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CHAPTER 5 

 

TWO-DIMENSIONAL ANGLE MEASURE TECHNIQUE  

FOR IMAGE TEXTURE ANALYSIS 
JESPER BRØNDUM 

SUBMITTED TO PATTERN RECOGNITION 

 

 

ABSTRACT 

The angle measure technique (AMT) has recently been adapted from characterisation 
of geomorphic complexity to image texture analysis of uni-lateral illuminated images. 
In this paper, the AMT is extended to two-dimensional texture image analysis. AMT 
transforms an intensity and scale dependent angle between two vectors in the spatial 
domain to the scale domain. By averaging the angle over N repetitions, a mean angle 
is obtained for a specific scale value. The scale is varied, and a spectrum displaying 
the average angle in the scale domain is obtained. Using multivariate data analysis 
with the either Tucker decomposition or multi-way partial least squares regression, 
the AMT data is further processed. With three different sampling constraints in the 
spatial domain, three modes are developed: 1) random sampling, 2) direction 
dependency, and 3) rotational independency. The 2D-AMT is illustrated on a simple 
2D sinusoid image, and applied successfully to two specific problems: classification 
of the Brodatz natural textures and prediction of intramuscular fat in ultrasound 
images. The AMT is advantageous in the lack of required optimisation due to the few 
parameters influencing the AMT data and the possibility of mapping texture 
information from images of different sizes and even different dimensions onto the 
same domain for comparison.  
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INTRODUCTION 

Texture analysis is in many computer vision applications one of the primary tasks. 
Among the approaches that have been taken in texture studies are frequency domain 
features(1) and Gabor filters(2), texture filters(3), fractal models(4), wavelets(5), and the 
widely used co-occurrence matrix features(6). Reviews of texture approaches are given 
by Buf et al.(7) and Reed et al.(8). The latter proposed a coarse grouping of texture 
feature extraction techniques into feature-based, model-based, and structural. 
Generally, all the approaches do, however, suffer from being dependent on a 
parametric optimisation and scale.  

In 1994 Andrle(9) introduced the Angle Measure Technique (AMT) for 
characterisation of geomorphic complexity. Prior to the paper by Andrle, the favoured 
method for landscape characterisation was the fractal dimension, but this method 
suffers from the assumption of constant complexity over some range of scale. 
Therefore, Andrle proposed the AMT, which introduced a map of complexity with the 
scale dimension, and consequently eliminated the assumption of a constant 
complexity. 

Esbensen et al.(10) adopted the AMT as a way to texture transform images to the scale 
domain as a non-recursive analogy to the Fourier transformation. In the approach by 
Esbensen et al. approach, images acquired with unilateral illumination at 10-15° 
relative to the scene were unfolded to one dimension (e.g. a 256×256 image is 
unfolded into a 65,536 vector) and measured with the same approach as Andrle. 
Esbensen and co-workers further extended the AMT by introducing a mean intensity 
variable in the scale domain along with the angle variable. The spectral output in the 
scale domain was used in multivariate data analysis. Whether the data analysis was 
applied for classification or prediction, the texture features (represented by the AMT 
spectra) were practically non-parametric. In the further work of Kvaal et al.(11), the 
AMT spectra from bread were used to predict sensory panel scores with superior 
results compared to SVD texture features developed by Kvaal et al.(12). 

The one-dimensional AMT extracts information from one direction in the image only 
due to the unfolding and potential neighbouring information is thus neglected. In this 
paper, a two-dimensional extension to the 1D-AMT is proposed. Three approaches to 
this are made based on the sampling properties in the spatial domain: 1) a random 
sampling, 2) directional dependency, and 3) rotational independency. The approaches 
still suffer from being non-recursive like the 1D-AMT, but do present a more 
extensive utilisation of the neighbouring information than the simple image unfolding.  

