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This thesis focusses on solutions for a more extensive use of full-
scale historical production records in data mining, process optimi-
zation and problem-solving in the bioindustry. In modern biotech 
production, a massive number of diverse measurements, with a 
broad diversity in information content and quality, are stored in 
data historians. This data is rarely used outside its direct scope due 
to lack of efficient and suitable procedures for thoughtful data re-
trieval, evaluation, pre-processing and extraction of the informa-
tion (modeling). This dissertation work is meant to address the 
challenges and difficulties related to ‘recycling’ of historical data 

from a full-scale manufacturing of industrial enzymes.
Specific chemometric modeling techniques designed for the complex data systems have 

been examined. These methods maintain the natural structure of the analyzed data by block-
ing information either in the row (production runs) or column (process parameter types) di-
rection. The complex data structures are decomposed into intuitively interpretable solutions 
as the important patterns in the data are extracted and visualized. When these patterns are 
realized and understood, it can lead to a better process understanding in a faster way than 
traditional mechanistic modeling techniques.
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Summary 

In modern biotech production, a massive number of diverse measurements, with a 

broad diversity in information content and quality, is stored in data historians. The 

potential of this enormous amount of data is currently under-employed in process 

optimization efforts. This is a result of the demanding steps required in thoughtful 

data retrieval from the historian and the subsequent data pre-processing steps. 

Furthermore, efficient methods are needed capable of handling the data in the 

natural structure in which it was generated. 

This dissertation work is meant to address some of the challenges and difficulties 

related to ‘recycling’ of historical data from full-scale manufacturing of industrial 

enzymes. First, the crucial and tedious step of retrieving the data from the systems is 

presented. The prerequisites that need to be comprehended are discussed, such as 

sensors accuracy and reliability, aspects related to the actual measuring frequency 

and non-equidistance retaining strategies in data storage. Different regimes of data 

extraction can be employed, and some might introduce undesirable artifacts in the 
final analysis results (POSTER II1). Several signal processing techniques are also 

briefly discussed and examples of applications presented, e.g. how to compensate for 

sensors with low signal to noise ratio or the handling of artifacts in the data. A 

second important step is alignment and synchronization of process data. This is 

particularly significant when looking at the relation between sequences of unit 

operations separated in time and, even more so when working with (semi-) 

continuous processes when generating the time series data. For this application, the 

potential of auto- and cross-correlation analysis and the effect of the prerequisite 

signal de-trending are explored in the context of the continuous granulation-drying 

process (POSTER I). 

                                                 

1 Posters and papers marked by all-capitals can be found at the end of this thesis 
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The research presented in this thesis is primarily centered on the ultrafiltration step 

during which enzymes are purified and up-concentrated. The throughput of a 

continuous ultrafiltration operation is limited by the membrane fouling phenomena 

where the production capacity - monitored as flow through the membrane or flux - 

decreases over time. The flux varies considerably from run to run within the same 

product and likewise between different products. This variability clearly affects the 

production scheduling and leads to additional costs due to the more frequent 

membrane cleaning. The dataset examined in this investigation was compiled from 

records of conventional, univariate process sensors collected over several years of 

production of one type of intermediate enzyme products. Different strategies for the 

organization of these datasets, with varying number of timestamps, into data 

structures fit for latent variable (LV) modeling, have been compared. The ultimate 

aim of the data mining steps is the construction of statistical ‘soft models’ which 

capture the principle or latent behavior of the system under investigation. If this 

leads to new knowledge, it could be used for optimization of future production runs. 

Data reduced to mean value per run, combined with some other relevant features, 

has been used together with PLS2 regression in the primary investigation. It allowed 

us to identify the major differences between the processing variants of the 

investigated enzyme. Data arrangement into three-way cubes has been achieved by 

limiting the datasets to the median length. Studies with LV techniques after the 

batch-wise unfolding did not led to any special findings. Hence, it has been 

concluded that the process can be modeled sufficiently well when the datasets are 

concatenated variable-wise. The later studies used this type of data arrangement and 

focused only on the products with higher concentration degree as in those cases the 

flux decline problem has been the most pronounced. Blocking in the row or time 

direction was used in PAPER II. The dataset has a natural multilevel structure with 

level one being the process timestamps which are nested within the ultrafiltration 

runs, referred to as level two. Multilevel Simultaneous Component Analysis with 

invariant Pattern (MSCA-P) is applied to explore this historical dataset in the context 

of flux decline. We build on the two-level idea and expand the model to a third level: 

‘processing recipe’. In PAPER III blocking in the column or process tags direction has 

been used. A multiblock PLS breaks the process variables into smaller groups, 

clustering variables of similar importance and characteristics, to facilitate the 
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diagnostic procedure. Both methods lead to decomposition of the data structures into 

intuitively interpretable solutions by keeping the natural structure of the analyzed 

data.  

Additionally, the ultrafiltration system has been also investigated in terms of product 

yield. The potential of NIR technology to monitor the activity of the enzyme has been 

the subject of a feasibility study presented in PAPER I. It included (a) evaluation on 

which of the two real-time NIR flow cell configurations is the preferred arrangement 

for monitoring of the retentate stream downstream to the UF, and (b) if the system 

can be used for statistical process monitoring and early warning/fault detection. It 

was possible to develop satisfying robust calibration models for four types of enzyme 

products where specific enzyme activities have been standardized into one global 

QC parameter. Finally, the study revealed that the less demanding in-line flow cell 

setup outperformed the on-line arrangement. The former worked satisfactory robust 

towards different products (amylases and proteases) and associated processing 

parameters such temperature and processing speed.  

This dissertation work shows that chemometric methods specially designed for two‐

way and multiset problems have great potential as PAT tools as they fulfill the 

primary goal of PAT, namely to obtain a better process understanding in a faster and 

more intuitive way, especially when preserving the original data structure and 

dimensionality.  
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Resumé 

I moderne bioteknologisk produktion er et massivt antal af forskellige målinger, med 

stor variation i informationsindhold og kvalitet, gemt i historikdata. Potentialet i 

denne enorme mængde data er i øjeblikket ikke udnyttet til fulde i 

procesoptimeringstiltag. Dette er et resultat af de krævende trin, der er nødvendige 

for en gennemtænkt datahentning fra historikken og de efterfølgende trin med 

forbehandling af data. Endvidere er der behov for effektive metoder, som er i stand 

til at håndtere data i dets naturlige struktur, svarende til den kontekst det var 

genereret i. 

Formålet med denne afhandling er at adressere nogle af de udfordringer og 

vanskeligheder, som er forbundet med "genbrug" af historiske data fra en fuld‐skala 

produktion af industrielle enzymer. Først præsenteres det afgørende og besværlige 

trin med at hente data fra systemerne. Forudsætningerne, som er nødvendige at 

forstå, diskuteres, såsom sensorernes nøjagtighed og pålidelighed, aspekter i 

forbindelse med den reelle målefrekvens og ikke‐ækvidistante opsamlingsstrategier i 

dataopbevaring. Forskellige systemer kan anvendes til at ekstrahere data, og nogle 

kan måske introducere uønskede artefakter i de endelige analyseresultater (POSTER 

II). Adskillige signalbehandlingsteknikker er også kort drøftet og eksempler på deres 

anvendelse er præsenteret, f.eks. hvordan man kompenserer for sensorer med lav 

signal‐støj‐forhold eller håndtering af artefakter i data. En anden vigtig opgave er 

justering og synkronisering af procesdata. Dette er særlig vigtigt, når man ser på 

relationen mellem sekvenser af enhedsoperationer adskilt i tid og i endnu højere 

grad, når der arbejdes med (halv‐)kontinuerlige processer når tidsseriedata 

genereres. I denne sammenhæng er potentialet af auto‐ og kryds‐korreleret analyse 

og virkningen af den nødvendige de‐trending af signalet udforsket i forbindelse med 

den kontinuerlige granulering‐tørringsproces (POSTER I). 
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Forskningen som præsenteres i denne afhandling er primært koncentreret om 

ultrafiltreringstrinnet, i hvilket enzymer er oprenset og op‐koncentreret. 

Gennemløbet af en kontinuerlig ultrafiltreringsoperation er begrænset af fænomenet 

”membran‐tilstopning”, hvor produktionskapaciteten ‐ overvåget som strømningen 

gennem membranen eller flux ‐ falder med tiden. Fluxen varierer betydeligt imellem 

hver kørsel af det samme produkt og ligeledes mellem forskellige produkter. Denne 

variabilitet påvirker klart produktionsplanlægningen og fører til yderligere 

omkostninger på grund af den hyppigere membranrengøring. Datasættet, der blev 

undersøgt i dette studie, var indsamlet fra målinger fra konventionelle univariate 

processensorer indsamlet over flere års produktion af én type af enzym 

mellemprodukt. Forskellige strategier for organiseringen af disse datasæt er blevet 

sammenlignet med varierende antal tidspunkter i datastrukturer egnet til latent 

variabel (LV) modellering. Det overordnede mål med dataudvindingstrinene er at 

komme frem til statistiske "soft models", som fanger princippet eller den latente 

struktur i det system der undersøges. Hvis dette fører til ny viden kan det bruges til 

optimering af fremtidige produktionsserier. I den primære undersøgelse blev PLS2 

anvendt på data, som var reduceret til en middelværdi per produktionskørsel 

kombineret med nogle andre relevante variable. Det gjorde det muligt at identificere 

de væsentligste forskelle mellem procesvarianter af det undersøgte enzym. 

Strukturering af data i tre‐vejs matricer er opnået ved at begrænse datasættene til 

deres medianlængde. Undersøgelser med LV teknikker efter strukturering af data i 

forhold til batche har ikke ført til nogen særlige resultater. Derfor er det blevet 

konkluderet, at processen kan modelleres tilstrækkelig godt, når datasættene 

struktureres i forhold til variablerne. De senere undersøgelser brugte denne type 

strukturering af data og fokuserede kun på produkter med højere koncentrationer, 

da disse tilfælde har det største fald i flux. Blokering i række‐ eller tidsdimensionen 

blev brugt i ARTIKEL II. Datasættet har en naturlig struktur med flere niveauer, hvor 

det første niveau er processens tidforløb, der er indlejret i ultrafiltreringskørslerne, 

som er niveau to. ”Multi‐level Simultaneous Component Analysis with invariant 

Pattern” (MSCA‐P) anvendes til at udforske dette datasæt i forbindelse med faldende 

flux. Vi bygger på ideen om to‐niveauer og udvider modellen med et tredje niveau: 

»proces fremgangsmåde«. I ARTIKEL III er blokering i kolonnen eller proces markør 

retning blevet brugt. En multiblok PLS bryder procesvariablerne op i mindre 
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grupper og grupperer variablerne med samme indflydelse og karakteristika for at 

lette den diagnostiske procedure. Begge metoder fører til en opdeling af 

datastrukturerne til intuitive fortolkningsbare løsninger ved at bibeholde den 

naturlige struktur af de analyserede data. 

Derudover er ultrafiltreringssystemet også blevet undersøgt med hensyn til 

produktudbytte. Potentialet af NIR-teknologi til at overvåge aktiviteten af enzymet 

har været genstand for en forundersøgelse præsenteret i ARTIKEL I. Den omfattede 

(a) vurdering af hvilken af to real-tid NIR flow celle konfigurationer som er den 

foretrukne til overvågning af retentat strømmen downstream til UF, og (b) om 

systemet kan bruges til statistisk procesovervågning og tidlig varsling / fejlfinding. 

Det var muligt at udvikle tilfredsstillende robuste kalibreringsmodeller til fire typer 

af enzymprodukter, hvor specifikke enzymaktiviteter er blevet standardiseret i en 

global QC parameter. Endelig fremgår det af undersøgelsen, at det mindre krævende 

in-line flow celle konfiguration klarede sig bedre end online-konfigurationen. Den 

førstnævnte virkede tilfredsstillende robust over for forskellige produkter (amylaser 

og proteaser) og tilhørende procesparametre såsom temperatur og proceshastighed. 

Denne afhandling viser, at kemometriske metoder specielt designet til to-vejs og 

multi-datasæt problemstillinger har stort potentiale som PAT værktøjer, da de 

opfylder det primære mål for PAT, nemlig at opnå en bedre procesforståelse på en 

hurtigere og mere intuitiv måde, især når den oprindelige datastruktur og dimension 

bliver bevaret.  
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1. Introduction 

Industrial enzyme production is a complex discipline where numerous critical 

factors have to be controlled in order to ensure a profitable outcome. The enzyme 

manufacturing process can conceptually be divided into three production and 

formulation steps (each near-autonomous ‘factories’): 1) Cultivation of enzyme 

producing organisms, 2) Recovery of the enzymes, and 3) Formulation of enzymes 

into intermediate/end-products (Figure 1-1). Only a good understanding of all unit 

operations involved and transitions between them can ensure the final product 

quality and minimize unwanted product variation [1]. 

All the process steps in current enzyme production work well, but improvements 

with substantial economic and environmental impact can be achieved by making the 

processes work even better. The different production steps and unit operations are 

today run by a combination of recipe operation plus inferential control. The first part 

(the operating recipe) is available from engineering knowledge and equipment 

design (first principle or mechanistic models, e.g. mass and energy balances), while 

the second (inferential control) is traditional regulation based on what is easily 

measured [2]. At present, a considerable number of diverse measurements are thus 

collected throughout the different process steps, typically for dedicated univariate 

monitoring and closed-loop control tasks. These measurements, with a wide variety 

in information content and quality are stored in the historian(s), in various formats 

and with different sampling rates. This generates large amounts of data which are 

seldom used outside their direct scope (hence, real-time input to the operators and 

closed-loop controllers). Moreover, the combination of all the variables affecting the 

process plus product, and their correlations at each time interval - as well as their 

time correlations over the duration of the process, i.e. auto- and cross-correlations for 

the entire production run - are hardly ever explored [3-5]. This is a result of the 

demanding steps involved in thoughtful post-run data retrieval from the historian 

and the subsequent data pre-processing steps necessary for a more wide-scale 
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process data evaluation. For specifically biotech downstream processing, there is also 

a need for methods capable of analyzing time series data generated during 

continuous - or better semi-continuous - processes. This type of process shows some 

periodicity behavior, characterized by widely varying operation times, but is not 

easily classified as either batch or continuous in the classical sense. The potential of 

already collected full-scale production data and its related quality history is generally 

underemployed during the optimization efforts. 

 
Figure 1-1 – Schematic presentation of an industrial enzyme manufacturing 
process. 

Currently, univariate or first order principle based models are constructed and 

exploited to link process variables that can be measured to the desired process 

objectives within one unit operation or factory. Nevertheless, classical engineering 

strategies do not perform optimally in control and optimization of full-scale 

biomanufacturing steps. This can be explained by the complex multi-stage nature of 

the production systems which cannot be derived from mechanistic or first principle 

concepts [6]. The alternative, statistical model building on process data, is known as 
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Process Analytical Technology (PAT) [7]. An important aspect in this is Process 

Analytical Chemistry, the in-process (often named on-line or real-time) measurement 

of relevant qualitative and quantitative parameters [8]. The second facet in PAT is the 

multivariate statistical approach, collectively called Process Chemometrics, where 

functioning or behavior of a complex system under investigation is not (only) seen by 

mechanistic or first principle models but rather as latent or principal phenomena [9]. 

This Ph.D. project was driven by the expectation that combining available 

information stored in production historians into multisets and application of novel 

chemometric modeling methods will uncover extra information from historical data. 

It is appealing to use chemometric tools because they are capable of overcoming 

challenges associated with biotech applications such as multidimensionality of the 

dataset, a high degree of correlation between process variables, missing data and 

variation due to process disturbances such as noise [10].  

1.1 Scientific motivations 
The goal of the academic contribution is to prove that data-driven multivariate 

statistical methods can play an important role in process understanding, detection 

and diagnosis of abnormal situations and process control, structured via PAT. In 

particular, it is interesting to investigate the use of multiset (multiway, multiblock, 

multilevel) methods on full-scale production data within unit operations, on the 

transition between unit operations and on a plant-wide scale. Furthermore, the goal 

is to improve theoretical understanding from practical experience, applying existing 

algorithms and/or developing novel methodologies based on real-world insight and 

experience. An additional value of this industrial Ph.D. project is to improve 

education by cooperation with industry and to make research available to a wider 

public - already performed in the company but normally not communicated to the 

outside world. 

1.2 Industrial motivations 
This industrial Ph.D. assesses the production of bulk enzymes at Novozymes A/S by 

conducting multivariate statistical process analysis and optimization. Investigation of 

data from process sensors collected in the data historians, and interpretation of the 

process stages is performed in close cooperation with a multitude of Novozymes’ 

experts. During this task, large amounts of process data were adjusted (pre-
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processing, variable selection, organization in data structures) and this has led to an 

overall assessment of the quality of historical production data and recommendations 

on better practices in data compression for the future. The biotech industry can 

benefit from the wealth of knowledge accumulated and published over the years 

within the field of multivariate statistical data analysis as has been successfully 

applied in other industries and research areas [2,11-17]. The goal of combining 

multivariate statistical analysis with first principle process understanding is to turn 

an existing experience-based production process into a scientific-based practice. 

Multivariate latent variable methods are known to efficiently identify unusual 

operating periods and can assist in isolating the section of the plant and the group of 

process variables that are related to a problem [1]. They are powerful tools for 

focusing the attention of the operators and optimization engineers to a smaller area, 

allowing them to use their knowledge efficiently in diagnosing the cause of abnormal 

situations and thereby improve the process performance. Thus, it is anticipated that 

the process chemometrics/latent variable approach will aid in troubleshooting in 

recovery and granulation. Moreover, as an outcome of the better process 

understanding, it is expected that time and money spent on standard optimization 

work done in the company will be reduced. 

1.3 Aim of the thesis  
The aim of the thesis is to uncover the information and relations between unit 

operations hidden in already collected data by means of PAT tools. By identifying 

the statistical soft models from full-scale manufacturing data, it is expected to 

capture the principle or latent behavior of the system under investigation, which in 

turn can be exploited for optimization of future production runs. There is, to our 

knowledge, no published experience on application of multiset factor models in 

industrial production of enzymes. Furthermore, the aim of this project is to 

investigate possible techniques of data cleanup and strategies for selection of reliable 

sensors and to make recommendations regarding the most suitable and efficient 

chemometric algorithms for analysis of historical datasets from the downstream 

processing of enzymes. 

Most of the research presented in this thesis is positioned in recovery (Figure 1-1). 

Specifically, the throughput of the ultrafiltration (UF) step, measured as flow through 

the membrane and referred to as ‘flux’, varies significantly from run to run, even for 
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the same product and likewise between different products. Following identification 

of this focus area, it is expected to draw insight from previous studies within 

Novozymes A/S and from the knowledge of the recovery experts to finally identify 

the root cause behind this variation in recovery. 

1.4 Thesis outline 
The introductory part of this thesis familiarizes the reader with the steps and related 

practical considerations involved in knowledge discovery based on historical 

production datasets. These include such aspects as data extraction, cleaning, 

appropriate dimension reducing techniques and data mining. Next, three industrial 

cases are discussed supported by expert knowledge and elaborated on in three 

scientific papers (PAPER I, II and III) and two posters (POSTER I and II). The text is 

organized as follows: 

Chapter 2 discusses the characteristics of historical databases. Data acquisition and 

storage procedures are reviewed. Potential pitfalls of data compression are 

visualized by real examples encountered in production settings. 

Chapter 3 provides an introduction to time series data and describes tools used in 

this thesis for analyzing such data. Methods for data synchronization and alignment 

are discussed. Selected pre-processing techniques are described, namely de-trending 

and smoothing. Lastly, the chapter treats the aspects of data validity checking and 

use of theoretical and process knowledge for thoughtful data preparation/selection.  

Chapter 4 starts with an explanation on how most multivariate chemometric 

methods are applied today in the form of traditional two‐way data analysis. Next, 

differences in the modeling of a continuous vs. batch processes are discussed. This is 

accompanied by the description of data arrangements and scaling tactics specific to 

the above processes. Finally, this chapter ends with the description of methods 

tailored for particular types of processes. 

Chapter 5 contains the introduction to three industrial cases which were approached 

with the previously described ideas. The chapter contains general information about 

the sequences and unit operations involved in downstream processing of industrial 

enzymes. The ultrafiltration system has been given the most attention as this 

processing step has been investigated both in terms of product yield (enzyme 
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activity, PAPER I) and in terms of capacity optimization (PAPER II and III, POSTER 

II). The second part provides introduction to the optimization study anchored in the 

granulation factory (POSTER I).  

Chapter 6 gives concluding remarks and formulates future perspectives on the 

matters investigated in this dissertation work.  
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2. The nature of process data 

Data management for food-, chemical-, pharmaceutical- and bio-processing is very 

complex as signals are simultaneously generated by multiple devices, and 

information needs to be available promptly in a common format. Databases which 

log and store the time-based electronic records from production facilities are called 

operational historians (as supplied by e.g. OSIsoft's PI, Honeywell's PHD, GE's 

Proficy). Process data can automatically be collected from many different sources 

(control systems, process outputs, physical parameters, manual entries, calculations, 

laboratory analysis and/or custom software). Users can later access this information 

using a common set of tools (e.g. MS Excel, a web browser, display interfaces in the 

operator rooms). The collected signals vary greatly in format and sampling 

frequency which can range from fraction of a second to days, and this is a first hurdle 

to take in data reuse. The exploitation of historical databases is an important first step 

towards process understanding and improvement [1]. The tendency is to store large 

amounts of data but routinely use only a few pieces of selected information. This is a 

result of the demanding steps required in thoughtful data retrieval from the historian 

and the subsequent data pre-processing steps. Consequently, most data is seldom 

utilized outside their direct scope and a powerful option to describe the ‘overall 

process signature’ is thus currently under-employed in biomanufacturing. The aim of 

uncovering knowledge hidden within historical production data can be 

accomplished only if two preconditions are met. First, one must be certain that data 

is reliable and relevant. Second, datasets consisting of different types of process runs 

need to be assembled. 

2.1 Process signals 
Bioprocess plants keep an abundance of electronic records collected during different 

manufacturing steps all the way from the seed culture, through the full-scale 

bioreactors to downstream processing and formulation steps. Data can be related to 

material input (quantity, suppliers, results of quality analysis conducted in the 

laboratories, etc.), process outputs (fermentation titer, cell density, product 
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concentration, etc.), control actions (acid dosing, flow rate, etc.) as well as physical 

parameters (conductivity, temperature, etc.). 

In general process instrumentation can be split into two broad categories: sensors 

and analyzers [18]. Sensors are compact, self-contained devices with most of the 

supporting utilities on board (e.g. turbidity, conductivity and pH-sensors). Analyzers 

are bulky instruments demanding various external utilities (power, air conditioning, 

etc.), and routing of cabling or fiber optics to the flow cell or probe (for instance 

spectroscopic or particle size distribution systems). A further distinction is that 

process data can be univariate, such as a pH, temperature or pressure readings, or 

multivariate as provided by most spectroscopic tools. The frequency of the 

acquisition of data generated during the manufacturing process can be categorized 

into discrete, intermittent or continuous [10]. In the production environment, each 

item being logged is called a ‘process tag’. Most of the process data is acquired 

continuously on-line e.g. for instantaneous monitoring in the control room or local 

closed-loop control strategies. However, not all data acquired at designated intervals 

is stored. Only the intermittent data which passed the compression testing is 

archived in operational historians. Among the process parameters one can find also 

binary data, for instance for valves opening and closing which can only take 

‘ON/OFF’ values, or descriptive tags – which inform on operational phase of the 

process or store information on alarms. Some parameters are measured at-line next 

to the production line or in dedicated laboratories located near production. A result 

of these discrete analyzes usually ends up in paper format on the production control 

cards (and ideally in digital format after some time). Finally, many key parameters 

related to raw material, final or intermediate product quality (such as viable cell 

count, activity, concentration of impurities, etc.) require time-consuming off-line 

analyzes in the central lab off-site or outsourcing the service to a contract lab. This 

information, usually required for the final product release or linked to the 

production trials, is stored in Laboratory Information Management System (LIMS) 

and Enterprise Resource Planning (ERP) software such as SAP. Additionally, 

technical information, for instance, regarding dates of replacement of particular part 

of the equipment, or other extra information related to production trials may be 

stored in files on the shared drives or in the form of paper documents in the archives. 

Consequently, data is stored in so many different formats and places within a plant 

that it is not a trivial task to combine it all, and in particular not in a timely manner 
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which could offer a full picture of the interrelations and importance in process 

control and product quality [18]. 

This Ph.D. project predominantly uses data digitally stored in the process historian. 

Therefore a detailed explanation on related data archiving and retrieval is provided 

in the following section.  

2.2 Data acquisition, compression and reconstruction 
It is relevant to comprehend that, in order to save storage space in the historian, not 

all measured data points are stored. The compression is also driven by other motives 

such as cutting down the network traffic and improving performance when 

retrieving the data [19]. What is more, providing that the tolerance settings match the 

precision of an instrument, noisy, unreliable information should be automatically 

discarded before archiving. Eventually, it is expected, that the trends reconstructed 

from archived data preserve the fidelity of the raw data signal. This is however not 

always the case, and e.g. MacGregor and Kourti [20] warned already in 1995 that the 

univariate compression tactics can destroy the multivariate features in the process 

data.  

On-line data acquired usually undergoes filtering/compression at one or several of 

the following stages: 

Instrument    Distributed Control System (DCS)      Interface Node      Historian 

There are no general guidelines regarding at which of the above steps compression 

should be implemented. Even within one business it can vary from one site to 

another and usually depends from the programmer administrating a particular 

system. As a starting point, a quick overview of the true logging frequency for a tag 

can be obtained by downloading all archived data for a certain period and by 

referring the data count to the requested time range. As a consequence of individual 

compression settings of different tags, archived data is heterogeneous with respect to 

time scales. For instance, Table 2-1 offers an overview of the compression 

information related to one of the ultrafiltration units in the recovery factory at 

Novozymes A/S in Kalundborg. Here, conversion of all process tags (except 

‘Operation’) takes place in the DCS system, but not in the historian. 



 

-10- 

Table 2-1 - Overview of compression parameters of selected process tags collecting 
information during ultrafiltration. 

Selected Tags 
Compressi

on 
summary 

Historian 
compression 

DCS compression 
parameters 

Tag mask 
(UF-X_*) 

Unit Description 

Logging 
frequency 
per max 

log. 
interval 

Compressing 
on historian 

server 

Dead 
band 
(eng. 
unit) 

Pooling 
interval 

(-) 

Max 
logg
ing 

inter
val 
(-) 

FFT01 m3h-1 permeate flow 147.9 OFF 0.06 0.001 0.2 

FFT02 m3h-1 
dilution water 

flow 
6.5 OFF 0.03 0.003 0.2 

FFV01 % feed reg. valve 173.5 OFF 1 0.001 0.2 

FJT01 % 
power of circ. 

pump 
5.6 OFF 1.3 0.001 0.2 

FNT01 R dry matter (1) 3.6 OFF 0.2 0.001 0.2 

FTT01 °C 
temp. 

recirculation 
loop (1) 

3.2 OFF 1 0.001 0.2 

FTT02 °C 
temp. 

recirculation 
loop (2) 

2.9 OFF 1 0.001 0.2 

YCT01 mScm-1 
retentate 

conductivity 
106.3 OFF 0.1 0.001 0.2 

YFT03 m3h-1 
UF retentate 

flow 
115.7 OFF 0.01 0.002 0.2 

YFV03 % 
reg. valve UF 

retentate 
59.2 OFF 1 0.003 0.2 

YNT01 R dry matter (2) 1.3 OFF 1.6 0.003 0.2 

YTT01 °C temp. feed tank 1.3 OFF 1 0.003 0.2 

YTT02 °C temp. retentate 68.3 OFF 1 0.001 0.2 

ZAT01 - 
pH after 

permeate tank 
2 OFF 0.14 0.003 0.2 

Operation 
 

operation mode 6 ON 
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Figure 2-1 – Effects of data compression; (a) the dead band in exception testing; (b) 
effect of popular filtering techniques; pictures loosely based on [19]. 

The key term when it comes to any compression type is the ‘dead band’ (see Figure 

2-1a). It is a certain tolerance given to each variable, usually based on the range of 

this variable throughout the process and/or the instrument precision. Explicitly, it 

defines how much a new value has to differ from the previously logged (old) value 

before it is considered significantly different. Generally, the dead bands should be 

slightly narrower than the instrument precision. If a new recording is outside the 

dead band, it merits storing the new value (together with its timestamp). The 

associated parameters which also need to be set are the ’Pooling Interval’ and the 

‘Maximal Loggings Interval’. The former is the minimum time distance between the 

evaluated data points. The latter is the maximum time span between logged values.  
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There are two popular types of tests used as filters:  

1) ‘Exception’ reporting (Figure 2-1a) takes place on the interface node before the 

value is sent to the historian server. The newly pooled value passes the exception test 

when the difference between this value and the last archived value is greater than 

‘ExDev’ (falls outside the dead band). That value and the previous value are reported 

to represent adequately the actual behavior of that process parameter (or more 

precisely: the process trend). Alternatively, the value is logged if the difference 

between the times of the new value and the last archived value is greater than 

‘Maximal Loggings Interval’ (which is the case for the situation presented in Figure 

2-1a). The aim of exception reporting is to reduce the communication burden 

between the server and the interface node by filtering out noise [21]. 

2) ‘Compression’ testing takes place on the historian server subsystem before data is 

sent to the archive. The idea here is not to store an event that can essentially be 

recreated by interpolating from neighboring events. This test uses a so-called 

‘swinging door’ algorithm which allows for a dead band to have a slope [19]. The 

maximum and minimum slope is estimated based on: the most recent archived 

value, the current value that passed exception testing and the compression deviation 

settings. The reference slope is calculated based on the incoming value (next value 

that passed exception) and compared to the maximum and minimum slopes. The 

rule applies here that the maximal and minimal slopes can only get narrower when 

subsequent values are evaluated vs. the last archived value. If the reference slope 

falls outside the calculated limits, the current value becomes the next archived value. 

In the end, between any two archived values one can draw a parallelogram (a dead 

band defined by compression deviation settings) that holds all events that happen 

between these two archived values. 

An effect of both filters is shown in Figure 2-1b. In relation to these procedures, e.g. 

Kourti [11] confronts how, especially if setting the tolerance limits too wide, it can 

lead to the introduction of spurious correlation between variables. 

In Table 2-1, only the tag ‘Operation’, which stores information on the current 

operation mode of the unit, uses the compression option on the historian server. The 

dead band parameter ‘Compression Deviation’ (not shown) is in this case set to 0. 

This means that the successive identical values (or values aligning perfectly along a 
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sloping line) are not archived. For example, if the last logged entry is ‘Startup’ and it 

is followed by another ‘Startup’ entry, the second entry will not be added. If the 

operational sequence changes e.g. to ‘Filtration’, it will be recorded; otherwise entries 

are logged according to the provided ‘Maximum Loggings Interval’ setting.  

Various strategies can be used to reconstruct the trends from preserved data out of 

which the following three are the most commonly selected: 

1) ‘Compressed Data’ returns all of the values that were logged during the specified 

time range. This function returns the archived values which are stored in the 

historian and which passed the exception and compression testing. 

2) ‘Sampled data’ reconstruction is the most convenient to use. The user defines the 

time span and the sampling (or more accurate signal reconstruction) frequency, and 

the function retrieves values evenly spaced in this time span. These values are 

interpolated from the values stored in the archives. The user may miss maxima 

and/or minima in overall trends.  

3) ‘Archived value’ in retrieving mode set to ‘previous’ returns the last logged value 

instead of interpolation. It requires that the user specifies a timestamp array/vector, 

contrary to the two previously described functions which require just the start- and 

end-point of the investigated time range. 

Effects of the above-described functions are depicted in Figure 2-2 for two process 

tags which record the same physical property but differ in tolerance settings where 

signal reconstruction functions are compared for two UF runs. 

The compression parameters of tag ‘YNT01’ are set erroneously. The dead band is set 

to 1.6 R while the dry matter changes equivalent to 0.2 R should have been captured 

as a minimum. With the current settings, the corresponding data are logged 

primarily according to maximal loggings limit. The tag ‘FNT01’ has its dead band set 

to 0.2 R which fits the purpose better. Still, the resulting logging frequency is 

relatively low in comparison to other process parameters. In the case of run A, the 

important fluctuations in the dry matter happening between times 0.4 - 0.8 captured 

by the first sensor (Figure 2-2a) are missed in case of the second one (Figure 2-2b). 

Interpolation with the ‘Sampled’ function works well for visualization of the process 

trends, but only if the tolerance limits are set appropriately and when the sampling 
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frequency is sufficiently high. In the case of the tag ‘FNT01’ the ‘Archived’ retrieval 

function provides almost equally good or sometimes even better representation of 

the true trends of this variable. This is because the ultrafiltration operation is 

controlled based on the set-point in concentration ratio and sudden jolts and step 

changes may occur. For instance, in the case of run B and tag ‘YNT01’, it can be seen 

that it is no longer possible to retrieve true trends which involved sudden jolts 

(Figure 2-2c vs. d). Instead, broad peaks or artificial slopes are introduced during 

reconstruction. 

