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ABSTRACT 

Monitoring and control of fermentation processes is important to ensure high product yield, 
product quality and product consistency. More knowledge on on-line analytical techniques 
such as near infrared and fluorescence spectroscopy is desired in the fermentation industry to 
increase the efficiency of on-line monitoring systems.   

The primary aim of this thesis is to elucidate and explore the dynamics in fermentation pro-
cesses by spectroscopy. Though a number of successful on-line lab-scale monitoring systems 
have been reported, it seems that several challenges are still met, which limits the number of 
full-scale systems implemented in industrial fermentation processes. This thesis seeks to 
achieve a better understanding of the techniques near infrared and fluorescence spectroscopy 
and thereby to solve some of the challenges that are encountered.    

The thesis shows the advantages of applying real-time monitoring of bioprocesses and it also 
highlights that the applied techniques with different measurement orders deliver specific but 
also complementary sources of information. Furthermore, it was shown that valuable process 
information can be obtained both by near infrared spectroscopy and fluorescence spectrosco-
py, which provide indirect and direct measurements, respectively.  

Based on the measurements obtained by near infrared spectroscopy it was found that variation 
in scatter and in the absorption can be obtained from the same near infrared spectrum. By 
kinetic modelling, it was possible to capture both physical and chemical changes appearing in a 
lactic fermentation process. The physical changes were associated with the textural transfor-
mation appearing during the gel formation and chemical changes were associated with the 
biological conversion reactions, which take place during the fermentation process.  

The results presented in this thesis also highlight that pH changes have a major effect on the 
fluorescence intensities, which can influence the quantifications of the relevant components 
negatively. When the pH was either increased or decreased, manually, during the measured 
process, a clear increase or decrease was observed in the fluorescence landscapes. This thesis 
presents a correction strategy based on a chemometric modelling approach, where weighted 
non-linear regression and weighted PARAFAC analysis are combined.  
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Based on the research conducted in this PhD project, it is concluded that near infrared spec-
troscopy can provide valuable physical and chemical real-time information during yoghurt fer-
mentation. Also, it is concluded that fluorescence data must be evaluated carefully if pH chang-
es appear in the measured system. However, such data can still be applied for on-line monitor-
ing if corrections or preventive measures during the quantification are carried out. The findings 
presented in this thesis have enabled the possibility of obtaining a better process understand-
ing and to ease monitoring and controlling of fermentation processes.  
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RESUMÉ 

Monitorering og kontrol af fermenteringsprocesser er vigtigt for at sikre højt produktudbytte, 
produktkvalitet og ensartethed. Mere viden om on-line teknikker, såsom nærinfrarød spektro-
skopi og fluorescensspektroskopi, er på verdensplan ønsket af fermenteringsindustrien for at 
øge effektiviteten og forståelsen af on-line monitoreringssystemer.  

Det primære formål med denne afhandling er at belyse og udforske dynamikken i fermente-
ringsprocesser ved brug af spektroskopi. På trods af, at flere publicerede studier har præsente-
ret succesfulde on-line laboratoriemonitorerings-systemer, viser det begrænsede antal af im-
plementerede monitoreringssystemer i industrielle fuldskalafermenteringsprocesser, at der 
stadig eksisterer udfordringer.  I denne afhandling søges at opnå en bedre forståelse af teknik-
kerne nærinfrarød- og fluorescensspektroskopi og derved at reducere udvalgte udfordringer, 
der findes ved on-line monitorering af fermenteringsprocesser.     

Afhandlingen omhandler og identificerer fordelene ved at benytte real-tidsmonitorering af 
bioprocesser. Det fremhæves også, at de benyttede teknikker, med varierende data-
dimensioner, leverer forskellige niveauer af information, der både er specifikke såvel som kom-
plementerende. Ydermere, vises det, at værdifulde procesinformationer bliver opnået både via 
nærinfrarød og fluorescensspektroskopi, som giver henholdsvis indirekte og direkte målinger.       

Baseret på nærinfrarød spektroskopi data bliver det vist, at variation i scatter og i absorption 
kan findes i det samme nærinfrarøde spektrum. Via kinetik modellering er det muligt at model-
lere både de fysiske og kemiske ændringer, som optræder i en mælkesyrefermentering. De 
fysiske ændringer er associeret med de teksturændringer, som finder sted under geldannelsen, 
mens de kemiske ændringer er relateret til de biologiske omdannelsesreaktioner, som ligeledes 
finder sted under fermenteringsprocesser.  

De resultater, der er præsenteret i denne afhandling bekræfter også, at pH ændringer har en 
stor indflydelse på fluorescensintensiteten, hvilket kan påvirke kvantificeringen af relevante 
komponenter negativt. Når pH enten øges eller sænkes manuelt, under den målte proces, bli-
ver en tydelig intensitet-stigning eller -fald observeret i fluorescenslandskaberne. Denne af-
handling præsenterer de væsentlige ændringer observeret i fluorescenslandskaberne og præ-
senterer en korrektionsstrategi baseret på en kemometrisk modelleringstilgang, hvor metoder-
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ne ”vægtet ikke-linenær regression” og ”vægtet PARAFAC analyse” er kombineret.  

Baseret på forskningen udført i denne ph.d.-afhandling, konkluderes det, at nærinfrarød spek-
troskopi kan give værdifuld fysisk og kemisk real-tidsinformation under en yoghurt-
fermentering. Det konkluderes også, at fluorescens data bør evalueres med forsigtighed, hvis 
pH ændringer finder sted i den målte proces. Dog kan sådanne data stadig benyttes til on-line 
monitorering, hvis korrektioner eller forebyggende databehandling under kvantificeringen 
bliver udført. De opnåede resultater præsenteret i denne afhandling gør det muligt at opnå en 
bedre procesforståelse og gøre monitorering og kontrol af fermenteringsprocesser lettere. 
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CHAPTER 1 
 

INTRODUCTION  

1.1 Background  

Monitoring and controlling processes is of great importance in all industries. This statement 
also includes the food- and pharma bioprocess industries, where real-time monitoring tech-
niques in combination with chemometrics have been widely explored during the past decades 
(Lourenco, et al., 2012). Bioprocesses use living microorganisms to produce a broad range of 
products such a metabolites, cells, proteins, hormones, enzymes or e.g. fermented food prod-
ucts. To ensure high product yield, product quality and product consistency, the main key is to 
monitor and control the metabolism(s) of the applied microorganism(s). In order to monitor 
such a process successfully, measurement techniques describing physical and/or chemical pro-
cess variables qualitatively and/or quantitatively must be applied. The obtained measurements 
must be modelled in a manner that makes sense, thus process variation of interest can be 
gained, process understanding can be obtained, and successful process control can be achieved 
(Sonnleitner, 2013). 

At many production sites nowadays, simple real-time monitoring systems are already imple-
mented. These systems rely on measurements providing a limit number of physical and chemi-
cal variables such as pH, temperature and headspace gas composition, typically O2 and CO2. 
These few chosen variables provide important and valuable real-time information about the 
bioprocess, which in many cases can help us recover a batch from being under abnormal opera-
tion conditions to become stable and back under normal conditions. As an example, pH is a 
direct measure for acidification in a lactic fermentation, which is linked to the metabolism and 
growth of the cells (De Brabandere and De Baerdemaeker, 1999). Likewise, the O2 uptake and 
CO2 production are closely related to the cell growth and metabolism of e.g. yeast cells under 
aerobic conditions (Furukawa, et al., 1983). Fermentation is however a complex process and 
additional chemical and physical information would likely improve the monitor system and 
allows for even better process understanding and optimisation possibilities as well as improved 
process control (Figure 1.1). A better monitoring capability would also increase the product 
safety in terms of microbiological risks, chemical contamination and possible traceability during 
the production. The benefits are thus not only there for the industries, but also for mankind, in 
which an advanced real-time approach allows process optimization and thereby reduction of 
resource consumption leading to e.g. energy saving and a limited carbon footprint, which are 
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key parameters for an increased sustainability. There is no doubt that the motivation for addi-
tional real-time monitoring is high and therefore more research within real-time monitoring 
techniques and data acquisition has been devoted over the last decades (Pohlscheidt, et al., 
2013). 

 
Figure 1.1: Illustration of non-monitored versus monitored and controlled bioreactors by ©Newlin & Engelsen 

The Food and Drug Administration (FDA) has encouraged the food- and pharma industry to use   
Process Analytical Technology (PAT) in order to increase process understanding as well as pro-
cess optimization and consistent product quality by introducing the PAT guidance in 2004  
(FDA, 2004). Since then, an increasing focus has been on various analytical techniques including 
on-line sensors such as rapid and non-destructive spectroscopic methods like near infrared 
spectroscopy and fluorescence spectroscopy. Even though several research studies on fermen-
tation processes (Faassen and Hitzmann, 2015; Lopes, et al., 2015) confirm that spectroscopic 
methods have provided chemical and/or physical information successfully, several challenges 
are still met when implementing those techniques at a full scale production site. Hence, a need 
for supplementary understanding is still needed before the step from lab-scale studies to full 
scale implementation can become reality.     

In this thesis fermentation processes are monitored by on-line spectroscopy in combination 
with simple sensors such as pH and temperature. The thesis seeks to further elucidate the ad-
vantages of near infrared and fluorescence spectroscopy for fermentation monitoring. Fur-
thermore, some disadvantages of the methods are clarified and solutions are suggested for 
better process understanding. Hereby, I believe that the gap between lab-scale monitoring and 
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full-scale monitoring implementation will decreased to some extent.  

1.2 Aims  

The primary aim of this thesis is to elucidate and explore the dynamics in fermentation pro-
cesses by near infrared spectroscopy and fluorescence spectroscopy. The thesis specifically 
seeks to address the following aims: 

  

 Investigate and compare a number of suitable on-line techniques providing different data 
structures and process information for fermentation processes.  

 Explore the possibility of obtaining chemical and physical information of a lactic fermenta-
tion process by near infrared spectroscopy.  

 Elucidate fluorescence spectroscopy and its stability towards environmental disturbances 
and explore the possibilities for correcting these interferences.  

 

New insights on the already well-studied near infrared and fluorescence spectroscopy method-
ologies, applied in bioprocesses, will allow us to acquire an improved toolset for an on-line 
monitoring and control systems, which will again provide us with new knowledge on fermenta-
tion processes. Hereby, the process understanding can potentially be improved, and in turn 
allow for better optimization and control. The research conducted in this thesis is based on lab-
scale experiments (albeit with relatively large volumes) using two different model systems. The 
first model system consists of a lactic fermentation process in which various monitoring tech-
niques providing different data orders are applied and explored. An additional study, carried 
out on the same model system, focussing on near infrared spectroscopy and its capability to 
provide dynamic information about the physical changes in the lactic fermentation process. A 
second model system is built to explore the performance of fluorescence spectroscopy when it 
is experiencing environmental disturbances. It is based on a simple light induced riboflavin 
degrading process. Different chemometrics modelling methods are applied and considered 
depending on the applied on-line technique. Furthermore, a new correction strategy is sug-
gested for disturbances observed in the fluorescence landscapes. In all investigations, I aim to 
obtain a better process understanding and to ease monitoring and controlling of fermentation 
processes.  

1.3 Outline of the Thesis 

This thesis is written based on three articles either published in or accepted for publication by 
peer-reviewed journals. The main focus is on near infrared spectroscopic and fluorescence 
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spectroscopy and their ability, in combination with the right chemometric methods, to provide 
process-relevant information about the fermentation process. A brief overview of the chapters 
included in the thesis follows. 

Two of the written articles (Paper I and Paper II) are based on a lactic fermentation process and 
therefore Chapter 2 provides a description of the employed lactic acid bacteria cultures and 
their metabolisms. Since the end product of this lactic fermentation is yoghurt, an overview of 
the industrial yoghurt manufacture is also presented.  

Chapter 3 gives an overview of the state-of-the-art monitoring techniques applied in fermenta-
tion processes. First, classical methods are presented and then a number of spectroscopic 
methods are described. The main focus is on near infrared and fluorescence spectroscopy. The 
chapter ends of with an introduction to Paper I and a short evaluation of the applied tech-
niques.  

In Chapter 4, near infrared spectroscopy in relation to monitoring of lactic fermentations is in 
focus. The fundamental of the method is first described and hereafter different sampling 
modes and data treatments are discussed. Additionally, chemical versus physical information 
obtained by near infrared spectroscopy is elucidated. Finally, Paper II is shortly introduced and 
discussed.  

The focus in Chapter 5 is on fluorescence spectroscopy, where the fundamentals and factors 
influencing the method are described. Hereafter, data processing for fluorescence spectroscopy 
is presented and Paper III is briefly introduced and discussed.  

Finally, in Chapter 6, the conclusions of the conducted research are summarized and in Chapter 
7 perspectives and ideas for further research are presented.  

The thesis is complemented by the manuscripts, appended after the chapters.   
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CHAPTER 2 
 

THE LACTIC FERMENTATION PROCESS 

2.1 Introduction 

Lactic Acid Bacteria (LAB) are the prime agents in producing fermented milks and dairy prod-
ucts via the lactic fermentation process (Walstra, et al., 2005b). The group of LAB causes rapid 
acidification of the raw material through the production of lactic acid, and they also contribute 
to the preservation as well as the flavours, texture and probiotic properties of dairy products 
such as sour milk, sour cream and cheese (Leroy and De Vuyst, 2004). In the production of the 
fermented milk product yoghurt, the lactic fermentation is carried out with the starter bacteria 
Streptococcus thermophilus (S. thermophilus) and Lactobacillus delbrueckii subsp. bulgaricus (L. 
bulgaricus). Since the model system applied for Studies I and II is based on a simplified yoghurt 
production, the present chapter focuses on the lactic acid fermentation where yoghurt is the 
end product.  

2.2 Characteristics of the applied Starter Bacteria 

Characteristics of Streptococcus thermophilus  

The microorganism S. thermophilus is a Gram-positive, spherical-shaped (Figure 2.1) and ther-
mophile bacteria. Further characteristics of the species S. thermophilus include that it is anaer-
obic, has a growth optimum near 45˚C and it is mainly used for the manufacture of hard chees-
es and yoghurt. It grows well in milk where it ferments the milk sugar lactose (Harnett, et al., 
2011). The organism requires free amino acids, including glutamic acid, histidine, methionine, 
cysteine, valine, leucine, isoleucine, tryptophan, arginine and tyrosine. The essential amino 
acids vary a bit from strain to strain, but all strains grow well on media containing hydrolysed 
proteins (Harnett, et al., 2011). 

Characteristics of Lactobacillus delbrueckii subsp. bulgaricus  

The microorganism L. bulgaricus is also Gram-positive and thermophile, but compared to the 
spherical-shaped S. thermophilus, L. bulgaricus is rod-formed as shown in Figure 2.1. Further-
more, this bacteria is anaerobic homo-fermentative and has a growth optimum around 43˚C. 
Apart from being utilized in yoghurt production, it is used in curd preparation for Swiss-type 
cheeses and hard Italian-type cheeses (Rizzello and De Angelis, 2011). Their growth is in general 
improved when CO2 and bicarbonate are available (Gürakan and Altay, 2010).  
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Figure 2.1: The morphology of the spherical-shaped S. thermophilus (left) and the rod-formed L. bulgaricus 
(right). Picture left: (Vivatfor, 2016), right: (Kahl, 2016). 

2.3 The Metabolisms and Growth Associations of LAB in Yoghurt Fermentation 

The fermented milk product yoghurt is an acid gel produced by the fermentation of milk with a 
bacterial culture containing the lactic starter bacteria S. thermophilus and L. bulgaricus. Before 
the fermentation process is started, the milk is pasteurized and other optional ingredients, such 
as flavours, vitamins, sweeteners, stabilizers and colour additives are added. Energy and nitro-
gen is required by the yoghurt starter bacteria to maintain their life cycle and the main energy 
source for growth of S. thermophilus and L. bulgaricus in milk is the carbon source of the disac-
charide sugar lactose (Walstra, et al., 2005a).  

Carbohydrate metabolism 

The main energy source for the growth of lactic acid bacteria in milk is the carbohydrate lac-
tose, which is metabolised via the homo- or the hetero-fermentative metabolic pathway, de-
pending on the specific starter bacteria (Tamime and Robinson, 2007c). S. thermophilus and L. 
bulgaricus both ferment lactose homo-fermentative and they both transport lactose into the 
cell without any chemical modification via the cytoplasmic protein proteases. In the cell, lactose 
is hydrolysed to glucose and galactose by the enzyme β-galactosidase. Only the glucose moiety 
of lactose is utilizes, whereas galactose is secreted from the cells and left in the growth medium 
(Harnett, et al., 2011). However, if the glucose level gets low, galactose can be metabolised by 
S. thermophilus (Hutkins and Morris, 1987). Glucose is catabolised via the glycolysis, also known 
as the Embden-Meyerhof pathway, where pyruvate is the end product (Nauth, 2004). The py-
ruvate is then synthesised to lactate by the enzyme lactate dehydrogenase, which lactic acid 
bacteria possess (Tamime and Robinson, 2007c). The described metabolism is illustrated in 
Figure 2.2. The homo-fermentative pathway yields two moles of lactic acid and two moles of 
ATP per mole glucose consumed (Von Wright and Axelsson, 2012).    
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Figure 2.2: Metabolic pathway of lactose (intracellular).Lactose is transferred into the cell and converted to 
glucose, which is further metabolised into pyruvate via the glycolysis. Pyruvate is finally converted into lac-
tate/lactic acid.  

Two different isomers of lactic acid (Figure 2.3) are formed during the fermentation, where S. 
thermophilus produces L(+) lactic acid and L. bulgaricus produces D(-) lactic acid (Tamime and 
Robinson, 2007c).  

                                              
 
Figure 2.3: The two isomers of lactic acid L(+) lactic acid (left) and D(-) lactic acid (right). 

 
Growth associations between S. thermophilus and L. bulgaricus in yoghurt production  

In mixed starter culture with S. thermophilus and L. bulgaricus a symbiotic growth relationship 
exists between the two bacteria. Carbon dioxide, formate, peptides and several amino acids 
released from casein are among the compounds that are involved in this process (Nauth, 2004). 
Since the proteolytic system of S. thermophilus is more limited compared to most other dairy 
starter bacteria, it is an advantage to pair S. thermophilus with another more proteolytic starter 
bacterium such as L. bulgaricus (Harnett, et al., 2011). Hence, L. bulgaricus possesses the en-
zyme protease that releases amino acids from casein and these amino acids stimulate the 
growth of S. thermophilus. In turn, S. thermophilus produces carbon dioxide and formate, which 
stimulates the growth of L. bulgaricus (Figure 2.4).   
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Figure 2.4: Growth associations between the two starter bacteria S. thermophilus and L. bulgaricus.  

 
This associated growth results in greater acid production and flavour development compared 
to the growth of a single starter bacteria. In the early stage of the fermentation process, S. 
thermophilus grows faster and removes additional oxygen. Due to the increasing concentration 
of lactic acid the growth of S. thermophilus will decrease, and the more acid tolerant L. bulgari-
cus will then increase in cell number (Nauth, 2004). The growth of the two bacteria in relation 
to each other is illustrated in Figure 2.5. When mixed cultures of S. thermophilus and L. bulgari-
cus are utilizes more tyrosine is released than the potential of the sum of the individual starter 
bacteria. Mixed cultures also produce a larger amount of acids, compared to the sum of the 
acids being produced by each of the two bacteria (Walstra, et al., 2005a).  
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Figure 2.5: The growth of S. thermophilus (cocci) and L. bulgaricus (rods) over time in a mix culture (Walstra, et al., 
2005a). 

2.4 Industrial Yoghurt Manufacture 

The Production of Yoghurt 

In industrial large scale yoghurt production plants several manufacture steps are involved. Each 
step of the production chain, from raw materials to packaging, has to take place in accordance 
with Good Manufacturing Practice (GMP) to guarantee the quality and traceability of the prod-
uct (Béal and Helinck, 2014). In the text below, the industrial production steps in yoghurt man-
ufacture are briefly described.  

Milk pre-treatments: initially, a fat standardization is carried out due to seasonal milkfat varia-
tion and also to reach the fat content of the final yoghurt product, which can vary from 0.1% to 
10%. It is done either by removing part of the fat by mechanical separation or by adding full 
cream. Other methods can also be applied and most of them are fully automatic systems.  Next 
step is fortification of the solids-not-fat content in the milk, which improves the gel strength of 
set yoghurt and viscosity of stirred yoghurt. It can be done in several ways, e.g. by addition of 
milk or whey powder. Hereafter additives, such as sweeteners, stabilizers, thickeners and pre-
servatives are added. Since raw-milk is an oil-in-water emulsion, where fat globules are distrib-
uted in a skim-milk phase, the milk is homogenized by a mechanical treatment where high 
pressure is applied resulting in smaller fat globules, and hence an increase in number and sur-
face area of the fat globules is achieved. From a microbiological point of view, the milk must be 
heat treated to destroy the pathogenic microflora. Finally, the milk is cooled to the desired 
fermentation temperature of around 42-43˚C (Tamime and Robinson, 2007a; Özer, 2010).  
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Milk Fermentation: to start the fermentation process, the starter culture containing a mix of S. 
thermophilus and L. bulgaricus is inoculated into milk at the desired fermentation temperature. 
The amount of starter culture can vary a lot from culture to culture depending on the required 
textural and sensory characteristics of the final yoghurt product. The inoculation is most com-
monly added as freeze-dried or frozen cultures. If the end product is set yoghurt (Figure 2.6), 
the inoculated milk will be filled into cups and here the fermentation will proceed. If the end 
product is stirred yoghurt (Figure 2.6) the inoculated milk will be fermented in a tank. These 
tanks are typically water jacketed and warm water as heating medium is then circulated during 
the fermentation. The tanks are equipped with temperature and pH recorders and when a pH 
around 4.5-4.6 is reached the coagulum is stirred gently and pumped to the filling machine 
(Tamime and Robinson, 2007a; Özer, 2010).  

 

 

           
 Figure 2.6 Definition of the two yoghurt styles; set and stirred (Gürakan and Altay, 2010). 

 

During the fermentation process the gel formation is taking place. It was previously described 
how the starter bacteria utilize lactose as energy source and via the sugar metabolism lactose is 
mainly converted into lactic acid. The casein micelle found in milk has an isoelectric point 
around pH 5.15 and when this pH is reached during the fermentation process, the micelles 
become unstable and an aggregation of the micelles will start (Özer, 2010). When the pH fur-
ther decreases, a contraction of the casein aggregates appears, which results in larger casein 
particles compared to the native casein micelles (Tamime and Robinson, 2007a). Around pH 
4.65 the aggregation is completed and thiol-disulfide bridges will link α-lactalbumin and β-
lactoglobulin with the ĸ-casein, and thereby a gel network will be formed. In more physical 
terms the gel formation can be described in four steps: (1) an initial lag period with low viscosi-
ty, (2) a fast viscosity change, (3) a high viscosity, where the gel formation has completed, and 
(4) a syneresis stage, which is the death phase of the starter bacteria (Özer, 2010). 

 

Set-style yoghurt is inoculated in the package and is packed directly 
after the inoculation. Thereby, the fermentation is proceeding in the 
packaging. 

Stirred-style yoghurt is defined by having total solid content not higher 
than 11%. It has a lower viscosity and is more drinkable compared to 
set-styles. To reduce the viscosity it is further homogenized.  
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Parameters such as fermentation temperature, solids level of the milk, the starter bacteria 
combination and mechanical handling are all affecting the fermentation time. Likely, the start-
ers’ capability of producing acid and their inoculation rate are critical parameters in the gela-
tion kinetics (Walstra, et al., 2005a).  

Downstream Treatments and Packaging: when the desired pH has been reached, the ferment-
ing milk is rapidly cooled in order to hinder further metabolic activity of the starter bacteria. In 
the downstream process cooling, partial dehydration of the coagulum, smoothing of the coagu-
lum, and addition of food additives takes place. The final step is packaging, where selection of 
packing material is of importance for the protection of the product (Özer, 2010). 

An overall graphical illustration of the production plant is seen in Figure 2.7. 

 

 
 
 
Figure 2.7: Production line for stirred yoghurt. The milk pre-treatment steps are not shown in the figure. 6, bulk 
starter tanks; 7, fermentation tanks; 8, plate cooler; 9, buffer tanks; 10, fruit flavour tank; 11, inline yoghurt/fruit 
mixer; 12, filling machine (Tamime and Robinson, 2007b).  
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Control measurements during the industrial manufacture  

In order to ensure reproducibility of the processes, control of all operations is necessary. Initial-
ly, the raw materials (milk, milk powder, starters and, if applicable, fruit preparations) are con-
trolled by performing various tests such as temperature, fat- and protein levels of the milk on 
arrival, total colony count and acidification activity of the starters. During the manufacture, 
controls have to be carried out to ensure the quality of the products and the repeatability of 
the production. The Hazard Analysis and Critical Control Point system (HACCP), described by 
food safety management systems such as ISO 22000, is implemented in all dairy manufacturing 
companies. In this way identification, evaluation and control of hazards is systematically de-
termined in the operations or steps that are critical to food safety. Several Critical Control 
Points (CCP) are defined during the different steps in the yoghurt manufacture, however, in this 
thesis focus is kept on the fermentation step. An important parameter in the fermentation step 
is pH. In set-style yoghurt fermentation, pH is measured manually, which most likely is done by 
random sampling of some packages. This way of controlling the pH can be a potential issue due 
to non-representativeness. In stirred-style yoghurt fermentation, samples are periodically re-
moved from the fermentation tank, or in more modern production sites pH probes are installed 
in the tank, in order to measure the pH as a function the fermentation time (Özer and Kirmaci, 
2010).  

Automatic systems allow for controlling the main functions of the industrial process. By apply-
ing monitoring devices such as probes and sensors that are connected to a controller, it is pos-
sible to compare the measured value to e.g. the desired fermentation temperature. If a signifi-
cant change or difference to the normal operating conditions is observed, the “controller” in-
creases the heating or the cooling to limit the difference between the measure value and the 
target value. This form of automatic controlling delivers full traceability of the process opera-
tions and thereby ensures full quality control and food safety (Béal and Helinck, 2014).  

To my knowledge, most dairies are operated recipe-driven supported by quality assur-
ance/HACCP measurements. And even though the dairy industry seems to promote a more 
automatic yoghurt production, presently only limit information about the yoghurt itself is 
gained, and in quality assurance end-product testing rather than the production dynamics are 
in focus. In the optimal production site the production team would benefit from a real-time 
measure of product performance in terms of chemical composition, textural properties and e.g. 
a microbial contamination. Any desired parameter of the yoghurt can be analysed offline in the 
laboratory, but such measurements cannot replace a rapid instrumental in-line technique al-
lowing the production team or an automatic controlling system to adjust the process when 
unwanted changes or disturbances are observed (Tamime and Robinson, 2007b). 

  

 

13 | P a g e  
 

CHAPTER 3 
 

ON-LINE MONITORING OF FERMENTATION PROCESSES 

3.1 Process Analytical Technology 

The Food and Drug Administration (FDA) has since 2004 actively promoted the consideration 
of Process Analytical Technology (PAT) in food and pharmaceutical manufacturing processes. 
In the Guidance for Industry, PAT is defined as: “a system for designing, analysing, and con-
trolling manufacturing through timely measurements (i.e., during processing) of critical quali-
ty and performance attributes of raw and in-process materials and processes, with the goal of 
ensuring final product quality” (FDA, 2004). Based on the guidance it is expected that the 
concept and technology behind PAT will help the food and pharmaceutical industry in its de-
velopment towards more advanced process control.    

Fermentation monitoring techniques and process monitoring techniques in general can be 
classified as off-line, at-line and on-line/in-line, based on the location of the measurement 
system in relation to the bioreactor or the process line of interest. Off-line measurements 
include sampling, which can be either manual or automatic, sample transfer to the laboratory, 
followed by time-delayed laboratory analysis. Such techniques could e.g. be liquid- or gas 
chromatographic measurements, which are widely used for the analysis of complex mixtures, 
in which the chemical components are separated before detection. Even though such tech-
niques are accurate and provide valuable process information, they require several steps of 
sample preparation and are in general time consuming and retrospective, meaning that real-
time knowledge about the process cannot be gained by these measurement techniques 
(Lourenco, et al., 2012). At-line measurements also include sampling, but in this case the 
withdrawn sample is analysed close to the process, in order to minimize the time delay. At-
line also implicitly assumes that the analysis method is less sophisticated/more fail-safe and 
can be performed by the process operators, and not just by dedicated lab technicians. On-line 
measurements cover those techniques which are linked directly to the process (Figure 3.1). 
Normally no sample extraction is involved and measurements are obtained in real-time or at 
least fast compared to the process dynamics. If the sensor is located directly in the process 
the monitoring technique can be further classified as an in-line measurement (Callis, et al., 
1987). On-line techniques can also be defined as in-situ or ex-situ, where in-situ measure-
ments are collected e.g. in the fermentation broth, whereas ex-situ represent measurements 
where the on-line probe is not in direct contact with the sample e.g. measurements through a 



Chapter 2 – Introduction To The Lactic Fermentation Process 

12 | P a g e  
 

Control measurements during the industrial manufacture  

In order to ensure reproducibility of the processes, control of all operations is necessary. Initial-
ly, the raw materials (milk, milk powder, starters and, if applicable, fruit preparations) are con-
trolled by performing various tests such as temperature, fat- and protein levels of the milk on 
arrival, total colony count and acidification activity of the starters. During the manufacture, 
controls have to be carried out to ensure the quality of the products and the repeatability of 
the production. The Hazard Analysis and Critical Control Point system (HACCP), described by 
food safety management systems such as ISO 22000, is implemented in all dairy manufacturing 
companies. In this way identification, evaluation and control of hazards is systematically de-
termined in the operations or steps that are critical to food safety. Several Critical Control 
Points (CCP) are defined during the different steps in the yoghurt manufacture, however, in this 
thesis focus is kept on the fermentation step. An important parameter in the fermentation step 
is pH. In set-style yoghurt fermentation, pH is measured manually, which most likely is done by 
random sampling of some packages. This way of controlling the pH can be a potential issue due 
to non-representativeness. In stirred-style yoghurt fermentation, samples are periodically re-
moved from the fermentation tank, or in more modern production sites pH probes are installed 
in the tank, in order to measure the pH as a function the fermentation time (Özer and Kirmaci, 
2010).  

Automatic systems allow for controlling the main functions of the industrial process. By apply-
ing monitoring devices such as probes and sensors that are connected to a controller, it is pos-
sible to compare the measured value to e.g. the desired fermentation temperature. If a signifi-
cant change or difference to the normal operating conditions is observed, the “controller” in-
creases the heating or the cooling to limit the difference between the measure value and the 
target value. This form of automatic controlling delivers full traceability of the process opera-
tions and thereby ensures full quality control and food safety (Béal and Helinck, 2014).  

To my knowledge, most dairies are operated recipe-driven supported by quality assur-
ance/HACCP measurements. And even though the dairy industry seems to promote a more 
automatic yoghurt production, presently only limit information about the yoghurt itself is 
gained, and in quality assurance end-product testing rather than the production dynamics are 
in focus. In the optimal production site the production team would benefit from a real-time 
measure of product performance in terms of chemical composition, textural properties and e.g. 
a microbial contamination. Any desired parameter of the yoghurt can be analysed offline in the 
laboratory, but such measurements cannot replace a rapid instrumental in-line technique al-
lowing the production team or an automatic controlling system to adjust the process when 
unwanted changes or disturbances are observed (Tamime and Robinson, 2007b). 

  

 

13 | P a g e  
 

CHAPTER 3 
 

ON-LINE MONITORING OF FERMENTATION PROCESSES 

3.1 Process Analytical Technology 

The Food and Drug Administration (FDA) has since 2004 actively promoted the consideration 
of Process Analytical Technology (PAT) in food and pharmaceutical manufacturing processes. 
In the Guidance for Industry, PAT is defined as: “a system for designing, analysing, and con-
trolling manufacturing through timely measurements (i.e., during processing) of critical quali-
ty and performance attributes of raw and in-process materials and processes, with the goal of 
ensuring final product quality” (FDA, 2004). Based on the guidance it is expected that the 
concept and technology behind PAT will help the food and pharmaceutical industry in its de-
velopment towards more advanced process control.    

