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ABSTRACT 

A segmentation method specifically developed for low resolution images is presented. 
The method is inspired by principles from active contours and performs an iterative 
update of a parametric curve based on energy minimisation. The energy minimisation 
includes information from edge detection, curve smoothness, and correspondence 
with a score image from an a priori performed principal component analysis on a 
training set of images. Because of the score image, the segmentation is ensured to 
resemble the common structure of the segmentation item, but without the need of 
performing a parametric model of the expected shape. The method is successfully 
applied to the transverse images of loins from the Autofom ultrasound scanner for 
pork carcasses with the purpose of estimating the area. These image suffer from low 
resolution in one dimension (16×635 points in each image). A method for automatic 
detection of initial points are developed with mathematical morphology, and the 
active contour segmentation is proved superior to elliptic fit on the initial points in the 
relation to manual measured loin muscle area. 
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INTRODUCTION 

Detection of complicated structures in industrial biological images is becoming a 
major subject in many applications. The industrial biological applications often differ 
from the medical applications in the need for immediate feed back from the image 
applications and the required robustness of the algorithms since no user interactions is 
permitted. This often compromises the precision of the segmentation. Therefore 
cutting edge techniques from computer vision is extensively gaining use in the 
biological industry often with techniques modified from the field of medical imaging. 
An often applied example is the tissue characterisation in medical images as in e.g. 
Mouroutis et al.  (1998). 

One of the approaches that has dominated the research in medical imaging in the past 
years is the active contours or snakes. Active contours were introduced by Kass et al.  
(1988), as a method for dynamic changes of a segmentation curve based on 
information from local energy and deformations, and external forces. Many papers 
have addressed the issue of active contours since the initial proposal. Caselles et al.  
(1997) discussed split and merge problems, Sapiro and Tannenbaum (1993) discussed 
simplification of the initial proposal regarding curve smoothness control and Lai and 
Chin (1995) discussed the problems of shape irregularity in noisy images. Blake et al. 
(1993) proposed the inclusion of both local and global model features and Gunn and 
Nixon (1997) extended the segmentation to two contours; one to extract and one to 
contract, thereby improving the robustness of the contour and making the 
segmentation less sensitive to initialisation. Cohen (1991) introduced the concept of 
3D balloons, and worked further with finite element methods for active contour 
models in Cohen and Cohen (1993) and Geiger et al. (1995) propose the use of 
dynamic programming. 

Thus, much effort has been put into deriving and extending theoretical concepts of 
active contours. However, none of the approaches has addressed the problem of low 
resolution in one or more of the spatial dimensions of the image. Due to a specific 
ultrasonic application, this issue is highly relevant. Therefore, the scope of this paper 
is to meet the problem of low resolution in at least one of the spatial domains with the 
active contour principles. To solve this problem, a general constraint based on an a-
priori common structure in the images is introduced. The common structure is 
resolved from a principal component analysis (PCA) on a set of congruent training 
images. The concept of the PCA was first introduced by Pearson (1901), and was 
further introduced by Hotelling (1933). More recently, the technique has been used on 
images in e.g. Esbensen and Geladi (1989) and Geladi et al. (1989). In the latter the 
score image is used as a common structure in multivariate images obtained at different 
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wavelengths. In this paper, the same approach is used here to detect common 
structures in a set of training images appended from different objects. 

The problem of current interest concerns the Autofom, a three-dimensional automatic 
ultrasonic scanner for carcasses in pork abattoirs as reported in Brøndum et al.  
(1998). The system captures a 16×200×635 (width×length×depth) data sequence of 
the entire carcass, and the resolution in the different dimensions is therefore very 
different. The system is mainly designed for real time grading of the carcasses based 
on meat percentage. The resolution in the length and depth has therefore been chosen 
with the highest priority. However, additional quality output from the system is 
requested by many users. One of the qualitative parameters that draws special 
attention, is the area of the loin muscle. For the abattoirs, this feature can be used to 
produce a more consistent product. The concept of the proposed active contour is 
introduced and generalised for a wider use. Finally, it is applied on the Autofom 
images for fully automatic segmentation of the transversal muscle structure of the 
loin, where the very coarse resolution (16 transverse measurements) is the essence of 
the problem. 

