JKð Þ �

AðCO BÞTO
2

F is bound not to increase at each step and

tends to a (possibly local) minimum.

Given initial estimates for B and C, Eq. (4) becomes

linear with respect to the matrix A, and an interim optimal

least squares estimate of the latter can be computed as

A sð Þ ¼ X I�JKð Þ
�
C s�1ð ÞOB s�1ð Þ

�T
 !þ

; ð5aÞ

where s�1=0 indicates the initial estimates for B and C,

respectively, and + indicates the Moore–Penrose generalised

inverse. The computation of A(s) on the basis of B(s�1) and

C(s�1), where s indicates the iteration number, is followed

by analogous substeps determining B(s) and C(s):

B sð Þ ¼ X J�IKð Þ
�
C s�1ð ÞOA sð Þ

�T
 !þ

ð5bÞ

C sð Þ ¼ X K�IJð Þ
�
B sð ÞOA sð Þ

�T
 !þ

ð5cÞ

After Eq. (5c) the convergence is checked: if the value of

L(A,B,C) has decreased in relative terms less than a chosen

small positive number (the convergence criterion), the

algorithm is stopped; otherwise, it continues estimating

A(s+1) for fixed B(s) and C(s) (i.e., the next iteration step).

The Khatri–Rao product has a property that allows

significant savings in the calculations. Specifically:

ðBOAÞT BOAð Þ ¼ BTB4ATA ð6Þ

where * is the Hadamard (element-wise) product. Following

the fact that M+=(MTM)+ MT [8], Eq. (5a) is solved as

A ¼ X I�JKð Þ COBð ÞðBTB4CTCÞþ; ð7Þ

where the indices relative to the iterations are skipped for

clarity. The ALS algorithm has only linear convergence and

slows down even further when it encounters so-called

swamps, i.e., regions where two or more factors grow

increasingly collinear and arbitrarily large maintaining

opposite sign while the loss function decreases very slowly

[14,15]. In order to accelerate the convergence, several

strategies have been devised [7]. One that proved efficient in

many cases uses a so-called line-search procedure [7,13],
which is based on the observation that the ALS algorithm,

particularly when stuck in a swamp, often proceeds with

increasingly shorter steps in very collinear directions for

several consecutive iterations. The line-search acceleration

tests, every given number of iterations, if a longer step along

the latest computed update for the loading matrices leads to

a larger decrease of the loss function [7].

2.1.2. Handling missing data

The ALS algorithm, as described in the previous section,

cannot handle missing values and requires some modifica-

tions to operate in the presence of incomplete observations.

One method, which has been successfully employed with

other multilinear models [1,3,4,7], is represented by single

imputation.

In such procedure, Eqs. (5a)–(5c) are applied, instead of

the original array X, to an array X̃ defined as

X̃
P

ðsÞ ¼ X
P
4M

P
þ YðsÞ

P
4 1

P
�M

P

� 	
ð8Þ

whereY(s) is the interim model computed at the s-th iteration,

and 1 is an array of ones having the same dimensions ofX.M

is an array whose elements are defined as

mijk ¼
0 if xijk is missing

1 if xijk is not missing



ð9Þ

X̃ contains no missing values and thus allows the use of the

standard PARAFAC-ALS algorithm to estimate the model

parameters. X̃(s) is updated at every iteration on the base of

Eq. (3). The zero-iteration approximation Y(0) is reckoned

depending on the pattern of the missing values. In general, it

is taken as the average of the observed values in the

corresponding columns/tubes or of the whole array.

The single imputation algorithm, under the conditions of

normality (with zero mean and identical variance) and

independence of the residuals, falls into the category of the

Expectation Maximisation (EM) approach for incomplete

data sets. The EM method was devised in the maximum-

likelihood framework [16] and is divided in two steps: the

E-step and the M-step. In the E-step, the conditional

expectation of the likelihood function is computed given

the observed data and the current estimated parameters. In

least squares terms, this corresponds to calculating the loss

function with respect to Eq. (8), i.e.,

LðA sð Þ;B sð Þ;C sð ÞÞ ¼OX̃X sð Þ�Y sð ÞO2
F

¼OX̃X sð Þ�A sð ÞðC sð ÞOB sð ÞÞTO2
F ð10Þ

where the superscript relative to the unfolding has been

skipped for clarity. The loss function (Eq. (10)) represents

the expected value of the log-likelihood function (with

changed sign) given the above assumptions on the residuals.

The M-step determines new estimates for the parameters

maximising the likelihood function. This step is simply

represented by Eqs. (5a)–(5c) and the computation of the

corresponding Y.
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It has been demonstrated that Eq. (10) is bound not to

increase and that the convergence of the procedure is linear

with a convergence rate that is related to the amount of

missing information [17,18].

This suggests that the already relatively slow conver-

gence rate of ALS may be further reduced by an increased

amount of missing values. Furthermore, whereas upon final

convergence the estimates for the missing values have no

influence on the estimated parameters, a large amount of

missing elements may increase the risk of convergence to a

local minimum as the interim model would describe for the

largest part the (erroneous) imputed values. These two

aspects pose the premises for the use of the modified

Levenberg–Marquadt algorithm described in the following

section.

2.2. Incomplete data PARAFAC (INDAFAC)

2.2.1. PARAFAC-LM

The Levenberg–Marquadt method is a modification of

the Gauss–Newton (iterative) algorithm for solving non-

linear least squares problems [19,20] and has been proposed

for solving problem (4) in several instances [11,21,22]. In

order to describe this method, it is necessary to introduce a

vectorised notation for the PARAFAC model:

x ¼ vecX I�JKð Þ ¼ vec A COBð ÞT
i
þ vecR I�JKð Þ

h
ð11Þ

If one defines a vector p=vec[AT|BT|CT] holding the model

parameters, problem (4) can be expressed as

arg min
p

Or pð ÞO2
2 ¼ arg min

p

ðx� y pð ÞÞT x� y pð Þð Þ ð12Þ

where r=vecR(I�JK) and y=vec[A(COB)T].

In the Gauss–Newton algorithm (and the Levenberg–

Marquadt modification), an update Dp for all the parameters

is computed at each iteration, and the new estimates for the

model parameters are defined as p(s)=p(s�1)+Dp. This

method is based on a Taylor expansion of the residuals

with respect to the interim parameters p(s):

r p sð Þ þ Dp
� 	

¼ r p sð Þ
� 	

þ JDpþ O ODpO2
2

�
ð13Þ

where J is the Jacobian matrix of r(p), i.e., an IJK�
(I+J+K)F matrix whose elements are defined as

jmn ¼
Brm

Bpn
¼ � Bym

Bpn
ð14Þ

If one ignores the error term O(ODpO2
2) in Eq. (13), the

update Dp for all the parameters can be computed as the

solution to the linear least squares problem [19]:

arg min
Dp

Or p sð Þ
	
þ J p sð Þ

	
DpO2

2

��
ð15Þ
There are several methods for solving Eq. (15). The one

employed here is based on the system of normal equations:

JTJDp ¼ JTr ð16Þ

which is solved by means of a Cholesky decomposition and

back-substitution. The choice is justified by the sparsity of

the Jacobian and by its dimensions [11]. Because of its

computational complexity (each update requires approxi-

mately O(N3) operations, where N is the number of

parameters), this solution is suited for small- and medium-

size problems. Iterative methods, such as Preconditioned

Conjugate Gradients, may be more efficient for large-scale

problems [22].

The Gauss–Newton algorithm described thus far is

particularly appealing, because it guarantees quadratic

convergence provided that the initial estimates for the

parameters are close enough to the solution and that the

residuals at the solution are not too large [19,20]. On the

other hand, if these conditions are not fulfilled, the

algorithm may not converge at all. Furthermore, the method

requires modifications if the Jacobian is rank-deficient [19],

as it is the case when fitting a PARAFAC model: due to the

scaling indeterminacy intrinsic to this model, 2F (for a

three-way array) of the Jacobian singular values are zeros to

machine precision [21,22].

The Levenberg–Marquadt modification (LM) of the

Gauss–Newton algorithm copes with all these problems,

thus yielding a globally convergent algorithm [19,20]. In the

LM algorithm, the system of normal Eq. (16) is modified to

JTJþ kI IþJþKð ÞF

Dp ¼ JTr

�
ð17Þ

The algorithm belongs to the category of the trust region

methods. In essence, a btrust regionQ, which radius is a

function of k, is a sphere centred in the current estimate p(s)

where the linear approximation for the residuals is assumed

to hold. The update Dp is computed so that it minimises the

residuals inside this region. If Dp leads to an insufficient

decrease of the loss function, the update is rejected, the trust

region is shrunk (i.e., k is increased), and a new update is

calculated. Various strategies exist to define whether the

update should be accepted or rejected and how to update k.
The one used here is described in detail in Ref. [20] and is

based on the ratio between the linearly predicted decrease of

the loss function L(p)�Or(p)+J(p)DpO2
2 and the actual

decrease after the update L(p)�L(p+Dp).

The scaling indeterminacy poses another problem related

to the numerical stability of the algorithm. If the standard

scaling convention for the loading matrices is used (i.e.,

ObfO2=OcfO2=1), the bpracticalQ condition number of the

Jacobian (i.e., computed disregarding the scaling indetermi-

nacy—see Section 3.2) may become exceedingly large

(typically because aifbjffaifckfJbjfckf). This can be

avoided by setting the norm of the three loading vectors

of the same component to be the same and equal to

qf=(OafO2ObfO2OcfO2)
1/3 [11].
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2.2.2. Handling missing values (INDAFAC)

This PARAFAC-LM algorithm is significantly more

memory demanding than ALS and more expensive per

iteration, both in number of operations and computational

time [11,21]. Apart from the greater stability with respect to

the collinearity and overfactoring, the LM algorithm can be

readily modified to treat the case of incomplete data without

any imputation. If the loss function is transformed into

L pð Þ ¼ Or4 vecM I�JKð ÞO2
2; ð18Þ

where M is defined as in Eq. (9), the rows in the Jacobian

corresponding to the missing observations can be eliminated

as the residuals (and thus the loss function) do not change

with respect to these elements. This has several advantages:

the number of non-zero elements in the Jacobian drops from

3FIJK to 3pFIJK, where 0bpV1 is the fraction of non-

missing values in the array, thus reducing the memory

consumption; furthermore, as J is extremely sparse, the

computation of the products JTJ and JTr becomes less and

less expensive with the increase of the fraction of missing

values.

Under the assumptions of normality with mean zero and

identical variance of the residuals, this method of handling

the missing values is an analogue to the modified Newton

method using the empirical information matrix for max-

imum likelihood estimation [18].
1 The cosine of the angle between two vectors a and b (also referred to

as congruence) is defined as: u a; bð Þ ¼ cos ˆða;bÞ ¼ aTb=OaOObOð Þ.
3. Experimental

Numerous aspects can affect the quality of the estimated

PARAFAC model [7]. The aim of this work is to study the

behaviour of the two proposed algorithms in the presence of

large amounts of missing values with different patterns.

Only a few additional properties of the data have been

considered in the simulations in order to simplify the setup

of the experiments.

The experimental part was conducted in two different

stages. The first comprised a Monte Carlo study on

synthetic data sets. In the second, the presence of missing

values was simulated in three fluorescence data sets of

different compositions and degrees of collinearity.

The correct rank of the model was assumed known in all

cases, the study of the effect of overfactoring in combination

with the presence of missing values is left for future

research.

Both algorithms were initialised using the same best

fitting of 10 runs of ALS-SI limited to 10 iterations and

started with loading matrices of random values. Both

algorithms were stopped when the relative decrease in the

value of the loss function (L(s)�L(s�1))/L(s�1) was less than

10�6 or a predetermined number of iterations was reached

(10000 for ALS-SI and 1000 for INDAFAC). For INDA-

FAC, a second convergence criterion was set at 10�8 for the

infinite norm of the gradient vector [20].
All the tests were run on a Pentium IVR 2.6-GHz

computer with 512 MB memory, working under Win-

dows XP. All the computations were run in MATLAB

6.5 (The Mathworks, Natick, MA, USA). Data sets I and

II, the functions for generating the simulated sets and for

the PARAFAC-LM algorithms, are available for down-

load at the authors’ group webpage (http:www.models.

kvl.dk, June. 2004). The functions for PARAFAC-ALS

with single imputation are part of the N-way toolbox

(downloadable at http:www.models.kvl.dk, June. 2004).

3.1. Simulated data sets

The Monte Carlo study has been carried out on the basis

of 2400 arrays generated considering the following aspects:

rank of the array, degree of collinearity of the underlying

components, amount of noise, percentage and pattern of

missing values. The different conditions are summarised in

Table 1. For each setup, 20 replicates were computed to

account for minor statistical fluctuations. The dimension of

the data sets was 30�30�30.

The data sets were generated on the basis of Eq. (3). In

order to control the collinearity between the underlying

components, the loading matrices were generated using the

following equation ([11]; here reported with respect to the

first mode):

A ¼ VL ð19Þ

where V is a column-wise orthonormal I�F matrix, and L is

the Cholesky factor of a square F�F matrix U holding ones

on the diagonal and the required cosine of the angle between

the loading vectors1 in the off-diagonal elements [23].

Consequently, ATA=LTVTVL=LTL=U. All the factors were

given the same magnitude.

The independent and homoscedastic noise was normally

distributed with mean 0. Two desired levels of noise were

attained using the following formula [11]:

R I�JKð Þ ¼ Noise%

100�Noise%
OX I�JKð ÞOFR̃R

I�JKð Þ ð20Þ

where R̃(I�JK) is a matrix of normally distributed (mean 0)

random values having a Frobenius norm of 1. Noise%

indicates the percentage of noise over the total variation in

the array X+R.

The pattern for the missing values in the array in the RMV

case was determined using the first pIJK elements of a

random permutation of the integers on the interval [1,IJK]. In

the RMS case, the tubes (i.e., spectra) were removed in the

third mode (Fig. 1b), and the position of the missing tubes

was determined using the first pIJ elements of a random

permutation of the integers on the interval [1,IJ]. In both

cases, it was checked that no slab contained only missing

http:www.models.kvl.dk
http:www.models.kvl.dk


Table 1

Design factors and levels in the Monte Carlo study

Factors Levels

Percentage of missing values 30, 40, 50, 60, 70

Pattern of missing values RMVa, RMSb, SMSc

Congruenced 0.5, 0.9

Noisee 0.5, 2

Model rank 3, 4

a Randomly missing values.
b Randomly missing spectra.
c Systematically missing spectra.
d Cosine of the angle between the components in the IJK�1 space.
e Expressed as a percentage of the total variation (i.e., of

OvecX(I�JK)O2).
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values. In the SMS case, the missing values for each sample

were set in two identical triangles at two opposite vertices of

each horizontal slab (as in Fig. 1d), their size was defined so

that the required fraction of missing was best approximated.

3.2. Real data sets

The two algorithms were tested on three different data

sets of fluorescence measurements:

(1) Twenty-two solutions of four substances (DOPA,

hydroquinone, tryptophan, and phenylalanine) were
Fig. 1. Patterns of missing values on a single horizontal slab: (a) randomly miss

fluorescence landscape (c) and the corresponding systematically missing spectra
analysed on a Perking-Elmer LS50 spectrofluorometer

[24]. The 13 excitation wavelengths ranged between

245 and 305 nmwith steps of 5 nm, whereas in emission

the range comprised 131 wavelengths measured

between 260 and 390 nm with a step of 1 nm. Three

bartificialQ data sets were generated out of the single

measured one by selecting every third variable in the

emission mode in each replicate set [11]. Thus, replicate

set one used emission variable number 1, 4, 7, etc., and

replicate set two used variable 2, 5, 8, etc. The

procedure thus yielded two arrays of size 22�87�13

and one of size 22�88�13. The Rayleigh scatter was

removed by subtracting from each sample a bmodelQ of
the scatter. The Raman scatter was not treated.

(2) Fifteen solutions of DOPA, hydroquinone, tyrosine,

and tryptophan were analysed by means of a Cary

EClipse spectrofluorometer. The excitation mode

comprised wavelengths between 230 and 300 nm

measured at intervals of 5 nm (15 variables). In

emission, the wavelengths varied between 282 and

412 nm with 2-nm steps (66 variables). Full factorial

design with two concentration levels per constituent

was employed, and six instrumental replicates were

measured, thus generating six arrays of size 15�66�15.

The influence of Rayleigh and Raman scatter was

minimized by subtracting a blank.
ing values (RMV); (b) randomly missing spectra (RMS); (c and d) EEM

(SMS) pattern after the Rayleigh scatter removal (d).
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(3) Forty-seven solutions of five compounds (cathecol,

hydroquinone, indole, tryptophan ,and tyrosine) were

measured with a Varian Cary EClipse spectrofluor-

ometer. The emission ranged from 230 to 500 nm

with intervals of approximately 2 nm, while the

excitation varied between 230 and 305 nm with 5-

nm steps [25]. The Rayleigh scatter on the original

data set was removed by setting the corresponding

elements in each sample to missing [6,7]. The

Raman scatter was not treated. The data set was

further reduced to a size of 47�80�16 by selecting

the emission wavelengths between 276 and 434 nm

in order to remove the largest part of the missing

values. A small part (5%), though, remained at the

low-emission/high-excitation wavelengths in a region

that did not interfere with the resolution of the

constituents.

Five replicates with random patterns of missing values

(i.e., for RMV and RMS) were generated to account for

minor statistical fluctuations. For SMS, five runs were

also tested using different starting values but the same

pattern.

Preliminary tests showed that for some of the constitu-

ents of the real data sets, the predictions worsened already at

30% of missing values in the SMS pattern. Therefore, two

more levels were added, and the real data sets were analysed

with fractions of missing elements varying from 10% to

70% with increments of 10%.

Table 2 shows the degree of collinearity, the explained

variation, and the core consistency [26] of the three data

sets of the underlying components obtained with the

complete data set. According to Kiers [27], on the basis

of the condition number of the loading matrices, both

data set I and II can be classified as mildly collinear and

data set III as severely collinear. None of them however

entirely falls into any category defined according to this

criterion. The Jacobian matrix associated with the

PARAFAC model contains more information on the

numerical difficulty and collinearity of the problem.

Due to its rank deficiency, the true condition number

cannot be employed for diagnostic purposes. However,

the number of numerically zero singular values related to
Table 2

Diagnostic parameters for the three real data sets: condition numbers for the Jacob

congruence between factors for the three loading matrices and their Khatri–Rao p

Data

set

Condition number Congruence (min-max)

Ja A B C A B C

I 18.43 2.83 20.4 5.96 0.31–0.49 0.002–0.88 0.15–0.9

II 35.85 8.99 12.24 8.07 0.46–0.50 0.15–0.86 0.55–0.9

III 115.06 5.96 41.93 40.6 0.36–0.55 0.22–0.98 0.52–0.9

a Computed according to Eq. (21).
b Computed according to Ref. [26].
the scaling indeterminacy is known beforehand to be 2F;

consequently, one can consider the bpracticalQ condition

number cJ instead:

cJ ¼
r1

r IþJþK�2ð ÞF
; ð21Þ

where r1 is the largest singular value of J, and

r(I+J+K�2)F is the last non-zero singular value after

having taken into account the scaling indeterminacy. As

mentioned in Section 2.2.1, the scaling convention

affects the value of cJ, therefore the loading vectors

were scaled so that OafO2=ObfO2=OcfO2.

cJ appears as more univocal than the condition numbers

of the separate loading matrices when it comes to describing

the degree of collinearity. Although no actual threshold can

be given nor suggested for cJ, a ranking can be clearly

observed between the three problems, were data set I is the

least collinear, data set III is the most collinear, and data set

II is in the middle. Furthermore, cJ also helps in describing

the effect of the missing values on the fitting procedure: cJ
increases systematically with the percentage of missing

values. In particular, for the real data sets, with 70% missing

elements, values of cJ in the order of 106 were observed

upon final convergence.

It should be noted that the factors were extracted

from the complete data sets and are thus affected by

small non-linearities in the recorded signal that may

show up as small interaction terms between the factors.

Such phenomena can be theoretically described in terms

of model error and might be bquantifiedQ by the core

consistency diagnostic [26]. It can clearly be seen that

data set III is particularly problematic in this respect: the

lower value of the core consistency reflects the presence

of relatively unstable components (or of deviations from

low-rank trilinearity) and thus may imply a more

difficult problem than for data set I and II, where the

PARAFAC model is clearly more adequate. The problem

of model error is further complicated by the effect of

certain patterns of missing values (see Appendix A).

Finally, it can be seen in Table 2 that, in spite of the

fact that in one mode the angle between two factors may

be small (with cosines up to 0.98), the whole compo-

nents are in fact rather well separated (mostly as a
ian J and the three loading matrices A, B, and C; minimum and maximum

roducts; core consistency.

Core

consistency

(%)b
AOB BOC AOC AOBOC

4 0.00–0.38 0.05–0.37 0.00–0.32 4d 10�4–0.32 98.9

4 0.07–0.42 0.26–0.46 0.06–0.35 0.06–0.35 99.3

7 0.11–0.52 0.22–0.45 0.08–0.43 0.08–0.43 69.6
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consequence of the design in the concentration levels).

The same holds for the Khatri–Rao products AOB,

BOC, and AOC, whose pseudoinverse is necessary for

the computation of the interim solutions (Eqs. (5a)–(5c)).

This suggests that the three real data problems in themselves

are not particularly difficult provided that all the information

is available.

For the real data sets, the position of the missing values

was selected on the same basis as for the artificial ones.

With specific reference to data set III, the missing values

resulting from the removal of the Rayleigh scatter are

completely covered by the artificially imposed ones in the

SMS case. This was not entirely the case for the other two

patterns, where the bnaturallyQ missing values summed up

with artificially set ones leading to a fraction of missing

values slightly larger than the required value, but still

reasonably close to it.

3.3. Criteria of interest

Two main aspects were considered in this work: the

statistical quality of the retrieved solutions and the computa-

tional aspects of the two algorithms. Specifically, the

diagnostics discussed in the following subsections were

used.

3.3.1. Recovery capability

One true factor (zf=cf�bf�af) is considered as recovered

if there is one component (ẑg=ĉg�b̂g�âg) in the fitted

solution having a congruence with it greater than a certain

threshold. If there are no extreme baselines, a threshold for

the single loading vector that guarantees recovery is 0.99;

correspondingly, the criterion for the component of three

loading vectors may be set at 0.993f0.97. The two criteria

are not entirely the same; in fact, with the latter, it is possible

that a component is considered as recovered also when one

of the corresponding loading vectors has a congruence

lower than 0.99. In practice, the results using a threshold for

the whole component of 0.97 give slightly more optimistic

results, but in general the interpretation does not change

much. While for the Monte Carlo simulation, the true

components are known, for the real data sets the factors

found from fitting the model to the original array (i.e.,

without artificially set missing values) were taken as the

correct underlying ones, although this is clearly only an

approximation.

The underlying model can be considered as fully

recovered (retrieved) if all its factors have been recovered

according to a threshold of 0.97. The recovery capability is

the percentage full retrievals over the total number of

computed models [11].

Because the factor order (permutation) in the solution is

not uniquely defined [7,13], all possible permutations of the

extracted factors need to be compared with the underlying

components to establish full recovery. The correct permu-

tation is defined as the one yielding the highest sum of the
cosines with the brealQ one [15,28]. In other words, the

bwinningQ permutation Pwin is found as a solution to

Pwin ¼ arg max tr
P

ATÂAP

4 BTB̂BP


4 CTĈCP

� ���
ð22Þ

where A, B, and C are the real (column-wise normalised)

loading matrices, Â, B̂, and Ĉ are the estimated (column-

wise normalised) loading matrices, P are all the possible

permutation matrices for F columns and tr(M) indicates the

trace of the square matrix M.

3.3.2. Congruence product

The quality of the solution was also assessed on the basis

of the product of the congruences for the whole components

or the single loading matrices:

/z ¼
Y

f¼1 N F

u ẑzf ; zf

;

�
ð23Þ

3.3.3. Mean-squared error

The value of the Mean-Squared Error (MSE) for the

model parameters. With respect to A, the MSE is computed

as

MSEðA; ÂA;Pwin; SAÞ ¼
OA� ÂAPwinSAOF

IF
ð24Þ

where SA is a scaling matrix found as the solution to

arg min
SA;SB;SC

ðOA� ÂAPwinSAOFþOB� B̂BPwinSBOF

þOC� ĈCPwinSCOFÞ subject to SASBSC ¼ IF ð25Þ

Such a procedure is necessary because trivial differences

in scaling may yield unnecessarily high values for the MSE

[11,29].

3.3.4. Loss function value

The value of the loss function is important to establish

the capability of the two different algorithms to reach a

(global) minimum.

3.3.5. Error in calibration

The presence of the concentration matrices for the three

real data sets allows the use of one additional quality

diagnostic: the Root-Mean-Squared Error in Calibration

(RMSEC) in a linear regression model based on the loadings

in the first mode. Only the scores of the component

associated to the sought constituent are used in addition to

an intercept. Thus, for the f-th constituent:

RMSECf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oyf � ŷyfO

2
2

I

s
ð26Þ

where ŷyf ¼ ½af 1
 af 1
� �� þ

yf .
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3.3.6. Numerical assessments

The efficiency of the two algorithms is assessed in terms

of time consumption and number of iterations necessary to

reach convergence. Especially with respect to the latter, it is

well known that ALS methods require many more (less

expensive) iterations [11,21], thus a direct comparison is not

feasible. On the other hand, the number of iterations may be

of value, in relative terms, to assess the effect of a certain

feature on the convergence of the same algorithm.
Fig. 2. Different kinds of artefacts in the emission loadings of data set I

associated to the RMS (a) and SMS (b) missing values patterns.
4. Results and discussion

4.1. Simulated data sets

The first aspect that was considered was the capability of

full recovery for the two tested algorithms. In this respect,

INDAFAC performed slightly better, managing to retrieve

the true underlying components for 77.8% of all the

synthetic arrays compared to the 77.3% of ALS-SI.

The feature in the designed sets that affected the most the

number of complete recoveries is the pattern of the missing

values Table 3. As expected, the RMV case is the easiest to

be dealt with, and, apart from a small number of cases, the

correct factors are recovered in all the replicates by both

algorithms. The RMS proved to be somewhat more difficult

to solve, and in a minor fraction of cases full recovery was

not attained. The SMS pattern appeared to be much more

problematic, with an occurrence of full recoveries that is not

comparable with the other two.

The reasons for the lower recoveries of RMS and SMS

must be sought both in the convergence to local minima and

the presence of artefacts related to slabs with a large fraction

of missing values (Fig. 2). In the former case, it was

sufficient to restart the algorithm a number of times to yield

the correct solutions, whereas in the latter, restarting did not

accelerate convergence and yielded solutions with artefacts

in the same positions. In these cases, not even initialising the

algorithms using the real underlying factors prevented the

emergence of artefacts in the solution, which was associated

to a lower value of the loss function. In fact, the artefacts of

the type shown in Fig. 2 are only indirectly a function of the
Table 3

Percentage of full recoveries according to a threshold of 0.97 for the simulated d

Pattern Algorithm Rank Congruence Mi

3 4 0.5 0.9 30

RMVa ALS-SI 100.0 99.3 100.0 99.3 10

INDAFAC 100.0 100.0 100.0 100.0 10

RMSb ALS-SI 90.5 88.5 97.3 81.8 9

INDAFAC 91.0 89.0 97.3 82.8 9

SMSc ALS-SI 41.5 44.0 59.5 26.0 7

INDAFAC 46.5 46.3 59.3 33.5 8

a Randomly missing values.
b Randomly missing spectra.
c Systematically missing spectra.
fraction of missing values in the corresponding slab; they

are determined by the fact that the few values that remain in

a slab do not contain enough information with respect to the

sought components. Occurrence and magnitude of the

artefacts are not easy to predict as they are affected by the

different sources of variation (including the non-trilinear

ones such as scatter or noise [6]), as well as interactions

between factors during convergence allowed for by the
ata sets with respect to the separate design factors

ssing values (%) Noise (%)

40 50 60 70 0.5 2.0

0.0 100.0 100.0 99.4 98.8 100.0 99.3

0.0 100.0 100.0 100.0 100.0 100.0 100.0

6.9 94.4 93.8 88.8 73.8 90.8 88.3

7.5 91.9 94.4 90.0 76.3 91.0 89.0

8.8 67.5 38.1 25.0 4.4 46.5 39.0

2.5 71.3 46.3 25.0 6.9 50.3 42.5



Fig. 3. Effect of various design factors on the median MSE for both

algorithms for the RMV pattern: (a) rank 3, (b) rank 4; ( S ) low congruence,

(o) high congruence, (open symbol) low noise, (closed symbol) high noise.

The numbers are the percentage of missing values. The lines departing from

each symbol are the standard deviations for the MSE and the algorithm

corresponding to the direction of the line.
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pattern of missing values (see Appendix A). It is beneficial

to both speed of convergence and quality of the model to

remove whenever possible the problematic slabs, but at the

current stage there are few, if any, tools that allow their

identification [4,30]. Their development exceeds the pur-

poses of the work, and further studies will be necessary in

this direction.

With respect to the other factors in the design,

congruence has the most visible effects, along with the

fraction of missing values. The Levenberg–Marquadt

algorithm performs in general better for highly collinear

factors [31], and this property is retained in the presence

of missing values (Table 3); the INDAFAC algorithm

yields (apart from one single setting) the correct solution

more often than ALS-SI. It is once again evident how the

RMV case creates very few problems to either of the

algorithms, while the other two patterns yield a consis-

tently decreasing number of fully retrieved models.

