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Summary

Over the past years, nuclear magnetic resonance (NMR) spectroscopy has
been increasingly used in food science and more recently, NMR based
metabonomics has emerged as a field of great importance not only to medical
scientists but also to nutrition scientists. The advantages of NMR
spectroscopy are that the technique is non destructive, fast and requires in
most cases limited sample preparation and above all, NMR spectra provide
detailed analytical profiles from the intact biological matrix. The NMR
spectra are highly informative because 1H NMR spectra show proton signals
of all constituents in a complex mixture. NMR spectroscopy is by definition
a quantitative spectroscopic tool because the intensity of a signal is directly
proportional to the number of resonant nuclei. Because of the quantitative
nature of NMR data, it is well suited for multivariate data analysis.

Exploitation of complex NMR spectra of biological materials requires
advanced data analytical techniques as well as qualified NMR spectral
knowledge combined with biological understanding. Combining
investigations of complex NMR spectra with advanced multivariate
modelling (chemometrics) makes it possible to extract underlying common
structures in the data. The complexity of NMR data makes it of prime
importance to utilize data reduction techniques in order to access the latent
chemical information in the data.

In this Ph.D. project, various multivariate data analytical methods have been
applied to liquid state 1H NMR spectra of biofluids, alcohols and
hydrocolloid solutions as well as to 1H high resolution magic angle spinning
(HR MAS) NMR spectra of semi solids such as wheat kernels. This work has
resulted in the four papers described in the following.

The combination of NMR spectroscopy and chemometrics has tremendous
potential in the metabonomics fields for exploring patterns of biomarkers of
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diseases and food intake in biofluids. In this Ph.D. study, the ability of
multivariate curve resolution (MCR) to separate mixtures into pure spectra
and concentrations in a ternary experimental design of 1H NMR spectra of
alcohol mixtures has been demonstrated. Under certain conditions, MCR
offers resolution of the spectra into ‘true’ underlying components (i.e. the
pure chemical spectra) as opposed to the principal component analysis
(PCA) solution. However, MCR remains a research tool as it may provide
multiple solutions and is prone to noise and interferences [Paper I].

NMR spectroscopy in combination with chemometrics can be used to
explore the protein metabolism of single wheat kernels. Extreme climate
events are becoming an increasingly important factor in crop growth and
yield. NMR spectra of methanol extracts of wheat flour were found to be a
good marker for drought treatment in mature kernels. The effect of different
drought events on the protein fractions in grains of winter wheat was
examined using NMR spectroscopy. 1H HR MAS NMR spectra of single
wheat kernels showed considerable differences between early and late
harvest. Visualisation of the data by PCA trajectories of 1H HR MAS NMR
spectra of single wheat kernels showed good contrast of the metabolic
development during grain filling. For the first time, grain filling data has
been analysed by complex multiway modelling using parallel factor analysis
(PARAFAC) resulting in an excellent overview of the data. The PARAFAC
approach combined with the multiparametric NMR method has great
potential for the study of dynamic metabolic events as the results are more
direct and intuitive [Paper II].

In metabonomic studies with human volunteers, it is common knowledge
that volunteers frequently do not report all their food supplements.
Therefore, it would be highly desirable to obtain objective methods that can
monitor a diet intervention. Animals can be exposed to much more
controlled environments and diet and they can be much more identical with
respect to gender, genetic and physics. In this study, in vivo investigations
using rats as animal study models made it possible to study biomarkers for
onion intake. NMR spectroscopy in combination with chemometrics has
shown to be an excellent tool for diverting diet groups by their urine profile.
It was demonstrated that it was possible to distinguish between NMR
spectra of urine from rats with a normal diet and rats on an onion diet.
Searching for influential signals in the spectra with respect to differentiating
between different onion products, interval extended canonical variates
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analysis (iECVA) was applied. This revealed two signals from onion
biomarkers, which were identified as dimethylsulfone (an oxidation product
of dimethylsulfoxid) and 3 hydroxyphenylacetic acid. Being able to detect
and maybe even identify specific diets could add new possibilities to human
intervention studies [Paper III].

The classical use of NMR spectroscopy to food systems is the detailed
quality control of ingredients and composition of hydrocolloids. In this
study, this research was taken to the limit by investigating if NMR
spectroscopy in combination with chemometrics can be used to predict
degree of blockiness in pectins. This is important because the distribution of
the free methyl ester groups is critical for the functionality of pectins and
development of a fast and reliable method to examine the methyl ester
distribution along the pectic polymer is most desirable. Until now, the only
alternative analytical method was enzymatic degradation of the polymer
combined with various spectroscopic techniques. In this study, a nearly
complete assignment of the 1H NMR spectrum of pectin solutions was
carried out and some very interesting correlations were shown between the
methoxy signal and the H 2 and H 3 signals which were found to be due to
the (nuclear Overhauser effect) NOE effects from the spatial structure. The
results indicate that the pectic polymer has a three fold helical conformation
[Paper IV].

The collected work of this Ph.D. study shows examples of successful
applications as well as the possibilities and limitations of applying
chemometrics to complex NMR data.
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Resumé

Gennem de sidste årtier har anvendelsen af kernemagnetisk resonans
(NMR) spektroskopi inden for fødevareforskning været tiltagende og i den
seneste tid har forskning baseret på NMR metabonomic studier vist sig at
være betydningsfuld for medicinske såvel som ernæringsforskere. Fordelen
ved NMR spektroskopi er at metoden er ikke destruktiv, hurtig og i de fleste
tilfælde kræver begrænset prøveforberedelse. Men vigtigst af alt indeholder
NMR spektre detaljeret analytisk information om den intakte biologiske
matrice. NMR spektre er yderst informative eftersom 1H NMR spektre
indeholder protonsignaler fra alle bestanddele i en kompleks blanding.
NMR spektroskopi er per definition en kvantitativ spektroskopisk teknik
eftersom signalintensiteten er direkte proportional med antallet af de kerner,
der bidrager til signalet. NMR data kvantitative karakter, gør metoden
meget velegnet til multivariat dataanalyse.

Udforskning af komplekse biologiske NMR spektre kræver avancerede
dataanalytiske teknikker samt kvalificeret NMR spektralviden kombineret
med biologisk forståelse. Ved at kombinere komplekse NMR spektre med
avanceret multivariat modellering (kemometri) er det muligt at ekstrahere
fælles underliggende strukturer fra data. På grund af kompleksiteten af
NMR data er det nødvendigt at anvende datareduktions teknikker for at
finde den underliggende kemiske information i data.

I dette ph.d. projekt er forskellige mutivariate dataanalyseteknikker blevet
anvendt på væske 1H NMR spektre af biologiske væsker, alkoholer og
hydrokolloidopløsninger, samt på 1H ’højopløst rotation omkring den
magiske vinkel’ (HR MAS) NMR spektre of halvfaste materialer som
hvedekerner. Dette arbejde har resulteret i de fire artikler beskrevet
nedenfor.
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Kombinationen af NMR spektroskopi og kemometri har et enormt potentiale
indenfor metabonomics området til mønstergenkendelse af biomarkører i
kropsvæsker fra sygdomsforløb og kostindtag. I dette ph.d. studium er det
blevet vist, at ’multivariat kurve tilpasning’ (MCR) kan anvendes til at
adskille blandinger i rene spektre og koncentrationer i et trekants design af
1H NMR spektre alkoholer. Under særlige omstændigheder kan MCR opløse
spektre af blandinger i ’rene’ underliggende komponenter (dvs. spektre af
rene kemiske forbindelser) i modsætning principal komponent analyse
(PCA) løsningen. MCR forbliver dog et forskningsværktøj, da metoden kan
resultere i flere løsninger og er følsom overfor støj og interferenser [Paper I].

NMR spektroskopi kombineret med kemometri kan anvendes til at
undersøge proteinmetabolismen i hvedekerner. Forekomsten af ekstreme
klimaperioder en faktor af stigende vigtighed i forhold til afgrødevækst og
udbytte. NMR spektre af metanolekstrakter af hvedemel viste sig at være
gode markører for tørkebehandling i modne kerner. Effekten af forskellige
tørkebehandlinger på proteinfraktioner i vinterhvedekerner blev undersøgt
ved hjælp af NMR spektroskopi. 1H HR MAS NMR spektre af enkelte
hvedekerner viste betydelig forskel på tidlig og sen høst. Afbildning af data
ved hjælp af PCA trajektorier af 1H HR MAS NMR spektre af enkelt
hvedekerner viste store forskelle på den metaboliske udvikling under
kernefyldning. For første gang er kernefyldningsdata blevet analyseret ved
hjælp af kompleks multivejsmodellering i form af parallel faktor analyse
(PARAFAC), hvilket resulterede i et godt overblik over data. PARAFAC
metoden kombineret med multi parameter NMR metoden har et stor
potentiale til at undersøge dynamiske metaboliske ændringer eftersom
resultaterne er mere direkte og intuitive [Paper II].

Det er kendt viden at frivillige personer i metabonomic studier ikke altid
reporterer alle kosttilskud. Det er derfor ønskeligt at opnå objektive
metoder, der kan overvåge kostintervention. I dette studium har in vivo
undersøgelser af rotter som dyremodeller gjort det muligt at undersøge
biomarkører for løgindtag. NMR spektroskopi i kombination med
kemometri viste sig at være en fremragende metode til at adskille
kostgrupper ud fra urinprofilerne. Det blev demonstreret, at det er muligt at
skelne mellem NMR spektre af urin fra rotter, der har fået normal kost, fra
rotter, der har fået løg i kosten. Interval udvidet canonical variat analyse
(iECVA) blev anvendt til at finde signalerne i spektrene der har indflydelse
på adskillelsen. Dette afslørede to signaler fra løgbiomarkører, som blev
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identificeret som dimetylsulfon og 3 hydroxyphenyleddikesyre.
Dimetylsulfon er et oxidationsprodukt af dimetylsulfoxid (DMSO). At
kunne bestemme og måske endda identificere specifik kost giver nye
muligheder indenfor humane koststudier [Paper III].

Den klassiske anvendelse af NMR spektroskopi til fødevaresystemer er til
detaljeret kvalitetskontrol af ingredienser og sammensætning af
hydrokolloider. I dette studium er dette forskningsområde blevet udfordret
ved at undersøge om NMR i kombination med kemometri kan anvendes til
at bestemme graden af blokstruktur i pektiner. Dette er vigtigt eftersom
fordelingen af frie estergrupper er afgørende for funktionaliteten af pektiner
og udviklingen af en pålidelig hurtigmetode til bestemmelse af fordelingen
af methylestergrupper er derfor meget attraktiv. Indtil nu har den eneste
alternative metode været enzymatisk nedbrydning af polymeren kombineret
med forskellige spektroskopiske teknikker. I dette studium er 1H NMR
spektret af pektinopløsninger blevet næsten fuldstændigt tilordnet og nogle
meget interessante korrelationer blev set mellem metoxysignalet og H 2 og
H 3, hvilket skyldes ’Overhauser kerneeffekt’ (NOE) fra molekylets rumlige
struktur. Disse resultater indikerer at pektin polymeren er drejet i en 3 fold
helisk struktur [Paper IV].

Dette Ph.D. studie viser eksempler på succesfulde anvendelser samt de
muligheder og begrænsninger, der findes ved at anvende kemometri på
komplekse NMR data.
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1. Introduction

Traditionally, food analysis involves identifying and classifying food
constituents into very broad categories of molecules such as protein, fats,
carbohydrate and solids. With new high resolution and high throughput
modern techniques, the multiple nuclear magnetic resonance (NMR)
spectroscopy has become a popular tool for food authenticity and other food
studies.

NMR spectroscopy is an extremely versatile measurement technique and has
become one of the most valuable tools for obtaining structural and dynamic
information of biological molecules. The ability to measure liquids as well as
solids without any upfront separation steps makes it a unique analytical
method compared to various destructive chromatographic analytical
methods. NMR spectroscopy provides a rapid non destructive identification
and is by definition a quantitative spectroscopic tool because the intensity of
a resonance line is directly proportional to the number of resonant nuclei.
Over the past years, NMR spectroscopy has been increasingly used in food
science and increasing in the metabonomics field where the study of biofluids
has become of increasing interest to food and nutrition scientists.

NMR spectroscopy is able to detect large numbers of metabolites
simultaneously and can obtain a far more detailed molecular picture of food
composition, food consumption and of the molecular consequences of
different diets compared to the ordinary vibrational spectroscopy methods.
Exploitation of complex NMR spectra of biological materials requires the
quantitative properties of NMR spectroscopy is completely exploited.
Chemometric or multivariate methods are routinely utilized in other areas of
spectroscopy (most notable in NIR spectroscopy; see for example Additional
publication II) for analysis of complex mixtures. However, the challenges in
data analysis of NMR spectra are very different, where spectral sensitivity
and spectral pre processing have to cope with e.g. signal overlap are of vital
importance.



18

The aim of this thesis is to demonstrate the new possibilities of NMR
spectroscopy research of food and nutrition and to characterise the potential
in the use of chemometrics in combination with NMR spectroscopy. The
thesis also emphasizes the importance of understanding the limitations and
pitfalls of quantitative multivariate NMR spectroscopy. An example of this
is the instrumental parameter setup which influence the resulting data and
thereby the subsequent conclusions. There also lies great risk in the data
analysis including a potential risk of overfitting of the chemometric models
due to insufficient validation or simply lack of information in the samples. A
great challenge also lies in the sampling and the sample preparation
technique.

Content outline
The present thesis is based on three peer reviewed papers and one
submitted for peer review. Additional work has been done providing the
basis for these results. The main body of the thesis is divided into an NMR
theory part, a chemometric theory part and an application part describing
the four selected applications of multivariate NMR spectroscopy.

Chapter 2 serve as a basic introduction to NMR spectroscopy, introducing
high field liquid and solid state NMR spectroscopy. A brief introduction to
the NMR spectrometer is given together with a description of the critical
instrument parameters with a special view to quantitative NMR
spectroscopy. The chapter sum up the advantages and drawbacks of
quantitative NMR spectroscopy in food and nutrition research.

Chapter 3 introduces a number of useful multivariate methods in the data
analysis of complex NMR data. Besides the basic chemometric methods such
as principal component analysis (PCA) and partial least squares regression
(PLS). Much emphasis will be made to the advantages of using interval
based approaches such as interval PCA (iPCA), interval PLS (iPLS) and
interval extended canonical variates analysis (iECVA). In addition,
recommendations and cautions are given on order to avoid overfitting
including proper validation and common sense.

In Chapter 4, the potential of using NMR spectroscopy for exploring
biofluids in the metabonomics fields and in process analytical technology
(PAT) is characterized. An example from [Paper I] is given, concerning the
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usefulness of multivariate curve resolution (MCR) to separate mixtures into
pure spectra and concentrations in a ternary experimental design of 1H NMR
spectra of alcohol mixtures.

Chapter 5 illustrates the possibilities and advantages of measuring intact
food matrices. In the study of intact biological matrices there are many
critical parameters which have to be dealt with. In addition, the limitations
of semisolid state NMR spectroscopy are described and an alternative
method of managing these measurements is given. [Paper II]

Chapter 6 deals with emerging problems in NMR metabonomics studies and
what to be aware of and how to solve these. This is demonstrated in a case
study using rats as animal models for diet interventions where advanced
chemometric data mining revealed specific biomarkers for onion intake
[Paper III]

Chapter 7 explore the capability of NMR spectroscopy to elucidate block
structures of pectins (a common food ingredient) and describe how interval
based chemometric modelling can be used to obtain knowledge about
informative regions of the NMR spectrum. [Paper IV]

Finally, the conclusions of this Ph.D. study and the perspectives of future
work and ideas are collected in Chapters 8 and 9.
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2. Nuclear magnetic resonance

Introduction
Since the introduction of NMR spectroscopy by Rabi and Breit [1,2] in 1931
and its further development by Bloch and Purcell [3], NMR spectroscopy has
become one of the most valuable tools for obtaining structural and dynamic
information of various compounds. In 1952 the Swiss and the American
physicists Bloch and Purcell shared the Nobel Prize in physics for
discovering the basis of magnetic resonance imaging (MRI). About 50 years
later, Lauterbur and Mansfield shared the Nobel Prize in 2003 for
conducting the work that led to present MRI technology. Continuous
improvements in NMR instruments and techniques have resulted in many
new applications. This lead to the selection of Richard R. Ernst in 1991 as the
Nobel Laureate in Chemistry for his work in developing Fourier
transformed (FT) NMR spectroscopy. And in 2002, Kurt Wüthrich was
selected as Nobel Laureate in chemistry for the development of NMR
spectroscopy for determining the three dimensional structure of proteins in
solutions. Hence, NMR spectroscopy is a well developed unique analytical
method.

NMR spectroscopy has a long tradition in structure elucidation of biological
as well as synthesized compounds. However, in the past years NMR
spectroscopy has been increasingly used in a quantitative manner. Although
originating from physics, it is in chemistry that NMR spectroscopy has
attracted the greatest interest and now further finds application in biology,
medicine, geology, materials science and recently, in food science. Until
recently, most work was focused on clinical or pharmaceutical applications
such as drug discovery [4,5], drug assessment [6], clinical toxicology [7,8]
and clinical chemistry [9,10]. However, over the past few years, NMR based
metabonomics has emerged as a field of increasing interest to food and
nutrition scientists [11] which will be discussed in the following paragraph.
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The unique versatile applications of NMR spectroscopy are illustrated in
Figure 1.

Figure 1 Nuclear magnetic resonance (NMR) is a unique versatile analytical method
able to perform chemical identification and quantification, to elucidate chemical
connectivity, to measure intact matrices, and is a highly valuable tool in the analysis
of biofluids, in process control (process analytical technology (PAT) and nutritional
diet intervention studies.

Applications of NMR spectroscopy

NMR spectroscopy in metabonomics
Metabonomics was defined as “the quantitative measurement of the dynamic
multiparametric metabolic response of living systems to pathophysiological
stimuli or genetic modification” by Nicholson and co workers at Imperial
College (London) in 1999 [12]. 1H NMR spectroscopy has emerged as a
promising non invasive technique for metabonomics studies due to its
ability to simultaneously detect a large number of compounds in a rapid and
high throughput manner that requires little sample manipulation [13]. The
very closely related metabolomics is defined as the comprehensive and
quantitative analysis of all metabolites of a biological system which are
identified and quantified [14]. Where the goal of metabolomics primarily is to
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quantify the numerous small molecules found in biological fluids under
different conditions, metabonomics is the study of the changes in the
metabolic profile of a complex biological system in response to different
stimuli. The work presented here belongs to metabonomics and therefore
the term metabonomics will be employed throughout this thesis. A thorough
explanation of NMR spectroscopy in metabonomics studies are given in
Chapter 6.

NMR spectroscopy in food science
High resolution liquid state 1H NMR spectroscopy has many applications in
food science. Examples are the analysis of natural food products such as
milk [15], wine [16 18], fruit juices [19,20], ciders [21], olive oil [22], port
wine [23] and beer [24,25]. The ability of NMR spectroscopy to handle liquid
as well as solid samples makes it a very unique analytical tool. Solid state
NMR spectroscopy has also shown many successful applications which will
be further elaborated in the section on solid state NMR spectroscopy.

In order to fully appreciate the potentials of NMR spectroscopy within food
science are, the fundamental concepts of NMR spectroscopy will be briefly
explained in the following paragraph. The NMR spectrometer is described
together with a number of important instrumental settings and parameters.
This is followed by a description of the necessary spectral post processing
(after Fourier transformation), and their manifestation in the final NMR
spectra. Last, the quantitative properties of NMR spectroscopy will be
described. This chapter will end with a conclusion concerning the
advantages and drawbacks of the use of NMR spectroscopy within food
science and metabonomics.

Theory
NMR spectroscopy is based on the magnetic properties of the atomic
nucleus. The magnetic properties of a nucleus are based on the concepts of
nucleus spin and the magnetic moment of the nucleus. About two thirds of
all isotopes, among these 1H, 13C, 15N, 17O, 23Na and 31P, possess nuclear
magnetic moments, and are characterized by an angular momentum
quantum number I = ½ (or increments of ½). Here, only nuclei with I= ½ are
considered. These nuclei can be considered as small magnetic dipoles. At
normal conditions, the magnetic dipole axes of the nuclei are randomly
distributed in all directions. However, when a nucleus with a spin is
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exposed to a stationary external magnetic field (B0), the magnetic dipoles
align parallel (I = ½) or anti parallel (I = ½) to the external magnetic field
with a small dominance in the parallel direction (Figure 2).

Figure 2 Schematic illustration of the alignment of the protons in an external field.
At normal conditions, the magnetic dipole axes of the nuclei are randomly
distributed in all directions (left) but when exposed to a stationary external magnetic
field, the magnetic dipoles align (right) [26]

The relative distribution of the population of nuclei in the two energy states
is given by the Boltzmann distribution (Equation 1) where N is the fraction
of the population of nuclei in each energy state, T is the absolute
temperature and k is the Boltzmann constant:

Tk
E

N
N

exp
½

½ (1)

The result of this uneven distribution is a weak net magnetization aligned
exactly along the axis of B0. It is this weak net magnetization that is
measured by NMR spectroscopy. It is normal to ascribe the external
magnetization as z in an x y z coordinate system, where the x y plane is
orthogonal to the external magnetic field and is in fact where the signal is
detected after perturbation with a 90° radio frequency pulse.

The net magnetization will start to precess around the direction of the
magnetic field (z) with a frequency which is unique for a nucleus depending
on the local chemical environment (see section on high field NMR
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spectroscopy). Though, when the sample is at equilibrium there is no
observable signal. By applying radio frequency pulses at exactly the
frequency of the nucleus, the net magnetisation can be flipped from the z
axis into the x y plane and thus obtain an observable signal. After the pulse,
the system will return to equilibrium, so called relaxation. Consequently, the
readable magnetization in the x y plane decay to zero in a certain time
which is recorded by the spectrometer in the form of a free induction decay
(FID). The time domain is widely used directly in low field (LF) NMR
relaxometry, operating at the lower range of magnetic field strength
(frequency < 100 MHz) typically using permanent magnets. LF NMR
spectroscopy is used within food research to detect distribution and mobility
of water and fat and physical conditions within a sample like solid fat ratio
in meat, editable oils, moisture or oil content etc.

The resonance frequency
When operating at higher field strength (operating at a 1H NMR frequency
of > 200 MHz) it becomes possible to distinguish between same types of
nuclei within the same spectrum and thereby extract chemical information
because the frequency range is higher. The population difference N ½ N½ and
thereby the energy difference E depends on the magnetic field strength
(Equation 2), where h is Planck’s constant and is the resonance frequency
or the Larmor frequency. The Larmor frequency depends on the specific
nucleus and the magnetic field strength B0 and , the magnetogyric ratio of
the nucleus. The magnetogyric ratio is a proportionality constant that
describes the spin state energies of a given nucleus in an external magnetic
field.

2
0BhhE (2)

At a field of 60 MHz, the population excess is only 0.001% (Equation 1), but
at a field of 600 MHz, the population excess is 0.01%, resulting in a detection
level in the micromolar range. This is utilized in high field (or high
resolution, HR) NMR spectroscopy. Indeed, this makes high resolution
NMR spectroscopy a useful analytical method.

During an NMR experiment, the signal is measured in the time domain, i.e.
as a function of time. The signal is then Fourier transformed to obtain the
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spectrum in the frequency domain. Thereby, the FIDs from all components
in a sample which superimpose in the time domain are sorted out according
to frequency by the Fourier transformation.

Chemical shift
The local field experienced by a magnetic nucleus is modified by the
interaction of local electron density, an effect known as shielding. In a
molecule, electrons are hindered in their rotation around a particular
nucleus by the presence of other atoms and are therefore not capable of
exerting their maximum degree of shielding. Thus, local differences in the
shielding reflect the fact that different nucleus in different chemical
environments experience different effective magnetic fields. This is the why
the resonance frequency of a nucleus depends on its chemical environment.
It is common practice to define an entity called chemical shift ( ) as the
frequency difference between the nucleus and a reference nucleus. This
definition allows the resonance frequency of a signal to be expressed
independent of the field strength of the magnet field strength which is used
to measure it. The chemical shift is expressed in parts per million (ppm). The
most widely used reference substance for 1H NMR spectroscopy is TSP d4
(per deuterated 3 trimethylsilyl propionate sodium salt), as it exhibits
almost complete shielding. The difference between the nucleus and a
reference with maximum shielding (per definition 0 ppm) will result in
positive value on the axis, as most compounds have a smaller shielding than
TSP.

Solid state NMR spectroscopy
When the mobility of a spin system decreases the relaxation rate will
increase. Since the width of an NMR signal depends on the relaxation rate,
NMR signals become broader as molecular mobility is restricted. This is the
case in solid and semi solid systems (cereals, cheese, meat etc.). Indeed, this
has important practical implications. The broader the line, the harder it is to
detect the signal, and the greater the chance of overlap between adjacent
lines to give a poorly resolved spectrum. The molecular mobility further
decreases when molecular weight increases, and as a result, it is only the
freely mobile, low molecular weight substances that are detected in liquid
NMR spectra of for example foods. This is the reason why, the many NMR
spectroscopy studies of food have focused on liquids or liquid extracts
rather than analysis of solid food.
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HR MAS
Fortunately, the continuous advancement within NMR instrumental
technologies today makes it possible to obtain well resolved 1H spectra of
semi solid samples. High resolution magic angle spinning (HR MAS) NMR
spectroscopy [27 29] has become an extremely versatile tool to study
heterogeneous systems. HR MAS NMR spectroscopy relies on fast spinning
of the sample at the magic angle to average out magnetic susceptibility
differences in the sample in order to obtain resonance line widths
approaching those of liquid state NMR spectroscopy. Accordingly, the use
of the MAS results in a well resolved NMR spectrum. This is a result of the
sample being spun fast around an axis which makes an angle to the applied
magnetic field of 54.7° (the so called magic angle) in order to simulate
molecular motion and the dipolar interactions can therefore be averaged out.
Consequently, the combination of the magic angle and fast rotation of the
sample eliminates dipole dipole couplings and chemical shift anisotropy
(both physical expressions include 3cos2 (54.74) 1 = 0) which induce
significant line broadening in the NMR spectra of solids. These effects are
averaged out in solutions due to fast isotropic motions. Indeed, HR MAS
NMR spectroscopy makes solids appear liquid like, and the spectral
resolution similar to liquid state NMR spectroscopy.

[ppm]15 10 5 0 

Spin rate 0 Hz

Spin rate 5000 Hz

[ppm]15 10 5 0 

Figure 3 1H HR MAS NMR spectra of mozzarella cheese with no spin and a MAS
spin rate of 5000 Hz.
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Figure 3 show an example of the difference in resolution of a spectrum of
mozzarella cheese recorded with no spin and a spectrum of the same cheese
recorded using HR MAS spin rate of 5 kHz (unpublished results).

The HR MAS NMR technique has been widely used to explore biological
tissues from animals and plants. The domain of application of HR MAS
NMR spectroscopy is extremely diverse and includes the analysis of
molecules in membranes [30], mesoporous materials [31], cells [32 35] and
biopsies [36 42]. Numerous advantages attributed to HR MAS NMR
spectroscopy have motivated its use in the metabonomics field, in particular
for human pathological biopsies [43]. However, a practical evaluation of HR
MAS NMR spectroscopy on a wide experimental range (in vivo animals,
fresh or frozen tissues) reveals logistic, sanitary, and analytical
disadvantages. The main drawback concerns the high difficulty to obtain
correct metabolite quantification because of the sample preparation. HR
MAS NMR spectroscopy has in principal a straightforward sample
preparation, but in practice, it is complicated due to the manual character of
the sample preparation. The sample is placed in a small rotor (4 x 20 mm)
which is subsequent filled with deutorated solvents. Furthermore, an insert
is included which has to keep the sample in place and to ensure that no air
bobbles is present, see Figure 4.

Figure 4 Picture of an HR MAS rotor together with an insert, screw, cap and some
whole wheat kernels.
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This sample preparation makes HR MAS NMR spectroscopy slow and
laborious in practice. Indeed, the preparation is critical because HR MAS
NMR spectra are highly sensitive to the shape, design and placement of the
sample and how well the rotor is filled. This makes some samples difficult to
measure, because the matrix to matrix variation is larger than the variation
between, for example, treatments.

Another disadvantage of this method is that immobile parts of the sample
remain unobserved. Thus, it is possible that the recorded spectra not are
representative of the total sample. HR MAS NMR spectroscopy is not a real
solid state method and therefore not really suited for very solid material
like, for example, dry mature wheat kernels. All the protons are not
mobilized and therefore invisible why immobile starch and fibres are not
possible to quantify. Protons from mobile carbohydrates and and
protons from amino acids, as well as protons from anomers are also visible.
Furthermore, signals from lipids are clearly visible. See Figure 5.