Fermentation monitoring techniques and process monitoring techniques in general can be 
classified as off-line, at-line and on-line/in-line, based on the location of the measurement 
system in relation to the bioreactor or the process line of interest. Off-line measurements 
include sampling, which can be either manual or automatic, sample transfer to the laboratory, 
followed by time-delayed laboratory analysis. Such techniques could e.g. be liquid- or gas 
chromatographic measurements, which are widely used for the analysis of complex mixtures, 
in which the chemical components are separated before detection. Even though such tech-
niques are accurate and provide valuable process information, they require several steps of 
sample preparation and are in general time consuming and retrospective, meaning that real-
time knowledge about the process cannot be gained by these measurement techniques 
(Lourenco, et al., 2012). At-line measurements also include sampling, but in this case the 
withdrawn sample is analysed close to the process, in order to minimize the time delay. At-
line also implicitly assumes that the analysis method is less sophisticated/more fail-safe and 
can be performed by the process operators, and not just by dedicated lab technicians. On-line 
measurements cover those techniques which are linked directly to the process (Figure 3.1). 
Normally no sample extraction is involved and measurements are obtained in real-time or at 
least fast compared to the process dynamics. If the sensor is located directly in the process 
the monitoring technique can be further classified as an in-line measurement (Callis, et al., 
1987). On-line techniques can also be defined as in-situ or ex-situ, where in-situ measure-
ments are collected e.g. in the fermentation broth, whereas ex-situ represent measurements 
where the on-line probe is not in direct contact with the sample e.g. measurements through a 



Chapter 3 – On-line Monitoring of Fermentation Processes 

14 | P a g e  
 

glass-window in the bioreactor. 

                               
Figure 3.1: Illustration of bioreactor where the real-time information gain from the applied on-line techniques 
combined with meaningful data handling can provide us with a better process understanding. 

Real-time monitoring is considered as an essential approach for effective bioprocess control, 
which is needed to increase efficiency, productivity and reproducibility. Thereby, quality con-
trol can be improved and environmental pollution can be reduced, hence an overall optimiza-
tion of the cost may appear (Alford, 2006). But, biological processes such as fermentations are 
complex and due to variation of inoculant the reaction kinetics and biological activity cannot 
be predicted or calculated at an exact value in advance. Therefore online observations are 
needed, in which process information can be gathered as the fermentation progresses (King, 
2014).   

3.2 On-line State-of-the-art Methods for Fermentation Monitoring   

In the section on industrial yoghurt manufacture (Paragraph 2.4) it was stated that the only 
on-line technique applied in the industrial yoghurt fermentation is pH. In this section an over-
view of the state-of-the-art techniques applied in other industrial food/pharmaceutical fer-
mentation processes are presented. In yoghurt fermentations lactic acid is produced via an 
anaerobic pathway, meaning that oxygen is not required. But since the aerobic fermentation 
process is commonly applied in various pharmaceutical productions, this process is also taken 
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into account in this section.  In aerobic fermentation processes the oxidation of glucose can 
be written as:  

 +	6 → 6	 + 		6    (3.1) 
 

where oxygen and the carbon source glucose is consumed and water and carbon dioxide are 
among other intermedia and metabolites being produced (Ratledge, 2006). In bioprocess 
monitoring there are in general three types of variables to measure:  

 

 Physical variables including e.g. pressure, temperature, viscosity, foam, stirring speed 
and flow rate.  

 Chemical variables covering pH, O2, CO2, N2, volatiles gases, nutrients and metabo-
lites.  

 Biological variables covering biomass concentration, cell metabolism and cell mor-
phology.  

 

All three types of variables are closely related and in some cases biological variables might be 
derived from chemical variables. In the following text classical techniques commonly used in 
industrial fermentation processes are presented. Hereafter, a brief overview of spectroscopic 
techniques applied in bioprocesses, primarily based on lab-scale research, is given.  

Monitoring by Classical Methods  

For each of the mentioned physical, chemical and biological variables several methods are 
available. In Figure 3.2 a fermentation plant is illustrated, representative of the systems used 
in bio-industrial (e.g. enzymes) or biopharmaceutical applications. The figure also includes 
some of the most important chemical variables, which are monitored with in-line sensors or 
by a gas analyser. Partial pressure of dissolved oxygen (pO2), partial pressure of dissolved 
carbon dioxide (pCO2), pH- and Optical Density/OD-value are among the chemical variables 
being measured by in-line sensors, whereas a mass spectrometer measuring the headspace 
gasses can be applied for control of the oxygen uptake rate (OUR) and carbon dioxide evolu-
tion rate (CER) (Stanbury, et al., 1999; Sonnleitner, 2013).  
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Figure 3.2: An industrial fermentation plant (Heijnen, 2015). 

pH: Since the pH of an actively growing culture in a batch fermentation will not remain con-
stant for very long, there is a need for pH control, in order to keep the cells at optimal cultiva-
tion conditions. Furthermore, metabolic processes can be highly susceptible to even slight 
changes in the pH. To maintain the optimal pH for growth, compounds such as ammonia or 
sodium hydroxide are continuously added (Stanbury, et al., 1999; King, 2014). 

Temperature  

Similar to pH, the temperature control is important to maintain optimal growth conditions 
(King, 2014). 

Optical Density  

Optical density is a standard indicator for cell growth. Samples are often being withdrawn and 
analysed at-line by a spectrophotometer at wavelength 600 nm or 620 nm. However, optical 
fibre and in-line probes are also available and can be applied in bioprocesses (Sonnleitner, et 
al., 1992; Lam and Kostov, 2009).  
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Redox 

The Redox potential is a measure of the oxidation-reduction potential of a biological system 
and is depending on the equilibrium of: 

 
		 ↔ 	 + ()   (3.2) 

 

As the fermentation process is a dynamic system it is not at redox equilibrium until the end of 
the growth cycle. This measurement technique has however been associated with interpreta-
tion difficulties (Stanbury, et al., 1999). 

Oxygen 

As oxygen is consumed and carbon dioxide is formed during aerobic fermentation processes, 
the dissolved oxygen and carbon dioxide concentrations are indicators for the respiratory 
activity of the cells. Hence, the measure of oxygen is a measure for the potential of growth. 
Parameters such as agitation1, aeration2 rate and the composition of the gas phase are also 
dependent on the oxygen level. The electrodes which can be applied for oxygen monitoring 
do not directly measure the concentration, but the partial pressure of the dissolved oxygen. 
However, the concentration can be determined by the following equilibrium:    

 

() = 	() 	 ∙ 	      (3.3) 
 

where () is the partial pressure of dissolved oxygen measured by the sensor, () rep-
resents the concentration and   is the total pressure. If the total pressure of the gas equilib-
rium with the fermentation broth varies, the actual reading of the partial pressure of dis-
solved oxygen is affected even though no changes appear in the gas composition. The tem-
perature can also influence the dissolved oxygen reading by approximately 2.5 % per ˚C. This 
is mainly caused by increases in the in permeability in the electrode membrane and therefore 
many electrodes have built-in temperature sensors that compensated for such changes (Stan-
bury, et al., 1999; Sonnleitner, 2013; Biechele, et al., 2015). 

Carbon dioxide 

Carbon dioxide (CO2) is not only an indicator for the respiratory activity of the microorgan-

                                                                 
1Agitation is important to ensure suspension of the biocatalyst and attain a relatively homogeneous environment in 
the bioreactor. Agitation can be applied by various types of impellers (Chisti, 2006). 
2Aeration is normally applied by sparing air bubbles into the bottom of the bioreactor (Chisti, 2006). 
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isms. It can also affect the microbial growth in different ways due to its appearance in the 
catabolism as well as in the anabolism3. The partial pressure of carbon dioxide (pCO2) can be 
measured indirectly as pH by a bicarbonate buffer separated from the growth medium by a 
gas-permeable membrane (Locher, et al., 1992). 

Gas analyser 

Oxygen and carbon dioxide can for instance be measured by mass spectrometers, which allow 
rapid on-line monitoring of gasses in the headspace of the bioreactor. Dissolved gasses such 
as O2, CO2 and CH4, but also volatile compounds such as methanol, ethanol, acetone and oth-
er simple organic molecules can be measured. Inlet and exit-gas analysis can provide concen-
trations of carbon dioxide and oxygen in the entry and exit gasses. Also, if the flow rate is 
determined, the oxygen uptake of the system, the carbon dioxide evolution rate and the res-
piration rate of the microbial culture can be determined. The correlation equation for the 
oxygen uptake rate is:  

 
OUR =  ∙ 	 = 

 ∙  +  ∙      (3.4) 

 

where is the yield of oxygen consumed for cell growth,   is oxygen consumption and  

is the biomass concentration. The equation for carbon dioxide evolution follows the same 
format (Mitchell, et al., 2000; Garcia-Ochoa, et al., 2010).  

Monitoring by Spectroscopic Methods  

The common aspect for the above mentioned techniques is that they are all producing a uni-
variate output (though, the gas analyser/mass spectrometer could be classified as a multivari-
ate method measuring several analytes or target molecules). Due to the fact that bioreactors 
are complex multivariable systems, where substrates are consumed and products and inter-
mediate metabolites are formed, several limitations might appear in the process understand-
ing when univariate methods are applied. Also, retrieving additional off-line information 
about concentrations of reagents and products often requires sample preparation, which 
delays the analysis and thereby the process control. In this section spectroscopic measure-
ments are presented. Due to the fact that all spectroscopic methods are based on interaction 
between electromagnetic waves and molecules, spectroscopic techniques are suitable for 
qualitative and quantitative analyses. The range of applicable wavelengths, where spectro-
scopic techniques can measure, ranges from 190 nm to 1 m (Beutel and Henkel, 2011), as 

                                                                 
3The combined processes of catabolism and anabolism are known as the metabolism, where the catabolism can be 
defined as the degradation and the anabolism as the biosynthesis in which cell materials are build up (Ratledge, 
2006). 
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depicted in Figure 3.3.  

Figure 3.3: The Electromagnetic spectrum, where some of the compounds detected in bioprocesses by the 
various spectroscopic techniques are stated; UV/VIS, Fluorescence, Raman, NIR and MIR spectroscopy are 
illustrated.  

In the following text, focus is not on the fundamentals of each technique, but rather on the 
biological, chemical and physical information that can be obtained real-time in fermentation 
processes.  

UV/VIS spectroscopy 

UV/Vis uses ultraviolet (UV) and visible (VIS) light (190-740 nm) to excite electrons of mole-
cules, where the spectral region for UV is typically defined from 190 to 400 nm and the spec-
tral region for VIS is from 400 to 750 nm. A selection of analytes, substrates, metabolites and 
products can be measured by UV/Vis spectroscopy (Herman, 2000; Pons, et al., 2004). In this 
spectral region transmittance measurements at 600 nm or 620 nm are commonly carried out 
for biomass monitoring. These measures are, as previously mentioned, known as optical den-
sity measurements i.e. OD600 values, and they have been applied to various cell cultures. 
(Abou El-Magd, et al., 2010; Alves-Rausch, et al., 2014; Schmidt-Hager, et al., 2014). A high 
resolution UV/Vis spectrophotometer for monitoring bioprocesses at-line has also been de-
scribed in the literature (Noui, et al., 2002).  
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Fluorescence spectroscopy 

In fluorescence spectroscopy fluorophores are excited by light of a specific frequency, and 
molecules are thereby elevated to a higher energy level. When the molecules returns to their 
ground state, photons are emitted at other frequencies, meaning that each fluorescence 
compound has a specific excitation wavelength and a specific emission wavelength. Several 
molecules, including fluorophores such as tryptophan, vitamins and co-enzymes, appearing in 
food and bioprocesses have fluorescence properties (Marose, et al., 1998). The very first on-
line sensors were based on one excitation and one emission wavelength, which only allows 
measurements of one fluorophore at a time (Zabriskie and Humphrey, 1978). Such measure-
ments only provide little information for a bioprocess containing several biological com-
pounds because the full excitation-emission landscapes are always broad and there is thus a 
high chance for overlapping signals in univariate recordings. Real-time measurement of sever-
al fluorophores in the fermentation broth is possible, when approaches like 2D fluorescence 
spectroscopy are applied in combination with an on-line probe (Herman, 2000; Lakowicz, 
2006a). Such an on-line approach for industrial applications was developed by DELTA Lights & 
Optics and named BioView (The BioView sensor, DELTA Light & Optics, Denmark). The 
BioView sensor is capable of capturing automatic optical measurements in industrial biopro-
cesses, where the environment can be harsh, due to e.g. high temperatures and moisture 
(Stärk, et al., 2002). A number of studies have investigated the potential of bioprocess moni-
toring by on-line 2D fluorescence.  

One study applied a Bacillus polymyxa batch cultivation to evaluate if the BioView sensor was 
able to give successful determinations of cell mass and the produced compound polymyxin. In 
order to achieve different growth patterns, the concentrations of phosphate and nitrogen 
were varied in the medium. The cultivations were run for 50 hours and were carried out in a 
bioreactor with a working volume of 41 L. The stirring was kept at 900 rpm, aeration was 
applied to control the dissolved oxygen level, and pH was maintained at 7 by addition of base. 
The study obtained successful determinations of polymyxin, however the calibration model 
for the biomass was not successful, since it was not possible to use a common model for all 
cultivations under various growth conditions (Lantz, et al., 2006).  

A study based on filamentous fed-batch cultivation was conducted to monitor the biomass by 
on-line BioView fluorescence measurements. The cultivations were carried out with the mi-
croorganism Streptomyces coelicolor and with a working volume of 5 L, which was increased 
to around 9 L at the end of the fed-batch phase. The stirring was kept at 600 rpm and the 
aeration was kept constant. The pH was maintained at either 5.9 or 6.9 and the cultivations 
continued for 80-110 hours. They found that fluorescence failed to produce reliable estima-
tions of the dry cell weight. The author suggests that the failure might be explained by the 
differences in pH, which are known to have a large effect on the fluorescent properties of 

Chapter 3 – On-line Monitoring of Fermentation Processes 

 

21 | P a g e  
 

some fluorophores (Ronnest, et al., 2011). Though filamentous cultivations are considered to 
be more challenging, it seems that the largest challenge was the pH differences.  

Another filamentous study managed to measure the cell mass concentration and the lipase 
activity (Haack, et al., 2007). This study was based on fungus Aspergillus oryzae fermentations. 
The batch cultivations were carried out in a reactor with a working volume of 4 L. The stirring 
speed and the aeration rate were kept constant at 800 rpm and 1.0 vvm, respectively. The pH 
was controlled at 6 by adding acid or base. Fed-batch cultivations were carried out under 
comparable conditions. In addition to the successful estimations of cell mass and lipase activi-
ty, the authors also report, that they observed an increase in the fluorescence intensity, when 
they increased the stirring rate. They assumed that this is caused by the position of the probe. 
Other studies have shown that agitation and aeration can lead to unstable spectra when the 
probe is inserted vertically instead of in the side of the reactor (Li and Humphrey, 1992).       

Likewise, monitoring of viable cells and the concentration of the produced recombinant gly-
coprotein was successfully carried out in mammalian fed-batch fermentations (Teixeira, et al., 
2009). The cell culture consisted of baby hamster kidney cells and both batch and fed-batch 
fermentations with different feeding strategies were carried out in a 2 L bioreactor. The pH 
was maintained at 7.2 and the agitation rate was kept at 60 rpm.   

Apart from bacterial, fungus and mammalian cell fermentations, fluorescence spectroscopy 
has also been applied to yeast and various food fermentations. As the research presented in 
this thesis is based on a model system with lactic acid bacteria, it should also be mentioned 
that previous studies have applied fluorescence spectroscopy in yoghurt. A study by Christen-
sen et al. (2005) evaluated yoghurt samples by a BioView spectrometer. The yoghurt samples 
were measured during a storage experiment and riboflavin, tryptophan and the degradation 
product from riboflavin, lumichrome were assigned. Furthermore, they managed to build a 
regression model for riboflavin, and thereby illustrate that fluorescence spectroscopy is a 
potential method for rapid determination of riboflavin. 

Only a limit number of studies have used fluorescence spectroscopy to measure yoghurt sam-
ples/productions, whereas several studies applying fluorescence spectroscopy on other culti-
vations types exist. A recent review study (Faassen and Hitzmann, 2015) has gathered most of 
the investigations which have monitored cultivations by fluorescence spectroscopy. In Table 
3.1 the studies based on the BioView spectrometer are listed. 
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  Table 3.1: Overview of studies applying BioView Spectrometer in cultivation processes. 
Type Organism Cultivation Reference 

Bacteria 

Escherichia coli Batch (Clementschitsch, et al., 2005) 
Escherichia coli Fed-Batch (Johansson and Liden, 2006) 
Bacillus polymyxa Batch (Lantz, et al., 2006) 
Klebsiella pneumonia Batch (Rossi, et al., 2012) 
Aspergillus oryzae Batch & Fed-Batch (Haack, et al., 2007) 
Bacillus Fed-Batch (Mortensen and Bro, 2006) 
Streptomyces coelicolor Fed-Batch (Odman, et al., 2010) 
Streptomyces coelicolor Fed-Batch (Ronnest, et al., 2011) 

Fungi 

Pichia pastoris Batch 
(Surribas, et al., 2006b) 
(Hisiger and Jolicoeur, 2005a) 
(Surribas, et al., 2006a) 

Saccharomyces cerevisiae 

Fed-Batch (Hantelmann, et al., 2006) 

Batch 
(Odman, et al., 2009) 
(Haack, et al., 2004) 
(Masiero, et al., 2013) 

Claviceps purpurea Batch (Boehl, et al., 2003) 
Mammalian Chinese Hamster Ovar Cells Batch (Bonk, et al., 2011) 

Plant 
Eschscholzia California 
Catharantuhus roseus 

Batch (Hisiger and Jolicoeur, 2005b) 

 
The mentioned studies on fluorescence spectroscopy were all carried out with the BioView 
instrument, which measure the excitation wavelengths ranging from 270 to 550 nm and the 
emission wavelengths ranging from 310 to 590 nm, both in steps of 20 nm. Acceptable moni-
toring performance was reached for bacteria, filamentous bacteria and fungi and mammalian 
cells.  

Raman spectroscopy 

This spectroscopic technique is another form of vibrational spectroscopy, which is based on 
shifted wavelength scattering of molecules appearing after excitation by a monochromatic 
light source (Becker, et al., 2006). Several parameters such as glucose, acetate, formate, lac-
tate and phenylalanine can be monitored in fermentation processes by Raman spectroscopy, 
which was e.g. illustrated by a study based on an Escherichia Coli cultivation (Lee, et al., 2004). 
Similarly, a study based on yeast cultivation showed that glucose, ethanol and yeast concen-
tration could be determined by Raman spectroscopy (Iversen, et al., 2014). Though Raman 
spectroscopy seems to be useful for fermentation monitoring, the strong fluorescence activity 
of the many biological molecules is a problem, since they overshadow the Raman bands when 
a laser in the visual range (< 830nm) is used. Lasers using longer wavelengths (e.g. 1064nm) 
would eliminate part of the fluorescence issue, but their low efficiency and e.g. potential risk 
in an industrial surrounding makes practical use very limited. Since the fluorescence com-
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pounds cannot be eliminated from the system, a quite strong signal is needed to determine 
analytes by Raman (Beutel and Henkel, 2011).  

NIR spectroscopy 

Near infrared spectroscopy (NIRS) is a measurement technique with the potential of rapid and 
accurate determination of chemical composition, also in biological systems. It covers the spec-
tral area from about 800 to 2500 nm and the technique is based on different vibrational 
modes, overtones and combination vibrations. The main functionalities targeted are O-H 
bonds of alcohols, C-H bonds of aliphatic and aromatic carbon compounds and N-H bonds of 
proteins (Landgrebe, et al., 2010; Beutel and Henkel, 2011). The relatively low cell density 
anaerobic fermentations for production of lactic acid and ethanol are considered to be some 
of the simplest fermentation systems, due to gently agitation and usually non-aeration (Scarff, 
et al., 2006). In such a system, where the microorganism Lactobacillus casei was applied, NIRS 
has been implemented on-line to control glucose, lactic acid and biomass (Vaccari, et al., 
1994). NIRS was applied in batch, fed-batch and continuous fermentations. The fermentations 
were carried out in a fermentor with a working volume of 3 L. Stirring at 120 rpm was applied 
and nitrogen gas was passed through the headspace to maintain anaerobic conditions. The 
authors conclude that the applied on-line system permits control of the process and ease the 
optimisation of the process. 

Another study compared at-line and in-situ NIRS measurements in a fed-batch cultivation, 
where the bacterium Escherrichia coli was applied (Arnold, et al., 2002). The cultivations were 
carried out in a 1.5 L fermentor with an aeration rate of 1 vvm and agitation of 800 rpm. The 
transmittance spectra were collected either at-line with a pathlength of 5 mm or in-situ with a 
pathlength of 0.5, 1 and 2 mm. For the in-situ approach a fibre optic probe was applied, which 
means that the spectral region above 2100 nm is unusable as residual hydrogen bonds in the 
fibres have a detrimental effect on the spectra. However, successful monitoring for both at-
line and in-line settings was achieved. The authors also evaluated various pathlength for the 
on-line approach. They concluded that an increased pathlength could improve the signal by 
increasing the absorption, but in practice it also means an increase of the interference from 
the air bubbles entering the probe-head, which resulted in noisy spectra. For that reason the 
best reproducibility was obtained for the smallest pathlength of 0.5 mm.   

NIRS has also been implemented in aerobic mammalian cell fermentations for on-line moni-
toring of glucose, lactate, glutamine and ammonia (Arnold, et al., 2003). Chinese hamster 
ovary cells were applied and the cultivation was carried out in a 2 L reactor. A transmission 
probe with a pathlength of 1.2 mm was placed in the fermentation broth in order to obtain in-
situ measurements. The authors report that NIRS in-situ in this kind of process is challenging, 
since it is hard to achieve accurate determination of the key analytes (glucose, lactate, gluta-
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  Table 3.1: Overview of studies applying BioView Spectrometer in cultivation processes. 
Type Organism Cultivation Reference 
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Klebsiella pneumonia Batch (Rossi, et al., 2012) 
Aspergillus oryzae Batch & Fed-Batch (Haack, et al., 2007) 
Bacillus Fed-Batch (Mortensen and Bro, 2006) 
Streptomyces coelicolor Fed-Batch (Odman, et al., 2010) 
Streptomyces coelicolor Fed-Batch (Ronnest, et al., 2011) 

Fungi 

Pichia pastoris Batch 
(Surribas, et al., 2006b) 
(Hisiger and Jolicoeur, 2005a) 
(Surribas, et al., 2006a) 

Saccharomyces cerevisiae 

Fed-Batch (Hantelmann, et al., 2006) 

Batch 
(Odman, et al., 2009) 
(Haack, et al., 2004) 
(Masiero, et al., 2013) 

Claviceps purpurea Batch (Boehl, et al., 2003) 
Mammalian Chinese Hamster Ovar Cells Batch (Bonk, et al., 2011) 

Plant 
Eschscholzia California 
Catharantuhus roseus 

Batch (Hisiger and Jolicoeur, 2005b) 

 
The mentioned studies on fluorescence spectroscopy were all carried out with the BioView 
instrument, which measure the excitation wavelengths ranging from 270 to 550 nm and the 
emission wavelengths ranging from 310 to 590 nm, both in steps of 20 nm. Acceptable moni-
toring performance was reached for bacteria, filamentous bacteria and fungi and mammalian 
cells.  

Raman spectroscopy 

This spectroscopic technique is another form of vibrational spectroscopy, which is based on 
shifted wavelength scattering of molecules appearing after excitation by a monochromatic 
light source (Becker, et al., 2006). Several parameters such as glucose, acetate, formate, lac-
tate and phenylalanine can be monitored in fermentation processes by Raman spectroscopy, 
which was e.g. illustrated by a study based on an Escherichia Coli cultivation (Lee, et al., 2004). 
Similarly, a study based on yeast cultivation showed that glucose, ethanol and yeast concen-
tration could be determined by Raman spectroscopy (Iversen, et al., 2014). Though Raman 
spectroscopy seems to be useful for fermentation monitoring, the strong fluorescence activity 
of the many biological molecules is a problem, since they overshadow the Raman bands when 
a laser in the visual range (< 830nm) is used. Lasers using longer wavelengths (e.g. 1064nm) 
would eliminate part of the fluorescence issue, but their low efficiency and e.g. potential risk 
in an industrial surrounding makes practical use very limited. Since the fluorescence com-
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pounds cannot be eliminated from the system, a quite strong signal is needed to determine 
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of the simplest fermentation systems, due to gently agitation and usually non-aeration (Scarff, 
et al., 2006). In such a system, where the microorganism Lactobacillus casei was applied, NIRS 
has been implemented on-line to control glucose, lactic acid and biomass (Vaccari, et al., 
1994). NIRS was applied in batch, fed-batch and continuous fermentations. The fermentations 
were carried out in a fermentor with a working volume of 3 L. Stirring at 120 rpm was applied 
and nitrogen gas was passed through the headspace to maintain anaerobic conditions. The 
authors conclude that the applied on-line system permits control of the process and ease the 
optimisation of the process. 

Another study compared at-line and in-situ NIRS measurements in a fed-batch cultivation, 
where the bacterium Escherrichia coli was applied (Arnold, et al., 2002). The cultivations were 
carried out in a 1.5 L fermentor with an aeration rate of 1 vvm and agitation of 800 rpm. The 
transmittance spectra were collected either at-line with a pathlength of 5 mm or in-situ with a 
pathlength of 0.5, 1 and 2 mm. For the in-situ approach a fibre optic probe was applied, which 
means that the spectral region above 2100 nm is unusable as residual hydrogen bonds in the 
fibres have a detrimental effect on the spectra. However, successful monitoring for both at-
line and in-line settings was achieved. The authors also evaluated various pathlength for the 
on-line approach. They concluded that an increased pathlength could improve the signal by 
increasing the absorption, but in practice it also means an increase of the interference from 
the air bubbles entering the probe-head, which resulted in noisy spectra. For that reason the 
best reproducibility was obtained for the smallest pathlength of 0.5 mm.   

NIRS has also been implemented in aerobic mammalian cell fermentations for on-line moni-
toring of glucose, lactate, glutamine and ammonia (Arnold, et al., 2003). Chinese hamster 
ovary cells were applied and the cultivation was carried out in a 2 L reactor. A transmission 
probe with a pathlength of 1.2 mm was placed in the fermentation broth in order to obtain in-
situ measurements. The authors report that NIRS in-situ in this kind of process is challenging, 
since it is hard to achieve accurate determination of the key analytes (glucose, lactate, gluta-
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mine and ammonia), which are found at very low levels. Though the levels are low compared 
to ex-situ studies, it is concluded that in-situ NIRS potentially provide a highly effective means 
of improving the monitoring and control of the cultivation.  

The final study to be mentioned here was able to provide information about the biomass in 
fermentation processes with the pathogen bacteria Bordetalla pertussis (Soons, et al., 2008). 
The batch cultivation was carried out in a 7 L reactor with a working volume of 4 L. The meas-
urements were collected by transmission NIRS with a pathlength of 5 mm. The authors con-
cluded that the on-line estimations of biomass were less robust towards noise and various 
disturbances from the environment. They also compared the NIRS data with data obtained 
from a soft sensor for dissolved oxygen, which seems to be less sensitive towards the sur-
roundings than the NIRS. Since NIRS, in comparison to the soft sensor, has the potential of 
determining other key parameters in the cultivation the authors recommended using joint 
modelling of data from the two sensors in order to obtain complementary information and 
the best monitoring system.  

Most studies on NIR spectroscopy applied for bioprocess monitoring are based on lab-scale 
fermentations, but a recent study applied NIRS in a full scale industrial reactor of 50 m3 (Alves-
Rausch, et al., 2014). The culture grew aerobically at an agitation speed of 100 rpm and a 
relatively high aeration rate between 0.4 and 1 vvm. The authors report that the high aera-
tion, which is needed for this kind of cultivation, leads to air bubbles passing the probe and 
thereby a decrease in the measured absorption is seen, since less sample amount is exposed 
to the NIRS detector. However, good performance in determining key analytes was achieved.  

A review has gathered most of the studies, which have monitored cultivations by NIRS (Cer-
vera, et al., 2009). In Table 3.2 some of the key studies are listed together with more recently 
published investigations.  
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Table 3.2: Overview of studies applying NIRS in cultivation processes 
Type Organism Cultivation Sampling/Mode Instrument Reference 

Ba
ct

er
ia

 

Bacillus Full scale, 
 50 m3 

On-line (in-situ) 
 

Sartorius 
Stedim 
Biotech 

(Alves-Rausch, et 
al., 2014) 

Bordetalla 
pertussis 

Batch, 7 L, 
work vol:4 L 

On-line (in-situ) 
Transmission, 5 mm 

Bruker 
Optics Ma-
trix F 

(Soons, et al., 
2008) 

Escherichia 
coli 

Fed-Batch 
1.5 L 

At-line (cuvette):  
Transmission, 0.5 mm 
On-line (in-situ) 
Transmission: 
0.5, 1, 2 mm   

Foss- 
NIRSystems 

(Arnold, et al., 
2002) 

Lactobacillus 
casei 

Batch, 3 L 
Fed-Batch  
Continuous 

On-line (ex-situ) InfraAlyzer, 
Bran-
Luebbe co. 

(Vaccari, et al., 
1994) 

Streptomyces 
coelicolor 

Batch,  
3 & 4 L 

On-line (in-situ) 
Transflectance, 0.5 mm 

ABB Bomem (Petersen, et al., 
2010) 

Streptomyces 
fradiae 

Batch, 10 L At-line (cuvette) 
Transmission, 1 mm 

Foss-
NIRSystems 

(Arnold, et al., 
2000) 

Fu
ng

i Pichia pastor-
is 

Batch, 15 L 
At-line (cuvette) 
Transmission, 0.5 mm 
Reflectance, 4 mm 

Foss-
NIRSystems 

(Crowley, et al., 
2005) 

Fed-Batch, 
3 L 

On-line (ex-situ) 
 Transmission, 1 mm 

ASL Analytic (Kim, et al., 2015) 

Fed-Batch, 
1.6/3 L 

On-line (ex-situ) 
 Transmission, 1 mm 

ASL Analytic (Goldfeld, et al., 
2014) 

M
am

m
al

ia
n 

Chinese Ham-
ster Ovary 

Fed-Batch, 
2 L 

On-line (in-situ) 
Transmission, 1.2 mm 

Foss-
NIRSystems 

(Arnold, et al., 
2003) 

Batch Transflection, 1 mm Antaris II 
MX, 
Thermo 
Fisher 

(Clavaud, et al., 
2013) 

 
These studies clearly point out the potential of NIRS in monitoring fermentation processes. It 
should however be noticed that NIRS is an indirect method, so the above mentioned parame-
ters are all found because spectral information correlates well with off-line measurements 
representing the specific parameters.  

MIR spectroscopy 

MIR radiation excites fundamental vibrations of functional groups from organic compounds 
and the technique covers the spectral area from 1300 (the overlap with/separation from the 
NIRS range is treated differently by different authors) and up to 15000 nm. MIRS can be im-
plemented for in-line measurements by use of optical fibre probes, albeit much less flexible 



Chapter 3 – On-line Monitoring of Fermentation Processes 

24 | P a g e  
 

mine and ammonia), which are found at very low levels. Though the levels are low compared 
to ex-situ studies, it is concluded that in-situ NIRS potentially provide a highly effective means 
of improving the monitoring and control of the cultivation.  

The final study to be mentioned here was able to provide information about the biomass in 
fermentation processes with the pathogen bacteria Bordetalla pertussis (Soons, et al., 2008). 
The batch cultivation was carried out in a 7 L reactor with a working volume of 4 L. The meas-
urements were collected by transmission NIRS with a pathlength of 5 mm. The authors con-
cluded that the on-line estimations of biomass were less robust towards noise and various 
disturbances from the environment. They also compared the NIRS data with data obtained 
from a soft sensor for dissolved oxygen, which seems to be less sensitive towards the sur-
roundings than the NIRS. Since NIRS, in comparison to the soft sensor, has the potential of 
determining other key parameters in the cultivation the authors recommended using joint 
modelling of data from the two sensors in order to obtain complementary information and 
the best monitoring system.  

Most studies on NIR spectroscopy applied for bioprocess monitoring are based on lab-scale 
fermentations, but a recent study applied NIRS in a full scale industrial reactor of 50 m3 (Alves-
Rausch, et al., 2014). The culture grew aerobically at an agitation speed of 100 rpm and a 
relatively high aeration rate between 0.4 and 1 vvm. The authors report that the high aera-
tion, which is needed for this kind of cultivation, leads to air bubbles passing the probe and 
thereby a decrease in the measured absorption is seen, since less sample amount is exposed 
to the NIRS detector. However, good performance in determining key analytes was achieved.  

A review has gathered most of the studies, which have monitored cultivations by NIRS (Cer-
vera, et al., 2009). In Table 3.2 some of the key studies are listed together with more recently 
published investigations.  
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These studies clearly point out the potential of NIRS in monitoring fermentation processes. It 
should however be noticed that NIRS is an indirect method, so the above mentioned parame-
ters are all found because spectral information correlates well with off-line measurements 
representing the specific parameters.  

