
UNDERSTANDING EPILEPSY SEIZURE STRUCTURE
USING TENSOR ANALYSIS

By

Evrim Acar Ataman

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

Approved by the
Examining Committee:

Bülent Yener, Thesis Adviser

Rasmus Bro, Member

Kristin Bennett, Member

Petros Drineas, Member

Mukkai Krishnamoorthy, Member

Mohammed Zaki, Member

Rensselaer Polytechnic Institute
Troy, New York

April 2008
(For Graduation May 2008)



c© Copyright 2008

by

Evrim Acar Ataman

All Rights Reserved

ii



CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Epilepsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Electroencephalogram (EEG) . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 EEG Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Our Contributions and Organization . . . . . . . . . . . . . . . . . . 5

2. RELATED WORK AND BACKGROUND . . . . . . . . . . . . . . . . . . 7

2.1 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Multiway Arrays (Tensors) . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Rank-One Tensor . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Tensor Frobenius Norm . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Matricization . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.5 Tensor-Matrix Multiplication . . . . . . . . . . . . . . . . . . 10

2.1.6 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Multiway Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 PARAFAC-family . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1.1 PARAFAC . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1.2 Extensions of PARAFAC . . . . . . . . . . . . . . . 19

2.3.2 Tucker-family . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2.1 Tucker3 . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2.2 Extensions of Tucker3 . . . . . . . . . . . . . . . . . 23

2.3.3 Tucker vs. SVD vs. PARAFAC . . . . . . . . . . . . . . . . . 24

2.3.4 Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Tucker Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



2.4.2 PARAFAC Model . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Social Network Analysis/Text-mining . . . . . . . . . . . . . . 34

2.5.3 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.4 Process Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3. EPILEPTIC SEIZURE LOCALIZATION . . . . . . . . . . . . . . . . . . . 41

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Multiway Models in Computational Neuroscience . . . . . . . 43

3.1.2 Multiway Models in Epilepsy . . . . . . . . . . . . . . . . . . 44

3.2 Epilepsy Tensor Construction . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Artifact Extraction, Removal and Seizure Localization . . . . . . . . 47

3.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Artifact Extraction . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 Seizure Origin Localization . . . . . . . . . . . . . . . . . . . . 51

3.3.4 Artifact Removal . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.5 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 60

4. EPILEPTIC SEIZURE RECOGNITION . . . . . . . . . . . . . . . . . . . 62

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Epilepsy Feature Tensor Construction . . . . . . . . . . . . . . . . . . 64

4.2.1 Time domain features . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1.1 Hjorth parameters . . . . . . . . . . . . . . . . . . . 65

4.2.1.2 Mean Absolute Slope . . . . . . . . . . . . . . . . . . 66

4.2.1.3 Spatial Information . . . . . . . . . . . . . . . . . . . 66

4.2.2 Frequency domain features . . . . . . . . . . . . . . . . . . . . 67

4.2.2.1 Frequency Spectrum . . . . . . . . . . . . . . . . . . 67

4.2.2.2 Relative Energy . . . . . . . . . . . . . . . . . . . . . 68

4.2.2.3 Spectral Entropy . . . . . . . . . . . . . . . . . . . . 68

iv



4.3 Multilinear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Partial Least Squares . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Multilinear Partial Least Squares . . . . . . . . . . . . . . . . 70

4.3.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Patient-Specific Seizure Recognition . . . . . . . . . . . . . . . . . . . 74

4.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.2 Results and Interpretations . . . . . . . . . . . . . . . . . . . 77

4.5 Patient Non-Specific Seizure Recognition . . . . . . . . . . . . . . . . 81

4.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1.1 Additional Features . . . . . . . . . . . . . . . . . . 82

4.5.1.2 Handling inter-patient differences . . . . . . . . . . . 83

4.5.2 Results and Interpretations . . . . . . . . . . . . . . . . . . . 83

4.6 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 89

5. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 93

5.1 Epileptic Seizure Localization . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Epileptic Seizure Recognition . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Epileptic Seizure Prediction . . . . . . . . . . . . . . . . . . . . . . . 96

LITERATURE CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

v



LIST OF TABLES

2.1 Selection of models from PARAFAC family . . . . . . . . . . . . . . . . 19

2.2 Selection of models from Tucker family . . . . . . . . . . . . . . . . . . 24

3.1 Dataset of multi-channel ictal EEG. 100 scales corresponding to fre-
quencies in the frequency band of 0.5-50Hz are used. . . . . . . . . . . . 49

3.2 Core Consistency for different component numbers . . . . . . . . . . . . 59

4.1 EEG Dataset for Patient-Specific Seizure Recognition. The last column
shows the size of the epilepsy feature tensor with modes: time epochs,
features and channels. Each tensor contains a seizure as well as data
before and after that seizure. The number of epochs (first mode) in
each tensor differs depending on the duration of a seizure. . . . . . . . . 76

4.2 Seizure vs. Non-seizure. Performance of three-way (NPLS-based) and
two-way (SVM-based) approaches in terms of geometric mean of sen-
sitivity and specificity of the model. The row corresponding to NPLS
+ LDA shows the results without feature selection while the row corre-
sponding to NPLS + LDA (FS) demonstrates the results of the model
with feature selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Pre-seizure vs. Post-seizure (binary classification within non-seizure
epochs). Each entry shows the performance of the model when it is
trained on non-seizure epochs before/after some seizures of a patient
and tested on non-seizure epochs before/after another seizure of that
particular patient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Subsets of features used in the patient-specific seizure recognition model
of each patient. Patient 1, 2, 7 and 8 have right temporal seizures.
Patient 3 suffers from left frontal while Patient 4 and 9 suffer from left
temporal seizures. Patient 5 is bilateral central frontal and Patient 6 is
bilateral occipital. While subsets of features tend to be similar based
on seizure origins, it is not possible to make generalizations on a small
set of patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 EEG Dataset for Patient Non-Specific Seizure Recognition. Each epilepsy
feature tensor contains a seizure as well as data before and after that
seizure. The number of epochs (first mode) in each tensor differs de-
pending on the duration of a seizure. . . . . . . . . . . . . . . . . . . . 84

vi



4.6 Seizure vs. Non-seizure. Performance of three-way (NPLS-based) ap-
proach in terms of the geometric mean of sensitivity and specificity of
the model. The different columns correspond to different preprocessing
techniques explained in the text. . . . . . . . . . . . . . . . . . . . . . . 86

vii



LIST OF FIGURES

1.1 The standard 10-20 international electrode placement system. The fig-
ure is taken from [118]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The EEG signal recorded at channel T6 − Cz during a seizure. The
period between two vertical red lines is identified visually as the seizure
period by the neurologists. . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 (A) Columns, (B) Rows, (C) Tubes. The figure is taken from [15]. . . . 9

2.2 (A) Horizontal Slices, (B) Vertical Slices, (C) Frontal Slices. . . . . . . . 9

2.3 Matricization of a three-way array in the first mode. A three-way array
X∈ R

I×J×K is unfolded in the first mode and a matrix of size I × JK,
denoted by X(1) is formed. The subscript i in X(i) indicates the mode
of matricization. The figures at the top and the bottom illustrate the
matricization in the first mode as defined in [68] and [40], respectively.
The definition in [68] is commonly used. . . . . . . . . . . . . . . . . . . 11

2.4 The categorization of multiway models briefly explained in this chapter.
We study multiway models under three categories: PARAFAC family,
Tucker family and alternative approaches. . . . . . . . . . . . . . . . . . 16

2.5 Illustration of a PARAFAC model. A 2-component PARAFAC model,
where a three-way array X is expressed as the sum of two rank-one
tensors. ai, bi and ci are the ith components in the first, second and
third modes, respectively. E is a three-way array containing the residual
terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 (A) A full core array of size P×Q×R with maximum PQR nonzero ele-
ments, (B) A super-diagonal core array of size R×R×R with maximum
R nonzero elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Illustration of a Tucker3 model. A (P,Q, R)-component Tucker3 model,
where a three-way array X∈ R

I×J×K is modeled with component matri-
ces A ∈ R

I×P , B ∈ R
J×Q and C ∈ R

K×R in the first, second and third
modes, respectively. G∈ R

P×Q×R is the core array and E∈ R
I×J×K

contains the error terms. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Modeling of a fluorescence dataset using a 3-component PARAFAC
model. ai, bi and ci correspond to the ith component in samples, emis-
sion and excitation modes. We also illustrate the vector outer product
of bi and ci, which shows the fluorescence landscape of each analyte
used in the preparation of the samples. . . . . . . . . . . . . . . . . . . 33

viii



3.1 Two-way Data Construction. . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Continuous wavelet transformation (CWT) of a signal from a single
electrode (data corresponding to the single column of the matrix on
the left) forms the frontal slice corresponding to a particular electrode.
When the signals from all electrodes are represented in both time and
frequency domains through CWT, a third-order tensor with modes time
samples, scales (frequency) and electrodes is constructed. . . . . . . . . 46

3.3 Epilepsy Tensor. X∈ R
I×J×K represents the multi-channel ictal EEG

data transformed by continuous wavelet transformation using a Mexican-
hat wavelet and arranged as a three-way array. Each entry of X, xijk,
corresponds to the square of the absolute value of a wavelet coefficient
at ith time sample, jth scale and kth electrode. . . . . . . . . . . . . . . 47

3.4 A 2-component PARAFAC model on an epilepsy tensor X for a par-
ticular seizure. We demonstrate the modeling of an epilepsy tensor
by a 2-component PARAFAC model, where the first component cor-
responds to an eye-artifact while the second component represents a
seizure. Top: Temporal (a1), spectral (b1) and spatial (c1) signatures
of an eye-artifact. a1 represents the coefficients of time samples, b1 rep-
resents the coefficients of scales. Since there is a peak in higher scales
on the plot of b1, it indicates that this artifact takes place at lower
frequencies. c1 contains the coefficients of electrodes. These coefficients
are demonstrated on a colormap using EEGLab [42]. Bottom: Tem-
poral (a2), spectral (b2) and spatial (c2) signatures of a seizure. Similar
to the first component, a2 represents the coefficients of time samples,
b2 represents the coefficients of scales. There is a peak in lower scales
on the figure corresponding to b2, which indicates that the seizure takes
place at higher frequencies. Finally, c2 contains the coefficients of elec-
trodes, which are used to localize the seizure around electrodes T4 and
T6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Multiway analysis of multi-channel ictal EEG. After the collection of
multi-channel EEG data from epilepsy patients, we normalize the data
and construct a three-way X called an Epilepsy Tensor through wavelet
transformation. X is then downsampled and scaled in scales mode be-
fore multiway analysis. Preprocessed three-way array is modeled using
a PARAFAC model for artifact extraction and localization of epileptic
focus. Finally, PARAFAC components are compared with clinical find-
ings of epilepsy patients. For the cases when a PARAFAC model cannot
capture the seizure, we apply an artifact removal method by modeling
the preprocessed three-way using a Tucker3 model to detect potential
artifacts. The tensor formed after artifact removal is modeled using a
PARAFAC model to extract the signatures of an artifact and a seizure. 55

ix



3.6 The spatial signatures extracted by a PARAFAC model after apply-
ing different artifact removal approaches on seizure 6 from Table 3.1.
Method I refers to using Tucker3 as the artifact removal approach;
method II refers to the artifact removal process based on Tucker1 and
method III removes artifacts on raw data using SVD. For method I
and II, even though the spatial signatures are not exactly the same,
they are very similar for both models and the seizure localization is the
same. The first component in method I and the second component in
method II localizes the seizure (the components are given in the order
of the variation they explain but the explained variation by each com-
ponent is so close that the ordering flips in different methods). The
spatial signatures captured by the PARAFAC model after using SVD-
based artifact removal approach on raw data cannot localize the seizure.
Color scales in the figures are the same as the scale in Figure 3.4. . . . . 57

3.7 The spatial signatures extracted by a PARAFAC model after apply-
ing different artifact removal approaches on seizure 7 from Table 3.1.
Method I refers to using Tucker3 as the artifact removal approach;
method II refers to the artifact removal process based on Tucker1 and
method III removes artifacts on raw data using SVD. The second com-
ponent in method I localizes the seizure origin whereas no other compo-
nent extracted by other methods can localize the seizure. Color scales
in the figures are the same as the scale in Figure 3.4. . . . . . . . . . . . 58

3.8 Some illustrative examples of artifact extraction and seizure origin local-
ization. We present our results corresponding to the electrode mode for
four of the seizures when they are modeled using a PARAFAC model.
Color scales in the figures are the same as the scale in Figure 3.4. c1, c2

and c3 stand for the first, second and third components in the electrodes
mode, respectively. (1) Seizure 1. First component represents an eye-
artifact while the second component localizes the seizure. (2) Seizure
8. First component shows the seizure origin and the second component
corresponds to an artifact, which has a low frequency signature. The
third component cannot be visually identified. (3) Seizure 7. This is
one of the examples where artifact removal is applied. The components
are the PARAFAC components extracted after artifact removal. While
the first and third components are the artifacts, the second component
represents the seizure. (4) Seizure 10. The first component localizes
the seizure around F7 and C3 while the second component corresponds
to an artifact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 (A) Multiple features extracted from single-channel EEG data are ar-
ranged as a matrix, (B) When multiple channels are taken into con-
sideration, the data form a three-way array with modes: time epochs,
features, channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

x



4.2 Epilepsy Feature Tensor. X∈ R
I×J×K represents the multi-channel

EEG data, which are transformed into the feature space by comput-
ing certain measures characterizing seizure dynamics. Each entry of X,
xijk, corresponds to the value of jth feature of ith time epoch at kth

channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Mean Absolute Slope of epochs from all channels for the fifth seizure
of the second patient in Table 4.1. Epochs marked with blue and red
belong to non-seizure and seizure periods, respectively. Green epochs
are the transition epochs from pre-seizure to seizure or seizure to post-
seizure periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Spatial Information of epochs from all channels for the second seizure
of the second patient in Table 4.1. Epochs marked with blue and red
belong to non-seizure and seizure periods, respectively. We observe
a clear increase in similarity between neighboring channels during a
seizure period. Green epochs are the transition epochs from pre-seizure
to seizure or seizure to post-seizure periods. . . . . . . . . . . . . . . . . 67

4.5 Patient-Specific Seizure Recognition Model. Multi-channel EEG sig-
nals corresponding to the data before, during and after each seizure of
a patient are arranged as a third-order epilepsy feature tensor. Then
training and test sets are constructed by leaving out one seizure (to-
gether with data before and after that seizure period) at a time. The
model built on the training set is used to predict the labels of the time
epochs in the test set using N-PLS and LDA. Final step is performance
evaluation using the average performance of the model on test sets. . . . 79

4.6 The figures show how one of the features, i.e., activity, behaves during
seizures of some patients from Table 4.5. The epochs represented in
blue and red correspond to the non-seizure and seizure periods while
the epochs in green contain time samples from both seizure and non-
seizure periods. We observe that there is significant order of magnitude
difference between seizures of different patients. . . . . . . . . . . . . . . 85

xi



4.7 Performance of the patient non-specific seizure recognition model with
different preprocessing approaches for the fourth patient in Table 4.5.
Blue and red dots correspond to true and predicted classes of time
epochs, respectively. The figure at the top shows that we can only
partially detect the seizure; in other words we can only classify the
epochs at the end of the seizure as seizure when we preprocess the test
set according to the whole training set containing seizures of different
patients (the second column of Table 4.6). On the other hand, if we
preprocess each patient separately, then we observe that we can detect
almost the whole seizure period with a short delay at the beginning of
the seizure (the third column of Table 4.6). . . . . . . . . . . . . . . . . 87

4.8 The figure illustrates how differently mean absolute slope behaves in
pre-seizure, seizure and post-seizure periods for one of the seizures of
Patient 1 from Table 4.1. This feature, therefore, can differentiate be-
tween seizure and non-seizure as well as pre-seizure and post-seizure
epochs. The epochs represented in blue and red correspond to the
non-seizure and seizure periods while the epochs in green contain time
samples from both seizure and non-seizure periods. . . . . . . . . . . . . 91

xii



ACKNOWLEDGMENT

I would like to thank my thesis adviser Prof. Bülent Yener for introducing me to a

very exciting research area. Even though I started my Ph.D. in a completely differ-

ent field in 2003, through his visionary ideas on multi-modal analysis of chatroom

communications data, I had the opportunity to be introduced to the field of multi-

way data analysis. I would like to also thank him for believing in me and supporting

me through my studies in RPI.

I would like to express my deepest gratitude to Prof. Rasmus Bro for giv-

ing me the chance to work with him in the Chemometrics Group in University of

Copenhagen in Summer of 2006, which was the start of a great research experience.

Although we have communicated remotely, he has been involved in every step of

my thesis through his guidance in data analysis. He has also initiated motivating

projects, which gave me the opportunity to work with researchers worldwide. Many

thanks for always supporting me with your positive attitude. I would like to thank

both Rasmus Bro and Tamara Kolda for not only answering my endless questions

but also helping me to know the multiway community better and giving me the

opportunity to improve myself in the field.

Special thanks to Prof. Petros Drineas, Prof. Kristin Bennett, Prof. Mo-

hammed Zaki and Prof. Mukkai Krishnamoorthy. I would like to acknowledge Prof.

Canan A. Bingöl and Prof. Anthony L. Ritaccio for providing us epileptic EEG

signals and for their guidance on epilepsy and EEG.

Finally, I would like to thank my officemates, particularly special thanks to
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ABSTRACT

Data in many disciplines are arranged as two-way datasets; in other words, ma-

trices. However, matrices may not be enough to fully represent the information

content of the data and two-way analysis techniques may fail in terms of capturing

and interpreting the underlying structure in a dataset. Tensors, on the other hand,

represent datasets by preserving their multi-modal structures and tensor decompo-

sition methods, which are mostly based on generalizations of two-way factor models

to higher-order datasets, can extract the true underlying structures of the data.

In this thesis, we introduce mathematical models based on multi-modal data con-

struction and analysis with a goal of understanding epilepsy seizure dynamics and

developing automated and objective approaches for the analysis of large amounts of

scalp electroencephalogram (EEG) data.

In the first part of this study, we address the problem of identification of a

seizure origin through an analysis of ictal EEG, which is proven to be an effective

standard in epileptic focus localization. We rearrange multi-channel ictal EEG data

as a third-order Epilepsy Tensor with modes: time samples, scales and channels,

through continuous wavelet transform. Then we demonstrate that multiway anal-

ysis techniques, in particular Parallel Factor Analysis, can successfully model the

complex structure of an epilepsy seizure, localize an epileptic seizure origin and ex-

tract artifacts. Furthermore, we introduce an approach for removing artifacts using

multilinear subspace analysis.

In the second part, we focus on seizure recognition and aim to automatically

differentiate between seizure and non-seizure periods. We represent multi-channel

EEG data using a set of features. These features expected to have distinct trends

during seizure and non-seizure periods include features from both time and frequency

domains. First, we rearrange multi-channel EEG signals as a third-order tensor

called an Epilepsy Feature Tensor with modes: time epochs, features and channels.

Second, we model the epilepsy feature tensor using a multilinear regression model,

i.e., Multilinear Partial Least Squares, which is the generalization of Partial Least

xiv



Squares regression to higher-order datasets. This two-step approach facilitates EEG

data analysis from multiple channels represented by several features from different

domains. We develop patient-specific as well as patient non-specific seizure detection

models and obtain promising performance in both approaches.

In summary, this thesis demonstrates how multi-channel epileptic EEG signals

can be rearranged as multi-modal datasets and how tensor decompositions can be

used to mark the seizure period or localize the seizure origin. Nevertheless, in

order for these methodologies to be clinically applicable, the performance of the

proposed techniques should be tested and enhanced on large datasets containing

heterogeneous epileptic patterns and patients.

xv



CHAPTER 1

INTRODUCTION

1.1 Epilepsy

Epilepsy is a neurological disorder affecting the nervous system and character-

ized by recurrent seizures. While some possible causes of seizures are brain injuries,

family history with epileptic seizures, cysts, tumors or infections such as meningitis,

the underlying reasons for recurrent seizures may not be even known in some cases.

According to World Health Organization’s records, there are over 50 million people

suffering from epilepsy worldwide and 2.4 million new cases occur each year [146].

Therefore, it is known to be the most common and serious brain disorder worldwide.

Fortunately, there are treatment options mainly based on antiepileptic drugs,

which can prevent sixty to eighty percent of patients having seizures [45]. However,

in some cases the use of medications may be inadequate or the treatments cannot

succeed in stopping the seizures completely. In such cases, brain surgeries may

be performed in order to help patients have seizure-free lives. During an epilepsy

surgery, the goal is to remove the brain tissues or tumors causing the seizures iden-

tified through intensive clinical studies. Therefore, it is extremely important to

localize the region of the brain causing the seizures precisely. The cortical region

responsible for generating seizures is called the seizure onset zone, a terminology we

will be using frequently throughout this study.

Among the diagnosis techniques used in clinical evaluations, e.g., physical and

neurological exams, magnetic resonance imaging (MRI) scans, ictal single photon

emission computed tomography (SPECT) and video-EEG monitoring, monitoring

and analysis of EEG signals is the ”gold standard” used to detect seizures and

identify seizure onset zones [103]. For instance, even though a tumor identified by

MRI can be a possible cause of epileptic seizures, it is not necessarily the seizure

onset zone or not all epilepsy patients have tumors. Consequently, analysis of EEG

signals is essential for localizing the epileptic focus with confidence.

