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 Summary 

 

The general aim of the thesis was to develop a documentation system and to improve the 

background upon which the decision-making process for quality and production control is 

founded within a herring processing industry. Furthermore, the possibilities of utilizing 

multivariate data analyses were investigated conducting data from catch to final product 

throughout the production chain. When generating vast amount of data, as in the case of 

processing herring, various samples turn out to deviate from the majority of samples, also 

designated outliers. Due to the nature of outliers, they posses the ability to impair analysing 

models based on traditional multivariate methods using least squares estimation. For that 

reason, possible advantages or drawbacks employing robust multivariate methods were 

investigated as a favoured alternative to the traditional methods. 

 

The first part of the exploratory work was carried out as a case-study, exploiting the 

multiplicity of empirical and biological data, intended for quality determination in one of 

the leading businesses within the herring industry in Denmark. The work started out 

constructing a database to save all registered information, this being extended to be 

automatically imported, transmitted as e.g. measured weights to the database. In the case of 

non automatic transmission of data, the import of data to the database was manually 

recorded as soon as they were generated. 

The preliminary screening of data demonstrated that traceability could be confirmed from 

vessel unto the finished marinated produce of herring with the smallest unit of traceability 

being a batch of topped product. This finding revealed that it was possible, at any time, to 

track and trace any given product back to the vessel that originally caught the fish, and do 

extraction of all data connected to that specific product. 

Unfortunately, a great part of the multiple registrations lacked variability and suffered from 

uncertainties caused by the lack of traceability and/or misgivings, related to the actual 

registering of analysis. This, in combination with missing information of relevance, lead to 

that data at its present form neither had any relevance nor was representative for any further 

multivariate data analyses. For that reason, it was not possible to identify and link any 

relations between, for instance the quality characteristics of the raw material and yield, and 
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thereby improve the basis for the decision-making process concerned with quality and 

production control, within the herring processing industry. 

 

In place of the fact that the data had to be discarded, in relation to multivariate data 

analyses, they proved useful in the sense that they could be informative in relation to what 

information needed to be improved or added to be profitable to the business. A few to 

mention is registration of belly bursting and waste, along with implementation of an on-line 

determination of fat content on single fish level and consecutive sorting of the raw material 

based on this fat determination. Additionally, a quality evaluating system of the marinated 

herring would improve the significance of the data. 

 

Gas chromatograms of fatty acid methyl esters (GC-FAME) and of volatile lipid oxidation 

products (GC-ATD) from fish lipid extracts were analysed by multivariate data analysis 

(principal component analysis). Peak alignment was necessary in order to include all 

sampled points of the chromatograms in the data set. The ability of robust algorithms to 

deal with outlier problems, including both sample-wise and element-wise outliers, and the 

advantages and drawbacks of two robust PCA methods, robust PCA (ROBPCA) and robust 

singular value decomposition (RSVD) when analysing these GC data were investigated. 

The results showed that the usage of robust PCA is advantageous, compared to traditional 

PCA, when analysing the entire profile of chromatographic data in cases of sub-optimally 

aligned data. It was also demonstrated how the robust PCA method – sample (ROBPCA) or 

elementwise (RSVD) – depended on the type of outliers present in the data set.  

The potential of removing Rayleigh and Raman scatter from fluorescence data (excitation – 

emission landscapes), by employing robust PARAFAC, were investigated. A PARAFAC 

algorithm was made robust by substitution of least squares estimation by least absolute 

error (LAE). The conclusion was that LAE PARAFAC cannot be considered as a confident 

method for handling scatter, as a result of the systematic nature of scattering. However, by 

taking advantage of the systematic nature of the scatter an automatic method based on 

robust techniques for identification of scatter in fluorescence data were developed. This 

method can handle both Raman and 1st and 2nd order Rayleigh scatter, and do not demand 

any priori visual inspection of the data before modelling.  
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The investigation of using robust calibration methods for prediction of fat content of fish by 

NIR measurements in a data set with no extreme outliers present showed that the 

advantages of employing robust methods for prediction was ineligible. A slightly better 

prediction was obtained with robust SIMPLS (RSIMPLS) compared to classical PLSR, but 

further investigation is needed to test the performance on an independent test set. Focusing 

on the drawbacks of the robust methods, especially the lower statistical efficiency and the 

time-consuming computations, the advantages of robust methods seems to be eliminated, 

when the dataset contains no obvious outliers. 
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Sammendrag 

 

Formålet med dette Ph.d. projekt var at udvikle et dokumentationssystem og 

forbedre beslutningsgrundlaget for kvalitets- og produktionsstyring i sildeindustrien, samt at 

undersøge mulighederne for at benytte multivariat dataanalyse på data registreret i 

kæden - fra fangst til færdigt produkt. Ved generering af store datamængder, som 

eksempelvis i den involverede industri, vil der ofte optræde prøver, der afviger fra 

hovedparten af de øvrige prøver, såkaldte outliers. Hvis ikke sådanne prøver fjernes fra 

dataanalysen, vil de i værste fald ødelægge modellerne baseret på de traditionelle 

multivariate metoder, da disse er beregnet på baggrund af mindste kvadraters metode. Derfor 

blev eventuelle fordele og ulemper ved anvendelsen af robuste multivariate metoder som 

alternativ til de traditionelle multivariate metoder undersøgt.  

 

Første del af projektet var baseret på en case, der anvendte de mangfoldige erfaringsdata 

samt biologiske og kvalitetsmæssige data fra en af Danmarks største virksomheder inden for 

sildeindustrien. Projektet blev indledt med opbygning af en computerbaseret database til 

opsamling af alle registrerede informationer. Undervejs i projektet blev databasen 

udbygget, således at mange registreringer nu automatisk overføres direkte fra f.eks. vægtene

til databasen. I de tilfælde, hvor en automatisk overføring af data ikke er mulig, tastes data 

manuelt ind i databasen, så snart de genereres.  

Ved den indledende screening af data blev det fundet, at der var sporbarhed fra kutter til 

færdigmarineret produkt, og at den mindste sporbare enhed var en batch af toppet produkt. 

Det vil sige, at det altid er muligt at spore et produkt tilbage til kutteren og udtrække alle 

data, der knytter sig til netop det produkt i databasen.   

Endvidere viste det sig, at mangel på variabilitet i mange registreringer samt usikkerhed på 

grund af manglende sporbarhed og/eller usikker prøveudtagning, kombineret med direkte 

manglende informationer om relevante forhold, bevirkede, at data i den foreliggende form 

hverken var relevante eller repræsentative for en videre multivariat dataanalyse. Det var 

derfor heller ikke muligt at relatere nogle sammenhænge mellem f.eks. råvarens 

kvalitetsmæssige egenskaber og udbytte og dermed forbedre beslutningsgrundlaget for 

kvalitets- og produktionsstyring i sildeindustrien.  

De foreliggende data kunne i stedet bruges til at påpege, hvilke informationer der eventuelt 

kunne forbedres, så de blev mere fyldestgørende, for eksempel kvalitetsvurderingen af 
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de syremarinerede sild og fedtbestemmelserne ved indføring af online fedtbestemmelse på 

individniveau med efterfølgende sortering, og hvilke registreringer det kunne være givtigt 

for virksomheden at opsamle, så som mængden af bugsprængte sild og mængden af spild.   

 

Gaskromatografi af fedtsyre methylestere  (GC-FAME) og af flygtige lipid oxidations 

produkter (GC-ATD), fra ekstraktioner af fiskeolie, blev analyseret ved multivariat data 

analyse (principal komponent analyse). En forudgående forskydning af retentionstiderne, så 

kromatogrammerne var sammenlignelige, var nødvendig for at inkludere alle prøvepunkter 

af kromatogrammet i analysen. En nærmere analyse af robuste metoders evne til at 

håndtere outliers, inkluderende både elementvise og prøvevise outliers, på GC data blev 

udført for at undersøge fordele og ulemper ved to robust PCA metoder, ’robust PCA’ 

(ROBPCA) og ’robust singular value decomposition’ (RSVD). De to metoder er robuste 

over for henholdsvis afvigende prøver (ROBPCA) og elementvise outliers (RSVD). 

Resultatet viste, at man med fordel kan bruge robust PCA sammenlignet med 

traditionel PCA, når man analyserer hele profiler af kromatografiske data, i tilfælde hvor 

der er tale om ’sub-optimal’ forskydning af kromatogrammerne. Yderligere viste 

resultaterne, at man, afhængig af den type outliers der er tale om i datasættet, skal vælge 

enten prøvevise eller elementvise robuste metoder. 

 

Muligheden for at fjerne Raman og 1. og 2. ordens Rayleigh scatter i fluorescens data 

(eksitations – emissions spektre) ved hjælp af robust PARAFAC blev undersøgt. Den 

anvendte PARAFAC algoritme blev gjort robust ved at erstatte mindste kvadraters 

afvigelse med mindste absolutte afvigelse (LAE). Konklusionen herpå var, at LAE 

PARAFAC ikke kan betragtes som værende en pålidelig metode til håndtering af scatter, 

hvilket skyldes den naturlige systematiske tilstedeværelse af scatter. Den systematiske 

tilstedeværelse af scatter kan dog udnyttes konstruktivt, og en automatisk metode baseret på 

robust statistik til identifikation af scatter i fluorescens data blev udviklet. Denne metode er 

i stand til at håndtere både Raman og 1. og 2. ordens Rayleigh scatter, og kræver ingen 

forudgående visuel inspektion af data.  

 

Anvendelsen af robuste kalibreringsmetoder til prædiktion af fedtprocenten i fisk, ud fra 

NIR målinger i et datasæt uden ekstreme afvigende prøver, viste, at fordelene ved at 

anvende robuste metoder var begrænsede. En svagt bedre prædiktion blev dog opnået ved 
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anvendelse af robust SIMPLS (RSIMPLS) sammenlignet med klassisk PLSR, men 

yderligere undersøgelser er nødvendige for at teste prædiktionsevnen for uafhængige 

testsæt. Vender man blikket mod de robuste metoders reducerede statistiske egenskaber og 

den forholdsvis lange beregningstid, syntes disse at begrænse fordelene ved anvendelsen af 

robuste metoder i de tilfælde, hvor datasættet ikke indeholder deciderede outliers.  
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1.0 Introduction 

 

1.1 Background 

 

A deeper knowledge of the relation between raw material properties, food production 

and the quality of food products is of great importance to the food industry as basis for 

production planning and product differentiation. Moreover, demands from authorities 

and consumers increase the product documentation and traceability. In the cases of food 

scandals, the industry wants to protect their brands by product and quality 

documentation. A system able to fulfil such needs will be of great importance to the 

whole food industry.  

Considering fisheries and the handling of fish products, as products in any other food 

producing industry, there is a need to ensure optimal traceability at all stages, from 

processing to marketing.  

 

The processing and handling of fish products at fisheries, generates huge amounts of 

data, due to great volume and high speed handling along with a range of quality 

measures obtained at different stages during processing. When handling such great 

amounts of data, multivariate data analysis is a tool that offers powerful methods, 

capable of analysing complex data, in a much more simple way than previously 

achieved (Munck et al. 1998).  

Thus, it is now possible for the industry to explore and document relations that have 

previously only existed as “experienced personnel knowledge” and knowledge of the 

trade. Furthermore, multivariate data analysis can point out new and, till now, unknown 

relations (Bechmann et al. 1998; Nielsen et al. 1999; Nielsen et al. 2000). By integrating 

the multivariate techniques into the factory’s documentation system improved quality 

control and utilization of the herring resource can be obtained.  

 

Today, only a limited amount of all the data collected throughout the whole production 

chain (raw material, intermediate products and final products) are used, even though it 

has been shown that it is possible to build enhanced and safer systems based on 

multivariate data analysis from already obtained data (Kourti et al. 1996).     
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When working with huge amounts of data, in both industry and research, the presence 

of outliers is more the rule than the exception; especially in data mining projects where 

data often stem from many different sources and hence are of varying quality. Outliers 

are observations, in this case collected data that appear to break the pattern or grouping 

shown by the majority of the observations. An outlier can both be a whole sample, an 

entire variable/measurement or just one individual measurement. The reasons for 

outliers are various, e.g. instrument failure, non-representative sampling, formatting 

errors, and/or objects stemming from other populations.  

Unfortunately, most conventional multivariate data analysis methods are sensitive to 

outliers, due to the fact that they are based on the least squares estimate. This means that 

the presence of even just one single outlier in a given data set can have a large and even 

detrimental effect on the estimate and lead to incorrect conclusions. For that reason, it is 

necessary to identify outliers and decide, whether the outliers should be accommodated 

or rejected, in the modelling process.  

The outlier problem can be solved in two ways: either by diagnostics or robust 

estimators (Rousseeuw & Leroy, 1987). In outlier diagnostics, the outliers are identified 

and expelled from the data set prior to making the multivariate model. A complication 

to this procedure is that it may be difficult to identify outliers, especially when 

multivariate data are available. Furthermore, the task gets even harder and more time-

consuming, when the amount of data is huge. In the second approach, robust estimators 

are used instead of the ordinary non-robust least squares estimator. Robust methods 

reduce or remove the effect of outlying data points, allowing the remainder to 

predominantly determine the model. Therefore, owing to the challenges mentioned 

above, robust methods may be considered superior to the classical methods based on 

least squares and might be an excellent alternative, especially in situations where 

automatic and fast methods are required, as in the case of production industries. There 

are problems, though, with robust methods which call for some caution in their 

automated use as will be discussed in this thesis. 
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1.2 Objectives 

 

This thesis and the objectives can roughly be split up in two main parts concerning: 

 

1) Analysing data from the herring industry, and 

2) Investigating the possibilities of using robust multivariate methods in data mining. 

 

The link between the two parts is multivariate data analysis.  

 

The first part of the project is built on a case study, using data from one of Denmark’s 

largest herring industries. The traceability chain from fishing vessel to final marketed 

product will be scrutinized, successively analysis of the data will be performed, and the 

possibilities of integrating multivariate techniques into the industrial documentation 

system will be investigated.  

 

The advantages and drawbacks of robust procedures for common multivariate methods, 

such as principal component analysis (PCA) and partial least squares regression 

(PLSR), will be presented by use of different kinds of data obtained from fish research 

in part 2.     

 

Following section one, section two gives a short introduction to the common 

multivariate data analysis methods, PCA, parallel factor analysis (PARAFAC), 

principal component regression (PCR) and PLSR, to enlighten how these methods 

function and why they are interesting. Section three covers the analysis of the data from 

the mentioned herring industry. An introduction to outliers and robust methods can be 

found in section four, together with examples of how these methods employ in practice. 

Concluding remarks can be found in section five together with discussions of further 

perspectives.        
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1.3 Approach 

 

Previously in the herring industry, all available data were registered on paper based 

forms. This makes it impossible to export information and compare data from different 

schemes, especially when one wants to compare much information from many schemes 

at one time. Therefore, before the analysis of data from the herring industry could take 

place, it was necessary to build a computerized database; to register all collected data, 

and develop a webbased user interface to log the paper based systems and various day 

reports. The focus in this study is limited to the production of marinated herring. 

Furthermore, a report tool to export data from the database to the Excel® format was 

developed. In this database, already registered data going back three years, were logged. 

These data will be referred to as historical data in the following, and make up the data 

used for the data analysis in section three. As can be imagined, the database was 

continuously extended. For the measurements/registering, and where possible, the data 

was logged and exported automatically. By automatic logging of data, the workload is 

reduced and the risk of formatting errors is limited. The development of the computer 

based systems was done in close collaboration between the industry and DFU-IT, to 

ensure a system that lives up to industrial needs, both concerning user interface and 

practical conditions such as a very acid and wet environment.  

 

As the analysis progressed of the data from the herring industry, results revealed that 

available data lacked the ability to illustrate any advantages or drawbacks concerning 

robust multivariate methods. For that reason three different data sets from laboratory 

analysis were included in this project to investigate possible opportunities of robust 

methods giving different circumstances. 
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2.0 Multivariate data analysis methods 

 

The following section provides an introduction to PCA, PARAFAC, PCR and PLSR, 

since they were intended to be applied to the data obtained from the herring industry, 

and furthermore, make up the background of the robust multivariate methods, managed 

within this thesis. First of all, a short introduction to multivariate data analysis will be 

given.   

 

 

2.1 Multivariate data analysis 

 

Multivariate data analysis techniques are appropriate when several response variables 

are measured on a sample, and repeated for many samples. The multivariate methods 

are often more powerful and more information about the samples can be retrieved, when 

analyzing complex data, compared to traditionally univariate techniques. This is due to 

fact that the multivariate technique utilizes the correlation among all response variables, 

instead of simply looking at one or a few variables at the same time. Multivariate data 

analytical tools handle data by extracting underlying linear independent (so-called 

latent) variables from the original variables.  

 

Considering the data from the herring industry, the variables have different entities, and 

measurements can be as different as, e.g. catch area, fat content, size and quality 

measurements throughout the production chain and the samples are batches of final 

marinated products. In this case, we want to establish relationships, identify patterns and 

construct predictive models based on them, a procedure also known as data mining.  

 

The variables do not necessarily arise from different kinds of measurement, as in the 

fish industry case. As is often the case, instruments produce a huge number of often 

highly correlated measurements per sample, as in e.g. spectroscopy and gas 

chromatography. In stead of simply looking at one or few wavelengths or peaks of 

interest, whole spectra, landscapes or chromatograms can be analyzed with multivariate 

data analysis. Instruments that hold the capacity of spectroscopy and chromatography 

 5



have widely been brought into play in the industry since; they are fast, non-destructive 

and suitable for application on-line.    

 

The types of data, described earlier, are organized in a table – called a data matrix – in 

which I samples (observations) constitute the rows and the J measurements (variables), 

constitute the columns. This matrix can be analysed and decomposed with multivariate 

methods, such as PCA, PCR and PLSR. Three-way matrices also exist, when e.g. the 

measurement of one sample can be represented as one matrix, or when the same 

measurements are obtained on a time basis. Three-way matrices can be analysed by 

three-way methods, such as PARAFAC – an extension of the bilinear PCA into 

multilinear situations.  

 

PCA and PARAFAC are qualitative methods decomposing the data into fewer 

components which are easier to interpret. Regression methods, as PCR and PLSR, are 

quantitative often used for prediction.   

 

Common for all multivariate methods are; to obtain a good result, data should contain 

relevant information about the desired property, the quantitative relationship between 

the set of measured variables and the property of interest should exist. 

 

 

2.2 Principal component analysis 

 

PCA is the transformation of the originally J variable onto A latent variables (Hotelling, 

1933; Wold et al., 1987). PCA is a commonly used method to study the multivariate 

data, in a model of reduced complexity, allowing for an easier interpretation and better 

understanding of the different sources of variations. For that reason, PCA is often the 

first step in the data analysis.  

   

In PCA, a data matrix X is decomposed into the matrix products TP’ and the residual 

matrix E (Equation 2.1).  
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X = TP’ + E                    Equation 2.1 

 

The matrix product, TP’, consists of the score matrix, T = [t1, t2, t3,…,tA], and the 

transposed loading matrix, P = [p1, p2, p3, …, pA], which contains the underlying 

structure in the data, based on A latent variables or principal components. The principal 

component (PC) is defined as a weighted average of all the original variables. Each 

loading is the weight of the concerned variable, describing how this variable contributes 

to the PC under consideration. The loading thereby describes what type of information 

characterizes the samples. The associated weighted averages are the scores, describing 

how much of each PC the sample contains, i.e. the scores contain quantitative 

information about the samples. The residual matrix, E, contains the remaining 

information or noise in X that was not described by TP’.  

 

 

The scores and loadings are found using a least squares approach which locate the 

direction, explaining the maximum quantity of variance in the original data. The second 

principal component is then orthogonal to the first and again maximizes the quantity of 

variances, not captured by the first PC. Continuing this procedure generates all the 

principal components, which corresponds to the eigenvectors of the empirical 

covariance matrix.  

 

Different algorithms exist for finding the principal components, with nonlinear iterative 

partial least squares (NIPALS), and singular value decomposition (SVD) as the most 

common. The NIPALS algorithm is an iterative procedure that successively find the 

principal components, whereas as SVD computes all the eigenvectors simultaneously. 

SVD is numerical more stable than NIPALS. Furthermore, separations between 

otherwise nearly similar eigenvectors are obtained with NIPALS. On the other hand, the 

NIPALS algorithm can handle missing values in the data matrix, which is a common 

phenomenon. For a detailed description of the NIPALS and SVD algorithms, the reader 

is referred to Wold et al. (1987) and Jackson (1991), respectively.  
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2.2.1 PARAFAC 

 

Canonical decomposition (CANDECOMP)/ Parallel factor analysis (PARAFAC) is an 

extension of PCA, to higher order data (Carroll & Chang, 1970; Harshman, 1970).  For 

brevity, it will be referred to as PARAFAC in this thesis, moreover, only the three-way 

situations will be considered, even though the method can be extended to higher 

dimensions.  

 

A decomposition of the data is made into triads or trilinear components. When the 

elements of a three-way array, X (I x J x K), are given as xijk, i = 1,…..,I,  j = 1,…..,J 

and  k = 1,…..,K, then the structural model can be described as  

 

1

F

ijk if jf kf ijk
f

x a b c e
=

= +∑                                      Equation 2.2 

 

where aif, bjf and ckf denote elements of the loading matrices, A (I x F), B (J x F) , and C 

(K x F), respectively, and eijk denotes an error term for element, xijk (variation not 

captured by the model). F is the number of factors needed to describe the variation 

within the data. The model is fitted to a data set by minimizing the sum of squared 

residuals over A, B and C, by means of an alternating least squares (ALS) algorithm 

(Carroll & Chang, 1970; Harshman, 1970).  In matrix notation, the PARAFAC model is 

normally written 

 

X = ADkB’ + Ek,  k = 1,…, K               Equation 2.3 

 

where, Dk, is a diagonal matrix holding the kth row of C, in its diagonal, and E is a 

matrix of residuals.   

 

The principle behind ALS is to separate the optimization problems, into conditional sub 

problems, and solve these in a least squares sense. Each subset of ALS fixes two of the 

loading matrices (A, B, and C), and then uses least squares regression to find the third 

factor matrix. The estimation of the three loading matrices is repeated iteratively, each 
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iteration providing a better (not worse) estimate, of one set of loadings. The overall 

algorithm will therefore improve the least squares fit of the model to the data. An ALS 

algorithm follows as:  

 

(0) Decide the number of components, F 

(1) Initialize B and C 

(2) Estimate A from X, B and C by least squares regression 

(3) Estimate B likewise 

(4) Estimate C likewise 

(5) Continue from 2 until convergence  

 

 

If the algorithm converges to the global minimum, which is most often the case for 

well-behaved problems, the least-squares solution to the model is found (Bro, 1997). 

 

The algorithms for fitting PARAFAC models are not sequential as PCA, hence refitting 

is necessary when, e.g. several models are being tested, as any higher number of 

components can not be estimated from a solution with a lower number, e.g., during 

outlier detection.  

 

 

2.3 Multivariate regression methods 

 

PCR (Hotelling, 1957; Kendall, 1957) and PLSR (Wold et al., 1983; Geladi & 

Kowalski, 1986; Martens & Næs, 1989) are multivariate regression methods, which 

attempt to relate multivariate data, X, to a reference value, y: 

 

y = Xb + e                 Equation 2.4 

 

where, b, represents the regression coefficient and, e, is the variation not captured in the 

model. The methods can be used for analyzing data, which are strongly collinear, noisy 

and contain numerous X variables. 
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Typically, data in X are low-cost measurements that can be obtained rapidly, such as 

near infrared reflectance (NIR) measurements, whereas y data is often time-consuming 

and expensive reference methods. The overall purpose of the methods is to interpret the 

relationship between the two data sets, and to predict the y value in future samples.   

By example, fat content is of great importance for the quality of marinated herring 

products. Today, the fat content is measured in the laboratory by a slow and destructive 

method. A fast and non-destructive method for online fat determination in whole 

herring or herring fillets will be of great interest for the herring industry, since it will 

make it possible to sort the resource into much more homogenous batches and thereby 

optimize the production. NIR, in combination with PLSR, has shown great potential, as 

a fast and non destructive method for predicting the fat content in herring and herring 

fillets (Nielsen et al., 2005).  

 

2.3.1 Principal component regression 

 

PCR has become an established tool for modelling linear relations between multivariate 

measurements. In PCR, X, is first decomposed via PCA, and subsequently the scores, T, 

for a given number of components, are used as independent variables in multiple linear 

regression, 

 

y = Tb + e                 Equation 2.5  

 

relating y to X.  

 

In situations where X contains a large amount of information, irrelevant for modelling 

y, PCR might fail; in view of the fact that PCR uncritically seeks the principal 

components, describing maximum variation in X, which in this case had no relevance 

for y. The worst case scenario will be when the variation, relevant for y, might be 

expressed in the higher order principal components, often regarded as noise, and 

normally left out of the regression.  
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2.3.2 Partial least squares regression 

 

PLSR is a linear regression technique developed to deal with high-dimensional 

regressors by one, y (PLSR1), or several response variables, Y (PLSR2). Like PCA and 

PCR, PLSR is a technique for reduction of dimensionality, moreover, the PLSR 

technique is focused on maximizing the predictive power by guiding the decomposition 

of X during regression by the variance in y. 

 

The main difference between PCR and PLSR is that in PLSR, additional loadings, 

called W (for loading weights), for X, are determined in a way that the covariance 

between X and y is put to ist maximum. After finding W, the belonging latent variable 

T, is found and used for regression on y, as described for PCR. This leads to 

components, which are more directly related to the variability in y, than by the principal 

components in PCR. As a result of the construction of PLSR, the PLSR technique 

requires fewer components than PCR (Martens & Næs, 1987; de Jong, 1993) 

 

The most common algorithm of PLSR, considering the chemometric field, is the 

NIPALS PLSR algorithm. But also the SIMPLS (de Jong, 1993) algorithm is popular. 

In cases with only one responsible variable (y = 1), and no missing values, SIMPLS and 

PLSR1 (NIPALS) generate the same results (de Jong, 1993). 
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3.0 Data from a herring industry 

 

Atlantic herring (Clupea harengus) is of great importance to the Danish fishing 

industry. As aquaculture product, herring is primarily processed into marinated and 

salted products. A significant share though, is also exported to semi-manufactures. The 

dominating herring stocks caught and processed by the industry are from the nearby 

seas around Denmark (the North Sea and the Baltic Sea etc). The herring, a pelagic 

specie, is found in large schools. As raw material the herring cannot be considered very 

consistent, as fish caught at the same fishing ground in the same season can have 

different biological origin due to mixing of different stocks, and is therefore likely to 

have different biochemical and functional properties as raw material. The fat content is 

an example of a parameter, which has revealed large variations within a catch, when 

considering fishing ground and season (Larsen et al., 1997; Nielsen et al., 2005). 

 

For the last five years, since 2000, landing of herring has been decreasing or constant 

and marketing prices have been kept unchanged at approximately two Danish kr./kg, 

approximately 0.27 € for fish for human consumption (Danish Directorates of Fisheries, 

Ministry of Food, Agriculture, and Fisheries). Of the 200.000 to 300.000 tons of 

herring, landed in Denmark each year, 55 – 90 % is used for human consumption and 

10 - 40 % is used as “industrially fish” and further on processed into fish meal and fish oil 

(Danish Directorates of Fisheries, Ministry of Food, Agriculture, and Fisheries).    

 

The very competitive situation in the fish processing industry today means that there is 

an increased commercial interest in making the production more cost effective and 

raising the efficiency by rationalizations (Larsen et al., 1997). Furthermore, every year 

10 – 20 % of the herring caught for human consumption in Denmark is discarded 

because of unacceptable quality and instead used for feed. This is unsatisfactory not 

only in terms of production cost, but also according to stock preservation. To decrease 

the discarded quantities of herring for human consumption and ensure a better 

utilization of the herring resource, better understanding of how the biological factors 

(fishing ground, season, fat content etc.) influence the quality and products 

characteristics, is necessary. 
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Little is known about the influence of this variation in the raw material on the quality 

properties of herring and especially herring products. Generally, knowledge is based on 

personal knowledge obtained from many years of work in the field. In accordance with 

marinated herring products, lipid oxidation, soft texture and belly bursting is mentioned 

as some of the most important quality problems by people working in the industry. 

Belly bursting is related to raw material quality, whereas soft texture and lipid oxidation 

both are related to raw material quality and the production process e.g. marinating 

procedure and recipes are related to soft texture and incorrect mixing of herring and 

marinade or too little marinade in the barrels are related to lipid oxidation.  

 

In this study, using data from one of Denmark’s largest herring industries, the chain of 

traceability from fishing vessel to final product will be scrutinized, as a basis for 

successive data analysis to gain better knowledge of the relation between the properties 

of the raw material and the quality of the final products. Furthermore, the possibilities 

of integrating multivariate techniques into the industrial documentation system, will be 

investigated to improve process control as well as gain better utilization of the herring 

resource.     

 

 

3.1 The production line for marinated herring products 

 

The production line from raw material to marinated herring products is illustrated in 

Figure 3.1. The marinated herring products are so-called semi-manufactured products, 

which are sold to other companies for final processing before the products are ready for 

consumption. The different production steps will be described in the following. 
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Figure 3.1. The production line: from raw material to marinated herring products from a typically Danish 

herring industry. The bold arrows show the production flow and the dotted arrows show examples of the 

different branches during the production.    
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The herring are caught with pelagic pair-trawl or purse seine, and pumped on board the 

fishing vessels into different holds. The fish are stored and cooled by either chilled sea 

water (CSW) or refrigerated chilled sea water (RSW) in the holds. To ensure correct 

storage of the catch on board, the temperatures in the holds are measured with regular 

intervals during the trip.  

For all regular suppliers of herring to the industry, information about catch method, 

chilling method and hold capacity are known.   

For every towing, information about catching ground, date of towing, duration of 

towing, amount of fish (herring and by-catch) and which hold(s) the towing is pumped 

into are registered. Furthermore, a counting sample is taken where the herring are 

graded into three sizes (small, medium and large), and the size is registered as piece 

herring per kg. For every trip the total gross amount is registered. By gross amount is 

meant the assumed amount of herring and by-catch including water. In Denmark the 

water is assumed to make up 13 % of the catch.  

 

Arriving at the harbour, the raw herring in each hold is visually inspected for quality 

including freshness. The fish can be rejected as “not suited for human consumption” or 

“not suited for production”. The rejection “not suited for human consumption” requires 

the presence of the authorities and their rejection of the content. The rejection “not 

suited for production” means that the company can not use the herring in their 

production due to e.g. size, belly bursting or bad quality, caused by incorrect or too long 

storage on board. The outcome of the control is registered, and if rejection is necessary 

the reason is stated and registered. Fish passing visual inspection are transported by a 

conveyor belt into a chilled storage tank in the production plant.  

 

Normally, herring (approximately 25 herring per hold) from three randomly chosen 

accepted holds are taken out for further quality determination in the laboratory. Before 

the quality determination, 20 herring from each hold are filleted in the production line. 

The quality determination consists of a sensory evaluation, temperature measurements 

of the herring and a counting test (piece herring per kg). During the sensory evaluation, 

colour, consistency, odour and the general quality of both the whole and the filleted 

herring is evaluated. A quality mark is calculated on the basis of the sensory evaluation. 
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Furthermore, the fat content is calculated, and the numbers of nematodes (Anisakis 

larvea) are determined (number per 5 kg). The fat content is determined for those 

product types (primarily fillets without skin and butterflies) which are produced from 

the specific trip. The fat content is not determined directly but based on a dry matter 

determination where 10 gram herring from a pooled sample of herring are minced and dried. 

The method takes advantage from experience that the sum of water and fat is constant 

(approx. 80 %)1 and negative correlated, and the consequence, that the fat is a part of the dry 

matter. This means that the dry matter determination can be used to estimate the water content

and thereby the fat content can be calculated. The dry matter determination

is conducted as a single determination. The calculated fat content results are registered.  

         

A conveyor takes the herring through size graders. In Figure 3.2 such a grading system 

is illustrated.   
 

Figure 3.2. A grading system for use in the herring industry. 
 

Afterwards, the herring are taken into fillet machines (Figure 3.3). Just before filleting 

the herring are “visually” inspected by an automatic vision system, removing non-

herring and herring not rightly placed for filleting. The removed herring are taken back 

into the system for “another round”, whereas the non-herring (e.g. mackerel) are 

discharged. Fillets pass out of the filleting machines into a conveyor system, which 

leads to the marinating process. During the transport the filleted herring are visually 

inspected for errors.  

 

 

                                                 
1 However, that is not always the case (see e.g. Nielsen et al., 2005). 
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Figure 3.3. Fillet machine for use in the herring industry. 
 

At each production line, counting samples are taken frequently for each product type 

typically fillets without skin and butterflies (both fillets, connected, with skin on), see 

Figure 3.4.  

 

 
Figure 3.4. Fillets without skin (left) and butterflies (right). 

 

For a fast size determination, the number of filleted pieces per 3 kg is counted. 

Afterwards, approximately 50 pieces of filleted products are weighed out on a 

laboratory weight, and the mean weight (2 decimals) +/- the standard deviation is 

printed. The filleted products are evaluated (“Very nice”, “Nice”, “Less nice” or 

“Deviating”) in connection with the counting sample and quality errors are registered 

(Soft, Fungi, Red colour, Wrong cut or By-smell). 