The AMT is very user friendly since it involves practically no parameters to be set by 
the user. By involving decomposition techniques like Principal Component Analysis 
(13), Tucker (14,15). 
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AMT can be further extended into unsupervised classification as is illustrated in this 
paper. A brief introduction to the one-dimensional AMT including the mathematical 
definition is given. This is followed by a description of the two-dimensional AMT 
technique.  

The AMT texture features are applied to three types of images: artificial two-
dimensional sinusoid images, unsupervised classification of the Brodatz textures, and 
prediction of intramuscular fat from biological ultrasound images. 

 

ONE-DIMENSIONAL ANGLE MOMENT TRANSFORMATION (MODE 0) 

As mentioned earlier, the initial approach for image texture analysis with AMT was 
performed on unfolded images. Figure 1a illustrates the principle of the 1D-AMT, 
which throughout the paper will be denoted Mode 0. The curve represents the signal, 
which can be a geometric line, a spectrum, or image unfolded to one dimension. The 
point origo, denoted by the O, is found randomly on the curve. The A and B points are 
found at the exact distance s from O. s is the scale variable, and is increased in an 
iterative process from a minimum to a maximum value. The increment can be either 
linear or in specific steps. The angle between the vectors O A and OB is denoted α. In 

the original proposal by Andrle, the complement to α was used, but for practical 
reasons α will be used instead as also proposed by Esbensen(10). The procedure is 
repeated N times for each s value. Averaging the N values of α result in a Mean Angle 
MA. Thus, for a given value of s the AMT parameter MAs is found as the mean angle 
between the two vectors O Ai i s,  and O Bi i s,  as shown in equation 1. 

( )MA
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=
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where α(v1, v2) determines the minimum angle between the two vectors v1 and v2. 

Esbensen et al.(10) also proposed to use the mean value of the intensity difference 
between the Ai,s and Bi,s points, denoted MY, as shown in equation 2. 
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where I(A) denote the signal intensity of the point A. 
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Figure 1. Overview of the AMT Principle. a) the one-dimensional AMT, b) selection of points 

in the two-dimensional AMT, c) calculation of MA and MY in the scale domain. 

 

TWO-DIMENSIONAL AMT (MODE 1-3) 

The two-dimensional AMT is implemented on the entire image instead of working on 
the unfolded image only. Figure 1b illustrates this situation with an image canvas. The 
origo, O, is selected randomly in the image. The two points A and B are found in the 
image at a spatial distance s from O. A and B are also selected with the constraint that 
the spatial angle between the two vectors O A  and OB  is β. Furthermore, the angle 

between O A  and the horizontal direction in the image is γ.  

Three different approaches for sampling the points in the spatial domain are proposed 
and these approaches will be denoted Mode 1-3 throughout the paper. The modes 
possess specific characteristics regarding the sampling method: Mode 1 samples the A 
and B points randomly in the spatial domain, Mode 2 sample A and B with a 
directional dependency, and Mode 3 samples A and B in rotational invariant manner. 
In all three two-dimensional modes, O is selected randomly in the image. Once O, A, 
and B are selected in the image, the angle α and the intensities of the points I(O), I(A), 
and I(B) can be mapped onto the scale domain as depicted in Figure 1c.  

MODE 1. RANDOM SAMPLING 

In the random sampling approach, β is simply selected randomly. In the current 
implementation, β is selected between 0°, 45°, 90°, and 135°, but the selection 
principle can easily be made with a higher resolution. The angle, γ, between the two 
vectors, is constantly set to 180°. Thus, the A and B points are now depending on both 
the scale s and on β. Letting O*, A* and B* denote O, A, and B in the scale domain (see 
Figure 1c) equation 1 can now be substituted into equation 3. 
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Similarly MY can be calculated as shown in Equation 4. 
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MODE 2. DIRECTIONAL DEPENDENCY 

In the directional dependency approach, the AMT spectrum is calculated for a number 
of different values of β and with γ=180°. Thereby the output is two-dimensional 
where the first dimension represents the scale dimensions and the second represents 
the β dimension. Again, β is in the current application calculated for values of 0, 45, 
90, and 135 only, but could easily be implemented with a higher resolution. In images 
with textural different patterns in the different textural directions, the AMT spectra are 
expected to differ for the different β values. MA and MY are calculated using O*, A* 
and B* as shown in equation 3 and 4. 