 

 

Figure 2-2 - On-line dry matter measured downstream to the UF – comparison 
between the results from three different data reconstructing methods; (a, c) tag: 
‘FNT01’ (located on the last UF recirculation loop); (b, d) tag: ‘YNT01’ (located in 
the retentate stream); (a, b) run A; (c, d) run B; compare with compression 
parameters summarized in Table 2-1. 

Consequently, it is very important for the practitioner to examine the true trajectories 

of the variables and decide on the appropriate compression settings and 

reconstruction function with a suitable data storage frequency that best preserves the 

process behavior [13]. It is a known issue that the multivariate nature of the data is 

not preserved during the conventional, univariate data compression and processing 
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[11,13,22]. It has been suggested that most of these problems could be solved by 

decreasing the tolerance limits [11,13], and at a minimum a periodic evaluation of 

data storage strategies is advisable. Alternatively, MacGregor and Kourti [20] 

proposed to store the scores of the first predefined latent variables and the loading 

matrix. From this, the original variables can always be reconstructed as long as no 

special events, which are not predicted by the model, occur.  

To summarize, first of all it is important to set filtering parameters so that adequate 

information is captured to match the purpose of the future use of the sensor data. 

Making the right choice is handicapped by two aspects: ownership of the signal and 

incentives for optimization. As stated, most signals are generated for local, closed-

loop control or alarm detection. The primary objectives of the process tags might 

thus be very different of that in long-term, history based process investigations. A 

related difficulty is that by convention the historian is meant for archiving, where 

simple objectives are to preserve the main operations while keeping network traffic 

low. This is not necessarily compatible with special occurrences such as the spikes 

observed in Figure 2-2c. This leads to a classical chicken-and-egg situation where 

extraordinary incidences that might require a special action are not preserved by the 

data historian, and only after they have been identified they are stored.  

The second step, retrieval mode, needs to be chosen wisely to reconstruct the true, 

relevant process trajectory. If these two aspects are not defined correctly, one can 

miss important process fluctuations as was shown in the dry matter example. The 

appropriate settings should be agreed among process engineers and operators, 

consulted with statisticians and communicated to the programming personnel. 

Unfortunately it is not common practice yet to pay attention to this before a specific 

challenge has arisen. The reader interested in knowing more about the aspects of 

data archiving and extraction is recommended to consult the existing literature, 

reports and webinars [11,13,19,21]. 

2.3 Assembling the data 
Prior to any big data mining challenge it is essential to organize thoughtfully the 

information into data structure that assemble all relevant processing and quality 

parameters for each lot. In each of the key factories involved in enzyme production 

(Figure 1-1) a specific volume of the product is assigned a batch number. For 

instance, in production of the enzyme granulate, one needs to align the 
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corresponding recovery and fermentation batches. Moreover, one recovery batch can 

consist of two or more fermentation batches and vice versa (a ‘split batch'). Then 

again, the granulation factory operates in ‘campaigns’ which can consume several 

recovery batches and produces several granulation batches. Even though in modern 

production good traceability is always in place, a collection of the data representation 

for more than one final batch at the time is not a trivial task as there are no 

automated ways of doing this. In practice, alignment of the information from 

downstream processing is even more complex when processes run semi-

continuously. These types of processes show some cyclical behavior, characterized 

by distinctly varying operation times. As a consequence, unit operations are shifted 

with respect to one another and vary considerably in duration. Therefore, the time 

series corresponding to different unit operations not only need to be matched but, 

preferably, also aligned. Other complications in data assembling related to a semi-

continuous production can arise from following situations: 

1) One operation can run on different equipment from time to time, for 

instance normally assigned to another production line. 

2) Some processing stages use several units in parallel but in different 

combinations, for example, when two units perform the operation the third 

one is off or being washed or loaded; afterwards, all three are in use again 

for some time until unit one is shut down. 

3) By-passing - when one concentration step is omitted and another stage 

takes over. 

4) Unplanned stops, for instance, due to membrane fouling; now all upstream 

operations need to wait until this unit is cleaned and ready. 

5) Production trials involving new or modified process stages. 

The above situations are primarily dictated by the optimal use of the production 

capacity and obviously make the thoughtful data extraction very demanding. 

During the investigation of historical data, it may already be known that some stages 

of the continuous recovery process are sufficiently well described by one single 

value, for instance, the mean dose of flocculation chemical in pretreatment. This can 

be done if adequate process experience exists. However, it might happen that step 

changes occur in the usually stable parameters due to production trials. Additionally, 

one might consider using information related to the equipment wear, team of 
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operators being on a shift, or information gathered in manufacturing recipe revisions 

which is not covered by other process or quality parameters. Naturally, analyzing at 

the same time process phases described by static parameters and dynamic phases 

better described by time series needs special attention. Aspects related to this are 

further discussed in Paragraphs 3.5 (‘Data reduction’) and 4.6 (‘Modeling batch vs. 

continuous processes’). 

Another important subject is how to define a batch or other section of the production 

corresponding to one entity during our data mining. This can differ between 

examined unit operations, factories or parts of the process and it should be primarily 

determined by the aim of the analysis. E.g. the definition of a batch in production 

systems is not always in line with the purpose of our studies. In production systems, 

‘batch’ is an administration number linked to a ‘process order’/’lot of material’. 

Hence, we often talk about ‘batch’ even in continuous manufacturing.  

The task of selecting the correct segment of the process is shown based on the UF 

capacity study (POSTER II). In the historian, data assigned to one administrative 

batch number ‘B-010’ can be extracted using a previously determined start and end 

time of this particular batch at this exact unit (here called ‘UF-X’). All data obtained 

in this procedure is represented by a black line in Figure 2-3. 

 
Figure 2-3 - Records logged under the tag ‘UF-X_FTX’ - ‘permeate flow’ - for all 
operational sequences of batch number ‘B-010’ processed on the unit UF-X; data 
assigned to ‘Filtration’ is marked in red; time and permeate flow is expressed in 
arbitrary units.  
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The first important step is to dissect only data relevant to the problem under study. 

The following operation sequences are available on ‘UF-X’, which are called by 

‘UF-X_Operation’ tag: 

1) Stop  2) Startup  3) Filtration  4) Recycle  5) Flushing  6) Cleaning-in-Place (CIP) 

The purpose of the study used as an example was to investigate the membrane 

fouling problem occurring during a steady-state phase of the UF process. Therefore, 

only the data assigned to ‘3) Filtration’ are of interest. It is possible to specify a filter 

in the function used for data extraction so that only data labeled ‘3) Filtration’ is 

delivered (marked by red in Figure 2-3). This automated approach has two obvious 

drawbacks. First of all, one administrative batch can include more than one entity 

corresponding to the following theoretical definition:  

‘Continuous-mode ultrafiltration process = type of operation where the feed is 

continuously supplied to the membrane plant’ [23] 

In the case of batch ‘B-010’ shown in Figure 2-3, it was necessary to stop the UF 

(discontinue the feed) and start a CIP sequence, twice. It means that there were three 

entities complying with the definition presented above, not one. CIP is initiated 

either by an unacceptably low flux (one parameter in a more complex economic 

optimization) or because the order has been finished (the true end of a batch). The 

task of the UF capacity project was to evaluate a flux decline which is a result of 

membrane fouling. As cleaning recovers membrane capacity, entities in the above 

analysis should correspond to CIP-separated filtration sequences; let us call them 

‘runs’. Subsequently, there is a need for an additional data cleaning step. If there is 

an extra CIP under the same administrative batch number, the data that follows is 

considered a new run and named as the original batch number with an index 

(subscript 1, 2, 3, … etc. depending on the number of unplanned CIP’s). If a 

discontinuity in ‘3) Filtration’ is short (called ‘4) Recycle’) the corresponding data is 

excluded but the data after the break is assigned to the same run. 

The second difficulty which also needs to be addressed in the above UF example is 

that data assigned to ‘3) Filtration’ is not explicitly a steady-state process. Even 

though there is a distinct operation sequence called ‘2) Startup’ set in the DCS, it 

covers only the first minutes when the unit is pressurized following the CIP phase. It 

is hard to describe the startup phase in terms that cover all cases. In the UF capacity 
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study, it was assumed that the true startup finishes when the dry matter set-point is 

reached in the retentate stream which, from this point in time is redirected further 

downstream. This regular pattern of an initial increase in dry matter at the startup 

could precisely be seen in the examples presented in Figure 2-2. At the same time, a 

fast flux/permeate flow decline can be observed. The final data obtained applying the 

above assumptions, which corresponds to the example shown in Figure 2-3, are 

represented in red in Figure 2-4. 

 
Figure 2-4- Final steady-state filtration data (marked in red) corresponding to 
Figure 2-3. 

To summarize, the administrative batch number from the production systems is 

frequently not sufficiently unique for the problem under investigation. This, 

unfortunately, leads to a lot of manual work during data assembling, thus 

hampering the use of historical data evaluation. A second example on the selection of 

information related to a granulation case study is presented in POSTER I. Here one 

entity corresponds to one production ‘campaign’ of the specific enzyme granulate. 

Downtime data irrelevant for the process dynamics was excluded based on the 

operational tag ‘In-flow Dosing Weight’. Artifacts introduced by flow-stoppages are 

present up till 30 min post-downtime, and this adjacent data is also taken out of the 

analysis. 

  



 

-20- 

3. Data pretreatment 

3.1 Working with time series 
A time series in the context of data analysis is the realization of a stochastic process in 

the time domain. It is a sequence of time and value observation pairs ( , ) with 

strictly increasing time. Production data stored in process historian (usually) form an 

unevenly spaced time series due to the measurements actually being performed in a 

random fashion or because of to the data storage strategy discussed in Chapter 2. 

Most of the core theory for time series analysis had been developed for equally 

spaced or equidistant data, due to limitations in the computing resources at the time 

of development, although methods of analysis for non-equidistantly spaced data are 

also available [24,25]. Still, the most popular approach is to transform unevenly 

spaced data into equally spaced data by some form of interpolation. This is also the 

approach followed in this thesis work since sampling intervals of the archived 

production data are not uniform and vary depending on the compression settings 

within one process tag as well as between different tags. During the data acquisition 

step/historian query, the sampling interval is made equal using first-order linear 

interpolation to a constant value for all process parameters.  

Time series analysis comprises statistical methods for analyzing and modeling of an 

ordered sequence of observations. There are many reasons to study time series, for 

instance: 1) characterization of the signal or time series; 2) identification of the 

phenomena governing the series and modeling of the system (the ‘system 

dynamics’); 3) prediction of the future values 4) optimal control of a system; 5) 

intervention analysis [26,27]. It is extensively used in any domain which involves 

temporal measurements such as econometrics, engineering sciences, biological 

studies, astronomy, weather forecasting and many more. During this thesis work, 

tools from time series analysis have been applied to get better insight into system 

dynamics and move towards variance reduction. In control, the aim is to diminish 

the process fluctuations and manufacture a product within certain specifications. 
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Process fluctuations are an outcome of the dynamics of a system. They can be 

modeled either 1) directly, using an impulse or a step response or 2) indirectly, by 

analyzing the characteristics of the observed fluctuations [28]. The first approach is 

less favored as it requires that the process is artificially perturbed. The second one is 

preferred as it can also be used when the system is under regular control. For the 

second approach one must however always keep in mind that the observed 

dynamics is the system plus control (or response) dynamiscs unless special 

investigations are conducted e.g. by superimposing a psuedo random binary 

sequence on top of the actaual feedback signal. In the remaining part of this chapter 

the focus is on the dynamics of the process signals in the time domain, although, it is 

also possible to analyze fluctuations in the frequency domain [26,29,30]. 

The Pearson correlation coefficient (𝑟𝑟) is a product-moment correlation coefficient, 

which measures the strength of the linear relationship between a pair of variables 

[31]. It is obtained when the covariance of two variables is divided by their standard 

deviations; hence, it is independent of the measurement units. If the correlated data 

sets are not analyzed at one point in time but sequentially through time, then the 

correlation between them is called serial correlation [27,32] or lagged correlation [29]. 

The purpose of serial correlation analysis is to compare signals and to calculate their 

relationship with regard to a change in time or distance. A serial correlation where 

the second set is a repeat of the first is called an autocorrelation function (ACF). If the 

second set is another variable, then the relation is referred to as a cross-correlation 

function (CCF). Serial correlation analysis is a suitable device to define how well the 

process fluctuations are predictable. ACF and CCF are also the key tools for 

identification of the right complexity or order of time series model. Serial correlation 

functions assume that signals are stationary. This means that the mean and the 

variance of the process are constant over the sampled time period and that 

correlation between successive observations depends only on the time lag (𝑘𝑘). 

Obtaining a stationary signal usually involves 1) cleanup, where data irrelevant to 

the process dynamics is excluded (e.g. measurement spikes); 2) de-trending, where 

the large-scale or ‘slow’ variation dictated by the set-point value changes - such as 

production speed - is removed. The first part, the data cleanup, has been described in 

the Chapter 2. It involves identification of the steady-state production regions in the 

data, removal of downtime due to stoppages, exclusion of system startups which are 

governed by distinctly different dynamics, or other artifacts in the data. Prior to de-
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trending, signals can be also subjected to various types of filters to reduce the 

contribution of high-frequency signal components (instrument noise, local turbulent 

flow behavior, etc.). De-trending, on the other hand, is a form of high-pass filtering, 

which often forms the most critical step in serial correlation analysis. 

3.2 Serial correlation functions 
Not all signals are fit for the lagged correlation analysis. If the signal shows no 

variation, either due to strict control or a limitation in the recording system, its 

autocorrelation over time is virtually equal to one. This kind of signals can be quickly 

identified either visually or by checking the frequency of its recording in the process 

historian. It is always a good idea to consult the actual logging frequency of the 

signal, at the sensor side, as there is no point to investigate the lagged correlation on 

a minute scale if the reading is logged just once per hour. It is also important to 

consider the signal validity and the artifacts which may arise as a consequence of the 

function selected in the historian query.  

3.2.1 Autocorrelation function 

Autocorrelation stands for the correlation of a time series with its own values in the 

past and future. ACF for time difference (lag, 𝑘𝑘) is given by: 

𝑟𝑟(𝑘𝑘) = 1
𝑁𝑁−𝑘𝑘 ∑ (𝑥𝑥(𝑡𝑡)−𝑥̅𝑥)(𝑥𝑥(𝑡𝑡+𝑘𝑘)−𝑥̅𝑥)

√𝑠𝑠𝑥𝑥2
𝑁𝑁−𝑘𝑘
𝑡𝑡=1   (3-1) 

𝑁𝑁 total number of observations

𝑥𝑥(𝑡𝑡) value at time 𝑡𝑡
𝑥̅𝑥 mean of the 𝑁𝑁 − 𝑘𝑘 observations 

𝑠𝑠𝑥𝑥
2 variance of the 𝑁𝑁 − 𝑘𝑘 observations

 



 

-23- 

 
Figure 3-1 – Examples of autocorrelograms obtained for (a) some stationary signal 
where autocorrelation between values distanced by five lags and more is 
insignificant (b) a moving-average (MA(1)) process; (c) a non-stationary signal; (d) 
a time series with a seasonal component; red dashed lines indicate the 
approximate 99% confidence bands which are equal to ±3 times square root of the 
approximate variance of autocorrelation equal to 1/N. 

For successive lags 𝑘𝑘 =  1, 2, … , 𝐾𝐾 this give 𝑟𝑟(1), 𝑟𝑟(2), …, 𝑟𝑟(𝐾𝐾). These values 

constitute the autocorrelation function. A rule of thumb in calculation of ACF (and 

CCF as discussed later) is that the maximal lag for which the coefficient is calculated 

should not exceed one-fourth of the length of the examined time series. For 𝑘𝑘 =  0, 

𝑟𝑟(𝑘𝑘) is equal to 1. The function takes values from -1, to +1 and is symmetrical toward 

lag zero. A plot of the values of the autocorrelation coefficients arranged as a 

function of lags is called an autocorrelogram (Figure 3-1). Under certain assumptions, 

the statistical significance of a correlation coefficient depends just on the sample size 

or signal length, that is on a number of independent observations [29]. 
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In general, the ACF is expected to decay quickly to zero as is the case for the process 

shown in Figure 3-1a and b. Cyclic patterns in the time series lead to periodic 

autocorrelograms as depicted in Figure 3-1d. Since noise is uncorrelated for the large 

𝑘𝑘 values, periodicities are easier to detect from autocorrelograms than from the 

original process data [28]. Other trends in the ACF indicate that the data might first 

need to be submitted to filtering to correct for e.g. an unstable variance or trends 

(Figure 3-1a). By applying those filters and subsequent decomposition of the data, 

the main events governing the process are identified. Positive autocorrelation 

indicates a tendency of a system to persist in the same state through time [29] while 

negative correlations may indicate feedback in the system. 

Partial ACF is another useful tool which offers more information on the correlation 

structure in the data. The partial ACF is the autocorrelation at lag 𝑘𝑘 after the 

autocorrelation is first removed by an autoregressive, AR𝑘𝑘 − 1 model [29]. Hence, it 

measures the correlation between signals that are shifted 𝑘𝑘 lags without the effect of 

the intermediate values. 

3.2.2 Cross-correlation function 

If two correlated time series, 𝑥𝑥 and 𝑦𝑦, are shifted so that they are offset in time as 

demonstrated in Figure 3-2a, simple correlation analysis may be misleading and 

strategies using CCF are more appropriate [33]. The cross-correlation function of two 

time series is a product-moment correlation as a function of time offset, 𝑘𝑘, between 

the time series, given by: 

𝑟𝑟𝑥𝑥𝑥𝑥(𝑘𝑘) = 1
𝑁𝑁−𝑘𝑘 ∑ (𝑥𝑥(𝑡𝑡)−𝑥̅𝑥)(𝑦𝑦(𝑡𝑡+𝑘𝑘)−𝑦̅𝑦)

√𝑠𝑠𝑥𝑥2𝑠𝑠𝑦𝑦2
𝑁𝑁−𝑘𝑘
𝑡𝑡=1   ,  for 𝑘𝑘 =  0, 1, 2, … , (𝑁𝑁 − 1)  (3-2a) 

𝑟𝑟𝑥𝑥𝑥𝑥(𝑘𝑘) = 1
𝑁𝑁+𝑘𝑘 ∑ (𝑥𝑥(𝑡𝑡)−𝑥̅𝑥)(𝑦𝑦(𝑡𝑡+𝑘𝑘)−𝑦̅𝑦)

√𝑠𝑠𝑥𝑥2𝑠𝑠𝑦𝑦2
𝑁𝑁
𝑡𝑡=1−𝑘𝑘 , for 𝑘𝑘 =  −1, − 2, … , −(𝑁𝑁 − 1) (3-2b) 

In contrast to the ACF, the CCF is asymmetrical which brings the need for two parts 

of the Equation (3-2). The CCF can be described in terms of ‘lead’ and ‘lag‘ 

relationships [29]. The first part of the Equation (3-2a) applies to 𝑦𝑦 shifted forward 

relative to 𝑥𝑥. With this direction of shift, 𝑥𝑥 is said to lead 𝑦𝑦. This is the same as saying 

that 𝑦𝑦 lags 𝑥𝑥. The second part of the Equation (3-2b) describes the reverse situation. 

The maximum cross-correlation should be achieved for properly shifted signals. 
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Figure 3-2 presents an example where the maximum cross-correlation is achieved at 

lag 5 meaning that 𝑥𝑥 leads 𝑦𝑦 by 5 lags. 

 

Figure 3-2 – Example of two signals which have a delayed relationship in time (a); 
cross-correlation diagram expressing the lagged relationship between 𝒙𝒙 and 𝒚𝒚 with 
99% confidence bands (red dashed lines). 

3.3 Signal filtering 

3.3.1 Smoothing 

The main aim of this pre-processing step is to eliminate noise that may be present in 

process measurements due to instrument limitations and sampling artifacts. In other 

words, smoothing is helpful with wild patterns in the data [32]. Several different 

filters working in the time domain have been checked throughout this Ph.D. project. 

It has to be remembered that filtering is by definition destructive. If used 

thoughtlessly it can ‘iron out’ valuable information or introduce artifacts in the 

signals. Therefore, the effect of each filter has always been visually inspected, and 

some examples will be discussed in this section. First off, not all signals need to be 

subjected to filtering. For instance, well controlled set-point-like values and slow-
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moving signals might be ready for analysis in their original form. Besides, if the 

compression settings are set thoughtfully then only the relevant data is returned 

during data acquisition. In practice, when the signal is logged with a frequency lower 

than ten times per hour there is little chance for improvement through filtering. On 

the other hand, if the process tag is logged several times a minute or if the 

measurement system is primitive then the signal can benefit from a low pass filtering 

as was e.g. applied in POSTER I. The noisy data in this granulation process study has 

been first subjected to a ‘spike filtering’ which removed the most apparent outlying 

points from the data based on three input parameters: the time vector, a symmetric 

window width and a multiplier for the standard deviation. The window moves 

sequentially over the signal and compares the value at its center with the average 

value over the entire window. If the value at the center exceeds the standard 

deviation over the window times the multiplier then the center point is replaced by 

the average value. The filter takes into consideration the timestamp vector to 

evaluate if the compared data points originate from neighboring time points so as 

not to compare data which was originally separated by production break (e.g. by 

excluded as downtime period). The same precaution has been in place in other filters 

applied to process data. The second filtering step in the granulation study was the 

‘box-car smoothing’. This type of pre-processing produces a time series in which the 

importance of the spectral components at high frequencies is diminished [29]. The 

simplest form of smoothing consists of using a moving average (MA) where a 

window of an odd length is defined. The central point a window is replaced by the 

average value over that window [34]. When used correctly the filter can e.g. 

compensate for sensors with low signal to noise ratio. The smoothing or convolution 

function employed in MA is a simple block function. It is also possible to draw a 

more complex convolution functions which offer a similar or better signal-to-noise 

ratio with less deformation of the basic deterministic signal. The most popular option 

applied for this type of smoothing is the Savitzky-Golay (SG) algorithm [35]. SG fits 

reduced-order polynomials to all points within a moving window for estimation of 

the value at the center point. One of the advantages of using polynomial filters is that 

smoothing and derivation can be done simultaneously. SG has been used for pre-

processing in PAPER I to remove physical phenomena in spectra and, as a 

consequence, improve the model performance. Alternative options to SG are 

smoothing splines. They are piecewise polynomials going only approximately 
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through given data points and fulfilling specific continuity conditions [36]. The 

smoothing spline is similar to SG in that it estimates a model that contains a 

smoothed value at each observation. It proved to work faster than MA or SG 

smoothing and is very handy when there is a lot of missing data which can be 

interpolated smoothly and ‘conservative’ by the spline function [37,38]. One variant 

of this difference penalty smoother [39] has been used for pre-processing of 

univariate signals from the production records in recovery. The filter is based on the 

penalized least squares minimization of the difference between a signal and its 

smoothed version and based on work by Eilers [38]. For instance, Figure 3-3 presents 

cleanup of the signals related to a permeate tank. Signals from sensors located in this 

tank experience sudden jolts which can most likely be attributed to the emptying 

regime of the permeate tank. Namely, when there is no liquid around the sensor, the 

pH increases drastically (Figure 3-3a). For a similar reason, records from the 

temperature sensor drift from a relatively steady value to the ambient temperature in 

the production area (Figure 3-3b). Cleanup of those signals starts by trimming the 

extreme values (marked in red in Figure 3-3) and treating them as missing values. 

Next, a first-order difference penalty smoother with a selected weighing factor is 

applied. The obtained effect is satisfying as these types of signals are expected to be 

quite smooth and steady-state-like owing to a buffering impact of the tank volume.  

 

Figure 3-3 – Signal cleanup and smoothing with a difference penalty smoother, (a) 
pH and (b) temperature. Data marked in red corresponds to the original data 
which was replaced with missing values. The smoothing spline (green) is fitted to 
the remaining points (black). 
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The visual examination of effects of the filters supported by the knowledge about the 

sensor accuracy, reliability and signal to noise ratio should be used to decide on the 

appropriate smoothing filter and the correct input parameters for the filters. Signal 

processing including spectral pre-processing is thoroughly covered in existing 

literature [36,40].  

3.3.2 Stationarity and de-trending 

Data from a manufacturing process usually forms a non-stationary time series 

because in most cases it is governed by the large-scale variation dictated by the set-

point values such as production speed. Hence, the statistical parameters - mean and 

variance - vary in time. Signals need to be stationary with respect to their mean and 

variance before they can be subjected to lagged correlation analysis. De-trending is a 

statistical or mathematical operation used as a pre-processing step to prepare time 

series for analysis by methods that assume stationarity [29]. Generally, it is achieved 

either through differencing the time series or through the removal of a deterministic 

trend which is first estimated in a separate regression step [30]. Explicitly, trend 

removal methods can be assigned to following approaches: 1) differencing (first, 

second, higher orders); 2) fitting a simple deterministic function of time (least-square 

fit: straight line, quadratic, exponential, etc.) 3), digital filtering which describes the 

trend as a filtered version of the original series; 4) piecewise fitting of polynomials 

(linear, cubic, smoothing spline) [29]. It took many years to study and tease out the 

statistical implications of these tactics, and still is a challenging aspect of time series 

analysis [30]. In this project work the first and the last approach have been 

investigated. Implications of the two trend removing methods are visualized and 

compared for the same process signal from Figure 3-4 and Figure 3-5. 
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Figure 3-4 - Effect of first differencing on the power consumption records for a 
granulation mixer; (a) signal smoothed with box-car filter with nine-point window 
width; (b) differenced signal; (c) ACF of DIFF signal, the red dashed line indicates 
99% confidence band. 

First the simplest and most common first differencing (DIFF) method was used. 

Differencing efficiently removes trends and slopes from the investigated signal 

(Figure 3-4b), however, it was observed that the variance can increase locally, and 

hence is not constant. ACF of the differenced signal becomes insignificant after lag 5, 

but it becomes significant again around lag 9 (Figure 3-4c). Even though differencing 

efficiently removes persistence from ACF, it also induces artifacts which appear to be 

a consequence of the window size implemented in signal smoothing (Figure 3-4c). 

This leads to a spurious interpretation of autocorrelogram. The de-trending method 

which was also easy to apply and offered better results was ‘piecewise linear de-

trending’ (PLD). It is a kind of high-pass filtering where a fitted trend line trails the 

lowest frequencies, and the residuals resulting from subtracting of that trend line 

have those low frequencies removed [29]. It comprises fitting straight lines to the 

data (simple first order polynomials) in sequence, with chosen fixed frequency 

(Figure 3-5a). Next, the fitted values are subtracted from the original data. The effect 

is presented in Figure 3-5b. As can be observed in Figure 3-5c, the ACF becomes 

insignificant after lag 11. However, it turns significant again at later lags which can 
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indicate that the de-trended series is still not stationary. This can also be caused by 

previous pre-processing steps or periodicity in the data. 

 

Figure 3-5 - Effect of piecewise linear de-trending on the power consumption 
records for a granulation mixer; (a) signal smoothed with box-car filter with nine-
point window width (blue line), piecewise linear trend fitted every 100 points or if 
there was a production break; (b) de-trended signal with breakpoints represented 
by red dots; (c) ACF of PLD signal, red dashed line indicates 99% confidence band. 

3.4 Alignment  
In any data mining challenge concerning a multi-step production process, the first 

part of data alignment involves ‘Matching’. It has been described in section ‘2.3 

Assembling the data’ which covered matching of the information corresponding to 

one material lot processed in subsequent manufacturing steps. Furthermore, 

information needs to be aligned within each unit operation which is typically the 

case in batch production, where it is referred as ‘Synchronization’. In the case 

continuous or semi-continuous processes it is desirable to identify the retention times 

within one unit operation as well as the delays between the cascade of unit 

operations which is further referred as ‘Lagging’. 
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3.4.1 Lagging 

Delayed reactions are characteristic of many natural physical systems [29] and 

industrial processes [41,42]. One variable may have a delayed response to another or 

a delayed response to an impulse which affects both parameters. Also, the reaction of 

one series to the other series or an external stimulus can be smeared over time, so 

that a stimulus limited to one observation provokes a response at multiple 

observations [29]. Serial correlation analysis is an obvious device for studying the 

relationship between time series. ‘Delay’ or ‘Lag’ times of various variables with 

respect to each other have been reportedly found using cross-correlation [41,42]. 

However, little or no information is provided regarding the pre-whitening or de-

trending procedure applied to the signals before the CCF is used.  

3.4.2 Synchronization 

One of the principal features of batch processing is its repetitive nature: a certain 

recipe is consecutively repeated to manufacture batches of a given product. In the 

chemometric world, much research has been dedicated to correct analysis of the data 

originating from the batch processes [6,22,43-47]. Synchronization is a first issue that 

needs to be addressed because rarely are the batches or different, distinct phases over 

batch runs of the same duration. Differences in batch lengths are observed for 

instance due to varying effectiveness of catalyst, operational changes, seasonal 

variations or intrinsic biological variability in microorganisms. Additionally, time 

points at which the biochemical reactions and physical activities take place may be 

shifted across batches. Consequently, not only the collected batch trajectories may 

exhibit various lengths, but also, the key process events may not overlap at the same 

time in all batches [47]. For this kind of processes, several methods have been 

proposed to synchronize the trajectories prior to chemometric modeling. Those 

methods can be assigned to three groups [48]: 

1) Compressing/expanding the raw trajectories using linear interpolation 

either in the batch time dimension or in an indicator variable dimension;  

2) Methods based on feature extraction;  

3) Methods based on compressing, stretching and translating pieces of the 

trajectories. 
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Still, those methods have been developed for the typical batch process. For instance, 

an indicator variable approach is usually chosen as the simplest and most convenient 

for industrial applications [13]. In this method, the trajectories are plotted not with 

respect to time, but with respect to another variable that must be strictly monotonic, 

has the same start and end values for all batches, and is not too noisy. Thus, an 

indicator variable can be seen as a pseudo-time. Examples of indicator could be an 

energy balance, the extent of a reaction or the cumulative amount of reactants added. 

Next, a constant increment is selected, and one progresses along the indicator 

variable. Synchronization is performed by retaining the points in the trajectories that 

have the same values of the indicator variable [22]. Using a ‘pseudo-time’ instead of 

the true time has also been applied to some parts of continuous processes [49-51].  

3.5 Data reduction 
Before or instead of alignment it is possible to limit the number of features within the 

signal. For example, in the case of process chemometrics, the landmark feature 

extraction approach tries to capture the relevant information in the evolution of a 

batch by defining the characteristics of landmarks in process variable trajectories and 

by recording the values for these features for each batch run [52]. Each trajectory can 

be split into increments (phases) in which the curve could have different statistical 

properties. Furthermore, the phases can be identified by certain landmarks that 

match between the runs (local extremes) and which can be characterized, for 

instance, by intercepts and slopes [53]. It is not uncommon for a batch process that it 

runs through different phases (e.g. the lag phase, the exponential growth, stationary 

phase, and death phase in penicillin fermentation) [54]. Process dynamics and 

correlations among variables also tend to change with the transitions between the 

phases. On the other hand, in a well-controlled continuous process, it should be 

sufficient to approximate the process variables by their means, cumulated values or 

run length. When signals are less stable it may be informative to add other 

characteristics that appear relevant such as a standard variation, range or a slope. It is 

also an option to dissect distinct stages in the continuous process, for instance: a 

startup, a (quasi-)steady-state and a closing phase (run off), and describe them with 

separate set of features. 

Another option for data reduction is to turn continuous data into binned data, by 

grouping the events into specific ranges of the continuous variable(s) [55]. It can be 
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performed in the number of ways depending on the application [56,57]. Similarly to 

smoothing, data reduction is fraught with information loss. Therefore, it should be 

preceded with a thorough historical data analysis and used sensibly [58]. In the UF 

capacity study presented in POSTER II, binning has been used for the reduction of 

flux profiles. Since these profiles considerably vary in length, it poses a problem for 

many standard chemometric algorithms to use them as they are without any kind of 

equalization. Flux profiles had been transformed to bins in the following way: 1) the 

flux range encountered in historical production runs had been split into ten intervals 

of equal width (= bins); 2) for each run, the flux entries in each bin had been summed; 

3) values in each bin had been normalized by dividing by the total number of entries 

in that run (= filtration length). Following the binning procedure, the flux in each run 

was represented by ten fractions corresponding to normalized flux distribution. In 

the next parts of this thesis, the approach where runs are approximates not simply by 

their means over the duration of the process but also by other relevant features is 

called ‘Features Extraction’ (FE). 