1
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1.2 Electroencephalogram (EEG)

EEG is a measure of the electrical activity in the brain. It is recorded using

electrodes with high conductance placed at particular locations of the head. One

approach is to collect the measurements by placing electrodes on the surface of the

head, which produces the recordings known as surface or scalp EEG. Another tech-

nique is to place electrodes within the scalp through a surgery and collect recordings

using these depth electrodes. The recordings collected using these electrodes are

called intracranial EEG recordings (iEEG). iEEG provides more precise localization

of an epileptogenic focus compared to scalp EEG recordings. In addition to bet-

ter spatial resolution, other advantages of iEEG are increased sensitivity and being

artifact-free, e.g., the absence of muscle artifacts. On the other hand, the placement

of depth electrodes requires a surgery and it is an invasive process with possible

complications. Since there are other non-invasive clinical evaluation tools, monitor-

ing intracranial recordings may no longer be needed in all patients. Recently, types

of epilepsy patients, who would benefit most from pre-surgical evaluations based on

iEEG, have been reported in [116].

Considering the disadvantages of iEEG monitoring, it is important to under-

stand the role of scalp EEG recordings better and learn as much as we can using only

the surface electrodes. Scalp EEG recordings have proved to be useful in the liter-

ature, e.g., [138] and their localizing value and the necessity in the decision making

process before epilepsy surgeries have been reviewed in [106]. Compared to iEEG,

scalp EEG recordings have some limitations such as low spatial resolution and being

contaminated with artifacts. However, research in this field, e.g., [4,38,41,128,144],

has been focusing on improving the analysis of scalp EEG recordings using com-

putational approaches based on artifact removal methods and source localization

techniques that would identify the seizure location more precisely.

1.2.1 EEG Acquisition

In this study, we use scalp EEG recordings collected from epilepsy patients

treated at different epilepsy centers: Marmara Epilepsy Center (Istanbul, Turkey),

Yeditepe Epilepsy Center (Istanbul, Turkey) and Albany Medical College (New
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Figure 1.1: The standard 10-20 international electrode placement system.
The figure is taken from [118].

York, US). We focus on scalp EEG recordings corresponding to the ictal period for

developing models to localize epileptic seizure origins and collect ictal data from 7

patients (discussed in detail in Chapter 3). In the second part of the study for seizure

recognition, we use data from not only ictal period but also pre-ictal and post-ictal

periods. Our criterion for patient selection for developing models for patient-specific

seizure recognition is that a patient should have at least three recorded seizures. We

analyze scalp EEG recordings of 9 epilepsy patients and mark their seizures using a

patient-specific seizure recognition model. Finally, we construct a dataset containing

9 epilepsy patients suffering from right or left temporal seizures in order to build and

test our patient non-specific seizure recognition model. In total, we have collected

scalp EEG recordings from 17 epilepsy patients.

The electrode placement (montage) follows the standard international 10-20

electrode placement system given in Figure 1.1. This standard provides the basis for

electrode placement according to an international standard. The data from Marmara

Epilepsy Center are recorded using 17 electrodes (Unused electrodes: A1, A2, P3)

while the data from Yeditepe Epilepsy Center and Albany Medical College have

recordings from 18 electrodes (Unused electrodes: A1, A2). The montage chosen

for computational analysis is the referential montage with Cz reference. Figure 1.2
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Figure 1.2: The EEG signal recorded at channel T6−Cz during a seizure.
The period between two vertical red lines is identified visually as the
seizure period by the neurologists.

shows an EEG signal recorded at a single channel, i.e., T6 − Cz, during a seizure

of one of the patients used in this study. The period in-between vertical red lines

is the seizure period. Such recordings are collected from all channels and we obtain

multi-channel EEG data for each seizure of a patient. As already mentioned above,

scalp EEG recordings have low spatial resolution and in order to obtain more precise

localization, extra electrodes may be utilized. Optimal number of electrodes or the

distances between electrodes are not exactly known and different studies suggest

different numbers and placement criteria ( [106] and references therein).

Epilepsy is classified into different categories based on properties like types

of seizures, the causes of seizures, the part of the brain involved in the seizures or

frequency of the seizures, etc. While the final classification is far from complete,

seizures are often classified into two types [84]: generalized seizures and partial

(focal) seizures. The main distinction between these two types of seizures is how

the brain or the parts of the brain are involved in epileptic activities. Generalized

seizures start with electrical discharges affecting the whole brain. Partial seizures,

on the other hand, affect only a portion of the brain and epilepsy is focused in a

particular region of the brain. All the patients we have included in our study suffer

from partial seizures.
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1.3 Our Contributions and Organization

Multiple days of multi-channel EEG recordings are often visually reviewed

by EEG technologists and neurologists in their entirety to annotate epileptiform

abnormalities and ictal events with a goal of understanding when and where the

seizures start. However, there are mainly two disadvantages of visual analysis of

EEG signals. First one is that it is a massive consumption of man-hours and the

second one is being highly subjective and error-prone. Therefore, automation of the

detection of the underlying brain dynamics in EEG signals from epilepsy patients

is significant in order to obtain fast, robust and objective EEG analysis.

In this thesis, we address two important problems in epilepsy treatment based

on the analysis of multi-channel scalp EEG recordings. The first one is epileptic

focus localization and the second one is epileptic seizure recognition. Our goal is to

develop automated and objective approaches for seizure localization and recognition

in order to save manpower spent on visual analysis of massive amounts of EEG

data as well as to remove the subjectivity in the visual analysis process. Tensors

and tensor decomposition methods form the underlying principles we employ in

constructing our multi-modal datasets from multi-channel EEG data and building

our mathematical models. Therefore, we provide a review of these concepts together

with some basics about multiway data analysis in Chapter 2 [6]. Our contributions

are as follows:

• Epileptic Focus Localization: We propose a novel approach based on multiway

models to study epilepsy seizure structure. We construct an Epilepsy Tensor with

three modes, i.e., time samples, scales and electrodes, through wavelet analysis

of multi-channel ictal EEG [2, 4]. We then demonstrate that multiway analysis

techniques, in particular Parallel Factor Analysis (PARAFAC), provide promis-

ing results in modeling the complex structure of an epilepsy seizure, localizing a

seizure origin and extracting artifacts. Furthermore, we introduce an approach

for removing artifacts using multilinear subspace analysis. Seizure localization,

artifact extraction and removal are discussed in detail in Chapter 3.
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• Epileptic Seizure Recognition: With a goal of differentiating between seizure

and non-seizure periods, we extract various features from both time and fre-

quency domains to represent scalp EEG recordings. We rearrange multi-channel

EEG recordings as a third-order tensor called an Epilepsy Feature Tensor with

modes: time epochs, features and channels [5, 8]. We then model the epilepsy

feature tensor using a multilinear discriminant analysis based on Multilinear Par-

tial Least Squares (N-PLS), which is the generalization of Partial Least Squares

regression to tensors. This two-step approach facilitates the analysis of EEG data

from multiple channels represented by several features from different domains. In

Chapter 4, we build a supervised seizure recognition model, which is trained on

some seizures of a patient and then tested on other seizures of that particular

patient (patient-specific) or trained and tested on seizures of different patients

(patient non-specific). We demonstrate that multi-modal data construction and

analysis approach provides promising performance in terms of marking the seizure

period automatically.



CHAPTER 2

RELATED WORK AND BACKGROUND

Mathematical models we develop for the analysis of ictal EEG patterns, epileptic

seizure localization and recognition are based on the construction of multi-modal

datasets and the analysis of those datasets using multiway analysis techniques. In

this chapter, we first introduce some definitions from linear and multilinear algebra

as well as the notation for multiway datasets that will be used throughout this

study. We then review significant contributions in the literature on multiway models,

algorithms as well as their applications in diverse disciplines including chemometrics,

social network analysis, text mining and computer vision. We study the applications

of multiway analysis techniques in computational neuroscience in depth in the next

chapters.

Multiway data analysis, dating back to 1920s to the studies of tensor decompo-

sitions by Hitchcock [59,60], is the extension of two-way data analysis to higher-order

datasets. Multiway analysis is often used for extracting hidden structures and cap-

turing underlying correlations between variables in a multiway array. For example,

multiway analysis of multi-channel EEG data enables us to capture the correlation

between the channels by representing the signals both in time and frequency do-

mains. Multi-channel EEG recordings are commonly represented as an I×J matrix

containing signals recorded for I time samples at J channels. In order to capture

the underlying brain dynamics, often frequency content of the signals, for instance

signal power at K particular frequencies, also needs to be considered. In that case,

EEG data can be arranged as an I × J ×K three-way dataset [90]. Multiway anal-

ysis of a three-way EEG array can then be used to extract the signatures of brain

dynamics in time, frequency and electrode domains.

It has been shown in numerous research areas including social networks [1],

neuroscience [46], process analysis [52] and text-mining [34] that underlying infor-

mation content of the data may not be captured accurately or identified uniquely

by two-way analysis methods. Two-way analysis methods, by which we refer to

7



8

those based on factor models here, suffer from rotational freedom unless specific

constraints such as statistical independence or orthogonality are enforced. On the

other hand, these constraints requiring prior knowledge or unrealistic assumptions

are not often necessary for multiway models such as Parallel Factor Analysis (PA-

RAFAC) [56] since multiway models may be uniquely defined such that there is no

alternative solution, which fits the data exactly the same as the fitted model. For

example, in fluorescence spectroscopy, PARAFAC can uniquely identify the pure

spectra of chemicals from measurements of mixtures of chemicals. Consequently,

multiway analysis with advantages over two-way analysis in terms of uniqueness as

well as robustness to noise and ease of interpretation has been a popular exploratory

analysis tool in a variety of application areas, which we discuss throughout this chap-

ter.

2.1 Definitions and Notations

Before introducing multilinear models, we introduce the terminology for mul-

tiway arrays as well as some definitions from linear and multilinear algebra that will

be used in the rest of the study.

2.1.1 Multiway Arrays (Tensors)

Multiway arrays, often referred to as tensors, are higher-order generalizations

of vectors and matrices. Higher-order arrays are represented as X ∈ R
I1×I2...×IN ,

where the order of X is N (N > 2) while a vector and a matrix are arrays of order

1 and 2, respectively. Higher-order arrays have a different terminology compared to

two-way datasets. Each dimension of a multiway array is called a mode introduced

in [124,125] (or way) and the number of variables in each mode is used to indicate the

dimensionality of a mode. For instance, X ∈ R
I1×I2...×IN is a multiway array with N

modes (called an N -way array or an N th-order tensor) with I1, I2,...IN dimensions

in the first, second,...N th mode, respectively. Each entry of X is denoted by xi1i2...iN .

For a special case, where N = 3, let X ∈ R
I1×I2×I3 be a three-way array. Then xi1i2i3

denotes the entry in the ith1 row, ith2 column and ith3 tube of X (Figure 2.1). When

an index is fixed in one of the modes and the indices vary in the two other modes,



9

Figure 2.1: (A) Columns, (B) Rows, (C) Tubes. The figure is taken
from [15].

Figure 2.2: (A) Horizontal Slices, (B) Vertical Slices, (C) Frontal Slices.

this data partition is called a slice (or a slab). For example, when the ith1 row of X

is fixed, then it is a horizontal slice of size I2 × I3 (Figure 2.2-A) or similarly, if the

ith2 column of X is fixed, it is a vertical slice of size I1 × I3, etc. (Figure 2.2-B).

We denote higher-order arrays using underlined boldface letters, e.g., X, fol-

lowing the standard notation in [68]. Matrices and vectors are represented by bold-

face capital, e.g., X, and boldface lowercase letters, e.g., x, respectively. Scalars

are denoted by lowercase or uppercase italic letters, e.g., x or X. Matrix and tensor

entries are represented by lowercase letters with subscripts, e.g., xij or xijk.

2.1.2 Rank-One Tensor

An N th-order rank-one tensor is a tensor that can be written as the outer

product of N vectors. Vector outer product is defined as follows. Let a, b and c be

column vectors of size I×1 and J ×1 and K×1 and Y is a tensor of size I×J ×K,

then

Y = a ◦ b ◦ c if and only if yijk = aibjck (2.1)

We will see later in this chapter that a PARAFAC model is based on the
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representation of a higher-order data as a sum of rank-one tensors. In Chapter 3

we model multi-channel EEG data represented in both time and frequency domains

using a PARAFAC model as a sum of rank-one tensors and use each vector forming

each one of the rank-one tensors as signatures of artifacts or seizures.

2.1.3 Tensor Frobenius Norm

The Frobenius norm of a matrix X ∈ R
I×J denoted by ‖X‖F is defined as

‖X‖F =
√∑I

i=1

∑J
j=1 x2

ij. Similar to the matrix Frobenius norm, the Frobenius

norm of a tensor X ∈ R
I1×I2...×IN is also defined as in Equation 2.2.

‖X‖ =

√√√√ I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

x2
i1i2...iN

(2.2)

2.1.4 Matricization

Matricization (or unfolding, flattening) means transforming a third or higher-

order array into a two-way dataset. Let X ∈ R
I×J×K be a three-way array. Then

matricization of X in the ith mode is denoted by X(i). It has multiple definitions

in the literature [40,68], e.g., two different definitions of unfolding in the first mode

are illustrated in Figure 2.3.

Matricization is commonly used in our study. Apart from its use in the im-

plementation of PARAFAC, Tucker3 and Multilinear PLS (N-PLS) algorithms, we

often employ matricization (the version given in [68]) in order to perform operations

on tensors. For instance, we unfold the epilepsy tensor with modes: time samples,

scales and electrodes, in the electrodes mode in order to remove artifacts in Chapter

3. In Chapter 4, epilepsy feature tensor is unfolded in order to compare the proposed

multiway approach with a two-analysis technique.

2.1.5 Tensor-Matrix Multiplication

Matrix multiplication is generalized to tensor–matrix multiplication through

matricization of tensors. An N th-order tensor, X ∈ R
I1×I2..×In×...×IN , can be mul-

tiplied by a matrix, U ∈ R
Jn×In , by matricizing the tensor in the nth mode and

computing the matrix product Y = UX(n). The matrix product, Y, is then re-
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Figure 2.3: Matricization of a three-way array in the first mode. A three-
way array X ∈ R

I×J×K is unfolded in the first mode and a matrix of size
I × JK, denoted by X(1) is formed. The subscript i in X(i) indicates the
mode of matricization. The figures at the top and the bottom illustrate
the matricization in the first mode as defined in [68] and [40], respectively.
The definition in [68] is commonly used.

shaped as a tensor of size I1 × I2.. × In−1 × Jn × In+1... × IN . More formally, the

n-mode product of a tensor X ∈ R
I1×I2..×In×...×IN with a matrix U ∈ R

Jn×In is

denoted by X ×n U, and defined as in Equation 2.3 [40]:

(X ×n U)i1i2...in−1jnin+1...iN =
In∑

in=1

xi1i2..in−1inin+1...iN ujnin (2.3)

where xi1i2..iN and ujnin represent the entries of an N th-order tensor and a

matrix, respectively. For more operations on tensors such as tensor–tensor, tensor–

vector multiplications, the reader is referred to [15]. We use the tensor-matrix

product every time we unfold the tensor and compute a matrix-matrix product. For

instance, in the definition of the artifact removal process in Chapter3, we unfold

the tensor in the third mode and then compute the matrix-matrix product of the

unfolded tensor with the projection matrix. In the computation of the approach

proposed for feature selection, tensor-matrix product in the features mode is used.

The notation for tensor-matrix product is ×i but we often denote this operation

clearly by unfolding the tensor in the ith mode and computing the matrix-matrix

product.
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2.1.6 Matrix Operations

The Kronecker product of two matrices, M ∈ R
I×J and N ∈ R

K×L, is denoted

by M ⊗ N and defined as in Equation 2.4.

M ⊗ N =

⎡
⎢⎢⎢⎢⎢⎣

m11N m12N ... m1JN

m21N m22N ... m2JN

... ... ... ...

mI1N mI2N ... mIJN

⎤
⎥⎥⎥⎥⎥⎦ (2.4)

The columnwise Kronecker product of matrices is called the Khatri-Rao prod-

uct, which is defined as follows: Let mk and nk represent the kth column of M ∈
R

I×K and N ∈ R
J×K , respectively for k = 1, 2, ...K. Then Khatri-Rao product

denoted by M � N is given as M � N = [m1 ⊗ n1 m2 ⊗ n2 ... mK ⊗ nK ]. Some

properties of these matrix operations are listed in [115] for interested readers. These

matrix operations are important to understand the structural formulas and the im-

plementations of the algorithms for PARAFAC and Tucker in this section and for

N-PLS in Chapter 4.

2.2 Factor Models

In general, multiway data analysis methods are extensions of two-way analysis

techniques based on the idea of linear factor models. In this section, we briefly

introduce factor models in the context of bilinear factor models and in the next

section, we introduce the formulations of multilinear models. Let matrix X ∈ R
I×J

represent the original dataset. We can model X using an R-component bilinear

model as in Equation 2.5.

xij =
R∑

r=1

airbjr + eij (2.5)

where
∑R

r=1 airbjr is the structural part of the model consisting of matrices

A ∈ R
I×R and B ∈ R

J×R. Each column of B corresponds to a factor and each

row of A contains the scores corresponding to R factors. Matrix E ∈ R
I×J contains

the residuals. Analysis of residuals quantifies how well a model fits the data. More
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formally, the sum of squares of residuals accounts for the unexplained variation in a

least squares sense. Model fit is then defined as the ratio of explained variation in the

structural part to the total variation in data. Using bilinear or multilinear models,

factors (or components, loadings), which are linear combinations of variables, are

extracted. Since the extracted factors summarize the data, they are often used

to interpret the underlying information content of the data. For example, in two-

way EEG analysis, where EEG data recorded at different time samples at various

channels are analyzed, R factors in the time mode can be considered as the signatures

of R different brain activities. The scores in the channels mode, then, represent the

contribution of an activity, e.g. an eye blink, a muscle artifact or an epileptic

seizure, etc., to the signal recorded at a particular channel. Similarly, in three-way

analysis of EEG data arranged as a third-order tensor with modes: time samples,

frequency, channels, R factors in the time and frequency modes are considered as the

temporal and spectral signatures of R different brain activities. The scores in the

channels mode are then used to interpret the contributions of these activities with

the extracted temporal and spectral signatures to the signal recorded at a particular

channel.

By imposing orthogonality constraints on the factors, we can reformulate a

bilinear factor model as the Singular Value Decomposition (SVD) [51]. For ma-

trix X ∈ R
I×J , the singular value decomposition theorem states that there exist

orthogonal matrices U ∈ R
I×I and V ∈ R

J×J such that

X = UΣVT (2.6)

where Σ is a diagonal matrix with σ1, σ2, ...σR on the diagonal and σ1 ≥ σ2 ≥
... ≥ σR, R = min(I, J). The columns of matrices U and V are the left and right

singular vectors, respectively and the diagonal entries of Σ are the singular values.

SVD is commonly applied in many disciplines as a rank reduction or a noise removal

method since the truncated form of SVD, where only first K (K < R) singular values

and vectors are used, gives the best rank-K approximation of the data.

As in two-way factor models, tensor analysis aims to explore the relationships

between the variables used to represent the data and find a summarization of the
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data. While most multiway analysis techniques preserve the multiway nature of the

data, some techniques such as Tucker1 [76] are based on matricization of a multi-

way array. Once a three-way array is flattened and arranged as a two-way dataset,

two-way analysis methods, e.g., SVD and other factor models, can be employed

in understanding the structure in data. Rearranging multiway arrays as two-way

datasets and analyzing them with two-way methods, though, may result in infor-

mation loss and misinterpretation especially if the data are noisy. For instance,

we represent multi-channel EEG data in both time and frequency domains using

a third-order tensor with modes: time samples, frequency and electrodes. When

we model this tensor using a PARAFAC model, we assume that a brain activity is

defined by certain signatures in time and frequency domains. The signal recorded

at each electrode is then a certain mixture of these brain activities. On the other

hand, if we unfold the tensor in the electrodes mode and apply a two-way factor

model, we extract components from electrodes and also from the mode, which is the

combination of frequency and time. It is then difficult to interpret the components

in the frequency-time mode and understand the brain dynamics corresponding to

those components. Besides, since we do not have the assumption of a brain activ-

ity with certain spectral and temporal signatures anymore, a two-way factor model

may extract as many factors as possible to explain the variation in the data. Ex-

tra variation captured by a two-way factor model may actually explain noise rather

than a specific structure. Thus, multiway models are more advantageous in terms of

interpretation and accuracy compared to two-way models. In addition to the ease of

interpretation and accuracy, as we have already mentioned, some multiway models

such as PARAFAC are also unique under mild conditions given by the well-known

result of Kruskal [78, 79, 113], in contrast to the two-way factor models suffering

from rotational ambiguity. Finally, it is always desirable to choose the simplest

model for the data and multiway models may be the simplest possible model. For

instance, let X ∈ R
I1×I2×I3 be a three-way array. If we model the unfolded data

X(1) (of size I1 × I2I3) using an R-component two-way factor model, the model will

have (I1+I2I3)R parameters. On the other hand, if the three-way array is modeled

using an R-component PARAFAC model, we need to determine only (I1 + I2 + I3)R
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parameters. In that sense, a multiway model can be considered statistically simpler

than a two-way model [20, 94].

Multilinear models, i.e., PARAFAC [56], Tucker [124–126] and their deriva-

tives, capture the multilinear structure in data. Multilinearity of the model denotes

that the model is linear in each mode and factors extracted from each mode are

linear combinations of the variables in that mode. A component matrix, whose

columns are the factors determined by the model, is then constructed to summarize

the structure in each mode. These models have been applied on various datasets

shown to contain multilinear structure, e.g., three-way fluorescence spectroscopic

datasets with modes: samples × emission × excitation [10], wavelet-transformed

multi-channel EEG arranged as a three-way array with modes: frequency × time

samples×channels [4,41,90] and on many more data types described briefly in this

chapter.