MODE 3. ROTATIONAL INDEPENDENCY 

The Mode 3 approach introduces a constraint on the angle, γ, between the O Ai i s,  and 

O Bi i s,  vectors (see Figure 1b). So far γ has been constant (here it has been set to 

180°), but to obtain robustness towards rotation of the image, γ is now used as the 
second dimension of the AMT data. The approach here is to select O randomly in the 
image, and then select A randomly at the distance s from O. Thus, the position of B is 
found at s and γ. Gamma is here chosen to be 0°, 45°, 90°, and 135° but similar to the 
conditions for β in Mode 2, the interval can easily be modified to represent a higher 
resolution. MA and MY are calculated as shown in Equation 3 and 4.  

 

MULTIVARIATE PROCESSING OF THE AMT DATA 

Processing the AMT data is done using multivariate techniques. Due to the spectral 
conditions of the AMT data, traditional statistics are not appropriate because of the 
co-linearity of the data. Multivariate methods are efficient for decomposing the co-
linear data into a common structure and work on the decomposed data. Two 
multivariate methods are used here, namely the Tucker3 decomposition for 
classification and N-way Partial Least Squares (N-PLS) for regression. The N-way 
techniques are quite recent in linear data analysis, where the common approach have 
been to work on unfolded data and thereby ignore the combination of the different 
dimensions(16). Better interpretation, decomposition and occasionally predictions from 
multivariate data seem to favour the true N-way techniques when working with N-
way data(15). 
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Tucker decomposition. An approach to decompose a three-way data array was 
introduced by Tucker(17,18). The method is widely known as a three-way principal 
component analysis(15) and has later been adapted to the N-way domain. In the three-
way example the AMT data is kept in a three-dimensional array X, with the measured 
samples in the rows and the AMT data in the two other dimensions. The 
decomposition results in a number of loadings for each of the variable dimensions. 
With the Tucker approach, this number can be selected specifically for each 
dimension. A matrix representation of the three-way model of the Tucker 
decomposition can be expressed as shown in Equation 5.  

EWWTGX T +⊗= )( 21  (5) 

where ⊗ denotes the Kronecker tensor product. T denotes a decomposed score matrix, 
where each sample is represented by one value for each decomposed factor. W1 is a 
loading in the first dimension (e.g. the scale dimension for the AMT data). If the 
decomposition in the Tucker model is made using SVD, the loadings are orthogonal 
and the loadings therefore reproduce the original information contained in X with 
much fewer variables. W2 is the corresponding loading in the second dimension. G is 
a socalled core array describing the interaction between the loadings. E denotes the 
remaining error after the decomposition. The Tucker model has rotational freedom 
and the decomposition is therefore not unique. A discussion of this problem and the 
entire algorithm for the Tucker model can be found in Bro(15). 

N-PLS is a recently developed multivariate regression approach proposed by Bro(19) 
dealing with regression of multi-way data. Again, the AMT data is kept in the N-way 
array X and the reference data, to be predicted from X, is represented by the vector y. 
N-PLS performs a decomposition of X by ensuring maximal covariance between X 
and y. The model of the N-PLS method is shown in equation 6. 

X T W W E= ⊗ +( )'1 2  (6) 

where |⊗| denotes the Khatri-Rao product(20). W1 and W2 are the common structures 
of the two feature dimensions called the weight vectors (similar to the loadings for the 
Tucker model). Again T contains the scores of the decomposed features for the 
measured samples. Combining the T matrix and the y vector, the regression 
coefficients of the decomposed features can be found. For more information on the 
principle and the algorithm the please refer to Bro(15,19). 
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RESULTS 

