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Abstract 

This thesis describes some applications of spectroscopic and chemometric 
methods for analysis of dairy processes. The approach has been to measure 
during processing and thereby take advantage of the rapid and non-invasive 
nature of spectroscopic methods. The work is presented in six papers that make 
up the core of the thesis. The thesis furthermore gives an introduction to the 
processes investigated, the concept of PAT and the methods applied. 
 
The cheese manufacturing process was studied by TD-NMR, specifically the 
syneresis step i.e. whey separation (PAPER I). This process is important as it is 
the cheese producer’s main way of controlling the moisture content of the final 
cheese. The process is however complex to evaluate due to the fact that it is a 
heterogeneous dynamic system sensitive to physical handling. TD-NMR can be 
successfully applied as it is non-invasive and sufficiently rapid to capture the 
dynamics. It was possible to quantify the moisture content inside and outside the 
syneresis curd at all times during the process. The approach makes it possible to 
study dynamics and influencing factors of syneresis. 
 
Ultrafiltration of milk yields the by-product UF permeate, which is extensively re-
used in the other dairy processes. Factory-to-factory variation in permeate 
composition can be a potential problem when permeate from multiple factories is 
used as ingredient in one product. In PAPER II permeate compositional variation 
between six dairy factories was surveyed using infrared spectroscopy. PCA 
revealed that permeate samples had a unique infrared signature based on the 
factory of origin, and that variation in total solids and protein explained a large 
part of the differences between factories. To further investigate if other factory 
specific variation existed, protein and total solids information were removed from 
the IR spectra by orthogonalization. After orthogonalization, neither PCA nor 
ECVA could classify the factory origin. The study demonstrated the benefit of IR 
and chemometrics in exploring unknown variations in a production environment.  
 
In-line monitoring of rennet milk coagulation was studied by fiber optic near 
infrared spectroscopy (PAPER III). Terminating milk coagulation at the right 
coagulum firmness is critical for yield and moisture of the final cheese. The 
cheese maker’s knife test is still the dominating method of evaluating coagulum 
firmness, even at large modern dairies. Results of the present thesis showed that 
NIR measurements are sensitive to coagulation since underlying coagulation 
reactions could be identified in the NIR signal. A model capturing coagulation 
dynamics during micelle aggregation and network formation was proposed. The 
model showed near perfect fit to NIR data. Furthermore, an algorithm was 
designed to extract the two-stage model parameters in real-time. The approach 
makes it possible to predict the optimal end-point of coagulation in real-time. 
Where PAPER III considers the production aspect of coagulation, PAPER IV 
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focuses on understanding the NIR light scattering properties of milk. The main 
observation was that scatter changes are highly wavelength dependent in the 
beginning of coagulation and less in the later stages. The observations are 
discussed in relation to particle size and geometry changes occurring during milk 
coagulation. 
  
An automatic algorithm for analyzing large TD-NMR datas set was developed in 
PAPER I. The algorithm is further discussed in PAPER VI. The approach was 
tested on TD-NMR measurements of potatoes in order to predict dry matter 
content (PAPER V).  
 
This thesis has shown some advantages of spectroscopic and chemometric 
methods for analyzing three dairy processes. It has been shown that the 
combination of these two disciplines can provide process insight and control 
possibilities that classical analytical techniques cannot offer.  
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Resumé 

Formålet med dette ph.d. studium har været, at udforske anvendelsen af nogle 
spektroskopiske og kemometriske metoder til analyse af mejeriprocesser. 
Fremgangsmåden har været at måle under selve processen og dermed udnytte 
spektroskopiske metoders høje analysehastighed og ikke-invasive karakteristika. 
Projektets resultater er præsenteret gennem seks artikler, der udgør kernen i 
afhandlingen. Afhandlingen giver endvidere en introduktion til de processer som 
er undersøgt, PAT konceptet og de anvendte metoder.  
 
Synereseprocessen under ostefremstilling blev undersøgt vha. TD-NMR 
(ARTIKEL I). Denne proces er vigtig, da det er her mejeristen har størst mulighed 
for at kontrollere vandindholdet af den færdige ost. Processen er dog meget 
kompleks at undersøge, idet ostmasse-valle systemet er meget heterogent, 
under konstant ændring, samt er følsom over for fysisk håndtering. TD-NMR som 
metode, blev fundet ideel til at undersøge syneresen, idet metoden er ikke-
invasiv og tilpas hurtig til at kunne opfange processens dynamik. Studiet viste at 
TD-NMR kunne bruges til at kvantificere vandindhold indenfor og udenfor 
ostemassen løbende under synerese processen. Denne fremgangsmåde gør det 
muligt, at undersøge dynamikken i syneresen samt forskellige faktorers 
indflydelse på syneresen.  
 
Ultrafiltrering af mælk giver bi-produktet UF permeat som i stort omfang 
genbruges i andre mejeriprodukter. Variation i permeats sammensætning mellem 
fabrikker kan blive et problem, når permeat fra forskellige fabrikker anvendes 
som ingrediens i samme produkt. I ARTIKEL II blev variation i permeat 
sammensætningen mellem seks mejerier undersøgt med infrarød spektroskopi. 
PCA viste at permeatprøverne havde en unik infrarød signatur alt efter hvilket 
mejeri de stammede fra, og at variation i total tørstofsindhold og protein 
forklarede en stor del af forskellene mellem mejerierne. For videre at undersøge 
om andre mejeri-specifikke variationer eksisterede, blev information om protein 
og totalt tørstofsindhold fjernet fra IR spektrerne vha. matematisk 
orthogonalisering. Efter orthogonalisering kunne hverken PCA eller ECVA 
klassificere prøverne i forhold til deres oprindelses mejeri. Studiet demonstrerer 
fordelene af IR og kemometri i forhold til at udforske ukendt variation i et 
produktions miljø.  
 
In-line monitorering af løbekoagulering blev undersøgt vha. fiber optisk nær 
infrarød spektroskopi (ARTIKEL III). At stoppe mælke koagulering ved den rigtige 
koagel fasthed er særdeles kritisk for udbyttet og vandindholdet af den færdige 
ost. Mejeristens knivtest er stadig den mest anvendte metode til at bedømme 
mælke koagelets fasthed, selv på store moderne mejerier. Resultater fra den 
nærværende afhandling viser at NIR målinger er sensitive overfor koagulering 
idet de underlæggende koaguleringsreaktioner kan identificeres i NIR målinger. 
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En model der beskriver koaguleringsdynamikken under micelle 
sammenklumpning og netværks dannelsen blev formuleret. Modellen viste et 
næsten perfekt fit til NIR målingernes tidsudvikling. Endvidere blev en algoritme 
designet til at udtrække modellens parametre i real-tid, således at NIR kan 
anvendes som in-line prædiktionsmetode af sluttidspunktet.  Mens Artikel III 
overvejer produktions aspektet ved koagulering, så fokuserer ARTIKEL IV på 
forståelse af de optiske egenskaberne af mælk under koaguleringen. Hoved 
observationen var at lysspredningsændringer er meget bølgelængde afhængig i 
begyndelsen af koaguleringen og mindre i de senere faser. Disse observationer 
er diskuteret i relation til de ændringer i partikelstørrelse og gel netværks 
geometri som opstår under mælke koagulering.  
 
En automatiseret algoritme til analyse af store TD-NMR data sæt blev udviklet i 
Artikel I. Denne algoritme bliver diskuteret nærmere i ARTIKEL VI. Denne 
metode blev testet på TD-NMR målinger af kartofler med henblik på at bestemme 
tørstofsindholdet (ARTIKEL V). 
  
Overordnet set har denne ph.d. afhandling vist en række fordele ved at anvende 
spektroskopi og kemometri til at analysere mejeri processer. Der er vist at 
kombinationen af disse to discipliner kan bidrage med proces indsigt og kontrol 
muligheder som klassiske analytiske teknikker ikke kan tilbyde.  
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1 
CHAPTER 1 

INTRODUCTION  
 

Background 
The subject of this thesis is spectroscopic analysis of dairy processes. Dairy 
processes are inherently complex since both large biological variation in starting 
materials and a multitude of process factors will influence end-product quality. 
The objective of this PhD project has been partly to understand the fundamental 
biological mechanisms, but foremost being able to identify, measure and control 
the critical-to-quality attributes and their relation to end-product quality. 
 
The dairy industry has to ensure that the quality and safety of intermediates and 
end-products meets well-defined specifications. One strategy to achieve this is to 
thoroughly check the quality of each batch of the final product. The problem with 
this approach is that if the final product is out of specification this cannot be easily 
corrected. A more attractive strategy is therefore analysis of not only the process 
input and output, but also continues performance evaluation during the process. 
This will enable control of all relevant processing parameters in real-time. The 
benefit of this approach is rapid detection and correction of processes moving out 
of specification. This in turn makes it possible to minimize specification margins, 
yielding increased productivity and profitability.  
 
In 2004 the US Food and Drug Administration (FDA) formulated a guidance to 
Process Analytical Technology (PAT) recommending pharmaceutical 
manufactures to move from strict end-product analysis to analysis of whole 
process chain – parts of this document will is used as guidance in this work. Over 
the last couple of decades the dairy industry has increasingly recognized the 
benefits of moving from strict end-product evaluation to continuous analysis of 
multiple steps throughout the entire process, albeit often in a fragmented manner.  
 
Scope of thesis 
This thesis investigates whether spectroscopy can be used as a tool in optimizing 
the production of dairy processes exemplified by the coagulation and syneresis 
step in cheese manufacturing, and ultrafiltration of milk: 
 
Controlling the degree of syneresis, i.e. whey expulsion from coagulated milk, is 
the cheese producer’s main way of controlling the moisture content of the curd, 
which in turn affect the ripening process and moisture content of the final cheese 
product. Thus, this process step is extremely important for the final yield and 
quality of the cheese. It is however complex to measure syneresis, mainly  
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because physical handling of syneresing curd in itself induces further syneresis. 
The objective of PAPER I was to investigate Time Domain Nuclear Magnetic 
resonance (TD-NMR) as a method for quantification of syneresis. The approach 
was to induce syneresis by cutting the coagulum inside the NMR spectrometer. 
The approach was tested in a factorial design, investigating the effect of milk pH, 
temperature, and gel firmness at cutting time on syneresis rate. 
 
Ultrafiltration of milk yields a by-product UF permeate, which is extensively re-
used in the other dairy processes. Factory-to-factory variation in permeate 
composition can be a potential problem when permeate from multiple UF 
factories is used as ingredient in one product. The objective of PAPER II was to 
survey UF permeate compositional variation between six dairy factories using 
infrared spectroscopy. Permeate composition was furthermore analyzed using 
uni-variate reference analysis. PCA and ECVA were used to investigate between-
factory-variation and external factor orthogonalisation was used to remove 
compositional information in IR spectra. 
 
The milk coagulation step in cheese production ends with cutting of the coagulum 
in dices. Cutting is the primary way of separating water from the coagulum as 
increased surface area and pressure induces syneresis. Timing the cut at the 
right coagulum firmness is important. If the coagulum is too weak it will scatter 
into small particles which will be lost during the later drainage. On the other hand 
if the coagulum is too firm, whey expulsion is inhibited resulting in cheese with 
too high moisture content. At present the dominating tool available for 
cheesemaker’s is the knife test, where coagulum cuttability is determined based 
on visual appearance of small test cut. The objective of PAPER III was to 
investigate rapid NIR analysis in the cheese vat (in-line) as a method for 
prediction of optimal cutting time. The objective of PAPER IV was to understand 
the change in NIR scattering properties of coagulating milk. 
 
The study described in PAPER I resulted in approximately 2000 NMR relaxation 
curves with varying number of exponential components. This extensive data set 
makes it natural to construct an automated algorithmic approach for analysis of 
the individual relaxation curves. The algorithm was based on DOUBLESLICING, 
a rapid technique with many validation possibilities, where a set of validation 
criteria limits automatically can select the appropriate number of components. 
DOUBLESLICING and its validation possibilities are described in PAPER VI. The 
objective of PAPER V was to investigate TD-NMR as a tool for determine dry 
matter in potatoes; the algorithm developed in PAPER I was applied.        
 
Outline of thesis 
This thesis can be considered as an introduction to PAT applied in the dairy 
industry with special emphasis on cheese production. The thesis consists of an 
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The study described in PAPER I resulted in approximately 2000 NMR relaxation 
curves with varying number of exponential components. This extensive data set 
makes it natural to construct an automated algorithmic approach for analysis of 
the individual relaxation curves. The algorithm was based on DOUBLESLICING, 
a rapid technique with many validation possibilities, where a set of validation 
criteria limits automatically can select the appropriate number of components. 
DOUBLESLICING and its validation possibilities are described in PAPER VI. The 
objective of PAPER V was to investigate TD-NMR as a tool for determine dry 
matter in potatoes; the algorithm developed in PAPER I was applied.        
 
Outline of thesis 
This thesis can be considered as an introduction to PAT applied in the dairy 
industry with special emphasis on cheese production. The thesis consists of an 
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introductory part followed by a four peer-reviewed papers (PAPER I, II, III and V), 
a conference paper (PAPER VI) and one discussion paper (PAPER IV). The 
introductory part serves to guide the reader into the fundamentals of three dairy 
processes, the analytical methods used as well as the major results. The 
introductory part is composed of the following chapters:  
 
Chapter 1 initially presents an overview cheese production. Subsequently, the 
processes milk coagulation and curd syneresis are described in details: 
molecular mechanisms, kinetics, and effect of process factors/parameters, plus 
classical methods used to evaluate these processes. This chapter provides a 
basic understanding of the dairy technology.  
 
Chapter 2 considers dairy processes from a PAT point of view. First an 
introduction to PAT and control concepts are given, then results from the thesis 
and other PAT applications in the dairy industry are presented. 
 
Chapter 3 describes fundamentals of the spectroscopic methods used in this 
thesis, TD-NMR, NIR and IR. 
 
Chapter 4 presents the basic and advanced chemometric methods used in this 
thesis, with special emphasis on modeling TD-NMR data and external factor 
orthogonalization. 
 

Chapter 5 summarizes the conclusions and challenges of the study, and 
presents the perspectives for further use of spectroscopic methods in analyzing 
dairy processes. 
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2 
CHAPTER 2 

DAIRY PROCESSES 
 
This thesis considers dairy processes in particular the early stages of cheese 
manufacturing and the process of ultrafiltrating milk. This chapter is divided in 
three parts. The first part provides an overview the entire process of cheese 
manufacturing. The second and the third part consider two unit operations, 
coagulation and syneresis, respectively. Both operations are described with 
respect to underlying molecular mechanisms, kinetics and the effect of various 
process factors, including the classical reference methods used to study the 
processes.   

2.1 Overview of cheese making 

Cheese making can be summarized as an array of sub-processes as illustrated in 
Figure 1. The manufacturing of cheese is essentially a concentration process, 
where milk fat and casein are concentrated approximately ten-fold, while the 
whey proteins, lactose and water soluble salts are removed with the whey. 
Rennet coagulated cheeses are ripened for a period ranging from 2 weeks to 2 
years, during which microbiological, biochemical, and physical changes occur 
(Fox and McSweeney, 1998).  All varieties of cheese can be categorized in three 
super families based on the principal method used to coagulate the milk i.e. 
rennet coagulation (~75% of total production), isoelectric acid coagulation or 
coagulation based on a combination of heat and acid (Fox and McSweeney, 
1998). In this thesis only rennet coagulation has been studied.  
 
 

 
Figure 1. Summary of the cheese making process (adapted from Walstra et al., 2004). 

The focus of this thesis is on three different processes related to curd 
manufacturing, which is illustrated by the three blue boxes in Figure 2. The 
manufacturing of the curd is also the part of cheese making with the largest 
possibility of controlling the quality attributes of the final cheese. 
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Figure 2. Overview of curd making.  

Preparation of milk 
The milk used to produce most cheese varieties undergoes some sort of pre-
treatment. Concentration of fat and casein and the ratio of fat-to-casein are 
important parameters affecting cheese quality (Fox and McSweeney, 1998). The 
composition of milk will vary according to season and geography, but within the 
last two decades technological advancements, in ultrafiltration and on-line 
standardization have made it possible to level out these variations in milk 
composition and thereby improve or standardize curd characteristics and cheese 
quality. Ultrafiltration has made it possible to concentrate fat and casein content, 
which is important in the standardization of milk. On-line standardization has 
become widely used at large dairy plants. The principle in on-line standardization 
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is that the whole milk composition is rapidly determined typically by Infrared 
spectroscopy (IR) and feedback control of various feeding stream (skim, cream, 
UF permeate) ensures a constant fat-to-protein ratio (Fagan et al., 2009; details 
are given in section 3.4.2). In the last decade UF permeate (a bi-product from 
ultrafilation of milk) has been re-used in large quantities as mixing ingredient in 
the standardization process. Factory-to-factory variation in permeate composition 
can be a potential problem when permeate from multiple UF factories is used as 
ingredient in one product. The objective of PAPER II was to survey UF permeate 
compositional variation between six dairy factories using infrared spectroscopy. 
 
The majority of all cheese milk is pasteurized (72oC at 15 s) shortly prior to 
coagulation with the purpose of inactivating pathogenic and spoilage bacteria. At 
some plants the milk is thermized (69oC at 15 s) upon arrival to reduce the 
greater part of the bacteria before storage. The pH and concentration of calcium 
also varies in raw milk and both factors influence the characteristics of curd. 
Addition of CaCl2 (0.02% aqueous solution) is widely used and standardization of 
pH can be done using the acidogen, gluconic acid-δ-lactone, although this is only 
practiced on a limited scale (Fox and McSweeney, 1998).    
 
Conversion of milk to curd 
Rennet coagulation is initiated by adding rennet to milk, where the principal 
proteinase chymosin in rennet modifies the casein micelles of the milk. κ-casein, 
which is a hairy-like peptide chain protruding the surface of the micelle, is cleaved 
very specifically by chymosin. When about 60-80% of the κ-casein has been 
proteolyzed, several of the repulsive forces between micelles are removed and 
the micelles start the form a gel (Fox and McSweeney, 1998). This process and 
the factors affecting it are described more detailed in section 2.2. The objective of 
PAPER III was to investigate rapid NIR analysis in the cheese vat (in-line) as a 
method for prediction of optimal cutting time. The objective of PAPER IV was to 
understand the change in NIR scattering properties of coagulating milk. 
 
Curd syneresis      
Rennet gels are very stable, and an essential process step of curd making is 
cutting the gel into cubes (called grains) to provoke syneresis (whey separation). 
Controlling the degree of syneresis is the cheesemaker’s main way of controlling 
the moisture content of the curd, which in turn affect the rate of the ripening 
process and moisture content of the final cheese product (Fox and McSweeney, 
1998). Thus, this process step is extremely important for the quality of the 
cheese. A detailed description of the syneresis process and the influencing 
factors is given in section 0. PAPER I investigates the use of Nuclear Magnetic 
Resonance (NMR) to quantify the extent of syneresis. The gel strength at cutting 
influences the progress of syneresis and optimal timing of cutting is therefore a 



Dairy Processes 
 

 

8 
 

critical manufacturing step. PAPER III investigates the use of in-line NIR for 
finding the right time of the cutting at the optimal gel firmness.  

2.2 Milk coagulation 

This section serves to introduce the reader to an understanding of the 
biochemical processes behind coagulation as well as some of the classical 
methods used to study the process. 

2.2.1  Structure of casein micelles 
The structure and behavior of the casein micelles in milk are highly related to the 
coagulation process. Approximately 74-78% of milk protein is casein, which is not 
present in true solution but as a suspension of micelles which has a hydrophobic 
core and a hydrophilic surface. Figure 3 illustrates the structure of a casein 
micelle. The hydrophilic surface is due to the presence of κ-casein, which is a 
long peptide (build from 169 amino acid units) representing 12-15% of the total 
casein. κ-casein plays an important role in relation to coagulation because the 
rennet enzyme chymosin is extremely selective towards Phe105 – Met106 bond in 
κ-casein. It is precisely this event of κ-casein that initializes rennet coagulation 
(Fox and McSweeney, 1998).  

 

Figure 3. Cross section of the casein micelle (Walstra et al., 2006). 

2.2.2  Colloidal stability of milk 

To understand why κ-casein cleavage induces coagulation, some colloidal aspect 
of milk are described. One of the phenomena in milk keeping casein micelles 
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from spontaneous aggregation is steric repulsion between micelles. Repulsion 
can occur when two micelles come close enough for their κ-casein hairy layers to 
interact. The reason for this repulsion is that the local concentration of polymers 
is increased, causing an increase in osmotic pressure. To counteract this process 
solvent is sucked into the gap between the micelles, which drives them apart. 
Steric repulsive forces can be quite strong if the polymer chain density is high 
(Walstra et al., 2006) 
Another closely related phenomenon is electrostatic repulsion. Particles in 
aqueous solutions most often bear an electric charge. In the micelle the surface 
potential is generally below 25 mV. At physiological pH the potential is, however, 
negative which causes the particles to repel each other, when they approach 
each other. As the pH decreases the surface potential approaches zero, which is 
one of main reasons why pH is a factor affecting coagulation rate.  
There are not only repulsive forces in the colloidal system of milk. In fact, Van der 
Waals attraction forces along with calcium binding complex formation are 
believed to be the dominating reasons for micelle aggregation (Lucey, 2003). 

2.2.3  Micelle Aggregation 

Micelles start to aggregate when the greater part (60-80%) of the κ-casein hairs 
have been cleaved so that the steric (and electrostatic) repulsive forces have 
been diminished sufficiently. The more κ-casein chymosin has removed the 
greater the rate of flocculation, because a greater number of free non-hairy sites 
are available. Casein denuded κ-casein is referred to as para-casein, depicted 
below.  

 
For aggregation to occur a sufficient Ca2+ concentration is also required because 
Ca2+ diminishes the electrostatic repulsion between micelles and Ca2+ ions can 
make bridges between negative sites in the para-casein micelles. In this process 
pH also plays an important role since lowering the pH will increase the Ca2+ 
activitiy (Walstra et al., 2006). 
Aggregation can also occur as a result of pH decrease without the presence of 
rennet. This happens when the milk pH is about 4.6, where the electrostatic 
repulsive forces are diminished, enabling micelle flocculation (Fox and 
McSweeney, 1998). The present project has not addressed acid coagulation and 
it will not be described further. 

Casein
rennet

Para‐ casein + macropeptide

Ca2+

Gel
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2.2.4  Kinetics of milk coagulation 
In literature there seems to be consensus that rennet induced milk coagulation is 
the result of three underlying stages  with different mechanisms (Figure 4): (I) 
initial enzymatic proteolysis of casein after which the altered casein micelles are 
referred to as para-casein; (II) subsequent aggregation of para-casein, where the 
aggregation rate depends on the concentration of free para-casein sites implying 
that this stage is dependent on rate and degree of casein proteolysis; III) gelation, 
formation of polymer networks where aggregated micelle strands are cross-
linking, also referred to as gel firming (Storry & Ford, 1982; McMahon et al., 
1984; Carlson et al. 1987a; Castillo et al. 2003b). 
 

 
Figure 4. Illustration of the rennet coagulation process. (I) κ-casein removal by chymosin 
(II) para-casein aggregation and (III) gel network formation (modified from Dalgleish, 
1993). 

PAPER III describes a study, where milk coagulation is measured in-line by NIR 
reflectance spectroscopy. Figure 5 shows that the three phases can be identified 
from NIR measurements. The transition between stages is however not easily 
identified, because head-and-tail of the successive stage in the process overlap 
to some extent. 
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Figure 5. First principal component scores from NIR reflectance measurement during 
milk coagulation; (I) κ-casein proteolysis, (II) para-casein aggregation and (III) gel 
network formation (PAPER III). 

Each of the three underlying coagulation phases (proteolysis, aggregation and 
network formation) is governed by its own reaction profile. PAPER III considers 
how to extract reaction kinetic parameters from NIR measurements of milk 
coagulation. The following sections serves to introduce the reader to the different 
rate equations that literature has suggested to explain the kinetics of each of the 
three phases.      
 
Kinetics of κ-casein proteolysis 
The proteolysis of κ-casein has been described by Michaelis-Menten kinetics 
(van Hooydonk et al. 1984) giving the rate of proteolysis by Equation 1: 
 

Equation 1    
[ ] [ ]
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Where [S] is substrate (κ-casein) concentration, Vmax is the maximum rate of 
proteolysis at infinite substrate concentration and Km is the dissociation constant 
of the enzyme-substrate complex. 
Although investigation of κ-casein proteolysis was not a special focus in the 
present thesis the proteolytic reaction causes a slight changes in NIR reflectance 
properties of milk. This is observed in Figure 5 (from PAPER III) where reflectance 
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increases slightly in the first 3-4 minutes after rennet addition. The same 
observation was made by Scher and Hardy (1993) using NIR reflectance and 
simultaneous measurements of casein micelle size distribution by quasi-elastic 
light scattering. They found that during a short initial period after rennet addition 
the micelle size distribution shifted slightly downwards and this was accompanied 
by a slight change in reflectance. Thus, the change in light scattering properties 
of the milk observed in the initial phase (Figure 5) seems to reflect the micelle 
size reduction by κ-casein cleavage. 
  
Kinetics of aggregation and gel formation 
In addition to κ-casein proteolysis PAPER III considers real-time modeling of the 
two next phases of the milk coagulation. The proposed kinetic models explaining 
micelle aggregation and gel formation will be reviewed in this section. Different 
suggestions have been made on which type of kinetics govern the aggregation 
reaction. Scott Blair (1970) stated that the reaction can be described by the 
autocatalytic logistic function, while other studies argue that  second-order 
reaction kinetics are more appropriate to describe aggregation (Carlson et al., 
1987b; Castillo et al., 2003b). After a certain extent of para-casein aggregation, 
studies have shown that the coagulation kinetics are altered to become a first 
order reaction (Carlson et al. 1987c; Castillo et al., 2003b; Niki et al. 1994). The 
onset of first order kinetics has been interpreted as the gel point, defined as the 
point where network formation starts by cross-linking of polymer micelle strands. 
Carlson et al. (1987d) pointed out that to apply a network formation model based 
on first order reaction kinetics, it is necessary to determine the time at which 
“gelation” occurs. 

 
Figure 6. Change in concentration of reactant A with time for reactions of order 0, 1 and 
2 (left) and the logistic function (right). 
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Table 1 provides an overview of rate equations and Figure 6 shows how the 
reactant concentration changes for reaction order 0, 1, and 2 and the logistic 
function. Thus, whereas the zero order reaction rate is independent of the 
concentration of the reactant, first and second order reactions are dependent on 
reactant concentration (Walstra, 2003). 

Table 1. Overview of rate equations. 

Order  Reaction type Rate equation Integrated form 

0 A → B [ ] k
dt
Ad
=−  [ ] [ ] ktAA =−0  

1 
 
A → B 

[ ] [ ]Ak
dt
Ad
=−  

 
[ ] [ ] )exp(0 ktAA −⋅=  

 
2 

 
A + A → AA 

[ ] [ ]2Ak
dt
Ad
=−  [ ] [ ] kt

AA
=−

0

11
 

 
 Autocatalytic 

growth/reduction 
[ ]

⎟
⎠
⎞

⎜
⎝
⎛ −=−

K
AkA

dt
Ad 1

 ))(exp(1
][

1ttk
KA t −⋅−+
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2.2.5 Factors affecting kinetics 
In this paragraph the main process factors influencing kinetic profiles for the  
different coagulation stages are discussed. 
   
Factors that affect the rate of κ-casein proteolysis 
The effect of temperature is relatively small and corresponds to the Brownian 
motion (the random diffusion) thereby increasing the encounter frequency 
between rennet molecules and the κ-casein. 
pH has a large impact since lowing the pH increases the affinity of the rennet 
enzyme to the micelles, which increases the reaction rate. At a too low pH the 
reaction rate is smaller presumably because the elevated affinity is so high that it 
takes some time for the enzyme to release again. 
 
Factors that affect the rate of aggregation 
One of the reasons why milk coagulation is a complex process is that it involves a 
chain of interrelated reactions. An example of this complexity is para-casein 
aggregation that is depended on the degree of κ-casein proteolysis. It has been 
estimated that aggregation starts when 60–80% of κ-casein has been 
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proteolysed (Carlson et al. 1987a, b; Dalgleish, 1993). Castillo et al. (2003b) 
estimated that at the time of maximum aggregation rate (tmax) 78% of κ-casein 
has been proteolyzed. 
Temperature has a big impact due to the increase of Brownian motion increasing 
the encounter frequency between para-casein micelles. E.g. at 20oC aggregation 
does not occur at all. 
Ca2+ concentration influences aggregation rate a lot because besides Van der 
Vaal attraction forces a sufficient Ca2+ concentration is required for two reasons: 
Ca2+ diminishes the electrostatic repulsion between micelles and Ca2+ ions can 
make bridges between negative sites in the para-casein micelles. 
pH influences the aggregation rate in two ways: lowering pH increases Ca2+ 
activity and  lowering pH increases affinity of the enzyme causing proteolysis to 
occur in concentrated regions of the micelle surface as opposed to random 
surface positions. In this way a free para-casein site become available sooner 
than when random surface proteolysis at higher pH occurs. Consequently, it has 
been observed that aggregation started at different degrees of proteolysis 70%, 
60%, and 40% at pH values of 6.6, 6.2, and 5.6 respectively.  
 
Factors affecting rate of gel formation 
Temperature like in the other stages the temperature has an effect on Brownian 
motion.  As a consequence of this the rate of gel formation is influenced. At low 
temperatures the joints between the particles of the gel are stronger than at high 
temperatures. Presumably, this is because the micelles are more swollen at low 
temperatures, which leaves a larger connection area with more bonds.   

2.2.6  Methods of evaluating milk coagulation 
Many different instruments and procedures have been developed with the aim of 
measuring milk coagulation or in some way get an indication of how milk gelation 
proceeds. There seems to be three motivations behind developing the methods: 
- To test and optimize critical factors influencing coagulation such as rennet type 
and concentration, calcium concentration, temperature, pH, etc. 
- To understand the underlying mechanisms of milk coagulation. 
- As a process analytical tool with the aim of being able to act in near real-time 
and hereby optimize product quality (see Chapter 3).     
 
This section of Chapter 2 provides an overview of classical reference methods 
used to evaluate coagulation. These methods have been used as reference for 
the in-line sensor methods described in Chapter 3.   
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The cheesemakers finger or knife test 
Although a single point test method, the cheesemakers knife test is still the 
dominating method used to evaluate gel firming on the production floor. It is used 
in deciding when a gel is ready to be cut. The cheesemaker makes a slight cut in 
the coagulum with her/his finger or a knife and lifts the curd to see if there is a 
clean break and if clear whey is exuded. This indicates that the coagulum is 
ready for cutting (Lucey, 2002). This subjective method has the obvious 
disadvantages of requiring training and being a person-dependent source of 
variation. Bearing in mind that timing of cutting influences both moisture content 
and loss of curd fines, it seems to critical process step with room for 
improvement.   
 
The Berridge methods or visual clotting 
One of the simplest methods of evaluating milk coagulation semi-objectively is 
the method developed by Berridge (1952). It is also recognized as a standard 
method for testing rennet activity (IDF, 1992). Figure 7 schematically shows the 
setup used. The clotting time is determined by placing the milk in a tube, which is 
rotated in a water bath; a fluid film is initially formed inside the rotating tube and 
the clotting time is defined to be the time when when flocs of protein are visually 
observe in the film.  

