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“The living cell does not necessarily follow the programme of the laboratory. Indeed it might be
doubted whether any substances as such ever appear except at the end. They actual process might well
be like a shuffling of cards, whereby the order of the cards is altered and the order or relative position is
the important thing. On the anabolic side there is always the face; on the katabolic side there is always
the back.”

Interpretation from the chapter 93 of THE CANON OF MEDICINE

Avicenna (lbn Sina) 980 — 1037 A.D.
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ABSTRACT

Metabolomic analysis of plants broadens understanding of how plants may benefit humans, animals
and the environment, provide sustainable food and energy, and improve current agricultural,
pharmacological and medicinal practices in order to bring about healthier and longer life. The quality
and amount of the extractible biological information is largely determined by data acquisition, data
processing and analysis methodologies of the plant metabolomics studies. This PhD study focused
mainly on the development and implementation of new metabolomics methodologies for improved
data acquisition and data processing. The study mainly concerned the three most commonly applied
analytical techniques in plant metabolomics, GC-MS, LC-MS and NMR. In addition, advanced
chemometrics methods e.g. PARAFAC2 and ASCA have been extensively used for development of
complex metabolomics data processing and analysis methods. The first study (Journal of
Chromatography A, 1266 (2012) 84-94) demonstrated how the application of a multi-way
decomposition method, PARAFAC2, can help in providing maximum extraction of metabolite features
from the raw LC-MS data obtained from complex plant extracts. The second study (Analytical and
Bioanalytical Chemistry, In Press, DOIl: 10.1007/s00216-013-7341-z) outlines a novel GC-MS
derivatization method using TMSCN for trimethylsilylation for improved analysis of complex biological
mixtures . A review paper (Journal of Cereal Science, Accepted, DOI: 10.1016/j.jcs.2013.10.002) written
for the Journal of Cereal Science comprises current analytical challenges and perspectives of cereal
metabolomics with emphasis on new development in the use of multivariate data analysis methods for
exploitation of the full information level in the analytical platforms. The fourth study (Journal of
Experimental Botany, Submitted) combined the knowledge gained from the first and second studies
and applied cutting-edge chemometric methods in a real case biological question related to barley
breeding. This study revealed several biological questions associated with plant- environment, plant-
gene mutation relationships and alterations of the plants’ physiology during their development stages.
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1. INTRODUCTION

1 INTRODUCTION

1.1 Metabolomics towards improved health, food and environment

“Nature is the best Artist, Architect, Engineer and Doctor.” Cells are probably the most sophisticated
creations of nature and they are considered to be the building blocks of the surrounding life. Cells are
the smallest unit of life in which several hundreds of different bio-chemical processes occur
simultaneously. The information that is necessary to regulate all these processes is preserved in the
nucleus of the cells, which mainly consist of DNA and RNA. DNA and RNA are the two important
components of the cells that regulate their living and development. Genes are small regions of DNA
and RNA that carry information on one or more quality traits of the corresponding cells and
phenotype(s). The life cycle of the living cells is all about metabolite and protein synthesis, their
interactions and degradations. All the physiological processes of the living cells involve chemical and
biochemical reactions that determine the metabolomic status of cells. The metabolome of cells
comprise all metabolites present in the given status of the cell, which to some extent continuously
changes depending on internal and external factors. Cells are able to synthesize several hundred
metabolites within a short time period. These are difficult or not possible to reproduce in modern
laboratories. When exposured to pathogens or any other internal and external stress, cells are able to
produce defense metabolites that are absent or present in very small amounts under normal
conditions (stress-free conditions) in cells. This, in turn, gives rise to several questions such as, where
do these metabolites come from, how are they synthesized, which genes possess information about
these response reactions and how are these metabolites able to assist the cells to cope with stress?

The cell metabolome greatly differs between various tissues, organs and organisms and is strongly
influenced by the surrounding environment and genotype. For instance, mammalian and plant cells
have different structures; therefore, their metabolomes differ significantly. The metabolomes of both
cell types are complex; however, in the thesis | will mainly focus on the plant cell metabolome. Plant
cell metabolism is a complex system where several hundreds of metabolites are synthesized
simultaneously, involving several biosynthetic pathways. Recent studies have established an
understanding of the biosynthetic pathways of a few classes of metabolites and alterations of cell
metabolomic equilibriums in response to some internal and external factors. Although the genome of
some plants e.g. Arabidopsis thaliana and Oryza sativa, are fully sequenced and a great amount of
transcriptomic and proteomic data are available, only a very small portion of the biochemistry present
in the plant cells is understood. This is mainly due to the complexity of the systems; for example,
several genes might influence one factor or several factors might be the function of one gene. The
current state of plant science is far away from the point where one can visualize the plant cell
metabolism as one whole system and answer all the related questions such as: 1. Which metabolites
are present in cells, 2. How do the metabolites differ in various tissues, organs and organisms, 3.
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1. INTRODUCTION

Which factors can alter the cell metabolome, 4. Where, when and how are these metabolites
synthesized in cells, and 5. What are the roles of these metabolites in cell functions? In order to
answer all these important questions one must be able to detect all these metabolites in the cells in a
quantitative manner and elucidate their structures. This field of the research has become one of the
biggest areas of “omics” technology in the post-genomic era and today it is called METABOLOMICS.

Plant metabolomics is a rapidly developing scientific field that focuses on quantitative and qualitative
analysis of all the metabolites of plant cells. Analysis of the plant metabolome allows for
understanding of the influence of the plant genes on the quality traits of the phenotypes (Fiehn, 2002).
Today, more and more plant studies are applying metabolomics approaches to uncover systems
biology, to understand natural defense mechanisms of plants against external stresses, to identify the
main bioactive compounds that enhance the health-beneficial properties of crop plants and to
evaluate effects of the environment and genetic modifications. In combination with proteomics and
transcriptomics, metabolomic analysis of plants has become a powerful approach for identification of
functions of genes, discovery of biomarkers and for elucidation of biosynthetic pathways. Therefore,
today, plant metabolomics has become a key tool of plant science to understand plants’ physiology,
develop and improve new crop plants towards higher yield and resistance to the continuous climate
challenges as well as to improve their health-beneficial values. Thus, “gene-metabolome-phenotype
analysis (GMP) can be considered as a train, which is taking us towards improved health-food-

environment (HFE) much faster and safer than any other vehicle.”

However, due to the complexity of the plant cell metabolome and the limited capabilities of the
current analytical technologies, plant metabolomics has not yet reached the stage where it can provide
quantitative data for the whole metabolome. This in fact shields a small, but very important portion of
the information that may result in extended and/or new knowledge in systems biology. Therefore,
today, studies that involve metabolomic method developments for increasing the range of the
detectible metabolites, sensitivity and reproducibility to establish the high-throughput protocols
constitute a substantial part of the research in metabolomics.

Despite the recent advances in chromatographic and electrophoretic separation and spectrometric
and spectroscopic detection of a wide range of metabolites of the complex biological mixtures, current
metabolomics cannot provide a complete picture of metabolomes of phenotypes. Main challenges of
the current metabolomics can be divided into two different classes: 1. Problems arising from the
qualitative analysis and 2. Problems arising from the quantitative analysis. Although modern
analytical platforms such as GC-MS, GC x GC-MS, LC-MS, LC x LC-MS, CE-MS and LC-NMR provide a vast
amount of metabolomic data, it is not always possible to identify all the detected metabolites. This is
mainly due to the high complexity of the metabolome of the different species and limitations of the
comprehensive metabolomic databases. However, it is worth mentioning that global metabolomic
databases e.g. MassBank, NIST, Wiley, as well as species specific metabolomic libraries are developing

rapidly and some of them have become very useful in the identification of unknowns. Most of these
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1. INTRODUCTION

metabolite libraries are based on mass spectrometric data, e.g. EI-MS data from GC-MS, exact mass of
metabolites from LC-MS experiments. Recently, much effort has been put into the development of
metabolite libraries based on tandem MS and NMR data (Cui et al., 2008; Ludwig et al., 2012; Wishart,
2007; Wishart et al., 2013). However, these libraries are still to be developed and enriched before

metabolomics labs can utilize them.

The second biggest challenge of metabolomics is associated with quantitative analysis. Obtaining
quantitative metabolomic data is probably the most challenging step of comprehensive metabolomic
studies. The simplest requirement of quantitative metabolomic analysis is that the analyst must make
sure that concentrations of metabolites present in the sample mixture and their recorded responses
have a one-to-one relationship and that we are able to estimate the level of error when this
relationship is disturbed. High quantitative value of the metabolomic data requires great effort in all
the steps of the metabolomic workflow, starting from the plant growing or animal living conditions

over the sampling methodology to the analysis and interpretation of the data.

1.2 The aim of the project

The main goal of this PhD study was to implement and develop new methodologies for improving
metabolomic data acquisition and analysis in plant metabolomics studies. The project mainly involved
GC-MS, LC-MS and NMR based metabolomics and application of advanced chemometrics e.g. DoE,
PARAFAC2 and ASCA for improved metabolomic data acquisition and data analysis.

1.3 Brief description of the thesis and publications

This PhD thesis comprises most of the work performed within the project. Section 1.1 provides a brief
introduction to plant metabolomics and highlights where and how it is used and the main expected
outcomes. In Section 2, the pros and cons of the main elements of plant metabolomics are described
in more detail. The section covers aims of different metabolomic studies, e.g. targeted and untargeted
analysis, demonstrates the main challenges of the quantitative data acquisition and briefly discusses
the bioactive substances of the plants. In addition, Section 2 demonstrates the role of metabolomics in
development and improvement of crop plants. The section also describe the most commonly used
commercial and free metabolomic data processing software, metabolite databases available to date as
well as other useful web sources that assist newcomers in the field. Section 3 describes advanced GC-
MS and chemometrics-based plant metabolomics methodologies. The section demonstrates important
considerations in high quality quantitative metabolomic data acquisition by GC-MS and the novel
derivatization methodology based on trimethylsilyl cyanide (TMSCN) (Khakimov et al., 2013). The

-12 -



1. INTRODUCTION

section also demonstrates the use of the design of experiment (DoE) in optimization of plant
metabolomics protocols and addresses the main sources of experimental errors, which introduces
non-sample related variations. Section 3 outlines the use of advanced chemometric techniques for
extracting hidden information from the LC-MS and GC-MS type of the metabolomics data by using the
multi-way decomposition technique, PARAllel FACtor Analysis 2 (PARAFAC2), and holistic evaluation of
the designed metabolomics data by using ANOVA-simultaneous component analysis (ASCA). Section 4
describes three separate studies performed within the project that are not yet condensed and
submitted for publication. The first study demonstrates a development of the metabolomics protocol
for profiling the saponin content as well as untargeted analysis of the F2 population of B. vulgaris plant
leaves from the limited amount of the plant material (~ 10 mg). The second study depicts GC-MS
analysis of the new triterpenoids produced by combinatorial biochemistry in tobacco leaves by using
the constrains developed from the oxidosqualene cyclases and P450s of the B. vulgaris plants. Finally,
the third study demonstrates purification of the saponin content of the P and G type B. vulgaris plants,
prior to structure elucidation and tentative characterization of the major saponins detected from a LC-
MS/MS analysis.

Paper 1 (published) demonstrates the first application of the multi-way decomposition method,
PARAIllel FACtor Analysis 2 (PARAFAC2), to LC-MS based metabolomics data. This paper demonstrates
resolution and quantification of the elusive peaks of the possible bioactive triterpenoid saponins of the
Barbarea vulgaris plants against an insect herbivore, Phyllotreta nemorum. Moreover, it provides a
tutorial on the use and validation of the PARAFAC2 method in conjunction with LC-MS data.

Paper 2 (accepted) describes the development of a novel derivatization technique for GC-MS based
metabolomics of complex biological mixtures. In this work, for the first time we have used
trimethylsilyl cyanide (TMSCN) as a trimethylsilylation reagent for the comprehensive GC-MS analysis
of a wide range of polar and non-volatile metabolites. The silylation capabilities of TMSCN are
compared to the most commonly used silylation reagent MSTFA. The results of the analysis showed
that TMSCN-based derivatization outperforms MSTFA-based silylation in terms of reaction speed,
sensitivity and repeatability of GC-MS profiles. Moreover, the paper highlights and discusses some of
the crucial aspects of the comprehensive GC-MS analysis including automation, importance of

consistent derivatization time, sample preparation and injection.

Paper 3 (accepted) is a comprehensive review of cereal metabolomics. The paper describes state-of-
the-art analytical technologies, current challenges and perspectives of high-throughput cereal
metabolomics. The review is mainly written with an aim to assist scientists who are not specialists in
metabolomics, chemometrics and analytical chemistry in gaining an overview of the current state of
the art in metabolomics. The paper describes all the steps of the metabolomic workflow from sample
harvesting to the data analysis and interpretation. Each analytical platform is described separately and

advantages and limitations highlighted. The main sources of bias introduced into the metabolomic
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data are discussed and possible solutions are provided. Moreover, the review describes a raw
metabolomic data preprocessing tools, supervised and unsupervised chemometric methods of data

analysis and provides selected examples of applications.

Paper 4 (Under review) demonstrates GC-MS metabolomic profiling of flour from whole-grain barley
seeds of three genetically different cultivars and revealed dynamics of barley metabolome during the
grain-filling period and effects of growing temperature and genotype. The study revealed detection of
247 metabolites, 89 of which were identified based on their EI-MS and Rls. In this work all the above
mentioned methodologies developed within the project, e.g. TMSCN based derivatization,
comprehensive GC-MS profiling and PARAFAC2 based chromatographic data processing were
employed on the real biological samples. The study also shows the power of the ANOVA-simultaneous
component analysis (ASCA) for exploration of the metabolomics data derived from the designed

experiment.

-14 -



2. PLANT METABOLOMICS

2 PLANT METABOLOMICS

2.1 Background and state of the art

Plant metabolites usually refers to small molecules with MW of up to 1500 Da that are intermediate
and/or final products of the plant cell metabolism (Veber et al., 2002; Wishart, 2007). Plant cell
metabolism is the complex physico-chemical event comprising photosynthesis, respiration, and
biosynthesis and degradations of a broad range of organic molecules. Plant cell metabolism covers all
the biochemical transformations occurring within the plant organism to sustain life, promote growth,
reproduction, defense and response to the surrounding environment. These metabolomic
transformations are usually divided into two main categories: catabolism (produce energy by breaking
molecules into smaller units) and anabolism (use energy for constructing cell molecules from smaller
units) reactions that are catalyzed by the several different enzymes. Plant metabolites are also divided
in two classes: primary (metabolites that are directly involved in growth and development) and
secondary (metabolites that are not directly involved in plant’s growth, but possess important
functions such as defense against various stresses) metabolites. As the whole systems, collections of all
these metabolites within the cells, tissues and organisms are called metabolomes of the biological
systems (Oliver et al., 1998). Thus, the metabolome of a plant is complex and it continuously changes
throughout the lifetime of plants. Several biosynthetic pathways work simultaneously within each cell
and one metabolite might be the part of several pathways. Hundreds of different enzymes that are
functions of different genes alter the plant cell metabolome in different ways within seconds. Different
types of plant cells have their own unique metabolome and accordingly, the metabolomes of different
tissues and organs differ and make distinct contributions to the metabolome of the organism as a
whole. The main biosynthetic pathways start with the carbohydrates synthesized during
photosynthesis and involve shikimic acid pathway, pentose-phosphate pathway, mevalonic acid
pathway, malonic acid pathway, malonyl CoA and other pathways (Bentley, 1999; Ganem, 1978; Koffas
et al., 1999; Lynene, 1967) (Figure. 1). Each of these biosynthetic pathways shares some common
metabolites and even enzymes, though a whole metabolomic profile and the end products are unique
to each pathway. However, due to pleiotropy, metabolites of different pathways that are believed to
be unrelated to each other may also be altered simultaneously. Information about regulations of these
complex biochemical routes are encoded in the form of nucleotide sequences of the messenger
ribonucleic acids (mRNAs) that are encoding the corresponding biocatalysts (enzymes) when it is

demanded. Thus, plant metabolism is a well-controlled, complex, but flexible system.
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Figure 1. Simplified overview of major pathways of secondary-metabolite biosynthesis and their interrelationships
with primary metabolism (modified from Schmidt (Schmidt et al., 2005)).

During plant development, reproduction as well as genetic modifications, internal and external stress
cause significant alteration in plant cell metabolome. Observation of all these biochemical
transformations is not possible yet. However, quenching the system and observing the given state of
the cell metabolome is becoming a common approach to understand the complex biochemical
processes that are occurring within cells. Although it has long been known that dereplication of
chemical composition of plants may provide more insight into their biology and chemistry, very little
was done until the Russian scientist Mikhail Tsvet invented chromatography in the early 20" century.
He documented the first method for separation of plant pigments, chlorophyll and carotenoids, which
brought a huge resonance in the field and initiated further research on decomposition of plants and
animal-derived samples. The field developed relatively slower until the early 1950’s when the gas
chromatography-mass spectrometry era began (Gohlke and Mclafferty, 1993). In the late 1960’s, after
improvements in GC-MS technology for performing comprehensive analyses, the measure of biological
systems’ responses to various external factors significantly improved. The first attempts to understand
the complex metabolism of cells were performed by using GC-MS based detection of metabolites and
the term “metabolomic profile” was introduced (Horning and Horning, 1971; Horning et al., 1968;

Horning, 1971). Later, by the development of new analytical platforms and data analysis statistical
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2. PLANT METABOLOMICS

methods, analysis of biological systems’ metabolomes became even more common for revealing
functions of genes, systems biology, mechanisms of diseases, and a new field was born, namely
METABOLOMICS. Metabolomics covers systematic analysis of cell metabolomes in a quantitative
manner that facilitates understanding of cell responses to pathophysiological stimuli or genetic
modification. The approach was pioneered in late 1990’s in the field of toxicology (Nicholson et al.,
1999).

In contrast to genomics, proteomics and transcriptomics, metabolomics provides a rapid and closer
view to systems biology and enables evaluation of genes and proteins to the level of phenotypes
(Fiehn, 2002). In its simplest term, plant metabolomics can be described as the approach based on
quantitative and/or qualitative measurements of low molecular metabolites of plants as the function
of genetic modifications and various biotic and abiotic stresses. Metabolomics itself has been divided
into different approaches based on the purpose of studies and the type of information obtained from
the metabolomic analysis (Dunn, 2008; Fiehn, 2002). Three main metabolomic analysis approaches
include targeted analysis, metabolomic profiling, and metabolomic fingerprinting. Targeted analysis is
usually employed in screening studies where metabolite(s) of interest are known in advance. For
example, quantitative analysis of mycotoxins from food and/or food raw materials (Rahmani et al.,
2009; Royer et al., 2004) or quantification of defense secondary metabolites of plants induced during
the herbivore attacks. Targeted metabolomics entails extensive prior sample preparation in order to
improve metabolite recovery and quantification. In addition, many targeted analysis studies employ
selected screening by observing characteristic m/z ions (selected ion monitoring (SIM) experiments can
be performed using LC- and GC-MS) and/or investigating only the retention time region where target
metabolite(s) elute. In turn, this may result in enhanced quantification and reduce experimental time

and cost. Metabolomic profiling is a probably the mostly applied approach, which is based on semi-

quantitative (only few profiling studies use absolute quantification) analysis of pre-defined class or
classes of metabolites. Profiling usually focuses on one or two classes of metabolites such as phenolics,
organic acids (these two classes can be analyzed using one protocol, see Paper 4), amino acids,
isoprenoids or carbohydrates. Most metabolomic profiling studies target to observe the alterations
occurred in one or more biosynthetic pathways. Therefore, metabolite extraction and sample
preparation protocols are usually focused on desired classes of compounds. This approach applies
various analytical platforms such as LC-MS (Kuzina et al., 2009), GC-MS (Roessner et al., 2000), NMR
(Savorani et al., 2010a). Metabolomic fingerprinting is a rapid measurement of systems’ metabolome

showing their characteristic patterns. Usually, this approach does not involve extensive sample
preparation or purification, but focuses on rapid snapshots of phenotypes. Metabolomic fingerprinting
has found a wide application in rapid classification of biological samples as well as in screening and
disease diagnosis (Chen et al., 2007; Choi et al., 2005; Kruger et al., 2008; Mattoli et al., 2006). This
approach mainly applies spectroscopic techniques such as NMR, NIR, FT-IR, fluorescence, direct fusion
mass spectrometry, GC-MS and LC-MS.
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Recent advances of analytical platforms and developments of metabolomic protocols and data analysis
methods have enabled more insight into the metabolome of plants (Allwood and Goodacre, 2010;
Fiehn, 2008; Lindon and Nicholson, 2008; Lisec et al., 2006; Okazaki and Saito, 2012). Today, more than
200,000 metabolites belonging to the plants’ kingdom are known, including both primary and
secondary metabolites (Fiehn, 2002). Among these, secondary metabolites, such as terpenes, alkaloids
and phenolics, comprise 43,000, 12,000 and 8,000 metabolites, respectively (Bernhoft, 2013; Chen et
al., 2011). Each plant cell contains several thousand distinct metabolites. Some of these metabolites
possess biological activity, serve as disease biomarkers, and assist in elucidation of new biosynthetic
pathways and functions of genes. However, current state-of-the-art metabolomic technologies are not
capable of detecting all metabolites of plant cells in a single method. Most comprehensive and
relatively high-throughput analytical techniques that are frequently applied in various metabolomics
studies comprise NMR, GC-MS, LC-MS, CE-MS, FT-IR and LC-DAD (see Paper 3). In the case of
metabolomic analysis of complex samples by applying optimized metabolomic protocols, these
techniques allow detection of up to 50 (NMR) or several hundred (e.g. up to 500 in GC-MS, LC-MS, CE-
MS) most abundant metabolites of the investigated sample mixtures. These numbers, however, are
increasing by continuous developments of analytical platforms e.g. GC x GC-MS, LC x LC-MS, FTICR-MS,
LC-NMR, raw data processing methods e.g. PARAFAC2, AMDIS, MCR and improvements of unbiased
and global metabolite extraction and derivatization protocols. Nevertheless, a detectible part of the
metabolome in a single method (a single metabolomic protocol and one analytical platform) still
remains significantly lower compared to the actual metabolome of the cells, at the given status. In fact,
identification of unknown plant metabolites and broadening of the detectible part of the metabolome
is one of the main challenges of current metabolomics. The ultimate goal of several studies focuses on
developments of metabolomic technologies to increase the detectible part of the metabolome, which
in turn leads to improve the capabilities of current metabolomics and may further assist in
identification of several functions of genes simultaneously or allow better understanding of the
pleiotropic effects and biological systems in general. However, it is worth mentioning that the
analytical techniques such as NMR, LC-MS and GC-MS are capable of detecting a very broad range of
metabolites; therefore, the physico-chemical diversity of the metabolome is not any more the primary
limitation of metabolomics. In fact, the separation power and the sensitivity of the techniques are the
main limiting factors, since the concentration of cell metabolites at any given time may significantly
vary and the techniques are able to detect only the first few hundred most abundant metabolites,
while the low concentration metabolites remain unseen and/or hindered by the more abundant
metabolites. Thus, the ultimate goal of metabolomics method development studies can be reached
when the detectible part of the metabolome will be equal or close to the actual metabolome of the

investigated sample matrix.

An overview of the general plant metabolomic workflow for the comprehensive metabolomics studies
aimed at uncovering targeted or untargeted biochemical phenomena is demonstrated in Figure 2.

Hypothetically, we can image this as one integrated system employing several separation and

-18-



2. PLANT METABOLOMICS

detection techniques simultaneously, and the complex sample matrix, e.g. plant leaf, seed or drop of
plasma, can be directly introduced into the system and automated robots perform data acquisition.
Similar systems such as LC-NMR, LC-NMR-MS have already shown a high potential for automated
separation and sample up-concentration, followed by detection (Jaroszewski, 2005a; Jaroszewski,
2005b; Jaroszewski, 2007). However, due to technical complications and high cost, these analytical
platforms are not yet commonly used in comprehensive metabolomics studies.
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Figure 2. Overview of the Plant Metabolomics Workflow

Today, the majority of metabolomic studies are purpose-oriented and deal with absolute or semi-
quantitative detection of prior known and/or unknown metabolites from various sample matrices. In
plant metabolomics, the main determining factor is the type of the investigated metabolites, e.g.
polar, semi-polar, non-polar metabolites or conjugated metabolites, to other cell components, such as
phenolics and saponins. The choice of metabolite extraction method, e.g. solvent, mechanical stirring,
time and temperature, is probably the most important factor for obtaining the desired metabolomic
data. Three main features of the investigated metabolites, concentration (approximate), range of the
molecular masses and polarity of metabolites, play a key role in optimization of metabolite extraction
protocols and determine which analytical platform to use. It is worth mentioning that not many
comprehensive plant metabolomic studies apply appropriate optimization of metabolomic protocols

by considering the most important factors and testing the protocols to improve their robustness, since
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only the reliable and robust protocols may provide meaningful data, thus true biological information.
Table 1 comprises free and commercial metabolomic databases, data preprocessing/analysis software
available to date, and lists some of the useful websites and outstanding metabolomics-related review
papers to assist newcomers in the field.

Metabolomic Data Bases

I. | Wiley & NIST

Combined Wiley 10™ edition + NIST 11/12 possess 870,000 spectra obtained from GC-El-
TOF, GC-EI-Q and LC-MS/MS
http://www.sisweb.com/software/ms/wiley.htm#registrynistcombined
http://webbook.nist.gov/chemistry/

Il. | Golm Metabolome Database (GMD)

GC-EI-TOF and GC-EI-Q Mass Spectral (MS) and Retention Time Index (RI) Libraries (MSRI) of
metabolites from various biological systems (Kopka et al., 2005)
http://gmd.mpimp-golm.mpg.de/

Ill. | MassBank

GC-EI-TOF, GC-EI-QQ, LC-ESI-IT, LC-ESI-Q, LC-ESI-QQ, LC-ESI-QIT, LC-ESI-ITFT, LC-ESI-QTOF,
LC-ESI-ITTOF, LC-APPI-QQ, LC-APCI-QTOF, MALDI-TOF and CE-ESI-TOF libraries of
metabolites (Horai et al., 2010)

http://www.massbank.jp/

IV. | Fiehn GC-MS Database

Contain  GC-EI-Q and GC-EI-TOF data of metabolites (Kind et al., 2009)
http://fiehnlab.ucdavis.edu/Metabolite-Library-2007

V. METLIN

Comprises Mass Spectral data of more than 64,000 metabolites obtained using LC-ESI-QTOF
(Smith et al., 2005)

http://metlin.scripps.edu/index.php

VI. | The Human Metabolome Database (HMDB)

Contain chemical, clinical and biochemical data of 41,519 metabolites found in the human
body (Wishart et al., 2013)

http://www.hmdb.ca/

VIl. | The Madison Metabolomics Consortium Database (MMCD)

Contain chemical formula, names and synonyms, structure, physical and chemical
properties of more than 10,00 metabolites reported in the literature and combine 1D, 2D
NMR and MS data for 500 metabolites (Cui et al., 2008)

http://mmcd.nmrfam.wisc.edu/

VIll. | The Birmingham Metabolite Library Nuclear Magnetic Resonance database (BML-NMR)
Contain 3328 experimental 1D and 2D J-resolved NMR spectra of 208 metabolite standards
(Ludwig et al., 2012)

http://www.bml-nmr.org/

IX. | Kyoto encyclopedia of genes and genomes (KEGG)

Large-scale molecular datasets generated by genome sequencing and other high-
throughput experimental technologies

http://www.genome.jp/kegg/
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MetaCyc (encyclopedia of metabolic pathways)

MetaCyc contains more than 2042 pathways from more than 2414 different organisms
involved in both primary and secondary metabolism, as well as associated compounds,
enzymes, and genes

(Caspi et al., 2012)

http://metacyc.org/

XI.

Reactome

Reactome is an open-source, open access, manually curated and peer-reviewed pathway
database. It includes biological pathways, signaling, innate and acquired immune function,
transcriptional regulation, translation, apoptosis and classical intermediary metabolism and
possess several Entities (nucleic acids, proteins, complexes and small molecules)
participating in these reactions (Croft et al., 2011)

http://www.reactome.org/

XIl.

Chemical Entities of Biological Interest (ChEBI)

ChEBI is one of the most comprehensive chemical compounds database comprising data
from four different databases (the Integrated relational Enzyme (IntEnz), KEGG, Chemical
Component Dictionary of the Protein Data Bank (PDBeChem), chemical
database of bioactive molecules with drug-like properties (ChEMBL) (Hastings et al., 2013)
http://www.ebi.ac.uk/chebi/

XMI.

PubChem

PubChem consist of three components, PubChem Substance, PubChem Compound, and
PubChem BioAssay and provide information about small molecules’ biological activity,
physico-chemical properties, chemical structure similarity search and links to biological
properties of the metabolites via PubMed scientific literature (Wang et al., 2009b; Wang et
al., 2010; Wang et al., 2012)

http://pubchem.ncbi.nlm.nih.gov/

XIV.

ChemSpider

Free database with access to over 29 million structures, properties and associated
information by integrating and linking compounds from more than 440 data sources (Ekins,
2009; Williams and Tkachenko, 2010; Williams and Tkachenko, 2011)
http.//www.chemspider.com/

XV.

Biological Magnetic Resonance Data Bank (BMRB)

BMRB contains 1D and 2D NMR data for wide range of pathway and/or species specific
biopolymers and metabolites

http.//www.bmrb.wisc.edu/metabolomics/

XVLI.

Spectral Data Base for Organic Compounds (SDBS)

SDBS contains EI-MS, 1H and 13C NMR, FT-IR, Raman and Electron Spin Resonance (ESR)
data 34,000 compounds

http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/cre_index.cgi

XVIL.

Metabolights

Metabolights is an open-access database which is cross-species, cross-technique and
covers metabolite structures and their reference spectra as well as their biological roles,
locations and concentrations, and experimental data from metabolic experiments (Haug et
al., 2013)

http://www.ebi.ac.uk/metabolights/

XVIII.

BiGG
A Biochemical Genetic and Genomic knowledgebase of large scale metabolic
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reconstructions

The database accounts for the functions of 1,496 ORFs, 2,004 proteins, 2,766 metabolites,
and 3,311 metabolic and transport reactions (Schellenberger et al., 2010)
http://bigg.ucsd.edu/

XIX.

KNApSAcK Metabolomics

This is a plant metabolomic database comprising 20,741 species and 50,048 metabolites
and allow metabolites search from MS peak, molecular weight and molecular formula, and
species (Afendi et al., 2012)

http://kanaya.naist.jp/KNApSAcK/

Metabolomic Data Processing Software

PARAFAC2
Processing GC-MS, LC-MS, LC-DAD and CE-MS type of three-way data (Bro et al., 1999)
http://models.life.ku.dk/algorithms

iCoshift

Alignment of NMR, LC-UV, GC-FID and CE-UV type of two dimensional data (Savorani et al.,
2010b)

http://models.life.ku.dk/algorithms

Correlation Optimized Warping (COW)

Alignment of NMR, LC-UV, GC-FID and CE-UV type of two dimensional data (Nielsen et al.,
1998)

http://models.life.ku.dk/algorithms

DOSY Toolbox
Processing Diffusion-Ordered Spectroscopy NMR data (Nilsson and Morris, 2008)

FastChrom

Matlab-based method for baseline correction, peak detection, and assignment (grouping)
of similar peaks across samples from single-channel data (e.g. GC-FID) and multi-channel
data (e.g. total ion chromatogram from GC-MS) (Johnsen et al., 2013)
http://models.life.ku.dk/algorithms

VI.

Load2Chrom

Performs automatic peak assignment using PARAFAC2, PARAFAC and MCR based
deconvoluted mass spectra and comparing against metabolite data bases e.g., NIST
(Murphy et al., 2012)

http://models.life.ku.dk/algorithms

VII.

AMDIS

The Automated Mass Spectral Deconvolution and Identification System (AMDIS) extracts
spectra for individual components in a GC/MS data file and identifies compounds by
matching these spectra against a reference library (Stein, 1999)
http://chemdata.nist.gov/mass-spc/amdis/

VIII.

GAVIN
Matlab based free software complement to AMDIS for processing GC-MS metabolomic data
(Behrends et al., 2011)

MetAlign

Metabolomic data preprocessing software for LC-MS and GC-MS type of data (Lommen,
2009; Lommen and Kools, 2012)

http://www.wageningenur.nl/en/show/MetAlign.htm
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X. MZmine
Metabolomic data preprocessing software for LC-MS and GC-MS type of data (Katajamaa et
al., 2006; Pluskal et al., 2010)
http://mzmine.sourceforge.net/
XI. XCMS

Metabolomic data preprocessing software for LC-MS and GC-MS type of data (Smith et al.,
2006; Tautenhahn et al., 2012)
http://metlin.scripps.edu/xcms/

XIl. | MarkerLynx
Metabolomic data preprocessing software for LC-MS and GC-MS type of data (Waters, UK)
http://www.waters.com/waters/de_DE/MarkerLynx-/nav.htm?locale=de_DE&cid=513801

Xlll. | MetaboliteDetector
Deconvolution and analysis of GC-MS based metabolomics data (Hiller et al., 2009)
http://md.tu-bs.de/

XIV. | MetabolomeExpress
Web-based processing and analysis of GC-MS based metabolomics data (Carroll et al., 2010)
https.//www.metabolome-express.org/

XV. | MetaboloAnalyst
Web-based analytical pipeline for high-throughput metabolomics studies, which provide
processing e.g. baseline correction, alignment, peaks detection, normalization and
multivariate statistical analysis, as well as data annotation for various MS and NMR based
metabolomics data (Xia et al., 2009; Xia et al., 2012)
http://www.metaboanalyst.ca/

XVI. | MetaboMiner
This is a Java based software that automatically or semi-automatically identifies metabolites
in complex bio-fluids from 2D NMR spectra, including 1H-1H total correlation spectroscopy
(TOCSY) and 1H-13C heteronuclear single quantum correlation (HSQC) data using libraries
such as HMDB, HMCD, MMRB and other databases (Xia et al., 2008)
http://wishart.biology.ualberta.ca/metabominer/

XVII. OpenMS
This is an open-source software C++ library for LC/MS data management and analyses. It
offers an infrastructure for the development of mass spectrometry related software and
powerful 2D and 3D visualization (Lange et al., 2005; Sturm et al., 2008)
http://open-ms.sourceforge.net/
XVIIl. | Seven Golden Rules Software

Calculates molecular formulas from high resolution mass spectrometry data by considering
seven heuristic rules: (1) restrictions for the number of elements, (2) LEWIS and SENIOR
chemical rules, (3) isotopic patterns, (4) hydrogen/carbon ratios, (5) element ratio of
nitrogen, oxygen, phosphor, and sulphur versus carbon, (6) element ratio probabilities and
(7) presence of trimethylsilylated compounds (Kind and Fiehn, 2007)
http://fiehnlab.ucdavis.edu/projects/Seven_Golden_Rules/

XIX. | PolySearch

This is a web-based tool that supports more than 50 different classes of queries (e.g.,
diseases, tissues, cell compartments, gene/protein names, SNPs, mutations, drugs and
metabolites) against nearly a dozen different types of text, scientific abstract or
bioinformatics databases (Cheng et al., 2008)
http://wishart.biology.ualberta.ca/polysearch/index.htm
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XX. COLMAR

Complex Mixture Analysis by NMR is a web-based identification of metabolites based on
their chemical shifts and J-coupling constants (COLMAR) (Robinette et al., 2008)
http://spinportal.magnet.fsu.edu/

XXI. FiD
Fragment iDentificator (FiD) is a software that allows structural identification of product
ions produced with tandem mass spectrometric measurement of low molecular weight
organic compounds by search over all possible fragmentation paths and outputs a ranked
list of alternative structures (Heinonen et al., 2008)
http://www.cs.helsinki.fi/group/sysfys/software/fragid/

XXII. MetATT
This is a web-based metabolomics tool for analyzing two-factor and time-series data and
offer PCA, ANOVA, ASCA, and other multivariate methods of analysis and data
interpretation (Xia et al., 2011)
http://metatt.metabolomics.ca/

XXIII. MSFACTSs
It is a standard Java/Swing application that imports, aligns, and reformats spectral and
chromatographic data e.g. GC-MS, UV, IR and NMR (Duran et al., 2003)
http://www.noble.org/plantbio/sumner/msfacts/

XXIV. msinspect
This is an open-source software for rapid inspection and processing of LC-MS data (May et
al., 2007)
http://proteomics.fhcrc.org/CPL/home.html

XXV. MathDAMP
This software allows preprocessing, normalization and visualization of GC-MS, LC-MS and
CE-MS type of raw datasets on a datapoint-by-datapoint basis (Baran et al., 2006)
http://mathdamp.iab.keio.ac.jp/

XXVI. GASP
Free software for GC-MS metabolomics data alignment and visualization
http://www.flintbox.com/public/project/1210

XVII. apLCMS
Adaptive processing of LC-MS metabolomics data (R package) (Yu et al., 2009)
http://web1.sph.emory.edu/apLCMS/

XVIIl. | Maltcms, ChromA and ChromA4D
These are three comprehensive chromatography and mass spectral data e.g. LC-MS, GC-MS;
GC x GC-MS processing software from Bielefeld University that performs alignment,
generate peak tables, mass spectral search and allow data visualization (Hoffmann et al.,
2012; Hoffmann and Stoye, 2009)
http://maltcms.sourceforge.net/

XXIX. | Further MS based Structure Elucidation Software can be found at
http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/Structure_Elucidation/

Table 1. Commonly used metabolomics databases and data processing software. More information about useful
metabolomics databases, software and other useful resources can be accessed via the homepages of Metabolomics
Society (http://www.metabolomicssociety.org/), Fiehn Laboratory (http://fiehnlab.ucdavis.edu/), Biological Magnetic
Resonance Data Bank (http.//www.bmrb.wisc.edu/), Arita Laboratory, University of Tokyo (http://metabolomics.jp/)
and Spectroscopy and Chemometrics Research Group, University of Copenhagen (http://models.life.ku.dk/).
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2.2 Plant bioactive substances

Plant bioactive substances are referred to as the chemical compounds that have direct and/or indirect
biological effects. In fact, plant primary metabolites, nutrients as well as plant secondary metabolites
elicit some biological activities when their concentration is high enough. However, bioactive
substances of plants are usually referred to plant secondary metabolites that possess pharmacological
or toxicological effects in man and animals. Plant secondary metabolites are not directly involved in
the growth and development of plants and their absence does not cause an immediate stress effect in
plants, but lack of these metabolites in the longer term might cause serious injuries of plants. Bioactive
metabolites are synthesized in plant cells along with the primary metabolites (carbohydrates, amino
acids, proteins and lipids) that may involve several different biosynthetic pathways. During evolution,
plants have developed such biosynthetic routes to produce secondary metabolites that are necessary
to survive in the surrounding environment. Most common plant secondary metabolites can be divided
into three main classes: terpenes, phenolics and alkaloids. Plant phenolics, including phenolic acids and
flavonoids, possess free radical scavenging activity, while terpenes may attract pollinators or seed
dispersers and alkaloids as well as saponins are the main feeding deterrents against herbivores (Crozier
et al., 2006). However, it is worth mentioning that different plant species may contain different types
and concentrations of the plant secondary metabolites and the bioactive metabolite profile of

genetically very close plant species may significantly differ (Faizal and Geelen, 2013).

One of the main classes of bioactive substances is the glycosides. Glycosides cover a broad range of
metabolites that possess a mono-, di- or oligosaccharide moieties (glycone part) bound to the other
non-sugar part, namely aglycone. These include saponins, glucosinolates, cyanogenic glycosides and
glycosides of flavonoids, proanthocyanidins and tannins. Saponins are one of the most common plant
glycosides that consist of aglycones, triterpenoids or sterols (modified triterpenoids that have three
methyl groups less at position C-4 and C-14) attached to the sugar moieties. Saponins are usually
referred as a soap forming compounds that are amphipathic due to their hydrophilic glycone (sugar)
moieties and the hydrophobic aglycone. Based on the number of positions of the aglycones where
sugar moieties attached, saponins are classified as monodesmosidic, bidesmosidic and etc. Moreover
they are further classified based on the structures of the aglycones, e.g., dammaranes, tirucallanes,
lupanes, hopanes, oleananes, 23-nor oleananes, taraxasteranes, ursanes, cycloartanes, lanostanes,
cucurbitanes, and steroids (Faizal and Geelen, 2013; Vincken et al., 2007). It is worth to mention that
the saponin profile of plants are often complex and different species possess different types of
saponins. Several studies showed that saponins produced in plants are mainly stored in leaves and
roots (Li and Hu, 2009; Tang et al., 2009). Biological activities of saponins are very broad and include
insecticidal, fungicidal, molluscicidal, pesticidal activities as well as broad range of pharmacological
activities (De Geyter et al., 2012; Diab et al., 2012; Kuzina et al., 2011; Kuzina et al., 2009; Osbourn et
al., 2011; Sun et al., 2009; Takahashi et al., 2010). In addition to these, saponins play a key role in

plants’ defense and development. For example, triterpenoid saponins derived from oleanolic acid are
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found to be associated with the resistance of the glabrous type winter cress, B. vulgaris against insect
herbivores such as Phyllotreta nemorum and Plutella xylostella (Agerbirk et al., 2003b; Kuzina et al.,
2009; Nielsen et al., 2010; Shinoda et al., 2002). Whereas, triterpenoid avenacins were found to be
associated with the defense mechanism of the oat plant against fungi and bacteria (Mugford et al.,
2009; Osbourn, 1996; Osbourn et al., 2003). Other studies demonstrated stimulating effect of saponins
e.g. chromo-saponin 1 derived from B-amyrin, in the development of plant roots (Rahman et al., 2001)
and germination (Evidente et al., 2011; Zambou et al., 1993). Moreover, overexpression of B-amyrin
and lupeol based saponins depicted an indirect effects on the improvement of plant nodulation
(Confalonieri et al., 2009).

Another class of plant bioactive substances is the polyphenols that are the major defense metabolites
against radicals formed due to the ultraviolet radiations and during photosynthesis (Manach et al.,
2004). Moreover, polyphenols constitute to the major plant defense metabolites against other
pathogenesis and they are considered as the main bioactive compounds that possibly have a great
health promoting properties in human and animals (Kishimoto et al., 2013; Mayer, 2006; Pandey and
Rizvi, 2009; Petti and Scully, 2009; Pourcel et al., 2007; Xia et al., 2010). Structures of polyphenols are
very diverse and based on the number of phenolic rings and the way they are bound to each other,
polyphenols can be divided into phenolic acids, lignans, flavonoids and stilbenes. Among these
polyphenols, phenolic acids, flavonoids and their derivatives, e.g. esters and glycosides are the most
commonly distributed in the plant kingdom. Phenolic acids can be classified as derivatives of benzoic
e.g. gallic acid and cinnamic acids e.g. protocatechuic acid. These phenolic acids are present in high
amounts in red fruits and in tea, as well as in vegetables such as onions (Manach et al., 2004; Tomas-
Barberan and Clifford, 2000). However, chemical diversity and the concentrations of cinnamic acid
based phenolic acids are much higher in fruits, vegetables and in cereal plant than compared to
benzoic acid derived phenolics. Among these, phenolics, ferulic, caffeic, p-coumaric, sinapinic and
syringic acids are the most common metabolites often detected in various plants. These phenolic acids
are mainly present in form of glycosides and/or bounded to organic acids and other cell membrane
components. Caffeic acid is found to be the most abundant phenolic acid of most fruits, while ferulic
acid dominates in cereals. It is worth to mentioning, that the concentrations of these phenolics vary
greatly depending on plant organ and their developmental stage (Clifford and Scalbert, 2000; Hatcher
and Kruger, 1997). It is also worth mentioning that phenolics are mainly present in the outer parts of

the fruits, cereals and vegetables (skin and leaves) because their biosynthesis is stimulated by light.

Flavonoids including flavones, flavanones, isoflavones and flavonols are also common polyphenols of
different plant food products such as fruits and vegetables. These mainly occur in the form of
glycosides possessing mainly glucose, rhamnose and less frequently galactose and other sugar
moieties. These polyphenols are the major metabolites that constitute the color of fruits and their
accumulation is also highly depend on light (Macheix et al., 1990). Studies have shown that some fruits
of the same three and even between the different sides of the single piece of fruit might have

significantly different flavonoid profile depending on exposure to light (Herrmann, 1976; Price et al.,
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1995). Biological activity of these polyphenols might be significantly different in fresh products
compared to processed products. Since they easily degrade and, thus lose and/or alter their biological
activity. This is also important in polyphenols bioavailability (Manach et al.,, 2004; Scalbert and
Williamson, 2000).

2.3 High-throughput metabolomics in development and improvement
of crop plant cultivars

Metabolomics generate vast amount of data that contain valuable information about the physiological
status of the biological systems, up or down regulations of genes and influence of biotic and abiotic
factors. Recently, metabolomics was highly appreciated as a powerful tool for the improvement and
development of crop plants such as cereals (Fernie and Schauer, 2009; Schauer and Fernie, 2006). This
is due to the high sensitivity and capacity of metabolomics to screen large number of samples in a
high-throughput manner, thus providing a rapid and relatively cheap approach to measuring the
responses of cereal plants towards internal and external factors. In addition, metabolomics allow
detection of various responses at different levels, including primary and secondary metabolites that
are crucial for plants in order to survive and adapt to the surrounding environment. Therefore, by
measuring the metabolome of cereals it is possible to evaluate the phenotypes at the molecular level
and analyze the quality traits of plants in a broad range (Figure 2 of Paper 3). The high complexity of
most metabolic data sets does not allow for the identification of all detected metabolites.
Nevertheless, metabolomics is still limited to provide an analysis of a small portion of the actual
metabolome as it only allows for detection of a few hundred of the most abundant metabolites.
However, metabolomics enables extraction of much more valuable biological information about the
systems responses to the environment and the genetic modifications than any other omics platforms.
Currently metabolomics is widely utilized for evaluation of cereal plants’ resistance against various
pathogens (Bollina et al., 2011), salt stress (Widodo et al., 2009), drought (Bowne et al., 2012) and
other biotic/abiotic stresses (Andersson et al., 2010; Balmer et al., 2013). Capabilities of the
comprehensive metabolomic approaches such as GC-MS based metabolomic profiling allow evaluation
of the effects of single gene mutation, pleiotropy and growth temperature (see Paper 4) (Bino et al.,
2004).

High-throughput analytical platforms applied in crop plant metabolomics studies differ by their
sensitivity, reproducibility and by the range of the detectable metabolites (Allwood et al.,, 2011;
Okazaki and Saito, 2012). The most commonly applied techniques include chromatography or
electrophoresis based separation followed by spectroscopic or spectrometry based detection systems.
NMR based metabolomics plays a key role in crop development as it allows rapid and quantitative
detection of the most abundant metabolomic pool such as carbohydrates, amino acids, and
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nucleotides (Baker et al., 2006; Barros et al., 2010; Curtis et al., 2009; Gavaghan et al., 2011; Graham et
al., 2009; Manetti et al.,, 2006; Wu et al., 2013). One of the main advantages of NMR based
metabolomics is that it provides rapid, highly reproducible and quantitative detection of the broad
range of metabolites that possess hydrogen atoms or any other atom with NMR active nucleus such as
phosphorous, nitrogen and carbon. However, most high-throughput NMR metabolomic studies are
performed by measuring the 1D 'H NMR spectra. Sample preparation and pretreatment of the NMR
based metabolomics is relatively simpler than in GC-MS or LC-MS based metabolomics and
metabolites are directly detected from the mixture samples without prior separation steps. Therefore,
NMR spectra of complex biological samples can be regarded as an unique fingerprint of the whole
system. These fingerprints possess both qualitative and quantitative metabolomic information that
easily can be turned into biological information with the help of multivariate data analysis (Engelsen et
al.,, 2013). The main drawback of NMR is its sensitivity and in many cases it only allows for the
detection of the most abundant metabolites (e.g. first 50 metabolites) while, the low concentration
metabolites remain undetected and/or hidden behind the peaks of more abundant metabolites (Paper
3).

Other high-throughput detection techniques commonly used in the development of the crop plants
are based on vibrational and electronic spectroscopy methods that are capable of measuring various
physico-chemical properties of the samples as one whole system, and often less specific to the
individual metabolites. These techniques include, NIR, IR, FT-IR, UV-VIS, Raman and Fluorescence
spectroscopy. However, these spectroscopic methods allow rapid and quantitative analysis of the bulk
primary metabolites such as total starch content, fat content, protein content, dietary fibers and
sugars, and facilitate rapid non-destructive evaluation of the desired quality traits of the cultivars. In
this term NIR spectroscopy in combination with multivariate methods of analysis, serve as s powerful
tool for the rapid proxy evaluation of cereal cultivars grown under different environmental conditions
and/or effects of genetic modifications (Jacobsen et al., 2005; Jensen et al., 1982; Munck Lars, 1992;
Munck et al., 2001; Munck et al., 2010; Ngrgaard et al., 2000). As an example, FT-Raman and NIR has
been demonstrated to be an efficient method for rapid screening of rice seeds for protein and amylose
content (Sohn et al., 2004). Raman, FT-IR, UV-VIS and Fluorescence methods showed a capability for
high-throughput analysis of cereal plants for their chemical composition in various different studies
focused on crop development, assessment and rapid screening studies (Barron and Rouau, 2008;
Greene and Bain, 2005; Manolache et al., 2013; Mikkelsen et al., 2013; Siuda et al., 2006; Zekovic et
al., 2012).

Separation followed by detection techniques such as GC-MS, LC-MS, CE-MS and LC-DAD facilitate more
informative metabolomics data that allow quantification and identification of the individual
metabolites.

These analytical platforms allow detection of low concentration metabolites that are difficult or
impossible to observe by NMR and other spectroscopic methods, thus more metabolites can be
detected in a semi-quantitative manner that allow metabolomic profile comparison of the samples.
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However, absolute quantification of all these metabolites is laborious or impossible when several
hundred metabolites are detected, and the identities of most metabolites are unknown. Only few
comprehensive metabolomic studies have performed absolute quantification, since the biological
questions behind the majority metabolomics studies can be answered by relative quantification.
However, it is worth mentioning that both metabolomic analyses, the semi-quantification (or relative
quantification) and absolute quantification, require an optimized and robust metabolomics protocol,
since slight alterations of the analysis may have significant impact on the quantitative nature of the
data and may cause over or under estimation of the observed results.

Metabolomic data obtained from GC-MS and LC-MS techniques are usually very complex and not all
detected metabolites can be identified. For example, paper 4 demonstrates the detection of 247
metabolites from barley flour in a single GC-MS metabolomic profiling experiment, but only 89
metabolites could be identified based on their EI-MS and Rls. However, this is the current status of the
GC-MS metabolomics based on the quadrupole MS and EI-MS library search. Although, the method
has been used for a more than two decades and has been applied to various plant and animal tissues,
the databases are still not rich enough to allow efficient identification. In the case of LC-MS or GC-MS
that are based of accurate mass detection, metabolites are identified by their accurate mass rather
than fragmentation pattern and these approaches also allow identification of less than half of the
metabolites that could be detected from the complex plant samples. Tandem MS is one of the
solutions for enhancing metabolite identification, however most of the time it allows only tentative
identification. Table 1 lists the up-to-date metabolomic data bases originated from EI-MS, accurate

mass and tandem MS libraries.

The separation followed by detection techniques are less high-throughput than the direct detection
techniques like, NMR or NIR. This is due to the complexity of the sample preparation steps in
chromatographic methods such as GC-MS analysis which require derivatization. In GC-MS and LC-MS
analysis, the metabolites of the mixture samples are separated prior to detection. Separation of
complex samples occur in a reproducible manner to a certain extent (e.g. retention time shifts,
sensitivity loss, baseline drifts are commonly faced problems) and for the limited number of samples,
since the instruments have limitations with the number of samples that can be analyzed in a single
sequence without further maintenance (e.g. cleaning and replacement of the parts). Moreover, in LC-
MS systems the complexity of the metabolites may cause ion suppression for the metabolites eluting
closely, which may result in uncertain quantification. Separation of metabolites depends on many
instrumental parameters as well as the nature of the mobile phase-stationary phase interactions.
Slight alterations and/or inconsistencies of these parameters during the analysis may cause a high level
of error in the metabolomics data and mask the original variation. Usually, the level of error is
relatively higher in separation followed by detection techniques than in direct detection methods such
as NMR, and NIR. Appropriately, conducted metabolomics studies involve replicates as well as internal
standards in which to some extent help to minimize the experimental variations. Thus, GC-MS, LC-MS

and CE-MS remain one of the most powerful analytical platforms of metabolomics and provide the
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most comprehensive metabolic analysis of the systems. In crop plant development and improvement,
these techniques play a key role and allow simultaneous identification of alterations of the several
biosynthetic pathways. Up to date, more than hundred original researches papers have been published
in metabolomics in crop plant cultivars applications (Table 1 and Figure 6 in Paper 3).
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3 ADVANCED GC-MS AND CHEMOMETRICS FOR METABOLOME
ANALYSIS

3.1 GC-MS

Gas chromatography coupled to mass spectrometry (GC-MS) is based on separation of metabolites by
applying heat until they reach their boiling point, fly through the GC column, and reach the MS.
Metabolites are separated in a GC column based on their boiling point and partitioning coefficients
between mobile phase (GC carrier gas) and stationary phase (GC column). The outlet of the GC column
opens in an ionization chamber of a mass spectrometer where eluted metabolite will be ionized by a
beam of the highly charged electrons (in the case of electron ionization (El)). Resulted ions further
travel through the mass analyzer where ions are separated based on their mass to charge ratio (m/z)
and finally reaches the detector. This process is repeated several times at the fixed scan speed e.g. 20 s
sec™ throughout the analysis. Thus, resolution of the metabolites depends on both, GC separation and
scan speed of the mass spectrometer. At each scan point, full e.g. 50-500 m/z or selected ion
monitoring (SIM) e.g. one specific m/z ion, mass spectra can be recorded and obtained
chromatographic data for many scans over the investigated range of the elution time will have three or
two dimensional structure. Figure 3 demonstrates an interval of the raw GC-MS data recorded at m/z
range of 50-450.

100 m/z

18.8 50

Figure 3. Interval of raw GC-MS data.
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High chromatographic resolution power is the main advantage of GC-MS over other hyphenated
techniques. It is the most established platform within the hyphenated techniques mainly due to its
relatively simpler operation, lower cost and higher reproducibility. However, the range of the
detectible metabolites is limited to those that are thermally stable and volatile under the GC-MS
conditions. To date, this covers metabolites with molecular weight of up to 1400 Da and covers various
classes such as amino acids, carbohydrates, fatty acids, small molecular organic acids, phenolics,
terpenes and sterols. Most of the comprehensive GC-MS metabolomic analysis of complex biological
samples requires sample derivatization where non-volatile and/or thermally unstable metabolites are
chemically altered for increasing their detection. Depending on the type of the mass spectrometers,
GC-MS allows identification of metabolites based on their EI-MS fragmentation patterns (quadrupole
based mass analyzers) and accurate mass measurements (TOF based mass analyzers). Due to the long
traditional use of electron ionization (El), EI-MS based GC-MS metabolomic data bases are the richest
pools of the metabolites available to date e.g. NIST and Wiley libraries. Another type of ionization
method, which is less frequently used in GC-MS, is chemical ionization (ClI). Cl is considered to be a soft
form of ionization and may provide information about the mass of the molecular ion but less

fragmentation ions.

GC-MS has become the mostly utilized hyphenated analytical platform in many different metabolomic
analyses, such as targeted analysis of pesticides, adulterants, pharmaceuticals and their byproducts
from urine and plasma samples. Moreover, it found a wide use in identification of pollutant levels in
water and air, aroma compounds of food and food raw materials, and finally in comprehensive
metabolomic fingerprinting and profiling of various complex samples derived from microorganisms,
plants and mammalian systems. In plant metabolomics, GC-MS plays a key role and current literature
contains substantial amounts of GC-MS based plant metabolomic studies aimed at uncovering effects
of genetic modifications, biotic/abiotic stresses, elucidation of plants’ natural defense mechanisms,
and identification of health promoting substances of medicinal plants (see Paper 3). To date, the
majority of the plant derived primary and secondary metabolites can be quantitatively detected by GC-
MS, in a relatively high-throughput manner. Optimized metabolomics protocols employing high-
throughput metabolite extraction and use of autosamplers for sample derivatization and injection,
allow quantitative GC-MS analysis of up to several hundred samples. However, high quality
quantitative GC-MS data of complex plant samples require a lot of effort in all the steps of the analysis,
starting from the sample harvesting to the data acquisition. This will be further discussed in section
3.4.

GC-MS based metabolomics can be divided in three distinctive steps: sample preparation, data
acquisition, and data analysis. The first two steps play an important role in quality of the obtained
data, while the latter facilitates extraction of biological knowledge from the data. Several studies has

been published on optimization of GC-MS protocols for large scale metabolomic profiling of complex
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samples (Danielsson et al., 2012; Fiehn et al., 2000; Gullberg et al., 2004, Jiye et al., 2005; Lisec et al.,
2006). Main sources of experimental errors introduced during the sample preparation, derivatization
and analysis are highlighted in (Kanani et al., 2008; Kanani and Klapa, 2007; Khakimov et al., 2013;
Little, 1999). Additional precautions in acquisition of quantitative GC-MS data from large sample sets
and development of the novel derivatization method are described in the following section and in
Paper 2.

One of the main challenges of GC-MS plant metabolomics is associated with identification of unknown
metabolites. In GC-MS, metabolites can be identified by comparing their retention indices (RIs) and
characteristic fragmentation pattern of their mass spectra (EI-MS) against databases. However, not all
the metabolites detected from the complex plant extract are present in databases. Identification of
some of these unknown metabolites can be confirmed by using authentic standards if one has prior
knowledge what these metabolites might be. The systems allowing hyphenation of GC with more
informative detection systems such as NMR and preparative GC are not mature enough to analyze
large sample sets and/or identify several hundred metabolites within complex samples. However, GC-
MS databases are becoming richer e.g. the 10" edition of the Wiley GC-MS library contain EI-MS mass
spectra of 638 thousand distinct compounds. To date several commercial and free GC-MS databases
comprising metabolites identified from various species are available (Table 1). Moreover, identification
of unknowns based on accurate mass measurements (1-3 ppm) have been improved by using general
chemistry rules, elemental composition and isotopic patterns of the metabolites (Kind and Fiehn,
2007). This is one of the promising trends in identification of new metabolites in a high-throughput
manner and requires further research in the field to develop a validated method that would allow

metabolomics labs to apply the method in a daily routine identification.

The next challenging issue of GC-MS metabolomics, which is partly solved, is processing of the complex
data and extraction of relevant information. Non-specialist analysts need user-friendly methods for
rapid quantification of resolved or partially resolved peaks from the complex GC-MS chromatograms
and annotate detected peaks. This is partially possible by using commercial chromatographic data
processing software such as ChemStation (Agilent), DataAnalysis (Bruker), Chromeleon (Dionex),
ChromaTOF (Leco) and Empower (Waters). However, is it not straightforward when dealing with
complex profiles where several peaks are overlapped and/or closely eluted, thus hampering their
quantification and identification. These software may allow deconvolution of such peaks by using their
mass spectra. However, it requires manual work for each peak and for each sample, which is not an
optimal solution for two reasons, firstly, it is laborious and secondly, such a quantification will be
biased. It is also worth mentioning that automatic quantification of resolved and overlapped peaks by
using this software may not always be reliable due to the inconsistency of the retention times of the
peaks over the samples, peak shape alterations and finally, peaks having a low s/n ratio might be

completely ignored. However, this approach remains common among many labs due to easier
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operation of commercial software and in fact, they are well suitable when the chromatographic system

is well optimized and detection primarily focuses on few targeted metabolites.

In comprehensive plant metabolomics that apply GC-MS for profiling and/or untargeted analysis,
conventional chromatographic data analysis software can assist in a limited extend e.g. initial data
visualization, library search. Up to date, several GC-MS data processing software have been developed
for manual, automated and/or semi-automated deconvolution of mass spectra, baseline correction,
metabolite quantification and identification (see Paper 3). Unfortunately, all of these processing
approaches have some disadvantages related to their capabilities and use. One of the mostly utilized
stand-alone GC-MS data processing software, Automated Mass Spectral Deconvolution and
Identification System (AMDIS) was developed in late 1990s and it is commonly used in GC-MS
metabolomics (Stein, 1999). However, the technique requires manual processing and validation. While
AMDIS (that is mostly used up to date) can handle only one sample at a time, the cutting edge
technology based on multi-way decomposition modeling, PARAllel FACtor Analysis 2 (PARAFAC2)
performs the same task in a more efficient manner and facilitates extraction of more information.
However, this approach also has some disadvantages related to its use by non-scientists. PARAFAC2
based chromatographic data processing requires division of the data into smaller (less complex)
intervals in elution time dimension and requires validation of the models (Amigo et al., 2010a; Amigo
et al., 2010b; Bro et al., 1999; Khakimov et al., 2012). Detailed features of PARAFAC2 and current

research on its development will be discussed in section 3.5.

GC-MS based plant metabolomics can be considered as a mature field that possess well established
protocols related to the data acquisition and analysis (Fiehn, 2008; Lisec et al., 2006; Lytovchenko et
al., 2009; Shuman et al., 2011; t'Kindt et al., 2009). Modern GC-MS labs are able to analyze several
hundreds of complex plant samples within one sequence and detect up to 500 distinct metabolites
from each sample. Figure 4 shows complex TIC chromatogram of the raw GC-MS data obtained from
the trimethylsilylated barley seed extract (data from Paper 4). As mentioned earlier, the handling of
such complex data is not easier than its acquisition. Indeed, today, not all the metabolomic studies
perform comprehensive analysis of the raw data, but rather limited deductive analysis to the target of
the study. Typically, hundreds of unassigned peaks remain unpublished and no further efforts are
made to identify these metabolites, elucidate their biological origin and evaluate their relationships
with assigned metabolites. In fact, publication of these unassigned metabolites by providing as much
information as possible about their identities e.g. RI, EI-MS, accurate mass, origin, along with the data

may significantly benefit future metabolomics studies.
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Figure 4. TIC chromatogram of GC-MS data from a methanol extract of whole-grain flour of barley seeds.

3.2 Trimethylsilyl cyanide (TMSCN) based derivatization

In order to detect metabolites in GC-MS, they must be volatile and thermally stable under the given
instrumental conditions. It is important to meet both requirements, to be volatile and thermally stable,
for the reliable detection, since volatile, but thermally unstable metabolite, can only be analyzed for
qualitative purposes, and not quantitative because they may be partially degraded due to high
temperature inside the GC column or mass spectrometer. Moreover, thermally stable, but nonvolatile
metabolites cannot pass through the GC column and remain in the injection port. Since the
development of gas chromatography, one of the compromises for enhancing metabolite detection
involved chemical derivatization of metabolites towards increasing their thermal stability and lowering
their boiling points. These metabolites mainly include those that possess polar and reactive functional
groups such as carboxylic acid (RCOOH), alcohol (ROH), aldehyde (RCHO), amines (RNH,, R,NH), amides
(RCONH,) and thiols (RSH). These functional groups result in significant intermolecular interactions
such as hydrogen bonding, coulombic forces and Van der Waals forces that increase their boiling
points. In addition, they increase the reactivity of metabolites at elevated temperature. Chemical
derivatization is based on replacing the active hydrogen atoms of these polar and reactive functional

groups of the metabolites with more inert and non-polar groups, which eliminate strong
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intermolecular interactions. Common chemical derivatization methods applied in GC-MS include
silylation, alkylation and acylation. This section focus on silylation techniques only and more
specifically on the novel applications of the trimethylsilylation reagent, trimethylsilyl cyanide (TMSCN)
for derivatization of complex biological samples.

Silylation is the most commonly used derivatization method in GC-MS analysis and it utilizes
trimethylsilylation, where active hydrogen atom is replaced with a trimethylsilyl (TMS: [-Si(CH3)s])
group, while tert-butyldimethylsilylation (MTBS: [-Si(CHs)2(C(CH3)3)]) and
chloromethyldimethylsilylation ([-SiCH,CI(CH3),]) are less often employed. Among these methods, tert-
butyldimethylsilylation exhibit significantly higher stability of the derivatized products against
hydrolysis and provide more stable derivatization (Blau and Halket, 1994; Poole and Zlatkis, 1979).
Moreover, the MTBS silylation reagent, MTBSTFA, provides characteristic fragmentation patterns and
fragment ions representing mainly [M-57]" and [M-131]", though it is less sensitive towards sterically
hindered functional groups due to its relatively larger molecular size (Schummer et al., 2009).
However, due to the higher number of available reagents and higher silylation reactivity, historically,
trimethylsilylation is the most commonly applied method. Trimethylsilylation of metabolites depend
on the following factors: 1. Reaction temperature, 2. Reaction time, 3. Applied solvent (if any) and its
ratio to the reagent, 4. The nature of the leaving group of the reagent (its size and basicity, the
reaction will proceed most efficiently if the leaving group is a weaker base than the silylating
substrate), 5. Chemistry of the substrate (its basicity and steric hindrance), 6. Byproduct (its volatility
and interference in the reaction equilibrium, as well as ability to increase the electrophilicity of the
substrate will further catalyze the reaction towards formation of TMS-derivatives), 7. Dryness of the
reaction mixture (presence of minute amount of moisture may significantly destruct an equilibrium
towards hydrolysis of derivatives). However, even the general laboratory practices suggest that a
higher silylation temperature favor the formations of the TMS-derivatives, the derivatization protocols
must consider a compromise to avoid degradation of metabolites and/or their derivatives due to the
elevated temperature. The other important compromise is the silylation reaction time, which must be
optimized prior to achieving an acceptable s/n ratio and to avoid degradation of metabolites and/or
their derivatives due to a long contact with the aggressive silylation reagents. Derivatization of
complex biological mixtures involves several competing silylation reactions that occur simultaneously,
where each reaction requires silylation reagent. Therefore, excess amount of the reagent will provide
best silylation yield. Depending on the physico-chemical properties of the silylating substrates of the
complex mixture and their concentrations, each silylation reaction may be completed at different
times for different metabolites. Moreover, the complete silylation time of a metabolite depend on the
complexity of the sample matrix (number of competing reactions). Thus, it is not straightforward to
find an optimal silylation time when all metabolites are fully converted to their TMS-derivatives.
Alternatively, an optimal silylation time of the complex mixture can be defined as the time when the
maximum number of metabolites reaches their highest abundance. Most importantly, the silylation
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time of the samples that are subjected to the quantitative comparison must be consistent, although it

may not be an optimal time for some of the metabolites of the mixtures.

In addition, the solvent used in silylation reactions significantly influences the reaction yield and the
stability of the produced TMS-derivatives. Silylation reactions performed in the solvents with a
moderate polarity follow Sy2-Si mechanism (Figure 5) (Blau and Halket, 1994; Pierce, 1968; Schummer
et al., 2009; van Look et al., 1995). The main requirement for the solvent is that it should be inert to
the applied reagent and derivatives. A weakly basic solvent such as pyridine suits the silylation
reactions and increase the solubility of the metabolites as well as increasing reaction speed by bonding
the acidic protons present in the mixture. However, it is challenging to bring all the metabolites into a
pyridine/reagent solvent system, when dealing with complex mixtures with a wide range of polarity. In
fact, some protocols use solvent free derivatization where the reagent itself plays the role of solvent.

This is a good approach, since it eliminates artifacts related to the solvent and increases the s/n ratio.

Electrophile Transition state TMS-derivative Byproduct
CH, HsC CHs CH,
R S+ &= .
H3C—S|i—)< —_— R—\‘(---Si----x = H,c—sSi—Y—R + HX
CHy Y—R H  CHs CHy
H Nucleophile

Figure 5. General scheme of the trimethylsilylation reaction, which occur via a Sy2 mechanism.

Today, more than ten different silylation reagents are available and they differ by their reactivity
towards different functional groups, byproducts, stability and prices (Little, 1999; Poole, 2013). Among
them, N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) is the most commonly used reagent for
derivatization of various functional groups in GC-MS metabolomic profiling and fingerprinting (Fiehn et
al., 2000; Lisec et al., 2006; Roessner et al., 2000). Today, the majority of the complex mixture
derivatization protocols use 20-40 mg ml™ solution of the methoxiamine hydrochloride (CH;ONH, -HCl)
in pyridine for methoxiamination of aldehyde and ketone functional groups by incubating at 30-40°C
for 60-1020 min, followed by MSTFA based silylation by addition of 40-100 pl reagent and incubation
at 30°C for 20-90 min. These protocols demonstrated powerful derivatization, covering a wide range of
primary and secondary metabolites. However, experimental variation related to the derivatization still
constitute a substantial amount of the total variation that may hide the biological information present
in the data (Kanani et al., 2008; Kanani and Klapa, 2007). These variations are mainly related to the
non-reproducible profiles e.g. significant fluctuations of the metabolite peaks between replicates,
interference of artifact and byproduct peaks.
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In the course of the PhD study, a new trimethylsilylation reagent, trimethylsilyl cyanide (TMSCN) was
evaluated for its silylation capabilities towards various molecular families in GC-MS metabolomics.
Today, the use of TMSCN for silylation purposes is limited to the targeted silylation of few compounds
(Riggio et al., 1992), though some studies have showed its clear advantages for silylation of alcohols,
phenols, organic acids, amino acids and carbohydrates under mild and solvent free conditions (Mai
and Patil, 1986). The silylation capability of TMSCN has been investigated towards metabolite standard
mixture containing amino acids, carbohydrates, phenolic acids, flavonoids, organic acids, and sterols as
well as for phenolic extracts of the blueberry fruits. The trend of the derivatization reactions was
monitored by GC-MS over the different silylation times varying from 5 min to 60 hours. In parallel with
TMSCN, MSTFA reagent was used for silylation of the same mixture samples. The results of this
method comparison study are comprised in Paper 2. Moreover, the use of TMSCN in GC-MS detection

of plant triterpenes are described in sections 4.1 and 4.2.

For many metabolites, TMSCN based silylation outperformed MSTFA in terms of reaction speed,
sensitivity, and repeatability. The main advantages of using TMSCN as an alternative trimethylsilylation

reagent are comprised below:

1. Small molecular size. TMSCN is probably the smallest silylation reagent that has high reactivity both
under neutral and basic conditions. This has been demonstrated by derivatization comparison of
TMSCN and MSTFA towards sterically hindered labile protons of 2,6-diphenylphenol (Paper 2, Supp.
Fig.1 ). Trimethylsilyl chloride (TMCS) also has small molecular size, but it is a very weak silyl donor in

the absence of base.

2. Inert byproduct. The only byproduct formed during the TMSCN based silylation is hydrogen cyanide
(HCN) that has boiling point of 26°C. It will not interfere with peaks of volatile metabolites and will be
eluted even before the solvent. The other feature of the byproduct is that it can further enhance the
reaction speed by protonating TMSCN that will lead to increase its electrophilicity and catalyze the
reaction towards production of TMS-derivatives. In contrast to byproducts of some reagents such as
TMCS that can hydrolyze the TMS-derivatives, HCN is too weak an acid to do this, which makes the

produced TMS-derivatives more stable.

3. As a solvent. As mentioned earlier TMSCN has a smaller molecular size than most of the silylation
reagents and the electron density of the molecular is shifted towards cyanide group, which makes it a
polar, molecular and structurally it resembles acetonitrile, one of the most common organic solvents.
In the course of the present study, we have observed greater solubility of carbohydrates, phenolic
acids, triterpenes, and amino acids in TMSCN than in MSTFA (although exact solubility were not
measured). This makes TMSCN even more suitable for silylation of complex biological mixtures by

avoiding the use of an additional solvent. In paper 2, it has been shown that the application of pure

-38-



3. ADVANCED GC-MS AND CHEMOMETRICS FOR METABOLOME ANALYSIS

TMSCN result in a much greater s/n ratio of TMS-derivative peaks than when it is used in conjunction

with methoxiamination step, which is performed in the solvent pyridine.

4. Less artifacts. As mentioned above, the TMSCN byproduct does not result in any artifacts.
Compared to MSTFA, TMSCN based silylation resulted in more repeatable GC-MS profiles of both,

artificial metabolite mixture and of blueberry fruit extracts.