APPLICATION 1. TWO-DIMENSIONAL SINUSOID IMAGE 

An artificially created demonstration image, shown in Figure 2, is generated from 8 
horizontal and 16 vertical sinusoids on a 256×256 canvas. The AMT data is measured 
with s ranging from 1 to 30 in single steps, with N =1000. The MA data for all four 
modes are shown in Figure 3a, 3c, and 3e, and MY are shown in Figure 3b, 3d, and 3f. 
MA for Mode 0 shows the delimitation by using the unfolded image data, as only the 
vertical sinus (with a period of 32 pixels). As expected, half the sampling period, 
s=16, results in an MA of 0. MA of Mode 1 also represents the vertical sinusoids (with 
a period of 16 pixels), and local minima of MA are observed at s=8, 16 and 24. Figure 
3c shows MA of Mode 2 for all four values of β. For β=0, the results corresponds to 
the data obtained for Mode 0. MA for β=45° and β=135° are as expected practically 
similar for the sinusoids. MA for β=90° corresponds to measuring the unfolded image 
vertically, and MA values of 0 are observed a scale values of 8, 16, and 24. Figure 3e 
shows MA of Mode 3 for all four values of γ. The MA data for γ=180° equals MA for 
Mode 0 as expected. For low s-values the MA for γ=45° are smaller than for the larger 
γ angles. The MY data for Mode 0, Mode 2 with β=0°, and Mode 3 with γ=180° 
results in a curve shape similar to the absolute value of the sine curve and with the 
same frequency. Local minima are observed at s values of 8, 16, and 24 similar to the 
observations made for MA.   

 
Figure 2. Test image with 2D sinusoids. The image is constructed of 8 horizontal and 16 

vertical sinusoids. 



TWO-DIMENSIONAL ANGLE MEASURE TECHNIQUE FOR IMAGE TEXTURE ANALYSIS 

 62 

5 10 15 20 25 30

50

100

150

M
A

a)

5 10 15 20 25 30

20

40

60

80

M
Y

b)

5 10 15 20 25 30
0

50

100

M
A

c)

5 10 15 20 25 30
0

20

40

60

80

M
Y

d)

5 10 15 20 25 30

20
40
60
80

100
120
140

Scale

M
A

e)

5 10 15 20 25 30

20

40

60

80

100

Scale

M
Y

f)

 

Figure 3. AMT data of the sinusoid image shown in Figure 2. a) MA for Mode 0 () and 
Mode 1 (− −). b) MY for Mode 0 () and Mode 1 (− −). c) MA for Mode 2, β=0° (), β=45° 
(− −), β=90° (− ⋅ −), β=135° (----). d) MY for Mode 2, β=0° (), β=45° (− −), β=90° (− ⋅ −), 
β=135° (----). e) MA for Mode 3, γ=45° (),γ=90° (− −), γ=135° (− ⋅ −), γ=180° (----). f) MY 

for Mode 3, γ=45° (),γ=90° (− −), γ=135° (− ⋅ −), γ=180° (----). 

 

APPLICATION 2. CLASSIFICATION OF BRODATZ TEXTURE IMAGES 

The natural textures from Brodatz(21)are widely used in texture studies(2) (22), and have 
been proposed as a standard method for testing new texture techniques(7). The textures 
are available digitized from e.g. ftp://freebie.engin.umich.edu/pub/misc/textures. Six 
of the texture images are shown in Figure 4 (D03, D09, D17, D24, D51, and D92). 
The selected images are similar in greyscale distribution but represent clear 
differences in the texture appearance with and without directional dependency. 
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 Figure 4. Brodatz natural textures used for application 2. Top row: B03, B09, B17. Bottom: 
B24, B77, B92. 

 

Each of the six images is split into sixteen equally large regions of size 64×64. MA 
and MY are calculated for all four modes with s ranging from 1 to 50 in steps of 1 and 
N=1000. MA and MY are appended to account for a specific dimension. Thus, the 
entire data for Mode 0 and Mode 1 consist of 96×2×50 data points. Mode 2 and Mode 
3 consist of 96×2×4×50 data points, because four different values of β and γ are used, 
respectively. These multivariate data set are decomposed using the Tucker method, 
and the score values of the decomposition are plotted in Figure 5a-d to display the 
discriminative ability of the AMT texture features.  