 
Figure 7. Setup in the Berridge clotting time method, where milk with rennet added is 
rotated in a tube until visible flocs are observed (Berridge, 1952). 

Formagraph 
Change in drag force is the measurement principle of the Formagraph, which is 
an older off-line instrument that is still widely used in dairy research (McMahon 
and Brown,1982; Heino et al., 2009 ). The output of the Formagraph only comes 
on paper, and an example is shown in Figure 8. The time when the distance 
between two traces is 20 mm is considered a reference point in gel firmness 
(McMahon and Brown,1982).  
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Figure 8. A typical output from the Formagraph. 

 
Rheological methods 
Rheological methods are widely used to understand the progress of milk 
coagulation. In PAPER I the effect of gel strength at cutting on syneresis rate was 
studied by TD-NMR. In order to compare the effect of different levels of gel 
firmness on syneresis, rheological measurements were carried out 
simultaneously by Free Oscillating Rheometry (FOR) using a ReoRox4 
instrument.  
Coagulating milk exhibit viscoelastic properties, which means that it cannot be 
described only as a Newtonian liquid (ideal viscous) nor as Hookean solid (ideal 
elastic). For a Newtonian liquid all the energy is lost as heat upon deformation, 
and for a Hookean solid all energy is stored upon deformation (Gunasekaran and 
Ak, 2003). Milk gels exhibit both an elastic behavior described by a so-called 
storage module (G’) and a viscous behavior described by a loss module (G’’). 
Low amplitude oscillation experiments can estimate the metrics G’ and G’’ by 
applying a small amplitude of strain τ to the sample, measuring the amplitude of 
the resulting stress γ (Equation 2 and Equation 3): 
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γ
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Where δ is the phase angel i.e. the delay between applied strain and measured 
stress (Gunasekaran and Ak, 2003). In PAPER I 20 milk gels were cut at three 
different levels of G’ in order to investigate if gel strength at cutting influenced 
syneresis. At some point during milk coagulation G’ will be equal to G’’, which is 
referred to as the gel point (Gunasekaran and Ak, 2003). Figure 9 shows the 
typical changes in viscoelastic moduli G’ and G’’ of coagulating milk in PAPER I. 
In this paper the viscoelastic moduli were determined in using FOR (ReoRox4) at 
an oscillation frequency of 10 Hz. The attentive reader might have noticed that 
moduli shown in Figure 9 are considerably higher (up to 600 Pa) than classical 1 
Hz measurements. This is because the strain-to-stress ratio is frequency 
dependent i.e. increase at a higher frequency (Gunasekaran and Ak, 2003).  

 
Figure 9. Changes in the storage (G’) and loss (G’’) moduli during rennet coagulation of 
milk. The gel point is identified as the cross point between G’ and G’’. 
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2.3 Curd syneresis 

Syneresis is the expulsion of water and water soluble components from milk curd. 
During storage of dairy products e.g. yoghurt or cream cheese syneresis is 
undesirable, but in making cheese syneresis is an essential step. Since syneresis 
regulates the water content of the cheese, it is useful to understand and quantify 
the syneresis as a function of process conditions and milk properties. The 
ultimate result of syneresis is reflected in the water content of the cheese after 
pressing. Determining this quantity, however, yields little understanding. It is 
much more interesting to follow syneresis while it is going on, but this is not easy 
to do in a reliable and unbiased way. The research carried out in this thesis is 
concerned with estimating syneresis by TD-NMR (PAPER I). This chapter 
focuses on syneresis: the fundamental mechanisms, factor effects, production 
aspects, and especially methods of estimating syneresis.  

2.3.1 Mechanisms 
A milk gel that is left undisturbed will usually not show any apparent syneresis 
The aggregation of para-caseins forms a particle network with relatively large 
pores consisting of whey and fat globules. On average a micelle will link to three 
other micelles, but it may form junctions to additional micelles since its total 
surface area is reactive. As a consequence of this a higher bond energy is 
obtained and thereby a driving force is provided. However, for most parts the 
formation of new junctions are sterically hindered as the micelles are immobilized 
in the gel network. Nevertheless the immobilization is not complete as Brownian 
motion can be exhibited by some strands of the micelles. This type of motion will 
lead to occasional creation of new junctions, which will induce a tensile stress in 
the strands involved. This in turn is may lead to the breakage of such a strand 
(Figure 10, Dejmek et al., 2004). The expected rate at which water leaves a milk 
gel when cut (i.e. syneresis) has been found to follow first-order reaction kinetics 
(Fox, 1998), which implies that the rate is dependent on the concentration of 
water in the gel. During enzymatic coagulation of milk water is kept in the gel as 
whey. The major part of the water, found in the interstices of the gel, is easy 
released if the interstices open. Another part of water is kept by capillary forces 
between the casein micelles whereas a third part is chemically bound hydrate 
water. Removing capillary and bound water is difficult and the majority of this 
water will pertain in the remainder of the cheese process (Dejmek et al., 2004). 
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Figure 10. Illustration of strands of the para-casein micelles forming new links, causing 
breaking of a strand elsewhere in the gel network (reproduced from Walstra, 2006). 

2.3.2 Factors affecting curd syneresis 
Cutting the milk coagulum in dices (curd grains) is the event that affects 
syneresis most. After cutting, the coagulum is referred to as curd. There are 
many of factors influencing syneresis, which makes the process difficult to 
understand and control. The main factors are gel firmness at cutting, surface area 
of the curd, stirring, pH, temperature and milk composition.   
If the coagulum is weak when being cut it will synerese slowly at first but then 
rapidly increase. More important is that curd fines (small fat and protein particles) 
are released into the whey decreasing the cheese yield. As a rule of thumb, the 
shear modulus should be 30 Pa at cutting (Walstra et al., 2006). Optimization of 
cutting time using in-line NIR measurements is studied in PAPER III and 
described in detail elsewhere in the thesis (3.4.1).  
 
Syneresis rate is proportional to the area of the surface between the curd and the 
whey. Therefore syneresis is enhanced by cutting the gel in cubes, which 
increases the surface area. This implies that smaller grains synerese faster than 
large. Hence, if there is a large variation in the curd grain size it can cause 
moisture inhomogeneity in the final cheese. Soft-type cheeses like Camembert 
are cut in large cubes, which lead to high moisture content. A cheese like 
Emmentaler is cut in smaller cubes, which lead to low moisture content (Walstra 
et al., 2006). Stirring induces pressure, which make the curd grains collide and 
thereby condense each other. This implies that increasing the stirring speed 
increases syneresis rate. Stirring also prevent sedimentation of the grains 
(Everard et al., 2007). It is experimentally observed that if pH is decreased the 
syneresis rate increases, but a clear explanation for this effect has not been 
found. By increasing the temperature the rate of syneresis is also increased. 
Finally, milk composition also has an effect, since a higher fat content causes the 
curd can shrink less, thereby retarding syneresis.   
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2.3.3 Analytical methods of evaluating syneresis  
The most simple methods of evaluating syneresis are based on determining the 
weight or volume of the curd and whey. One way is simply to determine the 
volume of whey drained off. The result is very depended on conditions regarding 
curd handling, since it is often hard to standardize the external pressure applied, 
which therefore can easily give biased results (Pearse and Mackinlay, 1989). In a 
study by Lawrence (1959) it was demonstrated why measuring the volume or 
weight of whey and curd is difficult. It was observed that the rate of syneresis 
was affected by the volume of whey, surrounding curd particles and that when 
removing curd from whey, there was an increase in the rate of syneresis. 
Because of this numerous studies have tried to develop methods that can 
measure syneresis in situ, without physical interference.   
 
Dilution of tracers 
In order to avoid physical handling of curd, syneresis has been studied by adding 
a tracer compound, right after cutting, and then following the dilution of the tracer 
as more and more whey is expelled from the curd. One requirement for tracer 
methods to work is that the tracer compound does not affect the syneresis. Blue 
Dextran is the most used tracer compound. It has a large molecular weight (2⋅106 
Da), which prevents it from diffusion into and absorbing to the curd. Tracer 
monitoring is usually done by measuring the visual absorbance, where e.g. Blue 
Dextran has a maximum at 620 nm (Talens et al., 2009). Another problem is to 
ensure homogenous distribution of the tracer without disturbing the curd with too 
excessive mixing (Pearse and Mackinlay, 1989). As an alternative approach 
Castillo et al. (2006) used fat content in the whey as an intrinsic tracer compound 
and measured dilution during syneresis using a fiber optic spectrometer in the 
spectral range 300–1100 nm. The obvious requirement for this approach is that 
all the fat is expelled at the start of syneresis and not continues during the 
process.   
 
Time Domain NMR  
Several TD-NMR relaxation studies have been reported on milk gel formation and 
syneresis (Hinrichs et al., 2007; Lelievre & Creamer, 1978; Tellier et al., 1993). 
The effect of milk gel syneresis on water proton relaxation has so far been 
studied on undisturbed gels (without cutting) that only exhibit spontaneous 
syneresis i.e. syneresis caused by pressure being built up by network formation 
within the gel. This is different from actual cheese manufacturing, where the 
coagulum is cut. In PAPER I syneresis, induced by cutting, was studied using 
TD-NMR. The results showed that after cutting the curd-whey system contained 
three types of water (Figure 11). The whey fraction was easily identified by its 
high T2 value (1.2 - 2 s, not shown) and the approach enable continuous 
quantification of the water inside and outside the curd. The two remaining water 
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populations originates from water inside the curd; one population presumably 
being water tightly associated with the polymer nuclei in the curd network, and 
the other population being water trapped between the polymers in some way e.g. 
by capillary forces. In cheese production a typical target curd moisture of 55% is 
desirable (Walstra et al., 2006), but this is not possible to measure. In the 
experiment shown in Figure 11 the water content of the curd can be estimated as 
~60% after 110 minutes. At the present state of technology TD-NMR remains a 
laboratory method, but perhaps future advances will enable on-line installations, 
where the advancement of rapid curd moisture quantification could be utilized.    

 
Figure 11. The evolution of three types of water during coagulation and subsequent 
syneresis quantified by TD-NMR. Broken line indicates time of cutting.  

2.4 Summary 

In this chapter cheese production has been described from different perspectives. 
The structure of the casein micelle is essential for understanding coagulation of 
milk. Rennet coagulation of milk is the result of rennet destabilization of repulsive 
forces in casein micelles. Destabilization of micelles in the presence of calcium 
will eventually cause micelles to aggregate and subsequently form a large 
polymer network. The underlying coagulation reactions are κ-casein proteolysis, 
micelle aggregation and network formation and these reactions are governed by 
their own kinetics. The coagulation process is complex because factors like 
temperature, pH, Ca2+ and milk composition affect kinetics of each underlying 
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reaction in different ways. Classical methods of evaluating milk coagulation 
include the knife test, Berridge clotting method, Formagraph and rheometry.  
Syneresis is the expulsion of whey from milk curd, and syneresis step is the main 
way for the cheese producer to control moisture content of curd and the final 
cheese. Like coagulation, syneresis is highly dependent on a number of factors: 
gel firmness at cutting, temperature, pH, stirring speed, cube size and milk 
composition. Measuring syneresis is challenging, partly due to the heterogeneity 
of the curd-whey system, and partly because physical handling of curd in itself 
induces syneresis causing biased measurements. Methods include volumetric 
measurements, tracer dilution and TD-NMR. Results of PAPER I showed that 
TD-NMR can quantify syneresis non-invasively and in real-time. 
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CHAPTER 3 
PROCESS ANALYTICAL 

TECHNOLOGY 
3.1 Introduction 

The focus of this thesis has been on analysis of dairy processes. The aim has 
been to understand the fundamental molecular mechanisms, but foremost with 
the starting point of being able to identify, measure and control the critical-to-
quality attributes and their relation to end product quality. The key source of 
inspiration for this working approach has been ideas from Process Analytical 
Technology (PAT). The concept PAT can be boiled down to strategies for 
optimizing processes through timely measurements, control regimes, robust 
process design and data handling. To completely describe what PAT covers is 
beyond the scope of this thesis, but this chapter will provide the reader with 
conceptual elements, basics of control theory and some examples of PAT 
applications in the dairy industry.  
 

3.2 What is PAT? 

Process analytical chemistry (PAC) or process analytical technology (PAT, Box 
1) originates from a specialized form of analytical chemistry over 70 years ago, 
and has been practices ever since to monitor activity in a process. However, what 
once was a sub-category of analytical chemistry or measurement science has 
developed into a much broader field of process understanding and control 
(Workmann et al., 2009). The idea of monitoring processes by means of 
measurement technology is not new (McMahon and Wright, 1996), and 
traditionally PAT was implemented in order to move the analytical instrumentation 
from the laboratory to the production site and thereby get rapid on-line and in-line 
analyses (Koch, 2006). The importance of real-time measurements became 
clear, as it was realised that taking samples and transporting them to an 
analytical laboratory was costly, but it also resulted in inaccurate representation 
of the process, since the dynamics of the process were often missed because of 
the time required to perform the measurement. The field of process analytics has 
matured and it has been broadened to include all aspects of a process in order to 
enhance productivity, quality, and for environmental purposes. The developments 
have made PAT a multidisciplinary field that involves combining analytical 
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chemistry, engineering, biology, process control and technology with multivariate 
data analysis. 
 

 
 
In September 2004, the FDA published the PAT guidance document where a 
short definition of PAT was given (Box 1). Together with this guidance document 
FDA has trained a set of inspectors in PAT. This team of inspectors performs 
operational visits at pharmaceutical sites and approves PAT applications 
throughout the world. 
 

3.3 Process Control Theory 

A key element in improving any production is to gain control of the process. From 
a conceptual point of view a manufacturing process can be controlled as 
illustrated in Figure 12. Some raw materials generate an end-product or 
intermediate product under the influence of some controlled and uncontrolled 
parameters. Prior to introducing any form of control action a robust process is 
designed either based purely on traditional practice or by a systematic 
investigation of controllable factors (design of experiments) to find the optimal 
process settings. Different types of control strategies can be introduced to further 
optimize the process output (minimizing bias and/or variation compared to the 
target output/product properties). Feed-back control is the most common form of 
control where the actual output is compared with a target and control actions are 
taken to correct differences. In feed-forward control the process is adjusted 
according to information about the process input. To the authors knowledge this 
form of control is rarely used as producers prefer to standardize the input and 
keep the process parameters constant (like a recipe). 
 

Box 1.The definition of PAT framework (FDA, 2004): 

“A system for designing, analyzing, and controlling 
manufacturing through timely measurements (i.e., during 
processing) of critical quality and performance attributes of raw 
and in-process materials and processes with the goal of 
ensuring final product quality.” 
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Figure 12. Control concepts. 

 
 
In model-predictive control the actual process is continuously compared with the 
optimal process and control actions are taken to correct the differences. Model-
predictive control requires some kind of measurements reflecting the state of the 
process. Model-predictive control is especially suitable for batch processes or 
processes that in some way are dependent on time (with a slow response to 
control actions). For fast responding continuous processes (near independent of 
time), model-predictive control is the same as feed-back control. PAPER III 
investigates NIR reflection as a method for monitoring for milk coagulation. There 
is an optimal end-point in the coagulation process. The time profile of NIR 
measurement reflects the state of the process and could therefore be used a 
decisive tool for end-point detect. End-point detection is a special variant of 
model-predictive control; because it only offers one control action being when the 
process should be terminated.   
Often processes cannot be completely controlled due e.g. biological variation in 
raw materials. For instance in a process like cheese manufacturing depending on 
a large number of factors such as slight variations in milk composition, starter 
activity, rennet activity or temperature can alter the process dynamics substantial. 
IN such cases model predictive control is especially relevant as it allows for 
detection and correction of the process.        
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3.4 Potential and present PAT application in the dairy 
industry 

3.4.1 In-line prediction of cutting  
In modern dairy manufacturing there is an increased interest in automation of 
processes, while maximizing the yield at consistent quality. Timing of milk 
coagulaum cutting in cheese manufacture can be critical to the yield and quality 
of the final cheese. An industrial study of 80 batches showed that the loss of curd 
fines (curd particles) was high if the gel was cut too early (Figure 13). In the same 
study it was estimated that up to 0.7% (w/w) milk protein and fat could be lost due 
to early cutting, which must be considered a substantial economic loss. Longer 
cutting times result in slightly smaller loss, but the disadvantage of postponing the 
cutting is reduced production throughput (Ten Grotenhuis, 1999). Furthermore, 
postponing the cutting step increases the risk that the gel network becomes too 
strong. A too strong gel network withholds moisture (hinders syneresis), which in 
turn results in high moisture cheeses with undesirable sensory and 
microbiological effects (Payne et al. 1993). Thus, timing of cutting is indeed a 
critical-to-quality step in cheese manufacture, but at present the dominating tool 
available for cheesemakers is the knife test. While the test is based on the 
cheesemaker’s solid experience, it is still person dependent and does not enable 
automation of the process.   

 
Figure 13. Curd fines in whey depending on gel strength (measured by DWS) and 
renneting time in cheese manufacturing (reproduced from Ten Grotenhuis, 1999). 
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As timing of gel cutting is a critical parameter for cheese yield and quality, many 
researchers have searched for methods to predict this optimal cutting time. 
O’Callaghan et al. (2002) reviewed sensor techniques for monitoring coagulum 
formation with the main emphasis on the ability to optimal predict cutting in real-
time.  
 
Reference methods for optimal cutting time 
Any sensor potential for predicting optimal cutting time must be evaluated against 
some sort of reference of what optimal is. The optimum cutting time can be 
defined as the point where curd fine loss is minimized while syneresis rate is 
maximized. Quantifying the optimal cutting point is difficult, because measuring 
fine loss and syneresis rate, while at the same time controlling all influencing 
factors, is far from trivial. It is difficult to pin point the optimal cutting point, since 
the coagulation and syneresis processes are complex multi-factorial processes. 
Therefore, researchers have compared and calibrated sensors against various 
reference methods. These references methods include Berridge clotting method, 
Formagraph, low amplitude dynamic shear measurements and the knife test, 
which were described earlier in this thesis. Besides the knife test, these reference 
measurements are made on grab samples while the sensor measures in the 
cheese vat. This of course demands that all conditions affecting coagulation are 
strictly standardized between the reference method and the sensor method. 
Variations in milk composition are often handled in such studies by mixing rennet 
with a bulk volume of milk, which is then immediately distributed between the 
cheese vat with in-line sensor and the reference apparatus. Dynamic shear 
measurement has an advantage over the other three reference methods as it 
measures a rheological property in engineering units (Pascal), while the other 
methods gives an empirical measurement which is influenced by viscous and 
elastic properties. Table 2 provides an overview of studies investigating 
performance of in-line sensors versus reference methods for predicting optimal 
cutting time.  
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Table 2. Studies of in-line sensors for predicting optimal cutting time found from 
reference methods.    

Study In-line sensor(s) Reference method 

Payne et al. (1993) NIRr (860 nm) Formagraph 

Laporte et al. (1998) NIRr (1100-2500 nm) Thermal probe 

Crofcheck et al. (1999) NIRr (880 nm) Plant operators (knife test) 

 

O’Callaghan et al. (1999, 
2000) 

NIRr (880 nm), NIRt (680 ,850 nm), 
hot wire, torsional vibration,  
tunning fork 

Rheometry 

Passos et al. (1999) Hot wire Plant operator (knife test) 

Castillo et al. (2000, 2002, 
2003) 

NIRr (880 nm) Berridge clotting method 
Knife test 

Castillo et al. (2005) NIRr (880 nm) Plant operators (knife test) 

Mertens et al. (2002) NIRr (880 nm) Rheometry 

r Reflectance; t Transmission  
 
Hot wire sensor 
 
Before describing the principles of the most successful sensor for prediction of 
cutting time, NIR reflection, the hot wire will be briefly discussed. An instrument 
that has already been installed in-line in an industrial production is the hot wire 
sensor (Lucey, 2002). Figure 14 shows a schematic illustration of the sensor and 
a graph of the response during coagulation. The sensor takes advantage of the 
fact that the thermal conductivity changes in coagulating milk. A constant current 
is passed through the wire, generating heat which is dissipated readily while the 
milk is liquid. As milk coagulates the heat transfer decreases and the temperature 
of the wire steadily increases (Hori, 1985). Calibration models between the 
temperature time profile and optimal cutting time have shown good predictive 
performance at tightly controlled conditions i.e. fixed temperature and milk 
composition. That said, O’Callaghan et al. (1999) found that the hot wire is only 
sensitive to the early part of coagulation (proteolysis and aggregation), but not 
the later part (network formation). This represents a problem because e.g. milk 
protein variation affects the later part of coagulation. 
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Figure 14. Illustration of the hot wire sensor and typical measurement traces of milk 
during coagulation with different levels of protein content (reproduced from O’Callaghan 
et al.,1999).   
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NIR reflection sensors 
 
Sensors using NIR reflection are by far the most studied method for cutting time 
prediction. A study by Castillo et al., (2005) will be used to illustrate the main 
principle behind the cutting time prediction using NIR reflection. In this the 
reflection sensor was placed in the cheese vat from the top and connected to a 
spectrometer with optic fibers (Figure 15). As the milk coagulate the light 
scattering properties change; an exact explanation has yet to be given. There 
seems however to be consensus that light scattering is a function of size of 
casein micelle aggregates, but also the geometrics of the formed gel network 
changes (O’Callaghan et al., 2002). PAPER IV discusses NIR scattering 
properties of coagulating milk.     
 

 
Figure 15. Schematic of fiber optic sensor installed in a cheese production  (Castillo et 
al., 2005). 

 
In the study of Castillo et al. (2005) reflection at a single wavelength is used. A 
representative result of (short wave) NIR single wavelength measurements of 
one batch is shown in Figure 16. As input for cutting time prediction models 
various time- and response-based parameters are extracted from the NIR time 
profile and derivatives of the profile. The prediction models are made by 
regressing sets of time- and response-based parameters X (predictor data) 
against corresponding cutting times tcut (response) 

Equation 4    Xbtcut =  

Where b is the regression vector estimated by multiple linear regression. Some of 
the later studies of predicting cutting time using NIR (Castillo et al., 2003a, 
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2005;Mertens et al., 2002) pointed out that none of the time- and response-based 
parameters extracted from reflectance profiles describe changes occurring in the 
later part of milk coagulation. This is unfortunate as variation in protein content of 
milk have a marked effect of firming rate in the late stage (network formation) of 
milk coagulation. Findings of Castillo et al. (2003) showed that the Standard Error 
of Prediction (SEP) of 6.2 minutes (CV = 17.0 %) could be reduced to a SEP of 
2.5 minutes (CV = 6.9%) by adding a protein concentration term to Equation 4. 
Likewise Castillo et al. (2005) showed that a SEP of 1.4 minutes (CV = 5.0 %) 
could be reduced to a SEP of 1.1 minutes (CV = 3.9%) by adding a protein 
concentration term. If an accurate value of milk protein content is readily 
available, it is an advantage to include this information for cutting time prediction. 
However, this is not always the case and not easy to implement in dairy 
automation systems.  
          

 
Figure 16. Typical NIR (880 nm) reflection profile during  milk coagulation (R), the first 
derivative (R’ and the second derivates (R’’). Time-based (tmax, t2max, t2min, tcut) and 
response-based (Rmax, Rcut) parameters are extracted from the profile and derivatives.  

 
In the present thesis a study (PAPER III) is conducted for extraction of 
parameters of NIR measurements that capture the kinetics of the entire 
coagulation period up to cutting. During a lab-scale rennet coagulation of milk 
NIR reflection spectra (1000 – 1900 nm) were recorded using a sensor 
connected to a FT-NIR spectrometer by fiber cables. Typical spectra and their 
subsequent conversion in to one sample/time score by PCA is shown in Figure 17. 
The development in PC1 scores is clearly a function of coagulation properties 
and the development can be divided into three stages (I-III) representing κ-casein 
proteolysis, micelle aggregation and network formation, respective. Figure 17 
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(bottom) shows that measurements in stage II follow an S-shape and in stage III 
an exponential decrease. The observation of these two shapes led to the 
formulation of a two-stage model for describing the measurement profile (Box 2).    
 

 
Figure 17. Top: NIR spectra recorded during milk coagulation. Bottom: Principal 
component scores during milk coagulation time. (I) κ-casein proteolysis, (II) para-casein 
aggregation and (III) gel network formation (PAPER III). 
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The two stage model showed an almost perfect fit to the experimental data 
(Figure 18);it seems to fully capture the coagulation kinetics. In PAPER III an 
automated algorithm was made, designed to extract the two stage model 
parameters while NIR measurements are made of the coagulation process. The 
modeling approach used in PAPER III for extracting profile parameters differs 
from Castillo et al. (2005) as it takes advantage of the full time trajectory of 
measurements. Consequently, more information (through model parameters) can 
be used for prediction of cutting time. Future studies must compare the two ways 
of extracting information from the time trajectory on cutting time prediction.           

 
Figure 18. Fit (solid lines) of the two stage model to NIR measurements (o) acquired 
during coagulation. The vertical line denotes the stage transition time (PAPER III).   
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3.4.2 On-line standardization of milk  
The motivation for on-line milk standardization is to minimize variation in fat and 
protein content in dairy products. No standardization or manual standardization 
based on at/off-line analysis will result in higher compositional variance (Figure 
19, curve 1). By on-line standardization the variation is reduced (curve 2), which 
makes it possible to move closer to the limiting values (curve 3; Ellen and Tudos, 
2003). By moving the average closer to the specification limit, milk components 
like fat, protein and lactose can be saved resulting in a better production 
economy. 
 

 
Figure 19. Effect of improving standardisation accuracy on the economy of production 
(reproduced from Ellen and Tudos, 2003). 

The principle in the actual on-line standardization is that the whole milk 
composition is rapidly determined by on-line FT-IR (by-pass) and feedback 
control of the flow of various feeding streams (skim milk, cream and UF 
permeate) ensures a constant fat and protein content (Fagan et al., 2009). 
Depending of the utilization of the milk different standardizations are used. Milk 
used for milk powder is standardized to a certain ratios of fat-to-total solid and 
protein-to-total solids as this will determine the resulting fat and protein content  
of the powder coming out of the drier. Milk for cheese manufacture is 
standardized to a certain ratio of fat-to-protein content as this is this ratio 
determines the fat and protein composition of cheese.  
 

 
Figure 20. On-line FT-IR process instruments for milk standardization measuring fat, 
protein and lactose and dry matter (Foss, 2010).  
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3.4.3 On-line vs. off-line determination of milk powder composition  
Many different powders (milk, skim milk, whey and other special powders) are 
manufactured in the dairy industry. Powders are mainly produced by spay drying 
or in fluid bed driers. The water content of these powders is very important as 
there are specifications with regard to maximum amount of water that must be 
obeyed. However, it is profitable to make products which narrowly match the 
specifications. In order to achieve this a rapid and precise method for analysis is 
required. In Holroyd (2002) it is demonstrated that an on-line analysis of milk 
powders enable the moisture content to be closely controlled. A NIR sensor was 
applied in a fluid bed drier and by mean of a grab arm a sample is collected and 
presented to the sensor. In Figure 21 on-line NIR results are compared to an off-
line reference method (IDF 26A:1993). Generally the two methods match, but as 
indicated there is one time region where a serious deviation from the target value 
occurs. This deviation is not captured by the reference method as a result of low 
sampling frequency. In addition it takes more than 3 hours for the results of 
reference analysis to become available, whereas the NIR measurement provides 
data instantaneously; the economically advantages are obvious. 

 
Figure 21. Comparison of on-line NIR and reference (IDF 26A:1993) measurements of 
moisture in milk powder (Holroyd, 2002). 

Milk powder is also used for baby formula. Recently, several thousand babies in 
China became ill after being fed formula milk powder contaminated with industrial 
chemical melamine. In order to avoid this kind of adulteration and ensure milk 
product safety there is a need for a simple, accurate, rapid and low-cost 
technique to detect contaminants in milk. In Lu et al. (2009) showed that a NIR 
together with LS-SVM showed promising results for fast detection of melamine in 
milk products. 
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3.4.4 At-line determination of butter composition  
In-line options are not always preferred over at-line solutions. Sometimes at-line 
measurements are sufficient and cheaper than in-line (Holroyd, 2002). An 
example is determination of moisture, salt and fat in butter which takes less than 
one minute is shown in Figure 22. 

 
Figure 22. At-line determination of moisture, salt and fat in butter (Holroyd, 2002) 

3.4.5 On-line determination of raw milk composition from individual 
cows  

For the dairy business milk composition is very important in all stages. At farm 
level it is essential to be able to determine the milk composition in order to 
manage dairy herds efficiently e.g. the lactose content can be used to detect 
mastitis (an udder decease), which also reduce fat and protein content of milk 
(Tsenkova et al., 2001). Therefore, it would be to advantage for the farmer if the 
composition of milk from individual cow could be determined on-line during 
milking. Both IR and NIR technology can be used to determine milk composition, 
and therefore an experimental on-line NIR sensing system for real-time 
assessment of milk quality during milking has been constructed (Kawamura et al., 
2007). The system was installed next to the milk bucket of the milking machine 
allowing a continuous flow of milk to be measured by the NIR sensor. PLS 
calibration models were developed for fat, protein, lactose and other key 
constituents (Kawamura et al., 2007). 
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3.4.6 At-line determination of raw milk composition directly at the milk 
tanker  

All raw milk is transported from the farms to the dairies by milk tankers. When the 
milk tanker arrives at the dairy it typically contains mixed milk from five to ten 
different farms. For payment schemes to the farmer, it is interesting to know the 
composition of the milk from the individual sources. A way to accomplish this is to 
construct a system to determine milk composition during the transportation into 
the milk tanker. In a feasibility experiment milk samples were collected before 
going into the milk tanker, and NIR and Raman measurements were carried out. 
The results from these measurements were compared to results from reference 
analysis, and PLS calibrations models for all the major milk constituents were 
constructed. The set-up is shown in Figure 23. 
 

Figure 23. Measurement of milk composition at the farm. Samples collection by the 
author from milk tanker, NIR and Raman measurement in at the farm, and prediction of 
seven milk compositional parameters. 

3.5 Summary 

In this chapter the concept of PAT has been introduced as defined by FDA 
(2004). Control concepts feed-forward, feed-back and model predictive control 
have been described. Over the last couple of decades the dairy industry has 
gradually recognized the benefits PAT. A potential PAT application is in-line NIR 
measurement of milk coagulation and prediction of optimal cutting time. Several 
lab and industrial-scale studies have demonstrated the feasibility of NIR 
spectroscopy as a tool for predicting optimal coagulum cutting time. The 
approach has been to regress indices from the time profile of NIR measurements 
to optimal cutting time. Unfortunately, this approach does not capture kinetics late 
in the coagulation phase. PAPER III demonstrated an alternative approach of 
extracting information from NIR coagulation profiles, capturing the kinetics of the 
entire coagulation phase up to cutting. Rapid on-line IR measurements of whole 
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3.4.6 At-line determination of raw milk composition directly at the milk 
tanker  

All raw milk is transported from the farms to the dairies by milk tankers. When the 
milk tanker arrives at the dairy it typically contains mixed milk from five to ten 
different farms. For payment schemes to the farmer, it is interesting to know the 
composition of the milk from the individual sources. A way to accomplish this is to 
construct a system to determine milk composition during the transportation into 
the milk tanker. In a feasibility experiment milk samples were collected before 
going into the milk tanker, and NIR and Raman measurements were carried out. 
The results from these measurements were compared to results from reference 
analysis, and PLS calibrations models for all the major milk constituents were 
constructed. The set-up is shown in Figure 23. 
 

