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Food processing requires large amounts of water to the extent 

that even in Denmark local scarcity is challenging the food 

production industry. In the dairy industry process-water – wa-

ter reclaimed from existing process streams such as Cleaning-

In-Place or cheese whey processing for protein recovery – is an 

obvious candidate to replace potable water while in-turn mini-

mizing wastewater discharge. In this work the process-water 

stems from equipment already present in the dairy industry, 

namely membrane filtration permeate as well as evaporator condensate. To ensure safe-

for-use, high quality process-water at all times key quality attributes must be identified and 

(ideally) monitored continuously in the future.

This thesis deals with the chemical characterization of selected process-water streams, and 

identifies and tests relevant measurement techniques. Chemical characterization was per-

formed using analytical techniques developed in the field of metabolomics. The first inves-

tigations focused on membrane permeate, and led to the identification of urea as the main 

organic compound, next to low levels of other organic compounds. Near infrared spectros-

copy as potential on-line analytical method was tested to monitor the variation. Evaporator 

condensate was also investigated, but no conclusive identification could be made. Finally, 

extreme value theory – a statistical tool set – was applied to demonstrate a new direction in 

monitoring and characterizing of process dynamics in the dairy and food industry.
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Abstract

Abstract

The dairy industry is a major consumer of potable water, with large volumes

being used in cleaning operations and for facility needs such as heating / cooling

media. In an attempt to bring down water use and also minimize discharge of

wastewater, process-water is explored as an alternative source. Process-water

stems from processing equipment usually already present in the dairy industry and

mainly concerns membrane filtration permeate as well as evaporator condensate.

During processing process-water is reclaimed and, if suitable, it can replace potable

water where huge savings both on monetary and environmental impact can be

achieved. Since process-water is reclaimed from a production process, and all

processes are subject to variability, the quality must be guaranteed at all times to

ensure safe use. Ideally this is done via real-time on-line measurement systems.

The aim of this thesis is to perform detailed chemical characterisation of

process-water streams and to identify and test relevant measurement techniques,

thus establishing basic knowledge on process-water quality monitoring possibili-

ties.

Two process-water streams at the Arla Foods Ingredient’s processing facilities have

been investigated in the thesis work: 1, membrane permeate and 2, evaporator

condensate.

In membrane permeate urea was found as the main organic compound per-

meating the membrane, but also relatively large molecules were also found to

permeate in low concentrations. Near infrared spectroscopy was investigated as

a potential monitoring technique and was found to be sufficiently sensitive in a

laboratory set-up. However, the signal-to-noise ratio was so low that thorough

uncertainty estimation was needed to ensure confidence in the predictions.

Evaporator condensates were characterised with a number of techniques and

the results indicate that aromatic amino acids consistently were present in con-

densates from several processing lines. However, no conclusive identification was

reached pointing towards the necessity to employ other analytical techniques that

focus on volatile compounds.

The investigated processes were found to be very stable and consequently left

collection of samples with high organic load up to chance. This led us to explore

extreme value theory as a way to characterise production processes’ distribution

and dynamics.

In conclusion the investigated process-water streams appeared to be very clean,

making quantification and identification of possible contaminating compounds

challenging.

v
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Resumé

Mejeriindustrien er en storforbruger af drikkevand, hvor store mængder bliver

brugt i rengøringsprocesser og til anlægsdrift s̊asom varme / kølevand. I et forsøg

p̊a at nedbringe vandforbruget og samtidigt minimere udledningen af spildevand

udforskes procesvand som en alternativ kilde. Procesvand stammer fra procesud-

styr som ofte allerede er tilstede i mejeriindustrien og primært vedrører membran-

filtreringspermeat og fordamperkondensat. Under processering genvindes proces-

vand og, hvis egnet, kan det erstatte drikkevand, hvorved store besparelser b̊ade

monetært og miljømæssigt kan opn̊as. Eftersom procesvand genvindes fra en pro-

duktionsproces, og alle processer er genstand for variabilitet, skal kvaliteten garan-

teres til hver en tid for at sørge for sikker brug. Ideelt gøres dette via målesystemer

direkte tilkoblet processen i realtid.

Målet med denne afhandling er at udføre detaljeret kemisk karakterisering af

procesvandstrømme samt identificere og teste relevante m̊alemetoder for s̊aledes

at lægge grunden for monitoreringsmuligheder af procesvandskvalitets.

To procesvandsstrømme hos Arla Foods Ingredients produktionsfaciliteter er blevet

undersøgt i denne afhandling: 1, membranpermeate og 2, fordamperkondensat.

I membranpermeatet blev urea fundet som den vigtigste organiske forbindelse,

som gennemtrængte membranerne, mens relativt store molekyler ogs̊a blev fundet

i lave koncentrationer. Nærinfrarødspektroskopi blev undersøgt som en potentiel

måleteknik and blev vurderet til at være tilstrækkelig følsom i laboratorie opstil-

ling. I midlertidigt var signal-til-støj forholdet s̊a lavt, at omhyggelige usikkerheds-

estimater var nødvendige for at sikre tillid til prædiktionerne.

Fordamperkondensat blev karakteriseret med en mængde teknikker og resul-

taterne indikerer, at aromatiske aminosyrer konsekvent var tilstede i kondensat

fra forskellige proceslinjer. Dog blev ingen endegyldig identifikation n̊aet, hvilket

peger mod nødvendigheden af at køre andre analytiske teknikker som fokuserer p̊a

flygtige forbindelser.

De undersøgte processer blev vurderet som meget stabile, og derfor blev indsam-

lingen af prøver med højt organisk indhold efterladt til tilfældigheder. Dette førte

til at undersøge ekstremværditeori som en måde at karakterisere produktionspro-

cessers fordeling og dynamik p̊a.

Afslutningsvist viste det sig at procesvand lader til at være meget rent, s̊a rent at

kvantificering og identifikation af forurenende forbindelser var meget udfordrende.

vi



Chapter 1

Introduction

Water scarcity has been a main topic for the United Nations and the World Health

Organization (WHO) for many years.1,2 Despite these efforts WHO expects that

by 2025 half the world’s population will be living in water-stressed areas. Denmark

as a whole is not a water-stressed country,3 regardless some areas are running out

of potable water limiting production capacity. It is therefore of great interest to

minimize potable water consumption in Denmark.

The food industry and particularly the dairy industry is a major consumer of

water with an estimated usage of 1–5 litres of water per kg of milk processed.4

Data on water usage and wastewater discharge in various industries from Denmark

in 2015 is reported in Table 1.1. In total all industrial manufacturing consumed 55

million cubic meters of water with the food and beverage industry as the largest

contributor. Breaking down the water use in the food and beverage industry into

the various sectors, the dairy and meat industry are the largest consumers. Many

food producers will have their own water sources which lowers the expense for wa-

ter use. However, wastewater discharge costs must be settled with municipalities,

and as seen in Table 1.1 expense are larger than for consumption.

These numbers should be seen in light of the total water consumption in Den-

mark of 800 mio. m3, where agriculture and horticulture account for almost 200

mio. m3.5 This is the general trend in most of the world, but a collective effort

should still be implemented.6

In the dairy industry water is mostly used for cleaning of processing equipment

(via cleaning in place, CIP), pasteurisation (water for indirect heating e.g. in plate

heat exchangers), pump sealing in centrifugal pumps, production of steam and as

a cooling medium.

Milk and whey consist mainly of water and in cheese manufacturing and whey

processing this excess water is removed to concentrate the valuable mass / product

(i.e. protein, lactose and fat). Traditionally this water has been discharged as

wastewater, but if the quality is sufficiently heightened to replace potable water

1



1. Introduction

Table 1.1: Water consumption (mio. m3 & mio. DKK) for all industries
consuming >1 mio. m3 in Denmark in 2015.5 Food and beverage
industry is further divided into sectors.

Water consumption Wastewater discharge

mio. m3 mio. DKK mio. m3 mio. DKK

Food & beverage 27.7 258.5 23.9 631.1
Dairy 7.7 54.0 4.6 122.5
Meat 7.4 71.2 6.8 145.8
Other food 4.8 40.8 2.4 199.7
Beverage 3.0 16.2 1.3 17.6
Fishery 2.5 47.7 6.8 105.7
Baking 2.3 28.2 2.1 39.0

Chemical 7.6 85.9 5.3 99.2
Plastic, glass & concrete 5.7 22.4 4.3 38.4
Medical 4.4 58.0 4.0 60.8
Oil refinery 4.1 13.0 3.9 50.1
Metal 2.0 13.6 2.0 26.4
Engineering 1.3 15.1 1.3 31.1

there is a huge potential to reduce intake of potable water and minimize discharge,

hence an environmental and economic advantage on two fronts.

In the present case, Arla Foods Ingredients (AFI) receive whey either as is

from nearby dairies or in concentrated form from dairies further away. In the

latter case reverse osmosis (RO) membrane filtration is used to reduce the trans-

portation needs and costs by concentrating the whey five times. Regular cheese

whey contains approximately 0.8% protein, 0.05% fat, 5% lactose, 0.7% minerals

and 94% water.7 During weigh-in at AFI’s production facility each tank truck’s

whey is analysed for protein, fat and lactose content. The collected whey is then

combined in large balance tanks (150–250 m3). In general (not AFI specific but

based on Walstra et al.7), the processing starts with ultra filtration (UF) where

the protein fraction is collected. Dry matter content is increased as much as pos-

sible using UF in dilution mode (previously known as diafiltration8) where the

retentate is diluted with water and then processed again by UF to remove low

molecular weight compounds.

The protein fraction from the UF process is further concentrated by evapora-

tion until it is finally spray-dried into the finished product. The products that

are produced include, but are not limited to: whey protein concentrate, whey

protein isolate (depending on the degree of dilution mode used) as well as more

specific protein fractions or even specific proteins. Specific proteins and protein

fragments can be obtained by additional fractionation / isolation by chromato-

graphic columns and fragments by hydrolysis. The use of these products range

from alternative (low commodity) protein sources, functional ingredients (e.g. sta-

2



bilising foams and emulsions in processed foods), ingredients to create novel food

products, and to ingredients designed to fulfil specific nutritional requirements.

In the UF processing of whey only the collected part or retentate was dealt

with. Everything that is not retained in a filtration process passes through or

permeates. UF whey permeate contains mainly lactose and minerals. By utilising

RO membranes to filtrate the UF permeate, the lactose and minerals can be

harvested, and similar to the protein fraction, this fraction is further concentrated

and eventually also spray dried.

As explained above, AFI extract the valuable material from cheese whey leaving

behind water. I define this type of water process-water as a consequence of two

properties: (a) the source, or raw material, is of a much higher quality compared to

e.g. wastewater due to the fact that it is derived from a food and food production,

and (b), due to the processing technologies used to extract it.

The desire of the food production industry is to use such process-water streams

to replace potable water instead of discharging it — figuratively going from Figure

1.1a to b. The ultimate goal is to eliminate intake of potable water and only

discharge clean water without compromising production capacity, quality or safety.