5. Mild conditions. In paper 2, TMSCN and MSTFA were compared using the same temperature (37°C)
that is most commonly applied in the literature, but TMSCN is able to provide greater silylation yield at
room temperature. Moreover, Mai and Patil also showed that up to 80-97% reaction yield toward

various metabolites is reached within 5 min at 25°C (Mai and Patil, 1986).

6. Price. TMSCN is cheaper than most of its alternative derivatization reagents. Based on the pricelist
of the Sigma-Aldrich (on 4 Aug 2013), the price for 25 ml of highest purity reagents are as follows:
TMSCN (950 dkk), MSTFA (3207 dkk), BSTFA (1403 dkk) and MTBSTFA (3380 dkk). However, as in the
case of the all derivatization reagents, TMSCN also have some drawbacks. One its disadvantage is
related to the formation of hydrogen cyanide (HCN) as a byproduct. However, the hazard caused by
HCN can easily be minimized to a level that is safe for utilizing the reagent in routine GC-MS analysis.
All the safety considerations and practical aspects of using TMSCN are provided in details in the
Supporting Material of the paper 2. The other disadvantage of TMSCN is the stability of the TMS-
derivatives when they are in contact with the reagent for more than a few hours. In this term, MSTFA
is much more aggressive and product degradation occurs more rapidly. However, in high-throughput
GC-MS analysis of several samples, derivatization time must be strictly controlled and the samples
must be injected into GC at the optimal silylation time. This will minimize the experimental variations

related to the product degradation.

3.3 Design of experiment (DoE)

Objectives of DoE

DoE is frequently used to optimize factors of metabolomics protocol, that lead to detection of a
broader range of metabolites, increase s/n ratio, reproducibility, enable high-throughput analysis,
reduce experimental cost, level of biased and artifact effects. DoE is about setting up a series of
experiments representative to the investigated question. Usually, in plant metabolomics, DoE starts by
identifying and specifying the number of experimental parameters e.g. factors of sample preparation,
metabolite extraction steps and analytical instrument parameters, followed by identification of their
ranges that must be investigated. The next step is to define the number of responses that will be
measured in each experiment of DoE e.g. s/n ratio of one specific or several metabolites, the number

of detectable metabolites and reproducibility of the profiles. Then DoE can be created depending on
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the number of parameters, and their investigated ranges and experiments will be performed in a
randomized order. Finally, the obtained data are analyzed by regression analysis, which estimates the
relationships between changes in factors to the changes in response(s). The regression models provide
knowledge on the importance of parameters to the response(s) and assist in identification of the
parameter values that will lead to maximizing the desired response. However, when DoE has an aim to
optimize several responses, identification of the best experimental condition, that would fulfill the goal
of all the responses, will become difficult. Such situations require that the analysts make a decision on
choosing an experiment that will reflect a compromise between the response variables.

DoE allows estimation of the factors and their interaction effects to the response(s), evaluation of the
systematic (effect) and unsystematic (noise) variations of the experiments, and provide a reliable
prediction of the optimal conditions. Mostly, DoE assists in reaching three objectives of experiments
that will lead to the efficient, robust and high-throughput metabolomic protocols. These objectives are
screening, optimization and robustness testing that are performed in the given order by using the DoE
approach. Screening is the first step of the DoE and it attempts to answer the questions such as, 1)
What are the factors mostly influencing the fluctuations of the measured responses? and 2) In which
ranges these factors must be investigated for identification of the most efficient combination of the
factors? Screening requires relatively fewer experiments in relation to the investigated factors than in
optimization. In plant metabolomics, DoE based screening of factors are mainly focused on estimation
of the range of the investigated factors, e.g. sample pretreatment, metabolite extraction,
derivatization parameters and instrumental settings. However, choosing globally optimal factors is
more challenging, due to the diversity of the metabolome and significantly different concentrations of
the metabolites. Optimization is the second step of the DoE, which assists in finding the best
combination of the investigated factors. Optimization involves series of experiments designed by
varying the levels of factors and use the obtained data for predicting the desired response variable e.g.
s/n ratio or limit of detection of metabolites etc. Robustness testing is the last step of the DoE that
evaluates the sensitivity of the response to the small fluctuations of the factors. An optimal
experimental condition is not necessarily the most robust. Therefore, it is crucial to evaluate the levels
of factors that may cause non-stable experiment and adjust them in such a way that they will provide a
reproducible protocol, even if it is slightly shifted from the optimal conditions. This is probably the
most important requirement in quantitative metabolomics, since only the reproducible metabolomic

protocols may provide reliable data, from which true biological variations can be evaluated.

Experimental noise

DoE mainly demonstrates two kinds of experimental variations. The represents variations related to
the effects of the factors and the second represents variations related to the noise. Noise is the
unsystematic part of the variation that is present due to inaccurate measurement, instrumental
fluctuations and/or other types of bias. However, in order to estimate the effect of factors, it is crucial
to know the noise level boundaries. For instance, if one attempts to optimize the extraction protocol of

some low concentration metabolites by varying temperature, it is necessary to perform several (5-7)
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replicate analyses in order to find the noise level, at the initial experimental conditions. The noise level
can be calculated as the standard deviation of the concentrations measured for replicate samples. This
will indicate the error level, which might be present in each measurement performed by using the
same protocol. Then, this error level must be taken into account when evaluating the effect of the

extraction temperature upon metabolite concentrations.

DoE models

After selection of the investigated experimental factors, determination of the experimental domain
and the response(s), it is time to design the experiment. DoE is based on developing a model, y=f(x),
that would allow prediction of the y response variable from the polynomial function f(x), which
represents the relationship between the experimental factors and the response(s). Depending on the
objectives of the DoE (screening, optimization and robustness test) different modeling strategies are
applied. For example, screening and robustness testing are performed by linear (y=bg + b1x; + b,x;) and
second order interaction (y=by + bix; + byx; + bi;x1x; + E) models, while optimization requires the
quadratic models (y=bg + byx; + byx, + b11x1’\2 + bzzxz'\z + b1oX1X, + E) that allow estimation of linear and

non-linear relationships between the factors and response(s).

Factorial design

Factorial design employs models based on linear or interaction effects of the experiment factors and
their influence on the response(s). Table 2 demonstrates a 22 full factorial design of the metabolomic
experiment where three factors e.g. (x;) solvent concentration, (x;) extraction time and (xs) extraction
temperature are varied in two different levels that result in total of 8 experiments. This model can be
written as a third order interaction model (y = by + bix; + byX; + baxs + b1X1X; + biaXiXs + bysXoxs +
b123X1X2x3) and each effect, individual factor effects (by, b,, bs) and their interaction effects (bi, bis, b2s
and biy3) can be calculated by using the signs of the corresponding factor columns. For example, b,
that represents the main effects of the solvent concentration (when it is changed from low level to the
high level) can be determined as b; =1/8 (-1+1.2+09+11-0.8+1-1.3+ 0.9 ) = 0.25. This
indicates that the high level of x; factor will increase the level of y response by 0.25 (in original unit of
the y). More detailed description of the model calculation is provided in (Lundstedt et al., 1998).
Graphically this design can be illustrated as a cube where three dimensions are defined by x;, X, and x3
(Fig. 6). A middle point of the cube (blank circle), which is experiment number 9 (Table 2) represent a
central point of the experiment. Usually, this is the starting point of the experiment and it will be
performed in several replicates to estimate the level of noise. Moreover, these canter point
experiments will answer the question, whether or not the experimental factors and responses have a
non-linear relationship (if measured response, y, of the experiment number 9 greatly differs to the by),

if so then quadratic models must be used.
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Figure 6. 23 full factorial design.

Fractional factorial design

In the case of the full factorial design, screening and robustness testing of the metabolomic protocol is
defined by N = 2%, where k is the number of investigated factors. For example, 8 or 12 factors will
require 256 and 4096 experiments to be performed, respectively. However, in most cases, this exceeds
the limit of performable experiments and not all the interactions between 12 factors are significant.
Therefore, a good screening and robustness testing start by evaluation of the main effects (Eq.1.),
followed by addition of the factors’ interaction experiments that will reveal the effects of two or more
factors’ alterations at a time (Eq.2.). Usually, additions of the interaction effect experiments are based
on results of the main effects (interactions between the factors with high influence in response are the

most interesting).

y = Bo+ YBiXi +e(Eq.1.) y = Bo+ XYBijXij + ¢ (Eq.2.)

For example, evaluation of the main effects of the protocol that is screened for 8 factors can be
performed in 9 experiments, one for each factor and one center point where factors are set to their
center. Normally, for estimation of the noise level, this center point is performed several times. In
addition to the main effects, if it is necessary to evaluate second order interactions (interactions of all
8 variables by varying two factors at a time) the screening test will require 37 experiments. Full
experimental domain of this protocol is spanned by 8 factors that can be exemplified as corners of the
8 dimensional hyper cube. Screening of this protocol that cover a complete experimental domain
requires many experiments, which are expensive. This can be compensated by applying the fractional
factorial design, which allows selection of only those “informative” experiments that cover a maximal

volume of the experimental domain in a limited number of experiments.
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Exp.Ne X1 X2 X3 X1X2 X1X3 XoX3 | X1X2X3
1 - - - + + + - 1
8 + - - - - + + 1.2
3 - + - - + - + 0.9
4 + + - + - - - 1.1
5 - - + + - - + 0.8
6 + - + - + - - 1
7 - + + - - + - 13
8 + + 0.9
9 1

Table 2. 23 full factorial design. (-) x is solvent concentration 50%, (+) x; is solvent concentration 90%, (-) x, extraction
time 2 min, (+) x, extraction time 5 min, (-) x3 extraction temperature 65°C and (+) x; extraction temperature 95°C.
Experiment 9 is the center point where factors are set to 70%, 3.5 min and 80°C.

A number of experiments performed in the fractional factorial design is determined by N = 2*"?, where
p is the size of the fraction. For example 27 * fractional factorial design will cover 1/16 fraction of the
full 2’ design (full design requires 128 experiments) and it is equal to the 23 full factorial designs
(requires 8 experiments, Table 2). In this example, the main and interaction effects of three factors e.g.
X1, X2 and x3 (the most important factors that influence measured response(s)) will be investigated,
while other four factors remain constant. By performing eight experiments, it will be possible to
estimate the main effects e.g. x; and xs, the second order interaction e.g. x;x3 and the third order
interaction (x;X,Xs). Mostly, fractional factorial designs are performed to evaluate up to four or five
order interactions. This may involve systems where changes in levels of five factors will have a
significant interaction effects. However, the effect of the factors to the response will not be as
accurate as in the case of the full factorial design. This is due to the confounding of the factors. In the
case of the 2’ " * fractional factorial design, the main effect of the x; factor is confounded by the
interaction effects of the x, and xs factors, and the main effect of the x, factor is confounded by the
interaction of the x; and x; factors. In the same manner, two factor interaction effects are
contaminated by the three factor interactions. This leads to the conclusion that, fractional factorial
based screening and robustness testing can provide holistic results when the interaction effects of the
two factors are not significantly contaminating the main effect of the third factor. In practice, a chosen
design generator(s) will control the confounding effects, resolution of the fractional factorial design
and the fraction of the investigating experimental domain. A more detailed description on generations
of a fractional factorial design, evaluation of the models and separation of confounded effects is
provided in the literature (Eriksson et al., 2000; Lundstedt et al., 1998).
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D-optimal design

As mentioned earlier, the D-optimal design can be applied for screening and optimization problems
and it can handle a non-linear relationship between the factors and the response(s). D-optimal design
is based on selecting the best subset of experiments, from all available combinations of experiments
that will span the largest experimental domain as possible. This is based on calculation of the
determinant of the relevant X’X of the experimental matrix X. The algorithm of the D-optimal design
will select a user defined number of experiments from all possible combinations in such a way that the
selected experiments will possess the maximum determinant of the X’X experimental matrix. Then
selected experiments will be performed in a randomized order and evaluated in relation to the
measured response(s). In the least squares manner the model can be written as y = by +b1x; + byx, + E
ory=Xb + Eandb = (X'X)’1X’y. By selecting a number of most representative experiments, D-
optimization algorithm assumes that the regression model is correct. D-optimal design can be applied
in many different situations that are not suitable for fractional factorial or other approaches.
Moreover, it is one of the most commonly used optimization approaches, which considers interaction
effects of the factors. Application of D-optimal design in conjunction with fractional factorial design

has found a wide use in metabolomic studies (Danielsson et al., 2012; Gullberg et al., 2004).

3.4 Minimization of non-sample related variations in metabolomics

Plant metabolomics deals with quantitative measurements of a wide range of metabolites with
different concentrations and finds biological information based on the changes of these metabolite
levels due to some effects e.g. genetic modifications, biotic/abiotic stresses, growing season and
fertilizers. The variation of one metabolite level caused by one specific effect may vary from sample to
sample and different metabolites might be altered in different levels. The main aim of the
metabolomic study is to capture these variations as accurately as possible. However, these variations,
to some extent, are always confounded by non-sample related variations. In order to extract
meaningful information out of metabolomic data, analysts must be able to minimize and estimate the
level of non-sample-related variations, e.g., to separate the real biological variations from the artificial

data variations.

DoE is an advanced approach for minimization of the non-sample related variations in metabolomic
studies and this approach has already demonstrated its potential in many studies. Prior to DoE, the
main problems (factors that cause in introduction of errors) must be defined and their influence to the
level of artifacts should be estimated. In fact, this requires prior knowledge about the system and
sources of errors. In plant metabolomics, the main sources of non-sample-related variations are
sampling (representative mass reduction, harvesting, storing, processing), metabolite extraction and
instrumental variations. The level of the non-sample-related variations introduced by these sources

depend on the complexity of the metabolomic protocol, number of investigated samples and the
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capabilities of the analytical platforms (linear range of the detectors, stability, high-throughput
screening). For example, untargeted GC-MS metabolomics of plant leaves requires careful evaluation
of the following steps of the metabolomic workflow: 1. Plant leaves must be harvested in the same
way and with a minimum time interval, 2. The time interval between harvesting and quenching must
be constant throughout the samples, 3. In order to minimize experimental error, metabolite extraction
must be performed in smaller batches including 12-15 samples at a time, 4. Use of readily volatile
and/or other solvent systems with unstable composition must be minimized, 5. Metabolite extraction
of the sample set which is subject to the quantitative comparison must be performed by using the
exact same protocol, 6. Samples must be stored under cooled condition that is safe for the complex
extract, 7. The derivatization method must be as unbiased as possible toward the sample matrix and
functional groups of the different metabolites, 8. The derivatization time must be controlled and kept
constant, 9. The GC-MS sample introduction method must be optimized towards reduction of artifacts
such as septum and injection port derived peaks, 10. The split ratio (depend on the concentration of
metabolites, injection volume and detection limit of the detector) between the column and vent flow
rates must allow introduction of sufficient amount of the sample to detect a maximum number of
metabolites and at the same time avoid detector saturation. 11. In order to minimize the sample loss
during the injection, splitless time, the injection port temperature and/or temperature ramp must be
optimized, 12. The oven temperature program and the carrier gas flow rate must provide acceptable
chromatographic resolution, and at the same time, to avoid metabolite degradation due to the high
temperature and/or interactions with a stationary phase, 13. Mass spectrometer scan speed (at the
specified m/z range) must allow the best possible resolution and provide a reasonable s/n ratio (too
high a scan speed may result in a low s/n ratio and noise peaks, while a slow scan rate can suffer from
unresolved peaks). Thus, substantial part of the non-sample-related variations can be reduced by
appropriate optimization of the above-mentioned steps of the GC-MS metabolomic workflow.
However, the reproducibility of the GC-MS profiles of the biological and technical replicates can be

further improved by detailed study of one or more steps (factors) of the workflow by DoE approach.

In the given example, DoE based optimization can be applied for increasing a number of detectible
metabolites, the s/n ratio and/or decrease specific artifact effects. While robustness testing e.g.
fractional factorial design may assist in evaluation of the minute fluctuations of factors such as
metabolite extraction temperature or time. Moreover, sample derivatization (methoxiamination
and/or trimethylsilylation) conditions such as, derivatization time, temperature, reagent concentration
as well as gas chromatography conditions like, injection temperature, initial temperature, heating rate
and gas flow rate can be optimized to obtain best profiles. The best GC-MS profiles are usually
determined by their reproducibility and the amount of information. However, by development of
systems biology and metabolomics, the need for extraction of a significantly smaller size of biological
variations from the complex metabolomic data is increasing. This urges to minimize non-sample

related variation to a level that it will be several fold lower than the smallest biological variation
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caused by the effects in question. Thus, both minimum error and maximum information are the main

targets of most studies aimed at development of metabolomic protocols.

3.5 PARAIllel FACtor Analysis 2 (PARAFAC2)

PARAFAC2 is a multi-way decomposition method, which is commonly applied to model three-way data
sets (Bro et al., 1999; Harshman, 1972; Kiers et al., 1999). It is originated from the PARAllel FACtor
Analysis that was developed in late 1960s by Richard Harshman (Harshman, 1970). Both methods,
PARAFAC and PARAFAC2 can be considered as the generalization of the principal component analysis
(PCA) to higher order arrays. In contrast to PCA, PARAFAC2 does not suffer from rotational problems
and is able to model three-way data sets by decomposing it into a smaller number of components that
will be represented by scores and loadings (Fig. 7 (a)). In order to condense the three-way data in such
a way, PARAFAC2 applies some constrains that restricts the degree of freedom and provides simpler
and more robust models. Therefore, PARAFAC2 may not be able to capture the variation that PCA
could explain (this is often the case when dealing with a complex data sets with higher order of
variations). Any three-way data can be unfolded to two-way matrix (in any mode) and modeled by
PCA, which may result in explanation of the substantial part of the data variation, however
interpretation of such a model is challenging. Instead, PARAFAC2 offers several advantages for
exploration of three-way arrays. Firstly, PARAFAC2 solutions are unique, which means its scores and
loadings directly represent the modes of the investigated data array. Moreover, PARAFAC2 models are
robust and easily interpretable. However, the model validation might be challenging, if data is
complex. Although, recent studies performed for improvement of PARAFAC (Bro and Kiers, 2003) and
PARAFAC2 (Kamstrup-Nielsen et al., 2013) model validation provide more reliable and easier way of
deciding the number of components that would describe the data best.
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Figure 7. (a) PARAIllel FACtor Analysis based decomposition of the three-way raw GC-MS data interval. (b) Example of
the PARAFAC2 based processing of the raw GC-MS metabolomic data interval.

PARAFAC can decompose a data cube if the correct number of components are fitted and describe the
data. However, some three-way data sets may suffer from disturbance of its trilinear structure. For
example, retention time shifts in chromatography. In such a situation, PARAFAC will fail to provide
reliable models. The main difference between PARAFAC and PARAFAC2 is that PARAFAC2 is less
restrictive to the trilinear structure of the data and it is able to cope with data shifts in some extent.
For example, in chromatography, retention time shifted peaks of the same metabolites over the
different samples can still be modeled as the same chemical, because PARAFAC2 uses not only
retention time but also the mass spectral information (since mass spectra of these shifted peaks will be
identical if they are derived from the same metabolite). All these features of PARAFAC2 e.g.
uniqueness, shift and noise handling, and easier interpretation made the method very useful for
processing raw metabolomic three-way data sets derived from hyphenated platforms such as GC-MS
(Amigo et al., 2008; Amigo et al., 2010a; Amigo et al., 2010b), LC-DAD (Garcia et al., 2007; Marini et al.,
2011) and LC-MS (Khakimov et al., 2012). By PARAFAC2 processing of such hyphenated metabolomic
data, it is possible to extract all the quantitative and qualitative information (Fig.7 (b)). The PARAFAC2
model of the three-way raw GC-MS data defined by elution times x mass spectra x samples provide

three outputs: 1. PARAFAC2 elution time profiles that represent the elution profiles of the resolved
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peaks, 2. PARAFAC2 mass spectral profiles that correspond to the actual mass spectra of the resolved

peaks and 3. PARAFAC2 concentration profiles, which represents the areas of the resolved peaks.

Today PARAFAC2 is probably one of the most comprehensive methods for processing raw
metabolomic data that allows extraction of vast amount of information in a high-throughput manner
(several hundred samples can be processed simultaneously depending on the capabilities of the PC).
Paper 1 demonstrates the first application of PARAFAC2 to LC-MS metabolomic data and discusses
model validation and other considerations related to model interpretation. The main advantages of

PRAFAC2 for processing chromatographic data are briefly described below:

Baseline elimination

Baseline is one of the common challenges in chromatography and it mainly arises from the stationary
phase, temperature ramp program in GC, gradient elution program in LC, inconsistent column
pressure, pH, contaminations, reagent and solvent. By modeling raw chromatographic data without
any pre-processing steps, it is possible to eliminate the baseline as a separate component of the
PARAFAC2 model.

Resolution of overlapped chromatographic peaks

Overlapping of chromatographic peaks is the most commonly faced challenge in GC-MS, LC-MS and CE-
MS based metabolomic studies of complex mixtures. This is due to the insufficient separation power of
the techniques for chemically similar metabolites. PARAFAC2 can resolve such overlapped peaks using
their mass spectra. The resolution power of PARAFAC2 depends on the overlapping level (significance
of overlapped peak shoulder) and the mass spectral difference between the overlapped peaks.
Although, some chromatographic data analysis software allow resolution of overlapped peaks that
requires manual resolution of one sample at a time, while PARAFAC2 can handle several hundred GC-

MS profiles simultaneously.

Retention time shifts

Retention time inconsistency of metabolites over samples is also a significant drawback of
chromatographic systems. This might be due to inconsistent gradient program, column degradation
and contamination, temperature and pH fluctuations, contamination of injection system and other
mechanical and/or electronic problems arising during the runs. As mentioned earlier, PARAFAC2 is able
to model retention time shifted peaks of the same metabolites as the same component if their mass

spectra are identical. This eliminates any need for prior alignment of the data.

Low s/n ratio
If the investigated chromatographic data complexity allows the development of a valid PARAFAC2
model (with the correct number of components that is equal to the number of variation present in the

data), it facilitates detection of low s/n peaks. Baseline elimination and chromatographic peak
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resolution further enhances the chance to detect very low s/n peaks that are severely hidden by the

baseline and/or abundant peaks.

Accurate quantification

PARAFAC2 allows automatic peak quantification with a minimum interference of the analysts.
PARAFAC2 concentration profiles represent the actual areas of the resolved peaks that is not always
possible by using conventional chromatographic data analysis software due to the overlapping and
high complexity of the data. For quantification of peaks based on their area, the method considers the
shape of the peak individually for each sample, thus width, heights and retention time differences of

the peaks do not influence their quantification.

Mass spectral deconvolution

PARAFAC2 performs automatic mass spectral deconvolution of resolved, overlapped, low s/n ratio and
other elusive chromatographic peaks. Mass spectral profiles of PARACA2 models represent
experimental mass spectra of metabolites. PARAFAC2 mass spectra displayed 95-99% similarity with
the actual mass spectra of the resolved saponin peaks (Khakimov et al., 2012). In terms of mass
spectral deconvolution, PARAFAC2 outperforms its alternatives such as AMDIS and ChromaTOF by its
high-throughput nature that allows processing of several samples at a time. Most importantly,
PARAFAC?2 facilitates the deconvolution of mass spectra of severely hindered peaks that are hidden by
the baseline, artifact peaks and peaks that are more abundant. PARAFAC2 has a high potential for
deconvolution of mass spectra obtained from the quadrupole and ion trap mass analyzers, while
processing of UPLC-QTOF-MS and GC-QTOF-MS are not reported yet.

Elimination of mass spectral skewing

Mass spectral skewing (distortion of relative mass spectral peak intensities) is one of the problems that
hampers qualitative analysis of metabolomic data obtained by using relative low scan rate mass
spectrometers (Watson and Sparkman, 2007b). Spectral skewing occurs due to the transient changes
in the partial pressure of the metabolite inside the ionization chamber, as they elute from the column.
In other words, it can be described as a disagreement between the gas chromatographic separation
systems and the mass spectrometry detection system. The mass spectrometer requires a constant
pressure of the metabolite during the data acquisition. However, it is not possible when the sample
concentration is changing in the GC eluate with time. Unfortunate, modern GC-MS systems cannot
provide a constant pressure of the sample in ionization chamber while its full mass spectra are
recorded. This causes alterations of the original ratios of the m/z peaks of metabolites and makes their
identification difficult. Spectral skewing is more pronounced when the peaks’ become broader. In this
case, a reliable mass spectrum of the peak must be evaluated when the partial pressure of the

metabolite is more stable (the top of the peak).
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Figure 8 (a) shows an example of the EI-MS mass spectral skewing when the GC-MS peak width
becomes broader. In this example the mass spectrum of a peak is demonstrated at three different scan
points, when the peak started to elute (scan # 1997), when the peak reached its maximum (scan #
2000) and when the peak is decreasing (scan # 2003). These three mass spectra are different, although
they represent the same metabolite. At the earlier scan point (scan # 1997), m/z peak intensities tend
to increase from low m/z to high m/z. This is because quadrupole mass analyzer scans through the
investigated m/z range from low m/z to high m/z that requires some time to record whole spectrum,
in which partial pressure of the metabolite gradually increases. Therefore, by the time higher m/z ions
are flying through the quadrupole, the concentration of the metabolite will be higher in the ionization
chamber, which in fact results in higher ion intensities. In contrast to this, at the later scan point (scan
# 2003), the partial pressure of the metabolite is relatively lower than at the earlier scan point,
therefore intensities of the lower m/z peaks are higher than the intensities of the higher m/z peaks.
While, at the maximum of the peak (scan# 2000) the relative ratios of the m/z peaks are closer to the
original mass spectrum of this metabolite. The ratios of 91 m/z to 301 m/z are 0.7023, 0.2410 and
1.3488 in scan points 1997, 2000 and 2003, respectively.
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Figure 8. (a) Illustration of mass spectral skewing due to dynamics in partial pressure of the analyte in an instrument
(GC-Quadrupole-MS) that is scanned from a low m/z value to a high m/z value during GC elution (b) Elimination of
mass spectral skewing by PARAFAC2 model based mass spectral deconvolution.

Another advantage of PARAFAC2 modeling of raw GC-MS data, which is not mentioned in its earlier
applications, is that it can solve above-mentioned mass spectral skewing of broad peaks. This is
because PARAFAC2 averages the mass spectrum of the resolved peak across all its scan points, and the
obtaine mass spectrum, which will better reflect the original spectrum of the metabolite (Fig. 8 (b)).
The PARAFAC2 mass spectral profile of the broad GC-MS peak demonstrated in figure 8 (a) shows that
the ratio of the 91 m/z to 301 m/z is 0.2103 which is very close to the ratio of these m/z peaks in the
original mass spectrum of this peak (0.2410). This proves that, the PARAFAC2 based mass spectral

deconvolution is accurate, even in the presence of the spectral skewing.
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However, the PARAFAC2 approach also has some drawbacks primarily related to its use by non-
specialists. Firstly, because it has not implemented into a graphical user interface, yet, that can simplify
its use in everyday analysis. Although, an automatic model validation approach is suggested, it is not
yet mature therefore, choosing an optimal number of components to describe the data best still
requires some chemometric knowledge. Despite its comprehensiveness, the method provides fruitful
results when the data is less complex. Therefore, PARAFAC2 based processing of raw chromatographic
data is mainly performed in intervals, where the data is divided into smaller intervals in retention time
dimension (Amigo et al., 2008; Khakimov et al., 2012). This, however, cannot be considered as the
method’s disadvantage, since division of the complex chromatographic data into smaller intervals
facilitates better understanding of the data and it can be performed in few minutes even if the data is
as complex as GC-MS profiles of crude extracts that may contain up to 500 peaks. Moreover, interval
based PARAFAC2 modeling of chromatographic data enables detection of low s/n peaks and even
under the noise peaks, which are usually ignored in the shadow of much abundant peaks and baseline
drifts. The only case when the resolution power of PARAFAC2 method is limited is when isomer peaks
are severely overlapped. It is, however, difficult to resolve such peaks because their mass spectra are

usually very similar or even identical.

3.6 ANOVA-simultaneous component analysis (ASCA)

The significance of the variation between two groups of samples, based on one measured variable is
usually estimated by using student’s t-test, which was introduced by W. S. Gosset in 1908 (Box, 1987).
The significance of variation present among several groups of samples can be evaluated by analysis of
variance (ANOVA) (Searle, 1971). ANOVA is a statistical hypothesis testing method and it is based on
the null hypothesis assumption (no difference between investigated groups based on the measured
variable). In order to estimate the significance of the variations of groups, ANOVA calculates the
variation present within each group and the means of these variations between the groups. The mostly
utilized value for evaluation of the significance of the treatment is the p-value, which will indicate the
chance of such a group differentiations due to the treatment, under the null hypothesis. For
multivariate data where several responses are measured, significance of variance among groups can
be evaluated by using multivariate-ANOVA (MANOVA) (Mardia et al.,, 1979). However, when
multivariate data become complex, like in the case of metabolomics, and variables co-vary, the
MANOVA fails to provide a reliable significance test due to assumptions that are not valid. In addition,
several other approaches based on PCA (Bratchell, 1989) and PLS (Stahle and Wold, 1990) were

developed for the analysis of variance in multivariate data sets.

Analysis of variance (ANOVA)-simultaneous component analysis (ASCA) is the most recent and

advanced method for analysis of variance that is suitable for the various kinds of multivariate data
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sets, including metabolomic data (Smilde et al., 2005). ASCA is developed based on the multilevel
component analysis and can be applied to various datasets obtained from designed experiments.
Initially, ASCA was developed for separating the underling structures present in the complex
metabolomic data. The ASCA model can be described as a direct multivariate generalization of the
ANOVA model (Equation 4 in Smilde et al., 2005) and just like PCA analysis, it is based on solving the
least squares problem (Equation 6 in Smilde et al., 2005). In the example of the GC-MS metabolomic
data set described in Paper 4, metabolomic variations of whole-grains of three barley genotypes
associated with the grain filling time (days after flowering (DAF)), genotype differences (LINE) and
growth temperature (TEMP) can be evaluated for all detected metabolites by applying ASCA modeling.

This model will comprise three main and four interactions effects like as demonstrated in equation 3:
X = Xpar+ Xune + Xremp + Xoar x une + Xpar x emp + Xune < emp + Xoar x teme xune + E (EQ. 3)

The metabolome of a system is sensitive to external perturbations, thus designed metabolomic studies
usually causes introduce of substantial amount of variation reflecting the design rather than pure
biology. Separation of such an interfering effect allows extraction of hindered information (Fig.9.).
Thus, ASCA partitions the total variation of the dataset into separate parts that represent variations
corresponding to the different factors and allows estimation of the significance of these factor effects.
Detailed theory of ASCA and its comparison with other alternatives can be found in (Jansen et al.,
2005; Smilde et al., 2008; Zwanenburg et al., 2011). To date, ASCA has demonstrated a high potential
for extracting information from the designed metabolomic datasets obtained from NMR (van Velzen et
al., 2008), GC-MS (Chang et al., 2006) and LC-MS (Wang et al., 2009a).
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Figure 9. ANOVA-simultaneous component analysis (ASCA) based separation of the variance present in the designed
metabolomic data obtained from barley seed GC-MS metabolomic profiling (from paper 4). DAF - days after flowering
or grain filling effect, LINE - metabolomic differences present between investigated three different barley lines, TEMP -
growing temperature effect and E - random variation.
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4 UNPUBLISHED STUDIES

This section comprises three studies performed within this PhD project that are not published yet. The
first study concerns development of the metabolomics protocol by applying three different analytical
platforms, GC-MS, LC-MS and NMR. The aim of this study was to perform untargeted analysis as well
as metabolomic profiling of saponins in plant-insect interaction study between F2 population
generated from the resistant glabrous (G) type and susceptible pubescent (P) types of the Barbarea
vulgaris plants and the insect, Phyllotreta nemorum. The second study involved targeted GC-MS
metabolomic analysis of the triterpenes produced by combinatorial biochemistry in tobacco plant
leaves. In this study the new trimethylsilylation method by using TMSCN was applied (Khakimov et al.,
2013) and demonstrated its power for quantitative analysis of minute amounts of the triterpenes
produced in tobacco leaves. The third study demonstrates purification of the P and G type B. vulgaris
plants saponins and comprises LC-MS/MS results. The aim of this study was to uncover the structures
of the most abundant triterpenoid saponins of the two different plants and provide better
understanding of the plant-insect interactions and the relationships between saponin structures in B.

vulgaris and their toxicity to P. nemorum.

4.1 Optimization of comprehensive metabolomic protocol for GC-MS,
LC-MS and NMR analysis of Barbarea vulgaris leaves

One of the aims of the PhD project was to conduct a comprehensive metabolomic study of the B.
vulgaris F2 population derived from a cross of the parental glabrous (G) and pubescent (P) type. These
two morphologically different phenotypes of B. vulgaris also differ by their resistance to an insect
herbivore P. nemorum (Agerbirk et al., 2003a; Shinoda et al., 2002). Resistance of G-type plants to
herbivory by the flea beetle larvae of P. nemorum was evaluated by targeted metabolomics based on
feeding deterrent activity bioassays. This enabled identification of feeding deterrents, triterpenoid
saponins, such as hederagenin cellobioside (Shinoda et al., 2002) and oleanolic acid cellobioside
(Agerbirk et al., 2003a). A more comprehensive metabolomic analysis for identification of B. vulgaris
bioactive metabolites was performed by Kuzina et al., 2009 where they conducted LC-MS based
metabolomic profiling of saponins of both, G- (resistant), and P- (susceptible) parents, and the
segregating F2 population (Kuzina et al., 2009). This approach confirmed previous findings and
uncovered two additional saponin like metabolites that depicted high correlation with plants’
resistance against insect larvae for parental plants as well as the F2 population. The 160 F2 plants
represented the whole range from full susceptibility to full resistance to flea beetle larvae and varied
by their content of saponins. Later, two unknown saponin like metabolites of the resistant plants
found in Kuzina et al., 2009 were identified as gypsogenin and 4-epihederagenin cellobioside (Nielsen
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et al., 2010). The first application of the multi-way decomposition method, PARAFAC2, on LC-MS type
of data (Khakimov et al., 2012) employed raw LC-MS metabolomic data obtained from leaves of the F2
populations, which is also used in Kuzina et al., 2009. This study showed that metabolomic data
treatment is an important step for using all the information present in the data set and to extract as
much biological information as possible. PARAFAC2 based processing of this LC-MS data enabled
tentative identification of five more saponin like metabolites, in addition to the four previously found
saponins, to be associated with F2 plants’ resistance against P. nemorum larvae based on PLS
regression and correlation analysis between PARAFAC2 scores of resolved peaks and F2 plants’
resistance level. It is worth to mention that all these studies involved either targeted metabolomics for
identification of insect deterrent bioactive saponins or attempted to find metabolomic differences of
parental plants and F2 population primary by focusing on saponins. However, it is more likely that,
apart from saponins, the F2 population generated from the cross of two significantly different
phenotypes of B. vulgaris may result in alterations of other metabolites derived from different
biosynthetic pathways due to pleiotropy. Therefore, comprehensive metabolomics of the F2
population may provide more insight into metabolome-insect resistance relationship and evaluation of

other than mevalonate pathways by covering a broader range of metabolites.

In this study, we attempted to develop a single metabolomic protocol covering as many metabolites as
possible, including semi-polar metabolites such as saponins. For this reason, we aimed to employ three
analytical platforms, GC-MS, LC-MS and NMR in parallel, since they complement each other and allow
detection of a broader range of metabolites than using a single platform. One of main limitations for
performing such a comprehensive metabolomics was the limited amount of the sample material.
Approximately 10 mg of the fresh leaves of F2 population used in Kuzina et al., 2009 were kept in a -
80°C freezer. Our aim was to develop a single metabolomic protocol to extract maximum metabolome
in an untargeted way, split this extract into three parts, and use them for GC-MS, LC-MS and NMR
analysis. All the metabolomic protocol optimization works were performed by using 4-12 weeks old G-
and P-type plants grown in a climate chamber. Performance of metabolomic protocol was evaluated

for each analytical platform separately.

4.1.1 GC-MS method optimization

Due to the high chromatographic resolution and sensitivity of GC-MS, we decided to use it for
detection of primary e.g. amino acids, carbohydrates, organic acids and secondary metabolites e.g.
terpenes and phenolics of B. vulgaris leaves. Our aim was to detect as wider range of metabolites as
possible from the 10 mg of plant leaves in an untargeted approach. Nevertheless, detection of
triterpenoid profiles of the F2 population remains crucial, since this fraction of the metabolites may

hold valuable biological information present among the F2 plants. However, GC-MS detection of B.
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vulgaris plant triterpenes is not straightforward, since they are linked to one, two or more sugar
moieties and form saponins. The boiling points of saponins usually exceed the maximum allowed
temperature of the GC-MS e.g. oleanolic acid itself (without any sugar bonded to it) has a melting
point of > 300°C, which makes them non-volatile. Therefore, we started GC-MS method optimization
by establishing a method for quantitative detection of triterpenes of plants by using standard
compounds, aglycones, such as hederagenin, oleanolic acid, betulinic acid and a saponin, a-hederin,
which is structurally similar to hederagenin cellobioside (difference between a-hederin and
hederagenin cellobioside is that sugar moieties of a-hederin consist of arabinopyranosyl and

mannopyranosyl, while the latter possess two glucopyranosyles) (Fig.10).

B-Amyrin (R: -CH3) a-Amyrin (R: -CH3) Lupeol (R: -CH3)

Erythrodiol (R: - CH2OH) Uvaol (R: - CH20H) Betulin (R: - CH20H)
Oleanolic aldehyde (R: -CHO) Ursolic aldehyde (R: -CHO) Betulinic aldehyde (R: -CHO)
Oleanolic acid (R: -COOH) Ursolic acid (R: -COOH) Betulinic acid (R: -COOH)

3-0-cellobiosyl-hederagenin

(R1: -CH20H, R2: -CHs, R3: H)
3-0-cellobiosyl-oleanolic acid
(R1:-CHs, R2: -CH3, R3: H)
3-O-cellobiosyl-4-epihederagenin
(R1: -CHs, R2: -CH20H, R3: H)
3-0O-cellobiosyl-gypsogenin

(R1: -CHO, R2: -CH3, R3: H)
3-O-cellobiosyl-cochalic acid

(R1: -CHs, R2: -CH3, R3: -OH)

3-O-cellobiosyl-28-0-B-p-
glucopyranosyl-16-
B,23-dihydroxybetulinic ester

Figure 10. Structures of triterpenoid aglycones derived from B-Amyrin (a), a-Amyrin (b), lupeol (c) and five oleanolic
acid derived triterpenoid saponins (d) and one lupane type triterpenoid saponin identified from the G-type B. vulgaris

(e).
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In the first step, we attempted to detect standard aglycones, hederagenin, oleanolic acid and betulinic
acids by direct injection of 1 pl aliquot of standard mixture of 0.2 mg ml™ solution of aglycones in
methanol. However, it was not possible to detect aglycones from the GC-MS analysis, though injection
port and GC oven program was set to the maximum allowed temperatures, 320°C and 330°C,
respectively. This suggest that the applied temperature was not enough to vaporize the aglycones and
fly through the GC column and/or were degraded inside the column or injection port, since they
possess polar functional groups such as —COOH and —OH. In a second attempt, we tried
trimethylsilylation of complete dried 50 pl aliquot of the initially used standard mixture with 50 pl
MSTFA and TMSCN separately by incubating at room temperature for 2 hours and injected 1 pl aliquot
into GC-MS. This enabled detection of three peaks at different retention times that each corresponded
to the TMS-derivatives of the three standard aglycones (Fig.11 (a)). However, the abundance of
aglycone peaks were up to 4 fold greater when they were derivatized by using TMSCN. This depicted
higher silylation capabilities of TMSCN over the most commonly used reagent MSTFA. Therefore, we
have performed a comprehensive trimethylsilylation method comparison study by using these two
reagents towards silylation of various primary and secondary metabolites from a standard mixture and
blueberry fruit extracts (paper 2). Thus, TMSCN outperformed MSTFA in terms of silylation reaction
rate, sensitivity, unbiased silylation of various functional groups and profile reproducibility. Thus,
further derivatization reactions employed TMSCN only. Moreover, the calibration curve of the TMSCN
derivatization of triterpenoid aglycones also showed a high quantitative power of the method (Fig.11
(b)).

Thus, GC-MS detection of triterpenoid aglycones of saponins were established, however, detection of
saponins remains challenging, since their molecular size and boiling point is even greater than their
aglycones. GC-MS detection of silylated a-hederin was not possible, even by using splitless mode
injection and by varying silylation conditions (24-70°C and 5 min — 8 hour). TLC analysis of the
derivatized and not derivatized a-hederin depicted two different spots and suggested that the
trimethylsilylation reaction did occur, though it is impossible to know how many hydroxyl functional
groups of a-hederin are derivatized. This led to the fact that the boiling point of a-hederin-nTMS is
higher than the GC-MS temperature settings and/or it is not stable under high temperature. Thus, it
was concluded that detection of the saponin fraction of metabolites of B. vulgaris plant leaves was not
possible by direct derivatization of the plant complex extracts and GC-MS analysis. Therefore, it was
decided to apply acidic hydrolysis of the plant extracts prior to derivatization. Since acidic hydrolysis
cleaves the glycosidic and ester bonds through which sugar moieties are attached to the aglycones.
However, hydrolyzation followed by derivatization based GC-MS analysis will result in detection of
triterpene aglycone pool rather than each triterpenoid saponin separately. It is worth mentioning that
acidic hydrolysis of complex plant extract will affect most of the metabolites that possess ester,
glycosidic and even ether bonds. Therefore, in order to evaluate the intact metabolites of the extract,
it is also crucial to analyze the samples without hydrolysis. According to the previous studies and the
latest LC-MS/MS analysis of the parental G and P type of B. vulgaris (Fig. 16 and Table 4) there are
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more than ten different aglycones that make up the total saponin profile of the plants (Khakimov et al.,
2012; Kuzina et al., 2009). Thus, GC-MS analysis of hydrolyzed F2 plant extracts will provide a valuable
triterpenoid profile as well as other secondary metabolites such as phenolics, which are also mostly
present in conjugated forms with the carbohydrates and other cell membrane components.
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Figure 11. (a) Superimposed TIC chromatograms of GC-MS data obtained on trimethylsilylated standard triterpenoids ,
betulinic acid, hederagenin, oleanolic acid at five different concentrations. (b) Calibrations curves of the triterpenoids.

In order to develop an optimal GC-MS metabolomic protocol for analysis of hydrolyzed and not
hydrolyzed extracts, GC-MS instrumental parameters, including injection, GC oven program and MS
settings were optimized to gain high sensitivity, accuracy and reproducibility. Optimal GC-MS settings
were established by taking advantages of previously published GC-MS instrumental protocols for
analysis of complex sample matrices (Engewald et al., 1999; Fialkov et al., 2007; Fiehn et al., 2000;
Heiden et al., 2001; Horning and Horning, 1971; Lisec et al., 2006; Roessner et al., 2000). This required
a compromise between the chromatographic resolutions of metabolites and their sensitivity.
Moreover, the mode of injection e.g. split and splitless modes greatly determined the metabolomic

data quality, since split mode injection methods were not able to detect low s/n ration peaks, while in
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splitless mode injection several high abundant peaks were overloaded, which make their quantification
impossible. Therefore, a compromise was necessary to detect as many metabolites as possible in a

quantitative and high-throughput manner. An optimized final GC-MS protocol is presented in box 1.

OVEN PROGRAM: ON

40°Cfor 3 min

then 12 °C/min to 300°C for 8 min
Run Time: 32.667 min

5 min (Post Run): 40 °C

BACKPTV INLETH2

Mode: PTV Solvent Vent

Heater: Off

Pressure: On 9.3896 kPa

Total Flow: On  36.2 mL/min
Septum Purge Flow: On 20 mL/min
Gas Saver: Off

Purge Flow to Split Vent: 15 mL/minat

2.5min

Vent Flow: 200 mL/min

Vent Pressure: 7 kPa Until 0.3 min
Cryo: Off

THERMAL AUX 2 {MSD TRANSFER
LINE}

Heater: On

Temperature Program: On

290°C for 0 min

Run Time: 32.667 min

COLUMN #1

Phenomen 7HG-G018-11Zebron 7B
5MSi 5%Phe 95%DiMe p
370°C:30mx250pum x 0.25 um
In: Back PTV Inlet H2

Out: Vacuum

(Initial): 40°C

Pressure: 9.3896 kPa

Flow: 1.2 mL/min

Average Velocity: 58.982 cm/sec
Holdup Time: 0.84772 min

Flow Program: Off

1.2 mL/min for O min

Run Time: 32.667 min

5 min (Post Run): 0.99842 mL/min

GERSTEL MAESTRO SYSTEM
SETTINGS

Maestro Runtime: 37.67 min
GC Cool Down Time: 5.00 min
Cryo Timeout: 10.00 min
GERSTELCIS

CIS: used

Cryo Cooling: used

Heater Mode: Standard
Initial Temperature: 120'C
Equilibration Time: 0.30 min
Initial Time: 0.30 min

Ramp 1

Rate: 5.00'C/s

End Temp: 320'C

Hold Time: 10.00 min

GERSTEL MPS Liquid Injection
Syringe: 10ul

SAMPLE PARAMETERS
Sandwich: used with sample above
Top Air Volume: 2.0 uL

Inj. Volume: 1.0 uL

Air Volume above: 1.0 uL
Solvent Plug Volume: 0.0ulL
Sandwich Solvent: Wash1
Air Volume below: 1.0 uL
Inj. Speed: 2.50 ul/s

Fill Volume: 5.0 uL

Fill Strokes: 2

Fill Speed: 0.20 ul/s
Viscositiy Delay: 2 s

Eject Speed: 100.00 ul/s
PreInj. Delay: 1s

PostInj. Delay: 1s

Inj. Penetration: 41.00 mm
Sample Tray Type: VT98
Vial Penetration: 29.00mm

CLEANING PARAMETERS
Preclean Sample: 1

Wash Station 1: Wash1
Preclean Solv.1: 2

Postclean Solv.1: 2

Fill Speed Solv.1: 1.00 ul/s
Viscosity Delay Solv.1:1s
Eject Speed Solv.1: 70.00 uL/s
Information Solv.1: Acetone
Wash Station 2: Wash2
Preclean Solv.2: 2

Postclean Solv.2: 2

Fill Speed Solv.2: 1.00 ul/s
Viscosity Delay Solv.2:1s
Eject Speed Solv.2: 70.00 ul/s
Information Solv.2: Hexane

MS ACQUISITION PARAMETERS
Acquistion Mode: Scan

Solvent Delay: 8.50 min

EMV Mode: Gain Factor

Gain Factor: 2.00

Resulting EM Voltage: 1847

Low Mass: 50.0

High Mass: 500.0

Threshold: 150

MS Source: 230 C maximum 250C
MS Quad: 150 C maximum 200 C
Timed Events

Time (min): State (MS On/Off)
8.50 On

25.50 Off

Box 1. Optimized GC-MS instrumental settings for untargeted GC-MS metabolomics of B. Vulgaris plant leaves.

After establishment of an optimal GC-MS protocol for quantitative detection of broad range of
metabolites of hydrolyzed and not hydrolyzed extracts of the plant leaves, it was also necessary to
optimize the metabolite extraction, hydrolysis (for saponification) and sample derivatization steps of
the protocol. Pilot screening experiments demonstrated that metabolomic protocol factors such as
extraction solvent composition (1), extraction time (2) and temperature (3), hydrolyzation time (4) and
temperature (5) as well as trimethylsilylation time (6) and temperature (7) were the most important

for the number of metabolites detected from the GC-MS analysis and their s/n ratios. Based on these
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screening studies and previously published work, it was decided to use methanol as an extraction
solvent (Kuzina et al., 2009; Lisec et al., 2006) and hydrochloric acid at a final concentration of 1M for
hydrolysis (Arranz and Calixto, 2010; Zadernowski et al., 2005). Thus, 2”3 fractional factorial
experiment was designed for the identification of an optimal combination of the above-mentioned
seven factors of the GC-MS metabolomic protocol (Table 3).

1 2 3 4 5 6 7
Solvent Extraction Extraction Hydrolization Hydrolization Silylation Silylation
(% of methanol) time (min) temperature (°C)  time (hour) Temperature (°C) time (hour) temprature (°C)
1. —t—— 50 5 100 1 99 16 24
2, Rt 100 15 70 1 99 16 24
3. ——4——4 50 5 100 16 60 0,5 40
4. ot 100 5 70 16 99 0,5 24
5. =ttt 100 5 100 16 60 16 24
6. =+ 100 15 70 16 60 0,5 40
7. 0000000 75 10 85 8,5 79,5 8,25 32
8. —t++t—— 50 15 100 16 99 0,5 24
9. et 100 5 70 1 60 16 40
10.  ++H—— 100 15 100 1 60 0,5 24
11. 0000000 75 10 85 8,5 79,5 8,25 32
12, 44+ 50 15 100 1 60 16 40
13. 0000000 75 10 85 8,5 79,5 8,25 32
14, ———++++ 50 5 70 16 99 16 40
15. —4—4—+- 50 15 70 16 60 16 24
6. —— 50 5 70 1 60 0,5 24
17.  +—+—+—+ 100- (85%) 5 100 1 99 0,5 40
18. —4—+—+ 50 15 70 1 99 0,5 40
19. +HHHH+ 100 15 100 16 99 16 40

Table 3. 2”2 fractional factorial design (16 experiments + 3 center points) developed for optimization of the metabolite
extraction and derivatization conditions for GC-MS analysis of the B. vulgaris plant leaves. * Experiment number 17
performed best in terms of s/n ratio on detected hederagenin-3TMS and oleanolic acid-2TMS peaks. However, model
suggests that reduction of methanol concentration from 100% to 85% will slightly improve the protocol.

This enabled identification of the optimal conditions by performing only 19 experiments varying seven
factors in the specified ranges and three replicates of center points where all the factors were set to
the center points. All the experiments were evaluated by measuring the response variables, peak
abundances of hederagenin-3TMS and oleanolic acid-2TMS, since the main aim from this optimization
was to enhance the detection of the triterpenes. In addition to this, three replicates of the center point
experiments demonstrated the method reproducibility. Total ion current (TIC) chromatogram of the
raw GC-MS data obtained from the non-hydrolyzed leaf extracts of G and P type plants are
demonstrated in figure 12. However, these chromatographic data have not yet been comprehensively
investigated, since the data of the whole F2 population has not been recorded. Nevertheless, analysis
of the data by using ChemStation software suggested the presence of more than 200 hundred

metabolites, though their mass spectrum has not been compared against libraries.
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Figure 12. Total ion current (TIC) chromatograms of the raw GC-MS data obtained from not hydrolyzed leaf extracts of
G and P type B. vulgaris plants, based on the metabolomic protocols illustrated in figure 12.

Thus, the final protocol was established (Fig.13) and its robustness was tested by performing GC-MS
analysis of four biological replicates of G type plant leaves, which resulted in >92% similarities of the
obtained GC-MS profiles.
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~ 10 mg of frozen leaf discin 2 mL Eppondorftubes

Add 0.8 mL 85% methanol
Heat at 100 °C for 5 min by mixing at 1400 rpm
Cool in ice for 5min
Centrifuge at 16k g for 3 min
GC-MS by hydrolyzation GC-MS without hydrolyzation
Transfer 200 pL supernatantinto 2 mL glass vials Complete dry 200 pL supernatantinto 200 pL
0 glass vials in two steps using N2 flash
Add 40 uL 6M HClI (final conc. 1 M) & \1’
Incubate at 99°Cfor 1 h by mixing at 1400 rpm Tightly seal with GC-MS vial lid and add 40 uL
\1/ 30 mg mL* methoxiamine hydrochoride in pyridine
Cool down at room temperature for 10 min & \1,
Extract with 300 pL ethylacetate (EtAc), two times . .
\lf Incubate at 30°C for 90 min by mixing at 1400 rmp
Complete dry and redissolve into 100 pL EtAc \I/
\1/ Add 60 uL TMSCN
Complete dry 100 pL EtAc extract Into 200 pL glass insert \I/
\l, Incubate at 40°C for 30 min by mixing at 1400 rmp
Seal with GC-MS vial lid and add 50 pL TMSCN & \I/

Incubate at 40°C for 30 min by mixing at 1400 rmp
1 pL injection of silylated sample into GC-MS

\l/ operated according to the protocol illustrated in Box 1.
1 pLinjection into GC-MS
operated according to the protocol illustrated in Box 1.

Figure 13. Scheme of the metabolomic protocol developed for GC-MS, LC-MS and NMR analysis of the B. vulgaris
plant leaves by using design of experiment. For LC-MS analysis 50 pL aliquot of the final extract was transfered into 2
mL glass vials, complete dry under reduced pressure and store in -20 °C until analysis. Likewise, for the NMR analysis
300 pL of aliquot was transfered into 2 mL glass vials, complete dry under reduced pressure and store in -20 °C until
analysis.

4.1.2 1D H' NMR analysis of G and P type Barbarea vulgaris plant leaves

Metabolite extraction protocol (Fig.13), described above, has been used to extract 10 mg leaf discs of
10 replicate samples (harvested from 10 different leaves of the same age plants grown in the same
climate chamber) from G and P-type plants. Moreover, three mixture samples were introduced, where
half of the leaf disc was from G and the other half was from P type plants. 300 pl aliquot of obtained
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metabolite extracts were completely dried in 1.5 ml glass vials and re-dissolved in 500 pl methanol-d4
(99.8%) containing 5 ul of 20 mg mI™ TSP in deuterated water. 1D H' NMR spectra were recorded using
a Bruker Avance DSX 500 NMR spectrometer (11.7 T) operating at 500.13 MHz, and equipped with a
BBI probe for 5 mm (o.d.) sample tubes. Data acquisition for all the samples was automated from
IconNMR automation software and each sample was automatically, tuned, matched and shimmed. A
total of 512 number of scans were recorded at room temperature and the obtained spectra were
referenced towards TSP (3-(Trimethylsilyl)-Propionic acid-d4) peak at 0.00 ppm. Raw NMR data of 23
samples were imported into Matlab after baseline and phase correction using TopSpin (version 13.1,
Bruker BioSpin). The NMR spectra of P and G type of plants were similar, although significant

differences were pronounced in the anomeric and aromatic regions (Fig.14).
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Figure 14. 1D H' NMR spectra of the leaf extracts from G and P type B. vulgaris plants, based on the metabolomic
protocol illustrated in figure 13. (a) NMR spectrum of P- and G- type plants. (b) Superimposed NMR spectra of 10 P-
and G- type plants.

Comparison of NMR spectra of pure hederagenin and oleanolic acid mono-glycosides (see paper 5)
with NMR spectra of G and P type plants’ complex extracts did not show significant signals of these
saponins. This is primarily due to the low concentration of saponins. As mentioned earlier, the
sensitivity of NMR is inferior to GC-MS and LC-MS, however it provides reproducible detection of the
most abundant e.g. first 50 metabolites of the investigated complex mixtures. Since, the concentration
of saponins are significantly lower than the amount of other proton containing metabolites present in
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the 85% methanol extract of the leaf discs, their peaks are not observed in the spectra and/or greatly

masked by the peaks of more abundant metabolites.

Prior to multivariate data analysis, obtained NMR data was preprocessed to minimize non-sample
related variations by removing non-informative regions of the spectra, and aligning the chemical shifts
changes of the same metabolites over different samples. First, the data was aligned by using iCoshift
(Savorani et al., 2010c) where all samples were aligned towards the median spectra. Then, non-
informative regions of the spectra, including residual water and methanol peaks were removed. Since
the investigated plant leaf discs are thought to have the same weight and the metabolite extraction
protocol was identical for all samples, ideally, there is no need for normalizing this kind of data.
However, due to the minute differences in sample weight and some experimental variations e.g.
extraction, introduction of non-sample related variations is unavoidable. Therefore, we have
attempted to apply four different normalization techniques and evaluated their effects by observing
PCA based separation of G and P type plants and compared the results with the non-normalized data.
These included: the probabilistic quotient normalization method (Dieterle et al., 2006), ref norm
method by using the area of the triplet peak in region 2.79 — 2.84 ppm, the sum of the absolute values
of all variables for the given sample (1-Norm) and the sum of the squared value of all variables for the
given sample (2-Norm). Obtained results suggest that normalization of the data by the area of the
triplet peak between 2.79-2.84 ppm was best for separating G type plants from P type (Fig.15 (a)).
Separation of G and P type plants was due to the PC1 that captured 64% of the total variance present
in the data, which suggest significant difference between the two aspects of plants. The loading plot of
this PCA model demonstrates a broad range of variables (NMR peaks) that are responsible for the
separation (Fig.15 (b)). In addition, ECVA based classification of G and P type B. vulgaris plants revealed
slightly better separation than in PCA (Figure 15 (c)). Whereas interval based ECVA modeling enabled
identification of the most informative NMR regions for the separation (Fig.15 (d)). iECVA modeling was
performed by dividing the NMR data into 20 intervals with the same size and developing individual
ECVA models for each interval. This approach showed that some regions of the NMR spectra were
more distinctive for the two different plants than other regions and allowed separation of three

classes (class 1: G type, class 2: P type and class 3: mixture of G and P) with a zero misclassification.
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Figure 15. (a) Scores plot of the PCA analysis developed on 1D H' NMR data demonstrated in figure 14 (b).
Preprocessing of the data included, alignment of the slight chemical shift changes using iCoshift and sample wise
normalization of the data to minimize the non-sample-related variation. (b) Loadings of PC1 that is responsible for the
separation. (c) Extended canonical variates of the global ECVA model of the same NMR data. (d) Interval based ECVA
results where data was divided into 20 intervals and ECVA models were computed for each interval separately. Dotted
line is number of misclassifications (4 for 8 LV's) for global model and italic numbers (blue) are optimal LVs in interval
model.

These findings suggest that, despite the differences present in the low concentration secondary
metabolites of the G and P plants e.g. saponins, there are other obvious differences in more abundant
metabolites of these two different phenotypes of B. vulgaris. Thus, metabolite extraction protocol
(Fig.13), which is developed by using fractional factorial design, can be used for NMR based
metabolomic fingerprinting of the F2 population. Therefore, the NMR metabolomic approach can be

applied to capture the metabolomic differences between the F2 plants varying by their resistance to
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the flea beetle larvae (Phyllotreta nemorum). However, 1D H' NMR spectra of the saponin-enriched
fraction of the G and P type plant extracts obtained by SPE based fractionation (see section 4.3)
demonstrated significantly improved NMR peaks of saponins, like hederagenin and oleanolic acid
cellobioside. This was especially more pronounced in the aliphatic (singlet peaks of C24, C26, C27 and
C30 between 0.7-1.16 ppm) and anomeric regions (H1’ and H1” of hexoses between 4.2-4.5 ppm).

4.1.3 Tandem LC-MS analysis of G and P type Barbarea vulgaris plant

leaves

As described in the NMR analysis of the parental P and G type B. vulgaris plants, 10 biological
replicates from each type were harvested and metabolites were extracted according to the protocol
described in figure 13. 200 ul aliquot of the resulted metabolite extract in 85% methanol was
completely dried under reduced pressure, at 30°C, and re-dissolved in 50 pl of 50% methanol.
Obtained extracts were used for LC-MS/MS analysis. LC-MS consisted of a Agilent 1100 Series LC
(Agilent Technologies), equipped with a Gemini NX column (35°C; 2.0 3 150 mm, 3.5 mm;
Phenomenex) and coupled to a Bruker HCTUIltra ion-trap mass spectrometer (Bruker Daltonics).
Mobile phases were eluent A, water with 0.1% (v/v) formic acid, and eluent B, acetonitrile with 0.1%
(v/v) formic acid. The gradient program was as follows: 0 to 1 min, isocratic 12% B; 1 to 33 min, linear
gradient 12% to 80% B; 33 to 35 min, linear gradient 80% to 99% B; 35 to 38 min, isocratic 99% B; 38 to
45 min, isocratic 12% B at a constant flow rate of 0.2 mL min™". The detector was operated in negative
mode and included tandem mass spectrometry at two stages MS/MS and three stages MS/MS/MS. LC-
MS profiles of G and P type plants were different, where G plant contained more peaks than P type
(Fig.16) and based on the fragmentation patterns of the resolved peaks from both types of the plants,
the majority of the metabolites were glycosides such as saponins. All six previously identified saponins
(Figure 10) were present in the G type LC-MS profiles, while they were not detected in the P type plant
(Table 4). Molecular masses of aglycones [Aglycone-H], oleanolic acid (455.3), 4-epihederagenin
(471.3), gypsogenin (469.3), hederagenin (471.7) and cochalic acid (471.5) were detected in MS/MS
and MS/MS/MS fragmentation patterns of the corresponding saponins eluted at retention times 24.5,
22.9, 22.5, 21.5 and 20.7 min, respectively. Apart from the previously known triterpenes of the B.
vulgaris, LC-MS/MS data allowed tentative characterization of several other triterpenoid saponin-like
metabolites of P and G type plants. This included eight new molecular masses (441.3, 443.3, 447.1,
457.5, 472.5, 473.3, 485.3, 487.5) that might possibly be derived from the saponins of B. vulgaris with
triterpenoid backbones. Among these molecular masses, 457.5 match with the molecular mass of the
triterpenoid saponin soyasapogenol B, 473.3 soyasapogenol A and 487.5 match with the mass of
bayogenin. Although to date, there are no reports in the literature on B. vulgaris saponins with such

aglycones. However, metabolite profiling of triterpenoid saponins of Medicago truncatula based on
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accurate mass measurement by using UPLC ESI FT-ICR MS demonstrated tentative identification of 79
different triterpenoid saponins from hairy roots (Pollier et al., 2011). Tandem mass spectral data
suggested that all these saponins were derived from ten different triterpenoid backbones. These
triterpenoids included, 455 (soyasapogenol E), 457 (soyasapogenol B), 469 (tentatively identified as
the hederagenin with the hydroxyl group at 28 position being oxidized to aldehyde group), 471
(hederagenin), 473 (soyasapogenol A), 485 (tentatively identified as the bayogenin with the hydroxyl
group at 28 position being oxidized to aldehyde group) and 487 (bayogenin).
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Figure 16. Base Peak Chromatogram (BPC) of the 85% methanol extracts of G and P type B. vulgaris leaves.
Metabolites are numbered according to their order in Table 4.

Thus, it can be hypothesized that B. vulgaris possess various triterpenes that are mainly derived from
B-amyrin. Tentative characterization of P and G type saponins derived from the all above mentioned
12 different aglycones were based on MS/MS data that showed characteristic fragmentation patterns
of glycosides with loss of hexose (162), pentose (132) and methyl-pentose (146) (Table 4). It is worth
mentioning that the intensities of P type metabolites eluting at the earlier retention times were
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comparable to the intensities of the G type metabolites. The fragmentation patterns suggested that
these glycosides are saponins with three and more sugar moieties. However, at the later elution times,
the P type profile is rather simpler than the profile of G type plant. This suggests that P type plants
contain less semi-polar metabolites than the G type does. Thus, semi-polar saponins with two and one

sugar moieties were present in significantly low amounts in P plant than in G plant.

Ne RT (min) | MS (m/z) MS2 (m/z) MS3 (m/z)
1g 8.6 887.4 741.3 (MS-146) 561.1 (MS2-18-162)
2.p 8.8 755.4 609.3 (MS-146) 285 (MS2-324)
3.g 9.0 1241.5 933.4 (MS-162-146) 591.2 (MS2-18-324)
4g 9.1 1079.4 933.5 (MS-162) 591.2 (MS2-18-324)
5.p 9.1 755.4 609.3 (MS-146) 285 (MS2-324)
6.8 9.2 1095.4 787.5 (MS-162-146) 607.1 (MS2-18-162)
7.p 9.4 933.5 625.3 (MS-162-162) 300.9 (MS2-324)
8.g 9.6 1079.6 | 771.5(MS-146-162) 447.1 (MS2-324)
9.p 9.7 593.3 447.1 (MS-146) 447.1
10.p 9.9 917.5 771.3 (MS-146) 485.3 (MS2-124-162)
11.b 10.05 1079.5 593.3 (MS-324-162) 447.1 (MS2-146)
12b | 10.15 1079.4 933.5 (MS-162) 591.2 (MS2-18-324)
13.¢g 10.25 1109.4 787.4 (MS-322) 607.1 (MS2-18-162)
14p | 104 917.5 771.3 (MS-146) 485.3 (MS2-124-162)
158 | 105 1063.8 917.5 (MS-146) 771.5 (MS2-146)
16.g | 107 1093.7 947.6 (MS-146) 771.2 (MS2-14-162)
17g | 108 1063.8 917.5 (MS-146) 771.5 (MS2-146)
18.p 10.8 931.5 785.4 (MS-146) 609.3 (MS2-176)
19.g 11.0 1093.7 947.6 (MS-146) 771.5 (MS2-14-162)
20.p 11.0 917.5 771.4 (MS-146) 609.4 (MS2-162)
21.g 11.3 868.2 422.1 (MS-446) 422.1
2p | 115 917.5 771.4 (MS-146) 609.4 (MS2-162)
23p | 119 901.6 755.4 (MS-146) 609.4 (MS2-146)
24p | 121 9315 785.4 (MS-146) 609.4 (MS2-176)
25.b 124 901.5 755.3 (MS-146) 447.2 (MS2-146-162)
26.b 125 931.4 785.4 (MS-146) 609.1 (MS2-14-162)
27.b 12.7 931.4 785.4 (MS-146) 609.1 (MS2-14-162)
28g | 13.1 959.7 797.6 (MS-162) 473.4 (MS2-162-162)
29.g 134 1135.8 811.8 (MS-324) 487.5 (MS2-162-162)
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30.g | 13.6 974.7 767.8 (MS-45-162) | 443.3 (MS2-162-162)
31g | 139 857.7 811.5 (MS-46) 605.4 (MS2-44-162)
32b | 141 1087.9 | 879.6 (MS-46-162) | 487.5(MS2-68-324)
33.b | 143 959.7 797.6 (MS-162) 473.4 (MS2-162-162)
34g | 145 697.5 633.3 (MS-64) 327.0 (MS2-306)
35.b | 14.6 1059.9 811.8 (MS-248) 487.5 (MS2-162-162)
36.p | 14.8 1120.7 795.8 (MS-324) 472.4 (MS2-162-162)
37g | 149 757.5 693.2 (MS-64) 357.0 (MS2-336)
38p | 15.1 1002.9 959.8 (MS-44) 473.4 (MS2-324-162)
39.g | 15.2 959.7 797.6 (MS-162) 473.4 (MS2-162-162)
40g | 15.25 1071.8 | 863.5 (MS-46-162) 795.5 (MS2-68)
41b | 15.35 943.1 | 619.4 (MS-162-162) 457.4 (MS2-162)
a2p| 156 959.7 797.6 (MS-162) 473.4 (MS2-162-162)
43g | 157 1234.6 | 811.8(MS-292-132) | 487.5 (MS2-162-162)
a4p | 158 1002.9 959.8 (MS-44) 473.4 (MS2-324-162)
45.g | 15.9 1044.0 796.0 (MS-248) 471.4 (MS2-162-162)
46.g | 16.1 943.1 | 619.4 (MS-162-162) 457.4 (MS2-162)
a7.g | 16.2 943.1 | 619.4 (MS-162-162) 457.4 (MS2-162)
48b | 16.6 943.1 | 619.4 (MS-162-162) 457.4 (MS2-162)
a9.g | 17.0 943.1 | 619.4 (MS-162-162) 457.4 (MS2-162)
50.g | 17.2 943.1 | 619.4 (MS-162-162) 457.4 (MS2-162)
51g | 17.4 829.8 783.6 (MS-46) 621.4 (MS2-162)
52g | 183 943.1 | 619.4 (MS-162-162) 457.4 (MS2-162)
53b | 18.6 811.8 649.5 (MS2-162) 487.5 (MS2-162)
54g | 18.9 811.8 649.5 (MS2-162) 487.5 (MS2-162)
558 | 19.1 809.7 647.5 (MS-162) 485.4 (MS2-162)
56.g | 19.2 811.8 649.5 (MS2-162) 487.5 (MS2-162)
57 | 19.4 809.7 647.5 (MS-162) 485.4 (MS2-162)
58.g | 19.6 1027.7 779.6 (MS-248) 455.3 (MS2-162-162)
59.g | 19.8 649.7 487.3 (MS-162) 487.3

60.g | 20.2 795.7 633.5 (MS-162) 471.5 (MS2-162)
61.g | 205 795.7 633.5 (MS-162) 471.5 (MS2-162)
62.g | 20.7 795.7 633.5 (MS-162) 471.5 (MS2-162)
63.g | 21.0 827.9 781.8 (MS-46) 457.2 (MS2-162-162)
64.g | 213 795.7 633.5 (MS-162) 471.5 (MS2-162)
65.g | 215 841.8 795.7 (MS-46) 471.7 (MS2-162-162)
66.g | 225 839.9 793.5 (MS-46) 469.3 (MS2-162-162)
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67.g | 227 825.7 779.6 (MS-46) 455.3 (MS2-162-162)
68.g | 229 679.7 633.5 (MS-46) 471.3 (MS2-162)
69.g | 245 825.7 779.6 (MS-46) 455.3 (MS2-162-162)
70p | 283 885.7 867.5 (MS-18) 657.4 (MS2-210)
71p | 287 885.7 867.5 (MS-18) 657.4 (MS2-210)
72p | 291 695.7 677.4 (MS-18) 441.4 (MS2-236)
73g | 292 809.8 763.5 (MS-46) 601(MS2-162)

Table 4. LC-MS/MS based fragmentation patterns of major metabolites detected from the G-type (g), P-type (p) and in
both types (b) of Barbarea v. 85% methanol extract. Metabolite number 62 represent cochalic acid cell., 65
hederagenin cell., 66 gypsogenin cell., 68 4-epihederagenin cell., and 69 oleanolic acid cell. * Loss of 162 correspond
to cleavage of hexose, 146 methyl-pentose, 324 double hexose, 292 double methyl-pentose, 132 pentose, 176
hexuronic acids, 18 water, 46 formic acid, 44 carbon dioxide, while the loss of m/z ion 14, 64, 68, 248, 276, 306 and
336 remain unknown. Possible saponins with triterpenoid backbones are highlighted in bold.

4.2 TMSCN based derivatization and GC-MS detection of triterpenes
produced by combinatorial biochemistry in tobacco leaves

This section demonstrates a part of the GC-MS results of the unpublished work conducted on saponin
biosynthetic pathway elucidation in B. vulgaris. The first committed step in saponin biosynthesis is the
2,3-oxidosqualene, which is a major product of the mevalonic acid pathways (Augustin et al., 2011).
2,3-oxidosqualene is the substrate for several enzymes that belong to the oxidosqualene cyclase
(OSCs) family and all these enzymes use it in different ways to cyclase triterpenes and sterols.
Depending on the plant species, the ratios between these cyclization products are different (Vincken et
al., 2007). Some plants e.g. B. vulgaris tend to produce more triterpenes and use them for defense
against biotic stresses. There are mainly three kinds of triterpene backbones that are used for
synthesis of triterpenoid saponins. These are B-amyrin, a-amyrin and lupeol that are the products of B-
amyrin synthase (bAS), a-amyrin synthase (aAS) and lupeol synthase (LUP), respectively (Fukushima et
al.,, 2011) (Fig.17). Then, these triterpenoid backbones undergo various modifications e.g. oxidation
that lead to introduction of hydroxyl, ketone, aldehyde and carboxylic acid functional groups,
mediated by cytochrome P450-dependent monooxygenases (P450s) (Schuler and Werck-Reichhart,
2003). These result in production of erythrodiol, oleanolic aldehyde, followed by oleanolic acid from B-
amyrin and uvaol, ursolic aldehyde, followed by ursolic acid from a-amyrin and betulin, betulinic
aldehyde, followed by betulinic acid derived from lupeol. Recent studies demonstrated the roles of
some members of the cytochrome P450 enzymes in biosynthesis of triterpenoid saponins in plants
(Fukushima et al., 2011; Geisler et al., 2013; Hamberger and Bak, 2013). Then, oxidation products of
the triterpenes undergo further decorations by uridine diphosphate (UDP)-glycosyltransferases (UGTs)
that add sugar moieties at the different positions of the aglycone (in different extend e.g. there are
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saponins with two, three, four and more sugars) and result in diverse saponin pools (Augustin et al.,
2012).