 

Before marinating, some fillets are pre-salted in brine (13 % NaCl) for minimum 8 -12 

hours at 5 °C. To ensure a homogeneous salting, stirring takes place. If pre-salting takes 

place, it will be noted. 
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Fillets for marinating are mixed with marinade at a present ration (1.5 kg fish to 1.0 kg 

of marinade) in barrels or tanks. The marinade is a mixture of purified water, NaCl and 

acetic acid and with a pH value at approximately two. The composition of the marinade 

has been formulated to marinate fish and kill nematodes when stored for 35 days at       

5 °C. The essential preservation factor is acid (lowering the pH), but without an 

adequate proportion of salt, the softening process, which is an additional effect of the 

acid, would proceed too far (McLay & Pirie, 1971). A sample is taken from the 

marinade for laboratory control to determine percentage acid, percentage salt and pH. 

Controlled quantities of hydrogen peroxide may be added to the marinade, if the 

products are for export.  

 

The sealed barrels are rolled to ensure proper mixing of the fillets within the marinade. 

To avoid rancidity an insertion is used to keep the herring downwards in the marinade 

and thereby avoid the exposure to oxygen and subsequent rancidity. Rancidity is 

recognized as a yellow colouring of the fish meat.  

 

The barrels are left to cure (i.e. to become marinated herring) for a minimum of 35 days 

at 5 °C. During the marinating period spot tests are taken to control the quality. Herring 

samples are evaluated concerning “Appearance”, “Consistency”, “Smell / Taste”, 

“Homogeneity” and “Specifications kept”, in addition samples are taken to measure pH 

and salt in both the fish and in the marinade.   

 

After the marinating period, the barrels are topped. When topping, the content of a 

barrel is tipped off onto a draining board to remove excess marinade. If there is too little 

marinade or a bad smell is identified, it is noted. The fillets are visually inspected to 

remove any oxidised, yellow or badly cut fillets. Any of these quality errors are 

registered together with eventually foreign bodies. A sample of the marinade is taken 

for further analysis at the laboratory (% NaCl, % acid and pH). A counting sample is 

taken. Approximately 50 pieces of marinated product are weighed out on a laboratory 

weight, and the mean (2 decimals) + / - standard deviation is printed. The fillets are then 

poured into clean plastic barrels and topped up with marinade. The recipe for the 
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marinade can be either identical with the previous marinade or customer specific. The 

products are now ready for sale to other companies.   

 

 

3.2 Traceability 

 

Traceability is an important issue for a number of reasons. First of all, it is given by law 

within the European Commission (EC) regulation, 178/20027EC on General Food Law, 

issued on the 1st of January 2005. The regulation states that traceability is to be 

established at all stages of the food chain. This implies that it should be possible to trace 

and follow a food, feed, food-producing animal or substances throughout all stages of 

production, processing and distribution (EC Regulation 178/2002). Although given by 

law, there are a number of additional reasons that motivates traceability in the aspect of 

quality management. With effective traceability systems in place, it might bring 

extensive benefits to businesses, when used under proper conditions, for instance; 

process control, process optimization and better marketing (Paper I).  

Within the fishing industry, traceability from catch to final product is furthermore 

necessary when links between raw material production and final product quality are 

investigated, as is the case of this study.  

 

According to the ISO standard 8402 (ISO 1994), traceability can be defined as: 

 

Traceability is the ability to trace the history, application or location of an entity, by 

recorded identifications. 

 

Product traceability is first of all based on the ability to identify products uniquely. 

Unique identification means, according to traceability, that no other unit or component 

can have exactly the same, or comparable, characteristics. Unique identification and 

traceability in any system, hinges on the definition of what is the batch size, or using the 

terminology by Kim et al. (1995), the Traceable Resource Unit (TRU). The TRU size 

depends on what level (single fish, catch, or production day) it is possible to get specific 

information from. In some cases, different batches are pooled which will create new 
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TRU’s. The first step, when implementing data analysis, is therefore to investigate the 

traceability chain, and decide the size of the TRU. 

 

The traceability chain in this study includes handling from catch through 

processing,to final production of semi-manufactured marinated herring. Information 

about the subsequent history of the products is not available in this study, but plays an 

important role when analysing the whole traceability chain. Theoretically, it should be 

possible to track a single topped product back to its catching ground, but because of at 

least two unavoidable reasons, this is not possible here; this owing to; 1) catches from 

different grounds are mixed on board the fishing vessel, and 2) during off-loading, a 

further mixing takes place, because fish from different holds are mixed. A third problem 

might be that the continuous processing which means the fish from different vessels can 

be mixed. This is, however, more a theoretical problem than a problem in practice since 

only one vessel arrives at a time. The problem can be eliminated by using all herring 

belonging to one vessel before off-loading herring from the next vessel. During the 

production, the catch will be split up in different herring sizes, different cuts (e.g. 

butterflies and fillets without skin), different marinating procedures, and at last different 

batches (topping) when packing for marketing. This means that it is possible to track a 

specific batch back to the specific trip. The TRU, for forward traceability, will then be a 

batch. A very special case will be when all catches from one cruise are from the same 

catching ground, and thereby link and track a batch back to catching ground.  

In our case, this means that the smallest TRU, for backward traceability (origin of 

unit/fish), is the trip. For forward traceability (depart of unit/fish), batch will be the 

smallest size of the TRU. 

     

 

3.3 Data presentation  

 

The different registrations included in the data analysis, obtained during production of 

the marinated herring, are listed in Table 3.1.  
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Table 3.1. List of data included in the data analysis of data from a herring industry. 
Place of registration Registration Type of registration 

Fishing vessel Name (e-number) Fixed value connected to the vessel  

 SW-code CSW or RSW 

 Start date of trip dd-mm-yyyy 

 Place of catch  

 Date of catch dd-mm-yyyy 

Harbour Off-loading date dd-mm-yyyy 

 Production date dd-mm-yyyy 

 Gross amount kg 

Laboratory1 Temperature °C 

 Counting sample Units herring per kg 

 Quality mark Number 

 Nematodes Number per 5 kg herring 

Filleting Counting sample2 Gram (average over app. 50 pieces) 

 Fat content3 % 

Marinating Acid commodity group Digit code 

 Date of salting dd-mm-yyyy 

 Percentage NaCl in the brine % 

 Marinating code Digit code 

 Date of marinating dd-mm-yyyy 

 Percentage NaCl in the marinade % 

 Percentage acid in the marinade % 

 pH in the marinade Number 

 Amount of fresh herring  kg 

 Produced amount kg 

 Difference between fresh and produced amount kg 

 Appearance Very nice / Normal / Less nice / Deviating  /  Bad 

 Consistency Good / Normal / Bad 

 Smell/taste Okay / Not okay 

 Homogeneity Yes / No 

 Specifications kept Yes / No 

 Counting sample Gram (average over app. 50 pieces product) 

 Dispersion of counting sample +/- a value 

Topping Date of topping dd-mm-yyyy 

 Non topped amount kg 

 Topped amount kg 

 Yellow, top Non / Few / Some / Many 

 Yellow bottom Non / Few / Some / Many 

 Loose tail Non / Few / Some / Many 

 Badly cut Non / Few / Some / Many 

 To little marinade Non / Few / Some / Many 

 Bad smell Non / Few / Some / Many 

 Foreign bodies Non / Few / Some / Many 

 Other things Non / Few / Some / Many 

 General quality Value from 1 to 5 where 1 is highest quality 
1 Average values for the holds analysed. 2 Average values for the concerned code number. 3 Determined 
industrially from dry matter content of each product type produced (see page 17). 
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In the following, some general comments about the obtained data will be given, before a 

thorough examination of the data in Section 3.3. 

  

Data was chosen on the criteria that traceability exists from start to end throughout 

production. This means that the starting point of the analysis is a trip, and not a towing, 

due to mixing of the herring from different towing onboard, and when off-loading at 

harbour. Not all the herring arrive at the industry by vessel, some arrive by truck. In the 

case of arrival by truck, not all the information before production date is obtainable and 

will be treated as missing values in the following data analysis.   

 

The data base contains more information than is included in the data analysis, primary 

information from the vessels about e.g. hold temperature and duration of towing. But 

again, due to lack of traceability caused by mixing of herring from the different towing, 

this information is not included at this time. In addition, much of the information that 

should be obtained on board the vessels is very sparse, and therefore not suitable for 

analysis. Information about gear type is excluded since all fishing vessels with 

permanent relation to the industry use trawl. 

 

The information about place of catch is imprecise, for at least two reasons. First of all, 

herring from different towing are mixed, as also discussed earlier, and thereby loosing 

traceability to exact place of catch, and secondly, the existence of different ways to 

specify the place of catch. It is assumed that the place of catch is an important factor in 

relation to the fish quality. Therefore, the place of catch is included in the data analysis 

for those trips where all towing are obtained within the same International Council for 

the Exploration of the Sea (ICES) area. By choosing ICES area, it is possible to place 

most of the information about catch areas registered.  This was done based on maps. 

The ICES area division of fishing grounds covers relatively great areas, and the position 

of place of catch is therefore not very specific. Furthermore, it is a well know fact that 

due to hard competition the fishermen are not interested in coming up with precise 

details about the area of catch.            
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To make sure that traceability is present from the quality evaluation of the raw material 

in laboratory to end product as marinated herring, it is necessary to use a mean value of 

the quality character, obtained from the holds tested. 

 

Some registrations are not directly usable in the data analysis, but can be used for 

calculations which then can be included in the data analysis. This holds for the many 

registrations of date: 

 

- A very rough estimate for storage time onboard can be calculated as the difference 

between the date of the first catch and the date of off-landing.  

- Duration of pre-salting can be calculated as the difference between date of pre-salting 

and date of marinating.  

- Storage time after marinating can be calculated as the difference between the date of 

marinating and the date of topping. 

 

Moreover, the production date can tell something about the effect of season (month) and 

year. The reason why the production date is used, and not date of catch, to evaluate the 

effect of season or year is that when the herring arrives to the industry by truck the date 

of catch cannot be obtained.  

 

Loss during marinating of the herring can theoretically be calculated in two ways; 1) as 

the difference between the counting samples of the fillet products and the counting 

samples of the marinated products, or 2) as the difference between the un-topped 

amount marinated herring and the topped amount marinated herring. In practice it 

turned out that both methods were associated with a large degree of uncertainty.   

In method 1, because the counting samples were based on spot tests. Concerning the 

historically data no direct link was obtainable between the product line of the fillet 

products and the marinated products. In method 2, because the waste amount during 

marinating and topping was not registered. This makes it impossible to distinguish the 

origin of loss, whether it is due to waste or due to marinating.  
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Since logging of historically data stopped mid 2003, some information about marinating 

and topping conducted after this date was missing. 

 

 

3.4 Data analysis 

 

The data analysis starts by univariately scrutinizing the data. This is done to get 

knowledge about the quality of the data and thereby clarify the relevance to the product 

quality, before continuing with the multivariate data analysis.  

 

3.4.1 Overview of trips included in the data analysis 

 

Data from 471 trips were included in the data analysis; this includes herring delivered 

by truck. The landing activities were highest in August, with a smaller decline in 

September, October and November. December showed very little delivery, followed by 

a smaller increase in January, February and March. A substantial decrease was seen in 

April, after which deliveries fully stopped in May and June before increasing again in 

July, see Figure 3.5.  
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Figure 3.5. Numbers of herring landings in Denmark from mid 1999 to mid 2003 split up on month.     

 

The number of landings each year is listed in Table 3.2. The number of landings was 

not directly comparable since the data base only holds information about trips 

conducted with vessels that were associated with the company, from mid 1999 until 

2002. From 2002 to mid 2003 data also includes herring delivered by truck or other 

unassociated vessels. Furthermore, concerning 1999 and 2003, logging of data did not 

take place for the whole year.  

 

 
Table 3.2. Number of landings per year of herring in Denmark. 

Year Number of trips 

1999 24* 

2000 77 

2001 90 

2002 148 

2003 132* 

* The period logged does not cover a whole year. 
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From the data included in this study it should be possible to both analyse the effect of 

season and year to year variation on raw material and product quality, since data are 

well represented throughout the year, and data from three whole years was included.  

 

3.4.2 Data obtained in connection with the trip 

 

For 183 trips, it was possible to identify the place of catch by ICES areas. The primary 

places of catching ground were 4A: north North Sea (72 trips) and 4B: central North 

Sea (48 trips) followed by 3A: Kattegat/Skagerrak (27 trips) and 2A: Norskehavet (21 

trips). Herring caught in the North Sea are primarily winter and autumn spawning, 

whereas herring from Kattegat and Skagerrak is spring spawning (Jensen 1949; 

Rosenberg & Palmén 1982; Slotte 1998; Johannessen & Jørgensen 1990). Catching 

ground might indirectly be important for the quality, due to mixing of herring stocks, 

resulting in different biochemical and functional properties of the raw material. For 

herring spawning in autumn, their fat content will increase rapidly during the early part 

of the summer, reach a maximum fat content in late summer and deplete strongly during 

spawning time. The fat content can vary between 1 and 30 % during the year. 

Furthermore, a phenomenon such as off-flavours can often be related to fishing ground, 

since certain localities evidently relates to variations in flavour (Karl & Münkner, 

2002). Several of these off-flavours can be attributed to the feeding on different 

compounds or organisms e.g. the larvae of Mytilus spp. which causes a bitter taste in 

herring. Marine algae, sponges and Bryozoa forms volatile bromophenolic compounds 

which causes an iodine-like flavour. An oil taint might be found in the fish flesh in areas 

with off-shore activities, or in areas with large oil spills (Huss, 1995). When 

investigating the effect of fishing ground on the sensory quality, i.e. appearance, odour, 

flavour and texture of marinated herring products, Nielsen et al. (2003) found no 

differences in sensory quality, which could be ascribed to fishing ground. However, a 

more detailed and uniform specification of fishing ground might still be useful 

considering traceability and valuable in cases with off-flavours or pollution.   

 

The storage time onboard the vessel can roughly be estimated for 231 trips. The 

involved trips are evenly distributed both during the year and between years, and no 
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systematic effect between years is observed (results not shown). From Figure 3.6, it can 

be seen that the storage time on board approximately follows a normal distribution with 

3 days as mean value. Storage values calculated as 11 and 32 days are regarded as 

outliers and should be kept out of further analysis. The maximal shelf life of herring on 

ice is 2 to 12 days (Hansen et al., 1970; Kolakowska et al., 1992), depending on the fat 

content and enzymatic activity. Herring with low fat content and low enzymatic activity 

(winter herring) have longer shelf-life than fat and feeding herring (summer herring). 

The effect of time / temperature storage conditions on product shelf-life has shown to be 

cumulative (Charm et al., 1972). Findings show that maintaining a continuous 

monitoring, and control of the storage temperature and keeping the fishing trips as short 

as possible is crucial. Deterioration due to enzymatic activity is a risk, since the herring 

are stored un-gutted, but the primary reason to spoilage of fatty fish, as in the case of 

herring, is due to oxidation. The duration of the trip should therefore be as short as 

possible. Furthermore, fast cooling of the catch and a constant low temperature should 

be kept to maintain appropriate quality. Unfortunately, the temperature measurements 

from the vessels in this study were very sparse and not suited for inclusion in the 

analysis. A suggestion for continuous temperature control during storage on board 

would therefore be the use of automatic temperature loggers. Needless to say, some 

practical conditions about placing should be considered before implementing by reason 

of heterogeneous temperatures in the hold.   
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Figure 3.6. The storage time (days) of herring on board the vessel calculated for 231 trips.  

 

The gross amounts (kg) for 343 trips are available. The mean value is 187 233 kg + / - 

72 767 kg, the minimum value is 18 965 kg and the maximum value is 361 050 kg. The 

wide range between minimum and maximum amount is owing to the different holding 

capacities between RSW and CSW vessels. RSW vessels have larger holding capacities 

(615 + / - 150 m3) than CSW vessels (324 + /- 60 m3). The mean values, when dividing 

up in samples from RSW and CSW vessels, was 226 127 kg + / - 59 002 kg and 134 

329 kg + / - 53159 kg, respectively.  

 

3.4.3 Quality evaluation of the raw material  

 

Results, given as mean values from the quality evaluation of the raw material, are listed 

in Table 3.3. All values are average values covering the number of holds tested from 

one vessel.   
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Table 3.3. Minimum, maximum, mean and standard deviation for determination of: nematodes (pieces 

per 5 kg.), temperature (°C), counting sample (pieces of whole herring per kg) and quality mark when 

evaluating the herring in the laboratory. 

Measurement Minimum 

value 

Maximum 

value 

Mean value Standard 

deviation 

Number of 

samples 

included 

Nematodes 

(pieces per 5 kg.) 

0 34 9.6 6.0 443 

Temperature 

(°C) 

-2.10 13 -0.43 1.18 462 

   - CSW* -2.1 4.5 -0.08 1.10 163 

   - RSW* -1.8 1.7 -0.95 0.49 226 

Counting sample 

(pieces of whole 

herring per kg) 

0  27  6.6  1.8 431 

Quality mark 0  9.7  8.0  1.0 459 

*The samples landed with vessels with association to the company.  

   

The nematodes are in the range 0 to 34 pieces per 5 kg. Only 12 determinations out of 

443 have values over 22 nematodes per 5 kg, 41 determinations have values between 17 

and 22 nematodes per 5 kg, whereas the rest of the determinations (390) are evenly 

distributed, with values between 0 and 17 nematodes per 5 kg. Anisakis larvae are 

found almost ubiquitously in the intestines of herring from Nordatlanten, Skagerrak and 

Kattegat (Jessen, 1987). The herring most commonly get infected with Anisakis larvae 

during feeding with krill (Podolska and Horbowy, 2003). The larvae are typically found 

in the intestine, but can migrate to the flesh. Therefore they make up a possible infection 

risk in human consumption if not killed during the marinating process (Jessen, 1987). 

The occurrence of nematodes is highest during the spawning period and increases by 

age (Karl & Münkner, 2002; Podolska & Horbowy, 2003). The time estimated to kill 

Anisakis larvae in marinated herring products topped in a marinade of 5 % acetic acid 

and 10 % NaCl is 35 days (Karl et al., 1995). This estimate is coherent with the 

customary marinating time seen in Danish herring industries. The products included in 

this study were all stored for at least 35 days (results not shown). The recommendation 

for ensuring the inactivation of nematodes in fat herring, includes rolling of the barrels 
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at regular intervals to avoid a concentration gradient within the barrels (Karl et al., 

1995).    

 

Considering temperature determination in the herring, a value of 13 °C or above is a 

mistake since such high temperatures are unrealistic when working with fresh herring 

stored either in RSW or CSW. Observations with such values should be excluded from 

further multivariate data analysis. Temperatures measured that high were either due to 

wrong typing or to long storage time without chilling in the laboratory, before 

measuring. For all samples the mean value is -0.43 °C +/- 1.18 °C. The effect of cooling 

system used on board the vessels is reflected in the temperature values measured in 

herring from 226 RSW and 163 CSW fishing vessels. Herring cooled with RSW had a 

lower temperature than herring cooled with CSW, the mean values are -0.95 °C and -

0.08 °C, respectively.  The temperature interval is wider for vessels using CSW (-2.1 °C 

to 4.5 °C) than vessels using RSW (-1.8 °C to 1.7 °C) and more samples from CSW 

vessels have measured higher temperatures, see Figure 3.7. Studies from both Smith et 

al. (1980) and Hattula et al. (2002) shows, that the effects on quality from storage in 

CSW and RSW are similar when the temperature is kept low (app. 0 ºC). In both 

situations, off-flavours will develop in the herring, if the seawater is not renewed (Smith 

et al., 1980).   
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Figure 3.7. Histogram plots of the temperature measured in the whole herring  

cooled with CSW (upper) and RSW (lower) onboard the vessel.  

 

Counting samples (pieces herring per kg) for 431 samples were included in the analysis. 

The counting samples followed a normal distribution with mean value around 6.6 

herring per kg, see Figure 3.8. The samples marked by a circle in the figure are outliers 

as counting of samples that holds 1 and 2 herring per kg as well as 27 herring per kg are 

unrealistic, and should be excluded from the dataset before further analysis. The size 

has to match with the corresponding product. For a predefined body weight (giving 

fillets weighing above 25 g) Nielsen et al. (2003) found an effect of body weight on the 
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sensory quality of marinated herring products. An increase in body weight was 

accompanied by an increase in the quality parameters: firmness, juiciness and elasticity 

and a decrease in gritty texture in products produced immediately post-mortem.  

 

 No. of elements 

 
Counting samples (herring per kg)  

Figure 3.8. Histogram plots of the counting samples of whole herring obtained from the quality 

determinations of the raw material. Outlying values are marked with a circle.  

 

Figure 3.9 show a histogram plot of the quality mark of the raw material. The quality 

marks for the 459 determinations follow a normal distribution, with a mean value 

around 8.0. The highest obtainable value is 10. The sample with a value of 0 was an 

outlier and consequently excluded from the data set. Quality marks below 4 should not 

appear in practice, since such low values reflect a very poor quality, not acceptable for 

further production (Michaelsen K, personal communication). The quality marks reflect 

variation in the data set, even though it was not possible to relate quality to season.   
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Figure 3.9. Histogram plots of the quality marks obtained from the quality determinations of the raw 

material. 

 

The calculated fat content is primarily determined for fillets without skin and butterflies. 

Owing to the procedure for fat determination, where 10 gram of the actual product type 

was minced and dried, only one calculated fat determination exists for each product type 

(fillets without skin and butterflies). This value for e.g. butterflies then represents the fat 

content in all butterfly products, produced from that specific cruise. The calculated fat 

determinations as function of production date are plotted in Figure 3.10 for 288 samples 

of fillets without skin and 382 samples of butterflies. The calculated fat content varies 

according to season, with the highest values around August and lowest values around 

March. The variation in calculated fat content is in accordance with feed availability and 

follows the cycle of maturation. The fat content increases from juvenility to mature 

herring. Furthermore, fat content decreases rapidly during spawning, followed by a 

subsequent increase after spawning (Iles, 1964). A broad variation of calculated fat 
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content is also observed within the same month, indicating that the raw material is very 

heterogeneous, among others, due to the different catching grounds. A substantially part 

of the fat depots are located in the subcutaneous tissue, explaining the generally higher 

fat content in butterflies, compared to fillets without skin, given that a part of the fat is 

removed with skin.  
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Figure 3.10. Calculated fat content coloured by product type (fillets without skin and butterflies) versus 

production date.  

 

Fat determinations on single fish level by Bligh and Dyer extraction from 

approximately 50 herring from 4 trips included in the analysis, shows great variation 

within a trip, see Table 3.4. These findings are in accordance with results obtained by 

Larsen et al. (1997), showing large variations in fat content within same catches 

conducted by commercial vessels in the North Sea. The fat content is a very important 

quality parameter in view of several herring products, including marinated herring 

manufactures, where a fat content of minimum 8 % is desirable (Karl & Münkner, 

2002). Nielsen et al. (2003) found that the fat content had a very clear influence of the 
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sensory properties of the marinated herring. High lipid content results in fillets with 

higher intensities of the characteristic herring odour and flavour. Furthermore, they 

were juicier and gave a more fatty mouth feel than fillets from leaner herring. Lean 

herring had higher intensities of sweet odour and flavour, were firmer and had a higher 

intensity of gritty texture. The results illustrate that the way the fat content is calculated 

today in the industry, do not reflect the great variation in fat content within a catch. On-

line measuring of fat content and subsequently sorting will provide more homogeneous 

products according to fat content, thus improve process optimization.  

Due to the relatively imprecise fat values in the data, analysis that includes fat content 

as calculated today will be associated with uncertainty. 

 
Table 3.4. Fat content (%) determined on single fish level by Bligh and Dyer extraction and calculated on 

batch level based on dry matter determinations.   

Time Fat content, % 

  

Single level (Research)* 

Batch level 

(Industry)** 

 Mean SD Median No. of 

samples 

Range  

May 6.93 1.82 6.65 48 3.99 – 13.08 8.8 

September 10.09 2.99 9.97 57 3.85 – 17.39 11.7 

November 6.49 2.72 6.19 50 1.40 – 16.51 7.9 

February 4.48 2.04 3.46 50 2.01 – 12.45 3.0 

* Bligh & Dyer extraction, ** Dry matter determination (see page 17). 

 

3.4.4 Evaluation of the marinated products 

 

Data obtained during the marinating process included data from 1351 products; 1162 

products had been pre-salted, 119 products were marinated directly, while the 

information about pre-salting was missing for the last 70 products. Pre-salting improves 

the strength of the fillets and leach blood and other impurities (Jessen, 1987). The 

duration of the pre-salting depends on the pre-salting process, which again is dependent 

on the fat-content in the herring. In a study by Birkeland et al. (2005) the effect of 

different brine conditions (NaCl concentration: 10.0 %, 16.5 % and 25.5 %; storage 

temperature: 3.5 °C and 17.5 °C; skin-on versus skin-off) on weight gain during storage 
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were investigated. It was shown that the weight gain in herring fillets increases during 

brining. At storage temperature at 17.5 °C equilibrium between the brine and the 

interior muscle tissue of the herring fillets was reached after 1 to 2 days. For storage 

temperature at 3.5 °C this equilibrium was not reached after 7 days storage causing an 

influx of salt and water to the fillets. In general, the highest weight gains were obtained 

for brines with 10.0 % NaCl and fillets without skin. The average pre-salting time in 

this study were 1.2 days at 5 °C.      

 

During the marinating process, spot tests were taken to evaluate the product quality. The 

parameter “Smell / taste” is evaluated by “Ok” or “Not ok”. All 1228 samples evaluated 

were evaluated as “Ok”. This parameter can then be excluded from the following data 

analysis, since it does not tell anything about the product. The results from the other 

evaluations “Appearance”, “Consistency”, “Homogenity” and “Specifications kept” are 

presented in Figure 3.11.  
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Figure 3.11. Evaluation (Appearance, Consistency, Homogeneity and Specifications kept) of the results 

from the spot test obtained during storage of the marinated herring products.   
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Concerning “Appearance”, the primary part of the products was judged as “Normal” 

(38.4 %) or “Nice” (53.3 %), whereas “Very nice” and “Less nice” were only used for a 

minor part of the products, 5.5 % and 2.9 % respectively.  

 

The results obtained from the evaluation of “Consistency” reflects that something is 

wrong with the scale, since most of the products (53.3 %), obtain the best evaluation 

“Good”, while only 2.2 % of the products was judged as “Bad”. The remaining part of 

the products was evaluated as “Normal”. With a more accurate scale it would be 

expected that most of the products would be evaluated by the mean value, as “Good”. 

Furthermore, it seems like the difference between “Bad” and “Normal” was bigger than 

the difference between “Normal” and “Good” – the scale was not used equally for the 

different characters.  

 

Only a minor variation was observed in the products, with respect to “Homogeneity” 

and “Specifications kept”. Out of 1327 products evaluated, only 8 were evaluated as 

“No” with respect to “Homogeneity”, and out of 1319 products evaluated for 

“Specifications kept” only 53 were evaluated as “No”.  Moreover, both of these 

parameters were more process dependent than depending on the actual quality of the 

raw material. These evaluations were therefore not relevant for further data analysis, 

when analysing the effect of raw material quality on the final product quality.  

 

The results from the evaluation of the marinated products showed very sparse 

variability in the parameters “Smell / Taste”, “Homogeneity” and “Specifications kept”. 

For that reason these parameters were not suitable for further multivariate data analysis. 

The evaluation of the parameter “Consistency”, indicated that the scale should be 

redefined. Only the parameter “Appearance” seemed to be suitable for further analysis, 

with that in mind that the results would be based on spot tests, and therefore conducted 

with some degree of uncertainty.  
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 3.4.5 Quality determination at topping 

 

During the marinating process the fillets lose weight due to removal of water from the 

flesh caused by coagulation of proteins induced by the salt in the marinade (Somers, 

1975). In general, the weight loss is around 20 % of the weight depending on the fish 

quality (Herborg, 1978). The loss during the marinating process increases with 

decreasing fat content (Jessen, 1987). In practice, also a major weight loss is observed 

for fat summer herring. The fat “melts off” the herring, and drift to the top of the 

barrels. An explanation for this “melting off” is that the fat in the fat summer herring are 

not incorporated into fish muscle as it is primarily stored subcutaneous. Additionally, 

the storage time also influences the weight loss to a certain limit: the longer storage, the 

higher weight loss. Theoretically, the loss during marinating can in our case be 

calculated in two ways as described in section 3.3 (page 24); 1) as the difference 

between the counting samples of the fillet products and the counting samples of the 

marinated products, or 2) as the difference between the un-topped amount and the 

topped amount. Also described in section 3.3 (page 24), it turned out that both methods 

were connected with large uncertainty. Because, in method 1 no direct link existed 

between the product line of the specific fillet products, and the marinated products. This 

means that the counting sample used for the fillet products, is a mean value of all the 

counted samples conducted for that specific product type (e.g. fillets without skin and 

butterflies), and do not account for the different sizes of the herring. Method 2, because 

the waste amount during marinating and topping is not registered. That made it 

impossible to distinguish between losses, due to waste or marinating. An improved 

system to trace the source of the fillet product is necessary to connect counting samples 

of fillet products with the counting samples of marinated products. In addition, 

registration in relation to the amount wasted, needed to be introduced.  

 

The topped products are evaluated according to “Yellow, top”, “Yellow, bottom”, 

“Loose tail”, “Badly cut”, “Too little marinade”, “Bad smell”, “Foreign bodies” and 

“Other things”. The evaluation was differentiated into “No”, “Some” and “Many”. The 

obtained results for the evaluated products are illustrated in Figure 3.12. The variation 
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in data was very sparse; some parameters such as “Too little marinade” and “Bad smell” 

were almost not used, and therefore not suitable for further multivariate data analysis.  
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Figure 3.12. The results obtained from the evaluation of the topped herring products after marinating.  

 

The results from the general quality assessment of the final products are presented in 

Figure 3.13. It clearly appears that there was almost no variation within this parameter. 

Out of the 890 evaluated products, only 21 products were evaluated as lower quality, 

the rest of the products were evaluated as being of best quality. This indicates that the 

evaluating procedure was not optimal and / or that the final product quality was 

independent of the quality of the raw material. Both scenarios seem to be right: The 

quality range in products evaluated as being of the best quality is much broader than in 

the other groups (Michaelsen, K. personal communication). A study from Nielsen et al 

(2003) has shown that when herring are processed immediately post mortem, then the 

variation in the products is so little that the consumers mostly will not notice it. They 

concluded that this might either be caused by the fact that no differences in the products 

or also the acetic acid or salt containing brine used for the marinating, mask any 
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differences. A new method to evaluate the marinated herring products reflecting the 

relevant quality parameters would be appreciated. A constraint for the method to be 

successful is that the method should be easy and fast to carry out for one person, and 

that the method is independent of the person doing it.  

 

869

17 4 0 0 
0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 
Quality determination of final product (1: Highest quality, 5: Worst quality) 

Number of products 

 
Figure 3.13. The results obtained from the general assessment of the final marinated products.  

 

The distribution of the deviating products (products with quality 2 and 3 in the final 

quality determination) is illustrated in Table 3.5. The deviating products originate from 

months with a high production rate (August and September) and when the production 

was started again after the summer leave. The deviating products did not originate from 

the same fishing vessel (trips) or marinating batches – other products from the same 

vessel (trip) or marinating batch obtained the best quality.  
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Table 3.5. Distribution of the deviating products (products with a lower quality than 1) from the general 

quality assessment of the final marinated herring products.  

 Year 

 2000 2000 2001 

Month Character 2 Character 3 Character 2 

August 11 4 4 

September   1 

October 1   

 

As a result of very little variation in the quality assessment of the final products, it was 

not possible to use this parameter in multivariate data analysis. Regardless of the quality 

of the raw material, the quality of the final product would be acceptable.  

 

 

3.5 Multivariate data analysis of data from the herring industry 

 

Albeit, the initial screening did not reveal any promising findings for further 

multivariate data analysis, several attempts to find information in the data were made. In 

the following some of these results will be presented. 

 

At first, a PCA model on the data related to the raw material was carried out. The 

variables included were: number of nematodes, counting sample, temperature, quality 

mark and calculated fat content, to investigate a pattern due to date of catch (month or 

year), place of catch and/or specific cooling method. As pre-processing all variables 

were mean centered and scaled to unit standard deviation (autoscaled). The most 

extreme outliers were initially removed, and the model validated with randomly chosen 

segments, consisting of 10 samples each. There was no clear break in the variance 

curve, and the explained variance for a four component model was 88.0 %, compared to 

33.8 % for the explained validated model, using four PCs. This low validated variance 

indicates that the pattern in the data is not very strong.  

 

In Figure 3.14, the score plot of PC2 versus PC1 is shown with samples coloured 

according to the cooling method. There is a tendency that the samples cooled with RSW 
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lies to the left in the score plot, while the samples cooled with CSW lies to the right. 