[ppm]5 4 3 2 1 

[r
el

]
0 

10
0 

20
0 

[ppm]5 4 3 2 1 

0 
10

0 
20

0 

Lipids + amino acid 
side-chains

Carbohydrates + / protons in 
amino acids

Pyranose ringAnomers

TSP

[ppm]5 4 3 2 1 

[r
el

]
0 

10
0 

20
0 

[ppm]5 4 3 2 1 

0 
10

0 
20

0 

Lipids + amino acid 
side-chains

Carbohydrates + / protons in 
amino acids

Pyranose ringAnomers

TSP

Figure 5 HR MAS NMR spectrum of a single wheat kernel. Lipid signal dominate
although they represent less than 4 % of the sample material

Under HR MAS NMR conditions, the samples are subjected to high
centrifugal forces that may cause irreversible damage. This can for example
result in unwanted transport of water molecules between compartments.
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Recently, it has been possible to study the asynchronous protein metabolism
in single wheat kernels using HR MAS NMR spectroscopy during grain
filling (Paper II). However, some difficulties arise when measuring mature
dry single kernels because of the lack of mobility of the protons. Instead, 13C
cross polarization magic angle spinning (CP MAS) NMR spectroscopy
would perhaps be a feasible method to yield a carbon profile of the protein
metabolism in the wheat kernels.

CP MAS
If real solid state measurements are to be performed, the CP technique
[44,45] combined with MAS is the most common NMR experiment. The
magnetization in CP MAS spectroscopy is transferred from 1H by dipolar
coupling to the directly attached 13C nuclei. This results in an increase in
inherent sensitivity of carbons attached to one or more protons and, because
relaxation via the 1H pathway is rapid rather than the slow 13C route,
experiments can be repeated more rapidly, with consequent increase in
signal to noise ratio (S/N). Thus, combining the techniques CP, MAS and
high power decoupling of protons enables one to acquire fairly well
resolved 13C NMR spectra of solid samples.

Applications of CP MAS spectroscopy in food science have so far mainly
been applied to carbohydrate research. Especially starches have been
exploited with CP MAS spectroscopy [46 52] but also meat [53], gluten [54],
canola seed oil composition [55] and polysaccharides in sugar beet cell walls
[56] has been investigated.

The NMR spectrometer
A high resolution NMR spectrometer is basically constructed with a super
conducting electro magnet, a probe which contains the sample in either a
tube or a rotor, a radio frequency transmitter to pulse and receive the
emitted response, preamplifiers, to boost the analogue NMR signal and a
computer to collect, digitize and Fourier transform the signals (Figure 6).
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Figure 6 A schematic illustration of the NMR spectrometer with a removable probe
containing the receiver coil which collects signal from the sample. The super
conducting magnet is cooled by liquid nitrogen and liquid helium and the receiver
is connected to an amplifier and a computer.

The high field NMR spectrometer is a delicate instrument. It is highly
sensitive to outer magnetic fields and extremely influenced by mechanical
vibrations and therefore demands constant fine tuning. In order to obtain
the highest quality spectra, several adjustments should be made before the
measurement. Therefore, an NMR spectrometer demands highly qualified
personnel to run the samples. These pre measuring steps are processing is
described in the following paragraph. A major and in many cases
prohibitive disadvantage of high field NMR spectroscopy is that it is one of
the most expensive analytical techniques to employ, both in terms of the
initial instrumental costs and running costs. The super conducting magnet
demands as low temperature as possible. Liquid nitrogen cools the
instrument down to about 77 K and the inner core which consist of liquid
helium cools the system further down to 4 K. NMR spectrometers thus use
large amounts of liquid nitrogen as well as liquid helium which is very
costly. Therefore, the prize of a high field instrument required for
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metabonomics studies, cost can be a major consideration in the development
of large scale metabonomics screenings.

Field strength and spectrometer frequency
NMR spectrometry can be considered as an indirect spectroscopy, as it
requires an external magnetic field. Hence, the magnetic field strength is an
important parameter for NMR spectroscopy. The high fields available from
superconducting magnets have been improved the sensitivity of the NMR
experiments, and the increased chemical shift dispersion which has made it
possible to study more complicated chemical systems [57]. The
spectrometers are often referred to by their proton frequency rather than by
magnetic field strength. As the strength of the magnetic field is increased,
the resolution and S/N ratio are also increased, which leads to higher
information content, allowing the detection and characterization of smaller
amounts of material and more complex molecules. Other important
acquisition parameters are discussed in the following.

Pre measuring steps
Tuning and matching
The sensitivity of the NMR probe varies with the optimal signal on a given
sample at the given field frequency and there is only one frequency at which
the probe is most sensitive to the chosen nucleus. This frequency has to be
adjusted on each sample, a process called tuning in NMR terms. This is done
by tuning the probe circuit. Matching involves ensuring that the maximum
amount of power arriving at the probe base is transmitted up to the coil and
reflected back at the amplifiers. Modern NMR probes have automatic tuning
and matching to the chosen nucleus.

Shimming
Shimming is a process in which minor adjustments are made to the magnetic
field within the probe surrounding the sample until the field homogeneity is
with the sample in place. Optimal field homogeneity enhances the spectral
resolution and thereby the spectral information increases from the sample.

Receiver gain
The optimal signal dynamics may also be optimized on each sample.
Receiver gain is an important parameter that is used to match the amplitude
of the FID to the range of the digitizer, i.e. receiver gain is a scaling factor.
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The gain may automatically be set, but it can cause problems when
measuring many samples in a quantitative series with different receiver
gains due to non linear response of the amplifiers. Then, the variation due to
the different receiver gains is larger than the quantitative variation between
the samples. As a minimum, the gain factor should be divided out before
further data analysis.

Number of scans
The number of collected scans, the so called signal averaging, depends
mostly on the decision of how long the experiment must take. The higher
number of scans, the better the S/N. The basic principle of signal averaging
is straightforward; if many spectra are added together, the signal intensity
will increase. The noise is random and when adding together, the noise
signals will also increase in intensity, but more slowly than the signal
increases. In fact, the summation of n spectra, the signal will become n times
bigger compared to a single spectrum, but the noise will increase by n
only.

Recycle delay
Another important parameter for NMR spectroscopy is the recycle delay.
Since the spin system must be allowed to recover entirely from the pulse
before another pulse can be applied, the recycle delay is introduced as the
time between the collections of each spectrum. If the relaxation is slow and
the delay between the pulses is not long enough, the magnetization will not
recover fully to equilibrium between the pulses. The recycle delay must be 5
times the longitudinal time. Ideally, if the acquisition time is long enough,
the FID will show an exponential decay reaching zero. In order to improve
the S/N, an exponential function can be multiplied the FID before the Fourier
transformation. The FID will thereby be more rapidly decaying which will
result in a broader signal but with less noise.

Water suppression
Biological samples often contain large amounts of water which result in a
very strong 1H NMR signal from water that dominates the spectra to an
extent where compounds in low concentrations becomes impossible to
observe. In many cases, protons with a chemical shift close to the chemical
shift of the water protons will disappear under the huge water signal. The
simplest and most robust water suppression method is pre saturation where
the water signal is turned out of phase by a long radio frequency pulse,
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affecting only the water signal. The method is simple and reasonably
effective, but has the disadvantage of also partly suppressing other signals in
vicinity of the water peak. Other, more advanced techniques such as
WATERGATE [58,59] are very effective but demands optimization of the
specific area of suppression. Since water is not truly separated from the
sample before measuring NMR spectroscopy, residual signals from water
need subsequently to be removed from the spectra before any data analysis.
However, in the process of removing such signals there is a chance that
potentially important metabolite signals are also removed or partially
suppressed which consequently deteriorate subsequent quantitative data
analysis [60].

The nature of NMR data
An NMR spectrum is highly informative as every single peak is a signal
arising from protons attached at exactly the same position in a molecule and
in exactly the same environment. The signals are normally very narrow and
contain information about neighbouring protons which manifest as splitting
of the signal. Moreover, the signals in an NMR spectrum are often baseline
separated. Proton NMR spectroscopy are rapid experiments since the proton
is the most abundant NMR nucleus providing inherently high S/N, and
therefore useful for screening of many samples. However, protons relax
relative slowly wherefore repeated experiments (number of scans) can only
be performed with a time delay of typically 5 seconds between each scan.
However, in a matter of minutes, it is possible to obtain informative spectra
with thousands of variables containing narrow, baseline separated signals,
with good dispersion and a high S/N.

Spectral post processing
Experimental variations in the recording of NMR spectra within a dataset
leads to difficulties in the quantitative determination of peak height and will
complicate the interpretation and analysis by quantitative pattern
recognition methods. Minor experimental variations include small
differences in the NMR spectral phasing, small shifts in line positions
(chemical shift shift), small variations in line shapes and baseline. These
variations result either from chemically induced changes or instrumental
instability and field inhomogeneity [61]. For this reason, post processing of
the NMR data is required if optimal quantitative NMR spectroscopy is to be
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carried out. All the necessary processing steps are described in the
following.

Phase and baseline correction
Until recently, spectral variations was sought to be manually corrected
which is highly time intensive for large data sets. Commercial NMR
software now includes multiple methods to automatically correct the
baseline inconsistency and phase adjustment. Several numerical methods
have been proposed for rapid and automatic adjustment of both the phase
and frequency variation present within large NMR data sets. For example,
PCA has been introduced for simultaneously phase correction of single
resonances in a series of NMR spectra [62 66]. In this way, phase and
frequency correction can be applied across the entire NMR data set
simultaneously. This method appears to work well for phasing and
frequency shifting, but only of spectral regions that contains well resolved
resonances, not multiple overlapped spectra which is the case in complex
NMR spectra of biological matrices. For this reason, complex NMR spectra
are often manually phased corrected. However, baseline offset are most
often automatically corrected.

Chemical shift alignment
A major problem in NMR spectroscopy is the chemical shift variability
(chemical shift shift) induced by pH or temperature differences or small
instrumental drifts. While chemical shift variations may be relevant from a
chemical point of view, they will deteriorate the bilinear nature of NMR
data, making any modelling unnecessarily complex. Shift of NMR signals
are most often observed in pH sensitive signals which is why only a part of
the spectrum is affected. In order to remove the peak shifts, different
procedures have been developed.

One way of handling shifts variability in metabonomics research was by the
use of binning or bucketing of the spectra to smooth out small chemical shift
shifts. The binning procedure will be discussed later in this section. The
most widespread method to eliminate small global chemical shift shift is to
perform rigid shift (co shift) of the spectra according to the TSP signal.
Another option is to globally shift the spectra according to a another
important and non sensitive signal such as the glucose peak [67] or to a
reference spectrum. These global methods are easy, fast and reliable but
remove only shifts induced during measurements and will not to remove
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local shifts induced by e.g. pH. Many processing methods has been
developed for alignment of chromatographic data which in contrast to most
spectroscopic techniques have inherently unstable x axis (elusion time) [68
71]. Correlation optimized warping (COW) has been employed for signal
alignment. The latter algorithm is a time dynamic programming that selects
predetermined spectral segments of equal length and by linear interpolation
stretches and shrinks them to fit a reference spectrum. The evaluation
function used to find the best fit warping is the correlation coefficient. COW
has also shown promising results for correcting chemical shift shifts in NMR
spectra of apple juice [72]. However, COW is not always successful for NMR
data due to the complexity of the spectra and the relatively large chemical
shift shifts which is why the simpler co shift method often is preferred.
COW and co shift cannot handle frequency shift crossing, where signals in a
data matrix are shifted both upwards and downwards of the spectrum
compared to the reference spectrum. Other alignment techniques are
available such as genetic algorithm [73], beam search algorithm [74], and
fuzzy warping [75]. Recently, interval shifting has been proposed as a
practical tool for alignment of NMR spectra [18,76]. In this approach,
selected intervals are aligned whereas the rest of the spectrum remains
unchanged.

In the metabonomics field, especially when measuring urine, signal shifting
is a major problem which leads to difficulties sorting out the important
signals. In urine, the chemical shift shifts are due to pH variation or small
differences in the experimental conditions, but also reflect an individual
variation, depending on the metabolism of the individual. The pH variations
can largely be handled by adding buffer, but still, some misalignment will
remain. As an example, Figure 7 show 32 urine samples from rats visualising
misalignment of the two doublets from the citrate signal but otherwise well
aligned spectra. Interval shifting (icoshift) was applied to the specific signals
resulting in much better aligned signal in Figure 7. The consequence of the
improved alignment was a noticeably reduction of the number of
components in the subsequent predicting model and an improved
prediction.
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Figure 7 Interval based co shifting (icoshift) applied to the doublet arising from
citrate signals resulting in perfect aligned signal (yet unpublished in house
algorithm

When measuring less complex samples, a rigid shift of the spectra
referenced to the TSP signal or another constant signal is often preferred
[67]. This is also performed in Paper I IV where the co shift referenced to the
TSP signal was adequate to remove small misalignments.

Intensity scaling
From a biological point of view, metabolites present in high concentrations
are not necessarily more important than those present in low concentration
[77]. Scaling methods are data pre treatment approaches that divide each
variable by a factor (a column operation) such that each variable in the
analysis have mean zero and unit variance. If concentration determination is
the final objective, no scaling of the NMR data should be done, since the
relative intensities of the NMR resonances are proportional to the
concentration of the observed nuclei. On the other hand, the dominant
resonances within the NMR spectra may not necessarily be the spectral
features that reveal systematic variation occurring within the analysed
samples [61]. Therefore, down weighting of those variables that are the least
stable can become a necessary step. A number of scaling methods are used
for NMR data including mean centring [78] (see next chapter), auto scaling,
range scaling [79], pareto scaling [80] and vast scaling [81].
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Normalization
Under ideal conditions, NMR peak integrals are directly proportional to
concentrations. However many biological, experimental and instrumental
variables can affect absolute NMR peak intensities. Normalization methods
are data pre treatment approaches that divide each sample by a factor (a row
operation). One common method of normalization involves setting each
observation (spectrum) to have unit total intensity by expressing each data
point as a fraction of the total spectral integral [82]. However, minor
perturbations in the concentration of abundant metabolites will affect the
scaling of all other metabolites. An alternative normalization approach,
probalistic quotient normalization, was recently introduced to reduce
scaling artefacts resulting from normalization by the total spectral integral
[83]. Torgrip et al. (2008) have introduced the histogram matching approach
which can reduce normalization related variance [84].

Binning, smoothing and data reduction
A common pre processing approach is to smooth the data set by binning or
moving average, where the horizontal axis is divided into (equal or unequal)
regions and thereby a sum of the spectral intensity in each region is
calculated [85]. Broader bins can be defined to cover for peak shifts and the
resulting ‘binned’ data are less sensitive to the alignment problem. In the
past, binning has been standard practice in dealing with NMR data, not least
because the binned spectra contain far fewer data points than the original
data. High resolution NMR spectra are most often recorded in at least 32 k (k
= 1024) data points and the FID is subsequent zero filled once to 64 k prior to
Fourier transformation. This results in more detailed spectra with enhanced
resolution but also in a very heavy data load. The most common bin size for
a 64 k data point 1H NMR spectra was 0.04 ppm, because this corresponds to
256 equal size bins in the range 0.2 10.00. (This corresponds exactly to the
number of columns allowed in the old Microsoft Excel spread sheet.)
However, the penalty is considerable loss of spectral resolution and
complicated interpretations. Minor, but important, signals may be included
in the same bin as major, but non significant, signals. At best, this
complicates the interpretation; at worst, important information may be
serious diluted and overlooked. Nowadays, binning should not be a
necessary step due to computational load. Instead, most applications use the
full spectral resolution as acquired, being aware that some regions of the
spectrum will suffer from poor peak alignment (Paper I IV).
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The size of the NMR data set to be analysed can advantageously be reduced
by removal of unused or undesired spectral regions, such as the water signal
due to insufficient water suppression or removal of the reference (TSP)
signal which hold no chemical information about the sample. Removal of
spectral areas with low or no viability or particular noisy regions can in
some cases improve the subsequent modelling.

Quantitative NMR spectroscopy
NMR spectroscopy is by definition a quantitative spectroscopy because the
intensity of a resonance line is directly proportional to the number of
resonant nuclei and NMR spectroscopy can thereby determine the direct
physical context of a substance without referencing to another substance.
Since the intensity I of a signal is directly proportional to the number of
nuclei N evoking the signal, the linear relationship is given by:

I = cS × N (3)

The proportionality constant cS results from parameters of the spectrometer,
termed “spectrometer constant”, and the sample. The accuracy of
quantification depends on the noise level of the spectrum, on the line shape,
the quality of shimming and phase , baseline and drift corrections. These
parameters were considered in the previous section.

Compared to the more common optical spectroscopic measurement
techniques, e.g. IR and NIR which measures bond vibrations, NMR
spectroscopy gives far more detailed information, since 1H NMR
spectroscopy simultaneously detect all proton containing compounds in, for
instance, biological material, such as carbohydrates, amino acids, organic
and fatty acids, amines, esters, ethers and lipids. Therefore, NMR
spectroscopy is widely used for the analysis of complex mixtures and
hundreds of metabolites can be detected without any upfront separation.
And compared to chromatographic separation techniques, NMR
spectroscopy is faster, better quantitative and more reliable, only the
sensitivity is worse. The advantages of NMR spectroscopy over for example
the common used high performance liquid chromatography (HPLC)
techniques are many. Quantitative NMR analysis is often more accurate and
precise than standard HPLC methods without isolation of the impurity, no



40

expensive chemical reference substances are necessary. NMR spectroscopy is
less time consuming (no equilibration time), easy to perform and more
specific leading to a high reproducibility [86]. Wishart et al. (2008) made a
comparison study on NMR spectroscopy, gas chromatography mass
spectrometry (GC MS) and liquid chromatography mass spectrometry (LC
MS) in order to quantify all the metabolites that can be commonly detected
in the human cerebrospinal fluid metabolome. Out of the total 308
compounds, NMR spectroscopy was the most versatile method, able to
detect 53 compounds, having GC MS second best detecting 41 compounds
[87]. However, GC MS and LC MS are generally much more sensitive
compared to NMR spectroscopy which has a detection limit of about 1 M.
But the chromatography techniques have major drawbacks as the techniques
are slow, require separation and demand that the compound is polar, which
makes the techniques unable to detect the more abundant compounds such
as sugars and some amino acids and organic acids. The fact that NMR
spectroscopy is complementary to chromatographic methods makes it an
attractive tool in drug analysis as well as in analysis of biological samples. A
rather new hyphenated technique combines the methods in LC NMR/MS,
where the sample after chromatographic separation is transferred to an
NMR spectrometer. In this way, the sensitivity is optimised and the
technique is efficiently used in screening of e.g. pharmaceutical products.

An example of the highly quantitative nature of NMR spectroscopy is
highlighted in (Paper I). The paper elucidates the characteristics of being
able to detect intramolecular quantification, i.e. within a molecule and
intermolecular quantification i.e. between molecules. The intra molecular
quantification is illustrated in Figure 8 where the peak integral of the CH3

peak is confirming the theory of being 2/3 of the CH2 peak in propanol. The
left plot in Figure 8 illustrates the intermolecular quantitative nature of NMR
spectroscopy. The intermolecular quantification is further described in
Chapter 4 where the illustrative experimental design is fully recovered in the
subsequent modelling.
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Figure 8 Illustration of intramolecular (A) and intermolecular (B) quantisation of
propanol NMR spectra

Modern quantitative NMR spectroscopy could find a great use in the food
industry in monitoring quality control, detection of adulterated or
contaminated food products or as “metabolic” fingerprinting of process
streams and raw materials.

In exploratory NMR spectroscopy, all the chemical compounds are generally
not identified. Only their spectral pattern and intensities are statistically
compared and used to identify the relevant spectral features that distinguish
sample classes. Fingerprinting techniques involve collecting spectra of
unpurified samples under standardized conditions and ignoring, initially,
the problem of making individual assignments of peaks in the resulting
complex and overlapping NMR spectra. The detection of adulterated or
contaminated food products exploits the fact that certain chemicals or
certain concentrations of chemicals are quite characteristic for a given
product. Similarly, chemical composition characteristics can also be
exploited to distinguish between food products with desirable
characteristics that cannot otherwise be detected. Food quality assessment
also impacts food quality control. In this approach, the focus is on
attempting to identify and quantify compounds in the sample which have
nutritional or functional properties. This is usually done by comparing the
NMR spectrum to a spectral reference library obtained from pure
compounds [88]. Quantitative 1H NMR analysis have already been
employed in the analysis of a number of food products such as wine [16 18],
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fruit juices [19,89], ciders [21], olive oil [22], flour [90], cheese [91 96] port
wine [23] and beer [24,25]. Table 1 shows examples of the use of liquid
proton NMR spectroscopy in food studies.

Table 1 Examples of the application of high field 1H NMR spectroscopy to complex
food systems

Product Quality control Adulteration/ authenticity Metabolic profiling
Wine Effect of climate, soil, and

cultural on grape and wine
quality [16,97]

Origin characterisation of
Italian wines [17]

Characterization of Slovenian
and Italian wine [98]

Metabolite fingerprints
of grape berry [99]

Wine fingerprinting [18]

Port wine Characterization of different
ages of wine [23]

Beer Quality control of beer [24,25] Discrimination between
production site [100]

Fingerprinting of beer
and wine [101]

Juice Quantisation of formic acid in
apple juice [20]

Analysis of malic and citric
acids in fruit juices [102]

Fraud prevention of orange
juice using grape juice [103]

Adulteration of orange juice
[104,105]

Discrimination between
apple varieties [19]

Cider Discrimination of different
cider apple juices [21]

Characterisation of
cider apple juice [106]

Coffee Quality control of different
coffee producers [107]

Vegetable
oil

Classification of olive
cultivars [22]

Adulteration of olive oil [108]

Origin control of pistachio oil
[109]

Fish oil Oxidation of fish oil [110] Authentication of origin of
salmon [111]

Balsamic
vinegar

Discrimination of vinegars
and balsamic vinegar [112]

Milk/ dairy Discrimination of yoghurt
based on fruit content [113]

Origin of breeding of cow
and buffalo milk [94]

Origin of buffalo milk and
mozzarella cheese [93]

Cheese Production chain of Asiago
d Allevo cheese [96]

Potato Prediction of sensory texture
and quality of potatoes [114]

Authentication study of
pomodoro di Pachino [115]

Tomato Quality sorting of tomatoes
[116]

Carotenoid profiles in
tomato [117]

Rhubarb Rhubarb s stalk
characterization [118]
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Besides liquid state 1H NMR spectroscopy, also alternative techniques are
potential in food analysis studies. This is discussed in the end of this
chapter.

In the metabolomics field, NMR spectroscopy (together with MS) is the
number one choice of analytical method. Identification of biomarkers can
involve the application of a range of techniques, but 1H NMR spectra of
blood and other biofluids, even though very complex, allow many
resonances to be assigned directly based on their chemical shifts, signal
multiplicities and by adding authentic material. In addition, further
information can be obtained by using spectral editing techniques or
interrogation of spectral databases of authentic substances [119].

Advantages and drawbacks
NMR spectroscopy has some distinct advantages over other instrumental
methods: It is a high throughput technique, quantitative, it is non invasive
and non destructive and allows extraction of both chemical and physical
information, and it is possible to get additional structural information about
impurities, isomers, etc. Although NMR spectroscopy has many advantages,
including relatively high throughput sampling, and new sensitivity
improvements, the technique has some major drawbacks. Some of
problematic drawbacks are considered in the following.

Sensitivity problems
Sensitivity is a significant issue as already mentioned. The disadvantage of
low sensitivity is based on the small difference of the spin populations in the
two energy states; the population difference, which is given by the
Boltzmann equation (Equation 1). In metabonomics research, the sensitivity
can become a problem as many metabolites are present below mg/ml
concentrations which can make them difficult to detect. It is possible to,
increase the number of scans (accumulation) which will increase the S/N
ratio and somehow compensate for low sensitivity.

Higher field strength can also compensate for the low sensitivity as already
briefly mentioned. A ten times increase of the field strength will result in a
ten time increase of the percentage of the protons be detected. Another
problem is that NMR spectroscopy often requires a relatively large sample
amount (500 l). A possible approach of maximization of concentration and
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optimizing solvent volume is to use microcoil technology where e.g. a flow
probe only uses 150 l. Nano NMR probes or microcryo probes can actually
increase the S/N by a factor of about 10 for 1H measurements. Finally, careful
and precise (gradient) shimming techniques can increase the quality of the
spectra and increase the final sensitivity.

Alternative NMR techniques
Other NMR active nuclei
Besides the most commonly observed nuclei, 1H and 13C, other nuclei can be
studied by NMR. The sensitivity will depend on the magnetogyric ratio,
which inherent to the nuclei. Furthermore, when the natural abundance of
an isotope is low, the actual sensitivity becomes very low indeed. In food
science, particular interesting is 23Na and 31P, which can be measured via
dedicated or multinuclear broadband NMR probes. The isotope 23 of
sodium is the natural abundant, stabile isotope, and with a fairly high
magnetogyric ratio, the relative receptivity is approximately 9, which
defines a medium sensitivity nucleus (where 1H nuclei have a relative
receptivity of 100). However, 23Na is a spin 3/2 nucleus and is therefore
quadrupolar. As a result, the signal width increases with asymmetry of the
environment. Though, the signal from sodium in NaCl is narrow, with line
widths of app. 10 Hz. 23Na NMR spectroscopy has been used in food studies
primarily to characterize salted, brined or cured meat products [120 122] and
fish [123], pickled vegetables [124] and to study the saltiness in soups [125].
Phosphorus 31 is 100 % natural abundant, the relative receptivity is
approximately 7 and being a spin ½ nucleus, the NMR spectra are easy to
interpret. 31P NMR spectroscopy have been used in the determination of the
composition of olive oils [126], in the study of egg white proteins [127], in
the study of phytic acid degradation in cereals and bread [128] and to the
post mortem metabolism in porcine meat [53].

Two dimensional NMR
Besides being able to detect multiple nuclei in liquids and solids, NMR
spectroscopy also has the potential of measuring two (or more) nuclei at a
time. The first dimension represents the traditional measurement of
chemical shifts and couplings, but the second dimension ad an additional
frequency axis, a concept first introduced by Jeener at a lecture in 1971. By
introducing a second frequency dimension, the magnetic interactions
between nuclei through structural connectivity, spatial proximity or kinetic
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interchange are measured [129]. The most common two dimensional (2D)
NMR experiments in food science include homonuclear correlation
spectroscopy (COSY), which measures direct scalar coupled protons,
homonuclear total correlation spectroscopy (TOCSY), which measures long
range successive scalar coupling and heteronuclear experiments (e.g.
heteronuclear single quantum coherence (HSQC)), which correlates 1H and
another directly attached NMR active nucleus (in NMR food studies most
often 13C). By obtaining information about coupled and correlated nuclei,
chemical structures can be elucidated. 2D NMR spectroscopy has been used
in Paper II, Paper III and Paper IV.

SNIF NMR
Since site specific natural isotope fractionation NMR (SNIF NMR) was
introduced already in the 1980s, it has become a highly used analytical
method in food applications [130]. The relative deuterium concentration and
specific deuterium site locations in a molecule can be determined using
SNIF NMR, and this can provide information about the chemical pathway of
formation and, in some cases, information about the geographic origin. This
is particular of interest for authentication and certification. SNIF NMR has
been applied to the analysis of wine [131], fats and oils [132], fishes [133,134],
milk and dairy products [135], coffee [136], syrup [137] and honey [138], all
products which have been authenticated.

To sum up, the highly informative multivariate spectra is, due to the
quantitative nature of NMR spectroscopy, well suited for analysis using
multivariate data analysis which is described in the following chapter.
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3. Chemometrics

Multivariate data analysis
Too much data too little information! [139]
Data is not the same as information. In fact, the more data we have, the less
information we may have. Science demands often one to one relationships
between a cause and the effect, and this is most conveniently investigated
using simple univariate data analysis. Univariate causality has obviously
worked well, but is now a hindrance to the study of more complex systems
characterised by hidden many to many relationships. New methods of
analysis are generating megavariate data sets which require new evaluation
methods. Thousands of different, potentially important properties can be
measured at the push of a computer button. To find new relationships
between multiple blocks of such data structures requires new ambitious
exploration, pattern recognition and data mining strategies and methods.

Multivariate data analysis is based on the extraction of latent components or
underlying common structures in the data. Exploitation of complex NMR
spectra of biological materials require that the quantitative capabilities of
NMR spectroscopy to be fully exploited. Therefore it has become more and
more common to combine investigations of complex NMR spectra with
advanced multivariate modelling (chemometrics). The complexity of NMR
data makes it of prime importance to utilize data reduction techniques in
order to access the latent chemical information in the data. Chemometrics
provides a powerful toolbox for bringing quantitative mathematical
approaches to complex NMR data. The purpose of many NMR
metabonomics studies is to investigate the data for class information (origin
of material, effect/response of treatment). Unsupervised methods such as
pattern recognition methods are employed to reduce the complexity and to
visualize the classification in two dimensional graphical representations. In
complicated classification studies, supervised classification methods such as
discriminant PLS and ECVA may also become useful. Another purpose of
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NMR studies may be the need for quantifying a component or a pattern of
components for the prediction of a given response or functionality. For this
purpose, supervised calibration methods are required.