MIR spectroscopy 

MIR radiation excites fundamental vibrations of functional groups from organic compounds 
and the technique covers the spectral area from 1300 (the overlap with/separation from the 
NIRS range is treated differently by different authors) and up to 15000 nm. MIRS can be im-
plemented for in-line measurements by use of optical fibre probes, albeit much less flexible 
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compared to e.g. NIRS (Lourenco, et al., 2012). Studies applying attenuated total reflectance 
(ATR) probes have shown that glucose and ethanol can be determined in-line in Saccharomy-
ces cerevisiae fermentation (Bogomolov, et al., 2015), glucose and lactate can be determined 
in-line in mammalian cell cultivation (Rhiel, et al., 2002) and based on a Gluconacetobacter 
xylinus fermentation calibration models providing fructose, acetate, ethanol, gluconacetan, 
ammonium and phosphate concentrations were made (Kornmann, et al., 2004). Though on-
line reflectance measurements by MIR spectroscopy are possible, an important disadvantage 
of the use of infrared spectroscopy is the large amount of absorbance by water, which can 
mask important information in the infrared region (Stuart, 2004).  

3.3 Study I – Exploratory Study on Fermentation Monitoring using Measurements 
Techniques of different Orders  

This section is based on the peer reviewed paper “Monitoring fermentation processes using 
in-process measurements of different orders” (Svendsen, et al., 2015) published in Journal of 
Chemical technology and Biotechnology. 

Aim 

In order to explore the advantages and variations of different ordered measurement tech-
niques a lactic fermentation process was monitored by both univariate and multivariate tech-
niques providing different data structures. BRIX and pH were applied as univariate techniques, 
whereas NIR and fluorescence spectroscopy were applied as multivariate techniques. BRIX 
and pH can be classified as zero-order measurements, which only provide one data point per 
measurement. When measuring BRIX or pH over time, the single measurements each repre-
senting a time point, can be organized in a data set.  

As illustrated in Figure 3.4, the gathered data array will be a one-way data array, a vector. NIR 
spectroscopy provides an absorbance value at each wavelength between 1000 to 1800 nm, 
meaning that the technique provides a first order data outcome for each measurement. This 
results in a two-way array when several measurements over time are gathered into one data 
set. The outcome for one fluorescence measurement is a two dimensional landscape, hence 
fluorescence is a technique providing data of second order for each recoding, resulting in a 
three-way array when several measurements representing various times are gathered in one 
set. Multivariate data analysis (PCA4 and PARAFAC5) was applied on the first- and second-
order data sets, and the different measurement signals or principal/latent variables derived of 
these were combined by a multiblock strategy.  

                                                                 
4Principal Component Analysis (PCA) is described in Paragraph 4.4 Data Processing for NIRS Data.  
5Parallel Factor Analysis (PARAFAC) is described in Paragraph 5.4 Data Processing for Fluorescence Spectroscopy Data.   
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Figure 3.4: Overview of the three different data structures applied in this study. 

Illustrations of the Experimental set-up 

This study is based on lactic acid fermentations with the starter bacteria Streptococcus ther-
mophilus (S. thermophilus) and Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). 
After 5 hours of fermentation the fermented milk product yoghurt was obtained. The frozen 
starter culture applied is pictured in Figure 3.5 and the experimental set-up is shown in Figure 
3.6.     
 

 

Figure 3.5: Frozen starter culture containing a mixture of the lactic acid bacteria S. thermophilus and L. bulgar-
icus.  
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Available instruments of different measurement orders were used. BRIX data were collected 
frequently via manual at-line measurements by a DR-103 (Index Instruments Limited, Cam-
bridgeshire, UK) and pH data were obtained with an in-line pH-meter (MadgeTech, Inc, Warn-
er, NH-US) measuring every 30 sec. NIR spectroscopy data were collected by a ABB Bomem 
spectrometer (ABB Bomem, Quebec, QC, Canada) measuring with a time interval of 60 sec, 
and the fluorescence measurements were collected on-line and non-invasive through the 
glass fermenter wall with a BioView spectrofluorometer (DELTA Light and Optics, Hørsholm, 
Denmark) measuring every 120 sec. Further details on the experimental set-up are given in 
Paper I. 

 

      
Figure 3.6: The experimental set-up. From the left; the temperature was maintained by the blue HAAKE Phoe-
nix pumping water bath connected to the bioreactor; the 15 L bioreactor containing the growth medium 
skimmed milk (working volume 11 L). In-line probes (pH, temperature and NIRS) are situated in the top and 
enter the reactor via ports. Fluorescence probe (not visible) was located on the site and was measuring 
through the glass fermenter. An IKA EUROSTAR 60 control motor is controlling the stirring speed, also situated 
at the top; on-line NIRS spectra can be followed on the screen. The ABB Bomem spectrometer connected with 
optic fibres reflectance probe placed in the fermenter broth. 

Results 

As formulated in Paper I, the zero-order pH and brix measurements decreased in a smooth 
and logical pattern from 6.4 to 4.4 and from 10.5% to 6.2%, respectively. These values are 
Critical Quality Attributes (CQA), confirming that the fermentation process is progressing over 
time in accordance with biological and engineering intuition. The first-order NIR measure-

Chapter 3 – On-line Monitoring of Fermentation Processes 

 

29 | P a g e  
 

ments modelled with PCA showed an increasing trend over time, which corresponds to the 
growth of the lactic bacteria. Based on the second-order fluorescence measurements mod-
elled by PARAFAC with its mathematical uniqueness properties, three distinctive fluorescence 
compounds were found to vary over fermentation time. Most probably these three com-
pounds represent riboflavin, tryptophan and lumichrome or NADH. Using multiblock PCA the 
combined sensor signals identified two distinguished and reproducible time profiles for all 
batch runs.  

The most interpretable chemical information was obtained by fluorescence spectroscopy due 
to the uniqueness properties of second-order measurements. The first-order technique NIR 
spectroscopy also provided valuable process information, though the process trends only can 
be interpreted indirectly and if interfering species had been encountered they could not have 
been modelled. The multiblock data set provided by zero-, first- and second-order measure-
ments recorded over time highlighted important relationships among the different variables 
(sensors) that provide chemical information when multivariate data analysis is applied.  

Discussion, Concluding Remarks and Perspectives  

The study illustrates that more process information can be obtained by the applied first- and 
second-order measurements compared to the applied zero-order measurements. However, it 
is important to keep in mind that the right combination of zero-order measurements, such as 
pH and the previously mentioned standard methods OD, oxygen and carbon dioxide, also can 
provide valuable process information, especially if several zero-order measurements are 
combined. 

The study confirms that on-line measurements can provide us with real-time process under-
standing throughout the process. The process measurements in the lactic fermentation pro-
cess provide real-time process data, from which process trends can be compared to previ-
ous/historical runs and thereby reduce uncertainty and potentially product variations. This 
means that in a larger production line, it is possible to get closer to the production target and 
in that way potentially increase the production yield and improve the product quality and 
consistency. Additionally, the process trends allow a high traceability, which enable us to 
detect process break down, such as leaks, in real-time. These advantages are not possible by 
off-line measurements carried out away from the process, where all information is delayed. 
When considering off-line measurement uncertainty, we have to include the sample error, 
which in comparison to on-line measures might make the overall error or uncertainty larger 
for off-line measurements. Furthermore, it should also be remembered that on-line meas-
urements often are obtained with a lot shorter sampling interval than off-line measures, 
which means that a single measurement outlier measured on-line does not have the same 
influence as an off-line measure, which is sampled with a larger sample interval. Thus, the 
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frequently via manual at-line measurements by a DR-103 (Index Instruments Limited, Cam-
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glass fermenter wall with a BioView spectrofluorometer (DELTA Light and Optics, Hørsholm, 
Denmark) measuring every 120 sec. Further details on the experimental set-up are given in 
Paper I. 
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through the glass fermenter. An IKA EUROSTAR 60 control motor is controlling the stirring speed, also situated 
at the top; on-line NIRS spectra can be followed on the screen. The ABB Bomem spectrometer connected with 
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ments modelled with PCA showed an increasing trend over time, which corresponds to the 
growth of the lactic bacteria. Based on the second-order fluorescence measurements mod-
elled by PARAFAC with its mathematical uniqueness properties, three distinctive fluorescence 
compounds were found to vary over fermentation time. Most probably these three com-
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cess provide real-time process data, from which process trends can be compared to previ-
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off-line measurements carried out away from the process, where all information is delayed. 
When considering off-line measurement uncertainty, we have to include the sample error, 
which in comparison to on-line measures might make the overall error or uncertainty larger 
for off-line measurements. Furthermore, it should also be remembered that on-line meas-
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which means that a single measurement outlier measured on-line does not have the same 
influence as an off-line measure, which is sampled with a larger sample interval. Thus, the 
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overall measurement error theoretically is lower for on-line measurements and often the 
process dynamics can be more easily reconstructed even from noisy, high-frequency meas-
urements.  

Though several of the spectroscopic on-line approaches have shown promising results for 
fermentation monitoring in lab scale and pilot plant research platforms, it does not seem that 
these methods have been successfully implemented in the industry. Some challenges still 
exist, which complicates the achievement of a reliable on-line spectroscopic system. To over-
come some of these challenges further research it needed. Therefore more detailed studies 
on NIR and Fluorescence spectroscopy, respectively, has been carried out (Paper II and Paper 
III). 

Even though certain on-line multivariate techniques, such as NIR spectroscopy, provide indi-
rect information, the data values gathered over time can provide us with information about 
the process dynamics, which also provide important information about the process trend. In 
order to find out, what is actually causing the dynamics obtained by the NIR spectra, they can 
be compared with off-line reference measurements providing quantitative analytical infor-
mation. Since the NIRS data in this study seems to be consistent with the pH- and BRIX, it is 
considered that the NIRS data might represent the growth of the bacteria. In order to explore 
this further a study focussed on monitoring of lactic fermentation by NIR spectroscopy was 
carried out. The study is presented in Chapter 4.     

Though the current and several other studies reveal that on-line process monitoring provide 
importance process understanding, some requirements must be fulfilled for in-line sensors in 
order to gain successful data. They must be long-term stable and should not be easily affected 
or changed by disturbances from the surrounding system, e.g. pH changes. Also, the dynamic 
sensitivity range of the sensor has to meet the encountered parameter range seen during the 
process. Optical and spectroscopic techniques do show promising perspectives due to the 
broad range of information given by the various wavelength areas (Beutel and Henkel, 2011).  

From the previously presented research studies we learned that various factors can influence 
the fluorescence signal intensity. It was e.g. reported that agitation, aeration and change in 
pH can have an effect. Since only a limit aeration of 150 rpm or no agitation was applied in the 
lactic fermentations, this is not an issue in my investigations. However, the pH might be a 
major issue, since the pH is systematically decreasing as lactic acid is being produced during 
the fermentation. As such changes do not meet the requirements towards stability of sensors 
and as it seems that the sensors are easily affected by the surrounding system, our applied 
fluorescence spectroscopy system was further tested. Therefore, the fluorescence spectros-
copy technique was further explored and studied during disturbances in form of pH fluctua-
tions. This study is further presented in Chapter 5.   
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CHAPTER 4 
 

NEAR INFRARED SPECTROSCOPY FOR ON-LINE 
MONITORING OF FERMENTATION PROCESSES 

4.1 Introduction  

A large number of studies have shown that NIR spectroscopy is a potential technique for fer-
mentation monitoring.  It can be applied on-line and thereby provide real-time measurements 
which makes process optimization and quality assessment along the process possible (Cervera, 
et al., 2009). 

In this chapter, the fundamental of NIR Spectroscopy will shortly be addressed. Next, sample 
modes and data processing are elucidated. Chemical and physical information obtained by NIRS 
in fermentation processes are then clarified and finally Paper II on “Exploring process dynamics 
by near infrared spectroscopy in lactic fermentations” is introduced and discussed.   

4.2 Fundamental of Near Infrared Spectroscopy  

Near infrared (NIR) spectroscopy is a method which determines the absorption in the NIR re-
gion from about 800 to 2500 nm, situated in between the visual and fundamental infrared 
region of the electromagnetic spectrum (Figure 4.1).  

 

 
 
Figure 4.1: Illustration of the electromagnetic spectrum, where the near infrared region covers the wavelengths 
from 800 to 2500 nm. 
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The absorption in the NIR region is based on vibrational energy changes corresponding to over-
tones and combinations of fundamental vibration of molecules observed in the infrared (IR) 
region (Scarff, et al., 2006; Harris, 2010). 

The term vibrational energy refers to oscillations of atoms, which are connected and oscillated 
through their molecule bonding. The energy () of such a system is explained as: 

 

 = 		  
     (4.1) 

 

where  is the force constant of the bond being probed, ℎ is Planck’s constant and  is the 
reduced mass of the atoms involved in this bond, described as:  

  = 		 	      (4.2) 

 

in which  and  represent the masses of the two atoms. The vibrational energy changes 
are caused by variations in the so called dipole moment of the molecules. The dipole moment 
appears when transition between energy states of molecular vibrations corresponds to a 
change in the molecule’s polarity. When molecules are irradiated they can absorb light pho-
tons, which have the same frequency as the vibrating bond of the concrete molecule. Hence, 
molecules are relatively selective about the light that they absorb.  Since the vibrational fre-
quency of the vibrating bond is equal to the energy different between two vibrational states, 
the energy difference (∆) can be explained if the vibration is assumes to be harmonic, as seen 
below: 

 
	∆ = 		−	     (4.3) 

 

where 	and	 each represent a vibrational state. The relation between the energy () and 
the frequency () is then described as below (Harris, 2010):  

      
  = 	ℎ       (4.4) 

 

Since light energy is directly linked to the frequency or wavelength of the light, only certain 
light frequencies or wavelengths can be absorbed by a specific molecule, which provides physi-
cal and chemical information about the measured material. Thus, vibrational spectroscopy is 
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appropriate for qualitative analysis. Quantitative analyses are also possible by NIRS based on 
the amount of light absorbed at each wavelength. Since the absorbed light cannot be deter-
mined directly, it has to be calculated from the transmitted or reflected light. The absorbance is 
defined as follows:  

 =       (4.5) 

 

where is the intensity of the incident radiation, and  is the intensity of the transmitted radi-
ation. The Lambert Beer’s law is a fundamental law for the quantitative absorption spectrosco-
py describing how absorbance is directly proportional to the concentration of light absorbing 
species (Griffiths, 2002). It is defined as:  

 
	 =      (4.6) 

 

in which the absorbance () is equal to the conditions of the concentration (), the (effective) 
pathlength () and the molar absorptivity (), which tells how much light is absorbed at a par-
ticular wavelength for a given substance (Harris, 2010).  

The absorbance measured by NIRS is mainly based on overtones and vibrational combinations, 
whereas the fundamental vibrations can be measured by Infrared (IR) spectroscopy. The vibra-
tions vary due to the inter-molecular bindings. As an example the CH2 bindings are shown in 
Figure 4.2.  

 
Figure 4.2: Vibrational modes of CH2-group, their common names and approximately frequencies are illustrated 
(Miller, 2001). 
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The overtones are formed when photons excite to the second or third energy level. But only 
those photons with twice or three times the amount of energy that was needed to elevate a 
molecule to the energy level corresponding to a fundamental absorption can excite to the sec-
ond or third energy level, which cause the first and second overtone. The frequencies of the 
overtone bands are nearly equal to multiples of frequency of the fundamental vibrations (Table 
4.1). Similarly, the vibrational combination bands appear when the absorbed photon excites 
two or more vibrations at the same time (Table 4.1). The energy of the absorbed photon has to 
be the same as the energies of the combined vibrations, in order to make the excitation of two 
or more vibrations happing. Also, the frequency of a combination band is nearly the same as 
the sum of the frequencies of the corresponding single vibrations (Miller, 2001).  

               Table 4.1: Vibrational combinations and overtone regions of CH bands 
 CH CH2 CH3 
Combination bands 4400-4150 cm-1 

2273- 2410nm 
4450-4200 cm-1 

2247-2381 nm 
4515- 4220 cm-1 

2215-2370 nm 
1st overtone 6000-5600 cm-1 

1667-1786 nm 
6200-5700 cm-1 

1613-1754 nm 
6400-5900 cm-1 

1563-1695 nm 
1st overtone combi-
nations 

7100-6900 cm-1 

1408-1449 nm 
7300-7000 cm-1 

1370-1429 nm 
7400-7250 cm-1 

1351-1379 nm 

2nd overtone  8750-8000 cm-1 

1143-1250 nm 
8800-8200 cm-1 

1136-1220 nm 
8900-8400 cm-1 

1124-1190 nm 
3rd overtone  11700-11000 cm-1 

855-909 nm 
11200-10700 cm-1 

893-935 nm 
11000-10500 cm-1 

909-952 nm 
4th overtone 13500-13100 cm-1 

741-763 nm 
13750-13250 cm-1 

727-755 m 
14000-13500 cm-1 

714-741 nm 

 
4.3 Sampling Modes 

The NIRS instrumentation can be applied both in transmittance and reflectance mode, as illus-
trated in Figure 4.3. It should be noted that the mechanical pathlength is fixed in the transmit-
tance mode (assuming no scattering takes place) while the effective pathlength (hence, the 
penetration/interaction depth of the light with the material) in the reflectance mode depends 
on the sample broth. For industrial process monitoring the NIRS instruments is conveniently 
applied with optical fibres, which are connected to an online probe. The reflectance mode can 
be applied in the process either by measuring through a window or by entering a probe into the 
system, whereas transmittance mode is only possible by using a probe in the process or a flow-
loop (a so-called fast-loop) connected to the process.  
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Figure 4.3: Illustration of Transmittance spectroscopy (A) and Reflectance spectroscopy (B). 

Prior to Studies I and II, where in-line NIR spectroscopy was applied, transmittance and reflec-
tance spectroscopy were applied simultaneously in a five hours yoghurt fermentation. The raw 
spectra collected during the fermentation process are shown in Figure 4.4.    

 

 

Figure 4.4: Raw NIRS spectra collected over time by transmittance spectroscopy, pathlength 1 mm (left) and 
reflectance spectroscopy (right) in a lactic fermentation process. 

The spectra obtained by the transmittance probe become saturated after approximately one 
hour and 47 minutes of fermentation, which indicates that the broth turns into a more com-
plex, opaque manner, probably due to a higher biomass concentration or due to the viscosity 
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change happing during the yoghurt fermentation process.  A solution is to change the NIRS 
mode from transmittance to reflectance. A study by Crowley et al. (2005) investigated the use a 
transmission versus reflectance spectroscopy in a high cell density fed-batch industrial Pichia 
pastoris bioprocess. They observed that over a certain biomass concentration only a small 
amount of light reached the transmission detector, because most of it was reflected back due 
to the high biomass concentration. For that reason they concluded that transmittance was not 
suitable for high cell density bioprocesses, which correspond well with our observations from 
Figure 4.4. Additionally, a study by Aernouts et al. (2011) compared the transmittance and 
reflectance mode for determination of fat, crude protein, lactose and urea in raw milk. It 
turned out, that the best monitoring of fat and crude protein were obtained by the reflectance 
measurements, whereas the transmission mode provided the best predictions for lactose. 
None of the modes provided acceptable measures for urea. Furthermore, the authors conclud-
ed that transmittance was only suitable with a very small pathlength, due to high absorbance of 
the water band as well as strong light scattering from fat globules. This leads us to the assump-
tion that the saturated spectra in Figure 4.4 both can be caused by an increased cell density 
and due to the high water content in milk in combination with scatter from the fat globules. 
However, a smaller amount of fat globules are expected in our skimmed milk yoghurt fermen-
tation compared to raw cow’s milk and it is expected that the size of the existing fat globules 
will remain constant throughout the acidification (Belitz, et al., 2004a). However, it must be 
remembered that during the acidification a gel network is formed, and this particle network 
might have a great influence on the spectral saturation observed. Thus, several related factors 
might cause the saturation. The study of Crowley et al. (2005) also suggested switching from 
transmittance to reflectance mode at the certain cell density threshold, where transmittance 
becomes inappropriate, which in general led to improved calibration models for the process 
control parameters. They outlined that it is important not to oversimplify the measured process 
by selecting one mode of NIRS and use this throughout the process. It can be discussed how 
convenience it is to switch from one mode to another during process monitoring. However, two 
probes, one transmittance and one reflectance, should then be applied, which mean that more 
maintenance of the equipment and the models are required. Alternatively, a transflectance 
probe (Von Bargen, 1996), combining transmittance and reflectance, can be applied. For on-
line measurements incident light is either transmitted through the sample and scattered back 
via a mirror or simply reflected back before it reach the mirror, corresponding to transmission 
and reflectance components (Kawano, 2002). The approach is illustrated in Figure 4.5. 
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Figure 4.5: Illustration of transflectance spectroscopy, where transmittance and reflectance are combined.  

In-line monitoring of biomass, glucose and ethanol in both anaerobe and aerobic fermentation 
by transflectance mode was applied by Princz et al. (2014). The in-line measurements were 
collected with a pathlength of 0.5 mm. They concluded that it was possible to obtain successful 
predictions, but they also outlined that high density of cells was problematic, without giving 
further details. Furthermore, the transflectance mode for yoghurt fermentation monitoring has 
been studied by Grassi et al. (2013) using a Fourier Transform (FT)-NIR spectrometer equipped 
with a fibre-optic probe with 1 mm pathlength. The authors found that NIRS was capable of 
describing the curd development appearing during the acidification. Though the transflectance 
mode seems to be suitable for on-line fermentation monitoring, it should be noticed that both 
of the studies mentioned applied a relatively small pathlength, which increase the chance to 
have unwanted bubbles or larger particles being trapped in the light path. Additionally, the 
transflectance data might lead to more difficult data interpretation compared to transmission 
and reflectance spectroscopy. However, it cannot be excluded that the transflectance approach 
might increase the versatility of the collected data. 

4.4 Data Processing for NIRS Data  

In order to explore and interpret the NIRS data, multivariate data analysis is applied. It is there-
by possible to elucidate trends and relationships in the obtained spectra, which can be difficult 
or impossible to see in the raw spectra. When gathering NIRS spectra collected over time, the 
data structure becomes a two-way array, which is the simplest multivariate data arrangement. 
Such data can be arranged in a matrix (X) with K variables and N objects (Smilde, et al., 2004a), 
where the objects can be the samples measured at certain time points and the variables can 
represent the wavelengths region at which the samples have been analysed. The most basic 
analysis among the multivariate analyses is Principal Component Analysis (PCA), which can be 
described as a projection method extracting the systematic variation found in X. The matrix is 
decomposed into a sum of matrix products, where one matrix is called scores (T of size PCs 
times N) and the other is called loadings (P of size PCs times K). The variation not described by 
the conducted PCA model is found in matrix E. In matrix notation PCA can be written as:  
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change happing during the yoghurt fermentation process.  A solution is to change the NIRS 
mode from transmittance to reflectance. A study by Crowley et al. (2005) investigated the use a 
transmission versus reflectance spectroscopy in a high cell density fed-batch industrial Pichia 
pastoris bioprocess. They observed that over a certain biomass concentration only a small 
amount of light reached the transmission detector, because most of it was reflected back due 
to the high biomass concentration. For that reason they concluded that transmittance was not 
suitable for high cell density bioprocesses, which correspond well with our observations from 
Figure 4.4. Additionally, a study by Aernouts et al. (2011) compared the transmittance and 
reflectance mode for determination of fat, crude protein, lactose and urea in raw milk. It 
turned out, that the best monitoring of fat and crude protein were obtained by the reflectance 
measurements, whereas the transmission mode provided the best predictions for lactose. 
None of the modes provided acceptable measures for urea. Furthermore, the authors conclud-
ed that transmittance was only suitable with a very small pathlength, due to high absorbance of 
the water band as well as strong light scattering from fat globules. This leads us to the assump-
tion that the saturated spectra in Figure 4.4 both can be caused by an increased cell density 
and due to the high water content in milk in combination with scatter from the fat globules. 
However, a smaller amount of fat globules are expected in our skimmed milk yoghurt fermen-
tation compared to raw cow’s milk and it is expected that the size of the existing fat globules 
will remain constant throughout the acidification (Belitz, et al., 2004a). However, it must be 
remembered that during the acidification a gel network is formed, and this particle network 
might have a great influence on the spectral saturation observed. Thus, several related factors 
might cause the saturation. The study of Crowley et al. (2005) also suggested switching from 
transmittance to reflectance mode at the certain cell density threshold, where transmittance 
becomes inappropriate, which in general led to improved calibration models for the process 
control parameters. They outlined that it is important not to oversimplify the measured process 
by selecting one mode of NIRS and use this throughout the process. It can be discussed how 
convenience it is to switch from one mode to another during process monitoring. However, two 
probes, one transmittance and one reflectance, should then be applied, which mean that more 
maintenance of the equipment and the models are required. Alternatively, a transflectance 
probe (Von Bargen, 1996), combining transmittance and reflectance, can be applied. For on-
line measurements incident light is either transmitted through the sample and scattered back 
via a mirror or simply reflected back before it reach the mirror, corresponding to transmission 
and reflectance components (Kawano, 2002). The approach is illustrated in Figure 4.5. 
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Figure 4.5: Illustration of transflectance spectroscopy, where transmittance and reflectance are combined.  

In-line monitoring of biomass, glucose and ethanol in both anaerobe and aerobic fermentation 
by transflectance mode was applied by Princz et al. (2014). The in-line measurements were 
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with a fibre-optic probe with 1 mm pathlength. The authors found that NIRS was capable of 
describing the curd development appearing during the acidification. Though the transflectance 
mode seems to be suitable for on-line fermentation monitoring, it should be noticed that both 
of the studies mentioned applied a relatively small pathlength, which increase the chance to 
have unwanted bubbles or larger particles being trapped in the light path. Additionally, the 
transflectance data might lead to more difficult data interpretation compared to transmission 
and reflectance spectroscopy. However, it cannot be excluded that the transflectance approach 
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 =  +      (4.7) 

 

PCA is a bilinear method summarising the variation of the data matrix X by creating new direc-
tions in the original data, which are constructed as linear combinations of the original variables 
(Wold, et al., 1987). The first created direction, also called the first principal component (PC1), 
describes the maximum variance found in the original data. The second direction, called the 
second principal component (PC2), is found orthogonal in respect to the first direction and this 
is continued as long as descriptive variation is found (Esbensen, et al., 2000). A two component 
model, with describes a two dimensional subspace or plane in the original K and N dimensional 
spaces, can be graphically illustrated as shown in Figure 4.6.  

 

                 
 
Figure 4.6: A PCA model decomposing X into a score vector (T), a loading vector (P) and the residuals (E). 

where  and  represent the score vectors and  and represent the loading vectors in PC1 
and PC2, respectively. The score value for the first component is defined by the projection of 
the original position of a sample onto PC1 (specifically, the direction determined by the loading 
vector for PC1), and likewise the second score value for this sample is found by projecting onto 
PC2 (Eriksson, et al., 2006). The projection of observations principle in a two component model 
is illustrated in Figure 4.7.  
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Figure 4.7: A two component model, where the first and second principle component (PC1 and PC2) pass though 
the average-point of the data cloud. The blue line represents the score value on PC1 and the green line repre-
sents the score value on PC2 for the projection of the observation highlighted in red. 

The obtained scores and loadings can be visualised in a score plot and loading plot, respective-
ly, where the score plot shows the similarity between the observations and the loading plot 
displays the relation between the variables and the role they play in finding the PCs (Eriksson et 
al. 2006a). Before the multivariate data analysis is carried out, it is important to investigate if 
pre-processing of the data is required. Spectral data can be pro-processed in several ways and 
available methods can be combined in numbers of strategies depending on the intention (Rin-
nan, 2014). In order to pre-process the data in a meaningful way, the first step is to inspect the 
raw data to highlight and visualize potential artefacts that are irrelevant for the analysis and 
can therefore safely be removed (e.g. a variable baseline). Spectral data are commonly mean 
centred, in which the average value of each variable is subtracted from the full data, variable-
wise (Figure 4.8). When the data are mean centred the cloud of score points in a two dimen-
sional subspace will have its centre in the point (0,0) where the PC’s meet.  
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Figure 4.8: After mean centering all variables will have the same mean value at zero.  

Further pre-processing can be carried out in order to correct for scatter. Scatter is often un-
wanted and it is removed in order to extract the chemical information of the spectra. A number 
of methods have been developed for scatter corrections, but two of the most applied scaling 
strategies are Standard Normal Variate (SNV) and Multiplicative Scatter Correction (MSC). In 
the SNV application the correction is applied to each spectrum individually:  

 
 = 	

      (4.8) 

 

where  is the original sample spectrum measured,  is the corrected spectrum,  and 

  are the mean and the standard deviation, respectively, of the spectrum to be corrected. 
Hence, the mean is subtracted from every data point of the sample spectrum and each point is 
divided by the standard deviation (Barnes, et al., 1989; Næs, et al., 2002). In Figure 4.9 raw 
NIRS spectra and SNV pre-processed spectra are plotted, respectively. The spectra were col-
lected during a yoghurt fermentation of 5 hours by a NIRS equipped with an in-line reflectance 
probe (Paper II). 
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Figure 4.9: NIRS spectra obtained during a yoghurt fermentation: raw spectra (left), SNV pre-processes spectra 
(right).  

When inspecting the raw NIRS spectra a large variation among the recordings is seen more or 
less for all wavelengths, however it also seems that the main variation is caused by an off-set, 
which is decreasing over fermentation time. From the SNV pre-processed data no such off-set 
is observed and the main variation is now observed around 1400 to 1500 nm, 1600 to 1800 nm 
as well as in the region around 1275 nm, 1175 nm and below 1075 nm.  

The MSC pre-processing method, which originally was developed for NIRS data, affects the 
spectra in a very similar way as SNV. The MSC technique consists of two steps, the first of which 
is fitting all spectra against a common reference spectrum:  

  =  +                 (4.9) 
 

where  is defined as the reference spectrum and is often represented by the mean spec-
trum of all spectra in the data set. Furthermore,  is a multiplicative correction factor,  is an 
additive correction factor. From each spectrum  (the slope) and  (the intercept) can be de-
fined and thereby the corrected spectrum  can be determined (Geladi, et al., 1985; Næs, 
et al., 2002):  

 = 	
          (4.10) 

 

When applying MSC on the NIRS raw spectra shown in Figure 4.9 (left), a very similar output, to 
the once obtained by SNV, is obtained (not shown). Although the SNV and MSC techniques 
make different assumptions about the multiplicative variations in the spectral data, the tech-
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niques perform similar. However, since the SNV is calculated for individual samples, where the 
spectrum is corrected due to its own mean value, and MSC is calculated data-set wise, where 
the spectrum is corrected due to the mean of all spectra in the data set, there might be cases 
where the two methods perform differently. Such cases could include situations where offsets 
among replicates exits, in which MSC would correct for such offset, but SNV would probably 
not. However, since on-line NIRS measurements do not provide us with replicates, it is not an 
issue to be considered here. The  and  values obtained by MSC from each spectrum, each 
representing a time point, can be graphically visualised as a function of fermentation time (Fig-
ure 4.10).  

 

 
 
Figure 4.10: The correction values a (left) and b (right) for all spectra, each representing a time point, obtained 
from the MSC pre-processing method. 

The  values represent the multiplicative correction on the spectrum and when plotting them 
versus fermentation time a dynamic trend, which is overall decreasing, is observed (Figure 4.10, 
left). The  values, representing the additive correction of the spectra, provide a much more 
steep decrease over time, illustrating that a fast change after two hours of fermentation time 
appears (Figure 4.10, right). As the offset most likely is physically related and probably caused 
by a scatter change in the fermentation, it leads us to the assumption that 	seems to be relat-
ed to the viscosity change, which is also discussed in Paper II. It could be discussed whether  is 
representing the chemical information, related to the growth or the pH drop. The drop seen for 
the  values is very similar to one of the kinetic profile described in Paper II, whereas  is less 
alike the second profile fitted in Paper II. Another option could be that  contains a combina-
tion of physical and chemical information, since the trend seems to be a combination of the 
two kinetic profiles, chemical and physical, fitted in Paper II. It is hard to tell and more investi-
gation should be conducted before anything can be assumed with certainty. Nevertheless, this 
output for  and  was very representative for all fermentation batches included in Paper II. 
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In order to improve the separation of physical and chemical information an extended and mod-
ified version of MSC, denoted Extended Multiplicative Signal Correction (EMSC), was developed 
(Martens and Stark, 1991; Martens, et al., 2003). 