ProcessWhey
Product

Water

(b)

CIP
Cooling / boiler water

Pump seal
Indirect heating

Membrane permeate
Evaporator condensate

Water

Process

CIP
Cooling / boiler water

Pump seal
Indirect heating

Membrane permeate
Evaporator condensateWhey

Product

Waste-
water

(a)

Figure 1.1: Illustration of the principle of process-water in the dairy indus-
try from no use (a) to complete use (b).

One of the most promising processing technologies for recovering process-water

within dairy processing is membrane-filtration, especially reverse-osmosis (RO)

membrane filtration. The motivations are that RO filtration is already used ex-

tensively in the dairy industry and is expected to increase,9,10 and it is already

widely used to purify sea-water and wastewater.11,12 Additionally, evaporator con-

densate has been regarded as a very clean water stream. For these reasons AFI’s

processes are obvious places to investigate the potential for further using process-

water.

3



1. Introduction

1.1 Outline

The thesis is built up around the different studies performed during the project.

In order to avoid repetition the published papers serve as integrated parts of the

thesis and very little is reiterated in the additional text. Furthermore, theory on

the established techniques used is kept at a minimum and the reader is referred

to other works for detailed explanation when relevant.

Chapter 2 concerns detailed chemical, and to a lesser extent microbial, char-

acterisation of process-water reclaimed from membrane filtration processes. The

chapter opens with a brief description of how membranes are composed and how

separation takes place after which studies from literature are discussed and oppor-

tunities for research are identified. Paper I presents a study on samples from

an RO process at AFI with derivatisation based gas chromatography coupled

with mass spectrometry (GC-MS) and inductively coupled plasma optical emission

spectroscopy (ICP-OES).

Chapter 3 covers quality monitoring strategies for membrane permeate. The

main organic compound found in the characterisation, urea, is followed with near

infrared spectroscopy (NIRS) and partial least squares regression (PLS), a study

formalized in Paper II. The chapter continues with some comments to Paper II

and concludes with an attempt to establish a NIRS based tensor calibration.

Chapter 4 moves the focus to another process-water stream, namely evaporator

condensate from AFI. Two investigations are presented which try to identify which

organic compounds that are present in this process-water stream.

Chapter 5 presents the concept of extreme value theory (EVT) and how to

apply this in food production processes, exemplified by a case study in Paper

III.

Chapter 6 concludes on the results obtained and gives perspectives for future

research concerning the use of reclaimed process-water in the dairy industry.

4



Chapter 2

Characterisation of membrane permeates

In full scale spirally-wound membrane filtration processes the feed stream enters

the membrane at the perimeter of the element under pressure in a crossflow fashion

as shown in Figure 2.1. Permeate flows to the center and escapes via a transport

tube. The membrane unit consists of flat sheets of the membrane material that

are spiral-wound around this center tube. An example of a commercial membrane

element is given in Box 1. Several membrane elements are combined in one casing

and several casings are linked in series as well as parallel to increase the processing

surface area. The casings, together with the pumps, feed / balance tanks and

measurement-and-control facilities form the membrane unit, and an example of a

pilot or small scale production plant can be seen in Figure 2.2.

Figure 2.1: Illustration of a membrane unit from Nielsen.13

Membrane technologies are often differentiated based on their molecular weight

cut-off (MWCO) value. The MWCO is defined as 90 % rejection of molecules

with this weight or greater. The membrane type with the highest MWCO —

meaning letting small molecules pass — is micro-filtration followed by UF, nano-

filtration (NF) and finally RO membranes. However, describing a RO membrane

5



2. Characterisation of membrane permeates

Figure 2.2: Illustration of a membrane processing plant from Bylund.14

(or any other membrane technology) by its MWCO can give a false impression

that molecules are excluded based on size alone. RO membranes separates dis-

solved solutes from water by what can best be described as a solution-diffusion

mechanism.11 Instead of physically blocking dissolved molecules from passing the

membrane wall based on size and weight, the permeating molecules dissolve in

the membrane material and pass through. Size does have an effect on diffusion

rates meaning that large molecules will travel very slowly through the membrane

material.

Ozaki and Li15 investigated the rejection of organic compounds by ultra-low

pressure RO filtration and found that urea and acetic acid (which have very similar

molecular weight of 60.06 and 60.05 g·mol−1, respectively) were rejected with equal

efficiency (30 %) at pH 3. By changing the pH (Figure 2.3) the rejection of urea

remained nearly constant while rejection of acetic acid increased with increased

pH. Acetic acid has a pKa of 4.76 meaning that at pH 3 it will be mostly protonated

and at pH 9 fully dissociated with a resulting negative charge. Urea is not able

to dissociate in this pH range and remains neutral. The authors speculated that

the negative charge on the dissociated acetic acid causes electrostatic repulsion

to the membrane material, thereby rejecting transport over the wall, while urea

remains neutral. Lee and Lueptow16 also looked into the rejection of urea by

RO membranes and speculated that urea is poorly rejected due to a high affinity

towards the membrane material. Membrane element producers also use the option

to modify (spike) the basic chemistry to improve separation mechanisms (e.g.

enhancing the membrane hydrophilic or hydrophobic properties) and to counteract

surface and internal fouling.

6



Box 1: RO membranes, an example

DOW Hypershell RO-8038 is a FDA approved RO membrane with a composite

membrane barrier consisting of a thin-film aromatic polyamide barrier, polysulfone

interlayer and polyester support web with a polypropylene outer shell. The specifi-

cations are shown in Table 2.1.

Table 2.1: Data sheet for DOW Hypershell RO-8038.

Dimensions RO-8038

Length 965 mm

Diameter 200 mm

Active area 34.4 m2

Feed spacer 0.84 mm

Operating and Cleaning limits

Max. operating pressure 54.8 bar

Max. recirculation cross-flow 18.2 m2·h−1

Free chlorine tolerance None

pH range 2–11

Max. operating temperature

pH 2–10 50◦C

pH > 10 35◦C

Hydrogen Peroxide usage limits

Continuous operation 20 ppm

Short-term cleaning (max 20◦C) 1000 ppm

Figure 2.3: Rejection efficiency of urea and acetic acid by a low-pressure RO
membrane at different pH; reproduced from Ozaki and Li.15

7



2. Characterisation of membrane permeates

Theoretically any compound can permeate (in infinitely small amounts) a RO

membrane. However, in practice molecules must be able to sufficiently dissolve

into the membrane and be small enough to diffuse through during the time-span

of a process run.

Membrane processing has become an important technology for purifying water.11

One of the most extreme cases is found in Western Australia, which has experi-

enced increasing water stress as a result of reduced rainwater precipitation. To

counter this effect wastewater has been treated with UF and RO membrane fil-

tration and subsequently ultraviolet (UV) radiation and is currently being consid-

ered as an alternative potable water source.12 Since wastewater can originate from

many sources and the intended use is direct consumption 375 chemicals were iden-

tified and screened to characterise the dissolved organic carbon (DOC, see Box 2)

and ensure safe use. It was concluded that none of the contaminants permeating

posed a health risk. Interestingly the detected chemicals could not account for the

total DOC, implying that despite very broad compound coverage not all carbon

could be accounted for.

Box 2: Bulk water quality parameters

Traditionally (drinking) water quality has been defined from bulk water quality

parameters including but not limited to: biological oxygen demand (BOD), chemical

oxygen demand (COD) and total organic carbon (TOC). In the following text a brief

overview of the different analyses is given. For extensive discussions and instructions

see Standard Methods For The Examination of Water and Wastewater.17

BOD is an empirical test to determine the oxygen requirements of wastewater.

Samples are inoculated with aerobic organisms (preferably from the biological treat-

ment plant processing the wastewater) that break down the organic material under

oxygen consumption, typically determined over five days at 20◦C. Whether the

micro-organisms are able to breakdown all the organic material cannot be known

rendering the method mostly useful for only biological treatment plants and less

useful for characterisation of water for other purposes.

COD is defined as the amount of oxidant used to oxidise the sample. Usually

dichromate (Cr2O
2−
7 ) is used as oxidant and the consumed amount of oxidant is

determined by excess-titration with ferrous ammonium sulphate. Since dichromate

is not a strong oxidant not all organic material will be oxidized while inorganic

compounds may oxidise. The advantage is that the method is relatively inexpensive

and fast to perform.

8



Box 2: Bulk water quality parameters

TOC is determined by total oxidation of carbon to carbon dioxide gas by e.g. a

high temperature or UV radiation. Carbon dioxide gas is measured with an infrared

analyser. The total oxidation and specific quantification of carbon gives a clear

picture of the organic load in the water sample and the infrared gas phase detection

makes the method very sensitive. Unfortunately due to the strong oxidation and

sensitive detection dedicated equipment is needed for TOC determination.

Samples can be pre-treated before carbon quantification leading to different fractions

and definitions: total carbon (TC; analysing sample as is), total inorganic carbon

(TIC; acidifying and purging sample without oxidation leading to quantification of

mainly carbonates), dissolved organic carbon (DOC; quantification after filtering

sample over 0.45 µm filter). TOC is the different between TC and TIC.

Extensive research has been done on purifying wastewater, model solutions of

wastewater, whey, milk and evaporator condensates from the dairy industry, as

shown in Table 2.2. Studies dealing with UF membranes only have been omitted

from the overview since this is more relevant for fractionating of proteins than for

production of pure water.

The cause for the extensive list of references can probably be ascribed to the

wide application field membranes have already had in the dairy industry;10 and

thus know-how on running these or similar processes is already present in the dairy

industry. One of the first works done on a dairy derived process-water stream was

performed by Chmiel et al. in 2000.19 In this study evaporator condensate from a

milk concentration process was filtered over a two-stage pilot scale NF membrane

plant running for three months at a milk processing company. The COD levels did

not exceed 10 mg·l−1 in the 28 measurements spaced out across the demonstration

run.

In 2008 Vourch et al.31 did a detailed chemical characterisation of evaporator

condensates and one- or two-stage pilot scale RO filtered dairy wastewater. In

addition to the regular bulk parameters such as COD, DOC, TOC and conduc-

tivity also minerals were quantified, and in the case of evaporator condensate also

ethanol, acetone and acetoin by headspace GC coupled with a flame ionization

detector.45 For the RO treated wastewater the carbon contribution of lactose in

terms of TOC equivalents was calculated and compared to the actual obtained

TOC values. It was concluded that lactose accounted for 76–100% of the organic

carbon in the permeate.

More recently Suárez et al.41–43 investigated the possibility of reusing RO

treated ultra high temperature flash-cooler condensate. A pilot scale RO mem-

brane plant filtered the condensate and evaluated filtration efficiencies based on

9
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conductivity and COD. In trying to find appropriate long-term operation param-

eters, up to 100 hour filtration runs were performed. An example of such a run

can be seen in Figure 2.4.