This is in accordance with the corresponding loading plot (Figure 3.15), which 

illustrates that samples to the left have a lower temperature than samples to the right – 

the more the samples appear to the right, the higher the temperature. However, this was 

also expected since RSW is expected to cool better than CSW. The temperature seems 

to covary with the quality mark – a low temperature gives a high quality mark, and vice 

versa, which seems reasonable. Also a covariation is observed between counting sample 

and quality mark, a high counting sample (small herring) gives a low quality mark. A 

not so straightforward reasoning is the connection between a high temperature and a 

high counting sample, and the connection between a high quality mark and high number 

of nematodes. A high number of nematodes would normally be expected to influence 

the quality negatively, as nematodes are undesirable. PC1 seems to describe a 

combination of all the variables except the calculated fat content. PC2 seems to describe 

the calculated fat content and nematodes. The conclusions drawn from this PC are 

however in doubt according to the weak model. Samples with a negative score value 

have a high calculated fat content where as a positive score value indicated a high 

number of nematodes. This could be explained by the fact that lean fish have more meat 

where the nematodes are to be found. Neither for PC2 nor PC1 and any other 

combination of higher order PCs, connections that could link quality mark and place of 

catch and/or date of catch (neither year nor months) were observed.    

 

 

 43



 
Figure 3.14. PCA scores; PC2 versus PC1 from a PCA model of a data matrix related to the raw material. 

The samples are marked according to chilling method: RSW (Red), CSW (Blue) and unknown (Grey). 

 

 

 
Figure 3.15. PCA loadings; PC2 versus PC1 from a PCA model of a data matrix related to the raw 

material.  

 

To investigate the correlation between raw material properties, in combination with the 

handling during production (e.g. product type, pre-salting and duration of marinating), 

and the ’value’ of the final quality, a PCA model was conducted. When the variables 

were expressed by statements such as “Yes” or “No”, they were included as binary 

 44



numbers (-1/1). As a start, 856 samples were included in the model, but 49 samples 

were removed caused by outlying properties. This however, only improved the 

explained variance slightly. Together the first two PCs described 18 % of the explained 

variance. The plot of PC2 versus PC1, for a PCA model with auto scaled variables, 

appears as illustrated in Figure 3.16. The samples are marked according to product type. 

The corresponding loading plot is illustrated in Figure 3.17. A combination of the first 

and second PC discriminates between the two product types. Butterflies were 

characterised by higher scores for counting samples, both for the cut and marinated 

products, and higher acid percentage in the marinade, a finding that can be related to the 

recipe of the marinade. The opposite was observed for the fillets without skin. All of 

these parameters were related to the production and process, and did not reflect relations 

to quality. The two first PCs were also used to indirectly describe the cooling method as 

RSW vessels have higher capacity than CSW vessels, or when herring arrived by truck 

(Figure 3.18). The second PC was also used to discriminate between the final product 

qualities, characterising samples having a lower quality than 1 with negative score 

values (Figure 3.19). From the loading plot it was not possible to determine which 

quality parameters that described these samples. What was common for those samples 

was that they were primarily caught and marinated in august 2000. However, as also 

described in section 3.4.5, other products from the same marinated batches, obtained the 

best quality. No other combination of any higher order PCs reflected a correlation 

between raw material quality and the final product quality. Hence, the PCA supported 

the initial findings when screening the data that the data at hand did not perform 

successfully in respect of analysing the influence of the raw material quality on the final 

product quality.    
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Figure 3.16. PCA scores; PC2 versus PC1 from a PCA model of a data matrix related to raw material and 

the production of marinated herring. The samples are marked according to product type: Butterflies 

(Grey) and Fillets without skin (Green). 

  

 
Figure 3.17. PCA loadings; PC2 versus PC1 from a PCA model of a data matrix related to raw material 

and the production of marinated herring.  

 

 

 

 

 46



 

 
Figure 3.18. PCA scores; PC2 versus PC1 from a PCA model of a data matrix related to raw material and 

the production of marinated herring. The samples are marked according to cooling method: CSW (Red), 

RSW (Blue) and Missing information (Grey). 

 

 

 
Figure 3.19. PCA scores; PC2 versus PC1 from a PCA model of a data matrix related to raw material and 

the production of marinated herring.  The samples are marked according to final product quality: Quality 

1 (Blue), Quality 2 (Red), Quality 3 (Green) and Missing information (Grey). 

 

 

 47



3.6 Additional measurements 

 

The initial screening of the data, resulted in suggestions of some additional 

measurements/registrations and improvements of already existing 

measurement/registrations. The suggestions will be listed here and a deeper explanation 

of some of them follows below: 

 

• Temperature loggers on board the fishing vessels 

• Uniform and precise way of specifying the place of catch 

• Registration of belly bursting 

• Improved traceability between counting samples before and after marinating 

• Registration of waste amount during marinating 

• On-line fat measurement on single herring level 

• Improved quality evaluation of the final product 

 

A uniform and precise way of specifying the place of catch will make it possible to trace 

the herring to catching ground. This will obviously not solve the problem with mixing 

on board the vessel and during landing, but in most situations all catches within a trip 

were from the same area. What turned out to prevent the traceability back to catching 

ground in this study was that restructuring at the industry cut the belonging between 

vessels associated with the industry and the industry.  

Unfortunately, this also ruined the possibility to improve the registrations obtained on 

board the vessels and complicated the information transferred between vessel and 

industry, as they are now two individual companies.  

 

Even though belly bursting is mentioned as a quality problem, related to raw material, 

the amount of belly bursted herring was not registered in the industry. Belly bursting is 

related to season and occurs mainly in feeding herring because of high enzymatic 

activity (Kolakowska et al., 1992). A cell for registration of the amount of belly bursted 

herring was included in the data base.  
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The way the fat content was calculated in the industry, as one value for each product 

type determined on a pooled sample, does not reflect the great variation within fat 

content in a catch of herring. The fat content is a very important quality parameter in a 

range of herring products, including marinated herring products for which the desirable 

fat content is at minimum 8 % (Karl & Münkner, 2002). Introduction of on-line 

measuring of fat content and subsequent sorting according to fat content will provide a 

more homogeneous product according to fat content and improved the possibilities for 

process optimization. In a study by Nielsen et al. (2005), comparing solvent extraction, 

Torry Fish Fat Meter, NIR and nuclear magnetic resonance (NMR) for fat analysis, the 

NIR technique showed the highest potential as a production line measurement for fat 

determination. Such an instrument should meet certain criteria e.g. be fast (at least 5 

determinations per second), non-destructive, able to measure on whole herring or fillets 

and perform stable in a wet and acid environment. To the author’s knowledge, an 

improved instrument as such is not, for the time being, available to the herring industry.  

The loss during marinating was a very important parameter, especially in consideration 

of product optimization and economics. A registration system was implemented to 

improve the traceability between counting samples of the fillet products and counting 

samples of the marinated products. Furthermore, cells for registration of the amount of 

waste (kg) and the reason for waste were included in the data base. Future on it should 

then be possible to calculate the loss during marinating, caused by the marinating 

process, and relate this to the information obtained on the raw material.   

 

An improved method for quality determination of the final product reflecting the actual 

differences is hardly needed. The method needed to be fast and easy to carry out to 

ensure optimal success. According to the industry they have not found a better method 

yet to replace the method included in this study.  

 

 

3.7 Concluding remarks 

 

The data analysis indicated that the historical data were not suitable for further 

multivariate data analysis, by reason of lack of variability and / or lack of traceability on 
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the needed level in a range of essential measurements / registrations, such as calculated 

fat content and final product quality. This is not unique for historical data, since this sort 

of data are often obtained for other reasons than the objectives of the present study. In 

this study, many of the historical data reflected quality related to the process e.g. cutting 

procedure and marinating procedure, rather than quality related to the raw material. In 

addition, the method for final product quality determination does not reflect the 

variation in the products. Therefore it may not be relevant and / or representative for the 

ongoing purpose, which is to relate raw material quality to the final product quality, to 

continue with these data. 

On the other hand, the historically data can be used to point out which types of 

measurements are missing and which need to be improved, to be informative in the 

sense of process control and process optimization within the herring industry.  

Now, the main part of data logged will automatically be saved into the data base, and 

thereby reducing the uncertainty related to converting  written registrations on paper 

typed into the database, as was the case for the historically data. 
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4.0 Applications of robust multivariate methods 

 

Outliers are observations that appear to break the pattern or grouping shown by a 

majority of observations. Presence of outliers is more the rule than the exception when 

working with experimental data with many observations and / or variables, as is often 

the case in many branches of chemometrics, both in industry and research. Large 

amounts of data makes visually based evaluation and screening for outliers difficult. 

There are various reasons for outliers, e.g. instrument failure, non-representative 

sampling, formatting errors, and objects stemming from other populations. Usually, 

only complete objects (xi.) are considered as outliers, but it is equally relevant to look 

for outliers in variables (x.j) and even individual data elements (xij). Most conventional 

multivariate methods are sensitive to outliers due to the fact that they are based on 

arithmetic means, covariance matrices and least squares (LS) fittings or similar criteria. 

Even a single outlier can have a large effect on the estimate and deteriorate the model. 

Therefore, it is necessary to 1) identify outliers and 2) decide whether outliers should be 

accommodated or rejected in the modelling process.  

The aim of any robust method is to reduce, or remove the effect of outlying data points 

and allow the remainder to predominantly determine the results. Robust methods are 

helpful for both semi-automated detection of outliers, by looking at the robust residuals 

and for model building. When no outliers are present in the data set, the result from a 

robust method should be consistent with the result from the corresponding non robust 

method – the method based on the LS estimation. Robust methods provide a powerful 

methodology, extending a conventional ‘manual’ analysis and eliminate outliers by 

using exploratory methods and ‘conventional’ outlier diagnostics.  

 

As noted by Gnanadesikan (1977), the consequence of outliers in multivariate data is 

intrinsically more complex than in the univariate case. A multivariate outlier can distort 

measures of location and scale, and thereby also those of covariance structure. As a 

result the modelling methods may describe the shape of the majority of the data 

incorrectly, and conclusions drawn can be misleading. An additional complication is 

that it is much more difficult to identify multivariate outliers. A single univariate outlier 

may be detected graphically, a task not that straightforward in higher dimensions. Many 
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multivariate methods work well for identifying single outliers, but when there are many 

outliers masking and swamping effects may occur. The masking effect means that some 

outliers are unnoticed because, the presence of other outliers masks their misleading 

influence (Ryan, 1997; Galpin & Hawkins, 1987). The swamping effect consists of 

wrongly identifying/diagnosing an observation as an outlier, because of the presence of 

other outliers (Hampel et al., 1986).  

 

Much focus has been put on making the common chemometric techniques, such as 

Principal Component Analysis (PCA), Principal Component Regression (PCR) and 

Partial Least Squares (PLS) regression, more robust against outliers using robust 

estimates to replace the non robust LS estimate. Rousseeuw & Leroy (1987) presented 

an overview of robust estimates in regression and outlier detection, and Maronna & 

Yohai (1998) described recent advances in robust estimation in multivariate location 

and scatter estimation. Liang & Kvalheim (1996) wrote a review of the robust methods 

for multivariate analysis until 1996. Hubert et al. (2005b) described the minimum 

covariance determinant (MCD) and least trimmed squares (LTS) estimators for 

location, scatter and regression, and the recently developed robust methods for 

multivariate data analysis based on these estimators. Paper II is a review of robust 

methods for PCA, PCR, and PLSR, together with an introduction to the robust estimates 

for regression, location and covariance used in the robust multivariate methods, 

discussed in the paper. 

 

In section 4.1, a short introduction to outliers and their effect on least squares estimation 

of location, scatter and regression will be given, followed by examples of applications 

of the robust methods for PCA, PLSR and PARAFAC is given.  

 

 

4.1 Outliers 

 

As stated in the beginning of this chapter; outliers can be defined as observations that 

appear to break the pattern or grouping shown by a majority of observations. 
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The data are assumed to be stored in an n x p data matrix X = (x1, …, xn)’, with xi = (xi1, 

… xip)’ the ith observation, as described in section 2.1. The common estimates for the 

multivariate location 0μ̂  and scatter matrix  are the arithmetic mean and classical 

covariance matrix, respectively. However, it is well-known that these estimates will be 

influenced by the occurrence of outliers. Classical illustrative examples, showing their 

sensitivity to outlying samples, are given in e.g. Rousseeuw & Leroy (1987) and 

Maronna & Yohai (1998). To get reliable results that can persist possible outliers, 

robust alternatives such as Stahel-Donoho (Stahel, 1981; Donoho, 1982) and MCD 

(Rousseeuw, 1984) estimates of location and scatter can be used. For more information 

about robust estimators for estimating multivariate location and scatter, see Paper II.  

0Ĉ

 

In multiple linear regression models, it is assumed that also a response variable y is 

measured.   

For all observations (xi., yi) with i = 1, …, n, it holds that 

 

0 1 1 ...i i p iy x x p irβ β β= + + + +                Equation 4.1 

 

with errors . The classical least squares method to estimate ir 0 1
ˆ ˆ ˆ, ,..., pβ β β is extremely 

sensitive to outliers. The reason for LS not being resistant to outliers follows from the 

properties of the objective function for LS procedures. The objective function to be 

minimized is the sum of the squared residuals: 

 

2
ˆ

1
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n

i
i

r
β =

∑                                                                         Equation 4.2 

 

in which the residuals  are given by ir

   

0 1 1
ˆ ˆ ˆˆ ...i i i i i p ir y y y x xβ β β= − = − − − − p                 Equation 4.3 
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where are the corresponding values of the dependent variables, ( 1,...,iy i n= )

)( 1,..., ; 1,...,ijx i n j= = p the values of the explanatory variables, and is 

the LS estimate of the parameters. This means that a relatively large outlier will exert an 

inappropriately large influence on the LS-estimate as will be illustrated in the following.  

),...,1(ˆ pjj ==β

 

Three categories of outliers can be considered in cases of regression: 1) “Good” 

leverage points, which are observations isolated from the major part of the observations 

in the data matrix X that still follows the same regression model, 2) “Bad” leverage 

points, which in addition to being isolated from the major part of X, deviate strongly 

from the regression model defined by the other observations and 3) Outliers that are not 

leverage points, but have large y prediction residuals in calibration, and are therefore 

referred to as high y residual outliers or vertical outliers. Figure 4.1 illustrate the three 

outlier types, where high y residual observations are marked with a “1”, “2” represent 

good leverage points, and bad leverage points are marked with “3”.  In robust analysis, 

the good leverage points are usually not denoted as outliers, as they are not harmful to 

the regression model, but merely reflect an “unfortunate design”. These three types of 

outliers can occur both during model fitting and during predictions with a previously 

established model.  

 

Both the high y residual outliers and the bad leverage points affect the calibration model 

by distorting the least squares model to a certain degree, and should be eliminated.  

 

Generally, outliers are not necessarily wrong measurements, but could also indicate 

samples belonging to another group than the majority of the data.  To get reliable results 

robust estimates for regression, such as least median of squares (Rousseeuw, 1984) and 

LTS (Rousseeuw, 1984), are needed (see Paper II for examples and descriptions of 

robust estimates for multivariate regression). 
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Figure 4.1. High y residual outliers (1) and leverage points (Good leverage points are denoted “2” and 

bad leverage points are denoted “3”). 

 

The robustness of the estimators can be quantified in different ways most commonly 

using two diagnostics: breakdown point and influence function. The breakdown point 
*ε  (Hampel, 1971) is a very useful measure of robustness, when comparing different 

robust methods in various situations.  The finite-breakdown point can loosely be defined 

(Donoho & Huber, 1983) as the smallest fraction of samples (with respect to n), that can 

render the estimator useless. The breakdown point of the classical sample mean and the 

covariance matrix is 1 / n, the lowest possible, meaning that one outlier is sufficient to 

ruin the sample mean or covariance matrix. Estimators with *ε  = 50 %, the highest 

possible breakdown point, are called high breakdown point estimators. The influence 

function (Hampel et al., 1986) tries to quantify the influence from an infinitesimal 

outlier on the estimate. Thus, in principle this allows for a more detailed quantitative 

comparison of different robust methods under a single outlier. A fundamental question 

here is, if the influence function is bounded, i.e. if a single outlier can lead to a 

breakdown of the estimator.  
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Another concept often used in connection with robust estimators is the asymptotic 

efficiency. Efficiency is the ratio of the mean square error from a robust estimator to the 

mean square error from an ordinary least squares estimator, when applied to a data set 

that is sufficiently normal and embrace no outlying samples (Ryan, 1997).  

 

Multiple linear regressions, as well as estimation of sample mean and covariance, are 

the cornerstones of multivariate data analysis methods such as: PCA, PCR and PLSR 

(Rousseeuw & Leroy, 1987; Maronna & Yohai, 1998). The former underlying 

techniques are not resistant to outliers, as they are based on LS techniques.  Such 

analysis is therefore extremely sensitive to outlying samples, and the conclusions drawn 

may be adversely affected by the outliers and are often misleading. Consequently, 

substituting the classical estimates with robust alternatives is often the basis for 

obtaining robust versions of the latter multivariate data analysis methods.  

Many of the approaches proposed in the literature for multivariate data analysis, 

especially the older methods, rely on complex and often on very computer intensive 

calculations to carry out the analysis. Furthermore, some approaches such as the 

methods based on replacing the classical covariance by a robust estimator can not 

handle situations with more variables than samples, which are often the case in 

multivariate data analysis. One of the motivations behind the investigations of robust 

multivariate methods is the challenge to implement techniques fairly easy to handle to 

unskilled personnel within the industry. The methods applied in section 4.2.1 and 

section 4.3.1 are therefore chosen on the conditions that they should be computational 

feasible, capable of handling high dimensional data and the algorithms available.     

 

 

 4.2 Robust PCA 

 

Classical PCA is often estimated using the eigenvectors (eigenvalues) of the sample 

covariance matrix. An outlier in PCA context can then be defined as observation/sample 

that lies far away from the subspace spanned by the correct k eigenvectors, and/or for 

which the projection into the model lies far from the remainder of the data within the 

subspace (Martens & Næs, 1989). The most intuitive and appealing way of robustifing 
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PCA is to replace the classical covariance matrix by a robust scatter matrix, via robust 

estimators of location and scale (Maronna, 1976, Campbell, 1980, Devlin et al., 1981, 

Rivest & Plante, 1988, Daigle & Rivest, 1992, Croux & Haesbroeck, 2000). A different 

approach to robust PCA uses projection pursuit techniques; searching for structure in 

high dimensional data by projecting these data into a lower-dimensional space, which 

maximizes a robust measure of spread, instead of the variance as in the classical 

approach (Ruymgaart 1981, Li & Chen, 1985, Ammann 1989, Galpin & Hawkins 1987, 

Xie et al 1993, Croux & Ruiz-Gazen 1996, Hubert et al. 2002). Recently, a combination 

of the above two approaches were proposed, using the projection pursuit part for initial 

dimension reduction, followed by the robust scatter estimators applied to this lower 

dimensional data space (Hubert et al., 2005a). All approaches so far consider the entire 

samples, xi, as outliers, but methods capable of handling elemental outliers, xij also 

exist. These methods are based on adjustments to the internal computations of the SVD 

algorithm, replacing the least squares criterion with a robust estimate (Hawkins et al. 

2001, Liu et al. 2003, Croux et al. 2003). For a review of robust PCA, the reader is 

referred to Paper II.   

 

4.2.1 Application of robust PCA 

 

Methods for analysing chromatographic data often relies on subjective peak detection 

and peak areas, and on integration parameters which, if not properly set, may cause 

great errors in the calculated peak areas. Implications of the data extraction method are 

thus incorporated into the further analysis, often based on PCA. Other drawbacks 

concerning the manual peak area analysis caused by the selection of a subset of peaks 

are loss of information, regarding peak shapes and the absence/presence of peaks.  

Alignment of the chromatograms to correct for retention time shifts is necessary before 

turning into any multivariate data analysis. Variations are thus not dominated by shifts 

between variables, but by different levels of the variables (chemicals) as they ought to. 

 

In Paper III, the possibility of using all collected data points from the chromatograms in 

PCA, combined with correlation optimization warping (Nielsen et al., 1998; Tomasi et 

al., 2004) as pre-processing are illustrated. Because of an outlier problem, concerning 
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both sample-wise and element-wise outliers, the advantages and drawbacks of two 

robust PCA methods, ROBPCA (Hubert et al., 2005a) and robust SVD (Hawkins et al., 

2001), for analysing gas chromatographic data are investigated. The methods are robust 

against outlying samples and outlying elements, respectively (Paper II). The 

background for choosing RSVD was that misalignment may be dealt with by using this 

method only excluding outlying elements. This means that it is not necessary to exclude 

whole samples due to misalignment in some part of the chromatograms, as is the case in 

ROBPCA, because the properly aligned parts of the chromatograms are still available 

for analysis. By using RSVD it should be possible to obtain reliable results from the 

PCA analysis using the entire chromatogram without optimal alignments of the 

chromatograms.         

 

The analyses were performed on two data sets differing in quality. The first set of data 

was obtained from gas chromatograms of fatty methyl esters (GC-FAME), data which 

were well behaved, in the sense that outliers are expected to be caused by insufficient 

peak alignment only since the method by itself is highly robust. The second data set 

consisted of volatile lipid oxidation products, collected by a dynamic head-space (GC-

ATD). These data had a relatively higher risk of artefacts due to a more complex 

procedure and unstable products which results in larger sample differences and peak 

shifts. Data were kindly provided by the lipid group (att. C. Jacobsen) of the institute for 

Fisheries Research.  

In the present case, samples of fish oil from farmed rainbow trout, fed two different 

diets were included. The samples included were frozen at -20 °C, -30 °C or -80 °C for 

0-24 months.  

 

In addition, to the alignment pre-processing of the chromatograms prior to PCA, 

baseline correction and normalisation were necessary to remove variations unrelated to 

chemical compositions (Paper III).  

 

The PCA can explain the relationship between the different feeding types, measured as 

the fatty acid composition (GC-FAME) of the fish meat in the case with data of high 

quality (good alignment of the chromatograms). Fish feed vegetable oil contained 
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higher amounts of 18:1(n-9), 18:2(n-6) and 18:3(n-3), and lower amounts of 14:0, 

16:1(n-7), 20:4(n-3), 20:5(n-3), 22:1(n-11), 22:5(n-3) and 22:6(n-3) than fish feed fish 

oil. The core plot of PC1 versus PC2, both from traditional PCA and ROBPCA and PC2 

versus PC3 for RSVD, are shown in Figure 4.2 (first row). Centering of the data was not 

built in this RSVD algorithm, as is the case for ROBPCA, meaning that the first PC 

explained the centring of the data, and was for that reason not interesting. 
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Figure 4.2. PCA scores; PC2 versus PC1 for classical PCA (leftmost column) for ROBPCA (middle 

column), and PC3 versus PC2 for RSVD (rightmost column). The quality of the alignment is decreasing 

from the first row and down. The samples are marked according to oil type in the feed: vegetable oil (○) 

and fish oil (□). A few ‘extreme’ samples are marked with filled symbols in the first row. 

 

When data were of high quality (good alignment of the chromatograms), there were no 

difference in the score plot between the results obtained with traditional PCA or 

ROBPCA. In none of the two models (traditionally PCA and ROBPCA), PC2 was 

correlated to the variation that was investigated, but was primarily caused by biological 

variation within the groups. No other meaningful groupings were found in higher order 
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PCs. A difference in a part of the chromatographic profile was especially pronounced 

for the extreme samples with high score values in PC2, in both traditionally PCA and 

ROBPCA (filled symbols). These extreme samples were only outlying in a part of the 

chromatogram (less than 50 % of the variables), and could therefore be excluded by the 

RSVD. This ability of the RSVD method to exclude outlying elements reveals an even 

better grouping obtained with RSVD than with classical PCA and ROBPCA.    

 

The score plots in Figure 4.2, illustrate the effect of reduced data quality (87.2 %: first 

row, 86.0 %: second row and 79.6 %: third row) of the three different procedures of 

principal component analysis. The evaluation of the data quality was based on the 

explained variance for a one component PCA mode, fitted to normalized un-centred 

data, aligned with different warping parameters and tested as proposed by Christensen 

et al. (2005). With decreasing data quality (from 87.2 % to 67.0 % explained variance) 

the clustering, according to different types of oil in the feed, was observed for all three 

methods of data of high quality, although the clearest clustering obtained was 

attributable to the two robust methods. With decreasing data quality, i.e. 79.6 % 

explained variance (Figure 4.2, second row) and below in this case, the plot got more 

unclear, regardless of what PCA method was used to analyse the warped data. This 

clearly illustrated that data, and thereby the warping, needed to be of a certain quality to 

obtain reliable results. The robust methods can not remedy problems with large shifts in 

retention time.  

 

In the more difficult GC-ATD data set, a grouping according to storage temperature  

(-20 °C versus -80 °C) was obtained with both traditionally and robust PCA for samples 

stored for 24 months, see Figure 4.3. The clearest grouping was observed with RSVD 

(Figure 4.3, bottom), attributable to a non optimal alignment, resulting in a relatively 

large number of outlying variables in a majority of the samples. If more than 50 % of 

the variables are outlying compared to a majority of the chromatograms, a robust 

procedure to handle the samples, such as ROBPCA, was needed. Three such clearly 

outlying samples were separated from the other samples along PC2 (PC3 for RSVD). 

With ROBPCA the three outliers were excluded from the modelling step, and placed 

closer to the other samples. Additionally, the variation accounted for by the PC2 scores 
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(PC3 for RSVD) was due to variation within each grouping of storage time, reflecting 

the biological variation of the groups of fish. It was not possible to identify other 

patterns in the data by plotting other combinations of principal components.  
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Figure 4.3. PCA scores; PC2 versus PC1 for classical PCA (left) and ROBPCA (middle), PC3 versus 

PC2 for RSVD (right) when the models were fitted to aligned data. The samples are marked according to 

storage temperature: -20 ºC (Δ), -30 ºC (○), and -80 ºC (▲). Three outliers (all -30 ºC samples) are 

marked with filled circles. 
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This study demonstrates that the usage of robust PCA is advantageous compared to 

traditional PCA, when analysing the entire profile of chromatographic data in cases of 

not perfectly aligned data. Which method of robust PCA to chose – sample or 

elementwise – depends on the type of outliers that would be expected. When outliers, 

deviating in the entire profile are present in the data set, ROBPCA are preferably 

compared to RSVD, which only can handle up to 50 % of the outlying elements in each 

data vector. When the data set is not perfectly warped - meaning that all peaks are not 

perfectly warped and outlying elements exist, the RSVD method is to be preferred.  

 

 

 4.3 Robust PLSR 

 

Classical PLS regression makes use of ordinary least squares regression steps in the 

calculation of weights, loadings, scores and regression coefficients. Since outliers in X 

(leverage points) and / or y or Y (vertical outliers or high y residual outliers) variables 

highly influence the LS estimates in multivariate regression, the PLSR model may be 

hampered and unreliable. Therefore, several robust alternatives to classical PLSR have 

been developed.  

 

The first authors to propose a robust version of PLSR were Wakeling & MacFie (1992) 

who replaced all the univariate regression steps in the PLS2 algorithm by robust 

alternatives. The drawbacks are high computational cost and lower efficiency of the 

regression steps. Following the idea of Wakeling & Macfie (1992), Griep et al. (1995) 

carried out a comparison among three different methods of robust regression and 

studied their incorporation into the PLSR1 algorithm when replacing the regression step 

for the weight vector w with three different methods of robust regression. Their 

empirical results indicate that the best option is to use IRLS compared to LMS and 

Siegels RM (Siegel, 1982). Methods based on iteratively reweighted algorithms have 

been proposed by Cummins & Andrews (1995) and Pell (2000). These algorithms are 

no longer prone to high computational cost, but can not withstand leverage points and 

are only valid for PLSR1 regression. In Gil & Romera (1998) a robust PLSR1 method is 

obtained by robustifying the sample covariance matrix of the x-variables and the sample 
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cross-covariance matrix between the x- and y-variables. For this the highly robust 

Stahel-Donoho estimator is used with Huber’s weight function (Huber, 1964; Huber, 

1973). To minimize the computational cost the sub-sampling scheme used to compute 

the estimator starts by drawing subsets of size p + 2. This means that the method cannot 

be applied to high-dimensional regressors (n << p) which is a major disadvantage. It is 

not possible to extend the method to PLS2 (Hubert & Vanden Branden, 2003). A robust 

version of SIMPLS algorithm called RSIMPLS was proposed by Hubert & Vanden 

Branden (2003). This algorithm is based on replacing the cross-covariance matrix Cxy 

and the empirical covariance matrix Cx by robust estimates, and by performing a robust 

regression method instead of MLR. This method is resistant to all types of outliers, can 

handle data with more variables than samples and with q ≥ 1. The RSIMPLS method is 

reminiscent to the minimum covariance determinant which is known to have quite a low 

efficiency (Croux & Haesbroeck, 1999). Recently, Serneels et al. (2005a) proposed a 

method, Partial Robust M-Regression (PRM), for robust regression based on GM- 

estimators. PRM uses continuous weights, resulting in a gradual down-weighting of 

outliers according to their degree of outlyingness. The weighting is used both in the 

SIMPLS step of computing the PLSR scores as well as in the regression of y on these 

scores. The PRM method is computational possible for high dimensional data sets and 

can handle both types of outliers but the method is currently only derived for univariate 

y (i.e. PLSR1) and the highest possible breakdown point of all GM-estimators is in 

general not larger than 30 % and decreases as a function of the dimensionality p 

(Maronna et al., 1979; Rousseeuw & Yohai, 1984).  

 

4.3.1 Application of robust PLSR 

 

Fat is an important parameter handling marinated herring products. This carcass 

constituent both affects quality and production output. In addition to seasonal variation, 

herring caught at the same place, at the same time, show great variation within fat 

content (Larsen et al., 1997; Nielsen et al., 2005). Today, the fat content is based on a 

visual inspection and / or a laboratory analysis, which again is based on a pooled 

sample. A pooling of samples is done as time is a limiting factor during processing. This 

means that the true variation of fat content, within a catch, is not perfectly revealed. In a 
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study by Nielsen et al. (2005), evaluating the potential of different non-destructive 

methods for on-line fat measuring on single fish level, NIR demonstrated the most 

promising results, compared to Torry Fish Fat Meter and NMR. By implementing on-

line fat measuring on single fish level in the production plant, it will be possible to 

differentiate the raw material into different products, thereby optimizing product quality 

and minimizing wastage.     

 

In this section, two robust calibration methods RSIMPLS (Hubert & Vanden Branden, 

2003) and PRM (Serneels et al., 2005a) will be compared to classical PLSR (NIPALS) 

when correlating the fat content in herring measured by Bligh and Dyer extraction to 

NIR measurements. For a more detailed description of RSIMPLS and PRM see Paper 

II. A major difference between the two robust regression methods studied is that the 

PRM method use continuous weights, resulting in a gradual down weighting of the 

outliers according to the severity of the very same, whereas RSIMPLS uses hard 

rejection, donating a weight of zero to all observations with residuals above a certain 

cut-off value and unity to all others. The breakdown point of all GM-estimators, the 

type used in PRM, is no higher than 30 %, whereas the MCD-estimator used in 

RSIMPLS can be as high as 50 %. However, the statistical efficiency was shown to be 

better for PRM than for RSIMPLS, when comparing various distributions of error 

terms, different samples sizes and dimensionality (Sernells et al., in press). This lower 

efficiency of RSIMPLS was due to the use of MCD which has a relatively low 

efficiency. The efficiency of MCD can be improved at the expense of the breakdown 

point. For a reweighed MCD, with a breakdown point of 25 %, the efficiency is nearly 

always above 60 % in the Gaussian case (Croux & Haesbroeck, 1999). In the present 

study, breakdown values of 10 % outliers were used, thereby improving the statistical 

efficiency of the model. 

 

For each herring the fat concentration was measured by Bligh and Dyer, while the x-

variables consisted of NIR absorbance spectra. The intension was to predict the fat 

concentration based on 821 NIR spectra, with measurements for every 2 nm from 1.000 

up to 2.222 nm. For each model (RSIMPLS, PRM and classical PLSR) the Root Mean 

Square Error of Prediction (RMSEP) r2 and the bias were calculated. The said data set 
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has previously been studied by Nielsen et al. (2005), however, that investigation did no 

remove any samples due to their outlying properties. It was therefore interesting to see 

how the robust methods would perform, when no obvious outliers were present in the 

data set. It has been shown that four components were sufficient to perform the PLSR 

analysis. The pre-processing of the data was done in the same manner as in Nielsen et 

al. (2005), which resulted in a data set of NIR spectra (scatter corrected) of 230 

dimensions.  

 

For each of the three methods full cross-validation was performed.  

The RMSEP value is defined as 

 

( )∑ −= − ikik yy
n ,ˆ1RMSEP    Equation 4.4 

 

where  represents the predicted y-value for sample i based on k-components, when 

sample i was left out of the estimation of the regression parameters.    

kiy ,ˆ −

RMSEP can be interpreted as the average prediction error, expressed in the same units 

as the original response values. 

 

The Bias can be interpreted as the systematic difference between predicted and 

measured values. The Bias is computed as the average value of the residual 

 

( )∑ −= nyyBias /ˆ               Equation 4.5 

 

The Bias is a commonly used calculation of the accuracy of a prediction model, and 

should be close to 0 if the model is good.  

 

The criteria were evaluated for k = 1, …, 6 components. The results are summarized in 

Table 4.1.  

 

For all three methods tested, more than two principal components were needed to obtain 

a satisfactory prediction. With more than two components there were no difference 
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between r2 and bias for the obtained models. Between PLSR and PRM the RMSEP is 

almost identical. That indicated that no extreme outliers were present in the data set. 