Figure 23. Measurement of milk composition at the farm. Samples collection by the 
author from milk tanker, NIR and Raman measurement in at the farm, and prediction of 
seven milk compositional parameters. 
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milk composition have made it possible to standardize milk using feed-back 
control of various mixing streams (skim milk, cream and permeate). As a result 
on-line IR improves dairy product quality consistency and production economy. 
On-line and at-line NIR analysis is widely used for determination of milk powder 
composition. Moreover, recently IR has been shown to detect milk powder 
adulteration. Finally a field study where milk composition is determined by NIR at 
the farm was described.        
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4 
CHAPTER 4 

SPECTROSCOPY  

4.1 Introduction 

Spectroscopy is the study of interaction between electromagnetic (EM) radiation 
and matter. The origin of the word (spectrum = image in Latin; skopia = to view in 
Greek), describes how spectroscopic measurements offers one to view an image 
of the measured sample (Miller, 2001).  The development of spectroscopic 
methods is closely related to the quantum theory formulate by Maxwell, Einstein 
and Bohr. Maxwell described in 1864 that EM radiation (light) is in fact a wave. 
Later, in 1905, Einstein showed that light can be described as streams of 
particles named photons. To solve this apparent discrepancy Bohr formulated the 
wave-particle duality principle (1913) that EM radiation has characteristics of both 
a wave (continuous energy) and a particle (photons, discrete energy). EM 
radiation can be quantified and an atom or molecule can absorb or emit energy 
and change between a ground state (i) and an excited state (j) if the frequency (ν) 
of radiation matches the energy difference (ΔE) between states (Equation 5). 

Equation 5   ν
λ
 

Where h is Planck’s constant. The frequency (ν) is related to the wavelength of 
radiation and the speed of light c in vacuum. The phenomenon of matching states 
and energy of radiation is called resonance. The energy of states is specific to 
molecules or atoms and may be influenced by the surrounding environment.   
For practical and phenomenological reasons electromagnetic radiation is divided 
into smaller frequency/wavelength regions with their own names: gammas rays, 
X-rays, ultraviolet, visible, near infrared, infrared, and microwaves (Figure 24). 
For each of the spectral regions in Figure 24 radiation has a different kind of 
interaction with matter. Spectroscopic analytical techniques can evaluate these 
excitations properties in a molecule and thereby map the energy transition 
present. 
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Figure 24. The electromagnetic spectrum divided into smaller wavelength regions with 
different effects of the molecule. The wavelength regions used in the present study is 
NIR, IR and NMR. 

4.2 Time Domain NMR 

Nuclear magnetic resonance (NMR) spectroscopy is widely used as analytical 
technique in research of e.g. foods (Belloque & Ramos, 1999; Rutledge, 2001), 
metabolomics (Cevallos-Cevallos, 2009) and pharmaceuticals (Holzgrabe, 2010). 
Actually NMR can be considered indirect spectroscopy as it requires an external 
magnet field. NMR spectroscopy can be divided into two main types: analysis in 
the time domain (TD) and in the frequency domain. Only 1H TD-NMR will be 
described here as it has been applied to study milk coagulation and subsequent 
curd syneresis in the present thesis (PAPER I). The main characteristics of 1H 
TD-NMR are: 1) it is a non-destructive method making it possible to perform 
different or repetitive analysis of the same sample, 2)  it is sensitive to the 
physical state of water and 3) it is sensitive to the structural organization of the 
sample on a microscopic and macroscopic level (Belloque & Ramos, 1999). The 
fundamental theory behind 1H TD-NMR has been extensively described in 
textbooks and research papers (Berendsen, 1992; Hemminga, 1992; Hills, 1990; 
Storey, 2006) and its use in dairy applications has recently been reviewed by 
Karoui and De Baerdemaeker (2007). Thus, only a summarized presentation will 
be given here.  
In 1952 Bloch and Purcell received the Nobel prize in Physics for discovering that 
some atomic nuclei in a magnetic field absorb electromagnetic radiation 
(resonate) and radiate back out energy at a specific resonance frequency (Bloch 
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and Packard, 1945; Purcell et al., 1946). Nuclei possess a property called spin, 
that can be thought of a spinning movement around an axis. Because nuclei 
carry electric charges, the spinning results in the formation of a small magnetic 
field and in this way the nuclei can be thought of as small magnets spins (Figure 
25). In an NMR spectrometer the sample is placed in strong magnetic field (0.2 – 
21 Tesla; earth magnetic field: 0.000005 Tesla), which causes all spins to align 
themselves parallel according to the magnetic field direction (B0). If we consider 
the 1H spins in a magnetic field, they will be divided into two groups according the 
Boltzmann’s distribution law: 1) spins pointing in one direction (parallel) and 2) 
spins pointing in the other direction, but still parallel (so-called anti-parallel). 
There will be a slight excess of parallel spins compared with anti-parallel spins, 
and is the parallel spin net difference that provides the measurement signal in an 
NMR experiment (Hemminga, 1992).   

 
Figure 25. The spinning motion of nuclei generating a magnetic moment (Hemminga, 
1992). 

In an NMR experiment the aligned spins will be tilted down in a 90o angle from 
their original position by exciting the spins with radiation (energy) of a frequency 
in the range of radiowaves (10 – 900 MHz). Because of the strong external 
magnetic field the spins will seek to return to the original position of alignment. 
This happens by the spins rotating around the axis of the external field while 
decreasing at an exponential rate. This returning motion is referred to as 
relaxation and inside the spectrometer a detector captures the signal from 
relaxing spins (Hemminga, 1992). The relaxation can be characterized by two 
types of behavior governed by time constants, designated T1 and T2 (Figure 26). 
The spin-lattice relaxation that is governed by T1, is equivalent to restoring the 
longitudinal magnetization component parallel to the external magnetic field. In 
pure water, the proton spin-lattice relaxation time at room temperature is 
approximately 3 seconds. The transverse component of the magnetization is 
governed by the time constant, T2, called the transverse or spin-spin relaxation 
time. In pure water, the proton spin-spin relaxation time at room temperature is 
approximately 2 seconds. 
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Figure 26. Graphical presentation of exponential decay of the transverse magnetization 
after excitation. 

The relaxation of water protons in high water content biological systems such as 
foods is affected by the interaction with other protons in the microscopic 
surrounding media (Berendsen, 1992). In this way water protons act as small 
sensors probing the surrounding environment. For instance the relaxation rate of 
protons is low in pure water, where the only interaction is between neighboring 
water protons, while it is faster when water protons are interacting with protons 
(or other magnetic nuclei) in macromolecules (Berendsen, 1992). Because of the 
effect, the surrounding environment has, water proton relaxation is very sensitive 
to the physical compartmentalization present in many biological samples. This is 
related to self diffusion of water protons (Brownian motion) since water protons 
will experience fast relaxation if they move in the proximity of a physical barrier. 
Naturally, fast relaxation will only occur if the diffusion time for protons to reach 
the barrier is shorter than the intrinsic relaxation time of the protons and the time-
scale of the NMR experiment (Hills, 1990). 
Mathematically, the relaxation curve (e.g. Figure 26) can be described as a sum 
of N populations of protons decaying exponentially with their own relaxation time 
constant T2,n (Equation 6): 

Equation 6  
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Where M(t) is the relaxation signal at time t, M0 is the magnitude of the signal at 
excitation time (t=0) and E the instrumental noise. Analyzing relaxation curves in 
order to extract M0,n and T2,n values will be described elsewhere in this thesis 
(section 5.5). The origin of multiple proton populations (i.e. multi-exponential 
curves) with different relaxation behaviors (T2) in biological samples comes from 
water and fat in different states within the sample. In PAPER I three populations 
of protons with different relaxation behavior were identified in synerezing milk 
curd (coagulated milk expelling whey). The population with the longest relaxation 
time (T2 ~1.2 – 2 s) was identified as water protons in the expelling whey, which 
increased in volume as a function of syneresis time (quantified by the magnitude, 
M0). The two remaining proton populations originated from water inside the 
synerezing curd; one population presumably being water tightly associated with 
the polymer nuclei in the curd network, another population being water trapped 
between the polymers in some way e.g. by capillary forces.   
 
Determination of relaxation time by Hahn spin echo or Carr-Purcell-
Meiboom-Gill (CPMG) sequence 
The transverse relaxation time constant, T2, can be determined be applying a 
radio frequency pulse sequence beginning with a 90° excitation pulse, followed 
by a pause and finalized by a 180° refocusing pulse (Figure 27). The reason why 
the 180° pulse is applied is that besides inhomogeneities in the magnetic field 
causes by spin-spin interactions there are also inhomogeneities in the main 
magnetic field, B0, which are constant in time. By applying a 180° pulse after a 
90° pulse a so-called spin-echo is formed, where the B0 inhomogeneities are 
eliminated and only the inhomogeneities caused by spin-spin interactions are 
detected. By performing multiple experiments gradually incrementing the pause 
the signal amplitude as a function of time is measured i.e. the relaxation curve. 
This approach is called the spin echo sequence or the Hahn spin echo sequence 
since it was introduced by Hahn in 1950. The idea was further extended by Carr 
and Purcell (1954) and Meiboom and Gill (1958), who suggested using a series 
of 180° pulses added at an equidistant time 2τ after a single 90o pulse. This pulse 
sequence produces a series of echoes, where the maximum value of each spin 
echo is exponentially decreasing and constitutes the measurement points of the 
relaxation curve. Only every second echo should be used because the 180° 
pulse will always contain a small inaccuracy. The precision of the consecutive 
180° pulses is however high, which means that after two 180° pulses the 
direction of magnetization will be exactly back at 0o. 
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Figure 27. Formation of a spin echo by the Hahn sequence. The dephasing caused by 
inhomogeneities in the magnetic field can be reversed by applying a 180° pulse, which 
result in the formation of a spin echo. The amplitude of the spin echo depends on how 
much T2 relaxation there is during the echo time (TE). Because T2 relaxation originates 
from microscopical interactions and diffusion of the spins it cannot be reversed (Storey, 
2003). 

4.3 Vibrational spectroscopy 

In 1800 William Hershel discovered an invisible form of light beyond the visible 
range, which today is referred to as infrared radiation (infra = below (the red) in 
Latin). In the period from 1800 to 1945 the theoretical understanding of 
vibrational spectroscopy in the infrared region was established, and the 
interpretation of the IR spectrum was achieved through the application of 
quantum theory. From 1945 instrumental developments enabled IR spectroscopy 
to contribute to qualitative and quantitative structural analysis of molecules in 
mixtures. As a result IR spectrometers for commercial applications arose, and the 
use of vibrational spectroscopy increased decade by decade. In 1980’s Fourier 
transform spectrometers were introduced, which markedly reduced time of 
analysis and at the same time fiber optics was developed to enable in-line NIR 
analysis in real-time (Sheppard, 2002). 
Today the majority NIR and IR applications are for off-line or at-line analysis, but 
a few applications of on-line or in-line analysis are also found. In this thesis off-
line IR analysis was applied for UF permeate characterization (PAPER III) and in-
line NIR analysis was applied to monitor milk coagulation (PAPER II).  
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4.3.1 The basic principles  
At temperatures above the absolute zero all molecules exhibit oscillating motions 
called vibrations. Vibrational spectroscopy (IR and NIR) utilizes this molecular 
property by studying the interaction between infrared radiation and molecular 
vibration. For IR radiation at 4000-400 cm-1, the radiation frequency corresponds 
to stretching and bending vibrations in covalent bonds in molecules. The IR 
spectrum reflects the fundamental vibrations, while overtones and combination 
tones are present in the NIR spectrum (Dufour, 2009). The exact matching of 
radiation frequency with bond vibrational frequency is called resonance and 
causes the radiation to be absorbed by the molecule. Bonds have different 
vibrational frequencies mainly depending on the mass of the involved atoms and 
the strength of the covalent bond. Consequently, the absorption frequency in an 
IR spectrum can be used to identify the presence of different bonds and in this 
way aid in finding out what substances are present in the samples (Griffiths, 
2002). Stretching and bending are the main types of bondvibrations. Stretching 
vibrations can be symmetrical and anti-symmetrical, which have slightly different 
frequencies. The bending vibration can occur in different patterns recognized as 
scissoring, wagging, rocking and twisting, all occurring at different frequencies 
(Miller, 2001).  
 

 
Figure 28. Geometric illustration of different vibrational patterns of the -CH2- group and 
their approximate frequencies (modified from Miller, 2005). 

Stretching Bending
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Not all molecules absorb infrared radiation. Only the molecules that have a 
permanent dipole moment or an induced dipole moment during vibration are 
capable of absorbing infrared radiation. Homonuclear diatomic molecules such as 
N2, Cl2, and O2 do not contain a dipole moment and are examples of molecules 
that do not absorb IR radiation (Miller, 2001). Low frequency molecular vibrations 
are of often difficult to assign. The frequency region below 1500 cm-1 is referred 
to as the fingerprint region. In this region each band found in the spectrum has 
multiple possible assignments. The complexity of this region makes it unique (as 
a fingerprint) for each sample (Dufour, 2009). 
PAPER III applies IR to investigate compositional variation in UF permeate 
between several dairy production sites. Figure 29 shows a mid-IR spectrum of a 
permeate sample with various absorbance peaks of different positions, width, 
height and shapes. Correlation diagrams can be used to assign the peaks, but 
this does not provide an understanding of the underlying mechanisms nor 
explains differences in peak intensity and shape. Such an understanding is 
important to take full advantage of the information available in a mid-IR spectrum.  

 
Figure 29. Mid-IR transmission spectrum of UF permeate.  

4.3.2 Fundamental theory for spectral interpretation 
To provide the reader with a more fundamental knowledge in understanding NIR 
and IR spectra, this section briefly describes phenomena which influence NIR 
and IR spectra: dipole moment, electronegativity, hydrogen bonding, Hooke’s law 
and anharmonicity.  
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As previously mentioned a prerequisite for a molecule to absorb infrared radiation 
is that a dipole moment is present. A molecule made up of atoms that have 
different electronegativity will have a non-symmetrical distribution of charge. This 
difference is called the dipole moment and will change, when the distance 
between atoms vary by vibration (Ouellette, 1998). 
 

Table 3. Extract of Pauling’s electronegativity scale (Ouellette, 1998). 

Atom H C N O F P S Cl Br 
Electronegativity 2.1 2.5 3.0 3.5 4.0 2.1 2.5 3.0 2.8 

 
 
Peak height - What determines how strongly various molecules absorb NIR and 
IR radiation? If the difference in electronegativity between two atoms in a bond is 
less than 0.5 (see Table 1 for selected values), the dipole is weak and it will 
therefore interact poorly with electromagnetic radiation. This is the case for the C-
H bonds where IR radiation consequently is weakly absorbed. O-H bonds have a 
difference in electronegativity of 1.4 and consequently IR is strongly absorbed. 
Hydrogen bonding also affects the intensity of absorption bands, but the effect is 
different for NIR and IR. Hydrogen bonding causes an increase in intensity of IR 
bands but decreases the NIR band intensity. The reason for this is that donor 
hydrogen vibrations become less anharmonic, which widely determines 
absorption intensity of overtones and combination tones (Miller, 2001). 
 
Peak width - What determines how broad an absorption band is? The reason 
that the absorption band for O-H is broader than C-H bands is due to hydrogen 
bonding. Hydrogen bonds form when a hydrogen atom is electron poor and it is 
attracted to a electron lone pair on an acceptor atom. Donators of hydrogen 
bonds (mainly O-H and N-H) dampen the stretching frequency resulting in 
broader peaks. Bending vibrational frequency is however increased by hydrogen 
bond. C-H bonds are polar and cannot form hydrogen bonds and therefore there 
is only one form of C-H which results in a narrow band. O-H bonds can form 
multiple hydrogen bonds and thereby resonate at a broader range of frequencies, 
resulting in broad peaks (Miller, 2001). 
 
Peak position - What determines the position of absorption bands? A covalent 
bond such as part of the O-H can be considered as a spring that can be stretched 
and compressed. The vibrational frequency of this system is especially 
dependents the mass of each atom. The relationship between frequency (ν), the 
so-called reduced mass (μ) and the force constant (k) is defined by Hooke’s law 
(Equation 7 and Equation 8): 
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Equation 7    
μ
 

Equation 8    μ  

Where m1 is the mass of atom one and m2 is the mass of atom two (Sandorfy et 
al., 2007; Pedersen and Rasmussen, 2004, Steele, 2004). Hooke’s law is a 
simplified harmonic oscillator model since it only considers diatomic vibration and 
in reality multiple atoms affect vibration (Miller, 2001). It is however a good model 
for understanding what governs vibrational frequency. The force constant k is 
related to the bond enthalpy, which is the energy required to break the bond. 
Bonds involving hydrogen have the highest frequency because hydrogen has a 
small mass. The bond strength (i.e. enthalpy) in triple bonds is higher than in 
double bonds resulting in a higher frequency of triple bonds than double bonds. 
The fundamental division of the IR spectrum is shown in Figure 30.  

 
Figure 30. Fundamental structure (simplified) of the IR spectrum. 

 
 

5001000150020002500300035004000

Wavenumber (cm-1)

Singlebonds

O-H
N-H
C-H

Triple-
bonds

CΞC
CΞN

Double-
bonds

C=O
C=C
C=N
N=N
N=O

Fingerprint

Spectroscopy 
 

 

48 
 

Equation 7    
μ
 

Equation 8    μ  

Where m1 is the mass of atom one and m2 is the mass of atom two (Sandorfy et 
al., 2007; Pedersen and Rasmussen, 2004, Steele, 2004). Hooke’s law is a 
simplified harmonic oscillator model since it only considers diatomic vibration and 
in reality multiple atoms affect vibration (Miller, 2001). It is however a good model 
for understanding what governs vibrational frequency. The force constant k is 
related to the bond enthalpy, which is the energy required to break the bond. 
Bonds involving hydrogen have the highest frequency because hydrogen has a 
small mass. The bond strength (i.e. enthalpy) in triple bonds is higher than in 
double bonds resulting in a higher frequency of triple bonds than double bonds. 
The fundamental division of the IR spectrum is shown in Figure 30.  

 
Figure 30. Fundamental structure (simplified) of the IR spectrum. 
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Peak position in NIR spectra 
Most of what is written in the previous section holds for both NIR and IR. 
However, there are some fundamental differences. NIR radiation is absorbed by 
overtones and combination tones of fundamental IR vibrations, which are 
approximate integer multiples or summations of the fundamental vibrational 
frequency.  A prerequisite for NIR radiation to be absorbed by a molecule is that 
the molecule deviates from the harmonic oscillating behavior, referred to as 
anharmonicity. Anharmonicity means that 1) the dipole moment is not exactly a 
linear function of interatomic distance and 2) when atomic nuclei are separated 
far enough they will eventually dissociate (Figure 31).  

 
Figure 31. Graphical presentation of anharmonicity. As the inter-atomic distance (q) 
increase the potential energy does not increase linearly or symmetrically. The arrows 
indicate that several energy states (overtones) exist in NIR.  

Mathematically, it means that the potential energy of a diatomic oscillator is not 
simply a quadratic function of interatomic, but can better be decribed by the 
Morse function (Figure 31). The absorption intensity of overtone and combination 
bands is depended of the degree of anharmonicity and dipole moment change. 
As a result the most intense band involve hydrogen stretches (O-H, C-H, N-H), 
which are very anharmonic (Miller, 2001).   
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4.3.3 Quantitative considerations 

In NIR and IR transmission spectroscopy the relation between absorbance (A) 
and concentration (c) of the absorbing analyte is given by Lambert-Beers law 
(Equation 9 and Equation 10): 

Equation 9      

Equation 10                       

Where ε is the molar absorptivity and l is the effective light path length, I0 is 
intensity of incident light and I is intensity of light that has been transmitted 
through the samples. T is transmittance, the fraction of incident light that has 
passed through the samples (T = I/I0) (Dahm and Dahm, 2001). Lambert-Beers 
law applies to transmission measurements on samples that have no scattering 
particles, however it is also frequently applied in diffusion reflection, where T is 
replaced by R in Equation 10, where R denotes the fraction of the reflected light 
out of the total incident light. A problem with using Lambert-Beers law for diffuse 
reflection measurements is that the effective path length is unknown. The 
Kubelka Munk (K-M) equation  (Kubelka and Munk, 1931) provides a model of 
diffuse reflection (R) of samples with infinite thickness (Equation 11): 

Equation 11     

Where K and S are referred as K-M absorption and scattering coefficients, 
respectively.  
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4.3.4 NIR light scattering properties of coagulating milk  
NIR measurements are more influenced by light scattering particles than IR 
measurement because the effective path length is longer for NIR radiation. In 
milk casein micelles and fat globules cause scattering of NIR radiation. These 
two components scatter light differently based on differences in size, number, 
and optical properties (e.g. the refractive index). Casein micelles are much 
smaller than the fat globules. The particle diameter of casein micelles falls in the 
range of 0.130 – 0.160  μm (Ruettiman and  Ladisch, 1987) and fat globules are 
in the range of 0.1–10 μm for unhomogenized milk, with a mean diameter of 3.4 
μm (Walstra et al., 2006). Skim milk appears slightly blue because the small 
casein micelles predominately scatter the shorter blue wavelengths of visible 
light. Whole milk appears white because the larger fat globules scatter all 
wavelengths of incident light (Crofcheck et al., 2002). 
 
In PAPER IV NIR scattering properties of coagulating milk are discussed. In skim 
milk scatter caused by fat globules is presumably low as the fat concentration is 
very low (< 0.1%). Figure 32 (left) shows four spectra recorded during 
coagulation of milk. The dominating spectral change is a lowering of the baseline 
in the log(1/R) signal. A method of investigating baseline changes is multiplicative 
scatter correct (MSC). In MSC the spectra are plotted against a reference 
spectrum. In Figure 32 (right) the spectrum of a firm milk coagulum is plotted 
toward a reference spectrum, in this case of milk. The baseline change can be 
seen as the deviation from the target line. The non-linearities in the red spectral 
region (Figure 32) suggest that this spectral region is affected not only by scatter 
difference but also chemical differences.  

 
Figure 32. Left: four NIR reflection spectra (1050 – 1860 nm) recorded during rennet 
coagulation of skim milk and color coded in intervals. Right: spectrum of firm coagulum 
(49 min) vs. milk (0 min).    
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On the hand, the blue region (Figure 32, right) is linear throughout coagulation 
suggesting that only scatter changes affect this region. 
In Figure 33 calculated slope and offset between the initial NIR spectrum of milk 
(t = 0 min) and spectra recorded during milk coagulation (t = 0.5 – 49 min) is 
shown for the region 1050 – 1250 nm (blue in Figure 32). These coefficients are 
equivalent to the MSC coefficient i.e. multiplicative and additive effects. The there 
is a large change in slope during the micelle aggregation phase (phase II, Figure 
33), showing that scatter changes are particularly wavelength dependent in this 
phase. In the network formation phase (phase III, Figure 33), the scatter changes 
are slightly wavelength dependent. An explanation for the observation of 
wavelength dependence during micelle aggregation could be that in this periode 
the main particle size changes are occurring. More research in need to 
understand this scatter behavior.    
  

 
Figure 33. Slope and offset between the initial NIR spectrum (1050-1250 nm) of milk (t = 0 min) 
and the spectra recorded during coagulation (t = 0.5 – 49 min). (I) κ-casein removal by chymosin 
(II) para-casein aggregation and (III) gel network formation. 
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4.4 Summary 

In this chapter the spectroscopic methods used in this thesis are described. This 
description includes fundamental quantum theory and overview of the 
electromagnetic spectrum. In addition, basic TD-NMR theory, magnetic moment, 
transverse and longitudinal magnetization, exponential relaxation and the CPMG 
sequence are explained. The chapter furthermore describes theory of vibrational 
spectroscopy including theory for spectral interpretation. Finally NIR scattering 
properties of coagulating milk are described.  
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CHAPTER 5 
CHEMOMETRICS  

5.1 Principal Component Analysis 

There may be many motivations for using principal component analysis (PCA) on 
data: simplification, data reduction, outlier detection, classification and pattern 
recognition. PCA involves transformation of a number of correlated variables to a 
fewer number of uncorrelated “variables” called principal components (PC’s). The 
first principal component account for the largest source of variability in the data, 
while the succeeding PC’s account for the residual variation (Wold et al., 1987). 
PCA is also called the Karhunen-Loèven transform (KLT), Hotelling transform or 
proper orthogonal decomposition (POD), depending on the field of use 
(Chatterjee, 2000).  
In PCA each of the principal components (PC’s) is the outer product of two 
vectors, a score vector (ti) and a loading vector (pi), where i denote the 
component number (Equation 12): 

Equation 12        

The number of PC’s expresses the number of observed variations in the data and 
can be considered as the number of independent phenomena in the data. Often 
the number of PC’s are many times smaller, than the number of variables of the 
original data, because variables co-vary. This is especially the case for 
spectroscopic data, where variables are higly co-linear. E.g. in PAPER II 40 UF 
permeate samples were measured at 220 IR wavelengths. Decomposition into 
PC’s showed that two components explained 95% of the variation in spectra. In 
this way PCA can bring forth the essential information in data. The score vectors 
describe how the samples relate to each other and the loading vectors describe 
the variables relate to each other (Wold et al., 1987).  
The principal components are orthogonal to each other. Conceptually, 
orthogonality means that two vectors are completely uncorrelated with one 
another. Orthogonality is a nice property of PCA as it ensures simplifies 
interpretation. A downside of orthogonality is that variations in e.g. an individual 
specific chemical compounds (c1) are not found if they are co-vary to some 
extend (c1

Tc2 ≠ 0) with another chemical compound (c2). Models like PARAFAC 
(Bro, 1997) and MCR (Juan and Taulor, 2006) does not have the orthogonality 
constraint and can therefore handle co-varying variations of individual chemical 
compounds. Mathematically orthogonality can be written as shown in Table 4 
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                            Table 4. Mathematical properties of PCA. 

  Scores  Loadings 

 
Vectors     

Matrices     

 
Due to orthogonality of PC’s the inner product of any combinations of score 
vectors will be zero except when PC’s scores are multiplied with itself. In that 
case the inner product becomes the squared singular values. The inner product 
of any combinations of loading vectors will also be zero except when PC’s are 
multiplied with itself. In that case the inner product becomes one. 
 
PCA algorithms 
Components can be calculated by the NIPALS algorithm, which sequentially (one 
at a time) seeks to minimize ║X – tipT

i║2
i in an iterative manner (Wold et al., 

1987). Components can also be calculated by SVD, which non-sequentially (all at 
once) uses eigenvalue decomposition of the covariance matrix (Equation 13 and 
Equation 14). 

Equation 13      

Equation 14     

where S2 is the eigenvalues associated to the eigenvectors V. The notation in 
SVD is different than PCA (see box) but the eigenvectors V are the same as 
loadings P and in SVD the score matrix T is found as the linear combination of X 
and V (T = XV). In SVD eigenvalues S2 are given as elements in a diagonal 
matrix ranked according to size. Since eigenvalues are related to explained 
variance of each component, this means that the first component explains most 
variance, the second component explains second most variance etc.     
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5.2 Partial least squares regression 

PLS has become a standard method to solve multivariate regression problems. 
The following brief presentation of PLS is based on a selection from the 
exhaustive literature on the topic (Bro, 1996; Geladi and Kowalski 1986; Miller, 
2005; Wold et al., 2001). 
The main motivation for developing PLS was that multiple least square 
regression (MLR) does not work properly when data has many more variables 
than samples such as in spectral data. A second essential problem is that many 
of the spectral variables co-vary. Conceptually, this means that there are a lot 
fewer independent phenomena in the data than there a variables. Mathematically 
this is called rank deficiency or singularity. MLR breaks down when a data matrix 
is singular, because it is not possible to take the inverse (i.e. (XTX)-1) of a singular 
matrix which is required to solve a regression problem (Equation 15 and Equation 
16) : 

Equation 15     

Equation 16     

where y is the response, X is the predictor data and b contains regression 
coefficients to be determined. The problem of co-varying variables is handled by 
the principal component regression (PCR), which uses principal component 
scores (T) as predictor data in MLR (Equation 17 and Equation 18): 

Equation 17     

Equation 18     

The vectors in the score matrix are per definition uncorrelated (orthogonal), which 
makes it a non-singular matrix that MLR can handle. Since the variance 
compression of predictor data in PCR is done independently of the response y, it 
presents the problem that large variances (PC’s) in predictor data might have 
little relevance for prediction of the response y. PLS deals with this problem by 
simultaneously maximizing variation in X and y and their mutual correlation. PLS 
can be considered as an outer relation (i.e. individual X and y decomposition) and 
inner relation linking the two. The outer relation of two blocks is like a PCA 
decomposition (Equation 19 and Equation 20): 

Equation 19    

Equation 20     
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The inner relation links the two decompositions by relating the X and y scores for 
each component i and determining the regression coefficient (Equation 21 and 
Equation 22):  

Equation 21     

Equation 22    

This is however a suboptimal solution because the scores are calculated 
separately on each block. The inner relation can be improved by rotating the 
components. This can be done by letting t and u change places iteratively in the 
NIPALS algorithm (For further information see Geladi and Kowalski, 1986 or 
Wold et al., 2001). The final step in PLS is to ensure that the scores are 
orthogonal, which is done by introducing loading weights.    
 

5.3 Extended canonical variate analysis 

ECVA is an extension of the standard canonical variate analysis (CVA) modified 
to deal with highly collinear data such as spectroscopic signals. ECVA has in 
some cases been found a superior classification method over PCA, partly 
because the principal components may not always be relevant to class 
differences (Nørgaard et al., 2006; Savorani et al, 2010). The principle in 
standard CVA is to estimate a direction in space w (a weight vector) that 
maximizes the differences between sample classes and at the same time 
minimizes the differences within the sample classes (Equation 23). 

Equation 23     

                                          

where Sbetween is the co-variance matrix between the classes, Swithin is the sum of 
covariance matrices within the classes. The solution to this problem can be 
written as an eigenvalue problem (Equation 24 and Equation 25). 

Equation 24    λ              

Equation 25   λ                                                  

where λ is the eigenvalue associated with the eigenvector w. Multiplication of the 
estimated weight vector w by the original mean centered predictor data (X) yields 
the canonical variates (tcv = Xmcw). tcv can then be used for classification. A 
problem with CVA however is that it does not work with co-linear data because 
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then it is not possible to do the inverse of Swithin (Equation 25) just as MLR does 
not work with co-linear data (see PLS subchapter). In fact, the approach in ECVA 
is to turn Equation 25 into a regression problem, where PLS can handle the co-
linearity problem. For a two-class classification problem it is solved by PLS(1) 
and for a multi-class problem it is solved by PLS2: 

 
For further details on the regression step see Nørgaard et al. (2006). The number 
of canonical weigth vectors (w) will always be one less than the number of 
classes and this vector can be used from a chemical point of view to inspect 
variables regions where differences between classes are largest. The regression 
problem in has so far only been solved by PLS, however other methods such as 
Ridge regression could also be used. Nørgaard et al. (2006) noted that the inner 
relation in PLS sometimes showed non-linearities, possibly because the predictor 
matrix Swithin is a covariance matrix, which is symmetric. Perhaps, polynomian or 
spline PLS (Wold, 1992) could be used to improve the inner relations. 
As with any supervised classification method it is very prone to overfitting and 
therefore validation (cross-validation and/or test set) is extremely important to 
validate the number of PLS components. Analog to interval PLS (Nørgaard et al., 
2000), interval ECVA has also been developed to provide better classification 
models and improve interpretation (Nørgaard et al., 2007). 
 
