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Abstract. Ice-core timescales are vital for the understand-
ing of past climate; hence they should be updated whenever
significant amounts of new data become available. Here, the
Greenland ice-core chronology GICC05 was revised for the
last 3835 years by synchronizing six deep ice cores and three
shallow ice cores from the central Greenland ice sheet. A
new method was applied by combining automated counting
of annual layers on multiple parallel proxies and manual fine-
tuning. A layer counting bias was found in all ice cores be-
cause of site-specific signal disturbances; therefore the man-
ual comparison of all ice cores was deemed necessary to in-
crease timescale accuracy. After examining sources of error
and their correlation lengths, the uncertainty rate was quan-
tified to be 1 year per century.

The new timescale is younger than GICC05 by about
13 years at 3835 years ago. The most recent 800 years
are largely unaffected by the revision. Between 800 and
2000 years ago, the offset between timescales increases
steadily, with the steepest offset occurring between 800
and 1100 years ago. Moreover, offset oscillations of about
5 years around the average are observed between 2500 and
3800 years ago. The non-linear offset behavior is attributed
to previous mismatches of volcanic eruptions, to the much
more extensive dataset available to this study, and to the finer
resolution of the new ice-core ammonium matching. By anal-
ysis of the common variations in cosmogenic radionuclides,

the new ice-core timescale is found to be in alignment with
the IntCal20 curve (Reimer et al., 2020).

1 Introduction

Paleoclimatic chronologies allow the comparison of proxy
records from different geographic locations, thereby provid-
ing a fundamental tool for the understanding of the Earth’s
climate. In the Late Holocene, from 4200 years ago to to-
day (Walker et al., 2012), the large amount of well-resolved
data make it possible to construct very precise and accurate
timescales. Late Holocene timescales are constructed by a
large variety of methods depending on the typology of the
sample, from dendrochronology to radio-isotopic measure-
ments and from tephrochronology to chemical analysis of ice
cores. Timescale methods fall into two main categories: ab-
solute methods providing an absolute age of the sample, such
as radiocarbon dating (Bronk-Ramsey, 2008), and relative or
comparative methods, such as stratigraphic comparison of
isochrones in ice cores (Rasmussen et al., 2008). For the case
of ice-core dating in Greenland, annual-layer counting is a
privileged method for the construction of a relative sequence
of events, thanks to well-resolved annual layers recognizable
well into the last glacial in the chemical and optical measure-
ments of the ice (Andersen et al., 2006).
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Once the independent timescales from different geo-
graphic locations are set up and compared, it may be possible
to investigate lead–lag dynamics within the broader climate
system. In the Holocene, recent studies investigated the com-
prehensive impact of volcanic eruptions, suggesting for ex-
ample a 10-year cooling in European summer temperatures
(Sigl et al., 2015) or a 5-year positive North Atlantic Oscilla-
tion (NAO) (Sjolte et al., 2018), both observed after tropical
eruptions. Other examples of such inter-regional compara-
tive studies, dependent on timescale accuracy, are the study
of bipolar timing of climate changes in the last glacial (WAIS
Divide Project Members, 2015; Pedro et al., 2018; Svensson
et al., 2020) or the relative timing of the Holocene onset over
Greenland and Asia (Nakagawa et al., 2021).

1.1 Annual layers in Greenlandic ice cores

Ice cores from Greenland contain high-quality climatic in-
formation thanks to the steady deposition of snow and im-
purities and to the inclusion of air bubbles in the ice, pro-
cesses which have occurred continuously since the forma-
tion of the ice sheet. The deposited snow contains a variety
of chemical compounds, such as sodium, calcium, or ammo-
nium ions, and water-insoluble particles, like dust and vol-
canic ashes, which may all be interpreted as proxies for cli-
matic conditions and processes (Fuhrer et al., 1999; Rhodes
et al., 2018). Moreover, the isotopic composition of the de-
posited snow is an important indication for temperature and
moisture at the drill sites, although the link between climate
and isotopes is intrinsically complex, especially on shorter
timescales (Dansgaard, 1964; Johnsen et al., 1989; Laepple
et al., 2018).

Some proxies follow a clear annual cycle that can be ob-
served if the layer thickness and the analytical measurement
method provide sufficient resolution. The seasonal patterns
of ice-core proxies are determined by complex depositional
dynamics that control the transport from the sources to the
ice sheet (Gfeller et al., 2014; Whitlow et al., 1992; Beer
et al., 1991; Fischer et al., 1998; Fuhrer et al., 1996). For
example, sodium (Na+) has a strong winter peak because
of increased advection of marine air masses (Herron, 1982),
which can be used to define the start of the ice-core layer.
Relative to sodium, calcium (Ca2+) peaks in the spring be-
cause of enhanced transport from terrestrial reservoirs (Whit-
low et al., 1992); ammonium (NH+4 ) has a maximum in
the late spring or the summer because of enhanced bio-
genic activity in the North American continent (Fischer et
al., 2015); nitrate (NO−3 ), which is also related to biogenic
processes, peaks in the summer (Herron, 1982; Röthlisberger
et al., 2002). Water isotopes (δ18O and δD) show a sinusoidal
pattern with winter valleys and summer peaks, mainly rep-
resenting temperature variations at the drill site (Jouzel et
al., 1997).

The quality of the retrieved signals is highest during high-
accumulation periods and especially at high-accumulation

sites, since, for example, isotopes are heavily affected by dif-
fusion (Johnsen, 1977). To correct for the isotopic diffusion,
it may be necessary to apply deconvolution techniques to re-
construct the original annual layers (Vinther et al., 2006). At
the Holocene onset, the accumulation rates are about dou-
ble as high as in the glacial stadial (Rasmussen et al., 2006).
Furthermore, the Holocene ice roughly comprises the upper
half of the central Greenland ice sheet and is not affected
by ice thinning at the same level as the older, much thinner,
glacial layers (Vinther et al., 2009; Gkinis et al., 2014; Ger-
ber et al., 2021). In the Late Holocene, the isotopic signal
was quite stable, an indication of a relatively constant layer
record (Vinther et al., 2009). Overall, the shape and thick-
ness of Late Holocene layers in all ice cores is expected to
be stable and well-recognizable. However, the data quality
for parts of the Holocene is hampered by the brittle ice zone,
which is found at depths at which high-pressure gas bubbles
in the ice make the core very fragile (Neff, 2014).

1.2 Annual-layer counting methods

Annual layers in ice cores can be counted manually, a process
that has always been a challenging part of ice-core timescale
reconstructions (Vinther et al., 2006; Rasmussen et al., 2006;
Sigl et al., 2013, 2016). Manual identification of annual lay-
ers is a time-consuming and inherently subjective task, and
attempts have been made to automate the process (McG-
wire et al., 2008; Smith et al., 2009). StratiCounter (SC) is a
software package that computes the most likely sequence of
annual layers in an ice-core multi-proxy dataset (Winstrup,
2011; Winstrup et al., 2012; Winstrup, 2016). Starting from
example data provided by the user and applying a hidden
semi-Markov model, the algorithm learns to recognize the
specific annual pattern. SC provides a layer count and a prob-
ability distribution of the recognized layer boundaries. Some
initial settings determine if the program should, for exam-
ple, reduce the resolution of the original data, apply some
pre-processing, or give different weight to the different data
series in the analysis. These requirements are both ice core
and proxy dependent.

1.3 Holocene stratigraphic markers

Short-term events may be used to synchronize ice cores if
the corresponding horizons can be unambiguously seen in
several ice cores. Volcanic eruptions constitute the most ro-
bust base for matching ice cores because they often leave a
clear imprint in the ice-core signal. When available, sulfate
(SO2−

4 ) measurements are used to identify individual erup-
tions because of the associated emission of sulfur compounds
to the atmosphere that precipitate onto the ice sheet (Lin et
al., 2021). Thanks to the acidic nature of sulfate, eruptions
are also recorded as prominent peaks in the electrical conduc-
tivity measurements (ECMs) and in the dielectric permittiv-
ity (DEP) (Hammer, 1980; Clausen et al., 1997; Wilhelms et
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al., 1998; Mojtabavi et al., 2020a). However, ECM and DEP
volcanic peaks might be weakened or eliminated by the op-
posite effect of alkaline dust; hence sulfate remains the most
reliable indicator of volcanic spikes (Rasmussen et al., 2008).

The identity of the volcano can be confirmed when vol-
canic ash layers (tephra) are found in the ice cores and geo-
chemically and stratigraphically matched to reference de-
posits from the origin site (Zielinski et al., 1994; Abbott and
Davies, 2012; Bourne et al., 2015; Cook et al., 2018a). Oth-
erwise, if the source volcano has not yet been identified, the
geochemical similarity of layers found in different ice cores
provides evidence of synchronicity (Cook et al., 2018b; Mo-
jtabavi et al., 2020a). However, for the most part, there is no
tephra associated with acidity peaks of assumed volcanic ori-
gin, and thus, for those tephra-free sections, the matching of
the cores relies entirely on the identification of corresponding
patterns of acidity peaks.

The volcanic-eruption signal usually spans more than
1 year, so that one can identify the start, the maximum,
and the end of the event (Clausen et al., 1997). However,
the chemo-stratigraphic response to volcanic eruptions can
vary between ice cores due to different depositional dynam-
ics. The recorded shape and delay of the volcanic signal de-
pends, for example, on the distance from the eruption site,
on the balance between dry and wet deposition of sulfate,
on snow redistribution, and on different noise levels at the
ice-core site (Robock and Free, 1995, and references therein;
Gautier et al., 2016). Therefore, it can happen that a very
strong eruption signal in the GRIP ice core (Greenland Ice
Core Project) from, e.g., an Alaskan eruption will only ap-
pear as a minor signal in the DYE-3 core because the two
drilling sites received snowfall is different meteorological sit-
uations (Clausen et al., 1997). Hence the matching cannot
rely only on the position of single peaks but must also depend
on patterns of closely spaced eruptions. Still, the link be-
tween many historical eruptions and the corresponding ice-
core acidity spikes is well-established and serves as an exact
time reference (Sigl et al., 2015).