However, a somewhat better RMSEP value was obtained for RSIMPLS compared to the 

other two methods classical PLSR and PRM. Though, when looking at the score plots, 

the influence plot and the leverage values, no samples appeared to be extreme (results 

not shown). Therefore, the lower RMSEP value obtained with RSIMPLS could indicate, 

that in this case, the samples excluded as outliers are borderline samples - those samples 

expanding the variance within the data. By excluding these samples, the obtained model 

might not cover the variance in new samples and consequently weaken the precision of 

the prediction. An independent test might have revealed this, unfortunately that was not 

possible in this study. To summarize, this study illustrated that in the case of data sets 

with no extreme outliers at present, the advantages of employing robust methods were 

ineligible. Focusing on the drawbacks of the robust methods, especially the lower 

statistical efficiency and the time-consuming computations leaped out. 
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Table 4.1. RMSEP, r2 and bias calculated for the prediction of fat content (%) based on NIR 

measurement when comparing the performance of three different PLSR methods. k = number of PCs. 

    PLSR RSIMPLS PRM 

k = 1 RMSEP 

r2 

Bias 

2.56 

0.78 

0.00 

2.11 

0.79 

-0.02 

2.58 

0.78 

0.35 

k = 2 RMSEP 

r2

Bias 

2.28 

0.83 

0.00 

1.74 

0.83 

-0.08 

2.33 

0.82 

0.23 

k = 3 RMSEP 

r2 

Bias 

2.19 

0.84 

0.00 

1.65 

0.84 

-0.08 

2.21 

0.84 

0.17 

k = 4 RMSEP 

r2 

Bias 

2.19 

0.85 

0.00 

1.54 

0.86 

-0.09 

2.13 

0.85 

0.03 

k = 5 RMSEP 

r2 

Bias 

2.03 

0.86 

0.00 

1.54 

0.86 

-0.02 

2.04 

0.86 

0.042 

k = 6 RMSEP 

r2 

Bias 

2.02 

0.86 

0.00 

1.55 

0.86 

2.04 

0.86 

-0.03 0.04 

 

 

4.4 An approach for and application of robust PARAFAC 

 

The algorithm to compute PARAFAC (Bro, 1998; Smilde et al., 2004) is normally a 

least squares fitting based on the alternating least squares procedure, which is not able 

to withstand the presence of severe outliers.  

An attempt to make PARAFAC robust was presented at the ERCIM meeting at the 

Royal Veterinary and Agriculture University 2005 (Engelen & Hubert, 2005a; Engelen 

& Hubert. 2005b). The proposal is based on unfolding the three-way array (I x J x K) so 

that the sample-mode is kept intact and then applying a method for robust principal 

components analysis ROBPCA (Hubert et al., 2005a) on the unfolded data (I x JK). The 

residual for each point is computed, and the h samples with the smallest residuals are 

stored in the initial h-subset. Classical PARAFAC is carried out on these h samples, and 
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a new h-subset is constructed by taking the h samples with smallest residuals with 

respect to the PARAFAC model. The procedure is repeated until the relative change in 

fit is small. The statistical efficiency of the MCD estimator, used in ROBPCA, can be 

increased by implementing a reweighing estimator (Rousseeuw & Zomaren 1990; 

Rousseeuw & Van Driessen, 1999). 

 

The robust PARAFAC method, proposed by Engelen & Hubert (2005b), is intended to 

find outlying samples. In the two methods, proposed by Vorobyov et al., (2005), the 

PARAFAC is made robust towards elementwise outliers by optimizing the least 

absolute error (LAE) fitting criterion, instead of the ordinary LS criterion in regression. 

The procedures are based on efficient interpoint methods for linear programming (LP) 

and weighted median filtering iteration (WMF), respectively. The breakdown point of 

LAE is 50 % compared to 0 % for the LS, which can be seen when considering the mean 

estimation under LS and LAE criteria. These correspond to arithmetic mean and median 

operators, respectively, where the arithmetic mean can be ruined by even a single 

outlying sample, whereas the LAE will stay stable. In a simulation study, it turned out 

that both algorithms are computationally efficient, but the WMF iteration is particularly 

appealing from a simplicity point of view compared to LP (Vorobyov et al., 2005). Both 

methods also outperform the classical LS PARAFAC fitting under heavy tailed noise, 

and show good tendency for impending scrutiny (Vorobyov et al., 2005).    

 

4.4.1 Application of robust PARAFAC  

 

A common phenomenon, and problem, when fitting PARAFAC to fluorescence 

landscapes (excitation-emission matrix), is the light scatter effects, such as Raman and 

1st  and 2nd order Rayleigh scattering (Andersen & Bro, 2003; Thygesen et al., 2004). 

The 1st and 2nd order Rayleigh scattering are the ridges seen in the lower right and upper 

left part, respectively, in Figure 4.4.  
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Figure 4.4. Example of a fluorescence excitation-emission landscape. The 1st and 2nd  order Rayleigh 

scatter are the ridges seen in the lower right and upper left part, respectively. 

 

This scatter contains no chemical information and will most possibly give a model 

inadequacy, influencing the estimated model parameters (Andersen & Bro, 2003) - this 

explains why this effect should be removed or reduced as much as possible. As such, 

scatter can be considered as outlying elements. Different proposals of how to handle 

these scatter effects can be found in the literature; subtracting a standard (Wentzell et 

al., 2001; McKnight et al., 2001), down weighting the scatter (Bro et al., 2002; JiJi & 

Booksh, 2000), inserting missing values (Bro, 1997), simply avoiding the part 

containing scatter (Bro, 1999),  interpolating the scatter area (Zepp et al., 2004; Bahram 

et al., 2006) or insertion of zeros outside the data area (Thygesen et al., 2004). 

Unfortunately, all of the proposed methods seem to have some drawbacks, e.g. they can 

only be used in special cases, unacceptable decomposition of the spectra affecting the 

convergences of PARAFAC algorithm or they are computational cumbersome 

(Andersen & Bro, 2003; Thygesen et al., 2004, Rinnan & Andersen, 2005). A common 
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problem is the visible inspection of the data before the methods can be applied. This 

makes it difficult to perform all these proposed methods on several data sets at once. It 

even becomes harder to reduce the effect of scatter when the signal and scatter are 

overlapping, which is often the case. 

 

In the following, the LAE criterion, proposed by Vorobyov et al. (2005), is adapted for 

fitting PARAFAC to fluorescence landscapes, to investigate if the elemental robust 

PARAFAC method can dispose of the scatter effects in the data. In the classical 

algorithm for fitting PARAFAC, the LS criterion is replaced with LAE in all three 

modes. The method was tested on different well analyzed fluorescent data. The overall 

impression was equal, and therefore only the results obtained with fluorescence data of 

mixtures of four known fluorophores (Baunsgaard, 1999; Riu & Bro, 2003), will be 

shown here. The four compounds are phenylanaline, 3, 4-dihydroxyphenylalanine 

(DOPA), 1,4-dihydroxybenzene and tryptophan. For every sample an excitation-

emission matrix was obtained by measuring the emission spectra from 200 to 450 nm at 

5 nm intervals, with excitation at every 5 nm from 200 to 350 nm on a Perkin-Elmer 

LS50 B fluorescence spectrometer.  The excitation from 200 to 230 nm and the 

emission below 260 nm were excluded from the analysis since it is highly influenced by 

the condition of the xenon lamp as well as by the physical environment and mainly 

contained missing elements, respectively (Baunsgaard, 1999). From previous 

investigations (Baunsgaard, 1999; Riu & Bro, 2003), it is known that four components 

are appropriate and that four samples can be considered as outliers, these are therefore 

removed from the data set, as this analysis is aimed at testing elementwise outliers, not 

whole samples. The data set then consists of 23 samples, 18 excitation wavelengths and 

116 emission wavelengths, and will in the following be refereed to as the full Dorrit 

data set.  

 

The emission loading (second mode) from a four component LS PARAFAC model 

fitted to the Dorrit data set where scatter has been removed is shown in Figure 4.5 (left). 

The loadings have a reasonable shape resembling the pure spectra of the four 

fluorophores. This method is based on removing the Rayleigh scatter by inserting a 

mixture of missing values and zeroes. The emission loadings, when fitting a LS 

 71



PARAFAC model to the full Dorrit data set will appear as illustrated in Figure 4.5 

(right). Both models are fitted with non-negativity constraints. The loadings in Figure 

4.5 (left) have a reasonable shape resembling the pure spectra of the four fluorophores. 

When comparing the emissions loadings from the two models, it is clear that the light 

blue peak in the model fitted to data with Rayleigh scatter is wrong, this is caused by 

the scatter. This clearly indicates that the Rayleigh scatter need to be removed to obtain 

a good model. A problem with inserting missing values in the area covered by the 

Rayleigh scatter lines is that the scatter lines may be confounded with chemical 

information, and thus it is interesting to keep these areas. Furthermore, it might be 

difficult to accurately estimate the exact width of the Rayleigh peak (Rinnan & 

Andersen, 2005).  

 

 

Figure 4.5. Left: Emission loadings from a four component LS PARAFAC model, fitted to the data set 

with scatter removed. Right: Emission loadings from a four component LS PARAFAC model, fitted to 

the full data set. 

 

By applying the LAE PARAFAC to the full Dorrit data set, the obtained model seems 

almost perfect, as indicated below in Figure 4.6, showing the four emission loadings 

obtained. The shape of the loadings is almost identical with the pure spectra of the 

fluorophores as for the LS model with Rayleigh scatter removed.   
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Figure 4.6. Emission loadings from a four component LAE PARAFAC model, fitted to the data set. 

 

The result was encouraging, but unfortunately this will not be achieved in “reality”. 

When different subsets of data are analyzed independently, the results vary to a great 

extent.  Even the removal of one single sample can deteriorate the LAE model. In Figure 

4.7 examples of the emission loadings from LS PARAFAC (left) and LAE PARAFAC 

(right) conducted on 12 different subsets of the Dorrit data are shown. Four of the 

subsets correspond to split-half analysis, and in four other subsets only one sample, 

randomly chosen, is removed from the full Dorrit data set. The subsets vary in sample 

number from 22 samples and down to 12 samples. 
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Figure 4.7. Emission loadings from four component PARAFAC models fitted to 12 different subsets of 

the data with the classical LS approach (left) and the robust LAE approach (right). 

  

A problem with scattering is that it is systematic and occurs with positive values in all 

samples. Furthermore, some peaks containing chemical information only occur in e.g. 

two or three samples. This means that with LAE, minor real chemical peaks that only 

occur e.g. in two or three samples, will be downweighted as outliers, and some part of 

the scatter will be approximated by one or two PARAFAC components, because the 

scattering elements are not seen as outliers, but  regarded as regular observations in the 

regression part of LAE. Examples of samples where the Rayleigh scatter is dominant 

compared to the relevant chemical information are shown in Figure 4.8. 

 

 

Figure 4.8. Examples of a fluorescence excitation-emission landscapes where the Rayleigh scatter is 

dominant compared to the relevant chemical information. 

 

The conclusion is that LAE PARAFAC cannot be considered as a confident method for 

handling scatter as a result of the systematic nature of the scattering.  
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4.4.2 Automatic scatter identification 

 

Another approach for identification of scatter was tested (Paper IV).  This method is 

based on robust statistics and takes advantage of the systematic nature of the scatter. 

The method is automatic as no visual inspection of the data prior to modelling is 

required.  

 

The method is based on ROBPCA (Hubert et al., 2005a). ROBPCA prevents the 

corruption of the principal components by outliers through a combination of robust 

subspace estimation (based on projection pursuit techniques) and the MCD estimator 

(Rousseeuw, 1984) for robust covariance and centre estimation. Additionally, samples 

are marked as regular samples or outlying samples for the concerned model making the 

procedure useful as outlier identification tool. For a detailed description see Hubert et 

al. (2005a).  

ROBPCA can only be performed on two-way data matrices. Such two-way matrices can 

be extracted from three-way data like the EEM (Figure 4.9 A). By slicing the data along

the sample mode, the scattering is situated in one or more diagonal lines in each sliced 

observation (see Figure 4.9 B). ROBPCA is not able to handle elementwise-outliers but 

only sample outliers. This means that taking each sample separately as input matrix for 

ROBPCA will not work well since the scattering does not correspond to a whole sample in 

these data, but only to a part of the sample. Therefore the proposed method starts by slicing 

the data X along the emission and excitation mode, establishing useful two-way 

matrices in which the scattering is situated in columns for some of these matrices (see 

Figure 4.9 C and D).  
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Figure 4.9. A visualization of the scattering in the three-way data (A) sliced in the sample mode (B), the 

second mode (C), and the third mode (D). The grey line represents the scattering.  

 

In this way several matrices are obtained, and on the transposed of these matrices 

ROBPCA is applied. By applying ROBPCA on the transpose of the sliced matrices in 

the emission and excitation mode leads to identification of the scattering. As a result, 

two weights are assigned to each data element. The weight is assigned 1 to an element 

which is a regular point and 0 to an outlier. Merging both weights by taking the 

maximal value finally flags the outlying elements. For a detailed description of the 

method see Paper IV. The results of this automated scatter identification method can 

then be used as input data for PARAFAC. Since a classical PARAFAC algorithm is 

applied on the data after removing scatter, outlying samples will corrupt the final result. 

Removing of outlying samples is therefore necessary.  

 

The proposed automatic scatter identification method was tested on different fluorescent 

data set with focus on how well the scatter was reduced and the signal preserved. 

Furthermore, the performance of the scatter identification method in combination with 

three different PARAFAC methods (inserting missing values, interpolate the scatter and 
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down-weighting the scatter regions) were evaluated. The results from the tests 

performed on the full Dorrit data set will be shown in the following.  

 

In Figure 4.10 the emission profiles of sample 4 for the 18 excitation wavelengths are 

shown. The elements flagged as outliers by the scatter identification algorithm are 

marked with dots on the x-axis. The scatter corresponding to 2nd order Rayleigh scatter 

is clearly identified for the first 3 excitation wavelengths (3 first plots), and from 

excitation 5 and further on the regions according to the 1st order Rayleigh scatter are 

clearly identified. The successful detection of Rayleigh scatter in the remaining samples 

performs likewise (results not shown). From other data sets tested, it is known that the 

identification of Raman scatter performs likewise successfully (see Paper IV).  

 

 
Figure 4.10. The emission profiles of the fourth sample of the full Dorrit data for the 18 excitation 

wavelengths. The regions identified as scatter are marked by dots. 
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The emission and excitation loadings obtained with the three different PARAFAC 

algorithms tested on the full Dorrit data in combination with the information about the 

scatter regions are shown in Figure 4.11. Both emission and excitation loadings for all 

three tested methods are almost identical with the pure spectra of the four fluorophores. 

This clearly indicates that this method for identifying scatter has worked well with 

respect to 1st and 2nd order Rayleigh scatter. For the full Dorrit data no obvious 

differences are observed between the three tested PARAFAC methods.  

 

The overall evaluation of the proposed method clearly shows that the method always 

succeeds in finding the scatter regions both concerning Rayleigh (1st and 2nd order) and 

Raman scatter without marking too much of the signal as outlying due to chemicals 

under investigation. However, smaller parts of the scattering are sometimes hard to 

detect depending on the data complexity e.g. noise and overlap between scatter and 

chemical signal. This means that scatter might be included to a minor extent in the 

PARAFAC modelling step, but also smaller part of the chemical signal might be 

flagged as outlying and thereby excluded from the analysis.   

 

However, this seems not to be an invincible problem for estimating the final PARAFAC 

estimates. The three tested PARAFAC methods after removal of the scattering work for 

the cases they can handle. This means that for the data with the missing values fitting 

problems are only encountered when the signal and scatter coincide too much, such that 

essential information vanishes. Secondly, classical PARAFAC applied on interpolated 

data also performs well, but it is most subject to the parts of the scattering that are not 

flagged as outlying. Finally, down-weighting the outlying elements is also a good 

option, provided that the scattering is in the region of the signal. For too severe scatter, 

this technique is not useful and actually is the least robust of the three investigated 

procedures.  

 

 78



 
Figure 4.11. Four component PARAFAC models (left column) Missing, (middle column) Interpolation, 

and (right column) Weighted) fitted to the full Dorrit data where the scatter has been detected by the 

automated method. First row corresponds to the emission loadings and second row to the excitation 

loadings.  

   

4.5 Software 

 

The common basic methods for robust estimation of location and scatter (i.e. MCD) and 

robust regression (i.e. M-, LMS-, LTS-, S- and MM-estimators) are all available within 

the standard statistical software packages SAS (release > 6.12) (Chen, 2002), S-Plus (S-

PLUS, 2001; S-PLUS, 2002) and R (Fox, 2002). An implementation for robust PCA is 

also available for S-Plus (Hubert et al., 2005c). Recently, a comprehensive MATLAB 

toolbox, “LIBRA”, for robust estimates and multivariate methods has appeared 

(Verboven & Hubert, 2005). Apart from MCD and LTS it also contains implementations 

of other methods that have been developed at the research groups at the University of 

Antwerp and the Katholieke Universiteit Leuven, in particular for robust PCA 

(ROBPCA) and PLS (RSIMPLS). The toolbox also includes many graphical tools for 

model checking and outlier detection. Additionally, an incorporation of several of these 

methods into the widely used PLS_Toolbox for Matlab is in preparation (Eigenvector 

Inc., Pers. Comm.). The partial robust M-regression is also available as Matlab 
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implementation (Serneels et al.2005b). The algorithm for robust RSVD used in section 

4.2.1 (Paper III) was kindly provided by A. Belousov, Münster.  

 

 

 4.6 Concluding remarks 

 

This small investigation of robust methods clearly indicates that robust methods are not 

the solution to the whole problem concerning outliers, but they offer a substantial 

improvement over standard techniques, which to a certain degree depends on the type of 

data and outliers (sample- or elementwise) given in the data set. 

Conditions that prove the most promising employing robust methods appear to be in 

situations with many samples and variables, such as in the case of gas chromatographic 

data, as illustrated in this investigation. Furthermore, the outliers might not be 

systematic as illustrated with the scatter example in section 4.4.  In such situations the 

outliers are not seen as outliers, but regarded as regular observations in the modelling. 

However, as illustrated with the proposed automatic scatter identification procedure, the 

systematic nature of the scatter can be utilized and turned to something constructive.   
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5.0 Conclusion and perspectives 

 

In this project the traceability chain from fishing vessel to final product has been 

scrutinised and the information (data) obtained throughout the production chain has 

successively been analysed. The objective has been to investigate the possibilities of 

integrating multivariate techniques into the industrial documentation system.  

Furthermore, the potential of using robust multivariate methods within a data miming 

process has been investigated.  

 

It is easy to generate large data sets that contain little or no information. Moreover, it is 

an extensive task to find significant information in large amounts of data. Therefore, 

two essential questions emerge: 1) how to get data that contain as much relevant 

information as possible, and 2) how to extract information from large and complicated 

data sets. With the introduction of multivariate data analysis, the problem of extracting 

information from vast data sets is as good as solved, leaving as the challenge how to 

generate data containing information relevant for the purpose under investigation, as in 

the case of this study. When predicting the influence of the quality of the raw material 

on the quality of the final product, apt measurements reflecting these qualities are 

necessary.   

 

In this study, the analyses of data obtained during the production of marinated herring, 

indicated that the data, in the present form, were not suitable for further multivariate 

data analysis. The reason for that is the lack of variability and/or the lack of traceability 

on the needed level (in particular specification of place of catch) in a range of essential 

measurements/registrations, such as fat content and final product quality. In this study, 

many of the data reflected quality related to the process, e.g. cutting procedure and 

marinating procedure, rather than quality related to the raw material. In addition, the 

methods for final product quality determination did not reflect the true variation of the 

products. These data were for that reason used to point out what types of measurements 

were missing or needed to be improved – an informative task, in the sense of process 

control and process optimisation, to the herring industry. 
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As pointed out in Paper I some challenges for the future, in respect of process control 

and process optimization within the herring industry are: 

 

• Development of an information system for usage on board the fishing vessels. 

Such a system should include important information about the herring. As a 

minimum, information about data of catch, position of catch, and the 

time/temperature profile for storage on board should be obtained. If the system 

is capable of gathering additional information, e.g. size and quality, and is 

capable of passing this information on to the systems on land, these crucial 

parameters of information could be transmitted in advance, allowing the 

production setup to be prearranged, thus saving production time. 

• Development of a quality measuring for evaluating the quality of marinated 

herring. In particularly, this is important if the quality of the final product 

should be used as a process control parameter.  

• Development of an on-line system for measuring fat content on single fish level 

with subsequent sorting according to determination. As a notice, promising 

results have been shown for applications of NIR, even though authentic 

research is still needed.  

 

Hence, an upcoming challenge is to define a well designed traceability system from raw 

material to final product. This includes identifying and defining measuring points 

relevant for the process, and finding the right positions for integrating a new on-line/at-

line evaluating method to achieve the optimal utilization of the raw material, beneficial 

to both the fish processing industry and the consumers.   

 

As clearly demonstrated in this study, when investigating the data from the herring 

industry, some measurements/samples deviated strongly from the major part of the 

measurements/samples, as a matter of fact, this finding proved to be more the rule than 

the exception. Such deviating samples, called outliers, may deteriorate the common 

multivariate models based on a least squares estimation. Whilst huge amount of data are 

collected, as is often the case in the industry, visual based evaluation and screening for 

outliers are difficult. Furthermore, there might not be unlimited resources of time 
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available for analyzing production data. Implementation of robust methods therefore 

seems a possible alternative to the classical multivariate methods. Different methods of 

robust PCA, PCR and PLSR exist (Paper II). The practicability of these methods varies, 

and some can in advance be disqualified for application within industrial use as a result 

of computational costs, and the missing capability to handle situations with more 

variables than samples. A majority of examples shown in the literature so far, presenting 

the advantages of robust methods compared to the classical alternative, exploit data sets 

with extreme outliers. A remark to that approach is that outliers with such 

characteristics are also identified using classical methods, truly, a simple outlier 

warning system may remedy the problem. A recalculation of the model, without the 

outliers, might be the solution. With this in mind, there is a price to be paid for using 

robust methods, in particular when looking at the extreme robust methods. Apart from 

higher computational complexity, robust methods usually also exhibit a lower statistical 

efficiency and convergence rate. However, a breakdown value of 50 % will rarely be 

relevant within the industry – with half of the samples being outliers, something 

tremendous might be wrong in the production. For methods with adjustable breakdown 

properties, such as ROBPCA and RSIMPLS, a good compromise between robustness 

and efficiency ought to be obtained.            

 

The study also revealed that robust PCA might be advantageous compared to classical 

PCA when analysing the entire profile of gas chromatographic data, in the case of 

suboptimal peak-alignment or other situations where outlying measurements occur, e.g. 

due to bad baselines or errors in sample amount injected (Paper III). This means that a 

perfect alignment of the chromatograms is not strictly required to extract useful 

information from the chromatograms, and thereby the time spent on perfectly aligning 

the chromatograms might be reduced considerably. What type of robust method, sample 

or elementwise to choose depends on the type of outliers present in the data set. 

Situations where only some part of the chromatograms are not properly aligned would 

benefit the best, using element-wise robust methods, e.g. RSVD. When outliers are due 

to a specified characteristic throughout the chromatogram, sample-wise robust methods, 

e.g. ROBPCA, perform the best. 
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When the occurrence of outliers are systematic, as in the case of Rayleigh scatter in 

fluorescence data, robust elementwise PARAFAC (LAE PARAFAC) turned out not to 

be a reliable and confident method of handling scatter. However, the systematic nature 

of scatter can be used constructively for automated scatter identification. Such a method 

for automatically identifying scatter in fluorescence data using robust techniques is 

present in Paper IV. A further challenge will be a fully robust procedure able to both 

identify sample outliers and scatter designed for analysing fluorescence data. 

 

When no extreme outliers are presented in the data set, the advantages of employing 

robust methods were doubtful. Further research is needed to evaluate the prediction 

performance of robust models on independent test set. Focusing on the drawbacks of the 

robust methods, especially the lower statistical efficiency and the time-consuming 

computations, the improvement of prediction error should be convinced.  

 

The different studies in this project clearly reveal that robust methods in some cases are 

a good alternative to traditional methods, such as PCA based on least squares 

estimation, whereas in other cases they are not the complete solution to the problem. A 

more systematic going through of the advantages and drawbacks of robust methods on 

more difficult data sets would be interesting. Furthermore, a user-friendly interface is 

necessary to extend the usage of robust methods, especially to individuals that do not 

pursue any research. In addition, the time to complete calculations needs to be 

condensed, before any practical utilisation will take place in the industry. 
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Increased focus on food safety and the occurrence of food scandals has been the 

driving force for consumers requesting traceability for foods in general, including 

seafood. New food regulations are now introduced within the EU, enforced by 

January 2005, which includes the requirement for food traceability. 

Implementation of traceability will require investments and higher product costs, 

but, where effective traceability systems are in place they can also bring extensive 

benefits to business, when used under proper conditions, for instance for; process 

control, optimization and better marketing.  

Introduction  

Increasing demands to food safety imply that from 1st of January 2005, the 

regulation 178/2002/EC on General Food Law will require traceability to be 

established at all stages of the food chain. This means that it should be possible to 

trace and follow a food, feed, food-producing animal or substance through all 

stages of production, processing and distribution (EC Regulation 178/2002). In 

commercial practice, traceability systems often usefully include information about 

what has happened to the food or feed (its processing history) as well as where it 

came from (backward traceability) and who it was sent to (forward traceability). 

Traceability is an essential aspect of quality management. Where effective 

traceability systems are in place they can also bring extensive benefits to business, 

when used under proper conditions, for instance; process control, optimization 

and better marketing.  
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Herring 

Herring is important to Denmark as well as to other European countries. In 2003, 

114700 tons of herring for consummation was landed in Denmark with a landing 

value of approx. 28 million Euros. The herring is used for marinated products, but 

also a significant share is exported semi-manufactured. The very competitive 

situation in the fish processing industry today means that there is an increased 

commercial interest in making the production more cost effective and raising the 

efficiency by rationalizations (Larsen, Jensen & Zappey, 1997). The movement 

from competition mainly on prices in the early industrialization of food 

processing to eating quality, food-safety, nutritional value and environmental 

aspects as very essential parameters has resulted in introduction of quality 

management systems such as GMP (Good Manufacturing Practice), HACCP 

(Hazard Analysis Critical Control Points), ISO 9000 (ISO 22000), and TQM 

(Total Quality Management) in cooperation with new standard measuring 

methods in the fish processing industries. The introduction of new methodologies 

for measuring and monitoring throughout the production chain (raw material, 

intermediate products and final products), results in increasing quantities of 

available data for use in quality assessment and management. This means that 

proper handling and analysis of complex data is also required. With the 

introduction of multivariate data analysis it is now possible for the industry to 

analyse properly such kinds of data.  
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Monitoring is an enabling tool for process control and thus helps in either 

preventing expensive rework or disposing out-of-specification products. To obtain 

the best possible results, collecting relevant data and a well designed traceability 

systems is needed. Otherwise industries risk ending up with a large number of 

useless data which tend to be irrelevant to the process and in the worst case, 

impossible to connect or trace. Additionally, a well designed traceability system 

in combination with well defined “target” and quality parameters can be used for 

process optimization e.g. minimize product variability, maximize yield or 

minimize the working procedure. A target is an optimal value for a property that 

is related to and important for the quality of the product under consideration 

(Næs, 1994). 
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As implementation of traceability will require investments and higher product 

costs, it is assumed that it will be the larger companies and retailers that will take 

the lead in the implementation of seafood traceability. The objective of this 

Viewpoint is to discuss how the fish processing industries can benefit from 

traceability imposed by the EU regulation by using the traceability system as a 

basis for process control and optimization. In the first section to follow, the 

concept of traceability is described with special emphasis on the current case 

study. Before one can start controlling or optimizing a process, a great number of 

aspects have to be considered seriously. A clear definition of a target or an 

optimal product quality is especially important, a topic dealt with in the next 

section. In the third, it is illustrated how traceability and collecting of relevant 
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data can be used to sort raw material with focus on end-point quality in the 

herring process industry. Finally a discussion of traceability and how to benefit 

from it is discussed and perspectives outlined.  
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The article is based on a case-study using data from one of the largest herring 

industries in Denmark. 

 

Traceability 

According to the ISO standard (ISO 8402), traceability can be defined as: 

 

Traceability is the ability to trace the history, application or location of an entity, 

by recorded identifications.  

 

Product traceability is first of all based on the ability to identify products 

uniquely. In practice this can be done either by physically marking or by keeping 

records. Unique identification means according to traceability, that no other unit 

can have exactly the same, or comparable, characteristics. Unique identification 

and traceability in any system hinges on the definition of what is the batch size or, 

using the terminology by Kim, Fox and Gruninger (1995), the Traceable Resource 

Unit (TRU). The batch size depends on what level (single fish, catch, or 

production day) it is possible to get specific information from. In some cases 

different batches are pooled which will create new TRU’s.  

When considering traceability, two distinct practices enclose the way to keep 

track of products through the production chain (Moe, 1998). Within a company or 
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location, the term “internal traceability” relates to the origin of materials, the 

processing history and finally the distribution of the product after retail delivery. 

On the other hand, looking at production information from one link in the chain to 

the next is called “chain traceability”.  

In this case study, Figure 1 illustrates the traceability chain for the production of 

marinated herring. As can be seen from Figure 1, the chain covers from catching 

through processing to the final production of semi-manufactured marinated 

herring. The semi-manufactured marinated herring are sold to another company 

for final processing before the product is ready to sell, for instance in 

supermarkets. These last links; company 2, transportation from company 1 to 

company 2, transportation from company 2 to supermarket, and the storage 

information from the supermarket were not available for this study but play an 

important role when analyzing the whole traceability chain.       

 

Considering Figure 1, in theory it should be possible to track a single product 

(lot) back to its catching ground. Due to at least three reasons this does not hold in 

practice, this owing to; 1) catches from different grounds are mixed onboard the 

fishing vessel, 2)  during offloading, fish from different holds are mixed, and 3) 

continuous processing means that fish from different vessels can be mixed. It is 

almost possible to eliminate the problem with mixing of fish from different 

vessels. This means that the “smallest” TRU for backward traceability in this case 

is the vessel. During the process the TRU will be split up in different herring 

sizes, different cuts (e.g. butterfly fillets or fillets without skin), different 
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marinating recipes, and at last, different lots when packing for sale. This means 

that it is possible to track a specific lot back to the vessel. The TRU for forward 

traceability will then be the lot. A special case will be when all catches are from 

the same catching ground. In such a situation it will be possible to track a lot back 

to the catching ground. 
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The amount of available information from a TRU depends on the use, and can 

range from only the most necessary traceability informations to all know data 

concerning the particular TRU. Like most other individual food industries, the 

fish process industries can seldomly sustain information transfer through the 

whole chain from fishing ground to consumer, but each link has a role to play in 

collecting and storing information about ingredients, products and processes 

under their control. In the herring processing industry, the missing information 

link is often between the vessel and the industry on shore. This information-gap 

between vessel and industry on land also turned out to be the limiting factor in 

this study. The industry buys the herring directly from the vessels and as is often 

the case today, sparse or no information at all follows the herring. The 

information chain is thus broken. This is a general problem since it nearly 

happens every time the commodity goes from one link to the next in the chain 

even though some measurements are rather important for almost all links in the 

chain e.g. time/temperature and size (kg/fish or No./kg). Weighing for instance is 

the most widespread measurement in the fish production chain and sometimes as 
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many as six weightings are done on the same material without any manufacturing 

being done in between (Larsen et al.,1997).  

The overall fish quality continues to decrease from the moment of catch and death 

due to enzymatic and microbial activity. The rate of spoilage depends highly on 

storage time and temperature. Regarding shelf life the most important factor is the 

microbial activity, and the extension of shelf life due to chilling can be explained 

directly by the temperature influence on the growth of the fish micro flora (Huss, 

1996). Data loggers can be used for monitoring the temperature and help 

preventing undesirable temperature fluctuations and prolonged exposure at 

elevated temperatures since these conditions stimulate chemical reactions 

(autolysis) that reduce product flavors, color and texture while allowing further 

bacterial growth. Data loggers use electrically temperature measurement systems 

and periodically report the information to a computer and a memory chip inside 

the logger. By knowing the time/temperature profile from the storage onboard the 

vessel it is possible to predict the freshness of the herring when landed provided a 

proper handling after catch (Doyle, 1989). Freshness is a very important 

parameter since it makes a major contribution to the quality of the final product.    

It could be advantageous if information such as the time/temperature profile and 

weightings from one link in the production chain passes on to the next link, and 

especially if it is done in advance. This would make it possible to adjust the 

process according to the specific product and thereby optimize the process. 
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Target and data collecting 

 

As hinted in the previous section, a well defined traceability and information 

system can be a valuable advantage to process control and process optimizing. 

But before one can start controlling or optimizing a process, there are a number of 

aspects that have to be considered seriously; two are especially important (Næs, 

1994). First off all, it is important to have a clear definition of a “target” or an 

optimal product quality. Secondly, when a clear definition of target or quality is 

made, a measurement technique for the relevant parameter must be selected, 

properly installed and calibrated (Næs, 1994).  