Nevertheless, in the RMS case, even with 70% missing

values, the loadings are correctly estimated in more than

three cases out of four (for INDAFAC). In the SMS

pattern, these percentages decrease to the point that in

less than 50% of the cases overall the correct factors are

recovered and full recovery hardly ever occurs for 70%

missing values. Although, a slight worsening in the

quality of the solution could be observed for both MSE

(Fig. 3) and / (not shown) as a result of an increase of

rank from 3 to 4, this was too small to significantly affect

the recovery capability (Table 3). Analogous observations

could be made in the RMS case for the noise level,

although this factor affects the quality of the solution

more than the rank (Fig. 3). For the SMS pattern, the

recovery capability is affected also by noise, which most

likely influences magnitude and occurrence of artefacts

[6].

All these results were confirmed by ANOVA models

applied separately to the missing values patterns and having

the number of full recoveries over the 20 replicates as

response variable. As a result of such ANOVA models, also

the interaction between congruence of the underlying factors

and fraction of missing values appeared to be significant for

ALS-SI for both RMS ( pb0.012) and SMS ( pb0.005)

patterns and for INDAFAC only in the RMS case

( pb0.023). Such interaction is not unexpected and means

that missing values affect more critically data sets with more

collinear components.

If one looks at full recovery in the three modes separately

(Table 4), it is apparent how, in the SMS case, the recovery

of A, B, and C differs, and that A is correctly estimated

more often than the other two loading matrices. This is

particularly important for calibration purposes, where A is

used to determine the concentrations. Also in the RMS case,

there is an asymmetry in the retrieval of the various modes.

Although this is not apparent in the recovery capability

relative to this mode, it shows in the quality of the

estimations: /C is larger than /A and /B in approximately
60% of the cases, whereas in case of symmetry between

modes (e.g., in the RMV pattern), this percentage is should

be around 33%.

The different outcomes related to the RMS and SMS

patterns can be in part explained if one considers the

matricised form of the array X. In the RMS case, C spans

the column space of X(K�IJ), which columns are formed of

either completely missing elements or all real ones. Thus,

with respect to C, complete information is always available,

and the difficulties in retrieving the correct solution in this

mode are associated only with how collinear are the

columns of BOA after the removal of the rows correspond-

ing to the columns with missing values. Equivalently, for



Table 4

Mode recovery for the different patterns of missing values RMV, RMS, and SMS. All the factors and levels are considered. FR (fully recovered) indicates the

percentage of full recoveries for the specified loading matrix according to a congruence threshold of 0.99. BR (best recovered) for loadings matrix A is the

occurrence of /ANmax(/B,/C) (the values for B and C are found mutatis mutandis). Symmetry between modes yields identical BR for the three loading

matrices, i.e., approximately 33%

Pattern Algorithm A B C

FR (%) BR (%) FR (%) BR (%) FR (%) BR (%)

RMVa ALS-SI 99.6 32.8 99.6 33.6 99.8 33.6

INDAFAC 100.0 33.4 100.0 33.0 99.8 33.6

RMSb ALS-SI 89.1 15.6 89.3 25.8 90.3 58.6

INDAFAC 89.4 14.9 90.1 25.3 90.3 59.9

SMSc ALS-SI 56.0 70.4 41.9 13.8 42.9 15.9

INDAFAC 58.1 65.3 46.0 16.4 48.5 18.4

a Randomly missing values.
b Randomly missing spectra.
c Systematically missing spectra.
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SMS, A spans the column space of X(I�JK), which again

contains only completely full or completely missing

columns. This explains the better performance in the first

mode in the SMS case and links the difficulty of the

problem to the collinearity of the columns of COB once the

rows corresponding to the missing elements are removed.

Yet, the much greater difficulty in SMS compared to RMS

remains largely unexplained by these arguments. The small

simulation illustrated Appendix A suggests that the SMS

pattern may interfere with trilinearity by allowing for

binteractionsQ between the two loading matrices B and C.

Figs. 3 and 4 show the effect of the various factors on the

quality of the solution in terms of MSE. Fig. 3 describes the

behaviour of the two algorithms when both converge to a

meaningful solution. The plot is derived on the RMV

pattern, but it applies also to the other two when both

algorithms converge. The solution of the two algorithms is

substantially identical for the low-congruence case (i.e., the

symbols lie on the diagonal), although INDAFAC tends to

yield a lower value of MSE. This is particularly evident in

the high-congruence case. It can also be seen that the effect

of rank is very limited compared to that of noise and

particularly to that of congruence. These observations are

consistent with what was observed on the base of the

recovery capability. Note that a value of approximately 10�2

for the MSE appears as a good choice to establish full

recovery and yields, apart from a limited number of cases,

the same results as the aforementioned 0.97 threshold for the

congruence. In this sense, convergence to local minima or

solutions with large artefacts can be easily identified in Fig.

4. In particular, it can be seen that when INDAFAC does not

converge, it yields significantly larger values of MSE (i.e.,

symbols lying over the diagonal in the plot) than those of

ALS-SI in analogous conditions. This may be related to

some sort of stabilising effect associated to the fact that (1)

imputed values in ALS-SI are indirectly found through

linear combinations of the given values, and (2) if one looks

at the value of the loss function, INDAFAC clearly

outperforms ALS-SI in finding a minimum; it attained the

lowest value of the loss function in 97.25% of the cases.
Only in a fraction of these, though, the discrepancy (in

relative terms) was larger than 0.01%, namely, in 52.7%

(7.3% if one considered a difference of more than 1%) of the

2400 data sets. In all the 2.75% of the cases when ALS-SI

found a lower minimum, the difference was larger than

0.01% (2% with a 1% threshold). Thus, when both

algorithms do not converge, the better MSE of ALS-SI is

likely due to a lower capability of attaining a minimum

(albeit a non-relevant one) of this algorithm. Had ALS-SI

been able to determine the solution better, this would have

been just as bad in terms of MSE as the one obtained with

INDAFAC.

Table 5 shows the median number of iterations and of

computational time with respect to the percentage and the

pattern of the missing values. As expected, the number of

iterations increases with the number of missing values and

grows more rapidly for ALS-SI than for INDAFAC. It is also

very relevant that the number of iterations increases more as a

result of the pattern; as an average, the SMS pattern requires

20 times as many iterations as the RMV case for ALS-SI. The

ratio for INDAFAC varies with the fraction of missing values,

but is at most in the order of 8–10. This trend in the number of

iterations hardly ever turns into an advantage in terms of time

for the RMV pattern; only in 33% of the cases INDAFAC is

faster at 60% missing elements and in 40% of the cases at

70%. For all the other levels of missing values, ALS-SI was

faster. Vice versa, in the SMS case, INDAFAC is faster in

about one-third of the cases (35%) already at 30% missing

and in at least four out of five cases for 50% of missing

elements or more.

4.2. Real data sets

Data set I turned out to be most simple to fit, in perfect

accordance with the expectations based on cJ and core

consistency. Both algorithms recovered the correct compo-

nents in all the replicate models up to 70% missing values

for both the RMV and RMS pattern (not shown). The

results also confirmed that SMS is the most challenging

among the studied patterns. Artefacts similar to those of



Fig. 4. MSE for the A matrix in the rank 3, high congruence and low-noise

case. All replicates are displayed. When the MSE exceeds 10�2, the model

can be considered as not converged to a meaningful solution. (a) RMV

pattern, (b) RMS pattern, (c) SMS pattern.
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Fig. 2 appeared in most of the cases, and both INDAFAC

and ALS-SI were affected to the same extent. Never-

theless, A, which is the most relevant one for calibration

purposes, was correctly recovered (again according to a

threshold of 0.99 for each of the columns) in all the

instances. Fig. 5 shows how the RMSEC varies with

respect to the amount of missing elements for ALS-SI. The

three studied patterns present remarkable differences.

Whereas for both RMV and RMS, the effect of the

missing values on the concentration estimates is very

small, in the SMS case, there is an improvement in the

predictions as the percentage of missing values increases

for all constituents apart from phenylalanine. The reason

for this appears to be the effect of the Raman scatter ([5,6];

i.e., the small ridge visible in Fig. 1d on the right hand of

the main peak). Because of its position and magnitude, the

Raman scatter is often left in the data and is given less

attention than the Rayleigh one [25]. The setting of some

elements to missing in the SMS pattern progressively

cancels the Raman rather than removing it all at once from

one level of missing to the following. The behaviour of the

regression models then follows exactly the pattern

described elsewhere [6] for the much more intense

Rayleigh scatter; the predictions improve so long as more

scatter, but not significant parts of the spectra, is removed.

The degree of overlap of the single components determines

whether the Raman removal will have an effect. E.g.,

phenylalanine lies on top of the Raman scatter ridge at the

lowest excitation and emission wavelengths. Correspond-

ingly, it is hardly affected by the removal of the Raman or

by the setting of further missing values until 60% or 70%

is reached. Contrariwise, e.g., tryptophan’s main peak lies

mostly off the Raman ridge, and its predictions benefit by

the increase of the missing values. This observation is also

consistent with the fact that both the RMV and RMS

patterns have hardly any influence on the quality of the

predictions. In theory, it might be that the removal of a

certain part of the signal reduces the collinearity between

the columns of product COB relative to these two

constituents and the other constituents, but this does not

seem to be the case here.

Fitting a PARAFAC model to data set II proved to be

somewhat more difficult, once again in accordance with the

considerations made in Section 3.2. Although the compo-

nents were correctly recovered up to 70% missing values

with RMV patterns, both algorithms failed to retrieve the

underlying factors in 10–20% of the cases with the RMS

pattern (not shown). The A matrix alone was correctly

estimated at 70% of missing values only in 70% of the

cases. The higher difficulty associated to fitting the

PARAFAC model in presence of an SMS pattern is made

apparent by the fact that full recovery is no longer

guaranteed for the components when 20% of the elements

are missing (for the A matrix, this happens at 50% of

missing values). The variation of the RMSEC as a function

of the percentage of missing values is more erratic than in



Table 5

Median number of iterations (# it.) and of computational time for the two algorithms for both simulated and real data sets

Pattern Data set Algorithm Percentage of missing values

10 20 30 40 50 60 70

# It. Time (s) # It. Time (s) # It. Time (s) # It. Time (s) # It. Time (s) # It. Time (s) # It. Time (s)

RMVa Monte Carlo ALS-SI – – – – 23 0.5 23 0.5 32 0.7 37 0.9 52 1.2

INDAFAC – – – – 9 3.2 9 3.1 9 3.0 9 2.8 9 2.7

I ALS-SI 40 1.2 40 1.2 46 1.4 50 1.6 56 1.8 72 2.4 101 3.4

INDAFAC 9 8.8 9 8.1 9 7.5 9 6.9 9 6.4 9 5.8 10 5.6

II ALS-SI 76 1.6 70 1.5 90 1.9 81 1.8 111 2.5 125 2.8 176 4.1

INDAFAC 30 12.1 18 7.8 23 7.8 16 6.1 20 6.3 22 5.9 25 5.9

III ALS-SI 243 12.2 235 13.6 292 15.8 349 19.9 376 20.9 520 29.6 598 35.0

INDAFAC 20 30.6 16 24.1 19 24.0 20 23.1 21 21.7 23 21.0 23 19.7

RMSb Monte Carlo ALS-SI – – – – 48 1.0 55 1.3 92 2.1 191 4.6 335 8.2

INDAFAC – – – – 9 3.4 10 3.4 10 3.3 13 3.3 16 3.4

I ALS-SI 38 1.1 42 1.3 48 1.5 50 1.6 77 2.5 348 11.4 718 24.1

INDAFAC 9 8.7 9 8.1 9 7.5 9 6.9 10 6.8 11 6.5 14 7.2

II ALS-SI 89 1.8 80 1.7 109 2.4 111 2.4 161 3.6 411 9.3 1114 25.8

INDAFAC 37 13.2 27 10.0 28 9.2 29 8.5 32 8.7 37 8.8 83 17.1

III ALS 242 12.9 273 14.6 271 14.9 352 20.0 436 23.1 486 29.1 728 43.1

INDAFAC 19 30.0 19 27.3 18 23.3 23 25.8 30 27.2 29 23.2 26 20.0

SMSc Monte Carlo ALS-SI – – – – 184 4.2 288 6.3 671 15.1 798 18.5 1267 30.4

INDAFAC – – – – 15 4.7 18 5.0 35 8.3 46 9.0 78 13.0

I ALS-SI 38 1.1 93 2.7 216 6.5 368 11.4 446 13.9 1294 42.0 2436 81.1

INDAFAC 9 8.7 14 11.7 15 11.2 18 11.9 48 22.3 58 25.3 83 30.3

II ALS-SI 104 2.1 320 6.6 785 16.4 1165 25.0 1843 40.3 4052 91.1 7222 164.1

INDAFAC 28 10.2 33 12.6 25 8.9 29 8.9 49 12.9 59 12.9 97 19.3

III ALS-SI 295 15.1 411 21.3 640 34.9 1770 90.8 3583 192.1 6110 359.1 10000 583.2

INDAFAC 25 37.7 27 36.9 30 34.9 37 37.7 73 62.0 81 60.5 131 88.1

a Randomly missing values.
b Randomly missing spectra.
c Systematically missing spectra.
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Fig. 5. Median RMSEC for the four constituents of data set I: (a) DOPA, (b) hydroquinone, (c) phenylalanine, and (d) tryptophan. The solid line refers to the

RMV pattern, the dotted line to the RMS pattern, and the dashed line to the SMS pattern. All plots refer to the ALS-SI solutions.
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data set I, most likely reflecting the higher difficulty,

although some specific aspects are retained (Fig. 6).

Tryptophan prediction improves with an increasing percent-

age of missing values, reaching a maximum at 70%. For

DOPA, the minimum is reached between 30% and 50%, and

then the quality slightly deteriorates. These observations are

consistent with the hypothesis of influence of the Raman

scatter; further analyses of the raw data showed that the

subtraction of a blank is insufficient to completely remove

the Raman scatter peaks. For the other constituents, the

behaviour is quite the opposite and the predictions worsen

considerably along with an increasing amount of missing

information. Data set III (Fig. 7) essentially confirms the

results illustrated thus far: tryptophan predictions slightly

improve with the percentage of missing elements in the

SMS case, with a clear worsening starting at 60%; hydro-

quinone and tyrosine behave analogously to data set II. The

different behaviour of the same analyte (particularly of

hydroquinone) with respect to the different sets is probably

to be associated to more aspects than the sole Raman scatter

(e.g., the higher difficulty of the fitting problems or
instrumental effects); nonetheless, the results for the three

data sets appear rather consistent.

The two algorithms, in terms of quality of the predic-

tions, performed equivalently for all data sets and patterns.

In general, the relative difference of the RMSEC between

the two was contained within 0.1%, becoming larger only

when the models themselves become very unstable.

With respect to the computational efficiency, the real

data sets confirmed all the observations made for the

simulations: the number of iterations required for the SMS

case is much higher than for the two other patterns, to the

point that at 70% missing 10000 iterations were not

sufficient for ALS-SI to converge to a solution. Table 5

makes apparent the correctness of the classification of the

problems in terms of cJ: the number of iterations increases

going from data set I to II to III, which is clearly the most

difficult problem.

With respect to the time consumption, INDAFAC was

faster on data sets II and III in 93–100% of the replicates for

the SMS pattern starting at about 30–40% missing elements.

On the other hand, ALS-SI was faster in the vast majority of



Fig. 6. Median RMSEC for the four constituents of data set II: (a) DOPA, (b) hydroquinone, (c) tryptophan, and (d) tyrosine. The solid line refers to the RMV

pattern, the dotted line to the RMS pattern, and the dashed line to SMS pattern. All plots refer to the ALS-SI solutions.
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the cases (for all the data sets and patterns) when 10% or

20% elements were missing.
5. Conclusions

Two algorithms for fitting the PARAFAC model in

presence of missing values, ALS with single imputation,

and INDAFAC—based on a Levenberg–Marquadt method

for non-linear least squares—have been tested by means of

a Monte Carlo simulation and on three fluorescence data

sets of various complexity. In terms of capability of

recovering the correct solution, they performed almost

equally, although INDAFAC appeared slightly better for

difficult problems (e.g., when the underlying components

are very collinear). In terms of time consumption, the

derivative-based algorithm is faster when the fraction of

missing values exceeds 30% for patterns typical of

fluorescence data and 60% when they are uniformly

scattered over the array.
A classification was proposed for the possible patterns

of missing elements within an array: randomly missing

values (RMV) and spectra (RMS), and systematically

missing values (SMV) and spectra (SMS). A clear

association has been shown between these patterns and

the performances of the two algorithms in fitting a

PARAFAC model.

The most remarkable result is that a PARAFAC model

can be successfully fit even when 70% of the values are

missing compared to, for example, PCA on a matrix, for

which the limit appears to be in the order of 25–40% [1,4].

The reason for this can be found in the trilinear structure of

the PARAFAC model and its added rigidity. In spite of very

large fractions of missing values, it was possible to

adequately predict the concentration of analytes in synthetic

solutions of up to five constituents.

Furthermore, possible explanations were given for the

different behaviour of the algorithms with respect to the

pattern of missing values, especially with respect to the

SMS case, which is by far the most common in, e.g.,



Fig. 7. Median RMSEC for the four constituents of data set III: (a) cathecol, (b) hydroquinone, (c) indole, (d) tryptophan, and (e) tyrosine. The solid line refers

to the RMV pattern, the dotted line to the RMS pattern, and the dashed line to SMS pattern. All plots refer to the ALS-SI solutions.
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fluorescence spectroscopy. Possibly, this will provide new

tools for studying the application of more complex missing

values patterns that do not interfere with multilinearity to the

same extent as the SMS case presented here [25], or of ad

hoc techniques for dealing with missing values and non-

multilinear variation [31,32].
Finally, a new and very general tool has been proposed

for establishing the difficulty of fitting a PARAFAC model:

the Jacobian (practical) condition number cJ, which

accounts not only for the collinearity in any of the loading

matrices but also of the binteractionQ between the model and

the data it is fitted to.
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Appendix A. Effect of the SMS pattern on the

convergence

A noiseless 2�20�20 array X was generated where A=I,

b1, and c1 were Gaussian curves with l=3, and r=2, b2 and
c2 were Gaussians with l=17 and r=2 (Fig. 8a). The two

components are orthogonal, and on the complete array with

random initialisation, the algorithm always converged to the

correct solution within the first five iterations. On the other

hand, if 50% of the values were set to missing according to

an SMS pattern (Fig. 8b), both algorithms never converged

within the first 10000 iterations. Fig. 8c shows the loading

vectors of B and C for such problem: small peaks are visible

in each loading vector in correspondence with the peak of

the other component. These small bghostQ peaks have no
Fig. 8. (a) B (and C) of a noiseless 2�20�20 array; (b) landscape of the first ho

missing values in the SMS pattern; (d) landscape of the first horizontal slab in th
effect on the loss function as they are entirely included in

the missing areas (Fig. 8d), on the other hand, they interfere

with the trilinear structure, as part of the second component

is described by the first and vice versa. The problem

becomes apparent if one computes the Tucker core and the

core consistency [26] relative to the two solutions. When

missing values are present, the core consistency is lower

than 100% (99.28% in the case showed in the figure), and

the Tucker core, while dominated by the two elements on

the bsuperdiagonalQ, contains small values with opposite

signs and almost equal magnitude(1.4d 10�5) at positions

g211 and g122:

G ¼ 4:0d 10�2 4:1d 10�3

1:5d 10�5 4:3d 10�3

���� 4:1 10�3 � 1:4d 10�5

4:2 10�3 4:1d 10�2

�
:

�

As the iterative method proceeds (both ALS-SI and

INDAFAC), the decrease in the loss function becomes

increasingly small, the loss function tends to zero, and the

core consistency to 100%. Repeated tests confirmed this

observation. The shape of the ghost peaks in real life would

be affected by noise or other nonmultilinear structures in the

data [6].
rizontal slab of X; (c) B (and C) of a noiseless 2�20�20 array with 50%

e PARAFAC model of X.
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1. Introduction 
The PARAFAC/CANDECOMP model was introduced in 1970 (Carroll and Chang, 1970;Harshman, 1970) as a 

method to extract information from a three-way array X  of dimensions I J K× × . The original and still most employed 
algorithm to fit this model is based on the Alternating Least Squares (ALS) approach (Bro, 1998). PARAFAC-ALS is 
relatively easy to implement, constraints of various sorts can be applied and it can be straightforwardly extended to 
higher orders (Bro, 1998;Carroll and Chang, 1970). Conversely, this algorithm has several well known shortcomings 
(Mitchell and Burdick, 1994;Paatero, 1999;Hopke et al., 1998;Kiers, 1998;Bro, 1998), which contributed to giving rise 
to numerous alternative methods (Faber et al., 2003;Tomasi and Bro, 2006). 

Standard nonlinear least squares optimisation algorithms such as the Levenberg-Marquadt method can be more 
efficient in attaining a solution than PARAFAC-ALS (Tomasi and Bro, 2006;Tomasi and Bro, 2005;Hopke et al., 
1998;Paatero, 1997), but have seldom been employed because of higher demands in terms of computational resources 
(Paatero, 1997;Wang and Hopke, 2001;Bro, 1998). In particular, the cross-product TJ J  and products with a vector of 
the Jacobian matrix J are necessary for most nonlinear least squares solvers, but for the PARAFAC case J is far too 
large for many problems of practical interest, even when its sparsity is exploited for its storage (Wang and Hopke, 
2001). This represents an evident limit for some implementations like the Multilinear Engine (ME)(Paatero, 1999), a 
program for fitting multilinear models, and amongst them PARAFAC, based on a Preconditioned Conjugate Gradients 
(PCG) algorithm (Wang and Hopke, 2001). 

On the other hand, J is also redundant and structured, which suggests that its products could be efficiently 
calculated without recurring to its explicit computation and to sparse matrices. Element-wise formulae for some 
PARAFAC Jacobian’s products do exist and are employed by the Equation Oriented System (EOS)(Wang and Hopke, 
2001) and, for the three-way case, by the PMF3 method (Positive Matrix Factorisation for 3-way arrays), which is, in 
essence, a slightly modified Levenberg-Marquardt algorithm (Paatero, 1997). In particular, the former advocates a 
number of rules to compute the products of the Jacobian (or of its transpose) with a vector to yield the vectors necessary 
to the PCG algorithm on which EOS relies. However, owing to modern computers’ architecture, using so-called block-
algorithms and algorithms rich in higher-order operations (i.e. matrix/matrix multiplications) is necessary to yield 
optimal performances in terms of computational efficiency (Golub and Van Loan, 1996). This is even more important in 
the MATLAB environment, in which routines based on explicit loops are much slower than programs based on 
optimised built-in functions (The Mathworks, 2002). Thus, for example, the actual computations of the Jacobian 
products with a vector are performed in EOS by a compiled routine (Wang and Hopke, 2001). 

A first step towards efficient algorithms was made by Liu & Sidiropoulos (Liu and Sidiropoulos, 2001), who 
developed, albeit for other purposes, some formulae for the computation of two products of the Jacobian matrix (viz. 

TJ J  and TJ v ) for the three-way case. Their results are here obtained and generalised to the N-way case on the basis of 
certain properties of the Khatri-Rao product (Rao and Mitra, 1971) that are described in the appendix to this work. The 
same properties allow for a generalisation of the formulae for weighted least squares fitting criterion employed by 
PMF3, to express the rules of EOS for the products of the Jacobian with a vector in terms of full matrices and to derive 
concise equations for the rapid computation of the second derivatives of the PARAFAC model and of the true Hessian 
matrix. Additionally, the chain rule for matrix functions (Magnus and Neudecker, 1999) is used to significantly reduce 
the workload for the two products TJ v  and Jv and to formalise the use of ‘sub-expressions’, which were introduced 
with ME (Paatero, 1999).  

All such formulae are tested on simulated problems of various size to asses the cost per iteration of some common 
nonlinear least squares solvers (namely Levenberg-Marquardt, damped Newton and nonlinear conjugate gradients) 
compared to that of PARAFAC-ALS. 



1.1 Notation 

Defining an N-way array X of dimensions I1×…× IN as: 

{ }1
1, , , 1, ,

Ni i n nx i I n N= = =X … … … , 

a rank F PARAFAC model can be written as 

 ( )
1 1

1 1
N n N

NF
n

i i i f i i
f n

x a r
= =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∏… … , (1) 

where 
1 Ni ir … denotes the residuals for the single elements.  

The model parameters ( )
n

n
i fa  are typically grouped in N loading matrices An (one per mode of the array) 

( ){ }1, , , 1, ,
n

n
n i f n na i I f F= = =A … … , 

whose -thf  column and -thni  row are identified by ,n fa  and , nn ia  respectively.  

A very convenient notation emerges from matricising the N-way array, i.e., by rearranging its elements to obtain a 
matrix of suitable dimensions (Bro, 1998;Kiers, 2000). Using the loading matrices, the matricised PARAFAC model 
can be expressed as 

( ) ( ) ( )1 2 1 2T
1 2

N NI I I I I I
N

× ×= +X A A A R… …… , (2) 

where  denotes the column-wise Khatri-Rao product (Rao and Mitra, 1971) and ( )1 2 NI I I× …  defines the way the 
array X  is matricised (Bro, 1998;Kiers, 2000).  

The model can also be expressed in a vectorised fashion (Bro, 1998), which is more convenient for some of the 
formulae derived in this work. Thus: 

( ) ( ) ( )1 2 1 2
1vec vecN NI I I I I I

N F
× ×= +X A A 1 R… …… , (3) 

where F1  is an 1F ×  vector of ones, the vec operator concatenates the columns of a matrix (Magnus and Neudecker, 

1999) and the vector ( )1 2vec NI I I× ≡X x…  has 
1

N

n
n

I M
=

≡∏  elements. Note that the vectorisation of a matricised array is 

independent of where the × sign appears in the parentheses so long as the order of the dimensions remains unchanged. 
Thus,  

( ) ( ) ( )1 2 3 1 1 2 3 1 1 2 3 1vec vec vecN N N N N NI I I I I I I I I I I I I I I− − −× × ×= = =X X X… … …… .  

Another useful equation expresses the model for a three-way array X  in terms of the matrices obtained by fixing 
one of the indexes. For example:  

3 3 3

T
1 2i i i= +X A D A R , (4) 

where 
3i

X  is the matrix obtained by fixing the index in the third mode to 3i  and 
3i

D  is a diagonal matrix holding the 

elements of the 3 -thi  row of 3A .  

In order to shorten the notation, a matrix Z is defined as 

1N=Z A A… , 

and the subscripts n−  and nn′−   (or, in case of ambiguity, { },n n′− ) are used to identify matrix products and notations 
including all indexes from 1 to N apart from the -th and -thn n′ . Therefore: 

1 1 1

1 1 1 1 1

2 1 1

2 1 1 1 1

n N n n

nn N n n n n

n n n N

nn n n n n N

I I I I I
I I I I I I I

− + −

′ ′ ′− + − + −

− − +

′ ′ ′− − + − +

=
=

=
=

Z A A A A
Z A A A A A A

… …
… … …

… …
… … …

. 

Note that the order of the subscripts is relevant and the indexes are always in descending order for Z matrices and 
ascending for the dimensions.  



The subscripts n and nn′  are used to concisely specify the way an N-way array is matricised and denote the modes 
that represent the rows in the matricised array. Thus: 

( )

( )

( )

T

T

n n

n n nn

I I
n

n n n n

I I I
nn

nn nn n n nn

−

′ ′−

×

−

×
′

′ ′ ′ ′−

=

= −

=

= −

X X

R X A Z

X X

R X A A Z

. 

Additionally, the matrices ,  and n nn′− −E E E  are defined as  

( ) ( )T T T T T
1 1 N N n n n n n n n nn′ ′ ′− −≡ ∗ ∗ ≡ ∗ ≡ ∗ ∗E A A A A A A E A A A A E… , 

where ∗  indicates the Hadamard (i.e. element-wise) product (Magnus and Neudecker, 1999), and ,  and 
nI F n nn′K M M  

identify the commutation matrices that perform the following operations (Kapteyn et al., 1986;Magnus and Neudecker, 
1999): 

T

T
1

T
1

vec vec

vec vec

vec vec

nn I F n

n n

nn nn′ ′

=

=

=

A K A

X M X

X M X

.  

Finally, the symbol ⊗  will denote the Kronecker product (Magnus and Neudecker, 1999). 

 

1.2 Derivative based methods for nonlinear least squares problems 

Fitting the PARAFAC model in the least squares sense means to solve the nonlinear minimisation problem  

( ) ( ) ( )
1 1

T
1 1 1

, , , ,
arg min , , arg min vec vec

n n

n F FL ⎡ ⎤= − −⎣ ⎦A A A A
A A X Z1 X Z1

… …
… . (5) 

In some cases, e.g., when some elements in X  are missing, a weighted least squares approach should be used and 
problem (5) is transformed in  

( ) ( ) ( )
1 1

T
1 1 1

, , , ,
arg min , , arg min vec vec

N N

N F FL ⎡ ⎤= − −⎣ ⎦A A A A
A A X Z1 W X Z1

… …
… , (6) 

where W is a diagonal matrix (Tomasi and Bro, 2005;Andersson et al., 1999;Vega-Montoto and Wentzell, 2003;Bro et 
al., 2002).  

