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ABSTRACT 

The design and functionality of an imaging spectrograph creating spectra and images 
for food quality measurements is outlined. The system is constructed using a very 
sensitive CCD array, a rotating grating holder, and a UV objective. Using binning of 
the CCD array, up to 330 local spectra in the UV/VIS/NIR range can be collected 
from an area of up to 22×70mm with the UV objective available. The performance of 
the imaging spectrograph was compared to a laboratory spectrofluorometer in 
predicting ash and colour in wheat flour mill streams. The imaging spectrograph was 
tested in experiment following post-mortem changes in fish meat. Based on binning 
data an algorithm for spectral homogeneity was created and compare with image 
analysis from the same imaging spectrograph in studying fish and meat homogeneity. 
It was concluded that the imaging spectrograph was able to give combined access to 
both spectral and structural data in seconds making it an interesting sensor for 
further development of food quality applications. 
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INTRODUCTION 

On-line measurement of food attributes is increasingly important in food processing 
due to the demand for defined product quality and process control due to regulations 
and competition. Thus the development of fast non-destructive “on-line”, “at-line” 
screening analyses have become important in the food processing industry. 
Development of sensors for process and quality control has been identified, as a 
critical area in food engineering research needs (Jenks et al.  1996; Caro, 1991) (Hui, 
1996; Dziezak, 1986; Giese, 1993). The major obstacles for the implementation of on-
line measuring methods have been the complex and variable nature of food and the 
lack of availability of adequate monitoring and sensing methods.  

Sampling methodologies in space and time are critical with respect to qualitative and 
quantitative assessment of inhomogeneous food products. Sampling schemes 
involving grinding, mixing, homogenisation and extraction in order to obtain a more 
selective analytical response suffer inherently from the drawbacks that these methods 
are destructive and not readily applicable in a high-throughput industrial production 
area.  

Ongoing developments in the fields of computer vision of foods (Gunasekaran, 1996), 
on-line spectroscopy (Swatland, 1995), and multivariate data analysis in industrial 
applications (Munck et al.  1998), may be integrated to a system that facilitate the 
development of on-line food assessment systems. An ideal on-line quality-measuring 
device e.g. based on spectroscopy will be able to measure non destructively a great 
number of unselective data points from which relevant quality parameters can be 
extracted by chemometric software through calibration to classical destructive 
analyses. 

In traditional imaging monochrome images are acquired of the object. In studies 
where a more extensive wavelength information is required, a colour vision system 
with a RGB CCD array is most often used. In more advanced studies, where the three 
colour ranges do not meet the requirements, a filter approach is often used. One 
commercial example of this is the Dipix fluorescence microscope for flour analyses 
(Dipix Technologies, Inc., Ottawa, Ontario, Canada), where a monochrome camera is 
combined with a set of filters for controlling both the illumination and the acquisition 
wavelength inspired by the initial work by (Jensen et al.  1982). The drawbacks of the 
multichannel techniques are clearly that the technique is either slow (the filter 
approach) and/or with a low and non flexible spectral resolution (the colour CCD).  
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Spectroscopy introduces the possibility of measuring with a very high spectral 
resolution. Typically every nanometer is measured in commercial laboratory 
spectrometers. Examples are the Perkin Elmer LS-50 spectrofluorometer 
(Buckinghamshire, UK) which are widely used in laboratory systems, and the NIR 
Probe FQM (Danish Meat research Inst., Roskilde, Denmark). All these techniques do 
however, suffer from the problems with measuring a representative area of the object. 
An obvious example is the PE LS-50, which measure a surface of 1×9 mm of the 
sample. Obviously this affects the measurement representation when measuring non-
homogenous food products as e.g. meat with laboratory equipment. 

In order to meet the requirements of a representative on-line assessment of food 
quality characteristics this study combine traditional imaging and spectroscopic 
techniques by introducing a novel technique - the CCD imaging spectrograph. 
Thereby both spatial and spectral information is obtained on reasonable large sample 
areas in order to obtain representation of inhomogeneous food products.  

The technique is demonstrated with experiments involving combined time-resolved 
image analysis, reflectance and fluorescence spectroscopy and evaluated by 
multivariate data analysis in theoretical test situations and in food quality inspection 
of flour refinement, post mortem fish meat changes and pork meat homogeneity. 