170 

175 
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185 

 

When dealing with food, the definition of quality is often a very complex task 

since food is related to many aspects of quality, i.e. sensory, chemical, microbial, 

physical and nutritional properties. Furthermore, different consumer aspects must 

be taken into consideration. The quality measurements and measurements in 

general must cover and reflect the differences in the products. Known differences 

in the product should be reflected in the relevant measurements, otherwise the 

measurements are at best misleading. Additionally, there is no meaning to 

measure irrelevant things, this just creates a lot of useless data and may even mess 

up the process manageability. 

 

The objective of the measurement is not necessarily directly related to quality, but 

could also be reflecting e.g. waste and shrinkage. The herring will shrink in the 
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marinating process due to loss of water. To find the shrinkage percent, the 

measure is weight before and after marinating, after which the shrinkage has to be 

calculated from these measurements. Calculating the shrinkage percent can be 

hindered by material being rejected between the two weightings, if the amount of 

rejected material is not measured. When calculating values, it is important that the 

differences between the measurements only reflect the information of specific 

interest; otherwise the measurement is useless. This is one reason for measuring 

the amount of waste. Otherwise it is impossible to distinguish between what is 

due to shrinkage and what is due to waste.  

The reason for rejecting material in general is also extremely important since this 

information can be used to improve the production and avoid the same failure to 

happen again in the future. In the best case it could also help the company to 

identify catching grounds e.g. subjected to contamination, provided that the 

traceability chain is complete. When analyzing data from several years, patterns 

might appear showing that at a specific time of the year herring are less qualified 

for marinating or meeting certain product specifications. These herring might thus 

profitably be used for other products, and the amount of discarded material 

reduced.   

Clear identifications and definitions of target or quality points relevant for the 

process are necessary to set up practical specifications and guidelines that can be 

used for taking relevant measurements, which in combination with a well 

designed traceability system later can be used for process control and process 

optimization. 
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Focus so far has been on measurements for specific, dedicated purposes as this is 

practice today in the herring industry. Even so, it might be beneficial to combine 

all available data from different measurements throughout the production chain 

(from catch to final product) in order to extract even more relevant information 

from the collected data by multivariate data analysis. Table 1 illustrates how such 

a data matrix might look. All information belonging to a TRU is arranged in one 

column, and each measurement makes up one row. When colleting data 

exceptional conditions should also be registered. Such information can be helpful 

to understand otherwise unexplainable alterations in the data, or prevent 

inconvenient conditions to happen again.   
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Sorting raw materials with focus on end-product properties 

 

This section will focus on how traceability and collecting of relevant data can be 

used to sort raw material with focus on end-point quality in the herring process 

industry. 

 

The objective of the sorting procedure is to identify “functional” groups in the 

raw material and to find corresponding optimal process conditions for each group. 

The number of groups is determined from how many categories it is practical to 

process differently and by the expected overall end-product quality. Since the 

process can be adjusted according to the raw material quality in each category, all 
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raw materials can be better utilized and both quality and stability of the end 

product can be improved. Processes that can be improved by sorting are typically 

processes with much variation in raw material quality and where raw materials of 

different qualities have different optimal levels of the process variables.  
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245 
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255 

 

Today the herring are sorted according to size into e.g. four categories. Sorting 

into such more homogeneous categories with respect to size lead to a simpler and 

more stable control of the process, because it can be run on one category at a time, 

with optimal settings for each category.   

  

A further sorting criterion, beyond the allready existing size sorting, could be 

sorting according to fat content since the fat content vary considerable within a 

catch (Figure 2). This finding is in accordance with other studies (Nielsen, 

Hyldig, Nielsen & Nielsen, 2005; Larsen et al. 1997). Nielsen et al. (2005) 

showed that herring size and maturity status could not be used to sort herring 

according to fat content. Figure 2 shows the results from fat measurements on 

four commercial catches in Denmark. For each catch the fat content is measured 

on approx. 50 herring. The overall variation in fat content between catches is due 

to season variation. Today’s practice is to calculate the fat content as an average 

value on a pooled sample of e.g. 20 minced herring due to limited time and 

equipment. One value appears for each cut and the calculation is based on dry 

matter. Hence, the variation within the cut is not revealed and the fat content 

declared to the customer is imprecise. Instead, the optimal solution is on-line 
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measuring of fat content and subsequent sorting. This will enable more 

homogeneous products according to fat content.  260 

265 

270 

275 

280 

If a connection between fat content and shrinkage content exists, herring with a 

high fat content having a higher shrinking percent than herring with lower fat 

contents, a sorting system would be beneficial for the industry since herring with 

high fat content could be sorted out for other products of higher value. 

Furthermore, a connection between fat content and quality of final product might 

also be motivating for sorting raw material according to fat content.  

In all cases the perspective is the development of equipment for rapid and non-

destructive measurement of fat content for whole herring or herring fillets, and a 

subsequent individual sorting device so that the process may be adjusted 

appropriately. 

 

Discussion 

 

The implementation of a well prepared traceability system is not only about 

technique, it is a time-consuming and expensive process which involves all levels 

of personal in the company. Before starting the process of implementing 

traceability, the company needs readiness, an implementation plan and above all a 

business plan. When implemented, optimal benefits from quality control, 

production control in fulfilling consumer demands et cetera should be achieved 

resulting in a more effective production and, confidently reduced costs.  It is 

important to involve all kind of personal from production staff to the managers, 
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and benefit from their experience and knowledge. To obtain the best possible 

solution the implementation should be a common goal and all should benefit from 

the information technology introduced.  
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An efficient traceability system makes it possible for all links in the chain to fast 

and effective recall defective products. The amount of recalled material depends 

on the TRU size. This means that an extensive traceability level makes it possible 

to recall only very small quantities. In the herring industry the lowest level of 

traceability - the smallest TRU – is on lot level, this means that in the “best” case 

it is only necessary to recall a lot.  

 

Traceability can also be used for marketing. With an identifier on the product the 

consumer should be able to get information about the product history straight 

back to catching ground to final product by entering the identifier on a computer. 

This opportunity will make the consumer able to choose between similar 

products.  

 

Combining data from different measurements throughout the production chain 

(raw material measurements to final product quality) in combination with 

multivariate data analysis (chemometrics) of data-structures as illustrated in 

Table 1 may give additional information about unknown relations or scientifically 

explore relations that have previously only existed as “experienced personnel 

knowledge”. Unfortunately, lack of variability in a range of crucial 
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325 

measurements/data implies that the historical data are not suitable for further 

multivariate data analysis in the present case study. This is often the case when 

using historical data since historical data probably have been collected for other 

and maybe now irrelevant reasons and therefore are not relevant or applicable to 

multivariate data analysis. Instead, analysis of the historical data can hint at which 

measurements are missing and which data need to be improved to be sufficiently 

informative.   

 

Process control and process optimization can benefit from a well designed 

traceability system, under the condition that data relevant for the process are 

measured and that the measurements reflect the variability in the products. A 

quality system where all end products are giving essentially the same quality 

grading is useless, and may even destroy utilization of other measurements since 

it is not possible to say anything about e.g. how the raw material qualities affect 

the end product quality.    

 

Traceability systems may be used as foundation for process control e.g. by 

differentiating the raw material according to size and/or fat content. Fat and lean 

herring are by example turned into different end products, or fat herring and lean 

herring require different marinating time. From the traceability system one knows 

which category of herring that is under process presently running when the 

herring enter the marinating section.  
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In contrast to process control where the goal is to keep the process running, 

process optimization optimizes the process to perform optimal with e.g. the best 

possible yield of a given process. Thus, the combination of a well defined quality 

parameter and a traceability system convey an improved approach to reach the 

target of a given production.
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Implementation of traceability in the processing industries can be done according 

to Table 2. Phase 3 and 6 are not necessary but by adding those, a huge benefit 

concerning process control and optimization can be drawn from the traceability 

system. 

 

Perspectives 

 

A traceability system onboard the vessel containing important informations about 

the herring (e.g. date of catch and catch ground) and storage conditions 

(time/temperature profile)  capable to communicate with the systems on land will 

be of great benefit for the herring industry, especially if the informations are sent 

to the industry in advance. This will make the industry able to prearrange the 

production line and thus save production time.  

 

Furthermore a well-developed quality measurement for final marinated herring is 

needed, in particular if the quality of the final product should be used as process 

control parameter.  
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360 

 

Hence, the challenge of the future is to define a well designed traceability system 

from raw material to final product, identify and define target or quality points 

relevant for the process and find the right integration of new on-line/at-line 

measuring methods to achieve the optimal use of the raw material to benefit of 

both the fish processing industry and the consumers. 
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Legends to figures 400 

405 

 

Figure 1.The traceability chain for production of semi-manufactured marinated 

herring. The bold line illustrates the straight production line whereas the dotted 

arrows illustrate the complexity within the production due to various herring sizes 

and different customer demands. The ellipses indicate a complete production line.  

 

Figure 2. Fat content measured in four commercial catches.  
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Table 1. Schematic data set structure suitable for multivariate data analysis of 

traceability data. 

465 Each column contains measurements on the specified TRU. 

TRU number Information / measurement 

1 2 3 4 5 6 7 8 9 

Vessel: Catching ground          

 Date of catch          

 Date of landing          

 Storage temperature          

 Comments (e.g. bad weather)          

Production: Raw material quality          

 Size          

 Fat content          

 Nematodes          

 Cutting yield          

 Weight before marinating          

 Weight after marinating          

 Product quality          

 Comments          
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Table 2. Implementation plan for a traceability system directed towards food 

production. 470 

Phases shown in italic are not mandatory but very advantageous. 

Phase number: Action: 

1 Analyzing the production chain 

2 Define the traceability level 

3 Define targets and or optimal quality and be sure that 

measurement technique for the relevant parameter exist  

4 Programming 

5 Implementation 

6 Calibration and validation of the system 

7 Maintenance of the system 
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Outliers may hamper proper classical multivariate analysis, and lead to incorrect conclusions. To

remedy the problem of outliers, robust methods are developed in statistics and chemometrics. Robust

methods reduce or remove the effect of outlying data points and allow the ‘good’ data to primarily

determine the result. This article reviews the most commonly used robust multivariate regression and

exploratory methods that have appeared since 1996 in the field of chemometrics. Special emphasis is

put on the robust versions of chemometric standard tools like PCA and PLS and the corresponding

robust estimates of regression, location and scatter on which they are based. Copyright # 2006 John

Wiley & Sons, Ltd.
KEYWORDS: outliers, robust estimation, PCA, PCR, PLS
1. INTRODUCTION

Outliers are observations that appear to break the pattern or

grouping shown by the majority of the observations.

Presence of outliers is more the rule than the exception for

real world data. Many branches of chemometrics in both

industry and research work with huge amounts of data,

which makes visually based evaluation and screening for

outliers difficult. The reasons for outliers are various, for

example instrument failure, non-representative sampling,

formatting errors and objects stemming from other popu-

lations. Usually, only complete objects (xi.) are considered as

outliers, but it is equally relevant to look for outliers in

variables (x.j) and even individual data elements (xij). Most

conventional multivariate methods are sensitive to outliers

due to the fact that they are based on least squares (LS) or

similar criteria where even one outlier can have an arbitrarily

large effect on the estimate and deteriorate the model.

Therefore, it is necessary to (1) identify outliers and (2) decide

whether the outliers should be accommodated or rejected in

the modeling process.

The aim of any robust method is to reduce or remove the

effect of outlying data points and allow the remainder to

predominantly determine the results. Robust methods are

helpful for both semi-automated detection of outliers by

looking at the robust residuals andmodel building. When no
ndence to: S. F. Møller, Department of Seafood Research,
stitute for Fisheries Research, The Technical University of
DK-2800 Kgs. Lyngby, Denmark.
r@dfu.min.dk
grant sponsor: Danish Ministry of Food, Agriculture and
outliers are present in the data set, the result from a robust

method should be consistent with the result from the

corresponding non-robust method. Robust methods provide

a powerful methodology extending a conventional ‘manual’

analysis and elimination of outliers by using exploratory

methods and ‘conventional’ outlier diagnostics.

Rousseeuw and Leroy [1] presented an overview of robust

estimates in regression and outlier detection, and Maronna

and Yohai [2] described recent advances in robust estimation

in multivariate location and scatter estimation. Much focus

has been put on making the common chemometric

techniques such as principal component analysis (PCA),

principal component regression (PCR) and partial least

squares (PLS) regression more robust against outliers, using

robust estimates to replace the non-robust LS estimate.

Reference [3] holds a review of the robust methods for

multivariate analysis until 1996. An overview of the recently

developed methods for multivariate data analysis, based on

the minimum covariance determinant and least trimmed

squares estimators for location, scatter and regression,

together with a detailed description of these estimators,

can be found in Reference [4].

The aim of this paper is to present an overview of the most

common robust chemometric methods, that is PCA, PCR and

PLS, described in the literature as many new methods have

emerged subsequently.

In Section 2 outliers and their effect on least squares

estimation will be discussed. Section 3 introduces the robust

estimates for regression, location and covariance used in the

robust multivariate methods discussed in Section 4. Section 5

contains comments on software availability. Finally, Section

6 presents a discussion on the use of robust methods.
Copyright # 2006 John Wiley & Sons, Ltd.



Figure 2. High y residual outliers (1) and leverage points

(Good leverage points are denoted ‘2’ and bad leverage points

are denoted ‘3’).

550 S. F. Møller, J. von Frese and R. Bro
2. OUTLIERS

Different types of outliers can be discerned. Taking

regression models as an example where the independent

variables are denoted as Xn,p (n stands for the number of

objects (i¼ 1, . . . n) and p for the original number of variables

(j¼ 1, . . . , p)) and the q dependent variables are denoted as

Yn,q, the following categories of outliers can be considered:

(1) ‘Good’ leverage points which are observations isolated

from themajor part of the observations in the datamatrixX but

following the same regression model, (2) ‘Bad’ leverage

points which in addition to being isolated from the major

part of X deviate strongly from the regression model defined

by the other observations and (3) Outliers that are not

leverage points but have large y prediction residuals in

calibration and are therefore referred to as high y residual

outliers or vertical outliers. In robust analysis, the good

leverage points are usually not denoted as outliers as they are

not detrimental to the regression model but merely reflect an

‘unfortunate design’. These three types of outliers can occur

both during model fitting and during predictions with a

previously established model.

Figure 1 shows a scatterplot of 10 points, (x1, y1), . . . (x10,

y10), with no outliers presented. The LS solution fits the data

very well, and for data with normally distributed random

noise without outliers, the LS solution is in fact optimal in the

maximum likelihood sense.

Why LS is not resistant to outliers follows from the

properties of the objective function for LS procedures. The

objective function to be minimized is the sum of the squared

residuals

Minimize
b̂

Xn

i¼1

r2i (1)

in which the residuals ri are given by

ri ¼ yi � ŷi ¼ yi � b̂0 � b̂1xi1 � � � � � b̂pxip (2)

where yi (i, . . . ,n) are the corresponding values of the

dependent variables, xij (i¼ 1, . . . ,n; j¼ 1, . . . ,p) the values

of the explanatory variables, and b̂j ¼ ðj ¼ 1, . . ., pÞ is the LS
Figure 1. Scatterplot of 10 points, (x1, y1), . . . (x10, y10) and

the LS regression line.

Copyright # 2006 John Wiley & Sons, Ltd.
estimate of the parameters. This means that a large outlier

will exert an inappropriately large influence on the LS-

estimate as will be illustrated in the following:

Figure 2 illustrate the three outlier types where high y

residual observations are marked with a ‘1’, ‘2’ represent

good leverage points and bad leverage points are marked

with ‘3’. Both the high y residual outliers and the bad

leverage points affect the calibration model by distorting the

least squares model to a certain degree and should be

eliminated. From a purely experimental point of view an

observation with a high y residual does not necessarily

indicate a corrupted or deviating y measurement, we only

know that the corresponding (x, y) pair is inconsistent with

the remainder (although from a pure theoretical viewpoint

the explanatory variable x is considered to be error-free). In

multivariate regression models (e.g. PCR or PLS) it might be

possible to assign such an outlier as originating from X in

case it shows a strong deviation from the X-model. Generally,

outliers are not necessarily bad measurements but could also

indicate samples belonging to another group than the

majority of the data.

As noted by Gnanadesikan [5], the consequence of outliers

in multivariate data is intrinsically more complex than in the

univariate case. A multivariate outlier can distort measures

of location and scale and thereby also those of covariance

structure. As a result the modeling methods may describe

the shape of the majority of the data incorrectly and

conclusions drawn can be misleading. An added compli-

cation is that it is muchmore difficult to identify multivariate

outliers. A single univariate outlier may easily be detected

graphically, which is not that straightforward in higher

dimensions. Many multivariate methods work well for

identifying single outliers, but when there are many outliers,

masking and swamping effects may occur. The masking

effect means that some outliers are unnoticed because the

presence of other outliers masks their bad influence [6,7]. The

swamping effect consists of wrongly identifying/diagnosing
J. Chemometrics 2005; 19: 549–563
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an observation as an outlier because of the presence of other

outliers [8].

According to Rousseeuw and Leroy [1] outlier diagnostics

and robust methods have the same goal just in opposite

order: In standard or non-robust diagnostic approaches the

outliers are first identified and then the remaining data

analyzed with a non-robust LS criterion. In robust methods,

models are fitted to the majority of the data and outliers are

identified as those observations with large residuals from the

robust fit. A survey of diagnostic techniques can be found in

Reference [1].
3. BASIC ROBUST STATISTICS

To enable the comparison of different robust methods in

various situations, measures of performance are necessary.

One such performance measure for robust methods is the

breakdown point e
�
[9] which can loosely be defined [10] as

the smallest fraction of samples (with respect to n) that can

render the estimator useless.1 This might be given depending

on the sample number (e.g. 1/n) or as a limiting value for

n!1 (e.g. 0%). A breakdown point of zero for an estimator

means that the presence of even a single outlier can

completely distort the model. One such example is the LS

function whose breakdown point is zero. Breakdown points

vary considerably for different classes of estimators with 50%

as the highest possible for the equivariant estimators

discussed in this review. Conceptually, it becomes imposs-

ible to distinguish between the good and the bad parts of the

data if the fraction of outliers becomes larger than 50%.

Estimators with e
� ¼ 50% are called high breakdown point

estimators. Another essential performance measure is the

influence function introduced by Hampel et al. [8]. The

influence function tries to quantify the influence an

infinitesimal outlier has on the estimate. Thus, in principle

this allows for a more detailed quantitative comparison of

different robust methods under a single outlier. A funda-

mental question here is if the influence function is bounded,

that is if already a single outlier can lead to a breakdown of

the estimator. For assessing the influence function, distribu-

tional assumptions for the data have to be made. This often

renders the analysis more intricate and might necessitate

empirical comparisons with unknown general validity in

particular for n� p (e.g. [11]).

Efficiency is another important concept for the discussion

of robust estimates. The relative statistical efficiency is the

ratio of the mean square error from a robust estimator to the

mean square error from an ordinary LS estimator when

applied to data from an uncontaminated distribution, for

example with normally distributed errors [6].

Equivariance properties are also important for under-

standing estimators. Equivariance means that a systematic

transformation of the data will cause a corresponding

transformation of the estimator [1]. Three types of equivar-

iance exist for regression estimators; (1) regression-, (2) scale

and (3) affine equivariance. Regression equivariance means

that any (additional) linear dependence Y!YþXv should

be reflected in the regression vector accordingly b!bþ v.
1Robust estimates are marked by asterisk (�) throughout the article.

Copyright # 2006 John Wiley & Sons, Ltd.
This corresponds to translation equivariance in the case of

location estimation. Scale invariance implies that the fit is

essentially independent of the choice of measurement units

for the response variable y and for any scaling y! cy the

regression vector scales appropriately b! cb. Affine equiv-

ariance means that for linearly transformed data X!XA the

estimate of the regression vector transforms correspondingly

b!A�1b, such that the predicted values and residuals are

invariant under this transformation.

A weaker condition than affine equivariance is the

orthogonal equivariance, which means that any orthogonal

transformation of the data (rotation and reflection) trans-

forms the estimator properly. Orthogonal equivariance is

sufficient in the context of PCA or PLS since even the classical

procedures are only orthogonally equivariant [12]. For a

detailed description of the different equivariance criteria the

reader is referred to Reference [1].

Multiple linear regression, as well as estimation of sample

mean and covariance are the cornerstones of multivariate

data analysis methods such as PCA, PCR and PLS [1,2]. The

former underlying techniques are not resistant to outliers as

they are based on LS techniques and robustifying them is

often the basis for obtaining robust versions of the latter

multivariate data analysis methods. The focus throughout

this section is restricted to robust multivariate regression

estimators and robust estimates of multivariate location and

covariance used in the multivariate methods described

afterwards in this paper.

Overviews of the important robust multidimensional

estimators for regression and location and scatter are listed

in Tables I and II, respectively.

3.1. Robust multivariate regression
estimates

3.1.1. Multiple linear regression
In multiple linear regression (MLR), the response variable yi

is regressed on p explanatory variables (xi1, . . . ,xip) in the

model

yi ¼ b0 þ b1xi1 þ � � � þ bpxip þ "i (3)

with errors ei. As in univariate regression, the LS estimator of

b0, b1, . . . ,bp, which corresponds to minimizing the squared

residuals (Equation (1), is quite sensitive to the presence of

outlying points. A robust alternative to LS estimator is

therefore needed.

3.1.2. M-estimates
The methods collected under the term M-estimators

(maximum likelihood type estimators), first introduced by

Huber [13,14], replace the squared residuals in Equation (1)

by another function of the residuals

Minimize
b̂

Xn

i¼1

r ri=s
� �

(4)

The function r is symmetric (i.e. r(�t)¼ r(t)) for all t with a

unique minimum at zero, ri is the residual of the ith

observation and s is a suitable estimate of the scale obtained

from the residuals. For r(t)¼ t2 and s¼ 1 one obtains the LS

estimator. Different choices of r(t) correspond to assuming
J. Chemometrics 2005; 19: 549–563



Table II. Overview of themost important robust estimators for multivariate location and scatter in robust multivariate data analysis

(n, sample size; p, number of regressors)

Estimator e
�

Comments Equivariance properties Reference

M �1/(pþ 1) Not all M-estimates are affine equivariant,
for example L1

Method dependent [20]

Limitation: n> p
MVT 50% Converge quickly Affine [21,22]

Limitation: n> p after trimming
Stahel–Donoho 50% for n larger

than 2pþ 1
High computational cost Affine [23,24]

MVE 50% Converges slowly (n�1/3) Affine [16]
Limitation: n> p

MCD 50% Limitation: n> p Affine [16]
A fast algorithm exists (FAST–MCD)

S 50% Limitation: n> p Affine [25,26]
MM 50% Limitation: n> p Affine [27]

Abbreviations are explained in the text.

Table I. Overview of the most important regression estimators in robust multivariate data analysis (n, sample size; p, number of

regressors)

Estimator e
�

Comments Affine equivariant Reference

M 0% Not robust against X-outliers Yes [13,14]
GM �30%, decreases as p increases Robust with respect to outliers in

X as well as outliers in Y

Yes [1]

Siegels repeated median 50% No [15]
LMSa 50% Yes [16]
LTS 50% Yes [16]
S 50% Yes [17]
MM 50% Yes [18,19]

Abbreviations are explained in the text.
a slow convergence (/ n�1/3).

552 S. F. Møller, J. von Frese and R. Bro
specific distributions for the errors (e.g. rðtÞ ¼ tj j for double
exponentially distributed errors) [28].

M-estimator calculations can be computed by means of

iteratively reweighted least squares (IRLS). The principle of

IRLS is to obtain a weight for each observation depending on

the size of the regression residual. Such weights make it

possible to bound the effect of outliers on the final model.

The scale factor is necessary to achieve affine equivariance

for the estimators. A possible scale estimate for the residuals

would be the standard deviation. However, the standard

deviation is not robust to outliers and therefore not suitable

in this context. The median absolute deviation (MAD) is a

commonly used robust alternative to the standard deviation

[1]. Rousseeuw and Croux [29] proposed the Qn scale

estimate as an alternative to the MAD. The Qn estimator,

motivated by the Hodges–Lehman estimator [30], is for a

univariate data set (z1, . . . ,zn) defined as the first quartile of

the pairwise differences between the data

Qn ¼ 2:2219 � d � f zi � zj

�� ��; i � jg where d is a small sample

correction factor (approaching 1 for increasing n) [29]. When

comparing the efficiency of several robust scale estimators

Rousseeuw and Croux [29] found that the Qn estimator

yielded better results than the MAD. Unfortunately, the M-

estimators can be strongly influenced by any high leverage

point and thus have a break down point e
�
of 0% [1].
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3.1.3. GM-estimates
Generalized M-estimators (GM-estimators) frequently

referred to as ‘bounded influence estimators’ were devel-

oped to overcome the x-outlier problem of M-estimators [1]

and thereby improve the breakdown point.

The basic purpose of these methods is to bound the

influence of outlying xi bymeans of someweights wi that give

full influence to observations assumed to come from the

main body of the data, but reduced weight or influence to

outlying observations. Starting with a sensible estimate the

iterative procedure will continue until the sequence of

estimates has converged to within the desired accuracy. The

e
�
of all GM-estimators can be no better than a certain value,

in general not larger than 30%, decreasing as a function of the

dimension p [17,31].

A number of weights have been proposed, for example

Tukey’s biweight [32], Huber [13,14], Hampel [33] and

Andrew’s wave [33,34]. These weights are not restricted to

GM-estimators but can be used for all kind of estimates

requiring a weight function. Plots of selected weight

functions are illustrated in Figure 3.

3.1.4. Siegel’s repeated median
The first high breakdown point regression estimator was the

repeated median (RM) proposed by Siegel [15]. It is based on
J. Chemometrics 2005; 19: 549–563



Figure 3. Objective function of the LS, Huber weights,

Tukey’s biweight and Andrew’s wave.
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calculating perfectly fitting models for all possible data

subsets of size p and obtaining a final regression model

through a nested coordinatewise median calculation (see

Reference [15]).

As the explicit calculation of the RM would involve the

consideration of all possible subsets of p points, where p is the

number of variables, the resulting computational complexity

of np [15] would mean a prohibitive amount of calculation

time even for moderate p [1]. Additionally, this estimator is

not affine equivariant for linear transformations of xi [1].

3.1.5. Least median of squares
Replacing the sum of the squared residuals in Equation (1)

with the robust median yields one of the most well-known

instances of a high breakdown point estimator, the least

median of squares (LMS) method of Hampel and Rousseeuw

[16], defined by

Minimize
b̂

median
i¼1;...;n

r2i (5)

The LMS estimator has an e
�
of 50%, and is robust with

respect to outliers in y as well as outliers in X. Unfortunately,

the LMS has a very low efficiency (converges like n�1/3) [16].

3.1.6. Least Trimmed Squares
To overcome the poor convergence rate for LMS, Rousseeuw

[16] proposed the least trimmed squares (LTS) estimator

Minimize
b̂

Xh

i¼1

r2
� �

i:n
(6)

where (r2)1:n� . . .� (r2)n:n are the ordered squared residuals

that is the sum of squared residuals is formed over a suitable

lower quantile h/n of the residuals. The fraction of included

samples can be as low h � n=2. The LTS objective is equivalent

to LS, with the exception that the largest residuals are not

used in the sum, so that outliers are disregarded. Taking

h¼ n yields the LS estimator. The highest possible break-

down value (50%) for LTS is attained when h� n/2. For

general h, the breakdown is (n� hþ 1)/n. The LTS converges

like n�½ and behaves satisfactorilywith respect to asymptotic
Copyright # 2006 John Wiley & Sons, Ltd.
efficiency [1]. The disadvantage of LTS is the sorting of the

squared residuals, which blows up an already significant

computation time [16]. A fast algorithm, FAST–LTS, for

computing the LTS estimators was developed by Rousseeuw

and van Driessen [35]. For small data sets the exact LTS is

found whereas for larger data set the new algorithm gives

more accurate estimates than existing LTS algorithms. A

general problem of the FAST–LTS and other approximate

algorithms with a given number of starting trial sets consists

in a lack of consistency for larger and larger training data sets

as pointed out by Hawkins and Olive [36]. As possible

solution a specific prior clustering has been suggested in [36]

and FAST–LTS already makes uses of a more sophisticated

empirical subsampling scheme for larger datasets but further

research is needed [37].

The e
�
for both LTS and LMS is independent of p, the

number of variables and they also satisfy all three

equivariance properties mentioned earlier [1].

Rousseeuw and Yohai [17] generalized the LMS and LTS

estimators to S-estimators. The class of S-estimators corre-

sponds to replacing the scale of the residuals in Equation (4)

by a robust measure that minimizes the dispersion of the

residuals. S-estimators are regression-, scale- and affine

equivariant and possess a convergence rate n�½. The e
�
can

attain 50% with a suitable choice of the constants involved,

and in contrast to GM-estimators, S-estimators have a high

breakdown point for any dimensionality. But S-estimators

cannot simultaneously achieve high efficiency and a high

breakdown point [1,17]. If a 50% breakdown point is

imposed, the asymptotic Gaussian efficiency of S-estimators

is at most 33% [38].

Computing the exact S-estimator is often not feasible, and

may present difficult problems due to the existence of many

local minima [18]. The computational cost of methods based

on subsampling increases exponentially with p, and makes

these estimates very costly for high dimensions.

To circumvent the efficiency problem of S-estimators

Yohai introduced MM-estimators [18], which are basically

efficient M-estimators using the result of an S-estimator as

starting value and for obtaining a robust auxiliary scale

estimate and thereby obtaining improved robustness with an

e
�
up to 50%. Thus, MM-estimators combine a high break-

down point with a high efficiency, requiring the same (high)

computation time as S-estimators and are for example the

‘official recommendation’ for robust regression in the

statistics software S-Plus [39].

The solution to the multivariate regression problem can

also be reformulated in terms of the joint location m̂ ¼
ðm̂X; m̂YÞ and scatter matrix Ĉ ¼ ðĈXX ĈXY

ĈYX ĈYY
Þ of the explana-

tory and dependent variables since the LS estimators of

intercept and slope can be written as functions of the joint

location and scatter matrix [40]. Thus, a robust regression

estimate can also be obtained by applying robust estimators

of location and scatter instead of the LS estimates. Following

this approach, Rousseeuw et al. [40] recently derived the

MCD regression as robust regression method using theMCD

estimator of multivariate location and scatter (see Section 3.2.

below). The resulting robust regression estimator has the

appropriate equivariance properties, a bounded influence

function, and inherits the breakdown value of the MCD
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estimator. In order to improve the rather low efficiency a

reweighting scheme was proposed [40].

3.2. Robust estimates of multivariate
location and covariance (scatter)
For a data set X of n points in p dimensions the most well-

known estimator of themultivariate location is the arithmetic

mean

TðXÞ ¼ x ¼ 1

n

Xn

i¼1

xi (7)

which can also be viewed as an LS estimator because it

minimizes

Xn

i¼1
xi � Tk k2 (8)

where . . .k k is the L2 norm. The breakdown point is 0%. The

maximum likelihood estimator for the population covariance

matrix C is defined as

Ĉ ¼ 1

n

Xn

i¼1

ðxi � TÞ0ðxi � TÞ (9)

for xi the ith row of the (n� p) data matrix X, and T the

arithmetic (1� p) mean vector. Robust estimates for multi-

variate location and covariance will be described in the

following.

3.2.1. M-estimates of location and covariance
A generalization of M-estimators to multivariate location is

given by

Minimize
T

Xn

i¼1

r xi � Tk kð Þ (10)

where T can be regarded as the location estimate [1]. These

estimates are not necessarily affine equivariant as the

example of the L1 location estimator shows

Minimize
T

Xn

i¼1

xi � Tk k (11)

The L1 location estimator also known as the ‘spatial median’

or ‘median center’ is a generalization of the univariate

median and its breakdown point is 50% [13,41]. The L1

estimator only satisfies the weaker condition of orthogonal

equivariance.

Affine equivariant M-estimates of multivariate location

and scatter were formally proposed by Maronna [20]. A

major drawback of these is that the breakdown point of affine

equivariant M-estimators is at most 1/(pþ 1), that is

relatively low for even a moderately high number of

variables [23,42,43]. Furthermore, Devlin et al. [44] found

that M-estimators in practice could tolerate even fewer

outliers than indicated by this upper bound. In addition

Wisnowski et al. [45] found empirically that the usefulness of

M-estimates of covariance for detecting multiple outliers is

limited to low-dimensional, low-density scenarios.
3.2.2. Stahel–Donoho Estimator
The first affine equivariant multivariate location and scatter

estimator with a high breakdown point was the Stahel–

Donoho estimator (SDE) or ‘outlyingness-weighted median’
Copyright # 2006 John Wiley & Sons, Ltd.
[23,24]. For each xi in X, one looks for a one-dimensional

projection inwhich xi is most outlying in the sense defined as

ri ¼ sup
vk k¼1

xiv
t �med

j
ðxiv

tÞ
����

����

med
k

xkvt �med
j

ðxjvtÞ
����

����
(12)

Where med
j

ðxjv
0Þ is the median of projections of all data

points xj on the direction of the vector v. The location and

scatter are then estimated by the weighted mean and the

weighted covariance matrix with weights of the form w(r)

where w is a strictly positive and decreasing weight function

of r� 0. The estimator is related to projection pursuit since

one principally searches over all possible projections v with ri
as projection index. Due to the high computational cost,

when calculating the SDE in its exact form, approximate

methods with subsampling procedures are commonly used

[46]. The breakdown properties of the MAD (i.e. the

denominator in Equation (13) basically determine the

breakdown of the SDE and corresponding modifications

have been suggested to obtained further improvements in

this respect [47,48].