Figure 2.4: Example of permeate quality from a long-term operation of a
pilot scale RO membrane filtration; from Suarez et al.41

Chmiel et al.19 demonstrated long-term performance of NF membranes over three

months of operation, but did not include the short-time dynamic behaviour. This

technology is now outdated as RO membranes succeeded NF for water treatment.

The dynamic short-term behaviour of RO permeate quality was elucidated by

Suarez et al.41–43 where it should be noted that the water originates from a differ-

ent feed stream (flash-cooler condensate). While Vourch et al.31 characterised the

permeate composition in more detail than other studies, no un-targeted screening

approach was performed. Un-targeted chemical characterisation of RO has been

done in a pilot scale desalination of sea-water46, but no studies have been found

on dairy related processes. Despite the filtration plant in Vourch et al.’s study31

being at pilot scale size they do not perform long-term operations as done in e.g.

Chmiel et al.,19 thus lowering the transferability to industrial settings.

Looking through the studies in Table 2.2 it is apparent that no extensive studies

have been reported on permeate from industrial membrane filtration plants. This

is problematic for two reasons. Laboratory or pilot scale units seldom run more

than a few hours or weeks. Membrane surfaces will foul over time with the fouling

layer becoming part of the barrier.47 Hence, it is questionable how representative

theses (academic) studies are for daily industrial practice. Furthermore, the study

by Vourch et al.31 contains the most detailed chemical characterisation of a dairy

11



2. Characterisation of membrane permeates

derived RO permeate. But, continuing to use selective (or targeted) methods in-

creases the risk of overlooking potential important compounds, especially potential

carry-overs from the complex formulations of CIP media in industry.

In the following paper we suggest un-targeted and less biased analytical meth-

ods to characterise the chemical compounds permeating an industrial scale mem-

brane filtration process at a dairy ingredient producer.
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ABSTRACT

Reusing reverse osmosis (RO) membrane perme-
ate instead of potable water in the dairy industry is 
a very appealing tactic. However, to ensure safe use, 
the quality of reclaimed water must be guaranteed. To 
do this, qualitative and quantitative information about 
which compounds permeate the membranes must be 
established. In the present study, we provide a detailed 
characterization of ultrafiltration, RO, and RO polisher 
(ROP) permeate with regard to organic and inorganic 
compounds. Results indicate that smaller molecules 
and elements (such as phosphate, but mainly urea and 
boron) pass the membrane, and a small set of larger 
molecules (long-chain fatty acids, glycerol-phosphate, 
and glutamic acid) are found as well, though in minute 
concentrations (<0.2 µM). Growth experiments with 
2 urease-positive microorganisms, isolated from RO 
permeate, showed that the nutrient content in the ROP 
permeate supports limited growth of 1 of the 2 isolates, 
indicating that the ROP permeate may not be guaran-
teed to be stable during protracted storage.
Key words: dairy ingredient production, process 
water, membrane filtration, quality characterization

INTRODUCTION

Reducing the overall water footprint has become an 
important objective in the dairy processing industry 
due to increasing cost of discharge and intake as well as 
limited availability of potable water. The potable water 
consumption can be greatly reduced through efficient 
use of process waters, such as membrane permeate and 

evaporator condensate, in different areas of the produc-
tion including cleaning processes.

In dairy processing facilities, membrane filtration 
technologies are already frequently used to create new 
products. These technologies can be characterized by 
their ability to separate molecules and constituents 
of different sizes. At Arla Foods Ingredients, Viby, 
Denmark, whey, a by-product from cheese production 
facilities, is processed into new products. First, UF 
membranes are used to retain whey proteins, and the 
permeate is processed through a 2-stage reverse osmo-
sis (RO plus RO polisher; ROP) membrane plant to 
collect lactose. The collected whey proteins are used 
downstream to produce various products and constitu-
ents, whereas the lactose is used as a food ingredient 
(e.g., in infant formula). The focus of this investigation 
is the use potential of the ROP permeate as a process 
water stream.

Although use of process water is an attractive op-
tion, microbiological safety is of major importance in 
the food and dairy industry and must be ensured at 
all times. To do this, real-time online monitoring of 
relevant parameters should be considered (Casani et 
al., 2005). Process analytical technology provides the 
principles for real-time online monitoring (van den Berg 
et al., 2013), but to select the appropriate measurement 
technique the target molecule(s) must first be identi-
fied. The RO(P) permeates from dairy-derived water 
have been reported to have a very low organic load and 
low conductivity indicating minimal concentrations of 
organic compounds and minerals. Organic load has 
traditionally been expressed by classical, cumulative 
numbers such as total organic carbon, chemical oxygen 
demand, and total nitrogen (Vourch et al., 2005, 2008). 
However, these cumulative measurements do not pro-
vide insight into which specific compounds permeate 
the membranes. Vourch et al. (2008) looked at selected 
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organic compounds and ions in membrane permeates 
and vapor condensates. A different approach is taken 
(e.g., in the field of metabolomics) where analytical 
techniques for the characterization of complex mixture 
samples have been developed. Through derivatization 
of functional groups with a labile proton using (e.g., 
trimethylsilyl), classes of compounds previously un-
suitable for GC analysis become volatile and can be 
detected using fully automated sample preparation 
and analysis workflows (Khakimov et al., 2013). These 
analytical techniques open up for a 2-stage data analy-
sis approach in the same analytical run: exploratory 
untargeted (unbiased) data analysis followed by a tar-
geted analysis of a selection of compounds using a large 
sample set. These very low concentration compounds 
can be determined via a combination of automated 
sample pretreatment, GC, sensitive MS, and advanced 
data analysis. Regarding element analysis, inductively 
coupled plasma with optical emission spectroscopy 
(ICP-OES) has become more popular in recent years, 
providing a high-throughput, broad (unbiased) cover-
age both in terms of elements and concentration ranges 
(Hansen et al., 2009; Husted et al., 2011).

In the present study we characterize the chemical 
composition of UF, RO, ROP permeate, and storage 
tank water in a dairy ingredient production through 
untargeted derivatization based GC-MS coupled with 
advanced chemometric analysis. A selection of the 
chemical compounds are quantified via calibration stan-
dard series. Furthermore, detailed element composition 
of the streams is determined over a 10-h production run 
through ICP-OES analysis to investigate the dynamic 
behavior of element retention. This information was 
supplemented with 6-d growth experiments (radically 
surpassing normal process water storage) performed 
with 2 microorganisms isolated from RO permeate, a 
Pseudomonas sp. and a Staphylococcus sp., to test if the 
low nutrient levels in the ROP permeate were sufficient 
to support microbial growth. To the best of our knowl-
edge this is the first study performed for an untargeted 
chemical characterization and element analysis of dairy 
membrane permeates.

MATERIALS AND METHODS

Samples Collected

All samples were collected at the Arla Foods Ingre-
dients production facilities (Nr. Vium, Denmark) in 
250-mL amber, sterile, polypropylene sample bottles 
(Isolab, Wertheim, Germany) over a sample collection 
period of less than 1 min, and stored at 5°C until analy-
sis. Immediately before sampling, the process valves 
were opened and flushed to waste for approximately 
10 s. Conductivity was measured on site, directly after 
collection, and before analysis for quality assurance 
purposes. A schematic illustration of the process and 
sampling locations is presented in Figure 1. Samples 
are denoted as follows: P1, UF permeate; P2, RO per-
meate; P3, ROP permeate before UV treatment (400 
J/m2, BX100e, Wedeco, USA); P4, ROP permeate after 
UV; P6, ROP permeate after storage tank, and UV 
treatment.

Process water samples for GC-MS analysis were col-
lected 3 or 4 times on the same day and analyzed in 
duplicate or triplicate for P1, P2, P3, P4, and P6, lead-
ing to 15 samples overall (and 46 analysis runs in to-
tal). Process water samples for ICP-OES were collected 
simultaneously from UF, RO, and ROP permeate (P1, 
P2, and P4, respectively; 40 × 3 permeate samples; for 
further details, see Skou et al., 2017a). Sampling was 
initiated immediately after the treatment plant was 
started (following a cleaning in place) and continued 
for approximately 10 h. This time period included 2 
feed tank changes where samples were collected with 
a higher frequency, accompanied by a lower sampling 
frequency in between.

The 2-stage RO+ROP plant consists of the RO sec-
tion with 9 loops in parallel each with 6 membrane 
elements in series and the ROP segment of 4 loops in 
parallel each with 6 membrane elements in series; all 
elements are DOW Hypershell RO-8038 (TetraPak, 
Silkeborg, Denmark). The feed to the RO+ROP plant 
is UF permeate from whey processing adjusted to pH 
5.8 with a flow ranging from 100 to 150 m3∙h−1, target 

Figure 1. Schematic overview of UF processing and reverse osmosis (RO) plus RO polisher (ROP) lactose and water recovery plus storage. 
The process water sampling points are marked P1 to P6.
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retentate concentration is 15° brix (~13.5% DM). It 
should be noted that samples taken from the different 
extraction points at the same time are representative 
for averages and trends, but a sample-by-sample com-
parison between locations is not feasible due to differ-
ent volumes and residence times at the various stages 
in the treatment plant.

Gas Chromatography-Mass Spectrometry

For P1 samples, a 100-µL aliquot was dried in a 200 
µL glass insert using a ScanVac (LaboGene, Lynge, 
Denmark). For all other sample points a 1-mL aliquot 
was dried in a new glass vial using the ScanVac. The 
residues in the glass vials were re-suspended in 120 µL 
of Milli-Q water and a 100-µL aliquot out of this was 
further dried in 200-µL glass inserts. After drying, the 
inserts were capped in GC vials before derivatization 
and GC-MS injection. Dilution series of authentic stan-
dards were prepared in a concentration range of 64.9 
to 0.4125 µM for lactose, glucose, and galactose, and 
32.5 to 0.2125 µM for oleic acid (C18:1) and linoleic 
acid (C18:2). Thirty microliters of each standard solu-
tion was completely dried in the ScanVac and prepared 
for the GC-MS analyses as described previously. The 
different and distinct volumes for sample and standard 
preparation steps (dilution factors) are corrected for in 
the reported results.