Typically, both (5) and (6) are solved through an Alternating Least Squares algorithm, whereby the nonlinear 
problem is split in smaller linear ones by fixing all the loading matrices apart from one (Smilde et al., 2004). Other 
common nonlinear least squares algorithms (i.e., Newton, Quasi-Newton, Gauss-Newton and PCG methods) are 
iterative and are based on the fact that any sufficiently smooth function ( )L p  can be approximated in a point + ∆p p  
by a Taylor-series expansion truncated at the quadratic term: 

( ) ( ) ( )T T1
2

L L L+ ∆ ≈ + ∆ + ∆ ∆ ≡ ∆p p p g p p H p p , (7) 

where g is the gradient and H is the Hessian of the function ( )L p  at the point p and their elements are defined 
respectively as: 

( ) ( )
 and k kk

k k k

L L
g h

p p p′
′

∂ ∂
= =

∂ ∂ ∂
p p

. 

In the PARAFAC case, the vector p of parameters can be defined as T T T
1 2vec N

⎡ ⎤≡ ⎣ ⎦p A A A  and has 
1

N

n
n

F I K
=

≡∑  

elements.  

For least squares problems, Hessian and gradient assume the following form (the dependence on p is omitted for 
clarity) (Gill et al., 1986;Björck, 1996): 



T=g J r  (8a)  

and 

T T

1

M

m m
m

r
=

= + ≡ +∑H J J H J J Q , (8b) 

where ( )J p  is the Jacobian of r, i.e. an M K× matrix whose elements are defined as 

m
mk

k

r
j

p
∂

=
∂

 

and mH  is the Hessian calculated at rm. 

A stationary point of ( )L ∆p , satisfies the linear system (Madsen et al., 2004): 

∆ = −H p g . (9) 

The solution of system (9) provides a direction ∆p that is used to update the current approximation of p: 
( ) ( )1s s−= + ∆p p p , (10) 

where s denotes the iteration number. If the residuals are sufficiently small and the linear approximation holds, Q can be 
ignored and TJ J  can be used as an approximation of the Hessian. This is the theoretical basis for the Gauss-Newton 
algorithm (Madsen et al., 2004). If, on the other hand, the full Hessian is used, the algorithm is referred to as Newton 
method. 

A sufficient condition for the update to be a descent direction (i.e., leading to a decrease in the loss function value), 
is the positive-definiteness of the Hessian or of its approximation, which is in general not guaranteed (Frandsen et al., 
2004). For example, owing to the scaling indeterminacy of PARAFAC (Paatero, 1997), J is rank deficient and has 
( )1N F−  zero singular values, which can cause serious problems for the convergence of the Gauss-Newton algorithm 
(Gill et al., 1986;Björck, 1996). Therefore, in order to obtain a globally convergent algorithm, the updates are found as 
the solution of  

( )λ+ ∆ = −H D p g , (11) 

where D is a positive definite diagonal matrix, λ  is called the damping parameter and should be large enough to yield 
positive-definiteness. For the Gauss-Newton algorithm it is sufficient to substitute TJ J  for H (Frandsen et al., 2004). In 
the latter case, the algorithm is sometimes referred to as Levenberg-Marquardt method.  

When problem (6) need be solved the same methods mentioned thus far can be used, but equations (8a) and (8b) 
need be modified into (Magnus and Neudecker, 1999): 

T=g J Wr  (12a)  

T

1

M

m m m
m

r w
=

= + ∑H J WJ H , (12b) 

where W is a diagonal matrix. Equations (12a-b) show how fast routines for TJ WJ  and T=g J Wr  when W is 
diagonal are also required to avoid the explicit computation of the Jacobian or element-wise calculations. 

The Conjugate Gradients (CG) method for nonlinear least squares problems (Gill et al., 1986), albeit slower than 
Gauss-Newton or Newton methods, is often the sole available algorithm for large systems (e.g., when the number of 
parameters is in the order of several thousands) (Frandsen et al., 2004;Gill et al., 1986). Moreover, a  variant of the CG 
algorithm may be used to solve linear systems like (11) when the application of a direct method (e.g., the Cholesky 
decomposition) is not feasible (Björck, 1996). When only an approximate solution to system (9) is found by means of 
an iterative procedure, the algorithm is referred to as Truncated Newton method  (Gill et al., 1986). The main advantage 
the (linear or nonlinear) CG algorithm is that no large matrices need be stored or computed as the Jacobian is always 
treated as a product with a vector (Frandsen et al., 2004;Gill et al., 1986). Thus, when such products can be efficiently 
reckoned, CG methods become particularly appealing. Preconditioning is used to speed up the convergence (Gill et al., 
1986) as well as to enforce certain constraints like non-negativity (Paatero, 1999). However, for the purposes of this 
paper, it is only relevant that the two products of the Jacobian TJ v  and Jv  are required by this method and that for the 
nonlinear case, the CG algorithm requires a line search procedure that may entail several loss function evaluations 



(Madsen et al., 2004). With respect to the latter aspect, it is noteworthy that for PARAFAC  models an analytical 
solution is available to compute the optimal step length given a certain direction of update (Franc, 1992). As for other 
operations considered in this work, exploiting the properties of the Khatri-Rao product allows to extend the procedure 
to the N-way case and to yield great savings compared to the original formulation. For sake of completeness, this result 
is reported in Appendix 4.  

 

2. Theory 
2.1 The Jacobian matrix J 

The Jacobian matrix for the matrix function T
1 1 1 1−= −R X A Z  with respect to 1, , NA A…  can be obtained by 

computing the differential of 1vec R (Magnus and Neudecker, 1999)  
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where 
nII  is the identity matrix of order nI , the effect of Mn on the order of the terms in the Khatri-Rao product is 

explained in Lemma 2 of Appendix 1, and the relation ( )Tvec vec= ⊗ABC C A B (Magnus and Neudecker, 1999) is 
used for the last equality. It could then be noticed that 
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Thus, 

( ) ( ) ( )T
1

1
vec vec

n
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n I n n
n

d d−
=

= − ⊗∑R M I Z A  (15) 

and the Jacobian can be partitioned as (Magnus and Neudecker, 1999):  

1 ,N= ⎡ ⎤⎣ ⎦J J J  (16) 

where  

( )nn n I n−= − ⊗J M I Z . (17) 

According to (17), the number of non-zero elements in Jn is equal to n nI FI FM− =  and for the whole J is equal to 
NFM. Consequently, the density β  of the Jacobian depends only on the order of the array N and on its size (viz., 

1

1

N

n
n

NFM N I
MK

β
−

=

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∑ ) and is typically very low. For normal sized problems, the storage of J and its explicit use for 

computing, e.g., TJ J  are feasible only using sparse matrices. Sparse direct methods (e.g., QR) may appear attractive to 
solve system (10), but the matrix TJ J  is almost full (only the diagonal blocks are not) and the Jacobian itself has the 
strong Hall property (Björck, 1996). Thus, the Cholesky factor will also be almost dense, ruling out such methods 
(Björck, 1996). However, equation (17) also shows that J is redundant and suggests that its structure could be exploited 
to reduce computational load and storage.  

 



2.2 Jacobian products 

2.2.1 TJ J  

The matrix JTJ is symmetric and can be partitioned in 2N  blocks: 
T T
1 1 1
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T T
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N N N

⎡ ⎤
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J J J J
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. (18) 

The blocks on the diagonal can be readily computed from equation (17) 

( ) ( ) ( ) ( )T T T T
n n n nn n I n n n I n I n n I n− − − − −= ⊗ ⊗ = ⊗ = ⊗J J I Z M M I Z I Z Z I E . (19) 

Each off-diagonal block T
n n′J J  has dimensions ( )n nI F I F′×  and can be partitioned in F ×F blocks as 
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, (20) 

where block T
, ,n nn i n i ′′J J  pertains to the parameters of the -thni  row of nA  and of the -thni ′  row of n′A . As can be seen 

from equation (17),  

( ) ( )T T
, 1 1 1n n n dn i n i n n i F n N n i F n− − + −= − ⊗ = − =J M e Z M e 1 Z A A e 1 A A… … . (21) 

Hence, using equation (A.7), one obtains that 
T T

, , , , .
n n n nn i n i nn n i n i′ ′′ ′ ′−= ∗J J E a a  (22) 

One can immediately see that the off-diagonal blocks of TJ J  are structurally dense, which prevents in many cases the 
efficient use of sparse algorithms to solve directly the system of normal equations (Paatero, 1997;Tomasi and Bro, 
2006). The term nn′−E  is independent of  and n ni i ′ , thus: 
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where 
n nI I ′×1 is a n nI I ′×  matrix of ones. 

Computing T
n n′J J  using equation (23) requires explicit loops over the and n nI I ′ and can be quite slow in 

MATLAB (The Mathworks, 2002). However, a pattern is clearly visible in the first right end term that could be 
exploited to accelerate the calculation. Using Lemma 1, each small block of the first right hand term, can be written as: 

( ) ( )T T T T
, , , , , ,n n n n n nn i n i n i n i n i F n i F′ ′ ′′ ′ ′= ⊗ = ⊗ ∗ ⊗a a a a a 1 a 1 . (24) 

It follows immediately that equation (23) can be written as: 

( )T
n nn n I I nn′′ ′× −= ∗ ∗ ⊗J J B C 1 E , (25) 

where 
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Equations (19) and (25) are the extension to higher orders of the formulas derived by Liu & Sidiropulos (Liu and 
Sidiropoulos, 2001). Differently from the latter work, the permutational and scaling indeterminacy are not dealt with in 
(19) and (25). Therefore,  and 

n nI I ′
I I are used instead of 1 1and .

n nI I ′− −I I  

It is noteworthy that there is no reduction in the number of operations by using (25) instead of (23). However, the 
former is more suited for the MATLAB environment as Kronecker products with a vector or a matrix of ones require no 
actual multiplication and can be produced via appropriate indexing. Moreover, the matrices n F⊗A 1  need only be 
formed once.  

Taking advantage of the symmetry of T ,J J its computation requires: 22 2nn
I F FK=∑  operations for computing 

the T ,n nA A approximately ( ) 2 20.5 1N N F−  to compute  and n nn′− −E E  and ( )2 2 22 nn
K F I− ∑  for the actual reckoning 

of the off-diagonal blocks, which is clearly the most time consuming step.  

  

2.2.2 TJ WJ  when W is diagonal 

Equations (19) and (25) are not suited for the product TJ WJ  and are thus inapplicable when some elements of X  
are set to missing, a fairly common occurrence for the type of data on which PARAFAC is fitted (Tomasi and Bro, 
2005). However, if W is diagonal and holds the elements of the vector 1vec ,=w W  where W  is an array of the same 
size of X , it is possible to compute all the non-zero elements in the partitions T

n n′J WJ  without having to explicitly 
compute the Jacobian and using only full matrices. Using Lemmas 5, 6 and 7 (cf. Appendix 1), the partitions 

T
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where 
inwD  is a diagonal matrix holding the -thni  row of nW  and 

,i in n′wD  is a diagonal matrix holding the row of nn′W  

relative to the two indexes and n ni i ′  (i.e., the vectorised sub-array obtained by fixing the indexes in the -th and -thn n′  
mode to  and n ni i ′  respectively) and 

n ni iδ ′  denotes the Kronecker delta. 

The computation of T
n n′J WJ  can be further accelerated by noticing the similarity between T

inn n− −wZ D Z  and 

,

T
i in nnn nn′

′ ′− −wZ D Z  and equation (4). T
inn n− −wZ D Z  expresses the PARAFAC model of the -thni slab of a three-way array 

U of size nF F I× × , where the three loading matrices are T
1 2 n−= =A A Z  and 3 n=A W . Likewise,  

,

T
i in nnn nn′

′ ′− −wZ D Z  is 

the PARAFAC model of one slab of a three-way array V of size n nF F I I ′× × , where the three loading matrices are 
T

1 2 nn′−= ≡A A Z  and 3 nn′≡A W . Hence, one can define: 
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and rewrite equation (19) as: 
T

, ,n n n n nn i n i i i iδ′ ′=J WJ U , (28) 

where 
ni

U  denotes the -thni  frontal slab of .U Similarly, equation (25) becomes  
( )T ,n nFI FI

n n
′×

′ = ∗ ∗J WJ B C V  (29) 

where B and C are defined as in (25).  



The computational workload is largely increased by the fact that the cross products of the loading matrices cannot 
be used throughout TJ J . Thus, in addition to what is necessary for (29), one needs approximately 22F M  additional 
operations for each block to calculate U and V. The overall load is then in the order of ( ) 2 21 2 .N NMF K+ +    

 

2.2.3 T vJ  

The vector T=b J v  can be partitioned in N blocks corresponding to the columns relative to the different loading 
matrices in the Jacobian: 
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By defining a set of matrices Vn according to the relation T Tvec n n=V M v , one can calculate bn as: 

( ) ( ) ( ) ( )
T TT T T T T Tvec vec vec

n nn n I n n I n n n n n n− − − −= = − ⊗ = − ⊗ = − = −b J v I Z M v I Z V Z V V Z . (31) 

Hence, to compute b, it is sufficient to appropriately matricise the multi-way array V  of size I1×…× IN obtained by 
rearranging the elements of vector v and to multiply it by the corresponding set of Khatri-Rao products. The 
computational cost of the product TJ v  is 2 2 .n nn

FI I NMF− =∑  

The chain rule for matrix functions (Magnus and Neudecker, 1999) allows for a considerable reduction in the total 
workload when at least the size in one mode exceeds the rank of the fitted model. Thus, by denoting with 2 NJ …  the 
partition of the Jacobian of T

1 1 1−−X A Z  relative to the parameters of the loading matrices 2 , , NA A… and by using the 
chain rule, one can write 

T
1

2 2 ,N N
−

= −
Z

J J J… …  (32) 

where 
1−ZJ  indicates the Jacobian of T

1 1−A Z  with respect to T
1−Z  and 2 NJ …  is the Jacobian of T

1−Z  with respect to 

2 , , .NA A…  

If performed explicitly (32) would not bring any computational advantage (Paatero, 1999), but, when TJ v  is 
required, one yields (cf. Appendix 2) 
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, (33) 

where V  is the 2 NF I I× × ×…  array defined by the relation T
1 1 1≡V A V  and { }( )1, .n Fn− −≡Z Z I  

The computational advantage derives from the fact that (33) involves the product and the rearrangement of a matrix 
where 1I  is reduced to F and that nZ  is sparse with density 1F − . Since algorithmically the different modes of an N-way 
array are treated identically, it is obvious that the greatest advantage is yielded by reducing the largest mode and for 
higher ratios between size of the array and model’s rank. Equation (33) formalises the use of sub-expressions of ME 
with respect to the product TJ v (Paatero, 1999). 

In the special case where 1vec=v R , the vector b is equal to the gradient T=g J r  and  

( )Tvecn n n−= −g R Z , (34) 

but, since T
n n n n−= −R X A Z , eq. (34) can be simplified as: 

( ) [ ]
T TTvec vec .n n n n n n n n n− − − −

⎡ ⎤= − − = − −⎣ ⎦g X A Z Z X Z A E  (35) 

Equivalently, defining 



T T T T
1 1 1 1 1 1 1 1 1− −⎡ ⎤≡ − = −⎣ ⎦R A X A Z A X E Z , (36) 

equation (33) can be rewritten as: 
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, (37) 

where T
1 1 1≡X A X .  

Consequently, the residuals are not necessary to calculate the gradient and one could spare approximately 
( )2 1M F +  operations per each calculation of the gradient. On the other hand, although the savings would grow rapidly 

with the dimensions of X  and with the model’s rank, the practical advantage for fitting algorithms seems limited, since 
the residuals are computed at each iteration to evaluate the loss function. Equation (35) was obtained by Franc (Franc, 
1992) in a different fashion and not using explicitly the properties of the Khatri-Rao product. 

This product obviously encompasses the case T ,J Wv  which should always be computed as ( )TJ Wv  to avoid an 
unnecessary matrix/matrix multiplication. Moreover, if W is diagonal and holds the elements of the vector w, the fastest 
method is indeed ( )T ∗J w v . Thus, the gradient for problem (6) when W is diagonal, is computed as: 

( )Tvecn n n−′= −g R Z , (38) 

where .′ = ∗R R W  Note that, owing to W , the simplifications leading to equations (35) and (37) are not possible, but 
when many values are set to missing W  can be stored as sparse and there can be a considerable reduction in the 
computational load. 

Finally, it is noteworthy that no array permutation is actually necessary to compute the products n n−V Z . The 

definition of a new class of matricised arrays ( )1 1 1n n N nI I I I I
n

+ −×≡V V … … for 1n N= … , which has the property: 

T
1vec vecn n−=V V , (39) 

helps showing that only a transposition and the simple rearrangement of the elements in a new matrix are necessary. 
The multiple Khatri-Rao matrix corresponding to this matricisation is 1 1 1n n N n− − +≡Z A A A A… … . This 
expedient is used in the N-way toolbox (Andersson and Bro, 2000) and can be particularly advantageous for large 
arrays. Unfortunately, it seems to be available only when either the columns or the rows of the matricised array 
interested by similar products refer to only one mode. Therefore, the same procedure is not applicable for reducing the 
time expense for the off-diagonal blocks of JTJ or to compute the nonlinear part of the Hessian Q (cf. section 2.3). 

 

2.2.4 Jv  

The vector =c Jv  can also be more easily calculated partitioning v and J in N blocks relative to the different 
modes: 
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By rearranging the elements of nv  in a matrix nV  of dimensions nF I×  according to the relation vec n n=V v , 
one can calculate c as: 

( ) ( ) ( )
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The vectors ( )vecn n n−M Z V  can be computed without any actual permutation if one considers that 
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 (42) 

If one uses (42), the computational cost of this product is of 2NMF for each cn and ( )1N M−  for their summation. 
Nonetheless, this workload can be reduced by considering again the chain rule for matrix functions, similarly to what 
was done for the product TJ v . As shown in Appendix 2, c can be calculated as: 

( )
T

T T T
1 1 1 1 2

2
vec

N

N n n n
n

+ −
=
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Like for T vJ , the computational advantage of using (43) instead of (42) is expected to grow with the ratio between 
the largest dimension of the array (here taken equal to I1) and the rank of the model F. Finally, should WJv be 
computed, the product should be performed as ( )W Jv , and, in case of diagonal W, as ( ) ,∗w Jv  where w is the vector 
of the diagonal elements of W. Again, it is worth mentioning that, if many values in the array are set the missing, it 
could be beneficial to store the vector w as sparse. 

2.3 Hessian 

One of the reasons why Gauss-Newton is preferred to the Newton method is that the computation of the exact 
second derivatives implies an additional (typically large) workload. In theory, though, the exact Hessian represents an 
advantage when the residuals are large or when the cost function is particularly nonlinear (Gill et al., 1986;Björck, 
1996). One advantage of the PARAFAC model is that its multilinear structure makes the second order term Q 
extremely sparse and computationally relatively inexpensive.  

From eq. (8b), its element kkq ′  is calculated as 
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Thus, kkq ′  is not zero only when  and k kp p ′  belong to different loading matrices and to the same factor f. Moreover, Q 
can be partitioned in 2N  blocks as  
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 (46) 

and all the elements of the partition nn′Q  can be obtained in one operation using Lemma 4 and equations (44) and (45): 
( )n nI I F

nn nn
′ ×

′ ′−=U R Z  (47) 

In order to see how to rearrange the elements of ( )n nI I F′ ×U  to obtain ,nn′Q  one should further partition the latter in 

n nI I ′  blocks of size ,F F×  each relative to the -thni  and -thni ′ rows of and .n n′A A  Since the second derivatives are 
zero if f f ′≠ , all such blocks are diagonal. It is easy to demonstrate that the non-zero elements of nn′Q  have the same 

indexes of the non-zeros of the matrix ( )n nI I F′
⊗1 1 I . Storing such indexes allows for the rapid formation of the sparse 

matrix nn′Q . Furthermore, exploiting the symmetry of Q, only half of the indexes and of its nonzero elements need be 
stored, with additional savings in terms of memory consumption. 



The additional computational cost for the nonlinear part of the Hessian is ( )
,

2 1 .
n n
n n

MF N NMF
′
′≠

= −∑  As can be seen, 

for the three-way case, Q is about as expensive to compute in terms of number of operations as the gradient, which 
suggest the feasibility of Newton algorithms for fitting PARAFAC for problems where the Hessian can be stored.  

3. Experimental 
 The purpose of this work is to investigate the speed of different routines for computing the Jacobian, some of its 

products and the Hessian of a PARAFAC model and not to evaluate the convergence rate or the performances of the 
associated algorithms. Thus, the different procedures have been tested on arrays and loading matrices of random 
numbers and appropriate size without any specific N-linear structure. The tested routines and the corresponding outputs, 
the design factors and their levels are shown in Table 1. All the routines are only outlined here for reasons of space. 
They have all been made available for download at www.models.kvl.dk/source. All the simulations have been 
performed on the same dedicated machine, mounting a Pentium 4, 2.8 GHz, 1GB RAM operating under Windows XP 
Professional and using MATLAB 7.0.1. 

The size of the Jacobian impedes the use of full matrices for its storage even for relatively small arrays and simple 
models; for example already for a 50 × 50 × 50 array and a rank three PARAFAC model, the full Jacobian requires 
approximately 429MB in double precision. The same matrix stored as sparse requires slightly less than 13MB. Thus, 
the only feasible implementation to compute J is based on sparse matrices. In order to reduce the computation time, the 
indexes for the non-zero elements of the Jacobian are computed separately by J_index and passed to the main routine 
(J_sparse). Note however, that this solution is feasible only up to a point since the storage of the indexes requires an 
amount of memory on the same order of magnitude as the Jacobian itself, even if they are stored as unsigned long 
integers (i.e. if eight bytes are used to index each element). Therefore, for larger problems the indexes have to be 
reckoned at every iteration with a considerable increase in the computational load. The function J_sparse_part is used 
for this purpose and was employed to compute J for the 100×100×100 arrays with model rank six. Even this procedure, 
though, is unfeasible when the problem is larger. For instance, at rank nine the Jacobian for the 100 × 100 × 100 takes 
up 309MB in double precision even if stored as sparse and could not be calculated in a reasonable time. 

The element-wise routines to compute TJ J  and TJ WJ  (i.e. the functions JTJ_el and JTWJ_el, respectively) are 
built as to yield optimal performances in MATLAB (to the author’s knowledge), minimising the number of operations 
and indexing. They do not employ external compiled code. JTJ_sparse and JTWJ_sparse, which explicitly form J, are 

Table 1. Tested Routines and design factors 

Vector/Matrix Routines (function name) Factor Level 

Array Size 25×25×25 
50×50×50 

100×100×100 

J - Index (J_index)1 
- Sparse (J_sparse)1 
- Sparse + Index (J_sparse_part)2 

Rank 3, 6, 9 

Array Size 25×25×25 
50×50×50 

100×100×100 

TJ J , TJ WJ  - Element-wise (JTJ_el, JTWJ_el ) 
- Sparse (JTJ_sparse, JTWJ_sparse ) 
- Full (JTJ_full, JTWJ_full ) 

Rank 3, 6, 9 

Array Size 25×25×25 
50×50×50 

100×100×100 

H - Index (H_index) 
- Sparse (H_sparse) 

Rank 3, 6, 9 

Array Size 80×80×80 
140×140×140 
200×200×200 

TJ v , Jv 
 

- Full (JTv_full, Jv_full ) 
- Chain Rule (JTv_chain, Jv_chain ) 

Rank 4,8,12,…, 48 
1 used for all dimensions and ranks apart from 100×100×100 and model rank 6 and 9 
2 used for arrays of dimensions 100×100×100 and model rank 6. 



comprised of three steps. In the first, the indexes for nonzero elements of the Jacobian are computed; in the second, the 
Jacobian is formed and in the third, the actual product is calculated. Since the indexes need be reckoned only once for 
each fitting procedure, the corresponding time expense is not considered in the computational cost for these two 
routines apart for the case of 100×100×100 arrays with model rank six, in which case J_sparse_part was used. Finally, 
the JTJ_full and JTWJ_full use equations (19) and (25) to obtain TJ J  and equations (27), (28) and (29) to calculate 

TJ WJ . All the routines for computing TJ J  and TJ WJ  exploit the symmetry of these matrices (i.e. only the upper 
block-triangular part is calculated). 

 The computation of the nonlinear part Q of the Hessian matrix comprises two steps: in the first, the indexes for the 
non-zero elements are reckoned (Q_index); in the second, these indexes are used to build Q (Q_sparse). As for the 
Jacobian, the indexes would need to be computed only once and their reckoning is not included in the time expense for 
the computation of Q. Because of the symmetry of Q, only one half of the indexes need be stored and Q_sparse returns 
only one half of the elements in a sparse matrix ½Q  that contains the upper triangular part of Q. Hence, differently from 
J, the storage for the indexes and the actual matrix Q is typically rather limited and hardly  a problem. For example, if 
the array has identical size I in all the modes and a rank F model is considered, Q½ has ( ) 21N N I F−  nonzero 

elements. The full Hessian is formed as T T
½ ½= + +H J J Q Q  (or T T

½ ½= + +H J WJ Q Q  in the weighted least squares 
case).  

Table 3. Array and problem size to evaluate effect of order on different algorithms 

N. of parameters 
Order Size N. of elements 

Rank 2 4 6 

3 168 4741632  1008 2016 3024 

4 47 4879681  376 752 1128 

5 22 5153632  220 440 660 

6 13 4826809  156 312 468 

7 9 4782969  126 252 378 

Table 2. Computational steps for the considered optimisation algorithms. The functions JTv_chain, Jv_chain, JTJ_full and 
H_sparse have been used in the tests to compute JTv, Jv, JTJ and Q½ respectively. 

 Operation 

Algorithm # La JTv Jv JTJ Hb Normal equationsc 

ALS
d
 2      

Gauss-Newton 1      

Newton 1      

CG soft line search 2      

CG exact line search 0      

a Number of loss function evaluations per iteration; one loss function evaluation includes the computation of T
1 1 1 1−= −R X A Z  and 

of 2
1 F

R .  

b Includes the computation of Q½ and of T T
½ ½= + +H J J Q Q . 

c Normal equations entail the computation of T λ+J J D  (or λ+H D ) and the solution of the linear system (11). 
d The product JTv with the routine JTv_chain is considered representative of the computational complexity of an ALS step apart 

from the loss function evaluation(s). 
e The time expense for R is added twice to account for the soft line search (Harshman, 1970).  



The conjugate gradients method, for which the products JTv and Jv are required, is suited for large problems, 
whereby the Hessian is too large to be stored. Therefore, the tests have been extended to cover cases with up 
approximately 2×104 estimated parameters. Two implementations are tested for each product: the ‘full’ routines 
(JTv_full  and Jv_full) use equations (31) and (43) for JTv and Jv respectively, while the ‘chain-rule’ routines 
(JTv_chain  and Jv_chain) use equations (35) and (45) for the same purpose.  

The expense per iteration of the different fitting methods is evaluated in terms of computation time. The operations 
required by each algorithm (ALS, Newton, Gauss-Newton and CG) are listed in Table 2.  

The cost of a single standard ALS step is well approximated by the cost of computing JTv plus that of one loss 
function evaluation (namely, the updated loading matrix at each sub-step of ALS is computed as n n n n

+
− −=A X Z E , 

where n
+
−E  denotes the pseudo inverse  of n−E (Bro, 1998), and the cost of computing n

+
−E  can often be neglected). 

However, it is possible to reduce the cost of an ALS iteration using a formula identical to the one based on the chain 
rule (cf. Appendix 3) and, in most ALS implementations, a simple line search procedure is added that accelerates 
convergence and requires an additional loss function evaluation (Harshman, 1970;Bro, 1998). Thus, the cost of an ALS 
iteration can be taken as equal to that of JTv_chain plus the cost of computing of the loss function twice.  

Two variants of a nonlinear CG iteration are investigated: the first includes the cost of a simple line search (i.e., of 
an additional loss function evaluation, as implemented in the ME), whereas the second uses the exact line search 
procedure as described in Appendix 4 (PARAFAC_exact_linesearch.m) and does not require any loss function 
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Figure 2. Median of time expense for the computation 
of the nonlinear part of the Hessian Q. It can be 
observed that, as F increases, the contribution of the 
cross-product JTJ to the time expense for the 
calculation of H grows larger. The median time 
consumpition for the 25 × 25 × 25 arrays is for JTv, for 
Q at ranks 3 and 6 and for JTJ at rank 3 are zero.     

Figure 1. Median of the time consumption for the products TJ J (left) and TJ WJ  (right). Note that for the 25×25×25 
/ rank three case the ‘full’ routine is too fast and the corresponding time is zero. Per contra, the Jacobian for the 100 × 
100 × 100 case with rank nine was too large and the computation of TJ J  exceeded the available memory. 
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evaluation (Paatero, 1999). 

Finally, the number of modes may have a great influence on the time expense for the single algorithm since the 
number of array elements (which has the largest influence on the time expense for ALS and CG methods) grows with 
the product of the sizes of the different modes whereas the number of model parameters grows only with their sum. To 
test this aspect, arrays from order three to seven were formed as to have a number of array elements as close as possible 
to 97 (corresponding approximately to 36.5MB in double precision) and single iterations of the different algorithms 
were performed. The tested conditions are shown in Table 3. 