Unsupervised data exploration
PCA
Principal Component Analysis (PCA) [140] is the fundamental method and
most commonly applied unsupervised chemometric method. In PCA the
data matrix, for example composed of a set of NMR spectra, is resolved into
principal components, PC’s. The first principal component is defined by the
spectral profile (loading) in the data which describes most of the variation
and the second PC is the profile describing the second most of the variation
orthogonal to the first etc. The PC’s are composed of so called scores and
loadings. Loadings contain information about the spectral variables
(chemical shifts) while the scores hold information on the amount or
importance (pseudo concentrations) of the loading vector in the sample set.
Variation in the data which is not explained by the model is described in the
residuals (E). (Figure 9)
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Figure 9 The data matrix X is decomposed into scores and loadings and the residual
(E)

The result of the PCA model is represented as a score plot and a loading
plot. The scores are plotted against each other in a scatter plot giving a ‘map’
of all the samples. The score plot is often displayed as a function of the two
first principal components, as they explain most of the variance in the data.
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The loadings are for spectroscopic data normally plotted against the unit of
the measurement method, i.e. the ppm axis for NMR data. The loadings
indicate which parts of the spectrum that represent the main variation
among the samples. The scores can be considered as concentrations of
multivariate, so called latent, variables (LV’s). For a given principal
component, the loading vector is a spectral profile and the score for each
sample is the amount of that particular loading in the sample in a least
squares sense. Thus the loadings weighted by the sample score values will
provide an approximation of the spectrum of that sample. In PCA, the
loadings will not resemble real NMR spectra due to the orthogonality
constraints imposed, but the peaks in the loadings remain indicative of large
spectral variations.

As the number of spectral components in a dataset is typically much lower
than the number of chemical shifts, the whole data set can mostly be
represented by few (typically less than 10) components that represent all the
chemical variation in the data. The strength of PCA is to provide a quick
unsupervised view of the samples in the score plot. It is thereby possible to
identify samples that exhibit deviating features (outliers) or discover trends
and groups in the samples. Samples that are close in the score plot are
spectrally similar with respect to the variation shown and samples that are
apart are different.

It is common to carry out simple data transformations prior to the PCA
modelling. The minimal step is to mean centre the data, i.e. the mean
spectrum is subtracted from the individual sample spectra. This simple pre
transformation ensure that the first principal component describes the
variation between the samples rather than the direction of the overall
variance. Mean centring is therefore used to focus on the varying part of the
data and leaves only relevant information for analysis [78]. By mean centring
the common feature of the samples are removed and as a result the PCA
score plot is centred on origo and will map the covariance between the
samples. However, the ‘NMR spectral’ loadings will become more difficult
to interpret after mean centring because they will resemble difference
spectra rather than real spectra. Figure 10 shows four score plots of the same
sample set with different pre transformations.
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Figure 10 Score plots of raw (A), mean centred (B), autoscaled (C) and pareto scaled
(D) PCA models of an NMR spectral ensemble (data from Paper I). X is the data
matrix, T and P is the score and loading matrix respectively. E is the residual and s is
the standard deviation.

Where the mean centred PCA model the covariance among the samples,
autoscaled PCA models the correlations amongst the samples. Autoscaling is
a more extreme transformation technique where all variables are divided
with the standard variation and the data are scaled to the same unit.
Autoscaling is essential when dealing with variables with different units.
Pareto scaling [80] is very similar to autoscaling. However, instead of the
standard deviation, the square root of the standard deviation is used as the
scaling factor. Large fold changes are thereby decreased more than small
fold changes, thus the large fold changes will be less dominant in the data.
These transformations are normally applied as the last step after possible
pre processing methods. Since NMR data show very different signal
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intensities, when modelling the data, small signals might be overshadowed
by lager signals unless scaling is used.

Example:
A mean centred PCA model performed on 231 NMR spectra of alcohol
mixtures display perfect recovery on the experimental design (Figure 11).
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Figure 11 top, NMR spectra of a ternary experimental design of 231 propanol,
butanol and pentanol mixtures. Bottom, scores and loadings plot of the first two
principal components from a PCA model calculated on mean centred NMR spectra.
The score plot is coloured according to the propanol content (red 0100% propanol,
blue = 0% propanol). The first two principal components explain together 97.8% of
the total spectral variation. (Data from Paper I)
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As obvious in the example, NMR data often have large regions containing
no chemical information (baseline) and sometimes it can be beneficial to
calculate models only on the information rich regions of the spectra. This can
for instance be done by looking at the loading and choosing the most
important spectral regions. Several interval methods exist which calculate
models on sub intervals of the spectra. These methods will be further
discussed in the following sections.

MCR
An alternative method to PCA is to decompose the data matrix by
Multivariate Curve Resolution (MCR) using Alternating Least Squares (ALS)
[141]. PCA is designed for efficient and robust data exploration and
classification for which reason loadings and scores are constructed to be
orthogonal. So in general, it is not possible to obtain direct estimates of pure
component NMR spectra and concentration. MCR ALS, on the other hand,
can resolve the spectral data into the ‘true’ underlying components, i.e. the
pure spectra. Instead of abstract orthogonal loadings, MCR can ideally
provide loadings that do in fact estimate the real spectra. When this is the
case, it also follows that the scores in the MCR model will then be the
corresponding relative concentrations. The drawback of MCR is that the
solution is not unique. In most cases, a number of equally well fitting
solutions can be found. For this reason, it is often necessary to presume that
the concentrations as well as the spectra are non negative. Such a constraint
can help eliminating the so called rotational ambiguity [142] and provide the
sought uniqueness. Unfortunately, even with non negativity imposed,
uniqueness is not guaranteed. Huo et al. (2006) have proved that MCR NLR
(non linear least squares regression), a multivariate curve resolution method
was able to obtain unique pure spectra and pure decay profiles from
diffusion ordered spectroscopy (DOSY) NMR data [143]. The MCR equation
is similar to the PCA equation, but instead of scores and loadings, MCR
resolve the data matrix in concentrations (C) and spectra (S) plus the
residual (E).
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MCR
Data matrix X is the product of

concentration profiles C and 
pure component spectra S

X = C · S + E

Example:
MCR has proven very useful in resolution of overlapped NMR spectra of a
mixture of three similar alcohols (Figure 11 top). A three component MCR
model was able to extract the pure alcohol spectra and their concentration
profiles (Figure 12).
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Figure 12 Scores of the first three components (left) and loading plot (right) of the
three pure components from the MCR model, obtained on the NMR spectra. The
first two components explain together 98.1% of the variation. The loading plot
shows pure profiles of the three alcohols. Data from Paper 1

For obvious reason, mean centring and autoscaling is not used in MCR
studies.

PARAFAC
In exploratory studies investigating changes over time for a set of samples,
the data are naturally arranged as a three way data set. The first dimension
represents the samples, the second dimension represents the time and the
third dimension represents the measured profile, for example NMR spectra
(Figure 13). Parallel factor analysis (PARAFAC) [144 146] can be considered
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as a multiway extension of MCR able to handle three way and higher order
data. The PARAFAC model is based on the decomposing of the data into
trilinear components in a similar way to the bilinear components extracted
in MCR. When such higher order data are available, the so called second
order data advantage provides a unique solution and e.g. the pure analyte
spectra will be found in a mixture [146]. Dyrby et. al (2005) proved that
multi way curve resolution by PARAFAC applied to 2D diffusion edited 1H
NMR spectra was a valuable tool for analyzing lipoprotein main fractions in
human plasma samples [147].

Factor 1

Factor 2

1 2 30

0.2

0.4

0.6

0.8

22.533.54
ppm

Factor 1

Factor 2

1

3

Scores

4

Control
Treatment 1
Treatment 2
Treatment 3

0.7 0.75 0.8 0.85 0.9 0.95

0.54

0.58

0.62

0.66

0.7

22.533.54
ppm

1

2

3

PARAFAC

NMR spectra

Factor 1

Factor 2

1 2 30

0.2

0.4

0.6

0.8

Factor 1

Factor 2

1 2 30

0.2

0.4

0.6

0.8

22.533.54
ppm

22.533.54
ppm

Factor 1

Factor 2

1

3

Scores

4

Control
Treatment 1
Treatment 2
Treatment 3

0.7 0.75 0.8 0.85 0.9 0.95

0.54

0.58

0.62

0.66

0.7

1

3

Scores

4

Control
Treatment 1
Treatment 2
Treatment 3

Control
Treatment 1
Treatment 2
Treatment 3

0.7 0.75 0.8 0.85 0.9 0.95

0.54

0.58

0.62

0.66

0.7

22.533.54
ppm

1

2

3

22.533.54
ppm

1

2

3

PARAFAC

NMR spectra

A B

C

Figure 13 A schematic PARACAC model showing time development in NMR
spectra yielding scores (A) and two sets of loadings; a time development loading (B)
and an NMR spectral loading (C)

Supervised data exploration
PLS
If reference data are available it is possible to develop calibration models
between the NMR spectra and a given response variable. This can be done
for example with the regression method called partial least squares
regression (PLS) [148]. PLS regression is the second basic algorithm of
chemometrics. In PLS, the bilinear data matrix (X) is resolved in to linear
components (latent variables) just as in PCA. However, in PLS focus is not
only to describe the variation between the samples, but also to emphasize
variance in data which co vary (or is correlated when autoscaled) with the
response variable (y). Thus, PLS regression is a supervised method which



55

may be utilized to develop prediction models that can replace the reference
method by a much faster and perhaps a more precise and accurate NMR
method. PLS works quite similar to PCA, but its scope is to regress (or force)
the result in a given direction (reference method) and is thus called a
supervised method.

Example:
A PLS model obtained on 231 NMR spectra of alcohol mixtures shows
perfect predicting model for propanol content with very high correlation
coefficient (r2) (0.999) and low root mean square error of cross validation
(RMSECV) of 0.66 % (range 0 100%) in Figure 14. The validation is further
described in the paragraph “Validation”.
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Figure 14 PLS score plot (A) of a model calculated on mean centred NMR spectra.
The score plot is coloured according to the propanol content (red = 100 % propanol
and blue = 0 % propanol). The first two PCs represent 99.77% of the variation (B).
Predicted versus actual/measured plot of the PLS model on propanol which has a
prediction error of only 0.66% and a correlation coefficient of 0.999 (right)

As previously mentioned, NMR spectra often show regions which lack
chemical information. These regions only containing noise can disturb the
PLS model at best. At worst, spurious correlation can be observed especially
when using severe pre transformation such as autoscaling. An example of
this will be shown later in this chapter.

iPLS
Assignment of an NMR spectrum of a biological sample is highly complex as
resonances from all protons give rise to signals in the NMR spectrum. To
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investigate the influential areas of the spectra, the region selection method
interval PLS (iPLS) [149] has proven very efficient. iPLS is an extension of
PLS which develops local PLS models on a number of subintervals of the full
spectrum region. The main advantage of iPLS is that it provides an overall
picture of the relevant information in different spectral subdivisions, thereby
removing interferences from other regions. iPLS reveals areas of the spectra
which hold information about the reference y and is thus useful for
interpretations and assignment.

iPLS is particular useful for NMR spectra because of the complex nature of
the spectra. NMR spectra may hold information about hundreds of different
compounds and the background of larger peaks will dominate the
chemometric modelling as the algorithms normally search for largest
variation in the spectra. Dividing spectra into subintervals will remove
interferences from the larger more varying signals. Mean centring is
reasonable to choose as minimum pre processing in iPLS. For reasons
mentioned earlier, caution should be taken when using autoscaling as pre
processing of the spectra.
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Figure 15 iPLS plot of the prediction of onion intake from NMR spectra of rat urine.
Dotted line is RMSECV for the global model (7 LV s) which is 1.55 %. Italic numbers
are optimal LV’s in interval model. Two intervals can markedly improve the
calibration model. (Data from Paper III)
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Example:
A mean centred iPLS model of 32 NMR spectra of urine from rats on an
onion diet reveals relevant intervals with respect to onion biomarker in
urine (Figure 15).

A more evolved application of iPLS is backwards iPLS [150] where the least
significant interval is left out, one at a time. Then the model is then
recalculated yielding a predicting error which is compared to a model where
the second least significant interval is left out. By this procedure, intervals
are excluded and the model ends up only with the remaining most
significant intervals. Adding this sophisticated level to iPLS increases the
danger of overfitting and thus increases the demand for efficient validation
methods.

Validation
The number of LV’s in a PLS model can be determined using cross
validation where the sample set is divided into a number of segments which
in turn are excluded “one at a time” before re entering into the model in
order to estimate the prediction error, root mean square error of cross
validation (RMSECV). The models statistics show the development of the
RMSECV as a function of the number of LV’s. The optimal number of LV’s is
chosen from the first minimum of the RMSECV curve (Figure 16).
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The RMSECV is then used to determine the number of components used in
the prediction model. The predicted versus measured plot is generally used
to evaluate the model performance.

Validation of PLS based classification models is crucial especially in
metabonomic applications. Calibration models performed on metabonomic
data are prone to serious modelling and validation problems [151 153].
These problems will be discussed in the following sections.

Classification methods
The goal of classification is to assign new objects to the class to which they
show the largest similarity. So an object belonging to the same class show a
particular class pattern. As mentioned in the previous paragraph, the most
simple and basic classification method is PCA. Visualizing data by PCA in a
two dimensional map of the sample, hidden relationships or grouping of the
samples might be revealed. However, often PCA modelling is not sufficient
to reveal grouping.

SIMCA
Soft independent modelling of class analogy (SIMCA) is an unsupervised
classification method based on PCA model residuals and hotellings. Samples
belonging to one group are modelled by PCA, and new samples are
compared to the class models and assigned to classes, according to their
analogy to the training samples. An example is NMR measurements coupled
with SIMCA which offered a powerful mixture analysis tool classification of
176 kinds of green, black, oolong and other tea infusions. The result was
clear classification reflecting the fermentation and processing of each tea,
and revealed marker variables that include catechin and theanine peaks
[154].

ECVA and iECVA
Extended canonical variates (ECVA) [155] is a relatively new classification
tool. Canonical Variates Analysis (CVA) [156,157] is a method for estimation
of directions in space that maximizes the differences between the groups.
However, CVA cannot deal with highly collinear data such as spectroscopic
data where the number of variables is larger than the number of samples.
The ECVA method is based on the standard CVA, and by a transformation
of an eigenvector problem to a regression problem, it is possible to use PLS
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to solve the inner part of CVA and thereby allowing for the analysis of
collinear data. ECVA finds the vector which maximize ‘the between class
scatter’ over the ‘within class scatter’ [155]. Interval ECVA (iECVA) can
analogous to iPLS be an efficient tool to investigate significant areas of the
spectra able to classify the samples (Figure 17).
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Figure 17 From PCA to ECVA, maximizing the distance between the groups.
Modified from [155]

PLS DA
Discriminant PLS (PLS DA) is a common choice of multivariate data
analysis for classification. PLS DA is a regression model describing
maximum separation between two pre defined classes, but which is more
focused on the actual class discriminating variation in the data compared to
the unsupervised approaches. The predefined groups are incorporated in
the model where a ‘dummy vector’ is constructed containing zeros and ones
which hold information about the sample groups. Interpretation of the PLS
DA regression coefficients generates information pertaining to the
explanation of class differences based on the fact that each variable
coefficient is related to a certain NMR spectral region associated with a
specific molecular structure. However, PLS DA is seriously prone to overfit.
Westerhuis (2008) states that classifying groups of individuals based on their
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metabolic profile using the PLS DA method eagerly overfits the data due to
the low number of samples compared to the large number of variables [158].
This is a major problem in NMR spectroscopy, as the number of variables
easily is around 65,000 whereas the number of samples is much smaller. The
result of overfitting can be serious misleading, with the added difficulty that
the problem is not always obvious. Therefore, the strictest possible
validation of chemometric models is crucial in order to obtain correct
interpretations.

The result of a validation is easily seen in the actual versus predicted plot
which holds information on the model performance. However, it is
extremely important to bear in mind that the consequence of the validation
is not reflected in the score plot which will not be any different when
applying validation. A general, but risky, procedure when developing PLS
DA classification models is to make all assumptions and interpretations
from the score plots without checking the basic model performance. In the
rapid developing metabonomics field it has become worrying common to
show PLS DA score plot as evidence of diversity between two groups when
measuring biofluids. This is done when the PLS DA score plot illustrate two
groups without giving any information on model performance and behalf of
this concluding effect of treatment/ gender/ diet [159 169]. However, as the
score plot is not validated, the result looks too optimistic and serious
misinterpretations can be made. The subsequent interpretation of the
corresponding loading plot (or regression coefficients) will in biological
research almost always make some kind of sense as metabolic pathways are
enormous complex for most biological materials.

An example of the danger of false grouping by PLS DA can be made by a
simple test. A matrix consisting of 50 times 65,000 random variables with
random groups is modelled by PLS DA. The score plot of this model (not
shown) will give two nicely separated groups. However, when checking the
model performance it becomes obvious that no correlation exist in the
random data with respect to the random groups. Statistically there is a great
chance that one variable out of 65,000 even random variables will show a
chance correlation with any ‘dummy’ y variable.
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Another example of why PLS score plot should not stand alone in PLS DA
classification is shown in Figure 18
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Figure 18 PLS score plot and actual versus predicted plot of a non validated
calibration model (top A, B) and validated calibration model (bottom C,D) obtained
on a non informative NMR spectral baseline

In this case, a PLS DA model is calculated from an autoscaled noisy baseline
of an NMR spectrum which holds no chemical information and data are
distributed in random groups. There should not be any possibility that these
baseline ‘spectra’ are able to distinguish between the two groups.
Nevertheless, when examine only the score plot in Figure 18A, there is a
chance to be lead to the conclusion that it is possible to classify the two
groups by their spectra. And the non validated actual versus predicted plot,
Figure 18B, shows perfect correlation between the ‘real’ group value and the
group value which is predicted by the PLS model.
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However, when applying a simple cross validation step where the sample
set is divided into 4 data splits, leaving one segment out at a time and
thereby obtaining an error for each data split the result gets quite different.
The actual versus predicted plot for the same but validated PLS DA model
reveals that is not possible to model the data properly Figure 18D. The plot
shows no correlation which is a proof of a bad model performance. The
prediction error is almost 0.5, the exact average of the two class value 0 and
1. This is clear evidence that there is no correlation between the noisy
baseline and random groups. And most important, the score plot of the
validated model, Figure 18C, is exactly the same as for the non validated
model, since score plots rarely shows the validated (predicted) scores.

However, it is strictly important to notice that even with proper cross
validation; PLS DA is still prone to overfit.

Multivariate tricks of the trade
In some cases the basic chemometric methods are not sufficient to model the
data at hand. The standard chemometric tools need tailoring for NMR data
since they contain shifting signals and baseline inhomogenity (variations)
that need to be addressed specifically. These ‘artefacts’ disturb the PCA
model to an extent where the ‘real’ chemical information is not described in
the first PC combinations. Kemsley et al. (2007) showed that neither PCA nor
PLS are sensitive enough when the most relevant spectral information is
concentrated in a few very small peaks or even a single peak. This is difficult
when set against a background of many other larger peaks which vary in
ways which is unrelated with the groups of interest [170].

Orthogonalization
In order to examine the dependence on indirect correlations to Y,
orthogonalization of the data matrix with respect to Y can be applied. Thus,
the vector describing the variation due to Y can be extracted from the spectra
prior to model development. In this way the predictions can be tested if they
are due to an indirect correlation with another confounded property of Y
[171].

Forward selection
Due to the nature of NMR spectra, the large baseline regions without
chemical information and many non significant variables, variable selection
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can become necessary. In forward selection, the variables are added to the
model one at a time. At each step, each variable that is not already in the
model is tested for inclusion in the model. Forward selection has drawbacks,
including the fact that addition of new variables may render one or more of
the already included variables non significant. An alternate approach is
backward selection where all the variables are included from the start. Then
the least significant variable is dropped. These approaches are similar to
iPLS and backwards iPLS, using intervals instead of variables.

Correlation plot
When searching for influential areas of the NMR spectrum with respect to a
response variable (y), correlation plots can be carried out. The principle is
the same as PLS which finds correlations but with another presentation of
the data. Each variable is correlated to the response variable yielding a plot
of all the correlations coefficients, see Figure 19. It is convenient to square
the coefficients in order to obtain only positive values. Obviously, variables
closest to one are best correlated with y. Using correlation plots; it is possible
to obtain correlations between variables in order to check if other variables
are correlated such as intramolecular proton signals.
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Figure 19 Correlation plot between 32 NMR spectra of rats urine and onion dose,
clearly pointing two variables out around 3 and 7 ppm

In conclusion, NMR spectroscopy combined with multivariate techniques
has great potential in resolving many problems within health, food and
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nutrition research. In the following, a number of significant applications will
be highlighted.
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4. NMR as a

quantitative

high throughput

technique

Nuclear magnetic resonance spectroscopy is a unique versatile analytical
method which has been exploited in this Ph.D. study. Many, very different
applications of NMR spectroscopy have been carried out which give an idea
of the possibilities and limitations of NMR spectroscopy combined with
chemometrics within food and metabonomic studies. All the applications
presented can be united in one figure (Figure 1, Chapter 1), illustrating the
different properties of NMR spectroscopy used throughout this thesis and
the work can be illustrated as included in one or two ‘pieces’ of the pie. This
representation will be used in the following four chapters concerning Paper
I IV. The ability of 1H NMR spectroscopy to perform chemical identification
and quantification, to elucidate chemical connectivity, to measure intact
matrices, to study of biofluids, in process control and in nutritional diet
intervention studies will be examined in the following four chapters. In the
following chapter, advanced chemometric modelling for exploring complex
NMR data is introduces and the results from Paper I is presented.

Due to its non destructive nature, NMR spectroscopy can be used to analyse
the composition of metabolites under or close to physiological conditions
[172,173]. NMR spectroscopy has many advantages including relatively fast
high throughput sampling. High field 1H NMR spectra of food or biofluids
typically contain several thousand resolvable signals, potentially providing
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structural and quantitative information on hundreds of compounds from a
single, non destructive measurement in a few minutes [174]. The
combination of NMR spectroscopy and chemometrics has tremendous
potential in the nutrigenomics and metabonomics fields for exploring
patterns of biomarkers in biofluids for diseases and food intake, but a future
in process analytical technology (PAT) in the food and medico industries is
also highly possible.

Process analytical technology
PAT is a US Food and Drug Administration (FDA) initiative to improve
drug substance manufacturing. The definition of PAT is: A system designed
for analyzing and controlling manufacturing through timely measurements
(i.e. during processing) of critical quality and performance attributes of raw
and in process material and processes with the goal of ensuring final
product quality [175]. The quality control part of the process is to supply
quantitative and qualitative information about the process and to optimize 
the efficient use of energy, time and raw materials. In this way, it is possible
to detect early changes in quality and regulate the process. Quality control
should be built in using on , in , and/or at line measurements and thereby
reducing production time. This will prevent rejects and re processing, and
reduce human errors. In order to achieve this, FDA has recognized four
categories of tools; 1) Multivariate tools for design, data acquisition and
analysis, 2) Process analyzers, 3) Process control tools and 4) Continuous
improvement and knowledge management tools [175]. The analytical tools
have largely relied on vibrational spectroscopy and chromatographic
methods despite difficulties with peak assignment and reliable
quantification. However, NMR spectroscopy integrates well with the
establish procedures and can provide useful technology for the PAT
challenge [176]. In the capacity of being quantitative, as well ad qualitative,
NMR spectroscopy provides the fundamental requirements for process
control. NMR spectroscopy can monitor reaction progress because it affords
accurate concentration of all major compounds and NMR spectroscopy can
be used to directly determine the structure of reaction intermediates and
impurities.

Furthermore, NMR spectroscopy is perfectly suitable for multivariate data
analysis to fingerprint process streams and raw materials. However, the
delicacy of the NMR instruments provides a great challenge before
implementing in a process. As already mentioned, the NMR spectrometer is
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highly sensitive to outer magnetic fields. High resolution NMR spectroscopy
is therefore not well suited for inline monitoring; only at line or on line
monitoring of diverted process streams is practical. A solution for making
on line measurements possible is a chemical reactor with a sampling device
where a pump circulates the mixture through an NMR flow cell. The flow is
then stopped and the measurement takes place (Figure 20). However, this is
only possibility for measuring liquid samples with a low viscosity, including
food such as juice, beer and wine etc. Apart from relatively minor off line
quality control applications it has so far failed to be developed as a sensor in
the industrial sector [177].

heater
/chiller

NMR
Flow 
probe

Figure 20 Sketch of an apparatus for sampling chemical reactions from a chemical
reactor and recording NMR spectra. Modified from [176]

Visualization of NMR data
The greatest advantage of chemometrics is the simplicity by which even
large data structures are analysed and visualized which thereby adds an
exploratory dimension to modern NMR science. The signal intensity is
proportional to the concentration (obey Beer’s law) which is a necessary
assumption for the use of basic bilinear chemometric. Applying quantitative
chemometric methods such as PCA and PLS to multivariate high resolution
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NMR data from mixtures will give an idea of how it performs on more
complex data, such as metabonomic data.

All biological material consists of complex mixtures of hundreds of
compounds. Therefore, it would be highly desirable to be able to extract
pure spectra of the components in biofluids, such as urine. In order to
establish this, advanced state of the art chemometric is introduced (Paper I).
MCR is a relatively new chemometric method for analysing NMR spectra,
commonly known from ordinary spectroscopic methods, but which can
provide radically more information than current approaches. MCR is
applied to a ternary experimental design in order to show how simple even
large data structures can be analysed in its exploratory nature (Figure 21).

Figure 21 Ternary experimental design of a sample set consisting of 231 alcohol
mixtures of the three alcohols propanol, butanol and pentanol each one in
concentration between 0 100 percent. The triangle is coloured according to pentanol.
(Data from Paper I)

Figure 22 shows how close the selected three alcohols are in their chemical
structure visualized in the 1H NMR spectrum of the pure compounds. The
pure NMR spectrum of each alcohol shows that the three alcohols have
signals at almost exactly the same positions. Quantification is only possible
in case the signals are well separated. In contrast to chromatographic
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methods, there is only little possibility to influence separation of the signals
because the chemical shift is directly related to the molecular structure.
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Figure 22 Chemical structure and 1H NMR spectra of propanol, butanol and
pentanol. The spectral window is reduced to only including areas with signals. The
OH proton does not contribute to the spectra due to exchange with deuterium from
the D2O added. (Data from Paper I)

Signal overlapping
Because the chemical shift range for hydrogen is rather limited, signal
overlaps are common when analyzing biological samples. PCA and MCR
can be useful in the investigation of highly overlapping data from NMR
studies. MCR provides loadings that resemble the pure spectra of
compounds and scores which represent the corresponding concentrations.
The powerful ability of MCR to separate mixtures into pure spectra and
concentrations from a ternary experimental design of 1H NMR spectra of
alcohol mixtures is shown in Figure 23. This may be considered a model
example of how chemometrics can be used to visualise causal relationships
among samples (Paper I).
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Figure 23 Heavily overlapped CH2 signals of alcohol mixtures of propanol, butanol
and pentanol (left) and three loadings extracted by MCR resembling pure NMR
spectra of the CH2 signal from propanol (at zero level), butanol and pentanol (right).

The MCR solution is not unique but by repeating the estimation of the MCR
model many times from different random starting, it may be verified if the
same fit and solution is obtained (results not shown). Hence, the solution can
be assumed to be unique. These results are encouraging and imply that
NMR spectra of complex mixture can be separated mathematically into the
underlying constituents. However, the main reason that the results are as
good as they are is the presence of pure samples in the model sample set.
The presence of pure samples adds selectivity in the data. Selectivity means
samples or variables for which only one analyte is present. This is one of the
key prerequisites for obtaining uniqueness in MCR models.

Compared to PCA, the information obtained by MCR models is far more
detailed. The loading from PCA are due to orthogonality constraint difficult
to interpret and the scores can only be used visual for detection of grouping
and trends in the data. However, The MCR scores can be compared with the
‘true’ value (i.e. the concentration of the three alcohols) by plotting them
against each other. This can act as a control of the preciseness of the model.
In this case the three correlation coefficients of the three concentration
profiles was higher than 0.99 indicating an almost perfect MCR model.
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5. NMR in the

study of

metabolites in

intact food

matrices

The ability of NMR spectroscopy to measuring solid food material makes it a
superior analytical method for determining quality and functionality of
intact food systems. This chapter concerns mainly Paper II and some
additional publications.