 

MATERIAL AND METHODS 

PRESENTATION OF THE IMAGING CCD SPECTROGRAPH SYSTEM 

The ST-138 system from Princeton Instruments Inc. (Trenton, NJ) is in combination 
with the Spectra Pro-150 spectrograph from Acton Research Corporation (Acton, 
MA) a flexible multi-use imaging and spectroscopic instrument. The system is based 
on a software controlled charge coupled device (CCD), which samples spectral 
information from a UV objective through grating diffraction light dispersion or 
alternatively images through a mirror (see Figure 1).  

The CCD based spectrograph system consists of a set of modules, of which the CCD 
camera, the movable turret containing gratings and/or mirror, the slit width 
adjustment, the UV objective and the personal computer (PC) are the most important. 
The combination of these modules gives the possibility of measuring ultra violet (UV) 
visual (VIS) and near infrared (NIR) spectra of large sample areas. It is possible to 
combine pixel arrays through binning to divide the region of inspection into several 
spatial regions by software control of the CCD array. Thereby the data acquisition 
combines local and global imaging and spectral information from the surface under 
inspection. 
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Figure 1. Schematic overview of the imaging spectrograph system. The measured spectra are 
projected from the objective to the CCD array via the grating. By rotating the grating holder, 

the mirror can be used instead, and the CCD can be used as a traditional camera system. 

200 500 1100 1400800

Wavelength (nm)

Transmission (%)

 
Figure 2. Wavelength characteristics for the four gratings. 
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Figure 3. Five colours measured spectroscopic. Five colours (violet, blue, green, yellow, red) 
are measured with the CCD array. Using binning, 10 spectra are collected from the colour 
plot (two from each colour). The reflectance spectra from bin 1 and bin 10 are shown to the 

right. To the left a mesh plot of the entire 10 spectra are shown. 
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The main modules of the spectrometer are illustrated in Figure 1. The remote sensing 
system is capable of measuring objects at a distance of approximately 1 meter with 
the Nikon 105mm UV objective giving a maximum measurement area of 22×70mm. 
The incoming light is either reflected to the CCD array using the mirror if images are 
acquired or to diffraction by the grating onto the CCD array if spectra are acquired. 
By rotating the turret between the mirror and the grating position enable acquisition of 
both images and spectra from the surface. Alternatively, for faster image acquisition 
in practical measurements the zero order refraction of the grating can be used. 
Thereby the time consuming turret rotation between the mirror and the grating is 
saved, but on the cost of a slightly poorer image quality at the border of the image. 

Four gratings are available and can be combined (two can be contained in the turret). 
This enables spectroscopic measurements in the spectral range from 200-1100 nm as 
illustrated in the wavelength characteristics of the gratings shown in Figure 2. Our 
CCD array is liquid nitrogen cooled in order to obtain maximum sensitivity (the dark 
current charge is less than 0.4 electrons/hour). UV coating of the CCD array ensures 
that the UV sensitivity of the gratings is utilised by the spectrometer. The CCD array 
is back illuminated and a quantum efficiency of about 80 % ensures a minimal signal 
loss due to absorption.  

The size of the rectangular CCD array is 1100×330 pixels (Figure 3). This is chosen 
as opposed to a quadratic array in order to accommodate large range spectra with a 
high resolution. The horizontal (1100) dimension is used for the spectral dimension 
and the vertical dimension is used for the spatial resolution. For each of the 330 
spatial lines a spectrum of 1100 wavelength measurements can be read. By combining 
the horizontal rows of the CCD array into spatial regions with binning, a lower 
number of spectra are acquired. Binning has the advantage of reducing the integration 
time and enabling the acquisition of signals with low intensity. As an example, 
binning the CCD array into 10 regions of 33 pixel rows each, 10 local spectra with 
1100 spectral points are achieved in one instant acquisition. 

IMAGE ANALYSIS 

The images acquired from the CCD imaging spectrograph in the traditional camera 
mode are processed with digital image analysis. The purpose of the image analysis is 
to extract information from the object by extraction of image features. Image features 
are often separated into two main groups: structural and textural. Where the former 
group of features describe the shape of the object, the latter describe the pattern of the 
surface of the object. In this work, all attention is focused on textural features due to 
the nature of the food products being analysed in this study. Four groups of features 
are used: 1) statistical features, 2) co-occurrence matrix features and 3) angular 
moment transformation features. 
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Statistical features. The statistical features describe the surface texture of the object 
by inspecting the intensity mean, variation, root mean square, population skewness, 
and population kurtosis. A second statistical feature description is performed on the 
images after a fractal transformation is applied. The fractal transformation estimates 
the fractal dimension in a region in the image surrounding each pixel. The fractal 
dimension is estimated using the Hurst coefficient (Russ, 1994) and (Mandelbrot et 
al.  1984). The fractal transformation results in a new image with the textural regions 
highlighted. The statistical features described above are extracted on the transformed 
image. Hence, up to totally 10 statistical features are used. 