  

Two classes Multiple classes

y = Xb + f Y = XB + F

Solved by PLS Solved by PLS2

( ) wSkxx withinλ=− 21
( ) WSWxx withing λ=−
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5.4 Parallel factor analysis 

Parallel factor analysis (PARAFAC) was used in to decompose pseudo-upgraded 
TD-NMR relaxation curves in the present work (PAPER I and V). PARAFAC can 
be viewed as an extension of PCA to higher dimensions, but it has some special 
properties. There is no orthogonality constraint like in PCA. The non-orthogonality 
property means that components cannot be calculated successively as they are 
dependent on each other. Therefore the model is highly dependent on specifying 
the right number of components. The decomposition of a three-way data X (I x J 
x K), by the PARAFAC model can be written as  
 
Equation 26  

x���  � � ���b��c�� � ����

C

���

 

 
Where aic is the loading vector for samples (corresponds to score in PCA) for 
component c, bjc and ckc corresponds to loading vector for component c and C is 
the total number of components. The model is found by minimizing the sum of 
squares of residual eijk using alternating least squares (ALS; Bro, 1997). A model 
diagnostic in PARAFAC is core consistency and this diagnostic is used to 
determine the appropriate number of components in TD-NMR relaxation curves 
(PAPER I and V). To explain core consistency a little background regarding the 
structure of the PARAFAC model is required. The PARAFAC model in  
Equation 26 can be rewritten as a restricted form of a Tucker3 model with the 
added term tdef, which will be 1 for d = e = f and 0 otherwise: 

Equation 27 

x���  � � � � ���b��c��t��� � ����

F

���

E

���

D

���

 

 
Where D = E = F and the remaining elements are the same as in  
Equation 26. Figure 34 graphically shows the PARAFAC model written as a 
restricted Tucker3 model. In core consistency a core G is estimated by a Tucker3 
model using PARAFAC loadings.    
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Figure 34. PARAFAC written as a Tucker3 model. The superdiagonal in T consist of 
ones and the remaining elements are zero. 

For a perfect fitting PARAFAC model the Tucker3 core G based on PARAFAC 
loadings will be identical to superdiagonal array of one’s the identity core I (Bro 
and Kiers, 2003). This lemma is used in the diagnostic tool core consistency 
where model core deviation from a superdiagonal array of one’s T is quantified 
(Equation 28):  

Equation 28   

 

Where gdef are elements in the modeled core G, with F components and tdef are 
elements in an array T with same dimension as G, but with ones in the 
superdiagonal elements and zeros in off-superdiagonal elements (Bro and Kiers, 
2003). In this way core consistency can be used to validate the appropriate 
number of components in a PARAFAC model. Loss of residuals and shape of 
residuals can also be used to validate number of components in a PARAFAC 
model (Bro, 1997), but where residuals often decrease steadily when adding 
component, the core consistency will decrease dramatically if the model is 
overfitted (Bro and Kiers, 2003). Another diagnostic for PARAFAC models is split-
half analysis. The idea is to split the data in two parts and due to the uniqueness 
of the PARAFAC model, one should get the same loading profiles in each spilt if 
the correct number of components are chosen (Bro, 1997). Specific to the 
analysis of TD-NMR relaxation is that required that loading vectors of the second 
dimension (B mode) should have an exponential shape; this is another validation 
diagnostic. 
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5.5 Modelling TD-NMR data 

Proton TD-NMR relaxation measurement of biological samples often consist of 
contributions from multiple exponentials i.e. populations with their own 
characteristic magnitude and relaxation time constant (Equation 29, Figure 35): 

Equation 29  

���� � ����� � ��� �
��
T���

� � �
N

���

 

Where M(t) is the reduced magnetization at time t, M0,n is the concentration or 
magnitude parameter of the nth exponential, T2,n is the corresponding transverse 
relaxation time constant, N is the number of exponential and E is the residual 
error.   

 
Figure 35. Illustration of the multi-exponential relaxation where two exponential 
contribute to the resultant signal. 

One of the recurrent challenges when analyzing relaxation curves is to estimate 
the actual number of real components as opposed to random instrumental noise. 
If too few components are fitted the residuals will still contain information (Figure 
36). If too many exponentials are fitted instrumental noise will be incorporated in 
the fit.  
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Figure 36. Illustration of bi-exponential fitting with systematic residuals. 

Visual inspection of residuals can be a way to evaluate the appropriate number of 
exponentials; the solution should show a random distribution of residuals around 
zero (not the case in Figure 36). Relying solely of the loss of residuals for 
diagnosing the solution can be difficult as residuals per definition will continue to 
decrease when components are added.   
 
Quite a few methods exist for analyzing TD-NMR, which have their own 
conceptual approach, solution diagnostics and computation speed. Three 
methods will be presented here.    

5.5.1 Discrete Exponential Fitting 
TD-NMR data are most frequently analyzed using discrete multi-exponential 
fitting using e.g. the Levenberg-Marquardt algorithm, which applies non-linear 
iterative curve-fitting to Equation 29 with N number of exponential to the 
relaxation curves. Solution diagnostics with regards to number of components are 
scarce. After fitting Equation 29 to the relaxation curve with N exponential 
components, inspection of the residuals (residuals vs. time) can reveal whether 
the curve has been modeled by too few, too many or the correct number of 
components. Other solution diagnostics are relative loss in fit and χ2 misfit tests. 
As previously mentioned, relative loss in fit can be a difficult criterion to base 
evaluation on, because the fit will always improve when adding exponentials 
(Bechmann et al., 1999; Marquardt, 1963).  

5.5.2 Distributed exponential fitting 
This method is often perceived to be the more realistically appealing analytical 
approach to TD-NMR data compared to discrete exponential. Instead of trying to 
decompose the relaxation curve into a few exponentials with characteristic T2’s, 
the curve is considered a distribution of a set of many exponentials. The number 
of exponentials N and the time window they should be distributed across is pre-
defined by the user. N corresponding M0 values are then found and plotted as a 
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distribution over the T2 values. The problem with this fitting procedure is that 
several distributions can give the same fit and the solution is therefore not stable 
(Provencher, 1982).   

5.5.3 DOUBLESLICING  
The DOUBLESLICING technique (Andrada et al., 2007) utilizes the theoretical 
fact that in every part of a multi-exponential decaying curve each of the mono-
exponentials are present, but in different amounts. The technique pseudo-
upgrades a single relaxation curve to become tri-linear data, by cutting the 
relaxation curve into slices (Figure 37). By selectively removing parts of the signal 
curve (slicing), and using the remaining curve, the relaxation curve can be 
transformed from a one-dimensional signal (a vector x) into two-dimensional data 
(a matrix X). By repeating this procedure on the matrix, the data is transformed 
into three-dimensional data (a cube X) and three-way mathematical methods can 
now be used (Figure 37). Dimensionality of the cube depends on the number of 
slicings I (vector slices) × J (measurement point) × K (matrix slices). Tri-linear 
models require the phenomena to be modeled to be present in all dimensions, 
which is exactly the case with the cube upgraded from a single relaxation curve.   

 
Figure 37. Ilustration of the concept in DOUBLESLICING. Only two slices and slabs are 
shown, but this number can be greater.  
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The slicing points on the time axis of the decay curve are important because fast 
relaxing exponential components rapidly will contribute infinitesimal to the 
relaxation curve (e.g. Figure 35). To ensure that fast relaxing components are 
present in multiple slabs in each cube dimension Engelsen and Bro (2003) 
proposed to slice the vector and subsequent matrix at slicevariable = 2slicenumber-1 
e.g. 1 2 4 8 … 2048. This slicing procedure called powerslicing ensures that fast 
components are represented in multiple slabs. The technique has been shown to 
be extremely rapid and has improved solution diagnostics. Andrade et al. (2007) 
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5.6 External factor orthogonalization 

Orthogonalization is the process of removing information from a data matrix X 
linearly related to an external factor. This mathematical process will be 
exemplified using a case study from the thesis. In an investigation of UF 
permeate variation between six dairy factories a PCA revealed that permeate 
samples had a unique infrared signature based on the factory of origin (Figure 
38, PAPER II). The process of ultrafiltrating milk separates milk into UF retentate 
primarily containing large milk components (large whey proteins, casein, and fat), 
while UF permeate contain smaller milk components (water, minerals, vitamins, 
lactose and small whey proteins). The dominating solid fraction (w/w) of 
permeate is lactose followed by whey proteins. The loading spectra 
(corresponding to scores in Figure 38) showed that variation in total solids 
contributed largely to PC1 and variation in protein contributed largely to PC2. 
Reference analysis of permeate samples for protein and total solids content 
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confirmed this interpretation of the loadings. Moreover, operators at factories 
producing permeate with high protein content could confirm that UF membranes 
were worn, which explains leakage of larger components as such protein.   

 
Figure 38. PCA scoreplot of IR spectra from 40 UF permeate samples. Symbols denote 
different origins (six factories) of permeate.  

In order to examine if other factors than protein and total solid content were 
causing significant factory-to-factory variation these two factors were removed 
one after another from the spectra through orthogonalization. The essential 
principles of orthogonalization are described below, while a detailed 
mathematical treatment can be found in the appendix of PAPER II. 
Orthogonalization is the process of removing information from a data matrix X 
linearly related to an external factor (Equation 30) 

Equation 30                

Where Xo is data orthogonalized towards the external vector v, X is the data 
matrix and I is the identity matrix. Orthogonalization of a data set can be 
employed to focus subsequent data analysis steps on that variation in data not 
related to the external factor (v). In case of several independent external factors 
(v1, v2 … vk; vi·vj = 0 for all combinations of i ≠ j) data can be corrected for one 
factor and analyzed with respect to the others. In e.g. observational data or if 
outliers are removed the external factors may become dependent i.e. correlated 
(vi·vj ≠ 0 for combinations of i ≠ j). In this case orthogonalization with one external 
factor i will result in removal of information related to another external factor j. In 
order to only remove information related to one factor and retain the full degree of 
information related to another factor, the data is only orthogonalized with that part 
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of factor i which is orthogonal to factor j. This can be exemplified through 
Equation 2, where factor one (vi) is the external vector we wish to remove which 
is orthogonalized towards factor two (vj), which we wish to retain. Then vioj is used 
for orthogonalization of X as described in Equation 30, substituting v by vioj 
(Equation 31) 

Equation 31                  

In the remainder of this thesis I will refer to the two orthogonalization approaches 
as conventional orthogonalization in the case external factor is uncorrected and 
compensated orthogonalization in the case where the external factor is corrected, 
prior to orthogonalization of X.  
IR spectra of permeat samples (from Figure 38) were subjected to conventional 
and compensated orthogonalization towards protein content determined by a 
reference analysis. The result of PCA on orthogonalized spectra is given in 
Figure 39. 
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Figure 39. Effect of (a, c) orthogonalization and (b, d) compensated orthogonalization of 
IR spectra towards total protein content; (a, b) PCA score-plots after orthogonalization, 
(c, d) total solid content versus PC1 score values. Symbols denote the origin (six 
factories) of permeate.  
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Notice that when protein variation is removed by conventional orthogonalization, 
total solid variation is also removed (Figure 39a vs. b). This is because protein 
and total solid content is partially confounded (R2 = 0.39), which means you 
cannot remove information from one without removing information from the other. 
In compensated orthogonalization (Figure 39b) only the part of protein variation is 
removed which is not linearly related to total solid variation. Subplots (d) and (c) 
in Figure 39 show that after removal of protein variation the PC1 scores explain 
most of the variation in total solid content.    
Figure 40 show IR spectra of permeat samples subjected to conventional and 
compensated orthogonalization towards total solid content determined by 
reference analysis.  

 
Figure 40. Effect of (a, c) orthogonalization and (b, d) compensated orthogonalization of 
IR spectra towards total solid content; (a, b) PCA score-plots after orthogonalization, (c, 
d) protein content versus PC1 score values. Symbols denote the origin (six factories) of 
permeate.  
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5.7 Summary 

This chapter describes standard and advanced chemometric methods used in 
this thesis. Models PCA, PLS and ECVA are briefly explained. The PARAFAC 
model is described with special emphasis on the PARAFAC solution diagnostics 
core consistency. Core consistency quantifies model appropriateness by 
comparing a Tucker3 core calculated from PARAFAC loadings to the identity 
core I.  
Analyzing TD-NMR data is considered in detail. Especially the estimation of the 
actual number of real components in relaxation curves as opposed to random 
instrumental noise. The curve resolution method DOUBLESLICING is introduced. 
DOUBLESLICING upgrades the individual relaxation curve into three-way data 
by systematically slicing the curve. Subsequently, three-way data can be 
modeled by multi-way models, which are advantageous in having many 
diagnostics of validating the appropriate number of components. These validation 
diagnostics include residual shape inspection, split-half analysis and core 
consistency. 
External factor orthogonalization (EFO) is the process of removing information 
from a data matrix X linearly related to an external factor. EFO is exemplified 
through PAPER II. In this study protein and total solid variations were removed 
from IR spectra of UF permeate by orthogonalization.          
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6 
CHAPTER 6 

CONCLUSIONS AND 
PERSPECTIVES 

 
The scope of this thesis has been to evaluate the use of spectroscopic methods 
to analyze and optimize the dairy processes: milk coagulation, curd syneresis 
and ultrafiltration of milk. The introduction part of the thesis has described the 
complexity of dairy processes as well as the spectroscopic and chemometric 
methods used. The appended papers have each contributed with new knowledge 
about the processes and the application of spectroscopic and chemometric 
methods: 
 
PAPER I: The objective of this study was to investigate (TD-NMR) as a method 
for quantification of syneresis. The results shows that curd syneresis can be 
quantified non-invasively during the process using TD-NMR. This finding is novel 
and interesting for two main reasons: 1) it is very difficult to quantify syneresis in 
an unbiased way using classical methods; 2) whereas most methods measure 
syneresis after the process, the approach of PAPER I could monitor syneresis 
continuously during the process. Furthermore, the study is the first to 
demonstrate the use of DOUBLESLICING on real TD-NMR data. The technique 
was found highly advantageous for automatic analysis of TD-NMR, due to the 
many validation possibilities and high computation speed. Thus, an automated 
algorithm was constructed, that selected the optimal number of proton 
components, based on a number of diagnostic criteria. 
 
PAPER II: Ultrafiltration of milk yields a by-product UF permeate, which is 
extensively re-used in the other dairy processes. Factory-to-factory variation in 
permeate composition can be a potential problem when permeate from multiple 
UF factories are used as ingredient in one product. The objective of PAPER II 
was to survey UF permeate compositional variation between six dairy factories 
using infrared spectroscopy. PCA of IR spectra revealed two continuous sources 
of variation (protein and total solid content) and qualitative source (production 
site). In other words, results showed that permeate samples had a unique 
infrared signature based on the factory of origin and that variations in total solid 
and protein were the major difference between factories. To further investigate if 
other factory dependent variations existed protein and total solids information 
were removed from the IR spectra by orthogonalization. After orthogonalization, 
neither PCA nor ECVA could classify the factory origin based on IR spectra. 
These results indirectly indicated that total solids and protein content were the 
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only factors different between factories. The study has demonstrated the 
application of external factor orthogonalization to remove information from data.  
 
PAPER III: The objective was to investigate rapid NIR analysis in the cheese vat 
(in-line) as a method for monitoring milk coagulation. A two-stage model was 
formulated, which captured the kinetic information in the time profile of NIR 
measurements of coagulating milk. An algorithmic procedure for extracting 
coagulation kinetic parameters in real-time was constructed. The developed 
methodology is interesting for two reasons 1) it captures the process dynamics 
from NIR measurements to a greater extent than previous studies 2) it opens up 
for coagulum cutting time prediction based on kinetic parameters. PAPER IV 
focuses on understanding the NIR light scattering properties of milk. The main 
observation was that scatter changes are highly wavelength dependent in the 
beginning of coagulation and less in the later stages.. The observations are 
discussed in relation to particle size and geometry changes occurring during milk 
coagulation. 
 
PAPER V: In this paper the performance of DOUBLESLICING for determining 
the appropriate number of components was tested on a dataset of TD-NMR 
relaxation curves of 210 potatoes. It was found that DOUBLESLICING could 
determine the right number of components. PLS regression between NMR 
parameters T2 and M0 and dry matter content resulted in models with low errors 
(RMSEP = 0.60 and CV = 2.6%) and high correlation (rtest = 0.98). 
 
PAPER VI: This paper describes the concept of DOUBLESLICING and the use 
of core consistency as a diagnostic tool for finding the optimal number of 
components in TD-NMR data. 
 
Overall, this thesis has shown some advantages of spectroscopic and 
chemometric methods for analyzing three dairy processes. The combination of 
these two disciplines provides insight and process control possibilities that 
classical analytical techniques cannot offer.  
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The objective of this study was to monitor rennet-induced milk gel formation and mechanically

induced gel syneresis in situ by low-field NMR. pH, temperature, and gel firmness at cutting time

were varied in a factorial design. The new curve-fitting method Doubleslicing revealed that during

coagulation two proton populations with distinct transverse relaxation times (T2,1 = 181, T2,2 =

465 ms) were present in fractions (f1 = 98.9%, f2 = 1.1%). Mechanical cutting of the gel in the NMR

tube induced macrosyneresis, which led to the appearance of an additional proton population (T2,3 =

1500-2200 ms) identified as whey. On the basis of NMR quantification of whey water the syneresis

rate was calculated and found to be significantly dependent on pH and temperature.

KEYWORDS: In situ monitoring; NMR; rennet coagulation; syneresis; casein; slicing

INTRODUCTION

During cheese manufacture rennet is added to milk, where it
breaks the bond between the amino acids Phe105 and Met106 in
κ-casein. Subsequently, the casein starts to aggregate and form a
gel. This gel retains all of the constituents of themilk including the
aqueous phase. An important step in cheese manufacture is the
separationof themain part of thewater phase from the casein-gel,
which is achieved through a process called syneresis (1). Syneresis
occurs as a result of local stresses in the gel network, leading to
rearrangements and local expulsion of whey, a phenomenon
termed endogenous syneresis or microsyneresis. Physical separa-
tion of whey from the rennet gel (i.e., macrosyneresis) is normally
dependent on cutting of the gel (2, 3). Furthermore, the firmness
of the gel at the cutting influences themoisture content of the final
cheese. If the gel is cut at a too low firmness (cutting too early), the
final cheese yield is reduced due to loss of fat and curd fines to
the whey. If the gel is cut at a too high firmness (cutting too late),
the syneresis is retarded, which results in cheese with high
moisture content and undesirable textural properties (4, 5). The
process parameters pH and temperature have a major impact on
syneresis. Lowering the pH of the gel during syneresis has been
found to increase the rate of syneresis (6, 7); increasing the
temperature accelerates the rate of syneresis. The kinetics of
syneresis is commonly considered to be of first order over the
time scale used in cheese production (2, 8). Thus, pH, tempera-

ture, and gel firmness at cutting are crucial for the water content
and the texture of the final cheese product.

Traditional methodologies for studying syneresis can be di-
vided into physical separation methods and tracer methods. In
the physical separationmethods thewhey and/or gel isweighed to
determine the extent of syneresis. The problem with physical
separation methods is that the gel expels additional whey when
being handled, which results in a biased measurement. The tracer
methods measure dilution of an added compound such as Blue
Dextran 2000 (9,10).A difficultywith tracermethods, however, is
finding a tracer compound that does not adsorb to or diffuses into
the gel (11).

Time domain proton (1H) low-field nuclear magnetic reso-
nance (LF-NMR) represents a particularly attractive alternative
method for characterizing and quantifying water in food and
dynamic food systems such as gel formation and syneresis. The
major advantage of LF-NMR in this context is that themethod is
both nondestructive and noninvasive (12). The NMR relaxation
of water protons in high water content biological systems is met
by different restrictions that increase the rate of relaxation. In this
manner different relaxation rates can give selective information
about the surrounding environment of different water pools or
populations within biological matter. Restrictions to relaxation
are due towater protons being present in different states or sites in
the system in a time scale compatible with the NMR experiment:
(1) restriction due to chemical exchange between the water
protons and the biopolymer protons and (2) restriction of proton
relaxation due to physical compartmentalization in the sample.
The latter restriction cause is related to diffusion of water protons
because water protons will experience fast relaxation in the
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nologyGroup, Department of Food Science, Faculty of Life Sciences,
University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg,
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proximity of a physical barrier. Naturally, fast relaxation will
only occur if the diffusion time for protons to reach the barrier is
shorter than the intrinsic relaxation time of the protons and the
time scale of the NMR experiment (13).

Several NMR relaxation studies have been reported on milk
gel formation (14-17) and syneresis (3,15,17). The effect ofmilk
gel syneresis onwater proton relaxationhas so far been studied on
undisturbed gels that exhibit only endogenous syneresis (i.e.,
syneresis caused by pressure being built up by network formation
within the gel). This is, however, not representative for actual
cheese manufacturing, in whichmechanical cutting of the gel into
dices is an essential process step. Two inconsistencies exist in the
interpretation of the water proton relaxation during to milk gel
formation and syneresis: (1) the development (or lack) of the
transverse relaxation time constant, T2, and its corresponding
proton population size during gel formation and (2) the number
of proton populations necessary to describe water proton relaxa-
tion during cheese gel formation. Two studies have found no
change in the relaxation time constant, T2, during milk gel
formation (15, 17). On the other hand Hinrichs et al. (14) found
small changes inT2 relaxation time during the gel formation. The
latter study found (without providing explicit proof) that three
populations of water protons were required to describe the
relaxation during milk gel formation, whereas the former studies
found that one proton population was sufficient to describe the
proton relaxation. There is a general agreement that the onset of
milk gel syneresis is associated with the appearance of an
additional water population with slower relaxation, which are
the protons in the whey water (14, 15, 17). In these studies,
however, the syneresis happened spontaneously, and the actual
onset of syneresis was not controlled by cutting, which speed up
the syneresis.

One of the reasons for the discrepancy in number of proton
components is related to the data analytical methods chosen for
studying and deconvoluting the NMR relaxation data. Proton
relaxation occurs exponentially with time. If multiple proton
populations exist in the samples, the relaxation decay curve is a
sum of multiple exponential terms. The major challenge in the
analysis of relaxation decay curves of LF-NMR experiments
using multiexponential curve fitting is to decide the appropriate
number of exponential terms that describe the actual water
populations present in a sample. A new exponential curve-fitting
method called Doubleslicing was introduced by Micklander
et al. (12) to assist in the determination of water populations.
Andrade et al. (18) tested the performance of Doubleslicing
against existing methods and found that it was accurate in
estimating relaxation times and that it outperformed exponential
fitting by a factor of 4 with regard to computation time.

The primary objective of this study was to investigate the effect
of milk gel formation and in situ mechanically (by cutting)
induced gel syneresis by LF-NMR. The secondary objective
was to demonstrate Doubleslicing as a method for determining
the appropriate number of components in a semiautomated way.
For these purposes the effect of milk gel formation and syneresis
was studied using an experimental design with three factors: (1)
pH, (2) temperature, and (3) gel firmness at cutting time. Time
domainLF-NMRmeasurementswere carried out in parallel with
rheological measurements. The rheological measurements were
done only during gel formation (and not syneresis) to evaluate the
gel firmness.

MATERIALS AND METHODS

Experimental Approach. In this study we investigate rennet-induced
gel formation of skim milk and the subsequent syneresis process after gel
cutting by time domain LF-NMR. Rennet was added to skim milk, and

this volume was split into two fractions: one was transferred to an NMR
tube with an inner diameter of 17mm. This tube was immediately inserted
in the LF-NMR spectrometer and continuously measured without inter-
ruption duringmilk coagulation, cutting, and syneresis. The other fraction
was injected into a rheological instrument that continuously measured gel
firmness during gel formation. The role of the rheological measurements
was to ensure that the gels formed in the NMR tube for repeated
experiments had the same, wanted firmness when being cut. A knife,
consisting of a thin polycarbonate blade tightly matching the tube
diameter, was used to cut the gel manually and straight once over the
entire inner diameter of the NMR tube. This was done when the firmness
of the gel in the twin sample in the rheometer had reached a predefined
level. To avoid interruption of the NMR measurements, the gel cutting
was done inside the spectrometer in a 4 s delay between consecutive
measurements. The delay did not always occur simultaneously with the
predefined level of gel firmness, which therefore gave rise to slight
variations in gel firmness at cutting.

Experimental Design. During the gel formation and syneresis three
experimental factors were investigated on two levels (23 factorial design):
pH (6.3 and 6.5), temperature (32 and 35 �C), and gel firmness at cutting
time (low and high; defined later). The eight combinations of the three
design factors were replicated twice, resulting in 16 (= 2 � 23) gel and
syneresis experiments. A center point with pH 6.4, gel firmness at cutting
(middle level), and 35 �C was replicated four times. Unfortunately, a
middle temperature level (33.5 �C) could not be tested due to experimental
limitations. Overall, this resulted in 20 (= 16 þ 4) gel and syneresis
experiments performed in random order in the NMR spectrometer.

Materials. Arla Foods Ingredients (Denmark) kindly donated low-
heat skim milk powder (SMP; Milex 240). The composition of SMP as
reported by the manufacturer was 34-39% protein, <1.25% fat,
48-56% lactose, 7-9% ash, and <4% moisture. Chy-Max Plus rennet
with 220 international milk clotting units (IMCU) mL-1 was obtained
fromChr.HansenA/S (Hoersholm,Denmark). Calciumchloridedihydrate
(CaCl2 3H2O) from Merck A/S (Darmstadt, Germany) and HCl from
Acros Organic (Morris Plains, NJ) were used for preparation of the
reconstituted milk samples.

Preparation of Milk and Renneting. Reconstituted skim milk
samples were prepared by dissolving 100.0 g of SMP in 1000 mL of
deionized water. The reconstituted skim milk was left overnight at 5οC to
allow the proteins to fully dissolve. The protein concentration of the
reconstituted milk was 3.4-3.9% (calculated from manufacturer’s data).
A 10%CaCl2 3H2O stock solution (1.50mL)was added, resulting in a final
concentration of 0.015% (∼1.2 mM) CaCl2 3H2O in the milk. The pHwas
adjusted according to the experimental designwith weakHCl (0.5M). The
reconstituted milk samples were conditioned to the temperatures of the
experimental design for approximately 10 min in a water bath.

A diluted rennet solution of 6.60 IMCU mL-1 was made within 3 min
before initialization of the experiment by mixing 300 μL of Chy-Max Plus
(220 IMCU mL-1) with 10 mL of deionized water. Renneting was
initialized by adding 1.000 mL of diluted rennet solution to 150 mL of
preheated milk placed in a water bath with magnet stirring, resulting in a
final concentration of 0.044 IMCU mL-1 of milk. Thirty seconds after
rennet addition, the stirring was stopped and 1.000 mL of milk was
transferred to each of four sample cups in the rheometer. Sixty seconds
after rennet addition, 7.000 mL of milk was transferred to a temperature-
conditioned NMR tube, and LF-NMR measurements were immediately
started.

Rheological Measurements. Firmness of the milk gel at cutting time
was regulated by cutting at one of three levels according to the experi-
mental design (low,medium, or high). The viscoelastic properties of the gel
were monitored during gel formation by free oscillation rheometry (FOR)
by using a ReoRox4 instrument from MediRox (Nyk€oping, Sweden)
using disposable polypropylene sample cups and the accompanying soft-
ware (ReoRox4 v2.00 and ReoRox Viewer v2.11). In free oscillation
rheometry the measurement geometry is released into free oscillations at a
frequency of around 10 Hz, and the amplitude and period time are
measured by optical sensing. The frequency implies that the method is
noninvasive toward the rennet gel system and hence does not disturb the
gel during formation (19). The gel was cut inside the NMR tube when
the elasticmodulusG0 (10Hz) reached 90, 125, or 160 Pa, corresponding to
the gel firmness defined as low,middle, or high in the experimental design.
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This resulted in a cutting-time range for the 20 experiments in the design of
17-61 min. Note that the elastic modulus, G0, as well as strain is
appreciably higher in FOR than in conventional small-amplitude oscilla-
tion rheometry (SAOR) due to the higher oscillation frequency.

NMR Acquisitions. Time domain LF-NMR analysis was done on a
benchtop 23.2 MHz Maran pulsed 1H NMR spectrometer (Oxford
Instrument, U.K.) equipped with a 17 mm inner diameter variable-
temperature probe head. The temperature of the probe was set according
to the experimental design. The Carr-Purcell-Meiboom-Gill (CPMG)
pulse sequence was used to determine the relaxation behavior. This
sequence was chosen because it minimizes the influence of magnetic field
inhomogeneities, diffusion, and chemical exchange (13). A total of 8100
data points/echo times were acquired, with a 90-180 pulse spacing (τ)
value of 500 μs. Only the even-numbered data points were used in the data
analysis, resulting in 4050 data acquisition points per measurement. By
using every second echo only (even echoes), inaccuracies in the 180� pulse
setting are corrected. Prior to the first measurement, the frequency of the
instrument was adjusted on a 10 mMCuSO4 standard sample. During gel
formation four scans were accumulated with a relaxation delay between
consecutive scans of 14 s. Prior to the four scans, each measurement was
preceded by two dummy scans, leading to a total measurement time of
2 min and 12 s. Measurements were carried out continuously until a
maximum of 100 min after cutting.

NMR Data Analysis by Doubleslicing. Time domain LF-NMR
data are most frequently analyzed usingmultiexponential fitting using, for
example, the Levenberg-Marquardt algorithm, which applies nonlinear
iterative curve-fitting algorithms to extract and characterize the underlying
pure exponentials from random noise in the data (eq 1):

MðtÞ ¼
XN
n¼1

M0;n exp
-t

T2;n

 !
þ eðtÞ ð1Þ

M(t) is the reduced magnetization at time t, M0,n is the concentration or
magnitude parameter of the nth exponential, T2,n is the corresponding
transverse relaxation time constant, and e(t) is the residual error. After the
relaxation curve has been deconvoluted into n exponential components,
inspection of residuals can reveal whether the curve has beenmodeled into
too few, too many, or the correct number of components. If the relaxation
curve has been resolved into fewer exponential components than actually
present, the residuals will show a systematic pattern. If the right number of
exponential components is used, the residual will be randomly distributed.
If too many exponential components are used, the residuals will also be
randomly distributed, but instrumental noise will be incorporated in the
fit. With large data sets (e.g., ∼800 curves in the present study), this
procedure including the inspection of the residual plots can become very
time-consuming.