Dried samples were derivatized by the addition of 
30 µL of derivatization reagent trimethylsilyl cyanide 
(TMSCN, Fluka, Steinheim am Albuch, Germany) and 
agitation at 750 rpm for 50 min as described earlier in 
literature (Khakimov et al., 2013). The GC-MS analy-
sis was performed using an Agilent 7890B GC (Agilent 
Technologies, Santa Clara, CA) coupled with a HT 
Pegasus time-of-flight mass spectrometer (Leco Corpo-
ration, USA). The GC-MS data acquisition parameters 
were published previously in Khakimov et al. (2013). 
Some modifications were introduced in this study 
including the GC oven temperature gradient and MS 
settings: the initial temperature of the oven was 40°C, 
held for 2 min, heated to 220°C at a rate of 20°C∙min−1, 
followed by 10°C∙min−1 to reach a final temperature 
of 320°C at which the oven was kept for 8 min. The 
mass spectra were recorded in the range 45 to 500 m/z 
at a data acquisition rate of 10 spectra∙s−1. The raw 
GC-MS data were exported in the netCDF file format. 
The GC-MS data were processed using the freeware 
program PARADISe developed in our research group 
(www .models .life .ku .dk\PARADISe, accessed February 
2017). This software enables deconvolution of peaks 
by means of PARAFAC2 (Johnsen et al., 2017). The 
PARAFAC2 (PF2) deconvoluted mass spectra were 

compared against the NIST11 GC-MS database ver-
sion 2.0 [National Institute of Standards and Technol-
ogy (NIST), Gaithersburg, MD]. The PF2 scores of 
deconvoluted peaks were extracted and used for sub-
sequent data analysis. Scores from PF2 represent the 
normalized area of deconvoluted mass spectra, or in 
other words, the scores represent the normalized area of 
the specific compound extracted (Johnsen et al., 2017). 
All compounds were normalized with the score of a 
derivatization-agent-derived stable peak to correct for 
small differences in injection volume. Limit of detection 
(LOD) was set as a score value above the mean of 
the blanks plus 5 times the standard deviation of the 
blanks. If a specific compound was not included in a 
standard, that standard also served as blank for this 
compound, jointly with the 3 analytical blanks.

Inductively Coupled Plasma–Optical  
Emission Spectroscopy

Before analysis samples were acidified to 3.5% HNO3 
using 70% HNO3 acid (Plasma-Pure, SCP Science, 
Marktoberdorf, Germany) to ensure fast washout in-
between samples. Multi-elemental analysis was here-
after performed on a 5100 ICP-OES (Agilent Tech-
nologies) equipped with a Meinhard nebulizer and a 
cyclonic spray chamber. For each sample 22 elements 
were measured simultaneously. A 10-point external 
calibration standard from CPI International (Am-
sterdam, the Netherlands) was also included. The P1 
samples were measured undiluted, and 10× and 100× 
diluted, whereas all other samples were measured un-
diluted. It is known that carbon in the samples will 
affect the plasma and change the plasma temperature. 
This changes how and when elements are ionized and 
eventually excited in the plasma (Husted et al., 2011). 
For this reason samples are typically digested before 
analysis to decrease the carbon to a negligible amount. 
However, this is a time-consuming process that can be 
circumvented if matrix matching is possible or if it can 
be shown that the matrix does not affect the analy-
sis. To evaluate the actual interference from carbon, 
in our case almost exclusively lactose, the 10-point 
calibration curve was mixed with increasing levels of 
lactose (0, 0.04, 0.40, and 4.00% wt/wt). After each 20 
(randomized) samples, a set of analyses consisting of a 
blank, a drift sample, and a blank were run to ensure 
that no drift or carry-over would affect the subsequent 
measurements (Olsen et al., 2016). The drift sample 
used was a certified biological reference material (NIST 
1515, USA), certified for the elements presented in the 
Results section.
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From the available ICP-OES spectral lines, one was 
chosen for each element, using sensitivity to lactose and 
drift over the analysis run as selection criteria. Calibra-
tions were built based on the most appropriate stan-
dards (i.e., those standards that covered the sample’s 
expected concentration range as best as possible). While 
predicting the concentrations in P1, the dilution with 
the signal best covered by the calibrations was used. 
The limits of quantification (LOQ) were established on 
37 blank samples, calculated as the mean of the blanks 
plus 10 times the standard deviation of the blanks for 
each element. All observations below the quantification 
limits were excluded from further data evaluation.

To quantify the migration behavior of the different 
elements in the membrane systems the rejection factor 
(RF) was used:

 RF
C

C
permeate

feed
= −










1 100%,⋅  

where Cfeed and Cpermeate denote the concentration for 
the feed and permeate, respectively.

Microbial Growth Potential

Microorganisms were isolated from UF and RO per-
meate by spreading permeates on plate count agar and 
water plate count agar and incubating at 22 and 37°C, 
respectively. Selected isolates were grown in urea broth 
(0.1 g∙L−1 of yeast extract, 9.1 g∙L−1 of KH2PO4, 9.5 
g∙L−1 of Na2HPO4, 20 g∙L−1 of urea, and 0.01 g∙L−1 
of phenol red, Merck, Kenilworth, NJ) at 30°C to test 
their ability to degrade urea (data not shown). Two 
urease-positive isolates were chosen to test their growth 
potential in ROP permeate. The isolates were identified 
by 16S rDNA sequence analysis to be Pseudomonas sp. 
and Staphylococcus sp., respectively. The growth po-
tential in ROP permeate was studied by inoculating 
cells (105 cfu∙mL−1) washed with sterile physiological 
saline in sterile filtrated ROP permeate (P3 in Figure 
1) and calculating cfu∙mL−1 during storage at 16°C for 
up to 6 d. The temperature 16°C was chosen because 
it is close to the temperature of the permeate during 
processing and the process water during storage, and 
thus the most relevant when investigating safety.

Statistical Analysis

Data were analyzed in Matlab R2015b (The Math-
Works Inc., Natick, MA) using in-house routines.

RESULTS

Gas Chromatography-Mass Spectrometry

Compounds detected in the permeate samples are 
presented in Table 1, and some raw chromatograms of 
representative samples are shown in Figure 2. Table 1 il-
lustrates at which sample point(s) the compounds were 
detected above the LOD. Detection (+) was marked if 
at least one of the analyses from the 3 distinct sample 
replicates’ collected for each sample point contained the 
compound above the LOD. Compound identification 
was categorized into 3 groups: level 1 identification 
was based on spectral similarity and retention time 
comparison with pure standards, level 2 was based on 
spectral similarity >800 and a Kovats index (van Den 
Dool and Kratz, 1963) within less than 30 units from 
the reported values in the NIST library, and level 3 was 
based only on spectral similarity >800 (Sumner et al., 
2007).

The semi-quantification of the different samples based 
on peak area represented by PARAFAC2 scores for 
α-ketogluterate (C5H6O5, also known as α-ketogluteric 
acid in the protonated form) is shown as an example 
in Figure 3. The standards and blanks show a relative 
concentration consistently close to score zero and P1 
shows the highest values, accompanied by a relative 
large sample-to-sample variance. The most abundant 
peak by far in the GC-MS profiles for P2, P3, P4, and 
P6 samples corresponded to urea. This chemical com-
pound has been quantified in this production process 
in a previous study (Skou et al., 2017a) and was omit-
ted from the GC-MS interpretation due to severe peak 
overloading making it unsuitable for quantification.

All calibration curves developed for the selected com-
pounds had squared Pearson correlation coefficients of 
r2 = 0.88 or higher. The lowest concentration of stan-
dards used for calibration curves are shown in Table 1. 
It was possible to quantify glucose (r2 = 0.95) in P1, 
and lactose (r2 = 0.94) and galactose (r2 = 0.95) in P2. 
Glucose concentration in P1 samples was estimated to 
be between 0.01 and 0.06 mM, whereas lactose and ga-
lactose concentrations were estimated to be 0.02–0.10 
mM and 0.005–0.02 mM, respectively, in P2 samples 
(Figure 4). Lactose and galactose concentrations in P1 
samples were above the highest concentration standard 
(0.0649 mM) used in this study, whereas all other sam-
ples/sampling locations were below the LOD. The con-
centration of linoleic acid in the process water samples 
was above LOD and close to the lowest concentration 
standard. Oleic acid was not found above the LOD in 
any process samples.
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Inductively Coupled Plasma-Optical  
Emission Spectroscopy

Calibration models for ICP-OES were tested for lac-
tose interference (relevant especially for P1 samples), 
drift and linearity in the response range relevant for the 
samples. The final ICP-OES quantifications are pre-
sented in Table 2 as averages for each sampling point 
together with the number of measurements below the 
quantification limit, the average rejection factor over 
the RO- and ROP-membranes and the LOQ associ-
ated with the calibration for each observed element. As 
a point of reference the element composition of NIST 
Reference Material 1640a–Trace Elements in Natural 
Water is also included in Table 2.

Figure 5a presents the concentration of zinc as an 
example of the dynamic behavior and variance during 
the observed production run. The rejection for zinc per 
time point is presented in Figure 5b, and the averages 
of the 2 time series are included in Table 2.

To emphasize the connectivity between the elements 
found in process water samples, the correlation matrix, 
including measured conductivity, can be found in Table 

3; the covariation between magnesium and conductivity 
as an example case is shown in Figure 6. Conductivity 
was on average reduced by 91.2% going from P1 to P2 
and 82.2% going from P2 to P4.

Microbial Growth Potential

Figure 7 shows the microbial growth potential, indi-
cating that Pseudomonas sp. was able to grow in ROP 
permeate, whereas Staphylococcus sp. was not. A log 
increase within 2 d was observed for Pseudomonas sp.

DISCUSSION

Gas Chromatography-Mass Spectrometry

Our GC-MS data analysis approach included (I) an 
exploratory untargeted approach where several dairy 
associated compounds were found (Table 1), and (II) 
a targeted quantification of selected compounds (Fig-
ure 4). With this approach, potential target molecules 
could be identified in P1, thereby making analysis of 
process water further along the process more focused 

Table 1. Chemical compounds detected in process water samples arranged according to functional group1

No.  Compound2 KI NIST3 KI exp.3 P1 P2 P3 P4 P6

Lowest  
concentration  
standard (µM)

Organic acids         
 10 Citric acid (2) 1,839 1,814 + − − − −  NA4

 4 l-Malic acid (2) 1,538 1,516 + − − − − NA
Sugars    
 15 Lactose (1) 2,611 2,615 + + − − − 0.4125
 11 Galactose (1) 1,846 1,846 + + − − − 0.4125
 12 Glucose (1) 1,934 1,948 + − − − − 0.4125
 13 Hexose (3) ~1,900 1,979 + − − − − NA
 8 Pentose (3) ~1,750 1,728 + − − − − NA
Fatty acids    
 14 Linoleic acid (1) 2,179 2,201 + − − − − 0.2125
 —5 Oleic acid (1) 2,183 — − − − − − 0.2125
 3 Capric acid (2) 1,455 1,485 − − + + + NA
 7 Lauric acid (2) 1,651 1,673 + + + + + NA
 2 Glycerol (2) 1,300 1,288 − + − − − NA
 9 Glycerol-P (2) 1,744 1,759 + + − − + NA
AA   
 6 l-Glutamic acid (2) 1,629 1,642 + + + + + NA
 5 α-Ketoglutarate (2) 1,580 1,598 + + + + + NA
Miscellaneous   
 1 Phosphate (2) 1,285 1,296 + + + + + NA
 —5 Urea (1) — — + + + + + NA
1Identification numbers correspond to peak numbers in Figure 2. − = signals found to be less than the limit of detection (LOD; calculated as 
the mean of the blanks plus 5 times the SD of the blanks) for all samples; + = signals found larger than LOD in at least one measurement from 
a given sampling point.
2Numbers in parentheses indicate 1 = level 1 identification; 2 = level 2 identification; 3 = tentative identification.
3NIST = National Institute of Standards and Technology. Kovats index (KI) based on direct injection of 1 µL of alkane mixture (C10 to C40 
from Sigma Aldrich, St. Louis, MO). 
4NA = not available.
5Compound not detected in process water samples.
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because compounds present in P1 are more likely to be 
present (in reduced concentrations) downstream.