 

3.1 Results and discussion 

Figure 1. reports the computation time in seconds for the products TJ J  and TJ WJ . It can be observed that JTJ_full 
and JTWJ_full are at least one order of magnitude faster than both the sparse and the element-wise implementation. At 
the same time, JTJ_sparse and JTWJ_sparse are faster than the element-wise routines for smaller arrays and for higher 
values of model’s rank. On the other hand, the increase in speed of JTJ_sparse  is not large enough to justify its 
preference over the JTJ_el, and from a practical perspective, its lower cost can hardly counterpoise the fact that for 
large arrays (or high ranks) J cannot be formed in the first place. It is worth remarking that this ratio between the 
performances may change when many values in the array are set to missing. Since missing values in a weighted least 
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squares approach are given zero weights, the corresponding rows of the Jacobian need not be filled and a sparse J may 
be of manageable size and may turn out to be faster even than JTJ_full (Tomasi and Bro, 2005). A possibility that has 
not been investigated yet and will be the subject of future research is to store the W as sparse and employ JTJ_full.  

Figure 2 reports the computation time for Q compared to that of JTJ_full and of JTv_full. It is apparent that the 
reckoning of the nonlinear part of the Hessian matrix is not particularly expensive. In fact, it is only slightly more 
expensive than a standard ALS step and as expensive as the computation of JTJ. Since the Cholesky decomposition of 
the full H and of JTJ are identical, the Newton method seems feasible whenever the Gauss-Newton algorithm is.  

Figure 3a and b show the performances of the routines for computing JTv and Jv. JTv_chain and Jv_chain require 
approximately 30% less time than JTv_full and Jv_full for all the tested conditions.  

As mentioned in section 2.2, the computational advantage of JTv_chain and Jv_chain  is expected to grow with the 
ratio between In and F. This is clearly visible for Jv (Figure 3c), for which the gain decreases from approximately 50% 
at rank 8 to 30% at rank 48. For JTv_chain, the worsening is not visible thanks to the use of sparse identity matrices 
(and thus sparse Khatri-Rao products) for equation (33). The density of n−Z  decreases with the rank and compensates 
for the smaller ratio between size of the array and rank. When the array size in the different modes varies, it is important 
that the chain rule is employed to reduce the largest mode. This is clearly visible in Figure 3d: since the current 
implementation of JTv_chain and Jv_chain apply the reduction automatically to the first mode, regardless of its being 
the largest, when the largest mode is the first, the reduction in computational expense is dramatic and JTv_chain may 
require 25%-40% of the time of JTv_full. The ratio between Jv_full and Jv_chain is also around 0.25, although it does 
not decrease with the rank as for JTv. This may be even more interesting when fitting a PARAFAC model to spectral 
data, whereby the size in one of the modes may be in the order of hundreds and the rank is limited to a few units.  

A carefully implemented CG iteration includes one JTv and one Jv product (Björck, 1996) and can greatly benefit 
from the use of formulae that do not require the explicit computation of the Jacobian. Paatero (Paatero, 1999) suggests 
that using sub-expressions (i.e. the chain rule) and sparse matrices yield CG iterations that are approximately three 
times as slow as an ALS step in the least squares case. However, the fact that the same formulae based on the chain rule 
can be used in ALS to reduce the cost of a single iteration and the additional loss function evaluation used for the line 
search can affect this ratio. Figure 4 shows the ratio between the time expense of an ALS iteration based on (A3.6) and 
of a CG step with either soft (Paatero, 1999) or exact line search (cf. Appendix 4). As can be seen, a CG iteration with 
exact line search is approximately twice as expensive as a standard ALS iteration, whereas a CG with soft line search 
corresponds to only 1.3 to 1.5 ALS iterations. Moreover, for three-way arrays, it may not be worthwhile to implement 
line search procedures that exceed few loss function evaluations because the soft line search becomes more expensive 
than the exact one when the loss function is evaluated more than three times (not shown). Figure 4 also shows that exact 
line search becomes more efficient as the In/F ratio increases, which also explains why the time consumption is lower 
for a larger array.  

Figure 4. Ratio of cost per iteration between a CG 
step with soft and exact line search and an ALS step. 
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Figure 5 shows the iteration cost for the four considered algorithms on three way arrays. It is apparent that the cost 
per iteration for the Gauss-Newton and Newton approaches grows more rapidly with respect to F than for ALS and CG. 
This is hardly unexpected, because the number of operations for the Cholesky decomposition grows with F3, whereas 
for ALS (and CG) the cost per iteration grows linearly with F. Moreover, Newton steps are only slightly more costly 
than Gauss-Newton ones for three-way arrays, which suggests that an hybrid Gauss-Newton/Newton algorithm could be 
a good option for three-way problems with large residuals (Madsen et al., 2004). On the other hand, the speed of the 
linear CG step (i.e., without a line search step) indicates that, if the number of CG iterations is kept within few units 
truncated Newton methods may be the optimal choice for large problems. 

Finally, Figure 6 shows the behaviour of the different algorithms as the order of the array increases. For higher 
order arrays (i.e., of order at least four, although this may increase for larger values of F) Gauss-Newton iterations are 
approximately as expensive as ALS ones. If one takes into account that the former method requires only a fraction of 
the iterations of the latter (particularly for highly collinear underlying components (Tomasi and Bro, 2006;Hopke et al., 
1998)), the advantage of Gauss-Newton can be of more than one order of magnitude in terms of time consumption. 
From Figures 6a and b one can also infer that Gauss-Newton should be the algorithm of choice also for large arrays 
when the rank of the fitted model is small and JTJ can be stored. Finally, the performance of the CG algorithm with 
exact line search deteriorates significantly as the order increases because of the computation of the coefficients of the 
polynomial used to solve the exact line search problem. In particular, in the procedure illustrated in Appendix 4, the 
number of of Khatri-Rao products of N − 1 terms necessary for the polynomial’s coefficients grows exponentially with 
the order of the array. This nonlinear behaviour is clearly visible in the computation time and suggests that the proposed 
exact line search procedure is not feasible for higher order arrays. To verify the cost of the presented exact line search 
procedure compared to other methods, an algorithm that finds the coefficients by fitting a polynomial of order 2N to a 
sufficient number of data points (i.e. requiring 2 1N +  function evaluations) was developed. The latter method required 
less time than the proposed procedure for arrays of order higher than the fifth (results not shown). 

Figure 6. Median of the time consumption (per 
iteration) for four different algorithms made 1 the time 
consumption for ALS. (a) Model rank 2, (b) rank 4 and 
(c) rank 6.  
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4. Conclusions 
The problem of fitting a PARAFAC model would greatly benefit from more efficient algorithms. In this paper, 

general formulae have been developed for the computation of several matrices and vectors that are required by most 
nonlinear curve fitting algorithms. Moreover, the results obtained with regards to the computation of such matrices and 
vectors have been systematised and expressed in terms of the Khatri-Rao product. The properties of the latter operation 
allow for many algebraic simplifications in the mathematical expressions and for a straightforward generalisation of 
existing algorithms and formulae.  

The tests conducted in the course of this work also indicate that there is no particular reason for preferring ALS to, 
e.g., a Gauss-Newton (or Newton) algorithm. In fact, these methods appear to be complementary and one should be 
preferred to the other depending on the problem at hand. Hence, the Gauss-Newton (or Newton) method should be used 
when the number of estimated parameters is small and the number of elements in the array is large, as would happen for 
example for arrays with order higher than three and if the model rank is not exceedingly high. Likewise, the single 
iteration of a Conjugate Gradient algorithm appears to be only slightly more expensive than an ALS one. Thus, under 
the condition that an effective line search procedure is employed and a good preconditioning is found, nonlinear PCG 
could prove to be an effective method to fit PARAFAC models.  

Whether the use of exact line search also leads to a faster convergence of the CG algorithm and the possible 
reduction in the number of iterations is sufficient to counterbalance the additional cost per iteration is to be further 
investigated. A similar observation can be made with respect to implementing exact line search in ALS in substitution 
of the simple scheme based on the iteration number currently used in, e.g., the N-way toolbox (Andersson and Bro, 
2000). Some preliminary tests on difficult problems (Hopke et al., 1998) suggest that the reduction in the number of 
iterations using exact line search in ALS is not enough to compensate for the higher cost per iteration (results not 
shown). Again, these results need to be further validated before any conclusion can be drawn on the matter. In any case, 
exact line search seems unfeasible for higher order arrays, although it may be useful to exploit the number of common 
sub-terms in the 2N − 1 Khatri-Rao products of N − 1 terms necessary for to compute the coefficient of the polynomial 
used to solve the exact line search problem.  
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Appendix 1. Some relevant formulae for the Khatri-Rao product 

Let A and B be two matrices of size I × F and J × F respectively, a well known property of the column-wise Khatri-
Rao product is (Bro, 1998): 

( ) ( )T T T .= ∗A B A B A A B B  (A.1) 

Owing to the associativity of the Khatri-Rao product, equation (A.1) readily extends to products of an arbitrary number 
of matrices (Carroll and Chang, 1970;Bro, 1998). Consequently, for a set of N matrices An for 1 :n N= …  

( ) ( )
( ) ( )
( ) ( )

T
1 1

T
1 2 1 2

TT T T
1 1 2 2 1 1

N N

N N

N N N N

= =

= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= ∗ = ∗ ∗

E A A A A

A A A A A A

A A A A A A A A A A

… …

… …

… … …

 (A.2) 

It is also straightforward that for two matrices C and D of the same size of A and B respectively 

( ) ( )T T T= ∗A B C D A C B D . 

The following results pertaining to the Khatri-Rao and Kronecker products will also be useful. 

 

Lemma 1. Let 2 1 2, ,  and ,I F I F J F J F× × × ×∈ ∈ ∈ ∈A A B B then the following hold 

( ) ( ) ( ) ( )1 1 2 2 1 2 1 2= ⊗ ∗ ⊗ = ∗ ⊗ ∗H A B A B A A B B   (A.3) 

( ) ( ) ( ) ( )1 1 2 2 1 2 1 2= ∗ = ∗ ∗H A B A B A A B B  (A.4) 

Proof. Defining four diagonal matrices 
1 1 2 2vec vec vec vec, ,  and A B A BD D D D  holding the elements of the vectors 

1 1 2 2vec , vec , vec and vecA B A B respectively, and using the relation between the vec operator and the Hadamard 
product: ( ) ( ) ( )vec vecvec vec vec ,∗ = =A BA B D B A D  one obtains that 

( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ) ( )

1 1

1 1

1 1 2 2 vec vec 2 2

vec 2 vec 2 1 2 1 2

1 2 1 2

vec vec vec vec

vec vec vec vec

vec

= ⊗ ∗ ⊗ = ⊗ ⊗ =⎡ ⎤⎣ ⎦

⎡ ⎤ ⎡ ⎤= ⊗ = ∗ ⊗ ∗ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
= ∗ ⊗ ∗⎡ ⎤⎣ ⎦

A B

A B

H A B A B D D A B

D A D B A A B B

A A B B

  

(A.4) also holds because the Khatri-Rao product is a selection of the columns of the Kronecker product.  

 

Note also that, because of the associativity of the Kronecker and Khatri-Rao products, Lemma 1 holds for the 
products of any number of suitably sized matrices. Thus, for instance, given C1 and C2 of size K × F: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2 2 2 1 1 1 2 2 2

1 1 2 2 1 2 1 2 1 2 1 2

∗ = ∗ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= ∗ ∗ = ∗ ∗ ∗⎡ ⎤⎣ ⎦

A B C A B C A B C A B C

A B A B C C A A B B C C
  

Two special cases are used throughout this work: for any two vectors , I∈a b   
T T T T ;= ∗a b a b  (A.5) 

and, for any two vectors  and ,I J∈ ∈a b  it holds 



( ) ( ) ( ) ( )T T T T T T T T
I J J I J I= ⊗ = ∗ ⊗ ∗ = ⊗ ∗ ⊗ = ∗ab a b a 1 1 b a 1 1 b a1 1 b  (A.6) 

 

Lemma 2. Let nI F
n

×∈A  for 1, ,n N= …  be a set of N matrices and define the matrices T
1 ,

ni F=N e 1  T
1 ni F′′ =N e 1  and 

T
2 ,

ni F′
=N e 1  where , 

n ni i′e e  are respectively the -th and -thn ni i′ columns of an n nI I× identity matrix and 
ni ′

e  is the 

-thni ′ column of an n nI I′ ′× identity matrix; then  

if n n′≠ : 

( ) ( )T
1 1 1 1 1 1 2 1

T T T T T T T
1 1 1 1 1 1 1 1 1 1 , ,

T
, ,

n n

n n

n n N n n N

n n n n n n n n N N n i n i

nn n i n i

′

′

′ ′− + − +

′ ′ ′ ′ ′− − + + − − + +

′ ′−

= =

= ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ =

= ∗

H A A N A A A A N A A

A A A A A A A A A A A A a a

E a a

… … … …

… … … , (A.7) 

if n n′= : 

( ) ( )T
1 1 1 1 1 1 1 1

T T T T
1 1 1 1 1 1n n n n

n n N n n N

i i n n n n N N i i nδ δ
− + − +

′ ′− − + + −

′= =

= ∗ ∗ ∗ ∗ ∗ =

H A A N A A A A N A A

A A A A A A A A E

… … … …

… …
 (A.8) 

Proof. Owing to the associativity of Khatri-Rao product, case a) reduces to 
T T T T T T T T
1 1 1 1 1 1 1 1 1 2 1 1

T T T T
1 1 n n

n n n n n n n n n n N N

F i i F N N′

′ ′ ′ ′ ′− − − − − − + += ∗ ∗ ∗ ∗ ∗ ∗ =

= ∗ ∗ ∗ ∗ ∗ ∗

H A A A A N A A A A A A N A A A A

A A 1 a a 1 A A

… … …
… … …

. 

where the second equality holds because T T
1 n nn F i n F i= =N A 1 e A 1 a  and T T T T T

2 .
n nn n i F i F′ ′′ ′= =A N A e 1 a 1  

Equation (A.7) follows immediately since the Hadamard product is commutative and using (A.6). 

b) can be demonstrated in the same way using the relation T T T T
1 1 n n n nF i i F i i F Fδ′ ′′ = =N N 1 e e 1 1 1  and the fact that 

T
F F ∗ =1 1 M M  (Magnus and Neudecker, 1999).  

 

Lemma 3. Given a set of N matrices { }, 1, ,nI F
n n n N×∈ =A A … ,  for any , 1, 2,n n N′ = …  and n n′≠ : 

( )n n n−=Z M A Z  (A.9) 

( )nn n n nn′ ′ ′−=Z M A A Z , (A.10) 

where nM  and nn′M  are suitably defined commutation matrices. 

Proof. Only a) will be proven here, as the proof for b) is very similar.  

For 1, 2, ,n N= …  let ( )T
1 1 1n n N n n+ −=X b b b b b… …  where nb  denotes a vector of length In, and define the 

commutation matrix Mn such that T
1vec vec .n n=X M X Owing to the relation: Tvec = ⊗ =ab b a b a  (Magnus and 

Neudecker, 1999), it holds that  

( ) ( )
[ ]

T T T
1 1 2 1 1 1 1

1 1 1

vec vec vec

.
N N n n n N n n n

n n N n n

+ −

+ −

= = = = =

=

b b b b b X M X M b b b b b

M b b b b b

… … … …

… …
 

Thus, partitioning Z and n−Z as 

[ ]1 ,1 1,1 ,1 1,1F N N⎡ ⎤= = ⎣ ⎦Z z z a a a a… …  

,1 , ,1 1,1 1,1 1,1 , 1, 1, 1,n n n F N n n N F n F n F F− − − + − + −⎡ ⎤⎡ ⎤= =⎣ ⎦ ⎣ ⎦Z z z a a a a a a a a… … … … , 

one yields 



( ) ( )
( )

,1 1,1 , 1, ,1 ,1 , ,

,1 ,1 ,2 ,2 , ,

N N F F n n n n n F n F

n n n n n n F n F n n n

− −

− − − −

⎡ ⎤ ⎡ ⎤= = =⎣ ⎦⎣ ⎦
⎡ ⎤= =⎣ ⎦

Z a a a a M a z M a z

M a z a z a z M A Z

… … …

…
  

 

Lemma 4. Let X  be an N-way array of dimensions I1 × … × IN and 1vec≡x X , given a set of matrices 

{ }, 1, 2, ,nI F
n n n N×∈ =A A …  and two matrices T

i i F=N e 1  and T
j j F=N e 1  with n n′≠ , where ei denotes the 

-thi column of the In × In identity matrix and ej is the -thj column of the n nI I′ ′×  identity matrix. Then: 

( ) ( )T T T
1 1 1 1 1 .N n i n n j n nn nn i j′ ′ ′ ′+ − + − −=A A N A A N A A x Z X e e… … …  (A.11) 

Proof. Using Lemma 3:  

( )
( ) ( ) ( )

T

1 1 1 1 1

T T TT T
1vec vec .

N n i n n j n

nn j i nn j i nn nn j i nn nn

′ ′+ − + −

′ ′ ′ ′ ′ ′− − −

= =

⎡ ⎤= = =⎣ ⎦

u A A N A A N A A x

M N N Z x N N Z M X N N Z X

… … …
 

Since ( ) [ ]1i i i F i= = ⊗N B e b e b e B  for any matrix B with F columns and using the 

relation ( )Tvec vec= ⊗ABC C A B  (Magnus and Neudecker, 1999), it follows that: 

( ) ( )T T T Tvecj i nn nn nn nn j i′ ′ ′ ′− −
⎡ ⎤= ⊗ =⎣ ⎦u e e Z X Z X e e   

 

Lemma 5.  Let I F×∈A and wD  an IJ × IJ diagonal matrix holding the elements of the vector vec=w W  where 
I J×∈W . Define also two matrices T

j j F=N e 1  and T ,j j F′ ′=N e 1 where and j j ′e e are the -th and -thj j′  columns of 
the J × J identity matrix. Then 

( ) ( )T T
jj j jjδ′ ′=w wN A D N A A D A  (A.12) 

where 
jwD  is a diagonal matrix holding the elements of the -thj column of W. 

Proof. First, note that the left hand side of (A.12) is the equation of a rank IJ PARAFAC model of a three-way array 
1F F× ×∈H  and having loading matrices ( )T

jN A , ( )T

j ′N A  and Tw . Thus, one can write: 

( ) ( )
TT TT

1 j j ′
⎡ ⎤= ⎢ ⎥⎣ ⎦

H N A w N A ,  

or, equivalently:  

( ) ( )T TT
1 3vec vec ,j j′

⎡ ⎤= = ⎢ ⎥⎣ ⎦
H H N A N A w   

Element ffh ′  of 1≡H H  is equal to 

( ) ( ) ( ) ( ) ( )T TT T T T Tvec .ff f f f f f f f f j jh ′ ′ ′ ′ ′ ′
⎡ ⎤= = = ⊗ = ⊗ ⎢ ⎥⎣ ⎦

e He e He e e H e e N A N A w  

Considering that ( )( )⊗ =S T U V SU TV for S, T, U and V of appropriate size (Smilde et al., 2004), one obtains 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ){ }

T T T TT T T T

T T
.

ff f f j j f j f j

j f j f

h ′ ′ ′ ′ ′

′ ′ ′

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⊗ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

e e N A N A w e N A e N A w

N A e N A e w
 

Since ( )j f j f′ ′= ⊗N A e e a  and ( )j f j f′ ′ ′= ⊗N A e e a :  



( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

T T T T T T T T T T T T

T T T T T
j

ff j f j f j f j f j j f f

jj f f j jj f f j jj f f

h

δ δ δ

′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⊗ ⊗ = ⊗ ∗ ⊗ = ∗ ⊗ ∗ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ∗ = = w

e a e a w e a e a w e e a a w

a a We a a w a D a
 

where the last equality holds because ( )T T
f f j′a a w   is the equation of a rank I PARAFAC model of a 1×1×1 array. 

Equation (A.12) follows immediately.   

 

Lemma 6. Let , ,  and I F J F K F I J K× × × × ×∈ ∈ ∈ ∈A B C W  and let wD  an IJK IJK× diagonal matrix holding the 
elements of the vector 1vec .=w W  Furthermore, define two matrices T

i i F=N e 1  and T
j j F=N e 1 , where ei denotes the i-

th column of the I×I identity matrix and ej denotes the j-th column of the J×J  identity identity matrix. Then: 

( ) ( )
( )( ),

T T T ,
j kj k j k= ∗w wC N A D N B A b c A D A  (A.13) 

where 
( ),j kwD  is a diagonal matrix holding the elements of ( ), ,j kw  which is the vector of the elements of W obtained by 

fixing the indexes in the second and third mode to j and k respectively. 

Proof. First note that the left hand side of (A.13) is the equation of a rank IJK PARAFAC model relative to one slice of 
the three-way array 1.F F× ×∈H Its loading matrices are: ( )T

,jC N A  ( )T
kN B A , and w. Therefore, one can 

write: 

( ) ( )
TT TT

1 j k
⎡ ⎤= ⎣ ⎦H C N A w N B A ,  

or, equivalently, 

( ) ( )T TT
1 3vec vec j k

⎡ ⎤= = ⎢ ⎥⎣ ⎦
H H C N A N B A w   

Proceeding as in Lemma 5, element ffh ′  of 1≡H H  is equal to 

( ) ( ) ( )

( ) ( )

T TT T

T T
.

ff f f j k

f j k f

h ′ ′

′

⎡ ⎤= ⊗ =⎢ ⎥⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦

e e C N A N B A w

c e a e b a w
 

Hence, using Lemma 1 : 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

TT T

T T

T T T T T
1 1

T T
,

vec

ff f j f k f f f j f k f f

f k j f f f jf kf k j f f

jf kf k j f f jf kf f f k j

jf kf f f jf kfj k

h

b c

b c b c

b c b c

′ ′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′

⎡ ⎤ ⎡ ⎤= ∗ = ∗ =⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤= ∗ ∗ ∗ = ∗ =⎣ ⎦ ⎣ ⎦
⎡ ⎤= ⊗ = =⎢ ⎥⎣ ⎦

= =

c e a e b a w c e a e b a w

c e e b a a w e e a a w

e e a a W a a W e e

a a w a
( ),j kf f ′wD a

 

Equation (A.13) follows immediately.   

 

Lemmas 5 and 6 encompass the general case as the following lemma shows. 

Lemma 7.  Let { }, 1, 2, ,nI F
n n n N×∈ =A A … , 1 2 NI I I× × ×∈W …   and wD  an 

1 1
n n

n N d N

I I
= =

⎛ ⎞ ⎛ ⎞
×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∏ ∏
… …

 diagonal matrix 

holding the elements of the vector 1vec .=w W  Define also matrices T T, ,i i F i i F′ ′= =N e 1 N e 1  T
j j F=N e 1  where 

 and i i′e e  are the -th and -thi i′ columns of the n nI I×  identity matrix and ej is the -thj  column of the n nI I′ ′×  identity 
matrix. For any , 1, ,n n N′ = … ,  

if ,n n′≠  then  



( ) ( )

( )( ),

T
1 1 1 1 1 1

T T
, , i j

N n i n N n j n

n i n j nn nn

′ ′+ − + −

′ ′ ′− −

= =

= ∗

w

w

H A A N A A D A A N A A

a a Z D Z

… … … …
 (A.14) 

if ,n n′=  then
  

( ) ( )T
1 1 1 1 1 1

T
i

N n i n N n i n

ii nn nnδ
′+ − + −

′ ′ ′− −

= =

=
w

w

H A A N A A D A A N A A

Z D Z

… … … …
 

(A.15) 

where ( ) ( )T

, j i nni j ′≡ ⊗w e e W  (i.e. vectorised sub-array obtained by fixing the indexes in the -th and -th n n′ mode to i 

and j respectively), iw  is the -thi  row of ,nW  and 
( ),

and 
ii jw wD D  are the diagonal matrices holding the elements of 

iw  and ( ),i jw .  

Proof. To prove a), since 

( )1 1 1N n i n nn n i nn′ ′ ′+ − −=A A N A A M A N Z… …  

and 

( )1 1 1N n j n nn j n nn′ ′ ′ ′+ − −=A A N A A M N A Z… …  

where nn′M  is a commutation matrix of appropriate size, then 

( ) ( )
( ) ( )

T

T T ,

nn n i nn nn j n nn

n i nn nn nn j n nn

′ ′ ′ ′ ′− −

′ ′ ′ ′ ′− −

= =⎡ ⎤⎣ ⎦

=

w

w

H M A N Z D M N A Z

A N Z M D M N A Z
 

which is the case treated in Lemma 6 because the matrix T
nn nn′ ′′ ≡w wD M D M  is also diagonal and holds the element of 

the vector Tvec .nn′′ ≡w W   

b) is proved in a similar way. Thus, since:  

( )1 1 1N n i n n i n+ − −=A A N A A M N Z… …  

and 

( )1 1 1N n i n n i n′ ′+ − −=A A N A A M N Z… … , 

where Mn is a suitable commutation matrix, then 

( ) ( ) ( ) ( )T T T .n i n n i n i n n n i n′ ′− − − −= =⎡ ⎤⎣ ⎦ w wH M N Z D M N Z N Z M D M N Z  

where T
n n′ ≡w wD M D M  is again diagonal and holds the element of the vector Tvec n′ =w W . Thus one obtains the case 

treated in Lemma 5.  

 

Lemma 8. Let J F×∈B  and ,K F×∈C  then the Jacobian matrix J of the function ( )F , =B C C B  is: 

( )( ) ( )( )1 2J F K F
⎡ ⎤= ⎡ ⎤ = ⊗ ⊗⎣ ⎦ ⎣ ⎦B CJ J J M I I C M I I B , (A.16) 

where 1M  and 2M  are denote appropriate commutation matrices for a K J F× ×  array. 

Proof. Note first that  

( ) F≡ =Z C B C B I . 

But ( ) FC B I  is the equation of a matricised PARAFAC model for a J K F× ×  array. Consequently, 

( ) ( )Tvec vec vecF F
⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎣ ⎦Z C B I B I C . 



It is then apparent that the Jacobian of C B  is the same as that of a PARAFAC model having as loading matrices 
1 2 3,  and .F= = =A B A C A I  Equation (A.16) follows immediately.  

 

Appendix 2. Computation of ( )T
1

T T
2 N

−Z
J J v…  and ( )T

1
2 N

−Z
J J v…   

The matrices and vectors required by the product ( )T
1

T T
2 N

−Z
J J v…  are: 

( )T 11
1I

−
= ⊗

Z
J I A (Magnus and Neudecker, 1999) (A2.1) 

{ }( )( ) { }( )( )1 22 1 11,2 1,NN FI I F N I F N− −− −
⎡ ⎤= ⊗ ⊗⎢ ⎥⎣ ⎦

J K M I I Z M I I Z…  (A2.2) 

1vec≡v V  (A2.3) 

where (A2.2) is obtained from Lemma 8 and the fact that ( ) ( )T Tvec vecnpd d=X K X  for any X matrix of size .n p× V1 

denotes the matricised 1 2 NI I I× × ×…  array V . Combining equations (A2.1) and (A2.3), one obtains 

( )T 11

T T T
1 1 1 1 1vec vec vecI

−
= ⊗ = ≡

Z
J v I A V A V V , (A2.4) 

where the array V  has size 2 NF I I× × ×… , Hence, because of the partitioning of 2 ,NJ …  the computation of 

( )T
1

T T
2 N

−
≡

Z
u J J v…  can be written as: 

{ }( )( ) { }( )( )

{ }( )( ) { }( )( )
{ }( )( )( )

{ }( )( )( )

2 1

2

2

T
T T
2 1 1 11,2 1,

T
T

1 1 11,2 1,

T
T

1 11,2

T
T

1 11,

vec

vec

vec

.

vec

N

N

N

N I F N I F FIN

I F N I F N

I F

N I F N

−−− −

−− −

−

− −

⎛ ⎞⎡ ⎤= ⊗ ⊗ =⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

⎛ ⎞⎡ ⎤= ⊗ ⊗ =⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
⎡ ⎤⊗⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥

⊗⎢ ⎥
⎣ ⎦

J v M I I Z M I I Z K V

M I I Z M I I Z V

M I I Z V

M I I Z V

…

 (A2.5) 

Thus, the partition nu relative to the n-th mode is:  

{ }( )T
T T

1 11, vec
Nn I F nn −−

⎡ ⎤= ⊗⎢ ⎥⎣ ⎦
u I I Z M V  (A2.6) 

It can be easily verified that the matrix T
1n−M  performs the following operation: 

( ) { }( )1,1T
1 vec vec .nnI F II F

n
−−

××
− =M V V  (A2.7) 

Hence,  

{ }( ) { }( )
{ }( ) { }( )1, 1,

T T
T

1, 1,vec vec .n nn n

n

I F I I F I
n I F Fn n

− −× ×

− −
⎡ ⎤⎡ ⎤= ⊗ = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

u I I Z V I Z V  (A2.8) 

A simple reordering of the terms of the Khatri-Rao product and a rows-permutation of  { }( )1, nnI F I− ×
V  allow for a more 

convenient notation. Therefore, (A2.8) can be written as  

{ }( )T
T

1,vec .n F nn−
⎡ ⎤= ⎢ ⎥⎣ ⎦

u Z I V  (A2.9) 

The product ( )T
1

2 N
−Z

J J v…  allows similar simplifications. The matrix 2 NJ …  and the vector v can be partitioned in 

1N −  blocks, each referring to the parameters in one loading matrix. Thus,   



{ }( )( )12 1 1,
2 2

n

N N

N n n FI n I F nn
n n

− − −
= =

= = ⊗∑ ∑J v J v K M I I Z v…  (A2.10)  

where the matrices 1n−M  are multi-way commutation matrices defined on an 2 NI I F× × ×…  array according to Lemma 
8. If, a matrix nV  of dimensions nF I×  such that vec ,n n=V v  equation (A2.10) can be written as: 

{ }( )( )
{ }( )

1

1 1

2 1 1,
2

1 11,
2 2

vec

vec vec

n

N

N FI n I F nn
n

N N

FI n F n FI n nn
n n

−

− −

− −
=

− −−
= =

= ⊗ =

⎡ ⎤= ≡⎣ ⎦

∑

∑ ∑

J v K M I I Z V

K M I Z V K M V

…

. (A2.11) 

where { }( )1,vec vecn F nn−
⎡ ⎤≡ ⎣ ⎦V I Z V . The commutation matrix can be removed by an appropriate permutation of the 

terms of the Khatri-Rao product: 

{ }( )
( )

T
1 1 1,

T
1 1 2

vecn n n n F Fn

F N n n n F

− − −

+ −

= =

=

M V M V I Z 1

I A A V A A 1… …
. (A2.12) 

Therefore: 
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n

N
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n
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=
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⎡ ⎤= =⎢ ⎥
⎣ ⎦
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⎡ ⎤= ≡⎢ ⎥
⎣ ⎦

≡

∑ ∑

∑

∑

∑
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V
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 (A2.13) 

Finally, since ( ) ( )1 1

1
vec vecI F F I

FI
− −

−

× ×=K V V , one can write 

( ) ( ) ( ) ( )1 1
T 11

2 1 1vec vecF I F I
N I

− −

−−

× ×= ⊗ =
Z

J J v I A V A V…  (A2.14) 

In terms of number of operations, the computational advantage is of the same magnitude as for TJ v . 