2.3 Multiway Models

The most well-known and commonly applied multiway models in the literature

are Tucker models and the PARAFAC model, which is also called CANDECOMP

(Canonical Decomposition) [29] 1. We will briefly describe these models as well as

recent models built on the principles of PARAFAC and Tucker under three categories

(Figure 2.4). First category describes PARAFAC as well as the models, which have

relaxed the restrictions enforced by a PARAFAC model to capture data-specific

structures. Second category contains the models that belong to the Tucker family

and the extensions of Tucker models. Last category includes the models, which

fall under neither the first nor the second category but still address the problem

of analyzing multiway arrays. In spite of the categorization, models in different

families are closely related to each other, e.g., PARALIND can be considered as a

constrained version of a Tucker3 model. This categorization is primarily for the ease

of presentation and understanding of the models.

In the rest of the chapter, we discuss these models in the context of three-way

arrays but most of these models (e.g., the ones in Table 2.1 and Table 2.2) have

1CANDECOMP was proposed independently but considered equivalent to PARAFAC.
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Figure 2.4: The categorization of multiway models briefly explained in
this chapter. We study multiway models under three categories: PARA-
FAC family, Tucker family and alternative approaches.

already been extended to N -way arrays .

2.3.1 PARAFAC-family

2.3.1.1 PARAFAC

PARAFAC [56], which has been originally introduced as the polyadic form

of a tensor in [59], is an extension of bilinear factor models to multilinear data.

PARAFAC is based on Cattell’s principle of Parallel Proportional Profiles [30]. The

idea behind Parallel Proportional Profiles is that if the same factors are present

in two samples under different conditions, then each factor in the first sample is

expected to have the same pattern in the second sample but these patterns will be

scaled depending on the conditions. Mathematically, a PARAFAC model can be

represented as the decomposition of a tensor as a linear combination of rank-one

tensors. Let X ∈ R
I×J×K be a three-way array. Then an R-component PARAFAC

model can be expressed as in Equation 2.7, where ai, bi and ci indicate the ith

column of component matrices A ∈ R
I×R, B ∈ R

J×R and C ∈ R
K×R, respectively.

E ∈ R
I×J×K is a three-way array containing the residuals.

X =
R∑

r=1

ar ◦ br ◦ cr + E (2.7)

The symbol ◦ denotes the vector outer product. Illustration of a 2-component
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Figure 2.5: Illustration of a PARAFAC model. A 2-component PARA-
FAC model, where a three-way array X is expressed as the sum of two
rank-one tensors. ai, bi and ci are the ith components in the first, second
and third modes, respectively. E is a three-way array containing the
residual terms.

PARAFAC model on a three-way dataset is given in Figure 2.5.

The motivation behind PARAFAC is to obtain a unique solution such that

component matrices are determined uniquely up to a permutation, i.e., rank-one

tensors can be arbitrarily reordered, and scaling of columns. It is this uniqueness

property that makes PARAFAC a popular technique in various fields. For example

in fluorescence spectroscopic data analysis [10], a unique PARAFAC model allows

us to find physically and chemically meaningful factors directly from measurements

of mixtures of chemicals. Uniqueness is achieved by the restrictions imposed by

the model. The most significant restriction is that factors in different modes can

only interact factorwise. The interaction between factors in different modes are

represented by a core array in multiway models. For example, for a three-way

model, the core array is a third-order tensor, G ∈ R
P×Q×R, where gpqr represents

the interaction of the pth factor in the first, qth factor in the second and rth factor in

the third mode (Figure 2.6 (A)). In an R-component three-way PARAFAC model,

the core array is restricted to be a super-diagonal core array, G ∈ R
R×R×R where

gijk 	= 0 if i = j = k, otherwise gijk = 0 (Figure 2.6 (B)). In other words, a super-

diagonal core indicates that ith factor in the first mode (ai) can only interact with

ith factor in the second (bi) and the third modes (ci). Consequently, the super-

diagonal core is a vector of coefficients. These are the coefficients used in the linear

combination of rank-one tensors. In Figure 2.5, we assume that the components in

one of the modes are scaled by those coefficients and therefore, do not explicitly

show the core array.
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Figure 2.6: (A) A full core array of size P × Q × R with maximum PQR
nonzero elements, (B) A super-diagonal core array of size R×R×R with
maximum R nonzero elements.

As a consequence of superdiagonality, the same number of factors should be

extracted in each mode. There are several techniques for determining the num-

ber of factors in a PARAFAC model, e.g., residual analysis, visual appearance of

loadings, number of iterations of the algorithm and core consistency [25]. Among

these techniques, core consistency diagnostic quantifies the resemblance between a

Tucker3 core and a super-diagonal PARAFAC core and suggests whether a PARA-

FAC model is a valid model for the data. We demonstrate the use of core consistency

in detail in Chapter 3. Core consistency diagnostic has been commonly applied in

the literature [4,10,46,90]. However, we should mention that there is no bulletproof

way to determine the optimal number of factors (optimal in terms of interpretation)

for real data. Therefore, it is often suggested that several diagnostic tools are used

together rather than a single method [10,25].

There are two approaches for fitting a PARAFAC model: direct fitting and

indirect fitting. Direct fitting is defined as fitting a PARAFAC model to the raw data

such as a three-way array with modes: objects × variables1 × variables2. Equation

2.8 demonstrates the direct fitting approach using an alternative formulation of a

PARAFAC model in matrix notation.

Xk = ADkB
T + Ek (2.8)

where Xk represents the kth frontal slice of a three-way array; A and B are

the component matrices in the first and second mode, respectively. Dk is a diagonal



19

Table 2.1: Selection of models from PARAFAC family

Model Mathematical Formulation Handles Rank-deficiency

PARAFAC xijk =
∑R

r=1 airbjrckr + eijk ×
PARAFAC2 Xk = AkDkB

T + Ek ×
S-PARAFAC1 xijk =

∑R
r=1 a(i+sjr)rbjrckr + eijk ×

cPARAFAC2 xijk =
∑R

r=1 airb(j−θ)rc
θ
kr + eijk ×

PARALIND3 Xk = AHDkB
T + Ek �

1 sjr represents the shift at column j for the rth factor.
2 θ is used to capture the shifts in the log-frequency spectrogram.
3 H represents the dependency matrix.

matrix, whose diagonal elements correspond to the kth row of the third component

matrix C. Finally, Ek contains the error terms corresponding to the entries in the

kth frontal slice. While direct fitting is applied on the raw data, indirect fitting is

applied on covariance matrices of data slices [20]. For indirect fitting, raw data are

rearranged as a three-way dataset of covariance matrices, for instance in the form

of objects × objects × variables1 or objects × objects × variables2 assuming one

is particularly interested in the object mode. The relationship between direct and

indirect fitting approaches is similar to the one between SVD on a data matrix and

eigenvalue decomposition on a covariance matrix.

2.3.1.2 Extensions of PARAFAC

Some of the extensions of PARAFAC are PARAFAC2, Shifted PARAFAC (S-

PARAFAC), Convolutive PARAFAC (cPARAFAC) and Parallel Factors with Linear

Dependency (PARALIND). We discuss these models and their similarities briefly.

The mathematical formulations for these models are given in Table 2.1.

• PARAFAC2 [57]: This model is introduced as a less restrictive model compared

to a PARAFAC model. PARAFAC2 relaxes a PARAFAC model by requiring the

invariance of the matrix multiplication of a component matrix with its transpose

in one mode rather than the invariance of the components themselves.

Xk = AkDkB
T + Ek (2.9)

s.t. AT
k Ak = Φ k = 1, ...K
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where Ak is the component matrix in the first mode corresponding to the kth

frontal slice. Φ, which is the matrix product of Ak with its transpose, is required

to be invariant for all slices k = 1, ..K. In Equation 2.9, we observe that unlike in

a PARAFAC model, the component matrix in the first mode (or one of the modes)

can vary across slices in a PARAFAC2 model. This relaxation enables the use of

multiway models in the cases, where a PARAFAC model cannot fully recover the

underlying structure, e.g., modeling chromatographic data with retention time

shifts [23]. Furthermore, PARAFAC2 solves the problem of modeling three-way

arrays with slices of different dimensionality (if the dimensionality differs only in

one mode). An example of such a multiway array is an environmental dataset that

contains the concentrations of some chemical compounds measured at certain time

periods across several sampling sites (sampling sites×parameters× time) [117].

It is quite common to have measurements from sampling sites for varying time

periods, which would result in a three-way array with different dimensionality

in one of the modes (e.g., time mode in this case). A PARAFAC2 model using

an indirect fitting approach can also handle different dimensionality across slices.

Nevertheless, directly fitting PARAFAC2 on raw data has more advantages than

indirect fitting in terms of imposing constraints, handling missing data and gen-

eralization of the model to N -way arrays [69].

• S-PARAFAC [58]: S-PARAFAC has been introduced in order to deal with shift-

ing factors in sequential data such as time series or spectral data. While PA-

RAFAC restricts the data to have the same factor in various proportions in all

samples based on Cattell’s idea, S- PARAFAC relaxes this restriction by incor-

porating shifting information into the model and capturing the factors even if

they are available in shifted positions in different samples. On the other hand,

one limitation of an S-PARAFAC model is that it only considers one-dimensional

shifts such as time shifts and does not handle multi-dimensional shifts that may

be encountered in image sequences like brain scans.

When compared to PARAFAC2, S-PARAFAC and PARAFAC2 are quite similar.

Both models are less-constrained versions of a PARAFAC model and can model

data with shifting factors. In fact, both models have been used in the analysis of
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chromatographic data with retention time shifts [23,62]. However, they also have

their differences since PARAFAC2 can only capture shifts that maintain the inner

product of the factors (i.e., the constraint in Equation 2.9) while S-PARAFAC

can model independent shifts at each factor.

• cPARAFAC [95]: Another extension of PARAFAC is cPARAFAC, which is a

generalization of Non-negative Matrix Factor Deconvolution (NMFD) to multiway

spectral data. cPARAFAC, closely related to S-PARAFAC, has been proposed

for multi-channel spectral data analysis in order to model convolutive mixtures.

Convolution basically means generating a mixture by sending the sources through

a filter. When convolution filter is sparse, cPARAFAC becomes equivalent to S-

PARAFAC.

• PARALIND [27]: A common problem that arises in real data analysis is that

ranks of the component matrices may not be the same (called rank deficiency).

That would require extracting different number of factors in different modes. In

that case, fitting a PARAFAC model would give rank deficient solutions and would

not guarantee meaningful uniqueness. PARALIND is proposed as an approach for

modeling such cases. This model introduces dependency (or interaction) matrices

among component matrices to enable the modeling of the data with component

matrices with different ranks and capture the dependency between components.

Besides, via dependency matrices, prior knowledge about the data and constraints

can also be incorporated into the model.

2.3.2 Tucker-family

The models in PARAFAC family can be considered as constrained versions

of less restricted multiway models, i.e., Tucker models, which are also called three-

mode factor analysis [126] for three-way arrays or N -mode component analysis [66]

for higher-order generalizations.

2.3.2.1 Tucker3

Similar to PARAFAC, Tucker3 is an extension of bilinear factor analysis to

higher-order datasets. Equation 2.10 shows the formulation of a Tucker3 model on
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Figure 2.7: Illustration of a Tucker3 model. A (P,Q, R)-component
Tucker3 model, where a three-way array X ∈ R

I×J×K is modeled with
component matrices A ∈ R

I×P , B ∈ R
J×Q and C ∈ R

K×R in the first, sec-
ond and third modes, respectively. G ∈ R

P×Q×R is the core array and E
∈ R

I×J×K contains the error terms.

a three-way array X ∈ R
I×J×K .

xijk =
P∑

p=1

Q∑
q=1

R∑
r=1

gpqraipbjqckr + eijk (2.10)

where A ∈ R
I×P , B ∈ R

J×Q and C ∈ R
K×R are the component matrices

corresponding to the first, second and third modes, respectively. G ∈ R
P×Q×R is

the core array and E ∈ R
I×J×K contains the residuals. Illustration of a Tucker3

model on a three-way array is given in Figure 2.7.

Compared to PARAFAC, a Tucker3 model is a more flexible model. This flex-

ibility is due to the core array, G, which allows an interaction between a factor with

any factor in other modes. While the core array enables us to explore the underlying

structure of a multiway dataset much better than a restricted PARAFAC model,

the full-core array structure in Tucker3 has some drawbacks. First, this property

is the reason for rotational indeterminacy in Tucker3 models. Unlike PARAFAC, a

Tucker3 model cannot determine component matrices uniquely. When a component

matrix is rotated by a rotation matrix, it is possible to apply the inverse of the ro-

tation matrix to the core and still obtain the same model fit. Therefore, a Tucker3

model can determine component matrices only up to a rotation. The second draw-

back is that the interpretation of Tucker3 models is much more difficult than that

of PARAFAC models.
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Originally, Tucker family contains Tucker1, Tucker2 and Tucker3 models (Ta-

ble 2.2). Tucker1 is based on the simple idea of rearranging multiway data as a

matrix and decomposing the unfolded data using SVD. Tucker2 and Tucker3 mod-

els allow rank reduction in more than one mode and are named after the number

of modes rank reduction is applied [76]. Desired rank reduction in each mode are

user-specified model parameters and determining these parameters in Tucker models

is a tedious task. While using ranks indicated by SVD on unfolded data in each

mode is a practical option, systematic methods, e.g., cross validation, DIFFIT [121],

have also been developed. DIFFIT (Difference in Fit) enumerates all possible models

and uses the differences between model fits to determine the number of components.

However, high computational complexity of DIFFIT makes it inefficient. Therefore,

it has later been improved by comparing approximate model fit values rather than

exact model fits [70]. The most recent work in finding the number of components

is based on searching for the convex hull on the plot of model fit values vs. number

of free parameters [31]. This approach is more general than previously-proposed

methods and helps in determining the model parameters in not only Tucker3 but

also Tucker1, Tucker2 and PARAFAC models. Even though empirical comparison of

DIFFIT and the convex hull approach on simulation data suggests that the convex

hull approach gives promising results and outperforms previous methods, there is no

straightforward way to find the optimal number of components [31]. Similar to the

case of determining component numbers in a PARAFAC model, several diagnostics

should be used to have a true understanding of the structure of a multiway dataset.

2.3.2.2 Extensions of Tucker3

In order to capture shifting factors, similar extensions as in PARAFAC models

have also been studied for Tucker models. Shifted Tucker3 (S-T3) and Shifted

Tucker2 (S-T2) introduced by [58] are the combinations of Shifted Factor Analysis

with Tucker3 and Tucker2 models, respectively. Although it is not proven formally,

it has been discussed in [58] that incorporating shifting information in S-T3 suggests

the uniqueness of a S-T3 model. Some models that are considered to be in Tucker-

family are given in Table 2.2.
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Table 2.2: Selection of models from Tucker family

Model Mathematical Formulation Handles
Rank-deficiency

Tucker1 xijk =
∑P

p=1 gpjkaip + eijk �
Tucker2 xijk =

∑P
p=1

∑Q
q=1 gpqkaipbjq + eijk �

Tucker3 xijk =
∑P

p=1

∑Q
q=1

∑R
r=1 gpqraipbjqckr + eijk �

S-Tucker31 xijk =
∑P

p=1

∑Q
q=1

∑R
r=1 gpqra(i+sjp)pbjqckr + eijk �

1 In Shifted Tucker3, sjp indicates the shift at jth column for pth factor. Shifted Tucker2 is
formulated similarly.

2.3.3 Tucker vs. SVD vs. PARAFAC

Tucker can be considered as a generalization of SVD to higher-order tensors.

The link between Tucker and SVD and how singular values and singular vectors

generalize to those of higher-order datasets have been extensively studied in [40].

This is a significant milestone in multiway literature since it links multilinear algebra

with the models that have been commonly used in psychometrics and chemomet-

rics. Later, computation of singular values and singular vectors of tensors has been

discussed in depth in [86], which complements the theoretical background of gener-

alization of singular value decomposition to higher-order datasets.

The Tucker model with orthogonality constraints on the components has been

also named as Higher-Order Singular Value Decomposition (HOSVD) [40](or N -

mode SVD in [131, 132]). HOSVD is simply computed by flattening the tensor in

each mode and calculating the left singular vectors corresponding to that mode,

which are also called n − mode singular vectors. Given the component matrices

formed by the left singular vectors corresponding to each mode, a core tensor can

be computed. This approach is the original idea of Tucker described in [124, 125]

and outlined as Method I in [126]. Unlike SVD, HOSVD does not provide the best

rank-(R1, R2, ..RN) approximation of a tensor [39], where Ri is the rank of a tensor

in ith mode. The rank of a tensor in nth mode is called n − rank and it is the

dimension of the vector space spanned by the columns of the matrix obtained by

flattening the tensor in nth mode. Nevertheless, it does give a good approximation of

the data as shown in many applications, e.g., face recognition on an image dataset,

where images are affected by several factors such as viewpoints, facial expressions,
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lighting conditions, etc. [131,132]. Similarly, in our study we use a Tucker model to

explore the spatial signatures of brain dynamics and identify the potential artifacts

in Chapter 3. The model we fit may not be the best rank-(P, Q,R) approximation

of the data but still helps us identify the dynamics with certain spatial signatures.

Compared to SVD, which is a decomposition that represents a matrix as a sum

of rank-one matrices, HOSVD does not decompose a tensor as a sum of rank-one

tensors. In that sense, PARAFAC is considered to be another generalization of SVD

to higher-order arrays because PARAFAC decomposes a tensor as the sum of rank-

one tensors. However, orthogonality constraints on all the component matrices of a

PARAFAC model, in general, cannot be satisfied. In order to be able to decompose a

tensor with a PARAFAC model, which will give component matrices with orthogonal

columns, a tensor should be diagonalizable and in general they are not [71].

SVD has been quite popular in every field of data analysis from signal pro-

cessing to social network analysis, from chemometrics to image compression because

it enables noise filtering through dimensionality reduction. The first R significant

singular vectors may represent the data very well and SVD provides the best rank-

R approximation for a matrix. Besides, if the best rank-(R + 1) approximation

is sought, then the first R singular vectors are kept the same and only one more

singular vector is computed. This property has played an important role in the

development of online SVD algorithms, which compute SVD of a data stream by

updating singular vectors rather than computing SVD of the whole dataset every

time the dataset is updated [83]. However, the best rank-R approximation through

SVD in matrices cannot be generalized to tensors [71, 72]. For instance, in practice

when we model multi-channel EEG data represented in both time and frequency

domains using a PARAFAC model as a sum of rank-one tensors, if we fit an (R+1)-

component PARAFAC model, we may not get the same first R rank-one tensors

that we get using an R-component PARAFAC. In [72], through a counterexample

it is demonstrated that the best rank-(R + 1) approximation of a tensor does not

necessarily contain the components present in the best rank-R approximation. By

best rank-R approximation of a tensor, [72] refers to the orthogonal rank decompo-

sition of a tensor, where a tensor X is expressed as the weighted sum of rank-one
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tensors as in Equation 2.11.

X =
R∑

r=1

σrUr (2.11)

where Ui⊥Uj for all i 	= j. The symbol ⊥ is defined as follows: Let Ui and

Uj be third-order rank-one tensors so that they can be written as the outer product

of vectors, e.g., Ui = u
(1)
i ◦ u

(2)
i ◦ u

(3)
i . Then Ui and Uj are orthogonal (Ui⊥Uj) if∏3

r=1 u
(r)
i · u(r)

j = 0. The minimal number of rank-one tensors (minimal R) needed

to express X in the form given in Equation 2.11 is called the orthogonal rank of

X. For a detailed discussion on rank decompositions and algorithms proposed for

computing the best rank approximations, the reader is referred to [39], [71] and [143].

2.3.4 Other Models

There are several other models based on approaches other than PARAFAC

and Tucker models for multiway data analysis. In this section, we briefly introduce

some of these models: Multilinear Engine (ME) [100], multiway models based on

STATIS [117] and multiblock multiway models [114].

ME is a program that is capable of fitting different structural models including

PARAFAC and PARAFAC2 on multiway arrays using a general-purpose optimiza-

tion/curve fitting approach. Although models mentioned so far are only capable of

modeling multilinearity in data, structure tables created by specified variables and

functions enable ME to fit multilinear as well as quasi-multilinear models. Multi-

linear models are based on mathematical expressions, which are linear with respect

to each set of variables corresponding to different modes whereas quasi-multilinear

models contain nonlinearity in the sense of polynomials. Therefore, the multilinear

engine can explore a wider range of structures in data compared to PARAFAC,

Tucker3, etc.

Another model focusing on three-way data analysis is STATIS [117] originally

studied in [28]. When compared to N -way analysis methods, which explore each

mode simultaneously, the STATIS-based model in [117] explores each mode sepa-

rately. It considers each observation/sample as a slice of a three-way array and

computes the covariance matrix corresponding to that slice. The basic principle in
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the model is to apply Principal Component Analysis (PCA) on a global covariance

matrix formed as a linear combination of covariance matrices corresponding to indi-

vidual slices. Similar to indirect fitting approach, it is possible to analyze three-way

arrays with slices of different sizes using STATIS. One disadvantage of STATIS is

that it cannot be generalized to N -way arrays.

Methods, referenced so far, focus on the analysis of a single multiway array. On

the other hand, multiblock multiway arrays are also encountered in various studies

such as control of batch processes, where more than two blocks of multiway arrays

need to be analyzed simultaneously. One approach to deal with multiblock multiway

component problems is to analyze each multiway array using a certain structural

model such as a Tucker3 or a PARAFAC model and then combine summaries of

information from different multiway arrays in a single matrix [114]. The matrix

containing summaries from different arrays can then be analyzed using bilinear

factor models. This approach can be considered as a generalized version of Collective

PCA [67] to higher-order datasets.

2.4 Algorithms

Algorithms for fitting multiway models are, in general, iterative algorithms

and based on Alternating Least Squares (ALS). In this section we briefly discuss

the algorithms used for fitting, in particular, Tucker and PARAFAC models.