Ammonium (NH+4 ) is a proxy for biogenic activity (Fuhrer
et al., 1996), and ammonium spikes have been directly
linked to biomass burning events, i.e., wildfires (Fischer et
al., 2015). Wildfires are also recorded in other chemical
species, such as black carbon and vanillic acid (Grieman et
al., 2018; Zdanowicz et al., 2018). Because of the alkaline
nature of NH+4 , the ECM will record marked dips in corre-
spondence with ammonium spikes (Taylor et al., 1993; Ras-
mussen et al., 2006). Occasionally, nitrate (NO−3 ) peaks are
observed to coincide with NH+4 spikes, but they do not pro-
vide a reliable proxy for wildfires on their own (Legrand et
al., 2016). The quality of these species as a unique proxy
for wildfires is debated since they are not always consis-
tent with each other and they likely reflect different as-
pects of the source, the event intensity, and the trajectory
to Greenland. It is not possible to find the origin of wild-
fires with the same certainty as for volcanic eruptions be-

cause there is no “fingerprinting” technique for wildfires, but
patterns of ammonium-rich layers can nonetheless be identi-
fied across the Greenlandic ice cores, providing an additional
tool for synchronization (Rasmussen et al., 2008; Legrand et
al., 2016).

Other events that serve as tie points between ice cores in-
clude the variability of cosmogenic radionuclides, which are
caused by solar storms or by other forms of solar variability
(Muscheler et al., 2014). By measuring the co-registration
of two tie points such as the 775 CE and the 994 CE events,
Sigl et al. (2015) showed that beryllium-10 enhancements
(10Be) provide precise constraints of alignment between tree-
ring and ice-core timescales. In the recent work by O’Hare et
al. (2019), the signature of an intense solar storm was iden-
tified in ice cores, at an age of 660 BCE, which provides
an added alignment point between ice cores and tree-ring
timescales in the Late Holocene. Lastly, the radioactive fall-
out from nuclear bomb testing, which peaked in 1963, pro-
vides a reliable and very recent chronostratigraphic marker in
the form of a tritium or 36Cl peak, which is especially useful
for shallow ice cores (Qiao et al., 2021).

1.4 The GICC05 timescale in the Holocene

The Greenland Ice Core Chronology 2005 (GICC05) is the
most widely recognized timescale for Greenland ice-core
studies (Vinther et al., 2006; Svensson et al., 2008). In the
Holocene, GICC05 is based on three ice cores: the DYE-
3 ice core from southern Greenland (Johnsen et al., 2001),
the GRIP ice core from Summit in central Greenland (Dans-
gaard et al., 1993), and the NorthGRIP ice core from north-
western Greenland (North Greenland Ice Core Project mem-
bers, 2004). The ice cores were matched by recognizing com-
mon volcanic eruptions in the ECM signal, and the annual
layers were manually counted using water isotopes (δ18O
and δD are available in overlapping sections and are equally
suited for annual-layer identification). In the older part of
the Holocene, high-resolution impurity records were also in-
cluded in the layer counting, but they were not available
at the time for reconstructing the timescale for the Late
Holocene (Rasmussen et al., 2006).

When the ice-core data quality was not equal between
the three cores, a master chronology was produced on the
best-resolved record, which was then transferred to the other
ice cores. Until 1813 b2k (years before 2000 CE; the same
convention applied in the rest of this paper), the count was
produced on isotopes from DYE-3 and deconvoluted iso-
topes from GRIP and NorthGRIP. From 1813 until 3835 b2k,
NorthGRIP ages were transferred from DYE-3 and GRIP be-
cause of lacking isotope data.

In the construction of GICC05, an acidity spike attributed
to the Vesuvius eruption (79 CE, Italy) was considered an
exact time marker, carrying no age uncertainty, based on a
tephra deposit found in GRIP (Vinther et al., 2006; Barbante
et al., 2013). Recent analysis of the NEEM-S1-2011 shallow
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ice core (North Greenland Eemian Ice Drilling) shows that
the tephra associated with the acidity peak in this core is geo-
chemically distinct from the shards found in GRIP (Plunkett
et al., 2022) and likely originates from an Alaskan eruption.
Furthermore, the analysis of the original GRIP shards by Bar-
bante et al. (2013) was criticized by Plunkett et al. (2022)
as not fulfilling sufficient requirements for the attribution to
Vesuvius, thus leaving the GICC05 chronology with a signif-
icant chronological weakness.

As another discussion point, Hammer (1980) and Vinther
et al. (2006) attributed a prominent ECM peak in GICC05 to
the massive Hekla eruption (1104 CE, Iceland). Later, Coul-
ter et al. (2012) attempted to find confirmation in the tephra
found close to this ECM peak, but neither DYE-3 nor GRIP
or NorthGRIP supported the identification with the Hekla
eruption. Recently, Guillet et al. (2020) proposed that the
signal represents a cluster of eruptions, one of them pos-
sibly originating from Mount Asama, Japan. Recent com-
parisons between Greenlandic ice cores and 14C chronolo-
gies have exposed other issues with the layer count in se-
lected sections of the timescale (Baillie, 2008, 2010; Lohne
et al., 2013; Torbenson et al., 2015; Muscheler et al., 2014;
Sigl et al., 2015; Adolphi and Muscheler, 2016; Adolphi et
al., 2018; McAneney and Baillie, 2019). In this work we
aim to expand on the causes of the GICC05 mismatches and
to investigate other recurring problems to be resolved, such
as the uncertainty question of ice-core timescales.

A special mention for the Greenland timescale has to be
made for the GISP2 ice core (Greenland Ice Sheet Project),
drilled at Summit in the vicinity of the GRIP site. Meese
et al. (1997) constructed a timescale for this ice core that
remained a widely used standard until GICC05 was re-
leased. Annual-layer counting was performed manually us-
ing a combination of visual stratigraphy, ECM, dust laser
scattering, isotopes, and ion chemistry. A number of tephra
samples was collected in the Holocene ice, confirming the
identity of, among others, the Laki eruption of 1783 CE (Fi-
acco et al., 1994), the Samalas eruption of 1257 CE (Palais
et al., 1992; Lavigne et al., 2013), and the Eldjá eruption
of 939 CE (Zielinski et al., 1995). Of these three eruptions,
only the first two have an independent historical estimate of
the age, the Samalas eruption being dated by indirect evi-
dence of its occurrence in 1257 CE (Vidal et al., 2016). In
addition, authors of GISP2 also used Vesuvius to constrain
the timescale. The agreement with GICC05 has been esti-
mated as adequate until 40 kyr b2k (Svensson et al., 2008;
Seierstad et al., 2014). However, over the period between 2.5
and 8 kyr b2k, the GISP2 timescale is between 5 and 40 years
younger than GICC05, which is outside the maximum count-
ing error (MCE) limit.

Uncertainty estimates of GICC05 in the Holocene

The uncertainty associated with a timescale is essential for
correct interpretation of the climatic data. The most impor-

tant source of uncertainty in GICC05 was considered to
be the misinterpretation of annual layers by the observers.
By defining uncertain layers to be features in the ice core
that could neither be dismissed nor confirmed (Vinther et
al., 2006), the GICC05 uncertainty was estimated from the
MCE, defined as half the sum of the uncertain layers accumu-
lated until the corresponding age (Rasmussen et al., 2006).
Thus, each uncertain layer contributes with 1/2± 1/2 years
to the age scale, whereas certain layers contribute 1±0 years.

A fundamental choice in uncertainty estimation is whether
one assumes uncorrelated errors. If the errors are uncorre-
lated, they should be summed in quadrature. If, on the other
hand, all errors are fully correlated, then the total uncertainty
is a linear sum of the individual errors. Acknowledging that
for the case of ice cores the errors are likely neither fully
correlated nor uncorrelated, the authors of GICC05 opted for
a conservative approach and summed the MCE linearly but
in turn did not include contributions from other sources than
misinterpretation of annual layers. The authors also observed
that the count between 1362 CE (Öræfajökull, Iceland) and
79 CE (Vesuvius) was correct within 1 year, corresponding to
∼ 0.1 % of the interval. As this number was smaller than the
MCE it was considered negligible. Hence, the MCE does not
consider the bias one can introduce, for example because of
misleading assumptions on the tie points or abruptly chang-
ing layer shapes.

In summary, GICC05 was considered exact for the part
younger than the eruption peak previously assigned to Vesu-
vius because many well-known historical eruptions tied the
chronology together. Therefore, the published uncertainty
until about 2.7 kyr b2k is only 2 years, increasing to 5 years
at 3.9 kyr b2k.

1.5 The NS1-2011 timescale

A more recent Greenland ice-core timescale for the past
2500 years was based on new bipolar tie points, such as vol-
canic tephra and solar storm data, and on new high-resolution
multi-parameter impurity records (Sigl et al., 2015). This
timescale will be referred to as the NS1-2011 chronology,
as it was designed on the NEEM-2011-S1 ice core by lifting
the Vesuvius and Hekla constraints and replacing them with
newer historical evidence about volcanic tie points at 536,
626, and 939 CE and about a solar proton event at 775 CE.
StratiCounter was employed to count annual layers on the
NEEM-2011-S1 shallow core and on the NEEM deep ice
core. These ice cores were matched to NorthGRIP via numer-
ous volcanic tie points to allow for comparison to GICC05.
Moreover, a manual count on the NEEM main core was con-
ducted until 500 BCE. For most of the timescale, SC was run
in constrained mode using volcanic tie points of a known
age. The earliest exact time marker applied for the chronol-
ogy is the 536 CE eruption, prominent in the acidity and sul-
fate records. For ice older than 536 CE, the authors analyzed
detailed records of historical, literary, and climatic evidence
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and found that the timescale aligns with most of the valida-
tion points, providing statistical tests to evaluate the signif-
icance of the result. Moreover, the timescale was compared
to the Antarctic timescale WD2014 (Sigl et al., 2016) and
to tree ring records to verify the overall good agreement of
Greenland with other climatic archives.