Micklander et al. (12) introduced an alternative noniterative and rapid
technique for curve resolution calledDoubleslicing. The technique utilizes
the fact that in every part of a multiexponential decay curve each of the
monoexponentials is present, but in different amounts. The technique
pseudo-upgrades the single relaxation curve to become trilinear data, by
cutting the relaxation curve into slices. By selectively removing parts of the
signal curve (slicing) and using the remaining curve, the relaxation curve
can be transformed from a one-dimensional signal (a vector x) into two-
dimensional data (a matrix X). By repeating this procedure on the matrix,
the data are transformed to three-dimensional data (a cube X). This
procedure of converting the relaxation curve into three-way data may
appear to be pointless at first glance, but it enables the use of three-
way mathematical methods such as direct trilinear decomposition
[DTLD (20)], which has some very attractive features. Andrade
et al. (18) tested the performance ofDoubleslicing against existingmethods
and found that it was accurate in estimating relaxation times and that it
outperformed exponential fitting by a factor of 4 with regard to computa-
tion time. The speed advantage is desirable when large data sets are
analyzed. Besides drastic improvement in speed, Doubleslicing also
improves modeling and method diagnostic.

In the present studyDoubleslicingwas performed similar to themethod
of Andrade et al. (18). To validate that the relaxation curves were resolved
into the actual number of exponentials and not under- or overfitting, an
extensive range of diagnostic criteria had to be fulfilled. This set of
diagnostic criteria enabled the construction of an automated algorithm,

which could successively determine the relaxation times and the appro-
priate number of exponentials in the approximately 800 relaxation curves
analyzed in the present study without manual intervention. Doubleslicing
with diagnostic criteria was compared with the classical approach discrete
exponential fitting using visual inspection of residuals. The implementa-
tion of diagnostic criteria and comparison with discrete exponential fitting
are described in the Supporting Information.

Syneresis Rate. The expected rate at which water leaves a milk gel
when cut (i.e., syneresis) has been found to follow first-order reaction
kinetics (2), which implies that the rate is dependent on the concentration
of water in the gel. First-order reaction kinetics for syneresis can be
expressed as (eq 2)

W gel f Wwhey

-
d½Wgel�
dt

¼ k ½Wgel� ð2Þ

where Wgel is the concentration of water in the gel, t is time, and k is the
first-order rate constant. Integration and variable separation of eq 2 yields
eqs 3 and 4:

ln
½Wgel�
½Wgel;0� ¼ -kt ð3Þ

½Wgel� ¼ ½Wgel;0� e-kt ð4Þ

For a first-order reaction, therefore, a plot of natural logarithm versus t is
linear and the first-order rate constant is obtained from the slope (21). In
this study the proton population sizes of the whey water protons are
assumed to represent the concentration of water outside the gel.

Statistical Analysis. On the syneresis rate constant k, obtained in the
23 factorial design, a three-way analysis of variance (ANOVA) was
performed (omitting the partial center point) using the following main-
effects model (eq 5)

k ¼ μþR� pHþ βT þ γ�GFþ e ð5Þ
where μ is the common mean, R is the coefficient characterizing the pH
effect, β is the temperature effect, and γ is the gel firmness effects.
Interaction terms were not included, that is, evaluated as insignificant
(p < 0.05) by iterative testing.

All data analysis steps (data exploration, trilinear modeling, ANOVA,
etc.) were performed with Matlab version 7.6 (MathWorks Inc., Natick,
MA) and an in-house algorithm.

RESULTS AND DISCUSSION

Development in T2 Relaxation Time Constants and Population
Sizes. Figure 1 shows CPMG relaxation curves recorded in one

Figure 1. NMR CPMG relaxation curves during gel formation and syner-
esis in one gel formation and syneresis experiment. Notice that the overall
relaxation becomes systematically slower with experiment time.
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benchtop 23.2 MHz Maran pulsed 1H NMR spectrometer (Oxford
Instrument, U.K.) equipped with a 17 mm inner diameter variable-
temperature probe head. The temperature of the probe was set according
to the experimental design. The Carr-Purcell-Meiboom-Gill (CPMG)
pulse sequence was used to determine the relaxation behavior. This
sequence was chosen because it minimizes the influence of magnetic field
inhomogeneities, diffusion, and chemical exchange (13). A total of 8100
data points/echo times were acquired, with a 90-180 pulse spacing (τ)
value of 500 μs. Only the even-numbered data points were used in the data
analysis, resulting in 4050 data acquisition points per measurement. By
using every second echo only (even echoes), inaccuracies in the 180� pulse
setting are corrected. Prior to the first measurement, the frequency of the
instrument was adjusted on a 10 mMCuSO4 standard sample. During gel
formation four scans were accumulated with a relaxation delay between
consecutive scans of 14 s. Prior to the four scans, each measurement was
preceded by two dummy scans, leading to a total measurement time of
2 min and 12 s. Measurements were carried out continuously until a
maximum of 100 min after cutting.

NMR Data Analysis by Doubleslicing. Time domain LF-NMR
data are most frequently analyzed usingmultiexponential fitting using, for
example, the Levenberg-Marquardt algorithm, which applies nonlinear
iterative curve-fitting algorithms to extract and characterize the underlying
pure exponentials from random noise in the data (eq 1):

MðtÞ ¼
XN
n¼1

M0;n exp
-t

T2;n

 !
þ eðtÞ ð1Þ

M(t) is the reduced magnetization at time t, M0,n is the concentration or
magnitude parameter of the nth exponential, T2,n is the corresponding
transverse relaxation time constant, and e(t) is the residual error. After the
relaxation curve has been deconvoluted into n exponential components,
inspection of residuals can reveal whether the curve has beenmodeled into
too few, too many, or the correct number of components. If the relaxation
curve has been resolved into fewer exponential components than actually
present, the residuals will show a systematic pattern. If the right number of
exponential components is used, the residual will be randomly distributed.
If too many exponential components are used, the residuals will also be
randomly distributed, but instrumental noise will be incorporated in the
fit. With large data sets (e.g., ∼800 curves in the present study), this
procedure including the inspection of the residual plots can become very
time-consuming.

Micklander et al. (12) introduced an alternative noniterative and rapid
technique for curve resolution calledDoubleslicing. The technique utilizes
the fact that in every part of a multiexponential decay curve each of the
monoexponentials is present, but in different amounts. The technique
pseudo-upgrades the single relaxation curve to become trilinear data, by
cutting the relaxation curve into slices. By selectively removing parts of the
signal curve (slicing) and using the remaining curve, the relaxation curve
can be transformed from a one-dimensional signal (a vector x) into two-
dimensional data (a matrix X). By repeating this procedure on the matrix,
the data are transformed to three-dimensional data (a cube X). This
procedure of converting the relaxation curve into three-way data may
appear to be pointless at first glance, but it enables the use of three-
way mathematical methods such as direct trilinear decomposition
[DTLD (20)], which has some very attractive features. Andrade
et al. (18) tested the performance ofDoubleslicing against existingmethods
and found that it was accurate in estimating relaxation times and that it
outperformed exponential fitting by a factor of 4 with regard to computa-
tion time. The speed advantage is desirable when large data sets are
analyzed. Besides drastic improvement in speed, Doubleslicing also
improves modeling and method diagnostic.

In the present studyDoubleslicingwas performed similar to themethod
of Andrade et al. (18). To validate that the relaxation curves were resolved
into the actual number of exponentials and not under- or overfitting, an
extensive range of diagnostic criteria had to be fulfilled. This set of
diagnostic criteria enabled the construction of an automated algorithm,

which could successively determine the relaxation times and the appro-
priate number of exponentials in the approximately 800 relaxation curves
analyzed in the present study without manual intervention. Doubleslicing
with diagnostic criteria was compared with the classical approach discrete
exponential fitting using visual inspection of residuals. The implementa-
tion of diagnostic criteria and comparison with discrete exponential fitting
are described in the Supporting Information.

Syneresis Rate. The expected rate at which water leaves a milk gel
when cut (i.e., syneresis) has been found to follow first-order reaction
kinetics (2), which implies that the rate is dependent on the concentration
of water in the gel. First-order reaction kinetics for syneresis can be
expressed as (eq 2)

W gel f Wwhey

-
d½Wgel�
dt

¼ k ½Wgel� ð2Þ

where Wgel is the concentration of water in the gel, t is time, and k is the
first-order rate constant. Integration and variable separation of eq 2 yields
eqs 3 and 4:

ln
½Wgel�
½Wgel;0� ¼ -kt ð3Þ

½Wgel� ¼ ½Wgel;0� e-kt ð4Þ

For a first-order reaction, therefore, a plot of natural logarithm versus t is
linear and the first-order rate constant is obtained from the slope (21). In
this study the proton population sizes of the whey water protons are
assumed to represent the concentration of water outside the gel.

Statistical Analysis. On the syneresis rate constant k, obtained in the
23 factorial design, a three-way analysis of variance (ANOVA) was
performed (omitting the partial center point) using the following main-
effects model (eq 5)

k ¼ μþR� pHþ βT þ γ�GFþ e ð5Þ
where μ is the common mean, R is the coefficient characterizing the pH
effect, β is the temperature effect, and γ is the gel firmness effects.
Interaction terms were not included, that is, evaluated as insignificant
(p < 0.05) by iterative testing.

All data analysis steps (data exploration, trilinear modeling, ANOVA,
etc.) were performed with Matlab version 7.6 (MathWorks Inc., Natick,
MA) and an in-house algorithm.

RESULTS AND DISCUSSION

Development in T2 Relaxation Time Constants and Population
Sizes. Figure 1 shows CPMG relaxation curves recorded in one

Figure 1. NMR CPMG relaxation curves during gel formation and syner-
esis in one gel formation and syneresis experiment. Notice that the overall
relaxation becomes systematically slower with experiment time.
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batch during gel formation and subsequent syneresis induced by
cutting the milk gel at predetermined degrees of gel firmness [i.e.,
size of the viscous moduleG0 0 (10Hz)]. By visual inspection of the
relaxation curves in Figure 1 it is not possible to observe any
changes prior to cutting of the gel. However, overall relaxation
becomes systematically slower after cutting of the milk gel,
implying that the proton population(s) progressively changes as
a result of the syneresis process,whenwater (i.e., whey) is expelled
from the gel network.The trend inFigure 1 is representative for all
experiments in the design.

The development in T2 and population sizes calculated from
the relaxation curves using the correct number of exponential
terms for each LF-NMR measurement are shown for two
representative experiments (Figure 2). Notice that the trend lines
through the 50 time points in Figure 2 are added for interpreta-
tional purposes only after DTLD component determination. The
abrupt change at the cutting point and the otherwise smooth
curves give rise to high confidence in both themodeling approach
and the automatedmethod ofmodel rankdetermination.Figure 2
displays somekey trends that are representative for all 20 batches.

During gel formation and prior to cutting, two components are
present, which correspond to two distinguishable populations of
protons with characteristic relaxation times T2,1 and T2,2. Within
the gel formation phase the relaxation times T2,1 and T2,2 and

population sizes are relatively constant compared to the syneresis
phase (Figure 2 andTable 1). Themain part of the (water) protons
(relative contribution in total signal of 98.8%, SD= 0.2%) prior
to cutting of the gel originates from a population that is
characterized by an average T2,1 of 180.7 ms (SD = 5.1 ms).

Changes in T2 and Population Size during Gel Formation.
During gel formation and syneresis two proton populations with
the characteristic transverse relaxation times T2,1 and T2,2 are
present within the gel (Figure 2). The sizes of T2,1 and T2,2 show
that the proton population originates from water associated with
different parts/constituents of the gel. Data analysis clearly
showed that biexponential behavior characterizes the system
during gel formation, prior to cutting. The second component
characterized by T2,2 has not been previously described in the
literature, to the authors’ knowledge. The T2,2 component repre-
sents only ∼1% of the water protons during gel formation, but
cutting caused it to increase to∼5%of thewater. Cutting induced
an immediate decrease in T2,2 followed by an increase simulta-
neously with an increase in T2,3, suggesting that the events are
related. More experiments should be done to further elucidate
what T2,2 represents, but this is beyond the scope of the present
study.

Le Dean et al. (22) studied the origin of proton populations in
milk andmilk protein mixtures using a factorial design of various

Figure 2. Development in transverse relaxation time constants T2,1, T2,2, and T2,3 (upper row) and the corresponding relative population sizes f1, f2, and f3
(lower row) during gel formation and syneresis of two experiments with different experimental settings. The left-column graphs show the development in an
experiment with conditions pH 6.3, 34.9 �C, and low firmness at cutting. The right-column graphs show the development in an experiment with conditions pH
6.5, 34.9 �C, and low firmness at cutting. The vertical broken line indicates the time when the milk gel was cut.

Table 1. Average T2 and Relative Population Size during Gel Formation and Syneresis for the 20 Experiments

transverse relaxation time constant (ms) relative population size (%)

phase T2,1 T2,2 T2,3 f1 f2 f3

gel formation 180.7 (5.1)a 465.3 (69.0) 98.9 (0.2) 1.1 (0.2)

gel syneresis 151.1 (5.9) 425.9 (35.1) 1849.2 (125.2) 79.0 (5.7) 5.3 (1.1) 11.8 (5.2)

aStandard deviation in parentheses.
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protons with characteristic relaxation times T2,1 and T2,2. Within
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phase (Figure 2 andTable 1). Themain part of the (water) protons
(relative contribution in total signal of 98.8%, SD= 0.2%) prior
to cutting of the gel originates from a population that is
characterized by an average T2,1 of 180.7 ms (SD = 5.1 ms).

Changes in T2 and Population Size during Gel Formation.
During gel formation and syneresis two proton populations with
the characteristic transverse relaxation times T2,1 and T2,2 are
present within the gel (Figure 2). The sizes of T2,1 and T2,2 show
that the proton population originates from water associated with
different parts/constituents of the gel. Data analysis clearly
showed that biexponential behavior characterizes the system
during gel formation, prior to cutting. The second component
characterized by T2,2 has not been previously described in the
literature, to the authors’ knowledge. The T2,2 component repre-
sents only ∼1% of the water protons during gel formation, but
cutting caused it to increase to∼5%of thewater. Cutting induced
an immediate decrease in T2,2 followed by an increase simulta-
neously with an increase in T2,3, suggesting that the events are
related. More experiments should be done to further elucidate
what T2,2 represents, but this is beyond the scope of the present
study.

Le Dean et al. (22) studied the origin of proton populations in
milk andmilk protein mixtures using a factorial design of various

Figure 2. Development in transverse relaxation time constants T2,1, T2,2, and T2,3 (upper row) and the corresponding relative population sizes f1, f2, and f3
(lower row) during gel formation and syneresis of two experiments with different experimental settings. The left-column graphs show the development in an
experiment with conditions pH 6.3, 34.9 �C, and low firmness at cutting. The right-column graphs show the development in an experiment with conditions pH
6.5, 34.9 �C, and low firmness at cutting. The vertical broken line indicates the time when the milk gel was cut.

Table 1. Average T2 and Relative Population Size during Gel Formation and Syneresis for the 20 Experiments

transverse relaxation time constant (ms) relative population size (%)

phase T2,1 T2,2 T2,3 f1 f2 f3

gel formation 180.7 (5.1)a 465.3 (69.0) 98.9 (0.2) 1.1 (0.2)
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levels of milk components (i.e., caseinates, whey protein, CaCl2,
and lactose). They found that a bulk proton component having a
T2 = 163-205 ms was present in both milk and milk protein
mixtures and that caseinate concentration explained most of the
variation in relaxation timeT2. This findingwas a confirmationof
previously observed variations in T2 due to casein concentra-
tion (23). It has also been shown that addition of lactose andwhey
protein slightly decreased the relaxation time T2 of milk protein
mixtures (22). According to Le Dean et al. (22) and Davenel
et al. (23), the bulk proton component (T2,1 = 180.7 ms, Table 1)
found in the present study could correspond to water protons
strongly associatedwith casein.During gel formation andprior to
cutting, the bulk water protons represented by T2,1 make up
∼99% of the water protons (Figure 2). Figure 3 shows the
development in T2,1 before cutting for all 20 experiments in the
factorial design. The effect of pH onT2,1 is that a reduction in pH
from 6.5 to 6.3 slightly increases T2,1 (Figure 3). Assuming that
T2,1 represents a proton fraction strongly associated with casein,
an increase inT2,1 can be interpreted as an enrichment of water to
the protein hydration layer. This effect of pH is consistent with
the previous NMR findings (22, 24), but in contrast with other
studies concluding that lowering the pH reduces hydration of
casein micelles (25, 26). In the present study the effect of
temperature on T2,1 during gel formation is small but significant.
T2,1 in gels formed at 32 �C (Figure 3, open symbols) is lower than
T2,1 in gels formed at 35 �C (Figure 3, solid symbols). T2 of
protons is in general sensitive to temperature due to differences in
molecular diffusion and the Boltzmann distribution of protons,
which could explain the T2,1 variation due to temperature.

Close inspection of T2,1 development (Figure 3) shows a small
trend over the experiments. The trend in the majority of the 20
experimental runs is that T2,1 initially decreases and then increases
in a V-like shape. This shape development could be some sort of
NMR artifact or coincidental. Further studies should be done to
validate the V-like shape. Assuming it is a real sample phenomen-
on, it could be interesting to determine if it is related to proteolysis
of κ-casein and aggregation steps taking place during coagulation.

Changes in T2 and Population Size during Syneresis. The most
noticeable trend during syneresis is the rise of a new population of
slowly relaxing water protons just after cutting, which is clearly
thewhey phase.Moreover, we observe that the averageT2,3 of the
water protons in the whey grew asymptotically toward a near
steady state, showing that the whey water is being progressively
diluted until a certain limit. That the initial water leaving the gel
has a lower T2,3 than the water leaving later (Figure 2, upper row)
suggests that the initial water contains more substances (i.e.,
whey, lactose, and minerals) that restrict relaxation. The popula-
tion size of the whey water protons increase simultaneously
(Figure 2, lower row), also toward an expected steady state,
which is, however, not reached in the time span of the experiment.

During syneresis the bulk proton population characterized by
T2,1 steadily decreases to a level of ∼50-70% of the water
protons after 100 min. If we assume this proton population is
primarily associated with casein micelles as previously sug-
gested (22), then the decrease in population size initiated by
cutting suggests that the casein micelles are being steadily
dehydrated. The simultaneous increase in proton populations
characterized byT2,2 and T2,3 (primarily T2,3, the whey) indicates
that during syneresis the protons are transferred from the
population characterized byT2,1 to the populations characterized
by T2,2 and T2,3. A steady decrease is also observed in T2,1 during
syneresis (Figure 2), which presumably is related to the up-
concentration of solutes in the gel after expulsion of whey. A
more concentrated solution of, for example, lactose and minerals
in this water population would generally cause the water protons
to relax more quickly. Another possible explanation for the
steady decrease in T2,1 during syneresis is that the simultaneous
loss of water from the gel means that protons have less space for
self-diffusion, which in turn will affect relaxation time.

Experimental Repeatability. To investigate the reproducibility
of the cheese-making process as well as the data analytical
approach, examples of repeated run are superimposed inFigure 4.
The process in Figure 4A shows excellent repeatability, but the
process inFigure 4B displays reduced repeatability. Especially the
syneresis process is sensitive, as evidenced by Figure 4B showing
the development in relative population sizes, where one of the gels
exhibits faster syneresis. Because pH, temperature, and gel firm-
ness are controlled by the design, a possible source for the reduced
repeatability could lie in differences in the action of cutting.
Indeed, Mateo et al. (27) studied the effect of cutting intensity on
syneresis and found that gel moisture significantly depends on
cutting intensity. It is thus possible that the not fully standardized,
manual cutting intensity used in the present study may explain
(modest) duplicate differences in syneresis rates.

Effect of Temperature, pH, and Gel Firmness at Cutting on
Syneresis Rate. The relative population sizes determined during
modeling quantitatively show how much water (protons) with
different T2 values is present at a given time during syneresis.
The primary development can be summarized as follows: fast-
relaxing water (T2,1 ∼ 180 ms) within the gel is mainly converted
to slow-relaxingwater (T2,3∼ 2000-2200ms) situatedoutside the
gel. A small fraction of the fast-relaxing water protons is
seemingly converted into water present within the gel with an
intermediate relaxation rate (T2,2 ∼ 400-500 ms). The rate by

Figure 3. Development of T2,1 with time after rennet addition, before
cutting, in 20 coagulation experiments: (circles) pH6.3; (diamonds) pH6.4;
(squares) pH 6.5; (open symbols) 32 �C; (solid symbols) 35 �C.Notice the
V-like shape present in the graphs, that is, an initial decrease followed by an
increase.
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studies concluding that lowering the pH reduces hydration of
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which the water leaves a cut milk gel (i.e., syneresis) can be
described as a reaction of first order, meaning that the rate of
water expulsion is dependent on the concentration ofwater present
at a given time (2). The evolution in population size of the whey
water in Figure 4 indicates first-order reaction behavior, seen as an
initial rapid increase that asymptotically flattens out. Themodel of
a first-order reaction was fitted to the evolution in population size
of the whey water, and a nice fit with small randomly distributed
residuals confirmed that whey water expulsion in the present study
followed first-order reaction kinetics.

Figure 5 shows the first-order reaction rate constant k from eqs
2 and 3 for howwater is arriving to the (water) protonpopulation,
making up the whey water for all 20 gel formation and syneresis
experiments inside the factorial design. Table 2 shows the corre-
sponding results from an analysis of variance (ANOVA) evalua-
tion on whether or not the first-order reaction rate constant k
significantly depends on the design factors temperature, pH,
and/or gel firmness at cutting.

A noticeable trend is that k is higher at pH 6.3 than at pH 6.5,
which is consistent with previous findings showing that lowering
the pH increases the rate of syneresis (6,7).Another trend is thatk
is highly temperature dependent; thus, the rate of syneresis
accelerates as temperature increases, which is known from pre-
vious studies as well (2, 8).

No significant dependence of the syneresis rate constants on gel
firmness at cutting was found within the experimental design
(Figure 5; Table 2), which is consistent with previous find-
ings (28, 29). This result presents a paradox because one could
expect that a firmer gel with high endogenous pressure should
expel whey more quickly than a less firm gel. Within the experi-
mental design the temperature showed a major influence on the
syneresis rate constant and is thus of great importance for process
control.

To summarize, LF-NMR was used to characterize skim milk
gel formation and syneresis qualitatively and quantitatively. A
new automated algorithm based on Doubleslicing proved to be
precise in finding the appropriate number of underlying expo-
nential components (i.e., proton populations) in single relaxation
curves measured during gel formation and syneresis. All 20
batches showed the same tendency that two underlying compo-
nents of water protons were present during gel formation,

Figure 4. Development in two duplicated experiments of T2,1, T2,2, and T2,3 (upper row) and the corresponding relative population sizes f1, f2, and f3 (lower
row): (A) duplicates at pH 6.3, 35 �C, and low firmness at cut; (B) duplicates at pH 6.5, 32 �C, and low firmness at cut. Broken lines showwhen the gel was cut.
The thick lines are trend lines based on first-order reaction rate constants calculated from natural logarithmic transformed population size values.

Figure 5. 23 factorial design with partial centerpoint used in the present
milk coagulation and syneresis study. In the squares are given the first-
order reaction rate constants k (� 10-3) of whey syneresis estimated
using LF-NMR. k is given for all design combinations and replicates.

Table 2. Analysis of Variance: Effects Temperature, pH and Gel Firmness at
Cutting on the First-Order Water Proton Syneresis Rates k during Milk Gel
Syneresis

k (� 10-3)

P value av

temperature (�C)
32 < 0.001 3.4 (0.5)a

35 4.8 (0.3)

pH

6.3 0.036 4.4 (0.3)

6.5 3.8 (0.5)

gel firmness at cutting

low 0.65 4.2 (0.5)

high 4.0 (0.3)

a Parentheses show standard deviation.
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which the water leaves a cut milk gel (i.e., syneresis) can be
described as a reaction of first order, meaning that the rate of
water expulsion is dependent on the concentration ofwater present
at a given time (2). The evolution in population size of the whey
water in Figure 4 indicates first-order reaction behavior, seen as an
initial rapid increase that asymptotically flattens out. Themodel of
a first-order reaction was fitted to the evolution in population size
of the whey water, and a nice fit with small randomly distributed
residuals confirmed that whey water expulsion in the present study
followed first-order reaction kinetics.

Figure 5 shows the first-order reaction rate constant k from eqs
2 and 3 for howwater is arriving to the (water) protonpopulation,
making up the whey water for all 20 gel formation and syneresis
experiments inside the factorial design. Table 2 shows the corre-
sponding results from an analysis of variance (ANOVA) evalua-
tion on whether or not the first-order reaction rate constant k
significantly depends on the design factors temperature, pH,
and/or gel firmness at cutting.

A noticeable trend is that k is higher at pH 6.3 than at pH 6.5,
which is consistent with previous findings showing that lowering
the pH increases the rate of syneresis (6,7).Another trend is thatk
is highly temperature dependent; thus, the rate of syneresis
accelerates as temperature increases, which is known from pre-
vious studies as well (2, 8).

No significant dependence of the syneresis rate constants on gel
firmness at cutting was found within the experimental design
(Figure 5; Table 2), which is consistent with previous find-
ings (28, 29). This result presents a paradox because one could
expect that a firmer gel with high endogenous pressure should
expel whey more quickly than a less firm gel. Within the experi-
mental design the temperature showed a major influence on the
syneresis rate constant and is thus of great importance for process
control.

To summarize, LF-NMR was used to characterize skim milk
gel formation and syneresis qualitatively and quantitatively. A
new automated algorithm based on Doubleslicing proved to be
precise in finding the appropriate number of underlying expo-
nential components (i.e., proton populations) in single relaxation
curves measured during gel formation and syneresis. All 20
batches showed the same tendency that two underlying compo-
nents of water protons were present during gel formation,

Figure 4. Development in two duplicated experiments of T2,1, T2,2, and T2,3 (upper row) and the corresponding relative population sizes f1, f2, and f3 (lower
row): (A) duplicates at pH 6.3, 35 �C, and low firmness at cut; (B) duplicates at pH 6.5, 32 �C, and low firmness at cut. Broken lines showwhen the gel was cut.
The thick lines are trend lines based on first-order reaction rate constants calculated from natural logarithmic transformed population size values.

Figure 5. 23 factorial design with partial centerpoint used in the present
milk coagulation and syneresis study. In the squares are given the first-
order reaction rate constants k (� 10-3) of whey syneresis estimated
using LF-NMR. k is given for all design combinations and replicates.

Table 2. Analysis of Variance: Effects Temperature, pH and Gel Firmness at
Cutting on the First-Order Water Proton Syneresis Rates k during Milk Gel
Syneresis

k (� 10-3)

P value av

temperature (�C)
32 < 0.001 3.4 (0.5)a

35 4.8 (0.3)

pH

6.3 0.036 4.4 (0.3)

6.5 3.8 (0.5)

gel firmness at cutting

low 0.65 4.2 (0.5)

high 4.0 (0.3)

a Parentheses show standard deviation.
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whereas the syneresis initiated by cutting produced an extra
proton populationwith slow relaxation, identified as whey water.
Quantitatively, we demonstrated that LF-NMR could monitor
the relative amount of water present in each of the populations by
the signal magnitude. In this way the first-order syneresis rates of
whey being separated from the gel was derived. ANOVA showed
that the syneresis rate constant is dependent on pH in the range
from 6.3 to 6.5 and on temperature in the range from 32 to 35 �C;
gel firmness at cutting did not show any significant effect on
syneresis rate. The present approach enables the quantification of
macrosyneresis on a rational basis and could be useful in, among
other things, studying the relationship between the kinetics of
rennet coagulation and syneresis.

Supporting Information Available: NMR data analysis by

Doubleslicing, solution diagnostics, exemplification of solution

diagnostics, and comparison with discrete exponential fitting.

This material is available free of charge via the Internet at

http://pubs.acs.org.
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Ultrafiltration (UF) ofmilk in the dairy industry generates significant quantities of UFpermeate as a by-product. In
the past decade UF permeate has been utilized as a mixing ingredient in the standardization of milk. Due to the
role of permeate as an ingredient, it is important that the variation in composition is known and controlled in
order to ensure uniform quality of the standardized milk. In this investigation we evaluate if the composition of
permeate from the ultrafiltration of milk varies between different ultrafiltration plants as assessed by infrared
spectroscopy. A total of 40 permeate samples from six production sites at different geographical locations were
analyzed by infrared spectroscopy. Principal component analysis of the infrared spectra showed that it was
possible to classify the plant manufacturer of permeates with great accuracy. Loading spectra revealed that total
solids (mainly lactose) and protein were themain sources of compositional variation between the different sites.
Through an orthogonalization procedure of the infrared spectra the spectral variation due to total solid and
protein content was removed. Neither the unsupervised principal component analysis nor the supervised
extended canonical variate analysis could classify thepermeate plant origin after orthogonalization of the infrared
spectra. The result shows that, besides total solids and protein variation, permeate from the six ultrafiltration
sources does not contain plant specific composition in their infrared signature. The study demonstrates how
multiple external factors can be removed from the spectral data by orthogonalization.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The process of concentrating the fat and protein content in milk
through ultrafiltration (UF) generates significant amounts of milk UF
permeate in the dairy industry [1]. Milk permeate is composed of water
and low molecular weight solutes from milk: minerals, vitamins, whey
proteins and lactose. Lactose constitutes the majority of the total solids
inmilk permeate. The enormous volumes ofmilk permeate produced in
the dairy industry have gone from being a major waste problem to
being utilized in differentways to add value to the industry. Permeate is
utilized as animal feed, fertilizer spread over land and in the production
of lactose powder. However, since Codex Alimentarius Commission in
1999 approved standardization of the protein content of milk, an
important utilization of permeate has been as amixing ingredient in the
protein standardization of milk [1,2]. Several scientific studies on milk
permeate have focused on the effect of mixing permeate with milk on
the technological and sensory properties of the out coming milk and
milk products [3–5]. Collectively these findings emphasize that milk

permeate used as an ingredient in standardized milk can have an
impact on the quality of the final products.

The focus of the present study is to characterize the milk permeate
itself and demonstrate how it varies in a real production environment.
Since permeate has been shown to have an effect on technological and
sensory properties ofmilk [3–5], there is a reason to believe that variation
in permeate due to process variation will affect the final product quality.
The incentive for investigating permeate variation is that an increased
knowledge about “raw material variation” can be used to reduce end-
product variation. Permeate can vary due to “normal” changes in raw
milk composition as well as variation due to the UF process itself.
Uncontrolled “disturbances” such as leaks due to worn membranes or
controlled process factors such as membrane pore size, flow pressure, pH
regulation and the simultaneous use of reverse osmosis (RO) for water
removal all have the potential to impact permeate variation.