 

Appendix 3. Fast ALS iteration 

For an N -way array X  of size 1 NI I× ×… , an iteration of the ALS algorithm for PARAFAC can be synthesised as  

 ( ) T1 for 1s s
n n n n N

++
−= =A X Z … , (A3.1) 

where 1 1
1 1 1

s s s s s
n N n n

+ +
− + −=Z A A A A… … , 0,1,s = …  denotes the iteration number, + is the Moore-Penrose inverse 

and the set 0  for 2,n n N=A …  are some initial estimates of the last N − 1 loading matrices. Using a well-known property 
of Moore-Penrose inverse (Schott, 1997), equation (A3.1) is typically solved as (Harshman, 1970): 

( )1 for 1s s s
n n n n n N

++
− −= =A X Z E … , (A3.2) 

where ( )Ts s s
n n n− − −≡E Z Z . The following lemma, which yields expressions similar to those obtained using the chain rule 

for the TJ v  product, can reduce the computation load by a factor proportional to the ratio between the size of X  in the 
largest mode and F. 

Lemma 9. Given an N -way array 1 NI I× ×∈X …  and the set of matrices { }, 1, 2, ,nI F
n n n N×∈ =A A … , the following 

holds: 



{ }( )
{ }( )1,

1, for 2n nI I F
n n F n n N−×

− −= =X Z X I Z … , 

 (A3.3) 

where ( )2 T
1 1

NF I I× ≡X A X…  and IF is an F×F identity matrix. 

Proof. Let Y  be an ( )1 -way N − array of size 1 1 1n n NI I I I− +× × ×… …  and nK  denote the commutation matrix 

( )1 2 1 1n n NI I I I I− +
K … … . By definition, nK  performs the operation:  

( ) ( ) ( ) ( )1 1 1 1 2 1 1 2 1 1 1 2 1 1 11 1vec vecn n N n n N n n N n n NI I I I I I I I I I I I I I I I I I I
n n

− + − + − + − +× × × ×= = =Y Y K Y K Y… … … … … … … … . 

Thus, it follows immediately that  
( ) ( )1 1 1 2 1 1 1T n n N n n n N nI I I I I I I I I I I

n n
− + − +× ×≡ =X X K X… … … … . (A3.4). 

Proceeding as in Lemma 3, it can also be demonstrated that: 

{ }( )1 1 1 1 1,n N n n n n− + − −= =Z A A A A K A Z… … . (A3.5) 

From, (A3.4) and (A3.5), it follows that  

{ }( ) { }( )
{ } { }( ) { }( )
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− −

− −

× ×

− − − −= = = ⊗X Z X K A Z X A I I Z X A I I Z , 

where { }( ) ( )11, 2 1 1 1n n n n n N
I I I I I I I I I− − +

× ×≡X X … … , and 

{ }( )
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Using (A3.3), the ALS iteration becomes 

( )
{ }( )

{ }( ) ( )1,

1
1 1 1 1

1
11, for 2n n

s s s

I I Fs s s
n F n n−

++
− −

+×+
−−

=

⎡ ⎤= ≥⎢ ⎥⎣ ⎦

A X Z E

A X I Z E
, (A3.6) 

where ( )1 T 1
1 1

I F s− × +=X X A . It can easily be verified that (A3.6) essentially corresponds to (A2.9) apart from the 

computation of ( )1
s +

−E  and the different matricisation of .X  

 

Appendix 4. Exact line search  

The univariate problem of finding the step length in a specific direction that minimises the residuals between a 
PARAFAC model and an N-way array can be expressed as 

( ) ( )
2

1 1 1 2
arg min vec N N F

α
α α α∗ = − + ∆ + ∆⎡ ⎤⎣ ⎦X A A A A 1… , (A4.1) 

where α is the sought step length.  

Owing to the distributivity of the Khatri-Rao product, it holds that  

( ) ( ) ( )

{ } { }( )
1 1 1 1

2
1 2 1 1, 1 1,2

N N N N

N
N N NN N

α α α

α α

− −

− − − −

+ ∆ + ∆ = + ∆ + + ∆ +

+ ∆ ∆ + + ∆ ∆ + + ∆ ∆

A A A A Z A Z Z A

A A Z Z A A A A

… …

… … …
 (A4.2) 

Thus let Tm define the sum of the Khatri-Rao products including m ∆-terms: 

0 =T Z  (A4.3) 



( )1
1

N

n n n
n

−
=

= ∆∑T M A Z  (A4.3b) 

{ } { }( )11 1mm m
m

m n nn n n n−= ∆ ∆∑T M A A Z… ……
C

 (A4.3c) 

1N N= ∆ ∆T A A… , (A4.3d) 

where { } { }{ }1 2 1 2 1 2, , , , , 1,2, , ,m m m mn n n n n n N n n n= ∈ ≠ ≠… … … …C . 

Then, problem (A4.1) can be written as: 
2 2

1 1
0 12 2

arg min vec arg min vec ,
N N

m m
m F m F

m mα α
α α α∗

= =

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑X T 1 R T 1  (A4.4) 

or, equivalently,  

T T T

1 1 1
arg min ,

N N N
m m m

m m m
m m mα

α α α ′∗ +
′

′= = =

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

∑ ∑∑r r r t t t  (A4.5) 

where m m F=t T 1 . Therefore, one can see that solving (A4.1) corresponds to finding the real root that minimises a 2N-th 
degree polynomial. The i-th degree polynomial coefficient is the sum of the elements of the matrix 
[ ] [ ]T

1 1 1 1vec vecN N ≡R t t R t t U whose sum of row and column indexes is equal to 2i + . 

Unfortunately, each tm entails the summation of 
N
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 Khatri-Rao products of N terms (whose cost is approximately 

equivalent to that of the same number of function evaluations) and the explicit computation of U costs approximately 
2N M operations. Thus, it is easy to verify that computing the coefficients for (A4.5) is somewhat more costly than 

1

2 1
N

N

m

N
m=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  function evaluations. In other words, while there is little point for a three-way problem in allowing 

more than seven function evaluations for the line search because then it would be possible to fit a sixth degree 
polynomial that gives the exact solution, exact line search computed in this fashion clearly becomes unfeasible already 
for arrays of order four.  

However, great savings can be attained by noticing that: 
T T

1 1 1

T
1 1

vec for 1 1

vec for 
m m

m

N

m N

m N
−

−

⎧ ⎡ ⎤+ ∆ = −⎪ ⎣ ⎦= ⎨
∆ =⎪⎩

A B A B
t

A B

…
, (A4.6) 

where mB  denotes the sum of the Khatri-Rao products of all the possible combinations of 1N m− −  loading matrices 
and m ∆-terms for the last N – 1 modes. That is, 

{ } { }( )
( )

1 11 2 1 2, , 1, , ,
1

m mm mc i

N
m

m n n nn n n n n n
c

− −
=

= ∆ ∆∑B M A A A Z… ……  (A4.7) 

where { } { }1 2, , 2, ,m c
n n n N⊆… …   denotes the c-th subset with m ∆-terms, 

N
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the number of such combinations 

and M denotes a commutation matrix for an N – 1 array. For example, for a four-way array: 

( )2 4 3 2 4 3 2 4 3 2= ∆ ∆ + ∆ ∆ + ∆ ∆B A A A A A A A A A .  

Owing to the recursive nature of (A4.6), only 12N −  Khatri-Rao products of N – 1 terms need be computed and the 
equivalent of 2 1N −  function evaluations (namely products of an 1I F×  matrix and with an 1F I−×  one) is required.  

In spite of the great savings implied by (A4.6), the computation of U requires the storage of all 'smt  and may be too 

expensive for larger arrays.  However, since ( ) ( ) ( ) ( )T T T T
1 1 1 1 1 1vec vec tr trm m m= =R A B R B A A R B , whereby ( )tr X  

denotes the trace of X (Magnus and Neudecker, 1999), the elements of the first row and column of U for the least 
squares case can be computed as 



( ) ( )T T
1 1 1 1 1tr trm m m mu u −= = + ∆A R A R  (A4.8) 

where 1m m≡R R B .  

The elements of rows and columns other than the first can be calculated in a similar way, but this would imply 
computing the cross products of all the possible combinations of the Bm matrices and their storage (note that (A4.8) 
requires the storage of only one). Again, this can be problematic and expensive for larger arrays. On the other hand, 
property (A.2) can be used to obtain the cross products between any two such matrices rather cheaply and with the sole 
additional storage of 3N matrices of size F×F. Let  

{ } 1 11

T T
m mm n n n nn n ≡ ∗ ∗E A A A A… …  

{ } 1 11

T T
, , m mm n n n nn n

∆
≡ ∆ ∆ ∗ ∗ ∆ ∆E A A A A… …  

and 

{ }1 1 1

T T
, , m m mn n n n n n∆

≡ ∆ ∗ ∗ ∆E A A A A… … . 

Then, any product T
m m′B B  can be written as 

2 3 41

TT
m m

∆

′ ∆ ∆
= ∗ ∗ ∗∑B B E E E EA AA A  (A4.9) 

where 1 2 3 4, , ,  and A A A A  are proper subsets of { }2, , N… such that { }2, ,i
i

N= …∪A  and i i′∩ = ∅A A  for any i i′≠ . 

The number of summations to calculate all the elements in U that do not belong to the first row or column is 
approximately equal to the number of combinations for a set of ( )2 1N −  elements. Hence, the number of operations 

required is in the order of ( )2 12 2 NNF −  and obviously almost negligible compared to the computation of the Bm’s and of 

mR .  
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Two different algorithms for time-alignment as a preprocessing step in linear factor models are

studied. Correlation optimized warping and dynamic time warping are both presented in the

literature as methods that can eliminate shift-related artifacts from measurements by correcting a

sample vector towards a reference. In this study both the theoretical properties and the practical

implications of using signal warping as preprocessing for chromatographic data are investigated.

The connection between the two algorithms is also discussed. The findings are illustrated by means

of a case study of principal component analysis on a real data set, including manifest retention time

artifacts, of extracts from coffee samples stored under different packaging conditions for varying

storage times. We concluded that for the data presented here dynamic time warping with rigid slope

constraints and correlation optimized warping are superior to unconstrained dynamic time warping;

both considerably simplify interpretation of the factor model results. Unconstrained dynamic time

warping was found to be too flexible for this chromatographic data set, resulting in an over-

compensation of the observed shifts and suggesting the unsuitability of this preprocessing method

for this type of signals. Copyright # 2004 John Wiley & Sons, Ltd.

KEYWORDS: DTW; COW; warping; retention time shift; PCA

1. INTRODUCTION

‘Shift’ is a common occurrence in chemistry. Many analytical

techniques yield data where the same phenomena may yield

variations at different positions (e.g. retention times in a

chromatogram, wavelengths in NIR spectroscopy due to

temperature influences) or may have different ‘durations’

depending on the specific analytical conditions. Analo-

gously, the measurements for the single samples can have

different time scales or axes, or the sample vectors may have

different lengths (e.g. different batch lengths in industrial

processes).

Warping is one of the numerous pretreatment methods

that have been proposed to correct for shifts, conditioning

data for multilinear models like PCA, PLS or PARAFAC for

exploratory purposes as well as quantitative determination

by alignment of the shifted variables [1]. As will be discussed

later on, if data are not brought to a form where the observed

variables of the samples under analysis express similar

attributes, the required assumption for using bi- and multi-

linear modeling, namely that like variables represent similar

phenomena in all samples, is violated.

In this paper, a general framework will be given to employ

the two warping algorithms on chromatographic data, and

their connection is illustrated using a data set from a food

research experiment as a case study. The subject of this

research was the effect of different packaging conditions

on changes in ground coffee composition during storage

over several weeks. The time-shift problem in the chromato-

grams is depicted in Figure 1. The problem results from a

clear deterioration in the columns separation performance

over time. An additional difficulty is the confounding of the

column performance with storage time, the factor of primary

interest in this experiment.

2. THEORY

Two different warping algorithms have received much atten-

tion in recent years for the alignment of time trajectories,

chromatographic profiles and spectra [2–4]. The first method,

termed dynamic time warping (DTW), was initially devised

for aligning frequency spectra of words pronounced by

different speakers for recognition purposes [5,6]. The more

recent approach for aligning signals, termed correlation

*Correspondence to: G. Tomasi, The Royal Veterinary and
Agricultural University (KVL), Department of Food Science, Food
Technology, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.
E-mail: gt@kvl.dk
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optimized warping (COW), was proposed in 1998 as a means

to correct chromatograms for shifts in the time axis prior to

multivariate modeling [7].

The features of both warping algorithms will be studied in

relation to PCA bilinear modeling for exploratory data

analysis [8–10]. In PCA, the number of retained components

expresses the complexity of the observed variations in data

and may be regarded as the number of independent phe-

nomena that cause the observed variations among objects

and variables, e.g. the chemical rank of the data set in case of

NIR spectroscopy. The first principal components are the

ones that capture the boldest patterns; henceforth, more and

more refined information may be captured by successive

principal components. However, aside from the mathema-

tical aspects of rank there are more practical implications

[10]. Data sets often require preprocessing before the actual

modeling step. This preprocessing effectively reduces the

rank, leading to more parsimonious, more robust and better

interpretable models. In NIR spectroscopy removing, for

example, baseline offsets or using derivative spectra is

common practice, thereby eliminating what are considered

instrumental artifacts, usually of no interest to the experi-

menter. If these artifacts are not removed beforehand, they

may form a relevant pattern in the data, frequently obscuring

the important information. Time-shifts as discussed in this

paper form another category of artifacts and the warping

algorithms proposed can be seen as preprocessing steps

applicable to factor models such as PCA.

2.1. Nomenclature and terminology
In the present work, the focus is on correcting non-analytical

changes in the time-axis of samples by optimizing similarity

with a reference sample. Hence, two measurements of similar

nature are involved in each alignment operation in the warp-

ing procedures: the ‘reference’ and the ‘sample’ (designated

by the letters ‘r’ and ‘s’, respectively). The direction along

which the warping is performed is simply referred to as time.

Throughout this work, italics are used for scalars (e.g. m)

and bold for vectors (e.g. m). N and M indicate the vector

lengths for reference and sample, respectively. The mth

element (m¼ 1, 2, . . . ,M) in the time mode of the sample is

designated by s(m). Vectors n and m will be used to denote

element indexing in reference and sample. For example, if

n¼ [2 3 4], r(n)¼ r([2 3 4]) selects those elements from the

reference indexed by the entries in n. A special reservation is

made for sfng where the braces indicate entries in the

sample vector estimated by interpolation, corresponding to

matching reference points with index n.

2.2. Correlation optimized warping
To correct for misalignments or shifts in discrete data sig-

nals, a procedure called COW was introduced by Nielsen

et al. [7]. It is a piecewise or segmented data preprocessing

method (operating on one sample record at a time) aimed at

aligning a sample data vector towards a reference vector by

allowing limited changes in segments lengths on the sample

vector. The ratio between the number of points in the

Figure 1. The shift problemas observed in the chromatograms of coffee extracts: (a) raw chromatograms for four
selectedsamples 4(1d),15(3a),33(5e) and84(11h); (b) top-plotof thewholedataset (cut-off 5 a.u.; notesampleorder
equals analysis order); (c) detail plot for one peak area in raw data; (d) top-plot for selected peak area (notice the
systematic retention-time reduction for the main peak original found at 8.8 minutes observed in all samples).
This trendisobserved forall the commoncomponentsin thedata set.
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reference vector N and the selected segment length I deter-

mines the number of segments, or rather the number of

segment borders. An equal number of segments (borders) is

specified on the sample vector. The maximum length in-

crease or decrease in a sample segment is controlled by the

so-called slack parameter t. When the number of time-points

in a corresponding sample and reference segment differs, the

former is linearly interpolated in order to create a segment of

equal length.

In COW, the different segment lengths on the sample

vector are selected (or the borders are shifted; ‘warped’) so

as to optimize the overall correlation between sample and

reference. The problem is solved by breaking down the

global problem in a segment-wise correlation optimization

by means of a dynamic programming algorithm (DP) [7,11].

The solution space of this optimization is defined by two

parameters: the number of segment borders Iþ 1 and the

length of the slack area t. It is conventional to fix the initial

and final boundaries so that the first and last points in the

sample and reference vectors are forced to match. The

algorithm and various changes to the original one are

described in detail in the original publications [1,4,7] and

will be inserted in a DTW framework in Section 2.4. In the

subsequent paragraphs the implementation of the COW

algorithm employed in this study is explained by means of

a simple example.

Figure 2 shows the general setup of the COW algorithm. In

this example, both the reference and sample vector (N¼ 18

and M¼ 17) are divided into I¼ 4 segments of length i. Since

the total vector length is not a multiple of the target segment

length, the last segment is expanded to cover the entire

vector. Alternatively, the remainders could be spread over

all the segments [4,7]. The value of the slack parameter t¼ 1

is normally fixed for all segments, but, as for the segment

length i, one could define a specific value for each border [1].

The current implementation starts from the last entry in

the data vector and progresses towards the first. For slack

t¼ 1, there are three possible boundaries in Step 1. For two

out of the three possibilities an interpolation is performed to

yield a number of data-points in the sample segment equal to

that in the corresponding reference segment. The measure of

correlation is then computed:

�ðnÞ ¼ cov½rðnÞ; sfng�ffiffiffiffiffiffiffi
var

p
½rðnÞ�varðsfngÞ ð1Þ

In step 2 (Figure 2) the segment borders are allowed for by

the slack parameter from the penultimate segment. For each

of these three possible positions in the last segment there are

three new candidate positions in the penultimate (total¼ 9).

Again, segments of equal length are constructed by linear

interpolation. Note that, for example, pathways 2c–1a, 2b–1b

and 2a–1c lead to the same boundary position for the

Figure 2. The concept of COWexplainedbymeansofasmallexample.
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penultimate segment. Since not restricted by the optimiza-

tion space for the algorithm as defined here, the user could

select segment length and slack so that border points can

pass over each other (make loops or knots in the time line).

This undesirable situation has to be prevented by putting

additional restrictions into the algorithm, effectively elim-

inating these potential knot-points during the optimization

search.

In accordance with the DP principles, the optimum for the

last border positioning in step I equals the global optimum

and the optimal path is found by determining the global

optimum from the last local optimum and all its predeces-

sors. In this implementation a simple summation of the local

measures of correlation is used, but alternatives are again

possible (e.g. the product or a weighted sum). Once known,

tracking back the optimal path, positioning all the borders at

the right position and finding warped/aligned sample seg-

ments by linear interpolation will reconstruct the best-

matching preprocessed sample signal for the predetermined

set of parameters I and t.

Notice that the degree of flexibility increases for segment

border points in the middle of the data vector compared to

the edges. The total flexibility of the border positions in the

example of Figure 2 shows the binomial-like structure 1–3–

9–3–1 (1 for the two boundary points, 9 for the center

border). This observation, together with algorithm para-

meters segment length i and slack parameter t, determines

the corrective power of the COW preprocessing.

2.3. Dynamic time warping
Dynamic time warping ‘nonlinearly warps the two trajec-

tories in such a way that similar events are aligned and a

minimum distance between them is obtained’ [7]. The algo-

rithm was first presented by Sakoe and Chiba [12] and

further developed in numerous papers [5,6,13–15]. In recent

years it has found application in chromatography [2–4], in

batch process monitoring [16–20] and in gene expression

studies [21,22]. The general algorithm is described in great

detail in these publications and will be only briefly outlined

in this section. Much focus will be put on the constraints and

the synchronization step, which are essential to illustrate the

connection between DTW and COW and critical to yielding a

meaningful alignment of chromatographic profiles.

2.3.1. The algorithm
The warping path F is a mapping of the sample and the

reference time axes on a common time axis

F ¼ ½mðkÞ; nðkÞ�jk ¼ 1; . . . ;Kh i ð2Þ

where K is the length of the common time axis. The kth

element of F, ½mðkÞ; nðkÞ�, contains the indexes for the sample

and the reference at the kth point on the common (warped)

time axis. Figure 3 shows an example mapping grid and

illustrates the concept of the warping path.

The global optimization problem in DTW can be written as

follows [6]:

argminD
F

ðFÞ ¼
Pk

k¼1 drs mðkÞ; nðkÞ½ �wðkÞPk
k¼1 wðkÞ

ð3Þ

where drs½mðkÞ; nðkÞ� is a dissimilarity measure, e.g. the

squared Euclidean distance between r[n(k)] and s[m(k)],

and w(k) are suitable weights.

In order for problem (3) to be solved correctly, m(k) and

n(k) must not decrease along the common time axis to avoid

creating knots in the time axis and trivial solutions as

F ¼ ð1; 1Þ; ðM;NÞh i must prevented. Therefore (3) is sub-

jected to the so-called ‘local continuity constraints’ of the

form:

0 � mðkþ 1Þ �mðkÞ � a
0 � nðkþ 1Þ � nðkÞ � b

ð4Þ

where a and b are integers and positive. For example, for

a¼ b¼ 1, there are only three feasible predecessors for

½mðkÞ; nðkÞ� : ½mðkÞ � 1; nðkÞ�; ½mðkÞ � 1; nðkÞ � 1� and

½mðkÞ; nðkÞ � 1�.
Typically, the end points for F are fixed and equal to (1,1)

and (M,N), i.e. the initial (and the final) entries in reference

and sample are constrained to be the same on the common

time axis as well.

Moreover, if no weights are used, the solution to problem

(3) is biased towards shorter paths, which involve the

summation of fewer terms [13,22]. The main purpose of

weights is thus to remove such a bias, rendering the optimal

distance (and consequently the reconstructed F) indepen-

dent of the length of the warping path [20]. Not all weighting

schemes fulfill this purpose [13], and although some bias

may be desirable to decrease the occurrence of extreme

warps [17,20], it also raises problems in establishing which

optimization criterion is actually employed. Furthermore,

stricter local continuity constraints (described in the next

section) can be used to avoid excessive corrections in a more

straightforward fashion.

Figure 3. Mapping grid with nomenclature, the abscissa is the
time axis for the reference, the ordinate is the time axis for the
sample. The solid line is the warping path, i.e. the common time
axis k. Feasible areas related to local continuity constraints
for tableTð3;1Þ (a) andbandconstraint withA¼ 4 (b).
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The adopted weighting scheme was initially proposed in

Sakoe and Chiba [6] and uses as weight for point

½mðkþ 1Þ; nðkþ 1Þ�:

wðkþ 1Þ ¼ mðkþ 1Þ �mðkÞ þ nðkþ 1Þ � nðkÞ ð5Þ

The sum of such weights over any warping path going from

(1,1) to (M,N) is equal to MþN and is thus independent of K.

If reference and sample are treated equally, with respect to

both weights and local continuity constraints, the warping is

defined as symmetric [13]. The asymmetric option (e.g. if

a 6¼ b) will not be described, as the principals are identical [13].

Under these restrictions, problem (3) can be solved using

dynamic programming. Assuming that the global distances

up to the allowed predecessors to (m,n) have been computed,

the optimal global distance to point, (m,n) is the sum of

drsðm; nÞ, multiplied by a suitable weight depending on the

local path, and the minimum among the global distances to

any of the allowed predecessors.

Identifying the global optimum for the warping path is

thus transformed in an efficient iterative procedure divided

into a forward step and a backward step:

(1) Starting from point (1,1) and according to (4) construct

the mapping grid D(M�N), in which element dmn is the

optimal accumulated distance up to point (m,n) (the

forward step).

(2) Find the optimal warping path by tracing backwards [i.e.

from (m(K),n(K))¼ (M,N)], once again in accordance with

(4), the minimal accumulated distance up to point (1,1)

(the backward step).

2.3.2. Constraints
More elaborate constraints have been devised for the DTW

problem than the essential ones mentioned thus far. Their

use may yield warping paths more in agreement with a priori

knowledge that may be available for the problem at hand,

avoiding unfeasible compressions or expansions of reference

or sample signal. As will be shown in the experimental

section, such constraints are necessary to successfully apply

dynamic time warping to the chromatographic data used for

this application.

For a generalization of the local continuity constraints, it is

necessary to introduce the concept of transition: an elemen-

tary transition describes the single advancement in the

common time axis (corresponding to the single arrow in

the graphs of Table 1).

The warping path can be described by a sequence of

elementary transitions going from one end point to the other

and its local behavior can be restricted by allowing only

certain sequences of elementary transitions. Such a local

series is referred to as ‘rule’. The collection of rules used is

named ‘lookup table’ and denoted by Tðx;yÞ, x being the

largest block distance covered by any of the rules in the

table and y the maximum number of horizontal/vertical

consecutive transitions allowed for by the table. For exam-

ple, the local continuity constraints of equation (4) with

a ¼ b ¼ 1 can be translated into the lookup table:

Tð2;1Þ �
t1 ¼ ð1; 1Þ
t2 ¼ ð1; 0Þ
t3 ¼ ð0; 1Þ

8<
: ð6Þ

where the infinity indicates that this particular lookup table

does not impose any restriction on the number of consecu-

tive horizontal/vertical transitions and the two integers in

parentheses are, respectively, the advancements in the sam-

ple and in the reference time axes corresponding to the

elementary transition tx.

Apart from Tð2;1Þ (which is referred to in the remaining

part of this work as the ‘unconstrained DTW’), all lookup

tables limit the grid points that can be reached given the end

points [13]. The feasible part of the grid is typically delimited

by four lines passing through either (1,1) or (M,N) and

having slope equal to the minimum or the maximum slope

allowed by the lookup table [13]. An example of the resulting

lozenge is depicted in Figure 3.

The corrective power of the single lookup table is a

function of the minimum and maximum slopes it allows

for the warping path and the number of points spanned by

rules in the lookup table. The closer the former are to M/N

(hence 1 when sample and reference are of equal length), the

more rigid are the constraints.

A second relevant type of constraint limits the feasible area

to a band delimited by two lines of slope M/N. These lines

pass at jM�Nj þ A points from (M,N), where A is an

arbitrary integer, defining the maximum compression/ex-

pansion in time-points of the sample and reference with

respect to their original lengths [6]. Figure 3 shows the

feasible area around the diagonal of the mapping grid.

Although they prevent extreme behaviors of the warping

path, band-constraints alone are not adequate for this pur-

pose and additional local restrictions to the number of

consecutive vertical or horizontal transitions are still re-

quired to prevent the optimal path from moving from the

‘top’ line to the ‘bottom’ line delimiting the search space [22].

Table I. Examples of different lookup tables with complex transi-
tion rules.The arrows represent the single elementary transition.
Theypoint in the direction of the common timeaxis and start from
a legal predecessor to the element in the mapping grid toward

which theypoint

AThe first index is the largest block distance covered by any step in
the table, the second is the maximum number of horizontal/vertical
transitions allowed by any step.
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2.3.3. Synchronization
The symmetric DTW algorithm yields a warped reference

and a warped sample of identical length K (see Figure 3). If a

warping correction takes place, K will be larger than either M

or N. The extent of elongation is unpredictable until the

warping process is finished and may vary from sample to

sample. Therefore, an additional synchronization step ren-

dering vectors of length N is required, if sample vectors are

to be stacked for bilinear modeling. This synchronization

step is not part of the original DTW algorithm, which merely

used the optimal distance for classification purposes [6,22],

and is necessarily asymmetric since horizontal vs vertical

transitions (or reference vs sample time-points) are treated

differently. To synchronize, one can take the average of the

measurements at the different sample points forming a

sequence of vertical transitions (e.g. reference point 8 in

Figure 3). The rationale in this approach is that, by using

the average, all the information in the sample time-points is

taken into account. Alternatively, one could use an asym-

metric warping algorithm that maps the sample time axis on

the reference time axis. In this case, nðkÞ ¼ k and K would be

equal to N. This choice may, however, lead to information

loss and discontinuities in the warped sample because some

points are ignored [20].

Furthermore, if slope constraints are imposed and

the distinct points spanned by the rules comprising vertical

or horizontal transitions are deemed as forming a segment in

the sample, it is possible to use interpolation, analogously

to COW. In this case, the series of distinct sample time-

points determined by the optimal transition is interpolated

to estimate a new series of points of length equal to the

corresponding one in the reference. For example, if the

series includes a horizontal transition followed by three

diagonal ones (e.g. reference points 5 to 8 in Figure 3), four

distinct points are involved for the reference, but only three

for the sample. In order to yield the same length after

the synchronization, the three points must be interpolated

to four.