 

METHODS 

The aim of the segmentation is to detect the structure of the loin muscle in the 
transverse images of the Autofom ultrasound scanner. A brief introduction to the 
Autofom is given, and this is followed by the automatic detection of the initial points 
for the active contour initialisation. Finally, follows the active contour developed for 
the low resolution ultrasound images.  

AUTOFOM ULTRASOUND IMAGES 

The Autofom consists of 16 pulse-echo transducers positioned in a U-shaped frame. 
The carcass is automatically pulled through the frame with the transducers, with the 
back facing the frame. The weight of the carcass and the humidity of the skin are 
sufficient to ensure a reasonable contact with the transducer to produce a reasonable 
image quality. A measurement for every 5'th mm is made which sum up to a total of 
approximately 200 scans with each transducer. 2 MHz ultrasound pulses are used, and 
the echoes from the tissue intersections are sampled with 5 MHz. A total depth of 120 
mm is measured in the media and with the estimated ultrasound velocities in fat and 
meat this gives a resolution of 0.15 mm. Hence the acquired three-dimensional image 
consists of 16×200×635 points. 
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Figure 1. Longitudinal ultrasound image. The minimum skin depth (MSD) is shown at the 
right vertical line. The two vertical lines show mark the region where the transverse image is 

obtained from. 

  
Figure 2. Transverse ultrasound images, left: with pixel replication, and right: with bipolar 

interpolation. 

Each of the transducers generates an image in the length dimension, known as a 
longitudinal image (see Figure 1). The longitudinal images are used for extracting 
some structural features regarding the anatomy of the animals.  Inspecting all 16 
transducers measured at the same longitudinal position show a cross section of the 
carcass. The cross sectional image dimension is perpendicular to the length direction 
of the animal and the images in this dimension are denoted transverse images. The 
transverse images have a major drawbacks due to the coarse resolution in one of the 
directions since each of the transverse images are of size 16×635 points (see Figure 
2a). The goal of the segmentation is to detect the loin muscle in the centre of the 
transverse image. It is important to note, that the orientation of the carcass differ for 
each measurement. Therefore, orientation detection is one of the primary steps in the 
current software of the Autofom system. Two main features are important: 1) the 
localisation of the minimum skin depth (MSD), and 2) the transducer where the 
midline (MID) of the carcass back is found. These two features are used as input to 
the segmentation procedure described in the following sections.  
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MORPHOLOGIC DETECTION OF INITIAL POINTS 

Often in active contour driven applications, the initial points for the segmentation 
process are user supplied. Due to the concept of the Autofom being for on-line use 
and fully automatic, this is not applicable in the current situation. An automatic 
detection of the initial points is therefore developed as first part of the segmentation 
process. 

The accuracy of morphologic operations is seldom the main reason for the use of 
these techniques. However, morphology is usually stable and do most often provide a 
solution to the segmentation problem. Therefore, morphology is used as basis for 
detection of the initial points in the segmentation procedure of the Autofom images.  

As mentioned, the MSD and MID features are used as input to the segmentation 
procedure. From these characteristic points, the expected centre of the loin muscle 
(CLM) in the transverse image can be calculated. From the CLM, the outer border of 
the muscle structure is traced. This step is made by a simple grey scale morphologic 
operation. The search is made in a star shape oriented from the CLM, at the distance d 
and in the direction with the angle α with the horizontal direction in the transverse 
image. 