Solid state NMR spectroscopy
High resolution solid state NMR spectroscopy was developed in the 1970s
but it is not until the recent years that HR MAS NMR spectroscopy has been
recognized as an efficient analytical method for analyzing food systems.
Though crystalline compounds have to be measured by CP MAS NMR
spectroscopy (e.g. starch below gelatinization temperature (see below)),
foods containing proteins and fats are normally difficult to crystallize and
therefore give poorly resolved solid state (CP MAS) spectra. However, HR
MAS NMR spectroscopy can overcome these problems in semi solids and is,
due to higher sensitivity of 1H compared to 13C, much faster. Using HR MAS
NMR spectroscopy it is possible to obtain the many advances of measuring
the intact food matrix. Furthermore, the method is non destructive leaving
the sample intact for subsequent analysis. Only HR MAS measurements are
included in the work presented here.
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HR MAS NMR spectroscopy in the study of solid foods
The numbers of successful food applications of HR MAS NMR spectroscopy
are many and wide spread from beef to flour and juice. For example, dried
beef samples of certified origin have shown specific patterns of metabolites
which are possible candidates for markers of origin, probably linked to
feeding system [178]. As other examples it was found possible to
differentiate between durum bread and flours coming from different
geographical areas of southern Italy [90,179]. Gill and co workers showed
that HR MAS NMR techniques enabled resolved NMR spectra of mango
pulps [180]. Shintu and Caldarelli used HR MAS NMR spectroscopy for
characterization of parmesan cheese allowing identification of the presence
of fatty acids (saturated and unsaturated), amino acids and other small
organic molecules which have previously been shown to correlate with
organoleptic origin and age characterization [91,181]. They also succeeded in
grouping emmental cheese samples according to their geographical origins
[92]. Consonni and Cagliani (2008) also studied ripening and geographical
characterization of Parmigiano Reggiano cheese [182] and finally, Lamanna
et al. (2008) investigated degradation of soft cheese under different
packaging conditions [95]. These are all examples of authenticity
characterization of different foods and the area is rapidly developing as
farmers and producers increasingly need to protect against fraud and
adulteration. As described in Chapter 2, recently the NMR manufacturer
developed a dedicated instrument for authenticity and adulteration, the
SNIF NMR technique.

Wheat quality
Measuring intact raw material such as single wheat kernel is a challenge for
HR MAS NMR spectroscopy. In wheat, proteins are the most important
component with respect to end use quality [183]. However, the quantity of
protein per grain is mainly under environmental and genetic control.
Extreme climate events are becoming recognised as an important factor in
the effects on crop growth and yield. High temperature or drought affect the
balance of protein fractions why it is important both to understand the
environmental constraints on crop quality and to predict how the quality
will change with environmental changes and with extreme climate events
[184].



73

In the work concerning wheat quality presented in this thesis, the
implications of one or more drought events on protein quality in developing
wheat grains was investigated using information from chemical protein
analysis, liquid state 1H NMR spectroscopy of methanol extracts, and 1H HR
MAS NMR spectroscopy of single kernels and flours followed by
unsupervised exploratory chemometric data analysis. HR MAS NMR
spectroscopy showed the possibility of studying the effect of different
drought events on the protein synthesis in grains of winter wheat.
Furthermore, the 1H HR MAS NMR spectra of single wheat kernels showed
considerable differences between early and late harvest (Paper II).

Quantitative aspects of HR MAS NMR spectroscopy
The use of HR MAS NMR spectroscopy on single cereal kernels provides
unique possibilities in studies of cereals. Seefeldt et al. (2008) studied the
temporal and genotypic differences in bulk carbohydrate accumulation in
three barley genotypes during grain filling [185]. The barley flours were
measured by HR MAS NMR spectroscopy which gave well resolved spectra
with clear differences between times of harvest. However, they experienced
a problem of measuring starch below the gelatinization temperature and
fibres because immobile glucan and rigid starch remained immobilized
and thus not visible in the spectra. The solid character of the single kernels
due to water immobility makes it difficult to mobilize semi crystalline parts
of the kernel. Especially in mature kernels, which have almost solid
character, the rigid, semi crystalline matrix will lead to few broad signals.
Only signals from protons that are mobile by themselves, protons from fat,
protons that are naturally in contact with cellular water or protons that are
accessible to the soaking water are visible in the 1H HR MAS NMR spectra.

The presentation of the sample or the fraction of e.g. a wheat seed (single
kernel, flour or extract) induces great variation as the HR MAS NMR
technique, not necessarily provides signals from all protons in the solid
sample. Therefore, flour or to a greater extend extracts of the single kernels
must be chosen in order to mobilize the semi crystalline parts of the kernels.
Figure 24 shows the NMR spectra of four different fraction of wheat; whole
single kernel, flour, methanol extracts of flour and sour hydrolysis of flour,
all showing different signals. This is an example of how different the
information to obtain when measuring different fractions.
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Figure 24 1H NMR spectra of hydrolyzed wheat and wheat methanol extract
together with 1H HR MAS NMR spectra of wheat flour and single kernel wheat
normalised to similar noise level.

Furthermore, the preparation of the sample is also important because of the
difficulty to obtain correct quantification due to varying sample size etc. The
size of the kernel material studied and the relatively small dimension of the
MAS sample holder (rotor) are not really compatible. HR MAS NMR rotors
have a fixed inner volume, whereas the sample size of a wheat kernel can
vary markedly resulting in unequal concentrations between replicates. For
quantitative purposes, it is thus very important to keep these factors as
constant as possible.

The advantage of using flour or extracts instead of single kernels is that the
variations in size of the kernel, the spike differentiation and the different
position of the spike amongst kernels are averaged out. And as described,
more protons are mobilized in flour and extract. Furthermore, the sample
preparation of flour and extract is easier, as the rotor can be filled
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completely. However, in this way the advantage of measuring intact
biological material is of course lost.

Considerations concerning experimental setup
The experimental parameter setup in HR MAS NMR spectroscopy is very
critical. The spinning rate, solvent and temperature have to be optimised for
the specific problem to be studied to ensure reproducible spectra that
include all mobile compounds of interest. Two opposite considerations have
to be taken into account with respect to the spinning rate. The spinning
speed has to be sufficiently high to ensure high quality signals from all
expected compounds and for preventing spinning sidebands in the spectra.
But, if the material is permeable for solvent, the destructive forces of
centrifugation point towards using a low spinning rate [186]. Another
important parameter in relation to sample preparation of HR MAS NMR
experiments is the choice of solvent. Dry kernels tend to absorb the added
deuterated water (D2O) and exchange it with internal water (H2O). The
result of this process is a poorer shimming and in turn increasingly lower
quality spectra over time. An alternative solvent which could be used to
replace D2O, is deuterated DMSO. Viereck et al. (2009) found that HR MAS
NMR spectra of single wheat kernels soaked in D2O gave better resolved
spectrum in the carbohydrate region, whereas the DMSO spectrum was
similar to a fully gelatinized starch spectrum due to the better solubilised
starch polymers. D2O resulted in a minimum of kernel damage, whereas
DMSO left the sample very fragile. The choice of the experimental
temperature is also an important parameter to consider. For example, in
single kernels which can be regarded as a solid with a very rigid cellular and
granular matrix, mobilisation of particularly the carbohydrates (starch and
fibres) can be enhanced by heating of the samples. This consideration should
be taken together with the specific problem of interest [186].

Three way data
In the field of metabonomics, the dynamic characterization of metabolic
changes over time is a fundamental aspect of elucidating the biochemical
response of an organism to an external perturbation. It is not the change of a
specific metabolite but the dynamic variation of the whole system in time
that enters directly in the discrimination among the groups [187].
Exploratory studies of change over time have the advantages that data series
are naturally arranged as a three way data set. The first dimension can
represent the treatment, the second dimension can represent the time and
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the third dimension can represent the development of the metabolic profile
measured by NMR spectroscopy. Castro and Manetti (2007) also used the
multiway approach to analyze metabonomic data in a study of maize seeds
development [187]. Jansen et al. (2008) used the higher order advantage in
the study of the effect of two doses of hydrazine in urine from rats,
investigated by time resolved metabolic fingerprinting [188]. In the work
presented here, for the first time, grain filling HR MAS NMR data has been
analysed by PARAFAC and the result was an excellent overview of the data
(Paper II). The PARAFAC approach combined with the multiparametric
NMR method showed a great potential in the study of the grain metabolome
evolution. In Paper II, it was further shown how visualisation of the data by
PCA trajectories of HR MAS NMR spectra of single wheat kernels can give
good contrast of the metabolic development during grain filling. Keun et al.
(2004) have previously shown that geometric trajectory analysis of metabolic
responses can define treatment specific profiles [189].
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6. The dynamic
metabolic events

of NMR
uroscopy in

nutri
metabonomics

A promising opportunity exists for nutritional scientists to precisely identify
the biological consequences of bioactive ingredients in food which in turn
will provide more profound insight to their potentially beneficial
consequences. This chapter concerns the usefulness of NMR spectroscopy in
urine metabonomic (uroscopy) studies based on Paper III and unpublished
results.

Metabonomics
Nowadays, nutrition focuses on improving health of individuals through
diet. By analyzing the metabolic content and concentrations of a biofluid
using NMR spectroscopy, a metabolic profile can be generated that provides
a non invasive ‘whole body snapshot’. Comparison of these snapshots
before and after a dietary intervention may highlight particular metabolites
that respond. In this way, potential biomarker identification leads to a
greater understanding of biochemical consequences of food, bioactive
compounds and drugs. The definition of the normal metabolic profile is
fundamental in human studies where additional variance is introduced
through a number of uncontrolled factors (i.e., genetics, ethnicity, stress,
exercise level, and diet) [190]. An illustration of metabonomics is given in
Figure 25.
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Figure 25 Metabonomics can be defined as the analysis of metabolites using
multivariate data analysis. Living cells produce changes in metabolite pattern under
stimuli from nutrients or medicine (pharma) and environment. The genetic
composition of the cell is determining for of metabolite changes.

The automated acquisition of large amounts of metabonomics data (and
other omics data) by modern NMR spectrometers results in exploratory and
interpretative challenges. However, the abundance of data is not in itself a
guarantee for obtaining useful information on metabolic events taking place
in an investigated system. The data has to be investigated in a proper way,
before any conclusions can be made. This will be discussed in the following.

Uroscopy
Samples for metabonomics studies are mostly derived from body fluids such
as blood, urine, spinal fluid, saliva and cerebrum spinal fluid or as biopsies
of tissues. However, blood and urine are the most frequently used samples
for exploring the systematic modification of metabolome. Compared with
blood and plasma, urine samples enable non invasive monitoring of
metabolic changes that manifest in the urine [191]. Urine is a practical
diagnostic sample because it is relatively safe and simple to collect, and
contains information about the individual. Beyond diagnostic markers to
diagnose pregnancy and specific diseases, urine can also provide other
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relevant information about the individual, its health, physiological function
and response to xenobiotics and diet [192].

Biological variations in urine
Biologic material show generally great sample variability. The intra
individual metabolite variance i.e., the day to day variation of an individual
and the inter individual variation, i.e. within a normal population has to be
considered before conclusions are made. Compared to plasma and blood,
urine is highly varying in concentration and composition since urine is a
body ‘waste product’. On the other hand, blood is under constant chemical
control by the body because of the vital importance of constant pH and
glucose concentrations for instance. In contrast, all excessive metabolites
from all body functions are excreted into the urine. Many factors influence
the number and the amount of metabolites to be excreted into the urine. In
urine from rodents, it has been established that species, strain, genetics, sex,
age, hormone concentrations, diurnal cycles, diet, temperature, stress, and
gut microflora all contribute to the metabolic composition of the urine [193].
Another factor that can contribute to variation of the urine is the sampling
procedure. Sample preparation, time of sampling and storage can also
impact on a clinical test result [194,195]. All in all, there is a risk that small
and subtle metabolic responses disappear in the large variation caused by
biological variation, experimental inhomogeneity or inadequate sample
procedure. Keun and co workers (2002) found that metabonomic urine
analysis is an extremely precise analytical tool with evidently high analytical
reproducibility of metabonomics and that the reproducibility of the NMR
data indicates the reliability of the data acquisition. They also demonstrated
that any analytical variation was many times smaller than the detected
normal physiological variation in urine composition [174].

Nutri metabonomics
The changes in metabolic profiles resulting from dietary intervention can be
difficult to detect as the contrast between the metabolic profiles produced
from healthy individuals are small [196]. Metabonomics provides nutrition
research with an alternative to the traditional single biomarker approaches
used to assess health and disease. 1H NMR metabonomics has been used for
several dietary studies of urine and many biomarkers have been identified
which has been found interacting in dietary interventions. For example,
NMR spectroscopy has been shown by van Velzen (2008) to be able to detect
changes in phenolic compounds in urine after grape/wine consumption with
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hippuric acid as the strongest biomarker [197]. Hippuric acid has also
previously been reported to have metabolic impact of polyphenolic rich
food consumption (from tea) in humans [198 200]. In another study by
Solanky and co workers (2003) was epicatechin, a bioactive flavonoid
widespread in many food products like green tea, and cocoa found in rats
urine as a function of intake [201]. The identifiable biochemical effects
associated with epicatechin intake included decreased urinary
concentrations of taurine, citrate, dimethylamine, and 2 oxoglutarate.
Solanky et al. (2005) have further investigated changes in the NMR spectral
profile of urine collected from controlled dietary intervention studies in
order to identify the biochemical effects of a diet rich in soy isoflavones,
phytochemicals which are receiving significant attention because of their
potential importance to human health and wide bioactivity in vitro [202].
Wang et al. used NMR spectroscopy to the study the biological responses to
chamomile tea ingestion and saw clear differentiation between the samples
obtained before and after chamomile ingestion as an increased urinary
excretion of hippurate and glycine and depleted creatinine concentration
[203]. In these examples, urine NMR metabonomics (uroscopy) have shown
useful in studies of biochemical effects of bioactive compounds. These
studies confirm that many compounds are flucturating in urine. However,
metabonomics in human nutrition research is faced with the challenge that
changes in metabolic profiles resulting from diet may be difficult to
differentiate from normal physiologic variation [196]. This problem will be
discussed in the following.

Monitoring diet interventions by NMR spectroscopy
Humans are extremely diverse organisms and it is therefore not surprising
that most human metabonomics studies have found that spectral outputs are
strongly influenced by inter and intra individual variation [196]. Normal
physiologic variation may be a strong confounder in human studies and so
far, most of the human metabonomics studies have clinical cases and
controls. Volunteers in diet interventions studies are generally healthy and
therefore in a metabolic homeostasis [202,204]. Still, changes in metabolic
profile may be difficult to distinguish from normal physiological variation.
The effects of the nutritional treatment tend to be much smaller than the
biological variation that exists between the individuals [168,204,205].
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One of the main challenges in nutritional metabonomics relies on the
separation of specific metabolic signatures due to well determined foods or
diets. The metabolome is itself composed of numerous signatures from the
confounding factors, from not only genotype, but also from i.e., gender,
aging, physiological status, and lifestyle [193].

The Diogenes study
One of the projects in this Ph.D. study was to investigate a dietary
intervention study using uroscopy. Diogenes [206] or the full title “Diet,
Obesity and Genes” is a controlled dietary intervention study in
obese/overweight families (adults and children) in 8 different European
countries, testing the efficacy of diets differing in Glycaemic Index (GI) and
protein content. A large numbers of people across Europe are continuing to
gain weight and when trying to lose weight, if successful, people
subsequently find it very difficult to keep the weight off.

The weight loss study aims to identify the diet which will be most effective
in preventing weight gain and weight regain. Each parent has undergone an
eight week weight loss diet (using a low calorie diet formula), which has
been designed to achieve a weight loss of 8% of their original starting
weight. Then the parent is offered the opportunity to participate in the
investigation of the problems related to weight re gains. In this part of the
study, volunteers have been assigned to one of five different dietary
regimes, designed to test the relative effectiveness of GI and protein content
in weight control.

The diets were: 1: Low Protein, Low GI
2: Low Protein, High GI
3: High Protein, Low GI
4: High Protein, High GI
5: Control, medium protein and medium GI

A controlled supermarket set up was used to provide appropriate foods
during the 6 months of the trial so each family could shop according to their
diet group. All food from the supermarkets were provided free of charge.
All subjects were allowed a 3 weak break from the project, during which no
recording of the dietary intake was required. As a first result of the Diogenes
intervention study, it was established that an increase in dietary protein
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content decreases weight regain after weight loss, whereas there was no
effect of GI on weight change [206].

The purpose of our part of the Diogenes study was to investigate the urine
metabolome by 1H NMR spectroscopy and evaluate the results with
multivariate chemometric approaches in order to identify significant
biomarker profiles. Approximately 100 persons in the five diet groups
collected 24 h urine four times during the study; at day 0, (after the eight
week weight loss diet (before the diet intervention)) and 1, 3 and 6 months
after the beginning of the diet intervention. See Table 2.

Table 2 Overview of urine sample collection days

24h urine collection After 8 week weight loss Diet intervention
Clinical investigation day Day 0 1 mdr 3 mdr 6 mdr

These urine samples were measured by NMR spectroscopy and Figure 26
shows the 478 NMR spectral urine profiles from this study.
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Figure 26 478 NMR spectra of human urine from the Diogenes study.
Approximately 100 persons were each collecting four 24 h urine samples; at day 0
and 1, 3 and 6 months after the weight loss

The figure shows the great complexity of 1H NMR spectra of urine. Many
signals seem to show variation between the samples and the problem of
concentration variation between the samples is evident. Indeed, this study
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turned out to be much more complicated than first assumed compared to the
previously mentioned successful uroscopy studies.

Approximately half of the urine samples were prepared in replicates, i.e. two
‘samples’ were collected from the 24 h ‘pool’ and each of these were
prepared in NMR tubes and measured, yielding 222 replicates in total.
Figure 27 shows a PCA score plot of the 222 replicate NMR spectra of urine
from the diet intervention study.
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Figure 27 PCA score plot of 222 replicates of urine spectra (mean centred) from the
diet intervention study. The arrows indicate the distance and direction of some of
the replicates.

The samples are numbered in pairs, so that e.g. 1 + 2 and 121 + 122 are
replicates. This plot reveals the variation within the NMR data between the
replicates. This variation could be caused by the sample preparation and/or
variation in field homogeneity or other small experimental variations. These
variations must be much smaller than the variation between the samples due
to the intervention study in order to obtain reliable results. These variations
can to a certain extent be minimized using some of the spectra post
(recording) processing and pre (modelling) processing steps mentioned in
Chapter 1 & 2. Inspection of score plots of replicates can also help to test the
best pre processing method as the average Euclidian distance can be
calculated as a target function of most efficient pre processing method. In
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Figure 27, a couple of samples (171, 186) have large distance to their replicate
sample. These samples, so called outliers, should be removed from the data
set before further analysis. What is even more evident from the score plot is
that there are no systematic variations induced in the sample set, as the
replicates ‘wanders’ in different directions (arrows in Figure 27). If
systematic variation was induced due to e.g. a time parameter, replicates
would show the same ‘trend’ and split up in the same direction.

The overall aim of the study was to discriminate between any combinations
of large vs. small weight loss, large vs. small maintained weight loss or
weight gain during the 6 months diet intervention. The discrimination was
also concerning normal vs. high intake of protein and low vs. high content of
GI in the diet. In order to determine which metabolites that is responsible for
possible differences in the diet combinations and to characterize the different
metabolic fingerprints, supervised modelling is applied. As mentioned in
Chapter 2, the PLS DA model should always be used with caution as it tends
to overfit the data. However, sometimes it is practical to start out with PLS
DA exactly because of its ability to overfit. If PLS DA is not able to model
the data, no relations probably exist between the NMR spectral urine
profiles and the diet groups. Figure 28 shows the PLS DA model obtained
on the supposed most extreme diet groups, having high protein/low GI and
low protein/low GI. Unfortunately, no systematic variation seems to exist in
the data that can discriminate between the two diet groups.
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Figure 28 PLS score plot of 104 NMR spectra of urine from high/low protein diet
and low glycemic index together with actual versus predicted plot containing model
specifications. Day 0 is excluded because the diet has not yet started which result in
a total of 104 NMR spectra



85

From the plot it seems reasonably that removal of the worst predicted
samples together with the most outlying samples would be able to improve
the predictions. Unfortunately, this is not the case. The case here is a typical
example of an overfitted model; in the score plot there seems to be coherence
between diet group and their urine profile, but even with half of the ‘worst’
samples removed the model performances remain unsatisfactory. All the
previous mentioned multivariate tricks and pre processing approaches were
systematic investigated, however, still without any model improvements. In
conclusion, we found that it was not possible to model gender, age, weight
gain/weight loss, smokers/non smokers or even the day of investigation (0,
1, 3 or 6 month).

This study illustrates some of the most common problems in NMR
measurements of urine. The urine metabolome is in this study was found to
vary more between the samples compared to the changes of interest induced
by the nutritional intervention. This is the major problem in uroscopy
studies. A challenge remains in uroscopy in eliminating the ‘noise’ due to
random daily variations. However, Assfalg et al. (2008) found evidence of
different metabolic phenotypes in humans. This was only made possible
when measuring urine from 22 individual persons, 40 times over a period of
3 month. This amount of data is apparently sufficient to average out and
eliminate noise due to daily variations [207]. Therefore, it is important to
define the inter and intra individual sample variance within a normal
population before biochemical or clinical conclusions are made.

Another reason why we did not obtain significant result was the lack of
control of the subjects. In diet intervention studies one more problem is often
seen. Self reported dietary intake is often used for establishing diet disease
associations. Food frequency questionnaire has been the dietary assessment
method used most frequently in large scale studies, primarily because it is
easy to administer, is less expensive than other dietary assessment methods,
and provides a rapid estimate of usual intake [208]. However, there exists a
great problem in using food frequency questionnaires. For example,
McKeown et al. (2001), observed that the correlation between 24 hour
urinary nitrogen excretion and dietary intake as evaluated by the food
frequency questionnaire was a low as 0.25 [209]. Instead, biomarkers do not
always correspond to the self reports of food intake and thus random
measurement errors of the biomarker are not likely to be correlated with
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those of the dietary assessment method [210]. This indicates that there exist
great bias between what people say they have eaten and the actually dietary
intake.

Indeed, it is known that human volunteers in dietary studies do not report
all their medication or food supplements [211]. Therefore, it would be highly
desirable to test or check what test persons really eat under a diet
intervention. In vivo investigations using animals as study models make it
possible to study biomarkers for different food intake. Animals can be
exposed to much more controlled environments (temperature, humidity and
exercise) and diet (controlled amount of food and water) and they can be
much more identical with respect to gender, genetic and physics (height and
weight). These stringent conditions are not possible with humans as test
persons who volunteer to follow diet intervention studies.

The results of the Diogenes study were not convincing and it was not
possible to make conclusions. Therefore, results have not been published
yet. There are many reasons why the study did not give the result we
expected. The diet intervention itself was uncontrolled as each family could
shop free of charge according to the diet group, but it is still unknown what
the individual person really haven eaten. Only the average amount of protein
and the GI of the diet were controlled. Furthermore, the three urine
snapshots (per person) from the diet intervention during the six month do
not cover the variation from day to day. And since the diet was not more
controlled, there is a possibility that the day of urine investigation was the
day where the person did not hold strict too the diet or exactly match the
period where the person took the allowed break from the project.
Furthermore, taken into account that test person does not always follow
their diet strictly, another source of uncontrolled variation is induced. In the
following, a successful uroscopy application using rats as animal study
models to study biomarkers is described (Paper III)

Exploration of biomarkers for onion intake
The concept of developing a nutritional enhanced food product requires
deep understanding of the mechanisms of protection, including
identification of the biologically active molecules in order to demonstrate the
efficacy of these molecules. Fruits and vegetables contain several bioactive
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compounds and onions and apple have been described to have potentially
beneficial effects on health.

In this work, biomarkers for onion and apple intake were investigated by
NMR spectroscopy of urine from rats. The result regarding onion
biomarkers are presented in Paper III but the results regarding apple
biomarkers are not yet published. In this study, 48 male rats were divided
into 6 diets groups; one control group, 3 groups were given onion (by
product/extracts/residue) and the last 2 groups were given apple (raw apple
and apple pectin). NMR spectroscopy showed in combination with
chemometrics to be an excellent tool for classifying diet groups by their
urine profile. It turned out to be possible to distinguish between urine from
rats with a normal diet and rats on an onion or apple diet in a simple PCA
plot of the NMR spectra of a selected interval found by iPLS (Figure 29).
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Figure 29 PCA score plot of 32 NMR urine spectra of rats on six different diets

This impressive result illustrates how much easier it is to use animal models
because the variation between samples will reflect the diet intervention
rather than the confounding factors.

Further investigations were carried out regarding biomarkers from onion
intake. In order to investigate the spectra for signals able to distinguish
between the control feed and the three different onion fed groups (by
product, extract and residue), iECVA was carried out on the urine spectra.
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The ECVA score plot (not shown) obtained on the selected intervals gives
four distinct groups. Two interesting intervals were found by iECVA which
was able to improve the misclassifications rate significantly. The two
intervals, 6.50 6.95 ppm and 2.98 3.42 ppm revealed signal from onion
biomarkers in urine from the three onion feed groups (by product, extract
and residue). The two onion biomarkers were identified as dimethylsulfone
and 3 hydroxyphenylacetic acid. Therefore, it was possible to identify an
objective biomarker for onion intake but not for the different onion products.

Being able to detect and maybe even identify specific diets could add
interesting possibilities e.g. in human intervention studies where urine could
be used to detecting biomarker of different food intake. With respect to the
health beneficial effect of onion, developing dietary supplements or
nutritionally enhanced functional foods including onion fractions could be
valuable. The concept of developing nutritionally enhanced functional foods
requires the understanding of the mechanisms of prevention and protection
if potential nutritional effects of an onion supplement should be utilized and
the effect documented. The identification of biologically active molecules as
potential biomarkers leads to a greater understanding of biochemical
pathways and potentially allows objective quantification of onion intake in
human studies.
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7. NMR

spectroscopy for

advanced quality

control of food

ingredients

NMR spectroscopy has a long tradition in structure elucidation of
biomolecules and can provide information on molecular structure,
dynamics, and interactions with unbiased detection. Hydrocolloids are a
group of complex carbohydrates wherein the colloid particles are dispersed
in a water solution. A hydrocolloid can take on different states, e.g., gel or
sol and are employed in food mainly to influence texture or viscosity. NMR
spectroscopy provides great help in understanding complex carbohydrate
structures and thereby is possible to analyse their functionality. In Paper IV
and one of the Additional Paper I on spectroscopic analyses of functionality
of pectins have been carried out.

Pectin: a case study
Pectin is commercially produced mainly from citrus fruit peel and apple
pomace, which are by products from citrus or apple juice production. From
an application point of view, citrus and apple pectins are largely equivalent.
Because of its excellent gelling, thickening, and stabilizing properties,
extracted pectin (E440) is extensively utilized in the food industry as gelling
agents in jams, confectionary, and bakery fillings, and stabilisers in yoghurts
and milk drinks [212,213]. Pectin is a natural part of human diet through the
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daily intake of pectin from fruit and vegetables. In human digestion, pectin
passes through the small intestine more or less intact and pectin is thus
considered as a soluble dietary fibre. Consumption of pectin has been shown
to reduce cholesterol levels in blood, as the increase of viscosity in the
intestinal tract, leads to a reduced absorption of cholesterol from bile or food
[214]. In the large intestine and colon, microorganisms degrade pectin and
liberate short chain fatty acids which have positive prebiotic influence on
health [215].

Functionality
Pectic molecules include primarily homogalacturonan (HGA) and
rhamnogalacturonan I (RG I). HGA is composed of unbranched 1,4 linked
galacturonic acid (GalA) residues, whereas RG I is composed of a backbone
of repeating 1,2 L rhamnose(Rhap) 1,4 D GalA disaccharide units. The
GalA residues in the HGA and RG I backbone may be methyl esterified
and/or O acetylated [216]. Side chains, mainly consisting of arabinan and/or
galactan, are attached to the RG I backbone at the C 4 position of the Rhap
residues. These side chains are called ‘hairy regions’ [216,217]. Regions of
free (deesterified) GalA units bind calcium (Figure 30) and may form
multiple calcium bridges, which create a domain of strong intermolecular
association between the galacturonan chains, resulting in increased
viscosity. Multiple regions of predominant free GalA residues in the
presence of an excess of calcium ions, causes pectin gelling or precipitation
[218].
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Calcium binding studies has showed that the calcium sensitivity of high
esterified pectin occurs in the presence of inhomogeneous methyl ester
distribution. Therefore, the functionality of pectin is not only depending on
the number of methyl esters, the degree of esterification (DE), but also on the
distribution of the methyl ester groups along the pectin polymer. Native
pectins are varying in DE depending of biological source, but for citrus
pectin the DE is approximately around 73%. The DE for a given pectin can
be adjusted chemically or enzymatic, depending on the end use [219]. The
de esterification method has great influence on the subsequent distribution
of the free ester groups. The de esterification can be blockwise or random
depending on the method. Random and blocky methyl ester distributions
are interpretations as illustrated in Figure 31, but there exist no precise
definition of how many contiguous free GalA units constitute a block.