2.4. The connection between DTW and COW
Although COW and DTW are treated in the literature as two

distinct solutions to the warping problem, there is a connec-

tion between the two that helps to shed some light on the

success of COW applied to chromatographic data [1,7]

opposed to the very poor results yielded by DTW on these

data (see the Experimental section).

This link can be established from a combination of DTW-

constraints and interpolation.

First of all, COW, expressed in a DTW framework, re-

quires imposing the condition that rules including horizon-

tal or vertical transitions (i.e. those correcting the shift) can

be applied starting only at fixed points of the reference.

Stated differently, given a lookup table of the form T
ð7;1Þ
COW in

Table 1, only a limited set of points on the reference are

candidate end points of a rule (namely, the gray and white

dots in the graph).

Lookup tables of the form T
ð2iþy;yÞ
COW represent a further

restriction to ‘slope constraints’ and each rule spans the same

number of points i in the reference, whereas the number of

distinct (i.e. not repeated) points in the sample can vary from

i–y to iþ y. Hence, i is equivalent to the segment length

as was previously defined for the COW algorithm and y

corresponds to the slack parameter.

Note that tables like T
ð2iþy;yÞ
COW alone are not sufficient to

guarantee equivalence between COW and DTW: local con-

tinuity constraints only require that any subsection of the

warping path complies with one of the rules in the lookup

table and a sequence of, for example, 10 consecutive diag-

onal transitions would not violate any local constraint in

T
ð7;1Þ
COW. Thus, the constraint on the initial/final points for the

rules is necessary. When such restrictions are applied, all

points in the lozenge of Figure 3 remain feasible, but the

allowed end points form Iþ 1 vertical (one-point-wide)

bands within the feasible area.

Under the above constraints the local distance at the end

points for each rule in the DTW algorithm may be the

correlation coefficient as in COW, although problem (3)

should be changed from minimization to maximization.

Moreover, if interpolation is applied to the distinct sample

points of each rule prior to the computation of the distance

when their number differs from i, and afterwards in the

synchronization step, one yields an algorithm that is almost

identical to COW. Note that, because of this interpolation,

the position of the vertical or horizontal transitions in the

single rules of tables T
ð2iþy;yÞ
COW need not be uniquely defined to

yield equivalence and in Table 1 it is set as the ‘last’ in the

series only for simplicity.

To yield complete equivalence, one further constraint

needs to be applied to the warping path because of the

condition set in COW that the first point of one segment is

adjacent to the last of the previous one. In the DTW context,

this means that a diagonal transition with zero weight (to

remove the influence of this transition from the optimal

distance) connects the boundaries for the two segments.

Hence, COW may be regarded as a special case of DTW

where additional constraints are added to reduce the search

space for the optimal warping and to employ correlation

coefficient as optimization criterion. The shape-preserving

features of COW and the quality of the warping [1,7] thus

appear linked to the relative rigidity of the slope constraints

of the corresponding warping paths rather than the focus on

correlation instead of the Euclidean distance.

Nielsen et al. [7] suggest that the segment length should be

at least equal to the width of the smallest feature one wants

to align (e.g. peaks in chromatography) and that lower

values may result in the alignment of noise or other non-

chemical information and alterations in peak shapes. De-

pending on the chromatographic analysis, this value may

vary, but in the case study presented below it is approxi-

mately 30 points (same order as the largest shift observed).

The corresponding slope constraints are significantly stricter

than in standard DTW, where tables Tð2;1Þ and Tð3;1Þ are most

often employed [4,16–18,20]. From this view point, uncon-

strained (or loosely constrained) DTW is expected to be too

flexible and to deform peaks and features. Using rigid slope

constraints may, however, prevent adequate correction at

the two ends of the chromatogram because of the fixed end

point assumption. Even though such restrictions on the path

can be relaxed by modifying the algorithm [1,20], similar

results may be obtained by appending to the sample (and/or
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to the reference) a segment of suitable length containing only

white noise that is removed again after warping.

DTW with rigid slope constraints (DTWc in the rest of the

paper) and Euclidean distance presents a clear advantage

over COW, as one can avoid setting restrictions on the rules’

end points (i.e. fixed boundaries for the reference segments

can be dropped) and the correction for shift is not bound to

any specific position in the reference. However, this flex-

ibility comes at the price of a considerably larger number of

feasible end points (all those within the gray lozenge of

Figure 3) and, consequently, computational cost. In this

respect the COW algorithm has the advantage of being

simple to implement, in general faster and less memory-

demanding [7,20]. Furthermore, the additional flexibility

granted by the DTWc may not be necessary, in which case

COW would yield a perfectly acceptable solution.

3. DATA AND EXPERIMENTAL
CONDITIONS

The data set is obtained by gas chromatographic (GC)

analysis of extracts from ground coffee. The sample set is

built up from material stored under different packaging

conditions (combinations of gas headspace, vacuum and

temperature) for different time durations. The instrumen-

tation used was a GC Shimadzu 14A chromatograph

(Shimadzu, Tokyo, Japan) with flame ionization detection

(FID) and a Supelcowax 10 column: 30 m, 0.53 mm i.d.,

1.0 mm film (Supelco, Bellefonte, PA, USA). Temperatures

in the system were 280�C at the injector, 260�C in the oven,

and 260�C at the detector. Internal standard was Caprylic

acid (C8). Each sample was extracted by ether, and the

extract was injected into a GC carrier gas-flow for in-line

thermally assisted methylation and the output from a FID

was recorded for 17 min. The first 2000 points were used for

warping and PCA (N¼M¼ 2000 data points).

The separation of the gas sample into fatty acids of

different sizes results in the lightest and most volatile

molecules (<C5) to be detected within the first 4 min,

whereas the larger and less volatile molecules (>C25) leave

the system after 16 min. All chromatograms were individu-

ally baseline-corrected by subtracting the average signal for

the first 120 s from the full chromatogram prior to modeling.

The typical time for a chromatographic column to wear out

of course depends on the application and in particular on

the number of analyses applied on the column material.

However, a clear continuous drop in performance can be

observed by visual inspection (see Figure 1), the incentive to

the warping study described in this paper. Figure 1(a,c)

shows four typical samples, Figure 1(b,d) shows an overview

of the systematic variation of the entire set. The figure clearly

shows the column material deteriorating over time, giving

rise to shorter retention times. As mentioned previously, this

column deterioration is confounded with the order of col-

lecting samples. Because coffee extracts of this nature cannot

be stored for a long time, randomization of GC analysis over

the experimental condition storage time is not feasible

(see below). Based on visual inspection of the 88 different

samples, a total of four samples were considered outliers and

were removed from the data set. From a priori knowledge

about the sample set, chromatogram no. 9 (hence, a sample

from the beginning of the measurement series) was chosen

as reference for warping, since this sample contained the

highest number of the chemical constituents compared with

all the other samples collected at the start of the experiment.

Objects in the sample series are labeled by two digits:

numbers ‘1’–‘11’ indicating the different sampling times

during the storage experiments, ‘a’–‘h’ indicating the eight

different packaging conditions. In this notation, the reference

sample is labeled ‘2a’.

As the scope of this study is limited to the time warping as

preprocessing, the finer details of the experiments are not

given here.

4. RESULTS AND DISCUSSION

In this section the different effects of various DTW and COW

implementations will be illustrated. A PCA model was fitted

on the coffee extract GC data set without any shift-correcting

pretreatment, meaning no warping or data mean centering.

A detail of the loadings is shown in Figure 4(a), and a score

plot for the first two PCs in Figure 5(a). The first principal

component is identified as representing the average chro-

matogram. A moderate grouping according to packaging

can be observed in the tendency of PC1 where the most

expensive and best quality treatment (type ‘g’) is isolated

Figure 4. (a) PCAloadingdetailsrawcoffeedata; (b) PCAloadingdetailsafter COWcorrection.
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from the others. It was anticipated during the setup of the

experiment that this packaging type would show little to no

effect over storage time. The second PC has a loading vector

that resembles the first derivative of the loading vector for

PC1. This ‘Taylor series’ development is characteristic for

PCA modeling of data sets with shift phenomena [23].

As a consequence of the time-shifts in the chromatograms

(see Figure 1), the PC1 vs PC2 score plot shows a typical

‘horseshoe’ configuration, visible in Figure 5(a). This shape is

not related to the storage time and packaging ‘g’ is particu-

larly suited to show this. Visual inspection of the set of 11

chromatograms from series ‘g’ is consistent with the obser-

vation that the curved shape in the score plot is almost

exclusively caused by retention time shifts in the chromato-

grams, not by chemical changes. Moreover, what may ap-

pear as two large groupings (i.e. ‘1’, ‘2’ and ‘3’ on one side

and ‘4’ to ‘11’ on the other) is the primary consequence of

the retention time shifts, following the curved pattern just

described.

In conclusion, the PCA components for untreated data

describe both chemical information and ‘artifacts’ due to the

shift confounded with the experimental factor storage time

(e.g. the location of the ‘3’ samples in the score plot, in

particular ‘3a’, ‘3b’ and ‘3h’, is due to an altered composition

of the extracts probably related to the fact that the samples in

this series were stored in a freezer for several days up to

analysis). Exploratory PCA modeling of the untreated (un-

warped) data set is then clearly unfeasible.

In order to verify the change in the quality of the warp-

ing for DTW as the slope constraints become more and

more strict, several lookup tables have been applied

[Figure 6(a, b, d)]. A locally unconstrained DTW algorithm

using a Tð2;1Þ lookup table was applied with band con-

straints. Band limitation A was set equal to 200, correspond-

ing to a maximum� 10% allowed correction for the

chromatograms, significantly larger than the observed 20–

30 points maximum shift. For the synchronization step,

averaging was used [20]. The results of this preprocessing

were very unsatisfactory [Figure 6(a)], e.g. small peaks like

those found in the region 8.4–8.6 min in Figure 1(c) disap-

pear. They are completely merged with the bigger one found

in every chromatogram in the range 8.7–8.8 min. The disap-

pearance of the small peaks is not caused by the warping

itself, but by the averaging in the synchronization step,

which compresses all information occurring during long

sequences of vertical transitions [4]. Synchronization is also

responsible for a second type of artifact related to the peak

height: when the sample peak is larger than the matching

one in the reference, the former is cut in height. Conversely,

when the sample peak is smaller, its top element is repeated

until the two sides of the synchronized peak match those on

the reference, resulting in a plateau. This behavior cannot be

the consequence of the described warping procedure, which

is symmetric. When the reference peak is smaller, its top is

repeated until the sides overlap the larger sample peak. In

the warping path this appears as a sequence of vertical

transitions, for which corresponding sample points are

successively averaged. Thus, after the synchronization

the sample peak is still taller than the reference peak, but the

computed average may still be significantly lower than

the original peak height. Note that normalization of refer-

ence and sample vector to length one, as suggested in some

Figure 5. Scoreplot (a) rawcoffeedata (b) after COWcorrection.
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publications, does not remedy these errors. These artifacts

were observed at various retention times for different peaks

and substantially altered the chemical diversity present in

the data, confirming the inadequacy of unconstrained DTW

for the correct realignment of chromatograms. It should be

emphasized that a different choice of reference (e.g. one that

contains the extra peaks) is somewhat helpful in preserving

the peaks like those around 8.3–8.6 min, but cannot be

considered as a solution to make unconstrained DTW viable.

In fact, an analysis of the shifts in the raw data indicates that

the small peaks around 8.3–8.6 min are distinct and a Tð2;1Þ

warping aligns them as if they were one, which is evidently

incorrect. It would be very difficult and time-consuming to

find the references that contain all the peaks or even most of

them. Moreover, using alternative references would not

avoid the artifacts, but only show them at different positions

in the chromatogram.

Figure 6(b) shows some details of the warped samples

using lookup table Tð3;1Þ with 10% band constraints and

averaging. A clear reduction in the occurrence of artifacts,

both the misalignments and peak-top kind, can be observed

from this figure. In particular, the peaks at 8.4–8.6 are no

longer merged with the larger one at 8.7–8.8, and are main-

tained separate. Nonetheless, their widths are modified

beyond need as a result of the several vertical transitions

(albeit alternated with diagonal ones because of the con-

straints) in the warping path. Repeated points (due to

horizontal transitions) also modify the shape of the peaks,

but the effect can be partly reduced using interpolation in the

synchronization step (not shown).

In any case, the quality of the alignment cannot be com-

pared with the best one obtained with COW, using a segment

length i¼ 100 time-points ( I¼ 20 segments) and a slack of

t¼ 3 time-points [Figure 6(c)]. The limited correcting flexibil-

ity and the interpolation still allowed the correct alignment of

the peaks around 8.7–8.8 min while maintaining their original

shape and the series of smaller peaks before this retention

time are visible as individual entities and not deformed.

The results of DTW are comparable to those of COW only

when very rigid constraints are used [Figure 6(d)]. As

anticipated, the rules in the lookup table should be larger

than the peaks and the best results were obtained with a

Tð59;1Þ warping (i.e. with rules spanning 30 points) and using

interpolation for the synchronization step. The results do not

completely overlap those of COW, as the optimization

criterion is different (the squared Euclidean distance was

used in DTW), but the discrepancies are marginal and the

warped chromatograms are considerably better than those

obtained with shorter rules. Note that the corrective power

of T
ð203;3Þ
COW and Tð59;1Þ is in practice identical. Shorter segments

are required for DTWc because in this algorithm interpola-

tion is not concurrent to the computation of the optimal local

distances.

When rigid slope constraints were applied, a residual

retention time shift, albeit limited to one single point (before

or after the position of the matching peak in the reference) at

Figure 6. Signaldetailreconstructionafter (a)Tð2;1Þwarping; (b) Tð3;1Þwarping; (c) COW; (d)Tð59;1Þwarping.
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the peak’s top, could be observed and could not be removed

with either COW or DTWc, regardless of the choice of

segment length and slack. This residual shift seems to be

related to the slightly different peak shape due to noise and

the widening associated with column deterioration.

Although the correction was satisfactory in the central part

of the chromatograms with both COW and DTWc, as ex-

pected, the quality of the realignment degraded at the end of

the chromatogram (starting approximately at 11–12 min).

Appending a segment of 500 points with low intensity white

noise to both sample and reference prior to warping and

removing it afterwards effectively dealt with the problem

without any modification to the warping algorithm.

From a thorough visual inspection of the warped chroma-

tograms, none of the two algorithms distinctively emerged

as better than the other.

The score plot in Figure 5(b) shows a storage-time trend in

the first PC, with ‘1’ and ‘g’ (the most expensive packaging)

on the right and ‘11’ on the left. The time-‘3’ packaging can

be considered an outlier, probably the consequence of freez-

ing the extracts before analysis. If this last category is

removed, an even clearer storage time trend (particularly

packagings ‘a’, ‘b’, ‘c’ ‘d’ and ‘h’) and clustering in packaging

conditions (namely the already mentioned high-quality ‘g’)

is found, revealing the different capabilities in preserving

coffee volatiles (Figure 7). In particular, the second compo-

nent is related to the ratio between low and high molecular

weight fatty acids and the third component describes the

‘extra’ peaks like those found at 8.3 minutes. Such peaks are

present in a relatively small number of samples and are

likely indexes of chemical degradation of some of the fatty

acids in the ground coffee. They precede all the ‘standard’

peaks by 0.2–0.5 min and are present only in a few samples of

four packaging types (‘a’, ‘d’, ‘e’ and ‘h’), but show no

evident trend over the entire set. DTWc and COW gave

nearly identical results in the PCA analysis (not shown),

confirming again the substantial equivalence of the two

methods as preprocessing methods for bilinear modeling.

5. CONCLUSIONS

In this paper two different algorithms—correlation opti-

mized warping and dynamic time warping—were studied

as a preprocessing step in (bilinear) factor modeling. Both

the theoretical properties and some practical implications

were investigated on the basis of a case study of chromato-

graphic data vectors with retention time artifacts and a

connection between the two methods has been established.

The most relevant conclusion is that time alignment correc-

tions should be handled with great care. Simple correction

schemes can lead to severe distortion of the signal, and

unconstrained (or loosely constrained) DTW is clearly too

flexible for the coffee case study and most likely for chro-

matographic data in general. More rigid settings for both

methods where found to be successful as alignment opera-

tion, making an exploratory PCA analysis of the coffee data

set much more interpretable.

More generally, it should be kept in mind that the original

DTW was constructed for pattern recognition, thus with the

aim of minimizing the distance between the profile and the

possible match. In this context, it has been shown repeatedly

that rigid slope constraints increase the error rate [6]. Con-

versely, when applied to chromatographic data (or for

alignment of other time trajectories or even spectra), great

attention should be paid to the original shape retaining as

much as possible. Thus, slope and segment lengths (rules)

Figure 7. PCAscoreplotsforcoffeedatasetafterTð59;1Þwarpingandremovalofstoragetime‘3’.
Clustering of packaging ‘g’ (~), and trends of packagings ‘a’ (þ ),‘b’ (x),‘c’ (*), and ‘h’ ( . . . ).
Thescoresrelative to theotherpackagingswereremoved fromtheplot forclarity.
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should be chosen so that the warping is as rigid as possible

within the limits given by the problems in question.

This observation conflicts to some extent with earlier

findings of other researchers on chromatographic data vec-

tors [4]. However, in these earlier works an artificial sinu-

soidal baseline was introduced [7]. We believe that

experience has shown that signal processing without proper

de-trending can lead to unrealistic conclusions [24]. There-

fore, we opted for studying and showing local alignment

capabilities instead of more global behaviors.

Another non-trivial step is finding the correct reference

vector. If no prior knowledge is available on the data set or

experimental conditions, any vector should potentially be

able to serve as such, possibly leading to very different

solutions. It is also possible to generate or simulate a refer-

ence vector (e.g. the first PCA scaled loading-vector from

untreated data), again leading to a distinct preprocessing.

For practical purposes, the COW algorithm and DTWc are

relatively insensitive towards the parameters values. Any

reasonable choice for segment length and slack will give an

indication of the anticipated synchronization performance.

Furthermore, due to the relatively small search space, a trial

and error approach for finding the best settings is feasible

even on a modest computer system. In this respect, COW

may be more suitable than DTW, as the number of possible

paths is much smaller and, consequently, the memory

requirements are significantly reduced.
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A new method for chemical fingerprinting of petroleum
biomakers is described. The method consists of GC-MS
analysis, preprocessing of GC-MS chromatograms,
and principal component analysis (PCA) of selected regions.
The preprocessing consists of baseline removal by
derivatization, normalization, and alignment using correlation
optimized warping. The method was applied to chromato-
grams of m/z 217 (tricyclic and tetracyclic steranes) of oil
spill samples and source oils. Oil spill samples collected
from the coastal environment in the weeks after the Baltic
Carrier oil spill were clustered in principal components 1
to 4 with oil samples from the tank of the Baltic Carrier (source
oil). The discriminative power of PCA was enhanced by
deselecting the most uncertain variables or scaling them
according to their uncertainty, using a weighted least squares
criterion. The four principal components were interpreted
as follows: boiling point range (PC1), clay content
(PC2), carbon number distribution of sterols in the source
rock (PC3), and thermal maturity of the oil (PC4). In
summary, the method allows for analyses of chromatograms
using a fast and objective procedure and with more
comprehensive data usage compared to other fingerprinting
methods.

Introduction
Chemical fingerprinting is a collection of techniques that
trace the origin of a sample (e.g. pollutant) based on its
chemical composition. In forensic oil spill identification and
in geochemistry, petroleum biomarkers are widely used for
this purpose (1-3). Oil contains a large number of biomarkers,
of which terpanes and steranes are among the most abundant
in crude oils. The relative content of biomarker compounds
in source rocks, and hence crude oils, depends on source,
maturation, and in-reservoir weathering and biodegradation
processes (2). Furthermore, these compounds are recalcitrant
when released to the environment following oil spills. Thus,
they are useful for oil/oil and oil/source rock correlation
purposes (4-6).

Gas chromatography-mass spectrometry (GC-MS) is the
standard method for the analysis of petroleum biomarkers
(1-3). The associated chromatograms contain a considerable
amount of information relevant to chemical fingerprinting
but can be complex with peaks that coelute. Consequently,
standard peak quantification procedures are associated with
large variability and often fail to extract high quality data.
Peak separation can be improved by using longer capillary
columns or more sophisticated mass spectrometry methods;
e.g. high-resolution GC-MS and GC-MS-MS have been found
particularly useful for improved resolution and identification
of biomarker compounds (7). However, such instrumentation
is not widespread in the scientific community, and it is
cumbersome to identify and quantify large numbers of peaks
as a means to compare oil spill samples and source oils.
Consequently, some chemical information is typically ig-
nored, and chemical fingerprinting focuses on few descriptive
variables, e.g. diagnostic ratios (3, 4, 8). Moreover, chro-
matographic data preprocessing, which includes peak iden-
tification, quantification, and quality control, is time-
consuming and often requires subjective decisions.

Chemometric methods such as principal component
analysis (PCA) provide useful tools for more extensive
analyses of chromatographic data (5, 9, 10). However, when
applied to quantitative data these methods are still affected
by the implications described in the previous paragraph.
Thus, our primary aim was to develop an objective method
for chemical fingerprinting by avoiding initial peak identi-
fication, and quantification, and instead performing PCA on
the digitized chromatograms. The most severe impediment
to such an approach is the inevitable retention time shift
caused largely by deterioration of the capillary column (11).
The correlation optimized warping algorithm (COW) (12)
has been successfully employed to realign chromatograms
from GC-FID (13), HPLC (12), and LC-MS (14); here, it is
combined with PCA into a method for chemical fingerprinting
of petroleum biomarkers. PCA allows for chemical inter-
pretation of the results, which is needed for confirming the
observed correlation of oil samples.

The method consists of two parts: preprocessing and
chemometric data analysis. Preprocessing comprises de-
rivatization, normalization, and alignment (which includes
selection of a target chromatogram, optimization of the
warping parameters, and warping of the sample chromato-
grams). In the chemometric analysis, the data are first divided
into a calibration set of source oils, a set of reference oils (the
‘reference set’), and a test set containing spill samples; then,
a principal component model is fitted to the calibration set
and optimized on the basis of the reference set; finally the
test set is projected on the model and the spill samples are
matched to the source oils.

The method was applied to 101 chromatograms of m/z
217, which includes tricyclic and tetracyclic steranes (15)
and other compounds yet unidentified (Figure 1). Tetracyclic
steranes have been used frequently for chemical fingerprint-
ing (4, 5), but many peaks coelute and hence only a fraction
of these is commonly employed for forensic oil spill
identification (3, 4, 8).

Methods and Materials
Experimental. The oil samples used in the analysis were all
part of the oil database at the forensic oil spill laboratory,
National Environmental Research Institute, DK. The database
consists of crude oils, refined products, oil mixtures, and
spill samples from oil spill cases during the last 10 years. A
subgroup of these oils was dissolved separately in dichlo-
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romethane to a total oil concentration of approximately 2000
mg/L and stored at -20 °C in airtight vials, prior to chemical
analysis. Oil samples were analyzed on a HP-6890 GC
interfaced to a HP-5973 quadrupole mass spectrometer
(Agilent technologies) using electron ionization. Chromato-
graphic conditions: 1 µL aliquots were injected in splitless
mode; carrier gas helium (1.0 mL/min); inlet temperature
300 °C; temperature program: 35 °C (1 min), 20 °C/min to
150 °C, 6 °C/min to 315 (15 min). Mass spectrometric
conditions: transfer line and ion source temperature: 300
°C and 280 °C, respectively. Selected ion monitoring was
used to analyze 48 mass fragments, divided into 6 groups
containing 14-15 ions each as part of a larger fingerprinting
study (10). Hence, a low sampling rate of 1.27 scans/s was
obtained. In the analytical sequence, a blank and an in-
laboratory reference oil were analyzed between every five oil
samples. The reference oil was a 1:1 mixture of Brent crude
oil (North Sea crude oil) and bunker oil from the Baltic Carrier.
The reference samples were used to optimize the warping
parameters and to calculate the relative analytical standard
deviation used in the variable selection and in the weighted
least squares approach.

Data. The 101 oil samples used in this study consisted of
16 weathered spill samples from the Baltic Carrier oil spill
(March 29th, 2001, Denmark (16)), 51 source oils, including
a sample from the tank of the Baltic Carrier (source oil), 18
replicate reference samples, 2 unrelated spill samples
(analyzed in triplicate) from the Round-Robin oil spill exercise
(17), and 10 replicate analyses of selected source oils,
including 2 replicates of the Baltic Carrier source oil. The
chromatograms comprised 2510 data points which after
warping were reduced to 1231 (i.e. a retention window from
26 to 42 min) by omitting the parts without chemical
information. The data matrix was divided into a calibration
set of 61 chromatograms from 51 source oils and 10 replicates
(61 × 1231), a reference set containing the 18 replicate
reference samples (18 × 1231), and a test set comprised of
16 Baltic Carrier oil spill samples and 2 Round-Robin spill
samples analyzed in triplicate (22 × 1231).

Preprocessing of Data. Preprocessing of the chromato-
graphic data prior to PCA is necessary to remove variation
unrelated to the chemical composition: time shifts, baselines,
concentration effects, and sensitivity changes related to, for
example, fragmentation in the ion source and mass selective
detector. Three preprocessing methods are outlined in the
following: derivatization, normalization, and alignment.

Baseline Removal by Derivatization. The baseline in Figure
1 is caused by features unrelated to the chemical composition
and by coelution of compounds with a mass fragment of

217. It can negatively affect both warping (12, 13) and
normalization and should be removed. Derivatization is one
of several methods that can be employed, and it is often
used in combination with smoothing (e.g. Savitsky-Golay),
since it amplifies noise (18). To avoid unnecessary alterations
of the original data, beside those introduced by the time
warping, we decided to use the first derivative calculated
numerically as the difference of consecutive points and not
to smooth the derivatized chromatograms. Note that poly-
nomial- or piecewise-linear baseline fits are inapplicable in
this case, because many peaks are not baseline separated.
For the same reasons, it is not viable to manually select points
for the baseline fit, since this would increase the human
intervention in the preprocessing.

Normalization. Chemical fingerprinting of biomarkers
considers the relative distribution rather than concentrations
of the single constituents, because these are typically
unrelated to the oil source. The concentration information
is affected by several parameters, including sampling,
extraction, and cleanup procedures, all of which introduce
uncertainty and variability in the data. Since the variation
associated with total oil concentration is likely to mask the
compositional information in a PCA, each chromatogram
was normalized using eq 1

where xnj is the first derivative of the nth chromatogram at
the jth retention time, J is the total number of retention times,
and xnj

N is the normalized data. The normalization also
adjusts for sensitivity changes that are normally corrected
by the use of internal or external standards (e.g.
5â-androstane). Note that the use of standards for normal-
ization would be insufficient, because concentration effects
are retained in the data. Furthermore, if normalization were
applied before derivatization, the chromatograms would be
scaled according to a value that is also unrelated to the
chemical composition, thereby influencing the PCA in
unpredictable ways. Conversely, normalization according to
eq 1 may be affected by closure effects (19), in which case
more complex normalization schemes (e.g. using only a
limited set of retention times referring to specific peaks)
should be adopted. However, this was unnecessary for this
data set, and the possibility was not investigated.

Chromatographic Alignment by COW. Compared to other
warping methods such as unconstrained dynamic time
warping, COW is less flexible. This rigidity gives fewer artifacts
and improves the quality of the alignment when applied to
complex chromatographic data (13). With the COW proce-
dure, a target chromatogram is selected and divided into
segments, and then the optimal boundary positions for
corresponding segments are determined separately for each
of the remaining chromatograms (sample chromatograms).
All combinations of segment boundaries are evaluated, and
the one that maximizes the sum of the correlations between
corresponding segments in a sample and the target chro-
matogram gives the optimal chromatographic alignment (12).
When the segment length in a sample and the target
chromatogram is different, the former is linearly interpolated
to the same number of points as the latter. Consequently,
the chromatograms are aligned along the time axis by local
compression or expansion.

The number of data points each boundary is allowed to
move is determined by the so-called slack parameter. Slack
parameter, number of segments, and end point constraints
(the position of the first and last point is identical in all
chromatograms) determine the maximum local correction
allowed. This is largest in the central part of a sample

FIGURE 1. Chromatographic profile of m/z 217. Among others, this
profile contains tricyclic steranes (eluting between 26 and 34 min)
and tetracyclic steranes (eluting between 35 and 42 min).
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chromatogram, which contrasts experimental observations
where the shift typically increases with retention time (14).
The COW algorithm can be modified to account for this.
However, this was not necessary, because the first and last
parts of the chromatograms (about 250 and 1000 points)
contained only noise and allowed for adequate corrections
in the section retained for the PCA (12).

COW is robust with respect to the choice of segment length
and slack (13), but some parameter optimization is necessary.
The 18 replicate reference samples provided the means for
optimization. Disregarding noise and without mean center-
ing, the rank of a matrix consisting of perfectly aligned
reference chromatograms (i.e. the number of nonzero
singular values) is one. However, since noise is always present
in experimental data, the optimal choice of warping pa-
rameters is the one that maximizes the first singular value
(20).

Chemometric Data Analysis. The preprocessed data were
analyzed by PCA, which is particularly useful when variables
are highly correlated, as is the case for neighboring retention
times in chromatography. The variation in the data matrix
X (I × J) is described by the outer product of the scores matrix
T (I × K) and the loading matrix P (J × K), where T is column-
wise orthogonal, P is column-wise orthonormal, and the data
matrix X is typically column-wise centered. In eq 2 E is the
residual matrix.