3.2.3. Multivariate trimming
Ellipsoidal multivariate trimming (MVT) was proposed by

Gnanadesikan and Kettenring [21] and Devlin et al. [22]. In

each step of this iterative procedure the squared Mahalano-

bis distance (d2i ) of the observation vectors xi from the current

robust estimate of location x�, are measured in the metric of

C�, the current robust estimate of the covariancematrix of the

X data. A specified percentage (the trimming percentage) of

themost extreme observations (i.e. objects with the largest d2i )

is temporarily set aside (max. 50% of the observations) and

the remaining observations are used to compute x� and C�

exactly as x and C, the sample mean vector and covariance

matrix. A number of samples with highest d2i corresponding

to the trimming percentage is again set aside and the process

is repeatedwith the remaining samples. The iterative process

terminates when both x� and C� converge. The effect of

trimming is that observations with large distances do not

contribute to the calculations for the remaining observations.

Inmost approaches the starting values for x� and C� are taken

to be x and C, even though robust starting values may appear

as natural choices for x and C. Empirically, MVT has been

found to converge quickly, usually in two or three steps

[44,49]. Devlin et al. [44] claimed that the e
�
of MVT was the

same as its trimming percentage (max. 50%), and does not

decrease with the number of variables. However, Donoho

[24] argued that the e
�
of MVT is at most about 1/p, thus

rendering this method less attractive due to its low break-

down point. In its original version theMVT procedure can be

applied only if the number of objects in the X matrix after

trimming exceeds the number of variables. This limitation

can be avoided by applying it to the score matrix T from a

PCAmodel of the data matrix X [49], but in this case the result

also depends on the robustness properties of the applied

method for obtaining the PCA model and furthermore the

affine equivariance of a conventional covariance estimate

would be lost.
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3.2.4. Minimum volume estimator
Another affine equivariant high breakdown point estimator

of multivariate location and covariance is the minimum

volume estimator (MVE) [16,50]. The objective of the MVE is

TðXÞ ¼ Center of the minimum volume

ellipsoid covering ðat leastÞ a fraction of h points of X

(13)

where h can be taken as low as (n/2)þ 1. The location

estimator is then given by the center of the ellipsoid.

The corresponding covariance estimator is defined as the

covariance matrix of the ellipsoid multiplied by a suitable

correction factor to obtain consistency with the multi-

variate normal distribution. The e
�
can be the highest possible

namely 50% as n!1. The algorithm will have a slow

convergence rate similar to the LMS estimate, n�1/3 [1].

Furthermore, the algorithms suffer from inefficiency and

high computational complexity, making it impractical for use

with large data sets [51].

3.2.5. Minimum covariance determinant
The objective of the minimum covariance determinant

(MCD) estimator of multivariate location and scatter is

[16,50]

TðXÞ ¼ Mean of the h points of X

for which the determinant of the

covariance matrix is minimal

(14)

The MCD seeks the h points out of the whole data set (n

objects) for which the classical tolerance ellipsoid (for a given

level) has a minimum volume among all possible subsets of

size h. Then the location and scatter estimates are given by

the mean and covariance matrix for this optimal subset hn.

The covariancematrix has to be scaled by a consistency factor

cd, in order to obtain a consistent estimator for the multi-

variate Gaussian distribution. In the univariate case this

corresponds to the least trimmed squares estimator where

each data point receive a weight of one if it belongs to the

robust confidence interval and zero otherwise.

The limitation of this method is that the number of

observations should be larger than the number of variables, if

p> h the covariance matrix of any h-subset has a zero

determinant and thus cannot be minimized. Therefore, high

dimensional data sets should first be reduced by variable

selection or by using principal components. The breakdown

point is the highest possible when h¼ 0.5n. For a better

compromise between efficiency and breakdown value h

should be �0.75n (e
� � 25%) [52]. A fast algorithm for

calculating the MCD estimator (FAST–MCD) has been

derived [52]. For small data sets it finds the exact MCD,

whereas for larger data sets it is claimed to give more

accurate results than alternative methods at the time of

development [52].

If the outlier contamination can be estimated a priori, h can

be conveniently reformulated in terms of the trimming

percentage a (where 0< a�½): one can replace h¼
[n (1�a)]þ 1 in Equation (14) and (15). The breakdown point

of these estimators is equal to a. For a! 0 theMVE yields the

center of the smallest ellipsoid covering all the data, whereas

the MCD objective tends to the arithmetic mean [50].
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Butler et al. [53] show that MCD has better statistical

properties than MVE since MCD is asymptotically normal

and further that MVE has a slower convergence rate (n�1/3)

[54]. Other authors have also noted the theoretical super-

iority of MCD to MVE [52,55]. The FAST–MCD is also an

order of magnitude better than all MVE algorithms in terms

of computational complexity [45].

The statistical efficiency of the MCD estimator can be

increased by implementing a reweighting estimator [52,56].

After obtaining the raw MCD estimators of location (m̂MCD)

and scatter (ĈMCD) each observation receives a weight wi;

which is zero if its robust distance, dðxi; m̂MCD;

ĈMCDÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � m̂MCDÞ

0ĈMCDðxi � m̂MCDÞ
q

exceeds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

n; 0:975

q
.

The reweighted MCD estimator is then defined as the

weighted mean and covariance matrix.

3.2.6. S-estimators of multivariate location and
scatter
Davies [25] and Lopuhaä [26] extended multivariate

regression S-estimates to multivariate location and covari-

ance estimates. The S-estimator of multivariate location and

scatter is defined as that vector T and positive definite

symmetric matrix C which minimize det Cj j subject to a limit

on the magnitudes of the corresponding Mahalanobis

distances, di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � TÞ0C�1ðxi � TÞ

q

1

n

Xn

i¼1

rðdiÞ ¼ b0 (15)

where r (�) is symmetric and r (0)¼ 0. The constant b0 is often

taken as the expected value of r (di) assuming a multivariate

Gaussian distribution [57].

These S-estimators are affine equivariant, asymptotically

normal, and for well-chosen r (�) their breakdown points can

be as high as 50% [1].
4. ROBUST MULTIVARIATE MODELS

Almost all robust multivariate models in the literature and

described in the following, work under the assumption that

outliers are samples (rows in the data matrix). That is all data

of one sample is treated as one observation. Hence, these

models aim at identifying and minimizing the influence of

individual outlying samples. The situation where, for

example an individual element in the data matrix xij is

considered as outlying has not gained much attention in the

literature. First approaches for this situation have been

provided by Hawkins et al. [58], Liu et al. [59] and Croux et al.

[60].

4.1. Robust principal component analysis
Principal component analysis (PCA) is often the first step of

the data analysis, typically followed by a more quantitative

analysis using PCR, PLS, discriminant analysis or other

multivariate techniques. Classical PCA involves computing

the eigenvectors and eigenvalues of the sample covariance or

correlation matrix. Simple but powerful algorithms have

been developed for finding the principal components with

the singular value decomposition (SVD) as the most

widespread [61].
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In the context of PCA, an outlier can be defined as an

observation/object that either lies far away from the

subspace spanned by the correct k eigenvectors, and/or

for which the projection into the model lies far from the

remainder of the data within the subspace [62].

Several ways of robustifying principal components have

been proposed. They can be grouped as follows:
(1) T
Nam

PP-

PP-

PP-

RA-

ROB

Out

Cop
echniques that replace the classical covariance matrix

by a robust covariance via robust estimators of location

and shape such as the MCD. Calculating the eigenvalues

and eigenvectors of this robust covariance matrix pro-

vides eigenvectors that are robust to sample outliers.

These approaches are limited to relatively low-dimen-

sional data.
(2) P
rojection pursuit (PP) searches for structure in high

dimensional data by projecting these data into a lower-

dimensional space which maximizes a robust measure of

spread called the projection index, r(�), for example using

the MAD. PP methods obtain robust eigenvector esti-

mates by explicitly solving the maximization (or mini-

mization) problem: find the direction (eigenvector) vp

that maximizes r (Xv) [63]. In subsequent steps, each new

direction is constrained to be orthogonal to all previous

directions. The procedure results in robust principal

components and a robust covariance matrix. Classical

PCA, which uses the variance as projection index is a

special case of the PP algorithm. Since the principal

components are computed sequentially, this approach

can handle high dimensional data, n< p.
(3) A
 Combination of (1) and (2). This approach can handle

high-dimensional data.
(4) A
djustments to the internal computations of the SVD

algorithm by replacing the LS criterion with a robust

estimate. This approach can handle high-dimensional

data [60] and elemental outliers [58].
Table III lists some of the robust PCA methods belonging

to group (2) and (3) discussed in this paper.

Replacement of the classical covariance or correlation

matrix by one of the abovementioned or other robust

estimators is perhaps the simplest and also an intuitively

appealing approach.

Applications using GM-estimators of means and covari-

ances can be found in Campbell [34], Rivest and Plante [70]

and Daigle and Rivest [71]. These methods are less suitable
Table III. Robust high-dimensional PCA

e Robust estimate Refere

PCA Weighted mean (center of the data) [64
Hubers M-estimate (projection index)

PCA L1 (center of the data) [65
MAD (projection index)

PCA L1 (center of the data) [12,6
Qn (projection index)

PCA L1 (center of the data) [67
Qn (projection index)

PCA Combined PP with reweighted MCD [68

liers are considered as whole samples.
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for high dimensionalities due to the fact that e
�
decreases

towards zero with increasing dimensionality.

Many simulation studies, starting with Devlin et al. [44]

have been carried out to find out which robust estimator

should be used for estimating a covariance/correlation

matrix and its principal components. More recently, Croux

and Haesbroeck [72] have shown that the one-step

reweightedMCDmethod [50] and the S-estimator of location

and shape are well suited for robustifying the estimate of the

covariance matrix. The theoretical results as well as the

simulations favor the use of S-estimators, since they com-

bine a high efficiency with appealing robustness properties.

The results are more robust than results obtained with

GM-estimators, but are unfortunately limited to small

dimensions [72]. This limitation is a severe restriction in

chemometrics where it is usually important to have robust

PCA methods for situations with p> n. A second problem is

the computation of these robust estimators in high dimen-

sions. Todays fastest algorithms [52,73] can handle up to

about 100 variables, which might pose a substantial practical

limitation in many chemometric applications.

Other approaches to robustify PCA, based on PP, have

been considered by Ruymgaart [74], Li and Chen [64],

Ammann [75], Galpin and Hawkins [7], Xie et al. [65], Croux

and Ruiz-Gazen [66], Hubert et al. [67] and Hubert et al. [68].

The projection index in the method proposed of Li and

Chen [64] was chosen as Huber’s M-estimator of scale,

whereas Galpin and Hawkins [7] and Xie et al. [65] replace

the variance norm by a robust measure of the spread based

on optimizing the L1 norm (e.g. MAD). Xie et al. [65]

introduced the generalized simulated annealing algorithm as

an optimization procedure in the process of PP calculation to

pursue the global minimum. Li and Chen [64] proved that

the resulting method inherits the breakdown value of the

robust scale estimator and are qualitative robust. These

methods can handle high dimensional data, where the

number of variables exceeds the number of samples [67].

Unfortunately, the algorithm of Li andChen [64] has a high

computational cost [67]. In Croux and Ruiz-Gazen [66] a

computationally more advantageous method was presented

(C-R algorithm) with the L1—median estimator as the center

of the data and the Qn scale estimator [29] as projection index.

To speed up the computation the directions to be

investigated have been restricted to all directions that pass

through the center and a data point. Unfortunately, the
methods discussed in this paper

nces Comments

] High computational complexity

]

6]

] Fast to compute

] A fast alternative algorithm exsist, ROBPCA-kmax[69]
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algorithm has a numerical accuracy problem in high

dimensions (large p) due to round-off errors and is still

computationally costly [61]. Hubert et al. [67] proposed an

improvement of the C-R algorithm, a modified two-step

version, called reflection-based algorithm for robust princi-

pal component analysis (RAPCA). According to the authors

the method is more stable numerically and computationally

much faster (when PCA compression to the rank of the data

is performed as a first step), and can deal with both low and

high dimensional data. The compression step in RAPCA can

also be built in the C-R algorithm and thereby improve the

speed. By doing so no difference with respect to computation

speed were observed for up to 15 components [76]. An

improved version of the C-R algorithm, which should not

suffer from the numerical problem in high dimensions can be

found in Croux and Ruiz-Gazen [12].

The most attractive advantages of the PP-procedures are

that they yield covariance matrices and PCs that are of both

orthogonal equivariance and show a high e
�
, which can be as

high as 50%, and does not depend on the dimensionality [64].

A different type of approach is the robust singular value

decomposition method described by Ammann [51]. In the

calculation of the SVD successive transposed QR decompo-

sitions are used where the corresponding regression steps

have been replaced by their robust alternatives. Mallow’s

GM-estimator [1] together with an iterative update of

location by M-estimation has been suggested for the

computations. Final estimates are obtained by an ordinary

SVD on the weighted covariance matrix, where weights have

been obtained within the previous QR decompositions.

Hubert et al. [68] introduce a new method for robust PCA

called ROBPCA where PP ideas are combined with robust

location and covariance estimation in lower dimensions.

After preprocessing the data, PP is used for initial dimension

reduction (k� p), and the reweighted MCD estimator is then

applied to this lower dimensional data space to find a robust

centre and a robust covariance estimator of the projected

samples. Dimension reduction is necessary because theMCD

estimator is only applicable for p< n due to singularity of the

covariance matrix when h< p. Finally these estimates are

back transformed to the original space and a robust estimate

of the location of X and of its scatter are obtained. This

method can handle both low and high dimensional data, and

according to the authors, it producesmore accurate estimates

for non-contaminated data and more robust estimates for

contaminated data. The ROBPCA method is orthogonal

equivariant [68]. Unfortunately, this algorithm is not very

fast when the results for several principal components

(k¼ 1, . . . ,kmax) are required as it needs to run the whole

procedure for each component separately [69]. A faster

alternative algorithm, ROBPCA-kmax, for moderate data sets

of sizes up to 100 and kmax¼ 10 is proposed by Engelen et al.

[69]. This algorithm is less precise and more time consuming

if kmax is chosen too large because it computes the MCD

estimator for kmax dimensions in one run. When comparing

the ROBPCA and ROBPCA-kmax algorithms Engelen et al.

[69] found that ROBPCA-kmax performed almost as well as

the original ROBPCA. Only for very particular contami-

nations the ROBPCA-kmax estimator was unfavorable

compared to ROBPCA.
Copyright # 2006 John Wiley & Sons, Ltd.
All methods discussed so far consider entire samples, xi as

outliers but there are many examples where individual data

elements, xij, in otherwise good rows, xi are corrupted, for

example in fluorescence, microarray or proteomics data and

image analysis. Methods that can handle this kind of outliers

have been proposed by Hawkins et al. [58], Liu et al. [59] and

Croux et al. [60]. These methods are based on the alternating

least-squares algorithm proposed by Gabriel and Zamir [77].

In this algorithm the minimization problem is solved with

criss-cross regressions, which involve iteratively computing

dyadic (rank 1) fits using LS (similar to NIPALS). The

original Gabriel-Zamir SVD algorithm is then rendered

robust by using robust regression estimates such as L1[58],

LTS [59] or weighted L1 (weights based onMVE) [60] instead

of the ordinary LS regression in the SVD algorithm.

4.1.1. Multiway methods
For the N-way methods Pravdova et al. [78] proposed a

robust version of the three-way Tucker3model ormultimode

PCA. The three-way data cube, X, is decomposed into a

number of components as in PCA but as opposed to PCA the

number of components can be different for the three modes

(i.e. the dimensions or directions). The method is based on

robust initialization of the Tucker3 algorithm using MVT or

MCD. The three-way data are unfolded to two-way matrices

and the loadings are obtained by SVD. In this version the

outliers are identified in the first mode only (A), but as all

modes are treated symmetrically, one can look for outliers in

any mode. First a so-called clean subset is constructed using

MVT orMCD.A clean subsetmeans that the data set contains

no detected outliers. In each iteration of the ALS subroutine,

the loadings A,B andC for the differentmodes are calculated

for the clean subset of objects only. The loadings A are then

predicted for all objects and the data is reconstructedwith the

predefined number of factors. Residuals between the initial

data and the reconstructed data are calculated and sorted,

and 51% of objects with the smallest residuals are selected to

form the clean subset for the next ALS iteration. The objective

function to be minimized is the sum of squared residuals for

the h clean objects from the first mode. Once the robust

Tucker3 model is constructed the outliers are identified by a

robust estimate of the standardized residuals based on the

scale estimatorMAD. The final Tucker3model is constructed

as the least squares model for the data after outlier

elimination. Empirically studies show that for 20% outliers

in the dataset, the robust Tucker3 model converged to a good

solution but for 40% outliers, the algorithm had problems for

some type of outliers. According to authors MCD is a better

algorithm for finding the clean subset than MVT [78], which

can be understood from the deteriorating breakdown

properties of MVT with increasing dimensionality [24].

4.2. Robust principal component regression
Principal component regression (PCR) can be used to build

regression models for rank deficient regressors X [62]. The

principal components are obtained by decomposing X via

PCA and subsequently the response(s) is regressed onto the

score, T.

Both steps of the PCR procedure can be affected by outliers

because regression as well as PCA is based on least squares
J. Chemometrics 2005; 19: 549–563
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fitting. The bad leverage points of the PCA model are

important as they deteriorate the estimation of the T matrix,

influencing in this way also the second step of PCR. The

regression step of the PCR can additionally be hampered by

outliers in y. It is thus important to robustify PCR both with

respect to the PCA step as well as the subsequent multiple

linear regression. Such robust PCR methods which make

both steps robust have been presented by Walczak and

Massart [49], Pell [79], Filzmoser [80], Hubert and Verboven

[81] and Zhang et al. [82].

Table IV contains an overview of the different robust PCR

methods discussed in this paper.

The robust PCR (RPCR)method proposed byWalczak and

Massart [49] uses robust PCA based on a robust covariance

matrix (MVT), followed by LMS regression applied on all

samples. The robust covariance matrix and thus the robust

principal components provide the background to reveal

outliers, either good or bad leverage points, in the X data

while standardized residuals from the robust model are

applied to detect outliers in both X and y. The breakdown

point of MVT is the same as its trimming percentage (max.

50%) and does not decrease with the number of variables.

However, Donoho [24] argued that the e
�
of MVT is at most

about 1/p, thus rendering this method less attractive due to

its low breakdown point. The breakdown point of LMS is the

highest possible, namely 50%. The lack of efficiency for LMS

can be regarded as a possible disadvantage of this method, as

the LMS minimizes the median of the residuals (which is

equivalent with consideration of only 50% of the data)

instead of the sum of the squared residual. Therefore

Walczak andMassart [49] recommend that the model should

be used as an outlier detection tool and not the final building

method for the model.

Filzmoser [80] introduced a robust method for PCR based

on the idea of PP proposed by Li and Chen [64] to obtain

robust principal components, combined with LTS regression

for prediction. The algorithm is the C-R algorithm [66] with

the median absolute deviation from the median (MAD)

estimator as projection index. Due to the fact that that first

principal components (PC) with the largest variance are not

necessarily the best predictors, a step-wise selection of PC’s is

performed for subset (k< p) selection of PC’s for prediction.

The selection starts with the PC resulting in the best

prediction of the response variables (according to an
Table IV. Overview of different robust PC

Name Principle

RPCR PCA: MVT
Regression: LMS

RPCR PCA: PP
Regression: LTS

RHM-PCR PCA: RHM
Regression: LTS

RPCR PCA: MCD (low dim.) or ROBPCA
Regression: reweighted LTS (one response var.)
or MCD regression

RPPSV Principal sensitivity vectors

Copyright # 2006 John Wiley & Sons, Ltd.
appropriate association measure). The selection process

continues until the quality of prediction cannot be increased

significantly.

In the method of Hubert and Verboven [81] first a robust

PCA method is applied on the regressors. For low-

dimensional data (p< n), the MCD estimator [16] is applied

as a robust estimator of the covariance matrix of X, and for

high-dimensional data (p> n) the ROBPCA method [68] is

used. Next a robust regression method is applied. If there is

only one response variable the LTS regression estimator [16]

is preferred, otherwise the MCD regression estimator [40] is

utilized. All the robust estimates in this method are based on

a hard thresholding, that is binary weights 0/1 are applied.

The rather empirical approach of Zhang et al. [82] relies on

robust regression diagnostics of the predictions for identify-

ing outliers before building an ordinary LS-PCR model with

the good data. For regression diagnostics so called ‘principal

sensitive vectors’ (RPPSV) [83] are used, that is an analysis of

how the predictions for a sample change when each training

sample is omitted in turn. In addition, samples with

significantly high prediction residuals are also omitted.

The estimates computed by the procedure are affine

equivariant and the convergence rate is n�½ [83].

In the method proposed by Pell [79], ‘resampling by half-

means’ (RHM) [84] is used to detect outliers in the response

matrix, X, in order to remove those samples from

consideration before the PCA step. RHM is based on

repeatedly estimating the Euclidean distance of each sample

to the mean of a randomly drawn subset of 50% of the data.

In case X consists of variables on different scales, autoscaling

is first applied, using the standard deviations from the

respective 50% subset. The frequency with which each

sample is among the 5% most distant observations is used as

the criterion for outlier detection. The PCA decomposition is

performed without those extreme samples but the extreme

samples are projected onto the PCA space and the scores

from the extreme samples are used with the rest of the

calibration samples in the regression step. Simulation studies

[84] showed slightly better breakdown properties for the

RHM than for the MCD 20–45% and 20–30% respectively,

depending on the fractions of outliers and their multivariate

distance from the rest of the data. In addition, themethod can

handle rank deficient data. In the regression step (step 2) the

LTS estimator is used with multiple trimming parameters
R methods discussed in this paper

Comments References

Only suggested as outlier detection tool due
to lack of efficiency of LMS

[49]

[80]

Not orthogonal equivariant [79]

[81]

Empirical [82]
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(50, 40, 30, 20 and 10%) as suggested by Ryan [6].

Unfortunately, the RHM estimator does not possess

orthogonal and translation equivariance [81].

4.3. Robust partial least squares regression
PLS is a linear regression technique developed to deal with

high-dimensional regressors and one, yn� 1 (PLS1) or several

response variables, Yn� q (PLS2). PLS makes use of ordinary

least squares regression steps in the calculation of weights,

loadings, scores and regression coefficients. Therefore out-

liers, either in the X or in the y or Y variables, pose a serious

problem to PLS regression. The most common algorithms for

PLS in the chemometric field are the NIPALS algorithm and

SIMPLS algorithm. In cases with only one response variable

(q¼ 1) and without missing values, SIMPLS and PLS1

(NIPALS) are equivalent.

In Table V the different robust PLS methods discussed in

this paper are listed.

Gil and Romera [88], Wakeling and Macfie [85] and Griep

et al. [86] claimed that substituting all steps of the ordinary LS

regression steps in the NIPALS PLS algorithm by a robust

regression procedure will make the model completely

resistant to outliers, but there are several prices to be paid:

Not just a higher computational demand, but also a lower

efficiency of the robust steps. Thus, an alternative approach is

to replace one or two selected regression steps instead of all

steps together which could still show a good performance in

terms of handling outliers. Such procedures are called semi-

robust [86,88].

A first robust PLS2 algorithm, (RPLS) [85] has been

developed by replacing the non-robust regression steps for w

(weight vector for X) and c (loading vector for Y) in the PLS2

algorithm by the robust biweight method [32]. This makes

these estimates resistant to outliers by down-weighting cases

with high residuals. Final values of t (score vector for X) and

b (score vector for Y) are formed from the un-weighted data

as in the conventional PLS2 algorithm. The price to be paid

consists of a lack of orthogonality on successive X weight

vectors, w. The RPLS algorithm is designed to compensate

independently for outliers in both X and Y.

Following the idea ofWakeling andMacfie [85], Griep et al.

[86] carried out a comparison among three different methods
Table V. Overview of different robust PL

Name Principle Basic

RPLS Biweight-IRLS N

Robust PLS1 IRLS N
IRPLS IRLS N

IRPLS IRLS N

PLSMR Stahel–Donoho estimator N

RSIMCD ROBPCA for robust scores S
MCD regression for regression

RSIMPLS ROBPCA for robust scores S
Information from ROBPCA for regression

PRM GM-estimators S

Copyright # 2006 John Wiley & Sons, Ltd.
of robust regression and studied their incorporation into the

PLS1 algorithm. In their study Griep et al. [86] replaced the

regression step for the weight vector w with three different

methods of robust regression: LMS, Siegel’s RM and IRLS.

Their empirical results indicate that the best option is to use

IRLS compared to LMS and Siegels RM.

According to Gil and Romera [88] this way of making the

PLS models robust, by substituting some or all regressions

steps with a robust alternative, does not necessarily catch

‘multivariate’ outliers. This is due to the fact that the first step

of PLS is not just one regression, but is formed from the

individual regressions of each variable xj on y.

Thus, the application of, for example IRLS in the first step

consists of the application of IRLS to each simple regression.

Therefore outliers in the projections of the data onto planes

[x.1,y], [x.2, y], . . .. . . ,[x.j, y] are taken into account, but the

multivariate nature of the X0Y data is not considered.

Another version of the IRLS algorithm for PLS has been

obtained by Cummins and Andrews [87] and Pell [79] called

IRPLS. The idea is the same as in ordinary IRLS, but in these

cases using the cross validated residuals of the PLS

regression in the sample weight function. The sample

weights are initially set to one and are updated after each

iteration. Both Cummins and Andrews [87] and Pell [79]

tested four weight functions including bisquare, Cauchy,

Fair and Huber. The only difference between the algorithms

proposed by Pell [79] and Cummins andAndrews [87] is that

in the algorithms of Pell [79] the number of components is

fixed until the sample weights converge whereas in the

algorithm proposed by Cummins and Andrews [87] the

number of components is allowed to change as the sample

weights change. Gil and Romera [88] claimed that a problem

with the method proposed by Cummins and Andrews [87] is

that the residuals for each sample would depend strongly on

the number of components calculated in PLS because

different criteria for choosing the number of components

could cause different weights for each sample.

The breakdown point for IRPLS depends on the chosen

weight function but was around 44% for the tested weight

functions and moderate outliers [87].

These algorithms were only derived for a one-dimensional

response variable (i.e. PLS1) and are not resistant to high
S methods discussed in this paper

algorithm Comments References

IPALS Semi-robust [85]
Derived for PLS2

IPALS Semi-robust [86]
IPALS Derived for PLS1 [87]

Not resistant to leverage points
IPALS Derived for PLS1 [79]

Not resistant to leverage points
Tendency towards overfitting

IPALS Derived for PLS1 [88]
Only valid for n> p

IMPLS Derived for both PLS1 and [89]
PLS2

IMPLS Derived for both PLS1 and PLS2 [89]
Fast (twice as fast as RSIMCD)

IMPLS Derived for PLS1 [90]
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leverage points since the weights only depends on the

residuals after each step [89]. Different weight functions as

well as different tuning constant for the same weight

function can give different results, which may make the

methods less attractive [79,87]. Furthermore, Pell [79]

obtained in some cases better prediction results with the

robust methods than the estimated reference error, which

may be indicative for an overfitting problem.

In Gil and Romera [88] a robust PLS1 method, PLS matrix

robust (PLSMR), is obtained by robustifying the sample

covariance matrix of the x-variables and the sample cross-

covariance matrix between the x- and y-variables. For this the

highly robust Stahel–Donoho estimator [10,23,24] is used

with Huber’s weight function. To minimize the compu-

tational cost the sub-sampling scheme used to compute the

estimator starts by drawing subsets of size pþ 2. This means

that the PLSMR method cannot be applied to high-

dimensional regressors (n� p) which is a major disadvan-

tage. To tackle this problem Gil and Romera [88] propose to

initiate with variable selection before the robust regression. It

is not possible to extend the method to PLS2 [89].

In SIMPLS [91], the PLS weights are obtained as

eigenvectors of the X0Y cross covariance matrix after

successive deflation steps. Since SIMPLS is based on the

sample cross-covariance Cxy, the empirical covariance matrix

(Cx) of the x-variables and on linear LS regression the results

are affected by abnormal observations in the data set. Hubert

and Vanden Branden [89] introduced two robustified

versions of the SIMPLS algorithm called RSIMCD and

RSIMPLS respectively, based on replacing the cross-covari-

ance matrix Cxy and the empirical covariance matrix Cx by

robust estimates, and by performing a robust regression

method instead of MLR. The robust algorithms are built on

two main stages. First, robust scores ti are constructed based

on a robust criterion (ROBPCA) on Znm¼ (Xnp, Ynq), and

secondly a robust linear regression is performed based on the

robust scores from the ROBPCA. The first stage is similar for

both methods but the regression step differs: RSIMCD is

based on MCD regression [40] while RSIMPLS uses

additional information from the previous ROBPCA step

for a reweighted MLR. The proposed algorithms are fast

compared with previously developed robust methods and

can handle cases where n� p and q¼ 1 [11]. Hubert and

Vanden Branden [89] recommend RSIMPLS because it is

roughly twice as fast as RSIMCD. The breakdown value for

RSIMPLS is roughly 1� a (where a is the assumed minimal

fraction of regular observations) as for the MCD estimator

[11]. Both RSIMPLS and RSIMCD are equivariant for

translation and orthogonal transformations in x and y [89].

Recently, Serneels et al. [90] proposed a method, partial

robust M-regression (PRM), for robust regression based on

GM-estimators. PRM uses continuous weights, resulting in a

gradual down-weighting of outliers according to their

degree of outlyingness. This is in contrast to, for example

RSIMPLS where a weight of zero is given to all observations

with residuals above a certain cut-off value and unity to all

others. As GM-estimator the weights are computed from

both the residuals as well as the leverage for a sample. This

can be performed in a way such that the orthogonal and scale

equivariance of the PLS estimator is retained. The weighting
Copyright # 2006 John Wiley & Sons, Ltd.
is used both in the SIMPLS step of computing the PLS scores

as well as in the regression of y on these scores. For p	n the

computation time is sped up by carrying out a prior SVD on

X (n� p),X(¼VSU. The iteration procedure is then applied to

the reduced data matrix, X̂ ¼ US (n� n) and the resulting

PRM regression estimate ~b needs then to back transformed

into b̂ ¼ V~b.

A simulation study testing various distributions of the

error terms, different samples sizes and dimensionalities

showed that in terms of statistical efficiency, PRM generally

outperformed PLS and RSIMPLS. Only for the normal error

terms PLS was more efficient than PRM. In situations with

10% bad leverage points PRM and RSIMPLS performed

almost similar and clearly outperformed PLS. When

comparing the computation time for PRM and SIMPLS it

turned out that the computation time for RSIMPLS was

consistently substantially higher than for PRM both for

increasing number of observations and increasing number of

predictor variables [90].

The PRM method is computational possible for high

dimensional data sets and thus provides an appealing

alternative to RSIMPLS in particular when a gradual outlier

behavior can be expected. But the method is currently only

derived for univariate y (i.e. PLS1) and the highest possible

breakdown point of all GM-estimators is in general not larger

than 30% and decreases as a function of the dimensionality

p [17,31].
5. SOFTWARE

The common basic methods for robust estimation of location

and scatter (i.e. MCD) and robust regression (i.e. M-, LMS-,

LTS-, S- and MM-estimators) are all available within the

standard statistical software packages SAS (release> 6.12)

[92], S-Plus [39,93] and R [94]. An implementation for robust

PCA is also available for S-Plus [95].

Recently, a comprehensive MATLAB toolbox, ‘LIBRA’, for

robust estimates and multivariate methods has appeared

[96]. Apart from MCD and LTS it also contains implementa-

tions of other methods that have been developed at the

research groups at the University of Antwerp and the

Katholieke Universiteit Leuven, in particular for robust PCA

(ROBPCA) and PLS (RSIMPLS). The toolbox also includes

many graphical tools for model checking and outlier

detection. Additionally, an incorporation of several of these

methods into the widely used PLS_Toolbox for Matlab is in

preparation (Eigenvector, Inc., Pers. Comm.). The partial

robust M-regression is also available as Matlab implementa-

tion [97].
6. DISCUSSION

Real world data is often contaminated with gross outliers,

which can lead conventional data analysis methods based on

least squares completely astray. Thus, outlier detection and/

or the use of robust methods are of paramount importance

for applied multivariate data analysis in general and

chemometrics in particular.

Although simple robust methods such as the median,

median absolute deviation or interquartile range are easy to
J. Chemometrics 2005; 19: 549–563
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compute and have been applied for a long time, the use of

robust methods for multiple regression or latent variable

models has been computationally prohibitive for multi-

variate datasets of even moderate size. This is because

theoretically rigorous methods usually require the consider-

ation of all possible sample subsets of a given size, which

means that their computationally complexity shows a

combinatorial growth. Thus, although the exponentially

increasing computational power (Moore’s law) has con-

tributed a lot to the advancement of computationally

demanding data analysis methods, the progress in the

applicability of robust methods has largely been achieved by

improved fast approximate methods.

When considering robust methods for applied multi-

variate data analysis, practical considerations might deviate

from a pure theoretical viewpoint. Data sets with more than

10–20% outliers would probably be rejected completely and

the generation of new data with a higher quality required.