Co-occurrence matrix features. The intensity moment features are based upon 
calculation of the co-occurency matrix (COM). The COM displays the intensity 
difference between the neighbouring pixels. Thus, a COM with near-zero members 
reveal a low textured region, whereas high values in the matrix can be interpreted as 
the region being highly textured. Nine features are output from the COM: the 
variance, the 3rd, 5th, 6th and 7th moment, the maximum index, the entropy, and the 
sum of squares. (Conradsen, 1989) and (Haralick et al.  1973).  

Angle moment transformation. The angular moment transformation was originally 
proposed for geological studies by (Andrle, 1994) and later adapted to multivariate 
image analysis by (Esbensen et al.  1996). The signal is transformed from the image 
domain to a scale domain given by the Euclidean distance between the intensities of 
neighbouring pixels. The intensity in the scale domain is given by the angle between 
the two intensity vectors intersecting two neighbouring points at a specific distance. 
The calculated angle is averaged over numerous pixels (we have used 300) and output 
as a function of the scale. We have used a scale varying from 1 to 100 resulting in 100 
features. Extraction of all image features has been performed in software developed in 
the Khoros 2.2 software (Khoral Res.Corporation, NM). 
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MULTIVARIATE DATA ANALYSIS  

The spectroscopic methods generate large data amounts.  Instead of selecting a single 
representative wavelength from the spectra it is advantageous to use all the 
information present in the full spectrum. This leads to the use of multivariate data 
analysis as represented by the field of chemometrics in food quality inspection. The 
two primary chemometric tools are the principal component analysis (PCA) mainly 
for interpretative purpose, and partial least squares regression (PLS) for data 
regression studies. PCA is a method for decomposing a set of multivariate 
measurements into a smaller number of variables with a minimal loss of information. 
The decomposition results in a score matrix and a loading matrix, where the score 
values describe the samples in the new dimensions, and the loadings describe the 
common structure in the original samples. For more information about PCA, see 
sources like (Martens et al.  1993), (Wold et al.  1987), (Esbensen et al.  1994). PLS 
is in chemometrics often used to correlate fast acquired spectroscopic data with slow 
or expensive chemical or sensory data. The method work similar to PCA by 
decomposing the original samples into a new set of scores and latent variables 
(similar to the loadings for the PCA). The decomposed data are then used for 
regression between the score values for the chemical/reference variable. PLS is more 
extensively described in (Martens et al.  1993), and (Esbensen et al.  1994), (Bro, 
1995). Multivariate analysis was carried out with program suites: Unscrambler 7.0 
(CAMO A/S, Trondheim, Norway) and MATLAB 5.2 (The Mathworks Inc., MA).  
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HOMOGENEITY INDEX 

To combine the imaging and the spectroscopic functionality of the spectrograph, an 
index of homogeneity with the purpose of describing the surface structure is 
developed. The homogeneity index (HI) can be obtained from the acquired data due to 
the binning technique of the CCD array, which enable spectra from local domains of 
the image to be studied. With HI calculated from the local spectra, the imaging 
spectroscopic system could be used to evaluate the homogeneity of the sample based 
on information from large spectral regions. In traditional spectroscopy, a mean 
spectrum is obtained from the sample, with no spatial and homogeneity information. 
In multichannel imaging, optical filters are used to obtain more and less 
monochromatic images at defined wavelength channels from the sample. By acquiring 
an image at each wavelength of interest, a high spatial resolution is gained. This is, 
however, on the cost of a much lower spectral resolution due to the usually wide 
transmission range of the optical filters. Furthermore, if a large number of spectral 
points are of interest, the data amount and the acquisition time are increased 
significantly by the rising number of exposures. Hence, studying homogeneity by 
binning the CCD array is a new approach to combine high spectral and spatial 
resolution with a very fast data acquisition. 

HI is calculated from the variation of the spectral points over the spatial position. The 
data is interpreted as a one-dimensional image with a spectrum in each bin. The 
spectral information is transformed into a single statistic measure for each bin. The HI 
is then calculated by performing traditional image analysis on the one-dimensional 
image containing the statistic information about the spectra in each bin.  