3.6 Data validity check  
Quality of the data is critical for reliable results of empirical models as these methods 

relay on data only rather than e.g. chemical or physical insight [12,51]. Assembled 

datasets should be validated in line with the current process knowledge to establish 

if they represent the true picture of the process behavior that needs to be explored. A 

quick preliminary examination of representativeness of extracted process signals can 

be done for example by 1) estimation of downtime vs. steady-state production time; 

2) taking the mean or trimmed mean of the signals per run and plotting it against 

production time; 3) plotting against other responses that are expected to be 

correlated. The preliminary examination should involve and facilitate: 1) 

identification of the missing data; 2) detection of possible mistakes encountered 

during data acquisition; 3) get an overview of the worst performing runs 

(downtime); 4) capture sensor failures; 5) spot other abnormalities or errors; 6) check 

if the information content is sufficient e.g. the observability of investigated fault or 

quantity to be predicted. If needed, one can return and correct the data acquisition 

procedures or use the acquired knowledge in the following steps. 

The chemometric model building is an iterative process. Therefore, a model can be 

built already at the early stages on the imperfect data set. In general, examining data 
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in the projection spaces defined by a small number of latent variables is helpful for 

understanding the behavior of the process [1]. Such exploratory, preliminary 

modeling can readily help to identify clusters, outlying runs or abnormal signals. For 

instance, it would be expected that two pH probes located in the same tank overlap 

on the loading plots. Frequently such background knowledge of the process is 

available, and it is anticipated that some parameters will co-vary. One can also figure 

out that there are several process tags offering similar or the same information and 

decide to select only some of them or weight them appropriately during the later 

modeling stages. As an example of data exploration Figure 3-6 presents an overview 

of the interrelation between different process tags related to a UF operation provided 

by the Common Components and Specific Weights Analysis (CCSWA) method [59] 

(see Paragraph 4.4 and Appendix 1 for details). 

 
Figure 3-6 - Overview of the association between different process parameters 
involved in a continuous ultrafiltration operation. 

It can be quickly noted that the two pH probes situated in one feed tank do not 

perfectly overlap (but are close). Mean values recorded by each probe over the same 

runs are plotted against each other in Figure 3-7a. It appears that the second pH 

probe, or possibly its position in the feed tank, cannot be trusted as it frequently 

drifts into unrealistically high values. Another example of the use of simple 

scatterplot for comparison of supposedly correlated signals is shown in Figure 3-7b 

which relates the conductivity in the UF retentate and in the UF permeate. Data is 
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colored according to the production date. The relation between the two 

measurements looks peculiar. It is possible to distinguish three distinct production 

periods which vary in the span of retentate conductivity values. The oldest runs are 

colored in blue. Later, the conductivity of the retentate falls into a lower range 

(marked with the green-to-orange). This drift can be contributed to some changes in 

the processing recipe. However, the last group, marked in red, is characterized by a 

shift in the retentate conductivity to very low values. This was followed by a period 

with no signal (not shown). As there were no recipe changes that could explain this 

shift, and the permeate conductivity remained in the previous range, it was decided 

to set all the values from the retentate sensor to missing for this last period during 

the analysis. 

 

Figure 3-7 – Data validity check: (a) two pH probes situated in one tank; (b) 
conductivity of permeate vs. conductivity in retentate after the same unit 
operation; data is colored according to the production dates. 

Engineering knowledge about the system under study should always be consulted 

when evaluating and selecting data. As an example, Figure 3-8 shows the readings 

for three tags recording UF retentate flow. These three tags form a cluster (together 

with the corresponding regulation valves) in the plot presented in Figure 3-6. Some 

process sensors which show very similar information are less reliable than others, 

and a selection could be made using this preliminary engineering insight. In practice, 

tag ‘YFT03’ is the most important. It is used to control the degree of concentration 

during the UF operation. 

Moreover, its readings are logged to the historian with a high frequency. Tag 

‘YFT04’, which is located further downstream, is just a ‘back-up’ option. This has a 
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consequence in its logging frequency which is approximately three times lower than 

for ‘YFT03’. Flow meter ‘YFT05’ also has a high logging frequency, but it experiences 

a saturation effect which is driven by the requirements of the adjacent 

instrumentation. Consequently, records from process tag ‘YFT03’ should be 

preferred in modeling. 

 

Figure 3-8 – Available process tags recording retentate flow from the UF for one 
selected run (startup included). 

3.7 Utilizing theoretical and process related knowledge 
Common sense implies that empirical methods become more powerful when 

combined with process related knowledge and theoretical or first principle models. 

Utilizing such knowledge can help determine which variables to include, calculate 

new variables (transform raw data), decide on the frequency of data sampling and 

how to weigh the variables prior to model building. Examples that appear in the 

literature are mass balances, the extent of reaction, and cumulative values. Process 

specific information (e.g. operator shifts, holding times) can also be included [1]. If 

calculated parameters are incorporated, care should be taken because measured 

variables may enter the model several times which increase the weight of this 

information type in the model and/or monitoring scheme [49]. An example of the use 

of process knowledge in the UF capacity study (Section 5.1.5 and PAPER III) is the 

exclusion of all the flow tags and corresponding valves connected via the flow/ratio 

controller from the regression models for flux prediction. Those parameters show the 

highest correlation with flux, but this is obviously a causal relation imposed by the 

two main controllers: the retentate valve controller (which dictates the concentration 
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degree) and the pressure controller. Flow tags should, therefore, be excluded from 

the regression analyzes as they would dominate the model and would not lead to 

any new findings. However, in the exploratory approaches (Section 5.1.5 and PAPER 

II), flow tags can be kept to have a closer look at the degree of correlation between 

them and other types of process parameters.  
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4. Latent variable methods 

Latent variables (LV) methods make use of the main characteristic of process 

databases, namely that even though the it frequently comprises of measurements of a 

large number of process tags (thousands for the ‘factories’ in Figure 1-1), the effective 

dimension of the space in which they vary in a systematic way is significantly 

smaller (usually between two and ten) [13]. Besides, essential information lies often 

not in any single process variable but rather in how the variables co-vary [60]. Latent 

variable methods exploit the above features of process datasets by projecting the 

high-dimensional data space onto the low-dimensional latent variable space. The 

latter represents the original data as well as possible, by accounting for the maximum 

amount of variance. Moreover, LV methods are known to be efficient in separating 

information from the noise (a kind of signal averaging). They are favorable when a 

clear understanding of the data is missing, and a large amount of noise is present in 

the data [60]. Problems of process analysis, optimization and monitoring are thus 

greatly simplified when working in this low-dimensional space of the LVs [13]. 

Finally, it is typically much faster to develop a data-driven model than a mechanistic 

model in a complex engineering task. Consequently, such models (also called ‘soft 

models’) enhances the understanding of the fundamental phenomena and processes 

and often leads to the solution of the problem much faster than traditional first 

principle modeling approaches. In addition, data-driven models are based on the 

data measured at the specific processing plant and thus describe the true process 

reality more closely [2].  

This chapter starts with an introduction to the most common chemometric tools 

which have a global applicability in different, not only chemical, fields of sciences. 

Next, the specific solutions are outlined which were found particularly suited for the 

analysis of the large industrial datasets.  
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4.1 Principal Component Analysis (PCA) 
Principal Component Analysis is the key method of Multivariate Data Analysis [61-

63], and dimension reduction of the data can be achieved by generating a small 

number of Principal Components (PC). The PCs are often called underlying (or 

latent) components, and their magnitudes (concentrations) are called the scores. The 

principal components are linear combinations of original variables, and the principal 

component loadings describe the orientation of the PCs with respect to the original 

variables. The components are determined orthogonal (uncorrelated) and explain as 

much of the total variance of the original variables as possible up until all variance is 

explained (Figure 4-1). Normally the first few PCs are used in dimensionality 

reduction, which is sufficient to cover the highest amount of systematic variation and 

the most dominant correlation structure among the investigated parameters [10]. The 

remaining least significant components may simply try to model the unstructured 

information such as noise. 

 

Figure 4-1 - Illustration of the working manner of PCA. The first PC explains the 
maximum amount of variance in the data set or in the other words spans most 
common direction in the data. In the same way, a second factor is determined, 
where the new coordinate is perpendicular to the first one. 

PCA holds a strong exploratory and visualization potential. It is e.g. possible to 

explore subpopulations in a data set by using the scores and loading bi-plots which 

are two-dimensional windows into the original data set. The loadings indicate which 

variables are mainly varying among the samples on different PCs and the direction 

compared to zero. A score plot illustrates the distribution of observations in this 

plane of the model. The scores provide information on to which extent the variation 

represented by the loadings are high or low for particular samples. 
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In summary, PCA decomposes the original data matrix into the multiplication of 

loading (holding information on variables), score (samples) and residual matrices 

(Figure 4-2). PCA will show which process parameters (e.g. temperatures, pressures, 

conductivity, etc.) carry related information, and which of them describe unique 

variation. The details of PCA algorithm can be found in standard chemometric 

articles and textbooks [63,64]. 

 

Figure 4-2 - Decomposition of a data matrix by PCA: (a) in matrix algebra notation; 
(b) pictogram-like notation. PCA defines loadings to filter the noise from the 
interesting directions and expresses the samples in a new set of variables/scores. 
Scores form an orthogonal set 𝐓𝐓, describing the relationship between samples. 
Loadings form an orthonormal set 𝐏𝐏, describing the relationship between 
variables. Variance not explained by any of the principal components, 𝑭𝑭, forms the 
residual matrix 𝐄𝐄, which contains noise and redundant information. 

PCA has been successfully applied to analyze and monitor continuous processes [65-

68]. In this tactic, every sampling time is represented by a row vector of a length 

equal to the number of process variables and the number of rows is determined by 

the time-horizon included in modeling. Data from each steady-state production run 

can also be averaged so that one row corresponds to one process run. As was 

suggested in Chapter 3, the PCA framework can be helpful already at the early steps 

of data mining for the evaluation of the validity of the collected data. However, 

standard PCA can be insufficient or even inadequate for more extensive analysis of 
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the datasets which consists of several process runs (or campaigns, or batches). This is 

because it does not take into account the ordered or blocked nature of the data. 

Explicitly, standard PCA confounds the variation between and within individual 

data blocks. Different data arrangements and data handling (scaling) prior to the 

application of the PCA algorithm have been proposed to overcome this issue. This 

will be discussed in more detail in the following sections of this chapter.  

4.2 Partial Least Squares (PLS) regression 
Regression problems can be stated as finding the connection between the 

independent variable 𝐗𝐗 (size 𝐼𝐼 × 𝐽𝐽) and the dependent variable, 𝒚𝒚 𝐼𝐼 × 1 , or block 

of variables, 𝐘𝐘 (size 𝐼𝐼 × 𝑄𝑄). The PLS model can be expressed with a regression vector 

(𝐲𝐲 =  𝐗𝐗𝐗𝐗 found from a least squares solution. If there are two or more columns in 𝐘𝐘, 

the PLS regression is referred as PLS2 [69]. The acronym PLS can be translated to 

‘projection to latent structures’. This expansion delineates the idea behind PLS 

modeling, which as in PCA is taking many variables and projecting them into a 

lower dimensional latent variable space. The second meaning, ‘partial least squares’, 

refers to the way in which the model parameters are calculated. Explicitly, the PLS 

model fits the covariance between the 𝐗𝐗 and a corresponding response matrix 𝐘𝐘. The 

response matrix 𝐘𝐘 contains the measure of the sample in terms of quality, capacity, 

concentration or others. In other words, PLS is supervised and can extract latent 

variables that explain the large variations in the process data 𝐗𝐗 that is most predictive 

of the variables in 𝐘𝐘. Algorithmic details of PLS can be found e.g. in Wold et al. [70].  

4.2.1 Model building and validation  

First of all raw data used in a calibration set should be examined visually to detect 

the most obvious outliers. During the model building phase the most commonly 

consulted statistics are the Hotelling’s T2 and the Q residuals (Q) [60]. These two 

tools are used to identify and diagnose outliers during model development as well as 

afterward when the model is employed. Hotelling's T2 statistic is a measure of the 

variation within the PCA or PLS model.  

It is the sum of normalized squared scores and a measure for each sample is given 

by: 

𝑇𝑇𝑖𝑖
2  =  𝐭𝐭𝑖𝑖λ−1𝐭𝐭𝑖𝑖

T  = 𝐭𝐭𝑖𝑖(𝐓𝐓𝐹𝐹
T𝐓𝐓𝐹𝐹)−𝟏𝟏𝐭𝐭𝑖𝑖

T =  𝐱𝐱𝑖𝑖𝐏𝐏𝐹𝐹λ−1𝐏𝐏𝐹𝐹
T𝐱𝐱𝑖𝑖

T  (4-1) 
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where 𝐭𝐭𝑖𝑖 refers to the 𝑖𝑖th row of 𝐓𝐓𝐹𝐹  which is the matrix of 𝐹𝐹 sores vectors from the 

model and 𝜆𝜆, a diagonal matrix containing the eigenvalues (𝜆𝜆1 to 𝜆𝜆𝐹𝐹) corresponding 

to 𝐹𝐹 LVs retained in the model. T2 is used to identify extreme points within the LV-

space which are generally unwanted as they force LVs to orient in their direction. 

The Q residuals are a measure of the amount of variation in each sample not 

captured by the latent variables used by the model. It is also referred to as the 

Squared Prediction Error or DModX (Distance to the Model in 𝐗𝐗-space) and defined 

as sum of squares of each row (sample) of a residual matrix 𝐄𝐄. Hence, for the 𝑖𝑖th 

sample of 𝐗𝐗, 𝐱𝐱𝑖𝑖:  

Q𝑖𝑖  =  𝐞𝐞𝑖𝑖𝐞𝐞𝑖𝑖
T  =  𝐱𝐱𝑖𝑖(𝐈𝐈 − 𝐏𝐏𝐹𝐹𝐏𝐏𝐹𝐹

T)𝐱𝐱𝑖𝑖
T  (4-2) 

where 𝐞𝐞𝑖𝑖 is the 𝑖𝑖th row of , 𝐏𝐏𝐹𝐹 contains 𝐹𝐹 loadings retained in the model and  is the 

identity matrix. Q-statistics is used to identify the (moderate) outliers which break 

the correlation structure described by the model. For both Q and T2, when a 

deviation is detected, it is possible to backtrack through the model to identify which 

variables mostly contribute to the deviating behavior [60]. 

Once a model is built and saved, it is capable to transform the raw process variables 

into quantitative measures which can be used for prediction of 𝐘𝐘 values for the new 

samples. A risk is always present that the identified correlations are caused only by 

chance and not by true changes in the analyzed parameter. Moreover, a substantial 

risk of ‘over-fitting’ exists when using numerous and correlated 𝐗𝐗-variables. This 

means that the model fits well to this particular data set but has no predictive power 

when applied to new data. Consequently, it is essential in empirical model building 

to use some measure of model performance and find the correct model complexity. 

This can be fulfilled by an appropriate cross-validation (CV) method or, even better, 

by independent test set validation. The new values for either 𝐗𝐗 or 𝐘𝐘 can be tested for 

their uniformity with previous observations, and can be used to predict new values 

for 𝐘𝐘 from 𝐗𝐗, respectively. The following measures are the most popular for the 

evaluation of the model performance:   
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1) Root mean square error of calibration (RMSEC) is a measure of fit and 

determines the average deviation of model estimates from actual values: 

(4-3) 

2) Root mean square error of cross-validation (RMSECV) is a function of how the 

model will behave on calibration samples temporarily kept out during model 

building. It is an estimate of predictive power on the new data: 

(4-4) 

3) Root mean square error of prediction (RMSEP) is used to validate the model 

and is a true measure of predictive power on new data: 

(4-5) 

4) Squared correlation coefficient (R2) is the amount  ‘explained’ in terms of 

sum of squares: 

(4-6) 

where: 

𝑘𝑘 : subset numer used in cross-validation  𝑦𝑦𝑖𝑖 ∶ measured value for sample 

: number of calibration samples  𝑦̅𝑦 : mean measured value 

𝐼𝐼𝑘𝑘: number of samples in a CV subset 𝑦̂𝑦𝑖𝑖 ∶ predicted value for sample 

𝐼𝐼𝑝𝑝: number of samples in a test set 𝑦̂̅𝑦 : mean predicted value 

5) Cross-validated R2 (R2 (CV)) - the amount of  ‘predicted’. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖)2𝐼𝐼
𝑖𝑖=1

𝐼𝐼  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ ∑ (𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖)2𝐼𝐼𝑘𝑘
𝑖𝑖=1

𝐾𝐾
𝑘𝑘=1

𝐼𝐼  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖)2𝐼𝐼𝑝𝑝
𝑖𝑖=1

𝐼𝐼𝑝𝑝
 

𝑅𝑅2 =
∑ (𝑦̂𝑦𝑖𝑖 − 𝑦̂̅𝑦)𝐼𝐼

𝑖𝑖=1 (𝑦𝑦𝑖𝑖 − 𝑦̅𝑦)

√∑ (𝑦̂𝑦𝑖𝑖 − 𝑦̂̅𝑦)2𝐼𝐼
𝑖𝑖=1 ∑ (𝑦𝑦𝑖𝑖 − 𝑦̅𝑦)2𝐼𝐼

𝑖𝑖=1
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4.3 Centering and scaling 
Another important step before data is subjected to multivariate analysis is pre-

processing of the raw data. Centering and scaling are the two most commonly 

applied techniques. Centering is performed to remove the offsets, and it corresponds 

to re-positioning of the coordinate system so that the average point now is in the 

origin. Without centering the first factor in the model would be used to explain the 

distance from zero to the center of the data cloud (Figure 4-3a). Centering is usually 

performed across the first mode (rows = samples). This involves subtraction of the 

column means from the elements in the corresponding columns of an 𝐼𝐼 × 𝐽𝐽 matrix 𝐗𝐗 

and produces the matrix of deviations from column means or the column-centered 

matrix 𝐗𝐗𝑪𝑪: 

𝐗𝐗𝑪𝑪 = 𝐗𝐗 − 𝟏𝟏𝐦𝐦𝐓𝐓  (4-7) 

Where 𝟏𝟏 is 𝐼𝐼 × 1 and 𝐦𝐦 (𝐽𝐽 × 1) is a vector containing means of column  as its th 

element. 

Variance scaling is used when variables are in different units or different 

magnitudes. It is used because variables with little variation would not be modeled 

to any significant degree whereas variables with the highest variance would prevail 

in the model solution. Centering does not remove the scale differences between 

variables; it just centers the variation around zero. Since the difference in scales 

between variables is arbitrary, it is convenient to scale the data so that each variable 

has the same preliminary standard deviation and simultaneously removes different 

measurement units [71]. This can be obtained by scaling the centered data within the 

second (columns = variables) mode, where every column of the centered matrix 𝐗𝐗𝑪𝑪 is 

multiplied by a specific number: 

𝐗𝐗𝐶𝐶𝐶𝐶 = 𝐖𝐖𝐗𝐗𝐶𝐶  (4-8a) 

where 𝐖𝐖 is a 𝐽𝐽 × 𝐽𝐽 diagonal matrix with the scaling parameter for the th column on its 
th diagonal. The weight of a variable is often selected to be an inverse of the standard 

deviation (𝑠𝑠 ) of that column: 

𝑤𝑤𝑖𝑖𝑖𝑖 = 1
𝑠𝑠𝑗𝑗

   (4-8b) 

An alternative to variance scaling could be e.g. ‘range scaling’ or a less severe version 
like Pareto scaling where the square root of 𝑠𝑠𝑗𝑗 is used. The combination of centering 
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across the first mode and variance scaling within the second mode is often referred 

as ‘auto-scaling’ (Figure 4-3c). 

 
Figure 4-3 – Effect of mean-centering on the determination of the first PC: (a) 
before mean-centring, (b) after mean-centring. After auto-scaling (c) all variables 
have equal ‘length’ and mean value zero.  

When data consists of variable subsets of a significantly different size, or of a number 

of conceptually relevant variable blocks, it can be beneficial to scale each block 

separately to ensure that all the different blocks are allowed to contribute to the 

model. This is a crucial step in multiblock modeling (see Paragraph 4.4). If standard 

auto-scaling is performed blocks with fewer variables will have less influence in a 

multiblock model and the opposite happens for the blocks with many variables. The 

solution is individual block weighting, or ‘block-scaling’, where it is possible to 

downscale large blocks and upscale small blocks. Variables within each block can be 

mean-centered or auto-scaled, after which different blocks can have their block-

variance normalized to the same value. 
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4.4 Dataset arrangement and unfolding 
The key difference between alternative techniques explored during this Ph.D. project 

lies in the form in which data is arranged (Figure 4-4). This preparation step involves 

very distinct operations that all lead to the presentation of the data in the form of a 

two-dimensional (2-D) matrix. This is done because most of the chemometric 

methods (all based on the two fundamental algorithms PCA and PLS) can work only 

if the data is rearranged in this manner. In the standard setting of process 

chemometrics, columns of the data table corresponds to process parameters/tags (𝐽𝐽) 

and rows are the process timestamp (𝑁𝑁𝑖𝑖). With this in mind, the simplest way to 

decompose the data table is to analyze one run at the time (Figure 4-4, case A). 

However, in this approach, it is not possible to directly compare the model outcomes 

over different runs/batches as scores for each decomposition - due to rotational 

freedom – will result in an individual set of loadings. Therefore, scores 

corresponding to different timestamps cannot be compared between the runs. 

Nonetheless, if there is a need to explore the main sources of systematic variation in 

one problematic run and to analyze which timestamps appear as outliers, then 

approach A might be valuable. A direct comparison of scores from different PCA 

solutions can be possibly done after the loading matrices are rotated to a similar and 

simpler structure using e.g. VARIMAX rotation [72]. This rotation does not change 

the sum of squared residuals, under the condition that counter-rotating of the scores 

compensates the rotation. The obtained components can be orthogonal 

(uncorrelated) or oblique (correlated), depending on the rotation technique used [73]. 

Alternatively, the common association between the investigated parameters can be 

found by CCSWA method [59] (Figure 4-4, case B). In this approach, data tables are 

expressed in terms of cross-products (𝐖𝐖i  =  𝐗𝐗i𝐗𝐗i
𝐓𝐓). The association matrices, 𝐖𝐖i  

reflect similarities between the process parameters for each run. The CCSWA looks 

for a common loading ( ) which explains as much variance as possible for all 

association matrices, via weighting (saliences, λ). This is done in the iterative way by 

eigenvalue decomposition of the weighted-average association matrix. The 

algorithmic details of this method are given in Appendix 1. In the end, CCSWA 

offers the graphical display of the mean configuration of the investigated parameters 

on the basis of derived components and of the data sets on the basis of saliences (as 

used in POSTER II). Saliences reflect how the 𝐖𝐖i configurations are merged, hence, to 

which extend a specific data set agrees with the latent variable shape described by 
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the particular component. The main advantage of CCSWA is that datasets do not 

need to have an equal number of rows (time points). However, as a consequence of 

the formation of cross products, the time dimension is lost in CCSWA. Several 

alternative techniques exist which allow us to concatenate information from different 

process runs into 2-D matrix suitable for bilinear modeling (Figure 4-4, cases C-F). 

 

Figure 4-4 - Different types of data arrangement and modeling: A) Separate 
decomposition of individual batches, B) Common Components and Specific 
Weights Analysis, C) Features extraction (number of features, 𝑭𝑭 = ∑ 𝒇𝒇𝒋𝒋

𝑱𝑱
𝒋𝒋=𝟏𝟏  , where  

is the number of features selected to express a process parameter), D) Variable-
wise unfolding and multilevel modeling, E) Variable-wise unfolding and 
multiblock modeling, F) Batch-wise unfolding and modeling.  

The conceptually simplest is to extract process features as it is described in Paragraph 

3.5. Selected features form columns and one run is reduced to one row in the new 

formed matrix (case C). Alternatively, several datasets that have a common variable 

mode can be stacked below each other (case D and E). If two modes are common 

between the datasets (case F), then it is possible to stack the dataset on the top of each 
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other, as it is shown in step F1. With this type of data organization, the sequential 

nature of the data, hence how it is generated plus organized, can be accounted for 

using the modeling techniques referred to as multiway methods [60]. The latter 

arrangement can also be accomplished after some kind of data equalization 

(discussed in section 3.4.2 ‘Synchronization’).  

In process chemometrics, the three-way data structures are typical used for batch 

processes. As a consequence, it is custom to differentiate between the two practical 

ways in which such data cube can be unfolded to 2-D form, namely [47]: 1) ‘Variable-

wise unfolding’ (VWU; case D and E), also called ‘Observation-wise unfolding’; and 

2) ‘Batch-wise unfolding’ (BWU; case F). 

Furthermore, it can be beneficial to utilize information on the conceptually 

meaningful groupings recognizable either in the row or variable dimension of 

augmented dataset. When rows are nested within groups (organized hierarchically) 

and share the same variable mode (case D), Multilevel Simultaneous Component 

Analysis (MSCA) [74] is a suitable LV method. In this approach, patterns belonging 

to different levels in the data hierarchy are modeled separately. If variables can be 

broken into meaningful blocks (case E), for instance with each block corresponding 

to a processing unit or a section of a unit, then multiblock modeling techniques 

should be used [75-77]. Both multilevel and multiblock models have improved 

interpretability over the conventional LV approaches [16,22,74,78-80]. 

Figure 4-4 sketches the major steps involved in the above techniques and they all end 

in a PCA-based decomposition. Naturally, the PLS versions for all data arrangements 

(except the CCSWA) are also possible if a reference or target y-value is available. It is 

important to understand the advantages and disadvantages of each method and 

which of these approaches perform successfully on what types of processes data. 

This is explicitly discussed in the Paragraph 4.6.  

In the framework of this Ph.D., it is desired to use a large number of data collected 

over several years of production, and hence efficient methods capable of comparing 

numerous different runs are needed. Data organizations and corresponding model 

techniques that fulfill these requirements are C, D, E and F (Figure 4-4).  
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4.5 Variable selection 
Variable selection is about limiting the number of variables to the most informative 

ones. The use of apriori knowledge, e.g. choice of process tags determined by 

engineering intuition, is the most fundamental and influential variable selection 

strategy [81]. However, it might also remove relevant or important information in an 

exploratory multivariate modeling due to a predisposition in the understanding of 

the production system. Variable selection can be driven by the following 

motivations: 1) an improvement of the model predictions (by removal of many 

irrelevant, noisy or unreliable variables); 2) a better interpretation for instance by 

removing all variables that do not contribute significantly to the model (reduced 

model complexity); 3) an improvement of statistical properties of the model; 4) 

minimise the risk of over-fitting 5) decrease computational time; and for later use 6) 

to reduce the costs in measurements. The variables used in multivariate data analysis 

should be considered as a whole and not by looking at one variable at the time as 

frequently a variable is useful in prediction only in combination with other variables 

included in the same set. It can also be decided to remove variables that are strongly 

correlated. Even if it does not result in improved predictions, it offers a simpler 

model. Some variable selection methods are based on an assessment of minor 

differences in quality of the model and even in assessing the significance of statistics 

calculated from the model parameters (such as predictive performance). Therefore, it 

is recommended to remove even minor outliers prior to variable selection. In this 

way, it is assured that the variables were selected not only due to extreme behavior 

of some samples. Outliers should be investigated in both dependent (𝐗𝐗) and 

independent variables (𝐘𝐘). Sometimes a sample may appear as an outlier in the 

original dataset but not in the dataset limited to selected variables. Therefore, the 

outlying samples can be reintroduced to the model, and outlier selection might have 

to be performed iteratively over the selecting process. The variable selection is thus 

frequently an iterative procedure, where the analyst is working his or her way 

towards a good solution [81]. 

The most popular methods used in variable selection process are: 

1) Using model parameters and diagnostics; for instance, variables which have 

low loadings or low regression coefficients could be removed. 
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2) Variable Importance in Projection (VIP) is aimed at finding variables that are 

necessary not only for prediction but also for describing 𝐗𝐗 [82]. 

3) Selectivity ratio (SR) - provides a simple numerical assessment of the 

usefulness of each variable in a regression model by calculating the ratio 

between explained and residual variance of the spectral variables on the 

target-projected component [83]. 

4) Genetic algorithms 

5) Classical statistical approaches 

6) Interval Partial Least Squares Regression (iPLS), which calculates separate 

models for windows of ordered variables (e.g. as ordered wavelengths in  

spectroscopy) to find one or a few intervals which offer better predictions than 

then all variables [84].  

Note that only engineering insight, 1) and 5) can be used in an unsupervised method 

like PCA, while for supervised methods many more options are available. In general 

it holds that variable selection for PCA is more subjective/idiosyncratic while – 

accompanied by the correct validation methods – PLS plus variable selection is more 

objective/impartial. In PAPER I, iPLS has been used to discard parts of the spectra 

which were judged irrelevant for prediction of active enzyme protein. VIP and SR 

have been used in connection to UF case study (Paragraph 5.1.5) to determine 

process parameters which showed the strongest correlation to the flux decline. 

4.6 Modeling of batch vs. continuous processes 
One important question in deciding what type of modeling should be applied is 

whether the system under study is static or dynamic. Batch processes are by 

definition dynamic processes [11]. Usually, data from a batch process consists of 𝐽𝐽 
process variables measured at 𝑁𝑁𝑖𝑖 points in time along a batch ( ). True batch 

processes can be considered replicates of each other [78], but usually, a 

synchronization step (Figure 4-4 F) is required, after which a multiple-batch data can 

be arranged into a three-way tensor 𝐗𝐗 𝐼𝐼 × 𝐽𝐽 × 𝑁𝑁𝑖𝑖 . Variable trajectories measured 

along the duration of a batch are non-linear with respect to time, and they form a 

multivariate time series of a dynamic nature [45]. BWU is the most commonly 

applied method to unfold a three-dimensional data matrix (Figure 4-4, step F2). It 

keeps the dimension in the batch direction and merges the variable and time 

dimensions. Each row of the unfolded matrix, 𝐗𝐗 𝐼𝐼 × 𝐽𝐽𝑁𝑁𝑖𝑖  contains all data within that 
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batch and each sample of process measurements at different sampling interval is 

considered a new variable [43,85]. 

In a continuous process the 𝐗𝐗𝑖𝑖 matrix corresponding to one run consists of 

observations on 𝐽𝐽 variables collected at successive time intervals (𝑁𝑁𝑖𝑖). If several runs 

are available then the data can be easily augmented as in Figure 4-4 D. In the 

unfolding contex this operation is refered to as variable-wise unfolding (data 

matrices are stacked below each other,  𝐼𝐼𝑁𝑁𝑖𝑖 × 𝐽𝐽). The covariance structure between the 

variables in a steady-state continuous process should remain stable over time, 

therefore, this type of data is frequenty analyzed just as averages of the process tags 

over the run. This is a special case of C shown in Figure 4-4 where 𝐹𝐹 =  𝐽𝐽 and 𝐗𝐗 

𝐼𝐼 × 𝐽𝐽. Variable-wise models incorporate only the variances and instantaneous 

cross-covariances of the variables [46]. Thus, this modeling strategy is only valid 

when the correlation structure of a process is more or less constant. The BWU 

modeling approach has been previously applied to continuous processes but only to 

their specific parts, such as grade transitions, startups and restarts [49-51]. These 

sequences all share the same three common stages: the initial conditions, the 

transition and the final steady-state. 

It is custom to differentiate between the variable- and trajectory- scaling and 

centering depending on the unfolding strategy [46,47]. If data matrices are stacked 

below each other like in variable-wise unfolding (𝐼𝐼𝑁𝑁𝑖𝑖 × 𝐽𝐽) the variance scaling is 

called ‘variable scaling’ and centering the ‘variable centering’. If unfolding is 

performed batch-wise (𝐼𝐼 × 𝐽𝐽𝑁𝑁𝑖𝑖 , Figure 4-4, case F, step 2, then the variance scaling is 

referred as ‘trajectory scaling’ and centering as ‘trajectory centering’. 

For data from a typical batch process, ‘variable scaling + centering’ does not remove 

the average trace from the data. Thus, if the investigated variables are expected to 

follow a particular trajectory, then ‘trajectory scaling + centering’ ought to be applied 

to focus only on the deviation from the average trajectory and not from the global 

mean of that variable during production. At the same time, ‘trajectory scaling and 

centering’ can eliminate ‘non-linearity’ in the system. Simple transformations of the 

data such as logarithms may also help with non-linearity [1]. 

Covariance and partial covariance maps applied to the batch-wise unfolded data are 

helpful tools for investigation of the process dynamics as they give a picture of the 
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covariance among process variables over time [86]. A dynamic partial covariance 

map can be useful to choose a parsimonious model. It visualizes the dynamic 

relationships between variables without taking into account the direct relationships. 

This map should be used when the objective is to predict the current value of a 

variable from previous measurements of the process, for example, to make the one 

step ahead predictions. A theoretical discussion on the capability of different 

modeling/unfolding methods to capture the process dynamics based on the structure 

of the covariance matrices and the use of covariance maps is discussed by Camacho 

et al. [46,86]. 

The intermediate methods between BWU and VWU approaches are also available 

and called the (batch-) dynamic unfolding [46,87]. This type of data arrangements is 

equivalent to the VWU with lagged measurements added as extra variables. If all 

possible lagged measurements are added, the resulting matrix is the same as after 

BWU. Therefore, batch dynamic PCA and PLS models [87,88] can be seen as a 

generalization of the traditional unfolding procedures. 