Hence, a theoretical breakdown point of 50% might be

helpful for initially assessing the data quality and detecting

outliers. But on the other hand it should be kept in mind that

there is a price to pay for such an extreme robustness. Apart

from the higher computational complexity, robust methods

usually also show a lower statistical efficiency and

convergence rate. For example the median only shows

64% asymptotic efficiency for normally distributed data in

comparison to the mean [98]. Thus, although robust methods

are able to obtain reasonable estimates in the presence of

gross outliers in the original data, their estimates for the

‘good’ data are usually subject to a higher uncertainty and

they require more training samples than conventional least

squares methods. For methods with adjustable breakdown

properties, therefore a good compromise between robustness

and efficiency should be aimed for.

In addition it might be remarked that breakdown points

are derived for arbitrarily large, that is ‘infinite’ outliers,

whereas in practice outliers are usually bounded due to a

finite measurement range. Extreme outliers might also be

easy to detect individually by applying appropriate outlier

diagnostics.

With state-of-the-art robust methods, for example based

on projection pursuit or fast MCD estimators, efficient tools

for robust multivariate data analysis are available and

convenient software implementations, for example inMatlab

exist.
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57. Campbell NA, Lopuhaä HP, Rousseeuw PJ. On the
calculation of a robust S-estimator of a covariancematrix.
Statist. Med. 1998; 17: 2685–2695.

58. Hawkins DM, Liu L, Young SS. Robust singular value
decomposition. National Institute of Statitical Sciences
Technical Report 122, 2001.

59. Liu L, Hawkins DM, Ghosh S, Young SS. Robust singular
value decomposition analysis of microarray data. P. Natl.
Acad. Sci. USA. 2003; 13167–13172.

60. Croux C, Filzmoser P, Pison G, Rousseeuw PJ. Fitting
multiplicative models by robust alternating regressions.
Stat. Comput. 2003; 13: 23–36.

61. Golub GH, van Loan CF. Matrix computations. The John
Hopkins University Press: Baltimore, 1989.

62. Martens H, Næs T. Multivariate Calibration. Wiley: Chi-
chester, 1989.

63. Huber PJ. Projection pursuit. Ann. Statist. 1985; 13: 435–
475.

64. Li G, Chen Z. Projection-pursuit approach to robust
dispersion matrices and principal components: Primary
theory and Monte Carlo. J. Am. Statist. Assoc. 1985; 80:
759–766.

65. Xie Y, Wang J, Liang YZ, Sun L, Song X, Yu R. Robust
principal component analysis by projection pursuit. J.
Chemometrics 1993; 7: 527–541.

66. Croux C, Ruiz-Gazen A. A fast algorithm for robust prin-
cipal components based on projection pursuit. COMPSTAT,
Physica-Verlag, 1996; 211–216.

67. Hubert M, Rousseeuw PJ, Verboven S. A fast method for
robust principal components with applications to che-
mometrics. Chemometrics Intell. Lab. Syst. 2002; 60: 101–
111.

68. Hubert M, Rousseeuw PJ, Vanden Branden K. ROBPCA:
A new approach to robust principal component analysis.
Technometrics 2005; 47: 64–79.

69. Engelen S, Hubert M, Vanden Branden K. A Comparison
of three procedures for robust PCA in high dimensions.
In Proceedings of the Seventh International Conference on
Computer Data Analysis and Modeling, 2004; 11–17.

70. Rivest E, Plante N. L’analyse en composantes principales
robuste. Rev. Stat. Appl. 1988; 36: 54–66.

71. Daigle G, Rivest LP. A robust biplot. Can. J. Stat. 1992; 20:
235–241.

72. Croux C, Haesbroeck G. Principal components analysis
based on robust estimators of the covariance or corre-
lation matrix: Influence functions and efficiencies. Bio-
metrika 2000; 87: 603–618.

73. Woodruff DL, Rocke DM. Computable robust estimation
of multivariate location and shape in high dimension
using compound estimators. J. Am. Statist. Assoc. 1994;
89: 888–896.

74. Ruymgaart FH. A robust principal component analysis.
J. Multivariate Anal. 1981; 11: 485–497.

75. Ammann LP. Robust principal components. Commun.
Statist. Simulat. 1989; 18: 857–874.
J. Chemometrics 2005; 19: 549–563



Robust methods 563
76. Stanimirova I, Walczak B, Massart DL, Simeonov V. A
comparison between two robust PCA algorithms. Che-
mometrics Intell. Lab. Syst. 2004; 71: 83–95.

77. Gabriel KR, Zamir S. Lower rank approximation of
matrices by least squares with any choice of weights.
Technometrics 1979; 21: 489–497.

78. PravdovaV, Estienne F,Walczak B,Massart DL. A robust
version of the Tucker3 model. Chemometrics Intell. Lab.
Syst. 2001; 59: 75–88.

79. Pell PR. Multiple outlier detection for multivariate cali-
bration using robust statistical techniques. Chemometrics
Intell. Lab. Syst. 2000; 52: 87–104.

80. Filzmoser P. Robust principal component regression.
Aivazian S, Kharin Y, Rider L (eds). Proceedings of the
Sixth International Conference on Computer Data Analysis
and Modeling, Minsk, Belarusia, 2001; 1: 132–137.

81. Hubert M, Verboven S. A robust PCR method for high-
dimensional regressors. J. Chemometrics. 2003; 17: 1–15.

82. Zhang MH, Xu QS, Massart DL. Robust principal com-
ponents regression based on principal sensitivity vectors.
Chemometrics Intell. Lab. Syst. 2003; 67: 175–185.
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Gas chromatograms of fatty acid methyl esters and of volatile lipid
oxidation products from fish lipid extracts are analyzed by
multivariate data analysis [principal component analysis (PCA)].
Peak alignment is necessary in order to include all sampled points
of the chromatograms in the data set. The ability of robust
algorithms to deal with outlier problems, including both sample-
wise and element-wise outliers, and the advantages and drawbacks
of two robust PCA methods, robust PCA (ROBPCA) and robust
singular value decomposition when analysing these GC data were
investigated. The results show that the usage of ROPCA is
advantageous, compared with traditional PCA, when analysing the
entire profile of chromatographic data in cases of sub-optimally
aligned data. It also demonstrates how choosing the most robust
PCA (sample or element-wise) depends on the type of outliers
present in the data set.

Introduction

Chemometric tools, such as principal component analysis
(PCA) for visualisation and data mining, are frequently used to
analyse chromatographic data. In most cases, chromatographic
data are transformed to peak areas, which are then used for fur-
ther analysis. The method relies on subjective peak selection and
peak identification and on integration parameters, which if not
properly set, may cause great errors in the calculated peak areas.
Implications of the data extraction method, thus, are incorpo-
rated in the PCA analysis. The disadvantages concerned with
peak area analysis, such as loss of information due to the selec-
tion of a subset of peaks and to erroneous peak areas, can be
avoided by using the entire chromatographic profile per se when
analysing the data. In addition, peak shapes and information
about the absence or presence of peaks are automatically
included in the data analysis.

Unavoidable retention time shifts from one run to another
obscure differences due to chemical variations between samples.
Because multivariate data analysis requires uniform presenta-
tion of data [i.e., all data vectors have to be of the same length
with corresponding elements (variables) representing similar
phenomena in all samples], an appropriate pre-processing tech-
nique to align the chromatograms is needed. Variations, thus,
are not dominated by shifts between variables but by different
levels of the variables as they should.

Several retention time alignment algorithms have been
reported in the literature (1–3). In the present study, the corre-
lation optimization warping (COW) algorithm (2), originally
developed as a data pre-processing step in multivariate mod-
elling of chromatographic data. The COW algorithm has been
successfully employed to align chromatograms from gas chro-
matography (GC)–flame ionization detection (FID) (3,4) and
GC–mass spectrometry (5) measurements. According to Tomasi
et al. (4), COW is less flexible than other warping methods, thus
giving fewer artefacts and improving the quality of the alignment
when applied to complex chromatographic data. COW allows
aligning complex chromatograms with different number of
peaks, peak intensities, and peak widths. Furthermore, it cor-
rects peak shifts in both directions and aligns many chro-
matograms simultaneously, without any knowledge or
identification of peaks.

PCA, like most other common chemometric methods, is based
on the less robust least squares estimation. This means that the
presence of even one single outlier in the data set can hamper the
analysis and lead to incorrect conclusions. Outliers are measure-
ments that do not fit into the pattern or grouping shown by the
majority of measurements in a properly designed experiment.
The most common outlier types are complete sample measure-
ments (data vectors), but also individual “strange” data elements
in the chromatogram may be considered as outliers.

The outlier problem can be solved in two ways: (i) by diagnos-
tics or (ii) by robust estimators (6). In the first approach, outliers
are identified and expelled from the data set prior to making the
chemometric model. A complication is that it may be difficult to
identify outliers, even when multivariate data are available, and
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the task gets harder and more time-consuming when the
amount of data is huge. In the second approach, which is used in
this paper, robust estimators are used instead of the ordinary
non-robust least squares estimator. Robust methods reduce or
remove the effect of outlying data points, allowing the remainder
to predominantly determine the model.

In this study, the advantage of using all collected data points
from the GC in the chemometric analysis combined with COW
pre-processing is illustraited. Because of the outlier problem,
concerning both sample-wise and element-wise outliers, the
advantages and drawbacks of two robust PCA (ROBPCA)
methods, ROBPCA (7) and robust singular value decomposition
(RSVD) (8), are also investigated for the analysis of GC data.
Opposite to the methods that rely on subjective peak selection
and peak areas, the PCA analysis is able to identify relevant peaks
and use all information contained in the chromatograms.

The analyses are performed on two data sets differing in
quality. The first is GC–FID data from fatty acid methyl esters
(FAME), which are “well behaved” in the sense that outliers are
expected to be due to insufficient peak alignment only. The
second data set consists of GC–FID data of volatile lipid oxidation
productions (ATD), which have a relatively higher risk of arte-
facts and with larger sample differences and peak shifts.

Materials and Methods

Data sets
Gas chromatograms of FAMEs and of ATDs collected by

dynamic head-space were kindly provided by the lipid group of
the authors’ institute. An FID was used for both types of chro-
matograms. The data from gas chromatograms of FAMEs show
the fatty acid composition of triglycerides or phospholipids. In
the present case, samples of fish oil from farmed rainbow trout
fed two different diets were included. The data from gas chro-
matograms of ATDs show volatile lipid oxidation products
(mostly aldehydes, ketones, and short-chain fatty acids). The
samples included were from farmed rainbow trout kept frozen at
–20°C, –30°C, or –80°C for 0–24 months. Detailed results con-
cerning the experiments and the chemical findings are under
preparation for publication.

The chromatograms were imported from the instrumental
result files (ASCII text format) into MatLab 7.0.4 (The
MathWorks) where the pre-processing (normalization, baseline
correction, and alignment) and multivariate data analyses were
performed. Each chromatogram was loaded into a MatLab
workspace as a vector composed of the FID-signal collected over
the duration of the GC run. The chromatograms were appended
into a matrix where each row was the chromatogram from a
single sample. The algorithms for COW and ROBPCA were
downloaded from the literature (9,10). The algorithm for RSVD
was kindly provided by A. Belousov (11).

Pre-processing of data
Pre-processing of the chromatograms prior to PCA is neces-

sary to remove variations unrelated to chemical compositions.
The pre-processing consists of baseline correction, normaliza-
tion, and peak alignment using COW.

Baseline shift removal
Because baseline shifts affect both the warping and the nor-

malization, a baseline correction is necessary. Furthermore, PCA
cannot separate variance due to peak misalignment from vari-
ance due to baseline shifts. Hence, the baseline correction was
essential. All chromatograms were individually baseline-cor-
rected by subtracting the average signal for the last 1300 s and
first 150 s, respectively, from the full chromatogram.

Normalization
Normalization to a constant area was used to compensate for

differences in the amount of injected sample for Data set 1 (gas
chromatograms of FAMEs), taking advantage of the unspecificity
of the FID. Data set 2 (gas chromatograms of ATDs) was normal-
ized by dividing each chromatogram by the injected amount of
sample, giving informational value to the total amount of
volatiles produced. In both cases, normalization was necessarily
applied after baseline adjustment in order to give meaningful
results.

Chromatographic alignment by COW
The aim of COW was to align two chromatographic profiles by

piecewise linear stretching and compression, also known as
warping, of the time axis of one of the profiles relative to the
other. The chromatograms are subdivided into segments that
were iteratively stretched and compressed by interpolation. The
optimal alignment is the solution that maximizes the correlation
between corresponding segments in the sample and the refer-
ence chromatogram. The number of data points each segment is
allowed to change (maximal warping) is determined by the so-
called slack parameter and depends on the peak shift to correct.
According to Nielsen et al. (2) the optimal alignment will be
achieved when the segment length is in the region of the
number of data points making up the sharpest peak in the chro-
matogram.

The optimal chromatographic alignment settings in this study
were selected as the segment length and slack that maximizes
the first singular value as proposed by Christensen et al. (5).
Combinations of segment lengths from 10 to 60 data points, and
increments of 5 and slacks between 1 and 5 were tested to find
the best settings. The optimal settings were based on the evalua-
tion of the whole data set for the data from gas chromatograms
of FAMEs and of 30 randomly selected samples for the data from
gas chromatograms of ATDs.

PCA
The classical PCA method is not robust against outliers

because of the least squares criterion. This means that even one
single outlier in the data set can have an arbitrarily large effect
on the model and lead to wrong interpretation and conclusions.

Different approaches have been proposed for making a robust
version of PCA. They can be grouped as follows: (i) techniques
that replace the classical covariance matrix by a robust covari-
ance estimator (6,12,13) as the minimum covariance determi-
nant (MCD) (14). Unfortunately, these approaches are limited to
relatively low-dimensional data and are computational costly. (ii)
Another group is methods that use projection pursuit (PP) tech-
niques (15–20). PP searches for structure in high dimensional



data by projecting these data into a lower-dimensional space that
maximizes a robust measure of spread called the projection
index. These methods can handle situations where the number
of variables exceeds the number of samples. (iii) A combination
of (i) and (ii) called ROBPCA (7) is used, which should yield more
accurate estimates than the raw PP algorithm. The final group
(iv) involves adjustments to the internal computations of the sin-
gular value decomposition (SVD) algorithm by replacing the
least squares criterion with a robust estimate (8,21,22). These
RSVD methods can handle high-dimensional data and element-
wise outliers. Element-wise outliers exist where one or several
individual data elements in otherwise good rows are corrupted.

In this study, the classical least square PCA will be compared
with the two robust versions, ROBPCA and RSVD. Both robust
methods can handle situations with more variables (columns)
than samples (rows), are computationally feasible, and have
shown good performance in other studies (17,23).

ROBPCA
The ROBPCA approach combines PP with robust covariance

estimation in lower dimensions (7). The ROBPCA method can be
divided into three major steps. First, the data, stored in an n ˙ p

data matrix X, were pre-processed by reducing their data space to
the affine sub-space spanned by the n observations. This was per-
formed by SVD of the column mean-centred X, without loss of
information. In the next step of the ROBPCA algorithm, PP was
used for initial dimension reduction (k << p). A measure of “out-
lyingness” was computed for each data point. The h data points
with smallest outlyingness were then retained, the covariance
matrix of this h-subset computed, and the number of principal
components to retain (k) selected. In the last step of the ROBPCA
algorithm, the re-weighted MCD estimator is then applied to this
lower dimensional data space to find a robust center and covari-
ance estimator of the projected samples. Finally, these estimates
were back-transformed to the original space, and a robust esti-
mate of the location of X and of its scatter were obtained.

Robust singular value decomposition
This method, called RSVD (8), was based on the alternating

least squares algorithm for SVD proposed by Gabriel (24). In this
algorithm, the minimization problem was solved with criss-
cross regressions, which involves iteratively computing dyadic
(rank 1) fits using least squares regression. The original
Gabriel–Zamir SVD algorithm is then rendered robust by substi-
tuting the non-robust least squares regression with a robust esti-
mator, which in this case, was the alternating L1-norm (the sum
of absolute residuals).

Results and Discussion

Data set 1 (GC–FID of FAMEs)
Optimal warping parameters

Figure 1 shows the aligned chromatograms appearing from
fish whose feed contained mostly vegetable oil or pure fish oil,
respectively. In all chromatograms, the same fatty acids appear,
but with different concentrations, reflecting the different feed
types. Fish fed vegetable oil contained higher amounts of 18:1 (n-
9), 18:2 (n-6), and 18:3 (n-3) than did fish fed fish oil. On the
other hand, fish fed fish oil contained the highest amount of
14:0, 16:0, 16:1 (n-7), 18:4 (n-3), 20:4 (n-3), 20:5 (n-3), 20:1 (n-
9), 22:1 (n-11), 22:5 (n-3), and 22:6 (n-3). The relatively high
amount of long chain polyunsaturated fatty acids in the fish fed
vegetable oil is due to small amounts of fish meal in the feed.

The peak identified around 24.7 to 27.3 min in the un-warped
data is due to an internal standard in some of the samples. This
peak is isolated from the other peaks, and for that reason, it is
possible to exclude the part of the chromatogram from the data
analysis allowing samples both with and without an internal
added standard to be included in the data matrix. If the part con-
taining the standard was retained, severe artefacts in both the
normalization step and in the following PCA modelling would
occur.

The warping parameters segment length and slack were con-
sidered optimal when maximizing the first principal component
from a PCA model fitted to the warped data. Combinations of
segment lengths of 10 to 60 data points with increments of 5 data
points and slacks between 1 and 5 were tested. Furthermore, the
mean relative difference together with the maximal decrease and
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Figure 1. Chromatograms (GC–FID of FAMEs), after alignment using COW
with a segment length of 15 data points and a slack of 3 points, of samples
from fish fed on diets containing vegetable oil (A) or fish oil (B).

Retention time (min)

Retention time (min)



increase in area difference between the un-
warped and the warped chromatograms were cal-
culated for all tested settings to evaluate the
warping effect on the chromatogram profiles.

The explained variance for a one-component
model increased from 30.6% (un-warped and un-
centred data) to 87.2%, attained with a segment
length of 15 data points and a slack of 3. The
absolute area of the chromatograms after
warping was changed, on average, with 4.4%
compared with the original chromatograms with
a maximal decrease in the area of 12.0%, and a
maximal increase in area of 6.0%. These changes
in area were due to interpolation when warping
the data. Four of the samples experienced a
decrease in area of more than 10% compared
with the original chromatograms. When com-
paring the raw data of these samples with the
standard chromatogram, it appeared that they
had large shifts in retention times, resulting in
the maximum warping allowed. In Figures 2A
and 2B, the effect of warping was illustrated on a
selected region of the chromatograms where the
improvement by warping was pronounced.
However, in the last part of the chromatograms,
the improvement was not that good (Figures 2C

and 2D). This misalignment was caused by larger shifts in reten-
tion time in the last part of the chromatograms and might be
addressed by modifying the COW algorithm. The chro-
matograms might be split into several segments along the reten-
tion time axis and different warping parameters used for each of
these segments.

Alternatively, misalignment may be dealt with by using RSVD,
a method that only excludes outlying elements. This means that
it was not necessary to exclude whole samples because of mis-
alignment in some part of the chromatograms because the prop-
erly aligned parts of the chromatograms are still available for
analysis.

Principal component analysis
To investigate the effect of warping on the results obtained

from PCA modelling, PCA was first applied to the mean-centered
un-aligned data set. The score plot of PC1 versus PC2, from the
model fitted to the un-aligned data, is presented in Figure 3A.
Four distinct groups appear: three groups matching the storage
period and time of analysis and one group where all samples
belong to the same storage period, measured on the same day.
Because of the experimental design, a confounding effect
between storage period and time of analysis was unavoidable; it
was, therefore, difficult to conclude if the grouping was due to
storage period or time of analysis. When looking at the un-
aligned chromatograms from samples stored for 24 months, a
clear shift in retention time between the two groups appear, indi-
cating that the clustering seen in Figure 3A was due to shifts in
retention time, rather than chemical differences between the
samples. Similar results were obtained when comparing the
chromatograms for two groups separated along PC1. In Figure
3B the corresponding score plot of PC1 versus PC2, for a PCA
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Figure 2. The effect of warping on two selected regions of the chromatograms (GC–FID of FAMEs):
before warping (A and C); and after warping (B and D). For warping, COW was used with a segment
length of 15 data points and a slack of 3 points.

Figure 3. PCA scores: PC2 versus PC1, without warping (A) and with warping
(B). The samples are marked according to frozen-storage time: 0 months (nn ),
4 months (ll) and 24 months (ss).
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Figure 4. PCA scores: PC2 versus PC1 for classical PCA (column 1: A, D, G, J, and M) and for ROBPCA (column 2: B, E, H, K, N), and PC3 versus PC2 for RSVD
(column 3: C, F, I, L, O). The chromatograms (GC-FID of FAMEs) were aligned by warping with the slack kept constant at 3 and varying segment lengths: 15 (A–C),
20 (D–F), 30 (G–I), 40 (J–L), and 45 (M–O) data points. The samples are marked according to oil type in the feed: vegetable oil (ll) and fish oil (nn ). A few “extreme”
samples are marked with filled symbols (A–C).
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model fitted to the warped data, shows two groups only. These
groups cannot be ascribed to a storage period or time of analysis,
but they correlate to changes in the fatty acids profile caused by
the different oils in the feed.

Furthermore, the loading plots for PC1 (37.6%) and PC2
(14.8%), from the un-warped data, showed complicated patterns,
with many regions resembling the first derivative. This is typical
for data distorted to a high degree by shifts in retention time (1).
The shifts in retention time not only affect the first PC but also
the subsequent components. 

Thus, it was concluded that the pattern for the unaligned data
was due to misalignments in the un-warped chromatograms
rather than to chemical differences of the samples. For a reliable
interpretation of the PCA model, alignment of the chro-
matograms is essential. 

As illustrated in Figure 3, warping the chromatograms clearly
improves a PCA, but it may be difficult to obtain optimal warping
for all samples, especially in unsupervised situations. In that
case, using robust PCA methods on the warped data may be
helpful and provide better results than does the traditional PCA
method, based, as it was, on least squares estimates. Moreover,
even with perfectly aligned data, outliers may occur because of
instrumental instability, etc. In this situation, the use of a robust
methods was also of advantage.

In the score plot of PC1 versus PC2, both from traditional PCA
and ROBPCA, clusters for each of the two treatments (vegetable
or fish oil) were observed (Figure 4, first row). For both methods,
PC1 scores discriminated between fish oil and vegetable oil,
whereas PC2 scores displayed the variance between individuals
in each group. Samples of fish fed vegetable oil were character-
ized by a high concentrations of 18:1 (n-9), 18:2 (n-6), and 18:3
(n-3), as their peaks in the chromatogram were positively loaded
in PC1, and lower concentrations of 14:0, 16:0, 16:1 (n-7), 20:4
(n-3), 20:5 (n-3), 22:1 (n-11), and 22:6 (n-3), with peaks highly
negatively loaded in PC1. The opposite results were obtained for
samples of fish feed with fish oil.

In neither of the two models (traditional PCA and ROBPCA)
was PC2 correlated to the experimental design, but this was pri-
marily due to biological variation within the groups and to arte-
facts, such as a suboptimal baseline correction. No other
groupings where found in higher order PCs. The difference in
baseline was especially pronounced for the extreme samples with
high score values in PC2 in both traditionally PCA and ROBPCA
(filled symbols).

An even better class separation was obtained with elementwise
robust PCA (Figure 4). No centering of the data was built in this
RSVD algorithm, as was the case for ROBPCA, meaning that the
first PC explained the centering of the data and was, for that
reason, not interesting. PC2 and PC3 explained 60.0% and
22.1%, respectively, of the variance when PC1 was excluded, and
these PCs are both relevant for the clustering. The same fatty
acids, as found from the two previous models, were responsible
for the clustering in Figure 4. 

The explained variance in the first PC increases with ROBPCA
77.8%, compared with traditional PCA, 69.7%. The cumulative
variance of the two components from RSVD, associated with the
clustering due to different oils in the feed, was estimated to
82.1%. The variance was concentrated in the robust models, as a

result of excluding outlying samples or outlying elements from
the modelling step leading to increased class separation and
reduced within-class variation. 

In the former paragraphs it was illustrated that for well warped
data, the results obtained with traditional PCA and ROBPCA
were fairly good, even though the result can be improved by
using the robust SVD method. Now, it will now be interesting to
compare the PCA methods with decreasing data quality to inves-
tigate how well the data need to be aligned in order to yield
acceptable results according to clustering. The data quality was
based on the explained variance for the different warping param-
eters tested, fitting a one component model (PCA) to the nor-
malized, but un-centred data (5). The slack was kept constant at
3, and the segment length was increased from 15 to 50 data
points. The explained variance for a one component model when
evaluating the warping parameters was: segment 20, 86.0%; seg-
ment 30, 84.4%; segment 40, 79.6%; segment 45, 72.4%; and
segment 50, 67.0%.

The score plots in Figure 4 illustrate the effect of reduced data
quality on the three different principal component analysis pro-
cedures. Results obtained for data warped with a segment length
of 50 data points are not displayed, as they were similar to the
results obtained with data warped with a segment length of 45
data points. A clustering according to different types of oil in the
feed was observed for all three methods for data of high quality,
although the clearest clustering was obtained with the two
robust methods. With decreasing data quality (i.e., 79.6%
explained variance and below in this case) the plot gets more
unclear regardless of which PCA method was used to analyze the
warped data. This clearly illustrates that data, and thereby the
warping, need to be of a certain quality to obtain reliable results.
The robust methods can not remedy problems with large shifts
in retention time. 

Data set 2 (GC–FID of ATDs)
Optimal warping parameters

Figure 5 shows aligned chromatograms for samples stored at
–20°C and –80°C. The profiles and the total amount of oxidation
products depend strongly on the storage temperature, as would
be expected. The number of peaks and their areas are much
higher for samples stored at –20°C than for those stored at –80°C
(The storage time was 24 months in both cases). 

The highest obtained explained variance for a one component
un-centred PCA model was 80.1%, attained with a segment
length of 20 data points and a slack of 3. In comparison, the
explained variance for a one component model of un-warped and
un-centred data was only 65.8%. 

Principal component analysis
The score values of PC1 and PC2 from both traditional PCA

and ROBPCA, as well as of PC2 and PC3 from RSVD, are shown
in Figure 6. The samples are marked according to their storage
temperature. For all three models, PC1 scores (PC2 for RSVD)
turned out to be reasonable in storage temperature. The scores
went from one sign to the other related to storage temperatures
from –80°C or –30°C to –20°C. The clearest grouping according
to storage temperature, –80°C or –30°C versus –20°C was
observed with RSVD. No big difference in PC1 scores was
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observed between classical PCA and ROBPCA. Three outlying
samples were separated from the other samples along PC2 (PC3
for RSVD). With ROBPCA, the three outliers are excluded from
the modelling step and are placed closer to the other samples.
Additionally, the variation accounted for by PC2 scores (PC3 for
RSVD) was due to variation within each storage time, reflecting
the biological variation. It was not possible to identify other pat-
terns in the data by plotting other combinations of principal
components. 

The explained variance for PC1 and PC2 was 62.1% and 19.4%,
respectively, for classical PCA and 76.3% and 11.%, respectively,
for ROBPCA, resulting in a slightly higher explained variance for
a two component model when applying ROBPCA. For RSVD, the
explained variance for PC2 and PC3 was 6.0% and 22.1%, respec-
tively. The low explained variance was a result of the presence of
the outlying samples; only the first principal component was
associated with a common variation between all samples,
whereas the following components were primarily associated
with the outlying samples. PC5 from RSVD accounted for 23.5%
of the explained variance and was only caused by the three out-
lying samples (results not shown). 

The chromatographic profiles of the three outliers were
almost identical. A comparison of the chromatograms from the
three outliers with the other samples stored at –30°C showed
that the profile from the outliers were outstanding from the

other chromatograms, with some peaks reaching higher or
lower intensities, whereas other peaks were missing or only
found for the three outliers. The full data vectors of these sam-
ples may, therefore, be regarded as outliers. This can also explain
why the robust SVD method was not able to handle these outliers
efficiently. All elements from the sample ought to be excluded,
but the method can “only” handle up to 50% outlying elements
in each data vector. The data set was not perfectly warped,
meaning that all peaks are not perfectly warped and outlying ele-
ments exists. This is why different groupings are observed

Figure 6. PCA scores: PC2 versus PC1 for classical PCA (A), ROBPCA (B), and
PC3 versus PC2 for RSVD (C). The chromatograms (GC-FID of ATDs) were
aligned by warping with a slack of 3 and a segment length of 20 data points.
The samples are marked according to storage temperature: –20°C (ss), –30°C
(ll), and –80°C (s). Three outliers (all –30°C samples) are marked with filled 
circles.

Figure 5. Chromatograms (GC–FID of ATDs) of samples stored at –20°C (A)
and –80°C (B). 
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between ROBPCA and RSVD in the actual situation: in ROBPCA,
the entire sample is excluded from the modelling step, leaving
out the three outliers completely and thereby assigning PC2 to
another, perhaps more interesting, variation.

Conclusion

In designed experiments where one looks at a whole set of
chromatograms at a time, multivariate data analysis is a useful
alternative to classical peak selection and area calculation proce-
dures. Alignment of the chromatograms is necessary and may, to
a large extent, be done by automatic procedures. In situations
where only suboptimal alignment is obtained, or other situations
where outlying measurements occur (e.g., because of bad base-
lines or errors in sample amount injected) robust algorithms are
to be preferred in order to keep the outliers from severely inter-
fering with the multivariate models. Situations where only some
part of the chromatograms are not properly aligned are best dealt
with by using element-wise robust methods (e.g., RSVD). When
the outliers are due to features throughout the chromatogram,
sample-wise robust methods (e.g., ROBPCA) perform the best.
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Abstract

First and second order Rayleigh and Raman scatter is a common problem when fitting Parallel Factor Analysis (PARAFAC) to fluorescence
excitation–emission data (EEM). The scatter does not contain any relevant chemical information and does not conform to the low-rank trilinear
model. The scatter complicates the analysis instead and contributes to model inadequacy. As such, scatter can be considered as an example of
element-wise outliers. However, no straightforward method for identifying the scatter region can be found in the literature. In this paper an
automatic scatter identification method is developed based on robust statistical methods. The method does not demand any visual inspection of the
data prior to modeling, and can handle first and second order Rayleigh scatter as well as Raman scatter in various types of EEM data. The results
of the automated scatter identification method were used as input data for three different PARAFAC methods. Firstly inserting missing values in
the scatter regions are tested, secondly an interpolation of the scatter regions is performed and finally the scatter regions are down-weighted. These
results show that the PARAFAC method to choose after scatter identification clearly depends on the data, for example signal to noise ratio and
overlap between signal and scatter.
© 2006 Elsevier B.V. All rights reserved.
Keywords: Raman and Rayleigh scatter; Automated method; Robustness; ROBPCA; PARAFAC; Fluorescence
1. Introduction

Fluorescence spectroscopy is a fast, non-destructive tech-
nique with high sensitivity and specificity for providing
information (quantitative and qualitative) about fluorescent
molecules and their environment in a wide variety of biological
materials. In fluorescence excitation–emission spectroscopy,
each sample is measured by the excitation of the sample at
several wavelengths and measuring the emitted light at several
wavelengths. The result of such a measurement is an ex-
citation–emission matrix (EEM). When several samples (I) are
measured the data can be arranged in a three-way array, X
(I×J×K), where j=1, …, J and k=1, …, K represent the
emission and excitation mode respectively. Parallel factor
analysis (PARAFAC) [1,2] is a widespread method for
⁎ Corresponding author.
E-mail addresses: sanne.engelen@wis.kuleuven.be (S. Engelen),

sfr@dfu.min.dk (S.F. Møller), mia.hubert@wis.kuleuven.be (M. Hubert).

0169-7439/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.chemolab.2006.08.001
modeling such fluorescence excitation–emission landscapes
(see e.g. [3–8]). PARAFAC decomposes the fluorescence data
into trilinear components according to the number of fluor-
ophores (F) present in the samples. The structural model can be
described as

xijk ¼
XF
f¼1

aif bjf ck f þ eijk

where xijk is the intensity of sample i at emission wavelength j
and excitation wavelength k, and where aif, bjf and ckf are
parameters describing the importance of the samples/variables
to each component f. The residual eijk contains the variation not
captured by the PARAFAC model [9]. For approximate low-
rank trilinear data the relative concentrations of analyte f and
pure analyte spectra from fluorescence measurements of
chemical analytes in mixtures can be extracted, when the cor-
rect number of components, equal to the number of fluor-
ophores present in the data, is used.
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A common phenomenon, and problem, when fitting
PARAFAC to an excitation–emission matrix, is the light scatter
effects, such as Raman and first and second order Rayleigh
scattering [10–12]. In an EEM-landscape the scatter can be
typically found as depicted in Fig. 1. This scatter is due to a
physical process, which happens when light passes through
some kind of medium, like e.g. water. As such, the scatter
contains no chemical information and does not conform to the
low-rank trilinear model. Therefore it will probably give a
model inadequacy, influencing the estimated model parameters
[10,12]. Different proposals of how to handle these scatter
effects, can be found in the literature; subtracting a standard
[13,14], down-weighting the scatter [15–17], inserting missing
values [9], avoiding the part containing scatter [4], inserting
zeros outside the data area [11] or interpolating the scatter area
[18,19]. Unfortunately, all of the proposed methods seem to
have some drawbacks. Some of them can only be used in special
cases. Others give rise to unacceptable decomposition of the
spectra, affect the convergence of the PARAFAC algorithm or
are computational cumbersome [10–12]. A common problem is
the visible inspection of the data before the methods can be
applied. This makes it difficult to perform all these methods on
several data sets at once. It even becomes harder to reduce the
effect of scatter when the signal and scatter are overlapping,
which is often the case.