Notation. Let M denote the number of bins (spectral regions) and N denote the 
number of spectral points for each bin. m and n are the corresponding indices for 
these two variables. Let xm,n denote the pixel intensity for the m’th and the n’th index. 
P(xm,n) denote the normalised probability of the intensity of xm,n. 

The first step in the algorithm of the HI is calculation of the pixel-wise information 
from the spectral information. Two approaches to this are tested 1) the variance and 2) 
the entropy, as described in equation 1 and 2. 
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For calculating the entropy, the probability function P is estimated with a histogram 
function with 25 bins for each spectrum individually. 
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From equation 1 and 2, the HI can now be calculated using one of two approaches 1) 
mean value and 2) median value. For equation 1, this leads to equation 3 and 4, and 
similar equations can be developed for equation 2. 

HI
M

varmean m
m

M

=
=
∑1

1
   (3) 

HI medianmedian = ( var )    (4) 

where var describes a vector with all M variances. 

EXPERIMENTAL DESIGN 

System Pretests. To demonstrate the functionality of the spectroscopic system a set of 
pretests are conducted. The first pretest is designed for mapping the slit width to the 
resulting size of the vertical field of view at a given distance (see Table 1 and Figure 
4). The objective is focused on a squared paper at distances of 85cm and 100cm. The 
slit width is adjusted from the minimal size (0.0mm) to the maximum (3.0mm) and 
the horizontal field of view is measured.  

The second pretest deals with the effect on the spectra by adjusting the slit width. The 
reflectance spectra of an Oriel Hg (A) lamp (Oriel, Stratford, CT, USA) with 
extensive peaks at specific wavelengths are measured with three different slit widths 
of 0.1mm, 0.5 mm and 2.0mm (see Table 1 and Figure 5). 

The third test deals with binning the CCD array. Reflectance spectra of simple colour 
plot containing 5 colours are measured (Figure 3). The number of bins is adjusted 
from 20 to 82, whereby the number of spectra representing each of the five colours is 
reduced from 16 to 4. PCA is performed on the spectra and the grouping of the five 
colour regions are observed (see Table 1 and Figure 6). During all pretests, the CCD 
sensor is kept at -70°C. 
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Figure 4. The slit width versus the horizontal field of view. The top figure shows the focal 
distance 1000mm where a maximum field of view of 22mm. The bottom figure shows the focal 

distance 850mm where a maximum field of view of 22mm. 
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Figure 5. The reflectance spectra of a Hg calibration lamp. a) With a slit width of 
0.1mm. b) With a slit width of 0.5mm. c) With a slit width of 1.0mm. 
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Table 1. Acquisition parameters for the spectral measurements on the imaging spectrograph. 
 Spectroscopic 

Mode 
Integration 
Time 

No. Bins Field of View 
(Measured area) 

Illumination* 

Pretest 1 
(Field of view) 

Reflectance 500ms 1 0×70mm to  
22×70mm 

Visual range 
 

Pretest 2 
(Spectral 
Resolution) 

Reflectance 500ms 1 2×70mm, 
6×70mm, 
11×70mm 

Visual range 

Pretest 3 
(Binning) 

Reflectance 500ms 20, 82 10×70mm Visual range 
 

Application 1 
(Flour) 

Fluorescence 1000ms 6 10×70mm Ex.:280,340, 
380,460,480nm 

Reflectance 500ms  6 10×70mm Visual range 
Fluorescence 1 1000ms 6 10×70mm Ex.: 290nm 

Application 2 
(Fish) 

Fluorescence 2 1000ms 6 10×70mm Ex.: 380nm 
Application 3 
(Porcine meat) 

Reflectance 500ms 10, 41, 110 20×70mm UV range 

* All reflectance measurements are made with a Light Board including both a UV range (200-400nm) 
and a Visual range (400-700nm). All fluorescence measurements are made with an Uhl 
monochromator. 

 