 
 =  	+	 + 		 + 	     (4.11) 

 

where the matrix  consists of different baseline profiles, such as offsets, linear baseline slope 
and curved baseline components, which is extracted from the data. The matrix  also consists 
of profiles which are extracted and denoted as not of interest for the analytical investigation. 
On the other hand,  consists of profiles, which are of interest and are kept in the data for fur-
ther modelling. The advantages of EMSC compared to MSC are the ability to apply better esti-
mates for baseline correction and removal of spectral artefacts, which are not of interest (Mar-
tens, et al., 2003; Miller, 2010). The EMSC method was also applied to our raw NIRS yoghurt 
spectra and the output is shown in Figure 4.11.  

 

                           
 
Figure 4.11: The yoghurt NIR spectra collected over time are pre-processed by the EMSC method. 

The EMSC pre-processed spectra are quite different from the SNV (Figure 4.9, right) and the 
MSC pre-processed data, as no variation among the spectra seems to appear for the EMSC pre-
processed data. When no variation is obtained, no process dynamics can be determined from 
further modelling. It basically seems that all information is lost, indicating that the main infor-
mation existing in the NIRS data are caused by physical changes.  
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Finally, the Savitzky-Golay derivation (SG) method should shortly be mentioned when consider-
ing pre-processing methods for near-infrared spectroscopy. The method is used for smoothing 
and derivatizing a set of sample spectra. When applying the first derivative, offset variation 
among the sample spectra will be removed and by the second derivative possible slope effect 
will be removed. In order to calculate the derivative, a polynomial (of a specific order) is fitted 
on the raw spectra in a defined window. The method requires the user to define the window 
size, which is the number of points used to calculate the polynomial (Savitzky and Golay, 1964; 
Rinnan, et al., 2009).   

4.5 Chemical and Physical Information  

Chemical Information – based on absorbance  

The average spectrum of all raw spectra in Figure 4.9 (left) was found in order to simplify the 
chemical interpretation. Because of the high signal of the overtone (1450 nm) of water, spec-
tral bands related to other milk components are difficult to see. Since the derivative treatment 
is considered a pre-processing method for solving overlapping peaks issues (Laporte and 
Paquin, 1999), the data were treated by the Savitzky-Golay pre-processing method using a 
window size of 15, 2nd order polynomial fitting and the second derivative of the average fer-
mentation spectrum (Figure 4.12). Thereby, the characteristic absorption peaks are more clear-
ly separated and peak assignment can be carried out.  

                                       
 
Figure 4.12: The second derivative of the average NIRS reflectance spectrum from the spectra shown in Figure 
4.9 

The study of Aernouts et al. (2011) has shown that the absorbance around 1960 nm in a reflec-
tance spectrum could be related to the fat content. As our spectra were measured within the 
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range 1000-1800 nm, the 1960 nm peak cannot be assigned. Furthermore, the milk used for the 
yoghurt fermentation is based on a skimmed milk with low fat content, so even though a 
broader measurement range was applied, it would most likely be difficult to detect the fat. 
Furthermore, Aernout el al. (2011) reported that protein is associated with the region around 
1650 nm. In addition it was not possible to predict lactose from the reflectance spectrum, but 
the study concluded that lactose predictions can be found by transmission between 1000 and 
1700 nm, which include the first O-H stretch vibrations for sugars at wavelength 1490 nm. The 
study by Czarnik-Matusewicz et al. (1999) assigned the first overtone of amide B at 1638 nm 
and the first overtone of amide A at 1584 nm in milk samples. By reflectance spectroscopy it is 
also possible to determine the composition of fatty acid acids in cow milk, which was shown by 
Coppa et al. (2010). Quite a big wavelength region from 700 to 2500 nm was applied, but the 
study demonstrated that it is possible to predict various fatty acid groups, including saturated 
fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, unsaturated fatty acids 
and conjugated linoleic acid as well as individual fatty acids in liquid and oven dried milk sam-
ples. Though, it has been reported that the C-H of lipids and the N-H of proteins can be detect-
ed by NIRS in the wavelength region equal to what has been applied in our study, these bands 
are hard to assign in our average spectrum. Though the aggregation of micelles followed by 
contraction of the aggregates during the acidification results in larger casein particles, it is hard 
to imagine that an actually variation of protein concentration should appear. Likely, it is not 
expected that the fat concentration should change during the fermentation process, meaning 
that no variation in these wavelength regions is expected. For that reason these wavelength are 
as such not of importance for yoghurt fermentation monitoring. On the other hand, lactose is 
expected to be consumed over time and could therefore be a suitable compound to measure, 
in order to monitor and control the lactic fermentation process. Both the C-H and the O-H 
bonds of lactose have been detected by NIRS (Wu, et al., 2008), however the absorbance are 
most commonly assigned in lower NIRS regions (<1000 nm) than what we have applied. 
Though, the first O-H stretch vibrations for sugars could be expected at wavelength 1490 nm 
(Aernouts, et al., 2011), it seems that region is found at a shoulder on the water peak and it is 
hard to see a clear variation both in the raw and the pre-processed spectra. In the loadings 
obtained by the PCA model the sugar region does not seem to have an influence here. Our 
spectra can in general be assigned as a classical water spectrum in which the overtone at 1450 
nm (Laporte and Paquin, 1999) is very dominating. However, it seems that the scatter and the 
off-sets which are also very dominating in the obtained spectra could contain valuable infor-
mation, which is elucidated in the following section on physical information.  

Physical Information – based on scatter  

In order to understand the scatter phenomenon it can be imagined that the light source enter-
ing the sample is divided into two fluxes, where one flux is radiation travelling through the 
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Finally, the Savitzky-Golay derivation (SG) method should shortly be mentioned when consider-
ing pre-processing methods for near-infrared spectroscopy. The method is used for smoothing 
and derivatizing a set of sample spectra. When applying the first derivative, offset variation 
among the sample spectra will be removed and by the second derivative possible slope effect 
will be removed. In order to calculate the derivative, a polynomial (of a specific order) is fitted 
on the raw spectra in a defined window. The method requires the user to define the window 
size, which is the number of points used to calculate the polynomial (Savitzky and Golay, 1964; 
Rinnan, et al., 2009).   

4.5 Chemical and Physical Information  

Chemical Information – based on absorbance  

The average spectrum of all raw spectra in Figure 4.9 (left) was found in order to simplify the 
chemical interpretation. Because of the high signal of the overtone (1450 nm) of water, spec-
tral bands related to other milk components are difficult to see. Since the derivative treatment 
is considered a pre-processing method for solving overlapping peaks issues (Laporte and 
Paquin, 1999), the data were treated by the Savitzky-Golay pre-processing method using a 
window size of 15, 2nd order polynomial fitting and the second derivative of the average fer-
mentation spectrum (Figure 4.12). Thereby, the characteristic absorption peaks are more clear-
ly separated and peak assignment can be carried out.  

                                       
 
Figure 4.12: The second derivative of the average NIRS reflectance spectrum from the spectra shown in Figure 
4.9 

The study of Aernouts et al. (2011) has shown that the absorbance around 1960 nm in a reflec-
tance spectrum could be related to the fat content. As our spectra were measured within the 
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range 1000-1800 nm, the 1960 nm peak cannot be assigned. Furthermore, the milk used for the 
yoghurt fermentation is based on a skimmed milk with low fat content, so even though a 
broader measurement range was applied, it would most likely be difficult to detect the fat. 
Furthermore, Aernout el al. (2011) reported that protein is associated with the region around 
1650 nm. In addition it was not possible to predict lactose from the reflectance spectrum, but 
the study concluded that lactose predictions can be found by transmission between 1000 and 
1700 nm, which include the first O-H stretch vibrations for sugars at wavelength 1490 nm. The 
study by Czarnik-Matusewicz et al. (1999) assigned the first overtone of amide B at 1638 nm 
and the first overtone of amide A at 1584 nm in milk samples. By reflectance spectroscopy it is 
also possible to determine the composition of fatty acid acids in cow milk, which was shown by 
Coppa et al. (2010). Quite a big wavelength region from 700 to 2500 nm was applied, but the 
study demonstrated that it is possible to predict various fatty acid groups, including saturated 
fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, unsaturated fatty acids 
and conjugated linoleic acid as well as individual fatty acids in liquid and oven dried milk sam-
ples. Though, it has been reported that the C-H of lipids and the N-H of proteins can be detect-
ed by NIRS in the wavelength region equal to what has been applied in our study, these bands 
are hard to assign in our average spectrum. Though the aggregation of micelles followed by 
contraction of the aggregates during the acidification results in larger casein particles, it is hard 
to imagine that an actually variation of protein concentration should appear. Likely, it is not 
expected that the fat concentration should change during the fermentation process, meaning 
that no variation in these wavelength regions is expected. For that reason these wavelength are 
as such not of importance for yoghurt fermentation monitoring. On the other hand, lactose is 
expected to be consumed over time and could therefore be a suitable compound to measure, 
in order to monitor and control the lactic fermentation process. Both the C-H and the O-H 
bonds of lactose have been detected by NIRS (Wu, et al., 2008), however the absorbance are 
most commonly assigned in lower NIRS regions (<1000 nm) than what we have applied. 
Though, the first O-H stretch vibrations for sugars could be expected at wavelength 1490 nm 
(Aernouts, et al., 2011), it seems that region is found at a shoulder on the water peak and it is 
hard to see a clear variation both in the raw and the pre-processed spectra. In the loadings 
obtained by the PCA model the sugar region does not seem to have an influence here. Our 
spectra can in general be assigned as a classical water spectrum in which the overtone at 1450 
nm (Laporte and Paquin, 1999) is very dominating. However, it seems that the scatter and the 
off-sets which are also very dominating in the obtained spectra could contain valuable infor-
mation, which is elucidated in the following section on physical information.  

Physical Information – based on scatter  

In order to understand the scatter phenomenon it can be imagined that the light source enter-
ing the sample is divided into two fluxes, where one flux is radiation travelling through the 
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sample, which is related to the already described transmission technology and the other flux is 
radiation scattered backward meaning that the light is being remitted and this phenomenon is 
related to the reflectance technology. The reflectance principle is also related to the scatter 
phenomenon, which can be hard to separate from the reflectance technique, since the pro-
cesses that cause scatter are essentially the same as those that cause the reflectance. Reflec-
tion and scatter can however be differentiated, since light is being reflected when the refrac-
tive index changes. This occurs when light meet the appearing molecules or rather their bind-
ings. On the other hand scatter of light is affected by interactions among light and particle sur-
faces, and the surroundings will influence the light’s interaction with an analyte (Næs, et al., 
2002). In other words, scatter is a phenomenon taking place at an interface and the scatter 
from a particle is depending on its surface area and its refractive index. This means that smaller 
particles, having a larger surface area/volume ration than larger particles, provide more scatter 
per unit mass than larger particles (Dahm and Dahm, 2001). 

The scatter is often considered as an unwanted phenomenon that complicates the spectroscop-
ic measurements and interpretation of the results. Therefore the scatter is often reduced by 
various mathematical processing, as described in Paragraph 4.4. Despite this, a few studies 
confirm that scatter may deliver quantitative information. A study by Bogomolov et al. (2012) 
showed that scatter in the short wavelengths of the NIR region (up to 1000 nm) could provide 
quantitative analyses of fat and protein in bovine milk. The milk samples, which were varying in 
fat and protein content, were measured in transmission mode with a 5.5 mm pathlength. The 
collected spectra had a varying offset that seemed to be related to both the fat and the protein 
content; however fat and protein could still be separated from each other due to slope differ-
ences. A higher amount of fat globules leads to a higher amount of particles and thereby a 
stronger scatter is observed. This fits well with the fact that the offset differs in relation to the 
fat content. The sample spectrum with the highest fat content revealing most scatter has the 
lowest offset, whereas the sample spectrum with the lowest fat content and the weakest scat-
ter has the highest offset. This observation is related to our data, where the sample spectra 
collected in the end of the fermentation, expected to provide more scatter, have the lowest 
offset (Figure 4.9). Bogomolov et al. (2012) further concluded that the best predictions for fat 
and protein were obtained without any pre-processing of the spectra. Though the authors 
partly conclude that scatter in the low wavelengths NIR region can be applied for fat and pro-
tein determination, they narrowed down the wavelength region to the VIS region within 600 to 
700 nm, in order to obtain better predictions. In addition to this sample set, Bogomolov and 
Melenteva (2013) introduced the variation of fat globules size by systematically varying the 
homogenization degree of the milk samples.  As add on to the previous study they concluded 
that it also was possible to monitor fat globule sizes by scatter in the low wavelength region of 
NIRS.  

Chapter 4 – NIR Spectroscopy for On-line Monitoring of Fermentation Processes 

47 | P a g e  
 

4.6 Study II – Exploring Process Dynamics by NIR Spectroscopy in Lactic  
Fermentations 

This section is mainly based on Paper II “Exploring process dynamics by near infrared spectros-
copy in lactic fermentations”, where further thoughts and discussions are presented. Additional 
results not included in the manuscript are also presented to elucidate some clarifications. 

Aim 

The aim of the study is to explore the process dynamics in yoghurt fermentations by the on-line 
NIR spectroscopy. The industrial yoghurt production is nowadays only monitored by pH, but 
additional process information might be gained by applying NIR to such systems.  

The Experimental Set-up 

A total of seven lactic fermentation batches were conducted for this study. They were carried 
out at different temperatures, in which one batch was conducted at 32 °C, four at 35 °C and 
two at 37.5 °C.  The model system used is the same as the system applied in the previous study 
(Paragraph 3.3), where the lactic acid bacteria L. bulgaricus and S. thermophilus were applied. 
In addition to pH, Brix and NIRS measurements, samples were in this study withdrawn during 
the fermentation process in order to determine cell growth and lactic acid concentrations off-
line. The cell growth was measured by qPCR analyses, whereas the D- and L-lactic acid concen-
trations were found by using an enzyme kit in combination with UV spectroscopy. Further de-
tails are given in Paper II.  

Results 

Due to the variable fermentation temperatures various trends were observed from the batch-
es. A slower drop in pH was observed for the batches with lower temperature, whereas as a 
faster drop in pH was observed for the batches with a higher temperature. The same output 
was seen in the modelled NIRS data, where the process dynamics were delayed for the batches 
with lower temperature and while the dominant changes for the batches with a higher temper-
ature were taking place earlier (Figure 4.13).  
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phenomenon, which can be hard to separate from the reflectance technique, since the pro-
cesses that cause scatter are essentially the same as those that cause the reflectance. Reflec-
tion and scatter can however be differentiated, since light is being reflected when the refrac-
tive index changes. This occurs when light meet the appearing molecules or rather their bind-
ings. On the other hand scatter of light is affected by interactions among light and particle sur-
faces, and the surroundings will influence the light’s interaction with an analyte (Næs, et al., 
2002). In other words, scatter is a phenomenon taking place at an interface and the scatter 
from a particle is depending on its surface area and its refractive index. This means that smaller 
particles, having a larger surface area/volume ration than larger particles, provide more scatter 
per unit mass than larger particles (Dahm and Dahm, 2001). 

The scatter is often considered as an unwanted phenomenon that complicates the spectroscop-
ic measurements and interpretation of the results. Therefore the scatter is often reduced by 
various mathematical processing, as described in Paragraph 4.4. Despite this, a few studies 
confirm that scatter may deliver quantitative information. A study by Bogomolov et al. (2012) 
showed that scatter in the short wavelengths of the NIR region (up to 1000 nm) could provide 
quantitative analyses of fat and protein in bovine milk. The milk samples, which were varying in 
fat and protein content, were measured in transmission mode with a 5.5 mm pathlength. The 
collected spectra had a varying offset that seemed to be related to both the fat and the protein 
content; however fat and protein could still be separated from each other due to slope differ-
ences. A higher amount of fat globules leads to a higher amount of particles and thereby a 
stronger scatter is observed. This fits well with the fact that the offset differs in relation to the 
fat content. The sample spectrum with the highest fat content revealing most scatter has the 
lowest offset, whereas the sample spectrum with the lowest fat content and the weakest scat-
ter has the highest offset. This observation is related to our data, where the sample spectra 
collected in the end of the fermentation, expected to provide more scatter, have the lowest 
offset (Figure 4.9). Bogomolov et al. (2012) further concluded that the best predictions for fat 
and protein were obtained without any pre-processing of the spectra. Though the authors 
partly conclude that scatter in the low wavelengths NIR region can be applied for fat and pro-
tein determination, they narrowed down the wavelength region to the VIS region within 600 to 
700 nm, in order to obtain better predictions. In addition to this sample set, Bogomolov and 
Melenteva (2013) introduced the variation of fat globules size by systematically varying the 
homogenization degree of the milk samples.  As add on to the previous study they concluded 
that it also was possible to monitor fat globule sizes by scatter in the low wavelength region of 
NIRS.  
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4.6 Study II – Exploring Process Dynamics by NIR Spectroscopy in Lactic  
Fermentations 

This section is mainly based on Paper II “Exploring process dynamics by near infrared spectros-
copy in lactic fermentations”, where further thoughts and discussions are presented. Additional 
results not included in the manuscript are also presented to elucidate some clarifications. 

Aim 

The aim of the study is to explore the process dynamics in yoghurt fermentations by the on-line 
NIR spectroscopy. The industrial yoghurt production is nowadays only monitored by pH, but 
additional process information might be gained by applying NIR to such systems.  

The Experimental Set-up 

A total of seven lactic fermentation batches were conducted for this study. They were carried 
out at different temperatures, in which one batch was conducted at 32 °C, four at 35 °C and 
two at 37.5 °C.  The model system used is the same as the system applied in the previous study 
(Paragraph 3.3), where the lactic acid bacteria L. bulgaricus and S. thermophilus were applied. 
In addition to pH, Brix and NIRS measurements, samples were in this study withdrawn during 
the fermentation process in order to determine cell growth and lactic acid concentrations off-
line. The cell growth was measured by qPCR analyses, whereas the D- and L-lactic acid concen-
trations were found by using an enzyme kit in combination with UV spectroscopy. Further de-
tails are given in Paper II.  

Results 

Due to the variable fermentation temperatures various trends were observed from the batch-
es. A slower drop in pH was observed for the batches with lower temperature, whereas as a 
faster drop in pH was observed for the batches with a higher temperature. The same output 
was seen in the modelled NIRS data, where the process dynamics were delayed for the batches 
with lower temperature and while the dominant changes for the batches with a higher temper-
ature were taking place earlier (Figure 4.13).  
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Figure 4.13: The first principal component of the modelled NIRS data are shown for the seven batches. Batch 1-4 
had a fermentation temperature of 35°C, Batch 5 was carried out at 32 °C and Batch 6 -7 at 37.5 °C. The ex-
plained variance is given in the brackets.  

To further explore the dynamics explained by NIRS kinetic profiles were fitted to the PCA pro-
files. The bump on the first principal component profile (Figure 4.13) is hard to describe by a 
kinetic model, and this part was thus excluded. This is illustrated in Figure 4.14c, where only the 
dark blue part was used for the kinetic modelling. A separate kinetic profile was fitted for the 
first part of the PC1 profile (green line in Figure 4.14c) and for the last part (black line in Figure 
4.14c).       

               
Figure 4.14: The profiles for pH (a), Brix (b) and PCA scores on PC1 of the modelled NIRS data in cyan and dark 
blue dots (c) are plotted. The red lines (a, b and c) represent the kinetic fit of the data points. The green and 
black lines (c) represent the kinetic fit on the first and last part, respectively, of the dark blue PC values. The light 
blue values were excluded from the kinetic fittings.  
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The first part is very similar to the Brix values (Figure 4.14b), whereas the last part is more simi-
lar to the S-curved pH drop (Figure 4.14a).  

Additional Results, Discussion, Concluding Remarks and Perspectives 

Near Infrared spectroscopy has previously proved to be ideal for analysing the chemical proper-
ties of many different sample types, both liquid and solid samples. Its high performance has led 
to the capability of measuring highly scattering and complex matrices, though it seems that the 
majority of NIRS studies on milk analyses are based on short wavelength NIR region in combi-
nation with the visible region. In this region several milk components have been identified and 
successful predictions have been made. However, this study confirms that valuable process 
parameters can be obtained in the wavelength region from 1000 to 1800 nm. The preliminary 
results showed that near infrared transmission spectroscopy might be applicable for on-line 
measurements when a very small pathlength is used. However, this may give raise to various 
issues with bubbles and the fact that yoghurt becomes more viscous, which potentially can get 
stocked in the small pathlength. These issues can be a huge disadvantage for the quality of the 
measurements. It is therefore suggested to use reflectance measurements when working with 
a high cell density or very viscous processes. From the literature various examples are found 
where the main components fat, protein and lactose are determined (Aernouts, et al., 2011). A 
few studies also suggest that information can be gained from the scatter (Bogomolov, et al., 
2012). However, to our knowledge not many studies manage to achieve both chemical and 
physical information from the same NIRS data set.  

The presented results indicate that both chemical and physical information are obtained by 
NIRS. As illustrated, it was hardly possible to differentiate the physical and chemical infor-
mation by any of the applied pre-processing methods. However, the MSC pre-processing meth-
od did give us the hint that more information than the off-set scatter could be found, in which 
the b-value was very similar to the Brix-values, whereas the a-value seemed to contain some 
chemical information. Scatter is in many situations unwanted and various pre-processing tech-
niques for removing all existing scatter has been developed, but in this study removing scatter 
was not an optimal solution.   

PCA is normally applied to extract the systematic variation and ease the interpretation of these 
and an ideal multivariate model would be capable of describing one kinetic profile per principal 
component. It is therefore notable that both kinetic profiles, in this study, are described by the 
same principal component (PC1) and it can be considered if any model decisions could have 
improved the model. Before the chemical rank of the PCA model was decided, a few models 
with different ranks were investigated. Though the number of components was increased it 
was not possible to separate the two different kinetics profiles from each other at higher PCA 
levels. This study suggests how to separate two kinetic profiles, described by the same principal 
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Figure 4.13: The first principal component of the modelled NIRS data are shown for the seven batches. Batch 1-4 
had a fermentation temperature of 35°C, Batch 5 was carried out at 32 °C and Batch 6 -7 at 37.5 °C. The ex-
plained variance is given in the brackets.  

To further explore the dynamics explained by NIRS kinetic profiles were fitted to the PCA pro-
files. The bump on the first principal component profile (Figure 4.13) is hard to describe by a 
kinetic model, and this part was thus excluded. This is illustrated in Figure 4.14c, where only the 
dark blue part was used for the kinetic modelling. A separate kinetic profile was fitted for the 
first part of the PC1 profile (green line in Figure 4.14c) and for the last part (black line in Figure 
4.14c).       

               
Figure 4.14: The profiles for pH (a), Brix (b) and PCA scores on PC1 of the modelled NIRS data in cyan and dark 
blue dots (c) are plotted. The red lines (a, b and c) represent the kinetic fit of the data points. The green and 
black lines (c) represent the kinetic fit on the first and last part, respectively, of the dark blue PC values. The light 
blue values were excluded from the kinetic fittings.  
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The first part is very similar to the Brix values (Figure 4.14b), whereas the last part is more simi-
lar to the S-curved pH drop (Figure 4.14a).  

Additional Results, Discussion, Concluding Remarks and Perspectives 

Near Infrared spectroscopy has previously proved to be ideal for analysing the chemical proper-
ties of many different sample types, both liquid and solid samples. Its high performance has led 
to the capability of measuring highly scattering and complex matrices, though it seems that the 
majority of NIRS studies on milk analyses are based on short wavelength NIR region in combi-
nation with the visible region. In this region several milk components have been identified and 
successful predictions have been made. However, this study confirms that valuable process 
parameters can be obtained in the wavelength region from 1000 to 1800 nm. The preliminary 
results showed that near infrared transmission spectroscopy might be applicable for on-line 
measurements when a very small pathlength is used. However, this may give raise to various 
issues with bubbles and the fact that yoghurt becomes more viscous, which potentially can get 
stocked in the small pathlength. These issues can be a huge disadvantage for the quality of the 
measurements. It is therefore suggested to use reflectance measurements when working with 
a high cell density or very viscous processes. From the literature various examples are found 
where the main components fat, protein and lactose are determined (Aernouts, et al., 2011). A 
few studies also suggest that information can be gained from the scatter (Bogomolov, et al., 
2012). However, to our knowledge not many studies manage to achieve both chemical and 
physical information from the same NIRS data set.  

The presented results indicate that both chemical and physical information are obtained by 
NIRS. As illustrated, it was hardly possible to differentiate the physical and chemical infor-
mation by any of the applied pre-processing methods. However, the MSC pre-processing meth-
od did give us the hint that more information than the off-set scatter could be found, in which 
the b-value was very similar to the Brix-values, whereas the a-value seemed to contain some 
chemical information. Scatter is in many situations unwanted and various pre-processing tech-
niques for removing all existing scatter has been developed, but in this study removing scatter 
was not an optimal solution.   

PCA is normally applied to extract the systematic variation and ease the interpretation of these 
and an ideal multivariate model would be capable of describing one kinetic profile per principal 
component. It is therefore notable that both kinetic profiles, in this study, are described by the 
same principal component (PC1) and it can be considered if any model decisions could have 
improved the model. Before the chemical rank of the PCA model was decided, a few models 
with different ranks were investigated. Though the number of components was increased it 
was not possible to separate the two different kinetics profiles from each other at higher PCA 
levels. This study suggests how to separate two kinetic profiles, described by the same principal 
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component, from each other, though an ideal model would describe one kinetic profile per 
principal component, in order to ease the interpretation. It can be speculated why PCA is not 
capable of separating the two dynamic profiles from each other, but it very much seems that 
the two profiles behave very similar, hence the variation is changing within the same pattern, 
which cannot be distinguished by the model. It could be considered whether other multivariate 
models are capable of separating the dynamics and thereby simplifying the interpretation of 
the chemical and physical information. Multivariate Curve Resolution (MCR) was designed to 
separate chemical analytes from each other based on for example unique chemical spectra or 
distinguishable time-trends (Tauler, et al., 1993). Also, MCR often applies non-negativity, which 
can be an advantage when interpreting chemical trends. It could be considered whether the 
physical information could be assigned to a specific wavelength and likely whether the chemical 
information could be assigned to another specific wavelength region, which thereby would 
force the separation of the two dynamic trends. This means that we again have to combine a 
multivariate model with manual constructions. It is however hard to really assign a specific part 
of the spectrum, as the PCA loadings showed that the whole spectrum had an influence on the 
explained variance. After all there is a good reason why the two profiles cannot as such be 
separated, and that it because they are strongly correlated and one effects the other. This sup-
ports the facts that the cell growth leads to an increase of the lactic acid production and the 
acidity is causing the viscosity change, meaning that the chemical and physical variables are 
closely connected.  

By applying reflectance spectroscopy instead of transmittance it was possible to measure the 
dynamics throughout the fermentation process. And as long as the measurements did not be-
come saturated, it seems that valuable information can be obtained. Apart from the data pre-
sented in Paper II, OD600 measurements were collected by an on-line UV instrument (Elution 
220 UV-visible spectrometer, Thermo Scientific, Denmark) during the fermentation process. 
Optical Density (OD) is a standard indicator for cell growth and therefore a good gauge for 
whether the fermentation process is progression or not (Sonnleitner, et al., 1992). The UV-
results shown in Figure 4.15, turned out to become saturated in the same way as the transmit-
tance NIRS measurements. However, further interpretation of the UV-data indicates that two 
different kinetic profiles might also be observed here in which the first part might represent the 
cell growth. But after 2 hours, where the gel formation starts, it is texture being described. 
Around 2.5 hours the texture has become too viscous and no signal can be achieved with this 
measurement system. By OD we are thus not able to monitor the cell growth after 2 hours due 
to the textural change, unless we fit kinetic models to the data in the same way as the kinetic 
profiling strategy carried out for the NIRS data.  
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Figure 4.15: Optical density measurements (OD600 ) versus fermentation time.  

The Brix analysis, or more general refractive index. is also an example of a measurement tech-
nique which can be interpreted wrongly. The Brix values are commonly applied for sugar de-
termination in the food industry, especially in the wine industry (Nagodawi.Tw, et al., 1974). It 
is a scale which is expressed in degrees and it measures the percentage by weight of sugar in 
water at a given temperature (Schaschke, 2014). In Paper I we trusted the Brix values, which 
are shown in Figure 4.16, and the Brix data was presented as being representative for the sugar 
consumption. However, the Brix measurements are collected by a refractometer, which oper-
ates due to the refractive index. Hence, there is a chance that scatter effect will influence the 
actually Brix degree measured. In Paper II it is assumed that the Brix values are correlated to 
the gel formation and due to the scatter effect observed by NIRS, we also assume that the Brix 
must be affected by the scatter to some extent. Furthermore, we know from the sugar metabo-
lism that lactic acid is being produced as sugar is being consumed, which means that a more 
comparable decrease pattern of the sugar/Brix relation to pH than the one seen in Figure 4.16 
is to be expected.   
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component, from each other, though an ideal model would describe one kinetic profile per 
principal component, in order to ease the interpretation. It can be speculated why PCA is not 
capable of separating the two dynamic profiles from each other, but it very much seems that 
the two profiles behave very similar, hence the variation is changing within the same pattern, 
which cannot be distinguished by the model. It could be considered whether other multivariate 
models are capable of separating the dynamics and thereby simplifying the interpretation of 
the chemical and physical information. Multivariate Curve Resolution (MCR) was designed to 
separate chemical analytes from each other based on for example unique chemical spectra or 
distinguishable time-trends (Tauler, et al., 1993). Also, MCR often applies non-negativity, which 
can be an advantage when interpreting chemical trends. It could be considered whether the 
physical information could be assigned to a specific wavelength and likely whether the chemical 
information could be assigned to another specific wavelength region, which thereby would 
force the separation of the two dynamic trends. This means that we again have to combine a 
multivariate model with manual constructions. It is however hard to really assign a specific part 
of the spectrum, as the PCA loadings showed that the whole spectrum had an influence on the 
explained variance. After all there is a good reason why the two profiles cannot as such be 
separated, and that it because they are strongly correlated and one effects the other. This sup-
ports the facts that the cell growth leads to an increase of the lactic acid production and the 
acidity is causing the viscosity change, meaning that the chemical and physical variables are 
closely connected.  

By applying reflectance spectroscopy instead of transmittance it was possible to measure the 
dynamics throughout the fermentation process. And as long as the measurements did not be-
come saturated, it seems that valuable information can be obtained. Apart from the data pre-
sented in Paper II, OD600 measurements were collected by an on-line UV instrument (Elution 
220 UV-visible spectrometer, Thermo Scientific, Denmark) during the fermentation process. 
Optical Density (OD) is a standard indicator for cell growth and therefore a good gauge for 
whether the fermentation process is progression or not (Sonnleitner, et al., 1992). The UV-
results shown in Figure 4.15, turned out to become saturated in the same way as the transmit-
tance NIRS measurements. However, further interpretation of the UV-data indicates that two 
different kinetic profiles might also be observed here in which the first part might represent the 
cell growth. But after 2 hours, where the gel formation starts, it is texture being described. 
Around 2.5 hours the texture has become too viscous and no signal can be achieved with this 
measurement system. By OD we are thus not able to monitor the cell growth after 2 hours due 
to the textural change, unless we fit kinetic models to the data in the same way as the kinetic 
profiling strategy carried out for the NIRS data.  
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Figure 4.15: Optical density measurements (OD600 ) versus fermentation time.  

The Brix analysis, or more general refractive index. is also an example of a measurement tech-
nique which can be interpreted wrongly. The Brix values are commonly applied for sugar de-
termination in the food industry, especially in the wine industry (Nagodawi.Tw, et al., 1974). It 
is a scale which is expressed in degrees and it measures the percentage by weight of sugar in 
water at a given temperature (Schaschke, 2014). In Paper I we trusted the Brix values, which 
are shown in Figure 4.16, and the Brix data was presented as being representative for the sugar 
consumption. However, the Brix measurements are collected by a refractometer, which oper-
ates due to the refractive index. Hence, there is a chance that scatter effect will influence the 
actually Brix degree measured. In Paper II it is assumed that the Brix values are correlated to 
the gel formation and due to the scatter effect observed by NIRS, we also assume that the Brix 
must be affected by the scatter to some extent. Furthermore, we know from the sugar metabo-
lism that lactic acid is being produced as sugar is being consumed, which means that a more 
comparable decrease pattern of the sugar/Brix relation to pH than the one seen in Figure 4.16 
is to be expected.   

A
bs

or
ba

nc
e 

(-)



Chapter 4 – NIR Spectroscopy for On-line Monitoring of Fermentation Processes  

52 | P a g e  
 

                                          
Figure 4.16: The Brix and pH values versus fermentation time, which are also presented in Paper I (Svendsen, et 
al., 2015). 