Large blocks (homogen)

Systematic distribution (homogen)

Random distribution (heterogeneous)

Small blocks (heterogeneous)

Figure 31 Schematic example of a 3 folds conformation of HGA chains with
different distribution of free GalA units

Besides the DE and the distribution of the ester groups also the helical
conformation of the pectic polymer is important. Braccini et al. (1999) found
that both the 2 and the 3 fold conformation for polygalacturonic acid are
almost equally favorable. Thus, depending on the environment (neighboring
ions, solvent, etc.), one or the other form may exist [220].

Blockiness in pectin
The degree and pattern of methyl esterification has important commercial
implications. Previous investigations of the methyl ester distribution of
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pectin have included (among others) H1 NMR spectroscopy together with
enzymatic degradation [221,222]. However, studies using enzymatic
degradation have the disadvantage that they tend to be destructive with
major reduction in the molecular weight of the pectin molecules. An
alternative to the enzymatic degradation of the polymer is to use
spectroscopy such as NMR spectroscopy and vibrational spectroscopy. With
respect to pectins, near infrared (NIR) and infrared (IR) spectroscopy has
proved capable of monitoring the DE of pectin powders [223,224] using full
spectrum regression methods such as PLS. In the search of pectin derivates
with improved functionality properties it would be advantageous to obtain a
rapid spectroscopic method which can quantify both the DE and the
distribution of methyl esters. For this reason, a sample set of 31 pectin
samples with four different ester distributions were produced at CP Kelco
(Denmark), (formerly Copenhagen Pectin Factory). This was done using
enzymes which de esterifies in a random or blockwise manner, respectively.
While the ester groups give rise to specific group frequencies or chemical
shifts, signals relating to their spatial distribution along the pectic polymer
are bound to be more subtle why pattern recognition methods such as PCA
and PLS is applied in order to extract the information.

The designed set of pectin with block and random distribution of free GalA
units has been exploited using NMR, IR, Raman and NIR spectroscopy [225]
(Paper IV). NMR spectra were obtained on 0.5 % (w/w) pectin solutions
whereas IR, Raman and NIR spectra were recorded on pure pectin powder.
Prediction models were developed for random and blockwise distribution. It
turned out to be possible to predict random deesterification more easily than
blockwise for all the spectroscopies. This is possibly due to the fact that the
random enzyme simply removed the blockwise distribution pattern leaving
only signal from random distribution. Large de esterified block leaves
apparently no specific spectral signals.

iPLS exploits functionality in the spectra
Using the variable selection method iPLS, specific regions of NMR, IR and
NIR spectra were revealed in which the prediction models of random GalA
distribution could be significantly improved. These areas hold quantitative
information on random de esterification which in the NMR spectra
corresponds to H 2 in the GalA residue. The most influential spectral area of
the IR spectrum (970 870 cm 1) found by iPLS is dominated by (C O H) and
(CH3) in plane bending. This signal has good potential to be affected by the
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randomness, since these vibrations are correlated to DE. The interval in the
NIR spectrum (7400 7200 cm 1) which showed significance with respect to
the random ester distribution is probably due to first overtones of
combination bands (C H stretch and C H deformations) originating from
CH3 groups.

In order to investigate the difference between the four different enzyme
treatments of the pectin polymers, classification by enzyme treatment was
investigated. This study showed that it is possible to extract information not
relating to the quantitative information extracted by the regression methods.
ECVA classifications were carried out on the vibrational spectroscopy data
ensembles. The ECVA revealed one specific signal in the Raman (1045 cm 1)
spectra and one significant area (1250 1400 cm 1) in the IR spectra which was
able to classify the pectin samples according to block and random ester
distribution. The signal at 1045 cm 1 in the Raman spectrum is assumed to be
due to changes in the galacturonic acid backbone structure when the
substitution of the galacturonic acid chain with ester groups is changed. The
interpretation and assignment of the signal in the IR spectrum were more
difficult.

The significant area with respect to classification by enzyme treatment in the
NMR spectra was revealed by iPLS (Figure 32).
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These signals are possible due to the H 1, H 5, the H 4 end residue and the
H 2. To explain this, the spectral conformation is further exploited.

Spatial pectic conformation
A nearly complete assignment of the 1H NMR spectrum of pectin solutions
was carried out. A computer model of a 3 fold helical turn of a trimer GalA
unit (fully esterified) of the pectic backbone is shown next to a plot from a
NOESY experiment (Figure 33). The distances between the methoxy group
at one GalA unit (n) and the H 1, H 3, H 4 and the H 5 of the two neighbour
GalA units (n 1 and n+1) are measurably very short.
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Figure 33 Molecular model of a 3 fold helixal structure of two GalA units
illustrating the distances between the methoxy group at one GalA unit (n) and the
H 1, H 3, H 4 and the H 5 of the two neighbour GalA units (n 1 and n+1). Right:
part of a NOESY spectrum of pectin showing NOE signals from OCH3 to H 1 (on
de esterified neighbour unit)

Some very interesting correlations in the NOESY spectrum were observed
between the methoxy signal and the H 2 and H 3 signals which were found
to be due to the NOE effects from the spatial pectin structure. This indicates
that the pectic polymer has a three fold helical conformation. The shortest
distance seems to be between the methoxy group and the H 1 at the
neighbouring GalA unit. Examining this signal closer showed that the H 1
signal splits up depending on the esterification. A de esterified GalA shows
in a signal at 5.11 ppm as shown in Figure 34.
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Random enzyme causes specific ester patterns giving specific 
signals in the NMR spectrum
Random enzyme causes specific ester patterns giving specific 
signals in the NMR spectrum

Block enzyme results in large blocks of free GalA units giving no 
signal in the NMR spectrum
Block enzyme results in large blocks of free GalA units giving no 
signal in the NMR spectrum

5.095.15.115.125.13 5.095.15.115.125.13

Block deesterification followed by random enzyme also causes an 
ester pattern giving small signals

ppm

Figure 34 Part of the 1H NMR spectra of pectins, illustrating the specific signal
caused by random ester distribution. The variation is due to the 3 fold helical
structure of the pectic backbone and to the spatially close position of the
neighbouring free and esterified GalA units

When colouring the signal according to the de esterification, clearly some
systematic are emerging. The signal with the highest intensity originates
from the random de esterification. Blockwise distributions of free GalA units
give rise to signals with lowest intensity. In the middle are signals from
pectin samples which are de esterified with half block half random enzymes
(Paper IV).

This is a beautiful example of how NMR spectroscopy can be used to
elucidate detailed structural conformation. It demonstrates the high utility of
using variable selection methods to elucidate interesting regions of the
spectra. Subsequently, the versatility of NMR spectroscopy makes it possible
to elucidate the structure. This clearly illustrates of the unique combination
between NMR spectroscopy and chemometrics.
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8. Conclusion

This Ph.D, study has contributed with insight and deeper understanding of
the possibilities and advantages of the use of NMR spectroscopy within
many different food related applications. The major advantages as well as
the limitations of NMR spectroscopy in combination with chemometrics
have also been characterized. The study illuminates the numerous
possibilities of NMR spectroscopy within food and nutrition research,
especially concerning the use of chemometrics and data mining techniques
in combination with NMR spectroscopy.

Exploitation of complex NMR spectra using chemometrics is not routinely
utilized. In the work presented here, the challenges in data analysis of NMR
spectra, where spectral sensitivity and spectral pre processing are affected
by e.g. signal overlap have been described. The quantitative aspects of NMR
spectroscopy have been exploited and advanced chemometric modelling has
been applied. MCR was shown to be a perfect chemometric tool for
visualization of NMR spectroscopic data of a ternary experimental design of
alcohol mixtures. The MCR was able to separate alcohol mixtures into pure
alcohol spectra and corresponding concentrations. Using this design as a
simplified simulation of metabonomic applications, these aspects of NMR
were initially explored. The quantitative nature of NMR spectra was
examined and it was suggested to be potential also in future PAT
applications.

In the collected work presented in this thesis, NMR spectroscopy revealed its
extraordinary potential, when applied to natural samples and products.
NMR spectroscopy was applied for exploiting patterns in the protein
metabolism of single wheat kernels. The implications of one or more
drought events on protein quality in developing wheat grains was
investigated using liquid state 1H NMR spectroscopy of methanol extracts
and 1H HR MAS NMR spectroscopy of single kernels and flours. HR MAS
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NMR spectroscopy showed the possibility of studying the effect of different
drought events on the protein synthesis in whole grains of wheat. Multi way
PARAFAC modelling of the NMR data revealed a great potential in the
study of the dynamic grain metabolome evolution. In relation to this, the
possibilities and advantages of studying intact biological matrices were
described, including critical experimental parameters. In addition, the
importance of sampling and the challenges in sample preparation for
assurance of quantitative NMR spectra were studied.

When developing nutritional enhanced food products a thorough
understanding of the mechanisms of health protection as well as a
demonstration of their effectiveness in vivo is required. Fruits and vegetables
contain several bioactive compounds; onions and apple have been described
to have potentially beneficial effects on health. The identification of
biologically active molecules as a result of onion intake by rats was
investigated in order to obtain objective quantification of onion intake.
iECVA revealed specific biomarkers in the NMR spectra of rat urine as a
result of onion intake. Two biomarkers for onion intake were identified;
dimethylsulfone and 3 hydroxyphenylacetic acid. Being able to identify and
quantify onion intake ads great advantage with respect to understanding
and monitoring the health beneficial effects of dietary supplements or
nutritionally enhanced functional foods including onion. The importance of
understanding the limitations and pitfalls of metabonomic data analysis
including the limitations of experimental design as well as the risk of
overfitting the chemometric models was also established.

The enormous potential of NMR spectroscopy to provide information about
the qualitative chemical structure and quantitative content simultaneously
was demonstrated in a study of structures of pectins. Quantitative and
qualitative information was extracted by chemometric models, including
PCA, PLS and IPLS. Especially the interval based chemometric models were
shown to be excellent exploratory tools in obtaining knowledge about
informative regions of the NMR spectrum. This result was general for the
collected work. iPLS and iECVA proved to be particularly well suited to
explore multivariate NMR data sets. The reason for this is partially the
mega variate character of NMR data with large baseline regions and
partially the huge scaling dynamics in NMR spectra.
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In this thesis, the chosen different applications of NMR spectroscopy have
been illustrated as one or two ‘pieces’ in a pie chart. This representation is
meant to illustrate the great versatility of NMR spectroscopy and the strong
synergetic relation between NMR spectroscopy and chemometrics.
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9. Perspectives

General aspects of NMR and chemometrics
NMR spectroscopy has a long history and tradition. Applications of the
technique have developed from chemical identification and quantification,
to elucidation of chemical connectivity, to measurement of intact matrices
and to the analysis of biofluids and nutritional diet intervention studies.
However, new potential aspects in using NMR spectroscopy combined with
chemometrics will be further developed as NMR spectrometers, NMR
probes and chemometric modelling are advancing rapidly. New NMR
spectrometers installed with cryo probes are becoming more affordable and
the more sensitive which makes it possible to obtain even more detailed
information in shorter time. This continuous improvement in NMR
technology also makes measurements of other NMR active nuclei (besides
protons) easier, which provide new possibilities in food and nutrition
sciences. Measuring nuclei such as phosphor can offer new insight into
metabolic profiles, in foods processes and in human metabolism. Optimal
exploitation of such NMR data will demand advanced chemometric
methods.

Within chemometrics, new possibilities of handling more and more complex
data are continuously emerging. The development of more advanced
multivariate techniques also expands the uses of NMR spectroscopy. Multi
way chemometric techniques are well suited for the analysis 2D NMR data.
PARAFAC and Laplace inversion have already successfully been used on
2D DOSY NMR spectra [143,226] and these multi way techniques can
further be applied to 2D scalar coupling (COSY, TOCSY and HSQC) NMR
data. Also, the development of new chemometric methods alternative to the
current basic chemometric PCA modelling for specific handling of complex
NMR data is desirable. The PCA has some obvious disadvantages when
applied to complex NMR data. PCA is highly sensitive to noise, but not
sensitive enough when relevant spectral information is concentrated in a
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few, small peaks among many larger signals. Obtaining chemometric
models tailored for NMR data would be highly useful for NMR scientists.

Future potential in PAT
A near future aspect of the use of modern NMR spectroscopy is in process
control as alternative method to the already implemented spectroscopic
techniques (e.g. NIR and IR). Development of new flow probes can make on
line NMR systems available, which are able to analyse, monitor and control
industrial processes with an unprecedented level of information. This could
be highly beneficial in the pharmaceutical production, where monitoring
and documentation of process control is required for real time release.
However, there are still challenges regarding price, delicacy of instrument,
including the sensitivity of the magnetic field to ion, and e.g. measurements
of moving samples on conveyer belt, which have to be solved, before it can
be applied on line in the industrial sector.

Future potential in cereal science
As already discussed, NMR spectral pattern recognition has been used in
authenticity studies where the origin of the product is revealed in a specific,
metabolic profile. Screening of the detailed plant metabolome for bioactive
substances could be used to develop a metabolite database of NMR spectra
of specific cereals: wheat, barley, rye and oat, including ancient cereal
sources: spelt wheat and emmer wheat. This database would be beneficial to
food and nutrition scientists, in order to utilize it for developing new,
healthy products.

Future potential in uroscopy
There is an unexploited potential of a standardized analysis of urine within
food, health and medical research. Being able to dose medicine on an
individual basis with respect to the metabolism of the individual will
prevent problems regarding overdose and avoid unnecessary side effects.
However, there are still some problems to be solved. The large day to day
variations can somehow be handled by intense data collection from each
individual and by full cross over interventions studies, in order to obtain the
correct inter variation. With this knowledge, it will be possible to model the
individual variation and remove the information not related to the problem
under investigation in the data.
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Future potential in hydrocolloid production
NMR spectroscopy is widely used in the hydrocolloid industry, for example
in the analysis of alginate. The molecular composition, depending on the
source of raw material, is closely related to the functionality of alginate.
Salomonsen et al. (2008) have developed a rapid spectroscopic method for
determining the alginate composition on the basis of solid state NMR
spectroscopy [227]. The molecular composition of pectin depends, amongst
other parameters, on the natural source of raw material. Thus, it is
reasonable to believe that NMR spectroscopy has a high potential in the
pectin industry as well.

Finally, the hyphenation of NMR spectroscopy with chromatographic
methods is very interesting to explore. Especially, there could be a huge
potential in the combining and synergies of the two widely used techniques:
NMR and MS. Combining these methods would give great insight and
control in the metabonomic research of biofluids.
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Abstract

The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quanti-
tative NMR spectroscopy e.g. in the pharmaceutical and food industries.

This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal
Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, buta-
nol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of
larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and
exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful
method for resolving pure component NMR spectra from mixtures when certain conditions are met.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Principal component analysis; Multivariate curve resolution; Experimental design; Signal overlap

1. Introduction

NMR is a unique and versatile spectroscopic method
capable of measuring samples in the solid, liquid and gas
phases. No other spectroscopic method contains equally
detailed structural and dynamic information about chemical
systems under investigation. However, a serious challenge in
NMR spectroscopy lies between the technical capacity to
generate data (such as in NMR metabonomics) and the
human capacity to interpret and integrate these data [1]. In
complex systems such as biofluids, a wide range of compo-
nents (metabolites, acids, proteins, carbohydrates, etc.) are
present with a majority of overlapping resonances distrib-
uted over several thousand data points [2]. This amount of
data is difficult, if not impossible, to interpret.

The study of more complex systems, such as biofluids is
characterised by many hidden relationships. To find these
hidden relationships in complex data, experimental design,
unsupervised data exploration and data mining techniques

are required. Chemometrics is a multivariate data analysis
field using statistics to compute models for extracting chem-
ical information from large two-dimensional multivariate
data sets. Development of chemometric data models
requires a minimum of assumptions and the relationships
may be visualised by intuitive illustrations by the graphic
computer interface.

We have chosen a ternary model design with three sim-
ple linear water soluble alcohols containing different
amounts of hydrocarbons with highly overlapping reso-
nances. Using this design we can explore subtle differences
in the methylene peak—a simplified simulation of one of
the major metabolomic applications of NMR, namely lipo-
protein profiling of blood. Besides lipid and lipoprotein res-
onances, the 0.7–1.5 ppm chemical shift region in blood
plasma is characterised by many overlapping signals from
small organic species [3]. Spectral assignments in this
region have been limited by the extensive chemical shift
overlap and by the broadness of the signals. Similar spec-
tral problems may be encountered in organic or pharma-
ceutical samples when identifying impurities that mimic
the compound of interest.
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The first application of chemometrics to NMR spectra
appeared in 1983 by Johnels et al. [4]. In the early nineties
Gartland et al. [5] introduced PCA to classify proton NMR
spectra of urine. The same group also introduced the
research branch metabonomics defined as: ‘‘understanding
the metabolic responses of living systems to pathophysio-
logical stimuli via multivariate statistical analysis of biolog-
ical NMR spectroscopic data’’ [6] or just ‘‘metabolic
processes studied by NMR spectroscopy of biofluids’’ [1].
Impetus for the coupling of NMR spectroscopy with mul-
tivariate data analysis was clearly the terribly complex met-
abolic system in body fluids that gives rise to equally
complex NMR spectra. Chemometrics were also applied
early on for exploration of solid-state MAS NMR spectra
[7]. Now chemometrics is rapidly gaining momentum in the
analysis of NMR spectra [8–10] and this work aims to pro-
vide an understanding of some of the useful property of
basic chemometric tools by their application to a designed
set of alcohol mixture NMR spectra.

2. Materials and methods

Principal component analysis and multivariate curve
resolution

Principal component analysis (PCA) [11] is the funda-
mental method in chemometrics. In PCA the data collected
on a set of samples is resolved into principal components.
The first principal component is defined by the spectral
profile (loading) in the data which describes most of the
variation, the second principal component is the profile
describing the second most of the variation orthogonal to
the first, and so on. Later components describe less varia-
tion and are more uncertain than the first components,
because the systematic variation is primarily described in
the first components. Deciding the right number of compo-
nents is a most important issue and will be described for
both PCA and MCR although for PCA, the choice is often
less critical especially in exploratory studies because the
first and most important component will not change as a
function of the number of components chosen. The princi-
pal components are composed of so-called scores and load-
ings. Loadings contain information about the variables
(chemical shifts) in the data set and the scores hold infor-
mation on samples (concentrations) in the data set. For a
given principal component, the loading vector is a spectral
profile and the score for each sample is the amount of that
particular loading in the sample in a least squares sense.
Thus, the sum of loadings weighted by a certain sample’s
score values will provide an approximation of the spectrum
of that sample. The similarity to Beers law is apparent as
each measured spectrum is hence described by varying
amounts of the same few underlying spectral loadings.
The individual loadings, though, will mostly not resemble
real chemical spectra due to orthogonality constraints of
the scores and loadings, but the peaks in a loading are
indicative of large spectral variation in the data. Thus,
the loadings indicate which parts of the spectrum represent

the main variation amongst the samples. The scores, on the
other hand, provide information about the extent to which
the spectral information represented by the loadings are
high or low for particular samples. Hence, the scores can
be considered as concentrations of multivariate, so-called
latent, variables.

As the number of spectral components in a data set is
typically much lower than the number of chemical shifts,
the whole data set can for the most part be represented
by a few (typically much less than 10–20) components that
still represent the full chemical variation in the data. The
scores are often plotted against each other in a scatter plot
giving a ‘map’ of all the samples in the score plot. Samples
that are grouped in a score plot are spectrally similar with
respect to the selected principal components. One of the
strengths of PCA is to provide a quick unsupervised view
of the samples and thereby to identify samples that exhibit
deviating features (outliers) or discover trends and groups
in the samples. Prior to PCA modelling, data are centred
by subtracting from every chemical shift value the average
value at that particular shift calculated across all samples.

An alternative method to PCA is decomposition of the
data matrix by multivariate curve resolution (MCR) using
alternating least-squares (ALS) [12] which has also been
named molecular factor analysis (MFA) along with a num-
ber of other names [13–15]. Principal component analysis is
mostly used for exploration and classification and cannot
normally provide direct estimates of real chemical spectra
and concentrations because the loadings and scores are
constrained to be orthogonal. MCR-ALS on the contrary
can offer resolution of the spectra into the ‘true’ underlying
components, i.e. the pure spectra. Huo et al. have proved
that multivariate curve resolution was able to provide
unique pure spectra and pure decay profiles from DOSY
NMR data [16].

An appealing property of MCR is that the solution
often looks much more ‘chemical’ than a PCA solution,
because imposed non-negativity constraints make the spec-
tral and sample profiles be positive. This often leads to
oversimplifying interpretations where the solution is
assumed to be real estimates of chemical spectra and their
relative concentrations. However, the MCR solutions are
generally not unique, hence the solution can be assumed
to be just one arbitrary solution out of an infinity of equally
well-fitting possible nonnegative solutions. The problem is
due to the so-called rotational ambiguity [17] and even
though imposing non-negativity helps removing some
ambiguity it is not enough to guarantee uniqueness in gen-
eral. This can only be achieved if the data have certain
characteristics such as selective variables where only some
analytes are present or samples where some analytes are
absent [17].

Hence, for any specific MCR solution, uniqueness must
be assessed before the solution can be assumed to be pro-
viding estimates of real chemical analytes. Uniqueness
can be assessed in different ways, but in this investigation
the model was simply restarted several times using different
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sets of random initial parameters and was verified to pro-
vide the same solution. There are other tools for multivar-
iate analysis with a similar aim as MCR, such as direct
exponential curve resolution algorithm (DECRA) [18] but
these are not applicable to the type of matrix-data (2D) dis-
cussed here.

2.1. NMR data

The experimental design is a ternary design of mixtures
of the linear alcohols: propanol, butanol and pentanol
[13,19]. Each alcohol component (50 mM) has 21 concen-
tration levels in increments of five from 0% to 100%. The
samples were prepared from 495 ll of the mixture and
55 ll of D2O (with 5.8 mM of TSP-d4 (per-deuterated 3-tri-
methylsilyl propionate sodium salt) (Fig. 1).

1H NMR spectra were recorded for each of the 231 mix-
tures. The spectra were acquired on a Bruker Avance Ultra
Shield 400 spectrometer (Bruker Biospin Gmbh, Rheinstet-
ten, Germany) operating at 400.13 MHz using a broad
band inverse detection probe head equipped with 5 mm
(o.d.) NMR sample tubes. Data were accumulated at
298 K employing a pulse sequence using presaturation of
the water resonance during the recycle period followed by
a composite 90� pulse [20] with an acquisition time of 4 s,
a recycle delay of 20 s, eight scans and a sweep width of
8278.15 Hz, resulting in 64k complex data points. All sam-
ples were individually tuned, matched and shimmed. Prior
to Fourier transformation, each FID was apodised by
Lorentzian line broadening of 0.30Hz and the correspond-
ing spectra were automatically phased and baseline cor-
rected and referenced to TSP-d4. In order to secure
quantitative measurements the receiver gain was set con-
stant for all the samples.

Prior to the chemometric analysis the raw proton NMR
spectra data matrix to be investigated had the dimensions
(231 · 65,536) but was reduced to 14,000 data points
(3.85 –0.65 ppm) in order to remove the water signal and
make the investigation more efficient. No further pre-pro-
cessing or alignment of the data such as co-shifting and
warping [21] proved necessary.

The NMR spectra of the 231 alcohol mixtures results in
only four specific signals (Fig. 2). The spectrum of pure
propanol yields a triplet at 0.90 ppm from the CH3, a quin-
tet at 1.55 ppm from CH2 and a triplet at 3.57 from the
CH2 next to the OH group. Similar assignments apply to
butanol and pentanol, but they also contain aliphatic
CH2s with chemical shift in the range 1.30–1.35 ppm. The
spectra of pure propanol, butanol and pentanol are dis-
played in the bottom of Fig. 2.

3. Results

Using PCA the raw 231 1H NMR spectra was decom-
posed into principal components to describe the systematic
variation in the spectra. The data is mean centred prior to
PCA, which means that the mean spectrum is subtracted
from the individual sample spectra. This simple pre-trans-
formation provides spectra that show the deviation from
the average spectrum. PCA results in an almost perfect
recovery of the ternary experimental design by the two first
PCs, as seen by the score plot in Fig. 3.

Fig. 3 shows the scores and the loadings (of component
one and two) of the PCA model where the scores are col-
oured by the propanol content. The first two components
together describe 98% of the variation in the spectra. The
2% of the variation that remains to be explained appears
non-systematic, hence due to noise. The loadings of the
first two components (PC#1 and PC#2) are displayed in
the corresponding loading plot. The first loading describes
the overall data structure of the NMR spectra which before
mean centering of the spectra are similar to the average
spectrum. Upon mean centering, the first loading will
change to describe the main variation of all centred data.
The fact that the scores are negative is due to the centering
as well as the imposed orthogonality that also indirectly
causes the loadings to be negative. This clearly illustrates
that PCA does not provide estimates of real chemical ana-
lytes. However it is also clear that the scores are (linearly)
related to the true concentrations (compare Fig. 3, left and
Fig. 1), and it is also clear that the loadings reflect the
underlying spectral variation.

Apparently only two principal components are neces-
sary to describe all the variation in the spectra, but this is
due to the principle of closure specific to these data, i.e.
that the concentration of any chemical component in a
sample is defined by the remaining two because they add
up to 100%. The ternary experimental design is reflected
in the score plot which reveals the direct proportional sig-
nal intensities with analyte concentrations. Had the data

Fig. 1. Tri-axial experimental design of propanol, butanol and pentanol.
Each alcohol component has 21 different levels in increments of 5 from 0%
to 100%, 231 samples in total. The corners of the triangle represent 100%
of the pure alcohol. The triangle with the dashed line shows the reduced
experimental design of 66 samples.
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not been centred, three components would be needed to
describe the data [22].

In order to pursue the purpose of resolving overlapping
resonances from CH2 and CH3 groups, the focus of the
analysis is restricted to the methyl groups with chemical
shifts around 0.9 ppm. As is obvious from Fig. 2, the reso-
nances of the alcohols differ slightly in chemical shift as
well as in line width. Our strategy is to perform the chemo-
metric analysis on the restricted data set (0.85–0.95 ppm)
representing a region with significant spectral overlap and
compare it with results obtained on the full spectrum
(3.85–0.65 ppm). The result in Fig. 4 is convincing; the

PCA model recovers the ternary experimental design based
on spectra of the methyl groups alone. Still, as evidenced
by the loading plot, PCA cannot provide real estimates
of the pure analyte spectra and concentrations.

MCR is an alternative multivariate data analytical
method that can potentially decompose a data set into pure
spectra and concentration profiles. The number of compo-
nents to be extracted can be assessed by looking at the
explained variance as a function of number of components,
similar to how the number of components is often deter-
mined in PCA. Furthermore, visual interpretation of the
results is often used as a practical guide in assessing the

Fig. 2. (Top) NMR spectra of the 231 alcohol mixtures from 3.85 to 0.65 ppm. The NMR spectra of mixtures show highly overlapping signals. (Bottom)
The 1H NMR spectra of the pure alcohol samples of propanol, butanol and pentanol.

Fig. 3. Scores and loadings plot of the first two principal components from a PCA model calculated on mean-centred NMR spectra. For increased
interpretability the score plot is coloured according to the propanol content. The first two principal components explain 97.8% of the variation.

H. Winning et al. / Journal of Magnetic Resonance 190 (2008) 26–32 29



validity of a given model. From Fig. 5 it is obvious that a
model with three components is optimal, considering that
the variance explained is over 99% and almost remains con-
stant when using more than three components. This is also
consistent with the fact that the samples are mixtures of
three analytes. That 99% variance explained is adequate
can be further assessed and validated by comparing with
the intrinsic noise in the data (not shown).

The MCR model with three components is calculated
without mean centering the data as is usual in MCR. Look-
ing at a scatter plot of the scores from the MCR model, the
triangle now shows perfect concentrations (Fig. 6). The
slight non-ideality observed in the triangle, can be attrib-
uted to noise in the spectra and small uncertainties in the
alcohol concentration. Non-negativity of estimated con-
centrations and spectra is imposed as part of the model.

The loadings from MCR shown in Fig. 6 resemble spec-
tra of each of the pure alcohol compounds. By repeating
the estimation of the MCR model many times from differ-
ent random starting points, it is verified that the same fit
and solution is obtained (results not shown). Hence, the

solution can be assumed to be unique. Like PCA, each
sample has a score for each of the loadings. The score is
simply the amount of the corresponding loading, and as
the loadings can be considered as estimates of real spectra,
then the scores are then (relative) estimates of the concen-
trations. These scores are compared with the ‘true’ value
(i.e. the concentration of the three alcohols) by plotting
them against each other, yielding three correlation coeffi-
cients higher than 0.99.