Since the curvature of the loin muscle is round, a structure element, S, of varying size, 
depending on α, is used. At the horizontal direction of the transverse image (α=0), S 
is of size 3×7 and at the vertical direction (α=π/2), S is similarly of size 7×3. 
Generally, the size of S is given by equation 1. The intensity of S is constant and equal 
to 255. 
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Following the path from CLM at the angle α and using S from equation 1, the 
morphologic operator, Md,α, is given by equation 2, where Id,α denoted the image at 
the polar coordinates (d,α) relative to CLM and ⊗ denotes a morphologic dilation 
(Gonzales and Woods 1992). 

SIM dd ⊗= αα ,,  (2) 

Detection of the initial points in the direction α is done by finding the parameters d 
and α with the highest positive gradient of M along the path, i.e. the position with the 
largest increase of the morphologic operator.  

ELLIPSE FITTING 

A transverse cut of the loin is usually close to elliptic shape. The active contour is 
therefore compared to a segmentation with a least squares fit of an ellipse of the initial 
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points detected with the morphology. Let x and y denote two vectors with the initial 
points. The ellipse is then represented as given in equation 3, which is fitted with x 
and y in a least squares sense. 

FEyDxCxyByAx −=++++ 122  (3) 

Let ϕ denote the rotation of the angle of the ellipse relative to the vertical direction in 
the transverse image. ϕ can then be found as shown in equation 4. 
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The centre point of the ellipse (cx,cy) is found with the matrix multiplication given in 
equation 5. 
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Similarly, the radii of the ellipse, a and b, are found with equation 6. 
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Now, the ellipse can be represented by ϕ, cx, cy, a, and b. The features output from the 
ellipse fitting algorithm are the area, the perimeter, a, and b. 

ACTIVE CONTOUR 

The principle of active contours are founded on an energy minimisation along the 
contour of a parametric defined curve. Kass et al. (1988) originally introduced the 
energy function along the curve, C, given in equation 7.  
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where α, β, and λ are real and positive constants. The two first terms are related to the 
internal curve energy, and the third term relates to extracting the curve towards the 
image object. Among others, Caselles et al. (1997) discussed that the curve 
smoothness can be obtained even with β=0, and equation 8 can therefore be reduced 
to equation 6. 
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Hereby the active contour is simplified to an edge detector (from the second term) 
with conserved curve smoothness (from the first term). However, equation (8) lacks 
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the possibility of including an a priori knowledge of the shape of the object structure. 
This is especially relevant for the current application where the resolution in the width 
dimension is poor and the risk that the edge detection task fails is high. The a-priori 
structure is included by relating C to the primary score image from a principal 
component analysis (PCA) of a training set. The score image obtains low intensities in 
the areas with common intensities and high intensities in areas with high variation. 
The intensities of the score image are rescaled to the level -127 to 128, which is 
expected to minimise the error along the most common structure of the loin muscles 
in a set of images. Due to the different orientation in the images, it is important that 
the images are aligned by their CLM. Integration of the error contribution from the 
PCA score image along C is introduced in as the third term in Equation 9.  

∫ ∫∫ +∇−=
1

0

1

0

1

0

2 |))((||))((||)('|)( dqqCPCdqqCIdqqCCE ελα  (9) 

where ε is a positive constant, and PC is the score image from the PCA aligned 
spatially by the centre of the initial points. The third term minimises the risk that the 
active contour will not grow to an unrealistic size and shape. 

The implementation of the active contour is made by using a spline approximation of 
C using a set of vertices at a given resolution. The vertices of the initial curve C0 are 
found from the initial points. The curve smoothness is estimated by the squared 
gradient of C0 at a resolution of 0.001. The edge detection is estimated using a Canny 
operator (see e.g. Russ 1994) on the ultrasound image along C0. The succeeding 
curves, Ci, are updated iteratively by the steepest descent method. No other stopping 
criteria than a maximum number of iterations has been used for this application. At a 
later stage, where the processing time can be critical, a dynamic criteria depending on 
the minimised error should be implemented. 