Application 1: Comparative Instrument Test - Spectroscopic Measurements of Wheat 
Flour Refinement. This experiment is done in order to compare the performance of the 
imaging spectrograph with a laboratory spectrofluorometer and a scanning low 
magnification florescence imaging microscope. Fluorescence measurements are made 
on 36 wheat flours streams collected in a Danish wheat mill. For comparison, the 
samples were also measured with the Perkin Elmer LS-50 spectrofluorometer and the 
Dipix I440 fluorescence microscope (Maztech MicroVision Ltd., Ottawa, Ontario, 
Canada). Using a monochromator the excitation wavelengths: 280nm, 340nm, 380nm, 
460nm and 480nm are used and the total emission spectra are acquired (see Table 1). 
Furthermore reference information of the flour refinement is made with colour 
measurements with an Agtron M-45 and laboratory ash, fibre and starch 
measurements. Attempts to predict the reference information are made from the 
spectra made with all spectroscopic systems. All measurements are carried out at 
ambient temperature and with the CCD sensor cooled to -70°C. 
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Application 2: Imaging Spectroscopy Detection of Fish Ageing. Fresh (48 hours) iced 
salmon (class A, 5-10 kg) is filleted and minced and frozen in liquid nitrogen and kept 
in a freezer until gentle thawing in a refrigerator, immediately preceding the 
experiments. Rainbow trouts  (5 kg) are caught 90 minutes before the start of the 
experiments. The samples were measured over a period of 8 hours at intervals of 30 
minutes. Both visual images and reflectance (using a light board for illumination), and 
fluorescence spectra with excitation of 290nm and 380nm (using an Uhl 
monochromator for illumination) were measured (see Table 1). All measurements are 
carried out at ambient room temperature and with the CCD sensor cooled to -70°C. 

Application 3: Homogeneity Study of Pork Meat Related to Marbling. Six samples 
from five porcine muscles: longissimus dorsi (ld1 and ld2), lumber vertebra (lv), 
semitendinosous (st), semimembranosous (sm), and belly (be), are purchased 
approximately 24 hours post mortem and have not been frozen. The samples are 
graded from ‘practically devoid’ to heavily marbled’ according to the NPPC marbling 
standards (NPPC, 1991) by a trained meat inspector. Reflectance spectra from the 
samples are measured with UV light (max peak at 366 nm) from a light board. The 
spectra are collected with three different numbers of bins: 10, 42 and 110 (see Table 
1). HI is calculated with all four combinations of entropy and sd, and mean and 
median. The four HI’s for each of three bin options are compared to the entropy and 
the miximum index of the co-occurrence image texture features. All measurements at 
ambient room temperature and with the CCD sensor cooled to -70°C. 

 

RESULTS AND DISCUSSION 

SYSTEM PRETESTS 

The objective of the first pretest is to define the effect of the slit width on the size of 
the inspected region. Figure 4 shows the measured horizontal field of view when 
adjusting the slit width from 0.0mm to 3.0mm. The field of view (FOV) is measured 
for two different lens to object, 1000mm and 850mm. A nearly linear relation 
between FOV and the slit width is observed, and maxima of 22mm and to 20mm at 
3.0mm slit width are observed respectively for the two distances. Larger fields of 
view can be measured by the imaging spectrograph if a suitable UV-objective is 
available.  
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The second pretest demonstrates the effect of the slit width on the spectral resolution. 
Reflectance spectra of an Oriel Hg calibration lamp are recorded as the slit width is 
adjusted. The spectra of the three slit widths (0.1mm, 0.5mm and 2.0mm) are shown 
in Figure 4. It is observed that increasing the slit width results in decreasing spectral 
resolution but gives a higher intensity level. The increasing signal intensity follows 
from the larger area measured. The less well defined peaks are due to the grating 
diffraction. It is our experience that the spectra measured at even the highest slit width 
give the largest field of inspection is highly reproducible and may be used to extract 
empirically validated spectral information from the samples by multivariate data 
analysis. 

The effect of binning is demonstrated and better understood with the third pretest. The 
colour plot measured containing the 5 colours red, green, yellow, violet, blue 
illustrated in Figure 3 is measured with a varying number of bins. The spectra shown 
in Figure 3 are acquired with 10 bins and the mesh plot in Figure 3 contain two 
measurements from each colour. By increasing the number of bins from 10 to 20 and 
82 we, also increase the number of spectra representing each of the five colours to 4 
and 16. Two interesting observations are made from the spectra (data not shown). 
Firstly, the intensity level decreases as the number of bins is increased because the 
integration area is decreased. Secondly, the noise level is raised when the number of 
bins is increased. Figure 6 shows the scatterplot from PCA’s of the spectra from the 
two experiments with 20 (Figure 6a) and 82 bins (Figure 6a) respectively. In both 
score plots the spectra tend to fall into 5 classes, one for each colour. As observed, 
some of the spectra are observed in-between two classes as e.g. number 9 in Figure 6a 
and number 34 in Figure 6b. This effect is caused by the fact that the binned regions 
at the intersection between two colours actually will contain both colours. 
Furthermore, small errors may be due the fact that the printed colours on the paper is 
slightly overlapping due to a printer of limited quality and because the plot may not 
be totally aligned with the slit opening. 
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Figure 6. PCA scoreplot for the reflectance spectra measured on a colour plot with five 
colours. Top: Using 20 bins. Below: Using 82 bins. In both plots, the five groups of points are 
ordered from low left corner to the top right corner as follows: Red, Yellow, Green, Violet , 