This study dealt with the functional characterization of B. vulgaris genes that are believed to be
involved in saponin biosynthesis. A total of eight B. vulgaris genes (6 OSCs and 2 P450s) were
investigated by transient expression in Nicotiana benthamiana leaves by using a transient plant
expression system (CPMV-HT) based on cowpea mosaic virus (CPMV) (Sainsbury et al., 2009). The
oxidosqualene cyclases of B. vulgaris were BvLUP2, BvLUP5 and PEN1 from G and P type plants, while
the P450s were BvCYP716A from G and P type plants. Young leaves of tobacco plants were infiltrated
with A. tumerfaciens containing CPMV-HT constructs developed by using OSCs either alone or in
combination with P450s. The resulted triterpenoids produced in tobacco leaves were evaluated by GC-

MS analysis of plant leaf extracts.
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Figure 17. Simplified overview of the biosynthetic pathways of triterpenoid saponins. SQS: squalene synthase, SQE:
squalene epoxidase, LUP: lupeol synthase, aAS: a-Amyrin synthase, bAS: B-Amyrin synthase, P450: cytochrome P450-
dependent monooxygenases, UGT: uridine diphosphate (UDP)-glycosyltransferases.
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A targeted GC-MS metabolomic protocol for detection of triterpenes was developed based on
trimethylsilylation of plant crude extracts using novel derivatization reagent, trimethylsilyl cyanide
(TMSCN) (Khakimov et al., 2013). Derivatization time, temperature, reagent amount and injection
method were optimized toward increasing s/n ratios of the triterpene TMS-derivatives peaks. The
metabolomic protocol was evaluated by GC-MS analysis of the standard mixture containing 14
different triterpenoid aglycones, at which some were expected to occur in the tobacco leaves
infiltrated with the CPMV-HT constructed (Figure 18).
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Figure 18. GC-MS profile of the triterpenoid stadard mixture containing 14 diferent aglycones. 50 mL aliquot of the
standard mixture solution where each aglycone was dissolved in methanol at the final concentration of 0.25 mg mL*
was complete dried under reduced pressure and trimethylsilylated using TMSCN reagent . More detailed GC-MS
protocol is given in section 4.2. The peaks of all triterpenoids correspond to their trimethylsilylated derivatives.

Fingerprint electron ionization mass spectra (EI-MS) patterns of all the triterpenes standard obtained
from the GC-MS analysis were added in a database developed in-house. EI-MS fragmentation patterns
of these triterpenes possess a general pattern, which was characteristic for the trimethylsilylated
derivatives (Watson and Sparkman, 2007a). These general fragmentation patterns showed loss of a
methyl (15 m/z) functional group followed by loss of dimethylsilyl oxonium (75 m/z) and the second
methyl group. Figure 19 demonstrates an example of such a fragmentation pattern for
trimethylsilylated B-Amyrin. This pattern was common for all the investigated triterpene standards,
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and allowed estimation of the molecular masses of the aglycones. Although the rations of these

characteristic m/z ions generated before or after the loss of methyl and dimethylsilyl oxonium
fragments were different for different triterpenes. Thus, this laid a foundation for the estimation of the
molecular masses of the new triterpenoids.
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Figure 19. (a) Common EI-MS fragmentation pattern observed for all trimethylsilylated triterpenes in the example of
B-amyrin. These characteristic patterns are represented by loss of methyl (-15 m/z), followed by loos of dimethylsilyl
oxonium (-75 m/z) and loss of the second methyl (-15 m/z) group from the final silylated products of the triterpenes.
(b) EI-MS of B-amyrin, in range of 360-500 m/z, that shows characteristic pattern.
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Metabolite extraction protocol from the tobacco leaves was as follows: single leaf (with a fresh weight
of 1.5 g) upon 6 days post-infiltration was ground to a fine powder under liquid N, and metabolites
were extracted by using 1.5 mL ethyl acetate (EtAc) and vortexed at room temperature for 30 min.
Then, 200 ul aliquot of EtAc extract was complete dried inside the GC-MS glass insert under reduced
pressure, at 40°C and tightly sealed with golden magnetic GC-MS vial lids with a silicone septum. All
the samples were derivatized and analyzed in GC-MS in a single sequence automated by using GERSTEL
MultiPurpose Sampler (MPS) with DualRait WorkStation integrated to a GC-MS system from Agilent.
Samples were trimethylsilylated at a constant derivatization time and analyzed in a random order.
Each sample was trimethylsilylated by addition of 50 ul pure TMSCN reagent using a 100 pl syringe
installed in the autosampler and incubated at 40°C for 40 min by shaking at 750 rpm by using the
agitator of the autosampler. After derivatization, 1 pl aliquot of the derivatized sample (note: prior test
showed that 200 ul of dried plant extract was fully soluble in 50 ul pure TMSCN) was injected in
splitless mode at the splitless time of 3 min (purge flow to split vent, septum purge flow and column
flow were 10, 3 and 1.7 mL min™, respectively) into the GC-MS cooled injection system (CIS) by using a
10 pL syringe of the autosampler. Injection parameters and considerations regarding TMSCN based
derivatization can be found in the Supporting Information A of the paper 2 (Khakimov et al., 2013). The
GC-MS consisted of an Agilent 7890A GC and an Agilent 5975C series MSD. GC separation was
performed on an Agilent HP-5MS column (30 m x 250 um x 0.25 um) by using hydrogen as a carrier
gas. The GC oven temperature program was as follows: initial temperature 40°C, heating rate 12.0°C
min™, end temperature 310°C, hold time 8.0 min and post run time 5 min at 40°C. Mass spectra were
recorded in the range of 50-700 m/z with a scanning frequency of 3.2 scans s, and the MS detector
was switched off during the 20 min solvent delay time, since the analysis was mainly targeted to
capture the triterpenoids that elute later than 21 min in this method. The transfer line, ion source and
quadrupole temperatures were set to 280, 230 and 150°C, respectively. The mass spectrometer was
tuned according to the manufacturer recommendations by using perfluorotributylamine (PFTBA). The
obtained GC-MS chromatographic data was analyzed using Agilent Technologies’ ChemStation
software (version: E.02.02.1431) and DataAnalysis software (version 4.0) from Bruker Daltonics.

The GC-MS results demonstrated formation of novel products for all the constructs transformed in A.
tumefaciens and infiltrated into N. benthamiana leaves for transient expression, when OSCs (BvLUP2,
BvLUPS and PEN1) of B. vulgaris were expressed alone or in combination with P450s (BvCYP716A)
(Figure 20). Infiltration of tobacco leaves with G or P type BvLUP2, revealed formation of comparable
amounts of lupeol. Infiltration of tobacco leaves with P and G type BvLUP2 in combination with P450
(BvCYP716A) resulted in significant reduction of the lupeol peak and formation of the lupeol oxidation
product, betulinic acids and two other unknown peaks (unkl at RT 23.64 and unk2 at RT 24.18 min). It
is worth mentioning that the abundances of the two unknown peaks were higher than the abundance
of the produced betulinic acid. Although the RT of the unkl was the same as the RT of the betulin,
which is the intermediate products form during the oxidation of lupeol to betulinic acid, its EI-MS

fragmentation pattern was different. Likewise, RT of the unk2 matched with the RT of a-epoxi-B-
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amyrin, though their mass spectra were different. Thus, these two unknown metabolites peaks might
originate from other products of lupeol oxidation catalyzed by endogenous N. benthamiana P450s.
None of these compounds were detected in control leaves (infiltration buffer, empty-vector-infiltrated
plants) or leaves that were infiltrated with the P450 (CYP716A) construct alone and plants showed no
changes in the triterpene profile compared to control plants.

Infiltration of tobacco leaves with OSCs, BvLUPS from P and G type plants resulted in formation of
three different triterpenoid backbones, B-amyrin, a-amyrin and lupeol. In the case of BvLUPS5 from G
type B. vulgaris the major product was B-amyrin, while peaks of a-amyrin and lupeol were significantly
lower than the B-amyrin peak. In contrast to this, the BvLUP5 from P type showed comparable
amounts of B-amyrin and a-amyrin and the peak of lupeol was significantly lower. Formation of three
different triterpene backbones suggest greater diversity of BvLUP5 gene compared to the BvLUP2
gene. Infiltration of BvLUP5 genes from G and P type plants together with the cytochrome P450
(CYP716A) from G and P type plants revealed further modifications of the above mentioned cyclization
products and resulted in formation of oleanolic, ursolic and betulinic acids that are the P450 based
oxidation products of the B-amyrin, a-amyrin and lupeol, respectively. Moreover, these constructs
revealed two unknown peaks at retention times 23.64 (unkl) and 24.18 (unk2) min that were
previously found in BvLUP2 based constructs and additionally, three more unknown peaks at retention
times 23.09 (unk3), 23.13 (unk4) and 23.28 (unk5) min. Co-expression of BvCYP716A from the G type
plant with BvLUPS of the G type plant showed accumulation of mainly oleanolic acid, while the product
range increased when the BvLUP5 (G type) was co-expressed with BvCYP716A from the P type plant
(Fig. 20). Similarly, more novel products were detected when BvLUP5 (P type) was co-expressed with
BvCYP716A (P-type). This indicates that BvCYP716A (P type) originated from the flea-beetle-susceptible
plant is less specific than BvCYP716A (G type), which originates from the insect-resistant G-type plant.
It is worth mentioning that unknown peaks 3-5 were highly expressed from the OSCs and P450s
originated from the P type B. vulgaris plant than in G type plant. In the constructs developed from
BVLUPS5 (P type) and CYP716A (P type), both, unk3 and unk4 were present in comparable amounts and
the highest abundance of unk5 was observed. In contrast to this, replacement of P type CYP716A with
the G type gene resulted in disappearance of unk3 and unk4 and reduction of unk5 approximately two
fold (Fig.20). Likewise, combinational constructs of BVvLUP5 (G type) with CYP716A (G type) showed no
peaks of these unknown metabolites, while the combination of BvLUP5 (G type) with CYP716A (P type)
showed peaks of unk4 and unk5. RTs of unk5 (23.28 min) and erythrodiol (23.31 min), which is the
intermediate product formed during the oxidation of B-amyrin to produce oleanolic acid, are very
close to each other, though their EI-MS patterns significantly differ. Thus, unk3, unk4 and unk5 remain
unknown P450 catalyzed oxidation products of triterpenes that might correspond to intermediate
products that were not present in the standard mixture containing 14 triterpenes, towards formation
of oleanolic, ursolic or betulinic acids or other unexpected metabolites. However, EI-MS patterns of

unk3 and unk4 matched with the two unidentified metabolites observed in the similar study that dealt
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with characterization of P450s’ role in the biosynthesis of triterpenoids in Medicago truncatula

(Fukushima et al., 2011).
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Figure 20. GC

BvCYP716A-G and BvCYP716A-P. The positions of novel compounds are indicated with vertical lines, together with the

names of the novel compounds when standards were available, and their fragmentation pattern and retention time
were identical with those from the novel compounds. Empty vector construct pEAQ-HT, pEAQ-HT-CYP716A-G and

pEAQ-HT-CYP716A-P were used as the control.
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Tobacco leaves infiltrated with BvPEN1 (P type) and BvPEN1 (G type) also revealed cyclization of 2,3-
oxidosqualene into B-amyrin and a-amyrin, however the amounts of these cyclization product were
much lower compared to the BvLUP2 and BvLUPS5 catalyzed cyclization. Co-infiltration of BvVPEN1 with
CYP716A led to formation of the oxidation products of B-amyrin and a-amyrin, oleanolic and ursolic
acids, as expected. Consequently, the products were also produced in a lower amount, and accordingly
peaks were better observed by extraction ion chromatography using characteristic m/z ions (Figure
20).

4.3 Structure elucidation of triterpenoid saponins of the insect resistant
and susceptible Barbarea vulgaris plants

Two different phenotypes of the B. vulgaris plant, glabrous (G)-resistant and pubescent (P)-susceptible
to the insect herbivore, differ morphologically, cytologically (P-type plants are covered by hairs, while
G-type plants are not) and biochemically (glucosinolate and saponin profile of the plants are different)
(Agerbirk et al.,, 2003b; Kuzina et al., 2009). Despite all these differences, variations of plants’
resistance towards insects were found to correlated with their saponin content (Kuzina et al., 2009).
Up to date, structures of six triterpenoid saponins have been elucidated from the G-type plants, out of
which four of them depicted high correlation with the resistance against herbivore. This include
hederagenin cellobioside (Shinoda et al., 2002), oleanolic acid cellobioside (Agerbirk et al., 2003a),
gypsogenin cellobioside and 4-epihederagenin cellobioside (Nielsen et al., 2010). The role of the other
two triterpenoid saponins of G-type plants, cochalic acid cellobioside (Nielsen et al., 2010) and the first
lupine type saponin, 3-O-cellobiosyl-28-0-B-p-glucopyranosyl-16-B,23-dihydroxybetulinic ester, found
in Brassicaceae family (unpublished work by Kristensen et al), remain unknown. Structures of these
saponins are demonstrated in figure 10. However, saponins present in the P-type plants, that are

favorable food source for various insects including, P. nemorum and P. xylostella, remain unidentified.

LC-MS and LC-MS/MS data acquired on crude G- and P-type B. vulgaris plant extracts suggest a
presence of a much broader range of saponins from both plant types (Augustin et al., 2012; Kuzina et
al., 2009). In addition to this, PARAFAC2 based comprehensive analysis of LC-MS data recorded on
parental G- and P-types plants and the segregating F2 population demonstrated five additional
saponins, which also showed significant correlation with plant’s resistance level against flea beetle
larvae of Phyllotreta nemorum (Khakimov et al.,, 2012). However, their structures were tentatively
characterized being saponins of G- and P-type plants with two and three sugar moieties. LC-MS/MS
data of the G- and P-type B. vulgaris plants demonstrated in section 4.1 (Figure 16 and Table 4). These
studies show peaks of several saponin-like metabolites with different masses of sapogenin backbones
and different decoration of the sugar moieties. The results showed presence of more than ten
different molecular masses of possible triterpenoids with slight alterations in the structures of the
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backbones. This included aglycone molecular masses of already known triterpenoid saponins of the G-
type B. vulgaris such as 472.7 (hederagenin, 4-epihederagenin, cochalic acid), 470.7 (gypsogenin),
456.7 (oleanolic acid), 474.7 (new lupine type saponin) as well as unknown aglycone masses at m/z
442.4, 444 .3, 448.1, 458.4, 472.5, 473.4, 486.3, 488.5. Metabolites with these aglycone masses were
repeatedly eluted at the different retention times and mostly possessed characteristic fragmentation
patterns that demonstrated the loss of hexoses (162) and methyl-pentoses (146). It is worth
mentioning that the same molecular mass of aglycones were part of the different types of saponin-like
metabolites with different levels of glycosylation. The observed fragmentation patterns mostly
suggested presence of saponins with two and three sugar moieties, where saponins with three sugar
moieties were in relatively comparable amounts in both types of plants, while the saponins with two
sugar moieties were mainly present in G-type plants. This raises a question, whether the resistance of
the G-type B. vulgaris is associated with saponins possessing two sugars only (as it was found

previously) and the saponins with three sugars do not have influence on the resistance of the plants.

Thus, it is interesting to study the structures of the saponins of G- and P-type B. vulgaris plants as that
may bring new knowledge into the plant-insect interactions, triterpenoid biosynthesis and
Quantitative Structure-Activity Relationship (QSAR). One of the most important questions is how the
saponins of G- and P-type plants differ structurally and how this is associated with their resistance
and/or susceptibility towards insects or is it only the matter of concentration. It is also crucial to know,
if the sapogenin backbone structure or the decoration of the sugar moieties or both have influence on
toxicity of the saponins to the insects. Previously, similar study was performed with oleanolic acid
mono-glycoside and hederagenin mono-glycoside produced in vitro and feeding assays were applied
by using flea beetle (Phyllotreta nemorum) (Augustin et al., 2012). The study demonstrated higher
feeding deterrent properties of hederagenin mono-glycoside than oleanolic acid mono-glycoside.
However, our aim from this study is not to isolate individual saponins from G and P type plants and
evaluate their activity by performing bioassay tests, but structurally characterize the most abundant

saponins of the G- and P-type B. vulgaris.

A semi-targeted metabolomic protocol for extraction of saponins from the G- and P-type B. vulgaris
plant leaves was developed using methanol extraction and enrichment of saponin fraction by using
solid phase extraction (SPE) cartridges for purification. The metabolomic protocol was as follows:
freeze dried leaves of the plants were soaked into the 55% ethanol in wt/vol of 1:10 and boiled in a
water bath for 5 min, followed by 10 min of extraction in ultrasonic bath at 50°C. The obtained extracts
were filtered, dried under reduced pressure and re-dissolved in 30% methanol in a vol/vol of 3:1,
between initial extract and methanol. Then, 60 mL of the 30% methanol extract was run through a
Strata C18 SPE cartridge (10g, 60 mL), which was pre-conditioned with 30% methanol in advance and
fraction 1 (30% methanol fraction) was obtained. Then, the same cartridge was flashed with 60 mL of
90% methanol which resulted in fraction 2 (90% methanol fraction), and finally 60 mL of 100%

methanol (fraction 3) recovered the most non-polar metabolites of the plant extract. Fractions 1-3
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were up concentrated by drying and re-solubilizing in 50% methanol, in a vol/vol of 4:1 between the
initial extracts and 50% methanol. Then, all fractions were analyzed by thin layer chromatography
(TLC) and LC-MS/MS, which showed that fraction 2 (90% methanol) contained the majority of saponins
present in the 55% ethanol extract of the B. vulgaris leaves. While, fractions 1 and 3 possessed
significantly lower amounts of saponins, based on the intensities of metabolite peaks observed from
the LC-MS/MS profiles. LC-MS/MS experiment performed in this study was identical to the protocol
demonstrated in section 4.1. Moreover, the results of these LC-MS/MS experiments of saponin
enriched fraction 2 were in agreement with the earlier LC-MS analysis performed on the G- and P-type
plant leaves (section 4.1 and Table 4). Most of the saponins of both types of plants possessed 2-3 sugar
moieties and G-type plants contained more peaks and with higher abundances. More detailed
investigation of the LC-MS/MS profiles of the 90% methanol fraction (fraction 2) of both plants
revealed more than 30 saponin-like metabolites, including the peaks of the already known six saponins
from the G-type plant, and 20 metabolites from the P-type plant (data not shown). Thus, we have
tentatively characterized the saponins of P-type B. vulgaris, in addition to the G-type plant, and further
structure elucidation of saponins of both types of plants will be performed on fraction 2, by using

hyphenated methods of analysis such as LC-NMR.
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5.1 Will plants save the planet and can plant metabolomics play a key
role?

Plants are important in every aspect of life on planet earth and they contribute with an essential effect
in maintaining the habitable environment on earth for human and animals. The life we live today is
achieved mainly due to the scientific and technological developments. Plant science is an important
part of modern science, which has been conducted for several centuries, and that today deals with
several different topics e.g. organic food production, sustainable food and energy, pharmacology,
medicine and the problems related to climate changes. One of the most powerful current tools of
plant science is metabolomics. Analysis of plant metabolome facilitates an understanding of
metabolome-environment, metabolome-gene, metabolome-health and metabolome-phenotype
relationships. These, in turn allow us to gain new insight into plant cell regulations, how to utilize
plants in an optimal way and harvest benefits. However, plant metabolomics is a relatively new area of
plant science and its capabilities are still expending by developments of analytical platforms,
metabolomic protocols and data processing methods.

This PhD study was conducted with the aim of expending the limits of plant metabolomics by
development, improvement and implementation of the new metabolomics protocols. During this PhD
project, seven separate works were conducted that are published either submitted for publication or
not yet submitted. The first study (Paper 1) implemented a new method for processing of raw LC-MS
metabolomics data by using a multi-way decomposition method PARAFAC2. This is the first application
of PARAFAC2 on LC-MS data sets and it includes a detailed tutorial in use of PARAFAC2 as well as
description of its advantages over existing methods and drawbacks. During the second study (Paper 2),
we have developed a new GC-MS metabolomics protocol for derivatization of complex biological
samples based on TMSCN trimethylsilylation. The method was demonstrated to outperform existing
methodologies commonly used in the literature in terms of sensitivity, speed, repeatability and finally
yet importantly, the method provides an unbiased detection of broad range of metabolites. In the
third study (Paper 3) we have reviewed the current challenges and perspectives of analytical
technologies and high-throughput metabolomics protocols in cereal science. The review addresses
most important aspects of quantitative metabolomics and highlights cutting-edge methods in
metabolomic data acquisition, data preprocessing and data analysis. In the fourth study (Paper 4) we
have compiled our knowledge gained from the 1% and the 2" studies and applied them to a real
biological question related to barley plants. In this study we have demonstrated the power of
PARAFAC2 based metabolomics data processing, TMSCN derivatization and cutting-edge
metabolomics data analysis approaches by using a chemometric method, namely, ANOVA-

simultaneous component analysis (ASCA). The study revealed several biological mechanisms
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associated with plant-environment, plant-gene mutation relationships and alterations of the plants’
physiology during their development stages. Thus, the study proved the efficiency of the newly
developed metabolomics methods to explore as much information as possible.

Three other studies that are in preparation are described in section 4. Study 5 demonstrates the use of
Design of Experiment (DoE) for optimization of the metabolomic profiling protocol by applying three
different analytical platforms, GC-MS, LC-MS and NMR. The study resulted in establishment of the
complete metabolomic protocol, including metabolite extraction, derivatization (for GC) and data
acquisition for the comprehensive metabolomic analysis of B. vulgaris plant leaves. Study 6
demonstrates development of targeted GC-MS metabolomic analysis of plant triterpenoids produced
by combinatorial biochemistry in tobacco plant leaves. This study was focused on elucidation of the
biosynthetic pathway of triterpenes. A new derivatization methodology developed in the second
study, once again proved its high quantitative power and allowed detection of triterpenes produced in
tobacco leaves by transient experiment of OSCs and P450s. Study 7 concerns the incomplete work
performed on structure elucidation of unknown triterpenoid saponins from the insect resistant

(glabrous or G type) and susceptible (pubescent or P type) B. vulgaris plants.

5.2 Perspectives

During the PhD project, | faced several questions for which it was difficult or impossible to find an
answer from the literature. Several aspects of the plant metabolomics workflow (Figure 2) still require
improved and validated methodologies for data acquisition and processing. This mainly concerns the
detection of metabolites in a quantitative manner and the data processing of obtained complex data in
order to enhance the extractible biological information. In the following | describe some of these

research ideas that | find it useful to perform.

Tutorial for Optimization of Plant Metabolomics Protocols

To date, there is no single comprehensive tutorial paper, which covers the pros and cons of the most
frequently used protocols in plant metabolomics. A single protocol cannot meet all the requirements
of the different metabolomics studies. Very few studies describe optimization of plant metabolomics
protocols (Gullberg et al., 2004) and there is a need for a detailed tutorial for new comers in the field.
Such a tutorial should cover design of experiment (DoE) for optimization of the plant metabolomics
protocols and explain all the involved steps in detail. One of the most frequently arising issues in plant
metabolomics is how to optimize protocols to achieve the best results in a short period of time by a
limited number of pilot experiments. In my view, this tutorial paper should explain what the analyst
must consider when performing targeted/untargeted analysis, metabolite profiling or fingerprinting. It
should also address that in quantitative metabolomics, the protocols must be optimized towards three

N . t d . d . .
most important response variables: 1% robustness, 2™ s/n ratio and 3™ relevant information (number
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of detectible metabolites). Moreover the influence of the several important factors of the protocols
(e.g. sample harvesting, mass reduction, quenching, storage, metabolite extraction, derivatization and
instrumental conditions) must be highlighted in the examples of the outstanding metabolomics
protocol optimization studies performed in human and animal bio-fluids and tissue extracts
(Danielsson et al., 2012; Jiye et al., 2005).

Small volume-high-throughput derivatization for GC-MS metabolomics of biological mixtures

On-line sample derivatization is an attractive method for GC-MS analysis, which is able to provide high-
throughput and less expensive derivatization than the conventional derivatization methods. Several
studies have shown a high-potential of on-line sample derivatization, including acylation and silylation
in targeted and metabolomic profiling studies (Cheng et al., 2011; Ho and Ding, 2012; Lin et al., 2005;
Liu et al., 2002; Tzing et al., 2006). However, very few studies have shown application of on-line
derivatization for comprehensive GC-MS metabolomics of biological samples. The derivatization
methodology described in Paper 2 promises an efficient on-line derivatization methodology for
quantitative detection of a broad range of metabolites from a complex mixtures by using the novel
trimethylsilylation reagent TMSCN. This is due to the high silylation reactivity of the TMSCN. Paper 2
and (Mai and Patil, 1986; Riggio et al., 1992) demonstrate the high silylation rate of TMSCN towards
various functional groups, which can be used to develop a small-volume-high-throughput
derivatization method for the GC-MS analysis of plant and animal tissue. TMSCN can be tested to
develop a small volume in-needle derivatization methodology by using 10-30 pL of the reagent and
mixing it with 5-20 pL of the complex sample extract (e.g. blood, urine, plant extract) within the needle
used for injection. Since, TMSCN is able to provide rapid silylation at room temperature, the reaction
mixture can be directly injected in GC-MS in solvent vent mode by slowly evaporating excess amount
of TMSCN and the solvent. The same procedure can be performed in relatively high amounts of sample
volume by using bigger syringes. These methodologies allow minimization of incubation time and the
use of GC-MS vials and expensive lids that need to be used for automation of the whole analysis.
Instead, GC-MS injection syringes will serve as a reaction incubator and it can be rinsed with solvents
between each analysis. To date, we have tried TMSCN mostly with plant derived samples mixtures,

however, it is expected to perform equally good with animal fluids or tissue extracts.

High-throughput GC-MS metabolomic data processing methods: a case study

In metabolomics, one of the basic problems is to process the raw data to extract the quantitative
information as accurate as possible. In GC-MS (same in LC-MS) analysis, peaks of the different
metabolites might be overlapped or have low s/n ratio that hampers their quantification and the
extraction of the mass spectra of the metabolites. In the literature, AMDIS is the mostly used method
for processing and deconvolution of the mass spectrum of each analyte. However, in the last decade
several alternative methods to AMDIS were developed. In addition, several instrument manufacturers

also provide user friendly software packages that allow mass spectral deconvolution and peak
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quantification. It is worth mentioning that these methods may possess disadvantages when the data
becomes too complex or when several hundred samples must be analyzed. Most of these software
packages require manual processing of each sample, in which often leads to an increased bias due to
analyst interference. The PARAFAC2 method demonstrated in Papers 2 and Paper 4 is an efficient
method for processing raw GC-MS and LC-MS data and allow high-throughput analysis, accurate
quantification and mass spectral deconvolution. | would be interesting to compare the performances
of all these methods, including AMDIS, PARAFAC2, MCR, MetaboliteDetector, ChromaTOF (LECO) and
ChemStation (Agilent) with respect to (1) resolution power, (2) sensitivity, (3) mass spectral
deconvolution, (4) speed and (5) quantitative power. This can be performed by processing the GC-MS
data obtained from the standard mixture samples that contain chemically very similar stereocisomers.
Such a study would allow to evaluate different data processing methods for resolution of the severely
overlapped peaks of stereoisomers as well as for accuracy of the deconvoluted mass spectra (what is
the similarity between the deconvoluted mass spectra of the metabolite and its original mass spectra)

and quantification.

Automated Chromatographic data Processing System (ACPS)

Several advantages and drawbacks of the PARAFAC2 method are demonstrated within this thesis and

in many other research papers (Amigo et al., 2010a; Amigo et al., 2010b; Bro et al., 1999; Khakimov et

al., 2012). The method is becoming more and more common among metabolomics labs and people are

starting to benefit from the advantages of PARAFAC2 in different research fields. However, one of the

main drawbacks of the method originates from its use, as knowledge of chemometrics and coding skills

in Matlab is still required. Since, PARAFAC2 based raw chromatographic data processing is becoming

more common, it is important to develop a user friendly, preferably graphical user interface based

software that can assist non-specialists to use the method. Similar software already been developed

for the MCR method (Jaumot et al., 2005). Preliminary workflow of such software may include

following steps:

1) Input: Three-way data (e.g. GC-MS, LC-MS, CE-MS, LC-DAD)

2) Determination of interval(s) in retention time dimension to be modeled individually (automatic or
manually)

3) Choice of pre-processing method

4) Choice of method for modeling: PARAFAC2 or PARAFAC

5) Choice of the maximum number of factors to be fitted (automated validation algorithm might be
implemented inside the software (Kamstrup-Nielsen et al., 2013))

6) Execution

7) Validation of the obtained models by exploring each model separately e.g. plot elution, mass
spectral and concentration profiles of the resolved peaks, and if necessary repeat steps 5 and 6

8) Calculation of retention indices of the resolved peaks based on their retention time and compare it

with an selected library (an Rl library will be linked to the software)

-84-



5. OUTREACH

9) Use of PARAFAC2 resolved mass spectral profiles of peaks to search the most similar EI-MS match
by using public databases such as NIST, Wiley that will be linked to the software
10) Import of concentration profiles into Excel or Matlab

In fact, such software is needed in many metabolomics labs that deal with big data sets, in order to
properly process the obtained data and efficiently utilize gained information. However, development
of this software requires a lot of effort, but it will pay back by changing currently used time consuming,
laborious and in many cases black-box style data processing work, making it faster, more fun and

informative.

Development of high-throughput, unbiased, quantitative and broad range metabolomics tools
including analytical platforms and data processing as well as optimized metabolomics protocols may
lead to significant improvements in many fields of scientific research and industrial advances. This
includes today’s top scientific topics such as synthetic biology, natural product discovery, sustainable
food, energy, organic food production and solar energy. | believe, the role of metabolomics,
particularly plant metabolomics will be a significant player in solving the above-mentioned top issues
that our world is facing today. Since the metabolome of biological systems contains vast amount of
information that is only partly analyzable, future research in metabolomics and method development
will focus on the extraction of maximum quantitative and qualitative information and use it towards

improving crops, medicine, food and life style in general.
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ARTICLE INFO ABSTRACT

Article history: Previous studies on LC-MS metabolomic profiling of 127 F2 Barbarea vulgaris plants derived from a
Received 5 September 2012 cross of parental glabrous (G) and pubescent (P) type, revealed four triterpenoid saponins (hederagenin
Received in revised form 7 October 2012 cellobioside, oleanolic acid cellobioside, epihederagenin cellobioside, and gypsogenin cellobioside) that

Accepted 8 October 2012

Available online 16 October 2012 correlated with resistance of plants against the insect herbivore, Phyllotreta nemorum. In this study, for

the first time, we demonstrate the efficiency of the multi-way decomposition method PARAllel FACtor
analysis 2 (PARAFAC2) for exploring complex LC-MS data. PARAFAC2 enabled automated resolution and
quantification of several elusive chromatographic peaks (e.g. overlapped, elution time shifted and low s/n
ratio), which could not be detected and quantified by conventional chromatographic data analysis. Raw

Keywords:
Plant metabolomics
Triterpenoid saponins

LC-MS LC-MS data of 127 F2 B. vulgaris plants were arranged in a three-way array (elution time point x mass
PARAFAC2 spectra x samples), divided into 17 different chromatographic intervals and each interval were individ-
Automatic peak detection ually modeled by PARAFAC2. Three main outputs of the PARAFAC2 models described: (1) elution time
Barbarea vulgaris profile, (2) relative abundance, and (3) pure mass spectra of the resolved peaks modeled from each inter-

val of the chromatographic data. PARAFAC2 scores corresponding to relative abundances of the resolved
peaks were extracted and further used for correlation and partial least squares (PLS) analysis. A total of
71 PARAFAC2 components (which correspond to actual peaks, baselines and tails of neighboring peaks)
were modeled from 17 different chromatographic retention time intervals of the LC-MS data. In addition
to four previously known saponins, correlation- and PLS-analysis resolved five unknown saponin-like
compounds that were significantly correlated with insect resistance. The method also enabled a good
separation between resistant and susceptible F2 plants. PARAFAC2 spectral loadings corresponding to
the pure mass spectra of chromatographic peaks matched well with experimentally recorded mass spec-
tra (correlation based similarity >95%). This enabled to extract pure mass spectra of highly overlapped
and low s/n ratio peaks.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction genomics-transcriptomics—proteomics-metabolomics that
reflects the dynamics of the plant. The metabolomic analysis

1.1. Plant metabolomics of plant organisms has become a key technology for understanding
the complexity of plant metabolism, its control and the link

Plant metabolomics deals with qualitative and quan- between genotypes and phenotypes [1,2]. Plant metabolomics
titative analysis of metabolites from plant tissues and approaches have successfully been applied in systems biology [3],
covers targeted metabolomic analysis, metabolite profil- biotechnology [4], functional genomics [5], environmental science

ing, and metabolic fingerprinting [1]. Metabolomics may [6], food chemistry [7] and medicinal chemistry [8].
be viewed as the phenotypic endpoint of the sequence
1.2. Analytical techniques and metabolomic data

— Advancements over the past decades in the capabilities of sepa-
* Corresponding author at: Quality & Technology, Department of Food Science, ration (e.g" GC, HPLC, UPLC, CE) and detection (e.g_' MS, NMR, DAD
Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg d FID) techniques and in the development of new multivariate
C, Denmark. Tel.: +45 353 33239; fax: +45 353 33245. an chniq 'op 0
E-mail addresses: bzo@life.ku.dk (B. Khakimov), jmar@life.ku.dk (J.M. Amigo), data analysis methods have led to a giant leap in knowledge about

bak@life.ku.dk (S. Bak), se@life.ku.dk (S.B. Engelsen). the plant metabolome and its response to internal and external
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perturbations. Application of hyphenated methods of analysis, for
investigating the metabolome of plant organisms which contain
a wide range of compounds with different chemical and physical
properties is becoming more reliable and common approach. The
choice of separation and detection methods is case specific and
depends on the purpose of the metabolomic analysis. One of the
most commonly applied techniques in plant metabolomics is liquid
chromatography coupled to mass spectrometer (LC-MS) [9].

LC-MS can generate two, three and high-dimensional data sets,
depending on the applied analytical technique and scan mode. The
simplest example would be a data set obtained from a selected
ion monitoring (SIM) experiment on LC-MS with one m/z chan-
nel (Fig. 1a). In this case, there would be only one measurement
(the intensity of selected m/z channel) for each elution time point.
For example, if a SIM experiment recorded for 25 min with a scan-
ning frequency of 20 scans per minute, the obtained data would
be a vector x (1 x 500). If many samples are analyzed in the same
way, the obtained data would be a two dimensional matrix X(I x J),
where I is the number of rows and it corresponds to the number of
samples. ] is the number of columns and it corresponds to the m/z
signals’ intensities measured at the selected m/z channel (Fig. 1b)).
In general, when metabolomic data is acquired by LC-MS, a full
mass spectrum (e.g. in the range of 200-1600 m/z) is obtained for
each elution time scan point. In this case, the obtained data for each
sample will become a two dimensional matrix Y(I x J), where I'is the
number of rows corresponding to the elution time scan points. J is
the number of columns corresponding to the number of selected
m/z channels, respectively. Fig. 1c shows a landscape of the LC-MS
data acquired for one sample (e.g., matrix Y) and Fig. 1d depicts
such a data set obtained for many samples which forms three
dimensional array Z(I x J x K), where K is the number of analyzed
samples.

1.3. Common problems in chromatography

The traditional way of analyzing LC-MS data is to quan-
tify well-resolved chromatographic peaks from total ion current
(TIC) or base peak chromatograms (BPC) by calculating the peak
area or peak height, followed by qualitative identification based
on the mass spectra of the corresponding peaks. However, this
approach is not always straightforward to perform. The analy-
sis of the LC-MS metabolomic data, and the data obtained from
other hyphenated methods can be significantly deteriorated by
several different problems occurring during data acquisition (e.g.
changes in elution time of peaks between the runs, overlap-
ping, low s/n ratio of the peaks, non-Gaussian shape of the peaks
and baseline drifts) [10]. Changes in the elution times of chro-
matographic peaks between the LC-MS runs are mainly caused
by the instrumental uncertainties arising from small variations
in pressure, temperature, pH, stationary phase and by wear of
injection system or column. Moreover, the resolution power of
the separation techniques is often not sufficient to obtain well-
resolved peaks of isomers and/or chemically similar compounds.
This will result in overlapping peaks and in turn more challeng-
ing peak quantification. Quantification of peaks by conventional
chromatographic data analysis software may become difficult and
laborious when baseline drifts are present and/or peaks have low
s/n ratio.

Several methods have been proposed for solving the above-
mentioned alignment problems in chromatographic data analysis.
For example, correlation optimized warping (COW) [11,12] and
interval correlation optimized shifting (icoshift) algorithms [13]
have been proposed for alignment of the elution time shifted peaks
and Boelens et al., 2004 [14] developed a method for removing
the baseline drifts based on smoothing. For full evaluation of

problematic hyphenated LC-MS data, basically two different data
analytical strategies can be followed:

(1) Alignment of retention time shifts followed by PARAFAC anal-
ysis. This method has been applied to explore GC-MS [15] and
LC-MS [16] metabolomic data.

(2) Direct PARAFAC2 [17,18] modeling of chromatographic data
with disturbed tri-linear structure (e.g. sample-to-sample
retention time shifts of the peaks). If the elution time shifts
are relatively confined to a certain extent, the PARAFAC2 algo-
rithm is able to find and model the shifted peaks of the same
chemical compounds, profiting the fact that they have the
same mass spectral profile (or vice versa). This method has
already demonstrated to work well for resolving chromato-
graphic problems on GC-MS data [19]. Skov et al. [20] have
demonstrated the application of these two methodologies in a
comparative GC-MS study.

In this study, we illustrate an application of multi-way decom-
position method PARAFAC2 for processing complex LC-MS data
with minimum user interference. The methodology presented in
this study is direct modeling of raw LC-MS data without any data-
preprocessing step.

Moreover, some commercial software (e.g. Osiris) have been
developed specifically for the prediction of the optimal chromato-
graphic separation conditions for resolution of the overlapped
peaks [21]. It is worth to mention that many LC-MS data processing
have been performed using peak detection software (e.g., XCMS,
MZmine, and MarkerLynx™), which can perform noise reduction,
deconvolution, alignment and peak detection simultaneously [22].
The output of this processing is a table of detected peaks, where
each peak is characterized by its own retention time and m/z.
One of the main drawbacks of using such peak detection software
is that, user must define several input parameters, which subse-
quently depend on investigated data set, and slight changes in
one of these parameters may cause significant changes in obtained
results.

1.4. Background and aim of the study

Defense compounds of Barbarea vulgaris against insect herbi-
vores are well studied by metabolomic approaches. A targeted
metabolomic analysis revealed the triterpenoid saponins hed-
eragenin cellobioside [23] and oleanolic acid cellobioside [24]
as the main defense compounds (Fig. 2). Kuzina et al. [25]
performed untargeted LC-MS metabolomic profiling for investi-
gating the metabolites correlated to the resistance level of 127
F2 B. vulgaris plants derived from parental resistant (G-type)
and susceptible (P-type) B. vulgaris plants, against the flea bee-
tle larvae, Phyllotreta nemorum. In the study, they processed the
raw LC-MS data using MetAlign software, followed by corre-
lation and principal component analysis (PCA). This approach
revealed oleanolic acid cellobioside, hederagenin cellobioside and
two unknown metabolites as the most correlated metabolites of
F2 plants against herbivory. Later, two unknown metabolites that
showed highly correlation to the insect resistance were identified
as epihederagenin cellobioside and gypsogenin cellobioside (Fig. 1)
[26].

The main aim of this research was to assess and illustrate
the capabilities of PARAFAC2 for detection and quantifica-
tion of elusive chromatographic peaks by solving common
chromatographic problems occurring in LC-MS metabolomic
data. In this study, we reevaluate the raw LC-MS data
obtained from the untargeted metabolomic profiling of the
127 F2 plants [22] using PARAFAC2 and compare our find-
ings with previous found results [22]. In addition to the latter,
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Fig. 1. Illustration of LC-MS metabolomic data structure: (a) a chromatogram obtained from the LC-MS analysis with one m/z channel (SIM experiment), (b) several samples
analyzed by LC-MS with one m/z channel form a two dimensional data matrix, (c) landscape of raw LC-MS data obtained for one sample by recording several m/z signals
(e.g. in the range of 300-900 m/z) for each elution time scan point, and (d) three-way structure of the raw LC-MS data obtained for three samples.
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B. Khakimov et al. / ]. Chromatogr. A 1266 (2012) 84-94 87

P- (originated from Tissg, Denmark) type B. vulgaris under green-
house conditions. Young (3- to 12-week-old) leaves of F2 plants
were used for determining resistance levels of the plants against
flea beetle larvae (Phyllotreta nemorum) and metabolomic profiling
by LC-MS. Further details about the plants and insect can be from
[22].

2.1. Bioassays

Resistance levels of individual F2 plants were measured in bioas-
says using freshly harvested leaves of young plants and flea beetle
larvae (less than 1-day-old). Five larvae were placed on each leaf
and incubated at 24°C for 72 h. After the incubation period, the
number of survived larvae on the surface of the leaf was counted
by stereomicroscope. For each F2 plant, six leaves were used in
bioassay and the resistance levels of the plants were determined
using 30 larvae. In this work, the average number of survived lar-
vae per leaf disc was used as the resistance level of the F2 plants.
The most resistant F2 plants have resistance level of 0, whereas the
most susceptible F2 plants have resistance level of 5. Thus, 127 F2
plants were divided into three classes according to their resistance
level: class 1 contained F2 plants with the resistance level of 0-1,
class 2 samples contained partly resistant F2 plants with a resis-
tance level of 1-4, and class 3 samples contained the susceptible F2
plants with a resistance level of higher than 4.

2.2. LC-MS metabolomic profiling

For acquisition of LC-MS metabolomic data, 8 mm leaf discs
(about of 4 mg dry weight) were frozen in liquid nitrogen and kept
at —80°C. The frozen leaves were extracted with 500 .l of 85%
methanol (60-70°C) in a boiling water bath for 5min and then
cooled with ice. The extract was filtered through 45-pm Ultrafree-
MC Durapore polyvinylidene difluoride filters (Millipore) before
injecting into the LC-MS system. LC-MS analysis was performed
on an Agilent 1100 Series liquid chromatograph (Agilent technolo-
gies) coupled to a Bruker Esquire 3000+ ion trap mass spectrometer
(Bruker Daltonics). The column used was an XTerraMS C18 (3.5 wuM,
2.1 mm x 100 mm; Waters). The mobile phases were solvent A
(1ml1-" formic acid and 50 pum NaCl) and solvent B (800 ml 1! ace-
tonitrile and 1 mll~" formic acid). The gradient program applied
was as follows: 0-3 min, isocratic 18% B; 3-60 min, linear gradi-
ent 18-80% B; 60-65 min, linear gradient 80-100% B; 65-70 min,
isocratic 100% B; 71-85 min, isocratic 18% B. The flow rate of the
mobile phases was set to 0.2 ml min—!, the column temperature and
the injection volume were 35°C and 5 pl, respectively. The mass
spectrometer was operated in a positive mode, and the ions were
detected in the range of 300-1200 m/z.

2.3. Software

Chromatographic analysis of the LC-MS data was performed
using the software, DataAnalysis, Version 4.0 (Bruker Daltonics).
PARAFAC2, correlation and PLS regression analyses were per-
formed using PLS Toolbox (Version 6.0.1, Eigenvector Research
Inc. USA) working under MATLAB (Version 7.13.0.564, R2011b, The
Mathworks, Inc., USA) environment. Raw LC-MS data was imported
from netCDF files into MATLAB using available MATLAB codes.

3. Multi-way models
3.1. PARAFAC
Parallel Factor Analysis (PARAFAC) [27-29] is a generalization

of principal component analysis (PCA) to the situation where a set
of data matrices is to be analyzed. If two or more data matrices

with the same row and column units are combined, the resulting
data become three-way and it can be modeled by the PARAFAC.
Just like PCA, PARAFAC decomposes three-way data into sets of
so-called scores and loadings matrices, which describes the data
in a more condensed form than the original data. In practice, this
means that by developing a PARAFAC model of a three-way LC-MS
chromatographic data set (e.g. three-way array Z in Section 1.3) it
is possible to resolve all the chromatographic peaks present in the
data.

In order to develop a PARAFAC model, which describes the true
underlying physicochemical variations of the chromatographic
data, the model must be validated. A key consideration for devel-
oping a valid PARAFAC model is choosing the correct number
of components. The number of components of the developed
PARAFAC model for LC-MS chromatographic data sets correspond
to the number of physicochemical variations (e.g., actual peaks,
noise, baseline drifts) present in the data.

One of the advantages of applying PARAFAC for decomposing
LC-MS data is that the original three-way structure of the data is
maintained and the results can be directly interpreted. While PCA
model cannot be developed for decomposing the three-way LC-MS
data and requires data to be unfolded to form a table. The other
advantage of PARAFAC models is that they provide a unique solu-
tion. The uniqueness of the PARAFAC models hold on that that the
resolved elution profiles, spectral profiles and concentration pro-
files of the detected peaks reflect the original elution profiles (TIC
chromatogram), mass spectral profiles and relative abundances of
the peaks present in the data, respectively. One of the main pre-
requisite for the data to be modeled by PARAFAC is that the elution
time of one chromatographic peak in a LC-MS data, should ide-
ally be the same across the all samples. The problematic elution
time shifts of the chromatographic peaks prevent a wider use of
PARAFAC to model LC-MS data.

Fig. 3 shows the graphical illustration of the two-component
PARAFAC and PARAFAC2 models of LC-MS data interval, which is
investigated in this work. When the PARAFAC model of the raw
LC-MS (Fig. 3a) data is developed, the model decomposes the data
into one set of scores matrix and two sets of loadings matrices.
Two sets of PARAFAC loadings correspond to the elution time pro-
files and the mass spectral profiles of resolved peaks, respectively
(Fig. 3b and c). PARAFAC scores represent concentration profiles of
resolved peaks, which correspond to the relative abundances of the
peaks present in the chromatographic data (Fig. 3d). Elution pro-
files and the mass spectral profiles resolved for each component are
characteristic for the individual metabolites and thus common to
all samples, while the concentration profiles of the resolved peaks
are sample-specific.

PARAFAC successfully been applied in many different areas of
research. In chromatography it is used for detection of metabo-
lites [30], in fluorescence spectroscopy PARAFAC modeling was
performed for the analysis food samples [31]. Moreover, PARAFAC
successfully been applied in combination with nuclear magnetic
resonance (NMR) spectroscopy [32] and sensory data [33].

3.2. PARAFAC2

The PARAFAC2 model is less restrictive to the tri-linearity of the
data [18,34] and allows successful modeling of LC-MS chromato-
graphic data with elution time shifts of peaks across the samples.
If the elution time shifts are relatively confined, the PARAFAC2
algorithm finds and models the shifted peaks of the same chem-
ical compounds, profiting from the fact that they have identical
mass spectral profile. In contrast to the PARAFAC model, the elu-
tion profiles resolved by PARAFAC2 (Fig. 3e) are sample-specific.
PARAFAC2 resolves, as many elution profiles as there are samples,
whereas PARAFAC only finds the common elution profile for all the
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Fig. 3. Graphical illustration of two component PARAFAC and PARAFAC2 models of LC-MS chromatographic data interval investigated in this work. (a) Superimposed raw
LC-MS chromatograms, (b) elution profiles resolved by PARAFAC, (c) spectral profiles resolved by PARAFAC and (d) concentration profiles (relative abundance of resolved
peaks) calculated by PARAFAC model, (e) elution profiles resolved by PARAFAC2, (f) spectral profiles resolved by PARAFAC2 and (g) relative abundance calculated by PARAFAC2
model. *Blue profiles describe the first component (PC1) of the PARAFAC and/or PARAFAC2 models and green profiles describe the second components (PC2) of the models.
(For interpretation of references to color in this figure legend, the reader is referred to the web version of this article.)

samples. This feature of PARAFAC2 allows accurate quantification
of the resolved peaks for each sample.

Thus, PARAFAC2 possess all the above-mentioned features of
PARAFAC and, in addition, it can successfully model the three-
way data, with a deteriorated tri-linear structure (e.g., elution
time shifted peaks in LC-MS data). However, calculating a global
PARAFAC2 model of complex LC-MS data for resolving all the peaks
present in the entire chromatogram is time consuming and requires
computers with large operating memories. In addition, such global
PARAFAC2 model may not be representative for low s/n ratio
peaks (minor metabolites), since the model will be mainly influ-
enced by the major peaks. Moreover, due to the complexity of the
data, it is difficult to find the optimal number of components for
the model to describe the true underlying chemical information
present in the data. Therefore, it is recommended to process com-
plex chromatographic data by PARAFAC or PARAFAC2 in interval
base [19]. This reduces the complexity of the data, and results in
a parsimonious model that describes the raw data well. Finally,
it is worth to mention that PARAFAC2 requires a minimum of
preprocessing steps, and in most cases, the raw data directly
modeled.

The PARAFAC2 can be considered as an alternative to the appli-
cation of PARAFAC on data that has been thoroughly aligned [20].
PARAFAC2 successfully been applied in conjunction with GC-MS
metabolomic data: resolution of elusive peaks from problem-
atic regions of chromatograms [19,35-37], developing calibration
models for precise quantification of esterogens [37], and iden-
tification of sources of oil spills [38]. In addition, PARAFAC2 is
becoming increasingly used within different hyphenated analyt-
ical techniques such as HPLC-DAD [39-41], HPLC-IR [42] and
HPLC-UV [43], and for monitoring pharmaceutical processes
[44].

4. Results and discussion
4.1. Data analysis

For reducing the complexity of the data, the LC-MS chromato-
graphic profiles of the 127 F2 plant extracts were manually divided
into 17 different chromatographic intervals. Each interval was
confined by the presence of a baseline, and does not split peaks
belonging to the same compound into different intervals (Fig. 4).
Subsequently, each interval was modeled by PARAFAC2 individu-
ally.

In order to develop PARAFAC2 models, non-negativity con-
straints were applied in the spectral and sample modes of the
three-way data, restricting the models to not find negative scores
and/or loadings. Since in practice, mass spectral data and relative
concentration values of the resolved peaks cannot be negative.
This speed up the PARAFAC2 modeling and enabled obtaining
unique PARAFAC2 models with spectral loadings reflecting the
original mass spectral profiles of the raw data. Computation time
of PARAFAC2 modeling depends on the complexity of the data,
number of variations present in the data (components), settings
of PARAFAC2 algorithm (e.g., non-negativity constrains, stop crite-
ria, etc.), signal-to-noise ratio and capacity of the computer. As
an example, computation time for developing a four component
PARAFAC2 model of the biggest chromatographic data interval
(interval number 4, Table 1) was 8.32min when modeling was
performed using a computer with Intel(R) Core(TM) i7 CPU pro-
cessor, 12 GB RAM and 64-bit operating system. The performance
of PARAFAC2 for modeling individually selected chromatographic
intervals is presented in Table 1.

The concentration profiles obtained from PARAFAC2 models for
each resolved peak were used for correlation and PLS regression
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The intervals of the chromatographic profiles modeled by PARAFAC2, their dimensions (the first mode is RT scan points, second mode is mass spectral dimension, and third
mode is number of samples), optimal number of components and the explained variance of the PARAFAC2 models developed for each interval. “In intervals nos. 5, 7, 11, 12,
13, 14 and 15 some samples were identified as outliers and removed prior to the developing the final model.

Interval no. Average elution profile RT min Dimensions of Number of Explained Resolved peak
interval components variance (%) numbers

1. 1.8-2.8 10x 2123 x 127 4 89.7 1-4

2. 2.8-55 28 x2123 x 127 5 90.4 5-9

3. 5.5-9.0 38 %2123 x127 3 91.9 10-12

4. 10.0-16.2 60 x 2123 x 127 4 88.8 13-16

5. 17.4-18.8 16x2123 x 113 2 86.9 17-18

6. 19.0-21.0 24 x2123 x 127 2 96.5 19-20

7. 23.4-25.5 24 %2123 x 121 4 92.2 21-24

8. 25.5-27.5 22 %2123 x127 7 90.1 25-31

9. 27.5-29.5 22 %2123 x127 7 90.3 32-38
10. 29.5-32.2 30x2123 x127 6 87.7 39-44
11. 32.2-34.2 20x 2123 x123 4 83.7 45-48
12. 34.2-36.0 18 x2123 x 122 5 79.2 49-53
13. 36.0-38.6 26x2123x114 6 67.4 54-59
14. 38.6-41.6 30x2123x 115 3 94.8 60-62
15. 41.6-43.1 20x2123 x 115 4 76.8 63-66
16. 45.4-47.2 22 %2123 x127 3 91.8 67-69
17. 47.2-49.0 20x 2123 x 127 2 81.4 70-71
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Fig. 4. The superimposed raw LC-MS chromatograms of the F2 plant samples and the 17 selected intervals.

analysis employing the resistance levels of 127 F2 plants and the
relative abundances of the resolved peaks (metabolites). For better
visual observation of the separation between the F2 plants based
on the resolved LC-MS peaks, the samples were divided into three
classes according to their resistance level (see Section 2.1).

4.2. PARAFAC2 model validation

Model validation is an important step of PARAFAC2 analysis.
Validation of PARAFAC2 models is illustrated in the example of the
model developed for the chromatographic interval number 16. This
interval (Table 1) corresponds to the region where one of the known
saponin, oleanolic acid cellobioside, elutes. In order to develop a
model whichis able to describe the chemical information present in
the data, one- to six-component PARAFAC2 models were fitted. The
optimal number of components was determined based on: (1) the
explained variance by the models and the residuals, (2) appearance
of elution and spectral mode loadings, and (3) previous knowl-
edge about the data (e.g. expected sources of main variations in
the selected region of the chromatogram).

The resolved elution profiles of the PARAFAC2 models with
two- and three-components closely reflect the raw chromatogram
(Fig. 5). The PARAFAC2 model with three-components explained
91.8% of the variation in the data. The resolved MS spectral profiles
for all three components were different and confirmed that they
may correspond to three different chemical compounds (results not
shown). The four-component model only explained additional 0.3%

variance (i.e. 92.1%) compared to the three-component model and
the elution profiles differed from the original raw chromatogram
(Fig. 5d). Moreover, the resolved elution profiles of component 1
and 2 (blue and green profiles, respectively Fig. 5d) strongly over-
lap and practically identical, and the score values obtained for these
2 components co-vary over samples. These results indicate that by
extracting the fourth component, the PARAFAC2 model is forced to
describe minor variations present in the mass spectra of few sam-
ples, and as a result, the same analyte variation is explained by two
different components.

Thus, the three-component PARAFAC2 model was an optimal
model for fitting this interval of the chromatogram. The first com-
ponent of the model (blue profile, Fig. 5¢) corresponded to oleanolic
acid cellobioside, and its resolved mass spectral profile matched
with experimentally measured mass spectrum of oleanolic acid
cellobioside with a correlation based similarity of 98.5% (Fig. 6).
As the LC gradient solvent contained sodium chloride (NaCl), and
the mass spectra were recorded in positive mode, the base peak of
803.3 m/z corresponds to the [M +Na]* adduct ion of oleanolic acid
cellobioside.

4.3. Resolution of overlapped, elution time shifted and low s/n
peaks

The overlapping effect of chromatographic peaks is common in
chromatography, and is due to the two or more analytes having the
same or very close elution times at a given separation conditions.
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Fig. 5. (a) Superimposed raw LC-MS chromatograms of the F2 plant extracts in the chromatographic interval 16 (45.4-47.2 min), (b) resolved elution profiles of 2 component,
(c) 3 component, and (d) 4 component PARAFAC2 models of the chromatographic interval. *Blue, green, red and cyan color profiles correspond to the first (PC1), second
(PC2), third (PC3), and fourth (PC4) components’ elution profiles of PARAFAC2 models, respectively. (For interpretation of references to color in this figure legend, the reader

is referred to the web version of this article.)
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Fig. 6. (a) The mass spectrum of oleanolic acid cellobioside and (b) the mass spectral profile of oleanolic acid cellobioside peak resolved by PARAFAC2 (correlation based

similarity >98%).

Resolution of overlapped peaks by PARAFAC2 is illustrated by the
modeling the chromatographic interval number 15 (Fig. 7). Succes-
sive PARAFAC2 modeling of interval 15 revealed four component
model to be an optimal for describing the data. The elution profiles
of a four-component model (Fig. 7b) demonstrate the presence of
overlapped peaks (blue, green, red and cyan elution profiles cor-
respond to the component 1, 2, 3 and 4, respectively), which are
cumbersome to visualize from the raw chromatogram (Fig. 7a).

Fig. 7b shows the resolution of highly overlapped peaks (blue
and green elution profiles), partly overlapped peaks (red elution
profiles), as well as modeling of the baseline, which also partly
describes the analyte eluted few seconds earlier (cyan elution
profile). The second (green elution profile) and the third (red
elution profile) components of the model correspond to known
saponins found in B. vulgaris: gypsogenin cellobioside and epihed-
eragenin cellobioside, respectively. The spectral profiles resolved
by PARAFAC?2 for all four components were different, and the two
mass unit differences between gypsogenin cellobioside and epihed-
eragenin cellobioside (gypsogenin cellobioside: 817.6 m/z, [M+Na]*
and epihederagenin cellobioside: 819.6m/z, [M+Na|*) were also
observed from the resolved mass spectral profiles (Fig. 7c).

Fig. 8a illustrates the raw chromatogram of interval number
12. By visual inspection of the raw chromatogram, it is difficult
to assess the number of peaks present, and even more difficult to
quantify them due to the low s/n ratio of the peaks. Five-component
PARAFAC2 model fitted to this interval explained just below 80% of

the variation present in the chromatographic data, and was able to
resolve five distinct metabolite with different mass spectral pro-
files (Fig. 8c). In this case, the fourth and the fifth components of
the model (cyan and magenta elution profiles, Fig. 8b) depict low
s/n ratio peaks that were not visible and detectable from the raw
data. In addition, Fig. 8 illustrates modeling of elution time shifted
peaks (blue and green elution profiles, Fig. 8b), without any need
for aligning the raw data. Though these peaks have significantly
different elution times, they were modeled by PARAFAC2 as one
component, since their mass spectral profiles were identical. More-
over, in the example of this chromatographic interval, it is possible
to observe that the tail of the neighboring peaks, which eluted few
seconds earlier, is modeled as the third component of the model
(red elution profile, Fig. 8b).

4.4. Resolved peaks of saponins and insect resistance

A total of 71 PARAFAC2 components (which correspond to
actual peaks, including baselines and tails of neighboring peaks)
were modeled from 17 different chromatographic intervals of
LC-MS profiles (Table 1). In order to investigate the correlation
between the resolved peaks from LC-MS chromatographic profiles
of the F2 plants and their resistance against the flea beetle larvae,
PARAFAC?2 scores (relative abundance of metabolites) obtained for
the resolved peaks were used for correlation and regression anal-
yses (Fig. 9). In Fig 9a, a bar plot shows correlation coefficients
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Fig. 7. (a) Superimposed raw LC-MS chromatograms of the F2 plant extracts in the selected interval number 15, (b) resolved elution profiles and (c) corresponding mass
spectral profiles of the four-component PARAFAC2 model developed for the chromatographic interval. *Blue, green, red and cyan color profiles correspond to the first (PC1),
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between the PARAFAC2 resolved peaks and the resistance level
of F2 plants. Resistance level of F2 plants vary between zero and
five, where most resistant plants are close to zero and suscepti-
ble plants are close to five (see Section 5.1). Therefore, negative
correlation coefficients of the resoled peaks mean that they are pos-
itively correlated to the defense and vice versa. Correlation analysis
showed that nine PARAFAC2 components (resolved peaks)out of 71
components were significantly correlated to the plants’ resistance.
The most positively correlated peaks to the plants’ defense corre-
sponded to the four previously known triterpenoid saponins of B.
vulgaris (hederagenin cellobioside, oleanolic acid cellobioside, epi-
hederagenin cellobioside, and gypsogenin cellobioside) (Fig. 9a,and
b). One-way ANOVA (analysis of variance) test between PARAFAC2
scores of resolved peaks and resistance level of F2 plants confirmed
significance of the correlations found from correlation and PLS anal-
ysis. P-values of nine mostly correlated peaks found for hypothesis
test for null correlation were P<0.0001.

The peak of hederagenin cellobioside modeled as the first compo-
nent of the PARAFAC2 model of chromatographic interval number
14 (Table 1) and its complete mass spectral and elution profiles
were successfully resolved (results not shown). Likewise, the peak
of oleanolic acid cellobioside is modeled as the first component of
the PARAFAC2 model of chromatographic interval number 16, and
the resolved mass spectral and elution profiles are illustrated in
Figs.5 and 6. The second and the third components of the PARAFAC2
model of chromatographic interval number 15, represent the peaks
of gypsogenin cellobioside and epihederagenin cellobioside, respec-
tively (green and red elution profiles, Fig. 7b). Their resolved mass
spectral profiles matched with the experimentally recorded mass
spectra of these saponins (Fig. 7c).

Another five peaks that depict significant correlation were
unknown compounds (Fig. 9-b). Unknown 1, which has a base peak
of 965.6 m/z was found as the fourth component of the PARAFAC2
model of chromatographic interval 12 and it was the fifth most
positively correlated peak to the resistance level. The resolution of
unknown 1 is shown in Fig. 8, where the cyan color profiles rep-
resent elution and mass spectral profiles (Fig. 8b and c). This peak
was almost invisible from the raw LC-MS chromatogram (Fig. 8a),
due to the overlapping effect. Unknown 1 eluted 11.5 min earlier
than oleanolic acid cellobioside. This indicate that it is a more polar
compound than oleanolic acid cellobioside, since the LC gradient

program starts with a polar solvent, and the polarity of solvent grad-
ually decreased over time (Section 5.2). Thus, unknown 1 might be
a new triterpenoid saponin of B. vulgaris with three sugar (hexose,
162 m/z) moieties attached to the aglycone with the same molecu-
lar mass as oleanolic acid (455.5 m/z). This assumption was further
confirmed by its fragmentation pattern in LC-MS/MS experiment
separately performed on parental G-type B. vulgaris. The LC-MS/MS
approach assisted to fragment the precursor 965.6 m/z ions into
its product ions and to record MS? and MS? spectra, which illus-
trated the loose of three hexose (162 m/z) moieties and formation
of 455.5 m/z ion at MS3 spectra (results not shown).

In contrast to the compounds listed in Fig. 9b, which are posi-
tively correlated to resistance, unknown 4 and unknown 5 depicted
the highest positive correlation to the susceptibility level of F2
plants, and they were more abundant in susceptible plants com-
pared to the resistant plants. These two peaks eluted much earlier
(at RT 28.4 and 26.4 min., respectively) than the other highly cor-
related peaks resolved by PARAFAC2. This indicates that these
compounds are more polar compared to the other unknown com-
pounds. Unknown 5 was modeled as the first component of the
PARAFAC2 model of chromatographic interval 8, and its resolved
mass spectral profile showed m/z signals at 821.6 m/z (base peak)
and 983.6 m/z. The mass difference between these two m/z sig-
nals is 162 m/z, which corresponds to a sugar (hexose) moiety.
The base peak of unknown 5 (821.6 m/z) is 2 m/z unit higher than
the base peak of hederagenin cellobioside (819.6 m/z). This indi-
cates that unknown 5 is most probably a triterpenoid saponin with
three sugar (hexose) moieties attached to an aglycone, which is
2m/z unit higher (473.5m/z) than hederagenin (471.5 m/z). Thus,
the aglycone structure of unknown 5 may be identical to the struc-
ture of hederagenin, but the double bond present in position C12
is saturated (Fig. 2). This was further substantiated by LC-MS/MS
experiments performed in negative mode on parental G- and P-type
B. vulgaris. Visual observation of MS, MS? and MS3 spectra revealed
that the precursor ion with the molecular mass of 960 m/z loses
three hexose moieties during fragmentation, and that the aglycone
ion with the molecular mass of 473.5 m/z appeared in MS3 spectra
(results not shown). It is worth to mention that the intensity of this
peak was much higher in P-type plants (the susceptible plant) than
in G-type, which corroborates with our findings from PARAFAC2
modeling. The relative abundance of unknown 5 determined by
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PARAFAC2 were 5 fold higher in susceptible F2 plants compared to
the resistant F2 plants, which also reflects the positive correlation
of unknown 5 to flea beetle larvae susceptibility.

In order to investigate the relevance between the relative con-
centrations of the resolved metabolites and defense of F2 plants, a
PLS regression model was constructed with PARAFAC2 determined
relative abundance of resolved peaks as an X matrix, and resistance
level of the F2 plants as ay vector (Fig.9). The PLSregression analysis
confirmed the importance of the nine peaks resolved by PARAFAC2
which were found in correlation analysis as the most significantly
correlated to the F2 plants’ resistance. Variable importance in

projection (VIP) scores obtained from the PLS model (Fig. 9c) for
each variable (PARAFAC2 resolved peak) illustrate that only those
nine variables have VIP scores higher than 1 (the threshold defined
by the PLS model). This demonstrates that these nine variables are
the most important variables for predicting the resistance level of
the F2 plants. Predicted versus measured plot of the PLS model
(Fig. 9d) shows the correlation (r) of 0.88 between the actual
resistance and the predicted resistance level found by the PLS
model for each F2 plant. These findings confirm that the peaks
resolved by PARAFAC2 from the LC-MS profiles were informa-
tive and correlated to the F2 plants’ resistance against flea beetle
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larvae. Moreover, a score plot of the PLS model illustrated a good
separation between resistant and susceptible F2 plants (Fig. 9e).
In addition, the loading plot of the PLS model showed a separa-
tion between the variables which are positively (left extreme of
the loading plot, e.g. hederagenin cellobioside and oleanolic acid
cellobioside) and negatively (right extreme of the loading plot, e.g.
unknown 4 and unknown 5) correlated to the resistance level of F2
plants. This confirms the importance of the variables for predicting
the resistance level and discriminating resistant and susceptible F2
plants (results not shown).

Finally, it is worth to mention that Kuzina et al. [22] detected 30
metabolites, which might be candidate metabolites for F2 plants’
defense against the flea beetle larvae. In this study, PARAFAC2
resolved and quantified 28 out of those 30 metabolites, in addition
to other 40 metabolites that did not show significant correlation
to the plants’ resistance against the insect. Moreover, PARAFAC2
resolved elusive peaks of unknown 4 and unknown 5 which have
not been previously detected. The other triterpenoid saponin of B.
vulgaris cochalic acid cellobioside [23] which did not correlate with
defense, was also modeled by PARAFAC2 as the first component of
the model of chromatographic interval 10.

5. Conclusions and remarks

The performance of PARAFAC2 modeling to resolve complex
LC-MS profiles of plant metabolomic data was assessed and
demonstrated. Complex and problematic chromatographic peaks
with elution time shifts, strong overlaps, baseline drifts and low s/n
peaks were successfully modeled by PARAFAC2, without any need
for preprocessing the raw data. PARAFAC2 separately modeled
all the peaks present in selected intervals of the LC-MS chro-
matograms, and enabled precise quantification of the relative
abundance of the resolved peaks based on their area. This method
of quantification is more accurate and unbiased than quantify-
ing peaks based on the intensity of one or more marker m/z ion
signals. A total of 71 PARAFAC2 components (which correspond
to actual peaks, baselines and tails of neighboring peaks) were
modeled from 17 different chromatographic intervals of the LC-MS
data obtained from 127 F2 B. vulgaris plants. The concentration
profiles of nine peaks exhibited a high correlation to the resis-
tance level of F2 plants to flea beetle larvae. Four of these nine
peaks had previously been identified as triterpenoid saponins of
B. vulgaris and their resolved mass spectral profiles matched well
with the experimentally obtained mass spectra. The remaining five
peaks were saponin-like unknown compounds and based on the
PARAFAC2 resolved mass spectral profiles, their structures could
only be preliminarily assessed. All these features of PARAFAC2
finely illustrated its power for quantitative and qualitative analysis
of complex LC-MS metabolomic data.
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Abstract Reproducible and quantitative gas chromatography—
mass spectrometry (GC-MS)-based metabolomics analysis of
complex biological mixtures requires robust and broad-
spectrum derivatization. We have evaluated derivatization of
complex metabolite mixtures using trimethylsilyl cyanide
(TMSCN) and the most commonly used silylation reagent N-
methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). For the
comparative analysis, two metabolite mixtures, a standard
complex mixture of 35 metabolites covering a range of amino
acids, carbohydrates, small organic acids, phenolic acids, fla-
vonoids and triterpenoids, and a phenolic extract of blueberry
fruits were used. Four different derivatization methods, (1)
direct silylation using TMSCN, (2) methoximation followed
by TMSCN (M-TMSCN), (3) direct silylation using MSTFA,
and (4) methoximation followed by MSTFA (M-MSTFA) were
compared in terms of method sensitivity, repeatability, and
derivatization reaction time. The derivatization methods were
observed at 13 different derivatization times, 5 min to 60 h, for
both metabolite mixtures. Fully automated sample derivatiza-
tion and injection enabled excellent repeatability and precise
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method comparisons. At the optimal silylation times, peak
intensities of 34 out of 35 metabolites of the standard mixture
were up to five times higher using M-TMSCN compared with
M-MSTFA. For direct silylation of the complex standard mix-
ture, the TMSCN method was up to 54 times more sensitive
than MSTFA. Similarly, all the metabolites detected from the
blueberry extract showed up to 8.8 times higher intensities
when derivatized using TMSCN than with MSTFA. Moreover,
TMSCN-based silylation showed fewer artifact peaks, robust
profiles, and higher reaction speed as compared with MSTFA.
A method repeatability test revealed the following robustness
of the four methods: TMSCN>M-TMSCN>M-MSTFA>
MSTFA.

Keywords Metabolomics - Gas chromatography—mass
spectrometry - Trimethylsilyl derivatization - Methoximation -
Trimethylsilyl cyanide

Abbreviations

BSA Bis(trimethylsilyl)acetamide

BSTFA N,O-Bis(trimethylsilyl)trifluoroacetamide

EI Electron impact

HCN Hydrogen cyanide

MEOX Methoxiamine

M-MSTFA  Methoximation followed by MSTFA-based
silylation

M-TMSCN  Methoximation followed by TMSCN-based
silylation

MPS Multi-purpose sampler

MSTFA N-methyl-
N-(trimethylsilyl)trifluoroacetamide

PARAFAC2 Parallel Factor Analysis 2

PCA Principal component analysis

RI Retention index
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TMCS Trimethylchlorosilane
T™MS Trimethylsilyl
TMSCN Trimethylsilyl cyanide
Introduction

Gas chromatography—mass spectrometry (GC-MS) has be-
come one of the favorite analytical platforms applied in
metabolomics because of its high reproducibility and resolu-
tion power [1-3]. In contrast to NMR and LC-MS, GC-MS
analysis requires metabolites to be thermally stable and vola-
tile during analysis. To lower the boiling point of metabolites
and increase volatility for GC-MS analysis, complex biolog-
ical samples, such as plant and animal tissue extracts and bio-
fluids need to be derivatized by chemical derivatization to
improve or facilitate their detection. The most commonly used
derivatization method involves methoximation followed by
silylation [4—6]. During the methoximation step, metabolites
with carbonyl (>C=0) functional group react with the reagent
(20-40 mg mL™" solutions of O-methylhydroxylamine hy-
drochloride in pyridine) and form oxime (>C=N-O-CH3)
derivatives [7-9]. The main purpose of oximation is to form
thermally stable derivatives that prevent cyclization of reduc-
ing sugars, formation of keto-enol tautomers of aldehydes and
ketones with a proton in the x-position, and to protect other
carbonyl group containing metabolites from decarboxylation
[10-12]. Silylation serves to substitute active hydrogen atoms
of hydroxyl (—OH), carboxylic acid (—~COOH), primary and
secondary amines (R'NH,, R'/R"NH), and thiols (—SH) with a
trimethylsilyl (—Si(CH3)3) group [13].

In GC-MS metabolomics, different silylation reagents have
been applied and they differ by their reactivity, selectivity, side
reactions, and byproducts [13—16]. The efficiency and speed
of the silylation reaction depend on reaction temperature,
time, and physicochemical properties of both the silylation
reagent and the substrate. Among silylation reagents, N-meth-
yl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) has become
the most commonly applied reagent because of its high reac-
tivity towards a broad range of compound classes. Several
studies on GC-MS method optimization suggest the use of
MSTFA alone or together with 1 % of TMCS as a catalyst for
silylation of complex mixtures [5, 17, 18]. Silylation reactions
are reversible and have been shown to proceed via bimolecu-
lar nucleophilic substitution (Sx2-mechanism) at the silicon
atom [19-22].