In the initial exploratory analysis, compounds not 
included for targeted analysis were found (Table 1). 
Compounds that were not quantified using calibration 
curves are reported as either not detected (hence, below 
LOD) or detected (above LOD) only. Citric and ma-
lic acid are related to the primary energy metabolism 
of lactic acid bacteria in, for example, cheese making 
(Von Wright and Axelsson, 2012), whereas glycerol and 
glycerol-phosphate can be derived from either the pri-
mary energy metabolism or from fatty acid catabolism 
(Von Wright and Axelsson, 2012). l-Glutamic acid and 

its corresponding α-keto-acid, α-ketoglutarate, are im-
portant amino donors and receivers, respectively, in AA 
catabolism in cheese making and maturation (Ardö, 
2006). The phosphate is likely from the phosphoric 
acid used to adjust pH before membrane filtration. 
Milk contains high amounts of the fatty acid triglyc-
erides and free fatty acids are therefore expected to 
be present in the whey in low concentrations. Lactose 
and its breakdown products, glucose and galactose, 
constitute the primary content of the UF permeate 
and are thus anticipated at minor concentrations in 
downstream RO(P) permeates. To retain high signals 
for the low concentration compounds present in perme-

Figure 2. Examples of total ion count (TIC) chromatograms for single, representative (a) P1, (b) P2, and (c) P3, P4 plus P6 samples, with 
peak numbers corwresponding to the compounds in Table 1. The process water sampling points are marked P1 to P6. AU = arbitrary units.
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ates, samples were trimethylsilylated directly, without 
prior methoximation. As a result, the unexpected peaks 
of hexose and pentose may derive from glucose and 
galactose (Koek et al., 2006). Without methoximation, 
several peaks corresponding to stereoisomers of carbo-
hydrates (Evershed, 1993) make unambiguous identi-
fication almost impossible when complex samples are 
investigated. Urea has been known to pass RO mem-
branes and the concentrations in the permeate using 
the present membrane processing system were reported 
earlier (Skou et al., 2017a). Glucose was quantified in 
P1 samples (0.01–0.06 mM), whereas lactose and galac-

tose were quantified in P2 samples (0.02–0.10 mM and 
0.005–0.02 mM, respectively).

When looking at Table 1, it is important to bear 
in mind that the samples collected simultaneously at 
points P1 to P4 (Figure 1) are not one-to-one compara-
ble due to the large flows involved in parallel membrane 
batteries and the unknown hold-up times, whereas P6 
samples are drawn from a storage tank. There will 
be an element of chance and intrinsic variability over 
time when sampling large industrial-scale systems, and 
one can only postulate that the samples collected are 
representative of the (average) process performance. 
Looking at the RO(P) permeates (P3, P4, and P6), it 
was found that fatty acids, glycerol, AA, and phosphate 
pass the membrane to some extent. Interestingly, large 
molecules such as fatty acids seem to be able to pass 
the RO(P)-membranes, albeit in low concentrations. 
This observation supports a recent study by Cortés-
Francisco and Caixach (2013) who investigated a sea-
water desalination process and also found fatty acids 
permeating the RO-membranes. It seems feasible that 
glycerol, the smallest AA glutamic acid and the cor-
responding α-keto acid and phosphate, would be able 
to permeate the membranes in minute concentrations; 
however, to our knowledge no studies have reported 
this before.

Glycerol is detected in the RO(P) permeates, but 
not in the UF permeate, probably due to the higher 
concentration factor of the RO(P) samples. This could 
indicate that the glycerol concentration is more or 
less constant in the process water streams, suggesting 
that it can pass RO-membranes, as was also observed 
for urea (Skou et al., 2017a). However, this should be 
investigated further to get more solid confirmation. 
Phosphate was found in all process water streams. 

Figure 3. Relative concentration [PARAFAC2 (Johnsen et al., 
2017; PF2) scores] of α-ketogluterate in all samples and standards. 
Relative concentrations of process water sampling point 1 (P1) sam-
ples (not shown) were between 1 and 9.2. LOD = limit of detection. 
Std = standard.

Figure 4. Quantification based on relative concentrations [PARAFAC2 (Johnsen et al., 2017; PF2) scores] and standard series for (a) glucose 
in process water sampling point 1 (P1) samples, and (b) galactose and (c) lactose in process water sampling point 2 (P2) samples.
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Comparing this with the ICP-OES results, where P4 
samples are below the detection limit (38 µg∙L−1), sug-
gests that the concentration permeating is very low 

indeed. The compounds found in the ROP permeates 
were all in very low concentrations (except urea) and 
on the border of the detection limit. Nevertheless, the 

Table 2. Overview of elements detected in process water samples; the average concentration (based on samples with levels above the limit of 
quantification) in each process water sampling point; rejection factors over the reverse osmosis and reverse osmosis polisher membranes

Element (LOQ1)
NIST  
ref.2

Concentration  
(µg∙L−1) [measurements below LOQ]

 

Rejection factor

P1 [n = 40] P2 [n = 39] P4 [n = 40] P1 to P2 P2 to P4

Al (2.7 µg∙L−1) 53.0 17.2 [0] 3.1 [32] 3.0 [38]  82.3 —
B (5.6 µg∙L−1) 303.1 92.7 [0] 65.0 [0] 38.1 [0]  29.2 41.3
Ca (25.0 µg∙L−1) 5.6∙103 206∙103 [2] 395 [1] — [40]  99.8 —
Cr (0.58 µg∙L−1) 40.5 6.34 [37] — [39] — [40]  — —
Cu (1.4 µg∙L−1) 85.8 2.1 [38] 1.8 [35] 1.9 [39]  — —
Fe (5.3 µg∙L−1) 36.8 6.9 [16] — [39] — [40]  — —
K (2.42∙103 µg∙L−1) 579.9 799∙103 [4] 32∙103 [1] 5.6∙103 [3]  96.0 82.7
Mg (−1.1 µg∙L−1)3 1.06∙103 40.3∙103 [0] 86.4 [0] 4.1 [0]  99.3 93.8
Mo (1.6 µg∙L−1) 45.6 11.7 [3] — [39] — [40]  — —
Na (200 µg∙L−1) 3.14∙103 115∙103 [0] 3.41∙103 [0] 590 [0]  96.5 81.5
P (38.0 µg∙L−1) — 232∙103 [0] 614 [1] — [40]  99.4 —
S (110 µg∙L−1) — 26∙103 [0] 66 [1] 15.0 [8]  95.1 77.3
Zn (3.7 µg∙L−1) 55.6 33.9 [0] 8.7 [1] 8.2 [0]  70.0 −0.6
1Limits of quantification (LOQ) were calculated as the mean of the blanks plus 10 times the SD of the blanks for each element. 
2National Institute of Standards and Technology (NIST) Standard Reference Material 1640a.
3Negative LOQ is a result of the large span in the standards causing the model to show a small bias in the very low concentration range.

Figure 5. (a) Zinc concentration at the 3 sampling locations and (b) zinc rejection factor over a 10-h processing period.
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analysis does suggest that some compounds beside urea 
do permeate the ROP-membranes.

We attempted to perform unbiased GC-MS analysis 
and employed limited sample pre-cleaning and extrac-
tion. The GC-MS approach applied in this study was 
focused to detect compounds with molecular mass of 
up to 1 kDa. The compounds must also be volatile and 
thermally stable to be detected by our method. The 
derivatization usually enhances the above-mentioned 
2 characteristics, enabling better detection. However, 
the drying stage involved in this protocol may result 
in evaporation of naturally volatile compounds such as 
ethanol and short-chain fatty acids.

Inductively Coupled Plasma-Optical  
Emission Spectroscopy

As described earlier, it is known that carbon in the 
samples will affect the plasma and change the plasma 
temperature. In this study we chose not to digest 
samples as this is a time-consuming process; instead, 
lactose matrix interference was tested. None of the 
spectral lines selected were found to be sensitive to 
lactose (carbon) at low levels (0.04% wt/wt).

From the total 22 elements available in the ICP-OES 
procedure, 13 elements were sensitive enough to quan-
tify in the process water samples as presented in Table 
2. Chrome, copper, iron, and molybdenum levels were 
so minimal that only very few samples were above the 
limit of quantification; this also means that rejection 
calculations could not be performed. For aluminum 7, 
P2 samples were above the detection limit and the rejec-
tion calculation was performed, which should, however, 
be interpreted with caution based on the small number 
of observations. Only 2 P4 samples were above the 
LOQ and the result is reported here only to illustrate 
the levels found in some process water samples. Our 

findings support the results from Vourch et al. (2008) 
for Ca2+, Mg2+, Na+, K+, and HPO4

+ rejection in RO 
permeate, where we found >99, >99, 94–99, 87–98, 
and >99%, respectively. The negative detection limit 
for magnesium is an artifact of the calibration, which is 
focused on the expected range of the samples, leading 
to a poor estimation of the blank values. For zinc a 
70% rejection is obtained from the first RO-membrane, 
but no additional reduction appears over the ROP-
membrane. From Figure 5, the dynamics of the process 
becomes clear, especially around the tank change at 
10:00 h where more extreme observations are made. 
This type of information could lead plant managers and 
optimization engineers to investigate extreme behavior 
of the process (Skou et al., 2017b). Sulfur is rejected ef-
fectively over both membrane plants, leading to a rejec-
tion efficiency of 95 and 77%, respectively. Boron was 
detected in all samples (also as a consequence of the 
ICP-OES method being very sensitive toward this ele-
ment) and results show a modest rejection efficiency of 
the RO(P)-membranes (29.2 and 41.3%, respectively). 
Similar rejection efficiencies have been reported by Ro-
dríguez Pastor et al. (2001), who also hypothesize that 
the low efficiency is due to boron being in the form of 
boric acid, which has no ionic charge, making it perme-
ate the membranes much like water. Despite the poor 
rejection, the concentrations found at 92.7, 65.0, and 
38.1 µg∙L−1 (with an average SE across all predictions 
of 0.44 µg∙L−1) for UF, RO, and ROP permeate, respec-
tively, are far below the maximum guideline values of 
2.4∙103 µg∙L−1 specified by the World Health Organiza-
tion (WHO, 2009) for potable water, a conclusion that 
holds for all elements in the P3 stream. Aluminum was 
in a low concentration in P1 (17.2 µg∙L−1) and was 
reduced close to the detection limit (2.7 µg∙L−1) for P2.