This leads us to the assumption that the gel-formation also seems to be manifested in the Brix 
values. From these examples we have learned that measurement techniques based on refract-
ing index must be interpreted carefully and it is of great importance that you are familiar with 
the measured process in order to gain the right process understanding.   
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CHAPTER 5 
 

FLUORESCENCE SPECTROSCOPY FOR ON-LINE 
MONITORING OF FERMENTATION PROCESSES 

5.1 Introduction  

Fluorescence spectroscopy has over the past 30 years been increasingly applied in biological 
sciences. It is known for being highly sensitive as well as specific, and is therefore a suitable 
spectroscopic method for quantitative determination of fluorescence compounds (Lakowicz, 
2006a). Additionally, fluorescence spectroscopy has shown promising results within on-line 
monitoring of various fermentation processes (Lantz, et al., 2006; Teixeira, et al., 2009).    

In this chapter the fundamental of fluorescence spectroscopy will shortly be presented. Next, 
various parameters affecting the fluorescence measurements will be examined and multivari-
ate data analysis for fluorescence data is described. Finally, Paper III on “Weighted PARAFAC 
and non-linear regression for handling intensity changes in fluorescence spectroscopy caused 
by pH fluctuations” is introduced and further discussed.   

5.2 Fundamental of Fluorescence Spectroscopy  

Luminescence, which can be divided into phosphorescence and fluorescence, is the emission of 
light from any substance, and occurs from electronically excited states. The deviation of the 
two categories is depending of the nature of the excited states. Phosphorescence represents 
the emission of light from excited triple states, whereas fluorescence represents the emission 
of light from excited single states (Lakowicz, 2006a). The processes that happen between the 
absorption and emission of light are commonly illustrated by a Jablonski diagram as shown in 
Figure 5.1. 

In the Jablonski diagram, S0, S1 and S2 represent the ground, first and second electronic singlet 
states of the molecule, respectively. At each of these levels the fluorophores can exist in vari-
ous vibrational energy levels, illustrated as 0, 1, or 2 (Figure 5.1). The energy of the first excited 
triplet state (T1) is normally lower that the energy of the first excited singlet state (S1). The exci-
tation process of the molecule occurs via absorption (h) either from S0 to S1 or from S0 to S2. 
No matter if the excitation process results with the molecule being in the first or the second 
excited single state, the molecule can end up at any of the excited vibrational states.  The exit-
ed molecule can return to its ground state via various combinations of energy steps. Two of 
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these steps are fluorescence (h) and phosphorescence (h) which both involve the release 
of a photon of radiation. However, the fluorescence step (and also the phosphorescence) can 
only occur from the lowest vibration energy level of either S1 or S2. If the molecule is not situat-
ed at the lowest level, a vibrational relaxation will occur, where the additional vibrational ener-
gy is lost. Thus, the molecule ends up in the lowest energy level. An expanded version of these 
vibrational relaxations is the internal conversion, where a vibrational energy lost results with 
the molecule passing to a lower energy electronic state. Finally, it is to be mentioned that an 
intersystem crossing process can appear, where the spin of an excited electron is reversed, and 
the molecule is transferred from S1 to T1 (Skoog, 1998; Lakowicz, 2006a). 

 
 

 

Figure 5.1: The Jablonski diagram (Lakowicz, 1999). 

The Jablonski diagram describes the absorption (the excitation energy) and the fluorescence 
(the emission energy), but the actual relation between the excitation and emission spectral 
output is presented in the following. A fluorophore is normally excited from the singlet ground 
state to higher vibrational level of S1 or S2 and the return to the ground state typically occurs to 
a higher excited vibrational ground state level. Hence, more energy is needed for radiation to 
be absorbed by the molecule than what is emitted by the molecule and therefore molecules 
absorb radiation at lower wavelengths than the radiation they emit (Lakowicz, 2006a). In some 
cases the distance between the vibrational levels for the excitation and emission process are 
roughly the same and if the transition probabilities are similar, the emission spectrum will ap-
proximately be a mirror of the excitation spectrum (Harris, 2010).  

Fluorescence spectral data can be presented as an excitation spectrum, where the excitation 
wavelengths are varied and the emitted light is measured at one certain wavelength (λem). It 
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can also be obtained as an emission spectrum, where the emitted radiation is measured based 
on a specific excitation wavelength. Such an emission spectrum is illustrated in Figure 5.2, 
where one excitation wavelength (310 nm) is applied and an emission wavelength range from 
350 to 590 nm is shown for a vitamin solution.  

 

Figure 5.2: An emission spectrum (350-590 nm) of a vitamin solution measured at excitation wavelength 310 
nm.  

If several combinations of excitation and emission wavelengths are applied this results in a 2D 
landscape (Figure 5.3), where the emission and excitation wavelengths represent mode one 
and mode two, respectively (Lakowicz, 2006a; Harris, 2010). Compounds that fluoresce strongly 
and thus give the most intense signals are those containing aliphatic and alicyclic carbonyl 
structure or highly conjugated double-bond structures (Skoog, 1998). This means that intensi-
ties of different fluorophores within one mixture cannot be directly compared. Nevertheless, if 
a sample or a process is measured over time the relative intensity measured can still provide us 
with e.g. dynamics, from where it can e.g. be determined whether a compound is increasing, 
constant or decreasing during processing.  
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Figure 5.3: A 2D Fluorescence landscape of a vitamin solution. 

If a process is measured over time by fluorescence spectroscopy (as in Paper I) a number of 2D 
fluorescence landscapes will be obtained. In order to follow a specific compound over time, the 
intensity of a selected peak with a certain excitation- and emission wavelength can be plotted 
as shown in Figure 5.4. Hence, the fluorescence intensity of that fluorophore can be deter-
mined during process- or reaction time. If the fluorescence spectrometer is equipped with an 
optical fibre, instead of the classical sampling technique by cuvettes, on-line monitoring can be 
applied, which allows us to follow the fluorescence intensity in real-time (Sablinskas, et al., 
2003).  
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Figure 5.4: The fluorescence intensity of a vitamin solution followed over time at excitation wavelength 400 nm 
and emission wavelength 450 nm.  

The definition of fluorescence intensity () of a molecule can be described by the intensity () 
of absorbed light and the quantum yield of fluorescence () of the specific molecule: 

 
 =       (5.1) 

 

where   can be derived from Lambert Beer’s law for absorption of light ( =	    ): 
 

 = −	 = 	 	(1 − 10)	     (5.2) 
 

in which  and  represent the incident and transmitted light intensities,  is the molar ab-
sorptivity,  is the concentration of the absorbing compound and  is the optical depth of the 
sample, which is our case is the fermentation broth. Finally, the quantum yield of fluorescence 
() from Equation 5.1, which is the fluorescence efficiency, can be defined by following equa-
tion:  

 = 		              (5.3) 

 

where  is the rate of fluorescence and   is the competitive deactivating processes appearing 
in the measured system (Schulman, 1985). 
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Figure 5.4: The fluorescence intensity of a vitamin solution followed over time at excitation wavelength 400 nm 
and emission wavelength 450 nm.  

The definition of fluorescence intensity () of a molecule can be described by the intensity () 
of absorbed light and the quantum yield of fluorescence () of the specific molecule: 

 
 =       (5.1) 

 

where   can be derived from Lambert Beer’s law for absorption of light ( =	    ): 
 

 = −	 = 	 	(1 − 10)	     (5.2) 
 

in which  and  represent the incident and transmitted light intensities,  is the molar ab-
sorptivity,  is the concentration of the absorbing compound and  is the optical depth of the 
sample, which is our case is the fermentation broth. Finally, the quantum yield of fluorescence 
() from Equation 5.1, which is the fluorescence efficiency, can be defined by following equa-
tion:  

 = 		              (5.3) 

 

where  is the rate of fluorescence and   is the competitive deactivating processes appearing 
in the measured system (Schulman, 1985). 



Chapter 5 – Fluorescence Spectroscopy for On-line Monitoring of Fermentation Processes  

58 | P a g e  
 

An important feature of fluorescence is the high sensitivity, which means that reliable detection 
of fluorescent materials is possible even at small concentrations. The technique can also be 
highly specific because a limited number of molecules absorb and re-emit light, and even 
though other compounds in the measured sample broth do absorb and emit light, it is extreme-
ly unlikely that compounds fluoresce at the exact same wavelength combinations (Herman, 
2000).  

5.3 Factors influencing the fluorescence intensity signal 

Numerous parameters can affect the fluorescence intensity signal. As the concentration of the 
fluorescence compound is assumed to be exclusively related to the intensity of the fluores-
cence signal during quantitative investigations in accordance with Equation 5.2, environmental 
disturbances affecting the intensity can have a major influence on determination of the con-
centration. Therefore, it is of great importance to be aware of these influencing factors and the 
major ones are presented below.  

Quenching  

The term fluorescence quenching covers any process that decreases the fluorescence intensity 
of a sample (Lakowicz, 2006c). In a fluorescent system an external molecule can act as a 
quencher and reduce the fluorescence intensity. As a result the quantum yield, which is the 
number of protons emitted, is reduced or in some situations eliminated. Various molecular 
interactions can results in quenching, but the quenching process is normally classified into two 
main categories: static or dynamic (Albani, 2007b). 

The static quenching refers to complexations between an interfering species and a potential 
fluorophore in the ground state. The formed complex is non-fluorescent and e.g. the quenching 
of the fluorescence of salicylic acid by complexation with iron (III) is an example. Dynamic 
quenching, also called diffusional quenching, is characterized by interactions between the 
quencher and the fluorophore of interest that appears subsequently to the excitation process 
and during the lifetime of the excited state. Due to the interactions, the excited molecule be-
comes inactive and returns to the ground state without emission of a photon. The quenching of 
fluorescence of a potential fluorophore by dissolved oxygen is an example of dynamic quench-
ing (Sharma and Schulman, 1999; Lakowicz, 2006c). Since available oxygen is required in aero-
bic fermentation processes, there is a risk that oxygen will make fluorescence measurements 
challenging due to the possible quenching process.   

Temperature 

Some fluorophores can be temperature dependent, which means that a change in temperature 
can affect the fluorescence lifetime and intensity. Since the temperature can change the energy 
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levels of the ground and excited states of the fluorophore the fluorescence intensity can be 
affected (Li and Humphrey, 1992). In other words, a temperature variation can cause complete 
or partly de-excitation of the fluorophore. The so-called rate constant () is related to the de-
excitation due to the temperature effect. The –value’s relation to temperature can be de-
scribed by the Arrhenius theory: 

 =       (5.4) 
 

where 	is the temperature independent pre-factor (s-1),  is the Arrhenius activation energy 
(kcal · mol-1),  is the molar gas constant ( ∙  ∙ ) and  is the temperature (K). This 
means that a temperature increase leads to an increase of the -value. As the relationship 
between   and the fluorescence lifetime () can be described as;  

 
  =  +        (5.5) 

 

where  is the radiative constant, the relationship between the temperature and the fluores-
cence lifetime () can thus be described as  

 

	  	=  +     (5.6) 

 

Since the radiative constant is at least 10 times smaller than , it only has a minor influence on 

the relation between the temperature and the fluorescence lifetime (Albani, 2007b). From 
Equation 5.6, it is shown that a temperature increase leads to a decrease of the fluorescence 
lifetime. Though fluorescence intensity usually decreases when the temperature increases, for 
some fluorophores the fluorescence intensity actually increases with temperature. This might 
be explained by an increase in the energy level of the excited state (Li and Humphrey, 1992).  

Solvent interaction 

The polarity of the solvent has a large influence on the emission of the fluorophore. The inter-
actions between the solvent and the fluorophore happen via electrostatic interactions and 
hydrogen bonds. It is usually the difference between the energies of the ground state and the 
excited state, which contribute to the intensities and spectral position of the fluorescence sig-
nals. In the case where the solute has a greater polarity in the excited state than in the ground 
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state, the fluorescence appears at longer wavelengths in a solvent with high polarity. This hap-
pens because a solvent of high polarity will stabilize the excited state to a higher degree than in 
the ground state. However, if the polarity is lower in the excited state than in the ground state, 
a solvent of high polarity will stabilize the ground state to a higher degree than the excited 
state. This situation tends to cause a shift to shorter wavelengths of the absorption (Schulman, 
1985; Sharma and Schulman, 1999). These shifts are also known as red and blue shifts, where 
red shifts refer to a spectral shift towards higher wavelengths and blue shifts refer to a spectral 
shift towards lower wavelengths (Lakowicz, 2006b). 

Inner filter effect 

Under optimal circumstances the fluorescence intensity is linearly proportional to the concen-
tration of the determined fluorophore (Equation 5.2). But at a certain point this linearity ends 
due to the inner filter effect. Under non-linear conditions the incident light is absorbed by other 
species than the fluorophore (the primary inner filter effect) and the emitted light is re-
absorbed (the secondary inner filter effect). The Inner filter effect term refers to a high optical 
density, which causes a decrease of the fluorescence quantitation, in which the emission peak 
might be shifted and a decrease in the fluorescence intensity can be observed (Kubista, et al., 
1994; Albani, 2007c). When applying fluorescence spectroscopy in bioprocesses, the inner filter 
effect can easily be a problem due to the increased biomass, which means an increase in the 
optical density. But also larger molecules or particles can be a reason why emitted light can 
reflected or scattered (Li and Humphrey, 1992).   

pH 

The pH value of the measured sample or fermentation broth, which is a major subject in the 
presented research, can have a strong effect on the fluorescence intensity. Since the electronic 
distribution of acids and bases vary from the excited state to the ground state, the acidity and 
basicity for the same molecule might be different in these two states (Sharma and Schulman, 
1999).  

When the species of interest has been excited to the S1 state, it may happen that the electronic 
charge of an acidic or basic functional group will change in distribution. Hence, the acidity of 
the functional group will change, and the acidity of the same functional group will differ in S1 
compared to S0. Normally, such changes in electronic charge distribution will only occur to 
functional groups bonded directly to an aromatic ring. When the change occur it is sufficient to 
cause distinction between the pKa–value in S0 and in S1 (Valeur, 2001). 

If a protonation of the functional group appears during the transit from S0 to S1, the energy 
difference from S0 to S1 will decrease. This energy change will results in a shift in the spectral 
data to longer wavelengths. On the other hand, a dissociation process will result in a shift to 
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shorter wavelengths (Sharma and Schulman, 1999). Change of pH in the analysed sample broth 
does not only cause shifts in the fluorescence spectrum, it can also cause changes in the fluo-
rescence intensity signal. An examples is the compound phenol (C6H5OH), which fluoresces in 
the wavelength region 285-365 nm with a relative intensity of 18, whereas the ionized pheno-
late ion (C6H5O-) fluorescence in the wavelength region 310-400 nm with a relative intensity of 
10 (Skoog, 1998).     

So far this intensity change phenomenon is mostly described for proteins. The complex tertiary 
structure of proteins is altered when the protein is dissolved in a solution with a pH far away 
from its own physiological pH. The alteration of the protein can either be a partial or full dena-
turation, in which the tertiary structure is unfolded. Since the characteristics of an unfolded 
protein differs significantly from an non-unfolded protein, the fluorescence intensity, among 
other fluorescence emission parameters, changes (Albani, 2007a). 

A few studies have modelled the effect of pH on fluorescence, where it is assumed that the 
intensity of a fluorophore is proportional to its concentration, and the total fluorescence () is 
the sum of the fluorescence from the alkaline form () and the acidic form (), as de-
scribed in the following equation:  

 =  +      (5.7) 
 

where and  are constants that are proportional to the incident light intensity, quantum 
efficiency, molar absorption and the light path (Guilbault, 1990; Li and Humphrey, 1992). If the 
fluorophore of interest only exits in the forms 	and , the total concentration () of the 
fluorophore can be define as:  

 =  +      (5.8) 
 

In this way the Henderson-Hasselbalch equation (Po and Senozan, 2001) can be applied in or-
der to relate the concentrations of 	and  with the pH as illustrated here:  

 

 =  + log      (5.9) 

 

where 	is the dissociation constant of the fluorophore. By combing Equations 5.7, 5.8 and 
5.9 the total fluorescence of a fluorophore exciting on both its acidic and basic form can be 
defined.  



Chapter 5 – Fluorescence Spectroscopy for On-line Monitoring of Fermentation Processes  

60 | P a g e  
 

state, the fluorescence appears at longer wavelengths in a solvent with high polarity. This hap-
pens because a solvent of high polarity will stabilize the excited state to a higher degree than in 
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charge of an acidic or basic functional group will change in distribution. Hence, the acidity of 
the functional group will change, and the acidity of the same functional group will differ in S1 
compared to S0. Normally, such changes in electronic charge distribution will only occur to 
functional groups bonded directly to an aromatic ring. When the change occur it is sufficient to 
cause distinction between the pKa–value in S0 and in S1 (Valeur, 2001). 

If a protonation of the functional group appears during the transit from S0 to S1, the energy 
difference from S0 to S1 will decrease. This energy change will results in a shift in the spectral 
data to longer wavelengths. On the other hand, a dissociation process will result in a shift to 
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structure of proteins is altered when the protein is dissolved in a solution with a pH far away 
from its own physiological pH. The alteration of the protein can either be a partial or full dena-
turation, in which the tertiary structure is unfolded. Since the characteristics of an unfolded 
protein differs significantly from an non-unfolded protein, the fluorescence intensity, among 
other fluorescence emission parameters, changes (Albani, 2007a). 

A few studies have modelled the effect of pH on fluorescence, where it is assumed that the 
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 =  +      (5.7) 
 

where and  are constants that are proportional to the incident light intensity, quantum 
efficiency, molar absorption and the light path (Guilbault, 1990; Li and Humphrey, 1992). If the 
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 =  + log      (5.9) 

 

where 	is the dissociation constant of the fluorophore. By combing Equations 5.7, 5.8 and 
5.9 the total fluorescence of a fluorophore exciting on both its acidic and basic form can be 
defined.  
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5.4 Data Processing for Fluorescence Data 

Fluorescence data can be relatively complex and contain loads of information. However, only 
information valuable for the process or measured system is of interest. In order to describe the 
data in a more condensed manner than the original data array, multivariate data analysis is 
applied. Fluorescence data can be classified as higher order arrays and for such data PCA is not 
appropriate. PARAllel FACtor analysis (PARAFAC) is multi-way method applicable for 2D fluores-
cence data sets (Bro, 1997) but also for data of even higher dimensionalities. 

Multi-way data are characterized by having several dimensions, such as fluorescence having a 
variable set in the excitation wavelength direction and a variable in the emission wavelength 
direction. As illustrated in Figure 5.5, PARAFAC decomposes the three-way array (X) into three 
matrices (A, B and C), which all are called loadings. The variation not captured by the model is 
given in the residuals E. 

                                     
 
Figure 5.5: A PARAFAC model decomposing X into three vectors (A, B, C) and the residuals (E). 

In three-way terminology, it is common not to distinguish between scores and loadings because 
they are treated equal numerically (Bro, 1997). However, the first loading matrix (A) can for 
convenience also can be recognized as the score or concentration matrix, whereas the two 
remaining matrices (B and C) are known as loadings. When modelling data by PARAFAC, the 
chemical rank or the number of factors must be defined. This can be done by e.g. judgement of 
the residuals or applying core consistency diagnostics6 (Bro, 1998b). These techniques can very 
well be applied as an indicator, but it is always important to bring in external knowledge of the 
modelled data, before deciding on the number of factors. Based on such knowledge following 
parameters could be considered: What measurement technique has been applied? What sys-
tem is modelled? How many chemical components are expected to be detected in the data? By 
inspection and considering the data, it often becomes easier to define the chemical rank of the 
system. A PARAFAC model with  factors can be written as: 

                                                                 
6The core consistency diagnostic helps determination of the model complexity of low-rank trilinear data, where a high 
core consistency near 100 % suggests that the model fit is good and a low or negative core consistency alludes that the 
model is over-fitted (Bro, 1998b). 
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 =   + 		
 																																																				(5.10) 

 

where ,   and   represent the elements of the three matrices (A, B and C), and   is a 
residual element. In the case of fluorescence data,   represents the intensity of sample 

number  at variable (emission wavelength) number  and at variable (excitation wavelength) 
number	 (Bro, 1997; Smilde, et al., 2004b). In the case where  is equal to three, the PARAFAC 
model is a three-component model and can thus be graphically illustrated as seen in Figure 5.6.    

 

 
 
Figure 5.6: An illustration of a three-component PARAFAC model.  

The PARAFAC model can also be written in matrix notation as seen in Equation 5.11, in which 
each slab of the three-way array   (	 x  x ) is given as :   

 
 =  +																																																								        (5.11) 

 

Each slab has the size  x  and is modelled by  ( x ) representing the matrix with the scores 
(first mode),  ( x ) representing the first set of loadings (second mode) and representing 
the second set of loadings (third mode), where  is the diagonal matrix ( x ) containing the 
weights for the th slab of  (Kiers, et al., 1999; Smilde, et al., 2004c).  

In bilinear methods, such as PCA and MCR7, the calculated model can be rotated without 
changing the solution. This means that even though the decomposed loadings might reflect the 
pure spectra, it is not possible to find the original spectra, because the solution can be rotated. 
This rotational freedom is a well-known problem for bilinear methods, which complicates the 
interpretations. Contrary, if the data are trilinear and the right number of components is used 
the true underlying spectra will be found by PARAFAC. This is a major advantage in which the 

                                                                 
7Multivariate Curve Resolution (MCR) is a multivariate data analysis, which can be applied for two-way arrays in the 
same manner as PCA. However, MCR differ from PCA in its application of additional constraints on the solution (Tauler, 
1995).  
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calculated model is unique, which means that the estimated model cannot be rotated without 
a lower fit (Bro, 1997; Bro, 1998a).  

Several studies have proven that PARAFAC is a comprehensive method for decomposing fluo-
rescence arrays. For example, one study showed that it is possible to distinguish between dif-
ferent dissolved organic matters collected from diverse marine habitats (Murphy, et al., 2008). 
Another study was able to separate milk samples, treated with instant infusion pasteurization, 
according to the variations in heat treatment by using fluorescence landscapes and PARAFAC 
(Hougaard, et al., 2013). Furthermore, PARAFAC was applied to estimate the dioxin content of 
fish oils based on fluorescence data (Pedersen, et al., 2002). The mentioned studies confirm the 
advantages of using PARAFAC for analysing fluorescence spectroscopy data and exemplify that 
PARAFAC is applicable for interpretation of those data.  

5.5 Study III – Evaluation of on-line Fluorescence Spectroscopy applied in  
Fermentation Processes  

This section is based on the paper “Weighted PARAFAC and non-linear regression for handling 
intensity changes in fluorescence spectroscopy caused by pH fluctuations” accepted for publi-
cation in the peer-reviewed journal Applied Spectroscopy.  

Aim 

Fluorescence spectroscopy was in previously studies found to be a promising spectroscopic 
technique for on-line monitoring of fermentation processes. In Paper I, it was also illustrated 
that fluorescence spectroscopy was capable of monitoring specific chemical compounds im-
portant for the control of the fermentation process. However, since various parameters may 
influence the fluorescence intensity, there is a risk that such interference can cause unreliable 
determinations and thereby decrease the quality of the quantitative measurements. To exam-
ine one of these parameters, pH fluctuations were introduced in a riboflavin degradation pro-
cess monitored by fluorescence spectroscopy. The influence on the fluorescence intensity was 
elucidated and a correction strategy for handling the intensity shifts was suggested.  

Illustrations of the Experimental Set-up 

A fermentation process includes a number of complex sub-processes, such as textual changes, 
anabolic and catabolic processes where metabolites are consumed and produced. In order to 
study the manually introduced pH interferences, a simple model system on riboflavin degrada-
tion was employed. Vitamin effervescent tablets containing various water-soluble vitamins 
were dissolved in 1.5 L of water. The multivitamin tablets (Optisana, Kolding, Denmark) are 
pictured in Figure 5.7.  
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Figure 5.7: Vitamin tablets (left) and their packages (right) applied for the model system are pictured. 

The experimental set-up is illustrated in Figure 5.8. The degradation process was carried out in 
a fermenter, which was temperature controlled by an external water bath. The fermenter was 
enclosed with a black cover (not shown in the figure), in order to limit riboflavin breakdown by 
light from the surroundings. A light source was introduced via a port in the top of the fermenter 
and was turned on in order to start the controlled light induced degradation process.    
 

 
 
Figure 5.8: The experimental set-up. From the left; the 2 L bioreactor containing the vitamin tablet dissolved in 
water; the temperature was maintained by the blue HAAKE Phoenix pumping water bath connected to the 
bioreactor. In-line probes (pH, temperature and fluorescence) are situated in the top and enter the reactor via 
ports. A small motor was controlling the stirring speed, also situated at the top; a light source was introduced in 
the top of the fermenter; on-line pH and Temperature profiles can be followed on the screen.  
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In total 12 experiments were conducted. Seven of these were carried out under Normal Oper-
ating Conditions (NOC) and the remaining five batches were carried out under Abnormal Oper-
ating Conditions (AOC) where a pH disturbance was introduced. The photo-degradation of 
riboflavin and its main products lumiflavin and lumichrome were monitored by fluorescence 
spectroscopy. The structures of the three compounds are illustrated in Figure 5.9.  

                         

                         
 
Figure 5.9: The conversion of riboflavin into lumiflavin and lumichrome (Eitenmiller, et al., 2008). 
 

Riboflavin (7,8-dimethyl-10-ribityl-isoalloxazine), better known as vitamin B2, belongs to the 
class of water-soluble vitamins and is found in a variety of food products (Belitz, et al., 2004b). 
The main absorption bands of Riboflavin in the UV and visible wavelength region are around 
170, 350 and 440 nm. All three absorptions belong to the singlet transition and emit fluores-
cence around 530 nm (Pan, et al., 2001).  

Results  

During the AOC batches acid was added in various amount followed by addition of base in or-
der to reach the original pH again. A fluorescence landscape from one of the AOC batches is 
illustrated in Figure 5.10. Raw data inspection was carried out by plotting various combinations 
of excitation and emission wavelengths versus fermentation time. Hereby the intensity of a 
certain fluorophore can be inspected. As illustrated in Figure 5.10, there is a clear shift in fluo-
rescence intensity for some of the peaks.  
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Figure 5.10: A fluorescence landscape from the riboflavin degradation process. Two fluorescence peaks at exci-
tation/emission 330/450 nm and 470/510 nm are plotted versus fermentation time.   

It is clear that special care must be taken when interpreting the data, as a false intensi-
ty/concentration signal might appear if the pH is changing. Therefore a correcting strategy was 
suggested in order to filter away these intensity shifts. The strategy is presented in Figure 5.11. 
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Figure 5.11: Flowchart of the modelling approach.  

The suggested correction strategy combines weighted PARAFAC and weighted non-linear re-
gression (NLR). Firstly, the fluorescence landscapes collected over time for one batch should be 
stacked into a three-way data structure and an initial weight-vector with value 1 for each 
measurement/time is initialized. To obtain a kinetic profile that is corrected for any shifts or 
disturbances a new weight vector is determined inside the loop. The initial estimate of the 
reaction constant K is set to the value infinite. A PARAFAC model is then calculated using the 
present weight vector, where all excitation-emission-combinations for one time 
point/landscape get the same weight as determined for that time point. The calculated PARA-
FAC intensity scores, which provide the relative concentration profile for each of the detected 
chemical compounds, are obtained from the weighted PARAFAC model. Hereafter, the model 
parameters/kinetic coefficient of the concentration scores are estimated by weighted NLR. A 
new weight vector is calculated based on the difference between the concentration scores, 
obtained from the weighted PARAFAC model, and the kinetic profiles obtained from the 
weighted non-linear least-squares. Thereby, a weight between the first score and the kinetic 
profile of compound one is obtained for each time point in the batch run. Likewise, the differ-
ence between the second score and the second kinetic profile and the difference between the 
third score and the third kinetic profile are calculated. The three outcomes are squared and the 
average is determined. The average was rescaled to values between 0 and 1 and defined as the 
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new weight vector. If the K value is significantly different from the previous estimate a new 
loop/iteration will be started. If the K value is not significantly different from the previous esti-
mate the algorithm has converged and the results are presented. 

Discussion, Concluding Remarks and Perspectives  

The intensity changes caused by pH changes are not very well described by the existing litera-
ture, so it is hard to pinpoint what is actually causing them. However a few related attendances 
will be discussed here. It is known that the fluorescence intensity changes, when a protein is 
unfolded (Albani, 2007a). Though, vitamins cannot be denaturated as proteins, it could be dis-
cussed whether a charge change of riboflavin is appearing, in which a protonation or a depro-
tonation might appear under the pH changes and thereby causes a characteristic change of the 
molecule. The rates of protonation and dissociation can be fast enough to compete with the 
fluorescence, and thereby the excited state of the fluorescence molecule. This means that the 
fluorescence intensity may be caused by the quantities of the acid or the conjugated base in 
the excited state instead of the quantities in the ground state (Schulman, 1971). 

Several activities can appear during the excitation and emission steps and since riboflavin be-
longs to the compound group of flavins, it can appear in several forms. Flavins, which are char-
acterized by having an isoalloxazine ring and ribityl side chain, can exist in three different redox 
states and depending on the pH of the solution each of these redox species can exist in a cati-
onic, neutral and anionic form, which are illustrated in Figure 5.12 (Weimar and Neims, 1975; 
Müller, 1991).   

 
Figure 5.12: An equilibrium scheme between cationic, neutral and anionic flavin species (Islam, et al., 2003). 

It has been reported that these forms fluorescence differently in which the cationic form is 
nearly non-fluorescent and the anionic form is weakly fluorescent, whereas the neutral form is 
quenched at low pH due to excited-state protonation to the cationic form (Drossler, et al., 
2002). Though, it is hard to know which form the riboflavin exists in during the degradation 
process in the study, these various changing forms could also be a reasonable explanation for 
the intensity shifts in the applied system. Furthermore, it has even been reported that the pKa 
value might differ in the ground state versus the excited state (Schulman, 1971), which only 
complicates defining the state of riboflavin during a measurement. However, if the pKa value is 
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reached within the pH change and the characteristic of the compound thereby change, this 
could potentially cause an intensity shift. In other words the molecule’s transitions between 
the electronic states might be changed, which could give rise to intensity change.  

Another study reports that the fluorescence quantum yield of riboflavin in a aqueous solution 
differ due to the pH, where the quantum yield was more or less constant in the pH range from 
4-9, but below pH 4 the quantum yield was increased (Islam, et al., 2003). As a higher quantum 
yield leads to larger fluorescence intensity, as seen in Equation 5.1, the intensity of riboflavin 
should be increased at a lower pH.  

The few presented explanations are probably all more or less related to the fluorescence shifts 
in the riboflavin degradation. No matter what, I believe that the obtained results regarding the 
issues on intensity changes in fluorescence spectroscopy are of major importance, as the quali-
ty of the quantification of the determined chemical compounds can be dramatically affected. I 
also believe that it important to inform the analytical scientists working with fluorescence spec-
troscopy that they have to be aware of these measurement issues. And one way to overcome 
such issues in in-line fluorescence monitoring systems could be to apply the suggested correc-
tion strategy.  
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CHAPTER 6 
 

CONCLUSIONS 

The primary aim of this PhD project was to elucidate and explore the dynamics in fermentation 
processes by NIR and fluorescence spectroscopy. The objective was to decrease the gap be-
tween successful research studies conducted at lab scale and industrial full scale implementa-
tion of advanced on-line monitoring systems.  

The first study (Paper I) outlined the advantages of applying real-time monitoring of biopro-
cesses and it also highlighted that the applied techniques with various measurement orders 
deliver different sources of information. Even though zero order measurements, such as pH, 
provide important information, first order (NIRS) and second order (fluorescence spectroscopy) 
measurements provided complementary evidence on the microbial state, which increases the 
process understanding. In a future perspective this allows for better control and enables a 
much faster optimization effort and error handling. NIRS provided indirect measurements, from 
which the dynamics of the process could be described, whereas fluorescence spectroscopy 
allowed quantification of components throughout the fermentation process. It is concluded 
that both NIR and fluorescence spectroscopy are applicable for real-time monitoring of yoghurt 
fermentation and thereby provide better fermentation control and process understanding 
during yoghurt manufacture.  

Near infrared spectroscopy has previously demonstrated to be ideal for on-line monitoring of 
fermentation processes. This PhD thesis provided NIRS results, which show that NIR measure-
ments reveal a quantifiable dynamic trend from which consistency and quality control can be 
derived. In comparison to pH, which is traditionally applied as the control measure in the indus-
trial production of yoghurt, NIRS does not only provide additional information about the lactic 
fermentation process, but it also delivers both chemical and physical insight. Pre-processing 
methods are often required for removal of scatter, in order to model the variation obtained 
from the absorbance only. In some cases, scatter information obtained from NIRS can however 
be used for process monitoring. From the results obtained in this thesis, it is concluded that 
useful variation both in scatter and in the absorption can be present in the NIRS spectra. In 
combination with kinetic modelling it is possible to model both physical changes, due to the 
textural changes appearing during the gel formation, and chemical changes, which are related 
to the biological conversion reactions. The research conducted in this PhD project showed that 
NIRS can provide valuable physical and chemical information for on-line monitoring of yoghurt 
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fermentation.  