Other strategies have been proposed for multivariate statistical process control and 

monitoring including ‘local model’, ‘evolving model’, ‘adaptive models’ either as 

single models for the entire process, or separate models for distinct phases in the 

process [6]. However, for mining of complex data sets, as the ones obtained in semi-

continuous processes, multiset modeling strategies are of more interest. The generic 

problem in the multiset analysis is to find underlying relationships between several 

datasets [89]. Three classes of multiset modeling approaches were of particular 

interest in the framework of this thesis work. The first of them are the BWU-PCA and 

PLS (Figure 4-4 F), which can be perceived as multiset methods that deal with 

datasets that have two modes in common. The second class of problems is 

encountered when only the variable mode is common between the dataset. It will be 

addressed with Multilevel Simultaneous Component Analysis with invariant Pattern 

(MSCA-P) [74]; the algorithm is outlined in PAPER II. The third class of multiset 

techniques is designed to address situations when objects are in common, but the 

variables measured on these objects are different or can be split to distinct groups 

[77]. For clarity, this case is further referred to as a multiblock (MB) problem, 

although in the literature, multiblock and multiset is generally used interchangeably. 
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Discussion on available algorithms and motivation for multiblock analysis is 

provided in PAPER III.  

4.6.1 Data-driven methods for process monitoring 

In a manufacturing plant, we want to use processes which are stable and repeatable 

to meet customers’ demands (where the customer is often a downstream operation) 

in terms of product quality as well as to closely follow our production schedule. The 

process is said to be ‘in statistical control’ when it is affected only by an unavoidable 

random (‘common cause’) variation which is an integral part of the (stable) process 

and unit operations. This means that it is predictable from statistical moments, and 

therefore the process outcome in the near future can be foreseen [60]. Typical process 

monitoring strategies in LV space rely on PCA, PLS or more advanced extensions of 

these two methods [60]. The choice of the reference set to define common cause 

variation and its quality is crucial for a successful application [20]. The real goal of 

the monitoring is to discriminate between normal and abnormal operating 

conditions. Therefore, only data obtained under Normal Operating Conditions 

(NOC) should be utilized, and production episodes which contain variations due to 

special events (Abnormal Operation Conditions, AOC) should be excluded in the 

model building stage. E.g. samples from Designed Experiments span the extremes of 

the variation and should not be used for that type of application [60]. If a model is 

expected to be robust e.g. towards different product variants or throughputs, then it 

is important to incorporate this range of variation where good predictions are 

expected. It needs to be remembered that when a data-driven model is used for 

prediction, extrapolation outside the validated range is in principal unsafe unless 

proven differently [60].  

4.6.2 Multivariate Process Monitoring 

A model relating 𝐗𝐗 and 𝐘𝐘 is constructed using the available historical or especially 

collected data. LV control charts can be built to monitor the predictors, taking into 

account their impact on the response variables. This approach means that the 

efficiency of the process can be supervised, even when the product quality measures 

(𝐘𝐘) are not available [13]. Furthermore, it is anticipated that monitoring of the process 

data – via compressed information in the LV space - provides more information on 

the state of the process than following just (end-)product quality data (𝐘𝐘). This is 

because if any unusual or abnormal event takes place, this will leave a fingerprint in 
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the process data. Consequently, it is easier to diagnose the source of the problem as 

when directly dealing with the single process variables [90]. 

The most common set of diagnostics used in multivariate control charts are 

Hotelling’s T2 and the Q-statistic as discussed under 4.2.1 [60]. Corresponding control 

limits can be derived and used to detect out-of-control situations. In particular, Q-

statistic serves to detect process drifts and estimate if the model is still valid. Various 

heuristic rules have been proposed to signal the onset of process faults [91]. Since 

these charts are only able to pinpoint abnormalities in the process, the corresponding 

contribution plots are used to identify which process tag(s) is(are) responsible for the 

rise in Q and/or T2-values and to direct to the part of the process which was affected 

by a particular fault. Illustration of the methods, algorithms and details on the 

estimation of the control limits are thoroughly described by Kourti [13,66], Ferrer 

[92], Montgomery [93], Westerhuis [94] and Bersimis [95]. 

Readers interested in knowing more regarding on-line implementations of 

multivariate statistics and indispensable model maintenance are redirected to the 

industrial experience of other practitioners [12,15,96]. 
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5. Industrial cases  

Enzymes are easily biodegradable proteins which occur in all living organisms. Their 

role is to catalyze biochemical reactions. From and industrial technology and 

consumer product perspective, enzyme technology can replace conventional 

chemicals to improve resource efficiency and reduce environmental impact. In 1952 

Novo A/S (later Novozymes A/S) introduced Thermozyme®, the world's first 

enzyme produced by a fermentation process which unlocked the option to 

manufacture enzymes on a large-scale [97]. After this first step, many different 

enzymes have been developed, and today Novozymes A/S is a global leader in 

production of these biotechnological aids. Major part of the business is development, 

production, and distribution of enzymes. Novozymes A/S offers over seven hundred 

products in one hundred thirty countries, applicable to more than thirty different 

industries. The range of application areas is wide, including for instance food and 

beverages, paper and pulp, plus textile and household care. Out of the sixteen global 

sites, five large-scale production facilities produce the majority of Novozymes’ 

biotechnological solutions. Data and processes investigated in this Ph.D. project 

originate from the production facilities located in Kalundborg, Denmark. 

Nonetheless, it is expected that the learnings are also valid for other production sites.  

The initial step in the production of industrial enzymes is cultivation which involves 

aerobic submerged fermentation during which enzymes are secreted from cells 

(Figure 1-1). Enzymes are usually commercially produced using bacteria, yeast or 

fungi [98]. Nowadays, the production of enzymes starts from a vial of dried or frozen 

microorganisms that have been selected or genetically modified to yield large 

amounts of enzymes [99]. After several cultivation steps, the content is transferred to 

the large bioreactor which operates in fed-batch mode. During the cultivation, 

numerous operational parameters such as feed rate, oxygen consumption, 

temperature, and pH are monitored or controlled to secure optimal production 

conditions. When the main cultivation is completed, the culture broth is cooled 

down. Next, enzymes have to be separated from the biomass (i.e. cells, nutrients, by-
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products), purified and concentrated in the subsequent factory step, called 

‘recovery’. Finally, the liquid enzyme product is formulated according to 

downstream processing; the enzyme is either sold as a stabilized liquid product or 

processed into granulate in a third factory.  

Cultivation as a biologically based system is the most complex to control and adjust 

[100,101]. Recovery and granulation are governed by physicochemical events and can 

be described easier using modeling. Chronologically, potential fields for 

improvement have been investigated in this thesis work starting from the 

granulation process. In the beginning, it was important to comprehend the final 

product characteristics to understand relevant quality parameters that could be 

affected along the way. Quality of the final product at Novozymes A/S can be 

expressed in terms of 1) enzyme activity, 2) stability (deterioration of activity with 

time), 3) particle size distribution, 4) the amount of ‘dust’ (small fragments with 

enzyme activity, which is not only an undesired economic loss but also poses a 

serious health aspect if inhaled) and 5) color.  

The direction of Process Analytical Technology (PAT) research in bioindustry is 

driven by increased competitiveness and pressure for improved efficiency in 

production and process development [100]. Thus, the aim of PAT is to support 

innovation, efficient manufacturing, and quality assurance [102]. Process Analytical 

Chemistry techniques, such as different types of vibrational spectroscopy, have been 

playing an important role at Novozymes A/S for over 20 years [103]. These solutions 

have been used routinely in Research and Development (R&D) and Quality Control 

(QC) laboratories as well in the laboratories dedicated to production where they offer 

enhanced process understanding or superior process monitoring. From 2010, the 

strong pull for PAT from production initiated investigations of the potential of NIR 

instruments for on-line monitoring of downstream processes involved in enzyme 

recovery and granulation. At the same time, the role and value of the large volumes 

of the already collected historical production data in process optimization have been 

questioned, and the process chemometrics toolbox was proposed as a solution to 

answer this demand. Consequently, PAT has been identified as a strategic initiative 

in the corporate strategy at Novozymes A/S. Development of the PAT projects is 

expected to enhance focus on science in the bulk production, increase process 
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understanding, reduce variation and minimize the dependency on the time-

consuming QC analyzes. 

5.1 Recovery of enzyme 
When the cultivation is completed the mixture of cells, nutrients and enzymes is 

subjected to downstream processing, traditionally called ‘recovery’, where enzymes 

are separated from the broth. A schematic flow diagram of the process is shown in 

Figure 5-1. During the purification, cell debris is removed by flocculation and 

centrifugation. In the flocculation step, the culture broth is first diluted with water to 

reach constant conductivity required for optimal flocculation conditions. It also 

ensures an adequately low solids load during the subsequent separation steps. Next 

a salt, calcium chloride, is added to improve flocculation by neutralizing the negative 

charges on the cells, stabilizing the enzyme and preventing it from binding to the 

biomass. Afterward, a polyaluminium chloride is added. The aluminum source 

serves to aggregate the particles into larger flocs, which makes the flocculation 

stronger and also helps to remove color from the process. Several polyaluminium 

chlorides can be used which vary in chemical composition (e.g. basicity and the 

aluminum content). After the separation step, enzymes are further purified by 

kieselguhr filtration and then concentrated in two subsequent ultrafiltration steps. 

 
Figure 5-1 - Schematic flow of the enzyme purification process with the key unit 
operation of the subsequent studies indicated in green. There is usually more than 
one unit operation involved in each step. 

Optimal performance of the recovery process depends on many parameters. Since it 

is further downstream than the cultivation the final product specifications such as 

enzyme activity, color, and turbidity naturally become more and more important due 

to the concentration enhancement. In particular, as the strength of the intermediary 

product increases, the yield balances over different separation steps become 

increasingly critical from an economic perspective. Consequently, a good on-line 
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surveillance of the recovery process is recommended to assure an economic and 

competitive processing of enzymes as well as to assist in process optimization [103]. 

The recovery studies described in this thesis are focused mainly on the second 

ultrafiltration step presented in Figure 5-1. Some upstream information has also been 

incorporated in part of the studies. 

5.1.1 Ultrafiltration system 

Ultrafiltration is a technique that gained popularity in different areas owing to its 

advantage in the separation of molecules without phase or heat transitions [104]. It 

has been applied in the dairy industry, bioprocessing, waste water treatment, and the 

paper and pulp industry for a number of years [105,106]. Ultrafiltration in 

downstream processing of enzymes has two main aims: 1) to separate water 

(concentration); 2) to filter out impurities (purification, e.g. small molecules: mono- 

and di-saccharides, salts, amino acids, organics, inorganic acids or sodium 

hydroxide).  

The ultrafiltration unit which is in the center of the studies presented in this thesis is 

a plate and frame system [107]. Its smallest working element is a membrane. 

Membranes retain enzyme molecules (based on their size and shape) in the retentate 

while allowing for the permeation of water and small molecules. In the case of an 

enzyme recovery process, the retentate is a high-value product that contains 

enzymes, whereas permeate is a waste product that contains water and impurities. 

Permeate can however be reused to replace dilution water in upstream processes. 

Membranes are polymer sheets (Figure 5-2a) fitted in pairs between supporting hard 

plastic plates with spacer channels (Figure 5-2b). The pores of the membranes are 

very small and therefore the ultrafiltration is driven by pressure. The feed is pumped 

between the surface of the paired membranes, parallel to the membrane surface 

while permeate has a transverse flow direction (termed ‘cross-flow’). This type of 

process flow minimizes fouling and excessive material build-up. The permeate 

passes through the membranes into the plastic plate spacers, where it is led away 

through a permeate tube (Figure 5-2c). One membrane module consists of hundreds 

of membrane sheets and supporting structures (Figure 5-2c). In one module, the 

direction of the feed flow can be changed. This change is imposed by separating 

plates. Several modules working in parallel form a recirculation loop, also called a 

‘block’ (Figure 5-2d).  
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Figure 5-2 - Construction of a plate and frame system for ultrafiltration (see text for 
details): a) membranes; b) membranes + supporting structures, c) UF module d) UF 
block/loop e) multistage recirculation plant = UF unit. Photos and schemes taken 
from [108]. The operation historian collects information on the block level. 

Each block of membranes has a centrifugal pump (booster pump) and accompanying 

throttling valve to provide pressure and ensure an adequate cross-flow velocity of 

the feed over the membrane. This cross-flow helps permeate to pass through the 

membranes, provides a fresh flow of the feed and recirculation liquid, and prevents 

too much concentration polarization over the membrane area. Centrifugal pumps 

generate heat which has to be removed by cooling. Other key components external to 

the loops are a feed tank followed by the feed pump, a permeate tank, pipelines and 

a heat exchanger on the retentate stream. There is a number of flow transmitters 

installed to monitor and control the throughput. 

5.1.2 Operating the UF system 

Operating a continuous multi-stage membrane system with several recirculation 

loops can be quite complex [107]. As is described in Chapter 2, selection of a batch or 

another increment of the production corresponding to one entity in our data mining 
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is not a trivial task. In this section, a more detailed explanation of the potential 

implications of different operation regimes to the structure of the data is delineated. 

In the UF studies it has been decided to distinguish between the startup phase and a 

(‘quasi’-) steady-state phase during filtration. The startup is initiated when feed 

enters the plant and the UF outlet is simultaneously closed to allow for a 

concentration build-up. The startup finishes when the dry matter set-point is reached 

in the retentate stream which, from this point in time, is redirected further 

downstream (Figure 5-3). 

 

Figure 5-3 - Example of the separation of startup from a steady-state data. Data on 
the right side of the red horizontal line is considered a ‘steady-state’. 

The least troublesome procedure for initiating a multistage UF system is depicted in 

Figure 5-4. The two recirculation loops closest to the retentate outlet enter as the first 

as a product is fed to the system (Figure 5-4a). When the operator decides that the 

permeate flow is approximately correct in the last loop, the next loop counting from 

the end is added (Figure 5-4b). Additional loops are started until the plant operates 

at the correct capacity (Figure 5-4c-d). During a steady-state filtration (Figure 5-4c-d), 

the flow of the retentate and the retention time in the unit is regulated by the 

openness of the retentate valve. In the UF systems, initiating startup from the last 

loop helps to prevent excessively fast fouling. It is a well-known problem that the 

surge of high molecular weight components quickly blocks the membranes if the 

startup of the system is performed in the reverse order (that is by first starting block 
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A, then starting block B, and so on) [107]. The stages which were idle at the time of 

startup may not be necessary until many hours later. A decision on the number of 

blocks in use is primarily dictated by the capacity requirements of the process and 

controlled by the process operator. On average, the first blocks are the least 

frequently used but also other blocks can be switched off, e.g. due to technical issues. 

The last recirculation loop is normally always in use as the dry matter sensor used to 

control the unit is located there. In practice, this means that the structure of the data 

gets complex as different blocks are in and out off use for a different amount of time, 

or sometimes not used at all.  

 
Figure 5-4 - From startup to the steady-state ultrafiltration in continuous 
processing: (a) initial startup with last two loops; (b) startup with three loops; (c) 
quasi steady-state filtration with five blocks; (d) quasi steady-state filtration with 
all blocks; AE-RI- dry matter sensor; SP – dry matter set-point. 

 

Regulation of concentration degree 

A membrane system designed as multi-stage recirculation plant with a high 

volumetric concentration ratio must be operated based on a very small flow of the 

retentate [107]. The actual control function is performed by a needle valve with 

actuator and positioner. The controller uses the sensor signals to set the desired 

position of the retentate valve. There are two possible manners to control the 

concentration ratio in the examined UF system. It is either based on: 1) the dry matter 

(refractive index, RI) measurement on the last recirculation loop; or 2) the volumetric 

concentration degree (VCD = feed flow in/retentate flow out). The first one is the 
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most common (presented in Figure 5-4). The main drawback of this control mode is 

that any precipitation of solids happening on the last block disturbs the refractometer 

readings. Because a powerful light source is needed to obtain a signal that can be 

detected, a local heating of the product could take place, and this can cause the 

product to precipitate and adhere to the prism of the RI sensor [107]. It is even worse 

if the concentrated product itself precipitates because then the system starts to work 

in a ‘vicious circle’. A refractometer can measure only dissolved solids, so it does not 

see crystals and as a consequence concentrates even higher. For a product with this 

tendency, it can be a better practice to start up the unit using the dry matter 

controller but when the set-point is reached (that is during the steady-state) the 

control should be switched to VCD mode. If the composition of the feed is fairly 

constant, the former control function is satisfactory.  

Real-time monitoring of enzyme activity 

Relatively expensive process analyzers such as near infrared (NIR) instruments are 

increasingly considered for supervision of the quality and efficiency of industrial 

operations. NIR spectroscopy is suitable for timely measurements in dynamical 

systems, as the spectrum can be obtained quickly, without sample preparation, in a 

non-destructive way [100,109,110]. The potential of NIR technology to monitor the 

activity of the enzyme has been the subject of a feasibility study carried in the 

recovery factory at Novozymes A/S in Kalundborg. The work presented in PAPER I 

focuses on the UF retentate process stream (Figure 5-5). Internal studies showed that 

there is a strong relation between NIR spectra and enzyme activity in the UF 

retentate. Employing NIR spectroscopy, the indirect or inferential parameter enzyme 

activity could be obtained much faster than traditional off-line analysis in a central 

laboratory. It was possible to develop satisfying calibration models for four types of 

enzyme products. However, as it was desirable to develop a robust calibration, four 

QC parameters for enzyme activity have been standardized into one global QC 

parameter according to the formula:  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (%) = 𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ( 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ( 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈
𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

× 100%)  (5-1) 
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Figure 5-5 - Location of the NIR flow cells with respect to ultrafiltration unit. Both 
NIR flow cells – tuned to different dimensions of the adjacent pipelines, have the 
same design and optical path length. 

When developing an on-line analyzer facility for determination of a multitude of 

process parameters, the challenge is not only to choose the right equipment, but also 

how to install it [3], and which quality control strategy to apply [103]. The NIR 

spectrometer uses optical fibers which offers the advantage of the multiplexing and 

eliminates the necessity for complicated sampling systems to bring specimens from 

the process to the analyzer. The probes can be directly mounted into the process line 

(called ‘in-line’ analysis, indicated in blue in Figure 5-5) or introduced in a fast loop 

with conditioning system (‘on-line’ analysis, indicated in green in Figure 5-5). The 

study presented in PAPER I involves (a) evaluation which of the two real-time NIR 

flow cells is the preferred arrangement, and (b) if the system can be used for 

statistical process monitoring and early warning/fault detection.  
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Both the in-line and on-line predictions deliver good, authentic results when 

compared to laboratory data. NIR predictions offered a sensitive and high-frequency 

feedback on the performance of the ultrafiltration operation. For monitoring 

purposes, it is sensible to keep track on the (spectral) variance not explained by the 

regression model (Q-residuals). Based on the PLS calibration step multivariate 

spectral information is turned into univariate predictions. Therefore, the cyclic 

pattern captured by the Q-residuals during a steady-state UF (Figure 5-6) is related to 

something else then enzyme activity. Interestingly, the fluctuations did not reveal 

themselves in any other (conventional) process measurement. Consequently, it does 

indicate the potential of real-time measurement as a tool in process identification and 

optimization next to concentration predictions.  

 

Figure 5-6 - Comparison between on-line and in-line NIR predictions of outcome 
downstream of the UF unit for a protease type product D; (a) predicted enzyme 
concentration, (b) spectral Q residuals; (c) Hotelling's T2 score. Notes: arrows 
indicate operator set-point interventions on the concentration factor. 
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Finally, the study revealed that the less demanding in-line flow cell setup 

outperformed on-line arrangement. The former worked satisfactory robust towards 

different products (amylases and proteases) and associated processing parameters 

such temperature and processing speed. The disadvantages of the on-line setup 

include: more complex control of the sampling and conditioning system, and 

acceleration of the phase transition phenomena/sedimentation in the loop. It can 

furthermore be concluded that the method for unifying reference values from 

different analytical methods worked well. 

Feed pressure control 

Pressure is the driving force for membrane filtration systems. However, it cannot be 

used to control the capacity of UF plants. The capacity results from the nature of the 

feed and characteristics of the membrane. The operating pressure is factually 

irrelevant [107] as long as it remains constant at the predefined optimal value. In UF 

systems, feed pressure is controlled to guarantee that it does not exceed the allowed 

limits which could hurt the membranes. It is regulated by the power of the feed 

pump placed before the UF blocks (Figure 5-2e). The pressure decrease is the result 

of feed passing through the elements. Therefore, each recirculation loop is equipped 

with its centrifugal pump. The inlet feed flow is only indirectly controlled in the UF 

systems. It is the resultant of the retentate valve regulation and the pressure 

regulation in the unit. 

In the examined system pressure is monitored at four points after the feed pump, one 

of which is also used in the closed-loop feedback control. Since pressure in the 

system is maintained very accurately, any deviation around the set-point is mostly 

noise. There were, however, particular periods across the examined production years 

when the set-point for the feed pressure had been changed. Those runs formed a 

clear cluster in the multilevel exploratory study presented in PAPER II. Nonetheless, 

it was suspected that the importance of the pressure set-point changes between the 

runs to the overall variance in the data had been unnecessarily blown up by the 

variance scaling. Moreover, an examination of the loadings plot of the within-model 

verified that there was no systematic variation to model in the pressure group. 

Consequently, it was decided to exclude three of the pressure variables to lower 

down the contribution of the pressure group to the model. In the following 

multiblock regression study (PAPER III), we have focused on one specific product 
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variant which faced a particularly steep flux decline. In this approach, we have 

identified that two out of forty runs exhibit a steep decline in pressure at all 

measuring points except the one used in the control loop. A new PLS model was 

calculated after iterative exclusion of (ten) abnormal runs and analyzed as a 

multiblock model. The study found that for investigated processing recipe the feed 

pressure to the unit showed a decrease over filtration run time, and it correlates 

positively to flux decline. Interestingly, except for the process tag directly used in the 

closed feedback control, the other pressure monitoring points show a drift over the 

filtration time. This observation would be impossible to make without limiting the 

investigation to one processing recipe and just by looking at the raw data before the 

abnormal runs were removed. It could be an indication that the current control 

strategy is not optimal and that controlling the pressure using the other 

measurements in a cascade setting may result in a more stable overall flux.  

Cross-flow over the membrane area 

The UF system works to secure a sufficiently high cross-flow over the membranes in 

the recirculation loop. Feed flow per block is not measured directly but indirectly as 

the power consumption of centrifugal pumps. The cross-flow control loop 

assumes/uses the relation ‘the higher the power consumption, the higher is the feed 

flow’. The single stage centrifugal pumps on the blocks run at a fixed speed. 

Throttling (butterfly) valves situated after these pumps (Figure 5-2d) get more open 

to compensate for the decrease in power consumption. What causes most of the 

power consumption is a liquid passing the outer edge of the impeller. The pumps 

and valves initially work at the predetermined settings ensuring the optimal, high 

cross-flow. Over a filtration run, a decrease in power consumption is typically 

observed (Figure 5-7). It indicates that less liquid is passing through the impellers so 

the feed flow decreases. The openness of the feed valve is regulated based on the 

power consumption of the booster pump. The feed valve opens wider to increase the 

flow and reaches the set-point for the power consumption. This regulation continues 

until the throttling valve is fully open. Afterward, only a decrease in power 

consumption is seen (Figure 5-7). This can be related to the increased viscosity of the 

pumped liquid. 
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Figure 5-7 - Feed regulation on the blocks and corresponding permeate transverse 
flow values. 

In fact, before the regulation valve fully opens, it is impossible to spot any changes in 

the power consumption based on the archived data. This is a consequence of the 

dead bands settings (see Paragraph 2.2). The power consumption momentarily 

recovers (faster than the pooling frequency for the compression in the DCS) as the 

feed regulation valve opens. This results in the significant differences between the 

effective compressions of the three signals in Figure 5-7. It is not feasible to examine 

the relation between the feed regulation on the blocks and the permeate flow/flux in 

too much detail. Though, it is indicative in Figure 5-7 that the cross-flow decreasing 

in the recirculation loops is a consequence of membrane fouling and not vice-versa. 

We identify this causal/mechanistic relation in the multiblock study presented in 

PAPER III. The highest variation in the flux is explained by the first LV, which had 

been predominantly linked to the cross-flow regulation. Therefore, an expert insight 

is necessary to clarify which of the observed relations can be used in optimization 

and which are expected from the mechanistic understanding of the system. 

5.1.3 Data Alignment  

Ideally, if retention times and/or lags are identified, this information can be used to 

properly align data from subsequent operations in a continuous process. Namely, 

one row or time-point in the data matrix 𝐗𝐗 should ideally contain information 

corresponding to the same entity of the processed material, and it should have the 

corresponding measure(s) of the final quality assigned to it in the response matrix 𝐘𝐘. 

In other words, all the values for the process parameters assigned to one row should 
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correspond to a certain end-quality when applying the linear algebra methods from 

chemometrics.  

With respect to process tags in a continuous UF operation, it is natural to think of 

‘lagging’ in relation to the physical distance between the sensors. E.g., it seems 

unnatural to compare at the same timestamp the parameters measured before the UF 

unit (in the feed) with the parameters measured after the UF unit (in the retentate 

and permeate) due to retention time in the UF unit. If two time series are shifted so 

that they are offset in time, the potential correlation between the two parameters can 

be missed. Therefore, in a seamless approach, each row should contain parameters 

corresponding to the same part of the (original) feed. However, in the investigated 

unit operation, the correct lags are almost always unknown. In general, it would be 

extremely hard to establish even the retention time in the UF unit because it would 

vary continuously owing to a different number of the blocks in use, the degree of 

recirculation on the blocks, process temperatures, properties of the feed and the 

concentration degree. Some trial-investigations on this have been perfoemd during 

this Ph.D. with tools such as serial correlation analysis and PCA on the lagged 

dataset followed by observation of loadings. However, these studies did not provide 

any hints with respect to suitable lags. One reason for this could be the varying 

logging frequency from different process sensors. Some process parameters are close 

to steady during the entire run (e.g. pH, dissolved solids, temperatures). Hence, it is 

not expected that shifting the signals to match within a minute precision would make 

any difference. Tags that are logged with a high frequency such as flow tags, and 

related regulation valves, are conjugated via the control loops. In this case, the 

highest correlation always appears at the same timestamp (lag zero) because the 

response to the regulation impulse is observed in all of them at the same time. Since 

it is so complex to track the path of a product/effluent stream in this UF operation, it 

was decided not to align the signals from different sensors in the UF studies. Instead, 

the average values over a fixed and equidistant time interval were used. 

UF runs cannot be stacked on top of each other to form a three-way matrix in a 

straightforward manner as they are not truly equal. A different length of the runs is 

dictated by varying volume and parameters of the feed and different set-point 

parameters of the retentate and the number of blocks that are in use. The volume and 

parameters of the feed differ considerably depending on the conditions and 
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performance of upstream operations (fermentation, separation, pre-filtration). For 

that reason, it is impossible to point to some indicator variables which characterize a 

common start and end point for all runs. If the runs were equal, then it would be 

expected that the calculated variable ‘mass throughput’ reaches the same or similar 

value at the end of each run, but it never does (Figure 5-8). 

 

Figure 5-8 – Overview of mass throughput for 278 runs examined in a UF study. 

The process runs examined in this study are characterized by different mass 

balances. In other words, those runs cannot be considered as replicates of each other 

since they are collected under quite different processing conditions. Moreover, a 

steady-state ultrafiltration process cannot be perceived as a multistage process 

suitable for synchronization as there are no natural ‘phases’ or other systematic 

information that could be used to synchronize towards. This should clarify that the 

studied data is not suitable for synchronization by any of the approach discussed 

previously (Section 3.4.2 ‘Synchronization’). Those methods might correct the start 

and end phases of a semi-batch/semi-continuous process, but the startup data has 

been excluded from the current investigation.  

In the end, it was decided that it is only possible to arrange the data into the three-

way structure by limiting the data to a fixed length (Paragraph 5.1.5). Namely, the 

runs have been analyzed up to the median length for the dataset consisting of two 

hundred seventy-eight runs. By excluding shorter runs this leaves one hundred 

forty-one cases. This way, it is expected to get a better idea about the stability of the 

correlation structure over the course of ultrafiltration using the BWU methods 

(Figure 4-4 F). Alternatively, one could consider limiting the data to the median mass 
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throughput value of the process. This was attempted, but this operation did not lead 

to any revelations and made models more complex to interpret.  

5.1.4 Examination of the flux decline  

Ultrafiltration can run only for a limited period before the membranes have to be 

cleaned [111,112]. The UF capacity is limited by a membrane fouling or blocking 

phenomena where the production capacity - monitored as flow through the 

membrane, or flux - decreases over time. In general, the flux decline is caused by a 

decrease in driving force and/or increased resistance [113]. This fouling mechanism 

has been studied for the past 40 years [113-117]. It is obviously very complex, but 

main attention was focused on the nature of the membranes, the parameters of the 

processed feed and the processing conditions. Normally, the flux is much higher at 

the startup of the process, which corresponds to the pure water permeability of the 

membrane. After a few minutes, the flux sharply decreases due to the concentration 

polarization (represented with black markers in Figure 2-4). The permeate flux will 

after that continue to decline gradually due to membrane fouling (represented with 

red markers in Figure 2-4) [118]. Concentration polarization involves an increased 

concentration of retained components close to the membrane surface and it depends 

on the hydrodynamic conditions in the membrane plant [23,113]. This part of the flux 

decline is reversible and can be reduced for instance through flushing of the system 

with water, increasing the cross-flow velocity, decreasing the concentration of the 

feed or decreasing the transmembrane pressure [105]. As a result of the concentration 

polarization at the membrane surface, increased ion concentrations and other feed 

components can surpass solubility thresholds and precipitate on the membrane 

surface and/or in the pores of the membrane [117,119]. These deposits can block 

pores causing a loss of performance. As it was decided to exclude the startup data 

from the capacity studies, the examined flux decline is predominantly related to flux 

decline which ideally should be recovered by cleaning. The CIP-irreversible blocking 

of membranes might also occur [111,112], but it is not in the scope of this study, due 

to lack of available data on ‘pure water flux’ after cleaning. 

Understanding run-to-run variations in performance of ultrafiltration in terms of flux 

has been the scope of PAPERS II, III and POSTER II. One of the preliminary 

challenges associated with those studies was to establish a suitable estimate of the 

flux for the post-run evaluation of UF performance. In daily practice, the UF capacity 
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is monitored based on the permeate flow out of the UF loops and the retentate flow. 

The operator stops the unit and proceeds to cleaning when these parameters drop to 

unacceptably low values or if the order is finished. It is, however, problematic to use 

the seven parameters for the post-run capacity evaluation, especially since not all UF 

loops are in use all the time. Moreover, runs significantly vary in duration and 

volume of the processed feed. Naturally, the higher is the feed volume, the longer is 

the processing time (Figure 5-9a). However, it can also be observed that as the feed 

volume increases the variation in the processing time between the runs also 

increases. Consequently, the UF performance can be expressed as a feed volume 

processed per unit time (Figure 5-9b). 

 
Figure 5-9 – (a) Relation between the processed volume of the feed and the run 
length; (b) overview of the UF capacity expressed as feed volume per unit time. 

This very crude way to address the problem translates to capacity in a 

straightforward manner but has several drawbacks. For instance, it does not 

compensate for the working membrane area during the run (that is a number of UF 

blocks in use). On the other hand, process engineers normally evaluate the post-run 

performance based on the appearance of the permeate flow trajectories for the entire 

run. For instance, Figure 5-10 presents permeate flow profiles for six subsequent UF 

loops experienced during three different runs.  
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Once again it can be noted that the filtration duration varies considerably between 

the runs. A common observation valid for all examined cases is that the decrease in 

the permeate flow appears first on the last recirculation loop F. This UF stage is 

always in use; it enters first in production, so it also works for the longest time. 

Recirculation loops work in sequence and there is thus a successive increase in total 

dissolved solids moving from stage A to F. Consequently, the last stage is the most 

exposed to fouling. Flux decline is always the most severe there, and the problem 

transfers to the other blocks later in the process in reverse order from F to A. In the 

above example, run R1 represents a desirable profile. The permeate flow on the last 

block is decreasing steadily but very slowly. As some decrease is practically always 

observed, it is more correct to refer to the filtration phase, which follows after 

startup, as a ‘quasi-steady-state’. Both runs R2 and R3 represent bad profiles. 

According to the experts, run R3 is the worst case scenario where the permeate flow 

decrease very steeply right after startup, which is observed on all blocks. On block F, 

permeate flow reaches zero already mid-way through run R3 and the preceding 

blocks soon follow. As a result, this run is very short. Run R2 also experiences a steep 

decline in permeate flow on the two last blocks, but it is less severe than in the 

previous case. All in all, this run is 2.5 times longer than run R3. The expert 

evaluation is reflected in Table 5-1 by rating the best run R1 as 1st and the worst run 

R3 as 3rd. The subsequent challenge is to reproduce the experts’ assessment based on 

potential flux estimates/parameters calculated from available data, as listed in Table 

5-1. 