The NS1-2011 offset to GICC05 at around 79 CE was
quantified to be 8 years and the age of the layer formerly
attributed to Vesuvius was changed to 87/88 CE.

The uncertainty estimate of the NS1-2011 timescale was
based on the SC probability estimate. The age of volcanic
eruptions is reported as a weighted average of the SC counts
in NEEM-2011-S1, the NEEM main core, and WDC (West
Antarctic Ice Sheet Divide Ice Core). For example, the age of
the Indonesian Samalas eruption (Vidal et al., 2016) is given
as 1258± 2 years CE. Moreover, the comparison between
the manual and the automated count in NEEM amounted
to a difference of 1 year over the 500-year time interval.
The timescale was estimated to have a 5-year uncertainty at
2500 b2k.

1.6 The need for a revised and unified Greenland
ice-core chronology in the Holocene

Given the known inconsistencies between existing Greenland
Holocene timescales, we find it timely to revise the GICC05
timescale to provide a new unified ice-core chronology that
includes most available data from Greenlandic deep ice
cores. Our dataset includes, amongst others, the new high-
resolution dataset from the recent EastGRIP (East GReen-
land Ice Core Project) ice core (Mojtabavi et al., 2020a; Er-
hardt et al., 2022: see the “Data availability section” at the
end). Our method relies on parallel dating of multiple cores
with well-resolved annual data back to 3835 b2k, a period
which ensures data coverage from at least four ice cores until
the brittle ice zone starts affecting the data quality.

SC cannot presently be applied to multiple ice cores to-
gether. Hence, SC cannot at this time provide a fully auto-
mated multi-core timescale. Nevertheless, SC can be applied
separately to each ice core, on their own depth scale, after
which the resulting counts can be combined between cores.
Furthermore, SC cannot be used to assess whether the ice-
core signal is affected by disturbances that might have al-
tered its shape, such as snow redistribution, melt layers, and
multiple seasonal peaks in the proxies (Mosley-Thompson et
al., 2001; Westhoff et al., 2021; Geng et al., 2014). These
observations rely on a comparison of records from several
ice cores. Hence, an extensive manual effort is still required
to identify problematic layers and to bring a multi-ice-core
timescale to a final state.

We find the MCE unsuited to apply to our timescale, since
by nature it is a single-record uncertainty estimate that does
not capture the complexity of the multi-core chronology: an
uncertain layer in one core may be certain or absent in an-
other, and thus a comparison of the two can solve many

chronological issues. Based on the combination of statisti-
cal estimates and empirical observation, we propose a simple
formula to provide the new timescale, named GICC21, with
a robust, consistent, and user-friendly uncertainty estimation.

2 Data

Data from six deep and three shallow ice cores provide the
basis for GICC21; details about each drilling site are given in
Table 1. Resolution and quality of the data reflect not only the
local climatic conditions but also the state of the technology
at the time of ice-core retrieval and measurement. Moreover,
data are only available or of sufficient resolution and quality
for layer counting at selected ice-core depth ranges (Fig. 1b).

2.1 EastGRIP

The East GReenland Ice-core Project (EastGRIP) is an on-
going drilling effort which in the latest field season (2019)
reached a depth of about 2150 m. The ECM and DEP mea-
surements were made in the field camp on 1.65 m long pieces
of ice (Mojtabavi et al., 2020a). Chemistry records of aerosol
impurities were measured in Bern using the proven continu-
ous flow analysis (CFA) setup (Kaufmann et al., 2008) paired
to an inductively coupled plasma time-of-flight mass spec-
trometer (ICP-TOFMS; Erhardt et al., 2019). The chemistry
data include a vast range of different species measured con-
tinuously at a high sampling resolution (1 mm), with a re-
solving power of about 1 cm, making this dataset among the
most detailed available. However, the annual accumulation
rate at this site is also the lowest of the records included
(Table 1). A detailed description of the CFA setup and the
data used in this study can be found in Erhardt et al. (2022;
see the “Data availability section”). For counting layers, we
used Na, Ca, NH+4 , and NO−3 concentrations from 13.82 to
460.30 m depth. Water isotope records were also measured
continuously, but, due to the low annual accumulation, the
annual signal does not survive diffusion in the firn and there-
fore cannot be used for annual-layer identification.

2.2 NEEM and NEEM-2011-S1

The NEEM ice-core drilling was completed in 2012 (NEEM
community members, 2013). ECM and DEP were measured
in the field at 1 mm resolution (Rasmussen et al., 2013).
Impurity records, measured by an international team coor-
dinated by the University of Bern, were also obtained in
the field and have a depth resolution similar to the East-
GRIP dataset (Kaufmann et al., 2008) but, due to brittle ice,
suffer from increasingly wide data gaps that make annual-
layer identification difficult below around 750 m. Hence, we
used ECM, Na+, Ca2+, NH+4 , and NO−3 for layer count-
ing between 7.6 and 727.3 m depth. A detailed description
of the NEEM CFA measurements and the dataset can be
found in Erhardt et al. (2021). An additional CFA dataset

https://doi.org/10.5194/cp-18-1125-2022 Clim. Past, 18, 1125–1150, 2022



1130 G. Sinnl et al.: A Greenland multi-ice-core chronology for the past 3800 years

Table 1. Specifications about the ice cores included in this study.

Ice core Elevation, Lat, Long, Mean air Accumulation, Length, Years of Brittle ice
m ◦ N ◦W temp., ◦C mice/year m drilling zone, m

EastGRIP 2458 75.38 36.00 −29n 0.12e 2150 2017–2019 (ongoing) 650–950l

NEEM 2479 77.25 51.09 −29a 0.22a 2540 2008–2012b 609–1281k

NEEM-2011-S1 2450 77.45 51.06 −21c 0.22d 410m 2011d

NorthGRIP1 2917 75.10 42.32 −32f 0.19f 1351 1996–1997g 790–1200f

NorthGRIP2 2921 75.10 42.32 −32f 0.19f 3085 1997–2004g 790–1200f

GRIP 3230 72.58 37.64 −32f 0.23f 3027 1989–1992h 800–1300f

DYE-3 2480 65.18 43.83 −20f 0.56i 2037 1979–1981j 800–1200f

DYE-3 4B 2491 65.17 43.93 −20o 0.535f 174m 1983j

DYE-3 18C 2620 65.03 44.39 −20o 0.44f 113m 1984j

a NEEM community members (2013). b Rasmussen et al. (2013a). c Faïn et al. (2014). d Sigl et al. (2013). e Gerber et al. (2021). f Vinther et al. (2010). g Dahl-Jensen et
al. (2002). h Johnsen et al. (1992). i Vinther et al. (2006). j Clausen and Hammer (1988). k Warming et al. (2013). l Westhoff et al. (2021). m Shallow ice cores. n Estimated
from PROMICE data (Ahlstrøm and PROMICE project team, 2007). o Assumed same as DYE-3.

Figure 1. Overview of the data used for this study. (a) Geographic locations of the ice cores, for which Table 1 contains the site specifications.
(b) The colored patches summarize the available datasets used for annual-layer counting (e.g., continuous flow analysis – CFA) and inter-core
matching (e.g., ECM), plotted on their approximate age range.

was measured at the Desert Research Institute (DRI) by Sigl
et al. (2015) and provides additional data from 399 to 500 m.
This dataset was not used for the SC count, but the quality of
the layer count was later verified considering this additional
data. Moreover, the Sigl et al. (2015) dataset contains black
carbon (BC), which we used to consolidate the ammonium
match.

The NEEM-2011-S1 ice core is a 410 m shallow core that
was drilled about 100 m away from the NEEM main core
(Sigl et al., 2013). This core reaches back to the volcanic
layer attributed in GICC05 to the Vesuvius eruption (79 CE).
Chemistry data were measured at DRI for the entire core
length, but the ECM of the shallow core was not measured;
hence we relied on non-sea-salt sulfate (nss-S) for volcanic

matching (Sigl et al., 2013). The species Na, nss-Ca, nss-Na,
NH+4 , NO−3 , and BC were used for layer counting between
6.1 and 410.8 m, in order to achieve a similar SC output as in
Sigl et al. (2015). BC was also used to consolidate the am-
monium match.

2.3 NorthGRIP

The NorthGRIP drilling was completed in 2004 and is com-
posed of two ice cores: NorthGRIP1 and NorthGRIP2 (Dahl-
Jensen et al., 2002). For NorthGRIP1, ECM data are avail-
able until the core ends, at about 1351 m, and discrete chemi-
cal measurements (5 cm resolution) are available uninterrupt-
edly until 350 m and in short fragments below this (Vinther
et al., 2006). Despite the resolution of only 4–5 samples per
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year, the annual-layer pattern is clearly recognizable, and we
used ECM, Na+, Ca2+, NH+4 , NO−3 , Cl−, Mg2+, SO2−

4 , and
δ18O for layer counting between 9.9 and 349.1 m depth.

For the upper part (159–582 m) of NorthGRIP2, a contin-
uous chemistry dataset was later measured at the DRI with
a resolution of 1 cm (McConnell et al., 2018). The dataset
includes a vast range of species, of which we used Na, Ca,
NH+4 , and NO−3 for layer counting between 159.6 to 582.4 m
depth (approximately from 730 to 3200 b2k). For volcanic
matching, we mainly used a combination of ECM and DEP
signals. This new record constitutes an important addition to
the chronology, since it allows coverage of the NorthGRIP
site until almost the end of our timescale.