2.4.1 Tucker Model

The original algorithm for computing a Tucker3 model was described by Tucker

in [126] as his ’Method I’. As we have already mentioned in the previous section,

this method unfolds the data in each mode, e.g., X(1), X(2) and X(3) for a three-way

tensor X, and then computes the eigenvectors of X(i)X
T
(i); in other words, the left

singular vectors of X(i) to construct the component matrix for mode i. Finally,

component matrices and the original data are used to compute the core tensor. Al-

gorithm 1 describes these steps for modeling a third-order tensor X ∈ R
I×J×K using

a (P,Q,R)-component Tucker3 model. The number of components extracted from

each mode are user-specified parameters and we have already discussed the tech-
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Algorithm 1 Tucker3(X ∈ R
I×J×K , P , Q, R)

1: A = First P left singular vectors of X(1)

2: B = First Q left singular vectors of X(2)

3: C = First R left singular vectors of X(3)

4: G = X ×1 AT ×2 BT ×3 CT

niques proposed for finding the component numbers in Section 2.3.2.1. Algorithm

1 has been named differently in various studies, e.g., HOSVD in [40], N -mode SVD

in [131,132] or CubeSVD in [120].

Since Algorithm 1 does not provide the optimal solution in least squares sense

( [40] provides an error bound), this approach has been extended by alternating

least squares in [76] for three-way arrays and called TUCKALS3. It has later been

formulated also for N -way arrays [66]. TUCKALS3 finds the best approximation

for X ∈ R
I×J×K by minimizing the least squares error function given in Equation

2.12.

‖X − X̃‖2 = ‖X − G ×1 A ×2 B ×3 C‖2 (2.12)

where A, B, C are columnwise orthogonal component matrices in the first,

second and third modes, respectively and G is the core tensor. ALS algorithm is

often initialized by the component matrices obtained in Algorithm 1 and these com-

ponent matrices are later estimated one at a time keeping the estimates for other

component matrices fixed. Estimation of component matrices is repeated until a

convergence criterion, e.g., no change in model fit; in other words no change in the

error given in Equation 2.12 or fixed number of iterations, is satisfied. Algorithm

2 describes the ALS-based approach for computing a (P,Q,R)-component Tucker3

model on X ∈ R
I×J×K . This algorithm, or more specifically its N -mode general-

ization, has been studied under different names in the literature, e.g., Higher-Order

Orthogonal Iteration in [39] and N -mode Orthogonal Iteration in [133].

By replacing one of the component matrices with an identity matrix, Algo-

rithm 2 can be modified to model a third-order tensor using a Tucker2 model. The

algorithm for fitting a Tucker2 model has been called TUCKALS2 [76]. As we have

already mentioned, Tucker1 model, which assumes that two of the component ma-

trices are identity matrices and performs rank reduction in only one mode, can be
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Algorithm 2 Tucker3-ALS(X ∈ R
I×J×K , P , Q, R)

1: Initialize A ∈ R
I×P , B ∈ R

J×Q and C ∈ R
K×R

2: while the convergence criterion not satisfied do
3: Y = X ×2 BT ×3 CT

4: A = the first P left singular vectors of Y(1)

5: Y = X ×1 AT ×3 CT

6: B = the first Q left singular vectors of Y(2)

7: Y = X ×1 AT ×2 BT

8: C = the first R left singular vectors of Y(3)

9: G = X ×1 AT ×2 BT ×3 CT

simply computed by decomposing the unfolded data using SVD.

Time complexity of these algorithms depends on the dimensionality of the

data in each mode as well as the rank reduction in each mode. For instance, for

an N × N × N third-order tensor, if we compute the full HOSVD by extracting

N components in each mode, then time complexity is O(N4) (assuming constant

number of iterations in Algorithm 2). However, we often do not need the full HOSVD

in practice and compute the first R components in each mode, where we assume

that the number of components extracted from each mode equals R and R << N .

In that case, the complexity becomes much less, i.e., O(N3R).

In addition to Algorithm 1 and Algorithm 2, recently other algorithms such

as Slice Projection [137] and Multislice Projection [127] for computing a Tucker3

model have been proposed. These approaches are based on the idea of projecting

individual slices onto component matrices, where component matrices are estimated

iteratively using alternating least squares. These algorithms have been compared

with Algorithm 1 and Algorithm 2 in [127] based on several metrics including space

complexity and the model fit. The results demonstrate that while Algorithm 2

performs best in terms of approximating the original data, the algorithms based

on the slice projection approach have advantages in terms of handling very large

tensors in the case of insufficient memory.
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Algorithm 3 PARAFAC-ALS(X ∈ R
I×J×K , R)

1: Initialize A, B and C, where A ∈ R
I×R, B ∈ R

J×R and C ∈ R
K×R

2: while the convergence criterion not satisfied do
3: Z = C � B

A = X(1)Z(ZTZ)−1

4: Z = C � A
B = X(2)Z(ZTZ)−1

5: Z = B � A
C = X(3)Z(ZTZ)−1

2.4.2 PARAFAC Model

The original algorithms proposed for computing a PARAFAC model are based

on the alternating least squares approach [29, 56]. As in Tucker ALS algorithm,

estimates for each component matrices are computed one at a time. In order to

understand how the estimate for each component is determined, we rewrite the

PARAFAC model on a three-way array X ∈ R
I×J×K given in Equation 2.7 and

Equation 2.8 using the Khatri-Rao product as in Equation 2.13.

X(1) = A(C � B)T + E(1) (2.13)

where A ∈ R
I×R, B ∈ R

J×R and C ∈ R
K×R are the component matrices

corresponding to the first, second and third modes, respectively. We can then write

the least squares objective function for a PARAFAC model as the minimization of:

‖X − X̃‖2 = ‖X(1) − A(C � B)T‖2
F (2.14)

If we minimize this function with respect to A, we compute the least squares

estimate for A as X(1)((C�B)T )†, where † denotes the pseudo-inverse of a matrix

defined as follows for matrix Y, Y† = (YTY)−1YT . The estimates for other modes

can also be computed similarly. The ALS-based algorithm iteratively updating these

estimates until a convergence criterion, e.g., no change in model fit or fixed number

of iterations, is satisfied is given in Algorithm 3. The time complexity is O(N3R)

per iteration when an R-component PARAFAC model is applied on an N ×N ×N

tensor.
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Although Algorithm 3 is the most commonly used approach to fit a PARAFAC

model, it does not guarantee convergence to the global optimum. Different initial-

izations of the algorithm may converge to different local optima. The common ap-

proaches for initializing a PARAFAC model are either using random starting points

or choosing the initial values based on generalized eigenvalue decompositions [20].

Furthermore, ALS suffers from slow convergence rate. Alternative algorithms have

been proposed for fitting a PARAFAC model, in particular to third-order tensors,

with the objective to improve PARAFAC-ALS in terms of convergence rate and ro-

bustness to overfactoring. [47] compares the performance of some of these algorithms

such as Alternating Slice-wise Diagonalization (ASD) [64], Self Weighted Alternat-

ing Trilinear Diagonalization (SWATLD) [33] and many more in terms of speed,

model fit, sensitivity to overfactoring and predictive ability of the models on real

datasets. It has been shown that ASD may be a good alternative to ALS particularly

for the cases when the slowness of ALS is a concern. Another comparative study

on PARAFAC algorithms is [123], which compares some other algorithms in addi-

tion to PARAFAC-ALS, SWATLD, ASD from [47]. [123] highlights the advantages

of SWATLD algorithm in the case of overfactoring and also suggests PMF3 [99]

and Levenberg-Marquadt algorithm [99, 122] as alternative algorithms with better

convergence properties than ALS for fitting a PARAFAC model.

As a generalization of incrementally computing the rank-one decomposition

of a matrix, a greedy algorithm has also been given in [75] to compute rank-one

tensors incrementally to compute an R-component PARAFAC model. Even though

this greedy approach does not give the optimal rank-R approximation of a tensor,

incremental rank-one approximation can be preferred due to its simplicity [143].

2.4.3 Preprocessing

Preprocessing is not often mentioned as a separate step in the algorithms

discussed above. However, it is a crucial step in data analysis in general. Similar

to preprocessing in two-way data analysis, centering and scaling both generalize to

multiway arrays [26]. Centering across one mode of a three-way dataset is performed

by simply matricizing the data in the desired mode and applying two-way centering.
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Scaling, on the other hand, requires for instance, in the three-way case, scaling

each slice of a third-order tensor corresponding to each variable rather than scaling

columns as in two-way analysis.

2.5 Applications

As already mentioned throughout this chapter, multiway models are employed

in numerous disciplines addressing the problem of finding the multilinear structure

in multiway datasets. There are many applications in various fields and this chapter

offers some representative examples from different research areas.

2.5.1 Chemistry

We start with one of the most popular applications of a PARAFAC model:

modeling a fluorescence excitation-emission dataset, which is a commonly used data

type in chemistry, medicine and food science. Such data typically consist of samples

containing different concentrations of several chemical compounds. The goal of

PARAFAC analysis on this data type is to determine the compounds found in

each sample as well as the relative concentrations of compounds. Fluorescence

spectroscopy enables the generation of three-way datasets with modes: samples ×
emission × excitation. Among many other applications of PARAFAC, modeling

of fluorescence spectroscopy is the one, which demonstrates the modeling power

and interpretation of factors of a PARAFAC model most clearly. An example of

a PARAFAC model on a fluorescence spectroscopic dataset is given as an in-depth

study on a Fish dataset and data with known fluorophores in [10]. This study is

an important resource demonstrating the underlying idea of the structural model of

PARAFAC, its benefits and limitations.

Here we include a small example to demonstrate the modeling power of PA-

RAFAC on fluorescence data. The sample dataset contains five samples with differ-

ent amounts of three amino acids (tyrosine, tryptophan and phenylalanine) (This

dataset was originally measured by Claus A. Andersson and published in [21].). We

have a three-way array of size 5× 201× 61, where the first, second and third modes

correspond to the samples, emission and excitation wavelengths, respectively. We
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Figure 2.8: Modeling of a fluorescence dataset using a 3-component PA-
RAFAC model. ai, bi and ci correspond to the ith component in samples,
emission and excitation modes. We also illustrate the vector outer prod-
uct of bi and ci, which shows the fluorescence landscape of each analyte
used in the preparation of the samples.

model the data using a three-component PARAFAC model and the components in

the excitation and emission modes are illustrated in Figure 2.8. Fluorescence land-

scapes formed using these component matrices are also given in the second line in

Figure 2.8. Each fluorescence landscape indeed corresponds to one of the amino

acids. The coefficients in component ai then indicates how much the amino acid

whose fluorescence landscape is given by bi and ci contributes to each sample. Each

sample, therefore, is a mixture of different amounts of several amino acids; in other

words, original samples corresponding to horizontal slices of X are linear combina-

tions of the fluorescence landscapes extracted by a PARAFAC model. The reason

why a PARAFAC model is appropriate for modeling fluorescence data is that each

one of the fluorescence landscapes is a rank-one matrix and a particular analyte has

specific signatures in emission and excitation modes. There is no need to model such

a dataset using a Tucker3 model since the components in each mode only interact

with components with the same id in other modes, indicating a super-diagonal core

structure as in the case of a PARAFAC model.
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Modeling power and limitations of a PARAFAC model have also been ad-

dressed in another study modeling chromatographic data [23]. Even though initial

challenge of uniquely identifying the components in chromatographic data can be

solved by a PARAFAC model, PARAFAC falls short in extracting the components

when elution profiles of the components follow a shifting pattern throughout the

experiments. On the other hand, PARAFAC2 succeeds in modeling the shifting

factors and recovering the underlying components in chromatographic data with

retention time shifts.

Recently, multiway analysis techniques combined with a clustering and visual-

ization approach have been applied on chromatographic measurements of a metabo-

lite profiling dataset in order to explore the chemical compounds accounting for the

differences between different commercial extracts [7]. In addition to these studies, a

recent review on multiway analysis in chemistry lists a broader range of applications

on chemical datasets [22].

2.5.2 Social Network Analysis/Text-mining

Multiway data analysis has often been employed in extracting relationships

in social networks. The aim of social networks analysis is to study and discover

hidden structures in social networks, for instance, extracting communication pat-

terns among people or within organizations. In [1], chatroom communications data

have been arranged as a three-way array with modes: users × keywords × time

windows and the performance of multiway models in capturing the underlying user

group structure has been compared with that of two-way models. Another study [3]

assesses the performance of collective and centralized tensor analysis approaches

again on chatroom communications data. Not only chatroom but also email com-

munications have been analyzed using multiway models [17].

In the context of web link analysis, [73] and [75] combine hyperlink and anchor

text information and rearrange web graph data as a sparse three-way tensor with

modes: webpages × webpages × anchor text. The web graph is then analyzed

using an algorithm improved to fit a PARAFAC model to large and sparse datasets

efficiently in order to capture the groupings of webpages and identify the main topics.
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Furthermore, with a goal of improving personalized web searches, click-through data

have also been analyzed using a multiway analysis method called CubeSVD [120],

which is indeed the same as HOSVD. In this study, click-through data are arranged

as a three-way array with modes: users × queries × webpages and CubeSVD is

compared with two-way methods such as Latent Semantic Indexing (LSI) and shown

to outperform the two-way approaches.

Recently, [34] has made use of a PARAFAC2 model to cluster similar doc-

uments in different languages by arranging the data as a third-order tensor with

modes: terms × documents × languages. It has been demonstrated that while LSI

performs well for language-specific scenarios, it tends to cluster documents in the

same language regardless of their similarity in terms of topic when it is applied on

multilingual documents. On the other hand, a PARAFAC2 model is proposed as a

better alternative in clustering documents with similar topics in different languages.

2.5.3 Computer Vision

Approximations of tensors have proved to be useful in computer vision appli-

cations such as image compression, representation and recognition. Images have two

dimensional nature where x and y-coordinates being the two modes. When data

have one more mode, e.g., temporal dimension, different illuminations or viewpoints

etc., it forms a higher-order tensor. Most image coding techniques consider images

as vectors by reshaping the data as a vector. In order to prevent vectorization

of image coordinates, [141] introduces two-dimensional PCA (2DPCA) approach

based on an image covariance matrix computed by preserving the two-dimensional

nature of the images and proposes to use principal components of the covariance ma-

trix for image representation. This approach is later extended to two-dimensional

SVD (2DSVD) [44] by first computing both column-column and row-row covari-

ance matrices and then finding the low-rank approximation of each image using

the eigenvectors of these covariance matrices based on an approximation method

called GLRAM introduced in [142]. These studies preserve the 2D nature of images

instead of representing each image as a vector. Similarly, [136] preserves the 2D na-

ture of the images, for instance, of a video sequence by forming a third-order tensor
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with modes x-coordinate, y-coordinate and video frames. It has been shown that

when video sequences are represented as tensors and iteratively obtained rank-one

approximations of tensors are used to compress the video sequence [136], the error

between the original and reconstructed images is less than the error obtained when

PCA is used for compression. In [137], tensors are also used to compactly repre-

sent images and it has been shown that rank-R approximation of tensors (rank-R

approximation of a tensor here refers to extracting R components in each mode;

in other words, rank-(R1, R2, R3) approximation of a tensor, where R1=R2=R3=R)

outperforms PCA, GLRAM and rank-one approximations of tensors in terms of the

reconstruction error of a video sequence.

Another application of multiway models in computer vision is face recognition.

For instance, a set of face images are arranged as a fifth-order tensor, that represents

face images using not only pixel information but also illuminations, expressions,

viewpoints and person identities in [131]. Although face images are treated as vec-

tors, varying conditions of the images are used to construct a multi-modal dataset.

HOSVD is then used to decompose this tensor and extract the basis vectors called

TensorFaces [131–133]. Component matrices extracted from each mode are used

to construct person-specific, viewpoint-specific, illumination-specific or expression-

specific TensorFaces, which improve the understanding of the underlying factors in

an image dataset. Apart from these applications, tensors have also been employed

in several other fields in computer vision, e.g., textured surface rendering [134] and

handwritten digit recognition [107].

2.5.4 Process Analysis

Last research area we mention here is process monitoring. Real-time batch

process monitoring is a challenging task since the complete data are needed for the

analysis in general and that would require waiting till the completion of a batch.

However, in-filling of missing future data and modeling using a PARAFAC model

have been shown to overcome this challenge and PARAFAC has been demonstrated

to be an applicable approach in controlling batch processes arranged as a three-way

array with modes: batches × variables × time samples [89].
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Similarly, STATIS has been applied in monitoring batch processes on datasets

that come from various areas such as pharmacology, spectroscopy and yeast bakery

production. These datasets are arranged as three-way arrays and have different

number of dimensions in the time mode [52]. STATIS can handle the different

dimensionality problem easily since it is applied on covariance matrices. On these

datasets, STATIS-based approach has been compared with unfolded PCA (in other

words Tucker1). The three-way array is unfolded in variables mode and a matrix

of variables × batches - time samples is constructed. It has been observed that

detecting bad batches is much easier with STATIS than it is with unfolded PCA.

2.6 Software

As multiway data analysis is spreading from chemometrics and psychometrics

to other fields, software tools have also been developed and improved. Some available

software for multiway data analysis are the Nway Toolbox [13], Tensor Toolbox

[15,145], PLS Toolbox (by Eigenvector Research Inc.) and CuBatch [53], which all

run under MATLAB. The Nway toolbox is the original toolbox, which has combined

multiway analysis techniques such as PARAFAC and Tucker models in a software

package and enabled the application of these models in different fields. The Tensor

Toolbox has been initially introduced as a TensorClass, which handles mathematical

operations on multiway arrays such as tensor–matrix multiplications, matricization

of tensors and many other algebraic operations. It has later been extended to

manipulate efficiently not only multiway arrays but also sparse tensors, where only

small fraction of the elements are nonzero. CuBatch is another software package

recently introduced as a multiway analysis toolbox with a user-friendly interface.

It has been originally built for analyzing batch process data but it is applicable

on multiway datasets in general. Some of the available models in the toolbox are

PCA, PARAFAC, PARAFAC2, and Tucker models. Preprocessing techniques such

as centering and scaling and different techniques for identifying outliers are also

included in this toolbox. CuBatch contains the Nway Toolbox functions and it is

a more developed version of the initial toolbox. Apart from these freely available

toolboxes, there is also a commercial toolbox called PLS Toolbox, which enables
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the analysis of multiway arrays with numerous multiway models providing visual

analysis tools. An efficient approach for analyzing multiway arrays would be to

combine the Tensor Toolbox with one of the other toolboxes to have modeling,

algorithmic and visualization power as a readily-available package.

In addition to software running under MATLAB, there is another software

package called Multilinear Engine [100] implemented in FORTRAN. There are also

other software packages for manipulating multiway arrays but they do not particu-

larly focus on multiway data analysis or multiway models. For more information on

these software packages, interested users are referred to [16] and references therein.

2.7 Summary

Multiway data analysis has recently attracted attention in many fields. That

is mostly due to the nature of the datasets, which cannot be truly captured by

traditional two-way analysis techniques. As datasets started to be rearranged as

multiway arrays rather than matrices, multilinear models, which have been mostly

used in psychometrics and chemometrics, have become more popular. These models

have been followed by extended versions of original models and techniques, e.g.,

Shifted factor models, PARALIND, etc. in an effort to capture data-specific struc-

tures in multiway datasets. Theoretical aspects of these models such as model

uniqueness and rank properties of multiway arrays have been studied in depth.

New algorithms, e.g., ASD, SWATLD, etc. as alternatives to ALS have been devel-

oped. Multilinear algebra, a less-known field compared to linear algebra, has been

explored to perform operations on multiway arrays and develop computationally

efficient algorithms. Enhanced software tools, e.g., Nway Toolbox, CuBatch, etc.

enabling multiway data analysis and mathematical operations on multiway arrays,

e.g., Tensor Toolbox, have been implemented.

In this chapter, we have mainly focused on multiway models and briefly de-

scribed the algorithms employed in fitting these models to multiway datasets. We

have also given representative applications of multiway analysis from a variety of

disciplines to illustrate the diversity of the fields making use of multiway data analy-

sis. However, we have not mentioned some important aspects of multiway analysis.
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There are concepts such as uniqueness properties of models and uniqueness con-

ditions for models, e.g., well-known Kruskal’s condition for PARAFAC [78, 79], as

well as different definitions of rank for tensors. [74] explains these concepts in depth

pointing to important references in the literature. Furthermore, most of the models

given in Section 2.3 can be employed for both unsupervised and supervised learn-

ing. In addition to those, there are also multiway models especially developed for

supervised learning, e.g., Multilinear Partial Least Squares [19]. In this chapter,

we have rather focused on only unsupervised multiway analysis but in Chapter 4,

we will use supervised approaches based on N-PLS and study the generalization of

regression models to higher-order datasets.

2.8 Discussions

Recent studies show that multiway models have many application areas in

computer science such as social network analysis, web link analysis and a variety of

other problems in data mining as well as computer vision. Besides, recent theoret-

ical studies focusing on multiway models improve the understanding of the models

commonly used and developed in chemistry and psychometrics and make them more

popular in handling computer science problems.

Even though current algorithms and models are applicable on numerous data-

sets, there is still further progress needed in several fields. First area we want to

emphasize is the summarization and analysis of data streams. Techniques discussed

so far are based on offline and centralized dimensionality reduction models. On the

other hand, there is also a demand for online methods to analyze data streams ef-

ficiently, especially in communication networks. For instance, a recent study tackle

the problem of analyzing data streams using an approach called dynamic tensor

analysis [119]. Similarly, developing distributed versions of these methods would

enable efficient analysis of massive datasets.

In addition, concepts of multilinearity and nonlinearity should be studied fur-

ther so that the limitations of multilinear models in capturing the structures in

multiway datasets are better understood. Factors extracted by common multilinear

models, i.e., PARAFAC-family and Tucker-family, are linear combinations of vari-
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ables in each mode. On the other hand, these models will fail to discover nonlinear

relationships between variables. Nonlinearity has been a recent topic of interest in

data mining community especially since kernel methods [111] became popular. Most

two-way analysis techniques, e.g., PCA, Canonical Correlation Analysis (CCA), are

combined with kernels in order to capture the underlying nonlinear structure among

variables [109]. Similar to a recent study in computer vision community, which has

combined HOSVD with kernel methods for face recognition to capture the nonlinear

relationship between image features [85], embedding kernels into multiway models

should be explored more, especially from a theoretical perspective.