Fluorescence spectroscopy has a high sensitivity and in comparison to near infrared spectros-
copy, it is a direct method, which can provide real-time quantitative determinations of molecu-
lar compounds throughout the fermentation process. It is however also sensitive to a multiple 
of external factors which can influence the measurements in a undesirable way. This PhD pro-
ject elucidates and confirms that pH changes have a major effect on the fluorescence intensi-
ties, which can influence the quantifications of relevant key components negatively. When the 
pH was either increased or decreased, manually, during the light induced degradation process 
of riboflavin, a clear increase or decrease in the fluorescence landscapes was observed. This 
thesis presents the major changes seen in the fluorescence landscapes and concludes that 
fluorescence data must be evaluated carefully if pH changes happen in the measured system. 
Furthermore, this thesis concludes that such data can still be applied for on-line monitoring if 
corrections during the modelling stage are carried out. Such a correction strategy, based on a 
chemometric modelling approach where weighted non-linear regression and weighted PARA-
FAC are combined, was developed in this PhD thesis and thereby it was possible to compensate 
for fluorescence intensity shifts.  

Based on the above mentioned findings, I believe that this thesis has reached conclusions with 
may enable improved process control, which potentially allows for a faster detection of abnor-
mal batch conditions, and might also enable better consistency of the product quality in an 
industrial setting. In addition, I conclude that these finding provide knowledge for the research 
as well as the industry, in which even better  non-invasively cellular physiologic states can be 
followed both by in-line NIRS, when measuring yoghurt fermentation, and by in-line fluores-
cence spectroscopy when monitoring processes where pH changes appear during the process.  
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CHAPTER 7 
 

PERSPECTIVES 

The work presented in this thesis and the appended articles and manuscripts illustrates that 
near infrared spectroscopy and fluorescence spectroscopy have high potential for real-time 
monitoring of lactic fermentation processes. Furthermore, it presents approaches to extract 
more information on the dynamics obtained by NIRS, and to gain fluorescence data of higher 
quality when pH fluctuations are present in the measured process. Nevertheless, more re-
search and effort is needed to overcome the existing challenges and issues concerning imple-
mentation of advanced on-line monitoring systems in industrial full-scale fermentation pro-
cesses.  

Knowledge sharing between academia research and industrial manufacturing is a main point 
for the development of successful monitoring and control approaches. Ideas and practical limi-
tations can hereby be discussed and evaluated before academia research is conducted, which is 
valuable for the quality of the work. However, when sharing knowledge with e.g. analytical 
chemists or other scientists, I often meet a certain doubt and scepticism when talking about 
dynamics and indirect measurements. It seems that analytical scientists find it very uncomfort-
able to define scientific statements via process dynamics. I believe that more research within 
dynamics could help convincing scientists that it is a valuable tool for process monitoring. In 
other words, it seems that one of the main challenges is to achieve acceptance from the scien-
tists, working in the industrial manufacturing, in order to ease the implementation of advanced 
in-line monitoring strategies. 

Off-line state-of-the-art methods for controlling and validating industrial fermentation process-
es such as GC-MS and HPLC are specific, sensitive and quantitative techniques, which can pro-
vide loads of detailed information on the metabolic state of a fermentation. Metabolomics e.g. 
is a hot research topic these days and GC-MS is a main analytical tool for providing metabolom-
ics profiles of various biological systems. I guess that an approache like GC-MS would meet less 
scepticism, if it was introduced on-line. It is possible to implement GC-MS and HPLC on-line via 
a fast-loop and/or a sample port. However, we still have to be aware of complex sample pre-
treatment, in which potential errors can be introduced. And it is furthermore not unusual that 
one measurement takes at least 20 minutes to perform due to the high complexity of fermen-
tation samples which need a proper retention time in order to separate the various compounds 
optimal. The relatively long measurement duration required increases the measurement inter-
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vals. NIRS and fluorescence spectroscopy on the other hand do not meet such challenges. They 
are not only capable of collecting measurements with an interval of a few minutes, which in-
crease the quality of the process monitoring, but they also do not require further analytical 
steps, where errors can be introduced, especially in an on-line situation. Therefore, I still be-
lieve that on-line probes proving multivariate spectral information have great potential for 
process monitoring in the food- and pharma industry.  

The study concerning intensity shifts in fluorescence landscapes caused by pH fluctuations was 
based on a model system where the light induced degradation process of riboflavin was fol-
lowed. This chemistry was applied in order to keep the system as simple as possible. For further 
work, it would be of great interest to apply the suggested correction strategy on a fermentation 
system, where pH is decreasing over time due to natural progress. Further research is needed 
to elucidate how the fluorescence compounds present in the lactic fermentation are affected 
over time when the pH decreases and if this influences their quantification significantly. If the 
fluorescence compounds found in the lactic fermentation are actually affected in a similar way 
as the compounds presented in the riboflavin degradation, the correction strategy might be 
suitable for the yoghurt fermentation to get a more representative estimation of the dynamics. 
In addition, pH changes might also appear due to dosage stops, over-adjustment because of to 
slow mixing, and weighting errors in the solvent and buffer preparation step. For that reason, it 
would be interesting to test the correction strategy in other fermentation systems, especially 
full scale, in order to be capable of evaluating the approach further.  

In GMP manufacturing the criticality of process parameters is often determined and evaluated 
in order to ensure a uniform production and thereby a uniform product. Based on this evalua-
tion, selection of Critical Quality Attributes (CQA) and rating of severity is done. A CQA can be a 
physical, chemical, biological or microbiological property or characteristic that should be within 
an appropriate limit range to ensure the desired product uniformity and quality. Based on the 
CQAs Critical Process Parameters (CPP) can be defined. The CPPs have an impact on a critical 
quality attribute and should therefore be monitored and controlled to ensure that the final 
product has the desired quality. Theses CPPs could easily be monitored by NIR or/and fluores-
cence spectroscopy, which would allow for real-time estimation of CPP throughout the process 
with measurement intervals less than a minute. Based on the work presented in this thesis, I 
would assume that the gel formation in the yoghurt formation is a potential CPP, as the right 
viscosity is an important parameter, for the final yoghurt product.   

As the concept of GMP is to ensure patient and consumer safety as well as to ensure uniform 
products, in my opinion, it is just a matter of time before in-line monitoring by e.g. NIR or fluo-
rescence spectroscopy will be implemented in full-scale productions. They are ideal PAT meth-
ods, which allow for more sophisticated process controls and thereby for e.g. implementation 
of a feeding strategy if needed, plus they also give more information on the metabolic state of 
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the applied microorganism, than the classical monitoring sensors. These mentioned facts all 
agree with the concept of GMP allowing the process to operate under GMP requirements. 
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Monitoring fermentation processes using
in-process measurements of different orders
Carina Svendsen,* Thomas Skov and FransW. J. van den Berg

Abstract

BACKGROUND: In-processmonitoring of fermentationprocesses (at-line, on-line or in-linemeasurements) is essential to control
productivity and ensure high product quality. A number of different monitoring techniques are available for this purpose
and one possible categorization among this variety of techniques is based on the different structures generated by the
measurements and the potential of these with respect to holding and extracting process information. In this study lactic
fermentation processes ismonitored by different techniques (brix, pH, NIR- and fluorescence-spectroscopy) providing different
data structures (zero-, first- and second-order). Multivariate data analysis (PCA and PARAFAC) was applied on the first- and
second-order data sets, and the different measurement signals or derivatives of these were combined by amultiblock strategy.
The aim of this work is to present and clarify the advantages and variations of the different data structures.

RESULTS: The zero-order pH and brix measurements (a commonly used measure for total sugar content in wine fermentations)
decreased in a smooth and logical pattern from 6.4 to 4.4 and from 10.5% to 6.2%, respectively – provided valuable critical
quality attributes, communicating the fermentation process is progressing over time in accordance with biological and
engineering intuition. The first-order NIRmeasurementsmodelled with PCA showed an increasing trend over time on PC1. This
increasing trend corresponds to the lactic bacterial growth. This trend could be distinguished by statistical modelling from a
second trend (PC2), reproducible for all production batches. Based on the second-order fluorescence measurements modelled
byPARAFACand its statistical uniquenessproperties, threedistinctivefluorescence compoundswere found to varyover process
time. Most probably these three compounds represent riboflavin, tryptophan and lumichrome or NADH. Usingmultiblock PCA
the combined sensor signals identified two distinguished, reproducible time profiles for all batch runs.

CONCLUSIONS: Themost interpretable chemical informationwas obtained by fluorescence spectroscopy due to the uniqueness
properties of second-ordermeasurements. The first-order technique NIR spectroscopy also provided valuable process informa-
tion, though the process trends can only be interpreted indirectly and if interfering species had been encountered they could
not have been modelled. The multiblock data set provided by zero-, first- and second-order measurements recorded over time
highlighted important relationships among the different variables that provide chemical information when multivariate data
analysis is applied. Although, first- and second-ordermeasurements seem to obtainmore information than the zero-ordermea-
surements, it is important to keep in mind that zero-order measurements can provide valuable information about the process,
especially in combination with different sensors.
© 2014 Society of Chemical Industry

Keywords:data order; zero-, first- and second-order techniques; processmonitoring; lactic fermentation; NIR spectroscopy; fluorescence
spectroscopy

INTRODUCTION
An increasing focus on the development of more efficient and
less time-consuming methods to monitor and control fermenta-
tion processes and bio-processes in general is seen in industry.
Fermentation processes are commonly used for production of
pharmaceuticals, enzymes and foods such as fermented milk
products. By applying a suitable control strategy and measuring
the critical process parameters in real time, such as physical, chem-
ical and biological process conditions, it is possible to control
productivity and ensure high product quality. Furthermore, a
decrease in energy and raw material use plus an increase in yield
might be achieved by better control. Since the Food and Drug
Administration (FDA) published the process analytical technology
(PAT) guideline in 2004 (http://www.fda.gov/cder/OPS/PAT.htm),
the number of studies concerning (in-process) monitoring of
fermentation processes using various advanced techniques has
increased rapidly.

Simple sensors for on-line monitoring of pH, temperature, O2

and CO2 have been used for decades as biotechnology measure-
ment systems,1,2 and are so common that they could be called
classical fermentation monitoring methods providing invaluable
process information. The near-infrared (NIR) spectroscopy tech-
nique is increasingly used to monitor fermentation processes.3,4

NIR spectroscopy can be used to determine the concentration of
chemical compounds since the functional groups C–H (aliphatic,
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aromatic or alkene), N–H (amine) and O–H are absorbing in the
NIR range.5 By the sparsely employed fluorescence spectroscopy
measurements a number of biological relevant fluorescent com-
pounds, such as proteins and cofactors, can be selectively deter-
mined in a fermentation broth,6,7 thereby providing critical biolog-
ical process parameters.
One way of categorizing the different monitoring techniques is

via thedifferent outcomesof data arrangements,meaning that not
only is the biological, physical or chemical information of inter-
est, but also the data structures obtained of different complexi-
ties or orders.8 As will be shown in this paper such complexities
can be useful for biotechnological production. The simplest data is
obtained by so-called zero-order measurements, where one data
point or scalar is obtained per measured sample, e.g. pH mea-
surements. In the case where one data vector is obtained per
sample, such as NIR spectroscopy where absorbance at different
wavelengths is registered, the signals are called first-order mea-
surements (first order tensor). Data obtained from second-order
measurements are more complex from a data structure point
of view, as a matrix is obtained per measured sample (second
order tensor). Fluorescence spectroscopy is an example, where
signals at various emission and excitation wavelength combina-
tions are recorded per sample. Applying the different techniques
in on-line monitoring of a fermentation process, measurements
are carried out continuously over time to follow the process. Thus,
the zero-ordermeasurementswill become a first-order tensor, and
likewise first- and second-order measurements turn into second-
and third-order tensors, respectively, when an extra dimension
(time in this case) is added.
The main advantages of higher-order measurements in

(bio)processmonitoring8 are symbolized in Fig. 1. In this depiction
three measurements are performed denoting time-progress in
fermentation. The blue and cyan dots represent zero-order mea-
surements (pH recordings) while the blue and cyan line-segments
indicate first-order measurements (NIR spectra). The full contour
landscapes (in this case simulated bi-normal distributions with
increasing intensities) symbolize second-order measurements
such asmulti-wavelength excitation-emissionmeasurements. The
red dot in recording number two marks the top of an unknown
interfering component in the system.
From the (simulated) example in Fig. 1, comparing the blue and

cyan results, it should become clear that a zero-order measure-
ment cannot handle or, equally important, warn us about interfer-
ing species in the measurement. For example, a univariate OD600
measurement is not able to discriminate which chemical species
increase optical density of the system; the measurement is just a
summation of all components or processes involved. This obser-
vation should not be confused with the powerful concept men-
tioned before of recording zero-order measurements as a func-
tion of time, where the total actual data output would turn into
a first-order tensor, i.e. a vector. For example, a pH–time profile in
fermentation can tell us a lot about the performance of a batch, i.e.
if the run was in accordance with expectation. But it is important
to note that this information is first available post-run or when at
least sufficient process time has passed. Every instantaneous pH
measurement gives only limited information by itself.
For first-order measurements like NIR spectroscopy the situa-

tion is different; the cyan vectors in Fig. 1 can identify similar-
ity between profiles and quantify the component of interest. The
first-order advantage8 tells us that in the case of interfering chem-
ical species quantification might be obscured, but diagnostics is
readily available to judge if a new measurement fits with the

expected profiles or not (as can be understood from the bluemea-
surement series). This is themain idea behindmodernMultivariate
Statistical Process Control strategies9 where the first-order advan-
tage is used not only to predict the specific chemistry of interest
but also as diagnostic for process performance.10 A practical dis-
advantage of first-order methods is that often larger training-sets
of several runs are required to estimate the latent structures in the
time-series of a batch-profile.
Quantification in the presence of interfering chemical species

is possible in second-order measurements. As long as the com-
ponent of interest and the interfering component do not overlap
too much in the landscape, as depicted in Fig. 1, it is possible to
estimate unique profiles in the two directions that describe each
measurement landscape by stacking the measurements on top of
each other (thus forming a three-way array). And from this math-
ematical decomposition directly follows the quantification of the
component (plus, if present, any interfering species). A second
major advantage of second-order data is that reliable estimates
can be made with much smaller data sets, which can be of great
benefit for new monitoring strategies (and at the initial stage of a
batch-run).11

Having access to several different data structures/arrangements
from different analytical platforms as defined above is common
when monitoring a fermentation process. This emphasizes the
concept of bringing all data together bymerging data and looking
for consensus between the different signals. This discipline called
multiblock data analysis is a non-trivial task not only due to the
many different information sources but also due to the different
data structures; some being discrete (e.g. brix measured on grab
samples) and others being near-continuous (e.g. in-process NIR
and fluorescence). Many multiblock approaches can be found in
the literature, but here only the Consensus Principal Component
Analysis (CPCA) version is considered.28

The aim of this study is to compare various data structures and
orders obtained fromdifferent in-process techniques and illustrate
the advantages and variation in complexity of the different data
formations. For this we use a model fermentation from food
science based on the lactic acid bacteria Lactobacillus bulgaricus
(LB) and Streptococcus thermophiles (ST).

EXPERIMENTAL
Model system
Fermentation batches (five) were carried out using the starter
culture YF-3331 (a mixture of the lactic acid bacteria Lactobacillus
bulgaricus (LB) and Streptococcus thermophiles (ST)). The culture
was provided by Chr. Hansen A/S (Hørsholm, Denmark) and stored
at –45∘C. The concentration of the starter culture was 0.2%.
Skimmed milk powder (Arla Food Ingredients, Sweden) was used
as media by dissolving 1200 g in 11 L of water.
The fermentations were carried out in a 15 L in-house modified

glass fermenter vessel (Applikon, Delft, The Netherlands) with a
working volume of 11 L. The lid of the vessel contained six instru-
ment ports, a thermowell for temperature monitoring and two
ports for the hollow baffle-ring for water flow to control the tem-
perature in the fermenter. A stirrer with two flat-bladed impellers
and three stationary baffles were situated in the fermenter. The
mixing speed was kept constant at 150 rpm, controlled by a IKA
EUROSTAR 60 control motor (IKA-Werke GmbH & Co. KG, Staufen,
Germany). The temperature was maintained at 40∘C and was con-
trolled by a Pt100 probe inserted in the thermowell (filled with
water for conduction) connected to a HAAKE Phoenix pumping

wileyonlinelibrary.com/jctb © 2014 Society of Chemical Industry J Chem Technol Biotechnol (2014)



Higher-order in-process measurements www.soci.org

Figure 1. Symbolizing the characteristic difference amid zero-, first- and second-order measurement principles.

water bath (Thermo Scientific, Karlsruhe, Germany). Once the tar-
get temperature was reached the instruments were switched on
and 22 g of starter culture was inoculated into the media.

Measurements
∘Brix (%)measurements
Samples were frequently (but not equidistant or equal over the
batch runs) withdrawn manually and ∘brix was measured at-line
by a DR-103 (Index Instruments Limited, Cambridgeshire, UK).

pHmeasurements
pH measurements were collected in-line with an interval of 30 s,
using a pH-meter (MadgeTech Inc., Warner, NH-US) placed in the
fermentation broth. The pH probe was calibrated at pH 4.01 and
pH 7.00 before use.

NIR spectroscopy
NIR measurements were performed in-line with an ABB Bomem
spectrometer (ABB Bomem, Quebec, QC, Canada) equipped with
a fibre optic reflectance probe placed in the fermentation broth.
The spectral data for each measurement was collected as the
average of 64 single beam spectra for each measurement. The
spectra were referenced against a white background spectrum
(average of 64 scans) collected before the process measurements
were started. The fermentation broth was scanned over a range
from 1000–1800 nm (10000–5556 cm−1, resolution 8 cm−1) with a
time interval of 60 s between measurements.

Fluorescence spectroscopy
The fluorescence measurements were performed
on-line/non-invasive with a BioView spectrofluorometer (DELTA
Light and Optics, Hørsholm, Denmark). The spectrofluorometer
head was situated outside the fermenter, measuring through the
glass wall. Fluorescence landscapes were obtained with excitation
wavelengths from 270–550 nm and emission wavelengths from
310–590 nm, with an interval of 20 nm, providing a total of 15
excitation and 15 emission wavelengths, every second minute.

Chemometric modelling
All data analyses were performed using Matlab (Matlab R2014a,
The Mathworks, Inc. USA). PCA, PARAFAC and CPCA were per-
formed using in-house routines and the PLS-Toolbox (PLS-Toolbox
7.5, Eigenvector Research Inc. USA).

RESULTS
pH and Brix
Figure 2 shows the development of pH in two normal operat-
ing condition (NOC) batches, randomly selected from the set
of five. The recording and dynamics are in agreement with the
well-known profiles of yoghurt cultivation with a pH drop from
approximately 6.4 to 4.4 during a processing time of around 3.7
h. The drop in pH with a point of inflection between 1.5 and 2 h
into the process indicates that an expected acidification caused by
the conversion of lactose into lactate occurs. The end-point of a
yoghurt fermentation process is often definedby the pH value and
a previous study suggests the continuous control by monitoring
the pH.12 The two runs in the figure also show that the process is
very well controlled and reproducible, an observation representa-
tive for the larger set.
Figure 2 also presents the zero-order technique brix, measured

at-line over time, which shows a sharp decrease from around
10.5% to 6.2% in a narrow window around 2 h run-time. Brix is
a summative and unselective measurement concept where all
sugars will have a contribution to brix, not only lactose. Moreover,
acids generated ameasurement response aswell. The same obser-
vation holds for pH, another zero-order measurement principle,
where all acids combined generate the characteristic drop over
time. Since a drop in both pH and the sugar content is observed
and expected for our system, the pH and brix results can be seen
as critical quality attributes as they ensure/indicate that the fer-
mentation is progressing over time according to NOC. However, it
should be noted that a brix outcome of 8% can (theoretically) be
achieved by an infinite number of concentration-combinations of,
for example, lactose and lactic acid and as such the monitoring or

J Chem Technol Biotechnol (2014) © 2014 Society of Chemical Industry wileyonlinelibrary.com/jctb



www.soci.org C Svendsen, T Skov, FW.J. van den Berg

Figure2.pH (—) andbrix (○/--) as a function of time for two representative
yoghurt cultivation batches.

control strategy using this signal would have to take the dynamic
behaviour (implicitly or explicitly) into consideration. This is also a
possible explanation for the unrealistically narrow window of the
brix drop; likely there are many different processes taking place at
this stage in the batch and zero-order brix measurements are not
selective enough to distinguish between them.

NIR-spectroscopy
Figure 3 shows the NIR spectra of one fermentation batch col-
lected over 3.7 h, first-order measurements where the absorbance
of the spectra in general decreases over time. The figure shows
strong NIR absorption bands in the range between 1125 and 1250
nm and 1350 and 1550 nm. The region between 1150 and 1250
nm can be associated with the second overtone vibration of C–H
stretching and the regions between 1350 and 1650 nm might
belong to the combination of first overtone of O–H stretching
of sugars (1450 nm), first overtone of O–H stretching in water
(1440–1470 nm) and third overtone of carbonyl groups (>C=O)
(1333–1936 nm).13 Further studies report that the sugar content
in yoghurt can be predicted by NIR spectroscopy.14 Thus, it seems
feasible to determine sugar contents based on the NIR spectra
obtained. However, highly absorbing components such as water
and light-scattering particle material causes a major variation in
the spectra, while chemical compounds appearing in lactic fer-
mentations such as lactose, galactose and lactate probably only
cause minor variances. For that reason multivariate data analysis
is applied to identify systematic and principal variation found in
the spectra.15 The raw spectra were pre-processed by standard
normal variate (SNV) scaling to remove the sample dissimilarities
causedbybaseline and effective path-length differences in theNIR
reflectance measurements. The region between 1400 and 1500
nm was also removed before modelling because spectra from the
beginning of a time-series showed too high absorbance values in
this region as observed in Fig. 3, possibly violating Lambert–Beer’s
law of concentration-linearity. The pre-processed data were mod-
elled by principal components analysis (PCA) in order to find and
explore major patterns and trends in the batch data sets. It is
worth recalling that pre-processingmethods to remove (assumed)
artefacts are possible for first-order measurements; at least two
responses per single measurement are required to estimate a
baseline and removeanyundesiredoffset in the signal. This implies

Figure 3. NIR spectra from Batch A (duration 3.7 h, N= 223) coloured/
shaded according to time.

that zero-order data cannot be used to detect interfering chemical
components,which is aproblemwhen lookingat such signals only.
The first principle component vectors shown in Fig. 4(a), com-

puted independently for the two NIR data sets/batch runs,
describe an increasing trend over time. This should be interpreted
in combination with the variable loadings in Fig. 4(b) due to the
sign indeterminacy in PCA.16 A small bump on the s-shaped curve
of the first score is apparent shortly before 2 h for both batches.
The increasing tendency ismainly caused by a variation appearing
in the baseline slope, around 1350–1400 nm, 1500–1550 nm
and to a lesser extend around 1700–1800 nm, which could be
interpreted as sugar and the third overtone of carboxyl groups
(1333–1936 nm) using the rising flanks of the (eliminated) band
centred at 1450 nm as indicator.13 The reader should recall that
vibrational spectroscopies like NIR are pH dependent and it is
notoriously difficult to separate potential change-correlations
from true chemistry or biology in reacting systems. Comparing
Fig. 4(a) with Fig. 2 we see that the trends show similarity but
are sufficiently different to have confidence in the method. The
NIR based time-profiles for principle component two (Fig. 4(a))
describes an almost flat baseline for 3.7 h except for a small
negative bump followed by a larger positive one at around the
(main) inflection point of the first score profile. For NIR the same
highly reproducible trends are seen for the two batches, even
when modelled separately. The corresponding loading profiles
in Fig. 4(b) show primarily a baseline curvature which is, despite
the noisy appearance and low percentage variance explained,
again very reproducible by a stable measurement principle like
NIR. Although we would not describe this as a disturbance or
interfering species as classified in the theory section, it does nicely
illustrate the first-order principle: compared with the remainder of
the batch an ‘abnormal event’ can be located around 1.9 h into the
processes, and we can make this distinction/segmentation based
on the spectral pattern in the NIR measurements as summarized
in the distinct loading profiles.

Fluorescence spectroscopy
A representative fluorescence excitation-emission land-
scape – and intrinsic second-order measurement – selected
from the measurement series of Batch A is presented as a
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Figure 4. (a) NIR principle component one (PC1) and principle component
two (PC2) score values as a function of time for two batches; (b) PC1 (99%
variance explained for both batches) and PC2 (<1% variance explained)
variable-loading vectors.

pseudo-colour map in Fig. 5(a). By stacking different measure-
ments (samples taken over time) on top of each other we thus
get a three-way data structure of excitation-by-emission-by-batch
time. The most dominating fluorescence peaks found in the
landscape were investigated as a function of time using selected
emission-excitation wavelength couples (Fig. 5(b)–(d), effectively
‘taking a tubular vector’ first-order signal from the data cube), to
explore if any changes of chemical compounds can be detected in
the raw spectra. Despite the erratic pattern, some profiles can be
distinguished with transitions close to the expected point around
2 h into the process. To get the most valuable information out of
this data structure a tensor algorithm like PARAFAC is required.17

When the fluorescence data cubes were modelled by PARAFAC
making separate models for each of the two selected batches,
three components were identified as being significant. Thismeans
that three different fluorescence components were found to vary
over batch-time. The results from the PARAFAC models are illus-
trated in Figs 6 and7,where the loadings and the scores are shown,
respectively. In Fig. 6, the three fluorophores are shown as land-
scapes (reconstructed as outer- ormatrix-products of the emission

and excitation loading vectors,18 see Fig. 1) and the three signals
are in agreement with the three signals outlined in Fig. 5. The bias
between profiles of the two batches in Fig. 7 can be explained by
repositioning of the instrument (outside the reactor vessel, hence
looking non-invasively through the glass reactor wall) in-between
batch-runs. Note that the fluorescence in this investigation was
used as an exploratory/investigative technique rather than for
quantification purposes.
The fluorescence component found at the excitation/emission

maximum around 470/510 nm (Figs 6(a) and 7(a)) can be iden-
tified as riboflavin, a well-known fluorophore in dairy products,
whereas the fluorescence component with an excitation/emission
top around 310/370 nm (Figs 6(c) and 7(c)) could represents tryp-
tophan, also a well-known fluorescence active compound. Both
riboflavin and tryptophan are expected to be found in yoghurt19

and it has been listed before that riboflavin can be found at
wavelengths 445/520 nm and tryptophan at 285/364 nm,20 which
agrees well with the results obtained considering these measure-
ments were collected using a process instrument with very limited
wavelength resolution. It appears that riboflavin increases over
time, sharply in the first hour and right after the sharp drop in brix
around 2 h. Some studies21,22 found that riboflavin is produced by
Lactobacillus fermentum and Lactococcus lactis, respectively. How-
ever, the starter culture used in this study contains the lactic acid
bacteria Lactobacillus bulgaricus and Streptococcus thermophilus
and no studies were found describing whether riboflavin is pro-
duced or not by these strains. On the other hand, earlier studies
also revealed that ATP is found at excitation/emission maximum
292/392 nm (Food Fluorescence Library, www.models.life.ku.dk),
which is close to the excitation/emission area where tryptophan
has been reported previously (285/364 nm). Therefore, the fluores-
cence signal found at the excitation/emission maximum around
310/370 nm could represent either ATP or tryptophan. However,
ATP is a product in the glycolysis, meaning that an increasing
and not a decreasing trend, as seen in the PARAFAC scores in
Fig. 7(c), over time are expected. On the other hand, it is well
known from the literature that the amino acid tryptophan is a
nutrient consumed by lactic acid bacteria.23 Hence, the trend seen
in Fig. 7(c), described by the third PARAFAC score, is most probably
tryptophan.
The second PARAFAC score – excitation/emission maximum

around 350/450 nm (Fig. 6(b)) – is systematically increasing over
time (Fig. 7(b)). The fluorescence profile could be representing
lumichrome, which is a degradation product from riboflavin and
has previously been defined at an excitation/emission wave-
length around 360/450 nm.24 Based on previous studies the
profile could also represent NADH, which was reported around
340/465 nm. NADH is formed in the glycolysis, when glucose is
converted into pyruvate.25 The glycolysis takes place when the
milk sugar lactose, which is a disaccharide containing glucose
and its isomer galactose, has been first phosphorylated into
lactose-6-phosphate and then further hydrolysed into glucose
and galactose-6-phosphate.26

It can be interpreted from the PARAFAC models that the flu-
orescence signal obtained from yoghurt fermentation arises
from riboflavin, tryptophan and lumichrome or NADH. Despite
a lower signal-to-noise ratio compared with NIR and an off-
set due to interfacing issues – there is a very clear similarity
between the two batch runs. Furthermore, based on the unique-
ness properties and second-order advantage of the PARAFAC
model, it is possible to use the score-profiles as illustrated in Fig. 7
directly as pseudo-concentration-profiles over time based on the
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Figure 5. (a) Fluorescence landscapes obtained from Batch A (recorded at 0 h); time profiles for three expected fluorophores found in the raw data at
Ex/Em 470/510 (b), 350/450 (c) and 310/370 nm (d).

fluorophores, without limitations like sign ambiguity or interfering
species.

Multiblockmodelling
In the previous sections different signals (brix, pH, NIR and fluo-
rescence) for different batch runs have been modelled and inter-
preted separately, where a (visual) comparison could be made
as the end-stage of data analysis. However, multiblock analysis
can be applied to employ several data blocks simultaneously,
thereby simplifying the overall interpretation of the various batch
parameters.27 In this section the zero-order pHmeasurements, the
two latent variables obtained from the PCA analysis on the NIR
measurements and the three latent variables obtained from the
PARAFAC model on the fluorescence measurements are gathered
in a single datamatrix (six variables in total) for each of five batches
(Batch A and B presented before, supplemented with three more
runs). The five batches are modelled individually (at the so-called
block level) and combined (at the so-called super level) using Con-
sensus PCA (CPCA28), as illustrated in Fig. 8. The block level makes
it possible to compare trends and patterns among the batches;
the super level gives as outcome the overall trend. The interpreta-
tion thus becomes more holistic and simplified. It was chosen not
to include the brix measurements, as a minimum of data points
were collected compared with the other techniques. Matching

data points from the NIR PCA scores and pH measurements were
selected based on the fluorescence time-scale, in order to create
vectors with similar length (113 time points for each batch, visu-
ally aligned between batches). The blocks were auto-scaled and
two principal components were determined.
The block and super scores and block loadings for PC1 and PC2,

are plotted in Fig. 9(a) and Fig. 9(b), respectively.
PC1 describes an increase over time as observed before for

some individual measurement signals, while the main feature in
PC2 is the steep, characteristic pattern between 2 and 2.5 h into
the process (Fig. 9(a)). The scores on PC1 seem to be very similar
for all batches, while the PC2 score-profile between the batches
varies more. It should be noted that the difference in magni-
tude between block-level and super scores is a consequence of
the CPCA algorithm only (which could easily be removed by a
post-analysis normalization). Interpretation of the block-loading
plots for PC1 shows that Fluor1, Fluor2 and NIR1 are positively
correlated with the trend observed for PC1 while Fluor3 and pH
are negatively correlated. This corresponds well with the earlier
observations in Figs 4(a) (NIR), 5(b) and 5(c) (Fluorescence). Fur-
thermore, the negative correlations observed are consistent with
the decreasing trend seen for the fluorescence data (Fig. 5(d)) and
for the pHmeasurements (Fig. 2).
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Figure 6. The PARAFAC-loading (Batch A) for (a) factor 1; (b) factor 2; (c)
factor 3.

The block loadings for PC2 shows that NIR2 is negatively cor-
related with the PC2 trend observed in the score plot, which it
is consistent with the bump observed for PC2 for the NIR data
(Fig. 4(a)). Furthermore, it is observed that Fluor1 and Fluor3 are
slightly correlated with the trend observed for PC2.
The block loading plot of PC1 and PC2 (Fig. 10) illustrates that

the parameters (pH, NIR1, NIR2, Fluor1, Fluor2, Fluor3) are very alike

Figure 7. PARAFAC time-score values for two batches of (a) factor 1; (b)
factor 2; (c) factor 3.

over the five batches as they are clearly grouped together. Fur-
thermore, NIR1 and Fluor2 are highly correlated again indicating
that PC1 obtained from the PCAmodel on the NIR data and factor
2 obtained from the PARAFAC model on the fluorescence data are
very alike, and cannot be differentiated from each other in the
two component CPCA model. NIR1 and Fluor2 are also correlated
with Fluor1 and pH is correlated with Fluor3 both describing a
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Figure 8. Symbolizing the consensus principal component analysis model.

decreasing trend over time. The last cluster of NIR2 is separated
from the other variables, which corresponds well with the charac-
teristic bump described by PC2 obtained from the PCA model on
the NIR data.