From the correlation matrix presented in Table 3, it 
can be seen that all the elements are highly correlated 

Table 3. Squared Pearson correlation (r2) between all elements and conductivity (Cond.) over all measurements; Cr, Cu, and Fe are not reported 
(—) due to less than 20% of the observations being available for calculation, as decided from the limits of quantification (calculated as the mean 
of the blanks plus 10 times the SD of the blanks for each element)

Item Al B Ca Cr Cu Fe K Mg Mo Na P S Zn Cond.

Al 1.00              
B 0.43 1.00             
Ca 0.92 0.71 1.00            
Cr — — — —         
Cu — — — — —         
Fe — — — — — —         
K 0.91 0.72 0.99 — — — 1.00        
Mg 0.94 0.67 1.00 — — — 1.00 1.00       
Mo 0.31 0.26 0.50 — — — 0.23 0.33 1.00      
Na 0.90 0.68 0.99 — — — 1.00 0.99 0.12 1.00     
P 0.92 0.72 1.00 — — — 1.00 1.00 0.24 0.99 1.00    
S 0.92 0.71 0.99 — — — 1.00 1.00 0.13 0.99 1.00 1.00   
Zn 0.82 0.64 0.91 — — — 0.90 0.92 0.51 0.90 0.89 0.90 1.00  
Cond. 0.95 0.70 0.99 — — — 1.00 1.00 0.26 0.99 1.00 1.00 0.91 1.00
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except for boron and molybdenum, where it should be 
reminded that the former is not rejected effectively and 
the latter was quantified only in a few measurements 
and these were close to the LOQ. Conductivity cor-
relates strongly with all other elements. This suggests 
that conductivity can be safely used as an indirect mea-
sure of the element concentration, as is done in daily 
dairy operational practice. The constant rejection pro-
files over time in Figure 5 indicate that the process was 
running very stable, except during, for example, tank 
change, for the sampled period and that our findings 
are thus representative of normal operating conditions 
(Skou et al., 2017a).

Microbial Growth Potential

Although ROP permeate contains very low levels of 
bacteria, there is still a risk that undesirable growth 
may occur if some of the population is able to prolifer-
ate. Out of 2 urease positive strains, a Pseudomonas sp. 
and a Staphylococcus sp. isolated from RO permeate, 
only the Pseudomonas sp. was able to grow. The inocu-
lation levels were several logs higher than found in any 
permeate and growth seemed to cease around 5 × 106 
cfu∙mL−1. The observations nevertheless indicate that 
even the very low nutrient ROP permeate may sup-
port growth at 16°C of part of the microbial population 
present. The Staphylococcus sp. survived but was not 
able to grow in the ROP permeate despite its urease ac-
tivity, suggesting that additional nutrients were needed 
for the growth of this organism.

CONCLUSIONS

This investigation presents novel untargeted and 
targeted methodologies to characterize the chemical 
composition of process water derived from membrane 
processes in a dairy ingredient production facility. This 
first unbiased look into the chemical composition forms 
the input for a measurement-based safe use of reclaimed 
process water in the dairy industry. The methodologies 
presented facilitate further investigations potentially 
leading to periodic, high-sample-number risk assess-
ment of process water and use potential to guarantee 
a hygienic and safe process operation. Results suggest 
that bigger compounds (long-chain fatty acids, glyc-
erol-phosphate, and glutamic acid) do permeate the 
ROP-membranes but in very minute concentrations, 
whereas the elements boron and urea permeates read-
ily. Although the nutrient levels were very low, Pseu-
domonas sp. originating from process water was able 
to grow in ROP permeate stressing the importance of 
controlling temperature and maximum-allowed storage 
times of the permeate intended for use.

Figure 6. (a, c) Conductivity values and (b, d) magnesium con-
centration for all samples from sampling points (a, b) P1 and (c, d) 
P2 plus P4. The process water sampling points are marked P1 to P4.
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2.1. Lactose interference in ICP-OES

2.1 Lactose interference in ICP-OES

In Paper I the issue of carbon interference in ICP-OES analysis was raised since

excessive amounts of organic material can lead to problems with nebulisation and

plasma stability and carbon interferences creating polyatomic ions.48 This can

be overcome by either digesting the samples (i.e. oxidizing all carbon to carbon

dioxide gas) or matrix matching the standards for quantification.

In order to establish whether my situation was problematic enough to neces-

sitate matrix matching lactose was added in increasing concentrations up to 4%

to the calibration standards. Lactose was by far the most abundant compound in

UF permeate and therefore it was chosen as the single carbon source. The effect

of lactose addition was not shown in Paper I, but is shown in Figure 2.5 where

four spectral bands for calcium are presented. To the ten mixture standards of

elements increasing amounts of lactose were added and it can be seen that the

612.222 nm line (d) shows slight intensity suppression with 4% lactose. The line

at 396.847 nm (c) is so sensitive that only the three lowest concentration standards

are within the range of the instrument. In the end the spectral line 318.127 nm

(a) was chosen for quantification due to the low interference to lactose and linear

response range.

Figure 2.5: Intensities of four spectral bands (a–d) for calcium as function
of concentrations calcium and increasing amounts of lactose.
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2. Characterisation of membrane permeates

2.2 Monitoring long-term performance

To establish the urea and lactose levels across several production runs samples

were collected over a two week period, using a stratified randomization strategy

(see Table 2.3). The aim was to estimate the natural compositional distribution

/ variability in the recovered water stream. Production schedules do not follow

operator shifts, so the the idea was to collect three samples every day at random

time-points. Due to the long and infrequent sampling plan the sample collection

was left to the process operators on-site. Therefore, to relieve the work load, the

timing on sample collection was relaxed to large time intervals (three hour win-

dows) rather than exact times. This was judged sensible based on the large volumes

involved, the block-wise nature of the operation (where standard stirred 250 m3

tanks are used as both feed and receiver units) and the filtering or averaging-out

effect this has.

Table 2.3: Initial sampling plan, 1 indicates a request for a sample in the
given time interval.

Time/day 1 2 3 4 5 6 7 8 9 10 11 12

00-03 1 0 0 1 1 1 0 0 1 0 1 1
03-06 0 0 0 0 1 0 1 0 0 1 0 0
06-09 0 1 0 0 0 1 0 1 1 0 0 0
09-12 1 1 1 1 0 0 0 1 0 1 0 1
12-15 1 1 1 0 1 1 1 0 1 0 0 0
15-18 0 0 0 0 0 0 0 0 0 0 1 0
18-21 0 0 0 1 0 0 0 1 0 0 1 1
21-24 0 0 1 0 0 0 1 0 0 1 0 0

The lactose and urea concentration in the samples obtained were quantified using

enzyme kits (Megazyme, IRE). The on-line brix measurements on the retentate

were also retrieved from the production site. From this separate batches could be

identified: high brix indicated production while low brix indicated no production

(due to e.g. switch-overs, cleaning or maintenance). The lactose and urea results

are shown in Figure 2.6. Comparing the samples obtained in Figure 2.6 with the

requested samples in Table 2.3 illustrates the challenge of planning experiments

on industrial plants. Of course the primary objective is to run the plant and extra

activities thus often have to be abandoned. Urea was rejected inefficiently as seen

in Paper I while lactose was mostly rejected efficiently (concentrations estimated

below the detection limit of 1.5 ppm). On two occasions — October 30 06:00–

09:00h and November 1 21:00–24:00h — lactose was quantified to 17 and 16 ppm,

respectively. This indicates that sometimes lactose will penetrate the membranes.

The reason for these two events is unknown.
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2.3. New developments in membrane filtration

Time 26-okt 27-okt 28-okt 29-okt 30-okt 31-okt 01-nov 02-nov 03-nov 04-nov 05-nov 06-nov

00-03 48/-
67/41

30/-
67/84

03-06 34/-
124/106

47/-
78/52

06-09 28/-
67/56

45/-
51/36

24/17
73/50

09-12 24/-
97/65

31/-
71/50

12-15 41/-
70/47

20/-
60/43

43/-
68/49

16/-
58/43

-/-
86/58

15-18 52/-
83/55

18-21

21-24 -/16
83/62

Figure 2.6: RO and ROP permeate samples collected using a stratified-
random strategy during processing from October 26 till Novem-
ber 6, 2015. Distinct colors indicate individual batches / process
runs identified from the on-line brix measurements on the reten-
tate side (bottom graph), white indicates no processing / CIP.
In each cell the top row contains RO / ROP values for lactose
in ppm and the bottom row contains RO / ROP concentrations
for urea in ppm; below detection limit indicated by a dash (-).

2.3 New developments in membrane filtration

In attempts to lower operating costs of RO filtration processes new technologies

such as forward osmosis (FO) are emerging. In FO the principle is to draw the

permeate through the membranes by adding a osmotic agent (e.g. a salt) to the

permeate (the draw solution) rather than push the feed through with pressure.49

This of course results in FO permeate with relative high concentration of the

osmotic agent. This can be removed by a conventional RO process resulting in

reclaimed water (RO permeate) and the retentate can be considered as regenerated

osmotic agent and reused. Aydiner et al.50 tested FO to reclaim water from

whey and concluded that economically FO+RO was comparable to conventional

UF+RO systems.

Another technological development to lower operating costs is to incorporate

biological water channels, specifically aquaporin proteins, into the membrane ma-

terial thereby creating biomimetic membranes.51 Adding aquaporin proteins to

membranes will ideally only transport water molecules over the membrane wall
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2. Characterisation of membrane permeates

thus lowering the pressure needed to obtain sufficient flux. The technology is still

very new but the first reports are coming out. Kalafatakis et al.52 investigated a

water recovery strategy using FO and biomimetic membranes for a 2nd generation

biorefinery. Crude glycerol and enzymatically treated wheat straw was used as

the draw solution to concentrate the product stream. This resulted in a diluted

draw solution, which was in fact the feedstock for the biorefinery, thereby creating

a closed loop.

2.4 Processing of GC-MS data

In Paper I the PARAllel factor analysis2 based Deconvolution and Identification

System (PARADISe) was used to process the raw GC-MS data. The software was

developed after realising that most commercial and freely available programmes

were inadequate in terms of inspecting data, looking up mass spectra or decon-

voluting overlapping peaks or any combination hereof. A graphical user inter-

face was built in Matlab® for inspecting and cutting the data in the retention

time dimension (creating intervals) as well as inspecting mass spectra via the

NIST MSSearch software. The output is a peak table of the deconvoluted areas

for all samples and the tentative identifications from MSSearch. The deconvo-

lution engine is, as the name suggests, PARAlell factor analysis2 (PARAFAC2).