Figure 5a shows the score values of the two first components of the Tucker 
decomposition of the Mode 0. A reasonable separation with the AMT features of the 
B17, B24, and B77 images is observed. The remaining texture measures are 
overlapping and especially between B03 and B09 there is a high degree of overlap. 
The reason for this is the inhomogeneity of the B03 texture observed in Figure 4.  
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Figure 5. Continued. 
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Figure 5. Scatterplot of the scores from the first two components of the Tucker decomposition 
of the AMT data measured on the Brodatz images. a) Mode 0. b) Mode 1. c) Mode 2. d) Mode 
3. The 16 replicates from each of the Brodatz images are marked with the following symbols: 

B03: ×, B09: +, B17: *, B24:  , B77: ★ , and B92: ∆. 
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The classification of the Brodatz textures with the Mode 1 AMT is shown in Figure 
5b. The separations between the six textures have improved compared to the Mode 0 
measurements. The B17 class is widely separated from the remaining by the 
decomposed component two. Also B24, B77 and B92 seem to be grouped closer 
within each class compared to Mode 0. The problem with the overlap of the B03 is 
smaller than for Mode 0 but still present. Except for a few overlaps with B03, the B09 
class is almost separated from the remaining samples with the Mode 1 approach.  

The Mode 2 classification is shown in Figure 5c. Generally the same characteristics as 
previous are observed: B17 is clearly separated from the remaining samples, and B24, 
B77, and B92 are fairly well separated from the remaining samples, and the three 
clusters tend to be grouped closer than for Mode 1. Similar to the Mode 0 results, the 
B03 and B09 features are largely overlapping.  

The result of the Mode 3 decomposition is shown in Figure 5d. The B17 texture is not 
as separated for the Mode 3 approach as for the Mode 1 and the Mode 2 AMT. Yet 
the class is still separated from the remaining classes, as also the B24 and B77 
samples are seen to be. The B03 texture measures are spread over a fairly wide area 
due to the inhomogeneity of the texture patterns. However, the B03 class is separated 
from the remaining clusters of textures, which have not been seen for the remaining 
modes. However, the B09 texture measures are observed to overlap slightly with the 
B24 and B92 groups. Despite of this overlap, the Mode 3 grouping seems to be 
presenting the generally best variation between the groups.  

The results presented in application 2 could most likely be improved by imposing a 
true classification approach on the problem. It is, for instance, likely that using more 
than two decomposition components will separate the B03 and B09 samples in Mode 
2. However, the approach followed here illustrates a rapid initial screening of a 
texture classification problem with the AMT without an advanced parameter 
optimisation. The illustrated approach is very much explorative, and can help isolate 
the core of the segmentation process with a minimal effort. 

APPLICATION 3. INTRAMUSCULAR FAT IN ULTRASOUND IMAGES 

A third application, prediction of intramuscular fat (IMF) in ultrasonic images, is 
presented. The ultrasound information is measured with the Autofom system, which is 
an automated system for grading of pork carcasses. The system performs a three-
dimensional scanning of the carcass with 16 transducers positioned evenly over the 
back of the carcass. For every 5 mm (approximately 100 mm in total) each transducer 
scans a depth of 110 mm with a resolution of 0.15 mm. Totally the scanning therefore 
consist of 16×200×600 measured points. For more information of the Autofom 
system, see Brøndum et al.(23). IMF is believed to be detectable with the ultrasonic 
information due to speckle effects in the ultrasonic data. The representation of the 
IMF speckle is thus dependent on the ultrasonic resolution, and the coarse resolution 
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in the longitudinal direction of the Autofom (0.5 mm) is a potential problem. 
Therefore, a part of the trial was set up to measure the carcasses at reduced line speed 
and with an increased longitudinal resolution. With the low resolution, the selected 
region of 100×60 pixels covers an area of 100×20 mm. In the test with the high 
resolution, the selected region cover an area of 200×20 mm. Figure 6 shows two 
longitudinal ultrasound images acquired by one of the transducers (16 such images 
exist for each carcass). Figure 6a is with the normal line speed and Figure 6b is with 
the reduced line speed. The squared white regions marked on the images denote the 
location of the areas of interest for the IMF. The regions are selected manually, but 
automatic selection should be trivial to implement due to the location of the ribs just 
above the selected region.  