 

RESULTS AND DISCUSSION 

Totally 100 images have been measured manually for the LMA detection. This is 
done with a comprehensive visual inspection using a grid plastic sheet. The 
measurements have been made by a trained meat quality inspector at a commercial 
abattoir in the US. Only the right side of the carcass is measured, and due to the 
orientation of the carcass in the scanner, there can for some of the loins be divergence 
between the sides measured with ultrasound and with the manual inspection. Due to 
the symmetry of the carcass, however, this is not a critical issue. No attempt of 
marking the longitudinal position of the manual inspection on the carcasses for the 
ultrasound data acquisition has been made. This introduces a consequential limit to 
the segmentation success.  
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Figure 1 shows a longitudinal Autofom image, which has been resized from the 
original size of 200×635 to 600×318 to improve the interpretation. The vertical lines 
in the image denote the region of 5 pixel columns where the MSD is found. The pixel 
rows in this region are averaged for all 16 longitudinal images, and the 3D data 
sequence is thereby reduced to a 16×635 transverse image. Figure 2a shows this 
image after a pixel replication to obtain an image of size 318×318, and the problem 
with the low resolution in the vertical direction is clearly visible. To meet the 
problems of the low vertical resolution, the images are instead resized to 318×318 
using bipolar interpolation as showed in Figure 2b. This is an approach to obtain 
subpixel accuracy, although no new information is obtained. The images display the 
mid-line of the carcass at approximately 2/3rd to the right of the image. Around the 
mid-line, two round black structures are slightly apparent. These are the structures of 
the loin, and the dark region area of the left of the mid-line is (in this example) the 
aim of the segmentation. 

Figure 3 shows the two examples of the transverse images. The top image is with a 
LMA of 5.75 inch2 and the bottom image is with a LMA of 9.80 inch2 measured with 
the manual method. The round dots denote the initial points found with the 
morphological detection. The detection of the initial points is generally reasonably 
accurate, but problems do occur at the weak intersection between the loin and the 
mid-line of the carcass. This is especially observed for the points to the right of the 
top image of Figure 3. In two occasions the detection of the initial points fail totally 
due to the morphology, and these images are removed from the succeeding 
segmentation trials.  

The results of the elliptic fitting to the initial 16 points are seen in Figure 3. As 
expected from the initial points estimation, the two images are easily separated by the 
area of the ellipse. The segmentation is performed on three neighbouring transverse 
images, and the ellipse area is averaged over the three results. Table 1 presents the 
correlation values between the manually measured LMA and the ellipse areas for both 
the averaged estimates and the single estimation. A correlation of 0.68 is obtained for 
one transverse image only. Averaging the areas calculated on three transverse images, 
the correlation with LMA seems to improve slightly  to r=0.70.  
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Figure 3. The ellipse fit segmentation of two images. The top image is from a carcass with 
LMA=5.90 inch2, and the bottom image is with a reference LMA=9.80 inch.2. The dots denote 

the positions of the initial points found by the morphological approach. The triangle marks 
CLM. 
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Table 1. Correlation coefficients (r) between visually measured LMA and the segmentation 
features (N=100). 

 Ellipse 

(16 points) 

Active contour 

(16 points) 

Active contour 

(24 points) 

Using CLM 0.68 0.71 0.72 

Averaging 3 around CLM 0.70 0.74 0.75 

 

The images are aligned based on the CLM point and the score image shown in Figure 
4 is calculated with a PCA based 50 of the transverse images. The score image clearly 
shows the common muscle structure as the dark region in the centre of the image, and 
the increasing variation towards the outer edges of the muscle.  

 
Figure 4. A score image obtained with a PCA of 50 transverse images aligned by CLM. 