As silylation follows a Sy2-mechanism, the silylation de-
pends on concentration of both the electrophile (silylation
reagent) and the nucleophile (substrate). Besides concentra-
tion, reaction time, and temperature, silylation reaction yield

@ Springer

and rate depend on (1) nature of the leaving group of the
silylation reagent, (2) chemistry of the substrate that reacts
with silylation reagent, (3) steric effects, (4) influence of
solvents, and (5) presence of catalysts. The general silylation
activity order of the different functional groups is as follows:
alcohols (primary>secondary>tertiary)>phenols>carboxylic
acids>thiols>amines (primary>secondary)>amides. This is
due to a number of factors. The silylation rate increases by
increasing the affinity of the silicon atom to the nucleophile
center of the substrate being silylated. The affinity of the
silicon atom is highest to an oxygen atom [23, 24] and
trimethylsilylation reagents with good leaving groups are
more active in exchanging a trimethylsilyl group with an
active hydrogen atom or a metal atom [19, 25]. In addition,
the nucleophilic attack by a substrate on the electrophile
silicon atom becomes easier when the covalent bond between
the silicon atom and the leaving group is weak and easily
dissociable [20, 23]. Solvents also influence the rate and the
mechanism of silylation reactions. Pyridine is the mostly used
solvent during methoximation and silylation reactions, and as
it is a weak base, it can increase silylation reaction rate by
scavenging active protons (H") in the reaction mixture. Ac-
cessibility of the nucleophilic center of the substrate is crucial,
and studies have demonstrated an influence of steric effects in
silylation of branched secondary amines and primary amines
[26]. To date, the most thoroughly studied silylation reagents
are those with a Si-N bond, and silylated amides such as N,O-
bis (trimethylsilyl)acetamide, N,O-bis (trimethylsilyl)trifluoro
acetamide, and MSTFA have become common silylation re-
agents in GC-MS analysis. By contrast, very few studies have
been conducted on silylation capabilities of compounds with a
Si—C bond, such as trimethylsilyl cyanide (TMSCN). Two
recent reviews on derivatization reagents and their reactions
used for GC-MS analysis of a broad range of metabolites
discuss the advantages and limitations of a variety of different
derivatization reagents [13, 21]. However, TMSCN was not
included as an alternative trimethylsilylation reagent. We
show that TMSCN possesses several advantages over the
majority of the reagents used up to date, including a high
silylation reactivity and reproducibility.

In the present study, the use of TMSCN for derivatization
of complex metabolite mixtures is demonstrated. In organic
chemistry, TMSCN is mainly used as a source of cyanide
group for various synthetic reactions [27]. Although Mai
and Patil [28] have shown high silylation reactivity of
TMSCN toward many functional groups, its potential as a
derivatization reagent in comprehensive GC-MS analysis of
metabolites mixtures has not been thoroughly studied. The
only published, to our knowledge, example of the use of
TMSCN for GC-MS analysis was published in the early
1990s, where it was used for the derivatization of the



The use of trimethylsilyl cyanide derivatization

prostacyclin analog I [29]. In this study, we compared GC-MS
analysis of various classes of compounds silylated by using
TMSCN and MSTFA.

Mai and Patil [28] have conducted a comprehensive study
on silylation of alcohols, phenols, carboxylic acids, amines,
and thiols using TMSCN. In the study, they showed that
TMSCN outperformed many other reagents and provided
mild and rapid derivatization. The study showed that under
mild conditions: 5 min at 25 °C for most of alcohols, phenols,
and carboxylic acids and 5-30 min at 25-100 °C for second-
ary amines, thiols, and carbohydrates, TMSCN-based
silylation reaction yield reached up to 98 %. The study illus-
trated higher silylation efficiency and the reaction rate of
TMSCN when compared with other alkyl cyanide derivatiza-
tion reagents towards sterically hindered functional groups
due to its relatively smaller molecular size. In addition, they
showed high silylation reaction yield with neat (solvent free)
TMSCN compared with the use of solvent since all metabolites
were readily soluble and rather neutral pH of TMSCN enables
non-destructive silylation of base sensitive compounds.

Byproduct formation is one of the limitations of most
silylation reagents. Byproducts are formed during the
silylation reactions and may result in formation of multiple
artifact peaks that decrease profile reproducibility, hamper the
detection of early eluting metabolites, and degradation of
silylated metabolites. For example, one of the most commonly
used silylation reagent in conjunction with MSTFA is TMCS
that form hydrogen chloride as a byproduct, which is an
aggressive acid towards TMS-derivatives. Hydrogen cyanide
(HCN) is the only byproduct formed in TMSCN-based
silylation. HCN is too weak an acid to hydrolyze the TMS-
derivatized products, but by contrast, it can protonate TMSCN
that lead to increased electrophilicity and thus serves to further
increase silylation efficiency.

The purpose of this study is to assess the silylation capa-
bilities of TMSCN towards various classes of metabolites that
are often detected in GC-MS metabolomic studies of complex
biological samples, and to compare with the silylation effi-
ciency of the mostly used reagent MSTFA. Two metabolite
mixtures, a standard mixture that compiled 35 different com-
pounds including amino acids, carbohydrates, small organic
acids, phenolic acids, flavonoids and triterpenoids, and a
phenolic extract of blueberry fruits were used to evaluate the
silylation capabilities of TMSCN and MSTFA. TMSCN and
MSTFA silylation performances were evaluated in conjunc-
tions with a methoximation step (using pyrimidine as a sol-
vent) and without methoximation (direct silylation) where
only the reagent itself acted as a solvent. Four different deriv-
atization methods: (1) direct silylation using TMSCN, (2)
methoximation followed by TMSCN (M-TMSCN), (3) direct
silylation using MSTFA, and (4) methoximation followed by

MSTFA (M-MSTFA) were evaluated at 11-13 different
silylation time points in the range of 5 min to 60 h.

Materials and methods

Preparation of metabolite standard mixture and extraction
of blueberry fruits

Individual solutions of 35 standard compounds containing 6
amino acids (valine, serine, threonine, glycine, aspartic
acid, and phenylalanine), 6 carbohydrates (ribitol, ribose, glu-
cose, glucose-6-phosphate, maltose, and sucrose), 13 organic
acids and phenolic compounds (benzoic acid, succinic acid,
malic acid, palmitic acid, phenyllactic acid, 4-hydroxybenzoic
acid, 2-hydroxy-2-methoxibenzoic acid, vanillic acid, 2-
hydroxycinnamic acid, p-coumaric acid, caffeic acid, 4-
hydroxiacetophenone, and vanillin), 2 polyphenols (naringenin
and catechin), and 8 triterpenes (cholesterol, (3-amyrin, «-
amyrin, lupeol, oleanolic acid, hederagenin, betulinic acid, and
«-epoxi-[3-amyrin) were prepared in the concentration of 2 or
0.25 mg mL™" (only for triterpenes). Most of the standard
compounds were soluble in water, apart from polyphenols,
caffeic acid, benzoic acid, 2-hydroxy-3-methoxybenzoic acid,
palmitic acid, and triterpenes which were solubilized in dimethyl
sulfoxide. Vanillic acid, p-coumaric acid and cholesterol were
solubilized in 96 % ethanol. A metabolite standard mixture was
prepared by combining 200-pL aliquots of all the solutions of
standard compounds, besides solutions of triterpenes, which
were added in double amount (400 pL). This standard mixture
was later used for GC-MS analysis. Phenolic and organic acids
of blueberry fruits were extracted essentially according to the
protocol described by Zadernowski et al. [30]. To increase the
extraction yield, slight modifications were introduced to the
protocol. Blueberry fruits of low-bush blueberry (Vaccinium
myrtillus) were purchased from the grocery shop Irma (Copen-
hagen, Denmark); 100 g of frozen blueberry fruits were extracted
five times with 100 mL of 80 % (vol/vol) methanol at room
temperature for 40 min by using an orbital shaker at 500 rpm.
The extracts were centrifuged at 3,000xg for 5 min, and the clear
supemnatants combined in 1,000 mL round bottom flask and
dried using a rotary vacuum evaporator followed by freeze-
drying; 1.5 g of freeze-dried extract was dissolved in 100 mL
of 4 M sodium hydroxide, hydrolyzed under the nitrogen gas
atmosphere for 4 h at room temperature while mixing at 300 rpm
by using a magnetic stirrer. Then the solution was acidified with
6 M hydrochloric acid to pH 2, and extracted five times with
diethyl ether (1:1, vol/vol) for 15 min while mixing at 300 rpm
by using magnetic stirrer. To clean the ether extract from fatty
acids and other nonpolar compounds, the combined ether frac-
tions were dried using rotary vacuum evaporator, re-dissolved in

@ Springer



B. Khakimov et al.

150 mL of 5 % (wt/vol) sodium bicarbonate solution, and then
extracted five times with diethyl ether as described above. The
remaining water phase was acidified with 6 M hydrochloric acid
to pH 2, extracted five times with diethyl ether, the combined
ether fractions dried finally re-dissolved in 17 mL of 80 % (vol/
vol) methanol. The resulting extract referred as phenolic extract
A mainly contains free phenolic and organic acids as well as
phenolic acids derived from hydrolysis of ester bonds. The
blueberry phenolic extract B was obtained in essential the same
way as phenolic extract A, except that hydrolysis of 1.5 g of
freeze-dried extract was performed using 100 mL of 2 M
hydrochloric acid and stirring for 40 min at 94 °C. Beside the
free phenolic acids, organic acids, and phenolic acids derived
from hydrolysis of ester bonds, this extract also contain the
phenolic acids derived from the hydrolysis of glycosidic bonds.

Chemicals

All the compounds used for preparation of standard mixture
and solvents were purchased from Sigma-Aldrich, except for
4-hydroxiacetophenone, hydrochloric acid (37 %), and sodi-
um bicarbonate that were obtained from Merck, in best avail-
able quality. Dimethyl sulfoxide, diethyl ether, 2-hydroxy-3-
methoxybenzoic acid, trimethylsilyl cyanide and N-methyl-
N-(trimethylsilyl)trifluoroacetamide were purchased from
Fluka in best available quality. Triterpenoid 12,13 x-epoxy-
33-hydroxyoleanane was synthesized by M. S. Motawia.
Water used throughout the study was purified using a
Millipore Milli-Q lab water system equipped with 0.35 pm
filer membrane.

Sample derivatization

Derivatization and injection of samples was fully automated
by use of a GERSTEL MultiPurpose Sampler (MPS) with
DualRait WorkStation integrated to a GC-MS system from
Agilent. The MPS enabled reproducible sample derivatization
in a high-throughput manner and was fully operated by MAE-
STRO software integrated with Agilent's ChemStation soft-
ware. This enabled automation of individual and parallel
sample derivatization steps from a single sequence developed
for the analysis of several samples independently from chro-
matographic system and provided precise derivatization time
control of each sample. Two types of syringes were installed,
the left MPS was equipped with a 10-pL syringe and used
only for GC-MS injection, whereas the right MPS was
equipped with a 100-pL syringe and used in sample derivati-
zation steps. Prior to derivatization, 100-pL aliquot of the
blueberry extract and 70-puL aliquot of standard mixture sam-
ples were lyophilized in 150-pL glass inserts under reduced
pressure at room temperature by use of a vacuum centrifuge,
transferred into 1.5 mL GC-MS vials, and sealed with mag-
netic caps with silicone septum under nitrogen gas to prevent
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moisturization. Golden magnetic caps (ML 33032A from
www.mikrolab.dk) with silicon septum enabled MPS to
move GC-MS vials and prevented solvent and/or reagent
evaporation during the derivatization even after penetration
of the septum by MPS needles. Lyophilized and sealed sam-
ples were placed on a MPS sample tray and further sample
handling was fully automated.

Methoximation of samples was performed by addition of
40 pL freshly prepared 20 mg mL™" methoxiamine hydro-
chloride (CH;0ONH,-HCl) in pyridine and incubated for
90 min at 30 °C by agitation at 750 rpm. After methoximation,
samples were silylated by addition of 40 uL silylation reagent,
and a total of 80 pL reaction mixture was incubated at 37 °C
by agitation at 750 rpm. To keep the volume of the reaction
mixture constant in all four derivatization methods, direct
silylation methods, TMSCN and MSTFA were performed by
addition of 80-uL pure silylation reagent and incubated at
37 °C by agitation at 750 rpm. Based on the reaction stoichi-
ometry, the amount of applied silylation reagents exceeded at
least 400 (TMSCN), 200 (M-TMSCN), 250 (MSTFA), and
125 (M-MSTFA) times the amount needed for silylation of all
the available active hydrogen atoms present in the 70-uL
aliquot of standard mixture. GC-MS profiles of the standard
mixture was evaluated at 11 different silylation times by using
all four derivatization methods, whereas derivatization of
blueberry extract was performed at 13 different silylation
times by using three (TMSCN, M-TMSCN, and M-MSTFA)
derivatization methods. Important practical considerations of
the automated sample derivatization, GC-MS analysis are
described in detail in the Electronic supplementary material
(ESM,; text).

Data acquisition

An aliquot of 1.0 uL derivatized sample was injected either in
split (split ratio of 3:1 was used in blueberry extract analysis)
or in splitless mode (for analysis of standard mixture) into a
Gerstel cooled injection system (CIS) equipped with a glass
wool packed liner. Detailed settings of left and right MPS
syringes, sample incubating agitator, and CIS injection port
parameters can be found in the ESM (text). The GC-MS
consisted of an Agilent 7890A GC and an Agilent 5975C
series MSD. GC separation was performed on an Agilent HP-
SMS column (30 m*250 umx0.25 um) by using hydrogen
carrier gas at the constant flow rate of 1.2 mL min~". The GC
oven temperature program was as follows: initial temperature,
60 °C; equilibration time, 1.0 min; heating rate,
12.0 °C min'; end temperature, 310 °C; hold time, 6.0 min;
and post-run time, 5 min at 60 °C. Mass spectra were recorded
in the range of 50-750m/z with a scanning frequency of 2.3
scans s ', and the MS detector was switched off during the 3-
min solvent delay time. The transfer line, ion source, and
quadrupole temperatures were set to 280, 230, and 150 °C,
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respectively. The mass spectrometer was tuned according to the
manufacturer recommendations by using perfluorotributylamine.

Data analysis

Relative abundances of metabolites were calculated by Paral-
lel Factor Analysis 2 (PARAFAC2) modeling of the raw GC-
MS data [31, 32]. The method allowed precise quantification
of well-resolved, co-eluted, overlapped, and low S/N ratio
peaks using full mass spectra or marker m/z ions (for
completely embedded peaks) of the metabolites. The outcome
of PARAFAC2 models were (1) scores of each resolved peak
that correspond to the relative areas of the detected peaks, (2)
spectral loadings of each resolved peak which represent pure
mass spectra of the detected peaks, and (3) elution time
loadings that represent elution time profiles of peaks. For
explorative analysis of the derivatization methods, principal
component analysis (PCA) [33] was applied to a matrix con-
taining relative abundances of detected metabolites (variables)
in different derivatization methods (rows). Metabolites were
identified based on their retention indices (RI) and EI-MS
library match using commercial Wiley08 and NISTO5 librar-
ies as well as an in-house library of triterpenes. EI-MS library
search was performed using original mass spectra or
PARAFAC?2 resolved mass spectra of chromatographic peaks.
Retention indices of each metabolite were calculated using in-
house MATLAB function based on the Van den Dool and
Kratz equation [34] and retention times of C10—C40 alkanes
that were analyzed using the same GC-MS method.

Software

GC-MS chromatographic data was analyzed using Agilent
Technologies ChemStation software (version: E.02.02.1431).
PARAFAC2 and PCA modeling were performed by using
PLS Toolbox (Version 6.0.1, Eigenvector Research Inc.
USA) working under MATLAB (Version 7.13.0.564,
R2011b, the Mathworks Inc., USA) environment. CDF files
of raw GC-MS data were imported into MATLAB using the
function [35] which is available on www.models.ku.dk.

Safety considerations

All derivatization reagents (including MSTFA and TMSCN)
are highly toxic chemicals. Accordingly, derivatization re-
agents must be handled under the inert gas atmosphere in a
fume hood. High attention must be paid to avoid contact with
moisture and sun light. Appropriate vial lids must be tested for
their ability to seal the vials and to prevent evaporation of the
reagent during the derivatization. Derivatized samples and
reagents must be removed from the autosampler shortly after
injection and should be disposed according to the instructions
provided by the suppliers. Users must be aware of the safety

precautions, prevent moisture that causes formation of
byproducts in harmful concentrations. It is worth to mention
that one of the possible byproducts of the TMSCN is hydro-
gen cyanide. Derivatization must be performed under inert gas
if manual handling is necessary, if an autosampler is employed
tightly sealed vials that prevent evaporation of both, the re-
agent and byproducts, should be used, and finally disposal off
leftover silylation reagent and vials with silylated samples
after analysis as a non-recyclable solutions. More detailed
safety considerations of using TMSCN and MSTFA as well
as reagent evaporations tests are described in detail in the
ESM (text).

Results and discussion
Derivatization method comparison of standard mixture
Global analysis

The GC-MS profiles obtained from the four derivatization
methods differed, both qualitatively and quantitatively, and
they were significantly influenced by silylation time. The
optimal silylation time of each of the derivatization method
was defined as the time of incubation at which a maximum
number of metabolites reached their highest peak intensity.
Optimal silylation times of the derivatization methods were as
follows: TMSCN, 40 min; M-TMSCN, 60 min; MSTFA,
30 min; and M-MSTFA, 60 min. Figure 1 illustrates total
ion chromatograms of the standard mixture at the optimal
silylation time of each method. Table 1 lists 41 derivatives
that originated from 35 metabolites of the standard mixture
and their relative ratios at the optimal silylation time of each
metabolite in the four different derivatization methods. Deriv-
atization products of all the 35 compounds used in the stan-
dard mixture, using both the methoxiamination followed by
trimethylsilylation (M-TMSCN and M-MSTFA) and direct
trimethylsilylation (TMSCN and MSTFA) methods, are
highlighted in the ESM, Table S1. The repeatability of the
derivatization methods was calculated from the relative stan-
dard deviations of abundances of 41 derivatives measured in
four replicates, for each derivatization method at their optimal
silylation times. The mean errors of the derivatization methods
TMSCN, M-TMSCN, MSTFA, and M-MSTFA were 3.8 %
(varying from 1.2 to 10.1 % for all metabolites), 6.4 % (1.2 to
17.8 %), 26.2 % (7.7 to 41.6 %), and 13.9 % (2.4 to 30.1 %),
respectively. To evaluate the significance of the differences
observed in the four different derivatization methods, PCA
analysis was performed on the replicate data matrix (16x41)
that include 16 samples, 4 replicates per method, and abun-
dances of 41 TMS-derivatives listed in Table 1. Subsequently,
ANOVA analysis was performed to evaluate the F statistics
(variations between treatments/variations within treatments)
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and the p values by using the scores of PC1 and PC2 that
explained more than 75 % of the variation. Figure S1 (ESM)
shows the PC1 versus PC2 scores plot of the PCA analysis
and the corresponding box plot of the ANOVA analysis
performed on PC1 and PC2. This suggests rejection of the
null hypothesis (p <0.01) with 95 % of the confidence and
shows the significance of the differences observed between
the four derivatization methods. For an exploratory evaluation
of the four different derivatization methods at different
silylation time points, two PCA models were developed.
The first PCA model was developed on a X(56%34)
metabolomic data that compiled 34 metabolites detected in
all 56 samples (four derivatization methods evaluated at elev-
en different silylation times, including replicates at the optimal
derivatization times). The scores and loadings plot of the PCA
model is displayed in Fig. 2. The PC1 versus PC2 scores plot
of the PCA model reveal a partial separation of the derivati-
zation methods (Fig. 2a), where samples of each method form
its trajectory from the left to the right of the plot by increasing
silylation time. Samples that are located to the very right side
of the plot represent the silylation time points when TMS-
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derivatives reached their highest intensities (optimal silylation
time). As PC1 versus PC2 loadings plot of the model show
that all metabolites are located in the right side of the plot
having positive loadings in PC1 (Fig. 2b). However, further
increase of silylation time resulted in decrease of metabolites'
intensities, thus after optimal silylation time, samples are
moved back to the left side of the scores plot. Around the
optimal silylation times, the relative abundances of most of the
metabolites were higher when using TMSCN and MSTFA
methods compared with M-TMSCN and M-MSTFA, and
accordingly, they showed higher scores in PC1 (Fig. 2a).
The loadings plot also shows a partial separation of variables
that assisted to compare different derivatization methods for
detection of various metabolites by visual observation of
scores and loadings plots. Most of the organic and phenolic
acids are clustered on the upper right side of the plot having
positive loadings in PC2, while triterpenes and metabolites
with more than one exchangeable hydrogen atom (e.g., poly-
phenols, sucrose-8tms, ribitol-5tms, serine-3tms, glycine-
3tms, and threonine-3tms) have negative loadings in PC2
and thus forms clusters on the lower right side of the plot. A
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Table 1 Trimethylsilyl (TMS) and methoxime-trimethylsilyl (MEOX-TMS) derivatives derived from 35 compounds of standard mixture sorted
according to their retention time

No. Substance TMSCN* M-TMSCN?* MSTFA? M-MSTFA? RI® EI-MS°®
1 Valine-2TMS 66.93 (40) 4.56 (60) 37.55(30) (150) 1,208 90
2 Benzoic acid-1TMS 3.50 (50) 2.05 (60) 5.31 (50) (150) 1,242 94
3 Serine-2TMS 1.73 (10) 1.66 (40) 26.27 (10) (30) 1,251 93
4 Threonine-2TMS 0.49 (20) 0.49 (40) 13.46 (20) (60) 1,289 92
5 Glycine-3TMS 2.46 (150) 1.37 (30) 1.86 (20) (150) 1,302 92
6 Succinic acid-2TMS 2.18 (40) 1.93 (150) 2.32 (40) (300) 1,308 95
7 Serine-3TMS 29.34 (40) 1.10 (40) 0.54 (40) (60) 1,353 95
8 Threonine-3TMS 12.86 (50) 1 (150) 0.42 (60) No 1,375 95
9 Aspartic acid-2TMS 23.41 (50) 2.07 (150) 21.88 (40) (150) 1,419 94
10 4-hydroxyacetophenone-1TMS 3.94 (40) 2.24 (150) 9.83 (20) (150) 1,464 89
11 Malic acid-3TMS 1.94 (30) 1.59 (150) 2.25 (50 min) (300) 1,489 91
12 Vanillin-1TMS 0.42 (150) No 1(30) No 1,535 91
13 Phenylalanine-1TMS 34.51 (50) 0.69 (150) 58.55 (40) (150) 1,548 86
14 Phenyllactic acid-2TMS 1.83 (50) 1.55 (150) 2.04 (20 min) (150) 1,584 90
15 4-hydroxybenzoic acid-2TMS 1.92 (30) 1.48 (150) 3.43 (40) (150) 1,626 94
16 Vanillin--MEOX-1TMS No 2.23 (60) No (300) 1,648 91
17 2-hydroxy-3-methoxybenzoic acid-2TMS 5.36 (40) 4.48 (150) 4.32 (30) (150) 1,692 94
18 (trans)-ribose-MEOX-4TMS No 3.01 (60) No (150) 1,699 87
19 Ribitol-5TMS 1.41 (50) 1.16 (60) 1.35 (20) (150) 1,745 98
20 Vanillic acid-2TMS 4.48 (50) 2.23 (150) 5.78 (30) (150) 1,768 96
21 2-hydroxycinnamic acid-2TMS 2.35 (40) 2.16 (150) 7.62 (30) (150) 1,811 95
22 (trans)-glucose-MEOX-5TMS No 2.97(60) No (150) 1,925 89
23 p-coumaric acid-2TMS 4.23 (40) 1.77 (150) 5.74 (30) (300) 1,940 38
24 (cis)-glucose-MEOX-5TMS No 3.62 (60) No 1 (60) 1,948 89
25 Palmitic acid-1TMS 1.31 (50) 1.86 (60) 1.80 (30) (60) 2,044 91
26 (trans)-caffeic acid-3TMS 2.31(30) 1.52 (150) 2.93 (30) (150) 2,151 93
27 (trans)-glucose-6-phosphate-MEOX-4TMS No 4.50 (150) No (150) 2,375 88
28 (cis)-glucose-6-phosphate-MEOX-4TMS No 3.62 (150) No (150) 2,395 88
29 Sucrose-8TMS 2.32(30) 2.15 (300) 1.60 (30) (300) 2,709 90
30 (trans)-maltose-MEOX-8TMS No 4.51 (300) No (300) 2,314 87
31 (cis)-maltose-MEOX-8TMS No 4.61 (300) No (150) 2,843 87
32 Naringenin-3TMS? 7.85 (40) 2.86 (150) 6.11 (20) (150) 2,905 85
33 Catechin-5TMS? 1.77 (150) 1.35 (30) 1.14 (30) (40) 2,926 86
34 Cholesterol-1TMS 2.17 (40) 2.33 (150) 4.20 (30) (60) 3,176 97
35 B-amyrin-1TMS 1.74 (50) 1.92 (150) 1.81 (30) (150) 3,402 98
36 a-amyrin-1TMS 2.04 (50) 2.07 (150) 1.94 (30) (150) 3,443 99
37 Lupeol-1TMS 1.44 (60) 1.61 (150) 1.11 (50) (150) 3,454 98
38 Oleanolic acid-2TMS 1.50 (40) 2.07 (150) 1.67 (30) (300) 3,665 99
39 Betulinic acid-2TMS 2.47 (50) 2.16 (150) 2.04 (40) (150) 3,687 99
40 «-epoxi-B-amyrin-1TMS 4.02 (50) 3.43 (60) 2.58 (30) (150) 3,755 97
41 Hederagenin-3TMS 1.83 (50) 1.93 (150) 1.29 (50) (150) 3,790 99

No no peak was observed

#PARAFAC2-based relative abundances of derivatives at their optimal silylation times in minutes (indicated in the brackets), for each derivatization
method are illustrated as their ratio to the relative abundance of the corresponding derivatives in method M-MSTFA

® Retention indices of metabolite derivatives were calculated based on Van den Dool and Kratz equation by using retention times of C10-C40 alkanes
€ EI-MS-based library match of the metabolites by using Wiley08 and NIST05

9 PARAFAC2-based quantification of derivatives included only characteristic m/z ion but not full mass spectra
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Fig.2 Scores (a) and loadings (b) plots of PCA model developed on a matrix containing PARAFAC?2 scores (relative abundances) of TMS derivatives of
the standard mixture detected by four derivatization methods, at 12 different silylation time points (including four replicates at the optimal silylation times)

visual observation of scores and loadings plot suggests that
detection of triterpenes and metabolites with several ex-
changeable hydrogens is more efficient when using TMSCN
and M-TMSCN than with MSTFA and M-MSTFA. This may
be due to the relatively smaller molecular size of the TMSCN
reagent than MSTFA, which enable a more rapid and efficient
silylation of sterically hindered exchangeable hydrogen atoms
of sucrose (hydroxyl groups at C2'), catechin, and amino acids
(e.g., glycine-3tms and serine-3tms). By contrast, detection of
some of the phenolic and organic acids was slightly more
efficient when using MSTFA, suggesting that MSTFA sam-
ples are located on the upper right side of the scores plot. To
compare the silylation capacity of TMSCN and MSTFA to-
wards sterically hindered metabolites 2,6-diphenylphenol was
analyzed at various silylation time points. This showed a rapid
silylation with both reagents. Nevertheless, a considerable
difference was observed in silylation time and efficiency. With
TMSCN silylation, a maximum intensity of the TMS-product
was observed at 5 s, whereas with MSTFA, a maximum was
reached after 5 min and only reached an intensity of about
80 % of the TMSCN signal (see ESM, Fig. S2).

The scores plot of the first PCA model also assisted in
evaluation of the derivatization methods' repeatability. The
sums of the inner distances (Euclidean distances) of the four
replicates to the center of a cluster that they form were calcu-
lated for each derivatization method. This parameter provided
a measure of the compactness of a cluster of replicates. Eu-
clidean distances of replicates of derivatization methods in-
creased in following order: TMSCN (1.2)<M-TMSCN (4.4)
<MSTFA (8.9)<M-MSTFA (18.4), and showed that the
TMSCN method was the most reproducible while MSTFA
was the least. This observation was in agreement with the
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repeatability test of the methods calculated based on the
relative standard deviations of metabolites.

The second PCA model compared M-TMSCN method
with M-MSTFA (28 samples) using all common metabolites
including methoxime-trimethylsilylated (MEOX-TMS) deriv-
atives of reducing sugars (41 variables). The scores plot of this
PCA model (see ESM, Fig. S3) showed better separation of
the M-TMSCN samples from the M-MSTFA samples when
compared with the previous PCA model. The samples corre-
sponding to the M-TMSCN method had significantly higher
scores on the PC1 than M-MSTFA samples and showed a
general trend in development of derivatization reactions over
different silylation times. The loadings plot of the model also
showed higher loadings of all variables in PC1 compared with
PC2. These results suggest that the M-TMSCN method
outperformed M-MSTFA in terms of silylation reaction speed,
efficiency, and repeatability.

Derivatization of sugars

A comparison of the M-TMSCN and M-MSTFA methods for
GC-MS detection of MEOX-TMS derivatives of reducing
sugars, vanillin and the TMS-derivative of sucrose at
silylation time range of 5 min to 30 h is shown in Fig. 3. In
both methods, the relative peak abundances of metabolites
increase gradually to reach their maximum between a
silylation time of 60 min to 5 h. At the optimal silylation time,
abundances of all metabolites were 1.5—6 times higher in the
M-TMSCN method compared with M-MSTFA. Accordingly,
the M-TMSCN method outperformed M-MSTFA in terms
completeness and the silylation reaction rates of mono- and
disaccharides, including the sterically hindered C2" hydroxyl
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Fig. 3 Relative peak abundances x10"

of methoxime trimethylsilyl 3
derivatives (MEOX-TMS) of
glucose, maltose, glucose-6-
phosphate, ribose, vanillin, and
TMS derivative of sucrose in four
different derivatization methods
(TMSCN, M-TMSCN, MSTFA,
and M-MSTFA) over silylation
time range of 5 min to 30 h.
Relative peak abundances of
TMS derivatives were calculated
using PARAFAC2 modeling and
In(min) scale of silylation time
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groups of sucrose and maltose. At the optimal silylation times
the peak abundances of #rans- and cis -glucose-MEOX-5TMS
derivatives were 3- to 4-fold higher when using the M-
TMSCN method as compared with the M-MSTFA method.
Similarly, at the optimal derivatization time the peaks of
trans- and cis-glucose-6-phosphate-MEOX-4TMS were 3.6-
to 4.5-fold higher in the case of the M-TMSCN method as
compared with the M-MSTFA method. Likewise, in the cases
of trans- and cis-maltose-MEOX-8TMS, methoximation
followed by TMSCN (M-TMSCN) outperformed M-
MSTFA, as the detected derivatives peak abundances were
up to 4.6 times higher at the optimal silylation times.

To evaluate the derivatization efficiency of carbohydrates,
e.g., a number of derivatives and their ratios, six different sugars
were individually derivatized by the four different methods (see
ESM, Figs. S11, S12, S13, and S14). Direct silylation using
either TMSCN or MSTFA resulted in four derivatives of glucose,
- and (-glucopyranose-5TMS (represented 90 % in a ratio of
1:1) and «- and (3-glucofuranose-5TMS, whereas only two
derivatives, cis and frans isomers of glucose-methoxime-
STMS were detected using M-TMSCN or M-MSTFA. Three
sucrose TMS-derivatives were detected using all derivatization
methods. Methoxime sucrose derivatives were not observed
since sucrose is a non-reducing sugar and cannot react with the
methoximation reagent. Of the three sucrose TMS derivatives,
sucrose-8TMS was the most abundant one and eluted last while
the two earlier eluting peaks correspond to sucrose TMS-
derivatives with a lower silylation level. With increasing sucrose
silylation time, the ratios between the TMS-derivatives changed
in all derivatization methods, and in the case of TMSCN, sucrose
was fully converted to the sucrose-8TMS derivative, at the
silylation time of 150 min. By contrast, MSTFA was not able
to fully silylate sucrose, and even after 15 h silylation, all three
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sucrose derivatives were present. In conclusion, direct silylation
of sucrose with TMSCN and MSTFA derivatization was more
efficient in terms of reaction rate and detection as compared with
the M-TMSCN and M-MSTFA methods.

Derivatization of triterpenes

At the optimal silylation times, detection of silylated triterpenes
was comparable when using TMSCN and MSTFA methods,
while the M-TMSCN method has significantly outperformed the
M-MSTFA and abundances of peaks were 1.4-3.4 times higher
(Fig. 4; Table 1). TMSCN-based silylation depicted a maximum
peak intensities of TMS-derivatives of lupeol, (3-amyrin, and
oleanolic acid after 50-60 min of derivatization and peak inten-
sities remained stable even after the silylation time of 15 h.
Whereas, in the case of MSTFA-based silylation metabolite
peaks reached their maximum at 30 min of silylation and further
increase of silylation time resulted in a significant decrease of the
peak intensities.

Derivatization of polyphenols, organic and amino acids

Relative abundances of caffeic, malic, p-coumaric, and
phenyllactic acids' TMS-derivatives were two to six times higher
using M-TMSCN compared with M-MSTFA method in the
silylation time range of 10 min to 15 h (see ESM, Fig. S4). These
TMS-derivatives reached maximum abundances within the first
2.5 h of silylation and after 15 h of derivatization, peak abun-
dances start to decrease, presumably due to degradation of the
TMS derivatives. TMSCN and MSTFA methods performed
almost equally well for the detection of caffeic, p-coumaric,
and phenyllactic acids, and peak intensities increased much faster
and reached maximum at 30-50 min of silylation. Although the
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Fig. 4 Relative peak abundances

of trimethylsilyl derivatives of
triterpenes, such as lupeol,
oleanolic acid, 3-amyrin, and
betulinic acid in four different
derivatization methods (TMSCN,
M-TMSCN, MSTFA, and M-
MSTFA) over silylation time
range of 5 min to 30 h. Relative
peak abundances of TMS
derivatives were calculated using
PARAFAC2 modeling and
In(min) scale of silylation time
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stability of TMS-derivatives of these metabolites were signifi-
cantly lower when using the MSTFA method. At the optimal
silylation times, abundances of TMS-derivatives were 1.5-4
times higher when using TMSCN and MSTFA compared with
M-TMSCN and M-MSTFA. This indicates a higher silylation
efficiency of the solvent free reagents compared with the solvent,
pyridine, interaction that is used during the methoximation.
Higher silylation efficiency of the reagent alone may also be
due to the better availability of the silylating reagent to the
exchangeable hydrogen atoms.

Higher sensitivity and stability of the TMS-derivative was
observed in detection of 2-hydroxy-3-methoxybenzoic acid,
naringenin, catechin, succinic acid, and 2-hydroxycinnamic acid
by using TMSCN-based methods (TMSCN and M-TMSCN)
than MSTFA and M-MSTFA methods (Table 1;and see ESM,
Figs. S5, 6,7, 9, and S9). By contrast, optimal peak intensity of
2-hydroxycinnamic acid was 3.2 times higher using MTFSA
than with TMSCN. However, the intensity of this metabolite was
reduced up to 37 % when MSTFA silylation time was prolonged,
which indicates a possible non-stability of TMS-derivatives in a
MSTFA reagent. Direct silylation of vanillin using TMSCN
resulted in detection of the vanillin-1TMS derivative, where the
hydroxyl functional group was silylated, whereas the aldehyde
functional group remained intact. At the optimal silylation time,
intensity of the vanillin-1TMS peak was almost twofold higher
when MSTFA was applied as compared with TMSCN (Table 1).
However, in the case of M-TMSCN method, the intensity of
vanillin-MEOX-1TMS was 2.23 times higher than in M-
MSTFA derivatization.

At the optimal silylation times of amino acids, valine, gly-
cine, aspartic acid, and phenylalanine, the direct silylation
methods performed much better than methoximation followed
by silylation. Peak intensities were 1.6-58 times higher when
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using MSTFA compared with M-MSTFA, and 1.5-15 times
higher when using TMSCN compared with M-TMSCN meth-
od. Derivatization of serine and threonine were reagent specific
(see ESM, Figs. S10 and S11), in the case of MSTFA, serine
was mainly detected in the form of serine-2TMS, whereas with
TMSCN, the abundance of serine-3TMS exceeded serine-
2TMS several times, as serine-3TMS increased and serine-
2TMS declined over silylation time. However, both serine
derivatives were detected when using M-TMSCN and M-
MSTFA. The silylation reaction rate and peak abundances were
higher in M-TMSCN method compared with M-MSTFA. A
similar pattern was observed in the derivatization of threonine.

Choosing the optimal derivatization time

One of the compromise measures in GC-MS analysis of complex
mixtures is the derivatization time. An ideal situation would be
that the TMS-derivatives of complex mixture metabolites reach
their maximum at the same derivatization time and remain stable
during the analysis. Unfortunately, this is not the case as TMS-
derivatives of different classes of metabolites reach maximum at
the different derivatization times (even in the same reaction
conditions) which varies peak abundances as a function of
derivatization time. Uneven degradation of the derivatives over
time is a further complication. Therefore, it is critical to choose
an optimal derivatization time for simultaneous detection of a
wide variety of metabolites in complex mixtures and with a
reasonable sensitivity. However, until kinetic derivatization
sampling becomes feasible, the derivatization time must be
kept constant over all samples despite not an optimal derivati-
zation time for all metabolites. Consequently, the stability of the
TMS-derivatives depends on the chemistry of the TMS deriv-
ative, moisture content, derivatization reagents, time, and
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temperature. In this study, the significance of the silylation time
in four different derivatization methods were evaluated and
variations in detection at the three silylation time points closest
to the optimal silylation time were calculated. The observed
variations were between 7-21, 6-18, 16-39, and 9-24 % for
TMSCN, M-TMSCN, MSTFA, and M-MSTFA, respectively.
For MSTFA the high peak variations can be explained by an
aggressive nature of the reagent when applied alone. For more
than half of the metabolites of the standard mixture, MSTFA
and TMSCN were equally rapid. However, a more significant
influence of the silylation time and relatively faster product
degradation was observed in the MSTFA method. The relative
low variations when using M-TMSCN or M-MSTFA may be
due to a proton scavenging activity of the solvent pyridine as it
prevents TMS derivative hydrolysis. Despite many metabolites
of standard mixture were derivatized and detected well using
MSTFA, the level of reagent derived unexpected peaks and
variations were relatively higher than the other derivatization
methods.

Derivatization method comparison of blueberry extracts

As direct silylation based on MSTFA exhibit low repeatability,
it was omitted from the GC-MS analysis of the two blueberry

extracts. The first extract is the phenolic extract A, which is
obtained from basic hydrolysis, while the second one (pheno-
lic extract B) is an acid hydrolyzed extract. Fourteen known
and five unknown metabolites were detected from the GC-MS
profiles of the phenolic extract A. All these metabolites were
quantified from each derivatization method, TMSCN, M-
TMSCN and M-MSTFA that were evaluated at the 13 differ-
ent silylation times varying from 5 min to 60 h. Some of the
identified phenolic acids such as vanillic, caffeic, syringic, p-
coumaric, 7 -coumaric, protocatechuic, and gallic acid have
previously been found in a GC-MS study of small polish
berries [30]. Moreover, metabolites like, succinic, malic,
vanillic, p-coumaric, and caffeic acids that are identified from
the Pphenolic extract A were also included in the standard
mixture. This facilitated a comparison of derivatization meth-
od performances from two different complex sample matrices.
For all the detected metabolites, TMSCN method proved to be
superior to MSTFA in terms of sensitivity, derivatization rate
and metabolite stability. At the optimal silylation times, metab-
olite abundances were 1.5-3.0 times higher with M-TMSCN
compared with the M-MSTFA method. However, direct
silylation with TMSCN outperformed the methoximation based
methods and at optimal silylation times, peak intensities were
1.8-8.8 times higher (Table 2).

Table 2 Trimethylsilyl (TMS) derivatives identified from blueberry phenolic extract A, sorted according to their retention time

No. Substance TMSCN?* M-TMSCN?* M-MSTFA? RI® EI-MS®
1 Glycerol-3TMS 4.96 (40) 2.64 (40) (150) 1,267 94
2 Succinic acid-2TMS 2.72 (40) 2.00 (40) (300) 1,308 95
3 Maleic acid-2TMS 3.84 (40) 1.73 (50) (150) 1,351 92
4 Lactic acid dimer-2TMS 4.97 (60) 1.96 (60) (300) 1,391 90
5 Malic acid-3TMS 2.71 (50) 1.73 (60) (300) 1,489 91
6 Unknown-1 2.84 (50) 1.60 (40) (50) 1,760

7 Vanilic acid-2 TMS 4.65 (50) 2.14 (150) (150) 1,768 96
8 Unknown-2 2.10 (40) 1.66 (40) (150) 1,784

9 m-coumaric acid-2TMS 6.71 (60) 2.72 (40) (150) 1,807 93
10 Protocatechuic acid-3TMS 7.43 (50) 2.94 (40) (40) 1,830 96
11 Unknown-3 2.91 (50) 1.23 (60) (150) 1,850

12 Unknown-4 8.48 (40) 2.25(30) (60) 1,866

13 Unknown-5 9.6 (50) 1.5 (50) (60) 1,886

14 Syringic acid-2TMS 8.81 (50) 2.33 (40) (150) 1,907 89
15 p-coumaric acid-2TMS 5.15 (40) 1.51 (60) (150) 1,942 91
16 2-methyl-2-methoxy-mandelate-2TMS 5.30 (50) 1.82 (40) (60) 1,954 86
17 Gallic acid-4TMS 4.87 (50) 2.09 (40) (50) 1,975 39
18 (cis)-caffeic acid-3TMS 4.69 (50) 2.13 (60) (150) 1,992 92
19 (trans)-caffeic acid-3TMS 2.46 (60) 1.81 (150) (150) 2,151 93

# PARAFAC2-based relative abundances of derivatives at their optimal silylation times in minutes (indicated in the brackets), for each derivatization
method are illustrated as their ratio to the relative abundance of the corresponding derivative in the method M-MSTFA

® Retention indices of metabolite derivatives were calculated based on Van den Dool and Kratz equation by using retention times of C10-C40 alkanes

© EI-MS-based mass spectra comparison involved Wiley08, NIST05 as well as in-house triterpenes libraries
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Figure 5 displays the relative abundances TMS-derivatives
of eight most abundant metabolites at different silylation time
points. The figure shows that the direct silylation using
TMSCN resulted in higher metabolite peak intensities than
M-TMSCN and MSTFA methods, at all silylation time points.
Likewise, at every silylation time point, abundances of all
metabolites were higher when using the derivatization method
M-TMSCN compared with M-MSTFA. Figure 5 also shows
an increase in metabolite abundances at the later silylation
times (45 and 60 h). This might be due to an unintended up-
concentration because of the evaporation of the solvent pyri-
dine as a course of long incubation time. Thus, it is important
to find the best compromise in setting the derivatization time
to obtain an optimal profile with high repeatability.

Repeatability of GC-MS analysis of the blueberry extracts
was evaluated by calculating the relative standard deviations
of 19 quantified metabolites in four replicates of each deriv-
atization method at the optimal silylation time. The mean
errors of the derivatization methods TMSCN, M-TMSCN

Fig. 5 Relative peak abundances

and M-MSTFA were 4.6 (varying from 2.1 to 8.6 % for all
metabolites), 9.0 (3.5 to 18.1 %), and 15.2 % (3.7 to 21.3 %),
respectively. These repeatability tests are in agreement with
the robustness of the derivatization methods evaluated in the
standard mixture analysis. As the direct silylation method
TMSCN performed best in terms of silylation reaction speed,
efficiency, and repeatability, this method was used for the GC-
MS profiling of the phenolic extract B. This extract contained
phenolic and other organic acids that are present in free forms,
and conjugated forms with other cell membrane components
via ester and glycosidic bonds. Derivatization of this extracts
with TMSCN for 40 min enabled identification of 27 metab-
olites based on RI and EI-MS patterns, including the
triterpenoids such as, 3-amyrin, oc-amyrin, and oleanolic acid.
This result confirmed the presence of triterpenoid saponins
derived from (-amyrin, x-amyrin, and oleanolic acid, as
previously reported in a study of anticancer properties of
blueberry fruits (V. myrtillus) [36, 37]. The developed proto-
col promises more insight into secondary metabolites of the
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plant-derived samples and enables detection of low concen-
tration metabolites.

Conclusions

The GC-MS profiles of complex metabolite mixtures obtained
from four derivatization methods were different and signifi-
cantly influenced by silylation time. The results suggest that
for the majority of the investigated metabolites of the complex
mixtures, TMSCN-based methods outperformed MSTFA-
based methods in terms of silylation reaction speed, sensitiv-
ity, and repeatability of the methods. However, direct
silylation methods, TMSCN and MSTFA performed equally
well for detection of most phenolic and organic acids. Al-
though, the MSTFA method displayed significantly lower
TMS-derivative stability over time and lower repeatability of
the GC-MS profiles. In general, direct silylation methods
provided better sensitivity and more rapid silylation, though
methoximation based methods illustrated higher metabolite
stability. Thus, based on the results of this study, it is recom-
mended to pay a special attention to the consistency of the
sample preparation and derivatization practice prior to com-
paring GC-MS profiles. In the case of the direct silylation, it is
advised to use 50-100 puL pure TMSCN for complete dried
extracts of the 100- to 200-pL sample and to incubate at 37 °C
for 40 min. If an initial methoxiamination is required then the
trimethylsilylation time must be increased to 120—150 min to
allow silylation of all the labile protons in the presence of
pyridine. The average silylation variations of methods in-
creased in the following order, M-TMSCN<TMSCN<M-
MSTFA<MSTFA, whereas robustness of methods increased
almost in opposite direction, MSTFA<M-MSTFA <M-
TMSCN<TMSCN. This study showed an unbiased and rapid
silylation of various classes of metabolites by using TMSCN
either alone or in conjunction with a prior methoximation step.
These results illustrate high potential of TMSCN as an alter-
native silylation reagent for derivatization of complex biolog-
ical mixtures in GC-MS metabolomics.
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The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum

high-throughput gas chromatography-mass spectrometry based metabolomics

Bekzod Khakimov, Mohammed Saddik Motawia, Sgren Bak, Sgren Balling Engelsen

Additional safety consideration

Most silylation reagents require careful handling and users must follow all safety instructions. According to
European Regulation (EC) No 1272/2008, the silylation reagents TMSCN, MSTFA, as well as other reagents
such as BSTFA, MTBSTFA, BSA, TMCS are all flammable volatile liquids and harmful in contact with skin, eye
and inhalation. Safety data of all these chemicals suggest careful handling (avoid air, moisture, contact with
skin, eye, and swallow) and storage (cool, well-ventilated place, under inert gas, protected from direct sunlight
and water which causes their decomposition). Stability and reactivity data show that all these reagents require
similar conditions to avoid possible danger and degradations: no heat, flame, sparks and water. Avoid strong
acids, base, aldehydes, ketones. The difference in boiling points of TMSCN (115°C) and MSTFA (131°C) is not
significant, while BSA (72°C) and TMCS (57°C) have relative lower boiling point that increases their volatility.
As part of this study, we evaluated evaporation of silylation reagents TMSCN, MSTFA as well as
methoximation reagents and silylation reagent (M-TMSCN, M-MSTFA) both, at room temperature and at the
incubation temperature used during derivatization. 100 ul of reagents were sealed in GC-MS vials using the
same magnetic-silicon septum caps that are used throughout the analysis and penetrated four times by
needles installed in the autosampler. The volume of the reagents, TMSCN and MSTFA did not change after 48h
of incubation at both temperatures, while the volume of M-TMSCN and M-MSTFA was reduced by 10-20%.
The volume reduction of M-TMSCN and M-MSTFA may rather be due to the readily volatile pyridine used in
methoxiamination step. Our data documents, that when using appropriate needles (OD: 0.5 mm) and GC-MS
vial septum caps, the reagents do not evaporate out of the GC-MS encapsulated vials even after two days
which ensure both a safeness of derivatization reactions and high reproducibility. Most GC-MS labs that
perform high-throughput analysis utilize autosamplers that facilitates further derivatization accuracy and safer
handling of reagents.

All  silylation reagents produce byproducts during the reaction: MSTFA (byproduct: N-
Methyltrifluoroacetamide), BSTFA (byproduct: mono(trimethylsilyl)trifluoroacetamide and
trifluoroacetamide), BSA (byproduct: N-trimethylsilyl-pivalimidic acid) and TMCS (byproduct: hydrochloric
acid) fall into the similar categories of hazard classifications (according to European Regulation (EC) No
1272/2008) as the byproduct of TMCN, hydrogen cyanide (HCN). Most silylation protocols use 30-100 ul of

silylation reagents for derivatization of dried complex extracts of plants and/or animal origin. In this study,
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according to the reaction stoichiometry, the amount of TMSCN used for derivatization of standard mixture
was 200-400 times more than the amount of the reagent needed for silylation of all available active protons in
the standard mixture. Moreover, the byproduct, HCN might be consumed during protonation of TMSCN to
form TMSCNH?, since the basicity of TMSCN is much greater than the basicity of HCN. Therefore, the silylation
reaction rate may even increase because TMSCNH" is more electrophile than TMSCN and easily attracts
nucleophile substrate [1].

In addition, we have estimated the amount of the byproduct, HCN formed during a standard silylation
reaction to evaluate the potential toxicity. Potential toxic concentration of HCN in the air is 300 mg/m® [2],
while the smallest size of most standard laboratories is 60 m>. One mole of TMSCN produces one mole of HCN,
thus 0.0003197 mole (an amount that is used in this study) of TMSCN produces 0.0003197 mole of HCN, that
is equivalent to 0.0003197 X 27.03 = 0.0086422 g = 8.6422 mg. For example, if one hundred samples are
derivatized simultaneously, a total of 864.22 mg of HCN will be formed. In an average laboratory of 60 m?, this
amount corresponds to a concentration of 14.40367 mg/m?>. This amount is 20 times less than the toxic
amount of HCN for human health, which is 300 mg/ms. A HCN concentration of 14.40367 mg/m3 may form
only if all TMSCN (40 pl) is used, in all 100 samples, and evaporated. Liberation of this amount of HCN is very
unlikely, mainly due to the small amount of TMSCN that reacts (as mentioned earlier TMSCN is 200-400 in
excess for complete silylation, and accordingly 1/200 of used TMSCN will form HCN), sample is moisture free
and vials are tightly sealed with septum leads. Therefore, application of TMSCN in high-throughput GC-MS

analysis is safe and may provide easy and powerful silylation.

1. M.V.Kashutina, S. L. loffe, V. A. Tartakovskii, Rassian Chem. Rev. 44 (1975) 733.

2. Environmental and Health Effects. Cyanidecode.org. Retrieved on 2012-06-02.

MultiPurpose Sampler (MPS) and Cooled Injection System (CIS) parameters

GC-MS injection parameters of the left MPS equipped with 10 ul syringe were as follows: injection was
performed in sandwich mode, top air volume 1.0 pl, air volume below 1.0 pl, air volume above 1.0 pl, injection
volume 1.0 pl, injection speed 50.0 ul s, fill speed 0.2 pl s, viscosity delay 4 seconds, pre and post injection
delay 2 seconds, vial penetration 30 mm, and injection penetration 40 mm. Parameters of the right MPS,
equipped with 100 pl syringe were as follows: add volume 40 and/or 80 pl, add speed 5 pl s, viscosity delay 4
seconds, post add delay 2 seconds, eject speed 50 ul s™, source vial penetration 30 mm and destination vial
penetration 28 mm. Both syringes were pre and post washed two times with acetone followed by n-hexane.
The agitator parameters for sample incubation were as follows: incubation time varied depending on the

chosen silylation time, agitator speed was 750 rpm, agitator on time was 59 seconds, agitator off time was 1
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second and agitator temperatures were 30°C and 37°C for methoxiamination and silylation, respectively. The
CIS port parameters were as follows: initial temperature 40°C, equilibration time 1.0 min, initial time 0.5 min,

heating rate 12.0°C s™, end temperature 320°C and hold time 0.5 min.

Important considerations in automation of derivatization and GC-MS analysis

High-throughput GC-MS metabolomics requires the use of robots prior to reduce the level of experimental
error. However, automated and simultaneous derivatization of samples requires derivatization reagents to be
present in the autosampler at all times throughout the analysis. Most of the commercially available
derivatization reagents requires specific storing conditions prior to avoid degradation and reactivity lost. It is
important to fulfill the storing conditions of the reagents recommended by the manufacturers when keeping
them on the autosampler for a long time. Moisture and direct sunlight can easily cause degradation of the
reagents, silyl-derivatives and/or alter the original content and in turn introduce a bias in the silylation of
samples [13, 14]. It is also important to use an excess amount of reagent for complete silylation of metabolites
and to suppress a little amount of water, which might be present in the reaction mixture. Hydrolytic stability
of the silyl-derivatives highly depends on the structural and steric features of the molecules. The general
hydrolytic stability of silyl derivatives of the different classes of compounds decreases in the following order:
alcohols > phenols >carboxylic acid > amines > amides [15]. Moreover, stability of trimethylsilyl derivatives
depends on the type of the injection port used in the analysis. Despite most silyl-derivatives of metabolites are
thermally stable, they may degrade in contact with stainless steel injection ports at high temperature, and
therefore it is recommended to use glass injection ports (e.g. glass liners) for high-temperature GC injections
[15].

Most high-throughput GC-MS metabolomic studies aimed to obtain a quantitative data. In order to compare
GC-MS profiles of these samples, it is crucial to keep the derivatization reaction time (time interval between
the addition of derivatization reagent into sample and GC-MS injection) constant over the entire analysis, as
derivatization time differences alters the GC-MS profiles of the identical samples significantly, both
qualitatively and quantitatively. Moreover, caution must be taken not to use polar solvents, with active
protons (e.g. ROH, RCOOH), throughout the derivatization (even for the injection needle wash), since they can
easily react with the silylation reagent. Likewise, appropriate GC column with inert stationary phase (e.g.
silicon-based columns) must be used for the analysis of trimethylsilylated samples. Injection of silylation
reagent into the GC column with a polar stationary phase (e.g. polyethylene glycol based and free fatty acid

based columns) will result in unreliable GC profiles with artifacts and column degradation products.

Table S1. Derivatization products of the metabolites of standard mixture, in the same order as Table 1.
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Figure S1. (a) PCA scores plot of the replicate data matrix (16 x 41), with 16 samples, 4 replicates per method
and abundances of 41 metabolites listed in Table 1. (b) ANOVA analysis of the four derivatization methods
(TMSCN, M-TMSCN, MSTFA and M-MSTFA) based on their scores on PC1, (c) ANOVA analysis of the four

derivatization methods based on their scores on PC2.
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Figure S2. Comparison of total ion current chromatograms of trimethylsilyl derivative of 2,6-diphenyl-phenol
at four different silylation time points, (a) 5 seconds, (b) 30 seconds, (c) 1 minute and (d) 5 minutes with two
silylation reagents, TMSCN and MSTFA. *Silylation time refers to the incubation time of sample in agitator
after addition of the reagent, excluding 35 seconds of robot operation time for washing needle, delays and

injection.
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Figure S3. Scores (a) and loadings (b) plots of PCA model developed on a matrix containing PARAFAC2 scores
(relative abundances of all peaks including MEOX-TMS derivatives of carbohydrates) of TMS-derivatives of
standard mixture detected by four derivatization methods, at 12 different silylation time points (including four
replicates at the optimal silylation times).
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Figure S4. Relative peak abundances of trimethylsilyl derivatives of caffeic, malic, p-coumaric and phenyllactic
acids in four different derivatization methods (TMSCN, M-TMSCN, MSTFA, M-MSTFA) over silylation time
range of 5 minutes to 30 hours. *Relative peak abundances of TMS-derivatives were calculated using
PARAFAC2 modeling and In(min) scale of silylation time was used for better visualization.
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Figure S5. Relative peak abundance of
trimethylsilyl derivative of 2-Hydroxy-3-
methoxybenzoic acid in four different
derivatization methods (TMSCN, M-
TMSCN, MSTFA, M-MSTFA) over
silylation time range of 5 minutes to 30
hours. *Relative peak abundances of
TMS-derivatives were calculated using
PARAFAC2 modeling and logarithmic
scale of silylation time was used for
better visualization.

Figure S6. Relative peak abundance of
trimethylsilyl derivative of Naringenin
in four different derivatization
methods (TMSCN, M-TMSCN, MSTFA,
M-MSTFA) over silylation time range
of 5 minutes to 30 hours. *Relative
peak abundances of TMS-derivatives
were calculated using PARAFAC2
modeling and logarithmic scale of
silylation time was used for better
visualization.
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Figure S7. Relative peak abundance of
trimethylsilyl derivative of Catechin in
four different derivatization methods
(TMSCN, M-TMSCN, MSTFA, M-
MSTFA) over silylation time range of 5
minutes to 30 hours. *Relative peak
abundances of TMS-derivatives were
calculated using PARAFAC2 modeling
and logarithmic scale of silylation time
was used for better visualization.

Figure S8. Relative peak abundance
of trimethylsilyl derivative of
Succinic acid in four different
derivatization methods (TMSCN,
M-TMSCN, MISTFA, M-MSTFA) over
silylation time range of 5 minutes
to 30 hours. *Relative peak
abundances of TMS-derivatives
were calculated using PARAFAC2
modeling and logarithmic scale of
silylation time was used for better
visualization.
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Figure S10. Relative peak abundances of trimethylsilyl derivatives of serine in four different derivatization methods
(TMSCN, M-TMSCN, MSTFA, M-MSTFA) over silylation time range of 5 minutes to 30 hours. *Relative peak
abundances of TMS-derivatives were calculated using PARAFAC2 modeling and logarithmic scale of silylation time
was used for better visualization.
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Figure S11. Relative peak abundances of trimethylsilyl derivatives of threonine in four different derivatization
M-TMSCN, MSTFA, M-MSTFA) over silylation time range of 5 minutes to 30 hours.
*Relative peak abundances of TMS-derivatives were calculated using PARAFAC2 modeling and logarithmic
scale of silylation time was used for better visualization.
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Abstract

Metabolomics attempts to answer questions that lie beyond the powers of genomics, transcriptomics
and proteomics to facilitate an understanding and assessment of the phenotype based on the
metabolome. Metabolomics can serve as (1) a direct tool to explicit secondary metabolites, (2) as an
epigenetic gene amplification on the whole phenome level to define the whole genotype by a
metabolome marker pattern and (3) as a marker for optimal adaptation of a specific genotype to the
environment. Several biologically important questions such as influence of genetic engineering,
breeding, climate change, fertilizers, biotic and abiotic stresses in bioactive components and
nutritional properties of crop plants have been addressed by using metabolomic approaches. This
article focusses on application of high-throughput metabolomics in cereals. Cereal metabolomics is a
newly emerged and rapidly developing omics area that assists in the evaluation of cereals and cereal
products and plays a key role in the development and improvement of cereal cultivars, by quantitative
(and qualitative) global metabolome analysis of phenotypes. In this review, all steps of the
metabolomic workflow, from sample harvesting to data analysis are discussed in detail. Main sources
of errors that lead to an increase in non-sample-related variations are addressed and current
recommended solutions are highlighted. Analytical platforms are discussed and compared in terms of
their sensitivity, resolution and applications. Several raw metabolomic data preprocessing and
analyses methods are illustrated with examples and their advantages and limitations are addressed.
Finally, selected metabolomic studies applied to main cereals are summarized and discussed with

emphasis on analytical technologies and protocols focusing on targeted and untargeted metabolomics.

Keywords: cereal metabolomics, whole-grains, analytical platforms, chemometrics
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1 Introduction

Cereals are ubiquitously grown primarily for food and feed. Cereal plants such as rice, maize, wheat,
barley, rye and oat are grown in many different geographical regions of the world. In each region,
several different cereal varieties might be grown and these varieties have been breed to grow under
the surrounding climate conditions and to give a high yield. The same variety of a cereal plant grown in
two different regions will have phenotypic differences, and these differences will become even more
pronounced if the growing conditions in two regions differ significantly. Unfortunately, the rapidly
increasing climate changes and natural disasters will not always allow cereal plants to recover and
instead prevent their growth and diminish their nutritional value. The current trends of climate change
and increasing natural disasters such as drought, flooding and extreme temperatures challenge the
cereal production and the value of the important agricultural varieties grown today. Therefore, it is of
prime importance to develop new varieties that are resistant and/or easily adaptable to such changes
and maintain the health benefits of the crops. Moreover, there is a huge demand for increasing the

production of cereal crops and at the same time to reduce the use of fertilizers, pesticides and water.

The major effort in adjusting the cereal genotype to changing environments is done with classical plant
breeding employing cloning, mutation and selection in the field and in the laboratory. In addition, to
solve the global challenges mentioned above, molecular scientists employ state-of-the-art techniques
such as genomics, proteomics, transcriptomics and metabolomics. Metabolomics is the newer
approach, which found wide application after the development of high-throughput hyphened
analytical techniques. Metabolomics was founded as a powerful screening approach in toxicology
(Nicholson et al., 1999), but now it has become a key tool to investigate biological questions that are
not easily addressed by applying other ‘omic’ technologies. State-of-the-art metabolomic techniques
allow detection of hundreds of different cell metabolites at the given state of the cell. Since
metabolites are synthesized and turned over in cells within a very short time, the metabolomic
equilibrium of organisms (the metabolome) is constantly changing. For example, the plant leaf
metabolome changes according to the season and to the time and temperature of the day.
Metabolomic changes become more pronounced when the plant is challenged with biotic or abiotic
stresses. Moreover, the metabolome reflect the changes that occur due to breeding and/or genetic
engineering. Therefore, metabolites and/or metabolite patterns are effective biomarkers for
evaluating effects of internal and external stresses and therefore widely used in systems biology and
biotechnology. Several studies have shown the application of metabolomics in crop breeding, genetic
modification and biomarker discovery, for evaluation of intended/unintended changes and for
assessing the quality of the final products (Fernie and Schauer, 2009; Kusano and Saito, 2012; Larkin
and Harrigan, 2007).

Metabolomic analyses of biological systems consist of several steps that are equally important in order
to draw meaningful conclusions. Metabolomic analysis of biological systems usually follow

experimental design, sample preparation, metabolite extraction, data acquisition, data pre-treatment,



data analysis and interpretation. In this review, we focus on each step of the metabolomic workflow
that is part of most cereal metabolomic studies (Figure 1). Metabolite analysis of cereal plants goes
back to the early 20" century and the chemical composition of different cereals was always of central
interest among plant biologists, plant breeders and farmers. Breeding strategies of cereal cultivars
have aimed at improving the yield and/or improving desired quality traits of the plants, and this has

boosted the application of metabolomics in cereal science.
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Figure 1. General Overview of Plant Metabolomics Studies

The chemical composition of a cereal is one of the most important characteristics that define the value
of the product. The main part of the global cereal production is utilized as animal feed where amino
acid (protein) composition and metabolizable energy are the most important quality traits.
Quantitative and qualitative analyses of health beneficial components such as dietary fibres, proteins,
vitamins, sterols, polyphenols and other primary and secondary metabolites largely determine the
phenotype and thus is a fundamental base in most cereal science studies focussing on human foods.
Most metabolomic studies related to cereals are aimed at determining the chemical composition of
cereals and/or cereal products and at understanding the plants’ response to internal and/or external
factors. This review summarises, current cereal metabolomic studies, differentiates the purpose-
orientated metabolomics from untargeted approaches and highlights the role of the current analytical
platforms including their advantages and limitations. In this review, the main steps in the quantitative
metabolomics technology workflow are discussed in the order in which they are performed.
Minimization of non-sample-related variation is illustrated and main sources of experimental errors
are highlighted. A concise tutorial on the preparation of raw metabolomic data for multivariate data
analysis is provided. The main purpose of each step of metabolomic data preprocessing, including



noise reduction, metabolite alignment, peak deconvolution, normalization and scaling are explained
with examples and useful tools are described in detail. Advantages and limitations of the state-of-the-

art, semi-automated complex chromatographic data processing tools are described as well.

Interpretation of metabolomic data and subsequent biological interpretation require an appropriate
statistical treatment. Some of the commonly applied statistical approaches including unsupervised and
supervised multivariate methods are discussed and useful recommendations are provided. Sources of
common errors that lead to misinterpretations are illustrated. The most frequently used classification
methods such as PCA, OPLS-DA, PLS-DA, SIMCA and ECVA are demonstrated with examples and their
advantages and drawbacks are compared. In addition, the review compiles recent studies conducted
on metabolomic analysis of the main cereals, maize, rice, wheat, barley, oat and rye. The current
trends in metabolomics are finally set in perspective of future developments of integrated cereal
phenomics laboratories.

2 Cereal metabolomics
2.1 Background, definition and motivation

Cereal metabolomics comprise all kinds of qualitative and/or quantitative measurements of
metabolites from cereal plants such as maize, rice, wheat, barley, rye and oat (Figure 1). Historically,
analysis of chemical composition of cereals has attracted much attention, mainly because cereals have
always been the main food products consumed by humans since development of agriculture. The very
first attempts at chemical analysis of cereals were primarily focused on measurement of nitrogen
containing compounds (Teller, 1935), phosphorus containing compounds (Anderson, 1912; Rooke et
al., 1949), dietary fibre (Vandekamer and Vanginkel, 1952), sugars (Clegg, 1955; Ponte et al., 1969)
and protein content (Bietz and Kruger, 1988; Wiser and Jones, 1971). From the middle of the 20™"
century, by development of chromatography, mass spectrometry and various spectroscopic
techniques, chemical composition analysis of cereal plants has significantly broadened. In the 1950s,
substantial amounts of research were performed on wheat plants to understand the regulation of
protein (Bilinski and Mcconnell, 1958b), carbohydrate (Mcconnell et al., 1958) and energy expenditure
systems (Bilinski and Mcconnell, 1958a; Mcconnell, 1959) by using '*C labelling. One of the early
phenolic profile screens of various cereal plants was performed in 1962 (Bardinskaya and Shubert,
1962). Until 2000, most cereal metabolomic studies were based on targeted analysis of vitamins
(Sampson et al., 1996), sterols (Berry et al., 1968; Kemp and Mercer, 1968), phenolics (Collins et al.,
1991; Maier et al., 1995; Sridhar and Ou, 1974), volatile compounds (Withycom et al., 1974) and other
metabolites that are known to be related to responses to biotic and/or abiotic stresses (Baker and
Smith, 1977; Tsai and Tood, 1972).



The first comprehensive metabolomic analyses applied to cereal science dealt with metabolomic
fingerprinting of field-grown transgenic wheat samples by using 1D "H NMR and GC-MS (Baker et al.,
2006) and metabolomic profiling of rice plants during plant development by using GC-MS (Tarpley et
al., 2005). Continuous development of analytical techniques and advances in the analysis and
subsequent interpretation of highly complex metabolomic data sets have significantly broadened the
role of metabolomics in cereal sciences. Today, metabolomics based studies assist the elucidation of

important biological phenomena that a few years ago could not be effectively resolved.

Based on the purpose and the type of information gained, metabolomics has been divided into
different approaches e.g., targeted analysis, metabolomic profiling, metabolomic fingerprinting (Dunn,
2008; Fiehn, 2002). However, it is becoming increasingly evident that biological systems are
multivariate and very unlikely to have only a few changes related to one specific effect. In most cases,
breeding, gene modifications and biotic/abiotic stresses result in multiple changes in the whole
phenome of plants (Munck et al., 2001; Munck et al., 2010) also affecting the metabolome in a
characteristic way. Therefore, today, most metabolomic studies aim at covering as broad range of
metabolites as possible to be able to evaluate both, expected and unexpected metabolomic changes.
Up to date, there is no a single method that enables detection of the complete metabolome of a
biological system. Therefore, almost all metabolomic approaches require a compromise to be made to
obtain qualitative and quantitative metabolomic data. Most cereal metabolomic studies aim to assist
in development and/or improvement of cultivars towards increasing their production, resistance
against various biotic/abiotic stresses and enhance their health beneficial properties such as e.g.,
dietary fibre and antioxidant phenolic acids. When conducting such comprehensive studies it is worth
covering as wide a range of metabolites as possible. For example, when investigating an effect of gene
modifications on the metabolite composition of maize, it is important not only to focus on
carbohydrates or proteins, but also evaluate changes in metabolites that occurred in low
concentration levels (e.g., sterols, vitamins, and polyphenols). Since the function of one gene may be
closely related to the functions of the other gene, and one or more metabolic pathways may be
interconnected to some extent. Thus, drawing conclusions on the positive and negative effects of one
specific gene modification must consider multiple factors. In addition, one must consider the high-
throughput capabilities of the applied analytical techniques (number of samples involved in the study)
and ensure that it is suitable for obtaining a required quality metabolomic data.

2.2 Beyond polysaccharides and proteins

Cereal grains mainly consist of starch, dietary fiber, proteins, sugars, lipids and minerals (Kong et al.,
1995; Quinde et al., 2004). Despite this, the presence of small metabolites such as phenolic acids, plant

sterols and flavonoids contribute significantly to the important values of the grains. Recent studies



have documented the health beneficial effects of these low molecular weight phytochemicals and
revealed their antioxidant, radical scavenging and antiproliferative properties (Madhujith and Shahidi,
2007). Among these, polyphenols have recently received much attention due to their preventive
properties against various biotic and abiotic stresses (Amarowicz et al., 2007; Manach et al., 2004;
Zielinski and Kozlowska, 2000). Cereals and cereal products are one of the richest sources of human
polyphenol intake. The main health beneficial polyphenols of whole-grain cereals are phenolic
compounds derived from 4-hydroxybenzoic acid (e.g., vanillic, gallic, and protocatechuic acids) and
hydroxylcinnamic (e.g., ferulic, caffeic, and coumaric) acids. Cereal phenolic compounds are mainly
present in free, conjugated and bonded forms with sugars or other cell membrane components that
alter their solubility and thus their bioavailability and bioactivity. Phenolic acids are important
texturizing agents in cooking-extrusion of cereals (Gibson and Strauss, 1991) and recognized as the

main antioxidant constituents of cereal and cereal products (Vinson et al., 2009).

In addition, some argue that the main health beneficial effects of barley, associated with its B-glucan
content, in fact might be highly dependent on the content of polyphenols and antioxidants (Thondre et
al., 2011). The phytochemical composition of cereals have been studied in a number of projects within
the HEALTHGRAIN diversity-screening program (http://www.healthgrain.org/) (Andersson et al., 2008;
Li et al., 2008; Nystrom et al., 2008; Shewry et al., 2008; Ward et al., 2008). These studies showed that
phytochemical composition of even a single cereal variety may greatly vary based on the growing
conditions and geographical regions and thus differentiate the value of the final grain products. Other
studies have opened new perspectives on targeted breeding of cereal cultivars for increased health
beneficial phytochemicals. All these issues emphasize the importance of low molecular weight
metabolites of cereals in development of future crops, and opens for a new research field related to

cereal science through metabolomics.
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2.3 Cereal phenomics

Cereal phenomics is an emerging field of cereal science that comprises several ‘omics’ technologies to
measure the physical and biochemical properties of cereal plants. Cereal phenomics play a key role in
assessment, development and improvement of cereal cultivars. The importance of plant phenotype
analysis, its objectives and main methodologies have previously been addressed (Eberius and Lima-
Guerra, 2009; Gerlai, 2002). Today, technological developments allow high-throughput acquisition of
qualitative and quantitative phenotype data of plants. However, in cereal science, these technologies
are not yet combined in a way that would facilitate comprehensive phenotype analysis. Cereal
phenomics require close cooperation between several different disciplines, from farming to
bioinformatics and chemistry. Development of a new cereal phenotype usually start from the
consumer and the farmer, by determination of the desired quality traits of the cereal cultivars
followed by identification of the biological background of that specific quality trait. In fact, this is one
of the most challenging steps for cross-disciplinary fields such as genomics, transcriptomics,
proteomics and metabolomics. An overview of cereal phenomics is illustrated in Figure 2. The



establishment of all the steps involved in cereal phenomics is challenging and sometimes the
application of the latest technologies and the most expensive analytical platforms may not be able to
solve the problem. Even today, the most efficient way to solve these issues is to gain more experience,
understand the multivariate nature of the biological phenomena and develop comprehensive

analytical and statistical methods.