DISCUSSION
AsinglepHorbrix-measurementby itself is a zero-order signal, and
when these zero-order-measurements are collected as a function
of time as was done in the current study, they turn into a vector or
first-order tensor.29 Interpretations of a single pH or brix data point
does reveal process information for a specific time but this infor-
mation typically only has value for processmonitoringwhen inter-
preted in relation to the neighbouring valuesmeasured over time.
From the pH- and brix-curves in Fig. 2 it is possible to compare the
process status of several runs (e.g. under normal operating con-
ditions) but it is not possible to achieve quantification of individ-
ual chemical compounds. Besides, these zero ordermeasurements
do not allow for checking if the measurements are actually repre-
senting the expected chemistry or partly due to interfering com-
pounds. Again, measurements over time can help to elucidate this
but there is a risk that process disturbancesmight not be observed
quickly enough.
More information is gained from the NIR spectra. In general,

first-order instruments, such as NIR-spectroscopy, are more pow-
erful analytical tools since distinctive signals in the spectrum such
as molecule specific vibrations can be used to quantify chemi-
cal compounds.8 With first-order NIR measurements carried out
over time the data-outcome is a second-order tensor or a data
matrix. This allows us to follow principal profiles over time which
gives the opportunity to monitor the fermentation process with
a more comprehensive understanding, at a more abstract or prin-
cipal level. A related advantage is the ability to detect interfering
chemical species based on differing spectral outcomewithout the
need for a direct chemical or biological interpretation.
The first PCA scores obtained from the modelled NIR data

(Fig. 4(a)) clearly shows an increasing trendover time. A small break
in the rise is observed at time 1.9 h. The curve could very well

describe the bacterial growth of Lactobacillus bulgaricus (LB) and
Streptococcus thermophilus (ST). It can be speculated what is caus-
ing the small bump. A possible reason could be that the growth
of ST stops at this point and the growth of LB takes over. Earlier
studies reveal that ST has a lower pH growth optimum compared
with LB, which is in agreement with the PCA-curve (Fig. 4(a)). This
could also mean that the curve is not directly linked to the growth
as such, but the formation of lactate, where the increase before
the bump is caused by L-lactate produced by ST and the increase
after the bump is caused by D-lactate produced by LB. On the
other hand, if the observed trend describe the bacterial growth,
the observedbumpon the curve could also be related to the redox
potential. Since theNIRmeasurements are obtained in the yoghurt
broth and only limited stirring has been applied a restricted
amount of oxygen will be available. Thus, the bump could be
caused by the fact that all the available oxygen has been used
and the growth, therefore, stops until another pathway is started
for further growth. This dual interpretation illustrates a limitation
in NIR spectroscopy – the de factoworkhorse in process analytical
chemistry and technology – it is a very powerful but indirectmea-
surement technique that ‘sees everything’ in the biological/food
system. Therefore, selectivity in the multivariate/first-order mea-
surement is necessary to ensure that the signal does not contain
contributions from other sources than the one of interest.30 As
stated previously, in the situation where inferring species appear
during a batch run it is not possible to detect them from the uni-
variate signal like brix while we can often spot the issue by multi-
variate measurements like NIR spectroscopy. But it is not possible
to quantify by NIR signals under these circumstances unless the
interference problemwas present/represented during the calibra-
tion stage – this is the reason why (often prohibitively) large cali-
bration sets are obligatory.
The fluorescence measurements are second-order measure-

ments consisting of an excitation wavelength and emission wave-
length, thus each measurement has a data matrix structure. Since
the fluorescence measurements are obtained continuously over
time, the final obtained data for each batch is a three-way data
array or a data cube. With second-order measurements follows

wileyonlinelibrary.com/jctb © 2014 Society of Chemical Industry J Chem Technol Biotechnol (2014)
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Figure 9. (a) PC1 and PC2 scores for five batches/blocks (grey) and super level (black); (b) block-level loadings for PC1 and PC2.

the second-order advantages,31 which means that it is possible to
predict concentrations of analytes even when unknown interfer-
ence appears. Thereby, it also avoids the need to specify each ana-
lyte (as long as different components can be sufficiently resolved
by the PARAFAC algorithm). Another advantage of second-order
measurements,which can alsobe achievedbyfirst-ordermeasure-
ments, is that more than one analyte can be determined in one
measurement.32 Furthermore, the three-way data structures are
different from zero- and first-order data because the decomposi-
tion of a data cube is often unique, whereas a data matrix decom-
position is never unique.8

Separate modelling and interpretation of the individual
measurements gives valuable information about the process,
repeatability of runs, etc. However, when handling a lot of dif-
ferent techniques, each producing various process parameters,
a general overview of the different trends and patterns may be

valuable as well. By applying multiblock analysis the combined or
consensus interpretation of the trends happening over time and
the patterns among the batches as well as among the different
process variables becomes a lot more convenient. This more
holistic way of analysing data sets consisting of several batches
can be an advantage, but it also carries a risk because it might
not be the largest variation in data that are the most important
for the process. A very useful side effect of multiblock analysis
is that the correlation among the process parameters can be
easily interpreted. This advantage might even make it possible to
perform sensor and variable selection to some extent.

CONCLUSIONS
Based on the in-process techniques utilized and the results
obtained it seems that most chemically relevant information

J Chem Technol Biotechnol (2014) © 2014 Society of Chemical Industry wileyonlinelibrary.com/jctb
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Figure 10. Block loading plot of PC1 vs PC2.

on our system was obtained by the second-order technique
fluorescence spectroscopy, where pseudo-concentrations over
time could be obtained for three compounds. The increasing
trend found from the NIR measurement also seems to be very
consistent. However, it can only be interpreted indirectly since NIR
results by themselves do not provide sufficient chemical informa-
tion. If additional runs are conducted to elucidate the observed
trend, the NIR results could be a strong technique for monitoring
this bio-process, albeit using abstract or principal phenomena.
Both first- and second-order measurements collected over time
provide a multivariate data set. These data sets might contain
important relationships among the different variables that can
provide chemical and process-related information when multi-
variate data analysis is applied, information that cannot be readily
observed from the raw data. Though first- and second-order mea-
surements seem to obtain more information than the zero-order
measurements, it is important to keep in mind that zero-order
techniques such as pH, OD600 and brix can provide valuable
information about the process, especially by a combination of
different sensors.33 When handling large amounts of batches and
measurement principles, multiblock analysis might be an advan-
tage for easiermodel interpretation, where comparison of batches
and correlations among process parameters are clearly outlined.
Hence, a holistic pattern of the collected data is presented in a
suitable way.
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ABSTRACT: In the industrial production of yoghurt, pH is normally the only on-line technique 

applied as a real-time monitoring signal to follow the dynamics during the fermentation process. 

However every dairy company would benefit from an online technique giving information about the 

chemical composition, physical/textual properties and/or microbial contamination. In this study lactic

fermentation batches with the starter bacteria Streptococcus thermophilus and Lactobacillus delbrueckii

subsp. bulgaricus are explored by online NIR spectroscopy. The dynamics obtained from near infrared 

(NIR) spectroscopy is elucidated in order to explain what causes the variation of the indirect 

measurements. The results show that the viscosity change has a large impact on the scatter, which 

affects the NIR data. It seems that the variation found by NIR spectroscopy is caused both by scatter 

and absorbance, where the scatter gives us information about the textural change happening, and the 

absorbance gives us information about the biomass formation plus the conversion of sugar into lactic 

acid.  



 
 

2 
 

Keywords: • Near Infrared Spectroscopy • On-line Measurements • Yoghurt • Fermentation • 

Monitoring • Streptococcus thermophilus • Lactobacillus delbrueckii subsp. bulgaricus • Dynamics • 

Growth associations 

INTRODUCTION 
In the production of fermented milk products, such as yoghurts and cheeses, mixed-strain starter 

cultures with selected lactic acid bacteria are applied as standard. Composing the stain-mixture is far 

from trivial because it determines the flavour and physical perception of the end product. In yoghurt 

production the bacterial strains Streptococcus thermophilus (S. thermophilus) and Lactobacillus 

delbrueckii subsp. bulgaricus (L. bulgaricus) are, as a minimum, inoculated into heat treated milk to 

start the fermentation. In this process the natural milk sugars are consumed by the bacteria and thereby 

converted into lactic acid via the bacterial metabolisms. The lactose is transported into the cell without 

any chemical modification via cytoplasmic protein proteases. Inside the cell lactose is hydrolysed to 

glucose and galactose. Glucose is further metabolised via the glycolysis and converted into pyruvate, 

which is then synthesized to lactate via the enzyme lactate dehydrogenase. The lactate is finally 

converted into lactic acid, which can exist in two different isomer forms, the L- and the D-isomer, 

where S. thermophilus mainly produces L(+) lactic acid and L. bulgaricus mainly produces D(-) lactic 

acid1. In the beginning of the fermentation process S. thermophilus is more active than L. bulgaricus. 

Later in the process the vitality of S. thermophilus will decrease because of the increasing concentration 

of lactic acid and the more acid tolerant L. bulgaricus will become the dominant strain. Hence, the first 

part of the fermentation is driven by S. thermophilus, whereas the last part of the fermentation is mostly 

driven by L. bulgaricus2. During the metabolic processes several interactions between the two bacterial 

strains appear, meaning that a so-called growth association between S. thermophilus and L. bulgaricus
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in the dynamics of yoghurt fermentation exist, where each organism provides nutritional compounds 

which benefit the other3,4. This growth symbiosis or protocooperation relationship has been well 

studied5. It has e.g. been reported that S. thermophilus provides formic acids and carbon dioxide 

stimulating the growth of L. bulgaricus6,7, whereas L. bulgaricus provides various amino acids 

stimulating the growth of S. thermophilus4,8. The yoghurt fermentation process does not only results in 

production of lactic acid and various aroma and flavour compounds characteristic for the yoghurt 

product, but it also leads to a textural change. When the lactic acid is released from the cells, the acidity 

increases and causes milk proteins to denature and thereby coagulating into a solid mass, also called 

curd9. The coagulation starts around pH 5.15, where the milk proteins have an isoelectric point. At pH 

4.65 the coagulation is completed and thiol-disulfide bridges will link α-lactalbumin and β-

lactoglobulin with the κ-casein, which will result in gel network formation10. Many investigations have 

identified the growth symbiosis and physical changes in the system as very characteristics for the 

yoghurt fermentation and as a crucial factor for the end product, both from a taste and textural 

perspective.

In industrial yoghurt fermentation it is of interest to achieve as high a consistency and reproducibility 

as possible to ensure that the consumers will receive a maximum quality product, which does not 

change from day to day. And this is again far from a trivial task because starter cultures of mixed 

strains are living systems. At present the only real-time measurements applied to follow the 

fermentation dynamics in yoghurt production is in-line pH. For that reason various parameters that may 

affect the metabolism of the starter bacteria (hence, starting conditions of the batch) or the end product 

characteristics (hence, post-run quality assurance) are also determined. Some of the most commonly 
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used parameters for quality control of the raw material, during the fermentation process and of the end 

product, are inferential measurements such as end-pH, water activity and chemical measurements 

(protein and fat) of the milk11. Determination of the key compounds involved in lactic acid 

fermentation - residual sugars, biomass of the cultures, etc. - can be time consuming and often requires 

sample preparation and the use of off-line techniques such as gas- or liquid-chromatography. More or 

less any chemical desired parameter can be measure off-line in the laboratory, but such measurements 

cannot replace a fast in-line technique allowing the production team or an automatic control system to 

regulate the process when unwanted changes or disturbances are observed12. The production site would 

benefit from a real-time measure giving chemical and/or physical information to follow the dynamics 

of the fermentation and indicators about microbial contamination.  

Near infrared (NIR) spectroscopy is a measurement technique with the potential of allowing rapid and 

accurate determination of chemical composition. Previously studies have shown that NIR spectroscopy 

can be used for quality control of milk products13. The study of Grassi et al. (2013)14 showed that at-

line NIR spectroscopy can be applied for the determination of curd development during fermentation. 

The study of Vaccari et al. (1994)15 claims that lactic acid, glucose and biomass concentration can be 

measured from NIR spectra. Additionally, Navrátil et al. (2004)16 suggests that NIR spectroscopy has a 

potential for on-line monitoring of and valuation of process quality of yoghurt fermentations, and the 

investigation by Lyngaard et al. (2012)17 illustrates how NIR spectra can be used to follow (cheese) 

curd formation real-time. In the present study the fermentation dynamics of yoghurt as well as the 

interactions between the starter bacteria S. thermophilus and L. bulgaricus and the physico-chemical 

change were investigated using NIR spectroscopy. 
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Experimental system 

Fermentation batches were carried out using the starter culture YF-3331 (a mixture of the lactic acid 

bacteria L. bulgaricus and S. thermophiles with a concentration of 0.2%(w/w)). The culture was 

provided by Chr. Hansen A/S (Hørsholm, Denmark) and stored at -45 °C. Skimmed milk powder was 

used as media by dissolving 1200 gram (Arla Food Ingredients, Denmark) in 11 L of water. The 

fermentations were carried out in a 15 L in-house modified glass single-wall fermenter vessel 

(Applikon, Delft, The Netherlands) with a working volume of approximately 12 L. The lid of the vessel 

contained 6 instrument ports, a thermowell for temperature monitoring and a hollow flow-through 

baffle-ring for temperature regulation inside the fermenter. A stirrer with two flat-bladed Rushton 

impellers and three baffles for optimal mixing were situated in the fermenter. The mixing speed was 

kept constant at 150 rpm and controlled by an IKA EUROSTAR 60 control motor (IKA-Werke GmbH 

& Co. KG, Staufen, Germany). It should be mentioned that in industrial yoghurt production stirring is 

normally not applied. In our set-up it was however chosen to apply gentle stirring to make sure that the 

broth was homogenous and thereby gain more representative samples. The temperature was maintained 

at the set point using a Pt100 probe inserted in the thermowell (filled with water for conduction) and 

controlled by a HAAKE Phoenix pumping water bath (Thermo Scientific, Karlsruhe, Germany). Once 

the set temperature was reached the instruments were switch on and 22 g of starter culture was 

inoculated into the media (S. thermophilus 6.8x1010 cfu·g-1 and L.bulgaricus: 5.5x109 cfu·g-1; cfu = 

colony forming units). Grab samples were frequently, but not equidistant, withdrawn during the 

fermentation. They were transferred to Eppendorf tubes and stored at -20 °C until further analyses. In 

total seven batches (Batch 1-7) were performed at varying fermentation temperatures. Batches 1-4 were 

carried out with the nominal fermentation temperature of 35 °C, Batch 5 was carried out at 32 °C and 
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Batches 6-7 were carried out at approximately 37.5 °C. The nominal duration of a batch run was 5 

hours.  

In-line, at-line and off-line measurements  

pH measurements  

pH measurements were performed in-line with and interval of 30 seconds, using a pH-meter plus 

temperature logger (MadgeTech Inc., Warner, NH-US) placed in the fermentation broth. The pH probe 

was calibrated in pH 4.01 and pH 7.00 before use.  

NIR spectroscopy  

NIR spectroscopy measurements were performed in-line with an ABB Bomem spectrometer (ABB 

Bomem, Quebec, Canada) equipped with a fibre optic reflectance probe placed in the fermentation 

broth. The spectral data for each measurement was collected as the average of 64 single beam spectra 

for each measurement time point. The spectra were referenced against a white Spectralon (LabSphere, 

North Sutton, NH-US) background (average of 64 scans) collected before the process measurements 

were started. The fermentation broth was scanned over the range 10000-5556 cm-1 (1000-1800 nm) 

with a resolution of 8 cm-1 and a time interval of 60 seconds between the measurements.  

Real-Time Quantitative Polymerase Chain Reaction (qPCR) analysis 

Real-time qPCR was used for quantification of S. thermophilus and L. bulgaricus during the 

fermentation. To remove exopolysaccharides prior to DNA extraction 1 ml of yoghurt sample was 

mixed with 7.5 ml of MillQ water, 1 ml of 18% sodium citrate and 0.5 ml of 1 M NaOH. After 5 min 

the mixture was centrifuged for 10 min at 10,000 g at room temperature18. The pellet was washed in 

water and used for DNA extraction using the PowerSoil DNA isolation Kit (MO BIO Laboratories, Inc. 

Caelsbad, CA-US) following the instructions of the manufacturer. The isolated DNA was subsequently 
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cleaned by PowerClean® Pro DNA Clean-UP Kit (MO BIO Laboratories, Inc. Caelsbad, CA-US). 

Absolute abundance of Streptococcus thermophilus and L. bulgaricus were determined using a 7500 

Fast Real-time PCR System (Applied Biosystems, Foster City, CA-US). All samples were analysed in 

two separate runs in duplicate. Two primer sets, specific for L. bulgaricus; Ld1F, Ld2R; and S. 

thermophilus; St1F, St2R19, were used in this assay. The reaction mixture (20 µL) consisted of 1× 

SYBR green PCR Master Mix (Applied Biosystems), 1 µL of either the primers specific for L. 

bulgaricus or S. thermophilus at a final concentration of 0.25 µM, and 5 µL of template DNA. The 

qPCR temperature profile was as follows: 95 °C for 5 min, followed by 40 cycles of 95 °C for 15 sec, 

60 °C for 1 min. The fluorescence acquiring was set in the annealing/extension step. Serial tenfold 

dilutions of L. bulgaricus and S. thermophilus pure culture genomic DNA were used to generate 

standard curves. Prior to DNA extraction of pure cultures, quantification of cell numbers was carried 

out by cell counting in a Thoma chamber.  

Brix measurements 

At-line Brix measurements were carried out on grab samples frequently during the fermentation 

process using a DR-103 meter (Index Instruments Limited, Cambridgeshire, UK).   

D- and L-Lactic acid analyses 

Determination of D- and L-lactate was carried out with a D- and L- Lactate enzyme kit (K-DLATE 

07/14, Megazyme International Ireland, Bray, Ireland) for a selected number of batch runs. From the 

samples, withdrawn during the fermentation, 1 g was transferred to a 20 ml glass beaker. For sample 

clarification 10 ml of water, 400 µL of Carrez I (3.6 g of potassium hexacyanoferrate(II)trihydrate 

(K4[Fe(CN)6]·7H2O) diluted in 100 mL of distilled water), 400 µL of Carrez II (7.2 g of zinc sulphate 

heptahydrate (ZnSO4·7H2O) dissolved in 100 ml distilled water) and 800 µL of 100 mM NaOH were 
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added one by one and mixed after each addition.  Finally, 7.4 ml of distilled water was added and the 

solution was mixed and filtered. Hereafter, the absorbance at 340 nm was measured (Elution 220 UV-

visible spectrometer, Thermo Scientific, Denmark) to obtain a quantification for D- and L-lactic acid.   

Software 

Data were analysed using Matlab (Matlab, R2015a, The Mathworks, Inc., Natick, MA-US). The NIR 

data were modelled by Principal Component Analysis (PCA) and non-linear regression using in-house 

routines and the PLS-Toolbox (PLS-Toolbox 7.5, Eigenvector Research Inc., Manson, WA-US).  

RESULTS AND DISCUSSION 

Temperature and pH 

Figure 1: (a) Temperature and (b) pH profiles for the seven batches.  

The temperature and pH profiles for the seven batches are plotted over fermentation time in Figure 1. 

The temperature profile of Batch 5 was unstable in the beginning of the fermentation because the 

stirring was turned on a little later than under normal conditions. Therefor the broth was not 
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homogeneous and temperature gradients were probably present until the stirring was turned on. Batch 5 

was also run at a lower temperature and it is thus expected to be overall delayed; for this reason it was 

followed for a longer period (5h50m). All batches have a starting pH of 6.5 and during the fermentation 

time the pH drops in the characteristic S-shape, confirming that the sugar is converted into acid and the 

fermentation process is proceeding. This is the conventional way of monitoring fermentation dynamics 

in yoghurt production. It is e.g. seen that the higher the fermentation temperatures the faster the 

decrease of pH and vice versa. 

NIR Spectroscopy 

Figure 2: (a) The raw NIR spectra and (b) SNV pre-processed spectra from Batch 6 colored according to time.
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Figure 3: (a) PCA score values for the first principal component (variance explained for each batch in brackets) as a function of time for 
all seven batches; (b) PCA loading profiles.

In Figure 2a, the raw NIRS spectra for Batch 6 colored by time are shown; these results are 

representative for all seven batches. In general, the absorbance of the spectra seems to decrease over 

batch time, indicating that an aggregation of the micelles is happening as a function of the decreasing 

pH. A contraction of the aggregated casein will occur, which leads to an increase of the casein particle 

size20, which might be corresponding to the decreasing offset. The strongest absorbance is seen in the 

region between 1350-1550 nm, which may belong to the third overtone of carbonyl groups (>C=O; 

1333-1936 nm) and/or the first overtone of O-H stretching from sugars (1450 nm) and/or water (1440-

1470 nm)13. A peak is also observed in the region between 1150-1250 nm, which can be related with 

the second overtone of C-H stretching13. It seems that the raw spectra are primarily associated with 

water and the more physical interaction between NIR radiation and the milk matrix in the form of 

scatter, and only minor information about chemical compounds found in yoghurt fermentations seems 

present. To enhance the more chemical information and identify the variation in the spectra 

multivariate data analysis was applied. The spectra were pre-processed by standard normal variate 

(SNV) scaling to remove artifacts and sample differences caused by baseline changes in the reflectance

measurements (Figure 2b). 
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The pre-processed spectra were then modelled by Principal Component Analysis (PCA), individually 

per batch run. The first principal component scores, describing on average 96% of the variance, versus 

fermentation time are pictured for all seven batches in Figure 3a. An increasing trend over time was 

observed for all batches following the familiar S-curve. However, the batches did differentiate from 

each other as a clear time shift was seen; the lower the fermentation temperature applied, the more 

delayed was the profile. Thus, Batch 5 was the slowest and Batch 6-7 the fastest. Another highly 

reproducible feature was a small bump on the S-shaped curve observed around 2 hours for Batch 6-7, 

around 2.5 hours for Batch 1-4 and around 3 hours for Batch 5. The pattern can be further interpreted 

by inspecting the loading plots (Figure 3b), which indicated that the observed spectral variation was 

mainly caused by absorbance changes in the regions around 1350-1400 nm, 1500-1550 nm and to a 

smaller extend around 1700-1800 nm. This highly reproducible loading profile, among the different 

batch runs and PCA models, could be associated with sugar and the third overtone of carboxyl groups, 

respectively. 

As stated, the change described by the PCA modelled NIR spectral measurements does to some extend 

have the similar characteristic S-shape as seen for the pH measurements. However, the NIR data 

seemed to combine information which was not available from the univariate method pH, which is 

normally applied in industrial yoghurt production, and the sharp bump observed on the first principal 

component for the modelled NIR data is not recognizable in the pH profiles. This might indicate that 

the first-order NIR spectroscopy method delivers process information, which cannot readily be detected 

by the zero-order methods21. 

The dynamics pictured from NIR spectroscopy were very reproducible, which makes it a potential on-

line measure for this experimental system and for yoghurt production on an industrial scale. Since NIR
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spectroscopy is an indirect method it can be hard to conclude what we actually are measuring and what 

exactly was causing the dynamics. The bump on the S-curve is of special interest and it can be 

speculated what caused it. We know from the literature that a growth association between the two 

starter bacteria appears which might cause a metabolic change around that time where the bump on the 

first principal component is observed. Additionally, a textual change from liquid to gel is also happing 

around this time, resulting in a dramatic increase in viscosity. This means that the NIR spectral 

dynamics can be due to a chemical change or a physical change; in other words the variation can be 

caused by a change in the absorption or a change in the scattering signal or even a mix of changes is 

absorption and scatter. The distinction is straightforward if it concerns a non-scattering absorbance 

spectrum, but when it concerns scattering samples in reflectance mode the principals of scattering and 

absorption affect each other and the interpretation becomes more complex22. In order to further 

elucidate what causes the observed dynamics we will look into the results of qPCR- and Brix 

measurements.  

qPCR Measurements 

Figure 4: The cfu·ml-1 versus time for Batch 6 for (a) S. thermophilus and (b) L. bulgaricus. The (o) represent a replicate from one of the 
two qPCR-analyses. Based on four replicates a mean is calculated, which are connected by the broken lines. 
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Part of the withdrawn samples from the yoghurt broth was used for qPCR measurements. The cell 

counts (expressed in colony forming units) are shown on a logarithmic scale as a function of time for L. 

bulgaricus and S. thermophilus in Figure 4. The results show that the exponential growth phase is 

taking place within the first two hours of the fermentation and hereafter the growth of both the bacteria 

seems to be stationary. As expected from the literature, S. thermophilus has a slightly faster growth 

than L.bulgaricus23. It is notable that the growths reach the stationary phase at the same time, as where 

the bump on the first principal component for the NIR data is observed, although the uncertainty 

around the transition phase makes it hard to pinpoint this exactly. This might indicate that the dynamics 

before the bump on the S-shaped NIR spectroscopy curve could be caused by biomass formation.  

Brix Measurement 

Figure 5: The Brix values for Batch 1 plotted over time. 

The Brix results for Batch 1 are shown in Figure 5. This time profile is again representative for all 

seven batch runs. As seen from the figure, the at-line Brix values were recorded with varying sampling 

intervals; a higher sample extraction frequency was used on and right after the log phase (around 

2h30m into the process for Batch 1, the batch most intensely sampled). The Brix readings decreased 

from around 10% to 6.5% in this time interval of approx. one hour. Normally Brix, when applied in the 
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food industry, is associated with e.g. amount of available sugars in wine or the amount of solids in 

tomato pulp. However, index of refraction, which is the principle behind Brix measurements, is also 

dependent on the viscosity of the solution among other parameters24. Looking at Figure 5, it is also very 

unlikely that sugars are consumed at this pace in a biological reaction scheme, and the dynamics of the 

Brix signal are also incompatible with the dynamics observed for pH in Figure 1b. Therefore, we 

interpret the results in Figure 5 as an indirect measurement of the viscosity change in the milk-yoghurt 

curd system, and this agrees well with the observations made during manual sample extraction from the 

reactor and the known rapid viscosity increase in yoghurts23.  

Lactic Acid Measurements 
  

Figure 6: The concentration (g·L-1) of D-, L- Lactic acid and the sum of lactic acid for Batch 6, plotted as a function of time. 

Grab samples from the fermentation broth were used for lactic acid quantification. The concentration of 

D-, L- and total lactic acid over time are pictured in Figure 6. The concentration of L-lactic acid 

increased from the very beginning and seemed to stabilize around 3h30m (in Batch 6), whereas the 

concentration of D-lactic acid started increasing after two hours of fermentation and for the batch run 

length 5h50m it did not stabilize. The concentration profiles of the D- and L-lactic acid correspond 



 
 

15 
 

with the fact that S. thermophilus, producing L-lactic acid, was initiating the fermentation, whereas L. 

bulgaricus, producing D-lactic acid, had a delayed metabolic profile compared to S. thermophilus. This 

confirms the assumption that a metabolic shift and an association between the two starter bacteria 

appeared during the fermentation. This existing growth association between the two starter bacteria is a 

well-known phenomenon2. It should be noticed that the increasing lactic acid concentrations were not 

identical with bacterial growth seen from qPCR results (Figure 4), which could be expected. The 

reason for this is that the dynamics of the metabolic activity cannot be paralleled as such with the 

dynamics of bacterial growth. Initially, the biomass was formed and even though it reached a stationary 

phase, the metabolic activity was still on going.  

Kinetic fitting  

 
Figure 7: (a) pH for Batch 6 and (b) Brix measurements for Batch 1 with superimposed kinetic fittings; (c) PCA score values for the first 
principal component (dots) for Batch 6; red line: overall kinetic profile, Equation 1; black and green lines: individual contributions of the 

kinetic profile. The kinetic fits are made on the dark (blue) markers, whereas the light markers (cyan) were excluded. 

In order to further elucidate the dynamics explained by using NIR spectroscopy and its capability of 

describing physical and/or chemical changes in lactic fermentations kinetic profiles were fitted on some 

of the measurements. For this purpose a generic mathematical model was fitted by non-linear 

regression25: 
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 = 	 ∑ 
×.

  +      (1) 

where a response was modelled as a function of time t by a sum of I S-curves. Each curve was 

determined by the kinetic parameter k(i) and the so-called inflection time tinfl.(i), where the first 

determined the speed of change (increase or decrease) in the response signal, while the second term 

represented when this change happened on the time axis. The auxiliary b-parameters were there to 

adjust the equation to a particular response where b0 was an overall offset and b1(i) was the magnitude 

or amplitude of each response. 

Figures 7a and b show the fitting of Equation 1 - with I = 1 - on the pH and Brix signals for Batch 6 

and 1, respectively. This resulted in the following parameters estimates for pH : k(1) = 0.411 h-1,  

tinfl.(1) = 1h41m, R2 = 0.9997 and Brix : k(1) = 0.044 h-1,  tinfl.(1) = 2h33m, R2 = 0.9932. Interpreting 

these values showed us that the relatively simple model in Equation 1 gave a very small fitting error 

using only one S-curve, and that the two parameters k and tinfl. were intuitive numerical indicators of the 

observed dynamics. 

Looking at the PCA score profile in Figure 7c, two issues are noticeable: (1) the abrupt bump around 2 

hours of batch time cannot be captured by a simple and heuristic mathematical equation, and (2) a 

single S-curve model does not fit well with the observed profiles (see Figure 3a). To solve issue (1) we 

manually excluded some of the points in the direct vicinity of the bump. Challenge (2) was easily 

solved by fitting the sum of two S-curves according to Equation 1, resulting in the following parameter 

list: k(1) = -0.025 h-1,  tinfl.(1) = 1h54m, k(2) = -0.246 h-1,  tinfl.(2) = 2h59m, R2 = 0.9998. As can be seen 

in Figure 7c, this model described the observed dynamics of the fermentation, as ascertained from the 
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NIR spectroscopy measurement, extremely well. The overall model splits the response in a fast kinetics 

– which can be connected with the rapid viscosity change as described previously – and a slow kinetics 

- which we associate with metabolic conversion. The k-value for the fast kinetics was fairly sensitive 

towards the manual selection of data points excluded in parameter estimation. The other parameters 

(time points and inflection and slow kinetics) were however insensitive to this choice. This result gave 

us an opportunity to quantitatively compare different batches; the combination of in-line NIR spectra 

and kinetic modelling was a way to evaluate our seven yoghurt batches quantitatively (Table 1).  

Table 1: Inflection time (tinfl.), kinetic parameter ( k-1) and R2 are listed for pH and NIR for all seven batches. 

 

CONCLUSIONS 
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Based on the results obtained from the NIR spectral data, it can be concluded that the NIR 

measurements revealed information that was not only reproducible, but also delivered a quantifiable 

dynamic trend from which consistency and quality control can be derived. Furthermore, NIR spectra 

provided additional information about the lactic fermentation compared to pH, which is traditionally 

applied as control measure in the industrial production of yoghurt. The results based on our yoghurt 

production model show that both variations in scatter and in the absorption are present in the NIR 

spectra. From the kinetic modelling it seems that we are able to model both physical changes in terms 

of textual changes due to the gel formation, and chemical information, which might be related to the 

biological conversion reactions. 
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Weighted PARAFAC and Non-linear
Regression for Handling Intensity
Changes in Fluorescence Spectroscopy
caused by pH Fluctuations

Carina Svendsen, Thomas Skov, and Frans W.J. van den Berg

Abstract

Fluorescence spectroscopy is a sensitive and selective technique, which can be of great value in bioprocesses to provide

online, real-time measures of chemical compounds. Although fluorescence spectroscopy is a widely studied method, not

much attention has been given to issues concerning intensity variations in the fluorescence landscapes due to pH fluctu-

ations. This study elucidates how pH fluctuations cause intensity changes in fluorescence measurements and thereby

decreases the quality of the subsequent quantification. A photo-degradation process of riboflavin was investigated by

fluorescence spectroscopy and used as a model system. A two-step modeling approach, combining weighted PARAllel

FACtor analysis (PARAFAC) with weighted non-linear regression of the known reaction kinetics, is suggested as a way of

handling the fluorescence intensity shifts caused by the pH changes. The suggested strategy makes it possible to com-

pensate for uncertainties in the shifted data and thereby obtain more reliable concentration profiles for the chemical

compounds and kinetic parameters of the reaction.