 

The results of the active contour segmentation of the two example images are shown 
in Figure 5a and 5b. The results have been obtained with α, λ, and ε each set to 1/3 in 
order to weight the three factors in equation 9 equally. The curve has been estimated 
from 16 vertices and 10 iterations have been used. It is observed from especially 
Figure 5a that the active contour tends to overfit to the edges in the image. Therefore 
the curvature of the contour is prioritised higher in the energy minimisation, and α is 
set to 0.50, and λ and ε are set to 0.25. The results of the new segmentation for the 
same two images are shown in Figure 6, and a more realistic loin shape is 
characterised by the contours.  
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Figure 5. The active contour segmentation of two images with α=0.67, β=0.33, and γ=0.33. 
The top image is from a carcass with LMA=6, and the bottom image is with a reference 
LMA=9. The dots denote the positions of the initial points found by the morphological 

approach. 
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Figure 6. The active contour segmentation of two images with α=0.33, β=0.33, and γ=0.33. 
The top image is from a carcass with LMA=6, and the bottom image is with a reference 
LMA=9. The dots denote the positions of the initial points found by the morphological 

approach 
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Similar to the elliptic fit, the active contour segmentation has been performed on three 
neighbouring transverse images and the estimated LMA are averaged over the three 
results. The correlation between the area of the contour and the manually measured 
LMA is shown in Table 1 for both the middle contour and for the average of the 
neighbouring images. The correlation is seen to increase from r=0.71 to 0.74 by 
averaging three segmentation results. The same observation was made for the elliptic 
fit, and this indicates a potential improvement by measuring more locations although 
the improvement tends to be minimal.  

Using 24 vertices instead of 16 improves the results slightly from r=0.74 to 0.75 for 
the average of three transverse images (Table 1). The correlation plot of the manual 
LMA and the averaged contour area is shown in Figure 7.  
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Figure 7. Scatterplot of the measured LMA versus the area of the active contour based on 24 

points. 

The Autofom outputs 127 features mostly focused on the skin, fat and muscle depths 
of the longitudinal images (Brøndum et al. 1998). These features and the carcass 
weight are included along with the segmentation parameters in a multivariate Partial 
Least Squares Regression (PLSR; Martens an Næs 1992) on the manual LMA 
measures. The PLSR is validated with two approaches. Firstly, full cross (leave one 
out) validation is performed, and secondly, a separation between a training set and a 
test set each consisting of 49 samples are formed. Table 2 present the correlation 
coefficient (r), standard error of prediction (SEP), and number of principal 
components (PC) of the PLSR results for both validation methods.  
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Table 2. Correlation coefficients (r), standard error of prediction (SEP) and number principal 
components (PC) for PLS predictions of LMA validated with cross validation ("leave one 

out") and test set. 
 Cross validation 

(N=98) 
Test set validation 
(Ntrain=49, Ntest=49) 

 r SEP PC r SEP PC 
Autofom 0.71 0.92 2 0.61 0.88 1 
Autofom + carcass weight 0.75 0.85 2 0.67 0.81 1 
Autofom + active contour 0.75 0.86 1 0.75 0.74 1 
 

As observed from Table 2, the combination of the Autofom with the carcass weight or 
the active contour information improves the cross validated predictions slightly. The 
effect from the segmentation and the weight tends to be similar. Observing the test set 
validation, the picture changes slightly, though. The prediction performance of the 
Autofom and the active contour segmentation combined, are at the same level as for 
the cross validation. However, the Autofom alone and also combined with the weight 
information is less accurate than the active contour segmentation. This indicates, that 
the active contour segmentation is more stable and optimised with respect to the LMA 
than the longitudinal Autofom parameters.  

The automatic segmentation matches manual inspection of the images quite well as 
indicated by Figure 7. The current accuracy is limited by three factors: the resolution 
in the transverse ultrasound images, the correspondence between the location of the 
manual measurement and the Autofom measurement, and the accuracy of the manual 
grid measurement. Therefore, no more improvements can be expected with the current 
test set up. Further improvements are more likely to be expected by reducing these 
error sources.  