Table 5-1 - Flux estimates corresponding to Figure 5-10. The ratings in each column 
are based on the assumption that the higher the value, the better was the UF 
performance. 

Run 
Expert 

assessment 
of profiles 

permeate flow, mean value (m3.h-1) 

feed 
vol./time block 

A, 𝑣𝑣𝐴𝐴 
block 
B, 𝑣𝑣𝐵𝐵

block 
C, 𝑣𝑣𝐶𝐶  

block 
D, 𝑣𝑣𝐷𝐷 

block 
E, 𝑣𝑣𝐸𝐸  

block 
F, 𝑣𝑣𝐹𝐹 

total 
𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡 

R3 3rd 1st 1st 1st 1st 2nd  2nd 1st  1st  

R2 2nd 2nd  2nd 2nd  2nd  3rd  3rd 3rd 2nd 

R1 1st 3rd 3rd 3rd 2nd  1st  1st 2nd 3rd 
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None of the approaches listed in Table 5-1 can reproduce expert evaluation. This is 

because when using means one disregards the starting value, the slope and the 

filtration duration. Run R3 does not appear as the worst according to any of the 

investigated parameters. It is the one most frequently scoring as the best. Only mean 

permeate flows on the last two blocks position run R1 as best. Surprisingly, 

comparison of the post-run capacity expressed as a feed volume processed per unit 

time results in the opposite ratings than in case of the experts’ assessment of the 

profiles. Additional problems, not covered in the above example, appear when not 

all blocks are in use. This, however, can be overcome by calculation of volume flux (J, 

Lm-2h-1) by relating the total permeate flow to the working membrane area at every 

timestamp. This is done according to the formula: 

J(t) = 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)∙1000  
𝑊𝑊𝑊𝑊(𝑡𝑡) ∙𝐴𝐴   (5-2) 

Where 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) is total permeate flow, summed values from all loops at time 𝑡𝑡, in 

m3h-1, 1000  is the adjustment for L instead of m3, 𝑊𝑊𝑊𝑊(𝑡𝑡) is number of loops working 

at timestamp t, based on assumption that a loop is working if the power of the 

corresponding centrifugal pump is larger than 1%, and 𝐴𝐴 is membrane area 

corresponding to one loop (m2).  

The fluxes calculated according to Equation (5-2), corresponding to the previously 

discussed three runs, are presented as the last column in Figure 5-10. 

The flux profiles elegantly summarize the information that has been previously 

evaluated per block. The most desired scenario is to have a steady flux profile as in 

the case of the run R1. Run R2 shows a flux decline but the performance is quite good 

until approximately midway through the run. Run R3 has an exceptionally high flux 

at the start but shows a drastic flux decline over the ultrafiltration. The flux at the 

end of the run R3 is comparable to the end flux of the run R2 which was 2.5 times 

longer. Capacity wise (feed volume/time), run R3 outperforms run R2 but in the case 

of the latter twice as much feed had to be concentrated. If the feed volume in R3 was 

equal to the feed volume in R2 it would be impossible to finalize the process order 

without an additional CIP which would be an unexpected capacity cost. 

Consequently, it is not an easy task to decide on a universal post-run capacity 

estimate in a continuous ultrafiltration process that satisfies all nuances of economic 
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production. Therefore, it was decided that flux will be parameterized by three 

numbers (Paragraph 5.1.5): 

1) Start value – mean value for the first 30 min of the steady-state filtration.  

2) Mean value – overall mean flux value for the steady-state filtration run.  

3) Slope – the difference between the start value (first 30 min) and the end value 

(last 30 min) divided by filtration length. 

The calculated values corresponding to the discussed examples are rated with 

respect to each other in Table 5-2. 

Table 5-2 - Flux estimates corresponding to Figure 5-10. The ratings in each column 
are based on the assumption that the higher the mean/start value the better, 
whereas the higher the slope value the worse was the performance of the UF. 

   Feature 

Run 

Start value 

(L/m2/h) 

Mean value 

(L/m2/h) 

Slope  

(L/m2/h) 

R3 1st 1st 3rd  

R2 2nd  3rd 2nd  

R1 3rd  2nd 1st  

 

The flux estimates comply well with the experts’ evaluation of the profiles, and they 

are easy to understand and translate back. The slope component takes filtration time 

into account which is also good because it is obviously better if the comparable 

decrease in flux is extended in time. The high start and mean value for R3 

corresponds to the high capacity which is paid for by a fast flux decline (slope). It 

appears wise to investigate the relation between other process information and these 

three values at the same time, and chemometric modeling can handle the reference in 

this format (via PLS2). An overview of the variation in these three features in the 

investigated historical production runs (𝐼𝐼 = 278) is shown in Figure 5-11. 
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Figure 5-11 - Overview of the values for the flux features extracted for all available 
runs of the same commercial enzyme intermediate product as a function of time. 

To summarize, during the UF capacity studies flux decline has been addressed from 

different angles to make the studies comprehensive. It is recommended to select the 

flux estimate that works best for the purpose of the study. Depending on the 

modeling approach reference flux has been examined as time series 1a) ‘Y-flux’ 

(volume flux calculated for all blocks) (PAPER II and III), 1b) ‘F-flux’ (permeate flow 

on F-block only), 2) translated to bins (POSTER II; Paragraph 3.5), 3) Y- or F-flux 

features or as 4) feed volume processed per hour. Options ’3)’ and ‘4)’ have been 

studied in more detailed in a separate, internal report for Novozymes. 

5.1.5 Modeling 

The flux decline problem has been addressed throughout this project in several ways 

for one specific type of commercial enzyme product. At first, a flux quality map had 

been formed by the PCA decomposition of the binned ‘flux on the F-block’ (POSTER 

II). The position of the runs on the first PCs score clearly showed that those UF runs 

which require less up-concentration have a better flux behavior. Hence, they might 

not be so interesting to examine. It was not straightforward what causes the 

diversification across the second PC between the good and bad fluxes for the runs 

with higher degree of concentration in the retentate. Another observation was that 

the runs processed according to the newest recipe were situated either in the low flux 



 

-77- 

corner of the model or close to the center of the plot. This could indicate that they are 

not well explained and behave differently. In the following studies, the use of the 

binning for data was withdrawn and replaced with calculated flux and flux features. 

In the meantime, CCSWA (Paragraph 4.4 and Appendix 1) was used to examine the 

association between different process parameters and to support the data validity 

check and selection of the relevant tags. Originally, the historian call returns seventy-

eight process tags related to the examined UF unit. Quickly, cumulative, CIP-related 

and operational tags were excluded which left sixty-six process parameters. After 

data validity checking and use of preliminary process knowledge forty-eight 

parameters were judged relevant for the PLS-based studies. As features extraction is 

the simplest and the most flexible of the considered data arrangements, it was used 

first. This approach enables for easy incorporation of upstream process parameters 

and other calculated variables (as summarized in Table 5-3). Seventy-three 

parameters expressed by one to three features (not all identified in Table 5-3 due to 

proprietary reasons) were investigated at this stage, adding up to one hundred forty-

seven variables. 

PLS2 models were calculated between the flux features and features of process 

parameters using all available runs, and six components were selected based on the 

scree procedure [120] (Figure 5-12a). This model is referred to as FE-PLS2. The model 

had been optimized by the VIP variable selection technique. It was possible to limit 

the number of variables to only fifteen without loss of performance, based on a 

stratified CV procedure (4 LV’s, Figure 5-12b). Parameters which remained in the 

model were related to the temperature of the feed (predominantly), feed and 

retentate RI, and cross-flow regulation on the second and the last UF-loop. 
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Table 5-3 - Process tags and other calculated parameters investigated in relation to 
flux and expressed as features. 

Unit operation 
(Figure 5-1) 

description 
How is it expressed? 

mean st.dev. range ratio length 
cumulated 

value 
profile 

Fermentation fermentation activity X 
  

    

Pretreatment 
flocculation agent, flow X 

  
    

dilution X 
  

    
pH X 

  
    

Separation conductivity after centrifuge  X X     X 
Pre-UF RI retentate X 

  
    

UF 

membrane age 
   

X    
filtration length 

   
 X   

 'idle' time 
   

 X   
startup length 

   
 X   

volume reduction factor X X 
 

  X  
mass throughput 

   
  X  

working block score 
   

X    
permeate return    X    

UF feed 

pH X X 
 

    
temperature X X 

 
    

reg. pump feed tank X X 
 

    
pressure 2 X X 

 
    

pressure 3 X X 
 

    
pressure 4 X X 

 
    

pressure 5 X X 
 

    

U
F 

pe
r b

lo
ck

 o
nl

y 
w

he
n 

in
 u

se
  

(A
,B

,C
,D

,E
,F

) 

start time 
   

X    
time in use 

   
X X   

dilution mode  
   

X    
feed regulation valve X X X     

power of circulation pump X X X     
Temperature X X 

 
X    

cooling (ice water reg. valve)  X X 
 

    

UF retentate 

RI block F X X X     
RI retentate X X X     
temperature X X 

 
    

cooling (ice water reg. valve)  X X 
 

    
Conductivity X X 

 
   X 

UF permeate 
pH X X 

 
    

Temperature X X 
 

    
Conductivity X X 

 
   X 
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Figure 5-12 - Calibration (RMSEC) and cross-validation (RMSECV) errors for the 
FE-PLS2 models constructed using (a) all data (𝑱𝑱 = 147) or (b) VIP selected tags (𝑱𝑱 = 
15). 

Next, the dataset which consisted of runs limited to the median length (size 

147×57×𝑁𝑁𝑚𝑚) was studied by the BWU techniques. Figure 5-13a and b present mean 

trajectories of investigated variables plotted against the filtration time. The effect of 

auto-scaling on this data in a BWU vs VWU arrangement (Figure 4-4 F vs D) is 

compared in Figure 5-13c and d. Auto-scaling in VWU (so-called ‘variable scaling + 

centering’) does not remove the mean trajectories from the data which is the most 

prominent for process parameters such as conductivity, flow tags and cumulated 

values (Figure 5-13c). As a result of auto-scaling in BWU (‘trajectory scaling plus 

centering’), means of all variables at every timestamp are virtually zero (Figure 5-

13d). After BWU, a 2-D matrix of size 147×57𝑁𝑁𝑚𝑚 is obtained.  

Next, a ‘Total Covariance’ map (see Section 4.6) has been consulted to visualize the 

dynamic relationships in the data [86]. Explicitly, the motivation for using the map 

was too see if the correlation between the investigated process parameters is time-

varying. Again the effects of auto-scaling in the VWU and BWU arrangements have 

been compared. The two pre-processing strategies resulted in almost identical maps 

(except for cumulated values). Figure 5-14 shows the ‘Total Covariance’ map for the 

data scaled in the BWU arrangement. It is a visualization of the auto-covariances and 

lagged cross-covariances among process variables over time. The sampling time is 

indicated in the margins of the map. All examined variables are present within each 

block of each sampled time. Intensive colors indicate a strong correlation between 
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variables whereas white and light colors indicate a lack of correlation between 

variables and phases. 

 

Figure 5-13 - Mean process variable trajectories used in BWU-PCA approach 
before and after scaling; (a) before pre-processing; (b) zoomed region indicated by 
broken line in (a); (c) after variable scaling plus centering; (d) after trajectory 
scaling plus centering. 

Overall, judging from this map, the covariance structure among investigated process 

variables appear to be quite consistent with time. The intensive red squares between 

variables 6-10 repeating for all time lags represent the strong correlation between the 

pressure related tags. It appears that correlation between variables on the first three 

UF-loops (blocks A-C), which are situated on the map just after the pressure tags, is 

stronger in the beginning and diminish over filtration time. If a process runs through 

different phases, it should be possible to observe it in the correlation map as the 

formation of rectangles described by distinct color pattern [46]. However, it is not 

seen in examined UF data. This, together with the lack of notable difference between 

the auto-scaling in the batch-wise vs. variable-wise arrangement, suggests that 
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correlation structure in the data is quite constant. Therefore, the VWU-approach 

(Figure 4-4 D or E) will most probably work sufficiently well for the modeling of UF 

process data.  

Similarly, there was little difference in the shape of the loadings between the BWU-

PCA which used data after ‘trajectory centering + scaling’ and the BWU-PCA model 

based on data after ‘variable centering + scaling’ up to the third PCs, except for the 

cumulative values (not shown). The summary statistics of the two models were very 

similar as well as the appearance of the BWU-PCA scores. Consequently, the model 

interpretation would be the same irrespective of the scaling performed.  

 

Figure 5-14 - Correlation map for the batch-unfolded and auto-scaled data 
(147×57𝑁𝑁𝑚𝑚) for ultrafiltration hours: 1, 1/3 𝑁𝑁𝑚𝑚, 2/3 𝑁𝑁𝑚𝑚, 𝑁𝑁𝑚𝑚. Fifty-seven process tags 
are arranged in an order which corresponds to the UF process layout/effluent flow.
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The motivation behind the use of BWU-PCA in this UF study was to check if 

modeling of the flux decline benefits from the methods capable of handling the 

changing process dynamics. From the shape of the loadings (Figure 5-15), it can be 

concluded that the correlation structure does change slightly. For instance, when a 

UF-loop is ‘OFF’ (which is usually the case for the first UF loops at the first 

timestamps) the temperature is equal to ambient temperature of the surrounding air. 

Thus, no correlation between the cooling regulation and the temperature should be 

observed for this stage. If the loop is working then, in general, the more intense the 

cooling, the lower is the temperature (but also the reverse situation could happen). 

Finally, if the cooling reaches its maximum capacity the temperature may still 

increase, especially if the membranes get more and more obstructed. In this case 

weak or no correlation should be observed. This situation would be primarily 

expected on the last UF loops at the later timestamps. This ‘control loop’ and 

‘ON/OFF’ blocks dependencies can be the reason behind the varying shape of the 

loadings on the second PC. The profile of the flow tag loadings on the third PC also 

make sense as we observe an increase in loading value over run-time for blocks A 

and B (blocks enter later) and decrease for F-block and retentate flow (fouling, lower 

throughput). The flux and feed flow shape are a mixture of the other flow tags to 

which they are related via the closed-loop control or, in the case of flux, calculation. 

All in all, interpretation of the shape of the loadings obtained with BWU-PCA is not 

easy or straightforward. It would not be possible without a solid process experience 

and it does not lead to any new findings.  

It is doubted if the BWU data arrangement is needed to examine the UF flux 

problem. The process does not run through fixed phases. Hence, it cannot be 

predicted beforehand when a specific block or control loop is active, and it is thus not 

possible to define an NOC set accordingly. A more repetitive nature of the process is 

necessary if a BWU-PCA-based monitoring/optimization strategy is desired. The 

shape of the BWU-PCA loadings obtained in this study just reflects the averaged UF 

performance. Moreover, when it came to the investigation of outliers (not shown), it 

was never the shape of the loading that indicated the outlying behavior but rather 

the entire block of variables being off. The BWU-PCA and PLS2 (after exclusion of 

flow tags) models has been examined in more detail in a separate Novozymes 

internal publication. The BWU-PLS2 model after variable selection used similar 

process parameters as a FE-PLS2 model.  
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For comparison, a multilevel PLS model has also been developed based on the 

limited dataset (size: 147 𝑁𝑁𝑚𝑚 × 46). This regression approach uses the flux series as an 

independent variable, and it models the relation to the flux on the 'between-run’ 

level and 'within-run‘ level separately. The performance of the optimized multilevel 

PLS is summarized in Figure 5-16. Markers correspond to different processing recipe 

variants of the same commercial product. The between-runs model predicts the mean 

flux value (𝐼𝐼 = 147) whereas within-runs model predicts the variation in flux over the 

course of ultrafiltration (for 147 𝑁𝑁𝑚𝑚 timestamps). The latter sub-model is comparable 

to the start and slope features used in FE-PLS2. The optimized multilevel PLS model 

used eighteen variables. The remaining variables had different importance in the 

sub-models as judged from the corresponding VIP-scores (not shown). For instance, 

feed temperature was primarily used by the between-level sub-model, whereas 

variables related to the cross-flow regulation on the UF-loops were more significant 

for the prediction of ‘within-run’ flux variation. The relation to conductivity was also 

relevant on the within-run level. However, this could be driven by a similar 

development of the flux and conductivity profiles over filtration, just reversed. 

Explicitly, conductivity normally increases over the course of the UF process, and 

flux decreases (see Figure 5-13d). 

 
Figure 5-16 – Performance of the optimized multilevel PLS sub-models (a) 
between-level (6 LVs); (b) within-level (3 LVs). Flux is expressed in units of its 
standard variation. 

Processing recipes marked with red rhombi show the highest spam of flux variation 

within the runs (Figure 5-16b) and the highest overall mean values (Figure 5-16a). In 

the case of runs marked as turquoise triangles and gray rhombi, flux does not vary 
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much over the course of filtration (values close to zero in Figure 5-16b). The lower 

fouling potential is expected for these recipes as they demand a lower degree of 

concentration. 

A detailed description of the outcome of the exploratory (MSCA-P, BWU-PCA) and 

regression studies (FE-PLS2, BWU-PLS2, multilevel PLS) in the context of the flux 

decline cannot be included in this thesis as it would be hard to follow by an external 

reader. All approaches pointed at the relation between the flux and the feed 

temperature where in particular high RI products experienced a steep decline in flux. 

This observation was already clear from the conceptually simplest modeling strategy 

applied to the broadest dataset (FE-PLS2 for 278 runs). The multilevel exploratory 

study (PAPER II) focused only on the high RI variants of the product (141 runs) and 

has the big advantage of maintaining the time series structure in the examination. 

The underlying factors behind recipe-, between- and within-levels of the MSCA-P 

model have been identified, which greatly eased the exploration of the fifty-seven 

parameters used to monitor the process. The dominating phenomenon in the within-

run variation has been related to the throughput/flux profiles. Runs processed 

according to the most recent recipe showed distinct profiles which corresponded to 

significantly higher throughput at the start followed by a very steep decline. The 

steep flux decline as well as higher overall mean flux value appear to be related to 

processing temperatures and, in particular, increased feed temperature.  

The flux decline problem has been further addressed by the MB-PLS approach 

(PAPER III) centered only on the last recipe variant. In the study thirty runs has been 

classified as NOC and ten as AOC based on their behavior on LV1 vs. LV2 score plot. 

Similarly to our previous study, it appeared that higher processing temperature can 

have both positive and negative consequences for the UF flux. Specifically, it was 

found that the extent of membrane fouling can be reduced if the temperature on the 

last three recirculation loops is decreased. The reason for rapid blocking of the 

membranes was most probably the enhanced phase transition of the enzyme or 

precipitation of salts which for this particular product happens faster at high 

temperatures. Membranes ‘do not cheat’ and are designed to reject the suspended 

solids hence precipitation in the unit should be prevented at all costs [107]. 

Additionally, in the last study a potential field for improvement has been reported, 

related to the pressure monitoring point used in the closed-loop feedback control of 

ultrafiltration pressure.   
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5.2 Production of enzyme granulate 
The solid formulation of enzyme into the granulate product rather than into fine 

powder is motivated by the reduced risk of the airborne particles. Strong and 

resilient granules ensure a ‘dust-free’ product which is safe to handle in the clients’ 

factories [121]. Other advantages of this solid form are improved flowability and 

homogeneity, reduced risk of segregation and better stability during storage. 

Formulation of dry enzyme products at Novozymes A/S in Kalundborg is performed 

by 1) continuous granulation and drying followed by 2) batch coating and cooling 

process (Figure 5-17). The wet granulation process is carried out in high-shear mixers 

using the mechanical energy of chopping blades and plows which distribute the 

liquid binder.  

The sub-processes of wet granulation are: 1) wetting and nucleation, where a 

granulation liquid (enzyme concentrate and water plus dextrin) is sprayed over the 

blended powders (fillers such as cellulose, dextrin and various salts); 2) growth and 

consolidation which involves the coating of fresh powder onto the surface of the 

granules and propagation in size through sticking two or more granules; 3) attrition 

and breakage during which the surface of the granules wears down progressively 

[122].  

Next, the wet granules are dried in a fluidized bed. After drying, the raw granules 

are sieved, and the oversized and undersized fraction is recycled in the process. The 

raw granules of appropriate size are coated in order to keep the dust level to a 

minimum and to prolong the stability of enzymes. One or more layers are applied, 

and the coating is usually an inert material like organic polymer and/or salt. The 

coating can also be used for coloring purposes. For instance, titanium dioxide can 

make the product whiter [121]. The physical strength of a granule and the coating 

applied to granules is an important quality parameter to monitor when granulating 

enzymes. Enzymes are allergens, and hence, it is vital to secure that none are released 

to the surrounding environment due to poor coating quality. 
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Figure 5-17 – Schematic overview of the manufacturing process of enzyme 
granulate with the approximate location of process tags: Total Recycle Flow (THR); 
Oversized Recycle Flow (ORF) and Powder Height Regulator (PHR). 

The granulate product properties are primarily influenced by formulation properties 

and mixing within a granulation vessel [123]. The mechanism of granulation is very 

complex and challenging to model which makes the current operation very 

experienced-based [121]. The suspected reasons behind an uneven granulation 
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performance are numerous. For instance, inequality of the liquid concentrate 

introduces inconsistency into the granulation process. This means that the ability of 

the mixture to form a proper granulate can vary for each new batch of enzyme 

concentrate entering the process, as well as for subsequent portions of the same 

concentrate due to inhomogeneity within a tank volume. As a consequence no or 

poor granulate is formed or too large particles are found. This is later corrected by 

manipulation of the ratio between ingredients, but the abortive mixture increases the 

recycle pool which contributes to a capacity loss. Despite its widespread use, 

granulation processes are highly inefficient, and even modern industrial plants often 

operate with high recycle ratios. Thus, there is an economic incentive for a better 

understanding of granulation processes, leading to the more effective operation. 

New ways must be developed that allow for better supervision and to optimize the 

existing processes and improve monitoring systems.  

5.2.1 Study of periodic patterns in the granulation processes 

As a consequence of semi-continuous production system, there are no fixed or clear 

time-relations between successive unit operations in the granulation process flow. To 

get a better insight into system dynamics and move towards process 

optimization/variance reduction the serial correlation procedure has been used on 

historical datasets. Over fifty process tags were examined; however, the main 

attention was focused on the tag describing granulate fraction sieved out after a 

drying bed, not meeting the specification (both too coarse and too fine) represented 

by the tag ‘Total Recycle Flow’. This parameter clearly indicates if the granulation is 

not performing well. Information that could be shared with regard to this study has 

been summarized in POSTER I. The percentage open of the rotary valve controlling 

the volume/amount of granulate dried in the fluid bed is given by the process tag 

‘Powder Height Regulator’. Location of all the tags discussed in the poster is 

indicated in Figure 5-17. 

5.2.2 Lagging of the signals 

The cross-correlation function (CCF) has been used in this project work with 

moderate success to identify delay times between unit operations involved in a 

(semi-)continuous granulation and drying process. The results strongly depend on 

the preceding filtering steps. It should be noted once more that part of the signal 

deformation happens during data compression which is irrecoverable and hard to 
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track back. Piecewise Linear De-trending (PLD, see Section 3.3.2) has been the 

method of choice for obtaining weakly stationary signals. However, the resulting 

autocorrelation and cross-correlation functions experienced broad peaks, and they 

were sometimes hard to read. It can be postulated that a more advanced pre-

whitening of the signals could have been performed prior to CCF. However, if the 

seasonal component is removed from the time series the common stimulus which 

affects operations downstream to the drying bed is also removed. In such an 

approach, no significant cross-correlation between ‘TRF’ and ‘PHR’ is identified. 

Serial correlation analysis is certainly an interesting tool for examination of the delay 

times in different processes. However, application to the large-scale industrial 

process with numerous sources of variation, and differences in data density and 

quality requires more work than available in the framework of this Ph.D. project for 

this particular subject.  

5.2.3 Summary 

It was shown that an appropriate pre-processing of imperfect data can account for 

e.g. sensor inaccuracy, signal saturation or downtime. Different signal processing 

techniques, when applied wisely, can lead to interesting and otherwise undiscovered 

process knowledge. For instance, the examined ‘TRF’ signal showed some 

unexpected periodicity. Every 20 minutes the recycle flow is adjusted. This could 

hardly be registered without de-trending, marginally for most levels of pre-

processing plus de-trending, but by far the clearest after smoothing plus de-trending. 

It is obvious that good understanding of process fluctuations is very important. It 

allows efficient process management and production within narrow product 

specifications. Serial correlation analysis identified a previously unknown periodic 

adjustment in a fluidized bed unit operation. It was not possible to indisputably 

identify the root cause of the periodicity in a fluidized bed drying operation. The 

unknown stimulus is common for different process measurements related to the 

fluidized bed dryer. Hence, with the use of a cross-correlation function it was 

possible to estimate the lag time between the regulation of the powder height in the 

fluidized bed and its effect in the measurement of the total recycle flow being 5-6 

minutes. Similarly, it was estimated that the two recycle flow measurements, total 

and oversized, are distanced by 1-2 minutes. 
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The reason for the observed periodic adjustment is most probably related to a 

mismatch between the location of the feedback signals and resulting delayed 

response in the control structures of the fill level in the bed. This thought is 

supported by the fact that no fluctuations in powder height and recycle are observed 

in the similar fluidized bed situated in another plant at Novozymes A/S, which is run 

under manual control of powder height. 
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6. Conclusions and Perspectives 

This thesis focusses on solutions for a more extensive use of full-scale historical 

production data in mining, process optimization and problem-solving in the 

bioindustry. The research presented in this thesis has demonstrated that wise use of 

novel multivariate statistical tools can help to unlock the potential hidden in 

historical datasets.  

The key focus of this thesis was a more optimal utilization of off-line analysis and not 

the development of on-line applications. Many bioindustrial processes are not yet 

fully understood. Frequently, it is not straightforward how the performance of the 

different operations should be measured and which factors provide higher efficiency 

and better product quality. Therefore, a sufficient degree of process understanding 

needs to be gained first, for instance with the methods proposed in this thesis work, 

before an on-line monitoring schemes can be implemented. 

There is no master recipe that can tell you how this data mining challenge should be 

tackled. However, based on my experience in exploration of historical datasets from 

downstream processing of enzymes, I can recommend the following strategy: 

1) Recognition and definition of the problem. Identification of: 

1.1) One entity (i.e. batch, run, campaign) and operation period (i.e. startup, 

steady-state, CIP)  

1.2) Variability and way(s) to quantify it 

1.3) Motivation/Goal  

2) Data assembly and cleanup 

3) Data validity check: 

3.1) Logging frequency to historian  

3.2) Raw data plotting 

3.3) Basic uni- and bi-variate statistics for the tags 

3.4) Identification of missing data 

3.5) Preliminary PCA on means matrix or VWU data 
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4) Model improvement 

4.1) Lagging/synchronization 

4.2) Removal of outliers 

4.3) Tag selection 

4.4) Signal filtering 

5) Consider more advanced modeling approaches in the following order: 

5.1) Features extraction 

5.2) Multilevel approach 

5.3) Multiblock or multiway techniques  

     (Zooming in on the smaller focus areas indicated by the preceding model) 

6) Consult the outcome of the models with specialists via. proper visualization 

Communicate results to the decision makers 

Steps 2) and 3) can be automated to a considerable degree. However, steps involved 

in ‘4) Model improvement’ and further down require supervision and careful 

selection of the appropriate approach. Many of the above steps are iterative, 

particularly in the beginning when a common understanding of the problem needs to 

be established between the data analyst and the process specialists. Rarely has the 

analyst sufficient process knowledge to progress on her own. Therefore, 

communication with the process experts along the way is essential. During such 

meetings, the chemometrician needs to visualize the digested data and the outcome 

of the models in an accessible way that everybody can relate to and interpret.  

It would be a recommendation of this Ph.D. experience always to start with the basic 

LV methods before attempting more ambitious techniques. Simple PCA or PLS 

models can serve as a check on the data quality and our process understanding. They 

can help to spot clusters in the data, outliers and identify different abnormalities such 

as mistakes happening during data acquisition or periods of sensor failure. Based on 

this first investigation, one can e.g. decide which production periods and which tags 

should be excluded from the follow-up study. Potential limitations should also be 

identified at this stage. A primary objective of the historian archiving is to preserve 

the main operation while keeping the network traffic low. As a consequence, during 

the compression, data is frequently ironed-out from special occurrences and even 

possibly averaged beyond the point where alignment or synchronization techniques 

make any difference. Moreover, a substantial number of auxiliary process sensors 
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cannot be trusted either because they are broken or miscalibrated for extended 

periods of time. This issues, which are normally not critical for the ongoing process 

performance, handicaps the long-term data-driven optimization approaches. It is 

hence recommended to secure a proper surveillance system over the quality of the 

process data. For instance, an adequate data management should involve 1) a unified 

practices regarding the calibration of sensors, 2) ensuring that data is measured at the 

right place, 3) assuring that the DCS and historian compression settings are set 

correctly. Bearing in mind this sometimes poor quality and trustworthiness of 

archived production data, it is certainly better to use simple models which are more 

robust (less prone to overfitting) in a first investigation. Moreover, simple 

approaches can be exported to standard office software (such as Excel spreadsheets), 

and they are easier to explain to the non-chemometricians in an intuitive manner.  

If the researcher and stakeholders are not satisfied with the directions given by the 

simple approaches, then it is the time to consider if somewhat more advanced 

techniques would offer a better explanation to the problem. Based on the preliminary 

examination, it can e.g. be decided to focus only on particular product variants or 

manufacturing periods in the following studies. At this stage in my UF flux study, 

we progressed by only focusing on three processing recipes (out of originally six) 

which were historically succeeding each other (PAPER II). The selected method 

should aim at handling the data in its natural structure. We found that it was 

advantageous to recognize the hierarchical arrangement in the examined datasets 

and to pursue a multilevel modeling. In this approach, level one is formed by process 

timestamps which are nested within the individual runs referred to as level two. In 

this method, we tracked the recipe-classification by labeling the data on the levels 

two and one according to the recipe in force at the time of production. Based on the 

outcome, we also extended the MSCA-P model to a third level, processing recipe. 

The advantage of this approach over the standard VWU-PCA is that the variation 

within the runs is not confounded with variation between the runs and likewise for 

between-run, and between-recipe levels. Parameters directly related to the flux 

decline have been found on the recipe and within levels, and the steep flux decline 

appears to be related to process temperature, and in particular to increased feed 

temperature.  
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Finally, in the work described in PAPER III, we looked closer into the group of 

production runs identified as the most problematic only, and handled it as a 

regression problem with UF flux as a response variable. Interpretability of the PLS 

model has been made more holistic and simplified by calculation of the lower and 

super-level multiblock parameters. As process variables were assigned to groups 

corresponding to distinct phases of the process or belonging to similar engineering 

type of sensors, it was considerably easier to study and interpret the behavior of 

these blocks rather than keeping track of individual loading values.  

I have found this strategy of ‘peeling off different layers’ of the problem under study 

and zooming in on smaller sections of the process the right one. One may argue that 

the more data the better. However, from my industrial experience, there were too 

many sources of variability in the bigger datasets to come to any solid conclusion. On 

the reverse, by peeling of the problem, it was possible to see tendencies/patterns in 

the smaller groups of runs which were otherwise obscured. Moreover, it needs to be 

highlighted that a large number of variables is under closed-loop control in the 

production environment, which impose correlations. Therefore, a proper expert 

insight is crucial to decide which of the observed relations lead to new, unexpected 

findings and which are simply driven by the mechanics of the system. It is 

undoubtedly beneficial if the data analyst possesses the process insight or works in 

close collaboration with the experts. 

My UF flux studies have pointed at the temperature of the feed and processing 

temperature on the recirculation loops as being predominantly responsible for the 

steep flux decline, but at the same time for the higher overall mean flux. Therefore, 

future work of the optimization engineers should be focused on finding a balance 

between the UF temperature and the parameters of individual UF orders (feed 

volume, the degree of concentration, etc.). Especially, the question should be 

addressed if, from an economic perspective, it is better to process the same order in 

several high throughput runs (involving extra cleaning) or in one extended run 

(without the need for extra CIP).  

The natural hierarchy in process data is both a challenge and an opportunity. In 

PAPER II, we have used blocking in the row or time direction, whereas in PAPER III 

we applied blocking in the column or process tags direction. Both methods lead to 

decomposition of the complex data structures into intuitively interpretable solutions 
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by keeping the natural structure of the analyzed data. This might be a useful future 

perspective to develop methods capable of blocking in both the row and column 

directions - hence, time or dynamics and equipment layout - which in turn could 

relax the analysis of the multivariate historical datasets even more. I am sure that 

such moderately advanced methods for multiset modeling will prove their worth 

and will become standard process chemometrics tools for exploratory problem 

solving and investigation. 

In contrary to initial plans, I have not attempted to make a link between the process 

data collected during recovery and the subsequent granulation steps in the Ph.D. 

investigation. This is still a valid future perspective. However, to achieve this goal, 

Novozymes A/S needs to implement some more direct measure of the granulation 

performance. More research should be also be dedicated to proper alignment of data 

from the continuous granulation-drying process.  