2.4 GRIP

The drilling of the GRIP ice core (or Summit ice core) was
completed in 1992 (Johnsen et al., 1992). Only ECM and iso-
tope data are available for counting layers in this core in the
Late Holocene. The annual signal in the isotope data (2.5 cm
resolution) is moderately affected by diffusion, but deconvo-
lution restores a very strong sinusoidal pattern that can be
used for annual counting (Johnsen et al., 2000; Vinther et
al., 2003). ECM also shows an annual signal, analogous to
GISP2, with a summer peak caused by enhanced acid depo-
sition (Meese et al., 1997). Hence, we used ECM (1 mm reso-
lution), δ18O, and deconvoluted δ18O to count annual layers
between 5.3 and 770.1 m depth. The deconvolution is sen-
sitive both to melt layers and to unusually wide layers. The
first contain sharp gradients which create artifacts in the data,
typically resulting in a series of high-amplitude oscillations
that do not correspond to real annual layers, while the sec-
ond result in spurious low-amplitude oscillations. The width
of these perturbations is usually 2–5 years, and they are not
difficult to spot for a trained investigator (Fig. S6 in the Sup-
plement).

2.5 DYE-3

The oldest ice core in this chronology is DYE-3 whose
drilling was completed in 1981 (Clausen and Hammer,
1988). The data available to our study are mainly ECM (∼
7 mm resolution) and water isotopes (1 cm resolution) (Lang-
way et al., 1985). The isotope record resolves the annual lay-
ers very well thanks to the high accumulation rate which pro-
vides wide layers that are safe from diffusion and is used for
counting from 0.9 to 1271.7 m depth. The ECM signal also
appears to have an annual pattern (Neftel et al., 1985); hence
we also used ECM to count layers from 136 to 1271.7 m. Be-
cause of lacking a setup in the first year of drilling, the ECM
measurements only start after 136 m. Therefore, to construct
the top chronology of DYE-3, we included two shallow cores
named 4B and 18C located close to the deep core site, for
which ECM and water isotopes were available for counting
(Vinther et al., 2010).

3 Methods

The first objective of this study is the construction of a com-
mon chronology for several ice cores with data suitable for
annual-layer counting.

Our timescale construction method relies on three main
steps:

– automated annual-layer boundary identification using
SC;

– ice-core matching using volcanic and ammonium tie
points;

– multi-core layer comparison by multiple observers
(called fine-tuning).

We subsequently perform a study of the uncertainty of the
resulting timescale.

3.1 The raw output: counting annual layers on each ice
core with StratiCounter

To avoid the lengthy and likely somewhat inconsistent pro-
cess of manual layer counting, GICC21 was based on a
multi-core set of annual layers identified on each ice core
by SC, which also returns an uncertainty distribution of the
number of layers in each individual ice core. SC has better
performances with multiple proxies, but including more than
four species did not prove to make a substantial difference
for the final result because some species are not independent
of each other (e.g., those dominated by minerals with dust as
a primary source) and some have similar seasonal patterns.
As training data, SC requires a set of annual layers manually
placed by the user. We chose to place the annual-layer mark
on the annual sodium maximum as the best indicator of the
start of a new year, except for ice cores without impurity data,
where we chose the isotope annual minimum, since the two
methods are roughly equivalent (Fig. S7).

Measurement gaps should be minimized using all avail-
able data to obtain an accurate layer count. Since DEP is
generally measured on the full ice core and ECM is mea-
sured on the first longitudinal cut of the core, they are both
less affected by ice-core breaks than the subsequent measure-
ments made on smaller samples or obtained from a continu-
ous stream of melted sample. So, although the yearly pattern
in the ECM signal is not always discernible and cannot be the
basis of reliable annual-layer identification, it proved useful
for ice cores with many small gaps, like NEEM and East-
GRIP. In addition, the ECM records of DYE-3 and, to some
degree, GRIP exhibit an annual ECM cycle, which helps im-
prove the SC result. When data gaps cannot be avoided, SC
makes a probabilistic estimate of the layer count considering
the neighboring data.

To facilitate the pattern recognition process by
SC, the datasets were pre-processed using the ap-
propriate settings for each ice core (see the Strati-
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counter_preprocessing_supplement.xlsx file in the Sup-
plement). The best pre-processing settings were established
after testing if SC was able to accurately estimate the
layers between the Laki and Samalas eruptions, within a
tolerance of a few years. Elemental and ionic concentrations
were treated identically, as the differences should not
matter for layer identification. Even though it is possible
to constrain SC to historical age markers, we chose to
run SC in unconstrained mode to be able to quantify any
possible biases of the algorithm. In order to account for
changes in layer thickness or data quality in each ice core,
a variant of SC was implemented to count on indepen-
dent stretches of data (more details can be found in the
Straticounter_preprocessing_supplement.xlsx file in the
Supplement).

We observed that SC tends to undercount over data gaps,
especially within longer gaps. This issue was fixed a posteri-
ori by evaluating the average layer thickness around each gap
and inserting the missing layers. However, data gaps that are
too large make the timescale inaccurate. Around 3.8 kyr b2k,
the length of data gaps in NEEM and EastGRIP increases as
both ice cores enter the brittle ice zone. Around the same
time, the effects of isotopic diffusion in GRIP gradually
make recognition of the annual signal difficult, and the high-
resolution sampling was discontinued (Vinther et al., 2006).
Therefore, we stopped the timescale revision at 3835 b2k in
order to abide by the multi-core data requirement.

3.2 Ice-core matching using synchronous events

Ice cores were matched to each other by finding patterns of
assumed synchronous events that will be referred to as tie
points. Previously published ice-core matches (Rasmussen et
al., 2013a; Seierstad et al., 2014; Sigl et al., 2015; Mojtabavi
et al., 2020a) were extended to all cores considering the new
datasets. The manual match is facilitated using a MATLAB
program called Matchmaker that allows for the insertion of
visual bars to place stratigraphic markers on top of the data
and to align data according to these markers (Rasmussen et
al., 2008), an example of which is given in Fig. 2.

The Laki eruption that happened between June 1783 and
February 1784 CE is easily detected in all ice cores thanks
to a pronounced acidity spike and a corresponding tephra
deposit (Clausen and Hammer, 1988; Fiacco et al., 1994).
Hence, we use Laki as a reference datum to calculate rela-
tive ages for the rest of the timescale. For DYE-3, however,
we tie the timescale to the Öræfajökull eruption of 1362 CE
because the DYE-3 ECM measurements start below the Laki
layer. Although the tephra identification of this eruption is
elusive (Coulter et al., 2012), the associated peak is visible in
DYE-3 and hence constitutes the most recent available candi-
date to tie DYE-3 to the other ice cores. Furthermore, the top
chronology of DYE-3 was confirmed by comparing to two
nearby shallow cores that record Laki in their ECM signal

(see also Sect. S1 “Top-chronology and remarks about the
DYE-3 ice core” in the Supplement).

When reporting historical events, we find it most conve-
nient to use CE/BCE years (avoiding year 0). When reporting
information about the ice-core timescale, we will use years
b2k. The conversion between the age units is easily done for
rounded years:

YCE = 2000−Yb2k; YBCE = 2000−Yb2k− 1.

More details about the age conversion, similar to the one
explained by McConnell et al. (2020), are provided in the
Timescale_supplement.xlsx. Since years b2k increase going
back in time, we remark that decimal ages correspond to the
inverted month order. However, we note that it may not be
possible to accurately perform sub-annual dating of events,
since accumulation throughout the year is not constant.

Ammonium matching patterns

A chemical species that shows good potential for inter-ice-
core matching is ammonium, since it is regarded as a good
tracer of North American wildfires. The lifetime of ammo-
nium in the atmosphere is very short, on the order of days,
so the origin of the signal is rarely further away than Canada
(Legrand et al., 2016). However, the shape of the ammonium
peaks might vary across the ice sheet because of different
trajectories from the source. Rasmussen et al. (2008) report
using a number of ammonium tie points in the transfer of
GICC05 from NorthGRIP to GRIP and GISP2 in the glacial.
Although Legrand et al. (2016) provided a 200-year-long am-
monium match between NEEM and GRIP, they only iden-
tify nine possible historical events that could have caused the
peaks.

To test the applicability of the ammonium matching,
we examined ammonium data between sections of closely
spaced volcanic eruptions and found many cases where am-
monium, confirmed by black carbon, had a clear correspon-
dence across ice cores (some examples are shown in Fig. 2).
We used black carbon data of NEEM and NEEM-2011-S1,
reaching back to 2500 kyr b2k to select the ammonium spikes
best suited for matching, since this provides an additional cri-
terion for the attribution of a peak to a wildfire event (Sigl et
al., 2015; Legrand et al., 2016). In some cases, we observe a
strong spatial variability; thus we confirmed that the ammo-
nium matching can only have a supporting role for the vol-
canic match. Ammonium spikes neutralize the ECM signal,
producing minima in the ECM (Robock and Free, 1995; Tay-
lor et al., 1992). Therefore, we inverted and log-transformed
the ECM record and used it as an ammonium substitute,
whenever NH+4 was lacking for an ice core.

Beyond 2500 b2k, patterns of NH+4 spikes were used to
supplement the volcanic match, especially when volcanic tie
points were widely spaced by many decades (Fig. S10). Here,
we only select ammonium tie points that left an imprint in
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Figure 2. Tie points of GICC21 between two eruptions, which are highlighted by the gray vertical bars nos. 2 and 15 (Eldjá, 939 CE).
Volcanic proxies are shown in black, and the inverted log-ECM for each ice core is shown in purple. Ammonium (where available) is shown
in orange and the turquoise bars highlight the patterns of ammonium that were used as supporting tie points for GICC21. (a) NEEM-2011-
S1: the black-carbon peaks (brown) support the choice of this subset of ammonium tie points. (b–e) The co-occurrence of ammonium peaks
and peaks in the log-inverted ECM provides another criterion for tie-point selection. (f–g) For DYE-3 and GRIP, lack of ammonium data
means that we can only use the log-inverted ECM to provide indication for the tie points, of which nos. 3, 4, 5, 6, 11, 12, and 14 are best
recognizable. The green bar between 14 and 15 highlights the very subtle ECM peak associated to the Tianchi tephra (Sun et al., 2014).
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the ECM signal of the corresponding ice core. Overall, am-
monium peaks constitute 63 % of our 290 tie points over the
last 3835 years, the proportion being higher in the region be-
yond 2500 b2k (70 %). The reason of the higher number of
ammonium tie points is that we use patterns instead of single
peaks. The frequency of the ammonium spikes is on the order
of one in 20 years, so that, by including ammonium, we have
effectively increased the resolution of the multi-core match
with respect to a purely volcanic match, this latter having
only 35 years average resolution.