Fourty-five carcasses are measured with the normal resolution and 48 carcasses are 
measured with high resolution. Upon dissection of the carcasses, meat samples of 
approximately 200 g were cut at the 10th rib and scored by a meat inspector from 1 to 
5 according to the visual evaluation of the marbling following the NPPC 
procedures(24), except that also half digit scores are used. The samples were then sent 
to a laboratory for chemical extraction of lipids. The two reference parameters 
describe quite different information in the meat samples. The marbling score is a 
surface evaluation and the lipid extraction is a measure for the entire sample. The 
correlation coefficients between the two measures are 0.61. Statistic parameters for 
the two reference parameters are shown in Table 1. 

Table 1. Statistic parameters for the reference parameters lipid extraction and marbling 
score. 

 Mean SD Max Min 

Lipid 5.50 2.88 13.9 1.57 

Marbling 2.25 0.89 4.0 1.0 

 

MA and MY are measured with Modes 0-3. The AMT spectra were averaged over 
1000 measurements and s were varied from 1 to 60 in steps of 1. MA and MY for 
Mode 3 are shown in Figure 7 for two relatively extreme samples with lipid values of 
2.07% and marbling scores of 1.5 (Figure 7a,b) and 8.55 % and marbling scores of 3.5 
(Figure 7c,d). The difference between the AMT data for the two samples is 
pronounced. MA in Figure 7a is exponentially declining with the scale value, whereas 
MA in Figure 7c appears to contain more noise due to the higher scatter effect in the 
ultrasound images. This effect is also depicted in the difference in the MY data, where 
the different γ-values show distinct contrast for the two samples. Also the MY level is 
different for Figure 7b and d. This justifies for the prediction of the reference 
parameters of with the AMT data.  
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a

 

b

 
Figure 6. Autofom ultrasound image. The white squared region marks the area where the 

intramuscular fat is detected. a) Normal resolution. b) High resolution. 

 

The AMT data for the four modes are used to predict the lipid and the marbling 
information with N-PLS. Twenty samples are selected randomly for the test set and 
the remaining samples (25 for the normal resolution and 28 for the high resolution) 
are used for the calibration set. Table 2 presents the correlation between the measured 
and the predicted for four modes. 
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Figure 7. AMT Mesh plot of AMT Mode 3 the Autofom images of two extremes. a and b are 

from an animal with IMF of 2.07% and c and d are from an animal with IMF of 8.55%.  

 

Table 2. Correlation coefficients (r) between the measured IMF values and the predicted with 
N-PLS for the normal and the high ultrasound image resolutions. 

 Mode 0 Mode 1 Mode 2 Mode 3 

 Lipid Score Lipid Score Lipid Score Lipid Score 

Normal Resolution 0.44 0.47 0.49 0.56 0.51 0.50 0.50 0.57 

High Resolution 0.79 0.63 0.75 0.69 0.81 0.68 0.81 0.71 

 

As seen from Table 2, the high resolution images are far better for evaluating the IMF, 
which is no surprise. The normal resolution performance is doubtful to be useful for 
on-line sorting. Mode 2 and Mode 3 tend to be superior to Mode 0 and Mode 1, and 
especially the Mode 3 results are very encouraging for further work. The measured 
lipid versus the predicted with the Mode 3 AMT is shown in the scatterplot in Figure 
8.  