3 Experimental design and sampling
3.1 Experimental design and optimization

A comprehensive metabolomic study of complex biological samples requires an appropriate
experimental design and optimization of protocols. Design of a quantitative metabolomics experiment
must enhance the statistical properties of the results obtained based on absolute and/or relative
concentrations of the metabolites (Broadhurst and Kell, 2006). For example, if the aim of a
metabolomic study is to evaluate the effect of two different treatments on growing barley plants, it is
essential to collect enough and representative sample material (mass reduction) from both treatments
and to collect control samples grown under ordinary conditions. Representative sampling can be
effectively investigated by the theory of sampling, but so far sampling studies have been limited to
Near-Infrared Transmission (NIT) spectroscopic sampling of single kernels (Tonning et al., 2006). Then,
the collected samples must be analysed in randomized order and each biological replicate should be
divided into at least two technical replicates to determine the variation caused by the analytical
measurements. It is important to be able to discriminate variation caused by the treatment and
measurement errors from the total variation and elucidate only the true biological variation related to

the effects of two treatments.

Optimization of metabolomic data acquisition protocols is mainly determined by the purpose of the
study. Targeted metabolomics focuses on quantitative detection of one or few metabolites and
optimization of protocols for such a study is simpler than in untargeted metabolomics. Development
of an optimal measurement protocol usually requires a compromise, since metabolites of biological
samples are very diverse and cannot be detected by applying a single protocol. However, when plants
are exposed to different treatments or stress, it becomes difficult, if not impossible, to know a priori all
of the metabolomic pathways and networks that will be perturbed. Therefore, most metabolomics
studies are designed for detection of as wide a range of metabolites as possible. When optimizing a
metabolomic protocol, it is very important to determine the correct response variable(s) that will
improve data quality. For example, in targeted analysis the method can be optimized to increase the
signal to noise (s/n) ratio of the desired metabolite or to reduce the experiment time and cost. In
untargeted metabolomics, the prioritized response variable must be the reproducibility of the

protocol, since only reproducible metabolomic profiles can provide reliable biological information.
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Normally, at the early stages of the metabolomics study, analysts will not be aware of the ratio of the
true biological variation to the variation caused by experimental errors. Therefore, irreproducible
metabolomic protocols may hide true information and result in misinterpretation. Appropriate
optimization and validation of the protocols will ensure that the possible sources of error are
minimized and reproducibility optimized. However, protocols should facilitate detection of as many
metabolites as possible to increase the chance of finding biomarkers or patterns that may explain

biological phenomena.

Metabolomic data acquisition protocols include parameters such as solvent concentration, extraction
time and temperature and variation of these parameters will affect the observed metabolomic profile.
By varying these parameters in different combinations, it is possible to find an optimal condition. This
will require a large number of experiments to be performed which is expensive and time consuming. If
the metabolomic analysis involves extra steps such as sample derivatization, several new parameters
such as derivatization time, temperature need to be optimized. For instance, the optimization of a GC-
MS protocol may include five very important parameters: extraction solvent concentration, time,
temperature, derivatization time and temperature. Then, optimisation of the protocol by varying all
the parameters in four different levels individually, will require a total of 4> = 1024 experiments to be
performed. By applying, a DoE approach e.g. fractional factorial analysis or D-Optimal design; it is
possible to find an optimal metabolomic protocol by performing much less experiments.

Several approaches of design of experiment have been applied to optimize metabolomic protocols. As
an example, (Gullberg et al., 2004) applied fractional factorial analysis followed by Multiple Linear
Regression (MLR) to optimize the metabolite extraction protocol from Arabidopsis thaliana leaves and
for optimization of a metabolite derivatization protocol for GC-MS. Prior to the GC-MS analysis, they
used a D-optimal design and Partial Least Squares regression (PLS). Recently, (Danielsson et al., 2012)
applied statistical design of experiments for optimization of a derivatization method in GC-MS
metabolomic analysis of blood plasma samples.

3.2 Sample preparation and metabolite extraction

Harvesting of plant material, sample preparation and metabolite extraction are crucial steps in cereal
metabolomics. These are the major steps when experimental errors occur that may significantly
deteriorate quantitative metabolomic data. Most cereal metabolomic studies use plant leaves and/or
grain samples (hulled or hull less grains). As mentioned earlier, the leaf metabolome is always in an
equilibrium state determined by internal and external factors. At the harvest time plants experience
stress that may lead to additional alterations of the metabolome. Therefore, metabolomic changes in
harvested plant samples are usually halted by snap freezing in liquid nitrogen or by rapid cooling and

freeze-drying. Particularly for high-throughput metabolomic studies that deal with hundreds or even
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thousands of samples, plant materials are directly sampled into liquid nitrogen followed by freeze-
drying. This serves to preserve the plant tissue and inhibit enzymatic activity and can be used for both
leave and grain samples. Harvested samples must always be at least at — 20 °C freezer until they are

used for extraction.

When quantitative data are required from the metabolomic study, it is essential that samples are
analysed in randomized order and that all samples and handled identically. Practical aspects of the

metabolomics protocol must be considered before starting the experiments:

1) solvents (preferably, not too volatile, since volatile solvents will cause volume errors due to
evaporation and pipetting difficulties), 2) extraction tubes (must be inert to the used solvent, prevent
evaporation, and resistant to the applied temperature), 3) extraction temperature (temperature
stability of metabolites must be taken into account), 4) samples must be processed in smaller batches
(extraction of large number of samples at the same time may increase the error, 5) all the samples that
are subject to comparison must be processed by exactly the same protocol preferably by using a robot.

Different metabolomic protocols have been applied in cereal studies. For example, an extraction
protocol for wheat phenolic acids using 80% methanol followed by basic hydrolysis was provided by (Li
et al.,, 2008), while comprehensive metabolomic protocol for measuring a polar metabolomic
fingerprints of barley plants by using 100% methanol has been reported (Gorzolka et al., 2012).
Another study reports a screening protocol for plant sterols in cereals based on GC-MS metabolomics
(Piironen et al.,, 2002). Extraction of lipids and polar metabolites from rice flour samples was
demonstrated by Frank et al. by using a single protocol based on 100% methanol extraction(Frank et
al.,, 2007). After complete drying of the extract, the lipophilic metabolites were recovered by
dichloromethane, while polar metabolites were extracted using 80% methanol. A simple protocol for
extraction of free amino acids present in the wheat flour samples was presented in a study that dealt
with four different wheat lines to study the effect of environment and genotype on the metabolite
composition of cereals (Curtis et al., 2009). They used 0.01 M hydrochloric acid to extract the amino

acids at room temperature and the obtained extracts were analysed by GC-MS analysis.

4 High-throughput analytical platforms

Most of the recent achievements in systems biology, metabolome flux analysis and biomarker
discovery are the results of advances in the analytical platforms such as GC and LC coupled to different
types of detectors (e.g., MS, UV, DAD, FID), high resolution NMR, hyphenated NMR (LC-NMR, LC-solid
phase extraction-NMR) and other non-destructive spectroscopic methods (e.g., IR, NIR). Depending on

the detectors’ capabilities and analysis mode, these analytical platforms may generate two, three, four
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and even higher dimensional metabolomic data (Figure 3A-3C). In table 1 and 2, we provide a general
comparison of the most often used analytical platforms in high-throughput cereal metabolomics.
These platforms are further discussed briefly in the sub-sections below. Detailed descriptions of the
recent developments in GC-MS, LC-MS, NMR and other spectroscopic methods can e.g. be found in
(Holcapek et al., 2012; Santos and Galceran, 2003).

4.1 LC-MS

Liquid chromatography coupled to mass spectrometry (LC-MS) can be defined in its simplest terms as a
technique that allows mass spectrometric detection of metabolites that are separated based on their
different partitioning coefficients between the mobile phase (solvent) and stationary phase (column).
LC-MS has become the favourite choice of separation after implementation of electrospray ionization
(ESI). ESI offers a good compromise between ionization of non-volatile/polar metabolites that could
not be ionized by the GC-MS conventional ionization techniques (EI and Cl), and minimization
problems caused by the LC solvent entering into the sample interface. In terms of ionization, ESI can
be considered as a method between El and Cl, since it generates less fragmentation ions than El, but
more than Cl. Today, ESI is the most commonly used ionization technique in LC-MS analysis. ESI
fragmentation pattern of metabolites are highly depend on metabolite structure and may provide an
informative fragmentation pattern as well as the molecular mass of the precursor ion. In addition,
some LC-MS platforms employ atmospheric pressure chemical ionization (APCl) and atmospheric

pressure photoionization (APPI) techniques that are limited to ionization of volatile compounds.
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Figure 3. Structure of metabolomic data. (A) Chromatography coupled to mono channel detectors (one measurement
per one scan) generate two dimensional data, for example, GC-FID, GC-SIM(MS), LC-UV, LC-SIM(MS) and CE-UV. Data
obtained from 1D 1H NMR experiments also falls into this category. (B) Chromatography coupled to multi-channel
detectors generates three-dimensional data, for example, GC-MS, LC-MS, CE-MS, LC-DAD. Data obtained from 2D
NMR experiments also fall into this category. (C) Sequential combination of two chromatographic separation and
multi-channel detectors generate four-dimensional data, for example, GC x GC-MS, LC x GC-MS and LC x LC-MS. These
type of data usually analyzed either by unfolding or summing one of the dimensions.

While GC-MS is mainly applicable to the analysis of volatile organic compounds and derivatization-
based detection of non-volatile/polar metabolites, LC-MS allows detection of wider range of
metabolites without a prior derivatization step. As metabolites of complex mixtures separately elute
into the LC-MS ionization chamber, they form m/z ions representative to metabolites, followed by
separation of produced ions based on their m/z values and ions finally reach a MS detector. The

resolution and mass accuracy of the detected m/z peaks depend on the type of the mass analyser
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(Table 2). As in all other separation coupled to mass spectrometry instruments, LC-MS records a mass
spectrum at each elution scan point and the generated data will have a three-dimensional structure
(Figure 3B). The resolution of LC-MS chromatographic signals is highly depend on both the LC
separation and on the scan speed of the mass analyser. Recent advances in LC-MS allowed significant
improvements in the resolution power and peak capacity of the techniques (Allwood and Goodacre,
2010). Ultra-high performance LC-MS systems allowed detection of up to several hundred metabolites

from a single analysis of a complex plant samples (De Vos et al., 2007).

Compared to GC-MS, the application of atmospheric pressure ionization (API) in LC-MS allows
detection of ions in positive and negative modes, which consequently improve the sensitivity of LC-MS
towards the analysis of trace compounds. However, LC-MS based metabolite databases are not as rich
as GC-MS libraries, which make LC-MS peak annotation difficult. Nevertheless, the choice of ionization
and ion separation methods of mass spectrometry is much greater in LC-MS than in GC-MS. Several
types of mass analysers (Q, TOF, Q-TOF, QQQ and IT) have successively been coupled with LC (Table 2).
Quadrupole (Q) mass analysers are one of the most frequently used techniques in LC-MS based plant
metabolomics. The scanning mode nature of Q mass analysers through the whole m/z range allows
simultaneous performance of full (e.g., 50-1200 m/z) as well as selected ion monitoring (SIM)
experiments. SIM increases sensitivity and selectivity of predetermined metabolites and is widely used
in targeted metabolomics. On the other hand, IT and TOF based mass analysers offer higher mass
accuracy and enable identification of unknown compounds. LC-MS experiments utilizing different mass
analysers have been successfully applied in plant and cereal metabolomics (Chang et al., 2012; Grata
et al., 2008; Guerard et al., 2011; Kuzina et al., 2009; Qiu et al., 2010). The application of tandem mass
spectrometry (MS/MS) has further assisted the identification of unknown metabolites (Xu et al., 2007).
In tandem mass spectrometry, two or more mass analysers are coupled to each other by collision-
induced ionization chambers (e.g., Q-TOF, Q-IT) where one m/z ion is trapped, further ionized and the
generated fragment m/z ions are separated by the second mass analyser. This approach will allow

tentative characterization of unknowns such as the number of the sugar moieties in glycosides.

Table 1. Advantages and drawbacks of analytical platforms

Analytical Advantages Drawbacks

platforms
Allow analysis of a wide range of Sensitivity of the technique
metabolites without prior derivatization (especially towards polar
(up to 60k Da) metabolites) depend on a mobile
No requirements for metabolites to be phase (pH, polarity, gradient
volatile program)
Great sensitivity towards polar/easily lon suppression

LC-MS ionized metabolites Difficult to ionize volatile
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High mass accuracy combined with
databases allow identification of unknown
Tandem MS provide valuable structural
information and lays strong foundation for
development of LC-MS based libraries
Larger volume of sample e.g., 1 to 50 ml
(depending on the system) can be injected
and allow metabolite purification

metabolites

Low chromatographic resolution of
structurally similar metabolites
Expensive (prices for high mass
accuracy platforms exceptionally
high)

Provide simpler method of metabolite
separation based on their charge, mass,
and size

Provide higher resolution of metabolites
compared to LC (usually width of peaks are
few seconds)

Only few ul of sample can be loaded,
therefore less sensitive than LC and
metabolite purification is not
possible

Resolution power highly depends on
polarity and pH of solvent and

CE-MS Allow separation of proteins, nucleic acids, | require prior optimization
ionic and very polar metabolites that are Migration times of the same
complicated in LC and GC metabolites fluctuate by changing
Provide very consistent migration times of | the temperature of environment
metabolites, provided that experimental Limitations in electrolyte selections
temperature and buffer is stable
Simpler sample preparation (allow analysis
of heterogeneous samples with interfering
constituents like lipids and precipitates)
High chromatographic resolution allow Narrower range of metabolites can
separation of several hundred metabolites, | be detected compared to LC-MS
including structurally similar metabolites Requires prior derivatization for
like cis and trans stereoisomers of fatty detection of polar and non-volatile
acids metabolites
GC-MS Greater sensitivity towards non-polar and El approach usually gives no
volatile metabolites compared to LC-MS information about the mass of
Harsh ionization technique, El provides molecular ion
valuable fingerprint of metabolites High temperature may increase level
Rich EI-MS libraries are available that of column and derivatization reagent
comprise several hundred thousand based artifact peaks
metabolites
Cheaper than LC-MS and lower running
cost (solvent free)
Allow complete structure elucidation of Less sensitive than MS based
unknown metabolites methods (usually provide detection
Non-destructive (analyzed samples can be | of most abundant metabolites)
reused) NMR signals of different metabolites
Less biased than MS based techniques (all may be overlapped and hamper
NMR metabolites containing NMR active nucleus | quantification

e.g., 1H, 13C can be detected, no matter of
their volatility, polarity, molecular weight,
size, chemical structure and the sample
matrix)

Requires expensive, NMR suitable,
deuterated solvents and higher
running cost than most MS based
methods
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Provide higher reproducibility and lower Expensive (prices for high resolution
experimental error than MS based methods | platforms exceptionally high)
Minimal sample preparation methods Measurement speed is medium
Compound coverage is excellent Reproducibility is medium

Good for untargeted profiling of primary
metabolism, phenolic acids and
oligomerized polyphenols

Non-destructive analysis Limited structural information can

Provide high-throughput analysis of large be gained and it highly depend on

number of samples with a minimum the metabolites e.g., type of

sample preparation functional groups, polarity
Vibrational Highly reproducible Poor resolution

spectroscopy | High measurement speed

Applicable in on-line process control

Well established and validated methods
are available

Compound coverage is excellent

Good for untargeted profiling of the bulk
constituents e.g., carbohydrates, proteins
and lipids with high speed and accuracy

4.2 CE-MS

Capillary electrophoresis-mass spectrometry (CE-MS) is one of the most versatile analytical techniques
widely used in proteomics, metabolomics and forensic science (Kolch et al., 2005; Mischak et al.,
2009). The separation principle of CE is simpler than in GC and LC, and molecules are separated based
on their charge and size by using a capillary tube and electric field. One end of the capillary tube is
connected to the source vial, which is coupled to the anode and the other end is connected to the
destination vial, which is coupled to the cathode. Both vials are filled with electrolytic solution and by
applying electric power, cations generated at the source vial start to migrate to the destination vial
and form an electroosmotic flow. At the same time, molecules of the sample mixture also migrate
from the source vial to the destination vial. The migration time of molecular ions is directly
proportional to their electrophoretic mobility (peo), which is a function of their electrophoretic
velocity (veo) and applied electric field (E) (ueo = veo/E). The migration times of cations through the
capillary differ depending on their charge, size and the electroosmotic flow of the solution. Cations

with the same charges, but different sizes will have different migration times; smaller size cations will
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migrate faster than larger cations. In a similar manner, the migration times of cations of equal size that

differ in their charges will be different and highly charged cations arrive at the cathode earlier.

In contrast to the cations, anions are attracted to the anode and attempt to remain in the source vial.
Since the velocity of the electroosmotic flow exceeds the velocity of the anions that are attracted to
the anode eventually all ions will migrate to the destination vial. Therefore, the migration rates of
most anions are higher than the migration rates of cations. Highly charged and bigger anions migrate
slower compared to the lower charged and smaller anions. An applied electric field does not influence
neutral molecules and their migration towards the destination vial depends only on the physical

interaction with the electroosmotic flow of the solution and on their size.

The nature of the capillary tube coating largely determines the resolution and sensitivity of CE-MS
(Erny et al., 2006). Acidic coatings with pH of 2-2.5 are frequently used for the separation of peptides
and proteins which significantly reduce their interactions with the capillary wall (Kasicka, 2012). The
most common CE-MS combination involves ESI and MALDI ionization techniques (Hommerson et al.,
2011). ESI is a harsher way of ionization and is used in analysis of a wider range of metabolites and
cellular macromolecules than MALDI, which is mostly employed in proteomics and peptidomics. Due
to its high-resolution power CE-MS has been widely applied in metabolomic analysis of complex
samples from e.g., plants, microorganisms, blood and urine (Ramautar et al., 2009). One of the
advantages of CE over LC is that it allows analysis of heterogeneous samples e.g. with interfering lipids
and precipitates. Stable buffer-gradient (electrolytic solution) minimize the interference that is caused
by the continuous gradient change in LC. In addition, the resolution of CE-MS, in many cases, exceeds
the resolution of LC-MS. The higher resolution power of CE is mainly due to the capillary tube wall that
drives the mobility of the ions and provides an even flow and narrow peaks. In contrast, LC-MS
columns resist metabolite mobility and cause differences in mobility between the centre and sides of
the column that in turn result in broader peaks. Currently available CE-MS techniques only allow
loading of up to 1 pl sample, while several ml of sample can be injected into LC-MS. This limits the
comprehensive profiling of complex samples where the detection of low concentration metabolites is

difficult and limits the performance of CE when it is coupled to tandem mass spectrometry.

43 GC-MS

Gas chromatography coupled to mass spectrometry (GC-MS) is the best established hyphenated
analytical technique used in metabolomics. The first GC-MS was developed in the 1950s (Gohlke and
Mclafferty, 1993) and today, modern GC-MS equipment allow simultaneous separation and detection
of several hundred metabolites in complex biological mixtures from a single analysis (Fiehn, 2008; Lisec
et al., 2006; Roessner et al., 2000). Its wide applicability in a broad range of metabolomic analyses has

resulted in detailed studies of all the steps involved in comprehensive GC-MS analysis (e.g. sample

18



preparation, derivatization, optimization, GC separation, MS settings) (Danielsson et al., 2012; Kanani
et al., 2008; Khakimov et al., 2013; Koek et al., 2011; Lisec et al., 2006; Pasikanti et al., 2008; Xu et al.,
2010). GC-MS applies isothermal or gradient temperature programs that allow vaporization of
metabolites and a constant flow of a carrier gas (e.g., helium or hydrogen) enables separation of the
metabolites inside the GC column. The eluted gas phase metabolites are then detected using mass
spectrometry. At each elution time point a full mass spectrum will be recorded at the specified m/z
range (e.g., 50-500 m/z) and the GC-MS data obtained for one sample will be represented by the
intensities of m/z ions recorded at each elution time points (Figure 3B).

For GC-MS analysis, the metabolites must be volatile and thermally stable under the given conditions
of the instrument. Recent advances in chemical derivatization of polar and non-volatile compounds
have considerably widened the coverage of metabolites that can be analysed by GC-MS (Khakimov et
al., 2013). Currently, GC-MS allows the detection of various primary and secondary metabolites with
molecular mass of up to 1200 Da. The high chromatographic resolution and high reproducibility of GC-
MS has resulted in wide use of the platform in high-throughput metabolomic profiling of complex
biological samples (Fiehn, 2008). Several equipment manufacturers have developed autosamplers that
can be integrated with the GC-MS and which enable automatic sample preparation, derivatization and
injection. This, in turn, has provided even greater reproducibility, reduced experimental time, reduced
human interference and enhanced high-throughput analysis. Advanced injection systems developed
for GC-MS allow split or splitless injections of small or large volume, cold or hot injections as well as
temperature programmable sample injection modes (e.g., the cooled injection system (CIS) from
GERSTEL or programmed temperature vaporization (PTV) from Agilent). Depending on the purpose of
the analysis, the different injection modes of these systems can be used interchangeably. Moreover,
headspace GC-MS systems allow the detection of already volatile metabolites (e.g., aroma and small
molecular organic compounds) and provide quantitative volatile profiles. Increased chromatographic
resolution is achievable by applying GC x GC-MS where two GC columns are coupled to allow increased
separation of closely eluted metabolites from the first column onto the second column. This platform
may provide rich metabolomic fingerprints and the data obtained for each sample will have three-
dimensional structure (GC1 x GC2-MS) (Figure 3C).

lonization techniques in GC-MS are limited to those that ionize metabolites in a gas phase e.g.
electron ionization (El), chemical ionization (Cl), atmospheric pressure chemical ionization (APCI), field
ionization (Fl) and electron-capture negative ionization (ECNI). Historically, electron ionization method
(E1), which is considered as a harsh ionization, has successfully been used in conjunction with GC-MS.
In El, gas phase compounds are ionized by a beam of high-energy (70 eV) electrons and provide
representative and reproducible mass spectra of each compound with a unique fragmentation pattern.
Therefore, the EI-MS spectra of compounds are independent of the sample matrix and comparable
between labs. These fragmentation patterns (m/z ions and their ratios to each other) are stored in
libraries as a fingerprint of the compound. Another type of ionization method, which is less frequently
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used in GC-MS, is chemical ionization (Cl). Cl is considered to be a soft form of ionization and may

provide information about the mass of the molecular ion but provides less fragmentation ions.

The mass spectra of compounds recorded by GC-MS also depend on the type of mass analyser. In
modern GC-MS analysis, three different kinds of mass analysers: quadrupole (Q), ion trap (IT) and
time-of-flight (TOF) are mainly employed and differ in their mass resolution power, mass accuracy,
mass range, sensitivity, linear dynamic range and scan speed. GC coupled to quadrupole (Q) MS has
found widest due to its simplicity, robustness, great dynamic range, sensitivity, low cost and small
physical size. However, most commercial GC-MS instruments that are based on quadrupole MS have
less mass resolution power (100-1000 FWHM) and mass accuracy (100 ppm) compared to TOF-MS
(resolution power: 1000-40 000 FWHM, accuracy: 5-50 ppm) and less sensitivity than IT based
instruments (Hart-Smith and Blanksby, 2011). Since metabolites are continuously eluted from the GC
column into the ionization chamber, the MS analyser must be able to scan the required m/z range with
a reasonable scan speed in order to obtain high quality mass spectra, symmetric peaks and to be able
to resolve closely eluted compounds. A high scan speed of the MS analyser becomes even more
important when quadrupole MS is used, since the mass spectra are recorded in the whole m/z range
within a small time interval (ions with different m/z values pass through quadrupole one-after-
another, from low m/z to high m/z). In addition to the overlapping and non-resolved peaks, a low scan
rate in quadrupole MS may cause a distortion of the original relative mass spectral peak intensities of
pure metabolites (mass spectral skewing). This is due to the unstable partial pressure of the
metabolite inside the ionization chamber, since metabolites are continuously eluted into the ionization
chamber (Watson and Sparkman, 2007c). It is a commonly accepted rule that the acquisition time of
complete mass spectra must not exceed one-fifth of the duration of the chromatographic peak. More
importantly, there should at least be nine scan points per chromatographic peak for precise
quantification. In fact, most quadrupole GC-MS techniques readily provides a high quality mass spectra
with 2 to 3 scans per second when recording spectra in the range of 50-500 m/z at unit resolution
(Watson and Sparkman, 2007c). Such configuration of quadrupole GC-MS allow resolution of few
hundred peaks from complex mixture samples and high quality mass spectra of resolved peaks. Data
sets obtained by such a quadrupole GC-MS configuration are favourably accepted by the scientific
community and serve as a powerful tool in high-throughput metabolomic profiling of complex

biological samples in last two decades.

In contrast to Q and IT, TOF based GC-MS instruments provide better sensitivity, more rapid spectral
acquisition rate and higher quality mass spectra without any spectral skewing. This is due to their
pulsed mode m/z separation nature, when all the ions of all m/z values are detected at each scan
point. In quadrupole MS, m/z ions are separated by scanning through the m/z range but only a single
m/z ion passes through the quadrupole rods and reaches the MS detector at a time. Thus, this results
in poorer sensitivity due to loss of some ions during spectral acquisition time. The rapid and pulsed

spectral acquisition mode of TOF mass analyser provides not only greater sensitivity, but also better
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chromatographic peak resolution and shape. At a mass range of 70-600 m/z, GC-TOF-MS allow spectral
acquisition rate of 20 scans per second with an ion abundance sensitivity of 10° and great mass
resolution power and accuracy (Hart-Smith and Blanksby, 2011; Lisec et al., 2006). This facilitates
identification of unknown metabolites, not only based on El fragmentation pattern, but also on
elemental composition. For more information about the principles, advantages and disadvantages of
different ionization and mass separation techniques that are used in GC-MS, readers are advised to see
references (Hart-Smith and Blanksby, 2011; Watson and Sparkman, 2007a; Watson and Sparkman,
2007b; Watson and Sparkman, 2007c). GC-MS data processing that involve retention time shift
correction, deconvolution, baseline elimination and data analysis will be discussed in detail in section
5.1.
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Table 2. Overview of performance parameters of most common mass spectrometers combined with LC, CE and GC. ®
Upper mass range limit of the specified mass analyzer, though it is not often possible to work in this range due to the
limitation of the chromatographic separation. ® Full width at half maximum height (FWHM) is often used measure of
resolution performance and it is defined as RP = M/AM, where M is m/z and AM is the width of this m/z at 50% of the
maximum height. “Upper limit of acquisition speed of GC and LC coupled mass spectrometers, however, this value
highly depend of the investigated m/z range and in some cases it can even be higher.

Matrix-Assisted Laser
Desorption lonization
(MALDI), Fast Atom
Bombardment (FAB)

ionization (TSI)

Analytical LC-MS CE-MS GC-MS
platforms
Electrospray ionization ESI, APCI, APPI, Electron lonization
(ESI) MALDI, FAB, Sonic | (El)
Atmospheric Pressure Cl | Spray lonization Chemical lonization
lonization (APCI) (Ssh), (CI)
Technique Photoionization (APPI), Thermospray

Mass Separation
Technique

Q, IT, TOF, quadrupole-
TOF (Q-TOF), IT-TOF,
triple-quadrupole
(QQQ), Q-IT, IT-Orbitrap,
Q-Orbitrap, IT-Fourier
Transform lon Cyclotron
Resonance (FTICR), Q-
FTICR

Q, IT, TOF, Q-TOF,
QaQ

Quadrupole (Q)
lon trap (IT)
Time-of-flight (TOF)

Mass range (m/z)?

Q-TOF: 100,000
Q-IT: 4,000

QQQ: 4,000
LIT-Orbitrap: 6,000
LIT-FTICR: 10,000

Q: 4,000
IT: 4,000
TOF: 100,000

Q: 4,000
IT: 4,000
TOF: 100,000

Q-TOF: 10,000

Q: 100-1000

Q: 100-1000

Mass resolving Q-IT: 2,000 IT: 1000-10,000 IT: 1000-10,000
power QQQ: 2,000 TOF: 1000-40,000 | TOF: 1000-40,000
(FWHM)P IT-Orbitrap: 100,000 Q-TOF: 10,000

IT-FTICR: 500,000 QQQ: 2,000
Mass accuracy Q-TOF: 2-5 Q: 100 Q: 100
(ppm) Q-IT: 100 IT: 50-100 IT: 50-100

QQQ: 100 TOF: 5-50 TOF: 5-50

IT-Orbitrap: 2 Q-TOF: 2-5

IT-FTICR: < 2 QQQ;: 100

Q-TOF: 50 Q: 20 Q: 20

Q-IT: 20 IT: 20 IT: 20
Acquisition speed | QQQ: 20 TOF: up to 500 TOF: up to 500
(scan/sec)* IT-Orbitrap: 10 Q-TOF: 50

IT-FTICR: 2 QQQ: 20

Q-TOF: 10° Q: 10°-10° Q: 10°-10°

Q-IT: 10° IT: 10*-10° IT: 10*-10°
Linear Dynamic QaQ: 10° TOF: 10*-10° TOF: 10*10°
Range IT-Orbitrap: 10* Q-TOF: 10°

IT-FTICR: 10 QQQ: 10°
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4.4 NMR

Nuclear magnetic resonance (NMR) spectroscopy is probably the most commonly used analytical
technique in metabolomics and it allows structure elucidation of unknown compounds, evaluation of
metabolomic changes associated with biotic and/or abiotic perturbations. In comparison with GC-MS,
LC-MS and CE-MS, NMR is more unbiased, less destructive to the sample matrix and provides a simpler
way of measuring the metabolome of the biological systems. The main advantage of NMR over MS
based techniques is that it can quantitatively detect all metabolites present in the complex mixtures,
no matter of their volatility, polarity, molecular weight, size, chemical structure and the sample matrix,
provided that they possess chemical elements with non-zero spin quantum number, such as proton
(*H), carbon (**C), phosphorous (3'P) and nitrogen (*°N). Since proton (*H) is the most suitable (highly
abundant, most sensitive, produce sharp and informative NMR signals and allow rapid data
acquisition) nuclei for NMR and it is the part of most metabolites, NMR analyses of metabolites are
mainly based on measuring protons. Other important advantages of NMR is that it is a non-destructive
method (analysed samples can be reused), relatively faster and requires much less labour for sample

preparation compared to MS based methods.

In its simpler term, NMR spectroscopic analysis can be described as recording the energy released
from the nucleus of the NMR active atoms in a molecule when they are returned to the original low
energy spin state after being excited by external magnetic field (B,). This energy is defined by AE = hv,
and v, = yB,/(2m), where B, is the magnetic field, y is the gyromagnetic ratio which is an atom specific
parameter and v, is the radiofrequency required for excitation of the low energy spin state (+1/2)
nucleus to high energy spin state (-1/2). Depending on the chemistry of the molecule, nuclei of the
same atoms may give NMR signals at the different frequencies (v,) of the applied magnetic field, which
is generally referred to as the chemical shift (ppm). Chemical shift is the main qualitative
characteristics of the nucleus gained from NMR analysis, and it describes the investigated atom’s (e.g.,
'H) chemical environment. In *H NMR spectroscopy, the other two very important qualitative
characteristics are the splitting pattern of NMR signals of proton (e.g., singlet, doublet, triplet, quartet
or multiplet) and spin-spin coupling constant (measured in Hz). The spin-spin coupling constant refers
to the distance between the splitted NMR signals of one type of proton due to the magnetic field
effects of the neighbour protons. Thus, splitting patterns spin-spin coupling constants and chemical
shifts carry important information on the functionality of and neighbouring protons of the investigated
NMR signal. The coupling constant play a key role in structure elucidation of unknown metabolites and
it becomes even more important when NMR signals are not well resolved and/or represent more than
one metabolite. Resolution of overlapped NMR signals derived from different functional groups and/or
metabolites can be resolved by application of two-dimensional NMR experiments. Two-dimensional
NMR experiments such as correlation spectroscopy (COSY), total correlation spectroscopy

(TOCSY), nuclear overhauser effect spectroscopy (NOESY), heteronuclear single quantum coherence
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(HSQC) and heteronuclear multiple-bond correlation spectroscopy (HMBC) allow structure elucidation

of unknown metabolites with complex chemical structures.

The inherent quantitative nature of NMR spectroscopy rely on the fact that the NMR signal intensity of
the metabolites are directly related to their concentrations (Winning et al., 2008). This quantitative
information is essential for both structure elucidation and quantitative metabolomics. These two
important aspects of NMR have been widely applied in cereal metabolomics (Barding et al., 2013;
Gavaghan et al., 2011). Apart from being a powerful tool in structure elucidation based targeted
metabolomics, NMR plays a key role in untargeted metabolomic analysis of various complex biological
samples (Gavaghan et al., 2011; Lopez-Rituerto et al., 2012). NMR spectra of complex cereal extracts
may be referred as a fingerprint and represent the global metabolome at the given state. These
complex NMR spectra may represent the most abundant metabolites of the sample (e.g. 30-50
metabolites), while low concentration metabolites will not be detected and/or their insignificant
signals will be hidden by the signals of much more abundant metabolites. The main drawback of NMR
is its lower sensitivity compared to MS based detection techniques as it requires a few um of
metabolites for high quality data. However, in many cases NMR based quantification is more precise

and unbiased compared to MS based techniques.

Recent advancements in hyphenation of NMR with separation techniques (Jaroszewski, 2005a;
Jaroszewski, 2005b) development of microflow NMR (Olson et al., 2004), high capacity autosamplers
and high field magnets lead to minimization of sensitivity related issues, enhanced resolution and
shortened analysis time. However, today, prices for these techniques are high and complications in
routine operational procedures greatly hamper their utilization. The majority of high-throughput NMR
metabolomics performed on cereal samples utilize only 1D 'H NMR experiments. However, 1D 'H NMR
based cereal metabolomics illustrated a high potential to uncover elusive biological variations related
to diseased and/or healthy states (Defeo et al., 2011; Lodi et al., 2013), effect of gene modifications
(Barros et al., 2010), and influence of the environment on chemical composition of cereals (Graham et
al.,, 2009). Further examples on application of NMR in cereal metabolomics and importance of
preprocessing of raw NMR metabolomic data (baseline correction, alignment, normalization) for

multivariate data analysis will be discussed in the following sections.

4.5 Vibrational spectroscopy

IR. Infrared spectroscopy is one of the mostly used unbiased fingerprinting techniques and is based on
measuring the physico-chemical properties of metabolites. IR measures the energy absorption that
occurs when the frequency of the applied electromagnetic radiation matches with the transitional
energy of one of the vibrational modes of molecules. The IR region of the electromagnetic spectrum

covers broad wavelength (0.8-1000 um) and it usually divided into three smaller regions (near IR 0.8-
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2.5, mid IR 2.5-25 and far IR 25-1000 um). The IR spectrum of a metabolite can be considered as a
fingerprint, since it reflects energy absorptions specific to the molecular structure and the absorption
peak abundance is directly proportional to concentration. Depending on the complexity of molecular
structure (e.g., chemical bonds), different vibration modes (e.g., stretching, scissoring, wagging,
rocking and twisting) can be present in each molecular and they give a resonance at different
frequencies of the electromagnetic radiation. An IR spectrum of an unknown metabolite is normally
not sufficient qualitative information to obtain complete structure elucidation, but it may assist to

identify the types and gross amounts of chemical bonds and functional groups.

Most modern IR applications apply Fourier transform IR (FTIR) spectrometers. This technique is based
on the interferometer principle and uses light output at all frequencies of the applied IR radiation
simultaneously. In plant science IR spectroscopy has mainly been used to study well-defined
components such as plant cell wall polysaccharides (Kacurakova and Wilson, 2001; Mccann et al.,
1992; Robert et al., 2005), but it has also been used to study the accumulation of mixed linkage beta-
glucan during grain filling in barley (Seefeldt et al., 2009) and to study the structure of zein, the main

maize seed storage protein (Mejia et al., 2012)

NIR. Near infrared spectroscopy is probably the most commonly used spectroscopic technique and has
found wide applications in different research fields (e.g., plant, food, agriculture, medicine and
pharmaceutical science). NIR is based on measuring the energy absorbance due to molecular overtone
and combination vibrations. As mentioned earlier, NIR spectra are usually complex and carry valuable
information about the overall physico-chemical state of the sample. In other words, NIR is able to give
a representative snap-shot of the cereal phenome (Munck et al., 2004; Munck et al., 2010). Since NIR
spectroscopy is a notoriously highly reproducible, rapid and non-invasive technique and requires
minimum sample preparation it is a perfect proxy method for contrasting complex biological samples
prior to more destructive analytical metabolomics platforms. NIR has for long been undervalued due
to its complex unresolvable spectra, but there is now a slowly growing awareness that the cell and self-
organizing biological systems are much too complex to be understood based on destructive analysis
(Lander, 2011). Therefore, integrated analysis of phenotypes to capture an overall phytochemical
signature require unbiased and high-throughput analytical techniques such as by NIR spectroscopy
(Munck et al., 2010).

The combination of NIR spectroscopy with multivariate calibration techniques has found a very broad
use in many different areas of cereal science. NIR technology has been proven to be able to provide
precise and accurate measurements of the bulk constituent in cereal flours (Williams and Norris ,
1988) and high energetic shortwave NIR is able to penetrate single seeds to provide very accurate
information on the protein content of individual seeds (Delwiche, 1995; Pedersen et al., 2002; Tonning
et al., 2006). This property have great potential for cereal breeding and cereal sorting such as utilized
in the TriQ SKNIR sorter (BoMill AB, Lund, Sweden), which use the second and third overtone NIR
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spectra to sort cereal grains according to a preselected quality traits. Additional examples of NIR
applications in cereal science are presented in the following sections and references are compiled in
table 3.

4.6 Electronic spectroscopy

Fluorescence. Electrons of molecules are normally in a low energy state, which ensures their stability.
However, if the electrons are exposed to external energy they will move to a high energy state which is
referred as excitation. Fluorescence spectroscopy is based on electron excitation by using light (visible
or ultraviolet), and records the emitted light formed when the excited molecules return to a lower
energy state. In the process of energy loss, the excited molecules may drop down to different
vibrational low energy states and emit photons at different wavelengths. In order to enhance the
information gained from fluorescence spectroscopy, the samples are usually excited at different light
wavelengths and the emitted light is recorded at a broad range of emission wavelengths (typically
from 200-800 nm). This will form a fluorescence landscape (data recorded for each sample will be a
cub, excitation x emission x light intensities) of the investigated sample and can be referred as a
fingerprint. As emitted light intensity is directly proportional to the metabolite concentration
fluorescence spectroscopy is a powerful quantification technique. However, fluorescence does not
occur in all molecules, as it requires the presence of fluorophores. Fluorophores are the rigid parts of
molecules such as an aromatic ring and double or triple bond that prevent molecular relaxation by
rotational energy. For example, the amino acid tryptophan is the main fluorophores of the most
proteins and it is widely used in fluorescence based proteomics. As in many other quantitative
metabolomics methods, fluorescence spectroscopy requires a robust and optimized sampling protocol.
The development of robust sampling protocols is probably more important in fluorescence since the
fluorescence landscape of a sample is highly depended on a number of matrix effects such as pH,
solvent polarity, concentration quenching, inner filter effects and scatter effects (Christensen et al.,
2006). Nevertheless fluorescence has found a wide application in cereal research primarily due to its
capability to probe the aromatic amino acids and riboflavin (Christensen et al., 2006). For example,
fluorescence in combination with chemometric methods has been used for prediction and
classification of botanical tissue components of complex wheat flour (Jensen et al., 1982) and rye flour
(Kissmeyernielsen et al., 1985; Zandomeneghi et al., 2003). Fluorescence imaging methodology based
on ferulic acid and riboflavin has also been applied to monitor wheat flour refinement and milling
efficiency (Symons and Dexter, 1996). More recently, the method has been developed for classification

of intact flour samples from different cereals (Zekovic et al., 2012).

UV-VIS. In contrast to fluorescence spectroscopy, ultraviolet-visible spectroscopy is based on

measuring the energy absorbed by molecules during the transition from a low energy state to a high
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energy state. UV-VIS uses ultraviolet (10-400 nm) and visible (400-800 nm) regions of the
electromagnetic spectrum. In UV-VIS, n-electrons and other non-bonding electrons absorbs energy in
the form of ultraviolet or visible light that causes their excitation. As in many other spectroscopic
methods, absorption of UV-VIS light (at the specific frequency/frequencies) is unique to the structure
of the metabolite. Although, the method is not sufficient for complete structure assignment, it
provides valuable qualitative and quantitative measure of the sample. In other words, UV-VIS can be
described as an analysis method based on colours that are also observable by human eye. Application
of UV-VIS spectroscopy plays an important role in quantitative analysis of colour components of plant,
food and food raw materials. For example, it has been used in quantitative analysis of silica trace
compounds in different rice varieties (Samadi-Maybodi and Atashbozorg, 2006), non-distractive
analysis of plant leaf chlorophyll content (Li et al., 2009) and prediction of chlorophyll content in

Anthracnose infected leaves of the oil camellia plants (Wu et al., 2012).

5 Turning metabolomics data into information

Comprehensive metabolomic studies involve several steps performed in a sequential order before the
pre-defined biological question can be answered (Figure 1). For example, in order to investigate an
effect of growing conditions and/or abiotic stresses on the final chemical composition of whole-grain
barley samples, one must first decide to what extend the metabolome must be measured (e.g.,
specific pathway or all primary and/or secondary metabolites. It is not always possible or
straightforward to screen the whole metabolome using a single protocol. In many cases, extraction of
metabolites that greatly differ by their physico-chemical properties requires different protocols, while
precision of the quantitative detection largely depend on the applied analytical platform. Once the
metabolomic protocol is defined and optimized to enhance its efficiency (e.g., reproducibility, s/n
ratio, time and cost), the investigated samples must be analysed in a randomized order combining
both control and blank samples. In chromatography, control samples must constitute at least 30% and
blank samples at least 5%, of the total number of samples and must be treated in the same way as the
real biological samples. After obtaining the metabolomic data, it is crucial to inspect and preprocess
the raw data prior to analysis. Figure 4A shows the most commonly applied raw metabolomic data
preprocessing steps. Most of the data preprocessing steps and useful preprocessing tools as well as
metabolomics data analysis, including explorative analysis, classification and regression will be
discussed in detail in the following sub-sections. Applications of various multivariate data analysis

techniques applied on main cereals are compiled in table 3.
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Figure 4. Turning metabolomic data into information. (A) Overview of the route from metabolomic data to the
biological interpretation. (B) Baseline corrected GC-MS total ion current chromatogram of the barley flour phenolics.
(C) iCoshift based alignment of the NMR spectral interval of complex biological mixture. (D) Deconvolution of three
closely eluted metabolites from the GC-MS chromatographic interval.

5.1 Metabolomic data processing

Multivariate analysis of quantitative metabolomic data usually requires preprocessing of raw data.
Preprocessing of chromatography-mass spectrometry and NMR data usually involve data cleaning,

noise reduction, baseline correction, alignment, peak deconvolution, normalization and scaling.

Baseline correction. The baseline of chromatographic and spectroscopic data is a uniformly or
randomly introduced variation caused by artefacts that occur during the analysis. In chromatography,
main sources of these artefact effects might be a gradient program of the mobile phase, column bleed
and temperature/pH fluctuations. In general, sample specific baseline variations that occur in
chromatography-mass spectrometry platforms have more severe consequences compared to
spectroscopic methods. Depending on the analysed sample matrices complexity, number of samples
and repeatability of the separation techniques, GC-MS and LC-MS metabolomic data may possess a

significant baseline level that may shield important biological variations. In contrast, some
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spectroscopic methods such as NIR generate a complex background (no baseline) for all samples due

to the dominating substances present in the sample matrix.

In quantitative metabolomics, baseline drifts must be corrected prior to data analysis. Non-sample-
related variations introduced by baseline variations may exceed the true biological variation several
times, and hamper information level. Most of the chromatographic and NMR data visualization and
processing software (DataAnalysis from Bruker, ChemStation from Agilent and Topspin from Bruker)
do provide build-in baseline correction functions. Most of these functions allow baseline correction of
a single sample at a time. In metabolomics, all samples used in quantitative comparison, must be
treated in the same manner throughout data preprocessing and analysis. Therefore, one must be
aware of that no bias is introduced by baseline correction of each sample separately when using
commercial software. An example of baseline correction of a whole-grain barley phenolic extract GC-
MS metabolomic profile is shown in Figure 4B. Several methods have been developed for baseline
correction of LC-DAD, LC-Raman data (Boelens et al., 2004) and GC-MS data (Xu et al.,, 2011).
FastChrom is a recently developed Matlab based software, (available via www.models.life.ku.dk),
which enabled rapid baseline correction, peak detection and grouping of similar peaks across many

samples simultaneously (Johnsen et al., 2013).

Alignment. Alignment of peaks, which belong to the same metabolite, across all samples, is one of the
most crucial steps of the metabolomic data preprocessing prior to multivariate data analysis.
Multivariate data analysis is able to provide a reliable solution when certain conditions in the data are
met: the intensity axis must be the same for all samples since the basic assumption is that the signals

obey the quantitative Lambert-Beer law.

In chromatography, peak retention times are not always consistent throughout the samples. Retention
time shifts depend on the chemistry of the metabolites, chromatographic system (column, mobile
phase, pressure) and number of samples involved in the study. If injected samples have a high affinity
to react with the stationary phase of the column, retention time shifts, column and metabolite
degradation will occur, which in turn, may deteriorate the analysis results. Retention time
inconsistencies are mainly caused by slight alterations of gradient solvent (LC) or temperature (GC)
programs, inconsistent temperature and/or pressure of column, contaminated injection port or when
number of samples analysed in one sequence exceeds the limit of the one or more parts of the
instrument that require either cleaning or replacement.

In NMR spectroscopy, chemical shift require alignment prior to data analysis. Chemical shifts of
molecules depend on their surrounding chemical environment characterized by unique electron
density patterns of the nucleus. Chemical shifts of the same metabolite observed in two different
sample matrices might slightly differ if the pH of two sample matrices differ, NMR data is recorded at
different temperatures and/or inter- and intra-molecular interactions of metabolites are different in

two sample matrices. In comprehensive metabolomic analysis of complex biological mixtures, almost
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all the above-mentioned sources of misalignments may be present. This requires robust, rapid and

user-friendly metabolomic data alignment tools.

There are several ways to correct for unwanted shifts, but two models are commonly used for the
alignment: compression/expansion (C/E) or insertion/deletion (I/D). The former implicitly assumes that
peak widths can be correlated to the spectral axis. The latter, on the contrary, assumes that the peak
width be invariant within limited ranges of the spectral axis and remains unchanged in case of a shift.
Therefore, the C/E model is most commonly used in the alignment of chromatographic signals with
methods such as Correlation Optimised Warping (COW) (Nielsen et al., 1998; Tomasi et al., 2004)
whereas the I/D model which conserve the peak shapes is used for example in the interval Correlation
Optimised Shifting (icoshift) (Savorani et al., 2010; Tomasi et al., 2011). icoshift aligns two dimensional
chromatographic and NMR data based on correlation shifting of spectral intervals and/or whole
spectra for many samples simultaneously. One of the main advantages of icoshift over several other
alternative methods is that it is very flexible, easy to use, rapid, no artifact will be introduced on the
shape and abundances of the peaks and requires minimum user interfere. However, it requires that
the user is familiar with metabolomic data (e.g., artifact peaks, noise regions, outlier samples) and has
a basic knowledge of Matlab. lllustrative example of iCoshift based alignment of complex 1D "H NMR
data is presented in Figure 4C. The iCoshift Matlab code is available via www.models.life.ku.dk.

Deconvolution. In chromatography, deconvolution refers to the reconstruction of the true profiles of
overlapped and/or closely eluted metabolite peaks. Depending on the dimensions of the
chromatographic data, deconvolution methods greatly differ. In this review, we describe the most
commonly utilized deconvolution techniques applied to one and two-dimensional metabolomic data.
A general overview of deconvolution of two-dimensional chromatographic data is illustrated in Figure
4D. Simplifying a complex sample matrix by dividing it into different fractions (e.g., polar and non-polar
fractions) is laborious and it assists to solve overlapping issues to a rather limited extend.
Chromatographic separation system optimization (development of ultra-high performance liquid
chromatography (UPLC) and two-dimensional chromatography (GC-GC, LC-LC)) can partly solve some
overlapping issues, though comprehensive metabolomic analysis of complex biological samples such as
plant tissue extracts and bio-fluid analysis remain challenging. Deconvolution becomes crucial in the
situations when the resolution power of chromatographic system is not sufficient to resolve peaks of

structurally similar metabolites and/or steric isomers of the complex mixtures.

One of the mostly used deconvolution method is the Automated Mass Spectral Deconvolution and
Identification System (AMDIS) (Stein, 1999) which is developed for GC-MS data analysis. AMDIS allows
automatic extraction of pure metabolite mass spectra from complex GC-MS data and compares the
obtained pure spectra against reference library to identify the metabolite. The software is relatively
easy to use and requires few parameters to set. However, it allows analysis of one sample at a time
and requires validation of deconvolution and search results. Another deconvolution approach is
Multivariate Curve Resolution (MCR) (Lawton and Sylvestr, 1971) . In contract to AMDIS, MCR is a
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versatile technique and can be applied to various kinds of data sets, including LC-UV, GC-FID, GC-MS,
LC-MS and LC-DAD. However, both methods (AMDIS and MCR) can handle only one two-dimensional
GC-MS type of data structure at a time. Deconvolution of chromatographic peaks by MCR requires
chemometric knowledge to choose an optimal number of components that will represent the data
best. MCR based deconvolution of chromatographic data becomes biased if the data is complex, due
to the underestimation of low s/n peaks. Therefore, the best MCR solution can be gained in interval
based chromatographic analysis. MCR has successively been applied to deconvolution of overlapped
and embedded peaks of LC-DAD, LC-MS and GC-MS data (Pere-Trepat et al., 2005; Rodriguez-Cuesta et
al., 2005; Salau et al., 1998). In addition, a graphical user interface has been developed for MCR as a
freely available Matlab toolbox. (Jaumot et al., 2005).

PARAFAC2. PARAIllel FACtor Analysis 2 (PARAFAC2) (Bro et al., 1999; Kiers et al., 1999) has several
advantages over AMDIS and MCR. PARAFAC2 is a multi-way decomposition method that is increasingly
being used in chemometrics and metabolomics. In contrast to AMDIS and MCR, PARAFAC2 can be
applied to three-dimensional GC-MS or LC-MS data (Figure 3C) which include many samples and in
turn greatly enhances the methods capability and robustness in high-throughput data processing.
PARAFAC2 is not only a powerful chromatographic deconvolution technique, but it is also an efficient
and rapid method for solving several metabolomic data distortions such as baseline correction,
alignment of retention time shifts and quantification of low s/n peaks, simultaneously. The method has
successfully been applied in resolution of elusive LC-MS peaks (retention time shifted, overlapped and
low s/n) from complex plant extracts (Khakimov et al., 2012) and for exploring GC-MS data (Amigo et
al., 2008). Application of PARAFAC2 in complex GC-MS profiles of barley seed extracts are shown in
Figure 5. The PARAFAC2 model of the three-dimensional chromatographic data (retention time x mass
spectra x samples) provide three very important outputs that are (1) elution profiles, (2) mass spectral
profiles and (3) concentration profiles. The PARAFAC2 elution profiles represent the true elution
profiles of the modelled chromatographic peaks, facilitate easy and rapid visualization of peak
deconvolution and model validation. The PARAFAC2 mass spectral profiles represent the actual mass
spectra of resolved peaks and enable metabolite identification. The PARAFAC2 concentration profiles
are the area of the each resolved peak that is observed from elution profiles to be used for
quantification purposes. This approach allows deconvolution of severely overlapped peaks profiting
from the fact that the individual peaks have a combined unique mass spectra x elution time profile
(second order advantage).
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Figure 5. Processing of raw GC-MS metabolomic data using Parallel Factor Analysis 2 (PARAFAC2).

Today, PARAFAC2 provides one of the most powerful semi-automated deconvolution of overlapped,
closely eluted and completely embedded peaks from the complex sample mixtures, in a high-
throughput manner. PARAFAC2 is able to model the peaks of the same metabolites as one component
even if they do not represent the same elution profiles (due to the retention time shifts) and peak
shape, provided that they have identical mass spectra. This feature is considered as the automatic
correction of retention time shifts. Moreover, PARAFAC2 eliminates the baseline that hampers analysis
of low s/n ratio peaks by separately modeling a baseline. This in turn leads to more pure mass spectra
that represent metabolites only and improves identification. Thus, PARAFAC2 is a powerful semi-

automated tool for extracting both qualitative and quantitative information without any pre-
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processing of raw data. However, the users must define the number of components based on the data
and developed model statistics. In order to simplify PARAFAC2 modelling and to reduce the
complexity, GC-MS and LC-MS data are divided into smaller intervals in retention time dimension
followed by separate modeling of each interval. Future advances in automation of PARAFAC2
modelling will facilitate to use the method by non-experts in a daily routine analysis and obtain high
quality quantitative and qualitative data directly from raw data.

Normalization. Normalization is an important step in quantitative metabolomics and attempts to
correct data for any non-sample-related variations caused during sample preparation and/or data
acquisition. For example, variations caused by inconsistent sample weight or volume are corrected by
normalizing measured variables of each sample by its weight or volume. Normalization attempts to
minimize non-sample-related variations by identifying some measure of characteristics of the samples
that must be identical throughout all samples and correct the scale of each measured variable using
the sample characteristics. Normalization is usually performed after baseline elimination and before
autoscaling (centering followed by scaling) (van den Berg et al., 2006). Prior elimination of
inconsistent baseline is crucial when the normalization factor does not consider these baseline
variations and in turn, it may increase non-sample-related variations. Normalization is the sample-vice
(horizontal) data correction and it assists to give an equal importance to all the samples of the data set

to influence on a global model.

Addition of the internal standard (IS) to each sample is a commonly applied approach to correct for
variations due to experimental errors e.g., pipetting errors, derivatization, sample injection, detector
sensitivity lose during analysis. Main prerequisite for ISs is that they must be well analysed by a chosen
metabolomic protocol and their signals must have a one-to-one relation with their concentrations.
Moreover, the IS must be added to samples in an earlier stage of analysis and the IS must not interact
with the sample components. Variations observed in the response to the internal standard throughout
the samples will indicate the level of the experimental error and it can be corrected by dividing each
variable response to the internal standard response of the corresponding sample. Unfortunately, many
other sources of non-sample-related variations cannot be eliminated by this approach. This includes,
instrumental errors (e.g., detector variations, scattering effects) and physico-chemical effects (e.g.,
solvent, reagent and stationary phase) that influence the scale of the variables. In order to correct for
such variations, an application of appropriate normalization methods is required that can eliminate
and/or minimize the scaling effects. To date, several normalization methods are used in metabolomics
data obtained from different analytical platforms. This include 1-Norm, 2-Norm, Inf-Norm, standard
normal variate (SNV) (Barnes et al., 1989), multiplicative signal correction (MSC) (Geladi et al., 1985)
and probabilistic quotation normalization (PQN) (De Jong, 1990). These methods apply different
transformation algorithms. For example, 1-Norm divides each variable by the sum of absolute value of
all variables for the given sample, while SNV divides each variable by the standard deviation of all the
pooled variables for the given sample. Normalization methods are not necessarily analytic platform
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and/or sample specific. For instance, one kind of normalization may correct NMR metabolomic data
well and when the same sample set is analysed by GC-MS this method may fail to remove interfering
variations and wise versa. As a rule of thumb, spectral data are usually more robust and generally do
not require strong normalization while chromatographic data often requires normalization to total
area (1-Norm). However, normalization should only be part of preprocessing if there is a need to
correct the data from variability that disturbs quantitative analysis. It is always recommended to
compare the final analysis results obtained from normalized and raw data. Normally, if normalization
reduces non-sample-related variations, then analysis results will improve (e.g., reduced cross

validation error, better prediction models).

Centering. Centering is column-wise pre-processing, where each measured variables is centered
relative to a reference point (the column average). It is normally performed at the end of the
preprocessing steps, just before data analysis. Centering is the default preprocessing step for many
multivariate data analysis methods. For example, in order to perform PCA, data must often be mean
centered. Mean centering subtracts the mean value of the column from each element of the
corresponding column. This ensures zero centre of the data and adjusts offset differences between
high and low magnitude variables, and thus provide easily interpretable models. Mean centered data
exposes important relative variations present between the samples and significantly improves data
analysis (van den Berg et al., 2006).

Scaling. Metabolomic data must be scaled if the applied data analysis method assumes that the
relative magnitude of the variable is unrelated to its importance and if measured variables have
significantly different scales. Scaling provides an equal importance to all the variables to influence to
the final model and eliminates scale differences. Scaling is usually performed after centering and it is
normally the last preprocessing step. During scaling, each variable will be divided by a scaling factor
that is different for each variable (column) (van den Berg et al., 2006). As with other preprocessing
steps, scaling may significantly change the outcome from the data analysis, and therefore it must be
performed carefully. Different scaling methods are currently being used in multivariate data analysis.
The most commonly used method is autoscaling which covers centering followed by scaling by dividing
each variable by the standard deviation of the corresponding column. However, if variables contain
significant amount of noise, autoscaled data will be highly influenced by the noise which may obscure
the data analysis. Several data analysis software provides various kinds of scaling methods as optional
preprocessing techniques. Such scaling methods e.g., pareto, range, vast, level, group and log decay

emphasize different characteristics of the data.

Software for metabolomic data processing. The rapidly developing field of metabolomics and the
generation of huge data sets require user friendly methods that facilitate extraction of relevant
information. Several different metabolomic data processing software have been developed to perform
automated and/or semi-automated peak detection. For example, there are number of commercial
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(e.g., LineUp, MarkerLynx, MarkerView, , MS Resolver, Metabolic Profiler, Profile and Sieve) and freely
available (XCMS, MZmine, metAlign, MSFACTs, MathDAMP, Compare, COMSPARI, HiRes and MET-
IDEA) metabolomic data processing software that deal with LC-MS, GC-MS, CE-MS and NMR data
(Katajamaa and Oresic, 2007).

Most of these software packages perform noise reduction, baseline correction, alignment,
deconvolution and provide a table, where each row corresponds to a samples and each columns
corresponds to a detected peak. These methods require several threshold parameters to be set by the
user and these parameters will have a high influence on the obtained results which has been
underlined in a comparative LC-MS metabolomics study where the same data was processed by three
kinds of freely available software, MarkerLynx, XCMS, and MZmine (Glirdeniz et al., 2012). Most of the
algorithms implemented inside these software are not accessible which hampers the understanding of
how these methods work. In order to obtain quantitative metabolomic data, users of such all-in-one
metabolomic data processing software must understand and carefully observe the processed data
after each step of the data processing. When using such methods, it is also important to know the
nature of the data (e.g., baseline, resolution, mass accuracy, adduct ions and liner range) and correctly

set the required parameters of the methods.

When data preprocessing has been carefully performed, the metabolomics data is ready for
multivariate data exploration. This can either be performed as unsupervised data analysis where no
priori information is used in the data modelling or by supervised data analysis where design

parameters and/or other response variables will guide the data modelling.

5.2 Unsupervised multivariate methods

Unsupervised multivariate methods comprise data analysis techniques that are based on comparison
of objects using variables measured on those objects and do not receive any priory information on
design of experiment or object groups. In plant metabolomics, mostly utilized unsupervised methods
comprising principal component analysis (PCA) (Hotelling, 1933) multivariate curve resolution (MCR)
(Lawton and Sylvestr, 1971) and hierarchical cluster analysis (HCA) are used.

PCA. Principal component analysis (PCA) is the most commonly used multivariate method. PCA
displays the intrinsic data structure in a simple, low-dimensional orthogonal projection and highlights
similarities and differences among groups as well as the variables involved. (Hotelling, 1933; Pearson,
1901). In its simplest term, PCA can be explained as the method that decomposes multivariate data
(e.g., X(n,m) matrix, n samples and m variables) into a smaller number of principal components (PC)
that is good approximation of the original data matrix. If one could imagine the plot of X{n,m) matrix
where each sample n is plotted in m dimensional space, the first PC is the plane that crosses all these
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data points in m dimensional space in such a way that the sum of distances between each data point
to the PC is at a minimum. Likewise, the second PC also crosses all the data points in m dimensional
space with a minimum distance to n samples in such a way that it will be orthogonal to the first PC.
Accordingly, if one would include the third PC, then it would be orthogonal to the first and second PC’s
and so on. Each PC possesses scores and loadings that represent samples and variables, respectively.
In PCA analysis, the most crucial step is to define the number of PCs that would describe the data best.
The number of PCs included in PCA of X(n,m) matrix cannot exceed n and m. PCA that uses two
principal components can be written as X = t; x p;” + t; x p” + E, where t; is the score vector and p; is
the loading vector of the first PC and E is the unexplained part of the data.

Prior to PCA analysis, data must be mean centered and preferably scaled to give equal importance to
all variables. In order to choose an optimal number of PCs, each PC is evaluated by the variance it can
explain. Moreover, outliers that shield the true variation present in the data must be identified by
examining the scores and residual plots and must be removed prior to model validation. PCA is
especially useful for explorative purposes and may assists to evaluate general trends such as how
samples differ and/or correlate to each other, which variables co-vary and identify variables that cause
groupings and/or differentiations. Thus, PCA results are normally evaluated by visual inspection of
scores and loadings plots.

MCR. While a discriminative PCA is an important indicator of whether the study design has been
effective in revealing effects, it has a weakness in relation to result interpretation. Variable
(fingerprinting) or metabolite (profiling) interpretation has to be performed through the loading plot,
which is the backbone of a PCA model. However, due to the orthogonality constrain in the PCA,
spectral loadings are typically not easy to interpret. However, an alternative to unsupervised
classification that does not include the orthogonality constraint is multivariate curve resolution (MCR),
which is similar to PCA, but without the constraint that the PC must be orthogonal. This gives MCR the
appealing property that it can provide resolution of complex profiles into the ‘““true’” underlying
components. However, MCR solutions are generally not unique, hence the solution can be assumed to
be just one arbitrary solution out of an infinity of equally well-fitting possible solutions. For this reason
MCR is often applied with non-negativity constrains and in smaller regions of interest. It is interesting
to note that the ambiguity of MCR can be “overruled” if higher order data is recorded such as GC-MS
data. Then the multi-way MCR relatives PARAFAC (Bro, 1997; Harshman, 1970) and PARAFAC2 (Bro et
al., 1999) can resolve uniquely the underlying profiles. This is now being exploited in diverse

metabolomics applications (Khakimov et al., 2012).

HCA. Hierarchical cluster analysis (HCA) is one of the mostly used clustering methods in plant
metabolomics. HCA is mainly based on two principles. The first principle is to consider each sample as
a separate cluster and then gradually merge it with other similar samples to form clusters. This

approach is termed agglomerative. In contrast, the second approach, called divisive, assume that all
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the samples constitute a single cluster and recursively splits the samples moving down the hierarchy.
In order to form a cluster, HCA uses a metric that estimates similarities between samples and linkage
criteria. It is worth to mention that, even for the same data set, the results of a HCA analysis will differ
depending on the applied metric methods (e.g., Euclidean distance, Manhattan distance or
Mahalanobis distance) and linkage criteria (complete linkage clustering, single linkage clustering or
minimum energy clustering). However, all of these distance measures between samples are valid for
any type of data set. Results of the HCA are normally presented in dendrograms. The method has been
successively applied in LC-MS based plant metabolomic study (Kuzina et al., 2009), human blood
plasma lipidomic study (Draisma et al., 2013), NMR metabolomics based classification (Kim et al.,
2010) and plant phenotype differentiations using untargeted GC-MS and LC-MS metabolomics (Arbona
et al., 2009).

In unsupervised models, such as the PCA model, a priori knowledge can be used to color objects in the
score plot and thereby emphasizing potential groupings and/or quantitative gradients found in data.
However, in metabolomics studies it is common to have a priori knowledge about the data, typically
from a controlled experimental design e.g. cereals grown under condition A and B, that can be
modeled by supervised methods.

5.3 Supervised multivariate methods

In supervised multivariate methods, some of the known data facts (e.g., classes or groups of the data)
can be used to guide the multivariate data analysis. Development and implementation of supervised
methods resulted in a giant leap for classification and regression analyses. Today these methods play a
key role in metabolomic studies dealing with biomarker discovery, quality control, biosynthetic
pathway elucidation and to understand the influence of external effects in living systems. Most
commonly utilized supervised methods in metabolomics include partial least squares analysis (PLS)
(Wold et al., 1983), interval based PLS (iPLS) (Ngrgaard et al., 2000), linear discriminant analysis (LDA),
partial least squares discriminant analysis (PLS-DA) (Stahle and Wold, 1987), orthogonal partial least
squares discriminant analysis (OPLS-DA) (Bylesjo et al., 2006), multiple linear regression (MLR),
canonical variate analysis (CVA), extended canonical variate analysis (ECVA) (Ngrgaard et al., 2006),
soft independent modelling of class analogy (SIMCA) (Wold, 1976), support vector machine (SVM) and

artificial neural networks (ANN).

PLS. PLS is the most commonly applied multivariate regression analysis that aims to build a linear
regression model, which enables prediction of a desired characteristic from a measured multivariate
variable (e.g., metabolites). PLS is similarly to PCA, but its scope is to regress (or force) the result in a
given direction (reference method), and it is thus called a supervised method, while PCA can be

compared to shopping (in the data) without a shopping list (e.g., the data analysis is performed
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without the use of a priori knowledge), PLS regression is similar to shopping with a specific shopping
list. The method was developed since early 1970s by the Swedish statistician Herman Wold and in
1977 the PLS algorithm found its final and present form (Wold, 1979; Wold, 1975). PLS tries to
correlate X data matrix with another Y data matrix and enables estimation of the correlation level. If X
data matrix is relevant to the information present in the Y matrix, PLS will be able to find a common
variance that will facilitate explanation of Y based on X matrix (Wold et al., 2001). The simplest
example can be prediction of dietary fibre concentrations in whole-grain cereals (Seefeldt et al., 2009).
In this study, spectroscopic data from 50 whole-grain samples (X matrix) were obtained and at the
same time, their dietary fibre content was measured using a laborious chemical method (Y matrix).
Since the spectroscopic fingerprint of the grain samples reflects the fibre content, information present
in the X data matrix is very likely to have strong correlation with the corresponding Y data matrix. In
this case, PLS regression modelling can estimate Y (fibre content) using information present in X
(spectroscopic data) with high accuracy and it will be possible to predict the fibre content of new grain
samples. Thus, the main application of PLS is focused on predicting some important sample features
that are expensive and laborious to measure from cheaper, easier and more accurately measured

variables.

The structure of PCA and PLS models are similar (e.g., both possess scores and loadings), however, the
criteria for finding PCs are different. PCA finds the best approximation of the X data matrix, while PLS
maximizes the covariance between matrices X and Y. Principal components of the PLS model explain
the maximum amount of the variation present in X and Y that are correlated to each other. Therefore,
it is possible to predict the scores of Y from the scores of X. Scores and loadings plots of PLS models
can be explained in the same way as PCA models. Evaluation of the PLS models are mainly based on
cross-validation and test set validation results. In supervised data analysis it is important to perform a
validation in order to obtain a reliable and robust model. Depending on the sample set design ,
appropriate validation must be performed. For example, if one thousand samples are randomly
collected and have no design, full cross-validation or random sub-set cross-validation can be used. If
samples are divided in groups and/or subgroups, have some design and replicates, the data must be
divided into test and calibration sets, respectively, in such a way that both data sets will have
representative samples from each group. In the Matlab based PLS-toolbox (Eigenvector Research, Inc.)
these options are already implemented in a graphical user interface that non-specialist users can easily

understand and use it.

One of the most important outputs of the PLS modeling are predicted versus measured plot that
indicates how well the model can predict Y values of unknown samples from their X data matrix and
the Variable Influence on Projection (VIP) plot, which highlights the most important variables that
played a key role in the prediction.
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In classical empirical research, a model requires that the number of variables must be less than the
number of observations, but developments in modern analytical platforms have pushed scientists far
beyond the classical model. Nowadays it is common that more than 10.000 variables are recorded for
each sample, which pushes the chemometric tools to the limit, as they will also increase the extent of
spurious correlations and interferences. In regression analysis, variable selection can often improve
the developed regression models. Several techniques and strategies are available, not only for
reducing the number of variables before the actual model, but also to reduce while modeling. In
typical foodomics studies it is normal to include 100-1000 samples. Subdividing metabolite profiles
down into smaller regions can also be useful to break down GIGA-variate structures into smaller (and
logical) subunits or regions of interest (ROI). An obvious example is the different regions in an NMR
spectrum: aromatic, carbohydrate and aliphatic, but the principle is generic (Savorani et al., 2013a).
Interval PLS (iPLS) (Ngrgaard et al., 2000) has proven efficient in improving and simplifying
classification models by breaking the model up into smaller intervals (either consisting of many
metabolites or one metabolite per interval) of data (Di Anibal et al., 2011; Ferrari et al., 2011). The use
of interval models is generally a healthy principle when analyzing raw metabolomics data sets and not
“just” metabolite tables. Interval models use fewer variables which contain fewer interferences which
in turn will lead to more parsimonious models and lead to enhanced model performances and
interpretability (Savorani et al., 2013b). When few intervals and/or fewer metabolites are found to be
optimal for the best classification, this also makes the subsequent biological interpretation simpler.
The method found a wide application in conjunction with metabolomic data obtained from
spectroscopic (Borin and Poppi, 2005; Kristensen et al., 2010; Paschoal et al., 2003) and spectrometric
(Marhuenda-Egea et al., 2013) methods.

PLS-DA. Partial least squares discriminant analysis (PLS-DA) (Stahle and Wold, 1987) is one of the
favourite classification techniques applied in plant metabolomics. A PLS-DA problem is based on
finding variables and directions in multidimensional space that can distinguish samples that belong to
the different classes. As in PLS, PLS-DA uses X and Y matrices and predicts the response variable Y that
is not a measured feature of the samples, as in the case of PLS, but class/or group categories of the
samples (dummy matrix). The Y “dummy” matrix used in PLS-DA consist of zeros and ones and
contains as many columns as there are classes (each column defines one class and ones mean that
these samples belong to the class and the rest are zeros). PLS-DA decomposes X and Y matrices into
two matrices of scores and loadings in a dependent manner. Thus, the scores of Y block determine the
loadings of X block, while scores of X block will determine the loadings of Y block. Therefore, PLS-DA is
classified as supervised method. Detailed techniques for using of PLS-DA classification method is given
in (Barker and Rayens, 2003).

Where a normal PLS model is optimized according to the prediction error (e.g. RMSECV), the PLS-DA
should be optimized based on classification parameters (e.g. rate or percentage of misclassified

samples). Due to strong classification performance, the PLS-DA based classification is so widespread in
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plant metabolomics (and more frequently used than classical PLS modeling) and most probably it will
be dominating classification tool in future metabolomics studies. However, in order to interpret the
biological information gained from the PLS-DA modelling, model must be validated. Most commonly
used validation methods in PLS-DA are cross-validation (type of CV highly depends on the design of the
data) and test set validation (data must be splitted into calibration and test sets, where test set
samples must comprise at least 30% of total samples). Validation results are crucial when selecting a
number of latent variables (LVs). Optimal numbers of LVs are determined by considering the variance
captured by each LV, RMSEC and RMSECV values obtained from each modelled classes, and by plotting
the measured versus predicted class categories for each modelled classes. The most important PLS-DA
model parameter is the number of misclassifications (NMC) which is the sum of the false positive (FP)
and false negative (FN) samples (NMC = FP + FN). In addition, PLS-DA models can be checked for
sensitivity and specificity, for all modelled classes (both for calibration and cross-validation results), by
plotting the Receiver Operating Characteristics Curve (ROC curve) (Zweig and Campbell, 1993).
Sensitivity illustrates the models’ ability to correctly classify the samples to the class that they belong
to and it can be written as Se = true positive (TP)/TP + FN. Specificity is another measure of the model
that shows how well it can predict the class of the control samples and it will be described as Sp = true
negative (TN)/TN + FP (Szymanska et al., 2012; Westerhuis et al., 2008). When these two parameters
of the model are close to one, the model is usually considered as a valid model.