As stated in the beginning of this paragraph, it was not a primary ambition of this 

Ph.D. project to develop on-line applications of multivariate statistics. The closest to 

such an implementation was the NIR study for real-time monitoring of enzyme 

activity described in PAPER I. NIR spectroscopy is tailored for on‐line applications, 

and it is one of the most commonly used spectrophotometric methods used in PAT 

developments. During monitoring, it can contribute by providing a faster feedback 

on process yield or product quality. Moreover, it often offers additional insight 

beyond its direct scope, leading to a better process understanding. It is however 

bound to the higher operational complexity of the implementations. NIR applications 

at Novozymes A/S have unfortunately been discontinued as it was not possible to 

obtain a satisfyingly stable and global solution for the related data management 

infrastructure and network.  

I believe that companies which are better at turning data into information and 

decisions will dominate in the future. Biomanufacturing operations are still largely 

running on experience-based rather than science-based practices. PAT has the 

potential to change this. As bioindustry is regulated to a lower extent than e.g. the 

pharmaceutical industry, it should to the higher degree explore a variety of 

multivariate sensors and chemometrics applications in full-scale processing. The 

tightly controlled lab or pilot scale experiments rarely correspond to the conditions 

encountered in the large-scale where numerous sources of variation may occur. On 
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the large scale, the answer is PAT. Certainly, a significant amount of time and money 

needs to be allocated to qualify the personnel and to develop, implement and 

maintain the PAT solutions. However, in return, process understanding can be 

gained fast and ‘myths’ abolished when the data‐driven frameworks are established 

and are running smoothly on the actual production records.   
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Appendix 

Appendix 1 - Common Components and Specific Weights Analysis 

 
Figure 1A – Algorithm and scheme of the working manner of the CCSWA. 
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The key parameter during purification of enzymes is the strength of the intermediates and products. Employing
near infrared spectroscopy, enzyme activity of the concentrate can be obtained much faster than by traditional
off-line analysis in a central laboratory. This paper describes the development of a monitoring system for the
enzyme activity in a recovery plant and provides a comparison between two real-time probe setups (on-line v.
in-line) in a full scale application. The focus in the paper will be on the chemometric calibration development
plus validation and the application of the models for monitoring purposes. For this investigation, four different
types of industrial enzymes have been sampled over a period of ten months. Real-time output of the partial
least squares regression models was used along with conventional process data generated to evaluate the pros
and cons of the in-line and on-line setup. Both implementations deliver good results in monitoring the ultrafil-
tration process, but problems (precipitation/phase transition) were occasionally encountered for the on-line
arrangement.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Industrial enzyme production is a complex discipline where numer-
ous critical factors have to be controlled within narrow specifications in
order to ensure a profitable outcome. The enzyme manufacturing pro-
cess can be described by three core producing and formulation steps:
1. Cultivation of enzyme producing organisms, 2. Recovery of enzymes
from the culture broth, 3. Formulation of enzymes into end-products.
In most production sites, these three steps are almost autonomous
factories or operations, but there obviously is a strong effect of upstream
process performance on downstream execution, i.e. variations in the
enzyme activity of the culture broth or the presence of foreign com-
pounds having an adverse effect during the purification steps. When
the cultivation is completed, themixture of cells, nutrients and enzymes
is subjected to downstream processing where enzymes are separated
from the broth, condensed, purified and stabilized. The factory involving
this sequence of unit operations, resulting in the concentrated enzyme
product, is traditionally called recovery. The liquid enzyme product
downstream from this processing stage can undergo formulation to
the granulated dry product or be sold as a finished liquid product.

In recovery, final product specifications such as enzyme activity,
color or turbidity are of high importance. In particular, the yield bal-
ances over different separation steps become more and more critical
from an economic perspective, as the strength of the intermediary

product increases moving downstream. With this in mind, relatively
expensive process near infrared (NIR) instruments are considered
more andmore for supervision of quality and efficiency of the industrial
operations. In the Novozymes production facilities at Kalundborg,
Denmark, a project was initiated which investigates the potential of
NIR technology for monitoring the enzyme activity in various liquid
streams involved in recovery. Employing NIR spectroscopy, the indirect
or inferential parameter enzyme activity in the concentrates can be ob-
tainedmuch faster than by traditional off-line analysis in a central labo-
ratory. The work presented here focuses on the process stream coming
from ultrafiltration (UF) concentrate and evaluates (a) which of two
real-time NIR flow cell setups is the preferable implementation and
(b) if statistical process monitoring can be used for early warning/fault
detection.

Even though NIR is not normally considered very selective, due to,
e.g. overlapping bands and a strong water signal, it has been shown
numerous times to be a powerful quantitative tool. This ismainly attrib-
uted to the high signal-to-noise ratio. NIR spectroscopy is also tailored
for timelymeasurements in dynamic systems as spectra can be acquired
fast, without sample preparation, in non-invasive modes [1–3]. In addi-
tion, the light in the NIR region holds the huge advantage of transmis-
sion over larger distances by optical fibers [4], incorporating the cost–
advantage of multiplexing. Another major benefit of optical fibers is
elimination of complicated sampling systems to bring specimens from
the process to the spectrometer. Indeed, it is possible to locate the
equipment remotely in a safe environment using compact sample
cells inside existing process streams (awindow into the system). A seri-
ous disadvantage of NIR is that construction of a good multivariate
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calibration model requires a considerable amount of effort, time and
thus money.

Initial studies have shown that there is a strong relation betweenNIR
spectra and enzyme activity in the UF concentrate. It was possible to de-
velop satisfying calibrationmodels for four examined enzyme products.
Nevertheless, since large sample sets generally increase the robustness
of calibration, development of a global model was pursued in this inves-
tigation. Standardizing several quality control (QC) parameters for
enzyme activity into one global QC parameter proved successful, and
these global models will be used in this comparative study.

Flow sample cells were directly mounted in the process lines (called
in-line analysis) and introduced via a fast loopwith sample conditioning
system (on-line analysis). The challenge is to provide a timely and rep-
resentative analysis result of the enzyme activity in the concentrate
stream resulting from UF and to detect (predict) undesired behavior
of the system as early as possible. The location of the sample point
should thus be such that the analyzed stream represents the overall
condition of the process to be monitored (or controlled) [5]. The local
effects, such as orientation of the pipeline, the physical location of the
sample probe and the design of the sample cell, should be used to
favor the representativeness of the process measurements. The flow
cells and sampling taps of the setups examined in this researchwere ar-
ranged to meet the representativeness and timeliness conditions [6,7].

2. Material and methods

2.1. NIR instrumentation

The analyzer system consists of an FTPA2000-260 Fourier Transform
NIR spectrophotometer (ABB Bomem, Quebec, Canada) equipped with
an InGaAs detector situated in a temperature controlled environment
(thermoelectrically cooled detector box). The operational range of the

instrument is 5300–10,000 cm−1. This multiplexer setup allows for
eight NIR channels, visited sequentially. One channel is used for internal
control of the spectrometer leaving seven channels for monitoring
inside the recovery processes. The light from the instrument was
transported to and from the NIR transmission flow cells via approxi-
mately 30 m of 500 μm core diameter single strand fiber optic cables.
The sampling frequency was not fixed/equidistance as a consequence
of the multiplexing procedure that was used.

2.2. Process measurements

Fig. 1 presents the position of the twoNIR probe arrangements in re-
lation to the UF unit plus some related conventional process measure-
ments of importance. These process signals are in this manuscript only
consulted to account for abnormalities in the UF operation or peculiari-
ties in NIR spectra and/or predictions, not for model building.

Both NIR flow cells – adjusted to different dimensions of the
surrounding pipelines, have the exact same design and optical path
length – are situated just downstream of the UF outlet (Fig. 1). The in-
line flow cell is mounted directly in the process flow coming from a
heat exchanger, whereas the on-line flow cell is installed in a stop-
flow sampling fast-loop, bypassing the heat exchanger. The flow cells
aremounted in horizontal tubing,where ideally a vertically oriented up-
wards flow should have been selected [7]. This arrangement was how-
ever unpractical with the existing unit design and process layout, but
the high flow of UF concentrate relative to the small diameters of the
pipelines ensures a homogeneous composition across the process
stream. Manually operated sampling taps are situated directly after
each flow cell to withdraw a specimen simultaneously with the record-
ing of spectra. A programmable logic controller (PLC) signals the NIR in-
strumentation to perform a measurement from the different flow cells.
The PLC also controls the temperature adjustment of the material in
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the on-line (flow cell) bypass after closing two valves (sample temper-
ature is elevated to just above maximal expected process stream
temperature).

2.3. Data collection

Four different types of intermediate enzyme product have been
sampled over a period of ten months—a total of sixty-two production
batches varying in enzyme protein concentration (Table 1). Thirty-
seven (in-line) and twenty-nine (on-line) of these batcheswere utilized
in calibration model building; eighteen and sixteen production cam-
paigns were used for test set validation (all test batch runs are at the
end of the ten month sampling period). Data pairs of NIR spectra and
reference samples (separate specimen for in-line and on-line; analyzed
in the central laboratory; process time logging is used for alignment
between NIR and manual sample extraction) are used for modeling.
Process data from conventional measurements (Fig. 1) for fifty-two
production batches were examined for monitoring of the UF process
with the sampling frequency/collection times dictated by the NIR
instrument/PLC.

All reference analyses performed were enzyme-specific assays,
which estimate the activity in a given sample by the use of a substrate
for which the particular enzyme has affinity. The enzyme releases, e.g.
a color component from the substrate, which is determined by spectro-
scopic analysis. This number was standardized against the enzyme ac-
tivity of the pure enzyme resulting in a value for enzyme protein
expressed as %(w/w). The percentage of total enzyme protein in a spec-
imen is derived from the enzyme activity from that sample via the fol-
lowing equation:

Total Enzyme Protein %ð Þ

¼ f Rescale

Enzyme Activity
Unit

g sample

� �

Specific Activity
Unit

g pure protein

� �� 100%

0
BB@

1
CCA

It should be noted that the Total Enzyme Protein values are rescaled
(further details are withheld for proprietary reasons) and should thus
be thought of as having the arbitrary unit percentage.

2.4. Data analysis

NIR data is used for construction of partial least squares regression
(PLS) calibration models for predicting the total enzyme protein (global
models). All spectra are smoothed with so-called Savitzky–Golay filters
(SG; window size 13, 2nd-order polynomial fitting) while calculating
the first derivative and mean centered. This spectral preprocessing
was selected after careful examination of different alternatives [8] and
generally led to less complex models. PLS models were generated and

validated using Matlab (version 8.0.0.783 (R2012b), Mathworks, USA)
and the PLS Toolbox (Version 7.3.1, Eigenvector Research Inc., Manson,
WA, USA) plus the iPLS algorithm for variable/interval selection [9]. All
models are cross validated during calibration development to deter-
mine the appropriate model complexity, leaving out one batch at a
time. Prediction residuals (cross validation or test set) were calculated
as the difference between the reconstructed data and the original labo-
ratory references. They represent a measure of how well an existing
model fits to the new (future) samples.

3. Results and discussion

3.1. Model building

Spectra registered by the two flow cells and used for calibration of
on-line and in-line PLS models are presented in Fig. 2. All except one
of the excluded samples were spectral outliers exhibiting a high base-
line absorbance and a saturation effect in thewater peak region (spectra
not included in Fig. 2). One outlierwas removed due to a high prediction
residual. Discarded outliers were later investigated with diagnostic
plots. It should be noted that some of the regions in the spectrawere ex-
cluded before variable selection. This includes part of thewater peak re-
gion due to persistent absorbance saturation observed on the detector
response and the region above 9000 cm−1. At this stage, despite the re-
moval of high absorbance outliers, there are still cases with a high base-
line absorbance for the in-line probe. On the other hand, seven of the
on-line samples were lost due to imperfections of the (manual) sam-
pling setup. Hence, based on inspection of the calibration spectra, it can-
not be concluded beforehand that either of the two flow cell positions is
more prone to scattering due to, e.g. entrapment of air bubbles between
the probe heads (Fig. 1), fouling or phase transition. Generally, baseline
offsets and slopes are effectively removed by the SG preprocessing
(Fig. 3).

Those parts of the spectra which were judged irrelevant for predic-
tion were discarded using the iPLS algorithm. The selection method
was applied separately for on-line and in-line calibration. A window
of five adjacent variables has been used which corresponds to a wave-
number window width of 62 cm−1 (or 21 nm). The iPLS algorithm
was run in the reverse mode meaning that intervals were successively
removed from the analysis [9]. The interval, whichwhen left out result-
ed in a remaining dataset producing amodelwith the smallest RMSECV,
is selected for permanent exclusion. Successive cycles remove the next
interval, etc. The average spectra after preprocessing for each of the four

Table 1
Data sets used in calibration and validation of the models.

Product Aa Bb Ca Db

Plotting symbol Triangle (red) Square (blue) Dot (green) Lozenge (black)

Calibrationd

In-linee 11 (3)c 17 6 (1)c 7
On-line 11 (2)c 12 (2)c 5 (1)c 6

Validationf

In-linee 3 7 4 (1)c 6 (1)c

On-line 3 6 3 6 (2)c

a amylase category, concentration range 1–5%.
b protease category, concentration range 10–20%.
c number of outliers removed during modeling, see Section 3.1.
d representing 42 production runs.
e fewer on-line samples due to missing reference analysis.
f representing 20 production runs.
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Fig. 2. Comparison of in-line and on-line spectra.
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examined product types differed mainly in the intensity of the water
band regions (results not shown). The spectra for proteases (products
B and D) and amylases (products A and C) are different in the water
peak region, explainable by the fact that the enzyme process streams
of amylases are considerably more diluted than for proteases. Proteases
exhibit a small shoulder-band found at 5975 cm−1 (5930–5920 cm−1 in
the case of the un-processed spectra). This appears to be related to the
first overtone of the aromatic C–H stretch (assigned to 1685 nm, [1]).
Both of the final models use the information in that specific region.
The second region taken into account by both models involves spectral
variations between 5832 and 5694 cm−1. It can be related to the re-
ported position of a first overtone S–H stretch vibration at 1740 nm
(~5748 cm−1, [1]), a functional group present in active centers of
various enzymes. Overtones related to protein structure, such as the
first overtone of N–H stretch of primary and secondary amines, can ac-
count for selection of regions 6681–6542 cm−1 in the in-line and
6449–6388 cm−1 in the on-line model. The effects of removal of the
outliers and the subsequent variable selection on model performance
are summarized in Table 2.

The final in-line PLS calibration model after variable selection uses
forty absorbance values and is of lower complexity with respect to the
number of latent variables (LV) while the root mean square error of
cross-validation (RMSECV) is also improved considerably from 0.88%
to 0.64%. The on-line calibration uses fifty absorbance values with a pre-
diction improvement from an RMSECV of 0.77% to 0.62%.

The discrepancy between the numbers of variables and components
required in themodels may be explained by the fact that the in-line cal-
ibration needs to account for drastically different temperatures (span
approximately 30 °C for this product range), while the on-line setup
was calibrated for a fixed, elevated temperature. Consequently, model
complexity is reduced considerably (from 6 to 3 LVs) by variable selec-
tion, and one additional component may be required to account for the
temperature deviations encountered in-line. In liquids containingwater
as a major component (as it is the case with enzyme concentrate), the
effect of temperature changes is particularly evident as it affects the
degree or strength of hydrogen bonding and the hydration status of
all constituents, and these changes influence the wavelengths at
which overtones or combination tones appear [10]. However, the use
of selected spectral regions together with global spectral de-trending
(the first derivatives) tends to make the analyte signals more dominant
compared to the inherent effect of temperature change.

Prediction performance of the two finalmodels is presented in Fig. 4.
The obtained results were deemed satisfactory, taking into consider-
ation uncertainties in laboratory reference analysis and the ability to
predict the content of total enzyme protein in four different products.
The gap in the calibration range (from approximately 5 to 10%) does
not seem to have a negative impact on the performance.

3.2. Model testing

Model performance over an extended period of time has been inves-
tigated to check for possible instrumental drift or lack of robustness to-
wards batch-to-batch variability. Stability of instruments can change
over time, and small continuous changes (e.g. instrumental drift due
to light source weakening) or sudden jolts (e.g. response shifts caused
by repairs/replacements, or unexplained transformations in the process
surrounding the spectrometer or probes) can cause the signal of an
instrument to alter and affect the prediction errors. The (long-term) ro-
bustness of calibrations – here based on batches produced after the cal-
ibration period – is therefore a subject of high relevance in process
chemometrics [11]. This was investigated using a test set not included
in the calibration step, and the outcome is presented in Fig. 5. No dete-
rioration of model performance with time was observed. The in-line
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Fig. 3. Selected/representative spectra for in-line and on-line after preprocessing (plotted
with offsets for clarity). Variables (wavenumbers) selected by the iPLS algorithm are indi-
cated as bold line-segments and tentative spectral interpretation reported.

Table 2
Model development and performance.

In-line flow cella On-line flow cella

Model I Model IIb Model IIIc Model I Model IIb Model IIIc

Spectral range (cm−1) 5385–6681 5385–6681 5385–5524 5385–6650 5385–6650 5693–5832
7113–8995 7113–8995 5693–5755 7128–8995 7128–8995 5925–5987

5925–6064 6156–6295
6542–6681 6388–6449
7159–7221 7314–7452

8471–8610
Variables 208 208 40 205 205 50
Calibration samples 41 37 37 34 29 29
Validation samples 20 18 18 18 16 16
LVs 6 4 3 2 2 2
RMSEC 0.62 0.62 0.53 0.91 0.68 0.54
RMSECV 2.10 0.88 0.64 1.24 0.77 0.62
RMSEP 1.09 0.91 0.83 2.27 1.48 0.98
R2 CV 0.91 0.98 0.99 0.96 0.98 0.99
R2 pred. 0.97 0.98 0.98 0.88 0.94 0.97

a) all models based on first derivative data with mean centering; b) samples with high baseline removed; c) samples with high baseline removed and reverse iPLS used for variable
selection, final model.
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model was revealed to perform slightly better with a root mean square
error of prediction (RMSEP) of 0.83% as compared to an RMSEP of 0.98%
for the on-line system. The increase in prediction errorwas not too dras-
tic for either of the models when compared to the calibration perfor-
mance (see Fig. 5 and Table 2). Only the samples positioned near the
concentration gap (product type D, protease) show a bigger than ex-
pected prediction error for the on-line implementation.

Hotelling's T2 and residuals (Q) are summary statistics which help
explain how well a model is describing a given sample. Hotelling's T2

values represent a measure of the variation in each sample within the
model, whereas Q residuals are a measure of the difference between a
sample and its projection into the factors (in PLS called LVs) retained
in the model. In Fig. 6, test and outlying samples have been projected
into the calibrationmodel (for clarity, some of themost striking outliers
have been removed). For detection of abnormal situations in the re-
mainder of this paper, the limits corresponding to 95% coverage have
been selected. This corresponds to Q = 4.0, T2 = 9.15 for the in-line
model, and Q = 1.3, T2 = 7.00 for the on-line model.

3.3. Monitoring of the Ultrafiltration unit

Once the real-time data is available, an immediate view on the pro-
cess performance and behavior is enabled. Potentially, a fully automatic
and self-regulatingproduction control system can be implementedwith
the monitoring equipment as input signal [10], but here we are fore-
most interested in the performance of the two measurement systems
and the dynamics of the unit operation. Figs. 7 to 10 will present the

predictions from UF of different amylase and protease types from
start-up of a batch until the moment right before a cleaning-in-place
(CIP) sequence, providing a comparison between on-line and in-line
sampling. UF of one representative batch of protease intermediate
product – a product Dwhich is specified by amoderate enzyme protein
concentration – is depicted in Fig. 7. For contrast, Fig. 8 shows the UF of
two batches of an amylase type A intermediate which is a product from
a low concentration range. Processing conditions for different product
types can vary drastically with respect to suitable pH, ionic strength,
temperature and overall capacity through the UF unit (feed flow and
permeate fluxes related to concentration factors). The characteristic
pattern observed during a typical UF process without disturbances
looks like the profile seen in Fig. 7. The quality of the sampled NIR spec-
tra for valid predictions of enzyme protein concentration is supported
by the Hotelling's T2 and Q residuals diagnostics trends with control
limits set as determined during model development.

For a complex operation as UF in combination with the product as
presented in Fig. 7, the target concentrate strength is first reached
after some time. Prior to that, at the start-up of the process, various pa-
rameters such as feed flow, pH, temperature and conductivity are not at
their optimal values. Hence, it is expected that spectra from the early
stage of a batch are predicted differently than spectra from Normal
Operating Conditions (NOC). The start-up period represents the non-
Normal Operating Conditions (non-NOC) and samples used in calibra-
tionmodels originated solely fromNOC. This is reflected on the diagnos-
tic charts. For both probe arrangements, the first portions of the
concentrate leaving the UF unit are characterized by higher Q's and
T2's, close to the control limits (Fig. 7b and c). This is explainable since
in the beginning of a batch the first volume of the concentrate leaving
the UF unit is expected to be more diluted due to the preceding CIP
run. In particular, on-line predictions cannot be fully trusted at this
stage—the concentrations were clearly underestimated. After this
short run-in period, the UF system and NIR measurements quickly sta-
bilize, an observation valid for both probe setups (Fig. 7a). The in-line
probe and corresponding model seem to be more robust with respect
to different conditions encountered during operation. This model
works well for samples showing relatively high residuals, contrary to
the on-line model. It is also interesting to note some periodic behavior
in the Q-residuals in Fig. 7b (also observed for other batches). Based
on the PLS calibration step, multivariate spectral information is turned
into a univariate predictions. However, for monitoring purposes, it is
sensible to keep track on the (spectral) variance not explained by the
regression model. The pattern captured by the Q-residuals is hence
related to something else. Interestingly, the fluctuations did not reveal
themselves in any other (conventional) processmeasurement. Although
we cannot completely exclude at this stage that the periodic behavior is
process rather than NIR-instrument/interface based, it does hint at the
potential of real-time measurement as a tool in process identification
and optimization next to concentration predictions.

Fig. 8 depicts two separate runs of an amylase type intermediate
and shows how alert the NIR predictions are towards the operational
changes of the UF. Amylases are processed under considerably different
production settings than proteaseswhich enables for higher throughput
(flows) through the unit. Any manipulation with a concentration factor
is rapidly reflected in the predictions (Fig. 8a). The modus operandi of
the UF unit is more complex for this product type. It is sometimes suffi-
cient to start up theunitwith a lower capacitywhich is seen in Fig. 8b. At
those times when the capacity is increased, one can observe that the
concentration decreases for a short period of time, for instance around
7:00 h and 13:00 h. Once the unit runs with full capacity and the
batch is close to being fully processed, the operator will adjusts the
set-point values. First, it is lowered to 1.5% (17:30 h), next it is lowered
to 1% (19:30 h) and finally it increased back to 1.5%. Also, for this less
concentrated intermediate, both setups function well (with the obser-
vation that the on-line calibration under-predicts at very low concen-
trations) and give the same picture on the process dynamics for this
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Fig. 4.Model performance of (a) in-line and (b) on-line calibration; products are labeled as
described in Table 1.
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NOC runs. This example nicely illustrates the tremendous power of in-
process measurement for visualization of what happens inside the box
[12].

Highly concentrated protease type products sometimes lead to flux-
related problems in UF operations. As this family of products can act
against themselves, it is required to process them in the conditions unfa-
vorable to their activity, i.e. at low temperatures and high concentra-
tions. The challenges in purification of proteases also demonstrate
itself when it comes to the arrangement of NIR probes with respect to
the process stream. These issues are described in detail for two batches
of type B product in Figs. 9 and 10.

Fig. 9 shows again an NOC start-up pattern which rapidly arrives at
the target concentration, and the predictions are realistic and in good
agreementwith total drymattermeasurements (not shown). The prod-
uct specification requires that the UF process runs at low temperatures,
and we can observe a rise in temperature of the concentrate stream

happening between 14:00 h and 18:00 h for this particular run
(Fig. 9b). This relatively large increase of the temperature (compared
to NOC) has no significant effect on the prediction error. It was antici-
pated that the in-line calibration model would be robust towards the
temperature fluctuations owing to the composition of the calibration
set, preprocessing and spectral variable selection used [10,12]. We ob-
served that the shape of the Hotelling's T2 scores plotted over time fol-
low the temperature pattern, but stayed well below the control limit
(not shown). The situation in the on-line bypass-loop (Fig. 9f) is differ-
ent, and, in fact, spectral residuals almost arrive at the limit at 10:30 h.
Due to capacity issues upstream to the UF unit, the UF operation is put
on idle between 10:30 h and 11:45 h. Following this break, the on-line
residuals crossed the control limit and continue to increase; the on-
line predictions in the last interval are not reliable (Fig. 9d). Together
with the rise in spectral residuals, the predictions also slowly increased
in a systematic way. This is not observed for in-line predictions (Fig. 9a)
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or dry matter measurements (not shown), suggesting an issue in the
on-line sampling probe, possibly sedimentation.

The sampling issue is more obvious in a second example of a prote-
ase intermediate (Fig. 10, product type B). In this instance, half way into
the batch, the on-line predictions run completely out of control
(Fig. 10f). The situation is again preceded by a sharp increase in the
spectral residuals starting around noon (Fig. 10g), accompanied by a
gradual increase in (invalid) predicted concentrations (Fig. 10f). The
on-line residuals peak at 15:00 h and decrease afterwards, to reach a
local minimum at 17:00 h. After that, erratic fluctuations are observed,
and the values for the Hotelling's T2 statistic are following the trend

(Fig. 10h). On the other hand, the in-line setup does not encounter
any substantial disturbances (Fig. 10b). The in-line residuals were
slightly higher than in the previously described cases in the start-up
phase. This could be related to the instability in the temperature of a
concentrate stream leaving the UF (Fig. 10a). When the temperature
stabilizes around 11:00 h, the in-line residuals keep falling steadily for
the remainder of the batch. Noneof the available process tags (Fig. 1) re-
vealed patterns resembling those observed in the diagnostic plots of the
on-line setup (Fig. 10g and h). However, it is clear that the flux profile
(or permeate flow; Fig. 10e)was not optimal for this run froma capacity
point of view. The ideal flux profile allows for a sharp decrease only at
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the start up; afterwards, a steady, sufficiently high permeate flow
should be reached and kept constant. This was clearly not the case for
this particular batch which might indicate that membrane fouling or
similar issues began early in this run. The pronounced increase in

spectral residuals observed for on-line solution stems from a drastic in-
crease in spectral baseline. An increase in scattering of the medium
could indicate a phase transition in the on-line flow cell. Both the
weak flux profile and the increase in on-line residuals indicate a
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precipitation issue on the membranes and in the fast loop, respectively.
Consequently, it is speculated that the precipitate appears and leads to
difficulties only in the on-line flow cell.

Protein solubility is a complex subject which involves parameters
such as ionic strength, composition of the solution, pH, and temperature
[13], and thiswas also reflected in our NIRmeasurement setups. At high
concentrations, enzymes might undergo conformational changes,
whichmight lead to blockage of UF membranes and serious capacity is-
sues. This emphasizes that the production and purification of proteins is
an exceptionally complex operation in which enzymes exist down-
stream in a metastable state. The observation in Fig. 10f (detected in
some degree in seven out of twenty-eight production runs of product
type B) speaks against the on-line setup. It is deemed that a phase
transition is promoted in the on-line systemmainly due to the fixed el-
evated temperature which is always above the processing temperature.
Moreover, a disturbance in the form of a stopped flow can amplify the
problem. To summarize, despite functioning for most batch runs, the
on-line flow cell does not fully meet fundamental requirements of a
proper sampling arrangement, namely not tomodify the process stream
or add an unacceptable delay to the response time of the system [6]. In
the in-line solution, responses reflect the modes of operation of the UF
unit. Without a conditioning system, there is no delay between sam-
pling and spectra recording; hence, better traceability was achieved.

Model maintenance is very much a subject of an active investigation
in process chemometrics [14–16], and operation of a process NIR-
spectrometer is not maintenance-free. At the start, to improve the cali-
bration further and gain trust of the production environment, it is rec-
ommended to continue an intensive sampling, e.g. one sample per day
for an application like the one presented in this manuscript. As the im-
plementation matures, depending on the robustness of the calibration,
the frequency can be lowered. At this stage, the application can be hand-
ed over to the process operators who need to comprehend statistical
process control charts for the process and NIR installation. Operators
should be trained to distinguish when the alarming situation needs to
be reported and if they should consult first-line support in the company
or the instrument vendor. Moreover, the final users should be aware of
special situationswhichmight affect the results of chemometricmodels,
such as: changes in the recipe, modifications to the instrument or plant
setup and performance. These situations demand intensified sampling
and information to local support. Periodicmaintenance of chemometrics
models through the data available in the process historian remains a re-
sponsibility of the local support group.

4. Conclusions

The two different NIR measurement strategies for interfacing an
industrial scale UF process – on-line and in-line flow cells – both gave
authentic results when compared to process and laboratory data. How-
ever, contrary to initial thoughts, the on-line flow cell was less robust
during operation. The disadvantages of the latter setup include: more
complex control of the sampling and conditioning system and

acceleration of enzyme precipitation. The in-line system was shown to
be robust towards different products (amylases and proteases) and as-
sociated processing parameters such temperature and processing
speed.
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Abstract 
The throughput of a continuous ultrafiltration operation is limited by membrane fouling phenomena 

where the production capacity - monitored as flow through the membrane or flux - typically 

decreases as a function of run-time. Significant attention has been paid in both public research and 

industry to understanding why flux varies as these discrepancies clearly affect the production 

scheduling and hence economics. The potential of huge amounts of already collected full-scale 

processing data and its related performance history have however so far been under-employed in 

the production optimization efforts. The reason behind this is primarily a lack of methods capable of 

analyzing time series data generated during (semi-)continuous processes, characterized by widely 

varying operation times. The dataset examined in this investigation was compiled from records of 

conventional, univariate process sensors collected over several years of production of one 

intermediate enzyme product. Consequently, the dataset has a natural multilevel structure with level 

one being the process timestamps which are nested within the individual ultrafiltration runs, 

referred as level two. Multilevel Simultaneous Component Analysis with invariant Pattern (MSCA-P) 

is applied to explore this historical dataset in the context of flux decline. The unusual runs are easily 

identified in diagnostic plots of the between-model and the reason behind their outlying behavior 

becomes apparent in contribution plots. In this paper we build on the two-level idea and expand the 

model to a third level: processing recipe. MSCA-P offers a good overview during exploratory problem 

solving or data mining and helps optimization engineers to focus attention on suitable target areas. 

The extent of flux decline as well as higher overall mean flux value appears to be related to process 

temperatures and in particular increased feed temperature.  
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1. Introduction 
Production of enzymes includes a sequence of separation, concentration, purification and 

stabilization steps, generally known as recovery. In modern productions, these steps generate a 

massive number of very diverse measurements, typically for specific and dedicated univariate 

monitoring and closed-loop control applications. These large amounts of data are stored in data 

historians but seldom used outside their direct scope, i.e. monitoring performance of individual 

pieces such as a particular pump or low-level control such as the temperature in a specific tank. This 

is a result of the demanding steps involved in thoughtful post-run data retrieval from the historian 

and the subsequent data pre-processing steps necessary for a more large-scale-long-term process 

data evaluation. There is a need for methods capable of analyzing time series data generated during 

(semi-)continuous processes. These types of processes show some periodicity behavior characterized 

by widely varying operation times, but are not easily classified as either batch or continuous in the 

classical sense. Consequently, the already collected full-scale process data and its related 

performance history are under-employed in the production optimization efforts. To change the 

status quo this paper discusses a chemometric method suitable for exploration of historical 

production records.  

A great deal of correlated or redundant information is present in process measurements [1]. The 

information content of different process parameters also varies widely; e.g. a temperature recording 

in a tightly regulated tank is obviously highly relevant for the control loop but seldom useful for data 

mining. Therefore, even though the process database comprises of measurements on a large number 

of variables or tags (hundreds), the effective dimension of the space in which they vary in a 

systematic way – a state of statistical control with only common cause variation - is significantly 

smaller (usually between two and ten) [2]. Besides, often necessary information is not provided by a 

single process variable but rather by the way the variables are changing relative to each other or how 

they co-vary [1]. E.g. flows into and from the earlier mentioned regulated tank in combination with 

the energy demands to maintain the temperature set point might be very useful information. Latent 

variable (LV) methods exploit the above features of process datasets by projecting the high-

dimensional data space onto the low-dimensional latent variable space. The latter represents the 

original data as well as possible, by accounting for the maximum amount of variance. Problems of 

process analysis, monitoring, and optimization are thus greatly simplified when working in this low-

dimensional space of the LVs [2].  

Principal Component Analysis (PCA) is a popular multivariate LV technique which has been 

successfully applied to analyze and monitor continuous processes [3]. In this approach, every 
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sampling time is represented by a row vector of a length equal to the number of process variables 

and the number of rows is determined by the time-horizon included in modeling. Standard PCA is 

however insufficient if the explored dataset includes a number of process runs (e.g. campaigns or 

batches). This is because it does not take into account the ordered or blocked nature of the data. 