Finally, performance of multiway data analysis in terms of space and computa-

tional complexity should be analyzed further. Most studies applying multiway data

analysis demonstrate how multiway methods improve the interpretation and accu-

racy of the underlying structure captured when multiway models are used instead

of two-way methods. However, computational and space complexity of multiway

models and algorithms have not often been discussed in the literature except for few

studies including [11] and [12], where the speed of algorithms for a Tucker3 model is

compared and Tucker3 is suggested as a compression method for speeding up mul-

tiway analysis; [143], which compares different algorithms for computing rank-one

approximation of a tensor; and [16], which discusses efficient tensor storage schemes.

Recently, for efficient analysis of massive multiway datasets, e.g., recommendation

systems, hyperspectral image datasets, Tensor-CUR decomposition has been pro-

posed [87]. Unlike multiway models discussed in this chapter, Tensor-CUR does

not employ an approach based on factor models. Instead, this algorithm relies on

sampling subtensors, which consist of the original data elements, based on a given

probability distribution and approximating the data using the sampled subtensors.

While sampling reduces the complexity of the problem, how well it captures the

multilinear structure in datasets in general is another open problem.
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EPILEPTIC SEIZURE LOCALIZATION

Using some of the principles of multi-modal data construction and multiway data

analysis reviewed in the previous chapter, we develop mathematical models for

epileptic seizure localization in this chapter. It is extremely important to localize a

seizure origin precisely since the success of an epilepsy surgery strongly depends on

the correct and precise identification of a seizure onset zone. Epilepsy is defined as

recurrent seizures caused by abnormally synchronous neuronal activity. The electri-

cal symptoms of this abnormal activity are believed to uniquely define and reveal the

mechanisms of the underlying abnormal neural function and structure. Localization

of the initial seizure discharge gives clues about the cortical region that generates

epileptic seizures, which is called a seizure onset zone (epileptic focus or seizure

origin). Therefore, the analysis of ictal EEG (scalp or intracranial) is an effective

standard for localization of an epileptic focus.

We address the problem of localization of a seizure origin through an analysis

of ictal scalp EEG recordings with a goal of developing an automated and objective

approach. Ictal periods are identified by neurologists visually based on EEG seizure

onsets rather than clinical seizure onsets.

3.1 Related Work

The majority of the research devoted to automated detection of epileptic events

concentrates around spike detection techniques. Although most of these techniques

are based on single channel data, in [50] spatial information from 16-channel EEG

data has been incorporated in building a detection system for epileptic sharp waves.

Sharp wave source localization on multi-channel EEG data has also been applied

in [49] to determine the areas of interest with epileptic activity.

The main challenge in focus localization using scalp EEG recordings is the

contamination of EEG with artifacts. Ictal EEG, or in other words, the EEG data

recorded during the seizure period of an epileptic patient, are often contaminated

41
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with signals caused by eye blinks, eye movements and/or muscle artifacts. These

artifacts undermine the efforts to localize epileptic foci and understand the char-

acteristics of a seizure. Commonly used approaches for artifact removal are simple

filtering techniques and statistical methods such as Independent Component Analy-

sis (ICA) [37] and, lately, Canonical Correlation Analysis (CCA) [63]. The filtering

methods eliminating EEG activity within certain frequencies may result in loss of

significant information about the seizure structure in the cases where epileptic sig-

nals and artifacts overlap in the frequency domain. Therefore, statistical approaches,

especially methods based on ICA, are quite common in artifact removal literature.

Some of these statistical techniques rely on the widely-accepted assumption of inde-

pendence between artifacts and epileptic brain signals. Considering EEG recorded

at each electrode as a linear mixture of signals originating from independent sources,

independent components are extracted using ICA [43,54,128,144]. The components

corresponding to artifacts are later identified by visual inspection [128, 144] or a

semi-automated/automated artifact identification techniques based on high-order

statistics, i.e., kurtosis, entropy [43, 54]. As an alternative to ICA, a CCA-based

artifact removal approach has been recently proposed [38]. This technique is similar

to ICA-based methods except for the independence assumption. The underlying

idea is rather the mutual non-correlation between artifacts and epileptic signals.

Artifact removal approaches mentioned so far focus on multi-channel EEG

data arranged as a two-way dataset of recordings collected at several electrodes

at different time samples. Two-way analysis methods on multi-channel EEG data,

however, only allow us to capture temporal and spatial signatures, such as the ones

identified by ICA and CCA-based techniques. In order to capture frequency domain

information in addition to temporal and spatial signatures, these methods require

one more step, e.g., feature extraction as in [82], where several features based on the

spectral information content of a component are extracted or the transformation

of the original data into frequency domain and the application of two-way analysis

methods also in the frequency domain. On the other hand, constructing multi-modal

datasets from multi-channel EEG signals by representing an EEG recording in both

time and frequency domains enable us to inspect the information content of EEG
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signals in time, frequency and electrode domains simultaneously using multilinear

component models. Before discussing how to construct such multi-modal datasets

from EEG recordings, we first summarize the applications of multiway analysis

techniques in neuroscience.

3.1.1 Multiway Models in Computational Neuroscience

In computational neuroscience multiway models have been applied in a variety

of problems, e.g., analysis of EEG/ERP signals and fMRI (functional MRI) data.

As one of the very first applications of multiway models in neuroscience, to our

knowledge, [36] makes use of a PARAFAC model to identify which tasks relate to

which parts of the brain and frequency bands based on the analysis of EEG signals.

Another application of a PARAFAC model was introduced in the late 1980s as the

decomposition of event-related potentials (ERP) [94]. Due to the problems such

as rotational ambiguity and orthogonality constraints of PCA/SVD in analyzing

and interpreting brain signals, [94] introduces the Topographic Components (TC)

model, which is essentially the same as a PARAFAC model but rather developed

in the context of ERP analysis. [94] arranges multi-channel ERP signals from mul-

tiple subjects as a third-order tensor with modes: subjects, electrodes and time

samples and discusses the model from a perspective of ERP signal analysis. Fol-

lowing the introduction of the TC model, [48] applies a TC/PARAFAC model on

evoked potential (EP) signals and demonstrates that modeling of this tensor using

a TC/PARAFAC model extracts, what is called in the paper as, ”temporal compo-

nents”, ”spatial components” and ”subject scores” when the data are arranged in

the same way as introduced in [94].

PARAFAC in neuroscience has become even more popular with the introduc-

tion of decomposing EEG data into space, time and frequency components [90]. [90]

applies continuous wavelet transformation (CWT) on each signal recorded at each

channel so that the signal from a single channel is represented in both time and

frequency domains. Then the wavelet-transformed data are arranged as a three-way

array with modes time samples × frequency × electrodes and analyzed using a

PARAFAC model. This study demonstrates that factors in the first, second and
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third component matrices represent the temporal, spectral and spatial signatures of

the EEG data, respectively. PARAFAC models with nonnegativity constraints have

later been used in another study on ERP to find the underlying structure of brain

dynamics [96]. Recently, a toolbox called ERPWAVELAB [97] running under MAT-

LAB has been released for multi-channel time-frequency analysis of brain activity

using EEG data. Not only PARAFAC but also the other most well-known multiway

model, i.e., Tucker3, has been showed to perform well in EEG analysis. [46] uses a

Tucker3 model to study the effect of a new drug on brain activities by arranging

EEG data and data collected through experiments with different doses of a drug

over several patients under certain conditions as a six-way array with modes: EEG,

patients, doses, conditions, time and channels. The results demonstrate that signifi-

cant information is successfully extracted from a complex drug dataset by a Tucker3

model rather than two-way models such as PCA.

In addition to these studies on EEG/ERP analysis, multiway methods have

also been used in the analysis of fMRI data. A third-order tensor with modes

voxels × time points × runs is constructed in [9] from different runs of fMRI from

a patient. This tensor is then analyzed by a PARAFAC model in order to capture

the spatial and temporal profiles of brain functions such as an activation triggered by

finger tipping. So far we have mentioned the applications of multilinear component

models. Apart from component models, multilinear regression models have also

been employed in neuroscience, e.g., in [88] for extracting the connection between

EEG recordings and fMRI data.

3.1.2 Multiway Models in Epilepsy

These studies have motivated the application of multiway models for under-

standing the structure of epileptic seizures [2, 4, 41]. Similar to the three-way array

constructed in [90], multi-channel ictal EEG data are arranged as a third-order ten-

sor called an epilepsy tensor with modes time samples × frequency × electrodes

using the power of wavelet coefficients in [2] and [4] and using pure wavelet co-

efficients in [41]. [2], to our knowledge, has been the first study focusing on the

analysis of epileptic EEG data using multiway models. In [2], once epilepsy tensors
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Figure 3.1: Two-way Data Construction.

are constructed, we first explore how linear, multilinear and nonlinear statistical

tools perform on the EEG recordings of epilepsy patients in order to have a broader

understanding of the structure of epileptic events. In [4], we extend our previous

study and develop multiway models to extract and remove artifacts as well as lo-

calize epileptic foci. We focus on not only localizing an epileptic focus but also

understanding epilepsy seizure structure, its signatures in time, frequency and elec-

trode domains together with those of artifacts. We discuss our findings in these

studies in the next sections.

3.2 Epilepsy Tensor Construction

Multi-channel EEG data originally form a matrix of time samples by elec-

trodes. We may analyze the EEG recordings in the time domain, e.g., using the raw

data in the time domain or computing the instantaneous signal power for each time

sample at each electrode. Another approach would be to use the information in the

frequency domain, for instance by computing the signal power at different frequen-

cies through the use of Fourier Transformation (FT)(Figure 3.1). However, neither

of these techniques can represent the data in both frequency and time domains.

Even though FT is a widely used technique for frequency spectrum analysis, it

is not sufficient to represent the information content of non-stationary signals, e.g.,

EEG. The Fourier Transform assumes that all frequencies identified in frequency

spectrum are available during the whole time duration. However, it is not the case

for non-stationary signals. Therefore, we apply continuous wavelet transformation

on the signal recorded at each electrode in order to identify the frequency component

available at each time sample. As a mother wavelet, we use a Mexican-hat wavelet.



46

Figure 3.2: Continuous wavelet transformation (CWT) of a signal from
a single electrode (data corresponding to the single column of the matrix
on the left) forms the frontal slice corresponding to a particular electrode.
When the signals from all electrodes are represented in both time and
frequency domains through CWT, a third-order tensor with modes time
samples, scales (frequency) and electrodes is constructed.

Our selection of the mother wavelet is based on a previous work [81], which shows

that a Mexican-hat wavelet captures epileptic events well. It has been shown in a

recent study [41] that biorthogonal wavelets also perform well in the localization of

epileptic foci.

Wavelet transformation of a signal from a single electrode forms the frontal

slice corresponding to a particular electrode (Figure 3.2). Similar to the way de-

scribed in [90], we rearrange our data, i.e., each seizure of a patient, as a three-way

array, X ∈ R
I×J×K with modes: time samples, scales and electrodes (Figure 3.3).

Each entry of X denoted by xijk represents the square of the absolute value of

the wavelet coefficient at ith time sample for jth scale at kth electrode, or in other

words the power of the wavelet transformed data. Since we use the referential mon-

tage by taking Cz as the reference electrode and analyze the electrical potential

difference between two electrodes, the third mode actually does not correspond to

individual electrodes but rather contains the channels. However, we use the terms

electrodes and channels interchangeably throughout this study. Another clarifica-

tion is regarding to scales and frequencies. Scales and frequencies are also often

used interchangeably here. However, it is important to keep in mind that scales are

inversely proportional to frequencies based on the relationship given in Equation
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Figure 3.3: Epilepsy Tensor. X ∈ R
I×J×K represents the multi-channel

ictal EEG data transformed by continuous wavelet transformation using
a Mexican-hat wavelet and arranged as a three-way array. Each entry
of X, xijk, corresponds to the square of the absolute value of a wavelet
coefficient at ith time sample, jth scale and kth electrode.

3.1.

f =
fC

a ×�t
(3.1)

where fC is the center frequency of the wavelet, a is the scale, f is the frequency

corresponding to the ath scale and �t is the sampling period.

We name the third-order tensor constructed using multi-channel ictal EEG

recordings an Epilepsy Tensor and use this structure for further analysis on under-

standing epilepsy seizure structure in the next sections.

3.3 Artifact Extraction, Removal and Seizure Localization

Once multi-channel ictal EEG recordings are rearranged as an epilepsy tensor,

we explore the characteristics of epileptic seizures by identifying individual brain

dynamics that take place during seizures. While we are primarily interested in

the localization of epileptic foci, in addition to that, our goal is to identify spatial,

spectral and temporal signatures of an epileptic seizure as well as those of an artifact.

With a goal of analyzing an epileptic seizure in these three domains, i.e., time,

frequency and electrode, our contributions are as follows:

• Epileptic focus localization: We model epilepsy tensors using a PARAFAC

model and use PARAFAC components in time, frequency and electrode domains
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to define a seizure. We localize a seizure origin based on the spatial signature of

a seizure extracted by a PARAFAC model and identified by a neurologist.

• Artifact Extraction: We extract artifacts using a PARAFAC model and use

PARAFAC components as spectral, spatial and temporal signatures of an artifact

in order to define an artifact.

• Artifact Removal: Through multilinear subspace analysis, we remove artifacts

such as eye movements so that the remaining data do not contain any activity

correlated with the artifact.

As a preliminary study, we have also applied a Tucker3 model with orthog-

onality constraints on the component matrices [2]. However, the justification of

orthogonality constraints meaning that a neural activity is orthogonal to another

neural activity is unclear in neuroscience. Furthermore, Tucker3 has rotational

ambiguity and those two properties: rotational ambiguity and unnecessary orthog-

onality constraints, which did not make much sense in terms of the interpretation

of brain dynamics, were the underlying reasons of the introduction of the TC model

in [94] at the first place. In addition to that, the interpretation of a Tucker3 model

is much harder than that of a PARAFAC model. The intuition behind modeling an

epilepsy tensor using a PARAFAC model, on the other hand, is quite straightfor-

ward. We assume that when the wavelet-transformed EEG data are modeled using

a PARAFAC model, or in other words as a sum of rank-one tensors, each rank-one

tensor corresponds to either a seizure or an artifact. Besides, the vectors, which

form each rank-one tensor, reveal the signatures of an artifact or a seizure in the

time, frequency and electrode domains.

3.3.1 Dataset

We study scalp EEG recordings of 10 seizures from 7 patients with different

pathology substrates. Ictal EEG recordings are done with long term video EEG

monitoring using scalp electrodes in the epilepsy monitoring units of Yeditepe Uni-

versity Hospital and Marmara University.



49

Table 3.1: Dataset of multi-channel ictal EEG. 100 scales corresponding
to frequencies in the frequency band of 0.5-50Hz are used.

SID1 PID1 Samp. Freq. Duration Downsamp. Number of Size of
(Hz.) (sec.) Factor Electrodes Epilepsy Tensor

1 1 200 47 10 17 940 × 100 × 17
2 2 200 100 10 17 2000 × 100 × 17
3 3 200 61 10 18 1220 × 100 × 18
4 4 200 60 10 18 1200 × 100 × 18
5 4 200 74 10 18 1480 × 100 × 18
62 4 200 63 10 18 1260 × 100 × 18
72 4 200 76 10 18 1520 × 100 × 18
8 5 400 86 20 18 1720 × 100 × 18
9 6 200 17 1 18 3400 × 100 × 18
10 7 400 77 10 18 3080 × 100 × 18
1 PID and SID stand for patient id and seizure id, respectively.
2 These are the seizures for which artifact removal is applied.

The duration of ictal EEG corresponding to each seizure, sampling frequencies

and the number of electrodes are given in Table 3.1. The raw data (time samples

× electrodes matrix) are first centered across time samples mode and scaled within

the electrodes mode before constructing the tensor using continuous wavelet trans-

form. Once the data corresponding to each seizure are rearranged as a third-order

tensor, the data are then scaled in scales mode in order to capture the activity in all

frequencies rather than only at low frequencies with relatively much higher energy

than higher frequencies. Since the duration of an epileptic seizure ranges between

17 sec. and 100 sec. for the seizures given in Table 3.1 and sampling rates are either

200 Hz or 400 Hz, the dimensionality of each epilepsy tensor in the first mode differs

from one seizure to another. In order to reduce the complexity of the analysis, after

wavelet transformation, we downsample the wavelet coefficients in the time samples

mode. The downsampling factor is 10 for most of the seizures. In the case of seizure

8, since both the sampling rate is high and the seizure is long, we pick 20 as the

downsampling factor. On the other hand, for seizure 9, we do not downsample the

data at all since the seizure is already quite short. Even though we use different

downsampling factors for different seizures, we can still localize the seizure. Nev-

ertheless, dependence of the downsampling factor and how we downsample can be

further explored in future studies. During our analysis, we use MATLAB’s Wavelet
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Toolbox for continuous wavelet transform, PLS Toolbox for multiway models and

EEGLab [42] for topographic maps across the scalp.

3.3.2 Artifact Extraction

Once the three-way array X ∈ R
I×J×K with modes: time samples, scales and

electrodes, is constructed and preprocessed, we model X using an R-component

PARAFAC model as in Equation 2.7. Here we go back to the underlying principle

of a PARAFAC model, i.e., parallel proportional profiles [30]. The idea behind

parallel proportional profiles is that if the same factors are present in two samples

under different conditions, then each factor in the first sample is expected to have the

same pattern in the second sample but profiles of the factors will be scaled depending

on the conditions. When we take a closer look at the idea of parallel proportional

profiles, we can observe that a signal from an electrode can be referred to as a

sample. These samples are generated by certain underlying sources with spectral,

spatial as well as temporal signatures specific to the sources. Each electrode, thus,

has a coefficient representing the contribution of the source to the signal (or sample)

recorded at that particular electrode. Our aim is to identify the sources, such as an

eye artifact, a muscle artifact or an epileptic activity generating a seizure, based on

these signatures and relative coefficients of electrodes.

An R-component PARAFAC model on X extracts the components ai, bi and

ci, for i = 1, 2, ...R, where these components indicate the signatures of sources in

time, frequency and electrode domains, respectively as shown in Figure 3.4. Conse-

quently, a PARAFAC model can serve as an artifact extraction method by identi-

fying patterns indicative of artifacts. In Figure 3.4, the signatures captured by the

first component characterize an eye-artifact. a1 indicates the time points the artifact

takes place. b1 shows that the eye-artifact observed at the specified times (those

with high coefficients in a1) has a high-scale signature indicating a low-frequency

content (1.25-2.5Hz). Finally, c1 localizes the artifact around electrodes FP1 and

FP2. Based on the visual analysis of EEG recordings, neurologists identify the time

and the location of an artifact. We observe that the signatures extracted by the

model match with the clinically identified time and location of an artifact. The
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model also gives us information about the spectral properties of an artifact. In

our study, we observe that most artifacts have low frequency content. Some other

examples of extracted artifact signatures are also given in Figure 3.8.

3.3.3 Seizure Origin Localization

By pursuing the same discussion on Cattell’s idea, when one of the underlying

sources in the signals recorded by the electrodes is an epileptic seizure, we can argue

that one or more of PARAFAC components can model a seizure in the same way

an artifact is modeled. Similar to an artifact, a seizure also has a signature in

time, frequency and electrode domains. Once these signatures are extracted using

a PARAFAC model, the signature of a seizure in the electrode domain can be used

to localize the seizure origin.

Therefore, we can also employ PARAFAC as a model for localizing a seizure

origin. We observe in Figure 3.4 that the second component in time samples mode,

a2, shows an ongoing activity in an ictal period. When the second component in

the second mode, b2, is examined, we detect that this ongoing activity in the ictal

period takes place in low-scales indicating a rather high-frequency content (12.5-

25Hz) compared to that of the first component. Eventually, c2 suggests that the

activity with described characteristics takes place particularly around electrodes T4

and T6. In fact, this activity is a seizure and the component of a PARAFAC model

in the electrodes mode localizes the seizure origin. These conclusions are also drawn

based on the clinically identified seizure onset. Since the seizure origin is identified

by neurologists as T4 and T6, we expect to observe high coefficients corresponding to

these electrodes in the spatial signature of the seizure (We illustrate more examples

of seizure origin localization in Figure 3.8). Furthermore, the temporal signature

corresponding to this activity should have an ongoing activity characterized by high-

coefficients all through the seizure period. The components extracted by the model

have these characteristics and therefore, they are considered as the signatures of a

seizure. Seizures are also often observed to have relatively higher frequency content

compared to the artifacts we have observed.
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Figure 3.4: A 2-component PARAFAC model on an epilepsy tensor X
for a particular seizure. We demonstrate the modeling of an epilepsy
tensor by a 2-component PARAFAC model, where the first component
corresponds to an eye-artifact while the second component represents a
seizure. Top: Temporal (a1), spectral (b1) and spatial (c1) signatures of
an eye-artifact. a1 represents the coefficients of time samples, b1 rep-
resents the coefficients of scales. Since there is a peak in higher scales
on the plot of b1, it indicates that this artifact takes place at lower fre-
quencies. c1 contains the coefficients of electrodes. These coefficients
are demonstrated on a colormap using EEGLab [42]. Bottom: Temporal
(a2), spectral (b2) and spatial (c2) signatures of a seizure. Similar to the
first component, a2 represents the coefficients of time samples, b2 rep-
resents the coefficients of scales. There is a peak in lower scales on the
figure corresponding to b2, which indicates that the seizure takes place
at higher frequencies. Finally, c2 contains the coefficients of electrodes,
which are used to localize the seizure around electrodes T4 and T6.
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3.3.4 Artifact Removal

When we model the epilepsy tensor using a PARAFAC model, in some cases

we cannot capture the seizure but rather observe only artifacts. In those cases, we

suggest that the variation due to artifacts are removed from the data and a new

tensor, XNEW , representing the data contaminated with less artifacts is modeled

using a PARAFAC model in order to localize seizures.