As in PLS modeling, PLS-DA allows to perform variable selection to improve the model quality. It is
know that the variable selection feature of the PLS-DA is best suited when two class problems are
analysed. However, improvement of the PLS-DA model by variable selection is also possible during
model development by excluding those variables that have insignificant classification power in all
classes. In addition to PLS-DA, orthogonal PLS-DA (OPLS-DA) is also a commonly used classification
method in plant metabolomics. The main difference between these methods is that OPLS-DA imposes
orthogonality that allows extraction of two kinds of variations present in the X data. The first variation
explains Y matrix and is used for developing the model, and the second variation is orthogonal to the
information present in the Y matrix (Trygg et al., 2007). Some have argued that this feature of the
OPLS-DA makes it more powerful for interpretation of classification models compared to PLS-DA and
SIMCA (Bylesjo et al., 2006). However, one must ensure to use an appropriate validation method when

using such a method to avoid model overfitting.

SIMCA. Soft independent modeling of class analogy (SIMCA) (Wold, 1976) is another powerful
classification technique used in metabolomics. SIMCA is based on developing separate PCA models for
each class independently and compare samples of different classes in principal components’ space
that is less complex than the original variable space (Wold and Sjostrom, 1977). In SIMCA, each class is
represented by PCs and the number of PCs may differ between classes. As in PCA, the optimal number
of PCs that provides the best approximation of the class is the most important parameter that needs

to be validated. Since under- (lower number of PCs) or over- (higher number of PCs) estimated models
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may lead to false positive as well as false negative results. In order to evaluate SIMCA model
performance, it needs to be validated by using cross-validation or test set validation. One of the main
advantages of SIMCA over other competitive classification methods is that it uses PCA approximation
of the data to capture the variance of each class separately and allows comparison of classes using PCs
that are free of any noise that may be present in the data. Moreover, SIMCA assigns the class of an
unknown sample only if it falls to some category of samples with high probability, otherwise the
unknown sample will not be assigned to any of the classes. SIMCA is also very flexible with respect to
data size (smaller sample sets with only 10 samples and bigger data sets with several thousand

variables can also be modelled), and this makes it a very useful tool for metabolomics.

ECVA. Sometimes it is useful to evaluate data using an alternative classification method such as
Canonical Variates Analysis (CVA) and in particular its extension that is able to handle datasets with
more variables than objects: Extended Canonical Variates Analysis (ECVA) (Ngrgaard et al., 2006). In
analogy to CVA, ECVA optimizes the within class variation divided by the between class variation
criterion by finding new multivariate directions. ECVA has a great potential within metabolomics
classification analysis, but it should be noticed that there will not necessarily be a large difference in
the misclassification rate between different methods such as SIMCA, PLS-DA, OPLS-DA, and ECVA as
they all have their advantages and disadvantages. However, there will be special cases such as for
example that ECVA in contrast to PLS-DA is able to handle situations where three groups are separated
along one direction. So far ECVA has only been applied to a limited number of metabolomics
application but displayed an effective classification potential (Lopez-Rituerto et al., 2012). ECVA and
iECVA methods are very flexible, but requires that the user can work in the Matlab environment and it
allows the user to decide the interval division boundaries to model separately. Complete ECVA

algorithm is freely available from www.models.life.ku.dk.

5.4 Exploiting the experimental design: ASCA

Biological systems exhibit sources of variation due to a large number of factors, e.g., varieties, days
after flowering, field, fertilizer, abiotic stress, biotic stress etc. Realizing this led R.A. Fisher (Fisher,
1918) (the father of modern statistics) to develop experimental designs suited for estimation and
handling of variation due to such factors. The paired t-test and analysis of variance (ANOVA) are
examples of models used to analyse univariate data from designed experiments. The backbone of
these methods is to estimate variance related to a nuisance (orthogonal) factor (e.g., subject) and
remove it. In this way, the variation of interest, e.g., treatment, is emphasized, which in turn increases
the chance of finding something interesting (often referred to as statistical power) (Engelsen et al.,
2013). The multivariate equivalents of these methods include analysis of variance simultaneous
component analysis (ASCA) (Smilde et al., 2005). The principle of ASCA is to split up the original data
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matrix into contributions from the different design factors (e.g. abiotic stress and days after flowering).
This splitting of information into two (or possibly even more) orthogonal subspaces, one part that is
unrelated and hence irrelevant for the study design factor of interest and one part that contains the
relevant information, is the crux of ASCA. Whereas the variable selection can be considered as a
horizontal elimination of interferences, orthogonalization can be considered as a vertical elimination
of interferences in the data matrix. If the study design is balanced it will enable estimation of the
different design factors’ contributions and in contrast to OPLS-DA (Bylesjo et al., 2006) that does not
utilize any information other than the factor of interest (e.g., treatment), ASCA utilize the different
design factors. We foresee a rapidly increasing use of ASCA in balanced study designs in cereal
metabolomics and a feasibility study has already been conducted in plants metabolomics in which
effects of growth conditions and processing on Rehmannia glutinosa (traditional Chinese Medicine)
was studies using a GC-MS fingerprint strategy and ASCA analysis (Chang et al., 2006).

5.5 Network analysis

Network analysis plays one of the important roles in evaluation of plant-environment, gene-
metabolome interactions, and effects of various biotic/abiotic stresses in plants, and thus assist in
understanding of systems biology, metabolite biosynthesis and functions of genes (Barabasi and
Oltvai, 2004; Bassel et al., 2012; Yamada and Bork, 2009). Network analysis covers various statistical
methods of measure e.g. correlation-based networks (CN), similarity measure (SM), euclidean distance
(ED), knowledge-based approaches, to evaluate (1) relationships between different components of
biological systems e.g., genes, proteins, and metabolites, (2) covariance of these components as a
response to biotic/abiotic factors and genetic modifications (Toubiana et al., 2013). Network analysis
assist in combined analysis of complex data sets obtained from different ‘omics’ platforms such as
transcriptomics, proteomics and metabolomics. In other words it can be describes as the method that
allows identification of origins of one or more quality traits of phenotypes e.g., resistance to salt and
drought or pathogenesis, higher yield, in a genetic level. Thus, networks generated from metabolomics
and other data sets may provide initial knowledge in complex biosynthetic pathways, crosstalk
between distinct pathways and responses of different components of biological systems to
environmental and endogenous changes. Recently, several web-based tools have been developed for
gene co-expression network analysis for gene discovery in specialized metabolism (Higashi and Saito,
2013). Most recent reviews in network analysis (Higashi and Saito, 2013; Toubiana et al., 2013)
comprise several examples of a use of the method in plant metabolomics, improvement and

development of crop plant species such as maize and rice.
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6 Application of cereal metabolomics

In the last two decades, metabolomics has found a wide application in cereal science. Recently, Balmer
et al., 2013, published a review paper on metabolomics of cereals under biotic stress (Balmer et al.,
2013). That review highlights some applications of metabolomic analyses applied for uncovering biotic
effects and illustrates the current knowledge and techniques. Figure 6 shows the current trend of
cereal metabolomic studies registered in PubMed Central between 2000 and 2012. In this section, we
review metabolomic studies applied to main cereals, maize, rice, wheat, barley, oat and rye. In
addition, table 3 comprises more than one hundred cereal metabolomics studies performed on

different analytical platforms.
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Figure 6. Number of cereal metabolomic studies published in PumMed Central between 2000 — 2013. Number of
publications were counted by using key words “cereal name” and “metabolomics”.

6.1 Maize

Most of the comprehensive maize metabolomic studies focus on evaluation of transgenic lines,
comparison of transgenic lines versus non-transgenic lines and influence of abiotic stresses. A study
compared two GMO maize lines (Bt-maize) and their corresponding non-GMQ parental lines grown
under the same conditions utilized CE-TOF-MS based metabolomics (Levandi et al., 2008). They
showed that some metabolites as possible biomarkers for transgenic maize varieties and illustrated
the potentials of CE-MS based approach in the evaluation of GMOs. A comparison of phenotypic

changes influenced by genetic modifications and by the environment was studies by a combined
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transcriptomics, proteomic and metabolomic analysis of two GMO (Bt-maize and herbicide-tolerant
Roundup Ready maize) and corresponding non-GMO parental maize lines (Barros et al., 2010). This
study involved GC-MS based metabolomics and showed that environmental factors caused more
variation in the different metabolites profiles than the different genotypes. The other study also dealt
with the impact of genetics and environment on the maize grain metabolome based on inbreed lines
(Skogerson et al., 2010). In that study, metabolomic comparison of GMO maize lines was based on 119
identified metabolites by using GC-TOF-MS. In contrast to the previous study, they have reported that
more metabolomic variations were caused by genotypes than by different geographical locations. This
study also depicted a high genotypic dependence of small molecular metabolite pool where one
genotype showed association with increased concentration of fatty acids and organic acids, while
another line illustrated increased levels of amino acids and carbohydrates.

A NMR-based metabolomic profiling approach showed a strong potential to evaluate the influence of
salt stress on the maize metabolome (Gavaghan et al., 2011). The study showed a clear difference in
amino acids, small molecular organic acids and sugars concentrations detected from the shoots and
roots of control and treated maize lines. They concluded that there is a higher salinity effect in shoots
than in roots. Frank et al., 2012, performed a comparative study to evaluate genetic modifications
versus environmental influence using GMO (Bt-maize) and non-GMO maize varieties grown under
different conditions, including several growing locations and seasons. The study was based on GC-MS
metabolomics and maize metabolite extracts were analysed in separate fractions containing lipids and
polar metabolites. They showed a total of 3% of metabolome difference related to genotype and up to
42% difference caused by different growing locations and seasons. Another maize metabolomics study
focused on herbivore-induced metabolites in leaves and roots of resistant and susceptible maize
(Marti et al., 2013). This study mainly involved UPLC-TOF-MS analysis (for untargeted analysis of leaves
and root samples), CapNMR (for structure elucidation of 32 differentially regulated compounds) and
direct infusion tandem MS/MS. The paper shows that by infestation of maize leaves, concentrations of
1,3-benzoxazin-4-ones, phospholipids, N-hydroxycinnamoyltyramines, azelaic acid and tryptophan

were significantly increased, while only minor changes occurred in the metabolome of the roots.

GC-MS metabolomic analysis of 289 diverse inbred maize lines showed the power of metabolomics for
linking genotype and phenotype (Riedelsheimer et al., 2012b). This study dealt with genome-wide
association mapping (GWAS) of maize leaf metabolome including 118 distinct metabolites, 56,110
single nucleotide polymorphisms (SNPs) and several agronomic traits of mature maize plants. The
GWAS approach demonstrated that 26 distinct metabolites were highly associated with 26 SNPs and
allowed identification of lignin precursors, p-coumaric and caffeic acids to be strongly associated with

a region of chromosome 9 harboring a key enzyme in monolignol synthesis.
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6.2 Rice

GC-MS based metabolomic profiling of two low phytic acid rice mutants generated by y-irradiation and
the parental wild-type variety exhibited, on average of, 34% and 42% of differences in the total
metabolome (Frank et al., 2007). The rice varieties grown in four different field trials did not display
consistent metabolomic changes due to the environmental effect. However, some metabolites were
up- or down-regulated in the same manner in low phytic acid rice mutants grown in different fields. A
rice metabolomics study evaluated metabolomic changes in rice seeds during germination by using
GC-MS (Shu et al., 2008). The rice metabolite extracts were divided into lipophilic and hydrophilic
fractions covering a broad range of fatty acids, hydrocarbons, sterols, sugars and amino acids. A total
of 615 GC-MS peaks were semi-quantified, out of which 174 were identified based on MS. The first
principal component of a PCA model developed by using this metabolomic data showed a germination
time trend that was identical for the three rice materials investigated. It was shown that mainly the
polar metabolites contributed to the time dependent separation of rice samples and illustrated a
dynamic pattern. Chang et al., 2012, evaluated unintended effects of GMO rice varieties by using LC-
MS and developed a protocol that allowed detection of the metabolomic differences caused by the
environmental and genetic effects (Chang et al., 2012). The obtained results illustrate a greater role of
the environment than on gene modification for most of the metabolites, including amino acids, fatty

acids, and small molecular organic compounds.

Antioxidant properties of commercial wild rice were evaluated by LC-DAD and LC-TOF-MS analysis of
soluble and insoluble phenolic acids from methanol extract of flour samples (Qiu et al., 2010). The
study showed that the radical scavenging activity of the wild rice exceeded that of the white rice
(control) up to ten times. Quantitative metabolomic analysis of wild rice extracts proved that the main
phenolic acid constituents were ferulic and sinapic acids that were mainly present in insoluble
fractions. Another study compared GC-MS and NMR metabolomic data for understanding the rice
metabolome response to submergence stress (as e.g. under flooding) (Barding et al., 2013). This study
revealed advantages of multi-platform metabolomics and showed low molecular mass response
metabolites that could be detected either by NMR or by GC-MS. Sana et al., 2010, studied a bacterial
pathogen (Xanthomonas oryzae) effects on two different rice varieties that are resistant and
susceptible to the pathogen, respectively. LC-TOF-MS and GC-TOF-MS based metabolomic approaches
revealed detection of almost 800 metabolites, out of which 154 were identified based on their
retention indices and MS. Multivariate analysis of the metabolomic data assisted to uncover several
biosynthetic pathways (acetophenone, xanthophyll, fatty acids, alkaloids, glutathione, carbohydrate
and lipid) that were affected by the bacterial pathogen.
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6.3 Wheat, barley, oat and rye

Wheat

Proton NMR metabolomics study performed on GMO and their corresponding parental lines of wheat
varieties showed greater metabolome variations related to the growing year and locations than
genotype (Baker et al., 2006). Multivariate analysis of NMR data obtained from the wheat lines grown
in the same year revealed some separation between GMO and parental lines that were mainly due to
maltose and/or sucrose concentrations. GC-MS analysis of the same wheat lines grown in the same
year illustrated that plants differ in the content of glutamic and aspartic acids and their amide
derivatives. Another study evaluated the effects of genotype and environment on free amino acids of
two commercial and four double haploid wheat lines (Curtis et al., 2009). In that study total amino acid
profile of the wheat lines were screened using GC-MS and environmental and genetic effects on
asparagine and other amino acid content was evaluated using canonical variate analysis. The study
showed that desirable wheat lines could be identified by this selection method. NMR based
metabolomic profiling of four different European wheat varieties revealed differences in
concentrations of glucose, fructose, betaine, aspartate, choline and some other small molecular
metabolites (Graham et al., 2009). That study illustrated a rapid biochemical mapping of wheat
varieties using NMR spectroscopy. A recent study performed comprehensive GC-MS metabolomic
profiling of four durum wheat lines grown under conventional and organic farming systems over three
years (Beleggia et al., 2013). The study focused on evaluation of genotype, environment and genotype-
by-environment on metabolome and quality and once again showed a dominated influence of
environment over genotype. A number of studies performed within the HEALTHGRAIN diversity screen
program also demonstrated the effect of environment and genotype on the metabolome of wheat
cultivars (Andersson et al., 2010; Fernandez-Orozco et al., 2010; Lampi et al., 2010; Li et al., 2008;
Shewry et al.,, 2010). In these studies essential bioactive compounds e.g., phenolic acids, tocols,
sterols, folates and dietary fibers of 26 wheat cultivars were screened using different metabolomic
approaches. A targeted metabolomic approach that utilized GC-MS revealed an increased level of
amino acids such as proline, tryptophan, valine, and leucine in one drought intolerant and two tolerant
lines, while the drought tolerant wheat lines also exhibited a decreased level of organic acids under
drought stress conditions (Bowne et al., 2012). Moreover, they showed that drought stress has a
similar effect on the metabolomic alterations of the two tolerant wheat lines, though the level of the

effect was different.
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Barley

Within the HEALTHGRAIN diversity screen program, Andersson et al., 2008, performed a wide
phytochemical analysis of ten different barley lines grown in one location (Andersson et al., 2008).
They studied phytosterols, phenolic acids, tocols, folate, alkylresorcinol as well as dietary fibers using
LC-DAD, GC-MS and other chemical methods. Phenolic acids of barley lines were quantified from three
different fractions where phenolics were found in free forms, conjugated and bounded. In the other
study, GC-MS based metabolomics assisted to uncover the salt stress responses of two barley cultivars
that differ in salinity tolerance (Widodo et al., 2009). The study showed that the more salt sensitive
barley line has a tendency to accumulate more amino acids, including proline, and the polyamine
putrescine. While, the salt tolerant line showed an induced concentration of hexose phosphates and
tricarboxylic acid cycle intermediates. Others have employed LC-MS metabolomics to identify
metabolites of barley plants related to the resistance mechanism against the fungi Fusarium
graminearum (Bollina et al., 2011). They studied metabolomic profiles of five F. graminearum resistant
genotypes and one susceptible genotype and out of 1430 peaks, 115 metabolites were putatively
identified as being related to the resistance. These include different groups of metabolites such as
flavonoids, fatty acids, phenylpropanoids, linolenic acid, p-coumaric and sinapic acids. In another
study, metabolite fingerprints of barley whole seeds, endosperms and embryos was analyzed by using
GC-MS, during industrial malting, and the obtained data were analyzed by PCA (Gorzolka et al., 2012).
This study revealed potential metabolite markers for a specific developmental stage that could be used
in industrial process control. Another barley metabolomic study performed untargeted LC-MS analysis
that was aimed at elucidating effects of pathogenic fungi Gibberella zeae (Kumaraswamy et al., 2011).
In that study, LC-MS metabolomic data obtained from aqueous methanol extracts of spikelets from
different barley genotypes were processed by the XCMS metabolomics software. The study included
barley genotypes that are resistant to the fusarium head blight (FHB) pathogen (Gibberella zeae) and
susceptible lines that were infected by this pathogen. Statistical analysis of the XCMS output revealed
161 metabolites as resistance related (RR) and/or pathogenicity related (PR) metabolites. 53 out of
161 metabolites were tentatively identified and they were mainly derived from fatty acids (jasmonic
acid and methyl jasmonate), phenolic acids (p-coumaric acid, caffeyl alcohol, dimethoxy-4-
phenylcoumarin and rosmarinic acid) and flavonoids (naringenin, catechin, quercetin, and

alpinumisoflavone).

Oat

Phytochemical composition of five oat varieties were screened using LC-DAD and GC-MS within the
HEALTHGRAIN diversity screen program (Shewry et al., 2008). The study provides metabolomic
protocols for detection of sterols, tocols, folates and phenolic acids. Oat is considered as one of the
most antioxidant rich cereal plants and its triterpene saponin content is much higher than in many
other cereals (Osbourn, 2003). The triterpenoid saponin content of 16 different oat varieties were

evaluated using HPLC-UV detection and the study showed that the main portion of oat saponins are
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present in the endosperm of oat kernels (Onning et al., 1993). They also illustrated that the total
saponin content of oat varieties differ in a range of 0.02-0.05 % (dry matter basis) and was not
correlated to the lipid content. In another study, 21 different oat varieties were screened for their
dietary phenolics, ferulic and coumaric acids by HPLC (Kovacova and Malinova, 2007). They illustrated
a high correlation of ferulic (r = 0.92) and coumaric acids (r = 0.91) to the total phenolic content of the
samples as determined by the Folin-Ciocalteu reagent. Ferulic acid concentration varied between 0.16-
1.5 mg/g of dry grain sample, while coumaric acid concentrations were between 0.08-2.1 mg/g.
Several studies were conducted on decomposition of antioxidant constituents of oat by using
metabolomics approaches (Dimberg et al.,, 2005; Peterson, 2001). GC-MS based high-throughput
metabolomic analysis of wild type and mutant oat plants depicted that the major change occurred in
the metabolome flux, due to the genetic modifications (Qin et al., 2010). This study proves that the
constructive changes made in in the biosynthetic pathway of triterpenoids resulted in a significant
decrease of B-Amyrin content, while the concentration of the primary sterols such as Delta-7-

campesterol and Delta-7-avenasterol increased several folds, compared to wild type oat.

Rye

Metabolomic analysis of ten different old and modern rye varieties, that originated from five different
European countries demonstrated that French rye varieties have the highest concentrations of most
phytochemicals, including phenolic acids, sterols, tocols, folates and alkylresorcinols, while rye
varieties that originated from Poland had the lowest level (Nystrom et al., 2008). The study also
illustrated a general metabolomic pattern and showed that the increased concentration of folates
were related to the low level of alkylresorcinols, whereas elevated amount of arabinoxylans showed a
correlation with an increased level of sterols. Free amino acids and sugars are the main precursors of
acrylamide formed during the cooking process, and were analyzed from the various rye flour samples
originated from different locations within Europe (Curtis et al., 2010). The concentration of free amino
acids showed a high dependency on both the environment and the genotype, while the level of
sucrose was largely determined by the genotype. In another study, GC-MS and HPLC-UV approaches
were utilized for monitoring process-induced changes on bioactive compounds of whole-grain rye
(Liukkonen et al., 2003). The study shows stabilities and fluctuations of bioactive compounds such as
sterols, folates, tocols and phenolic acids during germination and sourdough baking processes. The
study illustrates that the concentrations of folate and phenolics were increased during both processing

time, while the amount of tocopherols were reduced due to the sourdough fermentation.
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Table 3. Selected examples of cereal metabolomics by different analytical platforms

Cereals LC-MS CE-MS GC-MS NMR Vibrational Electronic
spectroscopy | spectroscopy
Amino acids | Amino Amino acids Amino acids NIR uv-VviIS
[24] acids [2],[4]1,[6],[24],[1 | [3],[4],[5] [11],[12],[13] | [40],[41],[42]
Sugars [24] [1],[10] 09] Sugars , Fluorescence
Phenolic Organic Sugars [3]1,[4],[5] [103] [105]
acids acids [10] | [2],[6],[24],[109] | Phenolic
[21],[22],[23] | Nucleotid | Sugar alcohols [6] | acids
,[24],[29] es [1] Fatty acids [5],128],[29],[
Organic acids [4],[6],[109] 30]
Maize [24],[27] Phenolic acids Flavonoids
Flavonoids [2],[24],[109] [30]
[22],24],[25], Organic acids Organic acids
[26] [2],[6],[109] [31,[41,[51,130
Benzoxazino Sterols [4],[6] ]
nes [7],[9] Phytic acid [2]
Mycotoxins Nucleotides [2]
[571,[58],[62] Amines [6]
Amino acids | Amino Amino acids Amino acids NIR [48],[49] | Fluorescence
[16], [106] acids [17],[19],[20] [20],[46],[47] | Raman [49] [50],[105]
Phenolic [43],[44],[ | Sugars Sugars IR [51] UV-VIS [51]
acids [18] 46],[106] [17],[20],[106] [20],[46],[47] UV-VIS [52]
Fatty acids Amines Sugar alcohols Sugar
[16] [44] [17] phosphates
Organic acids | Sugars Fatty acids [17] [46]
[16],[106] [43],[44],[ | Organic acids Fatty acids
Rice Mycotoxins 46] [171,[29],[20] [47]
[62] Sugar Phenolic acids Organic acids
Triacylglycer | phosphate | [106] [20],[46],[47]
ols [106] S Sterols [106] Sterols [47]
[44],[106] Nucleotides
Organic [47]
acids
[43],[44],(
46],[106]
Nucleotid
es
[43],[44],(
106]
Amino acids Lignans Amino acids Amino acids NIR [69],[70], | UV-VIS
[108] [67] [53],[54],[56],[10 | [53],[55],[65] | [103] [86],[87]
Phenolic Sugars 8] ,[66] Raman [85] Fluorescence
acids [68] Sugars Sugars [105]
[21],[108] Glycophos | [53],[56],[108] [53],[55],[66]
Flavonoids phates Fatty acids Phenolic
[59],[108] [69] [56],[108] acids [65]
Mycotoxins Phenolic acids Organic acids
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Wheat | [57],[58],[60] [56],[108] [53],[55]
,[62] Organic acids
Pyrazole [53],[56],[108]
fungicides Sterols
[61] [56],[63],[108]
Sterols [63] Volatile
Benzoxazino compounds [107]
nes [64]
Amino acids Amino acids Amino acids NIR [14],[15], | UV-VIS [89]
[79] [8]1,[72],[741,[79] | [84] [103] Fluorescense
Sugars Sugars Sugars [84] Ramana [88] | [90],[105]
[79],[80] [8],[72],[74],[79] | Organic acids
Sugar Sugars alcohols [84]
Barley | phosphates [8],[74] Lipids
[79],[80] Sugar [81],[84]
Fatty acids phosphates Bulk
[73],[76] [74],[79] carbohydrate
Organic acids Fatty acids s [83]
[73],[76],[79] [8],[74] Flavones [82]
,[80] Phenolic acids
Flavonoids [81,[72]
[73],[76] Organic acids
Mycotoxins [8],[74],[79]
[78] Sterols [8],[75]
Odorants [77]
Tocopherols [8]
Mycotoxins Aroma Fatty acids FT-IR [99] UV-VIS [104]
[95],[96] compounds [91] [99] FT-Raman Fluorescence
Oat Proteins [97] Fatty acids [93] beta-Glucan [100] [105]
and Avenanthram Terpenes [100],[101] NIR [103]
Rye ides [98] [93],[94] Cellulose
Proteins [97] Sterols [92] [102]
Alkenes [93]
Fatty acids [93]
Terpenes [93]
Alkenes [93]
[1].(Levandi et al., 2008),[2].(Hazebroek et al., 2007),[3].(Gavaghan et al., 2011),[4].(Barros et
al., 2010),[5].(Manetti et al.,, 2006), [6].(Skogerson et al.,, 2010),[7].(Walker et al,
2011),[8].(Frank et al., 2011),[9].(Hanhineva et al., 2011),[10].(Leon et al., 2009),[11].(Zhang et
al.,, 2012),[12].(Williams et al., 2012),[13].(Zimmer et al., 1990),[14].(Rudi et al.,
2006),[15].(Seefeldt et al., 2009),[16].(Chang et al., 2012),[17].(Frank et al., 2007),[18].(Qiu et
al., 2010),[19].(Long et al., 2013),[20].(Barding et al., 2013),[21].(Chiremba et al., 2012),[22].
(LeClere et al., 2007),[23].(Culhaoglu et al., 2011),[24].(Lozovaya et al., 2006),[25].(Biesaga,
2011),[26].(Li et al., 2007),[27].(Erro et al., 2009),[28].(Bunzel et al., 2005),[29].(Rouau et al.,
2003),[39].(Kuhnen et al., 2010),[40].(CHEN et al., 2013),[41].(Elsark et al., 1993),[42]. (Dowell
Refs. et al.,, 2002),[43].(Ishikawa et al.,, 2010),[44].(Sato et al., 2008),[45].(Takahashi et al.,

2006),[46].(Barding et al., 2012),[47].(Jones et al., 2011),[48].(Chen et al., 2010),[49].(Sohn et
al.,  2004),[50].(Shrestha et al, 2012),[51].(Samadi-Maybodi and Atashbozorg,
2006),[52].(Tangkhavanich et al.,, 2012),[53].(Baker et al., 2006),[54].(Curtis et al,
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2009),[55].(Graham et al., 2009),[56].(Beleggia et al., 2013), [57].(Tang et al.,
2013),[58].(Skrbic et al., 2013),[59].(Wojakowska et al., 2013),[60].(Nakagawa et al.,
2013),[61].(Dong et al., 2012),[62]. (Warth et al., 2012),[63].(Nurmi et al., 2012),[64].(Farres et
al.,, 2012),[65].(Lamanna et al., 2011),[66].(Browne and Brindle, 2007),[67]. (Dinelli et al.,
2007),[68].(Kabel et al., 2006),[69].(Goodwin et al., 2003),[70].(Liu et al., 2013),[71].(Salgo and
Gergely, 2012),[72].(Widodo et al., 2009),[73].(Bollina et al., 2011),[74].(Gorzolka et al.,
2012),[75].(Andersson et al., 2008),[76].(Kumaraswamy et al., 2011),[77]. (Fickert and
Schieberle, 1998),[78].(Solfrizzo et al., 2013),[79].(Huang et al., 2008),[80].(Rolletschek et al.,
2004),[81].(Seefeldt et al.,, 2011),[82].(Norbaek et al., 2000),[83].(Seefeldt et al.,
2008),[84].(Wu et al., 2013),[85].(Barron and Rouau, 2008),[86].(Balcerowska et al.,
2009),[87].(Siuda et al., 2006),[88].(Greene and Bain, 2005),[89].(Berghold et al.,
2004),[90].(Shalygo et al., 1998),[91].(Ren and Tian, 2012),[92].(Shewry et al.,
2008),[93].(Perkowski et al., 2012),[94].(Qin et al., 2010),[95].(Liao et al,
2011),[96].(Gottschalk et al., 2007),[97].(Sorensen et al., 2010),[98].(Jastrebova et al.,
2006),[99].(Manolache et al.,, 2013),[100].(Mikkelsen et al., 2013),[101].(Cui and Wang,
2009),[102].(Cyran and Saulnier, 2007),[103].(Kays et al., 2000),[104].(Feucht et al.,
2007),[105].(Zekovic et al., 2012),[106].(Matsuda et al., 2012),[107].(Beleggia et al.,
2009),[108].(Beleggia et al., 2011),[109].(Riedelsheimer et al., 2012a)

7 Outlook and perspectives

This review focuses on current analytical technologies, including metabolomic profiling platforms and
chemometric methods commonly used in cereal metabolomic studies. A general cereal metabolomic
workflow is discussed with special attention on data acquisition and analysis steps. Metabolomics is
usually driven by the purpose of the study and the analysts must decide on metabolomic protocols and
applied platforms. The qualitative and quantitative nature of the obtained metabolomic data is highly
dependent on these factors. It is important to mention that all the metabolomic workflow steps will
have a significant influence on the final data. State-of-the-art metabolomics start from the design of
experiment followed by optimization and validation of sample preparation, metabolite extraction and
data acquisition protocols. Only reproducible protocols can generate reliable metabolomic data, since
fluctuations on measurement of metabolites will lead to increased non-sample-related variations of
the data. In section 3, we describe the main sources of errors made during data acquisition, which in
fact constitutes the major part of the non-sample-related variations. Current approaches to overcome
these issues and useful tools can partly solve the problem, but requires further research and

technological innovations.

The amount of the information gained from cereal metabolomics are continuously increasing due to
the developments of analytical technologies and the recent discoveries made in the field of plant
biology and biotechnology. The metabolome of cereals are complex and covers a broad range of
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metabolites. Despite recent technological advances, it is still not possible to detect the whole
metabolome of cereals by using a single method which is why truly untargeted metabolomics
approaches are not performed today. The current state-of-the-art approach is rather to use a biology
driven selection approach in which a priori knowledge about the compound classes of interest and the
matrices that they are imbedded in will drive the selection of the sampling protocol and the analytical
method. Nevertheless, studies that deal with complex problems usually have as target to detect as
many metabolites as possible and apply comprehensive analytical platforms such as NMR, LC-MS and
GC-MS. These analytical platforms differ by their detection limit, sensitivity, reproducibility,
chromatographic and mass resolution power and accuracy. Spectroscopic techniques such as NMR
concede to MS based methods by their sensitivity and selectivity, while chromatography and MS based
techniques mostly suffer from low reproducibility.

Today, up to several hundred metabolites of complex biological samples can be detected in a
guantitative manner. However, complete phenotyping of biological systems requires even deeper
studies of the metabolome. Therefore, screening of biological samples by metabolomic approaches
are driven by phenomics, and modern cereal phenomics is driven by the global challenges of the world
such as continuously increasing world population, rapidly changing and increasingly unpredictable
climate, pollution and natural disasters. The main objectives of cereal metabolomics is to develop and
improve the cereal varieties with desired quality traits that will be resistant and/or easily adaptable to
the environmental changes, biotic stresses and provide high yield, nutritional value and food security
(Figure 2). This in fact brings various different research fields together, from farming up to chemistry
and statistics. It is worth to mention the role of the cereal metabolomics, since it provides the majority
of quantitative phenomics data. Therefore, cereal plant metabolomic profiling protocols must be

further improved and more sensitive and selective analytical platforms must be developed.
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8 Abbreviations

AMDIS - automated mass spectral deconvolution and identification system
ANN - artificial neural networks

APCI — atmospheric pressure chemical ionization
APPI| - atmospheric pressure chemical ionization
ASCA - analysis of variance simultaneous component analysis
CE — capillary electrophoresis

Cl — chemical ionization

CIS - cooled injection system

COSY - correlation spectroscopy

COW - correlation optimised warping

CV - cross-validation

CVA - canonical variate analysis

DAD - diode array detector

DoE — design of experiment

ECNI — electron-capture negative ionization

ECVA — extended canonical variate analysis

El — electron ionization

ESI — electrospray ionization

FI — field ionization

FID - flame ionization detector

FTIR — fourier transform infrared

FWHM - full width at half maximum

GC — gas chromatography

GMO — genetically modified organism

HCA - hierarchical cluster analysis

HMBC - heteronuclear multiple-bond correlation spectroscopy
HSQC - heteronuclear single quantum coherence
icoshift - interval correlation optimised shifting

IR - infrared

IT—ion trap

LC - liquid chromatography

LDA - linear discriminant analysis

LV - latent variables

MALDI - matrix assisted laser desorption ionization

MCA - multivariate curve resolution
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MLR - multiple linear regression

MS — mass spectrometry

MSC - multiplicative signal correction

NIR — near infrared

NMR — nuclear magnetic resonance

NOESY - nuclear overhauser effect spectroscopy
OPLS-DA - orthogonal partial least squares discriminant analysis
PARAFAC - Parallel Factor Analysis

PARAFAC2 - Parallel Factor Analysis2

PC — principal component

PCA — principal component analysis

PLS — partial least squares analysis

PLS-DA - partial least squares discriminant analysis
PQN - probabilistic quotation normalisation

PTV - programmed temperature vaporization

Q- quadrupole

QQQ - triple quadrupole

RMSEC - root mean square error of calibration
RMSECV - root mean square error of cross validation
SIMCA - soft independent modeling of class analogy
SNV - standard normal variate

SVM - support vector machine

TOCSY - total correlation spectroscopy

TOF — time-of-flight

UPLC - ultra-high performance liquid chromatography
UV - ultraviolet

VIP - variable influence on projection

VIS — visible spectroscopy
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Abstract

The immensely complex plant metabolome is dynamically emerging through the developmental
stages during epigenesis of the seed. This study demonstrates a gene specific metabolomic
analysis of barley endosperm seed model including two mutant genotypes, low-starch-high-B-
glucan (lys5.f), and high lysine (lys3.a) mutants isogenic to the mother line (Bomi). The three
barley genotypes were grown at 15 and 25 °C and analyzed in duplicates by GC-MS metabolomic
profiling at eight developmental stages during the grain filling period. The study facilitated the
detection of 247 metabolites that mainly included phenolic acids, aldehydes, esters, organic
acids, alcohols and fatty acids. Metabolic changes related to the design parameters:
development stage, barley genotype and growth temperature were separated by ANOVA-
simultaneous component analysis (ASCA). The study revealed three dominating metabolomic
patterns during the seed development, common throughout the all genotypes. In addition,
some organic acids exhibited genotype specific dynamics and increased in one genotype and
decreased or remained status quo in the two other genotypes. The study further revealed the
presence of “signature” metabolites for the three barley genotypes and effects of growth
temperature on metabolome. The high lysine mutant contained higher amount of most phenolic
acids, whereas malic, citric, gallic, p-coumaric acids were more abundant in the mother line. The
most affected metabolites with respect to growth temperature were 4-hydroxyphenylethanol
(more abundant at high temperature), p-coumaric and mandelic acids (more abundant at low
temperature). Global correlation tables between the metabolites at different developmental
stages revealed a significant deregulation of the metabolome for the two mutants compared to
Bomi and a significant deregulations due to high temperature that were more pronounced in
the mutants.

Keywords: ANOVA-simultaneous component analysis (ASCA); barley grain filling; gas
chromatography-mass spectrometry (GC-MS); metabolomics; PARAllel FACtor Analysis2
(PARAFAC2); pleiotropy



Introduction

Current trends of cereal sciences are mainly focused on development and improvement of
cereal cultivars by increasing their health promoting properties, yield, resistance to various
abiotic stresses, including temperature (Frederiks et al. 2012; Soltesz et al. 2013), salt (Widodo
et al. 2009), drought (Manavalan et al. 2012; Winning et al. 2009) and various abiotic stresses
(Balmer et al. 2013). Metabolomics has become one of the well-established and powerful
approaches in cereal sciences enabling the understanding of biochemical and genetic
backgrounds of plants’ quality traits (Fernie et al. 2009; Balmer et al. 2013; Bino et al. 2004).

The health beneficial effects associated with the consumption of barley have been attributed to
high content of the dietary fiber, B-glucan (Wood, 2007; Mcintosh et al. 1991; AbuMweis et al.
2010), antioxidants, radical scavenging and antiproliferative phytochemicals (Madhujith et al.
2007; Amarowicz et al. 2007). In addition to the health beneficial value, polyphenols of barley
are the main fraction of micronutrients that are highly related to the preventive properties
against various biotic and abiotic stresses (Amarowicz et al. 2007; Zielinski et al. 2000;
Madhujith et al. 2007; Taketa et al. 2010). Possible bioactive properties of polyphenols that
reduce the risk of cancer, cardiovascular diseases, improve immune system and general well-
being, have prompted a great number of studies on polyphenol composition of food and food
raw materials and their effects on human health (Korkina et al. 2013; Quinde-Axtell et al. 2006;
Manach et al. 2004). Moreover, phenolic acids were found to be important texturizing agents in
cooking-extrusion of cereals (Gibson et al. 1991) and recognized as the main antioxidant
constituents of cereals (Vinson et al. 2009). The phytochemical composition of barley and other
cereals have been studied in a number of projects within the HEALTHGRAIN diversity-screening
program (Shewry et al. 2008; Nystrom et al. 2008; Li et al. 2008; Ward et al. 2008). Ten barley
genotypes from different geographical locations have been screened for dietary fibers and
phytochemicals, including ten phenolic acids, sterols and folates (Andersson et al. 2008). The
study showed a significant influence of the barley genotypes in the content of all
phytochemicals.

This study investigates the expression of two specific genes on the metabolomics level by
monitoring mutants and comparing them to their near isogenic mother line in a barley seed
(endosperm) mutant model. The study involved, two genetically modified barley genotypes, low
starch — high-B -glucan mutant, lys5.f (Munck et al. 2004) and high lysine mutant, lys3.a (Munck
et al. 2001) and their mother genotype Bomi (normal wild type) that were grown at two
different temperatures and harvested at eight different time points after flowering. The barley
isogenic mutant model with two major gene mutants employed in this study is especially
favorable to show the potential of the new analysis tools because these major mutants
generates significant secondary (pleiotropic) changes in the metabolome.

In this study GC-MS metabolomic profiling was mainly focused on polyphenols and organic acids
of barley seeds. Polyphenols of barley whole-grains primarily present in conjugated forms with
carbohydrates, lipids and other cell membrane components which alter their solubility and thus
bioavailability (Andersson et al. 2008). A protocol for extraction of conjugated phenolic acids
from whole-grain wheat flour samples was presented by Li et al. (Li et al. 2008). They obtained
phenolic extracts using 80% ethanol followed by alkaline hydrolysis using 2 M sodium hydroxide
solution to cleave ester bonds through which phenolics are bonded. Many other studies also
applied alkaline hydrolysis using bases to enhance phenolic acid extraction (Max et al. 2010). It
is worth to mention that the basic hydrolysis can only cleave the ester bonds and stabilize de-
esterification reactions. However, phenolics and other organic acids of cereals are bonded not



only via ester bonds, but also through glycosidic bonds to the carbohydrates. In contrast to basic
hydrolysis, acidic hydrolysis cleaves both, ester and glycosidic bonds and in aqueous media, the
reaction is favorable to de-esterification. Advantages of this approach have been shown in
polyphenol analysis of the wheat and rice grains (Arranz et al. 2010; Sani et al. 2012).
Therefore, in this study, a simple and robust protocol was developed which comprised
hydrochloric acid based hydrolysis of complete dried methanol extracts of the barley flour
samples. This study represent the first application of a novel derivatization method developed
for unbiased GC-MS analysis of complex biological samples (Khakimov et al. 2013). Prior to the
GC-MS analysis barley seed extracts were derivatized using a novel trimethylsilylation method
that exhibit several advantages over existing methods in terms of reaction speed, yield and
reproducibility.

This study aims at demonstrating the tools of cutting-edge chemometric methodologies where
a multi-way chemometric method PARAllel FACtor Analysis2 (PARAFAC2) (Bro et al. 1999) is
applied for processing the complex metabolomics data obtained from the new GC-MS protocol.
The effects of development stage, growth temperature and genotype was analyzed by ANOVA -
Simultaneous Component Analysis (ASCA) (Smilde et al. 2005) followed by PCA (Hotelling,
1933), PLS (Wold, 1979) and PLS-DA (Stahle et al. 1987). The obtained raw GC-MS data were
processed by semi-automated multi-way decomposition method,PARAFAC2. The PARAFAC2
approach leads to improved comprehensive analysis of the three dimensional GC-MS
metabolomics data when compared to the other alternative methods (Amigo et al. 2008;
Khakimov et al. 2012). The PARAFAC2 processing of raw GC-MS data obtained from the barley
extracts lead to the precise quantification of all the metabolites and enabled resolution of
elusive peaks such as, overlapped, retention time shifted, low s/n peaks and peaks that were
below the noise level. Figure 1 illustrates an overview of the GC-MS metabolomic workflow used
in this study.
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Figure 1. Overview of the barley grain metabolomics by using GC-MS metabolomic profiling and interval based
semi-automated PARAllel FACtor Analysis 2 (PARAFAC2).

Materials and methods

Three barley genotypes with contrasting chemical composition the low-starch-high B-glucan
Risp mutant (Doll, 1983), lys5.f in chromosome 6 in Bomi background), the high lysine Risg
mutant, lys3.a (lys3 allele in chromosome 5 in Bomi background (Munck, 1992), and the near
isogenic mother genotype Bomi were included in this study. The mutants were selected as “high
lysine mutants” (Munck et al. 2010) by the dye-binding method (acilane orange) at Risg,
Denmark in the 1970’s (Doll, 1983). Lysine is increased from 3.5% of protein in Bomi to 5.5% in
lys3.a with minor changes in protein and starch. lys3.a. is a regulatory gene that inhibit the
synthesis of the hordein proteins low in lysine by inducing a lack of demethylation of the
promoter DNA for these genes (Von Wettstein, 1992), whereas the other gene, lys5.f is a



structural starch gene that lacks an isoenzyme for transport of ADP-glucose into the plastid. The
low starch content was compensated by increasing the content of B-glucan (Munck et al.
2004). The surprising B-glucan overproduction in the starch mutant lys5.f was found by near
infrared spectroscopic analysis of seeds. In the lys5.f starch content was reduced from 55% in
Bomi to 30% in the mutant while B-glucan increased from 5.5% to 20%. Protein and lysine
content was slightly increased in the mutant compared to Bomi. All barley genotype were grown
under the same conditions using a semifield pot experiment at two different growing
temperatures, high (15°C) and low (25°C). The spikes on the main and the first side tillers were
harvested at eight different time points during development stage: 9, 13, 16, 20, 23, 30, 39 and
47 days after flowering (DAF). Two biological replicates were sampled at each time point. One
measurement was lost during the sample preparation (low temperature grown Bomi genotype
at 23 DAF) leading to a total of 95 samples. More detailed protocols of plant growing
conditions, whole-grain seed harvesting and chemical analysis are described by Seefeldt et al.
(Seefeldt et al. 2009). It should be noticed that many of the metabolites focused on in this study
are produced in the first part of the seed synthesis localized in the outer layers of the barley
seed — in the awns, the pericarp, the testa and in the endosperm aleurone also including the
germ.

Metabolite extraction and sample derivatization

Metabolites of the milled seeds were extracted using methanol and injected into GC-MS after
trimethylsilylation. Phenolic and organic acids of all barley samples were extracted using 50 mg
flour samples obtained from whole-grain seeds including awns (palea and lemma). The flour
sample were soaked into 600 pL 85% methanol and vortexed for 20 sec at 3000 rpm followed by
20 min incubation at 30°C using a Thermomixer at 1400 rpm. After 3 min of centrifugation at
16k g, the supernatant was transferred to a fresh 2 ml Eppendorf tubes and the remaining flour
sample was extracted second time by using the same extraction procedure. Then combined
supernatants were completely dried under nitrogen gas flow at 40°C and hydrolyzed by using
240 uL of 6M HCI at 96°C for 1 h by stirring at 1400 rpm. The hydrolyzed extracts were
transferred into fresh 2 ml glass vials and phenolics and organic acids were extracted into
diethyl ether. Ether-based extraction of phenolics and organic acids was performed twice, by
addition of 800 L diethyl ether and vortexing for 25 sec. The obtained ether fractions were
completely dried using nitrogen gas flow and re-solubilized in 200 uL 100% methanol. 90 pL
aliquots out of the final extracts were transferred into 200 pL glass inserts and completely dried
under nitrogen gas flow, sealed and stored at -20°C until GC-MS analysis (1-3 days). Each sample
was spiked with an internal standard (IS) (5 uL of 0.2 mg ml™ solution of ribitol). Prior to GC-MS
the analysis samples were derivatized. In order to avoid moisture, samples stored in the freezer
were dried under reduced pressure before they were tightly sealed in GC-MS vials using silicon
septum magnetic lids. Sample derivatization and injection were fully automated by using a
Multi-Purpose Sampler (MPS, GERSTEL, Milheim, Germany) with DualRait WorkStation
integrated to a GC-MS system from Agilent. Each sample was individually derivatized by addition
of 40 pL trimethylsilyl cyanide (TMSCN) and incubated for 40 min at 40°C. All samples were
randomized and analyzed in one GC-MS sequence and the MPS autosampler allowed a
sequential derivatization of all samples in the same manner by keeping the derivatization time
constant, throughout the analysis.

GC-MS data acquisition

The GC-MS consisted of an Agilent 7890A GC and an Agilent 5975C series MSD. GC separation
was performed on a Phenomenex ZB 5MSi column (30 m x 250 um x 0.25 um). A derivatized



sample volume of 1 pL was injected into a cooled injection system (CIS port) using Solvent Vent
mode at the vent pressure of 7 kPa until 0.3 min after injection at the vent flow of 100 ml min™.
Detailed information on CIS and MPS parameters are described by Khakimov et al. (Khakimov et
al. 2013). Hydrogen was used as carrier gas, at a constant flow rate of 1.2 ml min™, and initial
temperature of CIS was set to 120°C until 0.3 min followed by heating at 5°C s™ until 320°C and
hold for 10 min. The GC oven program was as follows: initial temperature 40°C, equilibration
time 3.0 min, heating rate 12.0°C min?, end temperature 300°C, hold time 8.0 min and post run
time 5 min at 40°C. Mass spectra were recorded in the range of 50-500 m/z with a scanning
frequency of 3.2 scans s, and the MS detector was switched off during the 8.5 min of solvent
delay time and after 25.5 min of the run time. The transfer line, ion source and quadrupole
temperatures were set to 290, 230 and 150°C, respectively. The mass spectrometer was tuned
according to manufacturer’s recommendation by using perfluorotributylamine (PFTBA).

Data analysis

The raw GC-MS chromatographic data was processed by PARAFAC2 as previously described
(Khakimov et al. 2012). In the PARAFAC2 model the raw data is keeping its original three-way
structure (elution time x mass spectra x samples) and do not require pre-processing of the data
e.g. baseline correction or alignment. The only pre-processing required is to divide the data into
smaller intervals for reducing complexity of the data and obtain reliable models. Three-way GC-
MS data is usually divided in retention time dimension, then each interval can be modeled
separately. In this study, the raw GC-MS data of 96 samples was manually divided into 121
smaller intervals where baseline was present, followed by PARAFAC2 modeling of each interval.
Prior to metabolite identification the mass spectrum of each metabolite, resolved by PARAFAC2
modeling, was extracted and imported into NISTO5 stand-alone software and spectra were
compared against the library (NIST, USA). Moreover, metabolite identification involved Wiley08
database integrated into the data analysis software, GCMS Solutions (Shimadzu, Japan) and the
in-house EI-MS databases integrated into ChemStation software (Agilent, Germany). Retention
indices of detected metabolites were calculated using the Van den Dool and Kratz equation and
from retention times of C10-C40 alkanes that were analyzed using the same GC-MS method
(Vandendool et al. 1963). Finally, the obtained metabolomic matrix X containing relative
abundances of metabolites (247 columns) in all barley samples (96 rows) was analyzed by
multivariate data analysis methods including principal component analysis (PCA) (Hotelling,
1933), as well as Analysis of variance-Simultaneous Component Analysis (ASCA) (Smilde et al.
2005), partial least squares (PLS) regression analysis (Wold et al. 1983), and partial least
squares-discriminant analysis PLS-DA (Stahle et al. 1987). All the chemometric analysis were
performed in MATLAB® ver. R2012b (8.0.0.783) using the PLS-toolbox ver. 6.0.1 (Eigenvector
Inc, Manson, Washington, USA.) and in-house algorithms (www.models.life.ku.dk).

ANOVA-simultaneous component analysis (ASCA)

Anova Simultaneous Component Analysis (ASCA) is a method for extracting information from
multivariate data derived from a designed experiment. ASCA analysis includes two steps; First a
separation of the variance according to the design factors, i.e. main effects, two factor
interactions effects etc. in a similar fashion as ANOVA for univariate data. Secondly, the
individual effects are explored by e.g. PCA. In the present work, the variation of the data matrix
X can be partitioned into days after flowering (DAF), barley genotypes (GT), growing
temperature (TEMP) and their interaction effects (Figure 2). This resulted in a total of seven
systematic terms (three main effects, three two factor interaction effects and a single three
factor interaction effect) and a single random effect (E). In order only to interpret effects that



significantly pertubate the system, the systematic effects are tested one by one by random
permutation testing (Zwanenburg et al. 2011). The individual significant contributions, e.g. Xpar,
are interpreted by PCA, where a set of principal components (P) are estimated directly on the
systematic effect matrix. In the construction of a score plot, the residual matrix is added to the
effect matrix, e.g. Xpar + E, and projected onto the loadings (T = (Xpar + E)P), in order to visualize
the spread. In order to extract the most informative metabolites, partitioning of the data
(according to Figure 2) are interpreted by PLS and PLS-DA. This is done by combining the
systematic matrix of interest, e.g. Xgr, with the residuals (E) and exposing this matrix to a
targeted methods (PLS and PLS-DA) including cross validation.

247 Metabolites 22.8% 8.9% 1.6% 14.6%
3
= —
E X - XDAF + XGT + XTEMP + XDAF x GT
3
O
[«)}
p < 0.0001 p <0.0001 p=0.01 p = 0.0003
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x TEMP
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Figure 2. ANOVA based overview of the overall variance distribution across 247 metabolites. ¢ The null
hypothesis (Ho) test for effect (DAF: days after flowering, GT: three barley genotypes, TEMP; low and high
growing temperatures and their second and third order interactions) of parameter in a model with all nested
levels included. Assessed by permutation testing (with 10,000 random permutations). Further analysis
included DAF, GT, TEMP and DAF x GT effects separated metabolomic data matrices with p < 0.05.

Results and Discussions

GC-MS metabolomics

Validated PARAFAC2 models of 121 intervals of the raw GC-MS data revealed 389 components
(resolved peaks). Then, each model was individually evaluated and the components that
represent baseline, artifact peaks, column bleed peaks and/or shoulder of the neighbor peaks
were eliminated, which resulted in 247 metabolites with unique retention indices and mass
spectra (Figure 1 and Supplementary Table S1). Total ion current chromatogram of the raw GC-
MS of one example of the mother genotype Bomi at the harvest time is illustrated in
Supplementary Figure S1. 89 out of 247 metabolites were identified based on their retention
indices (Rl) and electron ionization-mass spectral (EI-MS) data comparison using Wiley08 and
NISTO5 metabolite libraries. 33 out of all identified metabolites were trimethylsilyl (TMS)
derivatives of phenolic acids, their esters and aldehydes. In addition to the previously found
phenolic acids from different barley genotypes (Andersson et al. 2008), several other phenolics
such as p-salicylic, gallic, gentisic, homovanilic and a-resorcylic acids and methyl esters of ferulic,
caffeic, protocatechuic and sinapinic acids were identified. Small molecular organic acids,
alcohols and their methyl esters constituted 27 out of 89 identified metabolites. These included
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several metabolites (e.g., succinic, glyceric, maleic, fumaric, malic, pyroglutamic, azelaic acids
and methyl esters of aconitic and citric acids) that are part of the same or different metabolic
pathways. In addition, TMS-derivatives of seven fatty acids and their esters, four sterols and a
flavonoid, catechin-nTMS were identified.

The developing metabolome during grain filling: the common DAF effect

ASCA analysis revealed that the dynamic changes of the barley metabolome (DAF effect)
constituted to the major systematic variation in the data namely 22.8%, whereas metabolic
variations associated with growth temperature and genotype represented 1.8% and 8.9%,
respectively (Figure 2). Moreover, the barley genotype dependent DAF effect (Xpar x 1) also
represented significant variance (14.6%).

A PCA of the initial metabolomic data X reveal a significant difference between the metabolome
of the barley seeds at the earlier and later development stages (Supplementary Figure S2 (A)).
Principal component 1 (PC1) differentiate 9 and 13 DAF samples from the later DAF samples,
while PC5 partially differentiate the 16 and 20 DAF samples from the more mature barley seeds.
The loadings plot of the PCA model suggest that several metabolites are equally responsible for
separating the 9 and 13 DAF samples. Thus, metabolomic changes were induced during the seed
development stages and the PCA reveal groups of metabolites that were distinctly altered at the
earlier DAF points. These metabolites mainly included, small molecular organic acids such as
laevulic, sorbic, glyceric, maleic, fumaric acids and phenolics such as, 2,5-dimethoxymandelic
acid, 4-hydroxycinnamic acid, methyl ester, gentisic acid, p-coumaric acid and methyl
vanillactate. However, while PCA could model the main systematic variations of the data such
as a significant change of the entire metabolome during the first two weeks after flowering,
metabolic alterations at the later stages of the development were poorly described.

In order to investigate the development stage effect the ASCA separated metabolome-DAF
effect, Xpar, that contained 22.8% of the variation was scrutinized by PCA. Most metabolites
detected in this study were expectedly influenced by the developing stage of the seeds. This
illustrated common metabolomic alterations influenced by the DAF effect that are captured by
PC1 and PC2 (Figure 3). Some metabolites decreased during the development stage (PC1), while
others dramatically increased after two weeks of flowering and then gradually decrease after
the three weeks of the anthesis time (PC2). This trend of a drastic early change in the developing
metabolome was explained by a similar proteome effect during the early development stage in
previous studies on barley endosperm mutants (Jacobsen et al. 2005). These two trends of the
metabolomic development during the development stages were the major DAF effects and
constituted more than 80% of the variation, which indicates that most metabolites followed
these trends. The loadings plot of this PCA model show which metabolites that are mostly
influenced by these two DAF effects. Metabolites with higher loadings on PC1 e.g. p-coumaric
acid decreased during the development stage, while those with a negative loading on PC1
increased during the development stage. Likewise, the metabolites with higher loadings on PC2
follow the trend shown in figure 3 (B). Metabolites with black circles are the mostly influenced
metabolites by the DAF effect as identified from the PLS regression modeling, which will be
discussed later. Figures 3 (D) and (E) show the data of one example metabolite for the common
DAF trends captured by PC1 and PC2, respectively (Figures 3 (A) and (B)).
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Figure 3. Development of barley metabolome during the grain filling period. Barley genotype common
metabolomic alterations during seed developmental period by PCA analysis of the days after flowering (DAF)
effect separated metabolomics data matrix (Xpar). (A) and (B) demonstrate PC1 and PC2 scores versus DAF that
show common patterns for all three barley genotypes. (C) depicts loadings plot of the corresponding PCA
model (black circled variables are the most informative metabolites (with variable importance projection (VIP)
scores > 1) for predicting DAF, identified from PLS modeling (Supplementary Figure S3). (D) and (E) are the raw
data of the two identified metabolites which represent two common patterns detected from the PCA model.

In order to further investigate the metabolomic development during the development stage, a
PLS model was developed on the DAF effect separated metabolomic data Xpar and the response
vector, Y, describing days after flowering (DAF). The PLS model was able to predict DAF with
correlation coefficient (r?) of 0.86 (Supplementary Figure S3 (A)). The importance of the
metabolites on predicting DAF was evaluated by inspection of variable importance projection
(VIP) scores and loadings of the PLS model. Metabolites that exhibit high prediction power (VIP
> 1) are highlighted with black circles in the loadings plot of the PCA model of DAF effect
separated data (Figure 3 (C)) and with red color in the loadings plot of the PLS model
(Supplementary Figure S3 (B)). Syringaldehyde, which increases during development stage, was
found as the most affected metabolite by the DAF effect. Other influential metabolites were
found to be organic acids, 3-hydroxyoctanoic, sorbic, malonic, glyceric and maleic acids, and
phenolics, p-hydroxybenzaldehyde, vanillin, salicylic acid, protocatechuic acid, vanillic acid and
syringic acid. Highly altered metabolites during the development stage period for all three
barley genotypes are listed in Table 1.
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Table 1. Common and barley genotype specific metabolites highly influenced by

temperature effects.

the DAF and growing

Metabolites
increased by DAF

Metabolites
decreased by
DAF

Metabolites
increased by HT

Metabolites
increased by HT

Common
effects

Octanol-1 (4), p-
hydroxybenzaldehyd
e (28), 3-
hydroxybutanoic
acid (32), 3-
hydroxyoctanoic
acid (51), 4-
hydroxybenzeneace
tic acid, methyl
ester (57), vanillin
(58), 4-
Hydroxyphenyletha
nol (67), 2-
Ketoglutaric acid
(72), 3-methyl-3-
hydroxypentanedioi
c acid (73), 6-
hydroxydodecane
(75), p-Salicylic acid
(76), Suberic acid
(89), Syringaldehyde
(91), Protocatechuic
acid, methyl ester
(96), Vanillic acid
(100), Azelaic acid
(106),
Protocatechuic acid
(113), a-Resorcylic
acid (114), Syringic
acid (132), Gallic
acid (145), Caffeic
acid methyl ester
(152), 2-
hydroxysebacic acid
(160), Caffeic acid
(172), 3-
hydroxyandrostan-
17-one (200), 2,3-
dihydroxypalmitic
acid, propyl ester
(232)

Laevulic acid
(1), Sorbic acid
(2), Hepta-2,4-
dienoic acid,
methyl ester
(3), Malonic
acid (9), 1,3-
dihydroxypropa
none-2(18),
Glyceric acid
(23), Maleic
acid (24),
Fumaric acid
(25), Trimethyl
aconitate (36),
3-
hydroxyanthran
ilic acid, methyl
ester (43),
Pyroglutamic
acid (53),
Erythritol (54),
2,5-
dimethoxyman
delic acid (98),
4-
hydroxycinnami
c acid, methyl
ester (105),
Gentisic acid
(127), p-
Coumaric acid
(140), Methyl
vanillactate
(171)

(5), (12), (15), (18),
(38), Pyroglutamic
acid (53), 4-
Hydroxyphenylethan
ol (67), (68), 3-
methyl-3-
hydroxypentanedioic
acid (73), (74),
Dodecane-6-hydroxy
(75), p-Salicylic acid
(76), (80), (82),
Suberic acid (89), B-
D-Xylopyranose (93),
Vanillic acid (100),
Azelaic acid (106),
(109), Methyl 2-
(oxy)-2-(4-
(oxy)phenyl)propano
ate (110),
Protocatechuic acid
(113), Homovanilic
acid (118), Syringic
acid (132), B -D-
Glucopyranose (153),
2-hydroxysebacic
acid (160), Ferulic
acid (165), Sinapinic
acid methyl ester
(169), (177), Sinapinic
acid (187), (194),
(195), 19-
Norandrosterone
(209), 3,7-di-hydroxy-
androstan-17-one
(220), (225), (243)

Hepta-2,4-dienoic
acid, methyl ester (3),
Octanol (4), (11),
Benzoic acid (13),
(16), 1,3-
dihydroxypropanone-
2 (18), (19), (21),
Maleic acid (24), (35),
(39), (41), 3-
hydroxyanthranilic
acid, methyl ester
(43), (49), 3-
hydroxyoctanoic acid
(51), (61), (66), (69),
(71), (77), 2,5-
dimethoxymandelic
acid (98), (124),
(130), p-Coumaric
acid (140), (144), 2-
hydroxymandelic
acid, ethyl ester
(147), (151), (158),
(159), (163), Methyl
vanillactate (171),
(175), (180), (185),
(188), (196), (202),
(206), (211), (212),
(219), (221), (226),
(231), (239)
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2-hydroxyheptanoic
acid (29), Maseptol-
1(46), 2-
hydroxycyclohexane
-1-carboxylic acid

(8), 3-

methylfuran-2-
carboxylic acid
(14), (16), (19),
(35), (55), (66),

(6), (27), Resorcinol
(33), Maseptol (46),
4-
hydroxybenzeneaceti
¢ acid, methyl ester

(26), (30), Erythritol
(54), (94), (119), D-
Galactose (137),
(149), (161), (164),
(168), (184), (197),

(50), (68), (82), (84), | Isocitric (57), (65), Anozol (203), 9,10-
(85), 2,3- acid(116), (70), Methyl dihydroxystearic acid
lys5.f dihydroxyphosphori | (143), (149), Isovanillate (78), (81), | (218), (222), (224),
c acid, propyl ester (173), (198), (84), (90), (242), 3,7-
(107), (121), (133), (211), (212), Syringaldehyde (91), | dihydroxycholest-5-
(217), (227) (226), (231), Protocatechuic acid, | ene (245), (247)
(246), (247) methyl ester (96),

(108), a-Resorcylic

acid (114), (121),

(122), Ferulic acid,

methyl ester (141),

Gallic acid (145),

(174), 4,8-dihydroxy-

2-quinolinecarboxylic

acid (186), 3-

hydroxyandrostan-

17-one (200), 2,3-

dihydroxypalmitic

acid, propyl ester

(232), (234), (237)
(79), (108), (120), 3-methylfuran- | (20), 2- acid (2), (31),
Palmitic acid, methyl | 2-carboxylic hydroxyheptanoic Trimethyl aconitate
ester (136), (139), acid (14), (16), | acid (29), 2,4- (36), Citric acid,
(150), 2- (21), (26), (30), | dihydroxy-5- trimethyl ester (42),
hydroxysebacic acid | (39), (41), (65), | methylpyrimidine (55), Dimethyl
(160), (167), (177), (71), (124), (44), 4- azelate (56), Vanillin

lys3.a (179), 4,8- (130), (155), hydroxybenzeneaceti | (58), (79), (95), (102),

dihydroxy-2- (157), (184), c acid, methyl ester (155), (162), (170),
quinolinecarboxylic | (196), (198) (57), 4- (174), (191)
acid (186), (194), Hydroxyphenylethan
(195), 2,3- ol (67), 2-Ketoglutaric
dihydroxypalmitic acid (72),

acid, propyl ester
(232), (234), (243)

Protocatechuic acid,
methyl ester (96),
(104), 2,3-
dihydroxyphosphoric
acid, ,propyl ester
(107), B -D-
Glucopyranose (134),
o -D-Glucopyranose
(135), Gallic acid
(145), (146), Caffeic
acid, (172), (179),
Linoleic acid (181),
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(184), 2-
hydroxytetracosanoic
acid, methyl ester
(244)

Bomi

(27), 2-
hydroxycyclohexane
-1-carboxylic acid
(50), (83), (85), (88),
(101), (214)

(30), (37), 2,4-
dihydroxy-5-
methylpyrimidi
ne (44), (122),
(124), (130),
(155), (161),
(180), 9,10-
dihydroxysteari
¢ acid, dimethyl

(31), Malic acid (48),
(55), Anozol (70),
(87), (102), (119), D-
Galactose (137),
(139), (154), (170),
(214)

(3,3-Dimethyl-1-
cyclohexen-1-yl)oxy
(10), Glycerol (17),
(40), Pyroglutamic
acid (53), Erythritol
(54), Dimethyl
azelate (56), 4-
hydroxycinnamic
acid, methyl ester

ester (230), (105), Catechin (117),
(235), (239), B-D-Galactopyranose
(241) (123), Caffeic acid,

methyl ester (152)

Further barley genotype-dependent metabolomic variations during the development stage was
investigated separately by using a data matrix Xparxer and it will be discussed in following
section. Common DAF effects observed from the PLS modeling were in agreement with the DAF
effects observed from the PCA analysis of the Xpar data. The majority of the metabolites that
showed high loadings for common DAF effects observed in the PCA, also had high VIP scores for
the corresponding effects in the PLS models. However, the PLS model revealed more insight into
the mostly affected metabolites. In Supplementary Table S1, all the metabolites that decrease,
increase or increase in the two weeks of flowering followed by a decrease after three weeks are
highlighted.

Metabolic difference of barley genotypes: the genotype specific effect

Metabolomic variations associated with DAF and temperature effects mask the variation related
to the three genetically different barley genotypes for which reason the barley genotype
dependent metabolomic variations were not observed by the PCA analysis of the initial
metabolomic data X (Supplementary Figure S2 (B)). The ASCA separation of the barley genotype
related metabolomic variation (8.9%) revealed the genotype specific metabolomic alterations.
PCA analysis of the genotype effect separated data Xer (Figure 2), allowed differentiation of the
low starch-high-B-glucan

mutant (lys5.f.) from the other two barley genotypes by PC1, and PC2 was able to discriminate
the high lysine mutant (lys3.a.) from the mother genotype (Bomi) (Figure 4 (A)). The loadings
plot of the PCA model of Xgr show a clustering of the metabolites that were responsible for the
separation of the barley genotypes (Figure 4 (B)). Metabolites highlighted with red, green and
blue circles represent the main classifiers of the lys5.f, Bomi and lys3.a barley genotypes,
respectively. Barley genotype dependent trends of the metabolites observed from the loadings
plot of the PCA analysis were confirmed by plotting the raw data of selected metabolites (Figure
4 (C-E)). As it was suggested by the PCA and PLS-DA analysis gentisic, protocatechuic and p-
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salicylic acids are the main classifiers of the lys5.f, Bomi and lys3.a barley genotypes,
respectively. The most important metabolites that separate the high B-glucan barley genotype
from the other two genotypes are laevulic acid, sorbic acid, gentisic acid, 3-methylfuran-2-
carboxylic acid, 1,3-dihydroxypropanone, methyl ester of 3-hydroxyanthranilic acid and 4’-
cyclohexylacetophenone. The concentrations of these metabolites were significantly higher in
the high B-glucan mutant samples compared to the two other barley genotypes. Moreover, the
PCA analysis of the three barley genotypes by using only identified phenolic acids and esters
(data not shown) as well as organic acids (Supplementary Figure S4 (A)) depicted a similar
separation of the barley genotypes as compared to the figure 4 (A). This allowed evaluation of
the relative distributions of the metabolites between the different barley genotypes. However,
PCA analysis of the barley genotypes by using only identified fatty acids showed a partial
separation of the high lysine mutant from the other two genotypes due to the higher content of
the fatty acids (Supplementary Figure S4 (B)). This finding was in agreement with the results
(increased fat content in flour of lys3.a and lys5.f) of the previous studies performed on these
barley genotypes (Jacobsen et al. 2005). Earlier findings have showed that the high B-glucan
content (at the expense of starch) in developing mutant seeds in lys5.f result in an increase of
water content by up to 10% compared to normal barley (Munck et al. 2010). The differences in
water binding and water activity between the mutant and Bomi should influence the
metabolome pattern of lys5.f as found in this study. Similarly the lys3.a mutant contains much
more hydrophilic high lysine proteins on the expense of hydrophobic storage proteins (Jacobsen
et al. 2005) that increase the water content and water activity during epigenesis. This
mechanism can partially explain the characteristic lys3.a and lys5.f metabolome patterns
revealed here by PCA and PLS-DA.

In order to gain more insight into the metabolomic differences of the barley genotypes and to
search for genotype specific metabolites (metabolites with significantly higher or lower
concentration in one barley genotype compared to the other genotypes) a PLS-DA based
classification was performed on the genotype effect separated metabolomic data Xgr. PLS-DA
enable a more clear separation of the barley genotypes compared to the PCA and the
importance of metabolites for the separation can be evaluated in more details (data not shown).
The importance of the metabolites for the classification was assessed based on the VIP scores
and loadings of the PLS-DA model. Majority of the classifier metabolites of the barley genotypes
were those previously identified from the PCA model of the Xgr (Figure 2). These results,
analyzing the composition of dried milled flour that is the target for food quality, confirm that
the metabolome of the low starch-high-B-glucan mutant was significantly different from the
metabolome of the mother genotype and high lysine mutant genotypes. It should be
emphasized that this study is made on the barley flour and not on the barley seed which is the
basic biological unit. During seed development the secondary metabolites are significantly
diluted by the effective production of starch but also beta-glucan and cellulose at decreasing
water content during the seed ripening process. This effect will be differently regulated in the
three genotypes and will cause an apparent decrease of many metabolites on the basis of
percent seed flour. The dilution factor would explain a major part of the decreasing content of
metabolites over the DAF as well as the deviation of lys5.f compared to lys3.a and Bomi in this
respect.
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Table 2. Main classifier metabolites of the three genetically different barley lines identified by PLS-DA based

classification.

High beta-glucan line
(lys5.f)

High lysine line (lys3.a)

Mother line (Bomi)

Main
classifier
metabolites
of barley
lines

Laevulic acid (1), Sorbic
acid (2), (8), (3,3-
Dimethyl-1-cyclohexen-
1-yl)oxy (10), 3-
methylfuran-2-
carboxylic acid (14), (16),
1,3-
dihydroxypropanone-
2(18), (19), (21), Maleic
acid (24), Trimethyl
aconitate (36), 3-
hydroxyanthranilic acid,
methyl ester (43), 2,4-
dihydroxy-5-
methylpyrimidine (44),
Gentisic acid (127),
(142), 4'-
Cyclohexylacetophenone
(148), (157), (159), (173),
(190), (198), (205), (211),
(226), (231)

(12), 2-hydroxyheptanoic
acid (29), Resorcinol (33),
Pyroglutamic acid (53 ),
Dimethyl azelate (56), 4-
Hydroxyphenylethanol (67),
(68), (74), Dodecane-6-
hydroxy (75), p-Salicylic
acid (76), (82), Suberic acid
(89), B-D-Xylopyranose
(93), Azelaic acid (106),
Homovanilic acid (118),
(120), 1-methyl-a -D-
Glucopyranose (131),
Syringic acid (132), 1-
methyl-B -D-Glucopyranose
(134), o -D-Glucopyranose
(135), D-Galactose (137),
(139), B -D-Glucopyranose
(153), 2-hydroxysebacic
acid (160), Ferulic acid
(165), (167), Sinapinic acid
methyl ester (169), (177),
(179), Sinapinic acid (187),
(194), (195), 9,10-
dihydroxystearic acid (218),
9,10- dihydroxystearic acid,
dimethyl ester (230), (243),
3,7-dihydroxycholest-5-ene
(245)

p-hydroxybenzaldehyde
(28), (31), 3-
hydroxybutanoic acid
(32), Malic acid (48), 2-
hydroxycyclohexane-1-
carboxylic acid (50), 3-
hydroxyoctanoic acid
(51), 4-
hydroxybenzeneacetic
acid, methyl ester (57),
Citric acid, trimethyl
ester (62), Anozol (70),
2-Ketoglutaric acid (72),
3-methyl-3-
hydroxypentanedioic
acid (73), (85), (87),
(88), Protocatechuic
acid, methyl ester (96),
4-hydroxycinnamic acid,
methyl ester (105), 1-
methyl- a—D-
Galactofuranose (111),
Protocatechuic acid
(113), Catechin (117),
(122), p-Coumaric acid
(140), Gallic acid (145),
2-hydroxymandelic acid,
ethyl ester (147), (178)

Barley genotype classifier metabolites identified from the PLS-DA are also highlighted in the
loadings plot of the PCA model (Figure 4 (B)). The high B-glucan genotype had relatively higher
concentrations of small molecular organic acids such as, laevulic, sorbic, maleic acids and
phenolic compounds, methyl ester of 3-hydroxyanthranilic acid and gentisic acid. In contrast,
the high lysine mutant illustrated greater level of organic acids like, 2-hydroxyheptanoic acid,
and suberic acid and phenolic acids such as, ferulic, syringic and sinapinic acids. Table 2 lists the
main classifier metabolites that builds the unique pattern of each of the three barley genotypes.
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Figure 4. Scores (A) and loadings (B) plots of the PCA model developed on the barley genotype effect
separated metabolomic data matrix (Xgr). Red, green and blue color circles of the loadings plot represent VIP
variables of the lys5.f, Bomi and lys3.a genotypes that were identified from the PLS-DA model of the Xgr data.
Color coding of metabolite classes are the same as in Figure 3 (c). Bar plots (C), (D) and (E) illustarte relative
abundances of three examples of genotype specific metabolites, avaraged for both, high and low temperature
samples and over all DAF points.