Explicitly, standard PCA confounds the variation between and within individual data blocks. Multiway 

methods, on the other hand, take into account the sequential nature of data and how it is generated 

plus organized [1]. True batch processes can be considered as replicates of each other. Usually, a 

synchronization step is required after which a multiple-batch data collection forms a natural 

multiway structure [4]. In contrast, (semi-)continuous processes cannot easily be arranged in a 

similar way since they can vary considerably in duration and can be performed under quite different 

processing conditions. Transitions in the continuous process such as startups, grade-to-grade 

changeovers (set-point changes within one product type which do not require cleaning of the 

production line) and restarts could be considered as exceptions since they ought to follow a specific 

trajectory [5]. Still, runs of a steady-state continuous process are not suitable for synchronization 

since there are no phases or other systematic information that could be used to synchronize 

towards.  

In this paper we want to model full process runs and we treat this type of data as a 

multiset/multilevel LV problem. The term multilevel stand for hierarchical or nested data structures 

and the concept of multilevel analysis or modeling covers a broad range of algorithms that deal with 

this type of data structures [6]. Data with a multilevel structure can be found in different areas of 

research and is most often longitudinal, multi-subject and multivariate. Methods for analysis of these 

types of data originate from psychometrics where scientists are interested in separating the variation 

inherent to the patient from the general temporal patterns [7-9]. A similar separation is often desired 

in metabolomics studies where systematic variability within grouped samples (e.g. metabolic 

biorhythms [10]) can be obscured by inter-group differences. In examples from the process industry 

the multilevel structure of the datasets resulted from phenomena such as catalyst deactivation 

(deactivation-regeneration cycles [4]) and the multi-campaign nature of a process irregularly 

monitored by an on-line HPLC [6]. In the above studies, variation was limited to two levels where 

level one constitutes measurement occasions which are nested within the individuals (subjects, 

patients, assessors, process runs, etc.) which can be referred to as level two. Alternatively level two is 

referred to as the between or static variation and level one as the within or dynamic variation. In this 

paper we build on the two-level idea and explore a third level, processing recipe. This extension has 

been previously suggested by de Noord [11]. 
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The dataset examined in this investigation has a natural multilevel structure. It was compiled from 

several years of production of one intermediate enzyme product and consists of hundred forty-two 

ultrafiltration (UF) runs. As all unit operations in the recovery plant at Novozymes, Denmark, run in 

sequence in a continuous fashion, it is critical from a capacity-viewpoint that all of them function 

nearly undisturbed in accordance with the process scheduling of the full facility. However, it has been 

observed that the throughput of the UF varies considerably from cycle to cycle, even within the same 

enzyme product. The throughput is limited by membrane fouling or blocking phenomena where the 

production capacity - monitored as flow through the membrane, or flux - decreases over time (Figure 

1). UF membranes during the steady-state filtration are mostly subjected to irreversible fouling in 

contrast to reversible concentration polarization building up during the startup, where the latter is 

easily removed during flushing [12,13]. Irreversible fouling mechanisms have been studied for the 

past forty years but still are not fully understood [14].  

Filtration sequences or runs are separated by Cleaning-In-Place (CIP) operations which restore the 

capacity of the membranes. In daily practice, CIP is dictated either by an unacceptably low flux (one 

parameter in a more complex economic optimization) or because the order has been finished. As a 

result, high variation in filtration duration – or run-length - is experienced. This is illustrated in Figure 

1 where the lengths of the shortest and longest runs in the dataset are symbolized. It can also be 

observed from Figure 1 that, despite differences in run-length, the characteristic developments are 

similar. It can be puzzling at first, as these fouling profiles resemble trajectories typically seen in 

batch processes. Nevertheless, the perfect development in a steady-state continuous process is 

expected to be a plateau, preferably situated at a high flux level. In this project it was decided to 

analyze the data corresponding to the (quasi-)steady-state UF phase. Exclusion of the startup eases 

the analysis since this region is abundant in nonlinearities and noisy signals. The startup finishes 

when the dry matter set-point is reached in the retentate stream which, from this point in time, is 

redirected further downstream. 
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Figure 1 - Operational sequences in a continuous ultrafiltration process, shows three consecutive runs (time and 

permeate flow in arbitrary units). 

Previous studies in flux decline were mostly univariate, done on a pilot or laboratory scale and 

attention was focused on the nature of the membranes, the parameters for the feed and the 

processing conditions. To the authors’ knowledge there is up to date no multivariate study of this 

phenomena which utilizes only conventional, univariate process sensors. Moreover, there is a huge 

demand for a more efficient use of all available historical data for optimization of industrial 

production runs. This requires suitable data mining tools and in the case of continuous operations in 

downstream optimization of enzymes it is appealing to use multilevel methods. The techniques 

presented for data mining of process signals in the context of the flux decline problem is the subject 

of this study. 

2. Materials and methods 

2.1 Structure of the dataset 
All data originates from an ultrafiltration operation in a full-scale downstream process of industrial 

enzymes. The process dataset is a sample from records registered over several years of production of 

one type of intermediate enzyme product. Each steady-state UF run 𝑖𝑖 (𝑖𝑖 … 𝐼𝐼 = 142) is 

represented by a data matrix 𝐗𝐗𝒊𝒊 with 𝑁𝑁𝑖𝑖  measurement occasions (timestamps) by 𝐽𝐽 variables/tags 

( 𝐽𝐽 = 57). The total number of timestamps over all data blocks is thus equal to 𝑁𝑁 = ∑ 𝑁𝑁𝑖𝑖
𝐼𝐼
𝑖𝑖=1 .  𝐽𝐽’s are 

average values over a fixed and equidistant time interval of conventional process measurements 

used for monitoring and control. They are installed at the locations depicted in the UF diagram in 

Figure 2. In addition to fifty-three measured process tags, four meaningful engineering parameters 

have been calculated based on the existing tags: volume flux, volume reduction factor, cumulated 
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volume reduction factor and mass throughput. Data analysis has been performed using Matlab 

(version 8.0.0.783 (R2014a), Mathworks, USA) in combination with in-house code and the PLS 

Toolbox (Version 7.9.5, Eigenvector Research Inc., Manson, WA, USA).  

 
Figure 2 - Diagram of the ultrafiltration unit, built around six almost equal UF blocks. 

2.2 Data analysis 
Multilevel Simultaneous Component Analysis (MSCA) was developed by Timmerman [8] for data with 

a multilevel structure. It involves separate modeling of the variation between the individuals (higher 

level) and within the individuals (lower level). In a sense, it combines features of the factor 

estimation aspects in ANOVA (Analysis of Variance) and the latent variable concept of PCA [10]. The 

flow diagram of the least constrained MSCA-P method [7,8] – where P stands for invariant Pattern, 

the version employed in this study - is presented in Figure 3 (visualized for three runs only for 

simplicity).  

The MSCA-P model decomposes each of  data matrices 𝐗𝐗𝑖𝑖 (𝑁𝑁𝑖𝑖 ×  𝐽𝐽) as: 

𝐗𝐗𝑖𝑖 = 𝟏𝟏𝑁𝑁𝑖𝑖𝐦𝐦T + 𝟏𝟏𝑁𝑁𝑖𝑖𝐭𝐭𝑏𝑏,𝑖𝑖
T  𝐏𝐏𝑏𝑏

T + 𝐓𝐓𝑤𝑤,𝑖𝑖 𝐏𝐏𝑤𝑤
T + 𝐄𝐄𝑖𝑖  (1)

where 𝟏𝟏𝑁𝑁𝑖𝑖 is a 𝑁𝑁𝑖𝑖 × 1 vector of ones, 𝐦𝐦 𝐽𝐽 × 1 contains the offsets/average of the  𝐽𝐽 process tags 

across all measurement occasions and all runs, 𝐭𝐭𝑏𝑏,𝑖𝑖 𝑅𝑅𝑏𝑏 × 1 is the 𝑖𝑖-th row of the 𝐼𝐼 × 𝑅𝑅𝑏𝑏 between-

runs component scores matrix 𝐓𝐓𝑏𝑏, 𝐏𝐏𝑏𝑏 𝐽𝐽 × 𝑅𝑅𝑏𝑏 denotes the between-runs loading matrix, 𝐓𝐓𝑤𝑤,𝑖𝑖

𝑁𝑁𝑖𝑖 × 𝑅𝑅𝑤𝑤 denotes the within-runs component scores matrix for run 𝑖𝑖  𝐏𝐏𝑤𝑤 𝐽𝐽 × 𝑅𝑅𝑤𝑤 denotes the 
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within-runs loading matrix, which in the case of MSCA-P is common for all data blocks/runs, and 𝐄𝐄𝑖𝑖

𝑁𝑁𝑖𝑖 × 𝐽𝐽 is the matrix of residuals for run 𝑖𝑖. 𝑅𝑅𝑏𝑏 is the number of between-runs LVs and 𝑅𝑅𝑤𝑤 the 

number of within-runs LVs. Constraints are imposed so that the three parts of the MSCA-P model are 

orthogonal and can be solved independently [8]: 

∑ 𝑁𝑁𝑖𝑖𝐭𝐭𝑏𝑏,𝑖𝑖
𝐼𝐼
𝑖𝑖=1 = 0𝑅𝑅𝑏𝑏    (2) 

and  

(𝟏𝟏𝑁𝑁𝑖𝑖)
T𝐓𝐓𝑤𝑤,𝑖𝑖 = 𝟎𝟎𝑅𝑅𝑤𝑤

T for 𝑖𝑖 = 1, 2, … , 𝐼𝐼   (3) 

First, the data matrices  𝐗𝐗𝑖𝑖 in our analysis are vertically concatenated in the order of their production 

dates (Figure 3, step 1). Because engineering variables have very diverse units and ranges the 

columns are scaled to unit variance jointly over all runs and timestamps (step 2). The model should 

focus on variation in the data and therefore the invariant part (the offset) is removed by mean 

centering in step 3; step 2 and 3 combined is equivalent to so-called auto-scaling the augmented 

data table. In step 4, average tag values for the 𝑖𝑖-th run are summarized in the 𝑖𝑖-th row vector, 

weighted by √𝑁𝑁𝑖𝑖  and concatenated in step 5 to form the between data matrix (𝐗𝐗𝑏𝑏). Steps 4 and 5 are 

equivalent to forming the means data matrix (𝐗𝐗𝑚𝑚) by concatenation of 𝑖𝑖 vectors of means and 

weighing it by the diagonal matrix 𝐖𝐖 (𝐼𝐼 × 𝐼𝐼) with √𝑁𝑁𝑖𝑖  on the diagonal. In step 6, parameters of the 

between-model are estimated which corresponds to estimation of a row-wise weighted PCA [8]: 

𝐗𝐗𝑏𝑏 = 𝐖𝐖𝐗𝐗𝑚𝑚 = 𝐓𝐓𝑏𝑏𝐏𝐏𝑏𝑏
T + 𝐄𝐄𝑏𝑏   (4) 

Weighted PCA thus takes into account the number of samples per run. Afterwards, the between-

scores and residuals are back scaled according to: 

𝐓𝐓𝑏𝑏 = 𝐖𝐖−1𝐓𝐓𝑏𝑏    (5) 

𝐄𝐄𝑏𝑏 = 𝐖𝐖−1𝐄𝐄𝑏𝑏    (6) 
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Figure 3 - Diagram of the MSCA-P method. 

Solving the within part follows in steps 7 and 8 where the Simultaneous Component Analysis (SCA) 

idea is applied. Milsap and Meredith [15] originally developed a generalization of PCA for 

simultaneous analysis of a number of variables observed in several populations on several occasions. 

Ten Berge and coworkers [16] named the method SCA with invariant Pattern (SCA-P). It is equal to 

performing PCA (step 8) on an augmented data matrix consisting of locally (within each block/run) 

mean centered data blocks/runs (𝐗𝐗𝑤𝑤, step 7). Three other flavors of simultaneous component 

models are suggested in literature (see [7, 17]; SCA-PF2, SCA-IND, and SCA-ECP). These alternative 

models use constrains on the variances and co-variances of the within-component scores to impose 

different degree of similarity between the groups. Selection of the appropriate SCA- structure can 

potentially lead to a more parsimonious model which is easier to interpret [7]. Since in this project it 

was desirable to capture possible differences in the within-structure among the process runs we only 

investigated the least constrained SCA-P variant, which does not incorporate any assumptions about 

the relationships of the within-variation for different runs. The SCA-P models the within part of 

multilevel data as follows: 

𝐗𝐗𝑤𝑤 = 𝐓𝐓𝑤𝑤𝐏𝐏𝑤𝑤T + 𝐄𝐄𝑤𝑤   (7) 
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Consequently, in MSCA-P it is assumed that the within loading matrix is invariant over all runs. The 

equivalence of the loading matrix 𝐏𝐏𝑤𝑤 for all UF runs ensures that the components for all runs have 

equal interpretation and the within-scores can therefore be directly compared between different 

runs [8]. 

After removal of the offset in the two-level MSCA-P approach the preprocessed data is decomposed 

into two orthogonal data blocks, 𝐗𝐗𝑏𝑏 and 𝐗𝐗𝑤𝑤. The sums-of-squares (SSQ) of 𝐗𝐗𝑏𝑏 and 𝐗𝐗𝑤𝑤 can thus be 

used to determine the magnitudes of the within- and between-run variation in the dataset. Since 

each data block is reconstructed following the decomposition in Eqs. 4 and 7, respectively, it is 

possible to calculate the percentages of total variances taken into account by the retained 𝑅𝑅𝑏𝑏 and 𝑅𝑅𝑤𝑤 

components/LVs by each sub-model and of the entire MSCA-P model. The variation explained by the 

within-components can vary considerably among the runs. It also does not automatically appear in 

decreasing order with respect to increasing component numbers. Calculation of the within-variation 

explained per each individual run can facilitate identification of the runs which do not comply well to 

the SCA-P solution [4,6].  

In MSCA-P the same diagnostics as used in PCA are available. Hotelling's T2 and Q-residuals are 

summary statistics which help explain how well a model describes a given sample. Hotelling's T2 

values represent a measure of the variation of each sample or run within the model, whereas Q-

residuals are a measure of the difference between a sample and its projection onto the components 

retained in the model [1]. These parameters for the between-run sub-model need to be calculated 

taking into account the original size of the data (𝑁𝑁) and not the number of runs (𝐼𝐼). This is a 

consequence of row-weighing with √𝑁𝑁𝑖𝑖   in Eq. 4. The same holds for the estimation of the other 

between-run model statistics such as confidence limits for scores, Q-residual and T2. For instance, the 

between-level Hotelling T2 values are calculated according to:  

𝑇𝑇𝑏𝑏,𝑖𝑖2 = 𝐭𝐭𝑏𝑏,𝑖𝑖λ𝑏𝑏−1𝐭𝐭𝑏𝑏,𝑖𝑖T      (8) 

Where the eigenvalues are determined as follows: 

λ𝑏𝑏 = 𝑒𝑒𝑒𝑒𝑒𝑒 (𝐗𝐗𝑏𝑏
T𝐗𝐗𝑏𝑏
𝑁𝑁−1)   (9) 

The T2 contributions are calculated as: 

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 = 𝐭𝐭𝑏𝑏,𝑖𝑖λ𝑏𝑏
−1/2𝐏𝐏𝑏𝑏T   (10) 
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3. Results and discussion 

3.1 Two-level model (Rb = 4; Rw = 4) 
Of the total  variation, after auto-scaling and before modeling, 69.0% is related to the between-run 

data block and 31.0% to the within-run data block; hence, both are of a considerable magnitude but 

between-run variance is larger. It can thus be anticipated that in a standard PCA approach on the 

augmented data matrix the between-variation would be dominant and it would mask the underlying 

patterns of within-variation. MSCA-P at two levels has been applied to describe the between-run and 

the within-run variation. The number of LVs in each model has been estimated by the scree 

procedure [18]. It appeared reasonable to use between three and four components in both sub-

models. Initially, four components were selected for the between-model explaining 51.7% of the 

between-runs variation and the model has been explored with respect to outliers using T2 and Q-

statistics with their corresponding control limits, presented in Figure 4a. Run 12 exhibits the highest 

Q-residual which means that this run conforms poorly to the model. The Q-contributions of this run 

are plotted in Figure 4b. All variables contributing to the high residual are located on the same block 

of the UF unit (see Figure 2). Looking back at the raw data reveals that block E was not used during 

this filtration which is an unusual practice. All timestamps belonging to run 12 are also clear outliers 

in a four-component within-model as they exhibit significantly higher T2 values (not shown). 

Consequently, run 12 was excluded, after which no strikingly outlying runs were left in the between-

model with respect to Q-residuals. 

A cluster of consecutive runs 48-50 separates due to high Hotelling’s T2 values (Figure 4a) as well as 

on the between-scores of the first up to third component (not shown). The variables contributing to 

the T2 of these three runs are plotted in Figure 4c. It is clear that five process tags are jointly 

responsible for the high T2 and all of them are related to the pressure control in the system. The 

same diagnosis could be made based on the loadings plots of components one to three where all five 

pressure tags are clustered, exhibiting high values that are located in the same quarter as runs 48-50. 

Pressure variables and the regulating pump are strongly correlated owing to a stringent control over 

the ultrafiltration pressure. Plotting the raw between-data (Figure 4d) confirms that these five 

parameters strongly follow each other as well as that they do not tend to vary except two time 

periods when distinct set-points were employed (runs 1-7 and runs 48-50). Pressure is the driving 

force in membrane filtration systems, it can however not be used to control the capacity of the UF 

systems because the operating pressure is factually irrelevant for the flux [19]. Since pressure in the 

system is maintained very accurately, any deviation around the set-point is mostly noise. Therefore, 

it seems that the importance of the pressure set-point changes between the runs has been 
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unrealistically blown up by variance scaling. Moreover, an examination of the loadings plot of the 

four-component within-model proves that there is no systematic variation to model in the pressure 

group (the loading values are practically zero; not shown). As a result, it was decided to lower the 

contribution of the pressure related variables to the overall variance in the data by removing three of 

the pressure tags. This was preferred over the alternative, block-scaling to downscale the 

contribution of the entire group, in order to keep model interpretation uncomplicated.  

 
Figure 4 - Diagnostic of the outliers in the between-model. (a) Hotelling’s T2 vs Q residuals including 95.0% confidence 

intervals; (b) Q-residual contributions for run 12, tags are ordered according to the blocked structure introduced in Figure 

2; (c)  Hotelling’s T2 contribution for runs 48-50; (d) raw between-data for pressure related tags. 

3.2 Two-level model (Rb = 3; Rw = 4) 
The MSCA-P model has been recalculated (after removing the above mentioned runs and tags) using 

hundred and forty one runs, fifty-four variables and judged optimal utilizing just three between-

components and four within-components. This corresponded to explaining 43.7% of the between-

runs variation and 47.7% of within-variation. In total 45.0% of the variation in the auto-scaled data is 

explained by the two sub-models. The number of runs in the between-model with Q-residuals 

exceeding the 95% confidence limit is substantial (30/141; not shown). However, it is observed that 

addition of LVs to the between-model would serve to explain the exceptional situations rather than 
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common variation found on a between-run level. Namely, additional components would for instance 

separate clusters of runs according to the pressure step change described before. Such exceptional 

situations were judged irrelevant in this investigation.  

 

3.2.1 Between-run model  

The three components retained in the between-model could be interpreted based on the loadings as 

latent factors related to ‘Process temperature’ (24.7%), ‘Number of blocks in use plus cooling 

regulation’ (10.7%), and ‘Mean flow rate’ (7.0%).  

 
Figure 5 - First component of the between-model (𝑅𝑅𝑏𝑏=3). (a) Between-run scores for component one including 95.0% 

confidence intervals; runs discussed in the text are highlighted and labelled; regions corresponding to the recipe changes 

are indicated on top of the plot; (b) Between-run loadings for component one; bars corresponding to temperature tags 

are highlighted.  
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As an example, Figure 5 presents the first PC scores ordered by production date and the 

corresponding loading values. Evaluation of the raw data confirms that the higher the score value the 

higher the processing temperature. Hence, there is a general increase with UF temperature over the 

investigated production years. Outliers deviating from the general trend have been highlighted in 

Figure 5a, and it was again confirmed that they deviate with respect to the process (set-point) 

temperature. Runs 13 to 17 have been manufactured using an exceptionally high temperature (a 

consequence of optimization trials). The most important process recipe changes are indicated on the 

top of Figure 5a. Recipe 2 involved a significant temperature-related change. As can be seen, most of 

the runs have a positive score on component one from this point in time and onwards, but there are 

6 exceptions (67, 69, 75, 83, 86, 92) with negative score on component one. This appears to be 

because of some manual adjustments since in those runs the temperatures on the UF blocks have 

been put to the recipe 1 set-point. Finally, runs 116, 118, and 122 are indeed processed under 

particularly high temperatures.  

The between-run model describes the static changes/modifications and how the ultrafiltration 

process is executed over calendar time. Those changes were identified predominantly as deliberate 

engineering input to the process recipe plus some instances of operators’ interventions driven by the 

optimization efforts. 

3.2.2 Within-run model  

Four within-run components have been retained in the model explaining 24.7%, 10.7%, 7.0% and 

5.3% of the within-run variation, which sums up to 47.7%. Inferring from the loadings these four 

components are interpreted as latent factors related to ‘Permeate flux/Throughput’, ‘Feed flow and 

block addition/removal’, ‘Conductivity’ and ‘Cooling regulation’. Therefore, the highest amount of 

variation occurring systematically over the course of filtration is related to flow through the system. 

Static parameters governed directly by the set-point values fixed once per run are now positioned 

close to zero in the loading plots. Signals related to pressure, temperature, pH or dry matter readings 

belong to this group. In contrast to the between-model the within-run model focuses on process 

parameters which change dynamically over the course of an ultrafiltration run. It is therefore 

convenient to investigate how the latent factors evolve - that is, to plot the within-run scores as time 

series. 
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Figure 6 – First component of the within-model (𝑅𝑅𝑤𝑤  = 4). (a) Within-run scores for component one plotted as time series; 

the thin lines in the background represent the true profiles of individual runs colored according to the recipe variant; 

thick lines represent the mean for all available data for each given time-point for each recipe (green solid line- recipe 1; 

blue broken line – recipe 2; red dotted line – recipe 3) (b) Within-run loadings for component one; bars corresponding to 

flow tags are highlighted. 

Figure 6a shows these time series plotted per run for the first component. Lines are color coded 

according to the recipe version (as was introduced in Figure 5). The mean flux trajectory per recipe is 

depicted by bold lines. Unsurprisingly, the throughput decreases over filtration duration for all runs. 

However, the trajectory for the newest recipe is clearly different from those experienced in the older 

versions. The profiles covered by the first component are in a good agreement with what is seen in 

the readings from a number of flowmeters in the real process. Therefore, the distinct shape of the 

mean flow trajectory of recipe 3 could be interpreted as follows: flux/throughput is significantly 

higher at the start, but declines faster than what is observed for the earlier recipes. Additionally, the 

new-recipe runs are significantly shorter. This brings the conclusion that the membranes get 

fouled/blocked faster when the UF runs according to the new recipe and as a consequence this calls 
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for a more frequent (sometimes unforeseen) cleaning. This cleaning requires high volumes of water 

and chemicals but primarily a considerable amount of time [20].  

3.3 Three-level model (Rr = 2; Rb = 2; Rw = 4) 
Separation has been observed on both levels of the MSCA-P model which has been attributed to the 

process recipe valid at that point in time. This was a motivation to expand the MSCA-P model into a 

three-level structure using the optimized dataset with fifty-four variables as in the preceding section. 

Explicitly, the variation in the auto-scaled data has been split into three levels which are modeled 

separately. This also includes an additional stage in the procedure depicted in Figure 3 which enters 

between step 3 and 4.  First, the average tag values of each of the three recipes are calculated and 

weighted by √𝑁𝑁𝑟𝑟  where 𝑁𝑁𝑟𝑟  represents the number of time points when a specific recipe has been in 

force.  Next, the processing recipe data matrix (𝐗𝐗𝑟𝑟) is formulated by concatenation of – for our case - 

three vectors of weighted means. Parameters of the recipe-model are estimated by PCA using 𝑅𝑅𝑟𝑟 

components. Scores and residuals per recipe are back scaled with the inverse of √𝑁𝑁𝑟𝑟. Next, the 

overall data is locally mean-centered by the recipe means and the procedure continues, as previously 

described, with steps 4-8 (Figure 3). The three constructs of the auto-scaled data blocks (𝐗𝐗𝑟𝑟 𝐗𝐗𝑏𝑏 and 

𝐗𝐗𝑤𝑤) are orthogonal to each other as before and their SSQs add again up to 100%. 

The overall statistics of the data to which the three-level MSCA-P has been applied is shown in Figure 

7. After the invariant part is removed, 13.3% of the variation is related to the between-recipe level, 

53.8% to the between-run level, and 32.9% to the within-run variation. Part of the variance 

previously found at the between-level is now moved to the recipe-level, which also affects the 

number of components used to explain the systematic part of variation present in the between-run 

part. Specifically, information related to the ‘Mean flow rates’ and part of the ‘Temperature related 

information’ is now covered by the between-recipe level. The outcome of the between-level is 

slightly different but has exactly the same interpretation with component one related to ‘Number of 

blocks in use plus cooling regulation’ and component two to ‘Process temperature’ (not shown). On 

the other hand, the within-variation is completely unaffected by the addition of the extra level to the 

model, which is expected as the original two sub-models are orthogonal and hence do not affect 

each other. Also the total variation explained by the three sub-models is the same as in the two-level 

model and adds up to 45.0%. Figure 7b also emphasizes that the within-model variance captured by 

the MSCA-P model, characterized by one common loading base 𝐏𝐏𝑤𝑤 in Eq. 7, can differ significantly 

between runs [8]. 
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3.3.1 Between-recipe level 

Figure 8 presents the parameters of the between-recipe model. The two-component model fully 

explains the data, and this plot indicates what makes the three recipes different. In agreement with 

previous observations, recipe 1 differs in processing temperature from recipe 2 and 3, which is 

explained by the first component. The second PC separates recipe 2 from recipe 3 primarily owing to 

the temperature of the feed, which has the highest loading on this PC. This is the main candidate 

parameter that needs to be investigated in context of a faster flux decline in the recent UF runs. 

However, at the same time it appears that the new recipe runs exhibit the highest mean flux value 

which is a desirable feature. Other differences between recipes can also be derived from Figure 8. 

For instance, recipe 1 differs from succeeding recipes with respect to dry matter content in the feed 

and recipe 2 is characterized by the distinct dry matter set point in the retentate. 

 
Figure 7 – Statistics related to the auto-scaled data decomposed, modeled at three levels (𝑅𝑅𝑟𝑟 = 2; 𝑅𝑅𝑏𝑏 = 2; 𝑅𝑅𝑤𝑤 = 4); (a) 

magnitude of the variation contributed to a specific level is represented by the solid bars, percentage of variance 

explained by the corresponding sub-models and per component retained in the model is indicated with patterned bars; 

(b) total (𝑅𝑅𝑤𝑤 = 4) within-run variance explained in each run. 

Concentration and purification of enzymes is a complex process where numerous factors have to be 

taken into account to secure a profitable outcome. The process needs to be optimized with respect 

to enzyme solubility and stability. Proteins are known to have an extreme effect on flux and 

separation properties of UF membranes. This effect is related to both the micro-environment (ionic 
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strength, pH, etc.) and the processing conditions [21,22]. Density and viscosity of the liquid increases 

with the protein concentration [21], and with highly viscous liquids it is harder to obtain sufficient 

cross-flow over the membrane area and good fluxes. This issue is often addressed by increasing the 

feed temperature which decreases the viscosity of the liquid and thus leads to a better mass transfer 

in the feed and consequently to a higher flux [19]. Indeed, the flux at the start of the process is 

higher in runs produced according to recipe 3 (Figure 6a) characterized by distinct (higher) 

temperature of the feed (Figure 8). On the other hand, at high concentrations proteins may undergo 

conformational changes owing to either increased exposure of the membrane to the protein or due 

to the high shear rates on the membrane surfaces [22]. This would lead to increased aggregation, 

protein deposition and clogging of membranes. It is suspected that these adverse phenomena take 

place at a higher rate when the high throughput is obtained by increasing the temperature of the 

feed and on the UF blocks. In addition, pH of the solution affects interactions between proteins and 

between proteins and the membrane. This parameter also appears to make the distinction between 

recipes 2 and 3 (Figure 8, PC2). Ultimately, designed experiments that incorporate the above findings 

should be conducted in full-scale production (or alternatively a recovery pilot plant) to find the right 

direction for further process optimization. 

 

Figure 8 – Bi-plot of the between-recipe model (𝑅𝑅𝑟𝑟 = 2), scores (squares) and loadings (dots); loadings of temperature 

tags are highlighted and loadings of the tags with the highest influence on the model labelled. 
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3.3.2 Within-run level 

The within-model variation is exactly the same as for the two-level approach previously described. It 

is worth noticing that the variation explained by the four within-components varies considerably for 

individual runs (Figure 7b). In terms of within-component 1, previously connected with ‘Permeate 

flux/Throughput’, the explained variance per run (Figure 9a) is significantly higher in runs produced 

according to recipe 3. As reported in literature [4,6], in case of a continuous processes small amounts 

of variance explained per run does not automatically lead to a negative interpretation, since ideally 

continuous production should be a steady-state process. In this study, forty-one runs have a low 

(<10%) within-variance explained by the first component (permeate-flux related). All of them exhibit 

reasonably stable, slowly decreasing profiles (see Figure 9b, run 5 as an example). On the other hand, 

runs having the highest variance explained typically show a steep, fast declining profiles on within-

PC1 (see for instance run 120, Figure 9b).  

 
Figure 9 - Within-run variance explained by the first component for each run (a); selected profiles, run 5 and run 120. 

4. Conclusions  
MSCA-P has proven to be a powerful method when studying data of a (semi-)continuous process 

collected over a large time span, run under different recipes and including experimental runs (in the 
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form of optimization trials and operator interventions). The latent behavior of the ultrafiltration 

system investigated in our work has been modeled at three levels. The underlying factors behind 

recipe-, between- and within-models have been identified which greatly eased the exploration of the 

fifty-seven parameters used to investigate the process. The unusual runs are easily identified in 

diagnostic plots and the reason behind their outlying behavior explained in contribution plots. 

Parameters related to the flux decline have been found on the recipe-level and the within-runs level. 

MSCA-P applied on these large amounts of production data offered a good overview during 

exploratory problem solving and helps optimization engineers to focus attention on suitable target 

areas. The steep flux decline as well as higher overall mean flux value appears to be related to 

process temperatures and in particular increased feed temperature. This study revealed that higher 

processing temperatures can lead to both positive and negative effects in the examined membrane 

separation system.  

Future work of the optimization engineers should be focused on finding the balance between the UF 

temperature and the parameters of individual UF orders (feed volume, degree of concentration, 

etc.). Especially, the question should be addressed if, from an economic perspective, it is better to 

process the same order in several high throughput runs (involving extra cleaning) or in one extended 

run (without the need for extra CIP).  

Acknowledgements 
The authors would like to acknowledge an Industrial PhD grant from Innovation Fund Denmark. 

Process engineers, scientists and technicians at the Novozymes recovery plant and optimization 

group in Kalundborg, Denmark, are acknowledged for providing invaluable advice and suggestions 

along the way. 

References 
[1] B.M. Wise, N.B. Gallagher, The process chemometrics approach to process monitoring and fault 

detection, J. Process Control 6 (1996) 329-348. 

[2] T. Kourti, Application of latent variable methods to process control and multivariate statistical 

process control in industry, Int J Adapt Control Signal Process 19 (2005) 213-246. 

[3] J.V. Kresta, J.F. Macgregor, T.E. Marlin, Multivariate statistical monitoring of process operating 

performance, The Canadian Journal of Chemical Engineering 69 (1991) 35-47. 



 

- 20 - 

 

[4] O.E. de Noord, E.H. Theobald, Multilevel component analysis and multilevel PLS of chemical 

process data, J. Chemometrics 19 (2005) 301-307. 

[5] T. Kourti, Multivariate dynamic data modeling for analysis and statistical process control of batch 

processes, start‐ups and grade transitions, J. Chemometrics 17 (2003) 93-109. 

[6] D.L. Ferreira, S. Kittiwachana, L.A. Fido, D.R. Thompson, R.E. Escott, R.G. Brereton, Multilevel 

simultaneous component analysis for fault detection in multicampaign process monitoring: 

application to on-line high performance liquid chromatography of a continuous process, Analyst 134 

(2009) 1571-1585. 

[7] M.E. Timmerman, H.A. Kiers, Four simultaneous component models for the analysis of 

multivariate time series from more than one subject to model intraindividual and interindividual 

differences, Psychometrika 68 (2003) 105-121. 

[8] M.E. Timmerman, Multilevel component analysis, Br. J. Math. Stat. Psychol. 59 (2006) 301-320. 