In order to understand the underlying structure of the data, we model X using

a Tucker3 model because a Tucker3 model, unlike the PARAFAC model, is known to

reflect the main subspace variation in each mode assuming a multilinear structure.

We fit a Tucker3 model as in Equation 3 with large number of components in each

mode such that we extract enough components to capture most of the variation in

the data (around 75%). Using a Tucker3 model with orthonormality constraints in

each mode, we model the data with component matrices A, B and C corresponding

to time samples, scales and electrode modes, respectively and having orthonormal

columns. Components in all modes are extracted in decreasing order of captured

variance just like in SVD on matrices. Then based on visual inspection of the

components in the electrodes mode, first N components with characteristics of a

potential artifact are identified. Our goal is to remove the activity associated with

these potential artifacts. Similar to the underlying idea in interference subtraction

based on subspace analysis in [101], we make use of multilinear subspace analysis

to remove the artifacts. We project the data onto the space orthogonal to the space

spanned by the components characterizing an artifact. The steps of the artifact

removal method are described more formally as follows:

1. Fit a Tucker3 model to X ∈ R
I×J×K with component numbers large enough

to capture most of the variation in data and extract the component matrices

with orthonormal columns. (Suppose that modes of X are as given in Figure

3.3).

2. Pick N components, which are identified as potential artifacts by visual in-

spection, in electrodes mode.

3. Form matrix Q ∈ R
K×N with N columns using the N components picked in
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Step 2.

4. Construct an orthogonal projector, P, using the matrix Q.

P = I − QQT (3.2)

where I denotes the identity matrix.

5. Compute XNEW ∈ R
I×J×K , which is the projection of X onto the space or-

thogonal to the range of matrix Q:

XNEW = X ×3 P (3.3)

where ×3 denotes the product of tensor X with matrix P in the electrodes

mode.

This artifact removal scheme takes out the effect of an artifact across all fre-

quencies during an ictal period from X. After removing the artifacts, we remodel

XNEW using a PARAFAC model and use PARAFAC components to identify the

seizure origin and inspect spatial, spectral and temporal signatures of the remaining

artifacts and seizure. While the artifact removal process enables the localization

of seizures after artifact removal, signatures of seizures in scales mode suggest that

seizures have very low frequency component. On the other hand, we consistently

observe seizure activities at high frequencies (12.5-50Hz) for the seizures where arti-

fact removal is not needed. The effect of the artifact removal process on modes other

than the electrodes mode should be further explored in order to fully understand its

side effects. We summarize the whole process of multiway analysis of multi-channel

ictal EEG in Figure 3.5.

We compare our artifact removal approach based on Tucker3 analysis with two

other artifact removal methods. The first approach constructs the epilepsy tensor

but then unfolds the tensor in the electrodes mode and decomposes the unfolded

data using SVD; in other words, applies a Tucker1 model instead of Tucker3. The

same number of left singular vectors as in the case of a Tucker3 model is then used

to construct the projection matrix. Except for using the components extracted by a
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Figure 3.5: Multiway analysis of multi-channel ictal EEG. After the col-
lection of multi-channel EEG data from epilepsy patients, we normalize
the data and construct a three-way X called an Epilepsy Tensor through
wavelet transformation. X is then downsampled and scaled in scales
mode before multiway analysis. Preprocessed three-way array is mod-
eled using a PARAFAC model for artifact extraction and localization
of epileptic focus. Finally, PARAFAC components are compared with
clinical findings of epilepsy patients. For the cases when a PARAFAC
model cannot capture the seizure, we apply an artifact removal method
by modeling the preprocessed three-way using a Tucker3 model to detect
potential artifacts. The tensor formed after artifact removal is modeled
using a PARAFAC model to extract the signatures of an artifact and a
seizure.
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Tucker1 model, the rest of the artifact removal scheme is the same. After removing

the artifacts, we rearrange the data as a tensor and model the new tensor using a

PARAFAC model. Another artifact removal approach is to remove the artifacts on

the raw multi-channel EEG data. We model the original data matrix of type time

samples by electrodes using SVD and construct the projection matrix using the right

singular vectors. We extract as many singular vectors as needed to explain 75% of

the variation and among those singular vectors, we identify the potential artifacts

using visual analysis. The new matrix obtained after removing artifacts is used to

construct the epilepsy tensor through continuous wavelet decomposition. The final

step is the analysis of the epilepsy tensor using a PARAFAC model.

We compare the results of different artifact removal approaches on two seizures:

seizures 6 and 7 from Table 3.1. These are the seizures, on which we need to

perform an artifact removal method in order to capture seizures. For seizure 6,

Tucker1-based artifact removal approach performs equally well as the Tucker3-based

approach in terms of localizing the seizure origin as shown in Figure 3.6. On the

other hand, the second seizure, i.e., seizure 7, cannot be localized using the Tucker1-

based technique (Figure 3.7). These results support our discussions in Chapter 2

regarding to Tucker1 being less robust and prone to overfitting and modeling noise

rather than the exact structure. Furthermore, Tucker3 model would help us more

in identifying potential artifacts by providing the signatures of the artifacts in time

and frequency domains explicitly. Even though Tucker3 is more complex in terms

of interpretation compared to a PARAFAC model, it is still much easier than a

Tucker1 model since the components in time and frequency modes are separately

extracted by a Tucker3 model. We also demonstrate the results of the approach

based on artifact removal from the raw dataset using SVD as the third method in

Figure 3.6 and Figure 3.7. For seizure 6, since a 3-component PARAFAC model is

more appropriate for the data (with high core consistency, which we discuss next in

parameter selection section), we fit a 3-component model and demonstrate the three

spatial signatures. None of these correlates with the seizure origin. Similarly, we

observe that none of the spatial signatures extracted by a PARAFAC model after

the third artifact removal approach corresponds to the spatial signature of seizure
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Figure 3.6: The spatial signatures extracted by a PARAFAC model after
applying different artifact removal approaches on seizure 6 from Table
3.1. Method I refers to using Tucker3 as the artifact removal approach;
method II refers to the artifact removal process based on Tucker1 and
method III removes artifacts on raw data using SVD. For method I and II,
even though the spatial signatures are not exactly the same, they are very
similar for both models and the seizure localization is the same. The first
component in method I and the second component in method II localizes
the seizure (the components are given in the order of the variation they
explain but the explained variation by each component is so close that the
ordering flips in different methods). The spatial signatures captured by
the PARAFAC model after using SVD-based artifact removal approach
on raw data cannot localize the seizure. Color scales in the figures are
the same as the scale in Figure 3.4.

7 in Figure 3.7.

3.3.5 Parameter Selection

It is important to extract the right number of components in a multilinear

model in order to capture the true underlying structure in data. As we have already

mentioned in Chapter 2, there are several techniques for determining the number
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Figure 3.7: The spatial signatures extracted by a PARAFAC model af-
ter applying different artifact removal approaches on seizure 7 from Table
3.1. Method I refers to using Tucker3 as the artifact removal approach;
method II refers to the artifact removal process based on Tucker1 and
method III removes artifacts on raw data using SVD. The second compo-
nent in method I localizes the seizure origin whereas no other component
extracted by other methods can localize the seizure. Color scales in the
figures are the same as the scale in Figure 3.4.

of components, e.g., residual analysis, visual appearance of loadings, the number of

iterations of the algorithm and core consistency. Among these techniques, in this

study, we mostly rely on the core consistency diagnostic [25] for finding the number

of components of a PARAFAC model.

The core consistency quantifies the resemblance between a PARAFAC core and

a Tucker3 core built based on the PARAFAC component matrices. This diagnostic

suggests whether a PARAFAC model with the specified number of components is a

valid model for the data. Let T ∈ R
R×R×R be a super-diagonal PARAFAC core such

that tijk = 1 if i = j = k, otherwise tijk = 0. Let G ∈ R
R×R×R be a Tucker3 core
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Table 3.2: Core Consistency for different component numbers

Seizure ID R = 2 R = 3 R = 4 R = 5 Rselected

1 100% Neg. - - 2
2 100% 97% 93% Neg. 4
3 100% 96% Neg. - 3
4 99% 98% Neg. - 3
5 100% 92% 83% 64% 4
6 99% Neg. - - 2
7 95% 89% Neg. - 3
8 100% 82% 55% - 3
9 100% 98% 75% - 3
10 100% Neg. - - 2

*Neg. denotes negative core consistency values and the sign - is used for the component numbers,
which are not considered. Rselected shows the number of components used in our analysis.

determined using the PARAFAC component matrices, where gijk can be nonzero

for all i, j, k. Then core consistency diagnostic is defined as follows:

Core Consistency = (1 −
∑R

i=1

∑R
j=1

∑R
k=1(gijk − tijk)

2∑R
i=1

∑R
j=1

∑R
k=1 t2ijk

) × 100

In [25], a general rule based on core consistency is introduced. Core consistency

above 90% is often used as an indication of the trilinear structure in data and

suggests that a PARAFAC model with the specified number of components would

be an appropriate model for the data. A core consistency value close to or lower

than 50%, on the other hand, demonstrates that a PARAFAC-like model would not

be appropriate. This diagnostic has been commonly applied in the neuroscience-

multiway literature [4, 46, 90] often together with other diagnostic tools in order to

determine the component number.

In this section, we inspect whether core consistency diagnostic serves as a re-

liable tool for determining the optimal number of components (optimal in terms of

interpretation of the data). We model the epilepsy tensor for each seizure with a

PARAFAC model using R components, where R = 2, 3, .., until the core consistency

drops considerably. Table 3.2 demonstrates the core consistency values correspond-

ing to different number of components. We often extract as many components as
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possible until the core consistency drops because additional components help us

capture more variation in data (as long as the captured variation with additional

components is significant). For instance, for seizure 10, we can fit a 2-component

PARAFAC model with confidence since core consistency indicates that more than

two components would not be suitable. On the other hand, for seizure 2, we can

choose three or four components. In that case, as we mentioned above, the increase

in the explained variation by extracting more components may be used in order to

determine the component number. We use all four components and observe that

the last two components correspond to artifacts. Table 3.2 shows that core consis-

tency gives fairly good indications of the right number of components. However,

it is still important to take into account other diagnostics, e.g., residual analysis,

visual appearance of the loadings or any prior knowledge, in order to determine the

component number.

3.4 Summary and Discussions

The development of an automated system capable of localizing an epileptic

focus would strongly affect the outcome of epilepsy surgeries. Removing or extract-

ing artifacts and exploring the underlying brain dynamics in a seizure are also as

crucial as seizure origin localization. They would not only provide accurate focus

localization but also improve the understanding of the complex structure of epilepsy,

which has not yet been fully discovered.

Ictal scalp EEG recordings are frequently contaminated with movement and

muscle artifacts that complicate the analysis of seizure localization. Although scalp

EEG recordings have limitations in detection and localization of seizure onset, our

multilinear approach based on a multiway model gives us promising results in ana-

lyzing seizures and defining seizures and artifacts in time, frequency and electrode

domains. These definitions are formed by the spectral, spatial and temporal sig-

natures extracted by multiway analysis of multi-channel EEG data arranged as a

three-way array. Not only the detection of the artifacts but also the localization

of all seizures are correlated with the clinical findings. Future research directions

proposed to improve this study further are discussed in Chapter 5.
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Figure 3.8: Some illustrative examples of artifact extraction and seizure
origin localization. We present our results corresponding to the electrode
mode for four of the seizures when they are modeled using a PARAFAC
model. Color scales in the figures are the same as the scale in Figure 3.4.
c1, c2 and c3 stand for the first, second and third components in the elec-
trodes mode, respectively. (1) Seizure 1. First component represents an
eye-artifact while the second component localizes the seizure. (2) Seizure
8. First component shows the seizure origin and the second component
corresponds to an artifact, which has a low frequency signature. The
third component cannot be visually identified. (3) Seizure 7. This is
one of the examples where artifact removal is applied. The components
are the PARAFAC components extracted after artifact removal. While
the first and third components are the artifacts, the second component
represents the seizure. (4) Seizure 10. The first component localizes the
seizure around F7 and C3 while the second component corresponds to an
artifact.



CHAPTER 4

EPILEPTIC SEIZURE RECOGNITION

In the previous chapter, we assume that the time when the seizure starts and ends

is already marked by neurologists before the analysis. However, the ideal approach

would be to recognize a seizure given any EEG recording. One of the common

methods used in clinical evaluations is to visually analyze EEG signals and identify

the seizure period. However, visual analysis of EEG signals has some drawbacks.

Often EEG signals recorded for several days are scanned visually in their entirety

and this is a time-consuming task. Furthermore, it is also subjective and error-prone

due to fatigue, etc. Therefore, automation of the detection of the underlying brain

dynamics in EEG signals is significant in order to save manpower and obtain robust

and objective EEG analysis.

4.1 Related Work

A common approach in seizure recognition/detection and also in prediction

is to extract information; in other words, features that can characterize seizure

morphologies, from EEG recordings [93,102,105,112,129]. The procedure for feature

extraction from multi-channel EEG data is often as follows: First, an EEG signal

from a channel is divided into I time epochs (overlapping or non-overlapping) and

then J features are extracted from each epoch. Consequently, a signal from a single

channel can be represented as a matrix of size I × J (Figure 4.1-A). A great deal of

effort from different disciplines has been invested in exploring the features in order

to define the signature of a seizure. These features include statistical complexity

measures (e.g., fractal dimension, approximate entropy, Lyapunov exponents, etc.)

as well as other features from time (e.g., higher-order statistics of the signal in time

domain, Hjorth parameters, etc.) and frequency domains (e.g., spectral skewness,

spectral entropy, etc.). A list of features used in characterization of epileptic seizure

dynamics can be found in recent studies [93,102,129].

In the literature, studies use either multiple features from a single channel or

62



63

Figure 4.1: (A) Multiple features extracted from single-channel EEG
data are arranged as a matrix, (B) When multiple channels are taken
into consideration, the data form a three-way array with modes: time
epochs, features, channels.

a single feature from multiple channels since data construction and data analysis

techniques are often restricted to two dimensions. For instance, in [102], seizure

dynamics are analyzed solely on a specific recording, which represents the charac-

teristics of a seizure well. Then the performance of various features from different

domains on that particular signal is analyzed simultaneously. On the other hand, [93]

analyzes multi-channel EEG data but assesses the performance of each feature one

at a time. Furthermore, different studies extract different features and employ dif-

ferent algorithms to distinguish between seizure and non-seizure periods (e.g., [91]

and references therein), which makes it difficult to compare the performance of fea-

tures. An approach capable of simultaneously analyzing features would enable the

performance comparison of the features on the same data using the same classifier.

Simultaneous analysis of features is also important because it may consider linear

or non-linear combinations of features. While a single feature may not be very ef-

fective in discriminating between epileptic periods, combinations of several features

may well be [55]. Taking into consideration the challenges addressed in the litera-

ture, we introduce a multi-modal data construction and analysis approach, which

rearranges signals from K channels as a third-order tensor of size I×J×K as shown

in Figure 4.1-B. We then model the third-order tensor using multilinear discriminant
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analysis by facilitating simultaneous analysis of EEG data from multiple channels

based on several features from different domains.

In this study, we are particularly interested in distinguishing a seizure (ictal)

period from a pre-seizure (pre-ictal) and a post-seizure (post-ictal) period. More-

over, we want to be able to characterize seizures of patients using a subset of features

and understand the differences between seizures of different patients. Our ultimate

goal is to mark the seizure period but not to predict an upcoming seizure or to

detect the seizure onset with minimum delay. This study, therefore, differs from

the related work on seizure detection and prediction, e.g., [32, 93, 112] or see [84]

for a recent review on seizure prediction. They either focus on the identification

of features distinguishing between inter-ictal and pre-ictal periods or aim to detect

an epileptic seizure with minimum possible delay using features from a particular

domain. Nevertheless, multiway data construction and analysis approaches intro-

duced here can be easily extended to seizure prediction and detection (See Chapter

5 for more discussion).

4.2 Epilepsy Feature Tensor Construction

We introduce a novel approach, which combines the recognition power of sev-

eral features from different domains by rearranging multi-channel EEG data as a

third-order tensor, namely Epilepsy Feature Tensor [5,8], with modes: time epochs,

features, channels.

An EEG recording from a single channel is a sequence of time samples. We

first divide the signal from each channel into time epochs and inspect whether there

are certain underlying dynamics in a particular epoch. This could be achieved by

extracting measures that characterize those dynamics. Then each epoch can be

represented using a set of measures called features. Let s(j) denote the time sample

at time j and s = {s(1), s(2), ...s(N)} be the time sequence for a particular epoch of

length N . We represent each feature as fi(s), which denotes the ith feature computed

on time epoch s.

Once several features from both the time and frequency domains are extracted

from each epoch, we can then represent a signal using a set of feature vectors.
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Figure 4.2: Epilepsy Feature Tensor. X ∈ R
I×J×K represents the multi-

channel EEG data, which are transformed into the feature space by com-
puting certain measures characterizing seizure dynamics. Each entry of
X, xijk, corresponds to the value of jth feature of ith time epoch at kth

channel.

Consequently, the signal from a single channel is represented as a matrix, which

is one of the frontal slices of a third-order tensor. When we use the data from

all channels, we construct a third-order tensor as in Figure 4.2. We do not make

any assumptions about the seizure origin but rather construct the dataset using the

signals from all channels. In this section, we briefly explain the features we use in

constructing epilepsy feature tensors.

4.2.1 Time domain features

4.2.1.1 Hjorth parameters

Hjorth parameters [61] including activity, mobility and complexity are com-

puted as defined in [102] as follows:

Activity : f1(s) = σ2
s

Mobility : f2(s) = σs′/σs

Complexity : f3(s) = (σs′′/σs′)/(σs′/σs)

where σs stands for the standard deviation of a time sequence s; s′ and s′′ denote

the first and second difference of a time series s, respectively. The dth difference of a

time series can be denoted as (1 −B)ds(t), where B is the backshift operator. The

backshift operator applied to a time sample can be represented as Bjs(t) = s(t− j)

[139].
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Figure 4.3: Mean Absolute Slope of epochs from all channels for the
fifth seizure of the second patient in Table 4.1. Epochs marked with blue
and red belong to non-seizure and seizure periods, respectively. Green
epochs are the transition epochs from pre-seizure to seizure or seizure to
post-seizure periods.

4.2.1.2 Mean Absolute Slope

Absolute slope is calculated using the consecutive differences between time

samples in a time sequence: AS(t) = |s(t + 1) − s(t)| for each time sample s(t) in

a time epoch s [108]. In addition to its simplicity and efficiency, absolute slope can

capture both high-amplitude slow and low-amplitude fast activities. We extract the

mean of absolute slopes computed for each time sample in a time epoch as the fourth

feature, f4(s) (Figure 4.3). We believe that this feature would be a more reliable

feature for intracranial EEG recordings, which are not contaminated with artifacts

and a less reliable feature, in our case, for scalp EEG recordings often contaminated

with artifacts. However, we have observed that this feature contributes to seizure

recognition in almost half of the patients in our dataset [Table 4.4].

4.2.1.3 Spatial Information

During visual analysis, neurologists take into consideration not only the sig-

nal from a single channel but also the activity in other channels, especially in the

neighboring channels and expect to observe synchronization. Therefore, in order to

quantify the similarity between neighboring channels in each time epoch, we first
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Figure 4.4: Spatial Information of epochs from all channels for the sec-
ond seizure of the second patient in Table 4.1. Epochs marked with blue
and red belong to non-seizure and seizure periods, respectively. We ob-
serve a clear increase in similarity between neighboring channels during a
seizure period. Green epochs are the transition epochs from pre-seizure
to seizure or seizure to post-seizure periods.

define neighbors for each channel and then use the covariance between neighboring

channels as a feature (Figure 4.4). Let X be a matrix of type: time samples by

channels, for a particular time epoch s. We define spatial information, the fifth

feature extracted from an epoch s, for channel i as f5(s, i) =
∑

j∈NEIGHi
|Cij|,

where NEIGHi contains the neighbors of channel i and C is the covariance matrix

corresponding to the channels in X.

4.2.2 Frequency domain features

4.2.2.1 Frequency Spectrum

We reduce the time series at least to a mean-stationary time series by taking

the first difference of the signal before computing the amplitude spectrum. Then

given a time series s corresponding to a particular epoch, we use a Fast Fourier Trans-

form (FFT) to obtain the Fourier coefficients, ck, where ck = 1
N

∑N
t=1 s(t)e−i 2πk

N
t.

Based on the Fourier coefficients, we construct the amplitude spectrum using |ck|.
The amplitude spectrum is used to extract the sixth feature (f6(s)), which is the

median frequency.
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4.2.2.2 Relative Energy

We extract a set of features from the energy spread of the signals across differ-

ent EEG frequency bands. Five frequency bands in accordance with the traditional

EEG frequency bands ( [104] and references therein) are chosen: δ (0.5 - 3.5Hz), θ

(3.5 - 7.5Hz), α (7.5 - 12.5Hz), β (12.5 - 30Hz) and γ (> 30Hz). We apply continu-

ous wavelet transform between 0.5-50Hz using a Mexican-hat wavelet as the mother

wavelet on each epoch. Wavelet coefficients are later used to observe the energy

spread across these five frequency bands in each epoch. Let Ef be the estimate of

the energy in frequency band f and ET be the estimate for the total energy in all

frequency bands computed as follows:

Ef =
N∑

i=1

S∑
j=1

|cij |2

ET =
5∑

f=1

Ef

where cij denotes the wavelet coefficient corresponding to the ith time sample in an

epoch and jth scale. N is the length of an epoch and S is the number of scales. The

relative energy in each frequency band is then defined as the ratio of the energy in

each frequency band to the total energy (
Ef

ET
).