Blue. 
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Apart from full area spectroscopy and spatial binning to study local areas in the field 
of view, it is also possible to use the system for standard imaging. By using full slit 
opening and reflection (as opposed to diffraction) from the grating an image of 
approximately 60×60mm at a distance of 1m from the objective is acquired. The 
standard imaging mode is further explained in the food applications.  

The results of the pretests are used to design an optimal setup in food measurements. 
Optimising the slit width is a compromise between signal intensity level and sample 
representation versus spectral resolution. Due to the cooling system in the CCD array, 
the integration time can be increased to compensate for low intensity levels. The 
signal intensity is therefore not essential when choosing the slit width unless a very 
fast data acquisition is necessary. Most often the most significant question is whether 
to optimise for measurement area or for spectral resolution. When working with food 
products, it is often most advantageous to acquire signals with a wide slit opening 
ensuring a large area of inspection due to the inhomogeneity of the media.  

APPLICATION 1: FLUORESCENCE MEASUREMENTS OF WHEAT FLOUR REFINEMENT 

The imaging spectrograph is applied to the flour refinement application to 
demonstrate the remote sensing efficiency in spectroscopic measurements and 
compare it to a laboratory spectrofluorometer and a scanning fluorescence 
microscope. The botanical components (pericarp, aleurone and aleurone) can be 
measured with autofluorescence as described by (Jensen et al.  1982) and (Munck, 
1989). The different excitation wavelengths produce emisson spectra revealing the 
botanical components endosperm (at 280 nm), aleurone (at 340, 380 nm), and 
aleurone (at 460, 480 nm). The chemical analyses starch, ash and fibre are indicative 
for endosperm, aleurone, and pericarp respectively. The pericarp (fibre) component is 
highly coloured. 43 very different wheat milling stream samples from a diagram of an 
industrial wheat mill are measured. The range of the reference characteristics were as 
follows: ash (0.34 - 1.86%), colour (42 - 79 units), crude fibre (1.82 - 15.89%, starch 
(61.7 - 80.3%) and gluten (0 - 36.6%). 

The spectral acquisitions made on the CCD imaging spectrograph are compared to 
measurements made on the Perkin Elmer LS-50 and the Dipix. The data are used in a 
PLS calibration validated with full cross (leave one out) validation to flour colour, 
ash, fibre and starch. Results of the PLS predictions made of the reference are given 
in Table 2.  
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Table 2. Standard error of prediction (SEP) and correlation (r) of the colour, ash, fibre and 
starch values of the wheat flours with the spectroscopic systems. 

 Colour Ash Fibre Starch 
Instrument   r    SEP    r    SEP    r    SEP    r    SEP  
Imaging 

Spectrograph 
0.96 2.43 0.92 0.203 0.78 0.38 0.87 3.18 

DIPIX 0.94 3.10 0.92 0.200 0.89 1.04 0.80 3.08 
PE LS-50 0.96 2.51 0.92 0.206 0.85 1.16 0.84 2.80 

 

It can be concluded from the results in Table 2 that all the fluorescence methods were 
equal in their ability to predict the most important analyses of ash (r=0.91-92) and 
colour (r=0.94-96), while correlations to fibre (r=0.78-0.89) and starch (r=0.80-0.87) 
were lower. It should be reminded that non-homogeneities and the representativity of 
sampling is highly variable between these instruments given the measurement area of 
1 x 9 mm for the spectrofluorimeter, 22×70 mm for the imaging spectrofluorimeter 
and 50 x 100 mm for the fluorescence DIPIX microscopes. Usable excitation and 
emission wavelengths also varied among the instruments. There were no significant 
correlation to gluten. 

APPLICATION 2: IMAGING SPECTROSCOPY DETECTION OF FISH AGEING 

Fish ageing. The efficiency of the Princeton Instrument for analysing inhomogeneous 
media is demonstrated on a fish ageing study on salmon mince and trout muscle and 
skin. During a period of 8 hours fluorescence, reflectance and imaging data were 
acquired in intervals of 30 minutes to follow spectrally the muscle development 
during ageing. Figure 7 shows the spectroscopic data for the minced salmon and 
Figure 7 shows the images from the three sample types. 
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Figure 7. Six spectra of the minced Salmon. Top: Reflectance. Middle: Fluorescence with 
excitation 410nm. Bottom: Fluorescence with excitation 410nm. 