The principal components (PCs) are linear combinations of
the original variables and are ordered according to their
explained variances. Consequently, PC1 represents the most
prominent source of variation in the data, PC2 the second,
and so forth. The number of components K expresses the
complexity of the data and can be regarded as the number
of independent underlying phenomena (20). There are several
methods to establish the correct K, e.g. the broken-stick rule
or cross-validation (20). However, a thorough analysis of
scores and loadings (21) was particularly useful here.

Although preprocessing removes most of the variation
unrelated to the chemical composition, the chromatograms
still contain noise (see Figure 2), which contributes to the
variance and thus affects the principal components. To
reduce this influence and improve the ability of PCA to
distinguish dissimilar oil samples (i.e. its discriminative
power) two strategies were tested: variable selection and
application of weighted least squares for fitting the PCA model
(22).

In the first approach, an increasing number of variables
was excluded from the model starting with the one with the
largest uncertainty (relative standard deviation) and removing

one at a time until exhaustion. The relative standard deviation
of each retention time was determined from the 18 replicate
references (RSDref). The optimal number of retention times
was established by taking advantage of the presence of
replicate oil samples in the data set. The optimization was
done by minimizing the variance of replicates for each oil
sample s with respect to their average scores ths (eq 3a),
compared to the variance explained by the model (eq 3b
(20)), in the K-dimensional space spanned by the principal
components

where Ss are the row indexes for the ns replicates of oil sample
s, ti is the ith row of T, and r is dimensionless. If additional
retention times describe noise rather than systematic varia-
tion, the variances of the replicates dRep are expected to
increase because of overfitting. Thus, PCA with the highest
discriminative power minimizes r (eq 3c), where dAll is the
normalization factor that accounts for the increase in dRep

due to the larger number of variables included in the model.
Note that r depends on K, which depends on the variables
included in the PCA. Three values of r were monitored: rCal,
using the 10 replicate oil samples included in the calibration
set, rRef for the reference set, and rTest using the oil samples
within the test set (i.e. spill samples). In rRef and rTest, the
scores were obtained by projection on the space spanned by
P.

In the second approach, the subjectivity was reduced by
fitting the PCA according to a weighted least squares criterion
(23), thus retaining all the variables in the data. We used the
MILES-PCA algorithm (Maximum likelihood via Iterative
Least squares EStimation) (23) for this purpose, using the
inverse of RSDref as weights.

All data analyses were performed in MATLAB 6.5 (The
MathWorks). The algorithms for COW and MILES-PCA can
be downloaded from www.models.kvl.dk.

Results and Discussion
Retention Time Alignment. Combinations of segment
lengths from 25 to 225 data points, with increments of 25
and slacks between 1 and 4 were tested to find the optimal

FIGURE 2. First derivative of a section of m/z 217 for five references and five source oils: (a) before warping and (b) after warping using
COW with segment length of 175 data points and a slack of 3 points.
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warping parameters. A reference sample analyzed halfway
through the analytical sequence was selected as the target
chromatogram to reduce the need for correction. The
explained variance of a one-component model, which is
proportional to the first singular value, was calculated for
the uncentered reference set. It increased from 59.1% (without
warping) to above 94% for all tested segment lengths and
slack of 2 to 4.

The maximum explained variance (96.2%) was attained
for segments of 175 data points and a slack of 3. Figure 2
illustrates the effect of time warping on a section of the
chromatograms (35.5-38.5 min). The improvement is evi-
dent, and the residual misalignment after warping is at most
one point when considering the whole data set (101 × 1231).
It has been suggested (12, 13) that optimal chromatographic
alignment is achieved if the segment length is of the same
order of magnitude as the peaks. Although for this data set
the peak width was around 10 points, short segments (25
points or less) yielded poorer alignments. This appears to be
caused by the low sampling rate and by the interpolation
step inherent to the COW algorithm: the peaks may be shifted
by a fraction of a point that depends on the ratio between
slack and segment length. Thus longer segments, provided
that enough flexibility is allowed for the bulk of the shift,
may produce finer corrections that may improve the warping
results. Increasing the sampling rate, e.g. by focusing on fewer
masses in the GC-MS analysis, would allow for more refined
corrections.

Chemometric Data Analyses. PCA was applied to the
mean-centered calibration set with and without warping.
Figure 3a shows the score plot of PC1 vs PC2 without warping.
The 16 Baltic Carrier oil spill samples and the 18 replicate
references form a pattern typical of situations where the
retention time shift is the main cause of systematic variation.
Hence, PCA describes the misalignment rather than the
chemical composition of the oil samples. Figure 3b shows
the score plot of PC1 vs PC2 after warping. The improvement
in the discriminative power of the PCA is evident: both
replicate references and Baltic Carrier oil spill samples are
clustered, and the triplicate Baltic Carrier source oils fall
within the cluster of the spill samples.

The explained variance of a four-component model before
and after warping was almost constant (67.8% and 67.5%,
respectively), while the amount of variation described by the
individual components changed considerably (e.g. 29.6% to
36.6% for PC1). This was caused by the removal of the
retention time shifts as a source of variation and demonstrates
that the shift is confounded, not only with the first but also
with subsequent components, which prevents any sensible
interpretation of the PCA without alignment (19).

The clustering of references and of the Baltic Carrier spill
samples holds for the first four components, whereas
subsequent PCs to some extent describe noise and residual
misalignment. This was confirmed by the loadings, where
some peaks in PC5 and subsequent components are sys-
tematically shifted one point when compared to the mean
of the 101 chromatograms, and from rCal and rRef, which
increased sharply when more than five components were
included in the model. Thus, the chemical information in
additional components is confounded with the residual
misalignment enhanced by the low sampling rate, and an
upper limit to the number of significant components was
observed. For the same reason, methods for establishing K
such as cross-validation would not suggest the correct
number of components, since the prediction error in
validation would continue to decrease without a sharp bend.

The method was modified by removing uncertain variables
in order to enhance the discriminative power of the PCA.
The number of retention times included in the PCA was
decreased from 1231 to 1 according to their RSDRef. rCal and
rRef fluctuated when using few retention times, and a distinct
minimum was attained at 838 variables for rCal and 351
variables for rRef. Retaining more than 838 variables led to a
steady increase in both ratios, which suggested that additional
variables did not contain useful information. Three models
using 1231, 838, and 351 retention times were applied to the
test set, which yielded rTestvalues of 2.0 × 10-2, 1.8 × 10-2,
and 1.3 × 10-2. Likewise, the lowest distances between source
oils and the corresponding spill samples were yielded using
351 retention times, which indicates that 838 variables were
too many and the model was overfitting.

Nevertheless, the selection of variables is clearly not trivial,
and it contradicts the aim of minimizing subjectivity in the
data analysis. Fitting the PCA model according to a weighted
least squares criterion represents an objective alternative.
Figure 4 shows the score plot of PC1 vs PC2 using MILES-
PCA, with four components and mean-centering (22). The
value of rTest is 1.6 × 10-2 which is slightly higher than for the
optimal variable selection.

The results are encouraging since the variances of replicate
oil samples are consistently reduced when using variable
selection or a weighted least squares criterion compared to
standard PCA. However, this information alone is not
sufficient to determine which method is best for correlating
oil spill samples and source oils. Further studies considering
weathering processes and statistical testing will be necessary
to establish whether these reductions are significant and to
obtain some general guidelines. However, despite weathering
processes (e.g. evaporation and water washing) for up to 14
days, the Baltic Carrier oil spill samples and the corresponding

FIGURE 3. PCA score plots of PC1 vs PC2: (a) without alignment and (b) with alignment. Baltic Carrier oil spill samples ((red) b), replicate
references ((blue) ×), triplicate Round-Robin oil spill samples ([), and oil samples in the calibration set (4).
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source oil are clustered in PC1 through 4. Likewise, the Round-
Robin spill samples, Spill I and Spill II, are grouped in the
plot with the corresponding sources, Oseberg East (E) and
Oseberg Field Centre (FC) (17). Note that, although Oseberg
South East (SE) lies close to Oseberg E along PC1 and PC2,
they are well separated along PC3 and PC4 (not shown).

Spill samples from real spill cases consist sometimes of
a mixture of source oils, which considerably hinders the
source correlation process. In this respect, it would be
advantageous if a fingerprinting technique could also identify
the constituent source oils of such mixtures. As previously
stated, the reference oil is a 1:1 mixture of Baltic Carrier oil
and a North Sea crude (Brent, U.K.). Brent crude was not
analyzed in our study, but several other North Sea crudes
were, e.g. the Oseberg source oils. Correspondingly, the
replicate reference samples lie almost on a line connecting
the clusters of Baltic Carrier samples and North Sea Crude
oils in the four-dimensional space spanned by the retained
principal components. Most of the variation between the
two oil types is described by PC2, whereas they form a single
cluster in PC3 and PC4.

Hence, we expect that another mixture of the same oils
but in different proportions would lie on the same line.
Likewise, if three sources were considered, all possible
mixtures would lie on a plane and so forth.

Petroleum biomarkers provide detailed information on
source, depositional environment, thermal maturity (2), and
refining process. Numerous ratios of biomarker compounds
have been used for forensic oil spill identification and oil
exploration in geochemistry (2, 4, 8, 24). Consequently,
chemical interpretation of the results facilitates the correla-
tion between source oils and spill samples. Retention times
that contribute the most to a PC are associated with large
negative or positive coefficients in the corresponding loading.

Figure 5 shows part of the integral (cumulative sum) of
the loading of PC2 and of the mean chromatogram of the
101 oil samples. The loading coefficients for diasteranes (DAS)
are negative, whereas they are positive for the rearranged
steranes (RS). Ratios of the type DAS/RS are commonly used
to distinguish oil originating from source rocks with different
clay content (2). Low DAS/RS indicate anoxic clay-poor,
carbonate source rock, whereas high DAS/RS indicate source
rocks containing abundant clays. Hence, PC2 can be inter-
preted as a source parameter where oil samples with positive
PC2 (e.g. the Baltic Carrier oil) are derived from a source
rock containing less clay than oil samples with negative PC2

(e.g. North Sea crude oils). Consequently, it appears that the
Baltic Carrier oil and North Sea crudes are distinguished by
the clay content of their source rocks.

PC1 (not shown) describes the boiling point range,
whereas tetracyclic steranes have positive coefficients, most
of the lower-boiling-range compounds in the first peak-
cluster (26 to 34 min) have negative ones. Correspondingly,
lubricants have positive scores for this component, whereas
the scores for light fuel oils are negative (see Figure 4). In PC3
(not shown) large positive coefficients of 5R,14R,17R,20R-
cholestane (27RRR) and 24-methyl-5R,14R,17R,20R-choles-
tane (28RRR) compared to 24-ethyl-5R,14R,17R,20R-choles-
tane (29RRR) suggest that PC3 is a source parameter reflecting
carbon number distribution of sterols in the organic matter
of the source rock (2). Finally, PC4 (not shown) describes the
thermal maturity of oils. The ââ-isomers of C27 to C29-regular
steranes have large negative coefficients, whereas the RR-
isomers have positive ones. The ratio of C29-regular steranes
(ââ/(ââ+RR)) is a highly specific parameter for maturity and
appears to be independent of source organic matter input
(2). The ââ isomers have a higher thermal stability compared
to the RR isomers, thus the above ratio increases with thermal
maturity. African crude oils (Gabon, Kole-Cameroon, Es-
cravos-Nigeria) have positive scores for this component,
whereas the scores for oils from e.g. the Middle East (Iran
Light, Iran Heavy, Basrah-Iraq, Dubai-Iraq) and Russia
(Romaskino, Ural) are negative. Consequently, the formers
appear to have a lower thermal maturity. Analogous conclu-
sions can be drawn from additional maturity parameters
e.g. 20S/(20S+20R) C29-regular steranes.

In summary, our method allows for analyses of chro-
matograms using a fast and highly objective procedure. Once
the PCA model is constructed, the complete data analysis of
a new oil sample (derivatization, normalization, alignment,
and PCA) requires few seconds. Conversely, if PCA were
performed on quantitative data, an analogous analysis would
be considerably more time-consuming and less objective
due to the quantification process. Furthermore, as long as
the variation between oils in the calibration set is sufficient,
the PCA can distinguish coeluting peaks. The same is far
more difficult in standard quantification procedures. For
example, peaks 3 and 4 in Figure 5 are highly overlapping
in the mean chromatogram, but their loading coefficients
have different signs. This is consistent with the interpretation

FIGURE 4. Weighted least squares PCA score plot of PC1 vs PC2.
Baltic Carrier oil spill samples ((red) b), replicate references
((blue) ×), triplicate Round-Robin oil spill samples ([), and oil
samples in the calibration set (4). The three replicate source oils
from the tank of the Baltic Carrier fall within the cluster of spill
samples.

FIGURE 5. Integrated mean-chromatogram (blue) and integrated
loadings of PC2 (red) for weighted least squares PCA. Compounds
are tentatively identified from refs 2, 8, and 15. (1) 13â,17r,20S-
cholestane(DAS),(2)13â,17r,20R-cholestane(DAS),(3)5r,14r,17r,20R-
cholestane (RS), (4) 24-ethyl-13â,17r,20R-cholestane (DAS), (5) 24-
ethyl-13r,17â,20S-cholestane (DAS), (6) 24-methyl-5r,14r,17r,20R-
cholestane (RS), (7) 24-methyl-5r,14r,17r,20S-cholestane (RS), (8)
24-ethyl-5r,14r,17r,20R-cholestane (RS).
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of PC2 that regular steranes have positive coefficients and
diasteranes have negative ones.

Retention time shifts are not the sole effect of instrumental
drift and deterioration of the GC column; peak shapes are
also affected. When using quantitative data for PCA (relative
peak areas or concentrations), these changes have a limited
effect, because peak areas remain substantially unaltered.
On the contrary, when PCA is applied to chromatograms,
changes in peak shape represent a prominent source of
variation that cannot be corrected only by warping and
cannot be adequately modeled by a bilinear model. External
normalization based on reference oils (10) may to some extent
correct for this, but further studies are required. Furthermore,
changes in peak shapes are more frequent when oil samples
are analyzed over a long period of time. Hence, it is even
more important to monitor the quality of the chromato-
graphic data for the proposed method than for standard
quantitative analysis. In this sense, the aligned reference
samples would be the natural choice. However, this would
require extensive investigations that are beyond the scope
of this work.

Another important issue is the effect of weathering and
biodegradation on the chemical composition. We treated
short-term weathering processes implicitly by considering
recalcitrant compounds such as tri- and tetracyclic steranes,
but this solution is not sufficient when oil samples have been
exposed to long-term weathering and biodegradation. Nev-
ertheless, oil spill samples with varying degrees of weathering
can be used to estimate the relative uncertainties instead of
the references. Consequently, compounds affected by these
processes will have a large uncertainty and will be deselected
or downscaled.

Chemical fingerprinting of biomarkers focuses on tetra-
cyclic steranes and terpanes (4, 8). A separate PCA applied
to the former, which elute between 35 and 42 min, had a
lower discriminative power than the PCA described thus far,
which also comprises tricyclic steranes and several com-
pounds yet unidentified. Hence, with proper preprocessing,
the discriminative power of the method increases when more
information is included, and the additional variables are
unaffected by weathering and biodegradation. Likewise, we
expect that the addition of compositional information from
other groups of petroleum hydrocarbons would improve the
results. This can be accomplished by combining chromato-
grams after alignment into a single data matrix.
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1. Introduction 

This paper is concerned with data preprocessing in 
chromatography that can help reduce the influence of 
baseline variations and retention time shifts when 
modelling chromatographic data with the so-called multi-
way methods. Some multi-way methods are capable of 
separating, mathematically, any overlapping peaks, but 
require that the influence of the aforementioned factors is 
minimized as much as possible. 

High performance liquid chromatography with 
diode array detection (HPLC-DAD) is frequently used for 
the quantitative analysis and the identification of organic 
residues or contaminants in live animals and animal 
products destined for human consumption. This technique 
has been considered to be suitable [1] for detecting 
contaminants classified in group B in Annex I of Directive 
96/23/EC.  

HPLC-DAD is a hyphenated instrument, i.e. two 
first-order instruments, a chromatograph and a 
spectrophotometer, working in tandem. This means that a 
full ultraviolet spectrum is recorded for each (discrete) 
elution time of the chromatographic profile and a data 
matrix is obtained for each sample; that is, the absorbance 
is recorded as a function of the wavelength and the elution 
time. Other detectors allowing three-dimensional data with 
liquid chromatography are fast-scanning fluorescence 
(FSFS) [2] and mass spectrometry (MS) [3,4]. Data 
matrices of different samples can be arranged in a tensor, 
also called multi-way array, and analysed by three-way 
models such as parallel factor analysis (PARAFAC) [5,6]. 

PARAFAC ideally decomposes multi-way data [10] 
in such a way that, it uniquely resolves the true underlying 
profiles, i.e. instrumental and concentration loadings. 
Because it retains this property for estimating profiles of 
pure analytes even in presence of uncalibrated 
interferences, PARAFAC is a useful tool to comply with 
the requirements established in the European Decision 
2002/657/EC [1]. PARAFAC allows one not only the 
quantification but also the identification and confirmation 
of analytes in biological samples when several matrix 
interferences coelute with the analyte of interest. 

One of the basic assumptions of PARAFAC is that 
data must be low-rank trilinear [10]. As it is shown in the 
present paper, biased results might be obtained if the 
model is applied to a data set which deviates from this 
trilinearity. 

Some phenomena, such as baseline variations, 
different baselines between samples, constant offsets and 
variation in the retention time from run to run, are common 

artefacts in chromatography and might alter [11] the 
trilinear structure of the data. Depending on the purpose of 
the analysis, namely qualitative or quantitative study, the 
effects of the lack of trilinearity on the results are different 
and several kinds of corrections have been presented in ref. 
[11]. Most of them are based on the selection of the model 
to fit the data or on the experimental design to get the 
three-way data. However, once data have been recorded, 
some of the shortcomings might be corrected by some kind 
of data preprocessing or by selecting an appropriate 
three-way model. 

The aim of this paper is to show the effectiveness of 
different tools to minimize the effect of the baseline 
(section 1.1) and of the variations in the retention time 
(section 1.2) on the estimations of the three-way models 
when sulfonamides are extracted from kidney samples. We 
will focus on the quantitative results and on the estimations 
of the chromatographic and spectral profiles of the analyte 
of interest. 

 

1.1. Baseline variations. 
The effect of the variations in the baseline can be 

minimized by data pretreatment which leads to simpler 
models with fewer components. In this paper, we will 
focus on simple approaches to centre signals, first and 
second-order derivatives of the chromatograms and 
baseline subtraction. These pretreatment techniques have 
been mostly applied in near infrared (NIR) spectroscopy to 
reduce spectral variations but few references have been 
found for the preprocessing of second-order data from 
HPLC-DAD modelled by three-way models. For example, 
ref. [12] deals with the effect of the preprocessing method 
(multiplicative signal correction, first and second-order 
derivatives) on a multivariate figure of merit, the 
sensitivity. 

In a three-way tensor [13], centering across one 
mode involves subtracting the column mean from each 
element. This procedure does not change distances 
between points but the origin of the space. Hence, 
centering is mainly used to remove constant terms in one 
of the modes of the data so that there will be no need to 
include extra components in the model to explain the 
offset. This technique is frequently applied in batch 
processes [14] to remove the major but common, and 
hence uninteresting, time trajectory of the process 
variables. Thus, subsequent models only need to focus on 
the minor but relevant deviations from the average 
trajectory. In this paper, centering across the sample mode 
has been performed to remove common effects between 
samples. 



 

Differentiation has been widely applied in 
chromatography for finding the retention time of the peak 
(maximum) as well as to determine the initial and final 
points for signal integration. From the identification point 
of view, signal differentiation may be appealing to enhance 
the resolution between two or more analytes which elute at 
close retention times. In ref. [15], the first-derivative 
chromatograms have been modelled by bilinear partial 
least squares (PLS) to determine pesticides in groundwater 
and soil samples. Complex bands have been partially 
resolved so that the algorithm can easily converge and the 
results are more reproducible. The differentiation of 
chromatograms removes backgrounds and differences in 
the baseline between samples that may interfere with the 
quantitative information present in the chromatogram. 
From the quantitative point of view, the results reported in 
ref. [16] with respect to differentiation are more precise 
than those with raw signals because the background of the 
signals of those samples with different nature to the 
training set is removed. Regarding multi-way analysis, the 
first derivative with the Savitzky-Golay transformation has 
been used for smoothing signals and solving the baseline 
effects in NIR spectroscopy prior to fitting a PARAFAC 
model [17]. However, no reference has been found for the 
analysis of derivative chromatograms with three-way 
models.  

Another option for correcting changes in the 
baseline is to fit a model for the baseline and then to 
subtract it from the data matrix. This technique has been 
applied to correct signals from liquid chromatography [18], 
gas chromatography [19] and capillary electrophoresis 
[20].  

 

1.2. Retention time shifts. 
Other kinds of artefacts disturbing the trilinearity of 

the signals are the instrumental shifts in the elution time 
from sample to sample due to variations in the column 
during use, fluctuations in the chromatographic conditions 
(such as temperature, flow rate, injection…) or drift in the 
chromatograph which makes the analytes elute later from 
sample to sample. Chromatographic shifts affect the 
estimations yielded with PARAFAC. They make the 
model more difficult to interpret or reduce its robustness. 

The problem of non-chemical shifts can be solved 
either by aligning signals or by using other models not 
affected by the chromatographic shifts as PARAFAC, such 
as PARAFAC2 [22] and multivariate curve resolution-
alternating least squares (MCR-ALS) [22,23]. Several 
algorithms have been advocated for signal alignment like 
the dynamic time warping (DTW) [4,24], the correlation 
optimised warping (COW) [24,25] and the peak matching 
algorithm [26]. Some authors have also applied the curve 
resolution with iterative target transformation factor 
analysis (ITTFA) [27]. 

Some of these problems are also found to a great 
extent in batch processes. Like in chromatography, signals 
for monitoring batch processes change from one batch to 
another, do not follow exactly the same time trajectory, 
and in many cases, batches do not have the same 
dimension. This problem has been handled by using 
PARAFAC2 [28] or other approaches such as the DTW 
algorithm [29]. 

This paper details the application of different data 
pretreatment to deal with the baseline variations (section 
4.1, centering, first and second-order derivative, baseline 
estimation/subtraction) and the chromatographic shifts 
(section 4.2, signal alignment by DTW and PARAFAC2).  

 

2. Experimental 
2.1. Chemicals and solutions. 

Formic acid, phosphoric acid (85%), 
dichloromethane and petroleum benzin were purchased 
from Sigma-Aldrich (Madrid, Spain). Methanol was 
obtained from Merck (Darmstadt, Germany). Sulfadiazine 
and sulfamethoxypyridazine were acquired from Fluka 
(Madrid, Spain).  

Deionised water was obtained by the Milli-Q 
Gradient A10 water purification system of Millipore 
(Bedford, MA, USA). 

1 g l-1 standard solutions of sulfadiazine and 
sulfamethoxypyridazine were individually prepared in 
methanol. A diluted standard solution (20 mg l-1) 
containing the two analytes was daily arranged in methanol 
by dilution of the standard solution. Ten pure standards at 
concentrations ranged between 1.33 and 10.33 mg l-1 were 
prepared from the 20 mg l-1 diluted solution.  

The solution of formic acid (0.1%, v/v) was 
prepared by diluting formic acid in deionised water, 
filtering through 0.45 µm filters and degassing in an 
ultrasonic bath.  

 

2.2. Pre-treatment and clean-up procedure. 
10 g of homogenized kidney samples were enriched 

with the sulfonamides at concentrations between 40 and 
310 µg kg-1 in the samples (or between 1.33 and 10.33 mg 
l-1 of each sulfonamide in the vial). 25 ml of 
dichloromethane, 2 ml of deionized water and 35 µl of 
phosphoric acid were added. Samples were stirred in an 
ultrasonic bath for 10 minutes and centrifuged at 3,000 
rpm for 10 minutes in a High Speed Refrigerated 
Centrifuge 4239R from ALC (Milan, Italy). The lower 
organic phase was filtered and preserved. The extraction 
procedure was repeated with 25 ml of dichloromethane. 
Extracts from the two extractions were mixed and 25 ml of 
petroleum benzin were added. 

The Sep-Pak® Vac RC silica cartridges from 
Waters (Bedford, MA, USA) were used without being 



 

previously activated. The extracts were passed across them 
at a pressure of 5 mm Hg (around 15 minutes) and then the 
cartridges were air-dried for 5 minutes. Sulfonamides were 
eluted with 8 ml of methanol, evaporated to dryness under 
a stream of nitrogen and dissolved with 300 µl of formic 
acid (0.1%)/methanol (70/30, v/v). 

 

2.3. Instrumental analysis and three-way data. 
20 µl were injected into a high performance liquid 

chromatograph from Waters (Bedford, MA, USA) 
equipped with a Waters 510 Pump, a Waters 717 Injector 
and a Waters 996 UV-vis absorbance detector. Full 
ultraviolet spectra were monitored between 230 and 440 
nm. Each standard was injected twice in order to have 
instrumental replicates and evaluate the stability of the 
models. The separation was performed under gradient 
conditions on a XTerra® MSC18 column (4.6×100 mm) 
from Waters with 5 µm of particle size. The composition 
of the mobile phase, formic acid (0.1%, v/v)/methanol was 
programmed as follows: the initial composition of the 
mobile phase was 5% of methanol which was raised until 
40% in 6 minutes, then increased up to 50% in 4 minutes, 
raised to 60% in 2 minutes, subsequently decreased until 
40% in 2 minutes and returned to the initial conditions (5% 
of methanol) in 1 minute. These conditions were kept for 5 
minutes for column equilibration.  

The flow rate was fixed at 1.0 ml min-1 and the run 
time at 20 minutes. The Millenium 32 software from 
Waters was used for controlling the system. 

Data from HPLC-DAD (ultraviolet-visible spectra 
registered at different elution times) were arranged in two 
tensors with dimensions 38×66×66 and 36×66×61 for 
sulfadiazine and sulfamethoxypyridazine respectively. The 
first dimension refers to the sample mode (number of 
standards, pure standards and kidney samples), the second 
to the spectral mode (number of wavelengths registered) 
and the third to the chromatographic mode (number of 
elution times). The pure standard containing 6.33 mg l-1 
and its instrumental replicate were considered outliers in 
both data sets and the pure standard with 10.33 mg l-1 was 
outlier for sulfamethoxypyridazine. The chromatograms 
from each analyte were independently examined, firstly 
sulfamethoxypyridazine (from 9.52 to 10.02 minutes) 
because its signals are specific and then sulfadiazine (from 
6.19 to 7.60 minutes) with which several interferences 
coelute. 

 

2.4. Software 
All data pretreatment (centering, derivatization and 

baseline subtraction) were performed with the PLS 
Toolbox for MATLAB® 6.5. The DTW algorithm for 
signal alignment can be downloaded from 
www.models.kvl.dk. The PARAFAC and the PARAFAC2 

[30] models were built with the PLS Toolbox for 
MATLAB.  

 

3. Data pretreatment. 
3.1. Pretreatment focused on the elimination 
of constant offsets and baseline drift. 
3.1.1. Centering. 

Centering involves the projection of the data [13,31] 
on the nullspace of vectors of ones in a particular mode. In 
this paper centering across the first mode (sample mode) 
has been performed by subtracting from every element the 
column-mean:  

 

3.1.2. First and second-order derivatives. 
The simplest way to determine the derivative of a 

signal is to subtract two consecutive data points. 
Unfortunately, this simple approach increases considerably 
the noise in the signal. This can be remedied by combining 
[32] differentiation with a smoothing technique such as 
that proposed by Savitzky and Golay [33]. Polynomial 
smoothing consists of selecting a window width with odd 
number of data points. A polynomial model is fitted to the 
points in the selected window and the central point of the 
window is replaced by the value of the first derivative of 
that polynomial in that point. Thereafter, the window is 
shifted one data point and the fitting process is repeated 
with all data points. 

Some considerations should be taken into account 
before applying this smoothing technique. Firstly, large 
window sizes improve the signal to noise ratio of the 
signals but introduce some distortion; in particular, peaks 
become wider [32]. On the other hand, when smoothing is 
carried out together with derivatization, changes in the 
retention time with respect to raw signals occur [32]. The 
greater the order of the derivative, the more significant the 
shift. This means that additional artefacts are introduced in 
the data that need to be modelled. In this paper, for 
estimating the first and the second-order derivative, a 
third-order polynomial model was adjusted to the 
chromatograms fixing the window width at 11 time-points. 

 

3.1.3. Baseline correction with linear 
regression. 

The procedure [18] consists of selecting several 
baseline regions, preferably both after and before 
component elution. Then, the baseline is fitted to a linear 
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model whose coefficients, b, can be estimated by least 
squares: 

where D is a matrix whose first column contains ones and 
the second column contains the scan time in baseline 
regions. x is the vector of absorbances over the specified 
baseline regions, and b is a  vector of two coefficients, the 
intercept (offset) and the slope (drift) for each wavelength. 

Once the coefficients, bj, have been calculated, the 
baseline is estimated for all retention times that is, baseline 
regions and chromatographic peaks, and subtracted from 
the original data set. The procedure is repeated for each 
wavelength, j, because drift and offset depend on the 
wavelength. Data obtained in this way will be baseline-
corrected only if the baseline is a linear function of the 
scan time.  