Infrared (IR) spectroscopy is a powerful analytical tool used in routine
laboratory analysis in the dairy industry. IR spectra contain multiple
absorbance bands from molecular vibrations where many of the bands
are overlapping. As a consequencemultivariate data analysis is frequently
used for analyzing the spectra. Principal component analysis (PCA) is one
of themost often usedmethods forfinding themain features in IR spectra
[6]. One general property of PCA is that each of the principal components
represents orthogonal (uncorrelated) variations in the data.
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Pre-treatment of IR spectra can be used to remove various effects
from the measurements that subsequently enhance the use of the
model. One group of pre-treatment methods is orthogonalization.
Orthogonalization of a matrix can be performed in the row space by a
vector or a matrix with individual sample information (design matrix,
continuous variable, etc.) with length equal to number of samples or
in the column space by a vector or a matrix with the signature of a
feature with length equal to number of variables. Orthogonal signal
correct (OSC) [7] is an example of row space orthogonalization. Here
the so-called OSC components are effects orthogonal to the response
y, which are removed from the data, and hence do not depend on an
external feature, but a direction in the null space of y. External
parameter orthogonalization PLS (EPO-PLS) as presented by Roger
et al. [8] provides an example of a method that involves column
space orthogonalization. In EPO-PLS the effect or signature, of an
external factor (e.g. temperature) is estimated on a data set consisting
spectra (or other measurements) of n samples each measured at k
levels of the external factor. Subsequently an influence matrix D is
defined as themean spectra of samples at each factor level (k×p). D is
also mean-centered according to the mean of mean spectra.
Subsequent PCA on D provides a loading matrix G, which can be
used to correct new spectra for external factor effects by column space
orthogonalization: xnewcorr=xnew(I−GG′). Both pre-treatment
methods attempt to remove unwanted disturbing effects in order
to improve calibration performance. In the present study, we use
row space orthogonalization in another way, to remove multiple
effects from data and analyze the residual information to investigate
how it affects classification performance. In this way it is a variant of
backward feature elimination.

In this paper we present a case study in which six dairy plants
transfer their UF permeate to one site for further processing. The
dairy plant receiving permeate uses it to mix in with standardized
milk and timely knowledge of the variation in the imported
permeate is therefore essential. The main expected effects of process
variations between UF plants are differences in the protein
composition and in the total solid concentration. The objective of
this study is to investigate the plant-to-plant variation in UF
permeate from the six locations. To pursue this objectives the
permeate samples were analyzed by Fourier transform infrared
spectroscopy (FT-IR) used as site or permeate “signature”. The FT-IR
spectra were analyzed by multivariate data analysis. In order to
investigate if other factors than protein and total solid content are
causing significant plant-to-plant variation in the FT-IR signature,
these two factors are mathematically removed from the spectra
through orthogonalization.

2. Material and methods

2.1. Experimentals

Forty ultrafiltration (UF) milk permeate samples of 100 mL were
collected over a two week period from amilk powder producing dairy
plant in New Zealand. The samples were taken from trucks arriving
from five different dairy plants utilizing UF, and one dairy plant
utilizing UF and reverse osmosis in combination. Each sample was
analyzed in duplicate using a Foss MilkoScan FT2 (Hillerød, Denmark)
which takes up 15 mL sample for a single measurement. Absorbance
spectra were acquired in the range 5009–925 cm−1 in transmission
mode over a path length of 50 μm. The total solid content in the
samples was determined via a build-in calibration made for analyzing
UF permeate. For reference analyses 1 mL of each permeate sample
was centrifuged at 13,000 rpm for 5 min. The supernatant was
analyzed for protein content by reverse phase high performance
liquid chromatography (RP-HPLC) according to the method described
by Elgar et al. [9].

2.2. Data analysis

Overall the IR spectra of milk permeates contained three sources of
known variation: total solids and proteins (continuous) and produc-
tion site (qualitative). The spectra were evaluated using unsupervised
grouping by PCA and supervised grouping by extended canonical
variate analysis (ECVA); all multivariate models were made on mean-
centered or auto-scaled data using the spectral region from 1800 to
925 cm−1. Autoscaling of spectral data is uncommon, because it up-
weights regions of low variance. We applied it because the protein
variance in the sample set is low, but might explain production site
variation. External factors protein and total solid were removed from
the IR spectra by orthogonalization.

2.2.1. PCA
PCA decomposes a data matrix X into a few significant bilinear

components, in terms of the outer product of two sets of vectors: scores
in the sample direction (plants/sites in this study) and loadings in the
variable direction (wavenumbers in this study). These components
capture the essential information in X, and are called principal
components (PC). One problemwhen using PCA is that the components
calculated describe the direction of major variance which might not be
relevant for discrimination between different groups of samples [6].

2.2.2. ECVA
ECVA is a supervised method for the estimation of directions in

space that maximizes the differences between the groups and at the
same time minimizes the differences within the known groups. ECVA
is an extension of the standard canonical variate analysis which uses
partial least square regression in order to be able to deal with highly
collinear data such as spectroscopic signals [10].

2.2.3. Orthogonalization
In order to examine if other factors than protein and total solid

content are causing significant plant-to-plant variation in the FT-IR
spectra, these two factors were removed one after another from the
spectra through orthogonalization. The essential principles of orthog-
onalization are described below, while a detailed mathematical
treatment can be found in Appendix A. Orthogonalization is the
process of removing information from a data matrix X linearly related
to an external factor

Xo = I−v vTv
� �−1

vT
� �

X ð1Þ

where Xo is the data orthogonalized towards the external vector v; X is
the data matrix and I is the identity matrix. Orthogonalization of a data
set can beused for focusing subsequent data analysis on that variation in
data not related to the external factor (v). In the case of several
independent external factors (v1, v2… vk;vi ∙vj=0 for all combinations of
i≠ j) data can be corrected for one factor and analyzed with respect to
the other. In e.g. observational data or if outliers are removed the
external factors may become dependent i.e. correlated (vi ∙vj≠0 for
combinations of i≠ j). In this case orthogonalization with one external
factor i will result in removal of information related to another external
factor j. In order to only remove information related to one factor and
retain the full degree of information related to another factor, the data is
only orthogonalized with that part of factor i which is orthogonal to
factor j. This can be exemplified through Eq. (2), where factor one (vi) is
the external vectorwewish to removewhich is orthogonalized towards
factor two (vj), which we wish to retain. Then vioj is used for
orthogonalization of X as described in Eq. (1), substituting v by vioj

vioj = I−vj vTj vj
� �−1

vTj

� �
vi: ð2Þ
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In the remainder of this paper we will refer to the two
orthogonalization approaches as orthogonalization in the case the
external factor is uncorrected and compensated orthogonalization in
the case where the external factor is corrected, prior to orthogonal-
ization of X.

2.3. Software

Allmultivariate data analysiswas carried out usingMatlab version 7.6
(MathWorks Inc. Natick, MA, USA). PCA was performed using the PLS
toolbox (Eigenvector Research, WA, USA). ECVA and orthogonalization
were done using in-house scripts freely available at www.models.kvl.dk.

3. Results and discussion

Fig. 1 shows the spectra of 40 permeate samples that are shown
colored according to treatment (UF or UF plus reverse osmosis, RO). The

red spectra are especially different from the remaining spectra in the
range 1480–950 cm−1. The main part of this spectrum is the so-called
fingerprint region (1400–900 cm−1), where complex molecular vibra-
tions rather than group vibrations absorb the infrared radiation. For that
reason absorbance in the fingerprint region is by approximation
proportional to the sum of solutes in the sample. The black spectra are
the permeate samples which come from UF of milk followed by RO of
the UF permeate. Because ROonly removeswater, the UF permeates are
up-concentrated. For that reason the black spectra show an increase
absorbance in thefingerprint region. If fat is present in the sample itwill
cause amajor absorbance from the strong carbonyl stretchingvibrations
at 1745 cm−1. The absence of a peak at this position in the FT-IR
permeate spectra (Fig. 1) validates that the UF membranes at all sites
have withheld fat well. Protein presence in a sample is seen as
absorbance bands at 1640 cm−1 (amid I vibrations) and 1550 cm−1

(amid II vibrations). The weak band at 1550 cm−1 (Fig. 1) shows the
presence of proteins in small concentrations. The amide I band is hidden
under the strong OH bending vibrations at 1640 cm−1 from water,
which absorb so heavily that no light is passing the transmission cell.
The strong absorbance in the fingerprint region and CH vibrations seen
from 2700 to 3000 cm−1 confirm the presence of carbohydrates. Since
permeate is nearly fat free, these CH vibrations can almost only come
from carbohydrates primarily lactose.

Further scrutinizing of the spectra (Fig. 1) shows that permeates from
UF plants B–F (red spectra) have the highest absorbance in the amide II
mode, suggesting that these sites let more of the protein sieve to the
permeate. Overall, the spectra suggest that FT-IR is able to fingerprint the
manufacturer of permeate samples. Fig. 2 showsaPCAscore- and loading-
plot of the 40 FT-IR spectra of UF milk permeates. From the score-plot
(Fig. 2a) it is observed that the permeate samples are clustered according
to the individual sitewhere itwas produced. The samples fromplantA are
particularly separated in the score-plot. The loading-plot of PC1 (Fig. 2b)
shows that the fingerprint region is themain contributor, which suggests
that PC1primarily describes variation in total solids between the samples;
in permeate the vast majority of solids is lactose. The loading of PC1 is
surprisingly flat in the fingerprint region. This flat shape of the loading is
explainable because the PCA is performed on auto-scaled data, and in the
fingerprint region the spectra have almost the same relative absorbance.
The zoom-inof the region reveals that the loading isnot completelyflat. In
the loading-plot of PC2 (Fig. 2b) a large peak canbe observed in the region
1580–1530 cm−1. This infrared region can be assigned to protein content
through amide II vibrations. Collectively, PCA shows that protein and total
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In the remainder of this paper we will refer to the two
orthogonalization approaches as orthogonalization in the case the
external factor is uncorrected and compensated orthogonalization in
the case where the external factor is corrected, prior to orthogonal-
ization of X.

2.3. Software

Allmultivariate data analysiswas carried out usingMatlab version 7.6
(MathWorks Inc. Natick, MA, USA). PCA was performed using the PLS
toolbox (Eigenvector Research, WA, USA). ECVA and orthogonalization
were done using in-house scripts freely available at www.models.kvl.dk.

3. Results and discussion

Fig. 1 shows the spectra of 40 permeate samples that are shown
colored according to treatment (UF or UF plus reverse osmosis, RO). The

red spectra are especially different from the remaining spectra in the
range 1480–950 cm−1. The main part of this spectrum is the so-called
fingerprint region (1400–900 cm−1), where complex molecular vibra-
tions rather than group vibrations absorb the infrared radiation. For that
reason absorbance in the fingerprint region is by approximation
proportional to the sum of solutes in the sample. The black spectra are
the permeate samples which come from UF of milk followed by RO of
the UF permeate. Because ROonly removeswater, the UF permeates are
up-concentrated. For that reason the black spectra show an increase
absorbance in thefingerprint region. If fat is present in the sample itwill
cause amajor absorbance from the strong carbonyl stretchingvibrations
at 1745 cm−1. The absence of a peak at this position in the FT-IR
permeate spectra (Fig. 1) validates that the UF membranes at all sites
have withheld fat well. Protein presence in a sample is seen as
absorbance bands at 1640 cm−1 (amid I vibrations) and 1550 cm−1

(amid II vibrations). The weak band at 1550 cm−1 (Fig. 1) shows the
presence of proteins in small concentrations. The amide I band is hidden
under the strong OH bending vibrations at 1640 cm−1 from water,
which absorb so heavily that no light is passing the transmission cell.
The strong absorbance in the fingerprint region and CH vibrations seen
from 2700 to 3000 cm−1 confirm the presence of carbohydrates. Since
permeate is nearly fat free, these CH vibrations can almost only come
from carbohydrates primarily lactose.

Further scrutinizing of the spectra (Fig. 1) shows that permeates from
UF plants B–F (red spectra) have the highest absorbance in the amide II
mode, suggesting that these sites let more of the protein sieve to the
permeate. Overall, the spectra suggest that FT-IR is able to fingerprint the
manufacturer of permeate samples. Fig. 2 showsaPCAscore- and loading-
plot of the 40 FT-IR spectra of UF milk permeates. From the score-plot
(Fig. 2a) it is observed that the permeate samples are clustered according
to the individual sitewhere itwas produced. The samples fromplantA are
particularly separated in the score-plot. The loading-plot of PC1 (Fig. 2b)
shows that the fingerprint region is themain contributor, which suggests
that PC1primarily describes variation in total solids between the samples;
in permeate the vast majority of solids is lactose. The loading of PC1 is
surprisingly flat in the fingerprint region. This flat shape of the loading is
explainable because the PCA is performed on auto-scaled data, and in the
fingerprint region the spectra have almost the same relative absorbance.
The zoom-inof the region reveals that the loading isnot completelyflat. In
the loading-plot of PC2 (Fig. 2b) a large peak canbe observed in the region
1580–1530 cm−1. This infrared region can be assigned to protein content
through amide II vibrations. Collectively, PCA shows that protein and total
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solid content explains the main part of the variation (~95%) and the
concentration of these constituents are highly plant dependent. One could
speculate that other factors could influence the variation in permeate
originating from different sites e.g. process pH or storage time of
permeate. In the following section we will investigate if other factors
than protein and total solids (TS) affect the differences in the permeate
composition, which is present between the six factories, as seen from the
FT-IR signatures. The approach for this investigation is to successively
removevariation from the FT-IR spectra causedbyprotein andTS through
compensated orthogonalization. Subsequently PCA and ECVA of spectra
orthogonalized towards protein and TS will show whether the permeate
samples still cluster according to the plant of origin.

The total solid and protein content of the permeate samples as
determined by reference methods proved to be somewhat correlated
(R2=0.39) i.e. conventional orthogonalization of the spectra to one of the
factorswill thus also remove information related to the other factor. Using
compensated orthogonalization of the spectra against one factor will only
remove the information related to this factor and retain the variation
caused by other external factors. Fig. 3a shows the PCA score-plot of
spectra after orthogonalization against TS, while Fig. 3b shows the PCA
score-plot of spectra after compensated orthogonalization against TS
retaining variation due to protein. It is observed that the samples in the
score-plot of orthogonalization (Fig. 3a) to some degree are grouped
according to protein content, but the score-plot of the compensated
orthogonalization (Fig. 3b) shows a much more systematic pattern
according to protein content along PC1. To further investigate this
observation the protein concentration is plotted against PC1 scores after
orthogonalization (Fig. 3c) and compensated orthogonalization (Fig. 3d).
The low correlation observed in Fig. 3c shows that relevant information
about protein content in the spectra has been removed, while the protein
information is kept by the compensated orthogonalization approach
(Fig. 3d). This is worth noting because compensated orthogonalization
only removes information in the TS variation that is not correlated to
protein variation, the corrected spectra will still contain the TS variation
which is correlated to protein variation. Fig. 4 shows the effect of
orthogonalization on the raw spectra (Fig. 4a and b) in the protein band

(Fig. 4c) and the total solid band (Fig. 4d). It is observed that the variation
between spectra is reduced by orthogonalization especially for the total
solid band, where the variation is large in the raw spectra. Fig. 5 shows a
PCA score-plot (PC1 versus PC2) of compensated orthogonalized spectra
against both TS and protein. When TS and protein variation is removed
fromthe spectra, noobvious clusteringof thepermeate samples according
to production site is observed. The lack of clustering suggests that
permeate fromdifferent plants only differs with respect to TS and protein
and not any other characteristics as recorded by the FT-IR signature.

In order to verify whether the permeate spectra contain other
plant specific characteristics, the supervised classification method
extended canonical variate analysis (ECVA) is applied on the
compensated orthogonalized spectra. Fig. 6 shows an ECVA scatterplot
(ECV1 versus ECV2) of raw spectra (Fig. 6a) and corrected spectra
(Fig. 6b). No sensible clustering according to plant can be observed in
the compensated orthogonalized spectra, again suggesting that
permeate samples only differ in total solid and protein content.

4. Conclusion

In this case study we have mapped the variation in permeate
composition from six different ultrafiltration plants. We conclude that
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solid content explains the main part of the variation (~95%) and the
concentration of these constituents are highly plant dependent. One could
speculate that other factors could influence the variation in permeate
originating from different sites e.g. process pH or storage time of
permeate. In the following section we will investigate if other factors
than protein and total solids (TS) affect the differences in the permeate
composition, which is present between the six factories, as seen from the
FT-IR signatures. The approach for this investigation is to successively
removevariation from the FT-IR spectra causedbyprotein andTS through
compensated orthogonalization. Subsequently PCA and ECVA of spectra
orthogonalized towards protein and TS will show whether the permeate
samples still cluster according to the plant of origin.

The total solid and protein content of the permeate samples as
determined by reference methods proved to be somewhat correlated
(R2=0.39) i.e. conventional orthogonalization of the spectra to one of the
factorswill thus also remove information related to the other factor. Using
compensated orthogonalization of the spectra against one factor will only
remove the information related to this factor and retain the variation
caused by other external factors. Fig. 3a shows the PCA score-plot of
spectra after orthogonalization against TS, while Fig. 3b shows the PCA
score-plot of spectra after compensated orthogonalization against TS
retaining variation due to protein. It is observed that the samples in the
score-plot of orthogonalization (Fig. 3a) to some degree are grouped
according to protein content, but the score-plot of the compensated
orthogonalization (Fig. 3b) shows a much more systematic pattern
according to protein content along PC1. To further investigate this
observation the protein concentration is plotted against PC1 scores after
orthogonalization (Fig. 3c) and compensated orthogonalization (Fig. 3d).
The low correlation observed in Fig. 3c shows that relevant information
about protein content in the spectra has been removed, while the protein
information is kept by the compensated orthogonalization approach
(Fig. 3d). This is worth noting because compensated orthogonalization
only removes information in the TS variation that is not correlated to
protein variation, the corrected spectra will still contain the TS variation
which is correlated to protein variation. Fig. 4 shows the effect of
orthogonalization on the raw spectra (Fig. 4a and b) in the protein band

(Fig. 4c) and the total solid band (Fig. 4d). It is observed that the variation
between spectra is reduced by orthogonalization especially for the total
solid band, where the variation is large in the raw spectra. Fig. 5 shows a
PCA score-plot (PC1 versus PC2) of compensated orthogonalized spectra
against both TS and protein. When TS and protein variation is removed
fromthe spectra, noobvious clusteringof thepermeate samples according
to production site is observed. The lack of clustering suggests that
permeate fromdifferent plants only differs with respect to TS and protein
and not any other characteristics as recorded by the FT-IR signature.

In order to verify whether the permeate spectra contain other
plant specific characteristics, the supervised classification method
extended canonical variate analysis (ECVA) is applied on the
compensated orthogonalized spectra. Fig. 6 shows an ECVA scatterplot
(ECV1 versus ECV2) of raw spectra (Fig. 6a) and corrected spectra
(Fig. 6b). No sensible clustering according to plant can be observed in
the compensated orthogonalized spectra, again suggesting that
permeate samples only differ in total solid and protein content.

4. Conclusion

In this case study we have mapped the variation in permeate
composition from six different ultrafiltration plants. We conclude that
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FT-IR analyses of permeate samples and PCA could completely
distinguish which of the six UF production sites permeate originates
from, and that it was the relative protein and the total solid
concentrations that made the differences apparent. The study
demonstrated that factors protein and total solid (determined by
reference analysis) could be removed from the FT-IR spectra by
orthogonalization. Subsequently, neither unsupervised PCA nor
supervised ECVA of orthogonalized spectra could classify which of
the six UF plants the permeate samples originated from. On this basis
it can be concluded that FT-IR could find no other variation between
the plants than protein and total solids and that FT-IR could be
considered as near a “real-time” tool in quality assurance and process/
product optimization.
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Appendix A

Orthogonalization is the process of removing information from a
data matrix X linearly related to an external factor (v) (Eq. (A1)):

Xo = I−v vTv
� �−1

vT
� �

X ðA1Þ

where Xo is the orthogonalized data matrix and I is the identity
matrix.

The regression vector b between the external factor vector v and X
is found by multiple linear regression according to Eq. (A2):

v = Xb⇔b = XTX
� �−1

XTv≈Xþv ðA2Þ

where X+ is the Moore–Penrose pseudo-inverse of X. In case X is full

rank XTX
� �−1

XT = Xþ.

An estimate of X, Xhat using b is given by Eq. (A3):

X̂ = vbT bbT
� �−1

= vbþ
: ðA3Þ

The orthogonalized data Xo is the difference (residual) between
the observe and estimate data (Eq. (A4))

Xo = X−X̂
= X−v Xþv

� �þ
= X−vXvþ

= I−vvþ
� �

X

= I−v vTv
� �−1

vT
� �

X

ðA4Þ

Compensated orthogonalization is used to remove information
related to one factor and retain the full degree of information related
to another factor, the data is orthogonalized with that part of e.g.
factor i which is orthogonal to factor j. This is shown in Eq. (A5),
where factor i (vi) is the part which we wish to remove orthogonal-
ized towards factor j (vj), whichwewish to retain. Next, vioj is used for
orthogonalization of X as described in Eq. (A1), substituting v

vioj = I−vj vTj vj
� �−1

vTj

� �
vi ðA5Þ

The regression vector b between the external factors vi and vj is
found by Eq. (A6):

vi = vjb ðA6Þ

The mathematical operations in Eqs. (A2)–(A4) are performed in
the same way where vi replaces v and vj replaces X.
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FT-IR analyses of permeate samples and PCA could completely
distinguish which of the six UF production sites permeate originates
from, and that it was the relative protein and the total solid
concentrations that made the differences apparent. The study
demonstrated that factors protein and total solid (determined by
reference analysis) could be removed from the FT-IR spectra by
orthogonalization. Subsequently, neither unsupervised PCA nor
supervised ECVA of orthogonalized spectra could classify which of
the six UF plants the permeate samples originated from. On this basis
it can be concluded that FT-IR could find no other variation between
the plants than protein and total solids and that FT-IR could be
considered as near a “real-time” tool in quality assurance and process/
product optimization.
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ABSTRACT 
________________________________________________________________ 

Coagulum cutting time is a critical production factor affecting cheese yield and 
quality. Previous studies have investigated the use of near infrared reflectance 
(NIR) to capture coagulation kinetics for the prediction of optimal cutting time. 
This paper considers aspects of modeling milk coagulation in real-time from NIR 
with the aim of being able to better predict optimal cutting time. NIR spectra 
during coagulation were compressed into a single variable (principal component) 
and the time profile of component scores clearly displayed kinetics of the multiple 
reaction phases: κ-casein proteolysis, micelle aggregation, and network 
formation by micelle strand cross-linking. Models for the entire time profile and 
models for individual phases were compared with the latter providing the best fit. 
The novelty of this study is the construction of an algorithmic procedure for real-
time modeling during coagulation based on NIR data. The procedure involves 
real-time parameter estimation of individual phase models, determination of 
transition time between phases, and prediction forward in time, all describing 
kinetics of the milk coagulation process. The perspectives in using the designed 
produce for optimal cutting time prediction are discussed. 
 ________________________________________________________________
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1. Introduction 

In cheese manufacturing cutting time of the gel is a critical production factor 

affecting both cheese yield and quality, thus making optimization of great 

economic importance (Johnson et al., 2001; Lucey, 2002; Payne et al., 1993). If 

the gel is cut with too low firmness (cutting too early) the final cheese yield is 

reduced due to loss of gel fines to the separated whey. If the gel is cut with too 

high firmness (cutting too late) the subsequent syneresis is retarded which results 

in cheese with a high moisture content and undesirable sensory and textural 

properties (Johnson et al., 2001; Payne et al., 1993).  

In this paper we consider real-time modeling and extrapolation of rennet induced 

milk coagulation as a way towards cutting time optimization in cheese production. 

The on-line predictor measurements are multivariate near-infrared (NIR) 

reflectance measurements acquired during coagulation, which are subsequently 

compressed into a single variable (principal component) time profile by principal 

component analysis (PCA; Fig. 1). The profile shown represents a typical 

development observed in studies of NIR reflectance during rennet induced milk 

coagulation (Payne et al., 1993; Crofcheck et al., 1999; Mertens et al., 2002; 

Castillo et al., 2003a; Fagan et al., 2007). There seems to be consensus in 

literature that rennet induced milk coagulation is the result of three underlying 

stages with different mechanisms: (I) initial enzymatic proteolysis of κ-casein 

after which the altered casein micelles are referred to as para-casein; (II) a 

subsequent aggregation of para-casein, where the aggregation rate depends on 

the concentration of free para-casein sites, implying that this stage is dependent 

on rate and degree of κ-casein proteolysis; (III) gelation, formation of polymer 

networks where aggregated micelle strands are cross-linking, also referred to as 

gel firming (Storry & Ford, 1982; McMahon et al., 1984; Carlson et al. 1987a; 

Castillo et al. 2003b). The transition between stages is not easy to detect, 

because head-and-tail of the successive stage overlap to some extend in the 

process. 

In this paper we investigate real-time estimation of model parameters from NIR 

measurements during the coagulation process. We hope this approach can 

supplement the existing methodologies for cutting time prediction and 

optimization suggested in literature, with the ultimate goal of process automation. 



3 
 

We first present the experiments performed followed by a review of the previously 

suggested approaches for analyzing this type of data. We then apply models for 

the observed NIR time profiles and propose a real-time/on-line modeling method 

with continuous uncertainty estimation. It is beyond the scope of this paper to 

evaluate the proposed profile modeling method as input for a cutting time 

prediction, but potential strategies are briefly discussed. 

 

 
Fig. 1. Principal component scores from near-infrared reflectance measurement during 

milk coagulation time (experiment 1, Table 1). Marking of stages (I) – (III) is based on 

qualitative assessment: (I) κ-casein proteolysis, (II) paracasein aggregation and (III) gel 

network formation. 

 

2. Experimentation 

To mimic production in an industrial setting twelve milk coagulation experiments 

(with similar parameter settings) were performed simulating Normal Operating 

Condition (NOC) batches. It is well known that different process parameters 

change the gel formation profile and cheese yields (Lucey, 2002). Industrial 

cheese production is however - like most industrial food manufacturing – a 

generally well-controlled process, often involving milk standardization. However, 

occasionally gross-errors occur such as recipe miss-formulations, equipment 

malfunctioning or biological contamination of the starter cultures, but normal 

fluctuations are of a statistical nature or gradually sneaking into the production 
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chain over time (e.g. equipment wear-and-tear, seasonal changes in milk 

metabolites or strain deterioration). Under such normal fluctuations, 

improvements in productivity are to be achieved by better statistical process 

control from accumulation of (small) increased yields over time. In this paper we 

present a tool that can assist in such a statistical process optimization. 

  

Preparation of reconstituted milk from skim milk powder followed the procedure of 

Hansen et al. (2010). 5 L of reconstituted milk was transferred to a 6 L cheese 

vat, which was inserted in a water bath for pre-conditioning to 32.0oC, 

approximately 10 minutes before rennet addition. Chy-Max Plus rennet with 190 

international milk clotting units IMCU·mL-1 was used (Chr. Hansen A/S, 

Hørsholm, Denmark). A diluted rennet solution made within 3 min before 

experiment initialization was added to the milk resulting in a final concentration of 

0.066 IMCU·mL-1 of milk. The milk was stirred (18 rpm) for thirty seconds after 

rennet addition to ensure homogenous distribution.  

NIR measurements were carried out using the Antaris MX FT-NIR Process 

Analyzer from Thermo Scientific (MA, USA) with a reflectance probe with SMA 

fiber connection. The spectrometer is self-referenced, so stability is ensured by 

collecting background spectra simultaneously with the sample measurements 

using an internal integrating sphere. To account for optical changes in the fibers 

cables connecting the probe to the spectrometer, a background spectrum was 

taken approximately 10 minutes prior to each batch run using a built-in 

reflectance standard (99% reflectance) in the instrument. In the NIR range 10001 

– 4000 cm-1 (corresponding to 1000-2500 nm) 1557 frequencies (ν) were 

measured equidistant with Δν = 3.8569 cm-1. A total of 32 averaged scans were 

found to provide an adequate signal-to-noise ratio. This resulted in an acquisition 

time of 36 seconds. Spectra were recorded as expressed in Eq. 1:  

 

 

 

Where I is intensity of the light beam striking the detector after being reflected 

from the sample and I0 is the intensity of the light beam after being reflected from 

the built-in 99% reflectance standard. In this way, I/I0 is the fraction of light being  
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Fig. 2. Near-infrared reflectance spectra (1000 – 1850 nm) acquired during milk 

coagulation, t is batch-time in minutes (experiment 1, Table 1). 

reflected by the coagulating milk. During modeling we will use the spectral range 

1000 - 1850 nm, with a total of 1200 variables. Representative sample spectra 

from a coagulation batch are shown in Fig. 2, where the main changes over time 

are an increase in scatter as a result of the gel (particle) formation and a 

narrowing of the water band around 1400-1500 nm. 

 

3. Previous approaches of coagulation profile analysis 
Rheological analytical methods can determine physical cheese gel 

characteristics, e.g. storage modulus G’ (Lucey, 2003), that cutting time is directly 

dependent on. These types of measurements are, however, not easily 

implemented as on-line, real-time process measurements. There is no direct 

dependency between cutting time and optical properties such as acquired by NIR 

reflectance. The fundamental idea of predicting cutting time using NIR is that the 

shape of the time profile (i.e. the kinetics) somehow contains information that the 

optimal cutting time is dependent on. A prerequisite for this idea to work is that 

the variability of production factors which cutting time depends on (e.g. 

temperature and milk composition) are accounted for by variability in the shape of 

the time profile of the NIR measurements. This idea has been pursued previously 
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by extracting a collection of numerical features that are characteristic for the time 

profile such as maxima or points of inflection and subsequently investigating if 

cutting time depends on these descriptors. Two main approaches have been 

used to summarize the profile shape into a collection of descriptors: (1) purely 

observational and (2) modeling with a set of parameters. 

The majority of studies have summarized the time profiles as observed time-

based or response-based numbers and the feature extraction is done by 

identifying time or response at maxima or minima of the first or second derivative 

of the profile. Particularly, the process time at the maximum of the first derivative, 

referred to as the inflection-point, has been used. A cutting time prediction model 

(Eq. (2)) is then made by linear regression:  

   

 

 

Where tf is the inflection-point and a and b are parameters estimated by least 

squares based on a set of inflection-points and their corresponding optimal 

cutting times tcut (Payne et al., 1993; Crofcheck et al., 1999; Castillo et al., 

2003a). This prediction model has however proven to be too simplistic when 

protein content varies, because the profile variability at the inflection-point does 

not entirely account for the variability in cutting time that protein variations infer 

(Mertens et al., 2002). An improved cutting time model was then proposed with 

the addition of a protein term (Castillo et al., 2003a). It is however perhaps too 

difficult to implement a registration of milk protein content for every new batch in 

a production environment.  

Another approach of summarizing the NIR coagulation time profile is to 

parameterize the observed shape using an appropriate model. Exploration of 

such coagulation model parameters has revealed that an offset parameter (β1) is 

curvilinear related to protein content. With this finding, β1 can be used to augment 

the cutting time prediction model to Eq. 3 that also accounts for protein variation: 
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Where a, bf, b1 and b2 are parameters estimated by least squares based on a set 

of inflection-points tf, β1’s and their corresponding cutting times tcut (Mertens et al., 

2002). 