Box 4 on page 54 describes basic PARAFAC modelling and the main difference

to PARAFAC2 is that the latter can handle retention time shifts (which are

practically unavoidable in GC-MS), while still obtaining a unique result. The

software is more thoroughly described in Paper IV and is freely available on

http://models.life.ku.dk/paradise.
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Chapter 3

Monitoring membrane permeate quality

In dairy processing research and development the main attention concerning mem-

brane performance has been on separating the product (retentate) from the input

streams. More recently, with attention being focussed towards sustainable pro-

cessing, also the permeate quality has become of interest as shown in e.g. Table

2.2 in the previous chapter.

Membrane filtration processes are subject to disturbances during operation,

just like any other process. Being able to react to these disturbances requires

the ability to monitor the processing performance. One of the main disturbances

in membrane filtration processing is compromised integrity (i.e. breaking of the

membrane). There are two overall approaches to testing membrane integrity:

direct or indirect testing.53–55

Direct testing is primarily pressure or vacuum testing of individual membrane

elements. In the case of RO membranes vacuum testing is preferred since pres-

sure testing requires pressure on the frail permeate side which may damage the

membrane. The speed of the pressure / vacuum drop indicates whether a leak is

present. When carrying out vacuum testing the ASTM standard prescribes drain-

ing the membranes for one hour and then soaking them in membrane permeate

overnight before testing.54 This means that direct testing is mostly used as a qual-

ity check before assembling the processing plants or when replacing old membrane

units.

Indirect testing concerns measuring the integrity implicitly, i.e. on permeate

quality. Techniques can be both on-line and off-line. Typical off-line techniques

are microbiological challenge tests where micro organisms are introduced into the

system and rejection efficiencies are measured.54 However, off-line monitoring will

typically not provide information in time for preventive actions, and it has been

argued that they are more accurately classified as direct testing methods.55 Rather

the focus here will be on on-line methods.

31



3. Monitoring membrane permeate quality

On-line monitoring of RO membrane integrity has received modest attention

in literature. Adham et al.53 tested several on-line methods: conductivity, particle

counting and TOC. They investigate whether the methods were sensitive enough

to detect a difference in permeate quality between a normal running system and

the same system with a purposely compromised O-ring.∗ TOC was found to be

the most sensitive method, while conductivity was less sensitive but still able to

detect the loss of integrity which on-line particle counting could not discover. They

further speculate the need for more than one measurement technology to ensure

reliable operation of an RO processing unit. Kumar et al.54 reviewed methods for

direct and indirect monitoring / testing of RO membrane integrity. The on-line

methods included conductivity, TOC, particle counting and sulphate analysis. On-

line sulphate monitoring is based on ion chromatography and is thus not nearly as

fast nor cost-effective (due to high acquisition, training and maintenance cost) and

is not further considered. On-line TOC analysers were reported to have improved

sensitivity from 1 µg·l−1 to 0.03 µg·l−1.

More recently fluorescence spectroscopy has been proposed56 and tested57,58 as a

potential monitoring tool for recycled water systems (which also covers RO mem-

brane processing; for more information on fluorescence spectroscopy see Box 5 on

page 61).

Singh et al.57 used the naturally fluorescence of dissolved organic matter as

the key quality attribute to ensure the membrane filtration process was running

as intended. Despite the fluorescing dissolved organic matter being present in dif-

ferent water sources, no detailed characterisation of the permeate was performed.

In a earlier review done by the same research group56 it was found difficult to

establish a link between fluorescence excitation-emission (EEM) landscapes and

other bulk water quality parameters such as BOD, COD and TOC. As stated in

the review, this is likely due to a varying proportionality of fluorescing to non-

fluorescing compounds contributing to the TOC, meaning if the ratio between

fluorescing / non-fluorescing compounds and TOC is not constant, they cannot be

correlated directly. Their strategy thus assumes and relies on fluorescing dissolved

organic matter being the key quality attribute.

Based on these references, no detailed chemical characterisation of the mem-

branes have been done a priori to identify a specific key quality indicator, i.e.

a representative chemical compound. Regarding on-line TOC and conductivity,

these techniques measure bulk properties of the water in the sense that they hold

no specific information about what compounds permeate. In the case of fluo-

rescence the underlying indicator(s) of compromised integrity are identifiable up

∗Gasket or washer ensuring membranes are tightly fixed inside the casing.
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Figure 3.1: Pure component pre-processed near infrared spectra reproduced
from Olesberg et al.59

to compound class, but the fact that the specific permeating compounds are un-

known (fluorescent as well as non-fluorescent) lowers confidence that the method

will detect an issue when it occurs.

While TOC and conductivity may be useful for measuring overall membrane

integrity permeation of urea is not (or only slightly) related to membrane malfunc-

tioning. Urea permeates RO membranes by another mechanism due to its close

similarity to water. Since urea is the main organic compound permeating the

membranes and it does not permeate like most compounds, it must be monitored

purposefully.

Paper I documents that in the process-water from the dairy ingredient produc-

tion, urea is clearly the main compound permeating the membranes. Quantifica-

tion of urea has been a wide research topic within medical device development in

order to determine when dialysis treatment is finished for a patient.59–62 Interest-

ingly, urea has a very specific signal in the near infrared (NIR) spectrum when

compared to many other chemical compounds. However, there are still interfer-

ents, e.g. glucose in the case of dialysis and lactose in the case of ROP membrane

permeate. From the dialysis literature very informative figures of urea’s NIR spec-

trum (Box 3) were found shown in Figure 3.1.
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3. Monitoring membrane permeate quality

In Paper II we seek to use NIRS to quantify urea as a key quality attribute

in process-water recovered in the dairy ingredient industry.

Box 3: Near InfraRed Spectroscopy — NIRS

The NIR spectral region lies between the visual and infrared range. This region

is characterised by overtone and combination bands of the fundamental vibrations

from the infrared region. Fundamental molecular vibrations can be understood from

a harmonic diatomic oscillator model. Since the vibration would be harmonic, the

potential energy curve would in principle also be parabolic in shape and symmetrical

as seen on the left hand side lower part in Figure 3.2 where the diatomic molecule

is excited from ground state (n=0) to first excited state (n=1).

Figure 3.2: The harmonic and anharmonic oscillator can be used to describe

infrared and near-infrared vibrations. V denotes the potential

energy and q the displacement of the atoms. Illustration in-

spired by Siesler.63

The potential energy depends on the force constant of the bond and masses of

the atoms. This means that bonds in molecules with different masses (as well as

different bond types) will give rise to different fundamental vibrations. Vibrational

energies can only take certain discrete values, i.e. certain overtones. In overtones

the displacement increases compared to the fundamental frequencies with the result

that the oscillations are no longer harmonic, but anharmonic and therefore not

symmetric as shown on the right hand side of Figure 3.2. This is due to repulsive

forces between the vibrating atoms when they are close to one another and the

dissociation when the bond is strongly extended (large displacement).

In the NIR spectrum in addition to overtones also combinations of fundamental

tones and overtones are observed. Due to these overtone and combination bands ab-

sorption from the different infrared active bonds in molecules often overlap in NIRS.

Overtones and combination bands absorb weaker than the fundamental absorption

bands which makes it possible to penetrate or even transmit light through solid

samples. This in turn makes representative sampling in NIRS easier compared to

infrared spectroscopy, but also interpretation more challenging. For more detailed

information please refer to Siesler.63
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Abstract

Reuse of process water in dairy ingredient production—and food processing in general—opens the possibility for sus-

tainable water regimes. Membrane filtration processes are an attractive source of process water recovery since the

technology is already utilized in the dairy industry and its use is expected to grow considerably. At Arla Foods

Ingredients (AFI), permeate from a reverse osmosis polisher filtration unit is sought to be reused as process water,

replacing the intake of potable water. However, as for all dairy and food producers, the process water quality must be

monitored continuously to ensure food safety. In the present investigation we found urea to be the main organic com-

pound, which potentially could represent a microbiological risk. Near infrared spectroscopy (NIRS) in combination with

multivariate modeling has a long-standing reputation as a real-time measurement technology in quality assurance. Urea was

quantified Using NIRS and partial least squares regression (PLS) in the concentration range 50–200 ppm (RMSEP¼ 12 ppm,

R2¼ 0.88) in laboratory settings with potential for on-line application. A drawback of using NIRS together with PLS is that

uncertainty estimates are seldom reported but essential to establishing real-time risk assessment. In a multivariate regres-

sion setting, sample-specific prediction errors are needed, which complicates the uncertainty estimation. We give a

straightforward strategy for implementing an already developed, but seldom used, method for estimating sample-specific

prediction uncertainty. We also suggest an improvement. Comparing independent reference analyses with the sample-

specific prediction error estimates showed that the method worked on industrial samples when the model was appro-

priate and unbiased, and was simple to implement.
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Multivariate calibration, near-infrared spectroscopy, NIRS, real-time monitoring, uncertainty estimation, water quality
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Introduction

Membrane filtration technologies can be characterized by

their ability to separate molecules and constituents of dif-

ferent sizes. Membrane types vary from microfiltration to

separate larger particles such as bacteria and fat globules,

down to reverse osmosis (RO) membranes that retain

nearly everything except water. Membrane systems are

implemented in several steps in the dairy production

chain to separate molecules of varying sizes in making

new products and ingredients. This gentle way of process-

ing dairy products is projected to grow significantly in the

coming years.1
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At Arla Foods Ingredients (AFI), cheese whey is used as

the raw material for new food ingredients. Cheese whey

proteins are up-concentrated (retained) by ultra-filtration

membranes (UF) while the permeate is further processed

by a two-stage RO plant (RO plus RO-polisher; ROP) to

collect the lactose and produce ultrapure process water

(Figure 1). The cheese whey proteins can be fractionated

into a wide range of products with different functional

properties. Lactose is dried and can be used, for example,

in infant formula or as a food ingredient. Our interest here

is the potential for re-using the ROP permeate of this last

process step as a water source.

The water footprint of the dairy industry can be greatly

reduced by efficient reuse of process water downstream in

production flows or cleaning processes. Whey—or, even

more upstream, milk—as a raw material consists to a

large extent of water, and is the source of process water.

However, microbiological safety and hygiene is of utmost

importance in the food and dairy industry, and lactose,

urea, salts and other organic compounds have been

reported to pass RO membranes.2,3 This indicates that

the process water can theoretically act as a growth

medium, constituting a potential hazard. As a safety precau-

tion for this potential hazard AFI only keeps the process

water for a maximum of 24 h, thus limiting the water reuse

strategy. In order to assess the risk of reusing process

water, the quality must be continuously guaranteed. The

risk can be monitored continuously and in real-time by

applying the principles of process analytical technology

(PAT)4 to the process water streams.