 

3.2. Pre-treatment focus on removing 
chromatographic shifts. 
3.2.1. Dynamic time warping (DTW). 

The DTW algorithm corrects shifts in the time mode 
by aligning each chromatogram with a reference 
chromatogram. Therefore, two signals intervene in each 
step of the warping procedure: the sample, denoted here as 
s, with length M, and the reference, r, with length N. The 
notation and terminology of this paper is the same as that 
detailed in reference [24] which uses m and n to specify 

the index in the sample and the reference respectively.  

The alignment of both the reference and the sample 
signals by means of DTW is based on dynamic 
programming and can be considered to be an optimization 
procedure where a linking path between the reference and 
the sample is built so that their cumulative distance is 
minimized.  

where [ ])k(n),k(md rs  is a dissimilarity measure, the 
squared euclidean distance between r[n(k)] and s[m(k)]. 
m(k) and n(k) are the indexes for the sample and the 
reference at the kth point on the warped time axis. K is the 
length of the warping path and w(k) are suitable weights 
[24]. But for the weights, the minimization procedure 
would be biased towards shorter paths, which entails the 
summation of fewer terms. The optimal warping path is 
consequently independent of its length, K. The warping 
path is defined as follows: 

 [ ]{ }K,...,1k|)k(n),k(mF ==  

The warping path, F, is a sequence of elementary 
transitions. A transition is defined as a single advancement 
in the common time axis and a sequence of elementary 
transitions constitutes a rule which describes a possible 
warping path at a local level. 
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Figure 1. Chromatograms registered at different wavelengths between 242 and 395 nm (a) of a pure standard containing 1.33 mg l-1 of 
sulfadiazine and (b) of a kidney sample enriched at 40 µg kg-1 (1.33 mg l-1 in vial). Scan 1 and scan 66 are 6.19 and 7.60 minutes 
respectively. 

( ) xDDDb t1t −
=  

(2)



 

However for the DTW algorithm to be effective not 
just any sequence of elementary transitions is allowed and 
some restrictions have to be imposed. The set of the 
allowed transitions to build the warping path is called 
look-up table and represented by T(x,y). x is the largest 
block distance covered by any of the rules in the table and 
y the maximum number of horizontal/vertical consecutive 
transitions allowed.  

Once the optimal warping path has been found, a 
synchronization step is needed so that all the aligned 
samples (with size K) will have the same length as before 
warping (size M) [24].  

 

4. Discussion and results. 
Figure 1a shows the chromatogram of a pure 

standard containing 1.33 mg l-1 of sulfadiazine for different 
wavelengths recorded between 242 and 395 nm. 
Chromatograms at low wavelengths, where the absorption 
of the mobile phase becomes more important, display not 
only baseline drift but also background. The lower the 
wavelength, the more important the drift and the offset. 
Besides, some wavelengths exhibit negative values of 
absorbance. On the other hand, it can be observed in 
Figure 2a that variations in the retention time from sample 
to sample become more important when gradient flow is 
applied.  

A two-component PARAFAC model is built with 
the raw signals of pure standards of sulfadiazine. The 
chromatographic and spectral profiles estimated are shown 
in Figure 3a and Figure 3b respectively. The analysis of 
the chromatographic profiles concludes that one of the 
components, in solid line, is associated with the analyte 

and the other one, in dotted line, jointly explains two 
effects, the baseline drift and the chromatographic shifts 
during the elution of the analyte. The last component does 
not contain chemical information related to the analyte and 
renders the models more complex. 

To avoid these kinds of artefacts, different 
preprocessing techniques have been firstly applied to the 
signals of sulfadiazine in pure standards. An ideal 
preprocessing technique of a single component sample 
should modify the data so that the chromatogram will 
consist of a peak of rank one. 

Figure 4 displays the signal of the pure standard, 
with 1.33 mg l-1 of sulfadiazine in vial, corrected by all 
four preprocessing techniques, that is, centering across the 
sample mode (Figure 4a), first-order derivative (Figure 
4b), second-order derivative (Figure 4c) and baseline 
correction (Figure 4d). Because of the dependence of the 
drift on the wavelength, the chromatogram of a standard is 
displayed at all variables (between 242 and 395 nm). 

Then, the signals of kidney samples (Figure 1b) will 
be included in the data set to study the effect of the 
different nature of the samples with respect to pure 
standards. These signals will be more complex because of 
the matrix effects and the elution of interferences. As 
observed in Figure 1b, unknown compounds coelute with 
sulfadiazine and the baseline is not so well reproduced as 
in the case of pure standards. The background is evident 
but the baseline drift is not so clear. Negative values of 
absorbance are also observed. The matrix effects can be 
observed in Figure 2b which displays the chromatogram of 
a pure standard (solid line) and a kidney sample (dotted 
line) both at 1.33 mg l-1 of sulfadiazine in vial. Despite the 
fact that the concentration in both standards is the same, 

 
Figure 2. Chromatograms registered at 268 nm (a) of pure standards containing between 1.33 and 10.33 mg l-1 of sulfadiazine (b) of a 
pure standard (solid line) and a kidney sample (dotted line) both containing 1.33 mg l-1 of sulfadiazine in vial. Scan 1 and scan 66 are 
6.19 and 7.60 minutes respectively. 



 

the chromatogram of the kidney sample is more intense 
(around three times) and wider as a consequence of the 
matrix effect. The retention time of kidney samples also 
changes and, at that wavelength, is longer with respect to 
pure standards. But now this change has two contributions, 
the chromatographic shifts (as for pure standards) and the 
elution of the interferences. 

 

4.1. Techniques for baseline removal. 
4.1.1. Centering. 

It can be deduced from Figure 4a that centering 
across the sample mode removes both the background and 
the baseline drift at all wavelengths for pure standards. The 
shape of the chromatograms does not change but the 
baseline has been removed. Samples with low 
concentration display negative chromatograms (absorbance 
values below the mean) whereas standards with high 
concentration have positive chromatograms (absorbance 
values above the mean). Samples with intermediate 
concentration show absorbance values close to zero. In this 
paper, only one of many samples is shown in Figure 4a 
(1.33 mg l-1) which is why data are not centered on zero. 
The baseline has been removed by centering which means 
that is constant over the sample mode and it does not 
depend either on the concentration of the analyte or on the 
order in which the standards were measured. It proves that 
the instrument, both the chromatograph and the detector, 
do not have a drift over time.  

Regarding the spectral mode, the absorption of the 
mobile phase, mainly at low wavelengths, is eliminated. 
Therefore, it can be concluded that the baseline drift was 
caused by the absorption of the mobile phase whose 

composition changes during the registration of the 
chromatograms. 

As centering depends on the samples included in the 
data set, a new set is built with only the signals of kidney 
extracts. These signals (Figure 1b) contain the analyte and 
other matrix compounds. The result of centering across the 
sample mode is depicted in Figure 5. The offset and the 
baseline have been cancelled. Besides, the effect of the 
interference coeluting close to the analyte has been 
minimized such that the resolution between the 
chromatogram of the analyte and of the interference has 
increased.  

Finally, the effect of the different sample nature in 
the data set is examined. To do so, a new data set is built 
by joining signals of pure standards and kidney samples in 
a tensor such that the dimension in the sample mode will 
be 38. Signals centered are shown in Figure 6a. Both the 
background and the baseline drift are corrected for all the 
samples which proves that they do not depend on the 
different sample nature and they are the same for pure 
standards and kidney extracts. In the case that there was 
extra variability in the baseline of the samples, centering 
across the chromatographic mode (double centering) might 
solve the difficulty. However one should take into account 
that centering across two modes should be performed 
sequentially [13,14]. Otherwise additional systematic 
variation could be included in the signals and consequently 
the complexity of the models would increase. The 
additional peak in Figure 6a with respect to Figure 4a 
might be due to the variation of the retention time of 
kidney samples with respect to pure standards. As the 
retention time is longer for kidney samples a peak with 
positive absorbances appears around scan number 50. 

 
Figure 3. (a) Chromatographic and (b) spectral profiles estimated by a two-component PARAFAC model built with raw data of 
sulfadiazine. In solid lines the factor associated with sulfadiazine. 



 

 

4.1.2. First and second-order derivatives. 
The first-order derivative removes a constant 

background of varying magnitude but not a baseline drift 
(slope) which is transformed into a constant offset. The 
slope of the drift is removed by the second-order 
derivative. The first and second-order derivatives of a pure 
standard are shown in Figure 4b and Figure 4c and those of 
a kidney sample in Figure 6b and Figure 6c respectively. 
In both cases, the effect of the baseline is minimized and 
what is more, the resolution between the analyte and the 
interference is enhanced. However, it can be observed that 
despite smoothing, the baseline is noisier above all for the 
second-order derivative. The greater the order of the 
derivative the worse the signal-to-noise ratio and the 
greater the shift of the maximum peak [32] with respect to 
the raw data (compare the retention times in Figure 4a, 
Figure 4b and Figure 4c).  

The advantage of derivatization with respect to 
centering is that the effectiveness of derivatization to 
remove the offset is independent of the rest of the samples 
in the data set. The signal centered across the sample mode 

is obtained by subtraction of the column mean of the 
samples from every element. Therefore, the signal of all 
the samples in the set contributes to a certain extent to the 
centered signal of one sample. The effect can be observed 
comparing the centered signals of a kidney sample when 
only kidney samples are included in the set (Figure 5) and 
when the set is constituted by pure standards and kidney 
samples (Figure 6a). Differences between both signals are 
clear.  

 

4.1.3. Baseline correction. 
The results of the fourth correction technique based 

on estimating the baseline by a linear regression (equation 
2) and subtracting it from the raw signal are depicted in 
Figure 4d. The background and the drift have been 
eliminated. However, the correction of the signals of 
kidney samples (Figure 6d) is not completely effective. 
The baseline drift and the offset have been eliminated but 
negative absorbances are found at elution times close to 
the peak of the analyte (before and after). The 
disadvantage of applying this correction technique is that 
the resolution between the peaks should be high enough to 

 
Figure 4. Preprocessed chromatograms at different wavelengths of a pure standard containing 1.33 mg l-1 of sulfadiazine. (a) Centering 
the set of pure standards across the sample mode, (b) first-order derivative, (c) second-order derivative and (d) baseline subtraction. 



 

have an adequate amount of points before and after the 
elution to describe the baseline. As happened in this paper, 
it might be difficult to estimate the baseline of complex 
chromatograms because of the interferences. Besides, an 
additional metaparameter defining the baseline windows is 
needed. 

 

4.2. Techniques dealing with chromatographic 
shifts.  

As previously stated, one of the basic assumptions 
of PARAFAC is that the data must be trilinear. Because of 
the chromatographic changes from sample to sample both 
in retention time and shape of the signals (see Figure 2a for 
raw data and Figure 7a for first-order derivative signals), 
chromatography often does not comply with this condition. 
In this example the maximum difference in the retention 
time of sulfadiazine standards is about 4 seconds. 
Sometimes the variations are not so important and the 
PARAFAC model under some restrictions [6] can handle 
them. In other cases, as the presented in this paper, the 
estimations derived from the model are biased (Figure 3).  

Two alternatives are proposed in this paper to cope 
with chromatographic shifts. The first one consists of 
aligning the signals (section 4.2.1) by the dynamic time 
warping (DTW) algorithm. The second one is the 
performance of other three-way models not affected by 

changes in one of the modes as PARAFAC. This is the 
case of PARAFAC2 (section 4.2.2) which does not assume 
invariant profiles.  

 

4.2.1. Dynamic time warping (DTW). 
It has been proved [24] that the DTW algorithm is 

an effective technique for aligning chromatograms. 
However, some aspects must be taken into account before 
applying DTW. Changes in the baseline of both sample 
and reference chromatograms can have a negative impact 
on the DTW ability for correcting chromatographic shifts. 
Therefore, one of the techniques detailed in section 4.1 
should be applied for removing the baseline from the 
signals. In this section, the first-order derivative was 
applied to simultaneously remove drift and baseline 
differences between the samples and the reference.  

The effectiveness of the DTW algorithm was tested 
on three different data sets: 

i) Data set containing 18 pure standards of 
sulfadiazine (section 4.2.1.1) so that the signals have 
neither interferences nor matrix effects. Different look-up 
tables are applied for warping signals. 

ii) Data set containing 18 pure standards and 18 
kidney samples enriched with sulfamethoxypyridazine 
(section 4.2.1.2) so that the effect of aligning signals on a 
rank-one PARAFAC model can be examined.  

iii) Data set containing 18 pure standards plus 20 
kidney samples enriched with sulfadiazine (section 4.2.1.3) 
to analyse the effect of aligning signals on a rank-two 
PARAFAC model. 

 

4.2.1.1. Warping signals of pure standards. 
The signals to be aligned are shown in Figure 7a. 

The sample containing 5.33 mg l-1 of sulfadiazine was 
chosen as the reference because it has intermediate 
retention time with respect to the other samples.  

The effectiveness [24] of the DTW algorithm to 
align the signals depends both on the number of time-
points (segment length) covered by rules in the look-up 
table and on the maximum number of horizontal/vertical 
transitions allowed by the look-up table. Depending on the 
values of both parameters two extreme cases can be found. 

 
Figure 5. Centered chromatograms at different wavelengths of a 
kidney sample enriched with 1.33 mg l-1. Centering was 
performed across the sample mode and only taking into account 
signals of kidney samples. 



 

Unconstrained or poorly constrained DTW is too 
flexible because it allows for many consecutive 
horizontal/vertical transitions of short segments. Under 
these conditions, small features included in the 
chromatogram such as noise could be warped and what is 
more, the chromatographic profile might be deformed. 
This artefact has been depicted in Figure 7b, which 
represents the signal of a standard before and after 
warping. The segment length was fixed at 2, i.e. there will 
be 33 segments, and the maximum number of consecutive 
vertical/horizontal transitions at 1, look-up table T(3,1). The 
shape of the warped peaks (dotted line) is visibly distorted 
with respect to the original chromatogram (solid line).  

Stricter restrictions entail fewer consecutive 
horizontal/vertical transitions of longer segments and 
prevent peak distortion. However, too constrained DTW 
may cause signal adjustment to fail due to the fixed end 
point restriction [34]: as the start and the end points are 
fixed, the extremes of the chromatogram might be more 
difficult to match. Figure 7c displays the chromatographic 
profile of 18 samples after DTW, T(65,1), was applied. 

Signals are not aligned due to the excessive constraints 
imposed to the DTW algorithm. 

Some authors have proposed [9,24] use the width of 
the narrowest chromatographic peak to be aligned as 
segment length. The band width in this example is around 
30 time-points. As no alignment was achieved with this 
constraint two alternatives proposed in ref. [24] were 
followed. The first one consists of extending the baseline 
by including, at both extremes of the chromatogram, a 
segment containing only white noise. The second option 
for avoiding the effects of DTW with rigid slope 
constraints is to duplicate of the number of points of the 
chromatogram by linear interpolation. The extra points 
introduced by both these methods are eliminated after the 
warping procedure is completed. 400 baseline points of 
white noise were added at both extremes of the 
chromatogram and the number of data points in the actual 
chromatogram was duplicated. As a consequence of the 
latter procedure, the peak width is also doubled, thus a 
T(129,1) table, which uses 60-point segments was used to 
prevent peak distortion. The results are shown in Figure 
7d. Chromatograms have been aligned and what it is more 

 
Figure 6. Preprocessed chromatograms at different wavelengths of a kidney sample spiked with 40 µg kg-1 of sulfadiazine (1.33 mg l-1 
in vial). (a) Centering the set of pure standards and kidney samples across the sample mode, (b) first-order derivative, (c) second-order 
derivative and (d) baseline subtraction. 



 

important its shape does not change with respect to the 
original one. 

 

4.2.1.2. Warping signals of pure standards 
and kidney samples without interferences. 

In this section, the data set of 
sulfamethoxypyridazine will be used. There are no 
interferences (see raw and first-order derivative signals in 
Figure 8) so a one-component PARAFAC model was fitted 
with the non-aligned first-order derivative signals. The 
percentage of variance explained by the model is 75.70%. 

The effect of the chromatographic shifts on the 
loadings estimated by PARAFAC in the different modes 
will be analysed because those profiles can be used to 
identify (spectral loadings) and quantify (scores) the 
analytes. The correlation coefficient between the spectrum 
estimated by PARAFAC and the spectrum of the analyte in 
pure standards is 0.9999 which implies that the PARAFAC 
model satisfactorily determines the true underlying profile 

in the second mode even when signals are affected by 
chromatographic shifts. 

As PARAFAC is a decomposition model, the scores 
in the sample mode can be used to quantify by building a 
calibration model between the scores of pure standards (the 
first instrumental replicate) and the concentration. To 
evaluate the capability of prediction of the model in pure 
standards, the second instrumental replicate of pure 
standards is quantified using the scores and the regression 
model built. The mean from the relative errors in absolute 
value is 4.88% which shows that, despite the 
chromatographic shifts, the ability of the PARAFAC 
model to predict the concentration of standards whose 
signals are similar to those of the training set is good. 

However, greater differences were found when the 
instrumental replicates of kidney samples were quantified. 
The same extract was injected twice. For example, the 
predicted concentration in the sample enriched with 7.33 
mg l-1 is 2.60 and 3.62 mg l-1 for the first and the second 
instrumental replicate respectively, and in terms of 
recovery, ( )100ConcConc truepred × , 35.47 and 49.33% 

 
Figure 7. First-order derivative chromatograms of pure standards of sulfadiazine at 268 nm. (a) non-aligned signals, (b) original first-
order derivative chromatogram of a pure standard containing 10.33 mg l-1 of sulfadiazine (solid line) and aligned signal (dotted) with 
the look-up table, T(3,1) (c) aligned signals with the look-up table T(65,1) and (d) aligned chromatograms with the look-up table T(129,1), 
duplicating the number of points in the chromatograms and adding a baseline with 400 points of white noise at the extremes of the 
chromatogram. 



 

respectively. The difference between the recoveries of both 
instrumental replicates is around 14%, which is too high. 
This proves that the model lacks reproducibility and is 
unstable. Similar results were obtained for the rest of 
samples spiked at different levels, which rejects the idea of 
being outliers. The analysis of other sulfonamides (results 
not shown) leads to the same conclusions. 

To check whether the lack of reproducibility of the 
PARAFAC model is related to the chromatographic shifts 
or not, the first-order derivative signals were aligned by 
DTW. The sample with concentration 280 µg kg-1 of 
sulfamethoxypyridazine in kidney was chosen as 
reference. A baseline with 800 time-points was added to 
both extremes of the chromatogram. The number of points 
of the chromatogram (66) were duplicated by linear 
interpolation and the look-up table T(159,1) was applied.  

The one-component PARAFAC model built with 
the aligned signals explains 99.08% of the variability, 
which is greater than the variance explained by the model 
built with the non-aligned signals, 75.70%. This means 
that approximately 23% of the variability found in the non-
warped signals is due to the chromatographic shifts that 
have successfully been removed by DTW. 

Regarding the spectral profile, the correlation 
coefficient between the spectra estimated by PARAFAC 
and the spectrum of a pure standard is greater than 0.999 
which allows the analyst to identify the analyte. The 
advantage of aligning signals is found in the sample mode 
(quantification). The predicted concentration of the kidney 
sample spiked with 7.33 mg l-1 is 4.54 and 4.59 mg l-1 for 
the first and the second instrumental replicate respectively, 
which means 61.88 and 62.65% of recovery. It can be 
observed that the difference between both replicates is less 
than 1%. This result is more precise than that obtained 
with the non-aligned signals (difference around 14%) and 

demonstrates that the estimations in the sample mode are 
more reliable after the chromatograms have been warped. 
For the rest of the samples enriched at different levels of 
sulfamethoxypyridazine, differences between instrumental 
replicates are smaller than 1%, which shows the need to 
align the chromatograms before applying PARAFAC to 
avoid the loss of data trilinearity. 

 

4.2.1.3. Warping signals of pure standards 
and kidney samples with interferences. 

Figure 1b shows the chromatograms of sulfadiazine 
in an extract of kidney. Some unknown interferences elute 
close to the analyte which modifies not only the retention 
time but also the shape of the peaks with respect to the 
chromatogram of the pure standard (Figure 1a).  

With the aim of reducing the rank of the model, the 
first fifteen wavelengths were removed so that a two-
component PARAFAC model can be fitted with the non-
aligned first-order derivative signals. The percentage of 
explained variance is 97.75%. The estimation of the 
spectral profiles is not affected by the chromatographic 
shifts and the correlation coefficient between the spectrum 
estimated by PARAFAC and that of a pure standard is 
higher than 0.9999. Figure 9 displays the estimations of 
PARAFAC in the chromatographic mode. The solid line 
represents the profile associated with sulfadiazine whereas 
the dotted line should correspond to that of the 
interference. It can be observed that the loadings in the 
chromatographic mode of the factor associated with the 
interferences are not the first-order derivative of a 
chromatogram because the chromatographic shifts are also 
included in this component as they were in Figure 3a.  

The scores in the concentration mode of the 
component associated with the analyte were used to 

 
Figure 8. (a) Chromatogram and (b) its first-order derivative of sulfamethoxypyridazine (2.33 mg l-1 in vial) in pure standards (solid 
line) and kidney samples (dotted line). Signals are displayed at 268 nm. Scan 1 refers to 9.52 minutes and scan 61 to 10.02 minutes. 



 

quantify as it was described in the previous section. The 
mean of the relative errors in absolute value when the 
concentration of pure standards is predicted is 1.95%. The 
predicted concentration of a kidney sample enriched with 
7.33 mg l-1 is 4.55 mg l-1 for both instrumental replicates 
that is, 62% of recovery. This means that the two-
component PARAFAC model built with the non-aligned 
signals of sulfadiazine is stable and robust, unlike the one-
component model built for sulfamethoxypyridazine. The 
reason might be that the variability due to the 
chromatographic shifts has been included in the model 
through the component related to the interference (dotted 
line in Figure 9). 

Signals were aligned choosing the sample 
containing 280 µg kg-1 of sulfadiazine in kidney as 
reference. The number of points in the chromatogram was 
duplicated by linear interpolation and the baseline was 
extended with 600 points of white noise at both extremes 
of the chromatogram. The look-up table T(119,1) was applied 
and a two-component PARAFAC model was fitted. The 
percentage of explained variance is 99.42%. The profiles 
estimated in all three modes are displayed in Figure 10. 
Because of the uniqueness property of PARAFAC there 
should be one factor associated with the analyte and 
another one with the interference. However it can be 
observed in Figure 10a that there is one factor that might 
be associated with the analyte, plus sign, increasing 
concentration of the analyte in the calibration curve, but 

the other one (circles) is not so clearly related to the 
interference. Most of the scores of pure standards, samples 
1-18, are around zero, which is logical because pure 
standard do not contain interferences whereas those of 
kidney samples, samples 19-36, are different from zero. 
Nevertheless, it can be observed that the scores of pure 
standards 11, 12 and 13 are of the same order as kidney 
samples. This means that this factor is not completely 
associated with the interference and it explains another 
effect. From the quantitative point of view, the 
concentration predicted in a kidney sample spiked with 
7.33 mg l-1 is 5.14 and 5.00 mg l-1 for the first and the 
second instrumental replicate respectively, which 
corresponds to 70.12% and 68.21% of recovery. The 
difference between both replicates is not excessive (around 
2% in recovery), but the estimated concentration is higher 
than that estimated with non-aligned signals (4.55 mg l-1, 
62% of recovery). The reason is that the shape of the 
chromatograms of kidney extracts and of pure standards 
are different (see Figure 1). As warping minimizes the 
distance between features in the reference and in the 
sample, when two peaks are highly overlapping in either 
chromatogram, and the other chromatogram only contains 
one peak, the alignment fails. This result together with the 
fact that the scores of the factor associated with the 
interference in pure standards 11, 12 and 13 are similar to 
those in kidney samples allow one to conclude that DTW 
is not effective to align the signals which contain 
interferences affecting the shape of the chromatogram of 
the analyte. Thus, analyte, interference and shift are still 
mixed after the PARAFAC decomposition. These 
conclusions will be supported with the results obtained 
with the PARAFAC2 model which is theoretically 
unaffected by the shifts. 

 

4.2.2. The PARAFAC2 model. 
The comparative results between PARAFAC, 

DTW+PARAFAC and PARAFAC2 are shown in Table 1 
for sulfamethoxypyridazine. A one-component 
PARAFAC2 model was carried out with the first-order 
derivative of the chromatograms of 
sulfamethoxypyridazine whose chromatograms are only 
affected by shifts but not by interferences. The percentage 
of explained variance is 99.83% which means that most of 
the variability has been explained. The percentage is close 
but higher than that obtained by PARAFAC built with 
warped signals, 99.08%.  

The estimation of the spectral profile is good and 
the correlation coefficient between the spectra estimated 
and that of a pure standard is close to 1. 

 

 
Figure 9. Chromatographic profiles estimated by the two-
component PARAFAC model built with the first-order 
derivative signals of sulfadiazine. The factor associated with the 
analyte is in solid line and the factor associated with the 
interference and the chromatographic shifts in dotted line. 



 

From the quantitative point of view, the mean of the 
relative errors in absolute value when pure standards are 
quantified is 2.86% which is smaller to that of PARAFAC 
(4.88%) and close to that of DTW+PARAFAC (2.92%). 
Regarding kidney samples, the concentration of two 
instrumental replicates of a sample enriched with 7.33 mg 
l-1 of sulfamethoxypyridazine is 4.54 and 4.57 mg l-1 
respectively (61.95 and 62.29% of recovery). The 
difference between both replicates is small (less than 1%) 
which proves that PARAFAC2 is more stable and is not so 

affected by the chromatographic shifts as PARAFAC 
whose difference between both instrumental replicates is 
14%. It can be observed in Table 1 that, in the case of 
specific signals, the results obtained with PARAFAC2 are 
always better than those of PARAFAC and similar to those 
of PARAFAC with warped signals. This means that the 
DTW algorithm successfully corrects the chromatographic 
shifts which cause the lack of trilinearity in the data. 

To find out to what extent PARAFAC2 is 

Table 1. Comparative study of the PARAFAC and the PARAFAC2 models built with non-aligned and aligned signals of 
sulfamethoxypyridazine. Percentage of explained variance, mean of the relative errors in absolute value (%) when pure standards are 
quantified and recovery of two instrumental replicates of a sample containing 7.33 mg l-1 of sulfamethoxypyridazine. 

 PARAFAC  PARAFAC2  
 Non-aligned Aligned (DTW) Non-aligned Aligned (DTW) 
Explained variance (%) 75.70 99.08 99.83 99.83 
Error (%) 4.88 2.92 2.86 2.85 
R1

a, R2
b  

(R1
a-R2

b) 
35.45, 49.33  
(13.86) 

61.88, 62.65  
(0.76) 

61.95, 62.29  
(0.34) 

62.32, 63.04  
(0.72) 

a: recovery (%) from the first instrumental replicate. 
b: recovery (%) from the second instrumental replicate. 

 
Figure 10. Loadings estimated by a two-component PARAFAC model after signals of pure and kidney standards of sulfadiazine were 
aligned. (a) Sample mode (b) spectral mode and (c) chromatographic mode.  



 

influenced by the shifts, a one-component PARAFAC2 
model was built with the first-order derivative 
chromatograms after warping. The percentage of explained 
variance is 99.83% which is the same as that obtained with 
the PARAFAC2 model with non-aligned signals. The 
qualitative and quantitative results from PARAFAC2 and 
from DTW+PARAFAC2 are almost identical (the last two 
columns in Table 1) which allows one to conclude that 
PARAFAC2 is not affected by the shifts. 

The two-component PARAFAC2 model built with 
the signals of sulfadiazine, which contains interferences, 
explains 99.96% of the variability found in the data set. 
The concentration predicted in two instrumental replicates 
of a kidney sample spiked with 7.33 mg l-1 is 4.55 mg l-1 
(62% in terms of recovery). This result is similar to that 
obtained with PARAFAC without signal alignment and 
proves that the concentration predicted by 
DTW+PARAFAC, 70.12% and 68.21%, is biased because 
the model does not distinguish between the analyte and the 
interference.  

 

Conclusions 
Through this paper some common artefacts in 

chromatography have been examined. It has been studied 
how they disturb the trilinearity of the data and/or increase 
the complexity of the models as well as the strategies to 
minimize their effect on the estimations of the PARAFAC 
model. Some of the strategies like centering across the 
sample mode, first and second-order derivatives and 
baseline correction are aimed at minimizing the effect of 
the baseline drift and of constant offsets. 

It has been shown that the chromatographic shifts 
from run to run disarrange data trilinearity which causes 
lack of accuracy in the predictions of the PARAFAC 
model. The spectral profiles are not highly affected by the 
chromatographic shifts which might be a practical problem 
because a good identification through the spectral profiles 
does not necessarily provide true estimations of the analyte 
concentration.  

For specific signals, chromatographic shifts have 
been corrected with the DTW algorithm. Once the time-
shifts have been eliminated, the loadings in the sample 
mode become steadier and the estimations of PARAFAC 
and PARAFAC2 become similar. On the other hand, no 
difference has been found between the PARAFAC2 model 
and DTW+PARAFAC2 which demonstrates that the 
chromatographic shifts have an effect on PARAFAC but 
not on PARAFAC2 and that removing them the 
consistency of the PARAFAC model improves. 

With non-specific signals, PARAFAC2 is more 
effective than DTW+PARAFAC because the procedure for 
warping overlapping signals with specific signals and vice 
versa is not effective.  
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