3.3 Requirements for the manual fine-tuning procedure

The number of layers between synchronous tie points must
be the same across ice cores. Hence, we assessed the quality
of the SC output by evaluating the number of layers counted
by the algorithm between historically known volcanic erup-
tions. Even after having chosen the best settings for SC, we
observed a general tendency of undercounting in some ice
cores and overcounting in others (Table 2). This is a result
of the algorithm being run without age constraints, which
was considered to be appropriate for using the algorithm in
older sections of data, where no age constraints are known.
We conclude that, although SC correctly identifies almost all
annual layers, it fails to assign a sufficiently high probabil-
ity to some of the thin or otherwise unusual annual layers
in each ice core, which are thereby not counted. Also, it as-
signs an excessive probability to other layers, which upon
closer inspection cannot be confirmed as annual layers but
are due to abnormal events that can be manually recognized
from a comparison of the chemistry records, especially after
a comparison with the age of historically known eruptions.
The cause of the undercount may be related not only to data
gaps but also to partially wind-eroded layers of snow, to un-
usual impurity loading, or to other site-specific perturbances.
In the case of DYE-3, the high accumulation makes it un-
likely to miss layers in the count but, in turn, gives a higher
risk of multiple isotope oscillations within 1 year (Fig. S8),
leaving more opportunities for an overcount of the layers,
which could also result from the relatively high occurrence
of melt layers in this ice core. Therefore, we resort to a man-
ual processing of the timescale, which in the following we
will refer to as “fine-tuning”.

We remark that our fine-tuning is not in contradiction with
SC, since the algorithm attempts to derive the best layers
based on the available data of each single ice core. The
SC raw layers are accompanied by a probability distribution
which represents the likelihood of the placement of each sin-
gle layer. The fine-tuning was guided by observing where the
likelihood of the layer placement is most unsure, since the
SC uncertainty increases locally where the annual-layer de-
tection quality is low. Here, the 95th percentiles of the proba-
bility distribution register a 1-year “jump” that can be used to
detect the layers that SC deemed to be most uncertain. On the
other hand, we also identified the placement of “ghost layers”

where the SC-assigned probability was just below the thresh-
old required for SC to assign an annual layer and which may
be included in the fine-tuned timescale.

The fine-tuning is performed by comparing all ice cores
in parallel and using an iterative protocol. To ensure repro-
ducibility, we adopted a rule set to the fine-tuning process:
we added layers in gaps according to the local layer thick-
ness; we removed low-probability layers that conflicted be-
tween parallel cores; we upgraded ghost layers to full annual
layers when indicated by parallel-core comparison. Some ex-
amples of how the fine-tuning was done can be found in
Fig. S1.

Minor similarities between the records, such as minor
ECM or NH+4 features, δ18O patterns, and in some cases sim-
ilar peak-shape sequences in Na+ or Ca2+ for geographically
close ice cores, were used to support or reject changes in the
layer count. As a consequence, some tie points had to be re-
examined because of now apparent misalignments, and the
fine-tuning was repeated to ensure consistency between the
ice cores.

As a further step, two to three observers were engaged in a
detailed review of each section of the timescale aiming to re-
duce the impact of potential confirmation bias by each inves-
tigator. Whenever unanimity was lacking, the main observer
(Giulia Sinnl) examined the different opinions to propose a
final solution, which was then accepted or rejected again. In
the end, unanimity was reached in all sections. Moreover, no
previous knowledge about age was initially used to fine-tune
the timescale, except for Laki and Oræfajökull. Later, the his-
torical part of the timescale (until Samalas) was verified with
knowledge about the ages of some eruptions, finding that
the fine-tuned layer count had already reached very accurate
ages. Finally, we tested the correlation between DYE-3 and
GRIP isotopes in the top 400 years and found an improve-
ment of 17 % from GICC05 (see Table S1 in the Supple-
ment), which we take as an indication of the fine-tuning pro-
cedure reaching accurate results at the top of the timescale.

3.4 Uncertainty of the GICC21 chronology

An important part of our objectives for this study is to pro-
vide a simple yet empirically justified estimation of the un-
certainty associated with the GICC21 timescale. Uncertain-
ties in the layer count arise from two main sources: data is-
sues and misinterpretation of layers (Vinther et al., 2006). In
our study, data gaps are a prevailing issue because the ends
of each ice-core piece are trimmed to prevent contamination
during CFA measurements. This, combined with the removal
of small pieces around core breaks from the drilling pro-
cess, causes frequent but brief interruptions in the records.
On the other hand, the misinterpretation of layers is largely
accounted for by the fine-tuning of multiple parallel ice-core
records.

Many factors increase the complexity of the uncertainty
estimation for our new ice-core timescale. We find ourselves
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Table 2. Evaluation of the SC bias of each ice core in the timescale sections constrained by historical evidence on eruption ages. The
eruptions chosen for the overview were all, except for one, Icelandic: Laki (1783 CE), Bárðarbunga (1477 CE), Oræfajökull (1367 CE), and
Samalas (1258 CE, Indonesia, considering a 1-year depositional delay). Within each interval, the number of expected layer boundaries is
indicated by N . For each ice core, the difference from the raw SC count indicates the amount and direction of bias. A positive value means
that SC layers had to be added in order to reach the expected N , while a negative value means that they had to be removed. The longest
interval (Laki–Samalas) shows the total layer-modifications required by each ice core. The values indicate that the “CFA cores” (EastGRIP,
NEEM, NEEM-2011-S1) are mostly undercounted, partly because of measurement gaps, while the “GICC05 cores” (NorthGRIP1, GRIP,
DYE-3) were mostly in need of removing layers. This evaluation of bias is what eventually justifies the fine-tuning process over a purely
statistical combination of SC results.

Event Age [b2k] Event Age [b2k] N Difference from the raw SC count

EastGRIP NEEM NorthGRIP1 NEEM-2011-S1 GRIP DYE-3

Laki 216.5 Bárða. 522.8 306 8 7 −4 −1 −1 −3
Bárða. 522.8 Oræf. 637.3 115 0 3 −1 3 0 0
Oræf. 637.3 Samal. 741.1 104 2 0 2 0 1 −2

Laki 216.5 Samal. 741.1 525 10 10 −3 2 0 −5
Of which layers added in gaps 2 5 0 2 0 0

in a mixed scenario between automated counting by SC, an
algorithm that provides its own probability estimates, and
our manual intervention by fine-tuning. Moreover, we have
to account for possible correlations between errors, at least
within a certain correlation length. A data-based error can be
caused, as mentioned, by measurement gaps or also by short-
term accumulation changes, unsure tie-point placement (i.e.,
a marker placed differently across ice cores), or a disturbed
layer pattern. These errors might influence the local distri-
bution of layers, at least within neighboring tie points, but
are very likely unrelated to errors arising elsewhere in the
timescale.

Because of transport and deposition dynamics, the vol-
canic signals in the ice cores are affected by delays, which we
quantify to be within 1 year after the event started (Robock
and Free, 1995). Furthermore, we estimate that there is an
additional contribution to the uncertainty of up to 1 year
originating from possible variations in the precise position
of annual-layer markers relative to the tie points. We use the
linear sum of these contributions as a conservative minimum
uncertainty for our timescale: although some tie points are
very certain because of tephra and historical references, these
represent a minority in the timescale. Moreover, any layer
could have been placed too early or too late so that, although
the number of layers between tie points is correct, the ac-
tual age at any given depth is ±1 year uncertain because of
the misplacement, even though the error might be reabsorbed
later on.

Until the Samalas eruption (742 b2k), the fine-tuning is
constrained by well-established historical evidence on vol-
canic eruptions. Therefore, for the youngest part of the
timescale, the uncertainty is quantified as a constant value of
2 years even though it is likely smaller near good tie points.
For the rest of the timescale, we argue that the uncertainty

is never below 2 years because of the aforementioned effects
and also increases with depth.

For the older part of the timescale, we quantified a time-
dependent uncertainty based on the SC uncertainty and on
the information from the fine-tuning. SC provides a probabil-
ity distribution of the likely layer count between age markers
for each of the ice cores, which may be averaged by a con-
volution. Without fine tuning, the convolution’s width, which
is strongly depth and age dependent because of data quality
and coverage, would be a suitable candidate for the uncer-
tainty. As described in Sect. 3.3, the SC probabilities need,
in any case, to be calibrated for the gap undercount, in order
to reduce the width of the convolution. After correcting for
the gap bias, the maximum likelihood layer number derived
from the SC convolution is expected to be closer to the fine-
tuned layer count; however we observe that SC is misinter-
preting some layers. We believe that fine-tuning improves the
timescale; hence we regard the discrepancy between the SC
result (corrected for the gap bias) and the fine-tuned result to
be a conservative estimate of the age uncertainty arising from
layer interpretation and data issues.

To estimate the correlation length of the uncertainties,
we observed that a tie point is typically found once every
20 years. Because a layer identification error is not likely
to affect sections separated by several tie points, we find it
reasonable to assume that, beyond 100 layers, errors in the
fine-tuning are uncorrelated. Conversely, because the num-
ber of years between tie points must match, errors in layer
identification are likely correlated over shorter intervals.