Regarding the future perspectives of the segmentation method, then the on-line 
implementation is realistic. The algorithm is currently executed in few seconds on a 
standard PC, but implementation on the workstation included in the Autofom system 
will expectedly execute the algorithm in considerably less than one second. Another 
potential use of the ideas is to use the active contour principle to segment the muscle 
structure in succeeding image slices of the Autofom image sequence. The muscle 
contour detected in one image is used as the initial curve in the following image, and 
the active contour principle is used to update the segmentation. The focal point of this 
paper has the two-dimensional segmentation , but the implementation of the approach 
in 3D is possible using e.g. Parafac/Tucker3 (Henrion 1994).  

 

 

 



DETECTION OF STRUCTURES IN LOW RESOLUTION BIOLOGICAL ULTRASOUND IMAGES 

 89

REFERENCES 

 
Blake, A., Curwen, R., and  Zisserman, A. (1993). Affine-Invariant Contour Tracking with 

Automatic Control of Spatiotemporal Scale. Proc.Int.Conf.Comp.Vision , 66-75.  
Brøndum, J., Egebo, M.,  Agerskov, C., and Busk, H. (1998). Carcass Grading with the 

Autofom Ultrasound System. J.Anim.Sci. 76, 1859:1868.  
Caselles, V., Kimmel, R., and Guillermo, S. (1997). Geodesic Active Contours. Int.J.of 

Computer Vision 22(1), 61-79.  
Cohen, L. D. (1991). Note: On active contour models and balloons. CVGIP: Image 

Understanding 53(2), 211-218.  
Cohen, L. D. and Cohen, I. (1993). Finite-element methods for active contour models and 

ballons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 15(11), 1131-1147.  

Esbensen, K. H. and Geladi, P. (1989). Strategy of multivariate image analysis (MIA). 
Chemometrics and Intelligent Laboratory Systems , 67-86.  

Geiger, D., Gupta, A., Costa, L. A., and Vlontzos, J. (1995). Dynamic programming for 
detecting and matching deformable contours. IEEE Transactions on Pattern Analysis and 
Machine Intelligence 17(3), 294-302.  

Geladi, P., Isaksson, H., Lindqvist, L., Wold, S., and Esbensen, K. H. (1989). Principal 
component analysis of multivariate images. Chemometrics and Intelligent Laboratory 
Systems 5, 209-220.  

Gonzalez, R.C. and Woods, R.E. (1992). Digital image processing, Addison-Wesley, US. 
Gunn, S. R. and Nixon, M. S. (1997). A robust snake implementation; A dual active contour. 

IEEE Transactions on Pattern Analysis and Machine Intelligence 19(1), 63-68.  
Henrion, R. (1994).  N-way principal component analysis. Theory, algorithms and 

applications, Chemometrics and Intelligent Laboratory Systems 25, 1-23. 
Hotelling, H. (1933). Analysis of complex statistical variables into principal components. 

J.Educ.Psychol. 24, 417,498-441,520.  
Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active Contour Models. Int.J.of 

Computer Vision 1, 321-331.  
Lai, K. L. and Chin, R. T. (1995). Deformable Contours: Modeling and Extraction. IEEE 

Transactions on Pattern Analysis and Machine Intelligence 17(11), 1084-1090.  
Martens, H. and Naes, T. (1993). Multivariate Calibration. 2ed. Wiley, New York 
Mouroutis, T., Roberts, S. J., and Bharath, A. A. (1998). Robust cell nuclei segmentation 

using statistical modelling. Bioimaging 6, 79-91.  
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Phil.Mag. 

2, 559-572.  
Russ, J. C. (1994). The Image Processing Handbook.  CRC Press.  
Sapiro, G. and Tannenbaum, A. (1993). Affine Invariant Scale-Space. Int.J.of Computer 

Vision 11(1), 25-44.  



DETECTION OF STRUCTURES IN LOW RESOLUTION BIOLOGICAL ULTRASOUND IMAGES 

 90 

 