The results above are encouraging and imply that com-
plex mixture NMR spectra can be separated mathemati-
cally into the underlying constituents. However, the main
reason that the results are as good as they are is the pres-
ence of pure samples in the sample set. The presence of
pure samples adds selectivity in the data. Selectivity means
samples or variables for which only one analyte is present.
This is one of the key requisites for obtaining uniqueness in
MCR.

To demonstrate how well MCR can model more com-
plex data, a model is calculated on a reduced experimental
design of only 66 samples where no spectra of pure alcohols
exist. The simplest samples in this reduced design consist of
mixtures of at least two of the alcohols. The result is that
the triangle of the experimental design is fully recovered
and the three concentration profiles still yield correlations
over 0.99 to the true concentrations.

However, the loading are not as perfectly resolved as in
the full design, which is due to the overlap of the signals
from the alcohols. This is particularly apparent in the spuri-
ous propanol peak in Fig. 7 at 0.8 ppm. Apparently the
MCR model determined on this dataset is unique. Repeat-
ing the model estimations more than 1000 times from differ-
ent starting points all lead in 74% of the cases to the same
local solution which is spectrally correct (Fig. 7, left). How-
ever in 19% of the cases the global model, which explains
almost the same variance but is spectrally incorrect, is the
result (Fig. 7, right). This result represent the Achilles’ heal
of MCR when applied to unknown systems. The best model
may not be the correct one in the physical sense.

Fig. 4. Scores and loadings plot of the first two principal components from a PCA model calculated on mean-centred NMR spectra (0.85–0.95 ppm). For
increased interpretability the score plot is coloured according to the propanol content. The first two principal components explain 96.9% of the variation.

Fig. 5. The bar plot show the percentage explained variance as a function
of number of components. Using three components, 99.7% of the
variation is explained.
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4. Conclusions

The main objective of this work was to show how prin-
cipal component analysis and multivariate curve resolution
can be useful in the investigation of highly overlapping
data from NMR studies. While it has been shown that
PCA can be used to provide a comprehensive overview of
complex data with many variables, it was also shown that
there are some limits on the usefulness of PCA. The MCR
method was demonstrated to possess the powerful ability
to separate mixtures into pure spectra and concentrations
even for much reduced designs. By applying the basic che-
mometric methods to a well defined ternary experimental
design of 1H NMR spectra the potential and characteristics
of chemometric multivariate data analysis were demon-
strated. It should be obvious that perhaps the greatest
advantage of chemometrics is the simplicity by which even
large data structures are analysed and visualised and
thereby adding an exploratory dimension to modern
NMR science. We have shown which results can be
expected when applying quantitative chemometric methods

to multivariate high resolution NMR data and our future
research will focus on how MCR can perform on more
complex metabonomic data.
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Abstract

Extreme climate events are being recognized as important factors in the effects on crop growth and yield. Increased

climatic variability leads to more frequent extreme conditions which may result in crops being exposed to more than

one extreme event within a growing season. The aim of this study was to examine the implications of different

drought treatments on the protein fractions in grains of winter wheat using 1H nuclear magnetic resonance

spectroscopy followed by chemometric analysis. Triticum aestivum L. cv. Vinjett was studied in a semi-field

experiment and subjected to drought episodes either at terminal spikelet, during grain-filling or at both stages.
Principal component trajectories of the total protein content and the protein fractions of flour as well as the 1H NMR

spectra of single wheat kernels, wheat flour, and wheat methanol extracts were analysed to elucidate the metabolic

development during grain-filling. The results from both the 1H NMR spectra of methanol extracts and the 1H HR-MAS

NMR of single kernels showed that a single drought event during the generative stage had as strong an influence on

protein metabolism as two consecutive events of drought. By contrast, a drought event at the vegetative growth

stage had little effect on the parameters investigated. For the first time, 1H HR-MAS NMR spectra of grains taken

during grain-filling were analysed by an advanced multiway model. In addition to the results from the chemical

protein analysis and the 1H HR-MAS NMR spectra of single kernels indicating that protein metabolism is influenced
by multiple drought events, the 1H NMR spectra of the methanol extracts of flour from mature grains revealed that

the amount of fumaric acid is particularly sensitive to water deficits.
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Introduction

Increased climatic variability leading to more frequent

extreme conditions may result in crops being exposed to
more than one extreme event in a single growing season. As

with temperature, variability in drought can occur through

variation in its timing, intensity, and duration (IPCC, 2007).

Due to limited water resources, drought has become the
single most limiting factor to crop production worldwide

(Wollenweber et al., 2003). In the last decade, severe
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droughts leading to significant yield losses have become

a major problem in parts of Europe. The overall prediction

is that climate change will affect yield quantity (higher grain

yield due to higher dry matter), but potentially at the

expense of yield quality.

Besides starch, proteins are the most important compo-

nents of wheat grains governing end-use quality. However,

the quantity of protein per grain is mainly under environ-
mental control. The deposition of the various protein

fractions takes place asynchronously, which means that

both the amount and concentration of these components

vary throughout the maturity period of the grains (Martre

et al., 2003). One consequence of this is that conditions

shortening grain-filling, such as episodes of high tempera-

ture and/or water deficits, will affect the balance of protein

fractions (Jamieson et al., 2001). With these considerations
in mind, it is important both to understand the environ-

mental constraints on crop quality and to predict how

quality will be influenced by the interaction of multiple

extreme climatic conditions (Raven et al., 2004).

To date, there are only very few studies on the effect of

environmental variability on the quantitative variation in

crop protein composition (Martre et al., 2003; Triboi et al.,

2003; Wollenweber et al., 2003). The developmental stage of
crops experiencing stress events will determine the degree of

possible damage experienced by the plant. It has recently

been shown that extreme heat events at the vegetative

growth stage of double ridge does not affect subsequent

growth and development of wheat exposed to heat stress at

anthesis as well, while the development of fertile grains is

affected by high temperature episodes (Martre et al., 2003;

Triboi et al., 2003; Wollenweber et al., 2003).
Nuclear magnetic resonance (NMR) spectroscopy is a pow-

erful non-invasive analytical technique for measuring multiple

parameters of plant tissue in vivo (Krishnan et al., 2005). 1H

NMR can be used as a single analytical method to obtain

information about the vast majority of metabolites in a plant

system, since all proton-bearing compounds such as carbohy-

drates, amino acids, organic and fatty acids, and lipids can be

simultaneously detected. However, a challenge in 1H NMR
spectroscopy of plants is the solid nature of plant tissue. In

solids, anisotropic interactions like homo- and heteronuclear

dipole-dipole couplings as well as chemical-shielding anisot-

ropy induce significant line broadening in the NMR spectra.

These effects may be eliminated in 1H NMR spectra of soft

materials (high mobility) by the use of high resolution magic

angle spinning (HR-MAS) and spectral resolution similar to

liquid-state NMR is obtained. 1H HR-MAS NMR spectros-
copy has already been used in metabonomic studies of animal

and human tissue without the need of chemical extraction or

further sample preparation (Garrod et al., 2001; Lindon et al.,

2001; Griffin et al., 2003). Recently, carbohydrate grain-filling

of barley mutants has been studied by 1H HR-MAS NMR

(Seefeldt et al., 2008).

The overwhelming information produced by spectro-

scopic screening of complex biological samples calls for
multivariate data analysis such as chemometrics in order to

extract systematic information. Such analysis requires

a minimum of assumptions and the relationships may be

visualized by intuitive illustrations by means of the graphic

computer interface (Winning et al., 2008).

In the field of metabolomics, the analysis of metabolic

changes in time is a fundamental aspect of understanding

the biochemical response of an organism to an external

perturbation (Lindon et al., 2001). Thus, the aim of the

current study was to investigate the implications of one or
more drought events on protein quality in wheat grains

using information from chemical protein analysis, liquid

state 1H NMR of methanol extracts, and 1H HR-MAS

NMR of single kernels and flours followed by unsupervised

exploratory chemometric data analysis.

Materials and methods

Plant material

In a semi-field pot experiment, winter wheat (Triticum

aestivum L. cv. Vinjett) was grown outdoors at the semi-

field facility of the Faculty of Agricultural Sciences at

Flakkebjerg (Slagelse, Denmark) in the growing season of

2005. Pots with both depth and diameter of 25 cm were

equally filled with 4.2 kg 1:2:1 (by vol.) mixture of peat
substrate, loamy soil, and sand. A dose of 5.25 g K2SO4, 3.5 g

(NH4)2SO4, 4.67 g NH4NO3, 1.9 g CaSO4, 1.9 g MgSO4,

0.4 g MnSO4, 0.4 g CuSO4, and 11.67 g CaCO3 per pot was

also mixed in the soil. Spring wheat was sown at a rate of 15

seeds per pot and then thinned to five seedlings per pot at

three-leaf stage.

Water deficits were applied during two growth stages,

namely terminal spikelet (end of spikelet initiation) and at
anthesis by withholding irrigation. Spikes were harvested 10 d

after anthesis (DAA), at four time points during the grain-

filling period (17, 23, 31, and 43 DAA) and at harvest

maturity (50 DAA), yielding six harvests in total (Fig. 1). The

spikes were harvested and immediately frozen in liquid

nitrogen and stored at –80 �C. Afterwards, the spikes were

freeze-dried for 2 d.

The freeze-dried grains were milled (0.5 mm, Cyclotec
1093, Foss Tecator AB, Högenas, Sweden). The flour

material was stored in sealed plastic bottles at 4 �C until

analysis. A flour sample unit consisted of the seeds from

two spikes. A total of 48 flour samples were analysed,

covering a total of six harvests including two replicates of

all four treatments (63432).

See Fig. 1 for an overview of the experimental design.

The four treatments constitute of the control treatment
(CT) which has sufficient water supply throughout the

period, the early drought treatment which is exposed to

drought at double ridge (TD), the late drought treatment

which is exposed to drought at anthesis (TA), and the

fourth treatment which is exposed to drought at double

ridge and at anthesis (T2).

Methanol extract preparation

Samples were prepared using a protocol performed by

Baker et al. (2006) which was a modified form of the
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method described by Ward et al. (2003). Replicate aliquots

of white flour (30 mg) were weighed into 1.5 ml Eppendorf

tubes. D2O–CD3OD (1 ml, 80:20) containing 0.05% (w/v)
TSP-d4 was added to each sample. The contents of the tube

were mixed thoroughly and heated at 50 �C in a water bath

for 10 min. The samples were then spun down in a micro

centrifuge for 5 min; 800 ll of the supernatant was

transferred to an Eppendorf tube and kept at 90 �C in

a water bath for 2 min. The high-temperature (90 �C) step
was incorporated to ensure that enzyme activity had

stopped. The samples were then stored at 4 �C for 45 min
prior to recentrifugation for 5 min (still at 4 �C); 700 ll of
the supernatant was transferred to a 5 mm (o.d.) NMR

tube. The residual CD2HOD multiplet in the region 3.36–

3.32 ppm was excluded from all data sets.

1H HR-MAS NMR

1H HR-MAS NMR spectra were obtained using a Bruker

AVANCE-400 (Bruker BioSpin, Rheinstetten, Germany)
spectrometer, operating at a frequency of 400.13 MHz for

protons equipped with a HR-MAS double channel probe

using a 50 ll zirconia rotor (4.0 mm o.d.). Samples were

prepared in the rotor using approximately 14 mg flour or

one single kernel and 30 ll of D2O (with 5.8 mM of TSP-d4

(per-deuterated 3-trimethylsilyl propionate sodium salt).

Data were accumulated at 298 K employing a pulse

sequence using presaturation of the water resonance during

the 2 s recycle period followed by a composite 90 degree

pulse (Bax, 1985) with an acquisition time of 2.045 s, 256

scans, and a spectral width of 8012.82 Hz, resulting in 16 k
complex data points. A spin-rate of 7 kHz was used for all

experiments. All samples were individually tuned and

matched and the corresponding spectra were automatically

phased and baseline-corrected and referenced to TSP-d4 at

0.0 ppm. Prior to Fourier transformation, each FID was

apodized by Lorentzian line broadening of 0.3 Hz and zero

filled to 64 k points. Flour and whole kernels were analysed

approximately 2 h after preparation. All spectra were
normalized relative to the TSP-d4 signal. The spectral range

from 0.45–8.70 ppm was chosen, resulting in 27 000 data

points. Bruker Topspin 1.3 (Bruker BioSpin 2005) was used

for acquisition and processing of NMR data.

Liquid state 1H NMR

The liquid state 1H NMR spectra were obtained using

a Bruker AVANCE-400 (Bruker BioSpin, Rheinstetten,

Germany) spectrometer, operating at 400.13 MHz for

protons using a broad band inverse detection probe head

equipped with 5 mm (o.d.) NMR sample tubes. Data were
accumulated at 298 K employing a pulse sequence using

presaturation of the water resonance during the 2 s recycle

period followed by a composite 90 degree pulse (Bax, 1985)

with an acquisition time of 2.045 s, 256 scans, and a spectral

width of 8012.82 Hz, resulting in 16 k complex data points.

Fig. 1. The experimental design of the four different drought treatments: control (CT), early drought (TD), late drought (TA), and double

drought (T2) together with the six harvests.

Asynchronous protein metabolism of wheat | 293



All samples were individually tuned, matched, and

shimmed. Prior to Fourier transformation, each FID was

apodised by Lorentzian line broadening of 0.3 Hz and the

corresponding spectra were automatically phased and

baseline corrected and referenced to TSP-d4. In order to

resolve the complex carbohydrate part of the spectra,

a series of 1D and 2D experiments (13C-HSQC, COSY, and

TOCSY) were recorded at 18.8 T using a Bruker Avance
800 spectrometer operating at 799.92 MHz for protons and

equipped with a 5 mm cryo probe.

Protein analysis

The protein content of flour (N35.7) was determined by

Kjeldahl analysis (Kjeldahl, 1883) in duplicate. The protein
fractions (albumins, globulins, and gliadins) were extracted

from flour in triplicate according to Osborne (Ghirardo

et al., 2005), and quantified according to Popov et al. (1975).

Chemometric analysis and software

Multivariate data analysis in the form of principal compo-
nent analysis (PCA) (Hotelling, 1933) was applied to obtain

systematic variations from the measured spectra. PCA is the

primary tool for investigation of large bilinear data

structures for the study of trends, groupings, and outliers.

By means of PCA it is possible to find the main variation in

a two-dimensional data set by creating new linear combina-

tions, PCs, from the underlying latent structures in the raw

data. To study the grain-filling process through time, PCA
score trajectories are constructed from NMR data to

identify changes in the biochemical profile. This procedure

has previously been applied for analysis of dynamic change

during bread baking (Engelsen et al., 2001) and of

metabolic time response to toxic lesion (Keun et al., 2004).

In exploratory studies investigating changes over time,

time series are naturally arranged as a three-way data set.

The first dimension represents the treatment, the second
dimension represents the harvest time, and the third di-

mension represents the metabolic profile measured by NMR

(Castro and Manetti, 2007). Parallel factor analysis (PAR-

AFAC) (Bro, 1997; Carrol and Chang, 1970; Harshman,

1970) can be considered as a multiway extension of PCA

able to handle three-way data. The PARAFAC model is

based on the decomposing of the data into trilinear

components in a similar way to the bilinear components
extracted in PCA. When such higher-order data are avail-

able, the so-called second-order data advantage gives

unique solutions and, for example, the pure analyte spectra

will be found in a mixture (Harshman, 1970). In this study,

data were arranged in a three-way cube with single kernels

with the four treatments in mode 1, the six harvest times in

mode 2, and NMR spectra in mode 3 constituted by 27 000

data points, giving a data cube with dimensions 4363
27 000, and the PARAFAC model was calculated with non-

negativity constraints and two factors. Data were mean-

centred prior to the chemometric analysis.

The spectra were analysed using the chemometric software

LatentiX 1.0 (www.latentix.com, Latent5, Copenhagen,

Denmark), PLS Toolbox 4.11 (Eigenvector Research,

Manson, Washington, USA), and MATLAB 2007a (The

MathWorks, Inc., Natrick, Massachusetts, USA).

Results and discussion

Drought-induced changes in the accumulation of protein

and the distribution in the main fractions, albumins,

globulins, and gliadins were examined for the wheat kernels

during grain-filling. Figure 2 shows the results from the

Popov and Kjeldahl analysis demonstrating the asynchro-

nous protein metabolism during grain-filling and the in-
fluence of the drought exposure.

A common feature in all the drought treatments and in

the control is the rapid increase in the gliadin fraction from

10 DAA to 17 DAA accompanied by reductions in the

albumin and globulin fractions, an observation that is in

accordance with the function of gliadins in the further

development of the kernel (Shewry and Halford, 2002).

The time development of the albumin fraction in the
control wheat (CT) deviates from the wheat exposed to

drought, with the TA treatment most affected. The time

development of the gliadin fractions was less influenced by

the different drought treatments. The globulins showed

a marked response to drought. The globulin level of the CT

wheat decreased from 10 DAA to 23 DAA after which the

level increased throughout the rest of the period of growth.

However, when wheat suffered from drought, whether early
or late (TA and TD), the globulins show the same ‘pattern’

from 10 DAA to 43 DAA, but decrease, in fact, from 43

DAA to 50 DAA. Surprisingly, after experiencing two

drought periods, the globulin fraction showed the same

development profile throughout grain-filling as the control

group which had sufficient water, except that the increase

had already started at 17 DAA. A one-factor analysis of

variance (ANOVA) model on the total protein content
showed significant difference between treatments of all six

harvests. However, a Fisher’s least significant difference test

showed that CT and T2 are not different at harvest times of

17, 23, and 50 DAA and that no significant difference is

observed between CT and TD at harvest times of 31 and 43

DAA. This simple analysis indicates that the late drought

treatment induces the most significant changes in the total

protein content compared with the control. The asynchro-
nous development of the protein fractions is underlined by

an almost complete lack of correlation between the protein

fractions during development. However, the albumin and

the gliadin fractions in CT wheat during development were

correlated with a correlation coefficient (R2) of 0.88, but the

correlation deteriorated significantly when exposed to

drought.

In order to investigate changes in the protein profile of
kernels affected by the different drought treatments, princi-

pal component trajectories have been calculated from the

chemical data. These are presented in Fig. 3. Compared

with the trajectory of CT, drought treatment apparently

alters the trajectory pattern. The trajectories of the four
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treatments develop similarly progressing from 10-23 DAA

along PC1, after which a bend along PC2 indicates that 23

DAA is a turning point for the protein synthesis of the CT,

TD, and TA, whereas T2 deviates from this pattern by an

increase in PC2 from 17–23 DAA. Moreover, a decrease in
PC2 is observed from 43–50 DAA for the drought

treatment, but not for CT. An evaluation of the time

development along PC1 shows that TD resembles CT the

most and TA represents the most deviating treatment

compared to CT. Altogether, the PCA revealed that late

drought (TA) differs most from the control (CT) trajectory,

indicating that the strongest effect on total protein content

and the distribution in the protein fractions is after late
drought. The PCA loadings (not shown) indicate that PC1

primarily concerns contributions from albumins and glia-

dins which are negatively correlated. PC2 primarily con-

cerns contributions from globulins and total protein content

(both positively correlated). In conclusion, the treatment

which most resembles the control regarding protein de-

velopment is the TD treatment, whereas the TA treatment

was the most deviating.
In addition to the Popov and Kjeldahl protein analysis,

wheat single kernels and wheat flour were analysed by 1H

HR-MAS NMR. In Fig. 4, the spectra of flour and whole

kernels from the control group at 10 DAA (Fig. 4a) and 50

DAA (Fig. 4b) are displayed. In the region 0–3 ppm,

contributions arise from protons of the aliphatic side-chains

of the amino acids and protons from the saturated parts of

the lipids. The a- and b-protons from amino acids resonate
in the 3–5.5 ppm region, overlapping with the HOD signal

and the carbohydrates. The signals observed at 6.7–8.5 ppm

arise from aromatic protons. The most obvious difference

between the early and late harvests is that the spectra of the

early harvest are dominated by signals from small carbohy-

drates and free amino acids and the spectra of the late

harvest are dominated by signals from lipids.

Fig. 2. Raw data from Popov and Kjeldahl analysis showing asynchronous protein metabolism in winter wheat as a function of DAA of

the control group (CT), early drought (TD), late drought (TA), and twice drought (T2). Protein concentrations are measured in % dry

weight kernel in duplicate. The albumin, gliadin, and globulin fractions are w/w % protein in triplicate: Error bars represent the deviation

between replicates.

Fig. 3. PCA score plot of albumin, globulin, gliadin, and protein

content during grain-filling showing different trajectories according

to the drought treatment. PC1 and PC2 explain 51% and 27% of

the variation, respectively.
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The NMR spectra of flour are better resolved in the 3–5.5

ppm region compared with the spectra of single kernels due

to increased water accessibility of the molecules in the flour.

In accordance with the continuous biosynthesis, amino

acids, small carbohydrates etc. were observed in samples

obtained at 10 DAA. Larger molecules (e.g. proteins or
starch) are characterized by slower tumbling or a rigid

structure which will increase the line width of the corre-

sponding 1H resonances. Indeed, they can even be broad-

ened beyond detection in the liquid-state 1H NMR

spectrum. Therefore, the absence of resonances from the

smaller molecules in the later stages of grain-filling implies

that these are incorporated into larger molecules such as

proteins, lipoproteins, glycolipids, or polysaccharides. The
aromatic region is of particular interest with regard to

proteins, since specific signals from aromatic amino acids

(Phe, Trp, and Tyr) as well as His are located in this area

without interfering signals from lipids and carbohydrates.

Because it was possible to obtain information of the intact

matrix of the wheat seed using single kernels, the 1H HR-

MAS NMR measurements of single kernels are preferred in

this work, compared to the results obtained in a destroyed
sample matrix as flour. Due to low signal intensity of the

aromatic region, full spectra will be analysed.

The overall differences in lipid, carbohydrate, and protein

accumulation pattern are all combined in the PCA kernel

development trajectory score plot (Fig. 5) which is based on

the average NMR measurements of two single kernels. The

PCA of the scaled 1H HR-MAS NMR spectra of the single

kernels confirms that periods of drought change the de-

velopment of the wheat kernel through grain-filling. Com-

pared to the trajectory of the protein data in Fig. 3, the

NMR spectra of the single kernels are more variable at the

first harvest. This is probably due to physical differences (size

of kernels, spike, and position of the spike etc.) between the
chosen single seeds. Apart from this, the 1H HR-MAS NMR

spectra include information about carbohydrates, lipids, and

proteins, whereas only proteins are included in Fig. 3. The

PCA loadings (not shown) indicate that PC1 primarily

describes aliphatic compounds, whereas PC2 primarily

describes aromatic signals. The four trajectories have very

different shapes according to treatment. However, the

trajectory shape which most resembles the shape of the
control is, in fact, the T2 trajectory which shows a parallel

trajectory, although furthest from CT. The TD and the TA

treatments follow different patterns in the score plot, with

the TA treatment being the most deviating. The similarity of

trajectories from T2 and CT indicates that treatment of

wheat with two periods of drought does not significantly

alter the final result. Compared to effects observed for TD

and TA subjected to only one period of drought, this
indicates that two drought periods induce better defence

against drought compared to kernels treated with a single

drought period. Apparently, the early drought treatment

induces some drought immunity compared to drought later

in the growth period. However, it was not possible to point

to one compound expressing the drought treatment using the
1H HR-MAS NMR single kernel spectra.

Fig. 4. 1H HR-MAS NMR spectra of wheat flour and single kernels of the control group from the first harvest, 10 DAA (a) and the last harvest,

50 DAA (b), respectively. * Indicates fumaric acid. The region 5.5–9.0 ppm is vertically scaled by factor 20.
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In order to investigate the measured 1H HR-MAS NMR

spectra further and to utilize the fact that the time
dimension allows the application of a trilinear model,

PARAFAC was applied on the 1H HR-MAS NMR spectra

of the single kernels (Fig. 6). The sample scores (Fig. 6a) of

the four drought treatments were measured in duplicate

showing the uncertainty of the replicates. The score plot

reveals how the different drought treatments are clustered

with the TD and CT placed close to each other and the TA

and T2 placed together. The conclusion from this plot is
that the 1H HR-MAS NMR spectra of wheat treated with

late drought, again, is mostly affected compared to the CT
1H HR-MAS NMR spectra, whereas the TD treatment

resembles the NMR profile of the control treatment.

However, the result is not in total agreement with the

results shown in Fig. 3 and Fig. 5. This is due to the

modelling, since the three-way technique expresses only one

concentration score value from each treatment and not
a trajectory of the grain-filling pattern. The PARAFAC

time loading (Fig. 6b) shows the time development of the

two extracted components. The first time loading indicates

how the NMR loading for Factor 1 increases during grain-

filling. The Factor 1 NMR loading (Fig. 6c) resembles the

profile of the fat fraction with characteristic signals from

fatty acid methyl groups (0.9 ppm), methylene protons (1.3

ppm), b-carboxylic protons (1.6 ppm), a-methylic protons
(2.0), a-carboxylic protons (2.3 ppm), aliphatic protons in

conjugated chains (2.7 ppm), and protons on unsaturated

carbons (5.3 ppm). The second time loading indicates how

the NMR loading for Factor 2 decreases during grain-

filling. The Factor 2 NMR loading (Fig. 6d) shows signals

from protons in carbohydrates anomers and pyranose. The

small insert show the aromatic area which show small

differences between Factor 1 and Factor 2. These have only

a little influence on the model. These observations are

consistent with observations from the 1H HR-MAS NMR

spectra of the early and late harvests in Fig. 4.

In order to enhance the resolution of the spectra in

a relative simple manner, methanol extracts were prepared

from wheat flour. During extraction of flour with a water–
methanol mixture, the water-soluble proteins (e.g. albu-

mins) and some alcohol-soluble proteins will be extracted.

The extract contains no lipids or starch, only small

saccharides and some water-soluble lipoproteins. The pro-

teins and enzymes denature in the heating step and there is

no hydrolysis of proteins to amino acids. Small peptides

and amino acids can be naturally present in the flour from

the onset (Shewry et al., 1984).
Figure 7 displays 1H NMR spectra of the liquid methanol

extracts from the last harvest (50 DAA), showing the final

result of the differences between the four drought treat-

ments. Several carbohydrates were indentified in the spec-

tral region 3.5–5.5 ppm. The assignments were based on 2D

experiments of the extracts, and include a-glucose (5.20,

3.50, 3.70, 3.39, and 3.82 ppm, H1–H5, respectively), b-
glucose (4.61, 3.21, 3.45, and 3.38 ppm, H1–H4, respec-
tively), maltose [a(1–4) 5.36, 3.55, 3.68, 3.40 ppm, H1–H4

and b 4.61, 3.25, 3.74, 3.61, 3.58 ppm, H1–H5, respectively,

and a 5.20, 3.54, 3.96 ppm, H1–H3, respectively)], glucose-

1-phosphate and glucose 1,6-diphosphate (5.41/5.40, 3.55/

3.53, 3.74/3.74, 3.51/3.46, and 4.04/3.83 ppm, H1–H5,

respectively), together with a-galactose (4.98, 3.81, 3.88,

3.81, and 3.98 ppm, H1–H5, respectively). In the aliphatic

region (0–3.5 ppm), the signals from the side-chain of amino
acids including aspartic acid [(2.64 (Hb), 2.80(Hb’), and 3.87

(Ha) ppm, respectively) and alanine (1.48 ppm (Hb) and

3.75 ppm (Ha)], together with small acids such as malic acid

[2.35 (Hb’), 2.66 (Hb), and 4.28 (Ha) ppm, respectively] arise.

However, the most significant differences between the four

treatments were observed in the region 7.1–7.8 ppm,

covering the aromatic amino acids. In this region, the

intensity increases in the order: T2< TA< TD< CT,
indicating that the amount of water-soluble proteins is

negatively affected by the drought treatment in this order.

The opposite effect is observed for the sharp singlet at 6.51

ppm assigned to fumaric acid by confirmation by 2D NMR

experiments. This assignment is in agreement with Ward

et al. (2003) who measured methanol extracts of Arabidopsis

and assigned the sharp singlet at 6.5 ppm to be fumaric

acid, but without further augmentation (Ward et al., 2003).
This ordering of the drought treatments mentioned above is

only observed for the last harvest, but the last harvest from

the trajectory score plot of the 1H HR-MAS NMR spectra

of whole kernels (Fig. 5, 50 DAA) confirms that T2 is the

treatment furthest from the CT and the TD treatment is

closest. This agreement is not surprising since the results

obtained from methanol extracts includes water-soluble

proteins only, which is about the same protein fraction as
the water-mobilized proteins included in the 1H HR-MAS

NMR spectra of whole single kernels.