We compared the SC output in sections of 100 fine-
tuned years, at continuous intervals covering the entire study
period older than Samalas. In each section, we performed an
SC run for every ice core, acquiring the independent prob-
ability distribution of the layer count, for which plots can
be found in Fig. S3. We manually added layers in the data
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gaps, mostly found in EastGRIP, NEEM, and NEEM-2011-
S1 (Straticounter .xlsm file in the Supplement). The ice-core
distributions were convolved to provide the multi-core aver-
age, and a Gaussian curve was fitted to the convolution to
obtain a mean and a standard deviation. By subtracting these
means from the expected value of 100 years, we obtain the
values we call δtSC

i (Fig. 3a), where i indicates the century.
The average of all δtSC

i is −0.70± 0.04 years per century
(average of absolute values: 0.84± 0.04 years per century;
all values are reported in the Straticounter .xlsm file in the
Supplement). The negative average indicates a bias towards
undercounting by SC, probably related to disturbances in the
layer pattern and leftover gap undercount. However, this bias
appears to be reabsorbed after 2500 years, where more bal-
anced values around 0 appear in the dataset of Fig. 3a. This
more balanced StratiCounter bias is not related to any par-
ticular horizon in the data availability, and hence we exclude
this effect to be caused by some lacking data. At least for the
part of GICC21 exceeding NS1-2011, we can say that the ef-
fects of over- and undercounting by SC balance out, which
could be a consequence of our manual gap intervention or
our fine-tuning process.

The fine-tuning process leads to an added uncertainty,
which is difficult to quantify independently but very likely
smaller than δtSC

i , since we believe that the fine-tuning solves
problems arising from single-core layer identification and
thus brings us closer to the true age. Still, based on the values
obtained above, we suggest a conservative empirical uncer-
tainty of 1 year per century.

On the basis of our tests, we hypothesize that our un-
certainty can be represented by the following empirical for-
mula, where the uncertainty between Samalas (tS = 1258 CE
= 742 b2k) and any older age t will have an absolute uncer-
tainty of

δt (t; t > tS)= 2+

√
t − tS

100
years. (1)

This formula is composed of a constant term of 2 years,
which we have previously set as a conservative, lower bound-
ary to our uncertainty, and a time-dependent term. Since
we have argued that the century errors are uncorrelated,
we apply a quadrature sum to evaluate the accumulated un-
certainty over time: δt(ti)= 2+

√
(1)2+ (1)2+ . . . + (1)2 =

2+
√
Ncenturies(1)2. For convenience, we hypothesize that the

formula can be made continuous, obtaining Eq. (1), which
compares well to our measured uncertainties and should be
interpreted as 1σ of the GICC21 ages (Fig. 3b). In the Sup-
plement, we also provide an alternative demonstration of the
correlation length.

4 The timescale offset curve

We now present a comparison between the new GICC21
timescale and the existing ice-core chronologies GICC05

(Vinther et al., 2006), GISP2 (Meese et al., 1997),
DRI_NGRIP2 (McConnell et al., 2018), and NS1-2011 (Sigl
et al., 2015), with the aim of investigating any dating off-
sets (Fig. 4a). To calculate the GICC21 ages at reported
GICC05 depths and infer the correct offset, we linearly inter-
polated the GICC21 ages onto the GICC05 layers of DYE-
3, GRIP, and NorthGRIP1 (Vinther et al., 2006). The pub-
lished volcanic matches of EastGRIP to NorthGRIP (Mo-
jtabavi et al., 2020a) and of NEEM to NorthGRIP (Ras-
mussen et al., 2013a) allow us to find the GICC21 ages for
these two cores at the published tie points. The timescale off-
set of each individual ice core from GICC05 was averaged to
obtain an overall transfer function of GICC21 from GICC05.
The transfer function can be used to translate any age previ-
ously matched to GICC05 to the new revised GICC21 ages
(provided in the Timescale_supplement.xlsx file in the Sup-
plement; see Appendix A for more details on the transfer
curve).

In Fig. 4b, all ice-core individual offsets from GICC05
tend to stay close to each other, making it possible to iden-
tify a common behavior, which illustrates the result of the
timescale revision: an increasing offset from GICC05. There-
fore, we recommend a timescale-calibration offset toward
younger ages when using GICC05 beyond 3835 b2k. The
amount of calibration needed is 14 years for DYE-3, 12 years
for EastGRIP, 11 years for GRIP, and 12 years for any other
ice core based on the average transfer curve (Appendix A).

A drift of one ice core away from the others can mean two
things: either the ice-core match is different, or there have
been interpolation problems in GICC05, e.g., in the case of
NorthGRIP1 beyond 1813 b2k (see Fig. 5 caption). No off-
sets are observed in the section younger than about 750 b2k,
right after the prominent Samalas eruption of 742 b2k, except
around 390–490 b2k, where DYE-3 and EastGRIP differ by
about 2 years from the other cores. We confirm the observa-
tion, made by Vinther et al. (2006), that DYE-3 displays a
layer thickness fluctuation at 400–600 b2k (Fig. S2), which
makes the layers thicker and possibly perturbed by upstream
flow effects. As shown in Fig. 5, this period proved hard to
match for DYE-3. Because EastGRIP was matched to one
particular broad tie point, a divergence also arises there.

The erroneous attribution of Hekla (1104 CE) explains
the steep 4-year offset which was introduced between the
Samalas eruption and 1104 CE. In hindsight, the four annual
layers appear poorly supported by the DYE-3, GRIP, and
NorthGRIP1 data (Fig. 6). After 1100 b2k, a steady increase
is observed until about 2000 b2k at the age of the previously
assigned Vesuvius layer.

4.1 The offset behavior between 2000 and 3835 b2k

Beyond 2000 b2k, the offset stays above 10 years, reaching
an average of around 13 years in the last centuries of the
timescale. We speculate that the reason for the overall in-
crease in offset is related to a confirmation bias in GICC05
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Figure 3. Empirical uncertainty estimation. (a) Deviation of the gap-corrected convolutions from the expected value of 100 years. Error bars
indicate the ±σ of each convolution. (b) The sum in quadrature of the measured deviations is reproduced well by our uncertainty formula.

after having acquired the initial 10-year offset, meaning that
by deciding to include more layers before Vesuvius, the au-
thors possibly continued to lean towards interpreting melt
layers or isotopic fluctuations in DYE-3 as annual layers.

Around the previously attributed Vesuvius match, the
NEEM ice core exhibits a divergence from the other ice
cores, which was also documented in Sigl et al. (2015).
NEEM was matched to NorthGRIP1, which in turn was
matched to DYE-3 and GRIP, as the section sits just be-
low where the NorthGRIP1 ion chromatography (IC) data
stop. We observe that both the DRI_NGRIP2 timescale and
our revision of NorthGRIP2 present a similar feature. We
thus conclude that the likely reason for the fluctuation is a
previously erroneous transfer of GICC05 because the prob-
lem must lie in the ages previously assigned to the North-
GRIP1 match points. Since EastGRIP was matched with
fewer match points in this section, the divergence does not
arise in the EastGRIP curve.

Between 2500 and 3500 b2k, three centennial-scale fluc-
tuations are observed, with two notable offset peaks above
15 years at around 2900 and 3400 b2k. We argue that these
large wiggles in the timescale offset are to be attributed to
a difference in layer count within widely separated volcanic
markers. The spacing of adequate volcanic tie points can be

as high as 130 years, a fact that called for a heavier use of
NH+4 markers in our work, which were not used in GICC05
in this section. For the time span 2800–3100 b2k, we ana-
lyzed in detail the matching differences between GICC05
and GICC21 (Fig. S4), finding that the offset wiggle is ex-
plained by shifts in the tie points, by layer thickness fluctua-
tions of DYE-3, and by interpolated NorthGRIP1 ages being
used to date EastGRIP and NEEM.

4.2 The comparison with published ice-core timescales
and Holocene chronostratigraphic markers

We found that both GICC21, DRI_NGRIP2, and NS1-2011
have a similar offset to GICC05 within their respective time
periods (Fig. 4a). On the other hand, the GISP2 timescale
presents a large divergence from our revision. The GISP2
timescale, however, agrees with our revision until 1109 b2k,
after which the assumption about the Vesuvius tie point pro-
duces a large offset fluctuation, caused by the need to insert
and remove layers in order to compensate for the erroneous
tie point. The offset of GISP2 from GICC05 after 3000 b2k
becomes very large, and we chose not to plot it.

For the DRI_NGRIP2 timescale (McConnell et al., 2020),
we notice a very good agreement until 2250 b2k, after which
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Figure 4. Timescale comparison. (a) Published timescales and GICC21 compared to GICC05. The shaded areas highlight the uncertainty
of both GICC05 (light blue) and GICC21 (gray). The GISP2 timescale was compared using the published match with GICC05 (Seierstad
et al., 2014); it agrees with GICC05 at the former Vesuvius tie point, but we observe how it also agrees with the recent revisions until the
1109 b2k eruption, before it spreads to wider offsets. The NS1-2011 timescale (Sigl et al., 2015) agrees with our revision within uncertainties
as well as with the DRI_NGRIP2 timescale (McConnell et al., 2018). (b) The individual ice cores have different offsets from GICC05
depending both on the volcanic match and on the layer counting differences. A direct comparison with GICC05 is possible for the ice cores
NorthGRIP, GRIP, and DYE-3, for which both GICC05 and GICC21 are annual-layer-counted. The NorthGRIP1 layer comparison stops at
1813 b2k, corresponding to the end of the IC dataset, but the NorthGRIP2 comparison continues thanks to the DRI CFA dataset. An indirect
comparison was possible for EastGRIP and NEEM, for which published match-point ages were used to interpolate to the new layer-counted
ages (Rasmussen et al., 2013a; Mojtabavi et al., 2020a). The comparison for NEEM-2011-S1 was possible using the matching of the ice core
onto GICC05 using the tie points provided in Sigl et al. (2013).