 
4. Coagulation profile modeling 
The modeling approaches as described in the previous paragraph have shown 

that profile variability does contain information related to the cutting time, and 

real-time profile modeling will thus be a precursor for using profile model 

parameters in cutting time predictor models. The main spectral development 

during coagulation is baseline changes (Fig. 2). We will not further evaluate band 

specific changes due to coagulation here, but Hansen et al. (2010b) provides 

details on this topic. Instead we apply principal component analysis (PCA; Wold, 

1987) to transform the multivariate response into a single variable referred to as 

the first principal component (PC1) which account for of the main variability in the 

spectra (> 95% explained variance). The values (scores) of PC1 as a function of 

time after rennet addition represents the coagulation time profile (Fig. 1) used for 

further analysis. The advantage of using the time profile of PC-scores opposed to 

the profile of single wavelength NIR variables is due to the first order advantage 

which utilizes the covariation between spectral variables to provide robust 

estimates of spectral features and to strongly improve the signal to-noise-ratio 

(Bro, 2003).  

We apply a model (Eq. (4)) with seven parameters fitted by non-linear least 

squares using a Gauss-Newton algorithm with Levenberg-Marquardt 

regularization (Seber & Wild, 2003) to approximate the observed score-values 

coagulation profile x(t). This model is a slight modification of the model proposed 

by Merten et al. (2002): 

 

     

 

This model is composed of three terms: the logistic equation (also known from 

autocatalytic processes), an exponential term (also known from first order 

reactions) and an offset term. The logistic equation, is a model of the initial s-

shaped part of the profile were micelle aggregation occur. The exponential term 
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is a model of the later stage where micelle network formation takes place. 

Parameters α1, α2, and α3 are related to the magnitudes in the profile; parameters 

kaggre and knetwork are rate constants related to the speed of micelle aggregation 

and network formation, respectively. Parameters tmax and tnetwork are concerned 

with the location of the s-shape and the exponential along the time-axis. More 

specifically, tmax is the time of maximum slope in the s-shape, which is the 

modeling counterpart for inflection point as determined by the maximum of first 

derivative (see Eq. 2 and 3); tnetwork is likewise the time of maximum slope in the 

exponential shape, which in this time profile is the located at the onset of the 

exponential and thereby related to the onset of network formation.  

Fig. 3 shows a plot of the observed profile and the model (Eq. 4) fitted by non-

linear regression. The model clearly fits the observed profile well, which holds for 

all twelve experiment profiles with a range for the coefficient of determination, R2, 

of 0.9985 to 0.9994. Note that here we neglect stage (I) in Fig. 1 - κ-casein 

proteolysis before aggregation- because this stage represents a deviation from 

the s-shape and has too few observations to justify an additional modeling term. 

Our objective is to investigate how coagulation profile parameters can be derived 

in a real-time monitoring strategy. This would potentially provide a basis for a 

cutting time-point prediction model. 

 

 
Fig. 3. Observed near-infrared reflectance PCA-scores (o) and fitted model (__) for a 

sample during rennet induced milk coagulation (experiment 1, Table 1). 

R2 = 0.9993

Coagulation time (min)

N
IR

 re
fle

ct
an

ce
 (P

C
1 

sc
or

es
)

0 20 40
0.88

0.94

1.00



9 
 

However, non-linear regression by the all inclusive solution Eq. (4) leads, despite 

the close fit, to an ill-conditioned Jacobian matrix, which is an indication that we 

cannot trust all parameter estimates. An ill-conditioned solution means that small 

variations in the numbers making up the profile will cause large variation in some 

parameter estimates (Seber & Wild, 2003). This was confirmed by calculation of 

confidence intervals of model parameters, which were extremely large for some 

parameters (α2 and tnetwork). This situation will obviously be critical during the first 

half of the coagulation reaction where the exponential part is underrepresented or 

even not present in the data. This observation led to the conclusion that a model 

for the entire profile is not feasible or desirable in an industrial setting for the aim 

of on-line model parameter estimation.  

In order to make real-time modeling feasible, we apply an individual model 

strategy using Eq. 5 to approximate, in two segments, the profile x(t): 

                     

    

                     

   

            

This two segments profile model focus on each coagulation stage, the s-shape 

and the exponential phase, individually. We define the segments as strictly 

separate before and after the time of transition ttransition which is estimated 

algorithmically as described below. Parameters α1, α2, α3, and α4 relate to the 

magnitudes of the two profiles, kaggre and knetwork are rate constants and tmax is 

time of maximum slope of the s-shape. Note that in comparison to the full profile 

model (Eq. (4)), tnetwork is excluded because it is implicitly included in the 

parameter ttransition. Fig. 4 shows a plot of the observed profile and the segmented 

profile model (Eq. (5)) fitted by non-linear regression. Like the full profile model 

(Eq. (4)) this model fits the observed profile very well, which is consistent for all 

twelve experiments with R2 ranging from 0.9887 to 0.9995 for the s-shaped 

segment and 0.9960 to 0.9998 for the exponential segment.  

Non-linear regression of the segmented profile model (Eq. (5)) led to a well-

conditioned solution with well defined parameter estimates and acceptable small 

confidence intervals, Table 1. 

Segmented model   
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Fig. 4. Observed near-infrared reflectance PCA-scores (o) and fitted segmented model (__) 

for a sample during rennet induced milk coagulation (experiment 1, Table 1). 

 

These results lead to the conclusion that a segmented profile model (Eq. (5)) 

provides a better summary of profile variability than the full profile model (Eq. (4)), 

and is thus a better suited candidate for a real-time cutting time determination.  

 
5. Real-time coagulation modeling 
While the segmented model gives a better summary of profile variability than the 

full profile model, it requires that the transition time ttransition, is determined in real-

time as well. We propose an algorithmic procedure for locating ttransition composed 

of three steps:  

(1) For every new NIR measurement, the profile is augmented by one point using 

PCA on the new data matrix and the segmented model (Eq. (5)) is fitted to the 

available data points (score values) multiple times at all possible locations of 

ttransition along the time axis. 

(2) For each possible location of ttransition the mean square error of fit (MSE) is 

calculated as the sum of the MSE for the two segments (MSEsum). In this way 

MSEsum is a measure of how the available data points are best modeled 
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between the s-shape and the exponential shape with ttransition being the border 

point. 

(3) ttransition is defined as the time where the MSEsum has a minimum.  

Fig. 5 illustrates the concept of the algorithmic procedure and compares it with 

the best estimate for the analog parameter tnetwork from the full profile model (Eq. 

(4)). Before the actual ttransition is reached (Fig. 5, top row [a]) the estimate of 

ttransition will of course be lower. Notice also that ttransition estimation cannot 

commence until a sufficient number of data points are available for the 

segmented model. The algorithmic approach is clearly more stable at estimating 

the transition time, quickly converging to an acceptable value as soon as enough 

evidence is collected in the form of NIR measurements. As discussed previously 

the micelle aggregation and network formation stages are in reality overlapping 

phenomena. Through inspection of the NIR spectral profiles and the fitting 

performance of the model it appeared however that the transition period between 

stages is relatively short, which make our definition of ttransition combined with the 

two-stage model (Eq. (5)) an acceptable and workable approximation. We also 

note that the ttransition estimate will become more exact with a higher NIR 

measurement frequency.    
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Fig. 5. Top and middle plots: example of how the proposed algorithm estimates transition 

time ttransition between s-shape and exponential part in coagulation profile (see Eq. (5)). 

Bottom plot: estimation of network onset time tnetwork by full profile model (Eq. (4), 

experiment 1, Table 1).  

 

The strongest point of real-time modeling based on first principle models (also 

called mechanistic models) is that it allows for Model Predictive Control or 

decision making. First principle modeling (e.g. Eq. (5)), rooted in knowledge of 
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chemical, physical or biological insight is often more robust than black box 

modeling such as neural networks which are often applied in process monitoring 

(Roupas, 2008). However, in first principle models, parameters (e.g. the k-values 

in Eq. (5)) have to be determined from data, in our case real-time using on-line 

NIR measurements. This is illustrated by prediction of the remaining the network 

formation profile including confidence intervals on these predictions (Fig. 6a).  

 

 
Fig. 6. Real-time modeling and prediction of the remaining milk coagulation. (o) actual 

PC1 score, (O) measurements included in model parameter estimation, (___) predicted 

progress, (---) 95% confidence interval; (a) experiment 1 and (b) experiment 8, Table 1.  
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Using the covariance matrix of the updated parameters and the model residuals, 

a symmetric 95% confidence interval on the prediction was made based on error 

propagation as described in detail in Seber and Wild (2003). It clearly shows that 

the reaction rate of gel network formation stabilizes as soon as enough evidence 

has been collected. At this stage in the batch process the plant operator can start 

anticipating the next action, which could lead to improved overall batch 

scheduling. It is also possible that a better estimate of optimal cutting time-point 

can be determined based on all or some of the frequently updated parameters 

found from Eq. (5), but this is beyond the scope of the present study. A flowchart 

detailing all steps involved for a potential coagulation process monitoring and 

control scheme is given in the appendix. It summarizes how real-time cutting 

time-point prediction could be performed using NIR on-line monitoring and 

automated decision making. Despite the apparent complexity, it is possible to 

perform all operations well within one minute time on a modern process 

computer, even for the last time points where most measurements have been 

collected leading to the highest computational work load. This could easily be 

optimized but it will not be further pursued in this paper. 

 

7. Discussion and conclusion 
In this paper we discuss real-time parameter estimation for monitoring and 

control in rennet induced milk coagulation. NIR spectra collected with a high 

sample frequency during processing are used as on-line data collection, and a 

two segmented first principle model is demonstrated to fit these data well. To 

discuss applications further Fig. 5b shows three progress prediction snapshots in 

the exponential phase of a second batch run (experiment eight in Table 1). 

Despite efforts to generate twelve NOC coagulation batches it appears that 

number eight was slightly retarded in the casein micelle aggregation phase or 

that the transition-point was less sharp for this experiment. Despite the deviating 

behavior of this batch, the suggested algorithm is still capable of identifying and 

modeling the network formation phase, providing the operator with valuable 

information (albeit later in the process). Table 1 indicates another strong benefit 

of detailed process modeling based on reliable in-process measurements like 

NIR: some or all model parameters could be used in Multivariate Statistical 

Process Control and Optimization using historical data. This might provide the 
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food engineer with tools to identify expected (e.g. seasonal changes) and 

unexpected (e.g. suboptimal equipment) trends or differences (e.g. in parallel 

production lines) by comparing every-day/NOC variations with observed 

tendencies, while plant managers could use the same information for a long-term 

economic maximization.  
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9. Appendix – Process flowchart of real-time cutting time prediction  
 

 

 

 

NIR measurement and data prep. Transition time determination

N: NIR measurement counter
(equals discrete time in minutes)

x: score values retrieved by PCA
nmax: time of max x, start of model Eq. 4

faggre: aggregation model (Eq. 4a)
fnetwork: network formation model (Eq.4b) 
ntransition: time of stage transition

Prediction of profile Prediction of cutting time*

prednetwork: extrapolation using (Eq.5) fcut: cutting time prediction model  
ncut: cutting time prediction

*Not considered in this paper

Operation

Decision 

Output

Chart symbols

Coagulation start
N = 0

Collect NIR meas.
N + 1 N

PCA on spectra
x(N)

nmax + 4 n(x(nmax:n)-faggre(x(nmax:n))2 +  
(x(n+1:N)-fnetwork(x(n+1:N))2 MSE(n)

n > N-4

n + 1 n

no
min(MSE(n)) ntransition

Coagulation end

fnetwork(x(ntransition:N)) prednetwork(x(ntransition:100))

max(x(N)) nmax

N-nmax > 7no

Transition time detected
at time [ntransition]

Optimal cutting expected
at time [ncut]

ntransition < N-4
no

N ≥ ncut

no

Archive model
parameters

fcut(faggre,prednetwork ) ncut

18 
 

9. Appendix – Process flowchart of real-time cutting time prediction  
 

 

 

 

NIR measurement and data prep. Transition time determination

N: NIR measurement counter
(equals discrete time in minutes)

x: score values retrieved by PCA
nmax: time of max x, start of model Eq. 4

faggre: aggregation model (Eq. 4a)
fnetwork: network formation model (Eq.4b) 
ntransition: time of stage transition

Prediction of profile Prediction of cutting time*

prednetwork: extrapolation using (Eq.5) fcut: cutting time prediction model  
ncut: cutting time prediction

*Not considered in this paper

Operation

Decision 

Output

Chart symbols

Coagulation start
N = 0

Collect NIR meas.
N + 1 N

PCA on spectra
x(N)

nmax + 4 n(x(nmax:n)-faggre(x(nmax:n))2 +  
(x(n+1:N)-fnetwork(x(n+1:N))2 MSE(n)

n > N-4

n + 1 n

no
min(MSE(n)) ntransition

Coagulation end

fnetwork(x(ntransition:N)) prednetwork(x(ntransition:100))

max(x(N)) nmax

N-nmax > 7no

Transition time detected
at time [ntransition]

Optimal cutting expected
at time [ncut]

ntransition < N-4
no

N ≥ ncut

no

Archive model
parameters

fcut(faggre,prednetwork ) ncut



19
 

 T
ab

le
 1

. S
eg

m
en

te
d 

pr
of

ile
 m

od
el

 p
ar

am
et

er
s (

± 
95

 %
 c

on
fid

en
ce

 in
te

rv
al

) e
st

im
at

ed
 fr

om
 th

e 
ob

se
rv

ed
 p

ro
fil

e 
of

 N
IR

 re
fle

ct
an

ce
 

m
ea

su
re

m
en

ts
 d

ur
in

g 
co

ag
ul

at
io

n.
 

 
 

C
as

ei
n 

m
ic

el
le

 a
gg

re
ga

tio
n 

pa
ra

m
et

er
s 

   
   

   
   

   
   

   
  N

et
w

or
k 

fo
rm

at
io

n 
pa

ra
m

et
er

s 

Ex
p.

  
α 1

 
   

 k
ag

gr
e 

   
t m

ax
 (m

in
) 

α 2
 

   
  α

3 
   

   
   

   
   

   
   

   
   

   
   

   
k n

et
w

or
k 

α 4
 

   
   

   
 t t

ra
ns

iti
on

  

1 
0.

06
8 

±0
.0

02
 

0.
66

 
±0

.0
4 

7.
9 

±0
.1

 
0.

94
 

±0
.0

01
 

0.
11

 
±0

.0
01

 
0.

05
2 

±0
.0

01
 

0.
88

 
±0

.0
00

4 
15

 
2 

0.
06

9 
±0

.0
03

 
0.

67
 

±0
.0

6 
7.

6 
±0

.1
 

0.
94

 
±0

.0
01

 
0.

12
 

±0
.0

01
 

0.
05

3 
±0

.0
01

 
0.

88
 

±0
.0

00
8 

15
 

3 
0.

05
1 

±0
.0

07
 

0.
65

 
±0

.1
6 

7.
2 

±0
.5

 
0.

96
 

±0
.0

02
 

0.
10

 
±0

.0
02

 
0.

04
9 

±0
.0

01
 

0.
91

 
±0

.0
00

5 
17

 
4 

0.
07

0 
±0

.0
02

 
0.

62
 

±0
.0

4 
8.

5 
±0

.1
 

0.
93

 
±0

.0
01

 
0.

12
 

±0
.0

01
 

0.
05

3 
±0

.0
01

 
0.

88
 

±0
.0

00
8 

16
 

5 
0.

07
1 

±0
.0

02
 

0.
59

 
±0

.0
3 

9.
1 

±0
.1

 
0.

93
 

±0
.0

01
 

0.
11

 
±0

.0
01

 
0.

04
3 

±0
.0

01
 

0.
88

 
±0

.0
00

5 
17

 
6 

0.
06

8 
±0

.0
07

 
0.

74
 

±0
.1

6 
6.

7 
±0

.3
 

0.
94

 
±0

.0
03

 
0.

12
 

±0
.0

02
 

0.
05

0 
±0

.0
02

 
0.

88
 

±0
.0

00
7 

13
 

7 
0.

06
7 

±0
.0

02
 

0.
62

 
±0

.0
4 

8.
9 

±0
.1

 
0.

94
 

±0
.0

01
 

0.
13

 
±0

.0
01

 
0.

04
8 

±0
.0

01
 

0.
88

 
±0

.0
00

6 
16

 
8 

0.
07

6 
±0

.0
02

 
0.

39
 

±0
.0

2 
14

.3
 

±0
.1

 
0.

93
 

±0
.0

01
 

0.
14

 
±0

.0
01

 
0.

02
8 

±0
.0

02
 

0.
86

 
±0

.0
03

0 
22

 
9 

0.
06

9 
±0

.0
04

 
0.

68
 

±0
.0

9 
7.

4 
±0

.2
 

0.
94

 
±0

.0
02

 
0.

14
 

±0
.0

01
 

0.
05

4 
±0

.0
01

 
0.

87
 

±0
.0

01
0 

15
 

10
 

0.
07

2 
±0

.0
03

 
0.

57
 

±0
.0

6 
9.

0 
±0

.2
 

0.
93

 
±0

.0
02

 
0.

14
 

±0
.0

04
 

0.
05

7 
±0

.0
02

 
0.

88
 

±0
.0

00
6 

18
 

11
 

0.
07

2 
±0

.0
04

 
0.

67
 

±0
.0

9 
6.

9 
±0

.2
 

0.
94

 
±0

.0
02

 
0.

12
 

±0
.0

03
 

0.
04

7 
±0

.0
03

 
0.

87
 

±0
.0

01
9 

14
 

12
 

0.
06

6 
±0

.0
03

 
0.

74
 

±0
.0

7 
7.

3 
±0

.1
 

0.
94

 
±0

.0
01

 
0.

13
 

±0
.0

06
 

0.
06

0 
±0

.0
06

 
0.

88
 

±0
.0

03
0 

14
 

M
ea

n 
0.

06
8 

 
0.

63
 

 
8.

4 
 

0.
94

 
 

0.
12

 
 

0.
05

0 
 

0.
88

 
 

16
 

SD
 

0.
00

6 
 

0.
09

 
 

2.
0 

 
0.

01
 

 
0.

01
 

 
0.

00
8 

 
0.

01
 

 
2 

 

19 
 

Table 1. Segmented profile model parameters (± 95 % confidence interval) estimated from the observed profile of NIR reflectance 
measurements during coagulation. 

  Casein micelle aggregation parameters                        Network formation parameters 

Exp.  α1     kaggre    tmax (min) α2      α3                                     knetwork α4           ttransition  

1 0.068 ±0.002 0.66 ±0.04 7.9 ±0.1 0.94 ±0.001 0.11 ±0.001 0.052 ±0.001 0.88 ±0.0004 15 
2 0.069 ±0.003 0.67 ±0.06 7.6 ±0.1 0.94 ±0.001 0.12 ±0.001 0.053 ±0.001 0.88 ±0.0008 15 
3 0.051 ±0.007 0.65 ±0.16 7.2 ±0.5 0.96 ±0.002 0.10 ±0.002 0.049 ±0.001 0.91 ±0.0005 17 
4 0.070 ±0.002 0.62 ±0.04 8.5 ±0.1 0.93 ±0.001 0.12 ±0.001 0.053 ±0.001 0.88 ±0.0008 16 
5 0.071 ±0.002 0.59 ±0.03 9.1 ±0.1 0.93 ±0.001 0.11 ±0.001 0.043 ±0.001 0.88 ±0.0005 17 
6 0.068 ±0.007 0.74 ±0.16 6.7 ±0.3 0.94 ±0.003 0.12 ±0.002 0.050 ±0.002 0.88 ±0.0007 13 
7 0.067 ±0.002 0.62 ±0.04 8.9 ±0.1 0.94 ±0.001 0.13 ±0.001 0.048 ±0.001 0.88 ±0.0006 16 
8 0.076 ±0.002 0.39 ±0.02 14.3 ±0.1 0.93 ±0.001 0.14 ±0.001 0.028 ±0.002 0.86 ±0.0030 22 
9 0.069 ±0.004 0.68 ±0.09 7.4 ±0.2 0.94 ±0.002 0.14 ±0.001 0.054 ±0.001 0.87 ±0.0010 15 
10 0.072 ±0.003 0.57 ±0.06 9.0 ±0.2 0.93 ±0.002 0.14 ±0.004 0.057 ±0.002 0.88 ±0.0006 18 
11 0.072 ±0.004 0.67 ±0.09 6.9 ±0.2 0.94 ±0.002 0.12 ±0.003 0.047 ±0.003 0.87 ±0.0019 14 
12 0.066 ±0.003 0.74 ±0.07 7.3 ±0.1 0.94 ±0.001 0.13 ±0.006 0.060 ±0.006 0.88 ±0.0030 14 

Mean 0.068  0.63  8.4  0.94  0.12  0.050  0.88  16 
SD 0.006  0.09  2.0  0.01  0.01  0.008  0.01  2 
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Determination of Dry Matter Content in Potato Tubers by
Low-Field Nuclear Magnetic Resonance (LF-NMR)
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HANNE CHRISTINE BERTRAM,‡ NANNA VIERECK,† FRANS VAN DEN BERG,† AND
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†
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The objective of this study was to develop a calibration model between time-domain low-field nuclear

magnetic resonance (LF-NMR) measurements and dry matter (DM) content in single potatoes. An

extensive sampling procedure was used to collect 210 potatoes from eight cultivars with a wide range in

DM content, ranging from 16 to 28%. The exponential NMR relaxation curves were resolved into four

mono-exponential components using a number of solution diagnostics. Partial least-squares (PLS)

regression between NMR parameters (relaxation time constants T2,1-4 and magnitudes M0,1-4) and DM

content resulted in a model with low error (RMSECV, 0.71; RMSEP, 0.60) and high correlation (rCV, 0.97;

rtest, 0.98) between predicted and actual DM content. Correlation between DM content and each of the

proton populations revealed that M0,1 (T2,1, 3.6 ms; SD, 0.3 ms; r, 0.95) andM0,4 (T2,4, 508 ms; SD, 53 ms;

r, -0.90) were the major contributors to the PLS regression model.

KEYWORDS: Low-field NMR; potato; PLS regression; dry matter content; DoubleSlicing; specific gravity;
core consistency

INTRODUCTION

An increased consumer awareness of high-quality potato
products increases the interest of the industry in high-technology-
grading systems. If uniform good-quality products and high-
end gourmet potatoes are to be produced, the industry requires a
rapid instrumental method to grade the raw potatoes according
to the final sensory and technological qualities. For potatoes, the
texture is of great importance for the perception of quality by the
consumer, and it iswell-established that drymatter (DM) content,
starch composition, and cell wall structures significantly affect the
final texture of cooked potatoes (1-6). While starch composition
and cell wall structure to a large extent are genetically determined,
DM content mainly depends upon the maturity of the potato
tuber, the composition of the soil, and fertilization and draft
conditions (7, 8). Specific gravity is a reliable measure of DM
content, which is determined by weighing potatoes in air and
water.This time-consumingand rather cumbersomemethod is the
standard method used for quality control of potato samples in
potato industries. Also, the brine grading method with various
densities is used for industrial grading of potatoes according to
DM content. A simplified, more automated online measurement
ofDM content could be the first target in obtaining better control
on the postharvest potato quality. Two obvious rapid methods
exist to determine the DM content of individual tubers: near-
infrared spectroscopy (NIR) and low-field nuclear magnetic
resonance (LF-NMR) relaxometry. In the case of NIR, the ideal

transmission measurements are difficult, if not impossible, to
obtain, because the combination of size and highwater content of
the tubers hinders the transmission of NIR light. The less advan-
tageous NIR reflection measurements are easy to conduct and
truly non-destructive but tend to vary strongly with the tuber
surface morphology and the soil adhering to the surface. Perhaps
most importantly, reflectance measurements will only provide
information about the DM content in the outer shell of the tuber,
which is likely non-representative for the quality question at
hand. These are the main reasons why in the literature NIR
assessments ofDMcontent are performed in reflectance mode on
a sliced potato (9-11). On the contrary, LF-NMR considers that
the tubers have high water content and that the measurements
give information on the entire volume measured. Unfortunately,
most current benchtop LF-NMR instruments cannot accommo-
date a whole potato tuber in the sampling probe. The aim of this
study is to characterize the performance and establish if
LF-NMR is adequate for determining DM content of individual
potato tubers.

LF-NMRas an analytical method is abundantly present in the
food industry and food science research because of its unique
capability to provide information about the mobility and distri-
butionofwater and fat protons in food products (12,13). These in
turn are known to be critical to the perceived texture. Numerous
studies have documented that LF-NMR is an excellent method
for characterization of water mobility and water distribution in
food items, such asmeat, fish, cheese, cereals, fruits, and vegetables,
including potatoes (11 ,14 ,15).Moreover, LF-NMR is capable
of monitoring dynamic changes during processing, because

*To whom correspondence should be addressed. Telephone: þ45-
3024-0317. Fax: þ45-3533-3245. E-mail: chha@life.ku.dk.
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measurements can be performed non-destructively for example
during cooking of potatoes with different levels of DM (16). In
previous studies, LF-NMR has demonstrated a high correlation
to DM content because of the inverse relationship between the
water content in the raw potatoes with the starch andDMcontent.
However, these studies were performed on limited sample sets
with few different cultivars, using only a small range in DM
content (11,14,15).One challengewhendeterminingDMcontent
in potatoes is the large biological variation between cultivars,
within cultivars, and within each potato tuber.

To establish a rapid and reliable method for the determination
of DM content by LF-NMR, we will use a large sample set using
an extensive sampling procedure. The variation in DM content
was obtained using eight different potato cultivars grown under
different conditions and harvested at variable maturity to expand
the natural biological variation and variation inDMcontent. The
establishment of a general rapid method can have practical use in
the potato industry for grading high-end gourmet potatoes.

MATERIALS AND METHODS

Potato Samples. Eight different potato cultivars (‘Ballerina’, ‘Bintje’,
‘Inova’, ‘Fakse’, ‘Sava’, ‘Jutlandia’, ‘Estima’, and ‘Gunda’) were selected
to represent a large variation in DM content. The cultivars were received
from the Danish Potato Breeding Station, the Danish Institute of Agri-
cultural Sciences, and commercial growers. The potatoes were grown and
harvested at different conditions to obtain a large variation in DM content.
After harvest, the potatoes were stored at 4 �C and 95% relative humidity
up until the day before analysis. All cultivars were subcategorized in 1-6
groups by a non-destructive grading using specific gravity (SG), which is
highly correlated to DM content (eq 1)

SG ¼ w

w-ww

� �
ð1Þ

wherew is the weight in air andww is the weight inwater, i.e., with the scale
immerged in water. Using the SG value, DM estimates (DMest) were
calculated by the following equation (17, 18):

DMest ¼ ð214SGÞ- 211:44 ð2Þ

Accordingly, 21 cultivar/subcategories were obtained, each of which will
be called DM bin in the remainder of the paper (Table 1). For each of the
21DMbins, 10 potato tubers were collected, giving a total of 210 samples.
This extensive sampling procedure ensured that the material represented a
large and relevant variation in DM, cultivars, and texture quality of
potatoes.

For determination of LF-NMR and DM content, a cylindrical sample
(diameter, 11.5 mm; length, 45.0 mm) was taken from the storage paren-
chyma tissue in the bud end of the tuber with a cork borer, avoiding tissue
from the center. The cylinder was first used for LF-NMR measurement
and then for determination of DM content. The sample was placed in a
glass tube with a plastic lid and placed in a measurement glass tube. The
temperatureof the samplewasadjusted to25 �Cinawaterbath for 10-15min
before LF-NMR measurements.

LF-NMR Relaxometry. The LF-NMR relaxation measurements
were performed on a Maran benchtop pulsed NMR analyzer (Oxford
Instruments, Witney, U.K.) with a magnetic field strength of 0.47 T cor-
responding to a resonance frequency for protons of 23.2MHz. The NMR
instrument was equipped with an 18 mm temperature-controlled probe;
the temperature was set to 25 �C. The transverse relaxation time constant,
T2, was measured using the Carr-Purcell-Meiboom-Gill (CPMG)
sequence (19,20). The T2 measurements were performed with a τ value of
150 μs. The repetition time between two consecutive scans was 6 s. The
dwell time was 0.5 μs, and the receiver gain was 5.0%. Data from 4096
echoes were acquired; they were obtained as a 16 scan repetition, with
1 dummy scan in front to ensure that a spin system is in a steady state
before data are collected. Inaccuracy in the 180� pulse setting was
compensated for using only even-numbered echo, resulting in 2048 data
acquisition points per measurement.

DM Content. The cylinder from the LF-NMR measurements was
cut transversely and longitudinal and dried in an oven at 80-85 �C for
16-18 h, where after DM content, DMoven was calculated.

Data Analysis. Regression analysis between LF-NMR data and the
DM content was performed by partial least-squares (PLS) regression (21).
To perform a comprehensive and comparative correlation analysis be-
tween the LF-NMRdata and the DM content, a number of different data
analytical models were applied to the LF-NMR data prior to PLS
regression: (1) Raw relaxation data in the time domain. (2) Distributed
exponential fitting analysis uses a regularization approach to the inverse
Laplace transform, which results in a continuous distribution of relaxation
time constants T2 (22). Mathematically, the distributed exponential fitting
problem is ill-defined, because it is very sensitive to the constraints used. (3)
Discrete multi-exponential fitting by curve resolution of the relaxation
curves into characteristic relaxation time constantsT2,n and corresponding
magnitudes M0,n (eq 3) (23, 24)

MðtÞ ¼
XN
n¼ 1

M0, n exp
- t

T2, n

 !
þ eðtÞ ð3Þ

where M(t) is the residual magnetization at time t, M0,n is the concentra-
tion ormagnitude parameter of the nth exponential,T2,n is the correspond-
ing transverse relaxation time constant, and e(t) is the residual error. After
deconvolution of the relaxation curve into n exponential components,
inspection of the residuals will reveal whether the curve has been modeled
by too few, too many, or the correct number of components. Appropriate
loss in fit and χ2 misfit tests can also be used to validate if the right number
of components have been used. (4) Multi-exponential fitting by “matrix fit”
(24, 25) of the relaxation curves into common characteristic relaxation
time constants T2 and corresponding magnitudes M0. Matrix fit is the
two-dimensional analogue to discrete exponential fitting and is generally
less prone to overfitting compared to discrete exponential fitting. The
disadvantage is that the T2 values in samples might be more correctly
described as a distribution of T2 values. It should be emphasized that
the matrix fit method represents the same underlying model as single
Slicing (25) and PowerSlicing (26), which are not included in this paper. (5)
Multiexponential fitting by “DoubleSlicing” (27) of the relaxation curves
into transverse relaxation time constants T2 and corresponding magni-
tudes M0. The DoubleSlicing technique uses the fact that in every part of a
multi-exponential decay curve each of the mono-exponentials are present
but in different amounts. The technique pseudo-upgrades a single relaxa-
tion curve to become trilinear data, by cutting the relaxation curve into
slices. When parts of the signal curve are selectively removed (slicing) and
the remaining curve is used, the relaxation curve can be transformed from

Table 1. Overview of DMGrading Bins and Range and Mean DMDetermined
by Specific Gravity (DMSG) on Intact Potatoes and Oven Drying on Sample
Cylinders (DMoven)

DM grading bins DM range (%) mean DMSG (%) mean DMoven (%)

Bintje_16.2 16.2-17.2 17.0 17.9

Bintje_18.5 18.5-20.5 19.0 19.5

Bintje_20.5 20.5-22.5 21.4 22.4

Bintje_22.5 22.5-23.5 23.0 23.9

Bintje_23.5 23.5-25.0 24.5 25.7

Bintje_25.0 25.0-28.0 26.2 27.8

Ballerina_16.4 16.4-17.4 16.9 16.6

Ballerina _17.4 17.4-18.4 17.7 18.8

Ballerina _18.4 18.4-19.4 18.9 19.7

Estima_19.0 19.0-21.0 20.3 19.9

Faxe_18.2 18.2-20.2 18.7 20.4

Faxe_20.2 20.2-22.2 21.8 23.5

Inova_16.0 16.0-17.5 16.6 17.7

Inova_17.5 17.5-18.5 18.1 19.1

Inova_18.5 18.5-20.0 19.6 19.6

Jutlandia_19.5 19.5-20.5 20.1 20.3

Jutlandia_20.5 20.5-21.5 20.9 20.0

Sava_18.0 18.0-19.5 18.3 17.7

Sava_19.5 19.5-20.5 19.9 19.6

Sava_20.5 20.5-22.2 22.0 22.4

Gunda_19.2 18.5-19.8 19.4 19.0
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a one-dimensional signal (a vectorx) into two-dimensional data (a tensorX).
When this procedure is repeated on the matrix, the data are trans-
formed to three-dimensional data (a cubeX) and three-way mathematical
methods can now be used. The technique has been shown to be extremely
rapid and have improved solution diagnostics. Andrade et al. (27) tested
the performance ofDoubleSlicing against existingmethods and found that
it was accurate in estimating relaxation times and that it outperformed
exponential fitting by a factor of 4with regards to computation time.These
different data analytical approaches all have known advantages and
disadvantages, but in this work, they are primarily applied to determine
the correct rank of the data, i.e., the number of underlying exponential
components extractable from the data. While the number of components
in the PLSmodel under (1) is statistically validated, the approach adopted
under (5) is accompanied by rigorous diagnostics of the number exponential

components (28). The number of components in the curve fitting model
under (3) and (4) can only be evaluated by the decrease in the residual error
of the fit and visual inspection of residuals.