TWO-DIMENSIONAL ANGLE MEASURE TECHNIQUE FOR IMAGE TEXTURE ANALYSIS 

 70 

0 2 4 6 8 10 12 14
3

4

5

6

7

8

9

 
Figure 8. The measured lipid values versus the predicted with the Mode 3 AMT. 

 

For comparison, also Grey Level Co-occurrence Matrix (GLCM) features were 
calculated(6). The GLCM features were the 2nd, 3rd, 5th, 7th moments, maximum index, 
and entropy. The features were measured with a neighbouring distance of 5 pixels and 
they were measured with the neighbouring angles 0°, 45°, 90°, and 135°. This also 
results in a two-dimensional data structure with orientation information, which can be 
immediately input into the N-PLS regression method. Correlation values between the 
predicted ad the measured reference information for the high resolution images were 
0.79 for the lipid extract and 0.64 for the marbling scores. Thus, the results obtained 
were very comparable to the Mode 0 prediction results and slightly poorer than the 
results obtained with the Mode 2 and Mode 3 AMT measures. 

Due to indirect relations between the IMF and the carcass composition, further 
improvements in the predictions are likely to be reached by including the existing 
Autofom parameters. This cannot be tested in the current trial because the reduced 
line requires extensive software changes of the on-line system. However, preliminary 
test with manual reading of the Autofom images indicate that a further improvement 
of approximately 6% can be reached by including indirect information of the fat 
depth, the meat depth, and the thickness of the individual fat layers. This indication 
supports the potential use of the Autofom for on-line quality measurement of IMF for 
sorting on the abattoir. The use of AMT in the on-line system is a realistic possibility. 
Currently, approximately 1.0 s is used for a Mode 0 or Mode 1 measurement and 3.5 s 
is used for a Mode 2 or 3 measurement on a SGI Indy 4600SC (Silicon Graphics, CA, 
US). Further improvement of the implementation and upgrade of the hardware will 
enable on-line use of the AMT at the required abattoir line speed. 
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The results obtained for the AMT and N-PLS predictions are encouraging for further 
work with the high resolution Autofom data. Surely, the data presented here are not of 
sufficient quantity to justify for an immediate implementation, but the indications 
observed are positive. The results are the first presented on porcine meat, but the 
experiences are similar to those obtained by e.g. Herring et al.(25) on beef meat, which 
reported correlation values of 0.61 and 0.75. The higher correlation for the lipid 
extracts obtained in this study, are believed to reside in the higher variation in this 
data, which was sd=2.88 versus sd=2.25 for Herring et al.(25). The prediction level 
appears to be sufficient for introducing an automatic coarse sorting of the quality 
extremes in the abattoirs, which is currently not possible. It is doubtful whether 
further improvements in the image resolution also will improve the predictions. There 
is an upper limit of the accuracy of the reference information represented by the 
chemical extracts and the visual scores, and in the further work attention should also 
be kept on this matter.  

 

DISCUSSION 

The major advantage of the AMT is that the texture information is tranformed into the 
scale domain. This makes AMT a very robust and generalised approach to 
measurement of texture pattterns, which can be applied to both segmentation and 
prediction problems. The use of the scale domain also enables the comparison of 
images or signals from different domains and image sizes can be compared. 

Another of the major advantages of AMT is that it requires practically no parameter 
optimisation. The only parameters necessary in the AMT method is the number of 
averages, which have no influence on the data when the AMT measures becomes 
deterministic, and the s start and stop positions and stepwise increase, which have 
little influence on the succes of the AMT output due to the collinear struture of the 
data. Thus, the usual problems of optimising the scale dependency is removed from 
the texture operation. Often, much time is spend on optimising the application to 
function on a specific texture pattern. Here, AMT have been used in three very 
different applications with success with the same parameter use. When combining the 
AMT data with multivariate decomposition techniques, this approach possesses the 
possibility to establish a very strong fundamental utility for rapid and general 
screening in texture studies.  