Fig. 5. PCA trajectory score plots obtained from single kernel 1H

HR-MAS NMR full spectra of the four different drought treatments

(control (CT), early drought (TD), late drought (TA) and double

drought (T2)). Spectra were block-scaled corresponding to the

scaling used in Fig. 4. PC1 and PC2 explain 85% and 6% of the

total NMR variation, respectively.
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Turning the focus on the spectral region (6.5–7.8 ppm) in

Fig. 7, the aromatic ring protons show decreasing intensity

with respect to severity of drought treatment, and they are

highly (negatively) correlated (R2¼0.94) to the fumaric acid
signal. This correlation between aromatic amino acids and

a citrate cycle metabolite indicates that the effects of

drought are almost equally severe on both.

The 1H HR-MAS NMR spectra of single wheat kernels

in Fig. 8 show the fumaric acid signal in mature wheat

kernels (50 DAA) coloured by increasing drought intensity.

As apparent from the figure, the fumaric signal is visible,

but the signal does not show increasing intensity for
increasing drought treatment as the spectra of the methanol

extracts did (Fig. 7). This could be due to the fact that the

size, the spike, and the position of the spike differs amongst

kernels. These differences are not present when measuring

flour or methanol extracts of flour as the intravariation in

wheat kernels are averaged out. However, the 1H HR-MAS

NMR spectra of wheat flour did not show this interesting

connection either. In wheatgrass metabolism, it was evident

that drought stress increased the extrusion from roots that

contain higher concentration of fumaric and succinic acids

(Henry et al., 2007). Fumaric acid is involved in the citric

acid cycle as succinate, is oxidized to fumarate by succinate
dehydrogenase which is directly linked to the electron

transport chain. The next step in the citric acid cycle is the

hydration of fumarate to form L-malate, a step that needs

water. We therefore speculate whether the lack of water

during the growth of wheat, which apparently resulted in

the accumulation of fumarate, has a negative effect on the

citric acid cycle.

Conclusions

In this paper, the effects of water deficiency during grain-

filling in wheat have been investigated with emphasis on the

asynchronous protein synthesis monitored by 1H NMR

analysis of single kernels, flour, and methanol extracts.

Protein fractions and methanol extraction were tested for

Fig. 6. The PARAFAC results: samples scores (a) of the four drought treatments: control (CT), early drought (TD), late drought (TA), and

double drought (T2) together with PARAFAC time loading (b) PARAFAC NMR loading of Factor 1 (c) and Factor 2 (d).
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their ability to differentiate between drought treatments,

each method applying a different view on the protein
depending on the solubility. Visualization of the data by

PCA trajectories for the drought treatments yielded good

contrast of the protein development during grain-filling.

The results indicate that two periods of drought do not

have as remarkable an influence as late drought. Appar-

ently, some kind of resistance to drought is induced when

the wheat is drought-treated early in grain-filling. The 1H

NMR spectra of methanol extracts of wheat flour samples

provided better spectral resolution and enabling assignment

of a sharp singlet at 6.51 ppm to fumaric acid. This

metabolite, which is also found in the single kernel 1H HR-

MAS NMR spectra, was found to be a potential marker for

drought treatment in mature kernels.

The 1H HR-MAS NMR spectra of single wheat kernels
show considerable differences between early and late

harvest. For the first time, data from grain-filling has been

analysed by a complex multiway model and the result

showed an excellent overview of the data, where the main

variation in the data is expressed in two spectral profiles.
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ABSTRACT 

Onions contain several bioactive compounds and onion and onion by-products have been described to 
have potentially beneficial effects on health. This study is aimed to evaluate the in vivo metabolome 
following intake of onion by-products. Thirty-two rats were fed a diet containing an onion by-product or 
the derived onion by-product fractions; an ethanol extract and the residue resulting in three different 
onion diets. 24-hour urine was analyzed using proton nuclear magnetic resonance (1H NMR) 
spectroscopy in order to investigate the effects of onion intake on the rat metabolism. Principal 
component analysis (PCA) was not able to distinguish between urine from rats consuming normal feed 
and rats fed with an onion diet. Interval extended canonical variates analysis (iECVA) was applied 
which revealed two signals from an onion biomarker. The two onion biomarkers were identified as 
dimethylsulfone and 3-hydroxyphenylacetic acid. The same two spectral regions were subsequently 
revealed by interval partial least squares regression PLS (iPLS) to be perfect quantitative markers for 
onion intake. Quantitative calibration models using PLS were developed to predict percentage onion 
intake. The best calibration model yielded a root mean square error (RMSE) of cross-validation (CV) of 
0.97 % (w/w) with only 1 latent variable (LV) and a squared correlation coefficient (R2) of 0.94. This 
indicates that urine from rat on the by-product diet, the extract diet, and residue diet all contains the 
same biomarkers. Therefore, it is concluded that dimethylsulfone and 3-hydroxyphenylacetic acid are 
robust biomarkers for onion intake. Being able to detect specific biomarkers is highly beneficial in 
control of nutritionally enhanced functional foods. 

 

KEYWORDS: Metabonomics, NMR, rat, urine, iECVA, iPLS, biomarker, dimethylsulfone 

 



INTRODUCTION 

Onions (Allium cepa) constitute a part of the daily diet for most of the world’s population. Nutritionally, 
onion properties have been widely reported, indicating beneficial health effects. Most of the beneficial 
health effects have been related to the onion antioxidantic, anticarcinogenic, antimutagenic, 
antiasthmatic, immunomodulatory, antimicrobial, prebiotic and cardiovascular protective properties.1-3 
The main bioactive compounds related to the onion beneficial health effects of onion include flavonols, 
particularly quercetin and quercetin glusosides4, soluble fibres, fructooligosaccharides and organosulfur 
compounds.5-9 Organosulfur compounds have become subject of many investigations due to their 
potential chemopreventive and antioxidant effects.9-11 For example, the S-methyl sulfoxide isolated from 
Allium cepa has been shown to have a lipid-lowering effect in cholesterol-fed rats.12 The metabolism of 
onion is not yet fully understood, but cycloalliin, an organosulfur compound found in garlic and onion, 
initiates several biological activities and its metabolite, (3R,5S)-5-methyl-1,4-thiazane-3-carboxylic 
acid, has been found in urine after intravenous or oral administration to rats.13 Boyle and co-workers 
(2000) found a significant decrease in the level of human urinary 8-hydroxy-2’-deoxyguanosine after 
ingestion of an onion meal.14  

World wide, large amounts of onion disposal are produced from the onion production. Because 
onion is toxic for many animals, this waste product cannot be utilized in the general feeding industry. 
Onion waste can be stabilized as useful onion by-product which can act as an antioxidant or 
antibrowning agent. With respect to the health beneficial effect of onion, developing dietary 
supplements or nutritionally enhanced functional foods including onion could be highly beneficial. The 
concept of developing nutritionally enhanced functional foods requires the understanding of the 
mechanisms of prevention and protection if potential nutritional effects of an onion supplement should 
be utilized and the effect documented. The identification of biologically active molecules as potential 
biomarkers leads to a greater understanding of biochemical pathways and potentially allows objective 
quantification of onion intake in human studies. 

High-resolution nuclear magnetic resonance (NMR) (most often proton (1H) NMR) has emerged 
as a powerful non-invasive technique for metabonomic studies due to its ability to simultaneously detect 
a large number of compounds in a rapid high-throughput manner that requires little sample 
manipulation.15 1H NMR spectroscopy is widely used to study the metabolic variation in biofluids and 
its capabilities for metabonomics is well established.16 Is has become more and more common to 
combine investigations of complex NMR spectra with advanced multivariate data analysis such as 
chemometrics in order to extract systematic latent information from the complex biological NMR 
spectra. Such analysis requires a minimum of assumptions and the relationships may be visualized 
intuitively. Already in the early nineties, principal component analysis (PCA)17 was introduced to 
classify 1H NMR spectra of urine by the Nicholson group at Imperial College (UK).18 This group also 
introduced the definition of metabonomics as: ‘understanding the metabolic responses of living systems 
to pathophysiological stimuli via multivariate statistical analysis of biological 1H NMR spectroscopic 
data’.19 Subsequently, the term metabonomics has been broadened to ‘metabolic processes studied by 
1H NMR spectroscopy of biofluids’ and thus also include nutrition studies 20. 

Urine is often used as a biological fluid for metabonomic investigations due to the ease and non-
invasive of collection of repeated samples, the variable metabolite composition, and the often higher 
metabolite concentrations achieved relative to blood plasma.21 The fact that the urine profiles are 
generated and analyzed without a priori assumptions about the metabolic and physiological processes 
involved allows several hypotheses to be tested simultaneously, as well as new hypotheses to be 
generated from unexpected associations. In nutritional metabonomics, one often has to deal with large 
variability in the samples compared to the changes of interest induced by the nutritional intervention. 
The inter- and intra-individual metabolite variance within a normal population has to be evaluated 
qualitatively and quantitatively before conclusions can be made. In rodents, it has been determined that 
species, strain, genetics, sex, age, hormone concentrations, diurnal cycles, diet, temperature, stress and 



gut microflora all contribute to the metabolic composition of the urine of the animals.22 However, it is 
known that human volunteers in dietary metabonomic studies frequently do not report all their 
medication or food supplements23 and it is therefore highly desirable to gain objective knowledge about 
the true diet of a test person. In vivo investigations using animals as model-system makes it possible to 
investigate biomarkers under controlled conditions.  

A rodent study was recently conducted to evaluate possible health effects after feeding with an 
onion by-product and two derived onion fractions.24 In this study, the effect of onion intake on 
antioxidant enzymes, DNA damage, and gut environment in healthy rats was investigated and it was 
found that the onion by-product and the onion sub-fractions have no in vivo genotoxicity, may support 
in vivo antioxidative defense and alters the functionality of the rat gut microbiota. The purpose of the 
work presented here is to investigate the effect of onion intake on urine composition of the same rats 
with explorative metabonomic analysis using 1H NMR spectroscopy and chemometrics. Onion contains 
both soluble and insoluble compounds. Therefore, the onion product was fractionated into two fractions; 
an ethanol extract rich in fructooligosaccharides and the residue, the insoluble matrix. In this way, 
potential onion biomarkers in the onion by-product investigated can be either extracted into the extract 
or left in the residue.  

 

EXPERIMENTAL 

Onion and rat study 

The onion product used to feed the studied animals, produced at Instituto del Frío (CSIC, Madrid, 
Spain) is a by-product produced from freeze-dried onion paste. The onion by-product was fractionated 
into an ethanol/water soluble extract which is 70 % (w/w) of the by-product and the rest, the dry 
residue, which is 30 % (w/w) of the by-product. The extraction and the rat study were carried out at the 
National Food Institute, Technical University of Denmark (Søborg, Denmark). The onion extraction 
procedure and the animal study are detailed described elsewhere.4 Briefly, thirty-two rats were divided 
into four groups of 8 rats and fed four weeks either a control feed, a control feed supplemented with 
10% of onion by-product, a control feed supplemented with 7% of onion extract or a control feed 
supplemented with 3% onion residue (Table 1). The control group was fed with an isocaloric diet, 
substituting onion sugars with sucrose and onion fiber with starch. The two onion fractions are 
supplemented to the feed in concentrations which match the concentration of the by-product. Due to the 
experimental design, the extract and the residue added should be similar to the by-product, provided that 
the extraction is complete. 

 

Table 1 Composition of rat feed. For detailed composition of diet see Roldán-Marín et al. (2009)24 

g per kg feed  Control group Onion by-product group Onion extract group Onion residual group 

Onion by-product 0 100g 0 0 

Onion extract 0 0 70g 0 

Onion residual 0 0 0 30g 

Control feed 1000g 900g 930g 970g 

Total feed 1000g 1000g 1000g 1000g 

 



 

Urine samples 

Urine samples were collected for a period of 24 hours. 2 ml of 1 mM NaN3 were added to the urine 
sample test tubes which were kept at 0°C. The urine volume was recorded and samples were frozen in 
portions at –80°C for further analysis. Prior the 1H NMR analysis, the thawed urine samples were 
prepared by centrifugation at 1600 rpm for 10 min, 340 μl of the supernatant were transferred to NMR 
tubes followed by addition of 170 μl of 100 mM phosphate buffer solution (H2O, D2O, TSP-d4 (per-
deuterated 3-trimethylsilyl propionate sodium salt), NaN3, pH 7.4) to reduce the pH range of the 
samples. TSP-d4 was added to act as an internal chemical shift reference ( 1H 0.0), D2O was added to 
provide a lock signal for the NMR spectrometer and NaN3 was added as a preservative. The urine 
samples were prepared to run in a random order. 

 
1H NMR measurements 
1H NMR spectra were recorded for the 32 urine samples. The spectra were acquired on a Bruker Avance 
Ultra Shield 400 spectrometer (Bruker Biospin Gmbh, Rheinstetten, Germany) operating at 400.13 MHz 
using a broad band inverse probe head. Data were accumulated at 300 K employing a pulse sequence 
using pre-saturation of the water resonance during the recycle period followed by a 90 degree pulse25 
with an acquisition time of 2.04 s, a recycle delay of 5 s, 128 scans and a sweep width of 8012.82 Hz, 
resulting in 32 k complex data points. All samples were automatically tuned, matched and shimmed. 
Prior to Fourier transformation, each FID was apodized by Lorentzian line broadening of 1.0 Hz and 
zerofilled once and the corresponding spectra were manually phased and automatically baseline 
corrected. Receiver gain was automatically set. Prior to the chemometric analysis the raw proton NMR 
spectra data matrix to be investigated had the dimensions (32 × 65536) but was reduced to 32202 data 
points (10-0.2 ppm) excluding spectral areas with no signals. All spectra were aligned (rigid movement) 
in proportion to the TSP signal at 0.0 ppm. Furthermore, due to insufficient (unequal) depression of the 
water signal, the area from 5.00-4.50 ppm was removed. It also proved necessary to normalize spectra 
in proportion to the total sum of the spectra in order to remove the large concentration differences of the 
urine samples. Normalization of urinary metabolic data is best considered as a data transformation 
which minimizes inter-sample variation due to differences in gross urinary concentration between 
samples caused by volume and dry matter differences. Furthermore two 2D NMR experiments; total 
correlation spectroscopy (TOCSY) and heteronuclear single quantum coherence (HSQC) spectra were 
acquired on urine from a rat fed onion by-product supplement. These experiments were used for 
assignment of selected signals. The 2D NMR spectra were recorded using the Bruker pulse sequences; 
mlewphpr and hsqcgpph (mixing time of 60 ms) 25. The 2D NMR spectra were referenced to TSP-d4 at 
0.0 ppm before data analysis. Besides the spectra of the rat urine, 1H NMR spectra of the three different 
onion fractions were obtained. 1 mg of each of the onion fractions were suspended in 1 ml D2O solution 
added of 10% TSP-d4. Acquisitions parameters were similar the one used for the urine NMR spectra. 
The spectrum of dimethylsulfone was also measured with the same parameters. 

 

Chemometric analysis and software 

Multivariate data analysis in the form of PCA and partial least squares regression (PLS)26 was applied 
to obtain optimal quantitative and qualitative information from the measured spectra. PCA is the 
primary tool for investigation of large bilinear data structures for the study of trends, groupings and 
outliers. By means of PCA it is possible to find the main variation in a multidimensional data set by 
creating new linear combinations, principal components (PC’s), from the underlying latent structures in 
the raw data. PLS is a multivariate calibration method by which two sets of data, X and y, are related by 



means of regression. The purpose of PLS is to establish a linear model of latent variables (LV’s), which 
enables the prediction of a reference value y (slow measurement) from the measured spectrum X (fast 
measurement). Furthermore, extended canonical variates analysis (ECVA)27 models were applied for 
classification of feed groups. Canonical variates analysis (CVA)28,29 is a method for estimation of 
directions in space that maximizes the differences between groups of samples. However, CVA cannot 
deal with highly collinear data such as spectroscopic data, where the number of variables is much larger 
than the number of samples. The ECVA method solves this problem by the use of PLS in the inner part 
of CVA and thereby allowing for the analysis of highly collinear data27. In order to improve the 
calibration models and to investigate the influential areas of the spectra, interval PLS (iPLS) and 
interval ECVA (iECVA) was employed.30 iPLS is an extension of PLS which develops local PLS 
models on a number of subintervals of the full-spectrum region. The main advantage of iPLS is that it 
provides an overall picture of the relevant information in different spectral subdivisions, thereby 
facilitating interpretations and removing interferences from other regions. iECVA works similar to the 
iPLS model.  

Scaling or other pre-transformations of NMR data can are often necessary before the data 
analysis in order to assure that all signals are influencing model. In this study, pareto-scaling was used 
as scaling method applied to the NMR data before the further data analysis. Pareto-scaling reduces the 
relative importance of large values, but keeps the data structure partially intact. Each variable is divided 
by the square root of the standard deviation of the column values.31 All the calibration models were 
validated using cross-validation (CV) with five segments, leaving out one segment at a time from which 
the root mean square error of cross-validation (RMSECV) was calculated as a measure of the prediction 
error. 

The spectra were analyzed using the chemometric software LatentiX 2.0 (www.latentix.com, 
Latent5, Copenhagen, Denmark), PLS Toolbox 4.11 (Eigenvector Research, Manson, Washington, 
USA), and MATLAB 7.6 2008a (The MathWorks, Inc., Natrick, Massachusetts, USA). Regression 
(iPLS) and the iECVA model were performed in MATLAB using iToolbox and the ECVA Toolbox 
version 2.02, respectively (all available at www.models.life.ku.dk). 

 

RESULTS AND DISCUSSION 

The 1H NMR spectra of the three onion products to be fed to the rats are shown in Figure 1.  
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Figure 1 1H NMR spectra of onion by-product, onion extract and onion residue dissolved in D2O included 1mg/ml 
TPS-d4 
 



There are many similarities in the spectra of the three onion products, illustrating the complexity and the 
difference between the three onion fractions before they are metabolized by the rats. The spectra reveal 
diets high in fructans (3.5-6 ppm) with significant amount of aromatic (6-9 ppm) compounds. The 
extract differs from the residue by more intense signals in the aromatic region. Furthermore, the residue 
spectra have more intense signals in the high-field region of the spectrum compared to the two other 
fractions. The spectrum of the (ethanol) extract differs from the by-product and the residue by a triplet 
at 1.18 ppm which is assigned to the CH3 signal from residual ethanol. From the spectra, it is difficult to 
assure that the by-product spectrum equals the residue plus the extract spectrum.  

 

Figure 2 shows the average of 1H NMR rat urine spectra of each of the feed groups. The spectra appear 
very similar despite the different feeding schemes. The 1H NMR spectra of urine typically contain 
thousands of sharp lines from predominantly low molecular weight metabolites except for one broad 
band at 5.8 ppm from urea.32-41 The spectra display a wide range of metabolites such as aromatics, 
aliphatic compounds, sugars, amino acids and other metabolites. However, from this global 
investigation of the raw data, no obvious difference in the urine profile of the three onion diets can be 
detected. 
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Figure 2 1H NMR spectra of averaged rat urine from each of the four dietary groups. The water signal is removed 
and the aromatic region magnified by a factor 100. 
 

In order to investigate possible metabolic differences between the different feeding schemes, a PCA 
model was established on the full NMR spectra of the 32 urine samples. However, the PCA model was 
not able to distinguish between the four different feeding groups or to group the samples in an onion and 
a control group (Figure 3). None of the four groups appear to differentiate significantly. 
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Figure 3 PCA model (PC1 versus PC2) of pareto-scaled 1H NMR spectra of 32 urine samples of rats from the four 
different feeding schemes 
 

In order to scrutinize the spectra for signals able to distinguish between the control feed and the 
different onion fed groups (by-product, extract and residue), iECVA was carried out on the urine spectra 
(Figure 4) using 20 equally sized subintervals.  
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Figure 4 iECVA plot 1H NMR spectra of urine from onion-fed rats indicating the two best intervals for lowest 
number of misclassifications. The dotted line is number of misclassifications (11 for 11 LV’s) for global model and the 
italic numbers are optimal LV’s in interval model 
 

Indeed, two interesting intervals were found by iECVA which were able to improve the 
misclassifications rate significantly. The best interval, 6.50-6.95 ppm, was able to reduce the number of 
misclassifications from 11 to 2 (Figure 4). The interval includes signals from some of the aromatic 
compounds in the urine.The second best interval from 2.98-3.42 ppm was able to decrease the number 
of misclassifications to 3. 

The signals in two intervals selected by iECVA are shown in Figure 5, colored according to feed 
group.  
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Figure 5 Selected spectral regions from the iECVA model of the 1H NMR spectra of urine from onion-fed rats, 
revealing difference in signal intensity for each onion fraction 
 

Figure 5 shows that the urine spectra with the highest signal intensity in the selected spectral region is 
the urine from rats fed with a diet which in contained a 10 % supplement of onion by-product. In 
contrast, the urine from rats fed the control diet (without onion) shows no signal in this area. This 
indicate that the signal also contain quantitative information on onion dose. The signal with a chemical 
shift of 6.8 ppm shows (to a lesser extent) the same pattern. This signal matches the spectral profile of 
3-hydroxyphenylacetic acid, when matched in an NMR spectral base (BBIOREFCODE) containing 535 
compounds found in urine. The correlation between the signal at 3.15 ppm and the 3-
hydroxyphenylacetic acid at 6.80 ppm is 0.94, which indicates that the 3-hydroxyphenylacetic acid and 
the compound which has signal at 3.15 ppm both are involved in the metabolism of onion. The 
correlation coefficient between the signal at 6.80 ppm and the doublet at 6.86 ppm is slightly lower: 
0.89, which might indicate that other compounds also has a signal at this chemical shift. 

In order to investigate quantitative information regarding onion intake (onion dose) the 1H NMR 
spectra was analyzed using PLS relating on the 1H NMR spectra and the onion dose (0, 3, 7 and 10%). 
Variable selection using iPLS was applied to find which regions of the 1H NMR spectra of urine that 
include quantitative information about the onion biomarkers. The prediction error of the full-spectrum 
model was 1.56 % (w/w), as illustrated by the dashed line in Figure 6. Two intervals were found which 
were able to improve the prediction error significantly: 6.50-6.95 ppm and 2.98-3.42 ppm (marked in 
Figure 6). The optimal interval is 2.98-3.42 ppm which results in a prediction error of 1.12 % using only 
3 LV’s. Adding the interval around 6.80 ppm results in a further reduction of the error to 0.97 % (w/w) 
using only one LV. The actual versus predicted plot in Figure 6B shows a robust PLS model obtained 
on the two selected intervals, clearly revealing that the NMR urine spectra contain robust quantitative 
information about onion dose. 
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Figure 6 (A) iPLS plot of the prediction of % (w/w) onion in feed obtained on 1H NMR spectra of urine from onion 
fed-rats. Dotted line is RMSECV (7 LV's) for global model. Italic numbers are optimal LV’s in interval model. The 
two best intervals are highlighted. (B) Actual versus predicted plot of PLS model of onion dose and urine from onion-
fed rats, performed on the highlighted intervals (A)  
 

The two optimal spectra regions found by iPLS are exactly the same intervals as found by the iECVA. 
This indicates that it is the same quantitative information which is extracted by the ECVA and iPLS. 
Unfortunately, the experimental design used have dose and fraction confounded which makes it 
impossible to decide which effect is modeled, even if the 1H NMR spectra should hold information 
about both features. In theory, it should be possible to mathematically remove the information about 
dose and retain the information about fraction. This can be done by orthogonalization where the vector 
describing the dose response is withdrawn from the data.42 However, it was tested in this study, but the 
orthogonalization approach led to a rather overfitted classification (results not shown). 

In the interval from 2.98-3.42 ppm, one signal seems particular important. The signal has 
chemical shift of 3.15 ppm. Based on 2D experiments (TOCSY and HSQC) of the urine sample and 
NMR measurements of the pure compound, this signal was identified as the methyl protons (CH3) in 
dimethylsulfone (Figure 7).  
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Figure 7 1H NMR spectra of selected urine from rat on an onion by-product diet overlapped a spectrum of 
dimethylsulfone 



 

Indeed, this symmetric compound has only one signal in the 1H NMR spectrum, and no cross-peak in 
TOCSY. From the HSQC experiment the chemical shift of 13C was found to be of 44 ppm. 
Dimethylsulfone is an oxidation product of dimethylsulfoxid (DMSO) and it is highly possible to find 
DMSO in urine as a result of an onion diet because onions contains many sulfoxides.43 It has previously 
been shown that DMSO is metabolized to dimethylsulfone in humans and rats.44 DMSO is a universal 
solvent and has the characteristic property that it is able to penetrate the skin. DMSO is an industrial 
approved solvent by the FDA for treatment of interstitial cystitis (bladder inflammation) and side effects 
include reports of onion odor breath. Several reports have suggested that DMSO may also be effective 
in inhibiting cholesterol-induced atherosclerosis in experimental animals.45-47 Dimethylsulphone has 
been reported in human sweat,48 in urine following asparagus consumption49,50 and in cows milk from 
pasture-fed cows51. The compound therefore seems to originate from sulphur rich herbs and plant foods 
but there may be a genetic element involved in its formation in humans. Dimethylsulfone has recently 
been linked with the occurrence of skin cancer.52,53 Gallagher and co-workers (2008) found that skin 
cancer patients showed significantly higher levels of dimethylsulfone in the skin measured by gas 
chromatography/mass spectrometry (GC-MS). An NMR study has also found detectable levels of 
dimethylsulfone normally present in the blood and cerebrospinal fluid, suggesting that it derives from 
dietary sources, intestinal bacterial metabolism, and the body's endogenous methanethiol metabolism. 54 

The good correlation between onion dose and the NMR spectra of urine show that the onion 
biomarker is present in all fractions and is equally distributed in the fractions of the by-product. 
Apparently the concentration of the biomarker is proportional with the onion dose intake independent of 
the fed onion fraction. That dimethylsulfone is present in all urine fractions may be due to the extraction 
procedure which not able to eliminate the biomarker from the by-product to the extract. The by-product 
consisted of intact cell walls which may be the reason why all dimethylsulfone was not removed from 
the residue. Another explanation could be that the compound is only partly soluble in ethanol. A third 
explanation may be that dimethylsulphone is a degradation product of more lipid-soluble organosulphur 
compounds from onion, and that these compounds were only weakly soluble in 60% ethanol. 

 

CONCLUSION 

Two onion biomarkers were identified as dimethylsulfone and 3-hydroxyphenylacetic acid. 
Quantitative PLS models showed that the onion dose responded the quantitative information in the urine 
spectra primarily due to the biomarker dimethylsulfone. This indicated that urine from rats fed with the 
two fractions (extract and residue) of the onion by-product and rats fed with the onion by-product, all 
contain the biomarker and that the biomarker is present in all fractions and in the same concentration as 
doses. Therefore, it was possible to identify an objective biomarker for onion intake but not for the 
different onion products. Clearly the dimethylsulfone ends up in all fractions and is therefore a robust 
biomarker for onion intake. Being able to quantify the dietary intake can be very beneficial as control in 
diet intervention studies. The self-reported dietary intake in forms of food frequency questionnaires 
have been the dietary assessment method used most frequently in large-scale studies. This is primarily 
because it is easy to administer, it is less expensive than other dietary assessment methods, and it 
provides a rapid estimate of usual intake.55 However, there exists a great problem in using food 
frequency questionnaires because self-reports of food intake are not accurate and sometime misleading. 
McKeown et al. (2001) showed that correlations between 24-hour urinary nitrogen excretion and dietary 
intake from the food frequency questionnaire were as low as 0.25.56 Clearly a potential exist in using the 
onion biomarker in various nutrition studies. We are now in the process of carrying out a human study 
with an onion product in order to verify the usefulness of this marker and to whether genetic variability 
or variations in gut flora might affect its usefulness in humans. 
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Abstract

The gelling properties of pectins are known not only to be closely related to the degree of esterification (DE), but also to the
distribution of the ester groups. In this study we have examined an experimentally designed series of pectins originating from the same
mother pectin and deesterified using combinations of two different enzymatic mechanisms. The DE and distribution patterns of methyl

ester groups have been analyzed using high-resolution (HR) 1H nuclear magnetic resonance (NMR) spectroscopy on pectin solutions.
Quantitative calibration models using partial least squares (PLS) regression were developed with the ability to predict DE as well as the
specific enzyme treatment, expressed as amount of ester groups removed with random and block enzyme, respectively. NMR
spectroscopy was able to distinguish between enzyme treatments in simple classification by principal component analysis (PCA). This

was due to the spatial structure of pectin together with the methyl ester distribution. Nuclear Overhauser effect spectroscopy (NOESY)
experiments confirmed all the general assignments with the expected nuclear Overhauser effect (NOE) correlations. Degree of random
deesterification (R) was better predicted than the degree of block deesterification (B). The calibration models for prediction of R obtained

on extended inverted signal correction (EISC) processed data gave a root mean square error (RMSE) of cross-validation (CV) of 2%p
with 4 PLS components (latent variables, LV) and a correlation coefficient (r) of 0.98. Spectral variable selection using interval PLS
(iPLS) was shown to be valuable, as all the calibration models were improved.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Pectin; Noesy; NMR; Chemometrics; Esterification; Blockiness; Block-enzyme; Random-enzyme

1. Introduction

Pectic molecules include primary homogalacturonan
(HGA) and rhamnogalacturonan I (RG I). HGA is
composed of unbranched a-1,4-linked galacturonic acid
(GalA) residues, whereas RG I is composed of a backbone
of repeating a-1,2-L-rhamnose(Rhap)-a-1,4-D-GalA disac-
charide units. Side-chains, mainly consisting of arabinan
and/or galactan, are attached to the RG I backbone at the
C-4 position of the Rhap residues. These side-chains are
called ‘hairy regions’ (Carpita & Gibeaut, 1993; Ridley,
O’Neill, & Mohnen, 2001). The GalA residues in the HGA
and RG I backbone may be methyl esterified and/or O-
acetylated (Carpita & Gibeaut, 1993). The structure of
pectin is important for the plant cell-wall strength and
flexibility. Because of its excellent gelling, thickening, and
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stabilizing properties, the polymer is extensively utilized in
the food industry (Ralet, Bonnin, & Thibault, 2002; Rolin,
1993).