PLS Model Validation. For the PLS modeling, the sample set was
divided into a calibration set and an independent test set. Of the 210
samples, 4 samples were chosen randomly from each of the 8 cultivars,
giving a total of 32 samples in the independent test set. The test set was not
used for PLS modeling but was only used to predict DM content from the
generated PLSmodel. The PLSmodelingwas performed on the remaining
178 samples using segmented cross-validation, leaving out one cultivar at
the time. The generated PLS models were compared by a correlation
coefficient (r) and root-mean-square error of cross-validation (RMSECV)
for the calibration set and root-mean-square error of prediction (RMSEP)
for the independent test set.

All data analysis steps were performed by Matlab, version 7.6
(MathWorks, Inc., Natick, MA), using in-house algorithms (www.models.
life.ku.dk).

RESULTS AND DISCUSSION

Table 1 shows the range of cultivars andDMgrading bins used
in the study, which ensures a large DM variation when modeling
against LF-NMR relaxation data. DM content determination
using SGdata on a whole tuber and oven-drying data on cylinder
samples gives similar results and is highly correlated (r = 0.96,
albeit with a bias of ∼1%). The small discrepancy between DM
determinations by the twomethods could be explained by sample
heterogeneity because the SGmethod gives a DM estimate of the
entire potato tube,while the oven-dryingmethodwas only carried
out on a cylinder taken from a specific part of the tubers.

The LF-NMRCPMG relaxation curves are shown inFigure 1,
gray-scaled colored according to DM content. It is observed that
potatoes exhibiting slow relaxation have lowDMcontent; i.e., an
inverse relation is observed between T2 and DM. Figure 2 shows
the mean distribution of T2 relaxation times of 210 potatoes
estimated by distributed exponential fitting of the relaxation data.
The mean T2 distributed curve shows the presence of four popula-
tions (Figure 2). Even though the three most slow-relaxing popula-
tions areoverlapped, thedistributedT2 data indicate thepresenceof
four proton components in the potato tubers. The development in
residuals when using 1-5 components for discrete exponential
fitting and DoubleSlicing is shown in the Supporting Information.
It is observed that, after calculations using four components, both
fitting approaches show residuals that are randomly distributed
around zero and contain only noise. The minimal improvement
in RMSE after 5 components contributes to the validation of a
4-component system. The determination of the correct number of
components is amajor challenge and often requires data inspection
and subjective decision making; the main advantages for the
DoubleSlicing method is calculation speed and improved solution
diagnostics. The core consistency will drop dramatically from
positive to negative values when the appropriate number of com-
ponents is exceeded. This is shown on one representative NMR
relaxation curve in the Supporting Information. By comparison,
the drop in fit (e.g., RMSE) between consecutive components is
more gradual and less obvious when an overfitted model is used.

Figure 1. Raw LF-NMR relaxation data for 210 potato samples. The
curves are gray-scale-colored according DM content.

Figure 2. Mean distribution of T2 relaxation times of 210 potatoes
estimated by distributed exponential fitting of LF-NMR CPMG relaxation
curves.

Table 2. Effect of Different Modeling Approaches Resolving LF-NMR Relaxation Data Curvesa

T2 (ms) population size (%)

fitting method T2,1 T2,2 T2,3 T2,4 M0,1 M0,2 M0,3 M0,4

discrete 2.8 (0.2) 45 (2.7) 197 (18) 500 (53) 10 (2.0) 7.6 (1.3) 25 (3.7) 57 (6.1)

DoubleSlicing 3.6 (0.3) 53 (3.5) 213 (18) 508 (53) 9.4 (2.0) 8.4 (1.8) 27 (3.9) 56 (6.5)

distributedb 2.5 56 141 473 7.9 6.6 11 75

matrix fit 3.9 84 336 625 10 (1.9) 14 (4.4) 48 (10) 28 (13)

aMean T2 and population size for 210 potatoes are given with standard deviation in parentheses. b The population size for the distributed exponentials was calculated
from the intensities of the peak maxima.
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Table 2 describes the T2 and M0 distributions in the potato
tubers as found by the four data analysis approaches: distributed
exponential fitting, discrete exponential fitting, matrix fit, and
DoubleSlicing. The four data analytical approaches giveT2 values
that are in the same order of magnitude. It is observed that the
classical discrete exponential fitting gives very similar T2 relaxa-
tion time constants asDoubleSlicing, although the latter results in
slightly higher values for all components. Themagnitudes are also
very similar for discrete exponential fitting and DoubleSlicing.
The largest populationM0,4 representsmore than half of the total
proton population in the potato and is characterized by a T2,4 of
∼500 ms, representing the most mobile water in the sample. In
previous studies, only two water components have been found,
representing compartments with 20 and 80% water (11, 15, 16).
The results of PLS regression of LF-NMR data and DM content
are given in Figure 3 and Table 3, which also include the model
evaluation for LF-NMR data features from discrete exponential
fitting, DoubleSlicing, and matrix fit. The table shows that the
RMSECVandRMSEPareof similar size for allmodels, indicating
that none of the models are overfitted. PLS regression using raw
NMR data gives surprisingly good results with a high correlation
(r=0.96) and low error (RMSECV=0.89) compared toprevious
observations in studies with less potato samples [r, 0.78 (14);
r, 0.88 (15)]. Using theT2 values and population sizesM0,1-4 deter-
mined by exponential fitting (r, 0.98; RMSECV, 0.71) and
DoubleSlicing (r, 0.97; RMSECV, 0.71) as variables in a PLS
regression to DM content gives slightly better performance than
using the raw NMR data. NMR parameter estimation from
exponential fitting and DoubleSlicing gives nearly the same
results for PLS model performance (Table 3).

Inspection of PLS loading and regression coefficients (not
shown) revealed that the population sizes M0,1-4 (not the T2

values) were the dominating contributor to the PLSmodel. This is
expected because the population size contains the quantitative
information about the proton populations, which, in turn, are
expected to be correlated to the DM content. To investigate why
there is a high correlation between LF-NMR andDM, the popu-
lation sizes (M0,1-4) are plotted against theDMcontent (Figure 4).
M0,1 and M0,4 are highly correlated to the DM content with r =
0.95 and -0.90, respectively. The strong positive correlation
between M0,1 and the DM content is in agreement with the fact
that this population previously has been assigned to water on the
surface or inside starch granules (29, 30). The short T2 relaxation
time constant (∼3 ms) ofM0,1 also indicates that this population
of protons is strongly associated to potato constituents. In this
context, the size of the M0,1 proton population is an indirect
marker for DM content. The negative correlation between M0,4

andDMcontent is in agreementwith the previous finding that this
proton population represents extracellularwater andwater located
in the cytoplasm (29). The negative correlation toDMcontent can
be explained simply by the cytoplasmatic and extracellular water
replacingDM. It is noteworthy that thePLSmodels inTable 3 and
shown in Figure 3 give better correlation between predicted versus
actual than each individual M0,1-4. Thus, the exclusion of DM
(T2,4) and the proximity to DM (T2,1) combined provide a better
quantitative description of DM in potato.

With this study, we have confirmed a high correlation between
LF-NMR data and DM content of single potatoes using a much
larger sample material than previously investigated, including
eight cultivars. A new decomposition method of the NMR relax-
ation curves into mono-exponentials unambiguously revealed
that four components were required. The decomposition also
revealed why LF-NMR data correlate well to DM. The propor-
tion of the fastest relaxing proton population (M0,1) is an indirect
marker for DM content, because this population represent water
on the surface or inside starch granules. The concentration of the
most slowly relaxing protons (M0,4) contributes information
about DM because high amounts of cytoplasmatic and extra-
cellular water are inversely related to DM content. When the two
parameters describing the proportion of the two water pools are
combined, M0,1 and M0,4, the correlation to DM content is
further improved. The results show that LF-NMR is the most

Figure 3. PLS regression (4 latent variables) of LF-NMR parameters
(T2 andM0) resolved using DoubleSlicing and DM content as the response
variable (b, calibration set; O, test set).

Table 3. Prediction Error Performance for DM Content in Potatoes for
Different Modeling Approaches Using LF-NMR Relaxation Curves

PLS modeling

input

number of

variables

number of

LV rcv RMSECV Rtest RMSEP

raw NMR data 2048 5 0.96 0.89 0.97 0.65

T2 þ M0 from

discrete fitting

8 4 0.98 0.71 0.97 0.62

T2 þ M0 from

DoubleSlicing

8 4 0.97 0.71 0.98 0.60

M0 from matrix fit 4 4 0.94 1.08 0.95 0.83

Figure 4. Scatter plot between the population concentration M0,1-4 and
DM. The correlation coefficients are given in each subplot. T2 description of
the relaxation components is given in Table 2.
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precise and direct probe for DM content in potatoes. Because no
online potato methods for grading potatoes according to DM
content are available yet, there will be several advantages of using
LF-NMR methods in the future. An online LF-NMR method
can replace measurements of specific gravity of samples of potato
bulks and gives more precise quality control data on the individual
tuber level.

ABBREVIATIONS USED

LF-NMR, low-field nuclear magnetic resonance; DM, dry
matter;UC, ultracentrifugation;NMR, nuclearmagnetic resonance;
PCA, principal component analysis; PLS, partial least squares;
CPMG,Carr-Purcell-Meiboom-Gill; RMSECV, root-mean-
square error of cross-validation.

Supporting Information Available:Residuals versus time for

1-5 components when using discrete exponential fitting and

DoubleSlicing (Supplementary Figure 1) and solution diagnostic

core consistency for 1-5 fitted exponentials using DoubleSlicing

(SupplementaryFigure 2).Thismaterial is available freeof charge

via the Internet at http://pubs.acs.org.
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 1 INTRODUCTION 
 
 
A major challenge with low field NMR data analysis is estimation of the right number of 
exponential components. In this work we will demonstrate how PARAFAC core-
consistency, using the so-called DoubleSlicing method (1), can help to unambiguously 
determine the number of exponentials in the signal. The new approach will be 
demonstrated in a study where we investigate in-situ rennet induced milk gel formation 
and in-situ mechanically induced gel syneresis using low field nuclear magnetic resonance 
(LF-NMR) (2).  
 
In cheese manufacture the milk gel formation and syneresis processes are of major 
importance for the water content, texture and flavour properties of the final product. 
Several NMR relaxation studies have been reported that investigate milk gel formation (3-
6) and syneresis (4, 6, 7). The effect of milk gel syneresis on water proton relaxation has so 
far been studied on undisturbed gels that only exhibit spontaneous endogenous syneresis 
(i.e. syneresis caused by pressure being built up during network formation within the gel). 
This is however not representative for industrial cheese manufacturing where mechanical 
cutting of the gel into dices is an essential process step.  Two inconsistencies exist in the 
interpretation of the water proton relaxation during milk gel formation and syneresis: (A) 
the development of the transverse relaxation time constant, T2, and its corresponding 
proton population size during gel formation and (B) the number of proton populations (i.e. 
exponential terms) necessary to model water proton relaxation during cheese gel 
formation. Two studies have found no change in the relaxation time constant T2 during 
milk gel formation (4, 6), while other researchers (3) found small changes in the T2 
relaxation time during the gel formation. The latter study found (without providing explicit 
proof) that three populations of water protons were required to describe the relaxation 
during milk gel formation, while the former studies found that one proton population was 
adequate to describe the proton relaxation. There is however a general agreement that the 
onset of milk gel syneresis is associated with appearance of an additional water population 
with slower relaxation, which are the protons in the whey water (2-4, 6).  
One of the reasons for the discrepancy in number of proton components is related to the 
data analytical methods applied for studying the NMR relaxation data. The major 
challenge when analysing relaxation decay curves of LF-NMR experiments using multi-



exponential curve fitting is to decide the appropriate number of exponential terms that 
describe actual water populations present in the sample. A new exponential curve fitting 
method to assist in the determination of water populations called DoubleSlicing was 
introduced in 2003 by Micklander et al. (8). Andrade et al. (1) further refined the method 
using the PowerSlicing scheme of Engelsen and Bro (9). The DoubleSlicing technique 
utilizes the fact that different parts (slices) of a given multi-exponential decay curve consist 
of the same underlying exponential terms, but in a different quantities (concentrations). 
Because all underlying exponential terms are present in all slices of the DoubleSliced data 
cube, tensor models such as direct tri-linear decomposition (DTLD) or parallel factor 
analysis (PARAFAC (10)) can extract the individual exponential terms. These tensor 
methods have some unique possibilities for validating the solution (e.g. finding the 
appropriate number of water proton populations) and are surprisingly faster than 
conventional curve fitting methods. 
The primary objective of this study was to investigate the effect of milk gel formation and 
in-situ mechanically induced gel syneresis on NMR proton relaxation. The secondary 
objective was to demonstrate DoubleSlicing as a method for determining the appropriate 
number of components in a semi-automated way. For these purposes the effect of milk gel 
formation and syneresis was studied using an experimental design with three factors: pH, 
temperature and gel firmness at cutting time. Time domain LF-NMR measurements were 
carried out in parallel with rheological measurements. 
 
 
 2 MATERIALS AND METHODS 
 
 
2.1 Design of experiment 
 
Rennet induced gel formation of skim milk and the subsequent syneresis process after gel 
cutting was studied by time domain LF-NMR. As experimental procedure rennet was 
added to skim milk in a bigger volume which was subsequently split into two fractions: 
one was immediately transferred into a 17mm diameter NMR tube and continuously 
analyzed inside a LF-NMR spectrometer; the other fraction was injected into a rheological 
instrument which continuously measured gel firmness during gel formation. The role of the 
rheological measurements was to ensure that the gels formed in the NMR tube for repeated 
experiments had the same, desired firmness at gel cutting time. A knife - consisting of a 
thin Plexiglass blade tightly matching the tube inner diameter - was used to cut the gel 
once over the entire length of the NMR tube as soon as the firmness of the gel in the twin 
sample had reached a pre-defined level (Figure 1). 
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Figure 1 Timing diagram of the study: Rennet was added to skim milk, which was split 

into a fraction for rheological analysis and a fraction for LF-NMR analysis. A 
knife cut the formed gel once over the entire length and inner diameter of the 
NMR tube, once the gel reached a pre-determined firmness. The LF-NMR 
spectrometer continued to analyse the gel, during the syneresis, which resulted 
in fifty snapshot/time-frames for each experimental run. 

 
During the gel formation and syneresis three experimental factors were investigated on two 
levels (a 23 factorial design). A pseudo centre point was added for the factors pH and gel 
firmness at cutting for the high temperature level (Figure 2). Each of the corner points in 
the design were run in duplicate, while the pseudo centre point was run in four replicates, 
resulting in a total of 20 experiments, carried out in random order. 
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Figure 2 The randomized 23 factorial design used to study gel formation and syneresis. 

The experimental factors varied were pH, temperature and gel firmness at 
cutting. The corner points in the design were run in duplicate, while the pseudo 
centre point (position selected due to experimental limitations) was run in four 
replicates, resulting in 20 experiments. 

 
 



2.2 NMR Spectroscopy 
 
Time domain LF-NMR analysis was carried out on a benchtop 23.2 MHz Maran pulsed 1H 
NMR spectrometer (Oxford Instrument, United Kingdom) equipped with a 17mm diameter 
variable temperature probe head. The CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence 
was used to determine the relaxation behaviour. It was chosen because it minimizes the 
influence of magnetic field inhomogeneities, diffusion and chemical exchange (11). A total 
of 8100 data points/echo times were acquired, with a 90–180 pulse spacing (τ) value of 
500μs. Only the even numbered data points were used in the data analysis, resulting in 
4050 data acquisition points per measurement. Prior to the first measurement the frequency 
of the instrument was adjusted on a 10mM CuSO4 standard sample. During gel formation 
four scans were accumulated with a relaxation delay between consecutive scans of 14 
seconds. Prior to the four scans each measurement was preceded by two dummy scans 
leading to a total measurement time of 2 minutes and 12 seconds. Measurements were 
carried out continuously until a maximum of 100 minutes after cutting. 
 
2.3 NMR data analysis by DoubleSlicing 
 
Time domain LF-NMR data are commonly analyzed using multi-exponential fitting which 
applies non-linear iterative curve-fitting algorithms to extract and characterize the 
underlying pure exponentials from random noise in the data (Equation 1): 
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M(t) is the reduced magnetization at time t, M0n is the concentration or magnitude 
parameter of the nth exponential, T2,n is the corresponding transverse relaxation time 
constant and e(t) is the residual error. One of the pitfalls of curve fitting based on hard 
modelling to a functional form such as Equation 1 is that adding additional exponential 
components will per definition improve the fit (i.e. reduce the residual) even if only 
meaningless noise/none systematic variation is being fitted.   
Micklander et al. (1) introduced an alternative non-iterative and rapid technique for curve 
resolution called DoubleSlicing. The technique pseudo-upgrades the single relaxation 
curve to become tri-linear data, by cutting the relaxation curve into slices (Figure 3). By 
selectively removing parts of the signal curve (slicing) and using the remaining curve 
along with the original curve, the relaxation curve can be transformed from a one-
dimensional signal (a vector) into two-dimensional data (a matrix). By repeating this 
procedure on the matrix, the data is transformed to three-dimensional data (a cube or 
tensor). A DoubleSliced relaxation curve can be decomposed using tensor models such as 
DTLD or PARAFAC into (Equation 2): 
 
    EABCX T +=   (2) 
 
A, B and C are matrices and there outer product forms a model/approximation of X, while 
E holds the residual variation not explained by the model. If the X is decomposed using the 
right number of components, then matrix B will contain the true underlying mono-
exponential components (10). From the resolved mono-exponential components it is easy 
to determine T2 and M0 by using Equation 1.  



Some major advantages in using tensor models are that they require no initial guesses and 
have unique possibilities for validation of the solution (10, 12). Methods of solution 
diagnostics include relative reduction in root mean square error (RMSE), split-half 
validation and core-consistency. One general challenge of the DoubleSlicing method is to 
capture the fast relaxing protons, as these are rapidly attenuated in the relaxation curve. 
Andrade et al. (1) therefore further refined the DoubleSlicing method using the 
PowerSlicing scheme by Engelsen and Bro (9). The PowerSlicing approach ensures that 
components with fast relaxing protons are present in sufficiently many of the slices by 
slicing more frequently at the short echo times, since the fast relaxing component only 
have a strong presence in the beginning of the curve (first echo times) .     
 

500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

6000

7000

In
te

ns
ity

XSlice 1

XSlice 2

Slicing

ZSlice 1

ZSlice 2

Slicing

In
te

ns
ity

0 500 1000 1500 2000 2500 3000 35000

1000

2000

3000

4000

5000

6000

7000

XSlice 1

XSlice 2

Vector Matrix Cube

Discrete
exponential
fitting

T2 /M0

500 1000 1500 2000 2500 3000 3500
0

1000

2000

3000

4000

5000

6000

7000

In
te

ns
ity

XSlice 1

XSlice 2

A

B

C

Core

DTLD

500 1000 1500 2000 2500 3000 3500

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 Pure exponential 1
Pure exponential 2

500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

6000

7000

In
te

ns
ity

XSlice 1

XSlice 2

Slicing

ZSlice 1

ZSlice 2

Slicing

In
te

ns
ity

0 500 1000 1500 2000 2500 3000 35000

1000

2000

3000

4000

5000

6000

7000

XSlice 1

XSlice 2

Vector Matrix Cube

Discrete
exponential
fitting

T2 /M0

500 1000 1500 2000 2500 3000 3500
0

1000

2000

3000

4000

5000

6000

7000

In
te

ns
ity

XSlice 1

XSlice 2

A

B

C

Core

DTLD

500 1000 1500 2000 2500 3000 3500

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 Pure exponential 1
Pure exponential 2

  
Figure 3 Overview of the principle behind DoubleSlicing. The NMR signal is one-

dimensional data (a vector) and a sum of N exponential decays corresponding 
to N water populations. The curve is divided in a number (here two for 
illustration purposes) of largely overlapping segments (X-slices) by removing 
the same number of first or last echo times. These two segments are placed in 
one matrix (2-dimentional) and the procedure is repeated to form (Z-slices) 
which are stacked behind each other to form a data cube (3-dimensional). This 
cube is decomposed by a DTLD factor model and the correct rank or 
dimensionality is then equal to N, the number of distinct water populations in 
the original signal. The profiles are from the DTLD decomposition (so-called 
loadings) are mono-exponential and can be used to estimate concentrations 
(M0) and relaxation time constants (T2). 

 
In the present study a step-wise DoubleSlicing algorithm was used as an extension to the 
Slicing algorithm by Pedersen et al. (13). The DoubleSlicing algorithm slices the single 
relaxation curve 11 times at 1, 2, 4, 8, 16, 32, 64,  128, 256, 512, 1024 echo time variable 
(hence eleven X-slices compared to just two shown in Figure 3). The exponential increase 
in the slicing variable number is the so-called PowerSlicing approach and it ensures that 
fast relaxing components are present in sufficiently many slices. Subsequently, the eleven 



slices are PowerSliced once again eleven times, which transform the single relaxation 
curve into a three-dimensional data cube. The three-dimensional data cube was 
decomposed by DTLD using one to four components. All the algorithms are available in 
MatLab code from www.models.life.ku.dk. 
 
 
2.4 Estimation of the number of exponential components 
 
Many methods have been evaluated for the determination of the appropriate number of 
exponential terms in Equation 1 or components in the tri-linear decomposition model. 
Obvious diagnostics criteria are loss in residual, explained variance, etc. However, the task 
remain difficult using these methods because the fit will always improve by adding more 
terms and the statistical or numerical evaluation on whether an additional term is justified 
is far from trivial, often giving conflicting information for different criteria. In this work 
we developed a semi-automated selection procedure for model complexity based on two-
times-two evaluation criterion. 
Bro and Kiers (12) proved that the core-consistency is a useful validation diagnostic for 
evaluating the appropriateness of fit of tri-linear models (Figure 4). The core-consistency is 
used to evaluate the tensor model in Equation 2. It expresses how close or far a model is 
from the assumed tri-linear structure. It is obtained by comparing the elements in an 
unconstrained or free core tensor with the element in a constrained (super-diagonal) tensor 
core (our target core). The core-consistency is expressed as the percentage , where a high 
percentage indicates that the unconstrained solution is close to or consistent with our 
desired modeling objective (12). Thus, for a perfect tri-linear model the core-consistency is 
100%, the desirable value, whereas e.g. negative percentages indicate a very poor model. 
Once the maximal appropriate number of components is exceeded, the core-consistency 
will typically drop dramatically. Core-consistency can thus be used as a diagnostic tool but 
it should always be used in combination with other diagnostics, because it sometimes leads 
to over-parameterized models. We therefore combine core-consistency with the loss of fit 
(RMSE). 
 

 
 
Figure 4 Tri-linear core-consistency - if the core-consistency is much lower than 
100% the tri-linear model is not appropriate i.e. it has the wrong number of components.  
 
In our model evaluation we construct tri-linear DTLD models with one to four 
components. Note that e.g. the first component is not the same for these four choices 
because tensor models are not embedded (10). To justify inclusion of an additional 
component both criteria (Table 1) should be met. An advantage of the algorithm is that it 
can automatically find the appearance of additional components during the development of 
dynamic experiments such as gel formation and syneresis without any prior knowledge on 
the system. Also note that each LF-NMR relaxation measurement is modelled 



independently (Figure 3). Hence any observation made over the time axis of the 
experiment can be based on sovereign measurement points, i.e. single relaxation curves. 
                     
Table 1     Diagnostic methods and their corresponding threshold values used in the 

algorithm to validate the rank/number of components appropriate to describe 
each DoubleSliced relaxation curve.  

Diagnostic method    Threshold value for inclusion 

Core consistency  > 60% 

Loss of root-mean-squared-errora (RMSE) > 10% 
      aLoss in root-mean-squared-error is relative to the model with one component less 

 
 
 3 RESULTS AND DISCUSSION 
 
The raw CPMG data for a representative cheese batch is shown in Figure 5. The data show 
that the overall relaxation becomes systematically slower with experiment time after 
cutting of the milk gel. This implies that the proton populations progressively change as a 
result of the syneresis process, where water (i.e. whey) is expelled from the gel network. 
By visual inspection of the relaxation curves in Figure 5 it is not possible to observe any 
changes in the relaxation curves prior to cutting of the gel.  
 

 
Figure 5 NMR CPMG relaxation curves during gel formation and syneresis in one gel 

formation and syneresis experiment.  
 
 
The core-consistency and RMSE will be illustrated and evaluated using relaxation curves 
from one gel formation and syneresis experiment (pH = 6.3, T = 35oC, low firmness at 
cut). Figure 6 shows how the core-consistency and loss in RMSE change as a function of 
the number of exponential terms included in the modeling of the relaxation curves. Since 
core-consistency is consistently 100% when the relaxation curves were fitted to two 
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exponentials, it is clear that at least two populations are present during the entire 
experimental run. Using three exponentials results in negative core-consistency during the 
initial phase, gel formation. The change from a core-consistency of 100% to negative 
values makes it easy to asses that only two components are present during gel formation, 
prior to cutting. In comparison, the loss in RMSE does not show strikingly different values 
when including three components. Mono-exponential fitting of the relaxation curves by 
DTLD before cutting yielded a RMSE of 0.045, while bi-exponential fitting results in a 
RMSE of 0.038 corresponding to a 15% reduction. Tri-exponential fitting resulted in a 
RMSE of 0.036 or a 4% reduction from a two component model (i.e. < 10%).   

 
 

 
 
Figure 6 Core-consistency and loss in RMSE change as a function of batch run-time 
and the number of exponential terms included in the modelling of a representative cheese 
batch (consisting of 50 NMR relaxation curves equals one batch of approximately 100 
minutes). 
 
By comparing of the results of DoubleSlicing with traditional discrete exponential fitting 
of one relaxation curve before cutting (Figure 7) we see that two proton components are in 
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fact present in milk and the gel. This is evident from a plot of residuals after fitting one 
component (Figure 7B), which show that residuals are not random and equally distributed 
around zero as LF-NMR measurement noise should be. After fitting two components the 
residual become random (Figure 7C) showing that no more information is present in the 
data.   
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Figure 7 (A) One CPMG relaxation curve, (B) residual after one component discrete 
exponential fitting and (C) residual after two components. 
 
When the appropriate number of proton components has been established the development 
in T2 and population sizes can be calculated for each LF-NMR snapshot. The result for two 
representative batches is shown in Figure 8. The abrupt change at the cutting point and the 
otherwise smooth curves gives rise to high confidence in both the modelling approach and 
the automated method of model complexity determination. During gel formation and 
syneresis two proton populations with the characteristic transverse relaxation times T2,1 
and T2,2 are present within the gel. The size of T2,1 and T2,2 show that proton population 
come from water associated with different parts/constituents of the gel. The data analysis 
clearly indicates that bi-exponential behaviour characterizes the system during gel 
formation and prior to cutting. Cutting unambiguously introduces a new component T2,3 
representing the whey.  
The relative population sizes determined during modelling quantitatively shows how much 
water (protons) with different T2’s is present at a given time during the syneresis (Figure 
8). The main portion of the (water) protons (relative contribution in total signal of 98.8%, 
SD = 0.2%) prior to cutting of the gel originate from a population which is characterized 
by an average T2,1 of 180.7ms (SD = 5.1ms). The primary development can be summarized 
as follows: fast relaxing water (T2,1 ~ 180ms) within the gel is mainly converted to slow 
relaxing water (T2,3 ~ 2000 to 2200ms) situated outside the gel. A small fraction of the fast 
relaxing water protons is seemingly converted into water present within the gel with an 
intermediate relaxation rate (T2,2 ~ 400 to 500ms). The rate by which the water leaves a cut 
milk gel (i.e. syneresis) can be described as a reaction of first order, meaning that the rate 
of water expulsion is dependent on the amount of water present at a given time (14). 
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exponential fitting and (C) residual after two components. 
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During syneresis the bulk proton population characterized T2,1 steadily decrease to a level 
of ~ 50 – 70% of the water protons after 100 minutes. Assuming, this proton population is 
primarily associated to casein micelles as previously suggested (15), then the decrease in 
population size initiated by cutting, suggest that the casein micelles are being steadily 
dehydrated. 
 

 
 
Figure 8 Development in T2 (upper row) and relative population size (lower row) 
during gel formation and syneresis of two different cheese experiments with different pH-
values. The vertical line indicates the time when the milk gel was cut. 
 
 
 4 CONCLUSION 
 
 
LF-NMR was used to characterize skim milk gel formation and syneresis qualitatively and 
quantitatively using a new automated DoubleSlicing algorithm. Analysis of relaxation data 
using DoubleSlicing data proved to be precise in finding the appropriate number of 
underlying exponential components (i.e. proton populations) in single relaxation curves 
measured during gel formation and syneresis.  
In-situ LF-NMR measurements have proven an excellent tool for studying rennet 
coagulation and syneresis. During coagulation two proton populations with distinct 
transverse relaxation times (T2,1 = 181ms, T2,2 = 465ms) were present in fractions (98.9% 
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transverse relaxation times (T2,1 = 181ms, T2,2 = 465ms) were present in fractions (98.9% 



and 1.1% respectively). Mechanical cutting of the gel in the NMR tube induced macro-
syneresis, which led to the appearance of an additional proton population (T2,3 = 1500 to 
2200ms) identified as whey. The syneresis rate was found to be significantly dependent on 
pH in the range from 6.3 to 6.5 and temperature in the range from 32 to 35ºC. Gel firmness 
at cutting did not show any significant effect on syneresis rate (2). 
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