DRI_NGRIP2 displays a linear increasing trend in offset,
whereas GICC21 shows a more constant offset. On the other
hand, the NS1-2011 timescale shows a lower offset be-
tween 2000 and 2500 b2k. Although both are well within the
GICC21 uncertainties, the two counteracting offsets between
the two timescales might be a sign of widely spaced eruptions

and lack of multi-core comparison. Therefore, we conclude
that, at least for Greenlandic ice cores, a multi-core compar-
ison is favorable for timescale reconstructions, especially in
the case of widely spaced tie points.

We also highlighted the ages proposed by GICC21 of some
events detected in ice cores in order to compare them to
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Figure 5. (a) The first divergence of the timescale offset, at 390–490 b2k, reported on the DYE-3 depth scale. Four layers were removed
between 190 and 200 m, but they were gradually added back in the earlier part of the timescale. (b) The layer thickness in this interval
presents a fluctuation towards thicker layers, possibly because of upstream flow effects (Vinther et al., 2006). Between 180 and 240 m, the
layer thickness according to GICC05 presents a more gradual increase than according to GICC21 but in turn has a sharp dip at 220 m, which
is not present in the GICC21 layer count. (c–e) By looking at the actual data, it becomes clear that DYE-3 is very hard to match in this depth
range. The fact that the stratigraphy of DYE-3 has been lightly disturbed could have affected the signals, so that both the ECM dips and
peaks become almost unrecognizable. The layers present many irregularities that make the fine-tuning more uncertain than usual. (d) For
EastGRIP, we observed that the broad shape of tie point no. 9 caused the match to be revised and placed 2 years later than what was done by
Mojtabavi et al. (2020a).

historical ages (Table 3). The oldest event is the eruption
formerly attributed to Thera (Santorini) by the GICC05 au-
thors, who placed the layer in 1645 BCE. Since then, the
origin of the tephra was determined to be Alaskan and the
dating of the corresponding acidity peak was questioned,
also in relation to comparison to tree-ring data (Pearce
et al., 2004; McAneney and Baillie, 2019). According to
GICC21, we state the age of this acidity peak to be 1629 BCE
(3627.5 b2k), and we endorse the future search for cryp-
totephra in ice cores that might indicate a more accurate age
for the Thera eruption, which is going to be vital for the
archeological framework of the Late Bronze Age.

4.3 Comparison of GICC21 to the tree-ring timescale
and the IntCal20 curve

The ice-core timescale can be compared to other timescales
and climatic archives to verify their relative consistency and
infer leads and lags in the climatic system. The fact that
GICC21 was created as independently as possible from other
archives makes it possible, for example, to compare it to the
tree-ring chronology.

In Sigl et al. (2015), a composite of five Northern Hemi-
spheric tree-ring chronologies, called “N-Tree”, was created
to describe tree-growth anomalies over the last 2500 years in
the Northern Hemisphere. Another recent reconstruction of
temperature changes from tree rings (Büntgen et al., 2021)
can also be used as a comparison until 2000 years ago.
These chronologies have virtually no uncertainty since the
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Table 3. GICC21 ages of chronostratigraphic markers in the Holocene which were important for this study. Tephra from eruptions and 10Be
from solar proton events (SPEs) both provide chronological references when the age of the event is known from historical evidence or other
accurate timescales, such as dendrochronology.

Name, location Historical age GICC21 age (±δt)b Reference Ice core of tephra
(CE/BCE) (CE/BCE) or 10Be finding

in ice core

Katmai, Iceland 1912 CE 1912± 2 CE Coulter et al. (2012) NorthGRIP

Laki, Icelanda 1783 CE 1783± 2 CE Fiacco et al. (1994) GISP2

Veiðivötn–Bárðarbunga, Iceland 1477 CE 1477± 2 CE Abbott et al. (2020) TUNU13h

Öræfajökulla 1362 CE 1362± 2 CE Palais et al. (1991), GISP2 GRIP
Coulter et al. (2012)

Samalas, Indonesia 1257 CE 1259± 2 CE Palais et al. (1992), GISP2
Lavigne et al. (2013)

994 CE SPE (10Be)c 994 CE 992± 3.6 CE Sigl et al. (2015), NEEM 2011 S1 NorthGRIP,
Mekhaldi et al. (2015) GRIP

Tianchi, Japan 946 CE 946± 3.7 CE Sun et al. (2014) NorthGRIP

Katla, Eldjá, Iceland 939 CE 939± 3.8 CE Zielinski et al. (1995) GISP2

Bárðarbunga, settlement, Iceland ∼ 877 CE 877± 3.9 CE Grönvold et al. (1995), GRIP GISP2
Zielinski et al. (1997)

775 CE SPE (10Be) 774/775 CE 774± 4.1 CE Sigl et al. (2015), NorthGRIP,
Mekhaldi et al. (2015) NEEM 2011 S1 GRIP

UE 88 (formerly attributed
to Vesuvius 79 CE) ∼ 88 CEd 89± 5.4 CE Plunkett et al. (2022) NEEM-2011-S1

Okmok, Alaska ∼ 43 BCEe 43± 5.6 BCE McConnell et al. (2020) NorthGRIP2

660 BCE SPE (10Be) 665–660 BCEf 663± 6.8 BCE O’Hare et al. (2019) NorthGRIP, GRIP

Aniakchak, Alaska (formerly
attributed to Thera, Santorini) ∼ 1645 BCEg 1629± 7.3 BCE Pearce et al. (2004) GRIP

a Only two of the events are used to anchor our timescale. b GICC21 ages are reported at the peak of the signal identifying the event; a delay in deposition might occur.
c Not used as tie point across ice cores. d Age from NS1-2011 chronology. e Age from indirect historical evidence and tree rings (McConnell et al., 2020). f Age from tree rings
(Park et al., 2017; Sakurai et al., 2020). g GICC05 age of acidity layer. h TUNU13 was not used for this study, but we verified the match with NEEM-2011-S1 and NorthGRIP to
be the same as ours.

vast availability of old wood makes tree-ring timescales very
accurate thanks to many iterations of cross-dating. By look-
ing at the alignment of ECM with the two reconstructions
(Fig. S5a and b), we observe that Greenland eruptions align
very accurately with some periods of abrupt cooling, pro-
viding an indication of the timescale accuracy with respect
to tree rings. A comparison to another tree-ring growth re-
construction reaching until 3835 b2k (Helama et al., 2012)
did not lead to conclusive evidence for a better alignment
of GICC21 to growth minima with respect to GICC05, either
because the resolution of the tree ring data was too low or be-
cause no clear minima were seen in the vicinity of the ECM
peaks.

We furthermore compared the ice-core ECM to the bristle-
cone record, compiled by Salzer and Hughes (2007). We
found very good correspondence between two growth min-

ima of North American trees, at 3626 and 3649 b2k, the first
of them corresponding to the Alaskan Aniakchak eruption
(Pearce et al., 2004), which again confirms the alignment of
the eruptions in ice cores and tree-growth minima (Fig. S5c).
Finally, a calcium anomaly was reported in tree rings by
Pearson et al. (2020) at 3560 b2k, speculated to be linked
to the eruption of Thera, Santorini, which we find to align
with a modest ECM peak in some ice cores (e.g., EastGRIP)
(Fig. S5c).

Synchronous deposition of cosmogenic radionuclides
(10Be and 14C) provides an additional tool for the compar-
ison of ice cores to other archives at lower latitudes. How-
ever, the 14C signal is dampened by the carbon cycle and
therefore the comparison can only be conducted by back-
ward modeling the 14C to retrieve the original production
rates. In this way, GICC05 was compared to the radiocarbon
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Figure 6. Example of GICC05 overcounting between Samalas and
1108 CE in sections of (a) DYE-3, (b) GRIP, and (c) NorthGRIP1.
The top, green bars represent the GICC21 layer boundaries. The
bottom, purple bars represent GICC05 layers: they include more
layers (thicker purple bars) that are not included in GICC21. For
DYE-3, the doubtful features of the isotopes, possibly correspond-
ing to melt layers or measurement issues, suggest that these are not
annual-layer boundaries. For GRIP, it seems unlikely that a year is
found at a local maximum of the isotopes. For NorthGRIP, discrete
sodium measurements are not always easy to interpret due to the
marginal resolution; however the placement of a layer boundary at
a sodium minimum is unlikely.

calibration curve IntCal13 (Reimer et al., 2013) by Adol-
phi and Muscheler (2016), who found that the offset be-
tween the timescales increased steadily over the Holocene,
reaching about 20 years at 4 kyr b2k. This conclusion is sup-
ported by GICC21, at least until 3400 b2k, by observing that
the transfer function of GICC21 behaves similarly to the
one produced by Adolphi and Muscheler (2016) (Fig. 7a).
Furthermore, the solar proton event identified by O’Hare et
al. (2019) in NorthGRIP and GRIP, dated through tree-ring
evidence, keeps its alignment under the GICC21 timescale
and is confirmed at an age of 663± 7 b2k (Table 3), provid-
ing independent proof for the accuracy of GICC21 for that
period.

The transfer curve to IntCal13 is smoothed as a result of
the statistical wiggle-matching approach between 10Be and
14C, designed to match unstretched 1000-year-long windows
in order to avoid over-fitting of spurious peaks (Adolphi and
Muscheler, 2016). This implies that beyond 3500 b2k, the
wiggle-matching algorithm is influenced by data older than
4000 b2k, which could cause the increase in observed off-
set in the 3500–3800-year window. Since the differences be-
tween IntCal13 and IntCal20 are thought to be marginal in
the Late Holocene, at least for the purpose of timescale com-
parisons (Reimer et al., 2020; Muscheler et al., 2020), we
refrain from repeating the wiggle matching. Therefore, af-
ter 3500 b2k, the IntCal-GICC21 offset can be quantified as
7± 6 years, which is almost negligible.