4.2.2.3 Spectral Entropy

Based on the relative energies computed above, we also compute spectral en-

tropy as a measure used to quantify the uncertainty in the frequency domain. We

compute spectral entropy, H, using Shannon’s entropy measure [110] as follows:

H = −
5∑

f=1

Ef

ET

log(
Ef

ET

)

The list of these features can be easily extended by adding vertical slices to the three-

way dataset given in Figure 4.2. Once the tensor corresponding to each seizure of

a patient (together with the recordings before and after that particular seizure) is

constructed, we build a seizure recognition method using a multilinear regression

model called Multilinear PLS, which we explore in detail in the next section.
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4.3 Multilinear Regression

Regression models, e.g., multiple linear regression, Partial Least Squares (PLS)

and Principal Component Regression (PCR), are commonly applied in prediction

and classification problems in diverse disciplines. While these models are employed

on datasets of order no higher than two (vectors or matrices), the independent

variable in this study, i.e., an epilepsy feature tensor, is a third-order tensor (Figure

4.2). This section briefly describes PLS first and then introduces the regression

model, i.e., Multilinear Partial Least Squares (N-PLS), developed for higher-order

data analysis.

4.3.1 Partial Least Squares

Partial Least Squares regression, similar to multiple linear regression, aims to

build a model y = Xb + e, where X ∈ R
I×J and y ∈ R

I are the independent and

dependent variables, respectively. b ∈ R
J contains the regression coefficients and e

∈ R
I is the error term. Here we formulate the model considering that the dependent

(or response) variable is a single variable (univariate), which is the case throughout

this chapter.

Unlike multiple linear regression, PLS maps the data to a lower-dimensional

space and constructs matrix T whose columns are the extracted factors from original

data X. The model is built using this low-rank approximation of the data. There-

fore, the model can be denoted by y = Tb+e, where T ∈ R
I×N and N < J . In this

respect, PLS resembles Principal Component Regression, which maps the data to a

lower dimensional space before computing the regression coefficients. However, PCR

formulates the mapping without taking into account the dependent variable whereas

PLS uses the response variable while extracting the factors from X. This property

makes PLS a more suitable and successful method for classification problems. The

underlying objective while extracting the factors is to maximize the covariance be-

tween the factors and the dependent variable, or in other words, maxw cov(Xw,y).

The steps for extracting the factors satisfying this objective function is given in

Algorithm 4. For an in-depth discussion about the algorithm and the formulations

of PLS and PCR from an optimization perspective, the reader is referred to [18].
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Algorithm 4 PLS(X, y, N)

1: y0 = y, X0 = X

2: for i = 1 to N do
3: W(:, i) = XT

i−1yi−1

4: T(:, i) = Xi−1W(:, i)/‖Xi−1W(:, i)‖
5: Xi = Xi−1 − T(:, i)T(:, i)TXi−1

6: yi = yi−1 − T(:, i)T(:, i)Tyi−1

7: yi = yi/‖yi‖
8: b = W(TTXW)−1TTy

* A(:, j) represents the jth column of matrix A. The subscript i in Xi and yi indicates
the iteration number.

4.3.2 Multilinear Partial Least Squares

Multilinear PLS is introduced as a generalization of PLS to multiway datasets

[19]. This method can handle the situations where dependent and/or independent

variables are multiway arrays. In this study, we confine our attention to the case

where the independent variable, X ∈ R
I×J×K , is a three-way array of type epilepsy

feature tensor and the dependent variable, y ∈ R
I , is a vector containing the class

assignments of time epochs. Multilinear PLS models the dataset X by extracting a

component, t ∈ R
I , from the first mode such that cov(t,y) is maximized. A pre-

defined number of components, N , is extracted iteratively and the matrix T ∈ R
I×N ,

whose columns are the extracted components (t’s), is constructed. In addition to T,

component matrices, WJ and WK , corresponding to the second and third modes,

respectively are also formed. The notation used for the component matrices indicates

that a component matrix corresponds to the mode with the dimensionality denoted

by the superscript.

The steps of the algorithm are summarized in Algorithm 5. In order to make

a comparison between the algorithms for PLS and N-PLS easily, here we include the

original N-PLS algorithm introduced in [19]. On the other hand, the tri-linear model

fit to the independent data in Step 7 has been later replaced with a Tucker3-like

model. This modification does not have any implications in terms of the regression

part but rather modifies the way the independent variable is modeled [24]. During

our analysis, we use the implementation of N-PLS in PLS Toolbox (by Eigenvector
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Algorithm 5 Multilinear PLS(X, y, N)

1: y0 = y, X0 = X(1)

2: for i = 1 to N do
3: z = yT

i−1Xi−1

Reshape z as a matrix Z ∈ R
J×K such that zmn = z(m + J ∗ (n − 1))

4: {Compute singular value decomposition of matrix Z}
Z = USVT

5: wJ = U(:, 1), wK = V(:, 1)
WJ(:, i) = wJ ,WK(:, i) = wK

6: T(:, i) = Xi−1(w
K ⊗ wJ)

7: Xi = Xi−1 − T(:, i)(wK ⊗ wJ)′

8: bi = (TTT)−1TTyi−1 = T†yi−1

9: {Regression and Deflation}
yi = yi−1 − Tbi = (I − TT†)yi−1

* X(1) stands for the tensor X matricized in the first mode. Xi indicates matricized data in
the first mode updated/deflated by the computation of i components. A(:, j) represents
the jth column of matrix A. WJ and WK correspond to the component matrices in
the second and third mode, respectively. T† stands for pseudo-inverse defined as T† =
(TTT)−1TT .

Research Inc.), which uses the modified version of the algorithm. The underlying

reasons for this modification as well as its advantages are discussed in detail in [24].

Since N-PLS is a regression method and we need a binary classifier to classify

time epochs as seizure and non-seizure, we combine N-PLS with linear discriminant

analysis (LDA). The procedure for combining N-PLS with LDA is as follows: When

we model the training set, Xtrain ∈ R
I×J×K , using N-PLS, we extract the component

matrices corresponding to each mode of a three-way array. Let Ttrain ∈ R
I×N ,

WJ ∈ R
J×N and WK ∈ R

K×N be the component matrices corresponding to the

first, second and third modes, respectively. We can use this model to predict the

labels of the time epochs in other EEG recordings; in other words the labels of

the time epochs in our test set, which contains the left-out seizure of a patient

in patient-specific seizure recognition (Figure 4.5) or the seizures of the left-out

patients in patient non-specific seizure recognition. Let Xtest ∈ R
R×J×K be a third-

order tensor representing the time epochs in our test set. We compute Ttest ∈ R
R×N

using the component matrices WJ and WK extracted from the training set based



72

on the general formula in Equation 4.1 derived in [115]:

R = [w1 (I − w1w
T
1 )w2 ... (

N−1∏
n=1

(I − wnw
T
n ))wN ] (4.1)

Ttest = Xtest (1)R

where Xtest (1) is the matrix formed by unfolding Xtest in the first mode and vector

wi equals to the Kronecker product of ith column of matrices WK and WJ : wi =

wK
i ⊗ wJ

i . Once we obtain the t-scores for the epochs in the test set, we can then

determine the class (seizure or non-seizure) of each time epoch by comparing Ttest

with Ttrain through LDA using a discriminant function as given in Equation 4.2

in [98].

Lg(t) = log(πg) − 1

2
(t − t̄g)

TS−1
within(t − t̄g) + log|Swithin| (4.2)

Lg(t) is the score for the gth group for a time epoch represented by a column vector

t ∈ R
N . πg is a prior probability for each group. A time epoch is assigned to

the group which has the highest score. t̄g indicates the mean of time epochs in

group g and Swithin is the pooled covariance matrix computed as follows: Swithin =

1
I−G

∑G
g=1

∑Ig

j=1(tgj − t̄g)(tgj − t̄g)
T . I and G represent the number of time epochs

and number of groups, respectively, e.g., G = 2 for seizure/non-seizure classification.

Ig is the number of time epochs in group g and tgj is the vector corresponding to the

jth epoch in group g. The prior probabilities are assumed to be the same. Several

other assumptions, e.g., each group following a multivariate normal distribution

with identical covariance matrices, are also made at this step to come up with a

simpler discriminant function as explained in [77].

4.3.3 Feature Selection

Not every feature in our feature set may be a powerful discriminator between

seizure and non-seizure dynamics. Therefore, we identify the significant features for

seizure recognition using a variable selection approach.

Our variable selection method is an extension of Variable Importance in Pro-

jection (VIP) [140] to three-way datasets. VIP is used in two-way regression analysis

and based on the idea of factor models. In linear factor models, several components
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summarizing the data are extracted either to explain the variance in the data, e.g.,

as in PCA, or to capture the correlation between two datasets, e.g., as in PLS or

Canonical Correlation Analysis. The components extracted in these linear factor

models are linear combinations of the variables in the data. The variable selection

method, VIP, computes a VIP-score for each variable in order to quantify a vari-

able’s importance by using the coefficient of a variable in each component together

with each component’s significance in regression. Variables with a VIP-score under

a certain threshold are then removed from the data since they are considered in-

significant. Let X ∈ R
I×J and y ∈ R

I be the independent and dependent variables.

T ∈ R
I×N represents the lower dimensional space X is mapped to and b ∈ R

N

contains the regression coefficients such that we can write y = Tb + e and X =

TW + E, where e and E contain the residuals. The VIP-score of the ith variable

is then calculated as follows [35]:

V IPi =

√
I ×

∑N
n=1 b2

nt
T
ntn(win/|wn|)2∑N

n=1 b2
nt

T
ntn

where wn and tn correspond to the nth column of matrix W and T, respectively and

win is the entry in the ith row of the nth column of matrix W. bn is the regression

coefficient for the nth component; in other words, the nth entry of vector b.

Similarly, in N-PLS we extract component matrices corresponding to each

mode of a higher-order dataset. Each column of a component matrix contains

the coefficients corresponding to the variables in a specific mode and represents a

component, which is a linear combination of the variables. Let the independent and

dependent variables be X ∈ R
I×J×K and y ∈ R

I , respectively and let T ∈ R
I×N ,

WJ ∈ R
J×N and WK ∈ R

K×N be the component matrices corresponding to the first

(time epochs), second (features) and third (channels) modes. In the computation

of VIP scores for variables in one mode of a three-way array, we replace matrix W

with the component matrix in the mode where we select variables, in our case with

WJ corresponding to the features mode. In addition, we compute matrix F, where
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F = X(2)
TWJ and use the columns of matrix F, i.e., fn, instead of t-scores.

V IPi =

√
I ×

∑N
n=1 b2

nf
T
n fn(wJ

in/|wJ
n|)2∑N

n=1 b2
nf

T
n fn

Since the average of squared VIP scores equals 1, a general criterion for variable

selection is to select the variables with VIP score greater than 1. On the other

hand, we just want to remove insignificant variables and include most of the variables

contributing to seizure recognition in our analysis. Therefore, we lower the threshold

to 0.7 and set the threshold to the same value for all patients.

When we analyze epilepsy feature tensors with N-PLS, we have the chance

to select features independent of the channels because N-PLS models the data by

constructing different component matrices for each mode. On the other hand, if we

matricized an epilepsy feature tensor, then we would obtain a matrix of time epochs

by features − channels. In that case, we would not be able to select only features

but we would rather need to select a feature from a particular channel since each

variable would be a combination of features and channels.

4.4 Patient-Specific Seizure Recognition

We build our patient-specific seizure recognition model on a training set con-

structed using all but one seizure of a patient. Once the training set is formed,

the training set is centered across the time epochs mode and scaled within the fea-

tures mode before the analysis since features have different ranges of magnitudes

(See Figure 4.3 and Figure 4.4). Centering/scaling a three-way array is different

than centering/scaling two-way datasets as we have already mentioned in Chapter

2. Before the analysis, the dependent data are also centered. We then regress the

data for all the seizures in the training set onto the y-vector using Multilinear PLS

regression and build a model based on Algorithm 5.

4.4.1 Dataset

Our dataset contains multi-channel scalp EEG recordings of 32 seizures from

9 patients suffering from focal epileptic seizures. Multi-channel scalp EEG signals
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from epilepsy patients with at least three recorded seizures are included in our

analysis. The EEG data have been collected via scalp electrodes in the epilepsy

monitoring units of Yeditepe University Hospital and Albany Medical College. The

recording of EEG with referential electrode Cz is used for computational analysis.

The number of seizures per patient as well as sizes of epilepsy feature tensors with

modes: time epochs, features and channels, are given in Table 4.1. EEG recordings

are not preprocessed to remove artifacts. The data for one of the patients are

sampled at 200Hz and the data for other patients are sampled at 400Hz. Before

the analysis, we apply a bandstop filter at 50 Hz and its harmonics (for the data

from Yeditepe University) and at 60Hz and its harmonics (for the data from Albany

Medical College) to remove the artifacts from the power source.

The data corresponding to a seizure of a patient contain a certain amount of

data before the seizure, the seizure period and a certain amount of data after the

seizure period. Each signal is divided into epochs of 10 seconds. Consequently, each

epoch typically contains 2000 or 4000 samples depending on the sampling frequency.

The epochs are formed using a sliding window approach such that consecutive epochs

differ only in 100 samples. For each epoch we compute the features given in Table 4.4

and a matrix of size number of time epochs×7 is created for the signal from a single

channel. When all channels are included in the analysis, this forms a three-way

array of number of time epochs × 7 × 18 for each seizure (Figure 4.5).

The ictal period is visually identified by neurologists based on EEG seizure

onset for each seizure of a patient. In accordance with the markings, the epochs

are divided into two classes: epochs that belong to the seizure period and the ones

outside the seizure period. The dependent variable, i.e., y-vector in Algorithm

5, corresponding to the time epochs mode of an epilepsy feature tensor is then

constructed such that: yi = 1 if ith epoch is outside the seizure period and yi = 2

if ith epoch belongs to the seizure period. Since epochs are formed using a sliding

window approach, some epochs contain samples from both pre-seizure and seizure

periods or both seizure and post-seizure periods. These epochs are excluded from

training and test sets so that the performance of the model is not affected by epochs

containing the characteristics of different seizure dynamics.
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Table 4.1: EEG Dataset for Patient-Specific Seizure Recognition. The
last column shows the size of the epilepsy feature tensor with modes:
time epochs, features and channels. Each tensor contains a seizure as
well as data before and after that seizure. The number of epochs (first
mode) in each tensor differs depending on the duration of a seizure.

Patient ID Seizure ID Size of Epilepsy Feature Tensor
1 302 × 7 × 18
2 386 × 7 × 18

1 3 320 × 7 × 18
4 398 × 7 × 18
5 444 × 7 × 18
1 878 × 7 × 18
2 866 × 7 × 18

2 3 902 × 7 × 18
4 986 × 7 × 18
5 998 × 7 × 18
1 790 × 7 × 18

3 2 746 × 7 × 18
3 1034 × 7 × 18
1 1174 × 7 × 18

4 2 1346 × 7 × 18
3 1170 × 7 × 18
1 62 × 7 × 18

5 2 74 × 7 × 18
3 458 × 7 × 18
1 226 × 7 × 18

6 2 186 × 7 × 18
3 186 × 7 × 18
4 186 × 7 × 18
1 638 × 7 × 18

7 2 630 × 7 × 18
3 578 × 7 × 18
1 866 × 7 × 18

8 2 1082 × 7 × 18
3 842 × 7 × 18
1 1442 × 7 × 18

9 2 1814 × 7 × 18
3 1294 × 7 × 18
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4.4.2 Results and Interpretations

We determine the performance of the model for a patient by computing the

average performance over all seizures of that patient. We build a training set using

all but one seizure of a patient. We use the training set to determine the number

of components in N-PLS and also to select a subset of features. We then test the

model on the left-out seizure of that particular patient.

As a performance evaluation criterion, we use the geometric mean of sensitivity

and specificity, which is called g-means defined as g =
√

sensitivity × specificity

[80]. Sensitivity indicates the proportion of the true-positives to the sum of true-

positives and false-negatives, where true-positives are the time epochs that belong to

the seizure period and are classified as seizure; false-negatives are the seizure epochs

that are classified as non-seizure. Specificity, on the other hand, is the ratio of true-

negatives to the sum of true-negatives and false-positives, where true-negatives are

the time epochs that belong to non-seizure period and are classified as non-seizure;

false-positives are the non-seizure epochs classified as seizure.

Table 4.2 demonstrates the performance of the model on nine patients, who

have at least three recorded seizures. We show the average g-means for each patient

both with feature selection and without feature selection. We observe that feature

selection is especially useful for Patient 4, 5 and 6 to detect seizures. For instance in

Patient 5, who has three seizures, first two seizures are not detected at all without

feature selection and this results in very poor performance (since sensitivity is 0 for

the undetected seizures). On the other hand, when we select a subset of features

based on the EEG signals of the patient in the training set, we refine the model and

detect all seizures of the patient with average g-means around 83%.

Table 4.4 shows the subset of features used in seizure-recognition for each

patient. Since we form training sets by leaving-out one seizure at a time, differ-

ent features can be selected from each training set. The features given in Table

4.4 correspond to the union of subsets of features selected from each training set.

These subsets of features can be further used to understand the differences between

patients. For instance, different seizure locations may result in differences in the

features used for seizure recognition. Nevertheless, we should point out that feature
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selection may also result in overfitting the seizures in the training sets. Therefore,

in the cases where there is variation among seizures of a patient, feature selection

may degrade the performance.

Furthermore, we assess the performance of the multi-modal data construction

and modeling approach by comparing its performance with that of a two-way clas-

sification model. We unfold the epilepsy feature tensor in the time epochs mode as

shown in Figure 2.3 and then use SVM [130] to classify epochs as seizure and non-

seizure. Similarly, [112] has previously proposed a patient-specific seizure detection

model by representing each time epoch with a feature vector and then classifying

the time epochs using SVMs. When we unfold the epilepsy feature tensor in the

time epochs mode, we have 7×18 = 126 features corresponding to each time epoch.

We employ SVM2 to classify the time epochs based on those 126 features. For each

patient, we build a patient-specific model using all but one seizure of a patient and

then test the model on the left-out seizure and recordings before and after that

particular seizure. After each seizure is left-out once, we compute the average per-

formance of the model for each patient. We use radial basis function kernel with

a parameter adjusted for each patient. The parameter for each patient is deter-

mined using cross-validation on the training set similar to the way the number of

components for an N-PLS model is determined (discussed in Parameter Selection in

Section 4.6).

Table 4.2 demonstrates the performance of seizure recognition using a two-way

approach for each patient. We observe that while SVM has a fairly good performance

in terms of seizure detection, for the cases when it performs poorly, our multi-

modal approach using feature selection improves the performance of the model. For

example, in Patient 5, two-way analysis approach cannot detect one of the seizures at

all and this results in low average g-means while NPLS+LDA with feature selection

can capture all seizures. By preserving the multi-modality of the data, multiway

data analysis keeps the model simple and makes the interpretation easier so that we

can easily select features, which in turn would improve the performance resulting in

some cases in much better performance than SVM.

2Implementation of support vector machines called SV M light [65] is used in the analysis.
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Figure 4.5: Patient-Specific Seizure Recognition Model. Multi-channel
EEG signals corresponding to the data before, during and after each
seizure of a patient are arranged as a third-order epilepsy feature tensor.
Then training and test sets are constructed by leaving out one seizure
(together with data before and after that seizure period) at a time. The
model built on the training set is used to predict the labels of the time
epochs in the test set using N-PLS and LDA. Final step is performance
evaluation using the average performance of the model on test sets.
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Table 4.4: Subsets of features used in the patient-specific seizure recog-
nition model of each patient. Patient 1, 2, 7 and 8 have right temporal
seizures. Patient 3 suffers from left frontal while Patient 4 and 9 suffer
from left temporal seizures. Patient 5 is bilateral central frontal and Pa-
tient 6 is bilateral occipital. While subsets of features tend to be similar
based on seizure origins, it is not possible to make generalizations on a
small set of patients.

PID 1 Activity Mobility Complexity Mean Abs. Spatial Median Spectral
Slope Info Freq. Entropy

1 � � � � � × �
2 � � � � � × �
3 � � � × � × �
4 � � � × � × �
5 � � � × × × �
6 � � � × � × ×
7 � � � � � × �
8 � � � � � × ×
9 � � × × � × ×

1 PID stands for patient id.

4.5 Patient Non-Specific Seizure Recognition

In patient-specific seizure recognition, several seizures of a patient need to be

recorded first in order to construct a training set. Only after we have those prior

seizures, we can build a model specific to that particular patient. On the other hand,

the ideal and practical approach is to build a model on seizures of some patients,

which have been already recorded and then use that model to recognize seizures

of new patients. This approach is called patient non-specific seizure recognition.

Patient non-specific seizure recognition is more challenging than patient-specific

cases considering that patients suffer from seizures with different morphologic and

topographic characteristics and training on one type and testing on another may not

perform well. In this section, we develop a patient non-specific seizure recognition

model and emphasize the changes we make to the patient-specific seizure recognition

approach to model the inter-patient variation.
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4.5.1 Dataset

Our dataset contains 26 seizures from 9 patients suffering from temporal

seizures. Six patients have right temporal seizures while the seizures of the re-

maining three patients are left temporal. The number of seizures for each patient,

sizes of epilepsy feature tensors and the lateralization of the epileptic focus are given

in Table 4.5. We choose only the patients with temporal seizures for our analysis and

include both left and right temporal seizures in order to explore whether the location

of an epileptic focus affects the performance of the model. The EEG data have been

recorded in epilepsy monitoring units of Yeditepe University Hospital and Albany

Medical College using the referential montage according to Cz electrode. Similar to

the case in patient-specific seizure recognition in the previous section, we filter the

noise from the power source by applying bandstop filters at 50Hz and its harmonics

for the data from Yeditepe University Hospital and at 60 Hz and its harmonics for

the data from Albany Medical College. Apart from this filtering process, no other

method is used to remove artifacts such as eye blinks, eye movements or muscle

artifacts.