The combined genotype and DAF interaction effects: Genotype dependent DAF effect

It has become clear from NIR spectroscopic studies of the barley mutant seeds and chemical
analysis on several expression levels (Munck et al. 2004; Jacobsen et al. 2005; Munck et al.
2010) that the lys3.a and lys5.f mutants display mutant specific chemical patterns on barley
flour basis that are highly reproducible when grown in a controlled environment. Thus, mutation
permutation experiments, knocking out one specific gene, are powerful tools to study gene-
interaction effects of one gene on all other active genes in the seed (endosperm). We will here
demonstrate that genotype specific patterns of these mutants are reflected in raw metabolic
data in the secondary metabolism.

A substantial degree of the DAF variation was associated with barley genotype (14.5%) (Figure
2) and these trends are described by PC1 and PC2 of the PCA model developed on the DAF-
genotype interaction effect separated data matrix Xpaexer (Figure 5). PC1 shows genotype
dependent DAF effect where scores of low starch-high-B -glucan genotype lys5.f samples
decrease during the development stage, while the scores of the other two barley genotypes
increase (Figure 5(A)). These differences are more pronounced at the early development stages
and attenuate at later stages. PC2 of this PCA model also capture barley genotype dependent
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metabolomic alterations occurring during the seed developmental stages (Figure 5 (B)). The
scores of the high lysine mutant samples in PC2 gradually increase over DAF whereas the scores
of the parental Bomi genotype decrease. The low-starch-high-B-glucan mutant remained almost
unchanged. These genotype specific DAF effects captured from DAF-genotype interactions were
highly pronounced in small molecular organic and phenolic acids. The loadings plot of this PCA
model show the metabolites highlighted with red, green and blue circles, which correspond to
the main classifiers of the lys5.f, Bomi and lys3.a genotypes, identified from the PLS-DA
classification analysis.

The general patterns found by the PCA is illustrated by two examples of metabolites, sorbic acid
and 4-hydroxycinnamic acid’s methyl ester, in figures 5 (D) and (C), respectively. These patterns
are associated with the genetic modification, as demonstrated by the significant deviation of the
high B-glucan mutant from its parental genotype Bomi and high lysine mutant lys3.a where
differences in protein synthesis were observed between another high B-glucan mutant lys5.g,
lys3.a and Bomi. The initial protein synthesis in lys5.g were fastest, followed by Bomi and lys3.a.,
whereas from day 23 after anthesis the rate of protein synthesis in lys3.a. accelerated
considerably leading to very high final levels at harvest time (Jacobsen et al. 2005). The
differential behavior in protein synthesis kinetics at different kernel formation stages is
expected to influence the seed metabolome as well.

In order to further investigate genotype specific DAF effects, individual PLS models were
developed on the DAF effect separated data matrices of each barley genotype separately. PLS
models of the separate barley genotypes had an equal (in case of lys3.a) or improved prediction
power (in case of lys5.f and Bomi). Most of the detected predictor metabolites were those
previously found in the PLS model of the global data Xpar (Supplementary Figures S5 A-C).
However, some important predictor metabolites were different among the barley genotypes,
while others showed similar trends, but with different rate of increase or decrease in the flour
over the DAF. Some of the genotype specific metabolites highly influenced by the
developmental stage (DAF effect) are listed in Table 1. These genotype specific DAF effects
observed from the individual PLS models were in agreement with the genotype specific DAF
effects detected from the PCA analysis of the DAF-genotype interaction effect separated data
Xparsar. The loadings plot of this PCA model highlights genotype specific DAF predictors that
showed high influence on the individual PLS models (VIP>1).

17



A C . D L
( 35 pca scores us par  (©) Loadings plot (D) Sorbic acid
0.2 T T T T T T 4
b ® lyssf ‘ + Carbohydrates iy —&— lyss £ (HT)
10 » Bomi  Not assigned 3 ‘\y g’;;{;ﬂ;})
° ‘ e * lys3.a :.y, Organicacids E] ""& Bomi (LT)
%\, \e 0.1% N Phenolicacids 1 & ."\\ . o lys3.a(HT)
w 4 . D Phenolicesters D2 ) ?>\")5‘,;<I¥§‘?£(LT)
o~ ~ @, - > o
— ® G % * Sterols ; —
g o1 4-hydroxycinnartie ® 5 1 f
A acid > 1 o /
: @ @ y/
me@\,@g’. | .
P ) o ) . 0
- ~\
.
0.0% 1 10 20 30 40
= DAF
]
& o
(B) ~ AE (E) 4-hydroxycinnamicacid,
% 0 ——— 3 0 methyl ester
. : i : (
Q ° . c‘g . 5
= ’ foYsi © orb'c acid
YR OO R icaci
Q 0.05 ROL : 54
= 0% ® g
- T
2 ® = 3
3 ’ o
S O . ©2
£
= 01 1 s ,
P v
) & .| 1z
1
+ 17
154 . . ; 015 . . L L L L
10 20 30 40 0.2 -015 -0.1 -0.05 0 005 0.1 015 0.2 10 20 30 40
DAF PC 1(25.9%) DAF

Figure 5. Barley genotypes specific metabolomic alterations during seed development by PCA analysis of the
DAF and GT interaction effects separated metabolomics data matrix (Xpar x 61)- (A) and (B) demonstrate PC1
and PC2 scores versus DAF that show genotypes specific patterns. (C) depicts loadings plot of the
corresponding PCA model. Most important genotypes specific metabolites for predicting DAF (variable
importance projection (VIP) scores > 1)) are illustrated with red, green and blue circles for lys5.f, Bomi and
lys3.a lines, respectively. These genotypes specific DAF effects were identified from the individual PLS models
of each barley line (Supplementary Figure S5). (D) and (E) illustrate barley genotype specific fluctuations of the
two metabolites over different DAF points. These reflect the genotypes specific DAF effects captured by PC1
and PC2, (A) and (B), respectively.

The covariance of the barley seed metabolites during the development stages shows inter-
relationships of several biosynthetic pathways through which metabolites are synthesized.
Increase or decrease of metabolite level during the seed development occurs in a barley
genotype specific manner when the seed metabolome gradually change during the maturation.
In order to compare the covariance of the metabolites during the seed development, the DAF
effect separated metabolomic data was used for a simple correlation analysis between the
metabolites. The DAF effect separated metabolomic data Xpar(8 x 247) for each barley
genotypes (lys5.f, lys3.a and Bomi) grown under high or low temperature was analyzed
separately. Metabolites for each genotype were correlated across the eight harvest points
during the seed development and a correlation matrix (247 x 247) was established for each
barley genotype (at a given growth temperature). The heat maps from the high temperature
(HT) treatment colored according to the correlation level (Figure 6) shows that the mother
genotype Bomi possess a higher number of metabolites that are positively correlated during the
seed development, both among identified and unidentified metabolites compared to the other
two barley genotypes. It is evident that all three genotypes show higher numbers of positive

18



correlations at the low temperature LT level and that the two mutants especially lys3a suffer
more from a high temperature environment than Bomi. This indicates that the biosynthesis of
these metabolites have been altered and deregulated in the mutants. In contrast to this, the
number of negatively correlated metabolites during the seed development was higher in the
mutant barley genotypes compared to their mother genotype Bomi. This show that in the case
of Bomi, more metabolites were increased or decreased in a similar manner, while the mutation
of one specific gene in barley genotypes, lys.5f and lys3.a, resulted in a deregulation of this
metabolomic equilibrium. Therefore, in the cases of the lys5.f and lys3.a barley mutants the
number of positively correlated metabolites have significantly decreased and the number of
negatively correlated metabolites have increased, which confirm the more global alteration of
the metabolome in the mutants. This phenomenon can be explained by the pleiotropy and the
alteration of the several (if not all) pathways simultaneously as a whole pattern, which resulted
in a significant perturbation of the barley seed metabolic equilibrium that was especially evident
at a high temperature.
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Figure 6. The heat maps of the correlation matrix obtained from the DAF effect separated metabolomic data,
Xpar(8 x 247), of high temperature (HT) grown barley genotypes harvested at 8 different time points during the
development. Red squares correspond to the correlation coefficients (r) > 0.7, while green squares correspond
to the (r) < -0.7 and the black squares correspond to the r < 0.7 & r > - 0.7, between the 247 detected
metabolites. These findings illustrate the levels of disturbances of whole-grain metabolomic equilibrium
between the mother line (Bomi) and the mutants (lys5.f and lys3.a) derived from it. The balances in increase
and/or decrease of whole-grain barley metabolite concentrations have been disturbed from the equilibrium
present in the mother line. The same trends were observed in the low temperature (LT) grown barley plants.
The number of positive correlations between the metabolites, during seed development, of barley genotypes
lys5.f(LT), Bomi(LT), and lys3.a(LT) were 8019, 9957 and 7151 (or in the ratio of 1.24 : 1.40 : 1), respectively.
While, the number of negative correlations between the 247 metabolites of barley genotypes lys5.f(LT),
Bomi(LT), and lys3.a(LT) were 4028, 1706 and 1800 (or in the ratio of 2.36 : 1 : 1.05), respectively. It is worth to
mention that the whole-grain metabolomic deviations were slightly more pronounced in the mutant lys5.f
thanin lys3.a.

Influence of the growing temperature

Analysis of variance of the initial metabolomic data X showed that the variations related to the
low and high growing temperature are significantly lower than the variation due to the DAF
effect and genotype differences (Figure 2). PCA of the initial metabolomic data revealed no
differences between the barley genotypes grown under the two temperatures (Supplementary
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Figure S2 (C)). However, a PCA of the temperature effect separated metabolomic data Xremp
revealed a partial separation of barley plants grown under high and low temperature conditions
(Figure 7 (A)). Loadings plot of this PCA model illustrated important metabolites for the
separation and provided a good initial overview of the metabolomic changes caused by the
growing temperature. Organic acids such as malonic, succinic, suberic, 2-hydroxyheptanoic, 3-
methyl-3-hydroxypentanedioic acids, and phenolic acids, ferulic, syringic, p-salicylic, vanillic,
sinapinic acids, 4-hydroxyphenylethanol and some fatty acids and sterols were more abundant
in the high temperature grown plants (HT) compared to the low temperature grown plants (LT).
While, concentrations of organic acids, citric acid trimethyl ester, benzoic acid and phenolics
such as, p-hydroxybenzaldehyde, 2,5-dimethoxymandelic acid, methyl ester of 4-
hydroxycinnamic acid, ethyl ester of 2-hydroxymandelic acid, and methyl ester of ferulic acid
were relatively higher in LT barley samples than in HT samples. Metabolites illustrated with red
and blue circles represent the main classifiers of the HT and LT samples identified by PLS-DA
classification analysis, which will be discussed later (Figure 6 (B)). The mostly influenced
metabolite by higher growing temperature was 4-hydroxyphenylethanol, which significantly
increased in HT samples in all three barley genotypes (Figure 6 (C). In contrast, 2-
hydroxymandelic acid’s ethyl ester significantly increased when the barley plants were grown
under the lower temperature (Figure 6 (D)). The identity of the metabolites that had relatively
higher influence in PCA based separation are provided in Supplementary Table S1. This table
also lists the relative ratios of the all metabolites (at the harvest time, 47 days after flowering)
detected in the barley genotypes grown under two different temperatures. Although,
interactions between growing temperature and DAF effects were insignificant (p = 0.1) (Figure
2), temperature related variations of some metabolites were more pronounced at the earlier
stages of DAF.

While PCA provide a good overview of the differences between HT and LT barley genotypes, it
was not effective in evaluating the most influential metabolites. Therefore, the temperature
effect separated metabolomic data Xygmp Was further investigated by PLS-DA classification. PLS-
DA attempted to classify HT and LT barley samples as two different groups and provided
valuable information on the main classifier metabolites. This approach lead to a separation of
the HT barley plants from the LT barley plants and assisted in evaluation of common growing
temperature dependent metabolomic alterations (Supplementary Figure S6). The majority of
the important classifiers identified from the PLS-DA model were those metabolites detected in
the PCA modeling that were responsible for partial separation of HT and LT barley samples. In
contrast to PCA, VIP scores of the PLS-DA model allowed more holistic evaluation of the
importance of individual metabolites for the separation. Among these metabolites, 4-
hydroxyphenylethanol, ethyl ester of 2-hydroxymandelic acid and p-salicylic acid displayed the
highest influence for the separation, followed by vanillic acid, syringic acid, sinapinic acid, azelaic
acid and ferulic acids which were also the main classifiers of the HT barley samples. Variables
with high VIP scores (>1) are also highlighted in the loadings plot of the PCA model of Xgr (Figure
6 (B)) and it illustrates that these variables also had high loadings for PCA based separation of HT
plants from LT plants and confirm the agreement between the PCA and PLS-DA results. Table 1
lists the main classifier metabolites of the HT and LT barley plants that were found based on the
VIP scores of the PLS-DA model.
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Figure 7. Effects of high and low growing temperature on barley metabolome. (A) and (B) illustrate scores and
loadings of the PCA model developed on the temperature effect separated metabolomic data (Xremp). The
scores plot shows partial separation of the high (HT) and low (LT) temperature grown barley plants, while
loadings plot depict metabolites responsible for thie separation. Metabolites highlighted with red and light
blue circles correspond to the main classifier metabolites (variable importance projection (VIP) scores > 1) of
the HT and LT plants identified from the PLS-DA model of the Xegmp data matrix (Supplementary Figure S6). Bar
plots (C) and (D) show examples of two mostly influenced metabolites by growing temperatures (averaged
over all DAF points).

Although the interaction effect observed between the genotype and temperature was not
significant with p-value of 0.15 (Xer x Temp) (Figure 2), initial PCA and a global PLS-DA model
suggested the presence of genotype specific temperature effects. The genotype specific
metabolites that were highly influenced by the growing temperatures might be under estimated
in the global PLS-DA models, due to their low abundance. Therefore, individual PLS-DA models
were developed on the genotype effect separated data, Xer, for each barley genotype separately
and revealed additional temperature-altered metabolites. In addition to the most important
classifiers found from the global PLS-DA model, individual PLS-DA model of the high B-glucan
mutant, revealed 3,7-dihydroxycholest-5-ene, methyl vanillactate, resorcinol, methyl ester of
sinapinic acid, a-resorcylic acid, homovanilic acid and protocatechuic acid as the mostly
influential metabolites. This PLS-DA model revealed that 4-hydroxyphenylethanol was the best
discriminating metabolite of HT and LT high B-glucan mutant, lys5.f genotype and this was also
the case in the global PLS-DA model. Classification of the HT and LT barley samples of the high
lysine mutant, lys3.a, revealed caffeic acid, protocatechuic acid, suberic acid, 2-ketoglutaric acid
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and 2,5-dimethoxymandelic acid as the most important classifiers. Importance of these
metabolites (VIP scores) for classification of HT and LT plants were significantly higher in
genotype separated models than in the global model. This indicates that these metabolites had
greater temperature effect in high lysine barley genotype than in the other two genotypes.
While organic acids such as maleic, malic and suberic acids, anozol and 4-hydroxycinnamic acid
methyl ester had much greater temperature effect in the mother genotype Bomi than in mutant
genotypes. In addition to the common temperature effects, Table 1 lists the mostly pronounced
genotype specific metabolites that were influenced by low and high growing temperatures.

It is worth to mention that more than 50% of the metabolites identified as the main classifiers of
HT barley plants were also increased during the development, while none of these HT induced
metabolites decreased (Supplementary Table S1). This basically show that the accumulation of
metabolites during the seed development is more significant and faster in high temperature
grown barley plants than in low temperature grown barley plants. Likewise, almost 60% of the
metabolites identified as the main classifiers of low temperature grown barley plants matched
with the metabolites that decrease during the development stage, while only 10% of the LT
classifier metabolites increased during the maturation. It must be pointed out that there is a
considerable dilution effect when e.g. starch and beta-glucan are developed during the
maturation of the seed. Here the LT material and Bomi has larger seeds with more starch
compared to the HT material and the mutants. Larger seeds with higher level of starch could
explain a major part of the apparent decrease in the metabolites as percent of the seed flour
during maturation while those who increase should increase even more.

Conclusions

The development of the barley seed (endosperm) metabolome has been studied by a new high-
throughput GC-MS method as a function of developmental stage, genotype and growing
temperature. The metabolite concentrations were extracted using a new tool, PARAFAC2, that
allow detection and quantification of even strongly overlapped and low s/n metabolites. The
PARAFAC2 model generated metabolite tables were analyzed by the new ASCA approach which
allow the separation and analysis of individual and combined effects in a balanced experimental
design. Combination of these two new methods assisted in obtaining an overview over the
complex multidimensional metabolomics data set and facilitate in finding the hot spots in the
raw data which are of importance for the biological understanding. Our focused barley mutant
permutation experiment has shown that it is necessary with a dialogue between results from
the data compressive chemometric modeling on one side and selected plots of raw data on the
other side. Using this strategy three dominating grain filling metabolomic patterns was found:
two in which the metabolites decrease or increase during the development and one which show
a significant increase after two weeks of anthesis time and a gradual decrease after three
weeks. The ASCA modeling of design effect showed that some organic acids exhibits genotype
specific dynamics over the development stage and increased in one genotype and decreased or
remained stable in the two other genotypes. Further analysis revealed the presence of classifier
metabolites for the three barley genotypes and metabolite effects of different growth
temperatures. The high lysine mutant contained greater amount of most antioxidant phenolic
acids. The most affected metabolite by the growth temperature was found to be 4-
hydroxyphenylethanol that was significantly more abundant in high temperature grown barley
plants, while p-coumaric acid and mandelic acid derivatives were much more abundant in the
low temperature grown barley plants. Moreover, the barley seed metabolome development
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patterns on percent barley flour basis for the different genotypes were partially dependent on
the growth temperature revealing metabolites that were markers for high temperature. At the
higher growing temperature, metabolites that were increasing during the seed maturation was
more significant and rapid than in the case of low temperature growing. Likewise, the
metabolites that decrease during the barley seed development, degraded much faster and
significantly, when the plant were grown under the low temperature than in high temperature.
Finally, correlation maps of the metabolites during seed development illustrated the
deregulation on barley seed metabolomic equilibriums influenced by single gene mutations that
were significantly amplified at higher growing temperatures.

Supplementary data
Supplementary data are available at JXB online

Table S1. Common and barley genotype specific metabolites highly influenced by the DAF and
growing temperature effects.

Figure S1. TIC chromatogram obtained from GC-MS analysis of the whole-grain flour of barley
genotype Bomi, grown under high temperature and harvested at the last DAF point.

Figure S2. Scores plots of the PCA model developed on the initial metabolomics data matrix.
Figure S3. PLS model developed on the days after flowering (DAF) effect separated
metabolomics data matrix (Xpa).

Figure S4. PLS models developed on the DAF effect separated metabolomics data matrix (Xpar),
of the individual barley genotypes.

Figure S5. PLS-DA model developed on the temperature effect separated metabolomics data
matrix (Xremp)-

Figure S6. PCA of genotype effect separated data, Xgr, including barley samples from 23 to 47
DAF and small organic and fatty acids.
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Figure S1. TIC chromatogram obtained from GC-MS analysis of the whole-grain flour of the barley genotype
Bomi, grown under high temperature and harvested at the last DAF point. * The sample, Bomi_HT_DAF47,
used for calculation of metabolites relative ratios at the harvest time (Supplementary Table S1).
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Figure S2. Scores plots of the PCA model developed on the initial metabolomics data matrix X. (A) Samples
are colored according to their DAF, (B) Samples are colored according to barley genotypes and (C) samples
are colored by two different growth temperatures, low (LT) and high (HT).

(A) Scores plot (B) l.oadings plot
. ’ o .
10 i
v 0.1 ) ‘-
v ;’i»'§ Lo
0.05 )
s> 2 = EL n'b P Qe
s : g PN
"1 ST ) e— S ——
o v¥y W = L ‘Q ot
~ \ = 005 . ,3.
3 v M e = 2 oo b1 o
-5 + B 0.1 . f: °
. o |
¥ + e |
1| 0.15 °$
o ' o
20  -10 0 10 20 0.2 -0.1 0 0.1 0.2
LV 1 (28.3%) LV 1 (28.3%)
V DAF9& 13 * DAF16&20 ® VIPscores <1
B DAF 23 &30 DAF 39 & 47 ® VIPscores > 1

Figure S3. Scores (A) and loadings (B) plots of the PLS model developed on the days after flowering (DAF)
effect separated metabolomics data matrix (Xpag)-
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Figure S4. PCA scores and loadings plot of genotype effect separated data, Xer,including barley samples
from 23 to 47DAF only. (A) PCA model developed on 28 small ogranic acids and alcohols and (B) 13 most
abundant fatty acid and their esters.



Supplementary Data of Khakimov et al., 2013 (submitted to JXB)

(A) Scores plot Loadings plot
sl ¥ DAF9 &13] 0. 51
* DAF16&2p
H - r 198
3 ® DAF23&3 '3?0'2 %31‘}2%3581%%12
gt v + DAF9 &4y w | 157
o > 0.1 138 21353 34&5 %%. 137
Sl v~ = 24805 ‘32@
~ 0 - a® o~ Q] 7 34
2 2 24
-2 dm -0.1 149
al i 0x *180
-6 .
| .
-8[ ) ) ) ) ) ) 03 X X Zﬁg;:lss X X X
-15 -10 -5 0 5 10 15 -03 -02 -01 0 01 02 03 04
LV 1 (59.8%) LV 1 (59.8%)
(B) Scores plot o Loadings plot
o ’ 21
— 0.2 3317 . 87°73
Bg4 S 15852 57 75'101
=) gO 1l 23] 235 1432?2
ENE g W P
= . . ~ 0 w o
>0 > 180 s§ g
it} m- - L
) . - -0.1
* 0.1 -
3 4503
-4 - 242162
-6 0.3
-1 - -5 0 5 10 15 0. -0.4 -0 3 —0 2 -0 01 02 03 04
LV 1 (58.8%) LV1 (58 8%)
(C) Scores plot 05 Loadings plot
o[ i 0.4
- I
X4 v R0 %
oo M 1 £ 87165
b L 904571 1
;U v . -y ;O.Z 24 39.2]12120159 126 3?179
- P 146! 2910 234
il . | “oq 1?3;1, T 56320,
2 + el 339,1057 195
0 24743 13d 82
4t wt* - 12‘}3119 71 i
o - 0.1 202
s s L " " N 310
-15 -10 -5 0 5 10 15 0. 04 -03 -02 -01 0 01 02 03 04
LV 1 (58.1%) LV 1 (58.1%)

Figure S5. Scores and loadings plots of the PLS models developed on the DAF effect separated
metabolomics data matrix (Xpae), of the individual barley genotypes, lys5.f (A), Bomi (B), and lys3.a (C). *
PLS models include only most important metabolites for predicting DAF that showed VIP scores < 1.
Metabolite numbers on the loadings plot correspond to their number in Supplementary Table S1.
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Figure S6. (A) Scores and (B) loadings plots of the PLS-DA model developed on the temperature effect
separated metabolomics data matrix (Xreme). * The PLS-DA model include only most important metabolites
that showed VIP scores < 1, for classifying HT plants from LT barley plants. Metabolite numbers on the
loadings plot correspond to their number in Supplementary Table S1.
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Supplementary Table S1. Relative ratios of the metabolites at the harvest time (47 days after flowering) to
the level of metabolites detected from the mother line barley grown in high temperature (Bomi_HT). The
table also comprises retention times (RT), reported retention indices (RI(r)), calculated retention indices
(RI(c)), EI-MS based library search (LS) by using NISTO5 and Wiley08. Mass spectra of the unknown
metabolites can be obtained by contacting the corresponding author (Bekzod Khakimov (bzo@life.ku.dk)).
* Common metabolomic alterations, related to barley seed developmental stages and growth temperature
observed for all three barley genotypes are highlighted by a-e indices.

a. Metabolites increased during the grain-filling period

b. Metabolites decreased during the grain-filling period

c. Metabolites significantly increased after two weeks of grain-filling period and gradually decreased after the third week of the
grain-filing.

d. Metabolites with higher concentrations in barley lines grown under high temperature (HT) conditions compared to the low
temperature (LT) grown barley lines.

e. Metabolites with higher concentrations in barley lines grown in under low temperature (LT) conditions compared to the high
temperature (HT) grown barley lines.

f. Tentatively identified

No. | Metabolites lys5.f LT | lys5.f HT | lys3.a_LT | lys3.a_HT | Bomi_LT | RT(min) | RI(r) | RI(c) | LS

1. Laevulic acid-1TMS (b) 0.43 2.05 0.6 0.6 0.43 9.04 | 1030 | 1070 | 96

2. Sorbic acid-1TMS (b) 0.55 0.62 0.52 0.8 0.55 9.06 | 1009 | 1071 | &4

3. Hepta-2,4-dienoic acid, methyl ester (b), 9.28 | 1000 | 1080 | 82
(e) 4.34 1.42 1.46 0.94 4.34

4. Octanol-1-1TMS (a), (e) 1.06 1.69 1.22 0.53 1.06 9.51 | 1101 | 1090 | 79

5. Unk5 (d) 0.87 1.3 1.06 1.65 0.87 9.48

6. Unk6 0.79 0.38 1.19 0 0.79 9.69

7. Unk7 1.05 1.48 1.9 0.86 1.05 9.76 1097

8. Unk8 (b) 0.82 1.71 0.85 1.11 0.82 9.74

9. Malonic acid-2TMS 1.12 2.01 1.19 1.49 1.12 9.99 | 1205 | 1207 | 84

10. | (3,3-Dimethyl-1-cyclohexen-1-yl)oxy]- 9.97 | 1110 | 1206 | 73
1TMS (c) 2.54 0.86 0.77 1.46 2.54

11. Unk11 (e) 1.29 1.43 1.42 1.21 1.29 10.15

12. | Unk12 (d) 0.71 2.34 3.64 2.89 0.71 10.18

13. | Benzoic acid-1TMS (e) 1.19 0.85 1.28 0.71 1.19 10.42 | 1228 | 1226 | 91

14. | 3-methylfuran-2-carboxylic acid, -1TMS 10.38 | 1107 | 1224 | 91
(b) 0.55 0.57 0.54 0.66 0.55

15. | Unk15 (d) 1.25 1.58 1.16 1.47 1.25 10.63

16. | Unk16 (b), (e) 0.78 1.01 0.92 0.81 0.78 10.60

17. | Glycerol-3TMS (c) 1.1 1.53 0.86 1.5 1.1 10.88 | 1282 | 1246 | 84

18. | 1,3-dihydroxypropanone-2-2TMS (b), (e) 1.61 1.09 0.83 1.03 1.61 11.03 1249 | 81

19. | Unk19 (b), (e) 1.47 1.9 1.39 1.23 1.47 11.02

20. | Unk20 (c) 0.94 1.04 0.76 1.28 0.94 11.05

21. | Unk21 (b), (e) 2.57 3.43 0.96 0.89 2.57 11.19 1259

22. | Succinic acid-2TMS 0.56 1.14 0.86 0.91 0.56 11.24 | 1292 | 1262 | 82

23. | Glyceric acid-3TMS (b) 3.04 1.45 1.2 3.51 3.04 11.51 | 1199 | 1274 | 93

24. | Maleic acid-2TMS (b), (e) 1.25 3.51 0.54 1 1.25 11.55 | 1286 | 1275 | 75

25. | Fumaric acid-2TMS (b) 0.69 1.27 2.53 1.61 0.69 11.60 | 1178 | 1278 | 93

26. | Unk26 1 1.52 0.58 0.66 1 11.67 1280

27. | Unk27 (a) 0.87 1.75 1 0.52 0.87 11.70 1282

28. | p-hydroxybenzaldehyde -1TMS (a) 0.82 0.72 1.15 0.34 0.82 11.85 | 1280 | 1289 | 93

29. | 2-hydroxyheptanoic acid-2TMS (a) 2.53 5.82 2.42 6.59 2.53 11.83 | 1312 | 1288 | 91

30. | Unk30 (b) 1.76 0.3 0.46 1.17 1.76 11.82 1287

31. | Unk31 1.73 0.62 0.56 0.32 1.73 11.91 1291

32. | 3-hydroxybutanoic acid-2TMS (a) 0.78 0.88 0.37 0.19 0.78 12.12 | 1403 | 1401 | 79

33. | Resorcinol-2TMS 0.97 1.06 1.32 1.05 0.97 12.2 | 1378 | 1404 | 79

34. | Unk34 (c) 0.89 1.79 1.04 2.35 0.89 12.28 1409

35. | Unk35 (e) 1.79 0.19 1.2 0.45 1.79 12.48 1418

36. | Trimethyl aconitate (c) 1.44 0.25 1.18 0.15 1.44 12.50 | 1428 | 1419 | 90

37. | Unk37 2.54 1.62 1.66 2.03 2.54 12.46 1417
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38. | Unk38(d) 1.26 1.53 1.02 1.22 1.26 12.55 1422

39. | Unk39(b), (e) 2.34 1.71 0.57 0.7 2.34 12.57 1423

40. | Unk40 (b) 0.66 0.91 0.95 0.84 0.66 12.6 1424

41. | Unk41 (b), (e) 0.56 1.16 0.26 0.44 0.56 12.64 1426

42. | Citric acid, trimethyl ester 2.45 0.96 1.32 0.22 2.45 12.82 | 1442 | 1435 | 99

43. | 3-hydroxyanthranilic acid, methyl ester- 12.8 1434 | 85
1TMS (b), (e) 3.38 1.13 0.5 1.16 3.38

44. | 2,4-dihydroxy-5-methylpyrimidine, -2TMS 1.16 1.38 0.93 1.16 1.16 12.89 | 1403 | 1439 | 77

45. | 5-hydroxy-2-(hydroxymethyl)-4H-pyran-4- 13.08 | 1492 | 1448 | 72
one-2TMS (c) 2.01 1.42 1.07 1.29 2.01

46. | Maseptol-1TMS (a) 1 1.35 1.53 0.77 1 13.12 | 1358 | 1450 | 71

47. | Unk47 1.32 0.85 1.15 0.99 1.32 13.1 1449

48. | Malic acid-2TMS 0.94 0.52 0.44 0.4 0.94 13.19 | 1494 | 1453 | 94

49. | Unka49 (a), (e) 1.33 0.97 1.1 0.69 1.33 13.27 1458

50. | 2-hydroxycyclohexane-1-carboxylic acid- 13.23 | 1402 | 1456 | 71
2TMS (a) 0.92 2.22 0.75 0.58 0.92

51. | 3-hydroxyoctanoic acid-2TMS (e) 0.43 0.55 0.12 0.1 0.43 13.35 | 1452 | 1462 | 78

52. | Unk52 3.91 2.08 0.31 2.49 3.91 13.33 1461

53. | Pyroglutamic acid-2TMS (d) 0.78 0.37 1.2 1.79 0.78 13.46 | 1466 | 1467 | 96

54. | Erythritol-4TMS 2.53 1.6 1.16 1.75 2.53 13.47 1467 | 83

55. | Unk55 (b) 1.72 1.64 0.85 0.49 1.72 13.50 1469

56. | Dimethyl azelate 3.13 3.52 1.68 0.77 3.13 13.61 | 1485 | 1474 | 90

57. | 4-hydroxybenzeneacetic acid, methyl 13.62 | 1458 | 1475 | 92
ester-1TMS (a) 0.74 1.27 0.67 0.39 0.74

58. | Vanillin -1TMS (a) 0.9 0.98 1.03 0.32 0.9 13.55 | 1469 | 1471 | 98

59. | Unk59 2.17 2 1.86 1.13 2.17 13.67 1477

60. | Unk60 (a) 0.88 0.7 0.82 0.86 0.88 13.66 1477

61. | Unké61 (b), (e) 2.7 3.18 2.29 1.48 2.7 13.58 1473

62. | Citric acid, trimethyl ester-1TMS 0.96 0.72 0.96 0.15 0.96 13.76 1482 | 96

63. | 2-Furancarboxylic acid, 5-[(oxy)methyl]- 13.72 | 1540 | 1480 | 97
1TMS (b) 1.58 0.99 0.84 1.44 1.58

64. | Unk64 1.46 1.03 0.91 0.89 1.46 13.84 1486

65. | Unk65 (b) 1.14 0.68 1.06 0.75 1.14 13.87 1487

66. | Unké6 (b), (e) 1.75 1.84 1.29 1.12 1.75 13.82 1485

67. | 4-Hydroxyphenylethanol-2TMS (a), (d) 0.75 1.35 1.05 1.2 0.75 13.92 | 1475 | 1490 | 97

68. | Unk68 (a), (d) 1.49 2.11 1.5 2.12 1.49 13.93 1490

69. | Unk69 (a), (e) 1.12 0.76 0.78 0.14 1.12 14.08 1498

70. | Anozol 0.59 1.14 0.25 0.31 0.59 14.15 | 1603 | 1601 | 93

71. | Unk71 (b), (e) 2.64 2.29 0.42 0.57 2.64 14.16 1602

72. | 2-Ketoglutaric acid-3TMS 0.21 0.78 0.13 0.28 0.21 14.34 | 1622 | 1612 | 98

73. | 3-methyl-3-hydroxypentanedioic acid- 14.3 | 1610 | 1609 | 95
3TMS (a), (d) 0.43 1.54 0.79 1 0.43

74. | Unk74 (a), (d) 1.69 1.92 2 7.97 1.69 14.32 1610

75. | Dodecane-6-hydroxy-1TMS (a), (d) 1.61 2.07 1.68 2.67 1.61 14.40 | 1631 | 1615 | 88

76. | p-Salicylic acid -2TMS (a), (d) 0.59 0.81 141 1.26 0.59 14.45 | 1618 | 1618 | 96

77. | Unk77 (e) 1.23 0.93 1.26 0.97 1.23 14.57 1624

78. | Methyl Isovanillate-1TMS 0.7 1.21 1.2 0.33 0.7 14.66 | 1547 | 1629 | 90

79. | Unk79 (a) 1.98 0.38 1.41 0.37 1.98 14.80 1637

80. | Unk80 (c), (d) 0.84 0.6 1.47 0.82 0.84 14.77 1635

81. | Unk81 1.08 0.99 1.62 0.88 1.08 14.88 1641

82. | Unk82 (a), (d) 1.64 2.51 1.7 2.87 1.64 14.86 1640

83. | Unk83 (a) 1.06 1.13 0.93 0.78 1.06 14.89 1642

84. | Unk84 (a) 1.25 1.08 1.12 0.91 1.25 14.95 1645

85. | Unk85 (a) 1 1.13 0.89 0.58 1 14.98 1647

86. | Unk86 (a) 0.97 1.23 0.78 0.76 0.97 14.99 1647

87. Unk87 0.41 0.31 0.15 0.2 0.41 15.01 1648

88. | Unk88 (a) 0.96 1.21 0.97 0.62 0.96 15.08 1652

89. | Suberic acid-2TMS (a), (d) 0.8 13 1.33 1.96 0.8 15.11 | 1682 | 1654 | 92

90. | Unk90 (b) 0.83 1.73 0.6 0.29 0.83 15.12 1654

91. | Syringaldehyde -1TMS (a) 0.88 0.92 0.9 0.67 0.88 15.15 | 1658 | 1656 | 88

92. | B-D-Arabinopyranose-4TMS (a) 1.14 0.71 1.01 1.03 1.14 15.23 | 1692 | 1660 | 80

93. | B-D-Xylopyranose-4TMS (d) 1.65 1.41 0.88 1.15 1.65 15.30 | 1694 | 1664 | 79
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94. | Unk94 0.89 0.68 0.86 0.81 0.89 15.26 1662
95. | Unk95 (c) 1.16 0.31 1.14 0.59 1.16 15.28 1663
96. | Protocatechuic acid, methyl ester -2TMS 15.35 | 1656 | 1667 | 92
(a) 0.74 0.69 0.91 0.86 0.74
97. | Unk97 1.96 1.82 0.71 1.79 1.96 15.38 1669
98. | 2,5-dimethoxymandelic acid-2TMS (e) 1.08 0.38 1.31 0.14 1.08 15.38 | 1867 1669 | 75
99. | Unk99 0.7 2.46 1.52 1.34 0.7 15.53 1677
100. | Vanillic acid-2TMS (a), (d) 0.44 0.96 1.04 1.2 0.44 15.72 1656 1687 | 98
101.| Unk101 (a) 1.13 1.91 1.08 1.42 1.13 15.74 1688
102.| Unk102 (b) 0.75 0 0.98 0.24 0.75 15.69 1686
103.| Unk103 0.66 1.25 1.76 1.27 0.66 15.80 1692
104.| Unk104 0.59 6.2 2.32 2.19 0.59 15.79 1691
105. | 4-hydroxycinnamic acid, methyl ester - 15.88 | 1565 | 1696 | 97
1TMS (b) 1.47 1.09 1.2 0.78 1.47
106. | Azelaic acid-2TMS (a), (d) 0.66 2.76 1.38 5.2 0.66 15.98 | 1800 | 1802 | 83
107.| 2,3-dihydroxyphosphoric acid, propy! 15.86 | 1708 | 1695 | 97
ester-4TMS (a) 2 1.33 0.73 1.35 2
108.| Unk108 1.53 0.89 2.29 1.6 1.53 15.94 1699
109.| Unk109 (d) 0.79 1.08 1.01 0.92 0.79 16.08 1808
110.| Methyl 2-(oxy)-2-(4- 16.14 | 1757 | 1811 | 85
(oxy)phenyl)propanoate-2TMS (d) 1.25 2.15 0.7 0.58 1.25
111.| a-D-Galactofuranoside, methyl-2,3,5,6- 16.11 | 1845 | 1810 | 81
tetrakis-4TMS (a) 1.46 0.43 0.64 0.89 1.46
112.| Unk112 0.41 1.95 0.71 0.92 0.41 16.03 1805
113.| Protocatechuic acid-3TMS (a), (d) 0.67 0.94 0.9 1.12 0.67 16.24 | 1826 | 1818 | 95
114.| a-Resorcylic acid -3TMS (a) 0.68 0.74 1.45 1.02 0.68 16.20 | 1826 | 1815 | 86
115.| D-Fructose-5TMS 26.5 2.17 0.37 37.7 26.5 16.41 1867 1828 | 90
116. | Isocitric acid-4TMS 0.61 2.81 1.71 2.48 0.61 16.34 | 1835 1823 | 91
117.| Catechin-nTMS 1.17 0.8 0.97 1.18 1.17 16.44 1830 81
118.| Homovanilic acid -2TMS (d) 1.34 2.49 1.87 1.42 1.34 16.4 | 1867 1827 | 75
119.| Unk119 1.08 1.01 0.59 0.56 1.08 16.51 1834
120.| Unk120 (a) 2.57 2.1 2.02 1.78 2.57 16.49 1833
121.| Unk121 (a) 1.35 1.22 1.16 0.94 1.35
122.| Unk122 0.64 2.7 0.8 0.69 0.64
123.| B-D-Galactopyranoside, methyl 2,3,4,6- 16.68 | 1900 | 1844 | 85
tetrakis-4TMS 2.07 0.86 0.8 1.41 2.07
124.| Unk124 (b), (e) 3.51 0 1 0.68 3.51 16.63 1841
125.| Unk125 (c) 2.16 0.44 3.36 3.36 2.16 16.65 1842
126.| Catechin-nTMS 1.32 0.66 0.91 1.24 1.32 16.77 1849 | 82
127.| Gentisic acid -3TMS (b) 1.19 2.92 1.2 1.34 1.19 16.78 | 1796 1850 | 87
128.| Unk128 (a) 0.81 1.21 0.57 1.21 0.81 16.72 1846
129.| Unk129 (b) 1.31 2.23 0.48 2.59 1.31 16.75 1848
130. | Unk130 (e) 1.71 1.02 1.22 0.65 1.71 16.76 1849
131.| a-D-Glucopyranoside, methyl 2,3,4,6- 16.90 | 1928 | 1857 | 94
tetrakis-4TMS 2.69 1.23 0.63 1.11 2.69
132.] Syringic acid-2TMS (a), (d) 0.47 1.26 0.95 16 0.47 16.88 | 1845 | 1856 | 96
133.| Unk133 (a) 0.84 0.48 0.92 0.66 0.84 16.88 1856
134.| B -D-Glucopyranoside, methyl 2,3,4,6- 17.05 | 1928 | 1866 | 91
tetrakis-4TMS 3.36 1.22 0.63 1.29 3.36
135.| a-D-Glucopyranose, 1,2,3,4,6-pentakis- 17.02 | 1924 | 1864 | 93
5TMS 1.5 1.19 0.41 1.65 1.5
136.| Palmitic acid, methyl ester 17.01 | 1870 | 1864 | 97
3.31 2.75 1.09 24.5 3.31
137.| D-Galactose, 2,3,4,5,6-pentakis-5TMS (a) 1.84 0.63 0.51 1.54 1.84 17.12 1970 | 1871 | 97
138.| Unk138 (b) 3.33 2.75 1.92 1.27 3.33 17.13 1871
139.| Unk139 (a) 0.54 0.96 38.8 10.8 0.54 17.1 1869
140.| p-Coumaric acid-2TMS (b), (e) 0.96 1.3 1.15 1.23 0.96 17.18 | 1924 | 1874 | 90
141.| Ferulic acid, methyl ester-1TMS 2.01 1.21 1.02 0.76 2.01 17.25 1765 1878 87
142.| Unk142 (b) 1.35 2.65 0.97 1.34 1.35 17.35 1884
143.| Unk143 (b) 0.77 1.98 0.73 2.13 0.77 17.39 1887
144.| Unk144 (b), (e) 4.84 8.48 1.91 8.02 4.84 17.40 1888
145.| Gallic acid-4TMS (a) 0.63 0.74 1.01 1.22 0.63 17.45 1976 1890 | 96
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146. | Unk146 0.62 2.73 0.82 1.27 0.62 17.43 1889

147.| 2-hydroxymandelic acid, ethyl ester-2TMS 1734 | 1777 | 1884 | 75
(a), (e) 0.28 0.31 0.62 0.57 0.28

148.| 4’-Cyclohexylacetophenone (b) 2.64 1.21 1.47 1.26 2.64 17.58 | 1703 1898 | 71

149. | Unk149 (b) 1.34 1.09 0.63 1.46 1.34 17.65 2003

150. | Unk150 3.27 0.97 2.09 1.43 3.27 17.61 2000

151. | Unk151 (b), (e) 2.1 2.23 1.39 2.26 2.1 17.69 2005

152. | Caffeic acid methyl ester - 2TMS 1.91 2.04 0.91 0.8 1.91 17.76 | 1863 | 2010 | 96

153.| B -D-Glucopyranose-5TMS (d) 1.96 1.45 0.33 2.15 1.96 17.75 | 1970 | 2009 | 87

154. | Unk154 (b) 0 0 0 0 0 17.76 2010

155.| Unk155 (b) 0.53 0.36 0.76 0.68 0.53 17.9 2019

156. | Unk156 0.32 1.44 0.31 0.61 0.32 18.00 2026

157.| Unk157 (c) 1.61 5.63 0.64 1.87 1.61 17.97 2024

158. | Unk158 (c), (e) 1.15 1.45 0.84 1.03 1.15 18.05 2029

159. | Unk159 (b), (e) 1.87 1.79 0.36 1.14 1.87 18.07 2030

160. | 2-hydroxysebacic acid-3TMS (a), (d) 1.03 1.72 1.69 4.05 1.03 18.13 | 2059 | 2034 | 88

161. | Unk161 (b) 2.65 0 0.5 4.49 2.65 18.16 2036

162.| Unk162 0.58 0.98 0.84 0.57 0.58 18.15 2036

163. | Unk163 (e) 1.57 0.66 0.56 0.69 1.57 18.24 2041

164. | Unk164 (c) 1.63 1.86 1.58 2.65 1.63 18.20 2039

165. | Ferulic acid-2TMS (d) 1.07 1.42 1.11 1.4 1.07 18.40 | 2076 | 2052 | 92

166. | 8,11-octadecadienoic acid, methyl ester 18.35 | 2093 | 2049 | 93
(c) 2.11 1.91 0.83 8.33 2.11

167.| Unk167 (a) 2.8 1.13 2.01 2.98 2.8 18.33 2047

168.| Unk168 (b) 6.84 13 0.64 1.22 6.84 18.62 2066

169. | Sinapinic acid methyl ester-1TMS (d) 1.81 1.2 1.85 1.87 1.81 18.51 | 1943 | 2059 | 96

170. | Unk170 (b) 1.11 1.41 1.31 0.85 1.11 18.70 2072

171.| Methyl vanillactate-2TMS (b), (e) 1.58 0.98 0.69 1.62 1.58 18.55 | 2030 | 2062 | 81

172.| Caffeic acid-3TMS 1.06 2.89 0.94 1.42 1.06 18.76 | 2114 | 2076 | 98

173.| 9-methoxy-4a-methyl-2,3,7-trihydroxy- 18.85 2082 | 76
4,4a-dihydro-2H-benzo[c]chromen-6(3H)-
one (b)(f) 2.06 4.28 0.73 1.6 2.06

174.| Unk174 0.89 0.87 1.08 0.82 0.89 18.96 2089

175.| Unk175 (b), (e) 0.85 1.68 1.12 1.23 0.85 18.96 2089

176.| Unk176 1.59 0.55 0.57 0.31 1.59 19.01 2092

177.| Unk177 (a), (d) 1.49 13 1.91 3.42 1.49 19.00 2092

178.| Unk178 1.06 0.83 0.61 0.52 1.06 19.10 2098

179.| Unk179 (a) 1.84 1.34 2.05 3.98 1.84 19.18 2204

180.| Unk180 (c), (e) 0.96 0.37 0.99 0.85 0.96 19.15 2201

181. | Linoleic acid-1TMS 1.18 1.52 0.31 5.19 1.18 19.23 | 2202 | 2207 | 92

182.| Unk182 2.24 2.9 1.78 1.64 2.24 19.35 2216

183.| Unk183 1.19 0.71 0.76 0.36 1.19 19.25 2209

184. | Unk184 (b) 1.15 3.25 0.86 1.23 1.15 19.27 2210

185. | Unk185 (c), (e) 0.85 0.3 0.8 1.18 0.85 19.38 2218

186. | 4,8-dihydroxy-2-quinolinecarboxylic acid- 19.46 | 2265 | 2224 | 89
3TMS (a) 0.69 0.35 0.92 0.73 0.69

187. | Sinapinic acid -2TMS (d) 1 1.48 1.32 2.64 1 19.52 | 2221 | 2228 | 98

188.| Unk188 (b), (e) 1.51 1.89 0.92 2.23 1.51 19.53 2229

189. | Unk189 (b) 2.35 3.55 0.86 1.67 2.35 19.52 2228

190. | Unk190 (b) 2.19 3.55 1.63 1.55 2.19 19.68 2239

191.| Unk191 (a) 1.04 0.34 1.04 0.45 1.04 19.71 2241

192.| Unk192 1.12 0.57 0.82 0.9 1.12 19.65 2237

193.| Unk193 0.83 0.96 0.93 1.51 0.83 19.63 2236

194.| Unk194 (d) 0.87 1.47 2.36 2.91 0.87 19.81 2249

195. | Unk195 (a), (d) 0.96 1.4 1.58 4.56 0.96 19.78 2246

196. | Unk196 (e) 1.35 0.99 0.6 1.04 1.35 19.80 2248

197.| Unk197 (b) 1.33 0.88 1.19 1.36 1.33 19.92 2256

198.| Androsterone type plant sterol (b), (f) 0.85 2.11 0.68 1.34 0.85 19.89 2254

199. | Unk199 (b) 5.07 1.37 0.68 1.5 5.07 19.90 2255

200. | 3-hydroxyandrostan-17-one-1TMS 1.19 1.28 1.02 1.34 1.19 19.98 | 2186 | 2261 | 78

201. | Unk201 (b) 3.56 1.36 0.63 1.33 3.56 20.02 2264

202.| Unk202 (c), (e) 2.3 1.87 0.61 1.35 2.3 20.05 2266
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203. | Unk203 (c) 0.77 0.93 0.5 1.48 0.77 20.13 2271

204.| Unk204 2.13 5.89 2.15 1.67 2.13 20.11 2270

205.| Unk205 (b) 1.48 2.89 1.35 1.77 1.48 20.11 2270

206. | Unk206 (b), (e) 3.96 3.05 0.7 2.3 3.96 20.21 2277

207.| Unk207 (b) 2.18 1.42 1.05 1.11 2.18 20.33 2286

208.| Unk208 (c) 0.77 0.25 0.65 1.58 0.77 20.31 2284

209. | 19-Norandrosterone-3-TMS (a), (d), (f) 0.82 1 0.75 1.68 0.82 20.36 | 2198 | 2288 | 79

210.| Unk210 1.18 1.09 0.37 0.57 1.18 20.39 2290

211.| Unk211 (b), (e) 1.97 1.42 0.67 1.39 1.97 20.44 2294

212.| Unk212 (b), (e) 1.61 1.55 0.72 1.47 1.61 20.50 2298

213.| Unk213 (b) 74.2 3.29 0.64 3.45 74.2 20.57 2403

214.| Unk214 (a) 0.76 1.69 0.52 1.7 0.76 20.28 2282

215.| Unk215 1.85 1.83 0.9 3.46 1.85 20.57 2403

216.| Unk216 45.4 2.14 1.75 2.68 45.4 20.69 2412

217.| Unk217 1.3 0.39 0.74 0.98 1.3 20.84 2424

218.| 9,10-dihydroxystearic acid-3TMS 4.18 0.43 1.5 3.7 4.18 20.87 | 2517 | 2426 | 85

219.| Unk219 (b), (e) 2.38 3.99 0.59 1.95 2.38 20.99 2435

220. | 3,7-di-hydroxy-androstan-17-one -2TMS 21.09 | 2432 | 2443 | 93
(d) 0.48 1.19 0.97 3.11 0.48

221.| Unk221 (e) 1.3 0.75 0.43 2.06 1.3 21.16 2449

222.| Unk222 1.81 0.95 0.36 1.98 1.81 21.19 2451

223.| Unk223 51.6 3.74 1.81 1.27 51.6 214 2467

224.| Unk224 (b) 1.35 1.92 0.48 1.8 1.35 21.38 2466

225.| Unk225 (d) 1 3.73 0.25 7.1 1 21.34 2463

226.| Unk226 (b), (e) 1.89 2.87 0.53 2.47 1.89 21.51 2476

227.| Unk227 0.82 0.56 0.83 1.27 0.82 21.54 2478

228.| Unk228 (b) 9.14 3.64 0.56 5.97 9.14 21.45 2471

229.| Unk229 0.78 0.77 0.86 0.77 0.78 21.51 2476

230.| 9,10- dihydroxystearic acid, dimethyl 21.49 | 2784 | 2474 | 70
ester-2TMS 3.09 0.99 2.8 5.27 3.09

231.| Unk231 (b), (e) 3.31 3.85 0.22 3.78 3.31 21.65 2486

232.| 2,3-dihydroxypalmitic acid, propyl ester- 21.84 | 2581 | 2601 | 98
2TMS 2.23 1.46 1.25 10.8 2.23

233.| Unk233 3.44 1.65 0.6 6.14 3.44 21.82 2499

234.| Unk234 (a) 0.59 0.43 1.28 1.84 0.59 21.87 2604

235.| Unk235 (b) 3.95 2.31 1.25 2.97 3.95 21.96 2611

236. | Unk236 (b) 1.34 1.34 0.99 2.86 1.34 22.01 2615

237.| Unk237 0.62 0 0.04 9.94 0.62 22.42 2649

238.| Unk238 3.93 0.6 1.12 1.53 3.93 22.59 2663

239.| Unk239 (e) 1.34 1.04 1.07 1.08 1.34 23.22

240.| 2-Deoxy-6-phosphogluconolactone-5TMS 6.01 0.95 1.03 5.75 6.01 23.26 2820 | 77

241.| Unk241 11.5 1.81 0.64 13.5 11.5 23.36 2829

242.| Unk242 (c) 1.1 0.15 1.67 2.03 1.1 23.57 2847

243.| Unk243 (a), (d) 0.67 0.85 2.5 5.2 0.67 23.58 2848

244.| 2-hydroxytetracosanoic acid, methyl 23.69 | 2894 | 2858 | 98
ester-1TMS 1.64 4.91 0.63 7.86 1.64

245.| 3,7-dihydroxycholest-5-ene-2TMS (c) 1.13 0.58 1.63 2.33 1.13 23.95 | 2900 | 2881 | 81

246.| Unk246 (b) 1.13 1.2 1.35 2.16 1.13 24.6 3041

247.| Unk247 (b) 0.67 0.73 0.98 2.11 0.67 24.69 3050
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Triterpenoid saponins are bioactive metabolites that have evolved recurrently in plants, presumably for defense. Their biosynthesis
is poorly understood, as is the relationship between bioactivity and structure. Barbarea vulgaris is the only crucifer known to
produce saponins. Hederagenin and oleanolic acid cellobioside make some B. vulgaris plants resistant to important insect pests,
while other, susceptible plants produce different saponins. Resistance could be caused by glucosylation of the sapogenins. We
identified four family 1 glycosyltransferases (UGTs) that catalyze 3-O-glucosylation of the sapogenins oleanolic acid and
hederagenin. Among these, UGT73C10 and UGT73C11 show highest activity, substrate specificity and regiospecificity, and
are under positive selection, while UGT73C12 and UGT73C13 show lower substrate specificity and regiospecificity and are
under purifying selection. The expression of UGT73C10 and UGT73C11 in different B. vulgaris organs correlates with saponin
abundance. Monoglucosylated hederagenin and oleanolic acid were produced in vitro and tested for effects on P. nemorum. 3-O-
B-D-Glc hederagenin strongly deterred feeding, while 3-O-B-p-Glc oleanolic acid only had a minor effect, showing that
hydroxylation of C23 is important for resistance to this herbivore. The closest homolog in Arabidopsis thaliana, UGT73C5, only
showed weak activity toward sapogenins. This indicates that UGT73C10 and UGT73C11 have neofunctionalized to specifically
glucosylate sapogenins at the C3 position and demonstrates that C3 monoglucosylation activates resistance. As the UGTs from
both the resistant and susceptible types of B. vulgaris glucosylate sapogenins and are not located in the known quantitative trait
loci for resistance, the difference between the susceptible and resistant plant types is determined at an earlier stage in saponin
biosynthesis.

Triterpenoid saponins are a heterogeneous group
of bioactive metabolites found in many species of the
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plant kingdom. The general conception is that sapo-
nins are involved in plant defense against antagonists
such as fungi (Papadopoulou et al., 1999), mollusks
(Nihei et al., 2005), and insects (Dowd et al., 2011).
Saponins consist of a triterpenoid aglycone (sapogenin)
linked to usually one or more sugar moieties. This com-
bination of a hydrophobic sapogenin and hydrophilic
sugars makes saponins amphiphilic and enables them to
integrate into biological membrane systems. There, they
form complexes with membrane sterols and reorganize
the lipid bilayer, which may result in membrane damage
(Augustin et al., 2011).

However, our knowledge of the biosynthesis of sapo-
nins, and the genes and enzymes involved, is limited. The
current conception is that the precursor 2,3-oxidosqualene
is cyclized to a limited number of core structures, which
are subsequently decorated with functional groups, and
finally activated by adding glycosyl groups (Augustin
et al,, 2011). These key steps are considered to be cata-
lyzed by three multigene families: (1) oxidosqualene
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cyclases (OSCs) forming the core structures, (2) cyto-
chromes P450 adding the majority of functional groups,
and (3) family 1 glycosyltransferases (UGTs) adding
sugars. This allows for a vast structural complexity,
some of which probably evolved by sequential gene
duplication followed by functional diversification
(Osbourn, 2010). A major challenge is thus to under-
stand the processes of saponin biosynthesis, which
structural variants of saponins play a role in defense
against biotic antagonists, and how saponin biosyn-
thesis evolved in different plant taxa. This knowledge
is also of interest for biotechnological production and
the use of saponins as protection agents against ag-
ricultural pests as well as for pharmacological and
industrial uses as bactericides (De Leo et al., 2006),
anticancerogens (Musende et al., 2009), and adjuvants
(Sun et al., 2009).

Barbarea vulgaris (winter cress) is a wild crucifer from
the Cardamineae tribe of the Brassicaceae family. It is the
only species in this economically important family known
to produce saponins. B. vulgaris has further diverged into
two separate evolutionary lineages (types; Hauser et al.,
2012; Toneatto et al., 2012) that produce different sapo-
nins, glucosinolates, and flavonoids (Agerbirk et al.,
2003b; Dalby-Brown et al., 2011; Kuzina et al., 2011).
Saponins of the one plant type make plants resistant to
the yellow-striped flea beetle (Phyllotreta nemorum), dia-
mondback moth (Plutella xylostella), and other important
crucifer specialist herbivores (Renwick, 2002); therefore, it
has been suggested to utilize such plants as a trap crop to
diminish insect damage (Badenes-Perez et al., 2005). The
other plant type is not resistant to these herbivores. B.
vulgaris, therefore, is ideal as a model species to study
saponin biosynthesis, insect resistance, and its evolution,
as we can contrast genes, enzymes, and their products
between closely related but divergent plant types.

Insect resistance of the one plant type, called G because
it has glabrous leaves, correlates with the content of es-
pecially hederagenin cellobioside, oleanolic acid cello-
bioside, 4-epi-hederagenin cellobioside, and gypsogenin
cellobioside (Shinoda et al., 2002; Agerbirk et al., 2003a;
Kuzina et al., 2009; Fig. 1). These saponins are absent in
the susceptible plant type, called P because it has pu-
bescent leaves, which contains saponins of unknown
structures and function (Kuzina et al., 2011). The sapo-
genins (aglycones) of the resistance-causing saponins
hederagenin and oleanolic acid cellobioside do not deter
feeding by P. nemorum, which highlights the importance
of glycosylation of saponins for resistance (Nielsen et al.,
2010). Therefore, the presence or absence of sapogenin
glycosyltransferases could be a determining factor for
the difference in resistance between the insect resistant
G-type and the susceptible P-type of B. vulgaris.

Some P. nemorum genotypes are resistant to the saponin
defense of B. vulgaris (Nielsen, 1997b, 1999). Resistance is
coded by dominant R genes (Nielsen et al., 2010; Nielsen
2012): larvae and adults of resistant genotypes (RR or Rr)
are able to feed on G-type foliage and utilize B. vulgaris as
host plant (de Jong et al., 2009), whereas larvae of the
susceptible genotype (rr) die and adult beetles stop feeding
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Figure 1. Chemical structures of the four known G-type B. vulgaris
saponins that correlate with resistance to P. nemorum and other her-
bivores. The cellobioside and sapogenin parts of the saponin are
underlined, and relevant carbon positions are numbered.

on G-type foliage. Larvae and adults of all known P.
nemorum genotypes can feed on P-type B. vulgaris (Fig. 2).

In this study, we asked which enzymes are involved
in glucosylation of sapogenins in B. vulgaris, whether
saponins with a single C3 glucosyl group are biologi-
cally active, and whether the difference between the
insect resistant and susceptible types of B. vulgaris is
caused by different glucosyltransferases.

We report the identification of two UDP-
glycosyltransferases, UGT73C10 and UGT73C11, which
have high catalytic activity and substrate specificity and
regiospecificity for catalyzing 3-O-glucosylation of the
sapogenins oleanolic acid and hederagenin. The prod-
ucts, 3-O-B-D-glucopyranosyl hederagenin and 3-O--b-
glucopyranosyl oleanolic acid, are predicted precursors
of hederagenin and oleanolic acid cellobioside, re-
spectively. The expression patterns of UGT73C10 and
UGT73C11 in different organs of B. vulgaris correlate
with saponin abundance, and monoglucosylated sap-
ogenins, especially 3-O-B-D-glucopyranosyl hederagenin,
deter feeding by P. nemorum. Our results thus show that
glucosylation with even a single glucosyl group activates
the resistance function of these sapogenins. However,
since the UGTs are present and active in both the insect-
resistant and -susceptible types of B. vulgaris, we cannot
explain the difference in resistance by different glucosy-
lation abilities. Instead, the difference between the sus-
ceptible and resistant types must be determined at an
earlier stage in saponin biosynthesis.

RESULTS

Identification of a Sapogenin UDP-Glycosyltransferase by
Activity-Based Screening of a cDNA Expression Library

To identify enzymes that glycosylate sapogenins (agly-
cones of saponins) from B. vulgaris, a complementary
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Figure 2. Feeding behavior of adult P. nemorum that are either sus-
ceptible (ST) or resistant (AK) toward the saponin-based defense of
G-type B. vulgaris; the P-type produces different saponins and is not
resistant against P. nemorum. Potential feeding is shown by green ar-
rows, and termination of feeding briefly after initiation is indicated by a
red dashed arrow. Larvae of the ST line die if fed on G-type plants.

DNA (cDNA) expression library was generated from
B. vulgaris var variegata, a commercial B. vulgaris va-
riety with a saponin profile similar to the insect-
resistant G-type. The library was screened by activity
assays using UDP-Glc and oleanolic acid as donor and
acceptor substrate, respectively. A single cDNA clone
was identified, of which the encoded enzyme gluco-
sylated oleanolic acid, as evidenced by comigration
with authentic 3-O-Glc oleanolic acid on thin-layer
chromatography (TLC) analysis. The clone was des-
ignated BvUGTI and found to contain a 1,566-bp
cDNA with an open reading frame (ORF) of 495 amino
acids. BLAST analyses identified Arabidopsis thaliana
UGT73C5 as its closest homolog. BvUUGT1 has 88%
nucleotide identity to UGT73C5, and the encoded
amino acid sequence, BvUGT1, is 83% identical to
UGT73C5. In addition to oleanolic acid, BvUGT1 also
glucosylated hederagenin and echinocystic acid.

Identification of BuolIGT1 Homologs in G- and P-Type
B. vulgaris

Putative BvUGT1 homologs in the resistant G-type
and susceptible P-type were searched by mining a 454
transcriptome data set from the G-type (Kuzina et al.,
2011) and the P-type. Based on the identified singlets
and contigs, two different full-length ORFs from
G-type plants and three from P-type plants were iso-
lated by PCR. The genomic sequences were identified
by PCR and shown to be intronless, which is also the
case for the seven UGT73Cs in the A. thaliana genome
(Paquette et al., 2003). Thus, putative BvUGT1 homo-
logs are not only present in both the G- and P-type B.
vulgaris genomes, but they are also expressed. The
three P-type UGTs were named UGT73C9, UGT73C10,
and UGT73C12, and the two G-type sequences were
named UGT73C11 and UGT73C13 (Fig. 3), by the UGT
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nomenclature committee (Mackenzie et al., 1997). The
OREFs of the five UGTs each span 1,488 bp and encode
proteins consisting of 495 amino acids.

Of the five sequences, UGT73C11 is most identical to
BuUGT1 from B. vulgaris var variegata, differing in only
three nucleotides, which causes a conservative amino
acid substitution of Asp-338 to Glu in UGT73C11. Based
on a reconstruction of the phylogeny of the UGTs (Fig. 3),
UGT73C9 and UGT73C10 from the P-type and
UGT73C11 from the G-type form a discrete cluster, as
does UGT73C12 from the P-type and UGT73C13 from
the G-type. UGTs in the first cluster are more than 95%
identical to each other, and those in the second cluster are
more than 97% identical (Supplemental Table S1). Ac-
cordingly, UGT73C9/UGT73C10 from the P-type corre-
spond to UGT73C11 from the G-type and UGT73C12
from the P-type corresponds to UGT73C13 from the
G-type. In comparison with UGT73C homologs from A.
thaliana, Arabidopsis lyrata, and Brassica rapa, the five B.
vulgaris sequences are most closely related to A. thaliana
UGT73C5 and UGT73C6 and a UGT73C5 homolog in A.
lyrata.

The UGTs described in the phylogeny have been
exposed to different levels of selection since they di-
verged, as indicated by the significantly better fit of a
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Figure 3. Maximum likelihood phylogeny of UGT73Cs described in
this study and from online databases. Species are indicated as prefixes
to the UGT name: By, B. vulgaris; At, A. thaliana; Al, A. lyrata; Br, B.
rapa. UGT73C9, UGT73C10, and UGT73C12, shown in blue, are
from P-type B. vulgaris, while UGT73C11 and UGT73C13, shown in
red, are from the G-type. AtUGT73B5 is included as an outgroup.
Bootstrap values (100 iterations) are shown next to the corresponding
nodes.
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model with independent w (ratio of the number of
nonsynonymous substitutions per nonsynonymous site
to the number of synonymous substitutions per synon-
ymous site [dN/dS ratios]) for each branch compared
with a single common w ratio for all branches (2AInL =
13.9; P < 0.001). Positive selection among branches was
further indicated by the better fit of a model including
positive selection (model M3) than a model without M0
(2AInL = 304.7; P < 0.001); 4.3% of the codons were
estimated to have been under positive selection. Only
the branches leading to UGT73C9, UGT73C10, and
UGT7311 showed signs of positive selection; branches
leading to UGT73C12 and UGT73C13 as well as A.
thaliana, A. lyrata, and B. rapa have w < 1, showing that
these branches are under purifying selection.

All five UGT sequences were mapped to an existing
linkage map of B. vulgaris (Kuzina et al., 2011) and
found to be located in a region that corresponds to A.
thaliana chromosome 2 between 13.5 and 19.6 Mb.
None of the UGTs lie within previously reported re-
gions containing quantitative trait loci (QTL) for re-
sistance toward P. nemorum larvae feeding (Kuzina
etal., 2011). In A. thaliana, six out of the seven UGT73C
genes are positioned in a tandem repeat cluster at 15.4
Mb on chromosome 2. Therefore, it is likely that the
identified B. vulgaris UGT73C genes are located in a
similar UGT73C cluster in the B. vulgaris genome.

Heterologous Expression and in Vitro Activities of
the UGT73Cs

To determine if the five UGTs isolated from G- and
P-type B. vulgaris have similar catalytic activities as
BvUGT1 from B. vulgaris var variegata, they were het-
erologously expressed in Escherichia coli. The corre-
sponding crude protein extracts were assayed with

different sapogenins as putative sugar acceptors and
UDP-Glc as sugar donor. UGT73C10, UGT73Cl11,
UGT73C12, and UGT73C13 catalyzed transfer of a Glc
moiety from UDP-Glc to the oleanane sapogenins ole-
anolic acid and hederagenin and to the lupane sapoge-
nin betulinic acid (Fig. 4). In addition, their precursors
B-amyrin and lupeol were glucosylated, but with lower
efficiency (Fig. 5). In contrast, UGT73C9 from the P-type
appeared inactive toward the compounds tested.

The glucosylation positions of the two oleanane sap-
ogenins produced by the UGTs were determined by
NMR spectroscopy. Based on one-dimensional (1-D) 'H-
and "®C- as well as two-dimensional (2-D) Correlation
Spectroscopy (COSY)-, Total Correlation Spectroscopy
(TOCSY)-, and Heteronuclear Single Quantum Coherence
(HSQC)-NMR analyses (Supplemental Data Set S1), the
glucosides were concluded to be 3-O-8-p-glucopyranosyl
oleanolic acid and 3-O-B-p-glucopyranosyl hederagenin.
This is in agreement with these monoglucosides as
predicted precursors of oleanolic acid cellobioside and
hederagenin cellobioside, respectively.

In addition to the 3-O-monoglucosides, UGT73C12
and UGT73C13 also formed low amounts of digluco-
sides, while this activity was barely detectable for
UGT73C10 and UGT73C11. Based on retention times
and fragmentation patterns in liquid chromatography
-mass spectrometry analyses, these diglucosides could
not be oleanolic acid and hederagenin cellobioside, re-
spectively, but represent bidesmosidic glucosylation (i.e.
glycosylation at two different positions; Supplemental
Fig. S1). A diglucosylated betulinic acid was, in addition
to two different betulinic acid monoglucosides, pro-
duced in detectable amounts after 30 min of incubation
when using betulinic acid concentrations as low as 10
um (Fig. 5). After alkaline hydrolysis (saponification),
which cleaves the ester but not the ether bonds in

UGT73C9 EUGT73C10 UGT73C11 | UGT73C12 | UGT73C13 Ref.

aglc .- -—
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di-Glc
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Figure 4. Activity of the heterologously expressed B. vulgaris UGT73Cs toward sapogenins. Enzyme assays contained 750 ng of
recombinant UGT in 50 ulL and 50 um oleanolic acid (oa), hederagenin (he), or betulinic acid (be) as acceptor substrates and
1 mm UDP-Glc as donor substrate. The assays were incubated for 60 min at 30°C and analyzed by TLC. Compounds were
visualized by spraying with 10% sulfuric acid in methanol and subsequent heating. The (inverted) image was taken at long-
wave UV (366 nm) excitation. Migration of authentic oleanolic acid, hederagenin, 3-O-B-Glc oleanolic acid (oa-Glc), and 3-O-
B-Glc hederagenin (he-Glc) is shown in the reference lane (Ref.). Positions of aglycones (aglc), monoglucosides (m-Glc), and

diglucosides (di-Glc) are indicated on the left side.
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Figure 5. Substrate specificity of UGT73C10 and UGT73C12. TLC
analyses of activity assays with recombinant UGT73C10 or
UGT73C12 using '*C-labeled UDP-Glc as donor substrate are shown.
Substrates tested were oleanolic acid (oa), hederagenin* (he), B-amyrin
(Ba), betulinic acid (be), kaempferol (ka), quercetin (qu), and TCP,
applied at either 100 or 10 um concentration. *The hederagenin batch
contained a low amount of oleanolic acid.

glucosylated products, the betulinic acid diglucoside
and one of the two betulinic acid monoglucosides
were no longer detectable (Supplemental Fig. S2).
Therefore, the degraded monoglucoside must be 28-
O-glucosylated betulinic acid and the diglucoside
must be 3,28-O-diglucosylated betulinic acid. Simi-
larly, the diglucosidic forms of oleanolic acid and
hederagenin would represent 3,28-O-diglucosides. Un-
der assay conditions with high amounts of enzyme,
increased incubation time, and elevated incubation
temperature, UGT73C13 also produced an oleanolic
acid triglucoside (Supplemental Fig. S1), which further
demonstrates the lower substrate specificity and re-
giospecificity of UGT73C13. However, the low in vitro
production of these glucosides suggests that these
additional activities only play a minor role, if any, in
planta.

Other members of the UGT73C subfamily have been
assigned to be involved in flavonoid and brassinoste-
roid metabolism (Jones et al.,, 2003; Poppenberger
et al.,, 2005; Modolo et al., 2007). Glycosylated flavo-
nols derived from quercetin and kaempferol are pre-
sent in B. vulgaris (Senatore et al., 2000; Dalby-Brown
et al., 2011). Consequently, the flavonols quercetin and
kaempferol, the phytosterols obtusifoliol, campesterol,
sitosterol, and stigmasterol, and the brassinosteroid
24-epi-brassinolide were tested as substrates. 2,4,5-
Trichlorophenol (TCP) was included as a positive con-
trol, as it can be glycosylated by several different plant
UGTs (Messner et al., 2003; Brazier-Hicks and Edwards,
2005). Of the compounds tested, UGT73C9 only showed
weak activity toward TCP when applied in 1 mm
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concentration. In contrast, UGT73C10, UGT73C11,
UGT73C12, and UGT73C13 glucosylated TCP at 10 um
concentration (Fig. 5). The levels of oleanolic acid,
hederagenin, and betulinic acid glucosides produced
by these four UGTs were constantly higher than the
levels of TCP glucosides, showing that sapogenins are
better substrates. UGT73C10 and UGT73C11 showed
weak activity toward quercetin and kaempferol at 100 um
concentration, while at 10 um, glucosides could not be
detected. In contrast, UGT73C12 and UGT73C13 clearly
produced flavonol glucosides in assays with 100 um
quercetin or kaempferol, while at 10 um, the gluco-
sides were hardly detectable (Fig. 5). 24-Epi-brassinolide
glucoside(s) were not observed with UGT73C11,
whereas UGT73C13 catalyzed glucosylation of 24-
epi-brassinolide to a product that comigrated with
24-epi-brassinolide glucoside, produced by A. thaliana
UGT73C5 (Supplemental Fig. S3). None of the B. vulgaris
UGTs glucosylated the phytosterols. A. thaliana UGT73B5
was included to represent a UGI73 from a different
subfamily than UGT73C. UGT73B5 glucosylated TCP but
neither of the sapogenins or other compounds tested
(Supplemental Figs. 53 and S13).