In this chapter, we present an automated scatter identification
tool using robust statistical methods. Robust statistics overcome
badly modeled data due to outliers, i.e. samples that deviate
much from the majority of the data points. It is well known that
estimates based on a least squares condition are corrupted by
outliers in a sense that the models explain the outliers very well,
but fit the majority of the data poorly. A lot of research has been
done the last decades to adapt known algorithms or to create
new ones that can cope with such anomalous observations. For
instance in the context of principal components analysis (PCA),
the least squares model can be heavily influenced by already
one single outlier. Therefore, different robust PCA methods are
Fig. 1. Raman and Rayleigh scatter in an EEM landscape.
developed. Among them are the Reflection based Algorithm for
PCA (RAPCA) [20] and the Robust PCA (ROBPCA) procedure
[21].

The output of these robust multivariate methods is two-fold.
Firstly, the provided model fits the majority of the data and is
stable in the presence of anomalous points. Secondly, each
sample is marked as a regular observation or an outlying point
for the concerned model, making all these robust procedures
useful as outlier identification methods.

An outlying sample can have abnormal values for one or
several variables, or it might be deviating from the majority of
the samples for almost all of its variables. In three-way data, the
latter situation implies that the whole sample landscape is highly
different from the others. But outlying values (elements) can
also occur in many or all samples. This element-wise con-
tamination often occurs in multi-way data. A typical example is
scattering which affects all samples, and which gives rise to
many unexpectedly high values, certainly compared to the other
values in the neighborhood.

The correction towards both types of outliers is highly
recommended for the PARAFAC model, as an alternating least
squares algorithm is used to estimate the scores and loadings
[9]. For that reason, the algorithm breaks down when the three-
way data contain outlying samples or/and outlying elements.
However, a traditional approach, such as the element-wise L1-
approach, suggested by [22], for handling outlying elements in
combination with scattering will not work well (results not
shown). In this L1-approach, PARAFAC estimates are found by
minimizing the L1-norm of the residuals instead of the
Frobenius norm. This approach would even often lead to dis-
carding chemical information, while keeping the scatter in. Also
the robust PARAFAC method for outlying samples proposed in
Ref. [23] cannot handle three-way data with scattering. The
major problem with scattering is that it is a systematic cor-
ruption of the data within a sample and situated for all the
samples in more or less the same area. Randomly placed
outlying elements would be easier to handle, but for data sets
with systematic deviating parts, it is even not trivial to find for
instance robust initial loadings. Nevertheless, robust techniques
can still be used in a less conventional way as outlier detection
tools to establish an automated identification of the scattering.
We focus on ROBPCA, because it can handle high-dimensional
two-way data and it is an excellent tool for outlier detection.
Moreover, in Ref. [21] it is shown that ROBPCA outperforms
several other robust PCA methods, such as projection pursuit
techniques (e.g. [24,20]) and spherical and elliptical PCA [25].

In the following section we elaborate on this ROBPCA
algorithm together with the automated search-engine for
element-wise outliers in the form of scattering. Then, we assess
the proposed procedure using two laboratory-made data sets in
Section 3. The first one is a well-known standard data set,
whereas the second one contains highly overlapping compo-
nents and impurities. Finally, in Section 4 we apply the
technique on two real-life examples, where in the first case the
algorithm is evaluated for really noisy data. The second data set
also is challenging, as the scattering and the signal are very
difficult to separate.



Fig. 2. A visualization of the scattering in three-way data (A) sliced in (B) the
first modes, (C) the second mode and (D) the third mode. The grey line
represents the scattering.
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All used programs are written in MATLAB. Most of them
concerning the robustness are available in the LIBRA toolbox
[26], which can be downloaded from http://www.wis.kuleuven.
be/stat/robust.html. The programs handling multi-way data are
available in the PLS-toolbox [27].

2. The automated scatter procedure

The proposed method for automated scatter identification is
based on ROBPCA [21]. ROBPCA prevents the corruption of
the principal components by outliers through a combination of
robust subspace estimation (based on projection pursuit tech-
niques) and the Minimum Covariance Determinant (MCD)
estimator [28] for robust covariance and center estimation. A
crucial step in ROBPCA and in the MCD procedure is the
search for an outlier-free subset of size h, which will then be
used for parameter estimation. The value of h lies between half
the number of samples and the total number of samples, n. The
higher h, the more accurate, but the less robust the algorithm
will be, and vice versa. The default value of h is equal to
⌊0.75n⌋, which often ensures a good compromise between
robustness and efficiency.

In the first step of ROBPCA, a preliminary PCA has been
performed, such that all the data points are projected in their
own space. This means a large dimension reduction for high-
dimensional data sets. Secondly, a measure for how far a data
point lies from the majority of the other samples, called the
outlyingness, is defined for all samples. A further dimension
reduction is then obtained by representing all the observations
in the space spanned by the d dominant eigenvectors of the h
points with smallest outlyingness, with d being the number of
principal components to retain. In the next step a reweighted
MCD procedure is performed, which provides a robust center
and covariance matrix of the d-dimensional data. The principal
components are determined as the eigenvectors belonging to the
d largest eigenvalues of this covariance matrix. Finally, they are
back-transformed to the original data space.

Outlier identification with ROBPCA is obtained by con-
sidering two distances for each observation. The orthogonal
distance of an observation is defined as the distance between the
point and the subspace spanned by the principal components.
The second distance, the score distance, can be obtained by
computing a robust, Mahalanobis-type distance in the space
spanned by the principal components of an observation to the
center of the data. If one of these two distances exceeds a certain
cut-off value, a sample is flagged as an outlier and receives a
zero weight. Other observations obtain a weight equal to 1. The
cut-off value for the score distance is based on the assumption
that the projected data are normally distributed. As such, the
score distances are approximately χ2-distributed and the 97.5%
quantile of this distribution is taken as cut-off value for the score
distances. On the other hand, it can be proven that the or-
thogonal distances to the power 2/3 are approximately normally
distributed ([29,30]). The 97.5% quantile of the normal dis-
tribution to the power 3/2 is therefore taken as cut-off value for
the orthogonal distances. For more information on the cut-off
values, we refer to Ref. [21]. Hence, a weight vector is given as
an extra output when applying ROBPCA, which determines
whether a point is an outlier or not.

To elaborate on the construction of the automated scatter
identification method, we first remark that the ROBPCA
method can only be performed on two-way data matrices,
which should be extracted from three-way data like EEM. In
Fig. 2 the considered two-way matrices are illustrated. If there is
scattering present in the three-way data, it can be found in each
observation as shown for example in Fig. 3. By slicing these
data along the sample mode, the scattering is situated in one or
more diagonal lines in each sliced observation (see Fig. 2B).
This is a problem for ROBPCA, as the scattering might corrupt
all or at least a large majority of the variables (element-wise
corruption).

On the other hand, slicing the three-way data along the B- or
C-mode establishes useful two-way matrices, in which the
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Fig. 3. Example (Sample 4) of a full excitation–emission landscape obtained
from the fluorescence measurement. The 1st and 2nd order Rayleigh ridges are
clearly seen as diagonal ridges. The 1st order Rayleigh scatter ridge to the right
is situated at the diagonal where excitation and emission wavelengths are equal.

Table 1
A schematic overview of the scatter identification algorithm

1. For the data sliced along the B-mode:
• For each j=1, …, J:

– Perform ROBPCA on X(:, j, :)′
– Store the weights wB,j (1×K)
– Create the jth row of WB:WB(j, :)=wB,j

• Convert WB to WB: WB(i, :, :)=WB for each i=1, …, I
2. For the data sliced along the C-mode :
• For each k=1, …, K :

– Perform ROBPCA on X(:, :, k)′
– Store the weights wC,k (1×J)
– Create the kth row of WC : WC(k, :)=wC,k

• Convert WC to WC: WC(i, :, :)=WC′ for each i=1, …, I
3. Define the final weights wi,jk=max(WB(i, j, k),WC(i, j, k))
for each i, j and k.
4. Turn isolated zero-weights back to 1.
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scattering is situated in columns for some of these matrices. So,
by applying ROBPCA on the transpose of the sliced matrices in
the B- and C-mode leads to the identification of the scattering,
because the scattering is now manifesting as an outlying row in
the considered two-way matrices (see Fig. 2C and D).

Thus, in the first step of the identification algorithm,
ROBPCA is applied on the transpose of each matrix obtained
by slicing the data along the emission mode, noted by X(:, j, :)
for the jth slice. So for each j=1, …, J, a weight vector wB,j is
created which assigns 1 to a column of X(:, j, :) that is a regular
point and 0 to an outlier. All the weight vectors are stored in a
(K×J) weight matrix WB.

In the second step of the algorithm, the same is done for the
matrices obtained by slicing the data along the excitation mode,
which is X(:, :, k) for the kth excitation wavelength. Again, a
weight vector wC,k is obtained for each k=1, …, K analogously
as for wB,j and the (J×K) weight matrix WC is constructed.

In the next step, both weight matricesWB andWC are
converted to (I×J×K) weight arrays WB and WC, by repeating
WB and WC for each sample and permuting the dimensions of
both arrays. Taking the same weight matrices for each ob-
servation is justified because the scattering is present in the
same area for all observations.

Now, we have two weights wB,ijk and wC,ijk from WB and
WC respectively for each data element xijk. The next step
consists of merging both weights such that each data element
has only one corresponding weight wijk. This weight wijk finally
defines whether the data element is outlying or not. We take the
maximum of both weights wB,ijk and wC,ijk to obtain the final
weight wijk=max(wB,ijk,wC,ijk). This means that a weight wijk is
still assigned a value of 1 or 0. Other weighting schemes have
been tested, by substituting the minimum instead of the
maximum and a smoother version, where values between 0
and 1 are allowed. But the minimum weights nor the smoother
weights work well (the results are not included). Mostly they
succeed in identifying the scattering, but too much of the signal
is also omitted, which leads to inaccurately estimated
PARAFAC parameters. The reason that the maximum weight
works well to identify scattering, is that scattered elements are
outliers that appear in both modes. By taking the maximum,
points that are outliers in both modes are only marked as
deviating samples for the whole data. So the maximum operator
gives the best balance between finding the scattering, without
indicating too much of the signal as being outlying.

A final step in the algorithm is turning isolated weights that
are assigned a value of 0, i.e. weights that are not surrounded by
other zero weights, back to 1, as these are not indicating
scattering, but parts of the signal.

Note that when applying ROBPCA for each j=1, …, J and
each k=1,…, K, it should be determined how many components
d are retained. In principle, this should be done J+K times by
employing common tools such as the scree-plot (see e.g. [31])
or the robust PRESS-curve ([32]). However, this is not
advisable here, as this would require many user inputs and
hence would result in a highly non-automated method. We thus
advice to choose a fixed value d. This has the additional ad-
vantage that the sliced data sets X(:, j, :)′ and X(:, :, k)′ are all
investigated on outliers towards a principal components space
of the same dimension. From our experience, this optimal
dimension d lies between 3 and 10. When decreasing d below
3, too many information in the data can be lost, which can lead
to not-identified scatter areas. This should be avoided at any
time. A too large value of d on the other hand, results in
flagging smaller parts of the signal as outlying. This is not a
major problem, but it also leads to a computationally more
cumbersome ROBPCA algorithm. In our examples of Section 3
and Section 4, we have compared the marked scatter areas for d
ranging from 1 to 10. All the results were comparable from d=3
to 10 components for large enough data sets. However, when J
or K are really small, d should be taken large enough, such that
the signal and the scatter can still be separated by ROBPCA.
Taking all these results into consideration, we have set d=10 by
default.

To summarize, the proposed method, for which a schematic
overview can be found in Table 1, flags areas in the data that are
considered as outliers in an automated way, i.e. without visual
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inspection of the data. To find the final parameter estimates by
PARAFAC, the approaches mentioned in the introduction can
be performed. One of them is inserting missing values in the
areas that obtained a weight wijk=0. Another option is to
estimate the values in the outlier area by means of interpolation
[19]. A third possibility to estimate the PARAFAC loadings can
be found in fitting the weighted PARAFAC model of Refs.
[17,15], where the weights are equal to wijk. As we are working
with fluorescence data which should be strictly positive, non-
negativity constraints are used in all modes during this study.

To assess the proposed scatter identification method, we
apply it on different kinds of data. We focus on how well the
scattering is reduced from the data and how well the signal is
preserved with the automated method. Moreover, we investigate
the performance of the automated technique in combination
with the missing values, the interpolation and the weighted
PARAFAC option. The laboratory-made data sets are treated in
Section 3 and the environmental data sets are analyzed in
Section 4.
Fig. 4. Left: emission loadings from a four component PARAFAC model, fitted to
loadings from a four component PARAFAC model, fitted to the full Dorrit data set.
3. The analysis of laboratory-made data

3.1. Dorrit data

The method was tested on fluorescence data, containing
mixtures of four known fluorophores [33,34]. The four
compounds are phenylanaline, 3, 4-dihydroxyphenylalanine
(DOPA), 1, 4-dihydroxybenzene and tryptophan. For every
sample an excitation–emission matrix was obtained by
measuring the emission spectra from 250 to 482 nm at 2 nm
intervals, with excitation at every 5 nm from 200 to 315 nm on a
Perkin-Elmer LS50 B fluorescence spectrometer.

For both excitation and emission the scan speed was
1500 nm/min. The excitation from 200 to 230 nm and the
emission below 250 nm was excluded from the analysis since it
is highly influenced by the condition of the xenon lamp as well
as by the physical environment and mainly contained missing
elements [33]. From previous investigations [33,34], we know
that four components are appropriate and that four EEM
the Dorrit data set where scatter has been manually removed. Right: emission
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landscapes can be considered as outliers. Since a classical
PARAFAC algorithm is applied on the data after removing the
scatter, outlying samples will corrupt the final results. More-
over, the focus in this paper is to put on testing the removal of
scatter, considered as being in the form of element-wise outliers,
not whole samples. In Ref. [23], an algorithm to deal with
outlying observations is proposed, but this method is not able to
withstand the effects of scattering. Handling both types of
outliers together, is a challenge for future research. For now,
these four observations are therefore removed from the data set.
The data set then consists of 23 samples, 18 excitation wave-
lengths and 116 emission wavelengths, and will in the following
be referred to as the Dorrit data.

An example of a full excitation–emission landscape obtained
from the fluorescence measurements is illustrated in Fig. 3. The
Rayleigh scatter can clearly be seen as diagonal ridges. The
scatter seems to be well separated from the chemical signal and
no Raman scatter is observed. This is the case for all samples in
the Dorrit data set. Therefore this well-known data set appears
to be perfect for illustrating the properties of the proposed
method for automatic scatter removal.

The emission and excitation loadings from a four com-
ponent PARAFAC model, fitted to the data set where scatter
has been manually removed is shown in Fig. 4 (left). This
Fig. 5. The emission profiles of the fourth sample of the Dorrit data for the 18 e
method is based on removing the Rayleigh scatter by inserting
a mixture of missing values and zeros. The loadings have a
reasonable shape resembling the pure spectra of the four
fluorophores. The emission and excitation loadings for the
original data set will appear as illustrated in Fig. 4 (right).
When comparing the emission loadings from the two models,
it is clear that the highest peak in the model fitted to the data
with Rayleigh scatter is wrong and caused by the scatter. Also
the excitation loadings are not fitted accurately. This clearly
indicates that the Rayleigh scatter needs to be removed to
obtain a good model.

The identification of the scatter by our automated method
performs very well as illustrated in Fig. 5, where the emission
profiles of sample 4 for the 18 excitation wavelengths are
shown. The elements flagged as outliers by the algorithm are
marked with dots on the X-axis. The scatter corresponding to
2nd order Rayleigh is clearly identified for the first 3 excitation
wavelengths (3 first plots) and from excitation wavelength
259 nm on the regions according to the 1st order Rayleigh
scatter are clearly identified. The successful detection of
Rayleigh scatter in the remaining samples performs likewise
(results not shown).

The three different PARAFAC algorithms; replacing with
missing values, interpolation and weighting, were then applied
xcitation wavelengths. The regions identified as scatter are marked by dots.



Fig. 6. Four component PARAFACmodels ((above) missing, (middle) interpolation, and (below) weighted) fitted to the Dorrit data where the scatter has been detected
by the automated method. The left column correspond to emission mode loading and the right column to excitation mode loading.
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Fig. 7. The emission profiles of sample no. 20 from the fluorescence data at
excitation wavelength 255 nm where the scatter region is correctly identified
(left) and the emission profile at excitation wavelength 310 nm where not the
whole scatter region is identified (right).

Fig. 8. The emission profiles of sample 20 from the fluorescence data excitation
wavelength 295 nm (left) and 300 nm (right), respectively, showing wrongly
identification of the chemical signal as outlying.
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to the data set in combination with the information about out-
lying elements.

The emission and excitation loadings obtained with the three
different PARAFAC algorithms are shown in Fig. 6. The three
tested algorithms have in common that both emission and
excitation loadings are almost identical with the pure spectra of
the four fluorophores. This clearly indicates that the automated
method for identifying scatter has worked perfectly in marking
both 1st and 2nd order Rayleigh scatter, which results in fairly
good PARAFAC models. No obvious differences are observed
between the three tested PARAFAC algorithms.

3.2. Fluorescence data

This data set, called Fluorescence data, consists of 35 sam-
ples of a larger data set consisting of 405 samples, built by
experimental design [35,36]. The Fluorescence data is made
from five known analytes; catechol, hydroquinone, indole,
tryptophane and tyrosine, with two to five analytes present in
each sample varying in concentration. These data were chosen
on the basis of closeness to the 1st order Rayleigh scatter line
and their overlap in both emission and excitation spectra. The
prepared samples were measured on a Varian Eclipse Fluo-
rescence Spectrometer with slit widths 5 nm (for both emission
and excitation), emission wavelengths 230–500 nm (recorded
every 2 nm) and excitation wavelengths 230–320 nm (recorded
every 5 nm), and a scan rate at 1920 nm/min. The sample was
left in the instrument and was scanned five consecutive times
but only the first measurement is included in this analysis. From
the experimental set-up it is known that Catechol contains some
impurities, and thus gives rise to an extra component in the data
sets. This means that the PARAFACmodel should be fitted with
6 components. Furthermore, overlapping emission and excita-
tion profiles [36] might make the modelling part hard and not as
simple as for the Dorrit data in the previous section.



Fig. 9. The emission (left) and excitation (right) loadings for the fluorescence data from 6 components PARAFAC model for the missing algorithm (above), the
interpolation algorithm (middle), and the weighted algorithm (below).
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A standard, containing only the solvent, exists for this data
set. By subtracting this from all other samples the Raman scatter
line and possibly the Rayleigh scatter line can be removed or at
least reduced [12]. This is not done here since the purpose of this
study is to test the possibilities of removing all kinds of scatter by
the automated scatter removing method proposed within.



Fig. 11. The emission (left) and excitation (right) loadings of the North Sea data
obtained by the classical PARAFAC algorithm.

Fig. 10. The 10th sample of the North Sea data with very severe Raman and first
order Rayleigh scattering. The highest peak corresponds to the Rayleigh
scattering, the smallest to the Raman scattering.
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The automated scatter identification method with 6 compo-
nents was applied on the data set. The scatter region is almost
always indicated by the method (Fig. 7, left) but sometimes not
the whole scatter region is left out (Fig. 7, right). This means that a
small part of the scatter is still left in the data set, and consequently
included in further computations. This failure of not finding the
edges of the scatter region is due to the maximum operator to
obtain one weight wijk. For the data sliced along the C-mode,
ROBPCA flags the whole scatter peak as being outlying together
with a large part of the signal. But for the sliced data in the B-
mode, the scattering appears rather small compared to the signal.
The scatter is still found as an outlier by ROBPCA, but the edges
are not deviating any more and thus not identified. Taking the
maximum over the weights wijk,B and wijk,C finally results in a
weight wijk=1 for the edges of the scatter area. The problem will
not be solved by taking another operator than the maximum, like
e.g. the minimum or smoother weights, as too much of the signal
will be omitted then. A better alternative is to enlarge the indicated
regionwith a certain number of zeros. However, we have not done
this in this example, because the included scattering is rather small
and adding zeros comprises also a greater loss of the signal.

Furthermore, another problem turned up here. A part of the
chemical signal is sometimes wrongly identified as scattering as
shown in Fig. 8. This is caused by the general property of robust
methods that the majority of the data determine the final
estimates. In this example, for some wavelengths the investi-
gated data contain more than 50% low-value profiles, i.e.
profiles that contain no signal, nor scatter. This means that the
scatter and also the signal is seen as highly deviating. But, this is
only happening for wavelengths 230 nm, 235 nm, 290 nm,
295 nm and 300 nm. Thus only a small part of the chemical
signal is deleted. As such, enough signal is left to estimate the
loadings correctly and again no changes to the algorithm are
made to circumvent this problem.

The estimated excitation and emission loadings when fitting
6 components PARAFAC models in combination with the
information from the automated scatter identification method to
the Fluorescence data set are illustrated in Fig. 9.
For the missing and weighted algorithms the estimated
excitation and emission profiles are in accordance with profiles
of the pure spectra (Fig. 9 (first and last row)). The interpolation
algorithm has some problems in both the excitation and
emission mode (Fig. 9, second row). The component indicated
by the grey dashed–dotted line is due to the impurities in the
samples containing catechol. The results obtained with these
data show that even small inaccuracies in identifying the scatter
regions, will establish a good PARAFAC model at the end,
when using missing values or the weighted PARAFAC version.
The interpolated PARAFAC on the other hand has some
problems which is due to the not completely removed scatter,
that still causes a small peak in the interpolated data.

4. Examples

Data created in a laboratory provide an excellent platform for
testing newly developed methods, because estimates can be
compared to a priori information. But it is also interesting to
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assess new techniques on environmental data, to find out how
well the method can cope with extra difficulties on top of the
scattering problem typical for real-life data, such as e.g. noise.
Therefore the automated scatter identification algorithm is
carried out on the following two examples.

4.1. North Sea data

The 37 samples of the North Sea data, which are kindly
provided by Colin A. Stedmon (personal communication), re-
flect the fluorescence of dissolved organic matter (DOM) of
water of the Dogger bank in the North Sea. Measurements were
taken with a Varian Eclipse fluorescence spectrophotometer
from 2 vertical profiles at 5 m depth intervals. The excitation
wavelengths range from 240–450 nm every 5 nm and the
emission wavelengths from 240–600 nm each 2 nm. This
results in a (37×181×43) data cube. No pre-treatment on the
data has been carried out, besides a correction for instrument
specific effects and a Raman calibration (see [7]). As no blank is
subtracted from the samples, severe Raman and Rayleigh
scattering are present in all the fluorescence measurements.
Moreover, some artifacts could be distinguished in the first 39
emission wavelengths. As we focus on removing scattering
effects, we delete these artifacts before analysis. This leads to a
Fig. 12. The emission profile of the ninth observation of the
(37×142×43) data array. It is also known that the signal to
noise ratio of the measurements is very low, which means that
we have to deal with really noisy data. An EEM landscape is
shown in Fig. 10. The scattering is so strong that the relevant
signal cannot be distinguished. A classical PARAFAC analysis
therefore fails in estimating useful loadings (see Fig. 11).

A split half and residual analysis on the data, obtained after
subtracting a blank and after removing manually the scatter, was
performed by Colin Stedmon (pers. com.) and indicated that 5
components were suitable for modeling the data. No outlying
samples were present in the data.

In Fig. 12, the emission profiles of sample 9 for the first 20
excitation wavelengths are shown. In the first 9 plots, there is no
scattering present and only small parts of the signal are marked
as being outlying. For the other graphics, the scattering is left
out in all cases together with minor parts of the signal. So, the
identification of the scattering is performed really well by the
automated method.

We use the information about the scatter region and perform
the PARAFAC algorithm on the data with missing values instead
of outlying elements. We have decreased the stop criterium to
10−10 to obtain stable PARAFAC estimates in this very noisy
data set. The resulting excitation and emission loadings are
depicted in Fig. 13 (first row). The emission loadings seem
North Sea data for the first 20 excitation wavelengths.



Fig. 13. The emission (left) and excitation (right) loadings for the North Sea data using missing values (above), interpolation (middle) and weighted data (below).
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chemically relevant, except perhaps the dashed grey loading,
that is quite noisy. This is the effect of a high noise level in the
data rather than of the scattering.
Furthermore, we also applied the classical PARAFAC algo-
rithm on the interpolated data with the same constraints as for
the missing values. We end up with emission and excitation



Fig. 15. The emission profile of the third observation of the Kauai data for
excitation wavelength 275 nm (left) and 290 nm (right).

Fig. 14. The third observation of the Kauai data, before the artifacts are removed.
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loadings of Fig. 13 (second row). The difference between these
loadings and the one estimated by inserting missing values, is in
contradiction with the unique property of PARAFAC, which
states that a unique solution is provided under mild conditions
[37]. An explanation for this discrepancy can be given by the
different approximations of the final data on which the
PARAFAC model is applied. While missing values discard
certain issues present in the data, the interpolation technique fits
an approximate value. This leads to quite different data elements
at certain areas in the final data set and hence at different
estimated loadings. On the other hand, the obtained loadings
with the interpolation technique are comparable to the one
depicted in Ref. [19], which is not surprising as in Ref. [19] a
similar interpolation technique is used. Because this is real-life
data, it is not known a priori which should be the correct
loadings. So, both solutions are possible, and we cannot favor
one above the other.

Finally, the weighted PARAFAC is carried out and the re-
sulting loadings can be found in Fig. 13 (last row). It is obvious
that this procedure has broken down because of the scattering.
The three loadings with a narrow, but high peak, are fitting the
scattering instead of chemically relevant information. The
reason why this method failed is a combination of a non-robust
initialization of the loadings and too heavy scattering, such that
the starting point of the iterative loops in the alternating least
squares PARAFAC algorithm, is taken too far from a possible
solution.

4.2. Kauai data

The Kauai data, which was kindly provided by the
Smithsonian Environmental Research Center in Maryland,
USA, consists of 130 seawater EEMs. Of these, 53 were obtained
from the ballast tanks of the container shipMVKauai and 77were
obtained from the Pacific Ocean during the vessel's cruise
between Oakland (CA)–Honolulu (HI) and Seattle (WA) in June
2003 [38]. CDOM analysis by excitation–emission matrix
spectroscopy (excitation, 240–455 nm in 5-nm intervals;
emission, 290–600 nm in 2-nm intervals; 5-nm bandwidths on
excitation and emission modes) was performed using a spec-
trofluorometer at the University of Maine, USA, using a SPEX
FluoroMax-2.

Each EEM from the Kauai Dataset consisted of 156 emission
wavelengths and 48 excitation wavelengths. As for the Dorrit
dataset, the first 4 excitation wavelengths were deleted prior to
modeling. In addition, data from the last 26 emission wave-
lengths (EmN518 nm) were ignored since these were domi-
nated by a spurious signal propagated from intense protein-like
fluorescence near λex/λem=270/300 nm. This resulted in a
signal at identical excitation but twice the emission wavelength
of the actual fluorescence (λex/λem=275/600 nm; see Fig. 14).
Thus modeling was performed upon a (130×130×44) element
data array.

First order Rayleigh scatter and first and second order Raman
scattering are clearly evident in the data (Fig. 14). Fig. 15 shows
the emission profile of the third observation for the 275 nm and
290 nm excitation wavelength. For the 275 nm excitation
wavelength, the right peak is due to the Rayleigh scattering,
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whereas the peak on the left consists partially of the signal and
partially of the Raman scattering. The same occurs for the
290 nm excitation wavelength and most of the other wave-
lengths. Consequently, it is difficult to determine the extent of
the scatter region from visual inspection of the data.

From a split half analysis on the data after removing scatter
with the interpolation technique of Ref. [18], 6 components
should be used in the PARAFAC model. Moreover, no outliers
could be distinguished in the data.

Preliminary identification of scatter regions before further
analysis of the data, was therefore conducted with 6 components.
In Fig. 16 the results of the automated scatter identification
algorithm can be seen for the first 12 emission profiles of ob-
servation 8. The remaining emission profiles of observation
8 gave similar results and are therefore not included.

We see from all these figures that the Rayleigh scattering
is captured in the set of the outlying elements. The Raman
scattering is indicated for each excitation wavelength, although
it is not completely removed, which is caused by the presence of
more than 30% zero elements in the Kauai data. The input data
sets for the ROBPCA procedure in the automated algorithm
therefore contain sometimes more than 50% zero rows, which
makes it impossible to identify the scatter accurately. This
problem is inherent for the Kauai data and cannot be solved by
changing the proposed automated technique. Since, at least all
the scatter area have partially been detected, we have decided to
enlarge the marked outlier regions with two elements at both
Fig. 16. The emission profiles of the observation 8 of th
sides, to be sure that the scattering will not corrupt the final
PARAFAC estimates. Small parts of the signal will conse-
quently also be removed. We have depicted results for obser-
vation 8 in Fig. 16, as it was one of the samples for which the
remaining scatter area was the largest. For most of the other
samples, this effect is more reduced, where even for some of
them, the scattering was almost totally eliminated before the
enlargement of the outlier area.

Finally, the PARAFAC model with non-negativity con-
straints is built for the data with missing, interpolated and down-
weighted values. The emission (left) and excitation (right)
loadings are placed in Fig. 17. It seems that imputing missing
values where outliers are marked, did not perform well, because
of the strange emission loading (the full grey one) and the
excitation loading with two sharp peaks (the full grey one). The
profile of the excitation loadings is due to the missing area
going straight through the first large signal peak, which causes
a split of 1 signal peak in 2 sharp peaks. For the emission
loadings, the area for large emission wavelength containing
only missing values or almost zero values, is to blame. What-
ever is estimated as loading values instead of the missing
values, it will always have no effect in the final model, as it is
multiplied by very low values. This results in the narrow, but
high peak at the end of the concerned emission loading. Al-
though the model estimates are thus not correct, it is not caused
by the scattering. The missing algorithm fails because of
omitting crucial data parts.
e Kauai data for the first 12 excitation wavelengths.



Fig. 17. The emission (left) and excitation (right) loadings of the Kauai data for a PARAFAC model with 6 components using missing values (above), interpolation
(middle) and weighted data (below).
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For the interpolated Kauai data, the estimated loadings for a
6 component PARAFAC model are depicted in Fig. 17 (second
row). Here, the scattering is out of the model. However, the
estimated loadings are not exactly the same as the one obtained
in Ref. [38]. A reason can be found in a different approximation
of the data, due to other interpolation techniques applied on
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other sets of data elements, as the scatter areas are marked using
two different approaches.

The results of the weighted PARAFAC are shown in Fig. 17
(last row). The loadings are not good, they try to fit the scat-
tering and not only the chemical information. The same reasons
as for the North Sea data cause this break down of the model
and again confirm that the weighted PARAFAC model is not
optimal to use for highly scattered data.

5. Discussion and conclusions

Despite different existing methods for excluding scattering
effects when modeling fluorescence data by PARAFAC, no
method for disregarding scattering automatically can be found
in the literature. In this article we have established an automated
scatter identification method which is based on ROBPCA. The
method does not demand any visual inspection of the data.
The evaluation of the proposed method clearly shows that the
method always succeeds in finding the scatter regions both
concerning Rayleigh (1st and 2nd order) and Raman scatter,
without marking too much of the signal, due to chemicals under
investigation, as outlying. However, smaller parts of the scat-
tering are sometimes hard to detect depending on the data
complexity e.g. noise and overlap between scatter and chemical
signal. This means that scatter might be included to a minor
extent in the PARAFAC modeling step, but also smaller part of
the chemical signal might be flagged as outlying and thereby
excluded from the analysis.

Nevertheless, this seems not an invincible problem for
estimating the final PARAFAC estimates. The three tested
PARAFAC methods after removal of the scattering work for the
cases they can handle. This means that for the data with the
missing values a fitting problem is only encountered when the
signal and the scatter coincide too much, such that essential
information vanishes. Secondly, classical PARAFAC applied on
interpolated data also performs well, but it is the most subject to
the parts of the scattering that are not flagged as outlying.
Finally, down-weighting the outlying elements is also a good
option, provided that the scattering is in the region of the signal.
For too severe scatter, this technique is not useful and actually is
the least robust of the three investigated procedures.

We only have considered data sets where the number of
components has been known before analysis throughout this
paper, because the identification of scatter was the major
concern. However, when the optimal value for F is not known,
which is mostly the case for real-life data, the following ap-
proach could be followed to determine the scatter and F. Start
with an initial guess for the number of components. In the next
step, identify and remove the scatter in the data. Then, use
existing techniques (like e.g. a split half analysis) to define F on
the data without the scatter. Finally, identify again for the known
value of F the scatter automatically. This approach is justified,
because the scatter is not highly dependent on F, as we have
already discussed earlier in Section 2.

Remark that the proposed method cannot cope with outlying
samples yet.A fully robust procedure handling both sample outlier
identification and scatter identification is under development.
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