 

 

 
Figure 8. Images of a) Minced Salmon, b) Trout skin, and c) Trout fillet. 
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To investigate whether the spectra obtained from the imaging spectrograph show 
changes which are related to the time post-mortem of a minced salmon sample, a 
principal component analysis was carried out on the fluorescence spectra. A scoreplot 
for fluorescence spectra from trout fillet is displayed in Figure 9 showing a 
characteristic horseshoe pattern starting with the 30 min. old sample to the right and 
ending with the 510 min. old sample to the left. There is a drastic jump from 120 to 
150 min., which coincides with rigor. In the onstart, chemical processes such as the 
decay of the fluorescent co-enzyme NADH dominate (this was studied in a separate 
student project, but not reported here), while at the end of the eight-hour storage at 
room temperature bacteriological effects should overlayer those of autolysis. 
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Figure 9. PCA scoreplot of the fluorescence spectra from trout meat monitoring experiment. 

Figures are storage time at room temperature in minutes. 
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Using the time development post-mortem as a reference parameter, the spectroscopic 
data was calibrated to predict the time development as shown in Table 3. These 
results indicate that a fast CCD-camera is capable of recording early post-mortem 
changes in fish. These changes in the muscle food during the measurement periods 
might relate to the rapid biological processes caused by the oxygen deprivation of the 
muscle tissue post-mortem and changes in fluorescent compounds of physiological 
importance, such as nicotine adenine dinucleotide hydride (NADH) (Jenks et al.  
1996). Spectral changes are also likely to occur due to changes in the reflectance 
scattering because of the muscle contraction. An accurate prediction of the post-
mortem time of a muscle food material will be useful in an industrial environment, if 
a generally valid calibration model could be established for many individuals from the 
same meat animal species. However, as in all exploratory work involving “reversed 
engineering”, an enormous amount of work remains in verifying and calibrating the 
underlying reactions and in making the analysis generally applicable by a data bank of 
artificial intelligence. The idea of research given by this experiment could, however, 
be economically implemented by joining existing research and complementing with 
the spectrofluorometric and chemometric options, if spectrofluorimeters with greater 
measurement area could be constructed. Our further research efforts are directed 
towards remote spectral screening techniques for predicting muscle material freshness 
calibrated to changes in chemical composition and microbial and sensory quality. 

The homogeneity of the minced meat is investigated with the HI. The HI is calculated 
from the 6 different reflectance spectra using entropy and variance, and mean and 
median. The correlation between the two co-occurrence texture image features was 
highest for the HI combining variance and mean with correlation of 0.74 and 0.71 to 
the image features. The success of the HI suffers largely from the low number of bins 
in this trial. The feasability of the HI is further discussed in the next section. 

 

Table 3. Prediction errors (in minutes) and correlation coefficients r based on the spectral 
and the imaging data over a period of 0-8 hours post-mortem. N/A denotes not applicable. 

 Image Features Reflection 
spectroscopy 
(visual range) 

Fluorescence 
spectroscopy 
(ex. 290nm) 

Fluorescence 
spectroscopy 
(ex. 380nm) 

 SEP r SEP r SEP r SEP r 
Minced Salmon 92 0.80 36 0.96 71 0.81 53 0.92 
Trout Fillet 76 0.86 28 0.97 60 0.93 35 0.95 
Trout Skin 92 0.80 51 0.94 N/A N/A N/A N/A 
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APPLICATION 3: HOMOGENEITY STUDY OF PORK MEAT RELATED TO MARBLING 

The 6 porcine samples are shown in Figure 10 ordered by the degree of marbling. The 
marbling occurs due to the intramuscular fat, which is known to be highly reflecting 
in UV light (Jensen et al. 1989). The samples are therefore measured with UV 
reflectance (see Table 1) with a varying number of bins. For comparison with 
traditional imaging techniques, the samples are also measured under visual 
illumination with normal imaging mode. The spectroscopic and image measurements 
are compared to a visual classification of the degree of marbling and a sorting of the 
samples due to the homogeneity performed by a trained meat inspector. 

 
Figure 9. Images of the six pork samples ordered by homogeneity. a) ld1, b) ld2, c) lv, d) st, e) 

sm, and f) be. 