The degree and pattern of methyl esterification has
important commercial implications and has been the
subject of many studies because of its effect on the
rheological and gel-forming properties of pectins (Rolin,
1993). Daas, Meyer-Hansen, Schols, De Ruiter, & Voragen
(1999) introduced the term ‘degree of blockiness’ as the
total amount of free GalA residues expressed as the
percentage of the total number of free GalA residues
percent in the pectin. Previous investigations of the methyl
ester distribution of pectins include 1H nuclear magnetic
resonance (NMR) spectroscopy combined with enzymatic
degradation, (Andersen, Larsen, & Grasdalen, 1995;
Grasdalen, Andersen, & Larsen, 1996) and enzymatic
degradation combined with mass spectrometry or high
performance chromatography (Daas et al., 1999; Daas,
Voragen, & Schols, 2000; Daas, Voragen, & Schols, 2001;
Korner, Limberg, Christensen, Mikkelsen, & Roepstorff,
1999; Limberg et al. 2000b; Limberg et al. 2000a; Ralet,
Dronnet, Buchholt, & Thibault, 2001; Ralet & Thibault,
2002; Willats, McCartney, Mackie, & Knox, 2001). These
studies all concluded that alkaline deesterification and
fungus-pectin methyl esterase (PME) resulted in random
distribution, while plant-PME resulted in blockwise
distribution of methyl ester groups. Elaborate studies
made by Limberg et al. (2000a) suggested that deesterifica-
tion using plant-PME is a process which selectively

introduces block structure of adjacent free GalA units,
whereas fungus-PME and base treatment lead to two
different forms of homogenous methyl esterification
patterns. This finding led to the hypothesis that random
deesterification is more ordered than first assumed (Lim-
berg et al., 2000b). The terms ‘random’ and ‘blocky’ methyl
ester distribution are merely interpretations and there is no
precise definition of how many contiguous free GalA units
constitute a block. In addition, random distribution can be
completely random or almost systematic (Fig. 1).
The functional traits of the methyl ester pattern have

been investigated in calcium-binding studies (Ralet,
Crepeau, Buchholt, & Thibault, 2003; Ralet et al., 2001;
Willats et al., 2001). These studies showed that the calcium
sensitivity of high-ester pectins increased in the presence of
inhomogeneous methyl ester distribution. Regions of free
GalA groups form multiple calcium bridges, which create a
domain of strong, intermolecular association between the
HGA chains, resulting in increased viscosity. Multiple
regions of predominant-free GalA residues in the presence
of an excess of calcium ions or other divalent cations in
water causes pectin gelling or precipitation (Ralet et al.,
2001; Ralet et al., 2003). For a gel to be formed and not to
be brittle, features such as the helical conformation of the
pectic polymer are important. Braccini, Grasso, & Perez
(1999) calculated the difference in energy between the
2- and the 3-fold conformation for poly-GalA, indicating
that both types of helical conformation energetically
are almost equally favorable (Braccini et al., 1999).
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Free GalA unit Methylester Esterified GalA unit

Fig. 1. Schematic example of pGalA chains. HGA with methyl groups of (a) short blockwise distribution, (b) partial blockwise with short blocks, (c)

unsystematically random distribution, (d) large blocks, (e) systematically random distribution and (f) block and systematically random distribution of free

GalA units. The pGalA chains are in a 3-fold conformation and the distance between two methyl ester groups are 13–14 Ångstrøm (Å). The DE is 50% in

the examples.
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Thus, depending on the environment (neighboring ions,
solvent, etc.), one or the other form may be favored.

Because the distribution of the free ester groups is critical
for the detailed functionality of pectins, development of a
fast and reliable method able to assess the ester distribution
of native or semi-refined pectins is desirable. The purpose
and challenge of this study was to develop an NMR
method to examine the methyl ester distribution along the
pectic polymer. High-resolution (HR) 1H NMR spectro-
scopy has previously proven not only to be a valuable tool
in the determination of degree of esterification (DE) in
pectins, (Andersen et al., 1995; Grasdalen et al., 1996;
Rosenbohm, Lundt, Christensen, & Young, 2003), but has
furthermore shown potential to analyze the sequence of
free GalA and the distribution of the methyl esters
(Andersen et al., 1995; Grasdalen et al., 1996). The NMR
signals relating to specific protons related to block-polymer
information are bound to be more subtle which is why it is
necessary to apply data analytical methods such as partial
least squares (PLS) (Wold, Martens, & Wold, 1983) in
order to extract the desired information. For this
investigation, 31 pectin samples were produced by degra-
dation of the same mother pectin by two different PMEs, a
block esterase and a random esterase. The aim was to
predict the amount of methyl esters, removed with a
random or block esterase.

2. Materials and methods

2.1. Experimental design and samples

The high-methoxy pectin samples were designed by CP
Kelco (Lille Skensved, Denmark) from a native (mother)
citrus pectin (DE�72.3%) which had been remethylated to
DE�93.8%. The remethylated pectin was produced from a
5 1C suspension of pectin in dry methanol and added

thionyl chloride in excess over a period of 5 days. The
product was separated by filtration and washed with
methanol and dried. This remethylated pectin was then
deesterified with two commercial pectin modifying en-
zymes, a random methyl esterase, Rheozym (now
Novoshapes) (Novozymes, Denmark) and a block methyl
esterase derived from papaya fruit. The commercial
Rheozyme is cloned from Aspergillus aculeatus and is
believed to have the same deesterification pattern as
Aspergillus niger which is a multichain mechanism
which removes the methyl groups random (CP. Kelco,
2006) (van Alebeek, van Scherpenzeel, Beldman, Schols,
& Voragen, 2003). The deesterification pattern of the
papaya block esterase is suggested as a single chain
mechanism similar to the mechanism described for other
esterases from e.g. orange (Kohn, Furda, & Kopec, 1968;
Kohn, Markovic, & Machova, 1983). The pectin samples
were designed from a three-dimensional experimental
design, illustrated in the triaxial diagram (Fig. 2). One
pectin series with blockwise methyl ester distribution and
one pectin series with random methyl ester distribution
were produced. This yielded two groups of five samples
with varying DE from about 90% in 10% steps down to
50% DE (Block: B90, B80, B70, B60, and B50 and
Random: R90, R80, R70, R60 and R50). A third series was
made from the block series which was subsequently
deesterified with random enzyme. The fourth series was
made from the random series which was subsequently
deesterified with block enzyme. Thus, the total sample set
consisted of four groups with different enzyme treatments;
one pure random, one pure block, one first random
followed by block and one first block followed by random
(Fig. 2). Only one batch of each sample was produced in
amounts of approximately 700mg.
The reference DE was determined by titration and the

deesterification with block and random enzyme was
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Fig. 2. Schematic model of the triaxial experimental design. Reading downwards (left): deesterification with block enzyme from DE�100 to DE 90, 80, 70,

60 and 50. Reading downwards (right): deesterification with random enzyme from DE�100 to DE 90, 80, 70, 60 and 50. The horizontal lines indicate the

total deesterification.
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thereby calculated. The designed pectins had a molecular
weight of 10,000–15,000 g/mol, determined by a triple
detector size exclusion chromatography module (Viscotek),
which corresponds to a degree of polymerization (DP) of
approximately 50GalA units. There was a remarkable
drop in molecular weight (from 180 to 13 kDa), as a result
of the remethylation which suggests a removal of the hairy
regions during the remethylation process. The measured
DEs are shown in Tables 1 and 2, together with the precise
deesterification with block and random enzyme. As the
mechanisms of the two enzymes are not fully elucidated,
the amounts of ester groups removed with random or block
esterase, were used as reference values in the calibration
models. The DE is calculated in percent of the number of
esterified GalA units compared to the total number of
GalA units and is denoted %point (%p), which is also the
unit for block and random deesterification. Furthermore, it
is important to limit the number of latent variables (LVs)
to obtain parsimonious models and to avoid over-fitting
when test-set validation is not possible. This is especially
important when the sample set is small, as in the present
study. All the calibration models were validated using full
cross-validation (CV) (Wold, 1978).

The pH was measured in 1% (w/w) solutions of all
samples with Baker-pHIX (pH 0.0–6.0) (J.T. Baker,
Phillipsburg, USA). The total sample set consisted of 31
designed pectins (sample R90-B50 failed in the produc-
tion). Furthermore, two identical remethylated pectins, the
mother pectin and a pectate sample (DE�0%) were
included in the study. These samples were used to span
the maximum variation in the calculated calibration
models. The samples order was randomized prior to
measurements.

2.2. NMR spectroscopy

1H NMR spectra were recorded on pectin solutions
(0.5% w/w), but due to the small sample amounts only
single determinations were performed. The spectra were
acquired at 9.4 T on a Bruker Avance Ultra Shield 400
spectrometer (Bruker Biospin Gmbh, Rheinstetten, Ger-
many) operating at 400.13MHz at 303K using a broad
band inverse probe head. The pectin samples were
prepared as 0.5% (w/w) solutions in D2O and added
10% (v/v) perdeuterated 3-(trimethylsilyl) propionate
sodium salt (TSP) as chemical shift reference
(d ¼ 0.0 ppm). The spectra were accumulated with a 301
pulse, an acquisition time of 1.98 s, a recycle time
(relaxation delay) of 8 s, 128 scans and a sweep width of
8278.15Hz, resulting in 32K complex data points. A pulse
experiment with water suppression (composite pulses) was
chosen to avoid overlap of pectin signals and the water
signal. A spectral window of 3–5.5 ppm was analyzed. All
assignments were made on raw spectra.
Nuclear Overhauser effect spectroscopy (NOESY) spec-

tra were recorded on five selected samples, B50, B90, R50,
B50 and B70-R50, with mixing time of either 300 or 350ms
and a relaxation delay of 4.5 s. The size of the NOESY
spectra was 2048� 256 and they were recorded at 303K in
the phase-sensitive mode (TPP). The number of scans per t1
increment was 32 and the spectral width was 728.438Hz
(1.82 ppm).

2.3. Chemometric analysis

Multivariate data analysis was applied to the NMR
spectra in order to extract optimal quantitative and
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Table 1

Reference deesterification determinations with random enzyme treatment of design pectins

Target deesterification code 1. Deesterification random

enzyme DE

2. Deesterification block

enzyme DE

Random enzyme treated

%p

Block enzyme treated %p

R-90 93.8-88.9 4.9 0

R-90-B80 88.9-78.3 10.6

R-90-B70 88.9-70.9 18.0

R-90-B60 88.9-64.4 24.5

R-90-B50 nda — —

R-80 93.8-80.0 13.8 0

R-80-B70 80.0-72.2 7.8

R-80-B60 80.0-66.2 13.8

R-80-B50 80.0-56.2 23.8

R-70 93.8-71.9 21.9 0

R-70-B60 71.9-62.2 9.7

R-70-B50 71.9-50.3 21.6

R-60 93.8-64.9 28.9 0

R-60-B50 64.9-51.7 13.2

R-50 93.8-58.8 35.0 0

R-50-B50 58.8-52 6.8

and: not determined.
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qualitative information. PLS regression models were
developed for DE, block deesterification (B) and random
deesterification (R). Subsequent PLS regression models
were made with interval PLS (iPLS) (Nørgaard et al.,
2000). All models were full CV unless otherwise stated.
Different transformation techniques (none, scaling after
TSP signal, shifting by covariance optimization (co-
shifting) (Tomasi, van den Berg, & Andersson, 2004),
warping (Tomasi et al.,2004), multiplicative scatter correc-
tion (MSC) (Geladi, Macdougall, & Martens, 1985) and
extended inverted signal correction (EISC) (Martens,
Nielsen, & Engelsen, 2003)) were compared by analyzing
the effect on the calibration (PLS) models as well as by
visually evaluating the spectra. Models were tested in order
to find the best model with the lowest cross-validated
prediction error. Principal component analysis (PCA)
(Wold, Esbensen, & Geladi, 1987) models were calculated
for classification of enzyme treatment.

2.4. Software

The multivariate data analysis was carried out using
Unscrambler 8.0 (CAMO, Inc., Trondheim, Norway) and
MATLAB 6.5 (The MathWorks, Inc., Natrick, Massachu-
setts, USA). MATLAB codes for the preprocessing
techniques (co-shifting, warping and EISC) and for iPLS
can be found at www.models.kvl.dk.

3. Results and discussion

The 1H NMR spectra of the samples that were not part
of the designed pectins, i.e. the mother pectin, pectate and
remethylated pectin, proved to be significantly different.

The pH values of these samples were also different, as the
pH for the designed pectins and mother pectin were
measured to be 3.0–4.0 and for the pectate and the
remethylated pectin was 2.0 and 4.5, respectively. In order
to give an overview of the samples, PCA models were
calculated. A PCA score plot of the NMR spectra revealed
that the mother pectin was an outlier. This was confirmed
by inspection of the spectrum of the mother pectin,
revealing a number of extra signals which were not
observed in the spectra of the designed pectins. These
signals could be rhamnose or arabinose and galactose
remnants from hairy regions; however, by comparing
spectra of these compounds, this could not be confirmed.
The designed pectins were deesterified with enzymes and it
is assumed that the enzyme treatment cleaves the hairy
regions from the pectin polymer. For this reason, the
mother pectin, the remethylated pectin and the pectate
were removed from the calibration set before modeling.

3.1. NMR assignment

After preprocessing the data, but before modeling, the
spectral region 0–3.3 ppm was removed due to of the
absence of pectin signals. The excluded region included one
large doublet at 1.14 ppm (1.15 and 1.13 ppm) assigned to
isopropanol (IPA), used in pectin production to precipitate
pectin from the aqueous solution. This implies that the
signal at 4.0 ppm contains a significant contribution from
IPA (Fig. 3). Fig. 3 displays the mean 1H NMR spectrum
of the pectin data. The spectra of the pectin samples
contain a sharp signal at 3.78 ppm which is the signal from
the protons in the methoxy groups of the esterified pectin.
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Table 2

Reference deesterification determinations with block enzyme treatment of design pectins

Target deesterification code 1. Deesterification block

enzyme DE

2. Deesterification random

enzyme DE

Block enzyme treated DE Random enzyme treated

DE

B-90 93.8-89.4 4.4 0

B-90-R80 89.4-81.1 8.3

B-90-R70 89.4-73.8 15.6

B-90-R60 89.4-66.6 22.8

B-90-R50 89.4-57.5 31.9

B-80 93.8-79.7 13.9 0

B-80-R70 79.7-69.5 10.2

B-80-R60 79.7-59.4 20.3

B-80-R50 79.7-49.1 30.6

B-70 93.8-71.2 22.6 0

B-70-R60 71.2-60.2 11.0

B-70-R50 71.2-47.3 23.9

B-60 93.8-60.3 33.5 0

B-60-R50 60.3-50.8 9.5

B-50 93.8-57.0 36.8 0

B-50-R50 57.0-50.6 6.4
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The direct correlation coefficients to DE indicated in
Fig. 3 are calculated on raw NMR spectra. As expected,
the intensity of the methoxy signal at 3.78 ppm showed
good direct correlation to DE (0.89), but the higher field
signal at 3.68 ppm (‘shoulder’) yielded a very good
correlation (0.93) to DE as well. Furthermore, the
correlation between the methoxy signal and the shoulder
was 0.93. Rosenbohm et al. (2003) found that the H-2 and
H-3 protons absorb around 3.7 and 4.0 ppm, respectively.
For this reason, the signal at 3.70 ppm was assigned to H-2
and the signal at 3.96 ppm to H-3. This was also confirmed
by Ló et al. (1994) who found the H-2 signals in
heptagalacturonide around 3.77 ppm (Ló, Hahn, &
Halbeek, 1994).

The good correlation between DE and the methoxy
signal to the H-2 signal can be explained by large NOE
effects between the methoxy group and H-2. The 3-fold
helical turn of the pectic backbone has the consequence in
the spectra that the difference in signal intensity is due to
an NOE effect in the polymer. In this case, the protons in
the GalA unit, through space connectivity, are able to sense
wether or not an ester group is spatially located in close
proximity. As a result, the esterification of a given pectin
unit will affect the signal intensity of the protons spatial
located just above or beneath the pectin unit. Furthermore,
the positions of the signals in the spectra will be dependent
on whether the pectin polymer is random or block
deesterified. Furthermore, the shielding of the protons
and hence their chemical shift values will be affected by the
functional group positioned above or beneath it. Similarly,
the H-3 signal at 3.96 ppm also showed a good correlation

(0.92) to DE, which is most likely also due to the NOE
effect. A computer model of a 3-fold helical turn of an eight
monomer GalA unit (fully esterified) of the pectic back-
bone supports this NOE hypothesis (Fig. 4). The distances
between the methoxy group at one unit (n) and the H-1,
H-3, H-4 and the H-5 of the two neighbor GalA units
(n� 1 and nþ 1) seem very short. This structure is only
approximate, as the position of the methoxy group is quite
flexible.
In order to investigate the spatial structure, NOESY

experiments were carried out. The NOESY spectra
confirmed the assignments, as the expected NOE correla-
tions appeared in the spectrum (Fig. 5). Due to spectral
overlap, the NOE correlation between the methoxy group
and H-2 could not be unequivocally confirmed in the
NOESY spectrum.
Rosenbohm et al. (2003) also stated that the H-4 protons

were absorbing at around 4.4 ppm as two signals depending
on DE, which match the findings of this study. The
connectivity in the NOESY spectrum in Fig. 5 at 4.30 ppm
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was suggested identified as H-40 (end residue) which is
spatially connected to H-1 in the neighboring residue
(Fig. 4). Furthermore, the H-40 has a weak connectivity to
H-2 together with the methoxy protons placed at the same
residue, (seen when lowering the level of the correlation
plot, not shown). Similar correlations are clearly observed
between H-4 and H-1 and between H-4 and H-2.

According to Andersen et al. (1995), a block-type
distribution in enzyme-treated samples is indicated by
stronger lines in the spectra corresponding to contiguous
arrangements of esterified and deesterified units. Two
esterified GalA units should have stronger H-1 lines at
4.98 ppm, four esterified units at 5.03 and two free GalA
units at 5.10 ppm. The positions of the signals are very
similar to the signals found in this study at 5.06 and
5.11 ppm together with a small shoulder on the H-5 signal
at 4.96 ppm (only visible in the raw spectra). These
assignments are in perfect agreement with the work of
Rosenbohm et al. (2003). They found that the H-5 protons
adjacent to free GalA units appeared as two signals at 4.9
and 4.6 ppm, whereas the signals for H-5 protons adjacent
to ester groups had shifted downhill to about 5.0 ppm.

The two signals to the very high-field region of the
selected area (3.57 and 3.40 ppm) could not be assigned in
the present study. There are no literature reports on pectic
signals in this region and there were no NOE effects to

support coherence with the remaining protons in the
pectins. Similarly, the signal at 4.15 ppm could not be
assigned. As previously mentioned, spectra of monosac-
charide compounds which could be present in hairy regions
(galactose, rhamnose and arabinose) were tested in order to
assign these signals, but without any results.

3.2. Prediction models

The primary objective of this study was to explore the
possibility of predicting the methyl ester distribution in new
pectin samples by their NMR spectra, since the spectra
contain regions with information about the degree of
blockiness. When developing PLS calibration models,
normally the primary aim is to obtain as small validated
prediction errors, root mean square error of cross
validation (RMSECV) as possible. Different transforma-
tion techniques (co-shifting, warping, MSC and EISC)
were tested in order to improve the PLS models. However,
none of the tested techniques were able to improve the PLS
models for the prediction of DE and B. Only preprocessing
of data with EISC improved the prediction of R
considerably.
The PLS model obtained from raw NMR spectra yielded

good prediction of DE using only 3LVs with a correlation,
r, of 0.97 and a RMSECV of 3.0 %p. Even for PLS models
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residue. A: H1-H2, B: H5-H2, C: H4-H2, D: H3-H2, E: H10-H2, F: H1-OCH3, G: H5-OCH3, H:H4-OCH3, I: H3-OCH3, J: H10-H3, K:H1-H3, L:H5-H3,

M: H4-H3, N: H1-H40, O: H1-H4, P: H5-H4, Q: H10-H4, R:H1-H5, S: H10-H5.
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based on spectra without the methoxy signal, the correla-
tion remained high, r ¼ 0.96, and RMSECV of 3.3 %p
using the same number of LVs. These results indicate that
there are several signals that covariate with DE in
agreement with the correlation coefficients to DE indicated
in Fig. 3. In the prediction of the distribution of free GalA
units expressed as B and R values, the best PLS model for
the prediction of R was attained by the EISC treated data
using 4LVs, yielding a prediction error of 2.0 %p and a
correlation coefficient of 0.98. The prediction of R was
generally better than the prediction of B (Table 3).

3.3. Variable selection using iPLS

In order to improve the calibration models and to
investigate the influential areas of the spectra, iPLS were
employed. iPLS is an extension of PLS which develops
local PLS models on a number of subintervals of the full
spectrum region. The main advantage of iPLS is that it
provides an overall picture of the relevant information in
different spectral subdivisions, thereby removing interfer-
ences from other regions (Nørgaard et al., 2000).

Variable selection using iPLS was applied in this
investigation primarily to visualize the areas of the spectra
which include information about the methyl ester pattern.
The spectrum was divided into 20 equally sized subintervals
and PLS models were made from each interval. While no
single interval was found by iPLS which could improve the
prediction of DE or B, iPLS extracted NMR spectra proved
to be a most precise tool in the determination of R. The
influential interval for the prediction of R found by iPLS is
displayed in Fig. 6. iPLS models calculated on only one
single interval (3.7–3.6 ppm) resulted in lower prediction
errors (1.8 %p) than the global model (2.0 %p) (Table 3).
The spectral region from 3.9 to 3.6 ppm (inserted as an
enlargement in Fig. 6) had generally low prediction errors.
For this reason, this area was investigated for elucidating
further information about the specific signals contributing
to the model. The dot-and-dash line in Fig. 6 is the
spectrum for the pectin with the lowest R value and the
full-drawn line corresponds to the pectin with the highest R
value. In the inserted enlargement, the chemical shift of the
signal assigned to H-2 is shifted depending on the ester

distribution. For this reason, the most important area of the
spectra with regard to the random deesterification is the H-2
signal. This is due to the spatially close position (Fig. 4)
of the ester group to H-1 and the signals of the H-2 protons
are thereby affected when the neighboring GalA residues are
esterified.

3.4. Classification by enzyme treatment

To investigate the regions of importance, with regard to
grouping by enzyme treatment, discriminant iPLS was
carried out (Fig. 7). This yielded three areas of interest:
interval 1–3 (5.2–4.9 ppm), interval 10 (4.3–4.2 ppm) and
interval 17–18 (3.7–3.5 ppm). These intervals corresponded
to H-1 (free and esterified), H-5, H-40 (end residue), H-2
and to the signal H-x at 5.57 ppm which we have not been
able to assign. PCA models were carried out in order to
classify by enzyme treatment. In Fig. 7, the small plot
shows the PCA score plot. The grouping by deesterification
treatment (m�R, n�B-R, ’�B, &�R-B) was enhanced
when the PCA models were only calculated on intervals
found significant by the discriminant iPLS models. The
score plot demonstrates that the samples are grouped by
the last enzyme treatment, as the R and B-R samples and
the B and R-B samples are placed together. A PCA
calculated on the 3.5–3.7 ppm (H-2) region confirmed the
presence of variance in this region, indicating spectral
differentiation between the different enzyme treatments. In
addition, the signal of H-1 at 5.11 ppm is of interest, since
the signal intensity increased with increasing random
deesterification, with sample R50 being the most intense
(Fig. 6). However, the H-1 signal could, as the H-2 region,
only differentiate between the pure block and the pure
random samples with tendencies towards division of the
rest. This indicates that the H-2 and H-1 area is of great
importance in the prediction of the ester group decoration
of the pectin molecule. It is thus evident that the H-1 signal
strongly covariates with random deesterification, but not
with the blockiness. This could indicate that it is the degree
of randomness that shows these characteristic spectral
shapes. There were no intervals found by iPLS able to
provide a clear grouping of all four sample set groups.

4. Conclusion

We have investigated whether NMR has the potential to
characterize the distribution of methyl ester and carboxyl
groups in enzyme-treated pectin. Quantitative models
determining the pectic composition of untreated powders
were developed using 1H NMR spectra of pectic solutions.
The experimental design, which consisted of pectin samples
treated by block deesterification, random deesterification,
block-random deesterification, and random-block deester-
ification, could be reflected in PCA score plots. Very good
calibration models were obtained, with a correlation of
0.97 for the prediction of DE using only 3 LVs with a
prediction error of 3.0 %p. Furthermore, calibration
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Table 3

Results of cross-validated prediction models using raw and EISC treated

NMR spectra

Range DE�47–94 B�0–35 R�0–37

Raw LV 3 8 8

RMSECV 3.0 3.8 2.7

r 0.97 0.94 0.97

EISC LV 3 9 4

RMSECV 5.0 3.7 2.0

r 0.91 0.95 0.98
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models for prediction of R using EISC preprocessed
spectra gave very small RMSECV of 2 %p with 4LVs
and an r of 0.98. Using the variable selection method, iPLS,

spectral regions were found, where the models for
prediction of random deesterification could be significantly
improved.

ARTICLE IN PRESS

ppm

3.653.73.753.83.85

3.43.63.844.24.44.64.85

R
M
S
E

0

2

4

6

8

10

12

14

16

18

20

R-50
R-60

R-70
R-80

R-90

B-90 B-80 B-70 B-60 B-50

3.653.73.753.8

Ymin

3.85 3.653.73.753.8

Ymin

Ymax

RMSECV

3.85

15556566233332234462

5.095.115.13

Dotted line is RMSE for 4 LV's

Fig. 6. IPLS plot of prediction of R by NMR. The dotted line represents RMSECV using 5LVs for the global model. The italic numbers are optimal LVs

in an interval model. The inserted small plots show an enlargement iPLS plot of a selected area from 3.9–3.6 ppm (right) and an enlargement of the area

5.12–5.08 ppm (left).

Fig. 7. iPLS plot of PLS model, discriminated by enzyme treatment and the corresponding PCA score plot (PC2 versus PC5) of the four deesterification

treatments m�R, n�B-R, ’�B, &�R-B obtained on the hatched intervals. PC2 explains 18% of the variation, while PC5 explains 4%. The RMSECV

is 0.43 for the global model using 5LVs.
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The results show a clear tendency towards classifying the
pectin by enzyme treatment. Unfortunately, the R-B
samples were difficult to distinguish from the B samples.
This was probably due to the block enzymes removing the
random methyl ester pattern in the second deesterification.
Specific signals were found in the NMR spectra which
corresponded to the deesterification by random enzyme.
For this reason, the prediction of R calibration models
showed markedly higher correlation and lower prediction
errors than for prediction of B. This result indicates that
the random enzyme caused specific signals due to the
spatially close proximity of the free- and esterified GalA
unit. On the contrary, the block enzyme seemed to leave no
specific marks in the 1H NMR spectrum, which confirms
the hypothesis that block esterase removes the ester groups
until it is stopped by hairy regions or outer influences. In
order to confirm these conclusions, a test set is necessary to
validate the developed calibration models.

A nearly complete assignment of the 1H NMR spectrum
of pectin solutions was carried out. Some very interesting
correlations were shown between the methoxy signal and
the H-2 and H-3 signals which were found to be due to the
NOE effects from the spatial structure.
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