The same approach as in patient-specific seizure recognition is used for con-

structing an epilepsy feature tensor for each seizure of a patient including data from

pre-seizure and post-seizure periods in addition to the seizure itself. However, there

are two main differences in the construction of epilepsy feature tensors.

4.5.1.1 Additional Features

The first difference in tensor construction is that we include four features

quantifying the relative energy in different frequency bands in addition to the seven

features used in the previous section. The frequency spectrum is divided into five

bands, which are defined in Section 4.2. We include the relative energies in θ, α, β

and γ bands. The first band corresponding to 0-3.5Hz interval is ignored since it

has been discussed in [105] that non-seizure sleep EEG can be frequently available

between 0-3 Hz. Consequently, the dimensionality of the tensors in the second mode

given in Table 4.5 is 11 instead of 7.

We should point out that it is possible to use these features while building
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the patient-specific seizure recognition model as well. We have observed that even

though the performance of the model for some patients increases, the average per-

formance over all patients drops when these features are included in patient-specific

seizure recognition. On the other hand, these additional features improves the per-

formance of patient non-specific seizure recognition on the sample dataset given in

Table 4.5. Therefore, we use seven of the eleven features for patient-specific seizure

recognition while we use all eleven features for patient non-specific seizure recogni-

tion. As we have already mentioned, the feature sets used in building these models

can be easily modified by adding/removing vertical slices to/from epilepsy feature

tensors.

4.5.1.2 Handling inter-patient differences

The second difference is the way the tensor is preprocessed before the analysis.

One of the main challenges in developing a patient non-specific seizure recognition

model is to handle the inter-patient variation. We have observed that orders of

magnitude of features differ remarkably from one patient to another. When we

normalize features in order not to just model the features with higher magnitudes

but to give equal importance to every feature, seizures of some patients are not well-

modeled and become unrecognizable unless we take into consideration the variation

between different patients.

We have identified that activity and spatial information are the two features

that have quite different orders of magnitude across different patients as illustrated

in Figure 4.6. In order to alleviate this problem, we take the log of the features

instead of using their actual values. Another way around this problem would be to

redefine each feature in a relative fashion; relative in the sense we define relative

energies in different frequency bands if possible or relative based on some reference

signal specific to a patient [105].

4.5.2 Results and Interpretations

We evaluate the performance of our patient non-specific seizure recognition

model by training the model on the seizures of all but one patient. Then we test the

model on the seizures of the left-out patient and compute the average performance
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Table 4.5: EEG Dataset for Patient Non-Specific Seizure Recogni-
tion. Each epilepsy feature tensor contains a seizure as well as data
before and after that seizure. The number of epochs (first mode) in
each tensor differs depending on the duration of a seizure.

Patient ID Seizure ID Size of Epilepsy Feature Tensor Epileptic Focus
1 1 1382 × 11 × 18 RT 1

1 302 × 11 × 18
2 386 × 11 × 18

2 3 320 × 11 × 18 RT
4 398 × 11 × 18
5 444 × 11 × 18
1 878 × 11 × 18
2 866 × 11 × 18

3 3 902 × 11 × 18 RT
4 986 × 11 × 18
5 998 × 11 × 18
1 1174 × 11 × 18

4 2 1346 × 11 × 18 LT 2

3 1170 × 11 × 18
1 638 × 11 × 18

5 2 630 × 11 × 18 RT
3 578 × 11 × 18
1 866 × 11 × 18

6 2 1082 × 11 × 18 RT
3 842 × 11 × 18

7 1 626 × 11 × 18 LT
2 734 × 11 × 18
1 1442 × 11 × 18

8 2 1814 × 11 × 18 LT
3 1294 × 11 × 18

9 1 1238 × 11 × 18 RT
1 RT stands for right temporal.
2 LT stands for left temporal.

of the model for that patient. We determine the number of components extracted

by N-PLS using cross-validation on the training set by leaving out one seizure at

a time. The component number, which gives the best overall performance in the

training set, is selected to build the model. As in patient-specific seizure recognition,

we preprocess the training set first and then preprocess the test set accordingly.

However, unlike in patient-specific case, we should keep in mind that the training
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Figure 4.6: The figures show how one of the features, i.e., activity, be-
haves during seizures of some patients from Table 4.5. The epochs repre-
sented in blue and red correspond to the non-seizure and seizure periods
while the epochs in green contain time samples from both seizure and
non-seizure periods. We observe that there is significant order of magni-
tude difference between seizures of different patients.

set contains seizures of different patients and this may have complications as we

further discuss in the next paragraph.

The geometric mean of sensitivity and specificity is used as the performance

evaluation criterion. The second column of Table 4.6 shows the performance of the

patient non-specific seizure recognition model. While we can successfully classify

seizure and non-seizure epochs for most of the patients, we observe that the perfor-

mance of the model is not good for Patient 4, 8 and 9. Our hypothesis is that these

failures are due to scale differences between different patients but not due to, for

instance, different lateralizations of an epileptic focus. In order to show the under-

lying reason for low performance, we individually preprocess each patient in such

a way that the seizures of each patient are separately centered across time epochs
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Table 4.6: Seizure vs. Non-seizure. Performance of three-way (NPLS-
based) approach in terms of the geometric mean of sensitivity and speci-
ficity of the model. The different columns correspond to different pre-
processing techniques explained in the text.

Patient ID NPLS+LDA (v1) NPLS+LDA (v2) NPLS+LDA (v1+heuristic)
1 87.7% 81.4% 89.0%
2 88.8% 87.0% 90.2%
3 83.7% 88.1% 85.2%
4 41.9% 84.7% 39.8%
5 95.6% 94.9% 96.9%
6 95.6% 92.6% 95.6%
7 94.5% 88.1% 95.6%
8 69.6% 71.1% 69.3%
9 68.1% 72.8% 68.6%

MEAN 80.6% 84.5% 81.1%

mode and scaled within features mode. Consequently, seizures in the test set are

not preprocessed according to the training set. When we build and test the model

after such a preprocessing approach, the performances given in the third column

of Table 4.6 are obtained. We observe a dramatic increase for some patients, e.g.,

the performance of Patient4 increases from about 42% to 85%. Figure 4.7 further

illustrates the reason of this increase in performance. When we use the training

set containing seizures of other patients to preprocess the seizures of a patient in

the test set, we can only partially recognize a seizure as shown on the top figure

in Figure 4.7. On the other hand, if we individually preprocess each patient using

his/her own seizures, we then recognize most of the seizure and sensitivity of the

model increases resulting in a better performance in terms of g-means. Even though

we get lower performance for some patients with the first approach, we still use this

approach but also make use of individual preprocessing in order to understand the

underlying reason of low performances in some patients. We emphasize here that

low performances are due to the order of magnitude differences among patients. Log

transformation of some features improves the performance considerably but further

improvements are still needed in order to fully handle inter-patient variation.

Even though g-means is used to assess the performance of a seizure recognition
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Figure 4.7: Performance of the patient non-specific seizure recognition
model with different preprocessing approaches for the fourth patient in
Table 4.5. Blue and red dots correspond to true and predicted classes
of time epochs, respectively. The figure at the top shows that we can
only partially detect the seizure; in other words we can only classify the
epochs at the end of the seizure as seizure when we preprocess the test
set according to the whole training set containing seizures of different
patients (the second column of Table 4.6). On the other hand, if we
preprocess each patient separately, then we observe that we can detect
almost the whole seizure period with a short delay at the beginning of
the seizure (the third column of Table 4.6).

model in this study, specificity is often the main concern. Seizure recognition models

with high false-positive rates resulting in unnecessary seizure notifications would

lose reliability over time and high false-positive rate is the main problem of current

seizure detection and prediction techniques. When we further explore our model,

we observe that the model sometimes wrongly predicts one or two isolated epochs as

seizure. We can eliminate these false-positives using a heuristic, which suggests that

it is not seizure until, for instance, ten consecutive epochs are classified as seizure.
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In [112] a similar approach is used to handle the same problem by classifying an

epoch as seizure only if three consecutive 2-second epochs are classified as seizure.

We demonstrate the performance of the model in the fourth column of Table 4.6

when the original model (performance of which is given in the second column of

Table 4.6) is modified using such a heuristic. The performance for most patients

slightly increases since the isolated epochs wrongly-classified as seizure are converted

to non-seizure epochs. Even though there is no significant performance change, it

may be essential to use such a heuristic in order to increase the reliability of a model.

4.6 Parameter Selection

In both patient-specific and patient non-specific seizure recognition, our model

is based on N-PLS. As seen in Algorithm 5, the number of components in N-PLS,

N , is a user-defined parameter. In order to determine N , we use cross-validation

on the training set. Each seizure in the training set is left out once and tested for

different number of components ranging from 1 to pre-defined maximum number of

components. We then compare the predictions obtained by the model for all seizures

in the training set with their actual labels. The component number, which gives the

best overall classification performance in terms of both sensitivity and specificity, is

selected to build the model to be used on the test set.

In addition to the number of components N , there are other parameters to

be determined in our analysis. For instance, we set the duration of an epoch to 10

seconds. It has been set to different values in the literature, e.g., 1 second [102], 2

seconds [105,112], 10 seconds [129] and around 20 seconds [93]. Besides, the duration

of overlap between consecutive epochs, the maximum number of components in an

N-PLS model and the threshold for a VIP score for feature selection are some of the

other user-defined parameters. In this study, for each parameter we use the same

value for each patient. In future studies, the sensitivity of the performance of the

model on each patient to each one of these parameters should be explored further.
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4.7 Summary and Discussions

Epileptic seizures are often detected by visually analyzing large amounts of

EEG data recorded over nights and days. Therefore, a system automatically mark-

ing seizures would save manpower as well as remove the subjectivity of the visual

process. We introduce a multi-modal data construction and analysis approach for

seizure recognition using multi-channel scalp EEG signals. Multi-modality of the

data enables us to represent EEG signals from multiple channels using various fea-

tures from different domains as a third-order tensor called an Epilepsy Feature

Tensor with modes: time epochs, features and channels. We analyze these multiway

arrays using a multilinear discriminant analysis based on N-PLS in order to classify

time epochs as seizure or non-seizure. We develop both patient-specific and patient

non-specific seizure recognition models and our results demonstrate that multiway

data analysis can detect seizures with promising performance. Furthermore, multi-

way models also have the potential to improve our understanding of different seizure

structures by giving us the chance to compare seizures of patients through the fea-

tures used in seizure recognition.

Our datasets contain data before and after each seizure as well as the seizure

itself and we evaluate the performance of our model using out-of-sample test sets.

Another good test case is to use inter-ictal data, which contain inter-ictal epilep-

tiform waves but do not have any epileptic seizures. Neurologists visually analyze

these signals to decide whether an outpatient may have an epileptic disorder. We

make use of such a dataset of 4-minute long from Patient 7 in Table 4.5 as a control

dataset and use our model trained on all patients except for Patient 7 to predict the

labels of the epochs in this dataset. We do not get any false-positives and the label

of each epoch in the test set is successfully predicted as non-seizure. Nevertheless,

our inter-ictal control data are quite short and the performance of the model would

be better assessed if it was thoroughly tested on continuous inter-ictal EEG [84].

We have tried to extract various features that can differentiate between seizure

and non-seizure periods. However, it is important to emphasize that what we call

a set of non-seizure epochs is not homogeneous and contains epochs from both pre-

seizure and post-seizure periods. In other words, there are two different classes
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reflecting different brain dynamics within the set of non-seizure epochs. There-

fore, we also explore whether the features, which we use in representing our EEG

signals, can capture the differences between pre-seizure and post-seizure periods.

Table 4.3 shows that if we only analyze the data from pre-seizure and post-seizure

periods, we can classify epochs into pre-seizure and post-seizure classes with very

high performance for most of the patients. These results suggest that pre-seizure

and post-seizure periods are not very similar in terms of the features we use in

our analysis. With a goal of identifying whether the subset of features used for

differentiating between seizure and non-seizure differs from the subset of features

distinguishing between pre-seizure and post-seizure, we model the data for each

patient using N-PLS enabling feature selection. In order to capture the features

differentiating between pre-seizure and post-seizure, we exclude the seizure part of

the data and just focus on modeling pre-seizure and post-seizure epochs. The re-

sults reveal that the subsets of features for these two classification problems are not

distinct. Consequently, we cannot, for instance, exclude the subset of features differ-

entiating between pre-seizure and post-seizure epochs from the feature set in order

to get better classification of seizure and non-seizure epochs because same features

may play an important role in both classification problems. Figure 4.8 illustrates

one of the features, i.e., mean absolute slope, across different epochs: pre-seizure,

seizure and post-seizure. We can see that it can discriminate between seizure and

non-seizure as well as pre-seizure and post-seizure. In future studies, extracting

features, which are different only in seizure period but behave quite similarly in

pre-seizure and post-seizure periods, may improve the performance of the model.

In [91], the performance of different approaches in seizure detection has been

summarized by presenting the classification accuracies given in the literature for the

publicly available EEG dataset described in [14]. We would like to point out that

comparison of our results with those would be misleading due to major differences in

the type of the data. In this study, we aim to differentiate between non-seizure and

seizure phases using multi-channel EEG data recorded extracranially (scalp EEG).

We have also mentioned that non-seizure phases correspond to pre-seizure and post-

seizure periods. Therefore, our goal is to mark the seizure period. On the other
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Figure 4.8: The figure illustrates how differently mean absolute slope
behaves in pre-seizure, seizure and post-seizure periods for one of the
seizures of Patient 1 from Table 4.1. This feature, therefore, can differ-
entiate between seizure and non-seizure as well as pre-seizure and post-
seizure epochs. The epochs represented in blue and red correspond to
the non-seizure and seizure periods while the epochs in green contain
time samples from both seizure and non-seizure periods.

hand, in previous work ( [91] and references therein), even if the problem definition

is presented as the differentiation of non-seizure and seizure periods, the concept of

non-seizure is defined differently. Epochs that belong to a non-seizure period include

seizure-free data from healthy patients recorded extracranially as well as seizure-free

data from epilepsy patients recorded intracranially (iEEG). Consequently, in our

case, it is more challenging to differentiate a few seconds before and after a seizure

period from the seizure compared to differentiating EEG of a healthy patient from

the seizure. Besides, we obtain these results using scalp EEG recordings.

Final remark is regarding to the computational complexity of the construction

of epilepsy feature tensors and their analysis using multiway analysis techniques.

The performance bottleneck in this approach is the construction of an epilepsy

feature tensor, in particular the computation of the features, which are based on

continuous wavelet transform. Spectral entropy and relative energies in different

frequency bands are computed using continuous wavelet transform and its compu-

tational complexity is O(NlogN) per scale or O(N) per scale at best [135], where
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N is the size of an epoch. This computation is repeated for each epoch from each

electrode resulting in high time complexity compared to the computations of other

features, which are linear in the size of an epoch. Since our main concern has not

been the computational complexity but rather the performance of the model in terms

of sensitivity and specificity, we have focused on a variety of features regardless of

their computational complexities and regardless of the computational complexity of

a specific implementation. Nevertheless, in order to apply this approach on very

large datasets or in real-time, special attention should be paid to the computational

complexity of each feature included in the analysis.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Previous chapters outline the underlying multi-modal approaches we propose to

automate the analysis of epileptic EEG signals with a goal of detecting seizures,

localizing seizure origins and understanding seizure dynamics. In this chapter, we

give an outline of future research directions that should be explored further.

5.1 Epileptic Seizure Localization

We have introduced our multi-modal seizure localization approach, which re-

arranges multi-channel ictal scalp EEG data as a third-order Epilepsy Tensor with

time samples, frequency and channels modes in order to automatically localize a

seizure origin. We then model the third-order tensor using a PARAFAC model. Af-

ter modeling the data using a PARAFAC model, we have so far relied on the clinical

feedback from neurologists to identify whether a rank-one tensor corresponds to a

seizure or an artifact. On the other hand, for a fully automated seizure localization

system, an automated approach should be developed to identify the rank-one tensor

corresponding to the seizure and then use its component in the channels mode to

localize the seizure origin.

Another observation in our study is that while the seizure localization is re-

stricted to a smaller area and the concordance with visual analysis is high in some

patients, e.g., patients with tumor, lateralization is well-defined but localization is

more widespread in some other patients, e.g., patients with mesial temporal sclerosis

(MTS). This observation may emphasize the limitations of scalp EEG recordings in

terms of spatial resolution since seizures spread to a larger area by the time they

reach the scalp in MTS patients and that wider area is what scalp EEG recordings

can capture. It would be interesting to look for the correlation between the accu-

racy of the models and types of epilepsy patients in more detail using a larger set

of patients with different etiological pathologies.

Finally, we would like to point out that although multiway analysis methods

93
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are powerful enough to capture the multilinear structure of the data, the models can

only extract factors that are linear combinations of the features. Therefore, they

cannot capture the nonlinear relationships among samples. Since current nonlinear

methods are limited to two-way arrays, nonlinear structures in multiway arrays

cannot be captured by classical nonlinear analysis techniques, either. With a goal

of understanding the relationship between electrodes better, we believe that our

preliminary studies on the analysis of EEG signals by combining kernel methods

with a multilinear model [2] should be studied more in depth. This approach has

also recently been applied in another discipline, i.e., image synthesis and recognition,

by applying HOSVD in feature space [85].

5.2 Epileptic Seizure Recognition

We have constructed multi-modal datasets from multi-channel scalp EEG

recordings using various features from different domains. These datasets have been

analyzed using models based on N-PLS, which is a generalization of PLS to higher-

order datasets in order to automatically mark an epileptic seizure by differentiating

between seizure and pre-seizure/post-seizure periods. We have also compared multi-

modal approaches in patient-specific seizure recognition with a two-way approach

based on SVMs and discussed their performance in terms of interpretation and

classification. However, available multiway models, e.g., multilinear PLS, cannot

capture the nonlinear relationships between the variables unlike SVM-based tech-

niques capable of capturing the nonlinearity in the data using kernels. Therefore,

if mapping the features into a higher dimensional space improves the performance

of the models, multiway models may also be extended to nonlinear multiway mod-

els, either by mapping the data to the feature space explicitly or incorporating the

kernel matrix into the algorithms and the design of the models.

Besides, in this study we have combined N-PLS regression with LDA in order

to classify time epochs as seizure or non-seizure. Nevertheless, this approach can

be considered to be an ad-hoc approach, which initially solves a regression problem

and then combines it with a discriminant analysis. An alternative approach would

be to replace the least squares loss function in N-PLS with another loss function in
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order to solve the classification problem in a single step generalizing the approach

introduced in [92] to higher-order datasets.

Furthermore, since there are order of magnitude differences in the ranges of

some features used in constructing our datasets, we have employed log transfor-

mation for handling the inter-patient variation in order to successfully recognize

seizures by training the model on seizures of some patients and testing on seizures

of other patients. We have showed that the performance would be much better if we

do not have that kind of variation between patients at the first place by individually

preprocessing each patient. Approaches other than log transform that could work

as well as individually preprocessing each patient should be developed. Once this

is achieved, the next step should be to understand the occurrence of false-positives

better, inspect what kind of activities on raw EEG data may result in false-positives

in the model and how those can be prevented. We also want to point out that we

have used a specific montage in our analysis but the performance of different mon-

tages may vary and it would be interesting to assess the performance of different

montages.

Another extension of our study in Chapter 4 should be to have a larger set of

patients suffering from seizures with localization other than temporal lobes. We have

limited our analysis to right and left temporal seizures for patient non-specific seizure

recognition and we have not identified any dependence on localization. Neverthe-

less, for instance, frontal seizures or seizures with different lateralizations should be

included in the dataset and the performance of the model should be assessed using

a larger set of patients with different characteristics.

As we have also mentioned at the end of Chapter 4, a good way to evaluate the

performance of the model is to use continuous multi-channel inter-ictal EEG datasets

as the control data. Consequently, this suggests that for a thorough evaluation

of a model, we need an annotated data archive representing different aspects of

possible epileptic seizures. It is also important to have shared databases so that

the performance of different models can be compared on the very same dataset.

The efforts for creating such databases have been underway by the organizers of

International Workshop on Epileptic Seizure Prediction. The fourth workshop in
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this series will be held in 2009 [147].

5.3 Epileptic Seizure Prediction

Our multi-modal data construction and analysis approach can also be applied

for epileptic seizure prediction. Unlike seizure recognition, where our goal is to

differentiate between non-seizure and seizure periods, the focus in seizure prediction

is to distinguish between inter-ictal and pre-ictal periods. The aim is to predict

seizures as early as possible in order to be able to develop a warning system for

upcoming seizures. Together with neurologists, the pre-ictal period can be marked

to a certain duration prior to the seizure onset. The model can then be trained

on some inter-ictal and pre-ictal data of a patient and later used to predict other

seizures of that particular patient (patient-specific seizure prediction). However, the

ideal case would again be to predict the seizures of a patient by training the model

on seizures of other patients (patient non-specific seizure prediction). Evaluation

of a seizure prediction system is more challenging than seizure recognition since

false-alarms mean unnecessary warnings of a seizure and they are more critical.

Therefore, the system should have high sensitivity, very low false-alarm rate as well

as a well-defined prediction horizon.

This seizure prediction approach can also be extended to real-time seizure pre-

diction by building a seizure prediction model on a training set offline and then using

this model to monitor and process EEG signals in real-time. The computationally

expensive part of real-time seizure prediction is to build the model on a large set of

training data. Since this part can be performed offline, the model can be efficiently

used to predict the labels of the new data stream.

However, proving that this approach is better than any other approach pro-

posed in the literature would be challenging. It should be demonstrated that the new

approach can provide lower false-alarm rates and has a better temporal resolution.
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