 

The homogeneity indices are calculated for the three different numbers of bins 10, 41, 
and 110, using both variance and entropy, and mean and median as explained in the 
theoretical section. This results in a total of 12 HI values.  

The visual scores following the NPPC standards, correlate with r=0.98 with the order 
index, as shown in Table 4. The correlation between the visual scores and the 12 HI 
values are calculated. The highest correlation values between the visual scores and the 
HI were r=0.80, r=0.92, and r=0.94 for 10, 42, and 110 bins respectively. The results 
are shown in Table 4, which is a cross correlation table presenting the correlation 
between the homogeneity order, the visual score, the HI10, HI42, HI110, (HI10 indicates 
the HI calculated for 10 bins, etc.) and the image texture features COM1, and COM2. 
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As noted in the footer of the table, the optimal HI for the three numbers of bins were 
not obtained with the same statistic measures. Where HI10 and HI110 were optimal by 
combining the variance and the mean, the combination of the entropy and the mean 
was optimal for the HI42. This indicates that the optimal HI may not be deducted, and 
more improvement may be expected.  

 

Table 4. Cross correlation table between the homogeneity order, the visual marbling score, 
the three Homogeneity Indices, and the two Co-occurrence Matrix texture features. Each cell 

in the table shows the correlation between the features given in the row and the column 
headers. 

 Order Visual HI10* HI42** HI110*** COM1¤ COM2¤¤ 
Order 1.00 0.98 0.77 0.93 0.90 0.78 0.93 
Visual  1.00 0.82 0.92 0.94 0.87 0.87 
HI10*   1.00 0.85 0.95 0.65 0.65 
HI42**    1.00 0.92 0.78 0.80 
HI110***     1.00 0.79 0.74 
COM1¤      1.00 0.85 
COM2¤¤       1.00 
* HI10 is calculated with 10 bins, using variance and mean. 
** HI42 is calculated with 42 bins, using entropy and mean. 
*** HI110 is calculated with 110 bins, using variance and mean. 
¤ COM1 is the maximum index of the co-occurrence matrix. 
¤¤ COM2 is the entropy of the co-occurrence matrix. 

The improving performance of the HI with the increasing numbers of bins is as 
expected. The improvement from 42 to 110 is however very limited (0.92 to 0.94 
relative to the visual scores). Actually inspecting the image texture features and the 
order of homogeneity, indicate the difference between HI42 and HI110 to be non-
significant. This is due to two causes. Firstly, the homogeneity of these specific 
samples is well described by the 42 different regions. Secondly, the increased number 
of bins cause the noise level in the spectra to increase. Thus, measuring the 
homogeneity of a sample using imaging spectroscopy is a compromise between the 
number of regions and the spectral noise level. 

Comparing the results achieved for the HI and the image texture features show a 
better performance of the HI measures. This supports the hypothesis that an increased 
wavelength information obtained in the UV area is superior to the image greyscale 
intensities in the visual range. In the current application the fat reflection response is 
surely different in the UV wavelength range than in the visual range. The difference 
in the illumination source is also believed to be the reason for the limited correlation 
values observed between the HI and the COM. 
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CONCLUSIONS 

We have demonstrated the set-up and the functionality of an imaging spectrograph. 
The spectrograph consists of a highly sensitive CCD array, a grating diffraction 
module, a monochromatic illumination source, and a PC for control and data 
acquisition. By combining acquisition and data analytical techniques from traditional 
spectroscopy and imaging, a flexible and multi purpose system are obtained. Both 
spectroscopic (reflectance and fluorescence) and image data can be gathered with the 
system. Using the binning technique, also spectra from up to 330 local regions in a 
one-dimensional image of up to 22×70mm can be acquired simultaneously. The 
measuring techniques have been applied in the laboratory with success to three food 
applications: detection of wheat flour refinement, fish ageing, and porcine meat 
homogeneity. For the latter application combining the local spectral information with 
the one-dimensional image information has developed a statistical homogeneity 
index.  

In practice, the limiting factor for use of fluorescence analysis in industry is that 
suitable robust instruments with optimized sampling devices are generally 
unavailable. The interest of industry in developing such instrumentation seems small, 
because mechanics and optics are just a minor part of the development costs. The new 
chemometric and discriminant software requires in each case the establishment of a 
spectral or multichannel image library with the appropriate calibrations to relevant 
physical and chemical analyses for establishing a source for artificial intelligence. 

Operating the imaging spectrograph is a complex task, and the system is not readily 
adaptable for use outside a laboratory. However, the potential of the system in quality 
and composition studies of food products is great.  
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