The advantage of the generalisation of the AMT method does, however, also tend to 
be the disadvantage of the system. Parameter optimisation can often be used to tune 
texture algorithms in to match specific textures precisely. It is therefore not unlikely 
that AMT can be outperformed by other methods in very specific cases.  
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The AMT is non-recursive in contrast to e.g. the Fourier transformation. Thus, the 
scale domain can thus not be used for textures with specific scale domain properties 
and the retransform to the spatial domain. A similar result can be obtained by 
removing the random selection of the origo point, and instead perform the angle 
measure for each pixel. This naturally requires an extensive increase of processing 
time, but this can be remedied by increasing the scale steps.  

The two-dimensional AMT introduced here possesses some theoretical advantages in 
the utilisation of the image information, which can easily be extended to higher 
number of dimensions. The practical advantages of the two-dimensionality in the 
AMT are apparent for both the classification of the Brodatz images and the prediction 
of IMF from the ultrasonic images.  

In the current implementation Mode 0 and Mode 1 are calculated on 1.0s and Mode 2 
and Mode 3 are calculated on 3.5s with N=1000 and 60 scale values on a SGI Indy 
4600SC (Silicon Graphics, CA, US). No special attention has been made to speed 
optimisation of the algorithm, and improvement of at least a factor 2 can be expected 
if required. This should make the AMT measures an interesting approach for most 
texture analysis systems with respect to the processing time. 

 

SUMMARY 

The angle measure technique (AMT) was proposed for use in geometric land 
characterisation by Andrle(9) and was proven to be superior to fractal dimension for 
this purpose. Esbensen et al.(10) picked up the technique for image texture analysis and 
worked on unfolded images, an approach which was denoted Mode 0 in this paper. 
AMT transforms α defined as the angle between two vectors O A  and OB  of length 
s, where O is a moving origo and A and B are moving points in the image. The angles 
between the two vectors are transformed into a scale domain with s as the dependent 
variable. By varying the scale value s and averaging the angle over N repetitions, a 
mean angle (MA) are found. Since the further data processing is performed in the 
scale domain, AMT automatically accounts for scale and magnification differences in 
the texture. Esbensen also proposed to use the mean difference of the intensities (MY) 
between the outer border points (A, B) in the scale domain. In this paper, AMT has 
been extended to two dimensions in the selection of the origo and the outer border 
points. Three approaches for this are proposed: random sampling (Mode 1), direction 
independence (Mode 2), and rotational independency (Mode 3). These have been 
implemented by selecting the points O, A, and B in the spatial domain under 
constraints for the angle between vectors O A  and the horisontal direction, β, and the 

angle between the vectors O A  and OB , γ. This has introduced an angle dimension in 
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the scale domain and called for multi-way data evaluation. The nature of the two-
dimensional AMT data were illustrated by a simple 2D sinusoid image. To 
demonstrate the classification ability of the AMT features, a decomposition to two 
common factors has been introduced with the Tucker decomposition(15,16). The 
efficiency of the AMT data combined with the Tucker decomposition was illustrated 
on the Brodatz natural textures. Almost a complete separation of small subregions of 
6 natural textures was observed using only two decomposed factors despite a clear 
texture variation for especially one of the textures. The predictive ability of the AMT 
features was demonstrated on an trial where intramuscular fat are predicted from 
ultrasonic images of pork carcasses. AMT was slightly superior to 7 GLCM features 
extracted in four directions and used in a multi-way partial least squares regression.  

The main advantages of the AMT tend to be threefold: 1) the generalisation and 
nonessential parameter optimisation makes the approach an easy to use tool for 
empirical texture screening. 2) The scale domain makes the AMT when combined 
with e.g. multivariate decomposition facilitates an internal correction for changes in 
scale and magnification. 3) The possibility of mapping texture information from 
images (or signals) from different sizes and even different dimensions onto the same 
domain for comparison. The disadvantage of the AMT seems to be the lack of 
reversibility and the generalisation, where the low optimisation facility makes it hard 
to optimise the texture information measured with AMT on a specific solution. Much 
more work, however, still remains to be made with this interesting novel texture 
technique.  
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