To address the finer structure of the offset in the last
500 years of the GICC21 revision, we directly compare the
ice-core 10Be concentration measured in the GRIP ice core
(Muscheler et al., 2009) and the 14C production signal of the
IntCal20 curve, which is obtained by carbon-cycle model-
ing (Muscheler et al., 2005). Since the underlying produc-
tion mechanisms are the same, the two radionuclides show
common variability. After detrending the signals, we com-
pare the 14C of IntCal20 and the ice-core 10Be, accord-
ing to GICC21 and to the transfer function by Adolphi and
Muscheler (2016). Upon visual inspection (Fig. 7b), we con-
clude that there is good agreement between all production
signals and that until 3835 b2k, the offset between IntCal20
and GICC21 is resolved within uncertainties. However, we
remark that between 3700 and 3800 b2k comparative studies
of tree-ring and ice-core data should address the inconsisten-
cies observed in the radionuclide production signal. In con-
clusion, there is no compelling evidence to suggest an offset
of GICC21 versus IntCal20.

5 Conclusions

Compared to GICC05, the new GICC21 ice-core timescale
shows higher potential for climatic studies and comparison
to distant records in the Late Holocene, such as radiocarbon-
dated evidence proximal to eruption sites. The timescale off-
set to GICC05 shows a non-linear behavior, as a consequence
of local issues with the layer count and the ice-core compar-
ison. Until 742 b2k, the two timescales agree with uncertain-
ties, which is convenient for shallow ice-core studies. How-
ever, beyond the Samalas eruption (1258 CE, 742 b2k), the
offset increases rapidly because of the mismatch of the Hekla
(1104 CE) and the Vesuvius (79 CE) eruptions.

The automated-counting algorithm StratiCounter was ap-
plied with success to recognize layers in the ice cores, us-
ing the new available proxy data from EastGRIP and NEEM,
but nonetheless showed some intrinsic issues, since the al-
gorithm was undercounting layers in some ice cores (East-
GRIP, NEEM, and NEEM-S1-2011) and overcounting lay-
ers in others (GRIP, NorthGRIP, and especially DYE-3), as
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Figure 7. (a) Comparison of the transfer function GICC21–GICC05 with the transfer function modeled by Adolphi and Muscheler (2016),
based on 10Be data from the GRIP ice core and converted to 114C by modeling and compared to the 114C variations in IntCal13. The
agreement between GICC21 and IntCal is supported by the closeness of the two transfer curves. We observe two notable differences between
the transfer curves: between 500 and 1000 b2k, where the effect of the 1000-year smoothing of the Adolphi and Muscheler approach is
evident (used in the 10Be–14C comparison to avoid matching spurious peaks), and possibly between 3400 and 3835 b2k, where some offset
(7± 6 years) towards older GICC21 ages is still observed. (b) 10Be concentrations measured in the GRIP ice core (Muscheler et al., 2009)
are shown in purple for GICC21 and black for the Adolphi and Muscheler timescales, with horizontal bars highlighting the uncertainties
in the peak positioning. The data were smoothed with a 20-year running average and detrended to remove the long-term trend. The 14C
production rate (green), based on the tree-ring timescale, is obtained from carbon-cycle modeling of the 14C data of IntCal20 (methods
outlined in Muscheler et al., 2005). Single realizations of the IntCal20-based production curve show that the position of the peaks underlying
IntCal20 can vary slightly, so that the average curve should be handled with care when performing timescale studies (Muscheler et al., 2020).
The alignment with IntCal20 is kept within uncertainties throughout the period shown, with possibly GICC21 better aligned in the last
century. Any production rate differences between tree-ring data and ice cores that cannot be resolved within realistic dating offsets (e.g., the
period 3700–3740 b2k) could be explained by underestimated data uncertainties or by transport and deposition effects on 10Be, since major
carbon-cycle changes in this period are unlikely (Muscheler et al., 2004).

demonstrated in the well-constrained age range younger than
the Samalas eruption. Hence, we demonstrated the need for
a multi-observer manual fine-tuning and applied an empiri-
cal statistical approach to show that the rate of the timescale
uncertainty envelope can be estimated as about 1 year per
century, going back in time from Samalas. A lower bound of
2 years needs to be added to the uncertainty, to account for
uncertainties in displacement and delays in the volcanic acid-
ity deposition on the ice sheet. We remark that the existence
of a counting bias in each ice core is not a failure of SC, as
the task of recognizing layers is challenging regardless of the
methodology applied. That is to say that the algorithm can-
not overcome the bias, which is as much an intrinsic problem
with the annual-layer record as it is an issue with the layer
identification method. Since we demonstrated that ice cores
do have site-specific disturbances that affect the layer count,
it is clear that a multi-core comparison such as the one con-

ducted in this work is favorable to increase the accuracy of
the Greenland ice-core timescale.

The offset of the timescale from GICC05 reaches 13 years
at 3835 b2k, which is significant considering the small
timescale uncertainty at this age. The offset has an oscillating
behavior between 2000 and 3835 b2k, with three important
excursions from the mean with amplitudes of about 5 years.
This fact we attribute to matching issues related to widely
spaced volcanic eruptions, a finer ammonium-based match
in GICC21, and layer thickness fluctuations in DYE-3.

The revision of the timescale was stopped at 3835 b2k to
ensure multi-core comparison. However, since NEEM data
improve again for depths larger than 1200 m (corresponding
to roughly 8 kyr b2k), there is a possibility for a revised Early
Holocene ice-core chronology based on data from EastGRIP,
NEEM, and DYE-3, made by a method similar to the one
provided here. In contrast, between 3.8 and 8 kyr b2k, i.e.,
within the typical brittle ice section of the cores where data
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quality is lower, any timescale revision will have to be con-
structed by different means or by the acquisition of new data
from new and old ice cores. We remark that the record of
EastGRIP CFA data was acquired with the goal of covering
the brittle ice zone part of the Holocene in Greenland; hence
this dataset will be key to improving the ice-core timescale in
future studies. In the meantime, a timescale-calibration off-
set should be added when using GICC05 beyond 3835 b2k
(Appendix A).

Comparisons of GICC21 to other timescales provided new
insights on some debated issues of ice-core timescales, such
as the offset to the IntCal calibration curve. A comparison
between several tree-ring growth minima and volcanic acid-
ity spikes supports the conclusion that GICC21 is in good
alignment with tree-ring chronologies. Moreover, thanks to
the modeling of cosmogenic radionuclides, we were able to
compare IntCal20 and GICC21 until 3835 b2k, concluding
that the offset between the two timescales is negligible within
uncertainties.

In conclusion, thanks to a good geographical coverage of
the central Greenlandic ice sheet provided by the dataset, our
improved synchronization of Greenlandic ice cores will al-
low more precise investigations of the relative timing of cli-
matic events, such as the climatic response to Holocene vol-
canic eruptions as reflected in the ice-core signal.

Appendix A

The transfer function between GICC05 and GICC21 was
calculated by, first, acquiring the timescale offsets of each
of the ice cores involved in this study. Then, we computed
the uncertainty using Eq. (1). For each year between 0 and
3835 b2k, a weighted mean of the offset was calculated with
the corresponding weighted uncertainty. The transfer func-
tion is reported in the Timescale_supplement.xlsx file in the
Supplement. For the ice cores EastGRIP, NEEM, North-
GRIP1, NorthGRIP2, and DYE-3 we advise the direct use
of the GICC21 layers and of Eq. (1) for the uncertainty, in
order to convert ages from GICC05. For other cores, which
were matched to one or a combination of these ice cores (e.g.,
GISP2, Rasmussen et al., 2008), we recommend the use of
the average transfer function to translate ages from GICC05
to GICC21 until 3835 b2k. For sections older than 3835 b2k,
we recommend ages of GICC05 to be calibrated by a shift
towards younger ages. The amount of calibration needed is
14 years for DYE-3, 12 years for EastGRIP, 11 years for
GRIP, and 12 years for any other ice core based on the av-
erage transfer curve.

Data availability. All data underlying GICC21 are available for
use. As many of the datasets were also used for GICC05 but not
released at that time, we have decided to release all hitherto un-
published data and information related to GICC05 and GICC21 to-

gether. The publication plans were split according to the ice-core
project and are still ongoing.

The CFA datasets from NorthGRIP and NEEM have
been documented in a paper by Erhardt et al. (2022;
https://doi.org/10.5194/essd-14-1215-2022). The cor-
responding data files are available at PANGAEA
(https://doi.org/10.1594/PANGAEA.935838; Erhardt et al., 2021).
EastGRIP CFA data are in the process of being released in a similar
way, and a preliminary data file can be obtained from Tobias
Erhardt until the data files are available at PANGAEA.

In addition, the following data files have been documented and
are currently in review and undergoing curation at PANGAEA:
ECM from DYE-3 (main core, 4B, 18C) and GRIP; yearly resolved
isotope data from DYE-3 (main core, 4B, 18C) and GRIP; impu-
rity CFA data from GRIP; impurity IC data from NorthGRIP1; line
scan profile from NorthGRIP2; the GICC05 annual-layer markings
for all cores. The full metadata and documentation for these files are
being compiled as a paper for ESSD, and the data files are available
(with the current preliminary metadata) from Sune Olander Ras-
mussen until they appear at PANGAEA in their final form.

Other data underlying the timescale and where to find them are
listed below.

1. NorthGRIP DEP data from the top are available at
https://doi.org/10.1594/PANGAEA.922191 (NorthGRIP1;
Mojtabavi et al., 2020d) and https://doi.pangaea.de/10.1594/
PANGAEA.922306 (NorthGRIP2; Mojtabavi et al., 2020e).

2. NEEM DEP are available at
https://doi.org/10.1594/PANGAEA.922193 (Mojtabavi et
al., 2020c).

3. EastGRIP ECM is published at:
https://doi.org/10.1594/PANGAEA.922139 (Mojtabavi et
al., 2020b).

4. NorthGRIP ECM is published at:
https://doi.org/10.1594/PANGAEA.831528 (Rasmussen
et al., 2013b).

5. NEEM ECM is published at: https://doi.org/10.25921/gab6-
fa09 (Rasmussen et al., 2013c).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/cp-18-1125-2022-supplement.
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