Keywords

Chemometrics, correction strategy for intensity variations, fluorescence spectroscopy, intensity variations, online moni-

toring, pH fluctuations
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Introduction

Fluorescence spectroscopy is an attractive option for the

food and biotech industry due to its high sensitivity to

organic compounds that contain conjugated bonds. It also

has a high selectivity supported by both chemical selectivity

and advanced chemometric modeling methods, and is fur-

thermore attractive for its capability to monitor process

parameters online and in real time. These aspects are of

great importance in the bio-industries for process optimiza-

tion and ensuring high product quality, productivity and

yield. Fluorescence spectroscopy can detect concentrations

down to one thousandth of what can be quantified by com-

petitive spectroscopy methods like near infrared vibrational

spectroscopy, which makes it a powerful quantitative

method. In its most basal definition: fluorescence spectros-

copy measure fluorophores in which a molecule first

absorbs light (energy) causing an electron to excite from

its ground state to an excited singlet state. In the excited

state changes and interactions with the molecular environ-

ment, such as vibrational relaxation, quenching and energy

transfer, occur. When the electron returns from the

excited state to the ground state the molecule emits

light, which is then detected by the spectrometer. The

intensity of the returned light is determined by the quantum

yield, which is the number of emitted photons relative to

the number of the absorbed photons. This is dependent on

the molecular bond(s) involved in the process. The wave-

length of the fluorescence molecular excitation is defined

by the energy difference between the ground state and

excited singlet state, whereas the energy difference

between the excited singlet state and the ground state

defines the emission wavelengths, in which the emission

by definition has a lower energy than the excitation radi-

ation. Furthermore, each electronic state has several asso-

ciated vibrational levels, which means that excitation occurs
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over a number of wavelengths, which corresponds to sev-

eral vibrational transitions. On the other side, the deacti-

vation of the excited state only occurs at the vibrational

ground level, whereas the emission, just like the excitation,

occurs at several wavelengths as it might reach a number of

vibrational levels in the ground state.1,2 Molecules which

have fluorescence properties from a food and bioproces-

sing perspective include several biogenic fluorophores such

as tryptophan, vitamins (pyridoxine, riboflavin) and

co-enzymes (nicotinamide adenine dinucleotide phosphate,

NADP+), among others.3

Some of the first fluorescence online sensors were

based on one excitation and one emission wavelength

allowing measurements of only one fluorophore at a time.

In bioprocesses nicotinamide adenine dinucleotide phos-

phate (reduced form) was commonly measured as the

only fluorophore.4 These measurements give very limited

information for a process typically containing several of the

biological constituents mentioned. Moreover, with the

broad-feature emission-excitation profiles there could be

a severe interference from other chemical constituents

making quantification uncertain or even impossible. The

more recent development of multi-wavelength fluorescence

spectroscopy in combination with sophisticated data ana-

lytical methods has allowed simultaneous monitoring of

several fluorophores. The technique has among others

been applied for monitoring cultivations of bacteria,5–7 fila-

mentous fungi,8,9 yeast10,11 and mammalian cells.12,13 In

such cultivation processes pH is normally controlled and

kept constant at a set-point value. In contrast, in food fer-

mentations such as yoghurt14,15 and sourdough produc-

tion,16 pH is changing during the fermentation time as a

function of the biological process. And even under pH con-

trol small pH deviations can be experienced, e.g., during

start-up of a batch process or transitions between different

phases of a fed-batch operation. A previous study showed

that pH changes can affect the fluorescence intensity,17

meaning that upwards and downwards shifts in the fluores-

cence intensity can appear. Thus, a dramatic uncertainty in

the quantification of the chemical compounds will appear

due to the principle behind Lambert–Beers law of an inten-

sity–concentration relationship (even though Lambert–Beers

law does not strictly apply in fluorescence spectroscopy).

This violation is caused by an alteration of the electron

cloud surrounding the conjugated bonds when the pH

changes.17 It thereby seems that fluorescence spectroscopy

could be an unreliable technique for quantification of chem-

ical compounds or simply for measuring the dynamics in a

process when pH is not under close loop control.

In this paper we first address the effect of pH fluctu-

ations on fluorescence spectroscopy. The degradation pro-

cess of riboflavin was used as a model system to elucidate

how pH disturbances cause intensity shifts in the fluores-

cence signal. In addition, the study suggests a possible che-

mometric solution combining weighted PARAllel FACtor

analysis (PARAFAC) and weighted non-linear regression

towards an assumed reaction kinetics to compensate for

the intensity shifts and thereby provideing a more reliable

concentration profile and reaction rate constants when

monitoring the system.

Experimental

Experimental Setup

The breakdown process of riboflavin and the formation of

two degradation products (A ! BþC; a reaction driven

by light exposure conducted in an alkaline environment)

were investigated by fluorescence spectroscopy. The pro-

cess will be used as a model batch system to elucidate the

effect of intensity shifts in fluorescence landscapes as a func-

tion of pH disturbances in a dynamically changing environ-

ment. The breakdown process of riboflavin was conducted

in a 2 L glass fermenter vessel (Culture Vessel M2, B. Braun,

Melsungen, Germany). The vessel was fully enclosed by a

black cover to limit any uncontrolled light exposure from

the surroundings. The lid of the vessel contained instru-

ment ports, four baffles reaching into the reactor contents

close to the wall and a stirrer in the center of the vessel

with three Rushton impellers. The mixing speed (100 r/min)

was kept constant, controlled by a motor. A water jacket

surrounding the fermenter maintained the temperature at

25�C and was controlled by a Pt100 probe inserted directly

in the reactor using a HAAKE Phoenix pumping water bath

(Thermo Scientific, Karlsruhe, Germany). A multivitamin

effervescent tablet (Multivitamin, Optisana, Kolding,

Denmark), containing several different vitamins including a

fixed amount of riboflavin, was added and quickly dissolved

in the glass vessel containing 2 L of water. Hereafter, small

quantities of 5 M sodium hydroxide (NaOH) were added to

reach a pH around 9. To stabilize the system it was left

undisturbed for approximately one hour. The breakdown

process of riboflavin was then started (time¼ 0 minutes) by

turning on the light source (Intralux 6000, Volpi, Schlieren,

Switzerland). The light was delivered just above the reactor

contents by an optical guide (normally used in light micros-

copy) entering one of the instrument ports of the reactor

lid. The kinetics of the photochemical breakdown of ribo-

flavin could be manipulated by the intensity of light expos-

ure and is the main question of interest in our model

system. The process was stopped after 150 minutes; each

process run will be addressed as a batch.

Normal and Abnormal Operating Conditions Batches

To investigate the effect of pH disturbances on the fluores-

cence intensity profiles both normal operating conditions

(NOC) batches with constant pH around 9, and abnormal

operating conditions (AOC) batches with pH interference

were carried out. The kinetics or reaction speed was

2 Applied Spectroscopy 0(0)
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cess will be used as a model batch system to elucidate the
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ment. The breakdown process of riboflavin was conducted

in a 2 L glass fermenter vessel (Culture Vessel M2, B. Braun,

Melsungen, Germany). The vessel was fully enclosed by a

black cover to limit any uncontrolled light exposure from

the surroundings. The lid of the vessel contained instru-

ment ports, four baffles reaching into the reactor contents

close to the wall and a stirrer in the center of the vessel

with three Rushton impellers. The mixing speed (100 r/min)

was kept constant, controlled by a motor. A water jacket
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(Thermo Scientific, Karlsruhe, Germany). A multivitamin

effervescent tablet (Multivitamin, Optisana, Kolding,

Denmark), containing several different vitamins including a

fixed amount of riboflavin, was added and quickly dissolved

in the glass vessel containing 2 L of water. Hereafter, small

quantities of 5 M sodium hydroxide (NaOH) were added to

reach a pH around 9. To stabilize the system it was left

undisturbed for approximately one hour. The breakdown

process of riboflavin was then started (time¼ 0 minutes) by

turning on the light source (Intralux 6000, Volpi, Schlieren,

Switzerland). The light was delivered just above the reactor

contents by an optical guide (normally used in light micros-

copy) entering one of the instrument ports of the reactor

lid. The kinetics of the photochemical breakdown of ribo-

flavin could be manipulated by the intensity of light expos-

ure and is the main question of interest in our model

system. The process was stopped after 150 minutes; each

process run will be addressed as a batch.

Normal and Abnormal Operating Conditions Batches

To investigate the effect of pH disturbances on the fluores-

cence intensity profiles both normal operating conditions

(NOC) batches with constant pH around 9, and abnormal

operating conditions (AOC) batches with pH interference

were carried out. The kinetics or reaction speed was
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different for each batch driven by manipulation of the light

intensity, hence the efficiency of riboflavin breakdown

varied among batches. The pH change in the AOC batches

was introduced during the degradation process by either

increasing or decreasing pH for a limited time interval by

adding small volumes of hydrochloric acid (HCl) (5 M) and/

or NaOH (5 M). This was done to mimic operational or

equipment failure leading to deviations from the set-point

and sluggish or delayed pH control around operational

phase transitions. In total seven NOC and five AOC

batches were carried out. To show the reproducibility of

the riboflavin degradation experiment, the NOC batches

were first investigated and compared.

Fluorescence Measurements

The fluorescence measurements were collected in-line with

an interval of one minute, using a BioView spectrofluorom-

eter (DELTA Light and Optics, Hørsholm, Denmark). The

spectrometer was equipped with a fibre optic quartz-in-

stainless steel probe, a so-called 180� geometry catching

emitted light after excitation, entering one of the reactor

ports. It was placed directly in the reactor solution, looking

downwards and away from the light source used for the

photochemical breakdown. Fluorescence landscapes (exci-

tation-emission matrices; EEMs) were obtained with exci-

tation wavelengths from 270 nm to 550 nm and emission

wavelengths from 310 nm to 590 nm, with an interval of

20 nm, providing a total of 15 excitation and 15 emission

wavelengths. This resulted in a data cube X of the size

151� 15� 15 for each batch (time� excitation wave-

length� emission wavelength). No calibration towards con-

centration values is performed. Instead, score values of a

PARAFAC model are treated as relative concentrations,

and the reaction kinetics are estimated directly, per individ-

ual batch run, from these pseudo-concentrations. This pro-

cedure eliminates the need for calibration and calibration

maintenance and is insensitive to long-term/batch-to-batch

instrumental drift.

pH Measurements

pH Measurements were collected in-line with an interval of

five seconds, using a pH logger (MadgeTech Inc., Warner,

NH, USA) with the probe placed in the liquid. The pH

probe was calibrated with pH 4.01 and pH 7.00 buffers

before use and checked before and after each batch with

the same buffers to correct for any potential pH offset

obtained during the runs.

Data Analysis

All data analyses were performed using Matlab (version

R2015a, The Mathworks, Inc., Natick, MA USA).

Weighted non-linear regression and weighted PARAFAC

were performed using in-house routines and the N-way

toolbox (version 3.20).18

The PARAFAC analysis decomposes the three-way fluor-

escence data cube X into a number of trilinear factors and

a residual array

x t, i, jð Þ ¼
XF

f¼1

If tð Þ � EXf ið Þ � EMf jð Þ þ e t, i, jð Þ

ðt ¼ 0 . . . 150; i ¼ 1 . . . 15; j ¼ 1 . . . 15Þ
ð1Þ

where x(t, i, j) represents the fluorescence intensity for

time point t at excitation wavelength i and emission wave-

length j. The EEM data are then decomposed into concen-

tration scores If(t), excitation wavelength loadings EXf(i)

and emission wavelength loadings EMf(j), for each factor

or PARAFAC component f. The residual array e(t,i,j) rep-

resents the variation not described by the model.19 A

non-negativity constrained was applied in all three

modes.19

Eq. 2(a–c) was used for non-linear estimation/fitting20 of

the reaction scheme A ! BþC:

IA tð Þ ¼ b1,A � e�K�t þ b0,A ð2aÞ

IB tð Þ ¼ b1,B � 1� e�K�t� �
þ b0,B ð2bÞ

IC tð Þ ¼ b1,C � 1� e�K�t� �
þ b0,C ð2cÞ

where I parameters stand for the score intensities (as a

function of time) found via the PARAFAC model, the b

parameters are included to compensate for magnitude

and offset differences in the scores intensities observed

for the different chemical species, and K is the reaction

rate (common for all species). In total seven model param-

eters are estimated simultaneously.

To evaluate the relationship between the optimized kin-

etic profile and the concentration PARAFAC score the con-

cordance correlation coefficient �c was calculated
21

�c y1, y2
� �

¼ 2s12

s21 þ s22 þ �y1 � �y2ð Þ2
� 100% ð3Þ

where vectors y1 and y2 are the series to be compared

(e.g., a reference and predicted kinetic profile) based on

the means, variances and co-variances of the two series.

Unlike the conventional Pearson correlation coefficient

the concordance correlation takes into account deviations

from the ideal prediction line (angle of 45�, crossing the

zero intersect). This is more appropriate when evaluating

functional fitting where, e.g. a mismatch of one kinetic

parameter can lead to a biased or systematic under or

over-fitting, while still achieving a high ordinary Pearson

correlation.21
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Results and Discussion

Normal Operating Conditions Batches

The pH profiles of two of the NOC batches, randomly

selected from seven NOC experiments, are shown in

Figure 1a and Figure 2a. Normal operation conditions

were applied, hence the pH was kept constant at pH 8.8

(�0.1) for NOC batch 1 and at pH 9.0 (�0.1) for NOC

batch 2, except for a small gradual decrease, which can be

attributed to the formation of carbonic acid from an

Figure 1. Normal operating conditions batch 1: (a) pH profile, without any disturbance; (b–d) the concentration scores from a

PARAFAC analysis (red dots) and the fitted kinetic profiles (solid lines) for compounds 1, 2 and 3, respectively; (e) the concentration

scores from a PARAFAC analysis for compound 4. No kinetic profile is given for the non-reactive compound 4.

Figure 2. Normal operating condition batch 2: (a) pH profile; (b–d) the concentration scores from a PARAFAC analysis (red dots) and

the fitted kinetic profiles (solid lines) for compounds 1, 2 and 3, respectively; (e) the concentration scores from a PARAFAC analysis for

compound 4. No kinetic profile is given for the non-reactive compound 4.
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increasing concentration of dissolved carbon dioxide due to

stirring. The three-way data cubes for the batches were

evaluated individually by a PARAFAC model where four

factors were found to be the right model complexity, mean-

ing that four different chemical compounds with a fluores-

cence signal were detected. The intensity scores obtained

from the PARAFAC models (Eq. 1) are plotted as a function

of batch time in Figure 1b–e and in Figure 2b–e for NOC

batch 1 and NOC batch 2, respectively. For both batches,

the first score (compound 1) describes a clear decreasing

trend over time, the second and the third scores (com-

pounds 2 and 3) describe increases, which are highly cor-

related (as expected because the formation of the products

happens at the same rate), whereas the fourth score (com-

pound 4) seems to represent a non-reacting species. Based

on the dynamics of the first three scores, which represent

the concentration profiles of the three compounds taking

part in the reaction, the kinetic profiles were determined

by a non-linear regression model using Eq. 2. The estimated

kinetics profiles are included in Figure 1b–d and in

Figure 2b–d. As seen, the concentration scores and the

estimated kinetic profiles are very similar, indicating that

the calculated K values 2.72�10–2/minute (batch NOC 1;

Table 1) and 4.90�10–2/minute (batch NOC 2; Table 1),

for the first order reactions correspond well to the mea-

sured kinetics. This also confirms that the detected chem-

ical compounds behave in accordance with a first order

system A ! BþC, where the trend is either asymptotic-

ally increasing or decreasing over time. It is also worth

remembering that a unique determination for the two reac-

tion products BþC can still be found because of the

second-order nature of excitation-emission-fluorescence

landscapes and PARAFAC data analysis.22

Further inspection of the scores for NOC batch 2

reveals that a small shift is seen around t¼ 110 minutes.

As the shift appears after the reaction has progressed

almost to completion, it will not affect the calculated K

value significantly. As the pH was kept constant, the shift

cannot be attributed to pH changes as explored in this

study. Instead this shift is caused by an automatic intensity

correction that the instrument performs by aligning the

filter wheel positions after a specific (large) number of

measurements (personal communication, DELTA Light

and Optics). As a result, all four chemical compounds

show a small artificial drop in intensity due to the instru-

mental adjustment.

The loadings obtained from the PARAFAC model for

NOC batch 1 are visualized in Figure 3 by reconstructing

the landscapes using the excitation and emission loading

vector from Eq. 1 to compute the outer matrix products.

The fluorescence compound described by factor one found

at excitation/emission wavelength around 460/540 nm

(Figure 3a) can be identified as riboflavin,23,24 which is

described, by the score values, to have a decreasing con-

centration over time (Figure 1b). This trend corresponds

with the fact that riboflavin is being degraded over time,

caused by the alkaline environment and the light exposure,

as described in the experimental section. Loading two and

three found around excitation/emission wavelength 450/

540 nm and 400/460 nm can be tentatively identified as

expected reaction products lumiflavin and lumichrome;24

(Figure 2c and d). Both compounds show an increasing

trend over time in the score plot (Figure 1c and d), corres-

ponding with the fact that these two chemical compounds

are products from the breakdown of riboflavin. A fourth

compound, representing an unidentified chemical species,

which neither shows an increase nor a decrease over time

in the score plot (Figure 1e), is found around excitation/

emission wavelength 340/400 nm in the loadings (Figure 3d).

Notice again that only second-order data like EEMs in com-

bination with a method like PARAFAC can describe a con-

stant component like this.22

The loadings as seen in Figure 3 are also representative

of NOC batch 2 and all other batches. Similarly for all NOC

Table 1. The pH, estimated K values and the concordance correlation coefficient between PARAFAC scores and the kinetic fitted data

– calculated per component – for NOC batches.

Batch pH (�)

K value (10�2 min�1)

for the

unweighted/weighted

Concordance correlation

coefficient (%)

(compound: 1/2/3)

unweighted

Concordance correlation

coefficient (%)

(compound: 1/2/3)

weighted

NOC 1 8.8 (�0.1) 2.72 2.81 99.9 99.3 99.8 99.9 99.5 99.8

NOC 2 9.0 (�0.1) 4.90 5.03 99.8 99.0 98.7 99.8 99.1 98.7

NOC 3 8.4 (�0.3) 3.16 3.24 99.9 98.9 99.8 99.9 99.0 99.8

NOC 4 8.7 (�0.4) 5.47 5.64 99.8 98.9 99.3 99.8 98.9 99.4

NOC 5 9.1 (�0.2) 4.25 4.37 99.9 98.4 98.1 99.8 98.6 98.2

NOC 6 8.8 (�0.1) 3.45 3.54 99.9 99.2 99.6 99.9 99.2 99.6

NOC 7 9.0 (�0.1) 4.89 5.04 99.8 98.8 99.3 99.9 99.0 99.4

NOC: normal operating conditions.
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batches, the fit between PARAFAC scores and estimated

kinetic models is good, as seen from the concordance cor-

relation coefficient in Table 1. The only thing that varies

between the NOC runs of our model system is the kinetic

parameter.

Abnormal Operating Conditions Batches

In the AOC batches abnormal conditions in terms of pro-

cess disturbances – deviations from the set-point – were

introduced by manipulating the pH during the riboflavin

degradation process. As can be understood from the

NOC experiments shown in Table 1, pH has no strong

or systematic influence on the reaction kinetics, at least

within the alkaline pH range where our photochemical

breakdown process of riboflavin takes place.

To elucidate how pH fluctuations affect the fluorescence

landscapes, raw data inspection was carried out before

modeling. Intensity profiles at various excitation/emission

wavelength combinations were investigated as a function

of time. As seen in Figure 4, which pictures an EEM land-

scape (t¼ 74 minutes, AOC batch A) and two selected

excitation/emission combinations (390/450 nm and 450/

530 nm), both increasing and decreasing trends over time

are easily identified. Superimposed on this, clear intensity

shifts, in opposite directions, appear in both profiles when

the rather severe pH interference was introduced for AOC

batch A.

In AOC batch A, the pH was first decreased from pH 9

to pH 7 (t¼ 69 minutes) and thereafter the pH was raised

again to approximately pH 9 (t¼ 85 minutes), as depicted in

Figure 5a. The rank or optimal model complexity of the

PARAFAC model based on the data from AOC batch A

remained four, and the loading landscapes were completely

similar to those presented in Figure 3. For none of the

AOC batches could a spectral shift on the emission or

excitation axis be observed by our process instrument,

which has a limited spectral resolution. This highlights the

difficulty when using a naive approach in process monitoring

in which an intensity shift due to pH changes can only be

interpreted (incorrectly) as a rise or fall in concentrations.

The scores of factors one to four obtained from the

PARAFAC model are also illustrated in Figure 5b–e.

A very clear intensity shift is observed, which agrees with

the time point where acid was added, superimposed on

the reaction trends as found in the NOC batches.

Moreover, it can be seen that the intensity shifts are differ-

ent for different chemical compounds. Similar to what was

Figure 3. The PARAFAC loadings: (a) factor 1, the reactant riboflavin; (b) factor 2, product lumiflavin; (c) factor 3, product lumi-

chrome; and (d) factor 4, a constant, unknown compound.
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observed for the NOC runs, the scores of the fourth factor

neither show an increasing or a decreasing trend over time.

However, this compound is also influenced by the pH

change, as a clear intensity shift is observed in the scores.

Calculating the non-linear regression kinetic model par-

ameters from the concentration profiles obtained from the

PARAFAC model using data from AOC batch A provided a

K value of 0.97�10–2/minute. As the intensity shift observed

in the concentration profile is not presented by the kinetic

model (Eq. 2), it might be concluded that the kinetic profile

represents the true chemical concentration better than the

PARAFAC scores in those time points where the land-

scapes were intensity shifted (Figure 5b–d), and a form of

interpolation over this period would be more realistic to

represent the photochemical breakdown process dynamics.

Moreover, the estimation of the kinetic parameter is also

affected by the intensity shift due to the total sum of

squared errors minimization used in the non-linear regres-

sion.20 Hence, the PARAFAC scores were more represen-

tative for quantification of the riboflavin breakdown in this

particular batch run in the areas where no shifts were

observed, whereas in the areas where the shift was

observed, the measurements should be down-weighted

during model parameter estimation. Therefore, a combined

use of the kinetic profile and the PARAFAC scores would

be a more effective solution. Based on the difference

between the obtained PARAFAC profiles and the expected

kinetic profiles a weighted iterative modeling approach is

suggested.

The proposed modeling approach, which combines

weighted PARAFAC19 and weighted non-linear regression20

is presented in the flowchart in Figure 6, and detailed as

follows: Data cube – the fluorescence landscapes collected

over time for one batch should be stacked into a three-way

data structure. Initial weight – an initial weight-vector with

value 1 for each measurement/time point is given as input

for the algorithm loop. To obtain a kinetic profile that is

corrected for any shifts or disturbances a new weight

vector is determined inside the loop. Initial estimates of

the kinetics – the initial estimate of the reaction constant

K is set to the (unrealistic) value infinite, the other model b

parameters in Eq. 1 are given approximately realistic values

based on previous estimates. Weighted PARAFAC – a

PARAFAC model (similar to Eq. 1) is calculated using the

Figure 4. (a) Fluorescence landscape (t¼ 74 minutes) from abnormal operating conditions batch A; (b) a time-intensity profile of

excitation/emission wavelength 450/530 nm; and (c) excitation/emission wavelength 390/450 nm.
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Figure 6. Flowchart of the modeling approach in down-weighing of intensity changes in the fluorescence signal caused by pH

fluctuations.

Figure 5. Abnormal operating conditions batch A: (a) pH profile, with pH disturbance at t¼ 69–85 minutes; (b–d) the concentration

scores from a PARAFAC analysis (red dots), the unweighted (black lines) and weighted (cyan lines) kinetic profile for compounds 1, 2 and

3, respectively; (e) the concentration scores for compound 4; and (f) the weight vector.
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present weight vector, where all excitation-emission-com-

binations for one time point/landscape get the same weight

as determined for that time point. Concentration scores – the

PARAFAC intensity scores, which provide the relative con-

centration profile for each of the detected chemical com-

pounds, are obtained from the weighted PARAFAC model.

Weighted non-linear least-squares regression (NLR) on concen-

tration scores – the model parameters/kinetic coefficient of

the concentration scores, are estimated by weighted NLR

using Eq. 1. Weight update based on difference between con-

centration scores and NLR estimates – a new weight vector is

calculated based on the difference between the concentra-

tion scores, obtained from the weighted PARAFAC model,

and the kinetic profiles obtained from the weighted non-

linear least-squares. Thereby, a weight between the first

score and the kinetic profile of compound one is obtained

for each time point in the batch run. Likewise, the differ-

ence between the second score and the second kinetic

profile and the difference between the third score and

the third kinetic profile are calculated. The three outcomes

are squared and the average is determined. The average

was rescaled to values between 0 and 1 and defined as

the new weight vector. Is the K significantly different from

the last loop? – if the K value is significantly different from

the previous estimate a new loop/iteration will be started. If

the K value is not significantly different from the previous

estimate the algorithm has converged and the results are

presented. By applying this approach an optimized and final

kinetic profile (cyan lines, Figure 5b–d) delivers a K value of

1.08�10�2/minute for AOC batch A. When inspecting

the weights in Figure 5f it is clear that the time points

where the pH interference was introduced is down-

weighted. This corresponds perfectly with our aim, as we

are interested in knowing the kinetic constant and the true

concentration profiles without any intensity contributions

from the pH interference. In particular, the fitted profiles

for the two reaction products, with their lower intensities,

are improved notably, despite the relatively small difference

in unweighted and weighted K estimates for AOC batch A

(Table 2).

A second AOC batch (B) with a less dramatic pH change

(from pH 9 to 8.7 and back to pH 9) is shown in Figure 7a.

The introduced pH disruption was much smaller but minor

disturbances in the concentration scores obtained from the

PARAFAC model are still observed around t¼ 20 minutes

(Figure 7b–d).

The K value for AOC batch B, obtained by calculating the

non-linear regression model parameters from the PARAFAC

scores (concentration profiles), was 4.97�10�2/minute. By

combining the weighted PARAFAC score and non-linear

regression an optimized K value of 5.07�10�2/minute was

obtained. As only a small pH change was introduced, the

shift in the PARAFAC scores was less dramatic and the

K value obtained before and after applying the weighing strat-

egy is not too different from each other. This corresponds

with the weight vector obtained, where only small differ-

ences were observed (Figure 7f) and where individual

noisy data points and the measurements in the very first

part of the batch are down-weighted almost to the same

extent as the pH shift.

For completeness the weight strategy was also applied

on NOC batches 1 and 2 and when inspecting the weight

vector (Figure 8), only the first part of the batches are

down-weighted, similar to the weight vector for AOC

batch 2. As the weight is rescaled between 0 and 1, it

should be remembered that the weight vector is a relative

measure within each batch and cannot be compared among

batches.

It shows that the suggested strategy of weighting can

function as a more general strategy for down-weighing

noisy observations, e.g., in the initial part of an exponential

profile where small errors can have a considerable influence

on parameter estimation for first-order reactions. To

explore this further, Table 1 shows the weighted estimates

for our NOC runs, where small adjustments of the K values

are observed, accompanied by modestly improved

Table 2. The pH, estimated K values and the concordance correlation coefficient between PARAFAC scores and the kinetic fitted data

– calculated per component – for AOC batches.

Batch pH (�)a

K value (10�2 min�1)

for the unweighted/

weighted

Concordance correlation

coefficient (%)

(compound: 1/2/3)

unweighted

Concordance correlation

coefficient (%)

(compound: 1/2/3)

weighted

AOC A 8.8 (�0.1) 0.97 1.08 99.8 95.4 99.1 99.8 96.1 98.9

AOC B 9.0 (�0.1) 4.97 5.07 99.8 99.2 99.5 99.8 99.1 99.5

AOC C 8.8 (�0.2) 1.02 1.06 99.1 98.5 96.1 99.2 98.6 96.3

AOC D 8.8/9.3b (�0.05) 4.90 5.21 99.2 99.0 99.1 99.2 98.8 99.1

AOC E 8.2 (�0.2) 2.08 2.12 99.8 96.9 97.2 99.8 96.9 97.2

apH disturbance not included in the uncertainty/range determination.
bIn batch AOC D pH was changed from one level to another and kept at the second level throughout the rest of the run.

AOC: abnormal operating conditions.
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weighted concordance correlation coefficients. It is difficult

to compare equally weighted and weighted solutions quan-

titatively, but in many solutions an improvement similar to

the observation made in Figure 7c and d is seen, where an

underestimation of the unweighted K values is the trend

(not shown). The K values for the unweighted and final

weighted fit for the other AOC batches are listed in

Table 2. The weighted concordance correlation between

the final fit and the concentration scores are also reported.

Comparing the pH and the K values again does not reveal

any clear trend, confirming that the pH does not seem to

affect the speed of the reaction as such.

The score profiles for AOC batch A in Figure 5,

obtained from the PARAFAC model, have the potential of

providing a relative estimate of the concentration profiles

and reaction kinetics in the data explored in this study. But

the pH interference is also manifested as an apparent con-

centration change because the fluorescence intensity is dir-

ectly influenced.

This means that the PARAFAC model is perfectly

describing the true process changes appearing, but

Lambert–Beers law, normally relied on in quantitative spec-

troscopy, is violated. However, we are not interested in

describing the changes caused by the pH fluctuation, but

for real-time monitoring of batch processes only in the

changes appearing due to true reaction kinetics. It can be

discussed why this fluorescence intensity shift is taking

place. It might be that the chemical structure changes due

to the environmental pH changes,1 but we would then most

probably also expect to observe a shift in the excitation/

Figure 7. Abnormal operating conditions batch B: (a) pH profile, with pH disturbance at t¼ 15–25 minutes; (b–d) the concentration

scores from a PARAFAC analysis (red dots), the unweighted (black lines) and weighted (cyan lines) kinetic profile for compounds 1, 2 and

3, respectively; (e) the concentration scores for compound 4; and (f) the weight vector.

Figure 8. Weight vectors: (a) normal operating conditions (NOC) batch 1, relate to Figure 1; (b) NOC batch 2, relate to Figure 2.
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describing the true process changes appearing, but

Lambert–Beers law, normally relied on in quantitative spec-

troscopy, is violated. However, we are not interested in

describing the changes caused by the pH fluctuation, but

for real-time monitoring of batch processes only in the

changes appearing due to true reaction kinetics. It can be

discussed why this fluorescence intensity shift is taking

place. It might be that the chemical structure changes due

to the environmental pH changes,1 but we would then most

probably also expect to observe a shift in the excitation/

Figure 7. Abnormal operating conditions batch B: (a) pH profile, with pH disturbance at t¼ 15–25 minutes; (b–d) the concentration

scores from a PARAFAC analysis (red dots), the unweighted (black lines) and weighted (cyan lines) kinetic profile for compounds 1, 2 and

3, respectively; (e) the concentration scores for compound 4; and (f) the weight vector.

Figure 8. Weight vectors: (a) normal operating conditions (NOC) batch 1, relate to Figure 1; (b) NOC batch 2, relate to Figure 2.
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emission wavelengths. The latter is hard to discern from the

rather crude resolution in our process fluorescence spec-

trometers. This is, however, not an uncommon situation for

filter-based process instruments and will most likely not

change in the future. The weighted PARAFAC step in

Figure 6 might seem redundant when we state that only

the intensity changes (the rank, and thus spectral profiles,

stay the same). However, due to the filter/sequential nature

of the fluorescence instruments there might be spike dis-

turbances (bubbles, particles), which make landscape down-

weighing attractive in practice. Although our study mainly

focuses on disturbances caused by pH fluctuations, disturb-

ances can in practice be caused by several process or

instrument-related reasons, which can lead to intensity

shift in the fluorescence landscapes. Therefore, the sug-

gested weighting strategy can be applied in several cases,

where fluorescence outcomes do not follow Lambert–

Beers law.

Conclusions

Based on the model system applied in this study, it is con-

cluded that pH fluctuations can have a major impact on the

intensity of the fluorescence measurement landscape and

thereby affect the concentration profiles obtained from a

PARAFAC analysis. When applying fluorescence as a moni-

toring tool in systems without a fixed pH set-point the user

should thus be aware that Lambert–Beers law does not

automatically hold and kinetic parameter estimation might

be invalid. Our study suggests a chemometric modeling

approach, where weighted non-linear regression and

weighted PARAFAC are combined, as a solution to com-

pensate for fluorescence intensity shifts. When determining

kinetic rates in our model system on the unweighted

PARAFAC scores, the intensity shifts can have a negative

influence, while calculating the solutions using weights

determined based on expected reaction kinetics more rep-

resentative K values are obtained.
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