[9] E. Ceulemans, M. Hubert, P. Rousseeuw, Robust multilevel simultaneous component analysis, 

Chemometrics Intellig. Lab. Syst. 129 (2013) 33-39. 

[10] J.J. Jansen, H.C. Hoefsloot, J. van der Greef, M.E. Timmerman, A.K. Smilde, Multilevel component 

analysis of time-resolved metabolic fingerprinting data, Anal. Chim. Acta 530 (2005) 173-183. 

[11] O.E. de Noord, Multivariate analysis and monitoring of dynamic process data, 25th Annual 

Symposium on Chemometrics, Dutch Chemometrics Society, Delf, the Netherlands (2009). 

[12] G. van den Berg, C. Smolders, Flux decline in ultrafiltration processes, Desalination 77 (1990) 

101-133. 

[13] V. Gekas, Terminology for pressure-driven membrane operations, Desalination 68 (1988) 77-92. 

[14] J. Linkhorst, W.J. Lewis, Workshop on membrane fouling and monitoring: a summary, 

Desalination and Water Treatment 51 (2013) 6401-6406. 

[15] R.E. Millsap, W. Meredith, Component analysis in cross-sectional and longitudinal data, 

Psychometrika 53 (1988) 123-134. 

[16] J.M. Ten Berge, H.A. Kiers, V. Van der Stel, Simultaneous components analysis, Statistica 

Applicata 4 (1992) 377-392. 



 

‐ 21 ‐ 

 

[17] M.E. Timmerman , E. Ceulemans , A. Lichtwarck‐Aschoff, K. Vansteelandt,  Multilevel 

simultaneous component analysis for studying intra‐individual variability and inter‐individual 

differences. In: Dynamic process methodology in the social and developmental sciences, 2009 (pp. 

291‐318),  Springer US.  

[18] R.B. Cattell, The scree test for the number of factors, Multivariate Behavioral Research 1 (1966) 

245‐276. 

[19] J. Wagner, Membrane Filtration Handbook: Practical Tips and Hints, Osmonics Minnetonka, MN, 

2001. 

[20] J.K. Jensen, J.M. Rubio, S.B. Engelsen, F. van den Berg, Protein residual fouling identification on 

UF membranes using ATR‐FT‐IR and multivariate curve resolution, Chemometrics Intellig. Lab. Syst. 

144 (2015) 39‐47. 

[21] M. Cheryan, Ultrafiltration and Microfiltration Handbook, Technomic Pub. Co, Inc., Lancaster 

(1998) 264. 

[22] A. Marshall, P. Munro, G. Trägårdh, The effect of protein fouling in microfiltration and 

ultrafiltration on permeate flux, protein retention and selectivity: a literature review, Desalination 91 

(1993) 65‐108. 





 

 

PAPER III 
A. Klimkiewicz, A.E. Cervera-Padrell, F.W.J. van den Berg 

 

Modeling of the Flux Decline in 
Continuous Ultrafiltration System with 

Multiblock Partial Least Squares 
Industrial & Engineering Chemistry Research (2016), Submitted 

 

 





 

- 1 - 

 

Modeling of the Flux Decline in a Continuous Ultrafiltration System 

with Multiblock Partial Least Squares 
Anna Klimkiewicz a,b,*, Albert E. Cervera-Padrella, Frans W.J. van den Bergb 
aNovozymes A/S, Kalundborg, Denmark;  

bSpectroscopy & Chemometrics section, Dept. of Food Science, Faculty of Science, 

University of Copenhagen, Frederiksberg, Denmark. 

*Corresponding author:  anna.k@food.ku.dk

Abstract 
This study investigates flux decline in ultrafiltration as a capacity measure of the process. A 

continuous ultrafiltration is a multi-stage process where a considerable coupling between the 

stages is expected due to similar settings on the subsequent recirculation loops and 

recirculation of parts of the process streams. To explore the flux decline issue from an 

engineering perspective, two ways of organizing process signals into logical blocks are 

identified and used in a multiblock partial least squares regression: 1) ‘physical location’ of 

the sensors on the process layout, and 2) ‘engineering type of tags’. Abnormal runs are 

removed iteratively from the original dataset, and then the multiblock parameters are 

calculated based on the optimized regression model to determine the role of the different 

data building units in flux prediction. Both blocking alternatives are interpreted alongside 

offering a compact overview of the most important sections related to the flux decline. This 

way one can zoom in on the smaller sections of the process which has an optimization 

potential.  

Keywords: multivariate modeling; multiblock PLS; latent variables; ultrafiltration flux; 

membrane fouling  
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1. Introduction 
Classical engineering strategies do not always perform well in control and optimization of full-

scale bio-manufacturing steps. This can be assigned to the complex multistage nature of 

these production systems which cannot be described sufficiently accurately by mechanistic 

or first principle concepts1. The alternative, use of historical production records combined 

with statistical or data-driven models for process optimization, calls for apt empirical 

methods. Principal Component Analysis (PCA) and Partial Least Squares (PLS) are popular 

multivariate dimension-reducing methods which are known to cope well with challenges 

associated with historical production databases such as their enormous size, a high degree 

of correlation between variables, low signal-to-noise ratio, and recurrent missing values 2. 

In the case where the process measurements and signals originate from different phases in 

a manufacturing process, it is possible to improve the interpretability of multivariate models 

by multiblock methods 2,3. They are an extension of well-known ‘single-block’ factor models 

like PCA and PLS. The popularity of multiblock methods has however grown only modestly 

over time. An explenation for this limited popularity is that orginally these methods were 

developed for improved (regression) modeling, but it was shown early on that most strategies 

are equivalent – in predictive performance – to PCA and PLS models on augmented 

datasets 3. Instead, the important added ‘twist’ of multiblock methods is the additional data 

organization layer plus block-specific information and diagnostics that they provide which 

alleviates the risk of being overwhelmed by the size of the collected dataset 4. Some 

industrial applications for modeling and monitoring of production processes have been 

reported in the chemical 5,6, pharmaceutical 7,8 and food 4 sector. The potential use of 

blocking is for the ‘same product’ at different stages or phases of processing, such as 

distinctive time-steps in batch-wise production as seen in e.g. tablet production, or 

successive unit operations or sections of a unit in a continuous mode operation as 

encountered in downstream bio-processing 1,9. The selection of a proper blocking structure 

for the process at hand is driven by the aim of the investigation and based on engineering 

intuition. Guidelines from the chemical process industry suggest that blocks should 

correspond as close as possible to discrete units of the process, in which all variables in one 

block are expected to be highly coupled, while there is less coupling expected between 

variables in neighboring unit operations 6.  

The multiblock PLS (MB-PLS) algorithm allows for the calculation of additional parameters 

such as so-called super-level weights (the contribution of each data block to the solution), 

block-level scores, and the percentage variation explained per data block. The advantage of 
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the multiblock approach is that, by examining block contributions next to individual variable 

contributions, it eases the interpretation and helps in the understanding of the product and 

process analysis. The low-level block models can still be studied by their local block-level 

scores and weights or loadings and the overall model (upper or super-level) by the super-

level scores and weights. Multiblock methods can thus be used to group process operating 

variables into meaningful blocks according to the operational phase and concern both the 

inner relationship within each phase and the interrelationship between different phases. This 

helps to identify the important parts of the process and, if necessary, to trace causes back to 

e.g. the raw data 3. Via the multiblock approach one can build a model for the full process 

that will take into account the interactions between the units and their relative importance to 

the final product quality 2. 

 

Figure 1. Conceptual scheme of the MB-PLS model. 

There are three prevalent ways to obtain MB-PLS models 10. The first method uses the block-

level scores for deflation of 𝐗𝐗 and 𝐲𝐲 11 which ensures orthogonality between the block-level 

scores. In the second approach, the algorithm uses the super-level scores to deflate 𝐗𝐗 and 𝐲𝐲 
3,8, and it has proved to lead to a superior predictive performance. The results of the latter are 

equal to the calculation of the standard PLS on one combined or augmented matrix from all 

data blocks (Figure 1), providing the same weighing and variable scaling is applied 3. This 

algorithm also works faster and proved to be better at handling the missing values. In the 

third method, only 𝐲𝐲 is deflated using the super-level scores. This deflation scheme was 

recommended to prevent mixing up information at the block-level which in turn should lead to 
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the easier interpretation of the block-level scores 10. For a detailed theoretical or algorithmic 

viewpoint, we recommend existing literature 3,10,12. Data block scaling is an important issue in 

multiblock applications, comparable with variable scaling in regular bilinear modeling. 

Depending on the block scaling, quite different results and hence interpretations, can be 

obtained 13. Block weighing can be selected based e.g. on the process knowledge or 

performance expectations. However, if no such information is available, all blocks should 

initially be given an equal contribution by scaling their variance to the equal sum-of-squares 

(so-called block normalization). This is especially important if the number of process 

variables in different blocks varies considerably. All in all, it can be a good strategy to try and 

investigate some different combinations of block weights and blocking in MB-PLS and 

compare the cross-validated prediction errors. If results are inferior to the standard PLS 

model with no block-weighing then blocking is done incorrect 5,6.  

This study uses flux in ultrafiltration (UF) as a capacity measure of a process and focusses 

on the block level to investigate the overall flux values. Significant attention, in both public 

research and industry, has been paid to better understand the mechanisms of membrane 

fouling observed as flux decline in UF 14-17. These problems clearly affect the production 

scheduling and hence economics in downstream bio-manufacturing. In the Novozymes 

production facilities at Kalundborg (Denmark), a project was initiated to investigate the flux 

decline issue based on historic full-scale processing data. Preceding exploratory studies 

directed our attention to one of the manufacturing recipes which is characterized by a very 

steep flux decline 14. In the current study, we look closer at this specific group of production 

runs and treat it as a regression problem. Specifically, we want to construct models based on 

process data to predict the flux values and we want to interpret the role of the different data 

building blocks in this prediction. 

2. Materials and Methods 

2.1. The UF system 
A plate and frame ultrafiltration system is operated as a multi-stage recirculation plant where 

the smallest working element of the UF equipment is a membrane (Figure 2) 18. Membranes 

retain enzyme molecules (based on their size and shape) in the retentate while allowing for 

the permeation of water and small molecules. Membranes are polymer sheets, fitted in pairs 

between supporting hard plastic plates with spacer channels. The pores of the ultrafiltration 

membrane are very small and a pressure must thus be applied to make the separation 

process effective. The feed is pumped between the paired membranes flowing parallel to the 



 

- 5 - 

 

membrane surface while permeate has a transverse flow direction (termed ‘cross-flow’). This 

type of process flow minimizes fouling and excessive material build-up. The permeate 

passes through the membranes into the plastic plates spacers, where it is led away through 

a permeate tube. One membrane module consists of hundreds of membrane sheets and 

supporting structures. Several modules working in parallel form a recirculation loop. These 

stages are called ‘loops’ in Figure 2.  

Each recirculation loop is supplied by a centrifugal pump (JT) and accompanying throttling 

valve (FV) to provide pressure and to ensure an adequate cross-flow velocity of the feed 

over the membranes. This helps permeate to pass through the membranes, provides a fresh 

flow of the feed and recirculation liquid, and prevents too much concentration polarization 

over the membrane area. Centrifugal pumps generate heat which has to be removed by 

cooling (TV). Other key components external to the loops are a feed tank followed by the 

feed pump (PT1), a permeate tank, pipelines and a heat exchanger on the retentate stream. 

There is also a number of flow transmitters (FT) installed to monitor and control the 

throughput.  

 

Figure 2. Schematic of the ultrafiltration system plus the approximate location of forty-
nine process measurements and five calculated engineering values; flow signals and 
the throttling valve on loop E are excluded during modeling. 

A membrane system designed as multi-stage recirculation plant with a high volumetric 

concentration ratio must be controlled based on a very small flow of the retentate 18. There 

are two main control modes available. The first one is using the concentration of dissolved 
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solids measured by a refractometer (RI) located on the last recirculation loop. As soon as the 

concentration is equal to or exceeds an RI value set by the operator the regulation valve 

opens and adjusts its position during filtration to ensure the desired enzyme concentration in 

the retentate stream. As second option concentration can be controlled using a flow ratio 

between the volume entering the plant and the volume of retentate leaving the plant. This 

calculated parameter is called the volumetric concentration degree, and it is labeled as 

‘calc5’ in Figure 2. Additional ‘upstream’ information, related to the primary separation of the 

enzyme from the biomass, is used in this study. It covers parameters such as pH (AT), 

conductivity (CT), dilution (calc1) and dosing of the flocculation chemical (calc2).  

It is not easy to track the path of a product/effluent stream in this UF operation. In general, 

recirculation loops work in sequence from A to F but the retention times on each loop or even 

within the entire unit are not known. The proper lags between different process signals would 

as a consequence be extremely hard to determine because they vary owing to the different 

number of the loops in use, the degree of recirculation on the loops, process temperatures, 

properties of the feed, degree of membrane fouling and the degree of up-concentration. 

Moreover, process signals have different logging frequencies on the data historian and it is 

not expected that shifting the signals to match with a minute precision would make any 

significant difference. Instead, we use average values over a fixed and equidistant time 

interval and no lagging for any of the parameters. Additionally, also the reference value in 

this study, the volume flux, is a weighed estimate based on the permeate flow over the same 

time interval. 

The UF system can only run for a limited period before the membranes have to be cleaned. 

In daily practice, the UF capacity is monitored based on the permeate flow out of the UF 

loops and the retentate flow (FT’s in Figure 2). The operator stops the unit and proceeds to 

cleaning when these parameters drop to unacceptable low values. It is, however, problematic 

to use these seven parameters for the post-run capacity evaluation, especially since not all 

UF loops are in use all the time. Instead, we calculate the volume flux (J, L·m-2·h-1) by 

relating the total permeate flow to the working membrane area at every timestamp. This is 

done according to the formula: 

J(t) = 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)∙1000  
𝑊𝑊𝑊𝑊(𝑡𝑡) ∙𝐴𝐴   (1) 

Where 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) is total permeate flow, summed values from all loops at time t, in m3·h-1, 1000  
is the adjustment for L instead of m3, 𝑊𝑊𝑊𝑊(𝑡𝑡) is number of loops working at timestamp t, 

based on assumption that a loop is working if the power of the corresponding centrifugal 
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pump is larger than 1%, and 𝐴𝐴 is membrane area corresponding to one loop (m2). It should 

be noted here that all values, including time, have been scaled to arbitrary units to mask 

proprietary information. 

2.2. Structure of the dataset 
All data originates from an ultrafiltration operation in a full-scale downstream process of 

industrial enzymes. The process dataset is a sample from records registered over a year of 

production of one type of intermediate enzyme product. A previous study 14 brought our 

attention to the processing variant which was associated with a particularly rapid membrane 

fouling (called ‘recipe 3’ in 14). Consequently, this group of production runs (𝐼𝐼 = 40) is in the 

center of the follow-up investigation presented here. As in the previous study, it was decided 

to analyze only the data corresponding to the (quasi-)steady-state UF phase after exclusion 

of the startup phase. The term ‘process tag’ is used throughout this study as a synonym for 

process signal or variable; in the production environment it is used in reference to process 

operating variables which are sampled and stored in the data historian. Forty-nine tags are 

physically installed near the locations depicted in the UF diagram in Figure 2. Eight tags from 

flow meters are excluded from the analysis as they are either used in the calculation of flux 

or conjugated to it owing to the regulation of concentration factor and pressure in the unit. 

The ‘FV’ tag of loop E is also excluded as its value does not vary across the dataset. In 

addition, five meaningful engineering parameters have been calculated based on the tags 

shown in Figure 2 and some other process variables not revealed. Hence, each UF run 𝑖𝑖 (𝑖𝑖
𝐼𝐼) is represented by a data matrix 𝐗𝐗𝑖𝑖 with 𝑁𝑁𝑖𝑖 measurement occasions (timestamps) by 𝐽𝐽 

variables (𝐽𝐽 = 45). J’s are average values over a fixed and equidistant time interval of the 

original process operating variables. The total number of timestamps over all datasets is 

equal to 𝑁𝑁 = ∑ 𝑁𝑁𝑖𝑖
𝐼𝐼
𝑖𝑖=1 = 623. Process measurements recorded upstream have been stretched 

or extrapolated to match the length of the corresponding UF run.  

Flux (𝐽𝐽, in Figure 2) is used as the dependent 𝐲𝐲-variable. Figure 3 illustrates the variation in 

the flux profiles encountered in the examined dataset. These flux reduction profiles might at 

first encounter resemble trajectories typically seen in batch processes. Nevertheless, the 

perfect development in a steady-state continuous UF process is expected to be a plateau, 

preferably situated at a high flux level. One can also recognize that runs significantly vary in 

length as filtration is stopped either due to unacceptably low flux or because the order (a ‘lot 

of material’) has been processed 14.  
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Figure 3. Flux values/fouling profiles encountered in the investigated dataset (𝐼𝐼 = 40). 

2.3 Data analysis 
We identify and compare two concepts for organizing process signals into logical blocks. The 

first blocking strategy is to group variables according to the ‘physical location’ of the sensors 

with respect to the process layout as indicated by the shaded areas in Figure 2. This resulted 

in the formation of ten blocks: 1) upstream parameters, 2) feed, 3-8) recirculation loops A-F, 

9) retentate, 10) permeate. In this scenario, there are between three and seven process 

variables per block. In the second approach variables are grouped according to the 

‘engineering type of tags’ (clustering together variables of similar characteristics, e.g. 

readings from temperature sensors, records from the centrifugal pumps, etc.). This blocking 

strategy leads to the formation of nine groups as listed in the frame presented Figure 2, 

comprising between two and eight variables.  

Multiblock PLS with super-level scores deflation of 𝐗𝐗 and 𝐲𝐲 has been used throughout this 

work, the general structure of which is depicted in Figure 1 10. In our computations first the 

standard PLS models are calculated and examined. Next, the multiblock parameters are 

determined from the optimized PLS model interpretation using the super-level scores to 

deflate 𝐗𝐗 and 𝐲𝐲 3. Data analysis was performed using Matlab (version 8.0.0.783 / R2014a, 

Mathworks, USA) in combination with in-house code and the PLS Toolbox (Version 7.9.5, 

Eigenvector Research Inc., Manson, WA, USA). 
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3. Results and discussion 

3.1 PLS model on augmented data 
Steady-state filtration data from the forty runs has been concatenated in the process tag 

direction (variable-wise), and all data has been auto-scaled. A PLS model is built between 

the process variables 𝐗𝐗 (𝑁𝑁 × 𝐽𝐽) and the flux 𝐲𝐲 (𝑁𝑁 × 1). This way every sampling time is 

represented by a row vector of length equal to the number of process variables and the 

number of rows is determined by the time-horizon included in modeling (𝑁𝑁). PLS models 

extract latent variables that explain the variation in the process data 𝐗𝐗 which is most 

predictive of flux and disregard the measurement errors and random variations which are 

uncorrelated with other 𝐗𝐗-variables and the flux.  

 

Figure 4. Calibration (RMSEC) and cross-validation (RMSECV) errors for the PLS 
models constructed using all data (I = 40, N = 623) or NOC data (I = 30, N = 508). 

 

Stratified cross-validation has been applied to determine the optimal number of latent factors 

in the model where each of the investigated runs is assigned a number between 1 and 10 

and four runs with the same numbers were removed at the time. The average root mean 

squared error of cross-validation (RMSECV) as a function of model complexity is plotted in 

Figure 4 together with the root mean squared error of calibration (RMSEC). Results of cross-

validation suggest that the model works best using four LVs which corresponds to explaining 

86.8% flux variation and an RMSECV equal to 0.46 (arbitrary units). The first dimensions of 

the PLS model are certainly the most dominant but for prediction purposes all dimensions 

determined via cross-validation should be used 6. 
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Next, four data points (meaning four time stamps) which appear extreme in the influence plot 

(not shown) have been removed. Samples showing the outstanding behavior were either 

from the very beginning or the end of a process run. In these instances pressure, which is 

normally tightly controlled during UF, had been outside its normal limits. Removal of the 

outlying data points did not affect the decision on the number of LVs in the model which now 

corresponds to an RMSECV equal to 0.45. The first LV explains the highest amount of 

variation in 𝐲𝐲 (68.8%) and the subsequent components explain significantly less variation of 

the flux (13.1%, 3.4% and 1.9%, respectively).  

 

Figure 5. LV1 vs. LV2 score plot of the PLS model constructed on NOC data; three 
instances of AOC runs are projected onto the model, blue and yellow represent 
abnormal pressure behavior, purple shows abnormal temperature behavior (see text 
for details). 

Projection of the process time-points on the first two latent factors reveals which runs follow 

the Normal Operating Conditions (NOC). Based on the LV1 vs. LV2 score plot it is possible 

to classify the behavior of the process as NOC or AOC (Abnormal Operating Conditions). In 

Figure 5, the behavior of what were iteratively identified as the normal processes are marked 

in gray on the LV1 vs. LV2 score plot. Runs classified as NOC start on the right side of the 

plot (high positive score) and end on the left side of the plot (high negative score) and they 

follow an arc-shaped trajectory. Thus, the first LV represents mainly filtration time. The 

second LV (dictated by the ‘stretch’ of an arc) is related to the regulation on the first two UF 

loops (A and B in Figure 2). Those data points which are located outside the 95% coverage 

ellipse and which are characterized by a high score on LV1 and a very low score on LV2 
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represent the situation when not all loops are used at the early stages of a UF run. This 

explanation could be found by constructing the Hotelling’s T2 contributions plot for those 

timestamps (not shown) and confirmed by looking at the raw data (not shown). Specifically, 

the Hotelling’s T2 contributions from the process sensors located on the first two loops were 

high. It is not unusual to run with a lower capacity at the early stages of ultrafiltration and add 

loops gradually over the course of a process run. Furthermore, recirculation loops which are 

physically located as first are added as the last. Therefore, these data points which are 

characterized by a high score on the first LV and a very low score on the second LV have 

been kept in the model. Ten AOC runs have been removed iteratively from the original 

dataset, as they follow a distinctly different trajectory to those of the NOC runs. It should be 

emphasized here that all runs investigated are within predetermined quality control limits. All 

the ‘abnormal runs’ are associated with optimization trials, operator interventions, or other 

known causes. However, since our aim in this study is to elucidate the relationship between 

process variables and regular permeate flux decline it was decided to model only NOC runs. 

A new PLS model was calculated using the remaining thirty runs. The stratified cross-

validation procedure points at three LV’s as the optimal number of components in this model 

(Figure 4) which corresponds to an RMSECV equal to 0.40. Components used explained 

jointly 89.0% of the variation in 𝐲𝐲 and 35.9% of the variation in 𝐗𝐗.  

For a diagnostic interpretation Figure 5 includes three instances of AOC runs which were 

projected onto the model built using NOC data only. In general, the reason for the 

outstanding behavior of the excluded runs could be related to either a noticeable drift in the 

ultrafiltration pressure or extreme temperature values. Abnormal events manifested 

themselves along all three latent components. If the fault was related to pressure, then it 

showed itself across LV1. If the unusual behavior was caused by extreme temperatures, then 

it could be identified across LV2. Two examples of the first situation are seen in Figure 5. 

This could be confirmed in the raw signals involved in pressure regulation and monitoring as 

plotted in Figure 6. Pressure is the driving force in a membrane filtration system 18. Those 

measurements and the regulating pump are strongly correlated owing to a stringent control 

over the ultrafiltration pressure. Variable ‘PT4’ (Figure 6) is the tag directly controlled using 

the feed pump (‘PT1’, Figure 6). The three remaining pressure sensors are only monitored 

and not used in the closed loop feedback control. From this overview of part of the raw data, 

it is clear that pressure at ‘PT4’ is always within its control limits. However, a clear decline in 

pressure at other measuring points happened over the filtration time in case of the 

abovementioned runs. It is an interesting observation that even though pressure at ‘PT4’ is 

always tightly and effectively controlled, pressure at the other measuring points shows a 
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strong decline in those runs. Also marked in Figure 5 (and in Figure 6 for completeness) is 

an example of a situation when the processing temperature was controlled significantly 

higher than usual.  

 

Figure 6. Signals related to pressure control (see Figure 2) in the UF system collected 
during NOC runs (marked in gray) and examples of the AOC runs, pressure related 
(blue and yellow) and temperature related (purple; compare with Figure 5). 

It is interesting to note that in the case of the examined process the first two LVs would be 

truly sufficient for the monitoring purposes. This observation is consistent with the 

recommendation made before for a large chemical process 6.  
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3.2 Blocking in MB-PLS 
Two MB-PLS models have been calculated from the optimized PLS model (thirty runs, three 

LV’s). They differ in the way that variables are arranged in conceptually meaningful blocks 

using system knowledge and engineering insight (Figure 2). The objective is to keep track of 

different blocks during the analysis which leads to a more parsimonious investigation 

compared to keeping track of individual variables. Block normalization was also investigated. 

However, it was concluded that for our process it might force the solution in a direction where 

the fact-finding aspect of the MB-PLS models is suppressed. Moreover, no significant 

improvement in terms of RMSECV was registered when blocks entered the model with equal 

norm. This is a natural consequence of the different building blocks being not too different in 

size (ranging from two to eight variables). Therefore, the two MB-PLS models presented in 

this study both have as starting point the optimized PLS model described in the previous 

section with each process tag having a weight one (due to the auto-scaling preprocessing).  

 

Figure 7. MB-PLS model super-level block weights when blocking is done according 
to (a-b) physical location or (c-d) sensor type. 

Figure 7 presents the super-level block weights of the two MB-PLS model calculated when 

sectioning is done according to physical location or to the sensor type. Figure 8 summarizes 
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the variances explained per block for each LV retained in the model, again for two blocking 

strategies. 

 

Figure 8. MB-PLS model variances explained when blocking is considered according 
to (a) physical location or (b) sensor type (see Figure 2 for interpretation). 

It is expected that weights and variances explained point at similar phenomena on the 

corresponding LV. From a phenomenological point of view weights represent features in the 

process data 𝐗𝐗 which are related to the original flux values in 𝐲𝐲. In both blocking strategies a 

solid coupling between variables in each block is predicted or anticipated. In the case of 

physical blocking also a considerable coupling between the sections is expected. On the 
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other hand, each section can face its own set of distinctive events like membrane fouling (or 

e.g. more extreme upsets like leakage). It is, therefore, rational to split up the process into 

physical blocks and keep track of these sections separately. We found it most useful when 

both blocking alternatives are interpreted together rather than choosing one over the other. 

For instance, super-level block weights on the first LV point at loops A, F, B and C and at the 

feed valves and centrifugal pumps. To translate this into process knowledge, cross-flow 

regulation on the A, B, C and F loops can explain 75.7% of the variation in flux. The second 

LV explains 11.3% of the variation in 𝐲𝐲, and implying from the super-level weights this can be 

related to the temperature regulation on loops A, B and in the feed.  

The third LV is explaining only 2.0% of the variation in flux. Judging from the variances 

explained by this component, it is primarily related to temperature regulation on loops D, E 

and F (Figure 8a). Yet, super-level weights point at loop F being the most important (Figure 

7b).  

Proper expert insight is necessary to clarify which of the observed relations lead to new, 

unexpected findings and hence can be used in optimization. After a closer inspection, a 

dominant amount of the 𝐲𝐲 variation covered by the first two LV’s can be explained by the 

mechanics of the UF system. For instance, the cross-flow control on the recirculation loops is 

indirectly responding to the degree of membrane fouling, hence, to the flux decline. Most of 

the process signals dominant on the first two LV’s cannot be utilized to improve process 

performance. In relation to the high variance explained by the first LV, it is, however, 

interesting to have a closer look at the ‘PT’ tags which are third in terms of super-level weight 

on this component. Feed pressure (PT3) to the unit shows a decrease over filtration run time, 

and it correlates positively to flux decline (Figure 9, R2 = 0.67, in relation to flux data shown in 

Figure 3). This observation would be very hard to make just by looking at the raw data before 

the AOC runs have been removed (Figure 6). Interestingly, except for variable ‘PT4’ which is 

the tag used in control, the other pressure monitoring points show a drift over the filtration 

time. It could be an indication that the current control strategy is not optimal and that 

controlling the pressure using the other measurements in a cascade setting may result in a 

more stable overall flux. This was not revealed in our previous data mining approaches of a 

more diversified dataset where pressure tags quickly fall out of analysis as they appeared 

constant over the course of ultrafiltration 14. 
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Figure 9. Pressure measured during the NOC runs (see Figure 2). 

A second interesting observation from the MB-PLS models is related to the third LV which, 

as was noted before, is associated with temperature regulation on the last three recirculation 

loops. Originally, temperatures have been at the same level on all loops (represented by the 

red markers in Figure 10). At some point in time it was decided to lower the temperature of 

the last three loops (represented by green markers in Figure 10), and it can be observed that 

most of the AOC runs belonged to the first group (shaded markers in Figure 10). The two 

processing recipe variants overlap on the first two LV’s (Figure 10a). On the other hand, 

Figure 10b shows that the third LV neatly separates data according to the temperature on the 

last three recirculation loops. This distinction is naturally even more striking on temperature 

block-level scores on the third LV (not shown). Indisputably, the cross-validated PLS model 

(Figure 4) points at a third LV as being important for the flux prediction. Understanding this 

relation is however not straightforward from the PLS scores and loading plots but can be 

explained based on the more parsimonious representation of the MB-PLS models and the 

low-level interpretation of the raw data. If we compare the mean flux trajectories up to the 

median filtration length of the investigated dataset, it can be seen that the higher processing 

temperature converts into higher flux at the start of a run but a lower flux towards the end 

(Figure 10c). This is also reflected in the first LV as the score values of the runs with equal 

temperatures on all blocks are more spread on this latent component (Figure 10a). This 
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corresponds to faster membrane fouling at the higher temperatures. It is important to recall 

here that optimization of a UF system is combined mechanistic and stochastic challenge. 

The MB-PLS model identified more mechanistic (run time along LV1 in Figure 10a) or 

operational principles (temperature recipe along LV3 in Figure 10b). But Figure 10c shows 

that for the same settings the flux decline profiles still differ significantly. Hence, next to 

operational recipe and local closed-loop control strategies there are obvious opportunities to 

improve the performance of a complex system like ultrafiltration by data-driven statistical 

process control.  

  

 

 

Figure 10. (a) LV1 vs. LV2 (analog to Figure 5) and (b) LV1 vs. LV3 score plots of the 
PLS model constructed on NOC data colored according to a temperature related 
processing recipe change: red markers - equal temperature on all loops; green 
markers - lower temperature on D-F loops; shaded markers: AOC (excluded) data 
projected into the NOC PLS model; (c) mean (bold) and individual (thin) flux reduction 
profiles encountered until median ultrafiltration length, colored according to recipe. 



 

- 18 - 

 

4. Conclusions 
The interpretability of the PLS model can be more holistic and simplified by calculation of the 

lower and super-level multiblock parameters. In the approach taken by us, MB-PLS is not a 

different variant of the PLS model, but an additional set of diagnostics offering a prompt 

overview of the most important phenomena happening in the data. In the investigated 

process, we identify two natural ways to block the data and find it most useful to use them 

together. As process variables were assigned to groups corresponding to distinct phases of 

the process or belonging to similar engineering type of sensors, it was considerably easier to 

study and interpret the behavior of these blocks rather than keeping track of forty-five 

individual loading values. The upper level of the MB-PLS indicates the relationship between 

different groups of variables and points at those which are the most relevant in the prediction 

of flux and flux decline. This multiblock feature is helpful in concentrating efforts of the 

process engineers on those areas that have an optimization potential.  

Similarly to our previous study, it appears that higher processing temperature can have both 

positive and negative consequences to the UF flux. Additionally, a potential field for 

improvement has been reported, related to the pressure monitoring point used in the closed 

loop feedback control of ultrafiltration pressure.  

In a previous manuscript 14, we have used blocking in the row or time direction to look at 

differences and similarities between and within process runs. It could be a useful future 

perspective to develop methods capable of blocking in both the row and column directions - 

hence, time or dynamics and equipment layout - which in turn could relax the analysis of the 

multivariate historical datasets even more. 
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This thesis focusses on solutions for a more extensive use of full-
scale historical production records in data mining, process optimi-
zation and problem-solving in the bioindustry. In modern biotech 
production, a massive number of diverse measurements, with a 
broad diversity in information content and quality, are stored in 
data historians. This data is rarely used outside its direct scope due 
to lack of efficient and suitable procedures for thoughtful data re-
trieval, evaluation, pre-processing and extraction of the informa-
tion (modeling). This dissertation work is meant to address the 
challenges and difficulties related to ‘recycling’ of historical data 

from a full-scale manufacturing of industrial enzymes.
Specific chemometric modeling techniques designed for the complex data systems have 

been examined. These methods maintain the natural structure of the analyzed data by block-
ing information either in the row (production runs) or column (process parameter types) di-
rection. The complex data structures are decomposed into intuitively interpretable solutions 
as the important patterns in the data are extracted and visualized. When these patterns are 
realized and understood, it can lead to a better process understanding in a faster way than 
traditional mechanistic modeling techniques.
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