UDP-Gal and UDP-GIcA were tested as alternative
sugar donors. No glucuronides could be detected with
any of the B. vulgaris UGTs when UDP-GIcA was used
as sugar donor, but low activity was observed for
UDP-Gal (Supplemental Fig. S4). 'H-NMR analysis
revealed that the UDP-Gal stock contained traces of
UDP-GIc, suggesting that the activity observed most likely
originates from the UDP-Glc contamination (Thorsee
et al., 2005).

In summary, UGT73C10, UGT73C11, UGT73C12,
and UGT73C13 preferentially glucosylate different
oleanane and lupane sapogenins. Both UGT73C10 and
UGT73C11 show high regiospecificity and substrate
specificity by predominantly glucosylating the C3-
hydroxyl group of sapogenins via an ether linkage.
In comparison, UGT73C12 and UGT73C13 show lower
substrate specificity and also glucosylate the sapo-
genin C28-carboxyl group via an ester bond. However,
the ability to glucosylate at the C28-carboxyl group
varied strongly: C28 glucosylation was abundant for
betulinic acid and to a lesser extent for oleanolic acid
and weakly for hederagenin. The similar enzymatic
characteristics of UGT73C10 from the P-type and
UGT73C11 from the G-type corroborate the phyloge-
netic reconstruction (Fig. 3), as do the characteristics of
UGT73C12 from the P-type and UGT73C13 from the
G-type. UGT73C9 apparently does not glucosylate any
of the tested compounds besides the positive control
substrate TCP, despite clustering with UGT73C10 and
UGT73C11.

Kinetic Parameters of UGT73C11 and UGT73C13

Enzymes in the biosynthesis of plant specialized
metabolism are generally characterized by low K and
high turnover rates. To evaluate the affinity and cata-
lytic efficiencies of the two UGT clusters (Fig. 3), the
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kinetic parameters of UGT73C11 and UGT73C13 (both
from the G-type) were determined toward heder-
agenin and oleanolic acid (Table I). Optimal assay
conditions were at pH 8.6 for UGT73C11 and pH 7.9
for UGT73C13, with 1 mm dithiothreitol (DTT) as re-
ductant. Purification of the recombinant UGTs was
omitted due to decreasing specific activity upon metal
chelate affinity-based purification. Instead, recombi-
nant UGT amounts were quantified directly in crude E.
coli protein extracts by taking advantage of an intro-
duced N-terminal fused S-tag.

Most of the saturation curves (Supplemental Fig. S6)
were hyperbolic and could be described by the Michaelis-
Menten equations (for estimates, see Table I). However,
for UGT73C13, the reaction velocities decreased when
oleanolic acid concentrations exceeded 50 um™, indicating
that it inhibits enzyme activity beyond this concentration.
Similar substrate inhibition has previously been reported
for other family 1 UDP-glycosyltransferases (Luukkanen
et al., 2005; Ono et al., 2010). UGT73C11 has a 7-fold
lower K, value and a 3-fold higher turnover rate (k_,
value) with hederagenin than UGT73C13. The two UGTs
have comparable K values with oleanolic acid, but
UGT73C11 has a 3.5-fold higher k_, value. The kinetic
parameters, therefore, corroborate that UGT73C10 and
UGT73C11 have higher affinity for sapogenins and more
efficiently catalyze 3-O-glucosylation of oleanolic
acid and hederagenin than UGT73C12 and UGT73C13.
The low K (less than 10 um) and high k_,, values of
UGT73C11 are in comparable ranges to flavonol UGTs
with their in planta acceptor substrates (Noguchi et al.,
2007; Ono et al., 2010). The 1.4-fold higher catalytic ef-
ficiency (k. /K,,) for hederagenin than for oleanolic acid
indicates that hederagenin is the preferred substrate for
UGT73C11. Interestingly, UGT73C13 shows opposite
substrate preference, as it has a 3-fold higher k_/K
value for oleanolic acid than for hederagenin. The K
for UDP-Glc was estimated to be around 95 um for
UGT73C11 and 25 um for UGT73C12 (Supplemental
Fig. Sb).

In Vitro Activities of the UGT73Cs toward B. vulgaris
Sapogenin Mixtures

The saponin composition of B. vulgaris is complex, with
more than 40 putative saponins detected in liquid chro-
matography-mass spectrometry analyses (Supplemental

Figs. 57 and S8). The majority of these appear specific for
either one of the two plant types, while others are present
in variable amounts in both types. To evaluate if the
UGTs can glucosylate other B. vulgaris sapogenins than
oleanolic acid and hederagenin, crude saponin-containing
extracts of both plant types were subjected to acidic hy-
drolysis to O-deglycosylate the saponins. Tandem mass
spectrometry to n-fold (MS") fragmentation analyses
showed that the saccharide side chains of saponins in
both B. vulgaris types consist of one to four hexosyl
moieties, as concluded from the sequential loss of
fragments with a mass of 162 D. The MS" fragmenta-
tion patterns of the most intense putative saponins in
the G-type extract further indicate that they are de-
rived from sapogenins with masses of 456 and 472 D,
corresponding to oleanolic acid and hederagenin, as
well as 458 and 488 D. In addition, a few less intense
putative saponins appear to be derived from sapo-
genins with masses of 470, 474, and 476 D. In metab-
olite extracts of the P-type, the most abundant putative
saponins originate from sapogenins with a mass of 474
D, followed by saponins derived from 458- and 488-D
sapogenins. Only a few putative saponins based on
sapogenins with masses of 456 and 472 D occur in this
plant type.

After acid hydrolyzation, the putative saponins could
not be detected, which confirms complete deglycosy-
lation (Supplemental Figs. S9 and S10). The hydrolyzed
G-type extract contained at least 40 structurally dis-
tinct compounds that are likely to be sapogenins, while
in the P-type extract, 13 putative sapogenins were
detected. Incubation of these extracts with UGT73C10,
UGT73C11, UGT73C12, and UGT73C13 and UDP-Glc
as sugar donor yielded numerous compounds that,
based on MS" fragmentation patterns, were putative
sapogenin monoglucosides (Supplemental Fig. S11).
For both the G- and P-type sapogenin extracts, incu-
bation with UGT73C10 and UGT73C11 reduced peak
intensities of all putative sapogenins and resulted in
the formation of the corresponding monoglucosides.
In contrast, UGT73C12 and UGT73C13 appeared re-
stricted to glucosylate only a subset of the putative
sapogenins. Moreover, monoglucosides were pro-
duced at lower rates by UGT73C12 and UGT73C13
compared with UGT73C10 and UGT73C11. As ex-
pected, 3-O-B-p-Glc hederagenin (compound G,, in
Supplemental Fig. S11) and 3-O-B-pD-Glc oleanolic acid

Table I. Kinetic parameters of UGT73C11 and UGT73C13 toward oleanolic acid and hederagenin

UGt Sapogenin Ken ke kea K K Vinax
M 57! s um! UM nmol min~" mg™!
UGT73C11 Oleanolic acid 9.7 £22 0.816 0.084 817 =118
Hederagenin 33£08 0.389 0.118 390 = 38
UGT73C13 Oleanolic acid® 12.5 * 2.1 0.231 0.019 262 231 * 21
Oleanolic acid® 7.6 1.2 0.176 0.023 176 £ 7
Hederagenin 229 *+ 438 0.131 0.006 131 =10

“Kinetic parameters based on fit to the substrate inhibition equation.

PKinetic parameters based on fit to the Michaelis-Menten equation.
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(compound Gg; in Supplemental Fig. S11) were among
the products formed from the G-type extract by
UGT73C10 and UGT73C11. Surprisingly, only trace
amounts of these two sapogenin monoglucosides were
observed upon incubation of the G-type extract with
UGT73C12 and UGT73C13. These UGTs additionally
produced low amounts of diglucosides and compounds
that may be kaempferol glucosides (according to their
MS" fragmentation patterns). These findings corrobo-
rate that UGT73C12 and UGT73C13 have lower sub-
strate specificity toward sapogenins than UGT73C10
and UGT73C11, which was also concluded from the in
vitro enzyme assays (Fig. 5).

In Planta Saponin Accumulation Correlates with
Organ-Specific Expression of the UGT73Cs

Steady-state transcript levels of the UGT73Cs were
determined in leaves, petioles, and roots of 2-month-
old G- and P-type B. vulgaris plants and compared
with saponin accumulation in these organs. Metabolite
extracts were evaluated by liquid chromatography-
mass spectrometry and revealed a characteristic organ-
specific saponin relative abundance in both plant
types. Relative accumulation was highest in leaves,
intermediate in petioles, and widely absent in roots
(Fig. 6A; Supplemental Fig. S12). This pattern was
consistent across the different plants tested.

Two primer sets were used to quantify steady-state
transcription levels of the UGTs by quantitative real-time
PCR (Fig. 6, B and C). Due to the high sequence identities
between UGT73C11 in the G-type and UGT73C10 and
UGT73C9 in the P-type, it was not possible to design a
primer that could differentiate between these three
genes. Accordingly, primer set 1 amplifies UGT73C11 in
the G-type, while in the P-type it amplifies simulta-
neously UGT73C9 and UGT73C10. Similarly, primer set
2 amplifies UGT73C13 from the G-type and UGT73C12
from the P-type. All plants showed the highest expres-
sion of UGT73C11 and UGT73C9/C10 in leaves, an up to
10-fold lower expression in petioles, and up to 200-fold
lower expression in roots, despite some variation among
individual plants tested. A similar expression pattern
was observed for UGT73C13 and UGT73C12. In general,
UGT73C11 and UGT73C9/C10 were expressed at a
higher level than UGT73C13 and UGT73C12. The highest
expression level of UGT73C13 was observed in plants
with the lowest UGT73C11 expression. Since those
plants were in a more progressed developmental stage
(Supplemental Fig. S12), this suggests alternating
expression regulation of the two genes during plant
ontogenesis.

3-O-B-p-Glc Hederagenin Is a Feeding Deterrent against
P. nemorum

The two diglucosides hederagenin and oleanolic
acid cellobioside have previously been shown to deter
feeding by P. nemorum (Nielsen et al., 2010). To
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Figure 6. Comparison of relative saponin abundance and expression
of the UGTs in different B. vulgaris organs. A, Relative saponin
abundance in leaf, petiole, and root extracts of three G-type plants
(G1-G3), based on the mean peak areas * sp of the extracted ion
chromatograms from liquid chromatography-mass spectrometry of the
four insect resistance-correlated G-type saponins: hederagenin cello-
bioside (he-cell), oleanolic acid cellobioside (oa-cell), gypsogenin
cellobioside (gy-cell), and 4-epi-hederagenin cellobioside (4e-cell).
Overlaid base peak chromatograms of all liquid chromatography-mass
spectrometry runs are provided in Supplemental Figure S12. B, Ex-
pression of UGT73C11 in the three G-type plants (G1-G3) and com-
bined expression of UGT73C9 and UGT73C10 in three P-type plants
(P1-P3), determined with primer set 1 relative to actin (ACT2). Values
are means * sp of technical duplicates. C, Corresponding expression
analysis of UGT73C13 in G1 to G3 and UGT73C12 in P1 to P3, de-
termined with primer set 2.

determine if the corresponding monoglucosides have a
similar effect, approximately 12.5 mg of 3-O-8-p-Glc
hederagenin and 8.5 mg of 3-O-B-p-Glc oleanolic acid
were produced in vitro with UGT73C10 (see above).
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Both compounds were painted on 92-mm? radish
(Raphanus sativus) leaf discs in doses of 3.75, 15, and 60
nmol and presented to P. nemorum adults of either the
susceptible (ST; 1r genotype) or resistant (AK; Rr geno-
type) line, and the area consumed was evaluated after 24
h (Fig. 1).

3-O-B-D-Glc hederagenin significantly reduced the
leaf consumption by susceptible ST beetles, with dose-
dependent reductions of 26%, 55%, and 92% in response
to 3.75, 15, and 60 nmol per leaf disc, respectively (Fig.
7A; the reduction by 15 and 60 nmol was statistically
significant [P < 0.005] when tested separately). A dose-
dependent reduction of leaf consumption was also
observed for the resistant AK line, with 16% and 67%
reduction in response to 15 and 60 nmol, respectively
(only the reduction by 60 nmol was significant when
tested separately).

3-O-B-D-Glc oleanolic acid had a significantly
weaker effect on leaf consumption for both P. nemorum
lines (Fig. 7B). Only the high dose of 60 nmol reduced
consumption by the ST line (45% reduction), whereas
there was no effect on the AK line at any dose. Feeding

70 - 3-0-B-D-glc hederagenin

60 - BST mAK
50 - 0 I

1

30 -

20 - i L
10 -

0 - : : B

0 nmol

area consumed (mm?) >

3.75nmol 15nmol 60 nmol

70 - 3-0-B-D-glc oleanolic acid

60 -

50 I I
40 -

30 -
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0 - . . ‘
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area consumed (mm?2) @

15 nmol 60 nmol

Figure 7. Consumption of radish leaf discs painted with different
amounts of 3-O-B-Glc hederagenin (A) and 3-O-B-Glc oleanolic acid
(B) by susceptible ST and resistant AK lines of P. nemorum. Con-
sumption is shown as mean total area consumed from two leaf discs
(total area, 92 mm?) that were presented to one beetle (+1.96 st cor-
responding to a confidence interval of 95%). Assays with 3.75 nmol of
3-O-B-Glc oleanolic acid were omitted due to the low efficacy at
higher doses.
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assays with 3.75 nmol were not conducted, as there
was no significant effect with 15 nmol.

When tested in a joint linear mixed-effect model,
there was a significant three-way interaction between
sapogenin monoglucosides, their doses, and the P.
nemorum lines, with a significance level of P < 0.0001.
Thus, (1) 3-O-B-p-Glc hederagenin is more effective
than 3-O-B-p-Glc oleanolic acid, (2) the feeding deter-
rence of the sapogenin monoglucosides is dose de-
pendent, and (3) the efficacy toward the susceptible P.
nemorum line is higher than toward the resistant line.

DISCUSSION

Saponin biosynthesis is not fully understood, nor is the
relationship between the different chemical structures
and their roles in plant defense. Here, we have identified
two UGTs that specifically glucosylate sapogenins in the
wild crucifer B. vulgaris. These UGTs have evolved to be
specific for 3-O-glucosylation of sapogenins. Previously,
UGTs that glucosylate sapogenins at the C28 carboxylic
groups have been identified in Medicago truncatula
(UGT73F3; Naoumkina et al., 2010) and in Saponaria
vaccaria (UGT74M1; Meesapyodsuk et al., 2007). Mono-
glucosylated 3-O-B-D-Glc hederagenin, produced in vitro
by one of the UGTs identified here, UGT73C10, is a
strong feeding deterrent against P. nemorum, demon-
strating that 3-O-glucosylation of saponins is essential for
bioactivity. The UGTs are expressed in both a P. nemo-
rum resistant and a susceptible type of B. vulgaris, which
fits our observation that most, if not all, saponins in the P
and G-types are 3-O-glucosylated. The presence of UGTs
in both the plant types catalyzing 3-O-glucosylation
sapogenins, and the genomic locations of genes coding
for these UGTs outside QTL associated with resistance
to P. nemorum, suggest that the difference in resistance
between the two B. vulgaris types is determined by an
earlier enzymatic step in saponin biosynthesis.

UGT73C10/C11: Two Neofunctionalized UDP-Glc:
Sapogenin 3-O-Glucosyltransferases

Of the five UGTs we identified in B. wvulgaris ssp.
arcuata, UGT73C10 from the insect-susceptible P-type and
UGT73C11 from the resistant G-type showed highest
activity and specificity toward a wide range of sapo-
genins. Both enzymes exhibit high regiospecificity by
preferably glucosylating the C3 hydroxyl group, which is
in agreement with structures of saponins in both B. vul-
garis types. Both enzymes, in contrast, were essentially
inactive toward the flavonols and phytosterols tested.
Their acceptor substrate specificity thus differs substan-
tially from other characterized members of the UGT73C
subfamily. UGT73C8 from M. truncatula glucosylates
several (iso)flavonoids in vitro (Modolo et al.,, 2007).
A. thaliana UGT73C6 was suggested to be a UDP-Glc:
flavonol-3-O-glycoside-7-O-glucosyltransferase by Jones
et al. (2003), based on in vitro activities and T-DNA
knockout lines. Recent studies show that UGT73C6 is
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functionally similar to the well-studied UGT73CS5, also
from A. thaliana, in its ability to glucosylate brassi-
nosteroids in overexpression lines (Husar et al.,
2011). UGT73C5 in addition glucosylates numerous
structurally diverse acceptor substrates (Lim et al.,
2003, 2004; Poppenberger et al., 2003, 2005, 2006;
Hou et al., 2004; Weis et al., 2006; Caputi et al., 2008).
It was originally identified as a mycotoxin-detoxifying
enzyme (Poppenberger et al., 2003), but recently, it was
suggested to be involved in brassinosteroid homeostasis
(Poppenberger et al., 2005). In our study, A. thaliana
UGT73C5 also glucosylated oleanolic acid, hederagenin,
and betulinic acid in vitro, providing further evidence for
the promiscuity of this enzyme (Supplemental Fig. S13).
However, it had substantially lower catalytic efficiency
and regiospecificity toward oleanolic acid and heder-
agenin than UGT73C11 and UGT73C13 from B. vulgaris
(Supplemental Fig. S13). A. thaliana is not known to
produce triterpenoid saponins or sapogenins, although
triterpenoids such as B-amyrin and lupeol accumulate in
cuticular waxes of stems, siliques, and buds (Shan et al.,
2008). Therefore, it is unlikely that the in vitro activities of
UGT73C5 with sapogenins reflect an in planta function.

The broad substrate affinity commonly found for some
UGTs has been proposed to enable flexibility in response
to changes in metabolite profiles (Vogt and Jones, 2000).
Specialized enzymes for new biosynthetic pathways may
originate from broad progenitor enzymes and are gener-
ally characterized by having a lower K, (and thus higher
substrate specificity) and higher catalytic efficiency (k,/
K,) than their more promiscuous progenitors (Jensen,
1976; Aharoni et al., 2005; Khersonsky and Tawfik, 2010).
Ancestors of UGT73C10/C11 from B. vulgaris could thus
have been promiscuous UGT73C5-like enzymes that
evolved a more narrow specificity and higher efficiency
for catalyzing sapogenin 3-O-glucosylation. Based on our
analyses, UGT73C12/C13 have broader substrate and
product specificities and could represent evolutionary
intermediates to UGT73C10/C11 or UGTs specialized in
glucosylation of yet unknown sapogenins in B. vulgaris.

Our phylogenetic reconstruction shows that the five
B. vulgaris UGT73Cs indeed cluster separately from the
UGT73Cs in A. thaliana, A. lyrata, and B. rapa (Fig. 3).
It further suggests that UGT73C10, UGT73C11, and
UGT73C9 originate from a gene duplication event after
the split from A. thaliana and B. rapa and before the P and
G-types separated. Another gene duplication separated
UGT73C9 from UGT73C10, probably in the P-type after
the P- and G-types split. Alternatively, this duplication
occurred before the P-G bifurcation and the UGT73C9
copy was lost subsequently in the G-type.

Of the UGTs in our phylogenetic analysis, UGT73C9,
UGT73C10, and UGT7311 showed clear signs of positive
selection during their differentiation. This corroborates
our biochemical data, which show that UGT73C10 and
UGT73C11 have evolved to a new specialized function.
In contrast, UGT73C12 and UGT73C13 showed no signs
of selection, corroborating that they have not evolved
new biochemical functions; this further suggests that
they may be orthologs of A. thaliana UGT73C5 or
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UGT73C6. The observation that UGT73C9 is under
positive selection questions the function of this UGT in
saponin biosynthesis. Based on our biochemical data,
UGT73C9 appears as an expressed pseudogene; how-
ever, the phylogenetic analysis indicates that the gene
has been under positive selection. An alternative hy-
pothesis is that the substrate for UGT73C9 was not
included in our analysis. As the saponin profiles of P-
and G-type B. vulgaris differ, UGT73C9 could possibly
be involved in the differentiation of these.

Genes for the B. vulgaris UGTs were located in a ge-
nomic region syntenic to a part of A. thaliana chromosome
2, which contains a tandem repeat cluster of UGT73Cs.
Our recent genome sequencing indicates that the B. vul-
garis UGT73Cs identified here are also part of a repetitive
cluster containing several UGT-like repeats and in higher
number than the corresponding UGT73C cluster in A.
thaliana. This supports that UGT73C10/C11 evolved via
gene duplications from a broad-spectrum UGT73C in a
common ancestor shared with A. thaliana, as discussed
above. It further supports the idea that the evolution of
novel bioactive metabolites often occurs via gene dupli-
cation and neofunctionalization (Osbourn, 2010; Weng
et al,, 2012) followed by increased specialization (Jensen,
1976; Aharoni et al., 2005; Khersonsky and Tawfik, 2010).

3-O-Glucosylation of Hederagenin Deters Feeding by
P. nemorum

Monoglucosylation of hederagenin into 3-O--p-Glc
hederagenin clearly suppressed feeding by P. nemorum.
A similar but lower suppression was found for 3-O-8-p-
Glc oleanolic acid. The diglucosylated forms of heder-
agenin and oleanolic acid (hederagenin cellobioside and
oleanolic acid cellobioside) have previously been found
to suppress feeding (Nielsen et al., 2010), in contrast to
the aglycones (hederagenin and oleanolic acid). Our
results now show that glucosylation with only a single
glucosyl group is enough to affect herbivores. The amount
of monoglucosides used in our feeding assays was
comparable to natural levels of hederagenin cellobio-
side in B. vulgaris leaves (Shinoda et al., 2002), and our
results thus demonstrate that 3-O-8-D-Glc hederagenin
and 3-O-B-p-Glc oleanolic acid are biologically rele-
vant feeding deterrents. Furthermore, the higher effi-
ciency of hederagenin than oleanolic acid, in both their
monoglycosylated and diglycosylated forms, shows
that C23 hydroxylation in the hederagenin backbone
increases this antifeedant effect.

The precise mechanism that enables glucosylated sapo-
genins to deter insects is not known. The dependency on
glycosylation indicates that membrane perturbation plays
a role, at least for P. nemorum. In agreement with this,
saponins have been shown to damage the midgut epi-
thelium of pea aphids (Acyrthosiphon pisum; De Geyter
et al., 2012). Alternatively, glucosylated saponins may
have a more adverse taste for insects than the corre-
sponding sapogenins (Glendinning, 2002); however, P.
nemorum larvae die from exposure to G-type leaves
(Nielsen, 1997a).
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Nielsen et al. (2010) suggested that cleavage of the
B-1,4-glycosidic bond in the cellobiosides by B-
glucosidases allows resistant P. nemorum lines to feed
on G-type B. vulgaris. This mechanism would be sim-
ilar to what has been found for fungal adaptation to
saponins (Osbourn et al., 1991; Wubben et al., 1996;
Pareja-Jaime et al., 2008). Our findings, however, show
that the monoglucosides of the saponins are also active
and that resistance must be based on the ability to
hydrolyze the glycosidic bond between the aglycone
and the first linked sugar at the C3 position.

The resistance of G-type B. vulgaris against herbivo-
rous insects, such as P. xylostella and susceptible P.
nemorum, has previously been shown to depend on the
presence of saponins, and especially hederagenin and
oleanolic acid cellobioside, which are absent in the
susceptible P-type (Shinoda et al., 2002; Agerbirk et al.,
2003a; Kuzina et al., 2009; Nielsen et al., 2010). There-
fore, the synthesis of saponins was initially thought to
be unique to the G-type. However, saponins were re-
cently also discovered in the susceptible P-type (Kuzina
et al,, 2011), and we are now pursuing their structure
and identity. The presence of closely related UGTs in
the G- and P-types of B. vulgaris, which have the same
substrate specificity and regiospecificity, strongly indi-
cates that the difference between resistance and sus-
ceptibility of the two B. vulgaris types is not caused by
different UGTs, despite their obvious role in activating
sapogenins by glucosylation. This is further substanti-
ated by results from our QTL analysis, where the UGTs
described here do not colocalize with resistance to P.
nemorum or saponin identity (Kuzina et al., 2011). In-
stead, the difference in resistance between the G- and
P-types must be determined at an earlier step in sapo-
nin biosynthesis, presumably during cyclation by OSCs
or backbone decoration by cytochromes P450.

Evolution of Saponin Biosynthesis in Barbarea Species

The multitude of different putative sapogenins in the
G- and P-types indicates that OSCs and P450s are re-
sponsible for much of the saponin diversity in this spe-
cies and probably for the differences between the two
plant types. The phylogeny of OSCs (Phillips et al., 2006;
Augustin et al, 2011) suggests frequent changes in
product spectra during evolution, which is supported by
the drastic spectrum changes that may arise from only a
few amino acid substitutions (Lodeiro et al.,, 2005).
Changes in cytochrome P450 activity are also known to
affect saponin profiles and activity. Carelli et al. (2011)
showed that lack of a functional CYP716A12, which
catalyzes C28 carboxylation of triterpenoid sapogenins,
results in a complete loss of hemolytic saponins in M.
truncatula. In contrast, nonhemolytic saponins were un-
affected. The nonhemolytic saponins are derived from
sapogenins that are not carboxylated at the C28 position,
and MS" fragmentation of these revealed an aglycone
fragment ion with a deduced mass of 474 D (Pollier
et al, 2011). A similar fragmentation product was ob-
served for P-type saponins and suggests that structurally
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similar sapogenins, with four hydroxyl groups but no
C28 carboxylation, are present in this plant type. Differ-
ent abilities to catalyze C28 oxygenation by cytochromes
P450 could thus be involved in determining the different
structures of G- and P-type saponins and thus their effect
on insect herbivores.

The current hypothesis for the evolution of insect
resistance in B. vulgaris suggests that it took place after
the first species of the Barbarea genus had emerged
(Agerbirk et al., 2003b; the age of this split is unknown
at present). An OSC probably mutated to be able to
catalyze the conversion of oxidosqualene into saponin
precursors, which is in agreement with the presence of
triterpenoids in A. thaliana. Later, UGTs must have
evolved to become specific to the novel sapogenins
produced by the resistant Barbarea species, as we have
shown here. Whether the cytochromes P450 involved
in saponin biosynthesis of Barbarea species have also
specialized is not known. Much later, B. vulgaris dif-
ferentiated into the G- and P-types, possibly during
one of the last ice ages (Hauser et al., 2012; Toneatto
et al.,, 2012). Thus, the two plant types are genetically
and geographically differentiated, reproductively
somewhat incompatible, and differ for several traits
apart from insect resistance and saponin structure
(Toneatto et al., 2010; Dalby-Brown et al., 2011). Thus,
the most likely scenario suggests that the P-type lost
resistance to P. nemorum during this allopatric sepa-
ration. Our results here clearly show that this loss of
insect resistance was not caused by a loss of UGT
function. Instead, we have shown that UGTs of B.
vulgaris have adapted to the earlier evolutionary gain
of saponins in this species.

MATERIALS AND METHODS
Activity-Based cDNA Library Screening

Barbarea vulgaris var variegata (Chiltern Seeds) leaf RNA was used for first-
strand synthesis with the ZAP-cDNA Synthesis Kit (Stratagene). The resulting
cDNA was digested with Xhol, ligated into the predigested Uni-ZAP XR
vector (Stratagene), and transformed into the Escherichia coli strain XL1-Blue
MREF’ (Stratagene). After in vivo excision of pBluescript SK— phagemids from
the Uni-ZAP XR vectors, the obtained E. coli colonies were combined in terrific
broth (TB) medium and transferred to 96-well plates (approximately 100 col-
onies per well). The E. coli suspensions were incubated with shaking at 37°C
for 3 h and then for 3 h with 0.1 mm isopropylthio-8-galactoside (IPTG).
Cultures of individual wells were combined into batches (four wells per
batch), and the bacterial cells were harvested by centrifugation. The bacterial
cells were resuspended in 20 mwm Tris-HCl, pH 7.5, and 2 mm DTT and lysed
by sonication. Enzymatic activity was tested by incubating the lysates over-
night at 30°C with 200 um UDP-Gle and 175 um oleanolic acid. Ethyl acetate
extracts of the activity assays were analyzed by TLC on Silica Gel 60 F,;, plates
(5554; Merck), using chloroform:methanol:water (32:9:1) as mobile phase, and
stained by spraying with 10% sulfuric acid in methanol followed by heating.
Batches that showed oleanolic acid glucosylation activity were in additional
screening rounds stepwise further diluted until a single active clone desig-
nated BvUGT1 was identified.

Cloning of BvUGT1 Homologs from B. vulgaris

ssp. arcuata

Contigs representing fragments of BvUGT1 homologs were identified in a
454 pyrosequencing-generated transcriptomic G-type data set (Kuzina et al.,
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2011) using local BLASTX. Total RNA was extracted from leaves of G- and
P-type B. vulgaris using the NucleoSpin RNA Plant kit (Macherey-Nagel) and
3" RACE performed with the FirstChoice RLM-RACE kit (Ambion) according
to the manufacturer’s protocol. The applied primers are listed in Supplemental
Table S2.

The nucleotide sequences of UGT73C9, UGTC10, UGT73C11, UGT73C12,
and UGT73C13 were cloned from genomic DNA of an F1 hybrid plant, which
originated from crossings between G- and P-type plants (Kuzina et al., 2009),
and ligated into pGEM-T Easy for sequencing.

PCRs for cloning were performed with Phusion High-Fidelity DNA Poly-
merase (Finnzymes), and PCRs for screening and A-tailing reactions were per-
formed with Hotmaster Taq DNA Polymerase (5prime). A-tailing reactions were
set up according to the pGEM-T Easy manual (Promega). Sequencing was
performed by Eurofins MWG Operon.

Phylogenetic Analysis

UGT73 amino acid sequences were aligned (Supplemental Data Set S2)
using MUSCLE and used to construct a maximum likelihood bootstrapped
phylogenetic tree using MEGA (version 5.05; Jones, Taylor, and Thornton
substitution model, uniform rates among sites, 100 bootstrap replications;
Tamura et al., 2011). The A. thaliana lyrata and Brassica rapa UGTs, identified
by BLAST searches at www.phytozome.net and www .brassica-rapa.org, have
not been officially named and therefore are named here according to their
grouping with Arabidopsis thaliana.

To test for signs of past selection on the UGTs, branch and site models were
estimated using codeml in the PAML package (http://abacus.gene.ucl.ac.uk/
software/pamlLhtml). For positive selection between branches, the free-ratio
model was compared with the one-ratio model and tested by comparing the
twice log-likelihood difference between models to an y* distribution with 18
degrees of freedom. Seven site models were estimated: MO (one ratio); M1
(nearly neutral; two categories); M2 (positive selection; three categories); M3
(discrete; three categories); M5 (y; 10 categories); M7 (B; 10 categories); and M8
(B&w > 1; 11 categories); these were tested as above with degrees of freedom
corresponding to the differences in the number of parameters for the models
tested.

Locating UGT73C9, UGT73C10, UGT73C11, UGT73C12,
and UGT73C13 on the B. vulgaris Linkage Map

The five UGTs were mapped using the derived cleaved amplified poly-
morphic sequences or cleaved amplified polymorphic sequences technique.
PCR was performed using genomic DNA of an F2 segregating population
generated from a cross between P- and G-type B. vulgaris (Kuzina et al., 2009).
PCR products obtained using primers mapPSfor and sepSrev (UGT73C9 to
-C11), mapPSfor and sepllrev (UGT73C12/C13), or Inf and dCapsAvall
(UGT73C11) were digested with EcoRV, Bsa]l, Avall, or Pcil to discriminate
between UGT73C9, UGT73C10, UGT73C11, and UGT73C13, respectively. Data
were scored and analyzed as described by Kuzina et al. (2011).

Heterologous Expression of B. vulgaris UGT73Cs

N-terminally His-tagged expression constructs of UGT73C9, UGT73C10,
UGT73C11, UGT73C12, and UGT73C13 were obtained by subcloning into the
Nhel and BamHI restriction sites of the pET28c vector (Novagen). N-terminally
S-tag expression constructs of the five UGT73C ORFs were achieved by
Gateway cloning into pJAM1786 (Luo et al., 2007).

For heterologous expression of the His-tag and S-tag constructs, expression
vectors were transformed into the E. coli strain XJb(DE3) (Zymo Research).
Expression was carried out in 25-mL Erlenmeyer flasks and started by inoc-
ulating 2 mL of Luria-Bertani medium, containing either 50 ug mL™' kana-
mycin (His-tag constructs) or 100 ug mL ™" carbenicillin (S-tag constructs),
with a single colony. A 12-h incubation phase at 30°C and 220 rpm was fol-
lowed by the addition of 4 mL of TB medium containing appropriate selection
antibiotics. Ara and IPTG were added to final concentrations of 3 and 0.1 mm,
respectively, and the cultures were incubated for 24 h at 15°C and 220 rpm. For
expression of the S-tag constructs, 1 uL of 50 mg mL ™" carbenicillin mL " culture
was added approximately 12 h after the addition of TB medium.

Bacteria were harvested in aliquots corresponding to 2 mL of culture with an
optical density of 8.0, resuspended in 750 pL aliquot ' 10 mm HEPES, pH 7.8,
and stored at —80°C. Bacteria were lysed by thawing aliquots at room tem-
perature. The viscosity of lysates was lowered by incubation with DNasel
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(AppliChem) treatment (1 ug mL™"). Cell debris were removed by centrifu-
gation, and supernatants were used as crude protein extracts for enzyme
assays. Quantification of heterologously expressed enzymes, fused to an S-tag
within E. coli crude protein extracts, was carried out using the FRETWorks
S-tag assay kit (Novagen) according to the manufacturer’s protocol.

Substrate Specificity Assays

Enzyme assays to determine substrate specificity were performed in a final
volume of 20 uL, containing 2 uL of E. coli crude protein extract with re-
combinant UGT73C9, UGT73C10, UGT73C11, UGT73C12, or UGT73C13
coupled to an S-tag. Reaction conditions were 25 mm TAPS-HCI, pH 8.6, 1 mm
DTT, 7 um UDP-Gle (Sigma-Aldrich), and 3.31 pum (0.74 kBq) UDP-[C]Glc
(Perkin-Elmer). Ethanol was removed from the UDP-[**C]GIc stock by evap-
oration prior to setting up the assays. Enzyme assays were started by addition
of the acceptor substrates solubilized in dimethyl sulfoxide (DMSO) to final
concentrations of 1 mm (only TCP), 100 um, or 10 um of the acceptor substrate
and 6.25% to 10% (v/v) DMSO, respectively. Reactions were incubated for 30
min at 30°C and stopped by the addition of 130 uL of methanol. Precipitated
proteins were removed by centrifugation. Solvent from the supernatant was
removed with a vacuum concentrator, and metabolites were dissolved in
20 pL of 50% ethanol and analyzed by TLC. TLC plates were developed in
ethyl acetate:methanol:formic acid:water (7.5:0.5:1:1), and radioactive bands
were visualized using a STORM 840 PhosphorImager (Molecular Dynamics).

Acceptor substrates in this study were as follows: oleanolic acid (ICN Bi-
omedical), hederagenin (Carl Roth), betulinic acid (Carl Roth), B-amyrin
(Sigma-Aldrich), lupeol (Sigma-Aldrich), quercetin (Sigma-Aldrich), kaemp-
ferol (Fluka), and obtusifoliol, campesterol, sitosterol, stigmasterol, and 2,4,5-
trichlorophenol (Sigma-Aldrich).

Determination of Enzyme Kinetic Parameters

Freshly lysed E. coli crude protein extracts were diluted in 10 mm TAPS-
HCI, pH 8.0, and 10 mg mL ™! bovine serum albumin (BSA) to final concen-
trations of 5 ng ul! S-tag UGT73C11 and 45 ng ul? S-tag UGT73C13. The
diluted crude protein extracts were applied in master mixtures with final re-
action conditions as follows: 25 mm TAPS-HCI, pH 8.6 (UGT73C11) or pH 7.9
(UGT73C13), 1 mm DTT, 500 um UDP-Glc, 2 mg mL ! BSA, and 0.5 ng ul?
UGT73C11 or 4.5 ng uL™' UGT73C13. Enzyme assays were performed in a
volume of 20 L. Concentrations of UDP-["*C]Glc (Perkin-Elmer) in the total
amount of UDP-Glc ranged from 3.31 um (0.04 kBq uL ™ to 33.12 um (0.37
kBq uL™") to ensure sufficient signal intensity. Oleanolic acid and hederagenin
were dissolved in 100% DMSO and assayed in duplicate in final concentra-
tions ranging from 0.125 to 8 um for UGT73C11 and 1.56 to 100 um for
UGT73C13, but with a constant final DMSO concentration of 6.25%. Reactions
were preincubated for 3 min at 30°C prior to addition of the acceptor sub-
strate. After incubation for 3 min at 30°C, enzymatic activities were stopped by
the addition of 50 uL of ethyl acetate. Assays were extracted four times with
50 pL of ethyl acetate, and the solvent from the combined extractions was
removed by evaporation in a vacuum concentrator. Metabolites were dis-
solved in 96% ethanol and analyzed by TLC. TLC plates were developed using
dichloromethane:methanol:water (80:19:1) as mobile phase and visualized as
described above. Products were quantified by codeveloping TLC plates with a
defined oleanolic acid or hederagenin [**C]monoglucoside dilution series. Signal
intensities were quantified using ImageQuant 5.0 (Molecular Dynamics). K
and V,_ values were calculated using SigmaPlot 11.0 (Systat Software) for
nonlinear regression according to the Michaelis-Menten equation or the velocity
equation for substrate inhibition.

14C-labeled monoglucosides were obtained by overnight incubation of
20 nmol of oleanolic acid and hederagenin with UGT73C11 at reaction con-
ditions similar to those applied for the actual enzyme assays (500 um UDP-Glc
including 33.12 um UDP-["C]Glc [0.37 kBq wL7Y). Complete conversion of the
aglycones was confirmed by TLC analysis of aliquots of these reactions.

Plant Material

B. wvulgaris ssp. arcuata seeds were collected in natural populations in
Denmark: G-type (Amager; 55°38'N, 12°34'E) and P-type (Tisse; 55°36'N,
11°18’E). Plants were grown at 20°C, 16 h of light/8 h of darkness, and 70% to
75% air humidity, fertilized once a week, and the soil was treated with Bac-
timos L (Abbott Laboratories) whenever necessary.
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Comparison of Saponin Levels and in Planta Expression
of UGT73Cs

To determine saponin levels, metabolites were extracted from 20 to 30 mg of
ground, lyophilized leaf, petiole, and root material by boiling for 10 min with
37.5 uL of 55% ethanol per mg of tissue powder. Samples were cooled on ice
and centrifuged to remove insoluble particles. Supernatants were kept for
more than 2 h at —20°C and centrifuged to remove precipitates. Extracts were
filtered (polyvinylidene difluoride; 0.45 um) and transferred to glass sample
vials for liquid chromatography-mass spectrometry analysis. An Agilent 1100
Series LC device (Agilent Technologies), equipped with a Gemini NX column
(35°C; 2.0 X 150 mm, 3.5 um; Phenomenex) and coupled to a Bruker HCT-
Ultra ion-trap mass spectrometer (Bruker Daltonics), was used for spectro-
metric analysis. Mobile phases were eluent A, water with 0.1% (v/v) formic
acid, and eluent B, acetonitrile with 0.1% (v/v) formic acid. The gradient
program was as follows: 0 to 1 min, isocratic 12% B; 1 to 33 min, linear gra-
dient 12% to 80% B; 33 to 35 min, linear gradient 80% to 99% B; 35 to 38 min,
isocratic 99% B; 38 to 45 min, isocratic 12% B at a constant flow rate of 0.2 mL
min . The detector was operated in negative electrospray mode and included
tandem mass spectrometry to two stages (MS?) and three stages (MS?).
Chromatograms were analyzed with DataAnalysis 4.0 (Bruker Daltonics), and
saponin abundance was calculated based on summed extracted ion chro-
matograms of all adduct ions.

RNAwas extracted from 100 to 150 mg of ground leaf, petiole, and root
material by incubation for 10 min with 900 uL of prewarmed hexadecyl-
trimethylammonium bromide extraction buffer (Chang et al., 1993) at 65°C
and 660 rpm. After 2-fold extraction with 900 uL of chloroform-isoamyl al-
cohol, RNA was precipitated overnight (4°C) from the supernatant by the
addition of LiCl to a final concentration of 2 m. Pellets were dissolved in 500
wL of sodium chloride-Tris-EDTA bulffer (le Provost et al., 2007; prewarmed to
65°C) containing 0.1% SDS. RNA was extracted with chloroform-isoamyl al-
cohol and precipitated from the aqueous phase by adjusting the NaCl con-
centration to 0.67 M, adding 1 volume of isopropanol, and subsequent incubation
for 5 h at —20°C. RNA pellets were washed with 70% ethanol (—20°C), dried,
and redissolved in 30 uL of diethyl pyrocarbonate-treated water. The re-
maining genomic DNA was removed by on-column DNase treatment using
the RNeasy Mini Kit (Qiagen). RNA extracts were assessed for purity and
quantified with a NanoDrop ND-1000 (NanoDrop Technologies) and a 2100
Bioanalyzer (Agilent Technologies).

Reference gene sequences were obtained by mapping the 454 pyrosequencing-
derived reads of G- and P-type leaf RNA preparations (V. Kuzina and S. Bak,
unpublished data) to a data set consisting of all A. thaliana cDNA sequences
(TAIR9_cdna_20090619) using the CLC Genomics Workbench (CLC bio). Two
primer pairs, ACT2_forl/ACT2_revl and ACT2_for2/ACT2_rev2, were
designed from reads mapped to A. thaliana ACT2 (AT3G18780). With the ex-
ception of four single-nucleotide polymorphisms in an intron region of the
ACT2_forl/ACT2_rev1 product from the P-type, sequences derived for each
primer set from the two plant types were 100% identical. The sequence
identity of the two PCR products to the A. thaliana ACT2 ORF were 91% and
96%, respectively, while the encoded protein sequences were 100% identical to
A. thaliana ACT2. Threshold cycle values of the two primer sets were almost
identical in quantitative real-time PCR tests on leaf, petiole, and root tissues
from a single G-type plant (+0.08-0.26). In addition, threshold cycle values
across the three investigated tissues were found widely constant, with a range
of +0.31.

Five micrograms of RNA from each leaf, petiole, and root extract was
applied in 100-uL reactions for cDNA synthesis using the iScript cDNA
Synthesis Kit (Bio-Rad) according to the manufacturer’s instructions. quanti-
tative real-time PCR experiments were performed with the DyNAmo Flash
SYBR Green quantitative real-time PCR Kit (Finnzymes) in 20-uL reactions
according to the manufacturer’s instructions by adding 1 uL of the cDNA
preparations as template per reaction. Primer pairs were RTS_for and RTS_rev
(UGT73C9 to -C11), RTI for and RTIL_rev (UGT73C12/C13), as well as
ACT2_forl and ACT2_revl (ACT2). Duplicates of each setup were run on a
Qiagen Rotor-Gene Q Real-Time PCR cycler with settings for melting,
annealing, extension, and acquiring of 10 s at 95°C, 10 s at 65°C, 20 s at 72°C,
and 1 s at 76°C, respectively.

Quantitative real-time PCR experiments were analyzed using LinRegPCR
(version 12.7; Ramakers et al., 2003; Ruijter et al., 2009). Relative expression
values were calculated as the ratios of the starting concentrations (N0) given for
the ACT2 reference and the corresponding UGT73C primer sets in the Lin-
RegPCR output.
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Extraction and Reglucosylation of B. vulgaris Sapogenins

Crude saponin extracts from the G- and P-type were obtained by boiling
freshly harvested leaves for 10 min with 5 mL of 55% ethanol g fresh leaf
material. Extracts were cooled on ice, centrifuged to remove insoluble parti-
cles, and the cleared supernatant was stored at —20°C for more than 4 h.
Precipitates were removed by centrifugation, and HCI was added to a final
concentration of 1 M followed by incubation for 24 h at 99°C and 1,400 rpm. A
1.2-fold volume of 1 m Tris base was added to shift the pH to basic conditions,
and ethanol concentrations were adjusted to 14%. Polyvinylpolypyrrolidone
and BSA were added to final concentrations of 50 mg mL Tand 10 mg mL !
respectively, followed by six extractions each with one-tenth volume of ethyl
acetate. The ethyl acetate fractions were combined, and solvent was removed
in a vacuum concentrator. Metabolites were redissolved in 96% ethanol, and
the polyvinylpolypyrrolidone/BSA-based purification step was repeated in
one-tenth scale. Finally, the sapogenin-containing extracts were dissolved in
1 mL of 96% ethanol per initially applied 2.5 mL of hydrolyzed leaf extract.

Enzymatic activity assays were performed in a volume of 50 uL with
reaction conditions of 25 mm TAPS, pH 8.6 (UGT73C9 to -C11), pH 7.9
(UGT73C12/C13), or pH 8.2 (combination of UGT73C9, UGT73C10, or
UGT73C11 with UGT73C12 or UGT73C13), 1 mm DTT, 1 mm UDP-Glc, and
with diluted E. coli crude protein extracts containing in total 750 ng of the
recombinant UGT73C(s). Aliquots of the sapogenin-containing extracts were
dried in a vacuum concentrator and redissolved in 1 uL of DMSO per 6.4 uL
of the initial sapogenin-containing ethanol solution. Addition of 3.13 uL of the
sapogenin-containing DMSO solutions was used to start reactions after 3 min
of preincubation at 30°C. Reactions were incubated for 30 or 120 min at 30°C,
and enzymatic activities were subsequently stopped by the addition of 325 uL
of ice-cold methanol. Precipitated proteins were removed by centrifugation,
and the supernatant was evaporated to dryness in a vacuum concentrator. The
dried extracts were redissolved in 60 uL of 50% methanol, filtered (polyvinylidene
difluoride; 0.45-um pore diameter), and subjected to liquid chromatography-mass
spectrometry analysis (see above).

Production of Hederagenin and Oleanolic Acid
Monoglucosides for NMR and Bioassays

For large-scale production of hederagenin and oleanolic acid monogluco-
side, four 2-L Erlenmeyer flasks, containing 250 mL of TB medium with 50 ug
mL™! kanamycin, were inoculated with fresh XJb(DE3) colonies harboring the
PET28:UGT73C10 plasmid and incubated for 12 h at 30°C and 180 rpm.
Addition of 500 mL of TB medium and adjustment of the final concentrations
of kanamycin, Ara, and IPTG to 50 ug mL™}, 3 mm, and 0.1 mm, respectively,
were followed by further incubation at 15°C and 140 rpm for 24 h. The bacteria
were harvested by centrifugation, resuspended in 10 mm HEPES, pH 7.9, and
frozen at —80°C. Lysis was achieved by thawing bacteria in a water bath at
room temperature. DNA was degraded by treatment with DNase I (0.01 mg
mL™", 5 mm MgCl,, and 1 mm CaCl,). Cell debris were removed by centrifu-
gation, and the supernatant was adjusted to 20 mm HEPES, pH 7.9, and
500 mm NaCl prior to the addition of 3 mL of equilibrated HIS-Select Nickel
Affinity Gel (Sigma-Aldrich). One hour of incubation at 4°C was followed by
removal of the supernatant and three times washing of the affinity gel with 20
mm HEPES, pH 7.9, and 500 mm NaCl and once with 25 mm TAPS, pH 8.6, and
1 mm DTT. Enzymatic reactions were set up in 100-mL glass flasks at a final
volume of 50 mL. The reaction conditions were 25 mm TAPS, pH 8.6, 1 mm
DTT, and 750 um UDP-Gle. Approximately 1.5 mL of UGT73C10-loaded af-
finity gel was added to each reaction mixture, and enzymatic reactions were
started by the addition of 10 mg of hederagenin (Extrasynthese) and oleanolic
acid (Extrasynthese) dissolved in 3.125 mL of DMSO. Reaction mixtures were
incubated at 37°C and 150 rpm, and progressing glucosylation of the two
sapogenins was monitored by TLC analysis of 20-uL aliquots.

Hederagenin and oleanolic acid monoglucosides were extracted with ethyl
acetate and, after evaporation of the solvent in a vacuum concentrator, dis-
solved in 60% to 70% DMSO prior to application to preparative HPLC for
further purification. An Agilent 1200 series preparative HPLC system (Agilent
Technologies), fitted with a Phenomenex Synergi 4 Hydro-RP column (21.2
X 250 mm, 4 um, 80 A; Phenomenex), was used for this. Elution was carried
out using a mobile phase containing acetonitrile and water with 0.01% tri-
fluoroacetic acid. The gradient protocol was as follows: 5% acetonitrile for
5 min, linear gradient from 5% to 30% acetonitrile for 5 min, linear gradient
from 30% to 100% acetonitrile for 50 min, and 100% acetonitrile for 5 min, at
a constant flow rate of 15 mL min~". A diode array detector was used to
monitor the elution of compounds by their UV absorption at 200 nm. Fractions
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containing oleanolic acid and hederagenin glucosides were collected and
evaporated to dryness using a vacuum concentrator.

The purified hederagenin and oleanolic acid monoglucosides were dis-
solved in NMR-suitable methanol-d4 (Sigma-Aldrich), and NMR spectra were
recorded at room temperature on a Bruker Avance DSX 500-MHz NMR
spectrometer (Bruker Daltonics) equipped with a broadband inverse probe.
Acquired data were calibrated according to the residual solvent peaks at 3.31
ppm for 'H spectra and 49.01 ppm for '>C spectra. For structural elucidation of
the two monoglucosides, 1-D 'H and C as well as 2-D COSY, TOCSY, and
HSQC experiments were performed and compared with corresponding
spectra of oleanolic acid and hederagenin and reported NMR data of struc-
turally related compounds (Supplemental Data Set S1).

Phyllotreta nemorum Feeding Assays

Nonchoice feeding assays were performed as described previously
by Nielsen et al. (2010). Briefly, purified 3-O-B-p-Glc hederagenin and 3-O-B-p-
Glc oleanolic acid were in final concentrations of 2, 0.5, and 0.125 mm
dissolved in 75% ethanol. Sapogenin monoglucoside solution (15 uL) was
painted on both sides of 95-mm? radish (Raphanus sativus) leaf discs, which
resulted in doses of 60 nmol (632 pmol mm™?), 15 nmol (158 pmol mm?), and
3.75 nmol (39 pmol mm 2) sapogenin monoglucoside per leaf disc. Control
leaf discs were treated with solvent only. Two identically treated leaf discs
were exposed to one beetle for 24 h. Consumed leaf area was measured with
a stereomicroscope. For the origin and maintenance of the two flea beetle
(P. nemorum) lines, see Nielsen et al. (2010).

Results were analyzed using the R software package (www.r-project.org).
The linear effect model allowed for a possible correlation between measure-
ments from the same beetle. The starting model included a three-way inter-
action between beetle line, compound type, and dose; a 5% significance level
was used for model reduction tests.

Sequence data from this article can be found in the GenBank/EMBL data
libraries under accession numbers JQ291611 (BvUGT1), JQ291612 (UGT73C9),
JQ291613 (UGT73C10), JQ291614 (UGT73C11), JQ291615 (UGT73C12), and
JQ291616 (UGT73C13).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Comparison of oleanolic acid glucosylation
products after long-term incubation of oleanolic acid with UGT73C10,
UGT73C11, UGT73C12, and UGT73C13 with oleanolic acid cellobioside.

Supplemental Figure S2. Alkaline hydrolysis (saponification) of betulinic
acid glucosylation products derived from UGT73C13 activity.

Supplemental Figure S3. Comparison of UGTs from B. vulgaris
(UGT73C11, UGT73C13, and UGT73C9) and A. thaliana (UGT73C5
and UGT73B5) in their activity toward hederagenin, 24-epi-brassinolide,
and TCP.

Supplemental Figure S4. Comparison of UDP-Glc and UDP-Gal as sugar
donor substrates of UGT73C10.

Supplemental Figure S5. Determination of K, values of UDP-Glc for
UGT73C11 and UGT73C12.

Supplemental Figure S6. Kinetics of UGT73C11 and UGT73C13 with ole-
anolic acid and hederagenin as acceptor substrates.

Supplemental Figure S7. Liquid chromatography-mass spectrometry anal-
ysis of a G-type B. vulgaris metabolite extracted with 55% ethanol.

Supplemental Figure S8. Liquid chromatography-mass spectrometry anal-
ysis of a P-type B. vulgaris metabolite extracted with 55% ethanol.

Supplemental Figure S9. Liquid chromatography-mass spectrometry anal-
ysis of an acidic hydrolyzed G-type B. vulgaris metabolite extract.

Supplemental Figure S10. Liquid chromatography-mass spectrometry
analysis of an acidic hydrolyzed P-type B. vulgaris metabolite extract.

Supplemental Figure S11. Glucosylation activity of UGT73C9 to
UGT73C13 toward G-type and P-type B. vulgaris sapogenin extracts.

Supplemental Figure S12. Overlaid Liquid chromatography-mass spec-
trometry analyses of metabolite extracts from the B. vulgaris plants
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used for the saponin abundance and UGT73C9 to -C13 expression cor-
relation analysis.

Supplemental Figure S13. Comparison of UGTs from B. wvulgaris
(UGT73C11, UGT73C13, and UGT73C9) and A. thaliana (UGT73C5
and UGT73B5) in their activity toward sapogenins.

Supplemental Table S1. Amino acid and nucleotide sequence identities of
UGT73s used in the phylogenetic analysis.

Supplemental Table S2. Primers used in this study.

Supplemental Data Set S1. Structure elucidation of hederagenin and ole-
anolic acid monoglucosides based on 1-D 'H- and "*C- and 2-D TOCSY-,
COSY-, and HSQC-NMR data.

Supplemental Data Set S2. Multiple sequence alignment, amino acid se-
quences, and nucleotide sequences used for the phylogenetic analysis.
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Plante-metabolomics:
opdagelse af nye bioaktive
stoffer med PARAFAC?2

PARAFAC? tillader automatisk peak-detektion af lavintense og
staerkt overlappende toppe | LC-MS og kan derfor vcere et nyttigt
eksplorativt redskab for opdagelse af nye bioaktive stoffer i planter,

Af Bekzod Khakimov, Sgren Balling Engelsen, Rasmus
Bro, Institut for Fedevarevidenskab, Kebenhavns
Universitet og Lars Ngrgaard, FOSS

Plante-metabolomics handler om kvantitativ og/eller kvalitativ
analyse af metaboliter fra plantevaev [1]. Fremskridt indenfor
udviklingen af analytisk udstyr (GC, LC, MS and NMR) og

rende vis have opstillet en hypotese om tgrkeresistens, som er
et "hot-topic” pga. de globalt set stigende klimaudfordringer
for vores cerealieproduktion. Vi har i dette tilfaelde behov for
et bioaktivitets-assay, hvilket i dette tilfeelde er enkelt. Man
udszetter et antal biller pa blade fra de to genotyper af Barbarea
vulgaris, og efter et passende stykke tid, bestemmes den spiste
bladmasse ved gravimetri.

PLANT METABOLOMICS

NATURAL
INSECT
RESISTANCE

_g.\

BIOTICSTRESS ~ HERBIVORE TEST

Figur 1. Typisk “work-flow” inden for plante-metabolomics.

udviklingen af nye multivariate data-teknikker har fgrt til store
fremskridt i viden om plante-metabolomet og dets variationer,
nér det bliver udsat for indre og ydre perturbationer som f.eks.
insektangreb og klimaforandringer. Metabolomics kan opfat-
tes som det phenotypiske endepunkt af sekvensen genomics

- transcriptomics - proteomics — metabolomics, der reflekterer
dynamikken i planten. Derfor er plante-metabolomics blevet
en nogleteknologi i forstéelsen af kompleksiteten af plante-
metabolismen, hvordan den kontrolleres og som forbindelsesled
mellem genotype og phenotype. Figur 1 viser et typisk "work-
flow” i plante-metabolomics.

I dette tilfeelde gnsker vi at undersgge, hvordan det kan vere,
at én genotype af planten Barbarea vulgaris (vinterkarse) er
resistent mod billen med det flotte navn Phyllotreta nemorum
(jordlopper), der er et betydeligt skadedyr i f.eks. rapsmarker,
mens en anden genotype ikke er det [2]. Man kunne p tilsva-

dansk kemi, 93, nr. 12, 2012

EXTRACTION  ANALYTICAL PLATFORM

HYPHENATED SPECTRA  CLASSIFICATION INTERPRETATION

Derefter ekstraheres plante-metabolomet over i en vaeskefase,
da ingen af de analytiske teknikker i metabolomics er serlig
gode til at studere fast fase. Denne ekstraktion er kritisk for
resultatet af plante-metabolomics, da den vil introducere en be- p
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tydelig bias, som skyldes, at ikke alle plante-metabolitter deler
netop de fysisk-kemiske egenskaber som optimeres ved valg af
solvent, temperatur, mixing-tid etc. I vores tilfeelde har vi opti-
meret proceduren for ekstraktion af triterpenoider, som plante-
biologerne allerede ved er staerkt bioaktive over for insekter.

Til at undersgge hvilke stoffer, der er ansvarlige for Barbarea
vulgaris plantens insektresistens, gnsker vi at foretage en me-
tabolom-profilering af 127 planter fra en segregeret population,
der stammer fra en krydsning af en resistent G-type og en mod-
tagelig P-type plante. Ved krydsning opnds en segregeret po-
pulation, der spaender over hele spektret fra den fulde resistens
i G-typen til den fulde modtagelighed i P-typen. Ligeledes vil
metabolit-profilerne i populationen blive randomiseret. Til at
undersgge vores plante-metabolom benytter vi LC-MS som
analytisk platform med en pakravet hgj felsomhed. Der benyt-
tes endvidere en eksperimentel metode, der er optimeret for
triterpenoider og som har en relativ hurtig scanningshastighed.

Landscape of LC-MS
data of one sample

Samples

800 500" 400 (min)

Total ion current (TIC)

Landscapes of LC-MS
data of three samples

PARAFAC?2 [3] kan resolvere de ubehandlede LC-MS-land-
skaber op i tre modes: en score-vektor, der indeholder koncen-
trationen af de resolverede metabolitter, et massespektrum for
hver af de resolverede metabolitter samt en elueringsprofil for
hver prgve. Desvarre gir det ikke at foretage PARAFAC2-mo-
dellering pd det komplette LC-MS-dataszt, da kompleksiteten
bliver for hgj. Det er derfor ngdvendigt at opdele problemet i en
rekke mindre delproblemer. De komplette LC-MS kromato-
grafiske profiler af vores planteekstrakter deles op i 17 (elution
time) intervaller (se figur 4). Hvert interval er baselinje-sepa-
reret fra de tilstgdende intervaller, séledes at man ikke opdeler
kromatografiske toppe, der hgrer til samme stof.

PARAFAC2-modellering udfgres nu pa hvert af de 17 inter-
valler. Figur 5 viser et eksempel pa PARAFAC?2’s fantastiske
evne til at resolvere steerkt overlappende toppe. I dette elu-
eringsinterval, som umiddelbart ser fuldstzndigt uoverskueligt
ud, er PARAFAC2-algoritmen i stand til at identificere hele 6

Three-way data
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Figur 2. Struktur of LC-MS-data: (Venstre) et LCMSHandskab mdlt pd en enkelt preve samt (forneden) total ionkroma-
togram af samme prover. (midt) Samme mdling men flere praver. (Hgjre) Tre-vejs-datastrukturen som opnds ved at

stable de ré& LC-MS-data fra flere forskellige prever.

Figur 2 viser strukturen af LC-MS-data og hvordan disse, nar
man har mange prgver, kan stables til en trevejs datastruktur.
Vi ser ogsa, at data i elueringsprofilen har betydelige eluerings-
skift fra préve til préve. Som vi har vist i forrige klumme
(Dansk Kemi, 93 (11) 2012) passer denne type datastruktur
perfekt til PARAFAC2 algoritmen (figur 3).

Mass spectra profiles

/
Samples el & \ 2

underliggende toppe. Det er lidt som at dbne sin julekalender og

gd pa opdagelse efter hidtil ukendte plante-metabolitter! I dette

tilfzelde viste det sig, at en af de 6 underliggende toppe repre-

senterer en hidtil ukendt bioaktiv metabolit: en glycosyleret

saponin med en trisaccharid bundet til aglycon-skelettet.

Ved at dele vores LC-MS-problem op i 17 intervaller er

PARAFAC2-algoritmen i stand til
at identificere samlet set 71 peaks.

PARAFAC2

XleDkBII

miz
IN

Hvert af disse peaks svarer til en
plante-metabolit, og for hver af
disse metabolitter finder PARA-
FAC2-algoritmen en individuel
relativ koncentration, som efterfgl-

Retention time
o Ce ion profiles

time profiles

Figur 3. En skematik oversigt over PARAFAC2-modellen.
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gende kan korreleres eller kali-
breres til den mélte bioaktivitet. [
dette tilfaelde niveauet af resistens
malt som mangde spist bladmasse.

dansk kemi, 93, nr. 12, 2012



DET KEMOMETRISKE RUM =

lon Intensity (a.u.)

Retention time (min)

Figur 4. For at reducere kompleksiteten af de 127 LC-MS-data opdeles disse i 17 baselinje-separerede intervaller i elueringsretningen.
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Figur 5. Eksempel p& en syv komponent PARAFAC2-model of et interval af de r& LC-MS-data. (a) Superimposeret plot af de ré& LC-MS-kro-
matogrammer, (b) de resolverede elueringsprofiler, (c) de tilherende massespekire og (d) koncentrationsprofilerne af de resolverede

plante-metabolitter.
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Figur 6. Korrelations- og PLSregressionsanalyse mellem PARAFAC2-koncentrationer af de 71 resolverede metabolit-toppe mod resistan-
ce-niveau af de 127 planter. Resistance-data for de 127 planters er defineret til at have veerdier mellem 0 and 5, hvor de som er mest
resistente fér tildelt veerdien 0, mens de mest modtagelige planter far vaerdien 5.

Figur 6 viser, hvordan vi kan opstille en metabolit-tabel med
PARAFAC?2-scores og via PLS lave regression til bioaktivitet.

Outro

Vi haber med dette eksempel at have vist, at PARAFAC2 med
fordel kan anvendes som supplement til eksisterende metoder,
specielt niar man har LC-MS-data med vanskeligt identificer-
bare toppe. PARAFAC?2 er overraskende god til detektion af
stzerkt overlappede, eluerings-shiftede toppe selv med meget
lavt signal-stgj-forhold. Derudover har PARAFAC2-algoritmen
den fordel, at den kan modellere direkte pa de ra data uden no-
gen form for forbehandling, at dens lgsninger er unikke, og at
den giver relative koncentrationer, der kun behgver en skalering
for at give absolutte koncentrationer.

Vi vil gerne sige stor tak til professor Sgren Bak, Institut
for Plante- og Miljgvidenskab, Kgbenhavns Universitet, for

dansk kemi, 93, nr. 12, 2012

at have introduceret os til dette spsendende problem med
bioaktive stoffer i Barbera vulgaris.
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Plant metabolomics — PARAFAC2 resolution of bioactive triterpenoid saponins in LC-MS profiles from Barbarea
vulgaris and implications for plant-insect interactions
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#Quality & Technology, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30,
1958 Frederiksberg C, Denmark
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Previous studies on metabolomic profiling of 127 F2 Barbarea vulgaris plants derived from a cross between a parental
glabrous (G) and pubescent (P) type by LC-MS, revealed four bioactive triterpenoid saponins (hederagenin cellobioside,
oleanolic acid cellobioside, epihederagenin cellobioside, and gypsogenin cellobioside) that correlated with resistance
against the insect herbivore, Phyllotreta nemorum [1]. Our work demonstrates the application of the multi-way technique
PARAFAC2 [2] for resolving complex LC-MS data obtained from the 127 F2 Barbarea vulgaris plants. PARAFAC2
enabled resolution and quantification of several elusive (e.g. overlapped, elution time shifted and low S/N ratio)
chromatographic peaks, which could not be detected and quantified by conventional chromatographic data analysis.

The score values obtained from PARAFAC2 models
correspond to relative amounts of the resolved
chromatographic peaks. This enabled a precise relative
quantification of resolved peaks. A total of 71 peaks
(including baselines and tails of neighboring peaks) were
resolved from all the PARAFAC2 models developed for
17 different chromatographic intervals. Correlation
analysis showed that 9 out of 71 resolved peaks
significantly correlated with resistance against P.
nemorum larvae herbivore. Subsequent partial least
squares (PLS) regression analyses showed that the four mz o e
previously identified bioactive saponins and five
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unknown saponin like chromatographic peaks were
highly correlated to the resistance level of F2 plants. The
method also enabled a good separation between

Figure 1. PARAFAC2 model developed for selected
region of the raw LC-MS data shows resolution of
overlapped peaks.

resistant and susceptible plants [3].
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Complex and problematic chromatographic peaks with elution time shifts, strong overlaps and low S/N ratio were
successfully modeled by PARAFAC2, without need for preprocessing the raw data. Spectral loadings resolved by
PARAFAC2 matched well with the experimentally obtained mass spectra of peaks. All these features of PARAFAC2
elegantly illustrated its performance for quantitative and qualitative analysis of complex LC-MS metabolomic data.

References

1. Kuzina,V., Ekstrom,C.T., Andersen,S.B., Nielsen,J.K., Olsen,C.E., and Bak,S. 2009. Plant Physiology 151: 1977-1990.

2. Bro,R., Andersson,C.A., and Kiers,H.A.L. 1999. Journal of Chemometrics 13: 295-309.

3. Khakimov, B., Amigo J.M., Bak, S., and Engelsen, S.B., PARAFAC2 resolution of bioactive triterpenoid saponins in LC-MS profiles from Barbarea
vulgaris and implications for plant-insect interactions, 2012, submitted.



FoodOmics 2013 Poster Presentation, CESENA, ITALY MAY 22-24

Comprehensive Metabolomic Profiling of Phenolic and Organic Acids of Cereals using gas chromatography-mass spectrometry
(GC-MS) and advanced chemometrics
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Purpose

Most metabolomic studies performed on cereal grains focus on primary
metabolites. There is a need to improve existing methods for metabolomic
profiling of primary and secondary metabolites with low concentrations. This
study employs, for the first time, an improved protocol for extracting total
phenolics, new GC-MS derivatization method and PARAFAC2 analysis for
comprehensive metabolomics of phenolic and organic acids from grain flour
samples.

Motivation

Beyond the main bulk chemical components of cereals, low concentration
metabolites, polyphenols and organic acids, contribute significantly to the
quality and health beneficial properties. Cereals and cereal products are one
of the richest sources of total polyphenol intake in human diet. The main
bioactive polyphenols of cereals are phenolic compounds derived from
hydroxybenzoic and hydroxylcinnamic acids. Phenolic acids has been shown
to be important texturizing agents in cooking-extrusion of cereals and they
have been recognized as the main antioxidant constituents. Phenolics of
cereals are mainly present in conjugated forms with sugars and other cell
membrane components that alter their solubility and in turn their bioavailability.
Holistic evaluation of bioactive metabolites of cereals requirg comprehensive,
unbiased, sensitive and high-throughput analytical approach&‘l

Methodology

The study include winter wheat (Hereward), Purple jasmine wheat,
commercial rye and oat and jasmine rice. 50 mg of milled grain samples were
extracted in 80% MeOH and hydrolized using hydrochloric acid. Phenolic
extracts of cereals were trimethylsilylated using state-of-the-art derivatization
method developed for unbiased GC-MS analysis [1]. Integrated Agilent GC-
MS - GERSTEL MPS autosampler enabled complete automation of sample
derivatization and injection. Complex raw GC-MS data was processed by
multi-way decomposition method, Parallel Factor Analysis 2 (PARAFAC2)
[2,3], which enable deconvolution of more than 200 metabolites, resolution of
their pure mass spectra and precise quantification of the relative peak
abundances. Combination of PARAFAC2 resolved mass spectra and GC-MS
libraries, Wiley08 and NISTO5, allowed identification of nearly one hundred
metabolites.
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Main Findings

v’ 247 metabolites with unique retention indices (RI) and electron impact-
mass spectra (EI-MS) were resolved and quantified by PARAFAC2
modeling of raw GC-MS data

v 92 metabolites were identified based on their Rl and EI-MS, that
compiled phenolic acids, phenolic acid esters, small molecular organic
acids, aldehydes, alcohols, sugar alcohols, fatty acids and sterols

v Ferulic acid was the most abundant phenolic compound in most of the
samples

v Phenolic profiles of Oat and Jasmine Rice were significantly different
compared to Wheat, Barley and Rye

¥ The relative concentration of Salicylic acid was highest in Oat

v Rye showed the highest content of total phenolics (sum of 16 most
abundant phenolic acids), while Oat possessed the lowest concentration

=4 Syringaldehyde 12 Gallic acid
=6 Vanillic acid 13 Ferulic acid
=6 Protocatechuic acid 14 Methyl vanillactate
=7 a-Resorcylic acid 16 Caffeic acid

=g Homovanilic acid 16 Sinapinic acid

Conclusion

The protocol developed for metabolomic profiling of phenolic and organic
acids in grain flour samples show good reproducibility and excellent
sensitivity and allows for quantitative detection of more than 200 metabolites
from only 1 pl GC-MS injection. Detailed qualitative and quantitative
information is gained on phenolic and organic acid profiles of the main
cereals. The approach can easily be adopted in rapid screening of other food
matrices
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BEKZOD KHAKIMOV BAHROMOVICH

Metabolomics and bioactive substances in plants

Metabolomic analysis of plants broadens understanding of how plants
may benefit humans, animals and the environment, provide sustainable
food and energy, and improve current agricultural, pharmacological and
medicinal practices in order to bring about healthier and longer life. The
quality and amount of the extractible biological information is largely de-
termined by data acquisition, data processing and analysis methodolo-
gies of the plant metabolomics studies. This PhD study focused mainly on

the development and implementation of new metabolomics methodolo-
gies for improved data acquisition and data processing. The study mainly concerned the three most
commonly applied analytical techniques in plant metabolomics, GC-MS, LC-MS and NMR. In addition,
advanced chemometrics methods e.g. PARAFAC2 and ASCA have been extensively used for develop-
ment of complex metabolomics data processing and analysis methods. The first study (Journal of Chro-
matography A, 1266 (2012) 84-94) demonstrated how the application of a multi-way decomposition
method, PARAFAC2, can help in providing maximum extraction of metabolite features from the raw LC-
MS data obtained from complex plant extracts. The second study (Analytical and Bioanalytical Chemistry,
In Press, DOI: 10.1007/500216-013-7341-z) outlines a novel GC-MS derivatization method using TMSCN
for trimethylsilylation for improved analysis of complex biological mixtures. A review paper (Journal of
Cereal Science, Accepted, DOI: 10.1016/].jcs.2013.10.002) written for the Journal of Cereal Science com-
prises current analytical challenges and perspectives of cereal metabolomics with emphasis on new
development in the use of multivariate data analysis methods for exploitation of the full information
level in the analytical platforms. The fourth study (Journal of Experimental Botany, Submitted) combined
the knowledge gained from the first and second studies and applied cutting-edge chemometric meth-
ods in a real case biological question related to barley breeding. This study revealed several biological
questions associated with plant- environment, plant-gene mutation relationships and alterations of the
plants’ physiology during their development stages.

The ultimate goal of metabolomics method development studies can be reached when the detectible part of

the metabolome will be equal or close to the actual metabolome of the investigated sample matrix.