In the present study, urea has been identified by GC-MS

analysis as the main chemical compound in the RO(P) per-

meate at AFI. The small organic molecule urea (H2N–

(C¼O)–NH2, 60.06 gmol�1) can be quantified with high

accuracy by enzymatic assays in laboratory conditions, but

this approach is time-consuming and labor-intensive. Urea

can also be detected by near infrared spectroscopy

(NIRS),5,6 which opens up rapid, less labor-intensive or

even fully automated measurements. Despite NIRS often

being classed as unselective, urea and lactose as interfering

species have specific, characteristic absorbance patterns in

a region hidden between two dominant water absorption

peaks in the spectral range 2080–2325 nm.6 The urea con-

centration expected in cheese whey is slightly lower

than that which is normally found in bovine milk

(�100–600 ppm)7,8 due to the fact the urea stays in the

water phase (whey) during cheese production, and water

is added during different cheese manufacturing steps, dilut-

ing the whey.

The low urea concentration and the heavy interference

with the water bands in NIRS push the detection limit

upwards and increases prediction uncertainty. Multivariate

modeling techniques such as partial least squares regression

(PLS) can lower the prediction error and detection limit

compared to univariate methods. However, estimating

the prediction uncertainty becomes more complicated.

Without a reliable estimate of the prediction uncertainty

the detection limit cannot be established and the real-time

(microbiological) risk assessment cannot be performed.

Prediction uncertainty estimation for PLS regression has

been available for some time in the literature9 and newer

developments have been reported.10 The quantification of

the prediction uncertainty in our work is based on Faber

and Kowalski’s error-in-variables approach,9 later modified

by Andersen and Bro.11 Sample-specific prediction uncer-

tainties must be used in multivariate modeling since it

cannot be expected that all samples are predicted equally

well due to, e.g., differences in concentration of the inter-

fering species. Moving to sample-specific prediction uncer-

tainty presents a clear conceptual difference to the normal

model evaluation based on overall or average model per-

formance. Moreover, there is a lack of a proper and

straightforward applicable strategy for uncertainty estima-

tion in PLS, despite the theory being developed more than a

decade ago. This is not helped by the fact that, unfortu-

nately, justifications for the determination of the param-

eters that go into the uncertainty equations are seldom

given.

These obstacles have resulted in a very limited use of

confidence limits for PLS-based predictions in industrial

applications. Often several choices can be justified when

deciding how to fill in the various terms, depending on:

the available data, the calibration strategy and the objective

of the uncertainty estimates. For example, when deciding to

develop a calibration model for real-time monitoring, sev-

eral choices have to be made with respect to collecting

data. Two clear-cut approaches are to (1) mix stock solu-

tions of the analyte of interest and potential interferents in

known concentrations (pure laboratory samples) and meas-

ure these directly with the instrumental method (in our

case NIRS); or (2) use an independent reference method

on grab samples collected from the process and relate

these estimates to the instrumental measurements. In the

present study we compare these two predominant calibra-

tion strategies for the prediction of urea concentration in

dairy process water, and present a straightforward strategy

for applying and interpreting sample-specific prediction

uncertainties. Finally, we demonstrate that NIRS coupled

with PLS has the potential for real-time risk assessment

of process water.

Figure 1. Schematic overview of whey UF processing and RO(P)

lactose and water recovery. The three permeate streams are

marked by P1, P2 and P4.

Skou et al. 411
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Theory

The multivariate partial least squares (PLS) calibration

model can be described as Eq. 112

y ¼ Xbþ e ð1Þ

where b is the regression vector relating instrumental

measurements X (N� J) (the independent) to the reference

values y (one dependent, hence so-called PLS1 is used

throughout this work).

The sample-specific variance of the prediction for the

model in Eq. 1 is given in Eq. 211

s2PEi
¼ 1

N
þ hi

� �
s2e þ s2�yþ k b k2 s2�x

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Calibration error

þ s2e

z}|{Model error

þ k b k2 s2�x, pred

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Error in X

þ s2�y

z}|{Error in y

ð2Þ

where hi is the leverage of the ith test or prediction sample,

and N represents the number of samples in the calibration

set; s2e denotes the variance of the model error; s2�y

denotes the variance of the dependent values (urea refer-

ence in our case); s2�x denotes the average variance across

the J variables for the independents (the NIR spectra in our

case) in the calibration set; and s2�x, pred denotes the inde-

pendents’ variance for the test or prediction set. This last

term, s2�x, pred, could for example represent future samples,

collected after model calibration, which might exhibit a dif-

ferent uncertainty level. The regression vector, b, from

Eq. 1 is included as the squared value of its Euclidean

norm.13 The term 1/N should be left out if the dependent

data, y, is not mean centered, but in the remainder of our

work we implicitly work with mean centered data.11

In order to estimate the spectral variance (the multivari-

ate independents), the variation around the mean for K

repeated measurements on the same sample is calculated

as described in Eq. 311

s2�xn,j
¼ 1

K� 1

XK

k¼1

�Xn:,j � Xnk,j

� �2 ð3Þ

where �Xn:,j is the mean value based on K replicated meas-

urements at wavelength j (for sample n), and Xnk,j is the kth

replicate of sample n at wavelength j. For all combinations

of n and j Eq. 3 leads to a matrix of variances of size N� J

(samples� variables), where a given element contains the

variation of a given wavelength for a given sample. It should

be noted that all calculations are based on the prepro-

cessed data used for the regression model as indicated in

Eq. 1 and not on the raw data. Furthermore, the number of

replicated measurements K is assumed constant for all sam-

ples; if this is not the case the variance terms should be

modified accordingly by weighing with the number of repli-

cated measurements. The variance is then pooled for each

wavelength and averaged over all wavelengths resulting in a

scalar representation of the spectral variation

s2�x ¼ 1

JN

XJ
j¼1

XN
n¼1

s2�xn,j ð4Þ

An important step when estimating the spectral variance

on the same sample or standard is the choice of the type of

replicate measurements. For example, the spectral variance

over short-term, consecutive measurements can be used as

a repeatability uncertainty. The spectral variation can also be

determined on standards or samples across several analysis

days. In the case of NIRS this might translate into a new

background or blank being used and in this case the

long-term spectral reproducibility is considered part of

the spectral variance.

The error in y, the univariate dependent s2�y, can be esti-

mated from replicate measurements similarly to the spec-

tral variation, or for example simply taken from the

analytical uncertainty reported by the laboratory or the

supplier of an analytical reference method. It can however

be assumed that the most realistic estimate will come from

estimating the variation under the applicable laboratory

conditions, rather than a supplier’s reported variation.

The model error is given in Eq. 6 as the observed error

of the PLS calibration model (mean squared error of cali-

bration (MSEC); Eq. 5), reduced by the error in y and the

error in X

MSEC ¼
PN

n¼1 ŷn � ynð Þ2

N� A� 1
ð5Þ

s2e ¼ MSEC� s2�y� k b k2 s2�x ð6Þ

where A is the number of components in the PLS model.

The model error thus contains errors not directly related to

independent X, dependent y or the calibration. This error

includes, e.g., deviations from the Beer–Lambert law as well

as other deviations from the bi-linearity assumption such as

shifts in the NIRS spectra. Andersen and Bro11 state that

the estimate for MSEC must provide a reasonable estimate

of the predictive ability. The model error may be inappro-

priate if the model is under- or over-fitted, and the estimate

of the prediction uncertainty is not valid or in other terms,

is biased.

Simplifying the uncertainty estimate can be done by sub-

stituting the model error (Eq. 6) into Eq. 2 under the assump-

tion the spectra variation in the calibration and prediction

samples is similar:13

s2PEi
¼ 1

N
þ hi

� �
�MSECþMSEC ð7Þ
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The error in X term, kbk2s2�x, assumes homoscedastic

measurement errors and no collinearity between the vari-

ables in X.11 For NIRS measurements these assumptions do

not hold. Spectroscopic data such as NIRS analyses is highly

co-linear in the wavelength direction and therefore an alter-

native formulation is suggested. Rather than multiplying the

square of the norm of the regression vector (related to the

so-called net analyte signal (NAS) defined by Lorber et al.14)

with the variation in X, the regression vector should be

weighed by the size of the variance-covariance matrix of

X, mean centered per sample

~Xnk,j ¼ Xnk,j � �Xn:,j ð8Þ

where �Xn:,j is the mean of variable (e.g., wavelength) j over

the K replicates for sample n, Xnk,j is the original value for

variable j in replicate k for sample n, and ~Xn,j is thus the

mean centered sample for variable j. Running over all rep-

licates and samples a matrix ~X is generated (N� J). From

this the variance-covariance matrix is derived

C ¼ 1

NK�N
~X
T � ~X

� �
ð9Þ

Here, C (J� J) is the variance–covariance matrix (sym-

metric, with the variance for each wavelength on the diag-

onal and covariances between two different wavelengths on

the off-diagonals). The number of degrees of freedom is the

total number of spectra (NK), subtracting the number of

independent samples (N) due to the local mean centering

operation in Eq. 8. The regression vector can now be

weighted by C

Error in X ¼ bT � C � b ð10Þ

Here, the alternative error in X is also a scalar (in line

with a recently suggested approach by Allegrini et al.15).

Substituting Eq. 10 into Eq. 2 generates an alternative

uncertainty estimator

s2PEi
¼ 1

N
þ hi

� �
s2e þ s2�y þ bT � C � b

� �
þ s2e

þ bT � Cpred � bþ s2�y

ð11Þ

Substituting Eq. 6 into Eq. 11, the same reduced form as

shown into Eq. 7 will be obtained, under the same assump-

tions concerning calibration and prediction.

Methods and Materials

Process Sample Collection

Process water samples were collected simultaneously from

UF, RO, and ROP permeate in a full-scale production system

at AFI (40� 3 permeate samples; Figure 1). Sampling was

initiated immediately after the treatment plant was started

(following a cleaning-in-place) and continued for approxi-

mately 10 h. This time period included two feed tank

changes where samples were collected with high frequency

and with low sampling frequency in between (Figure 2).

All samples were accumulated in 250ml amber, sterile,

polypropylene sample bottles (ISOLAB, Germany) in less

than 1min, and stored at 5 �C for a maximum of three

days before measurements. Immediately before sampling,

the process valves were opened and flushed-to-waste for

approximately 10 s; conductivity was measured on-site

directly after collection for quality assurance purposes

(Figure 2).

Independent urea concentration determinations were

made on 69 out of 120 samples using a ureaþ ammonia

enzyme assay (Megazymes, UK), measuring absorption at

340 nm with a ThermoScientific Evolution 220 UV/Vis spec-

trometer as specified by the vendor. The uncertainty (s�y)

was estimated to be approximately 1 ppm, based on repli-

cate estimates (K¼ 5/6) of random process samples (N¼ 4)

and laboratory standards (N¼ 2; bias estimated from the

standards only assessed at 1 ppm). Accuracy was found to

be in compliance with the laboratory sample label values

and the supplier’s specifications.

Laboratory Sample Preparation

To mimic the process water samples, standards of urea and

lactose were made by combining in varying ratios nine urea

stock solutions, three lactose stock solutions, and deminer-

alized water. The aim was to fill out a calibration space rep-

resentative of the three process water streams (UF, RO, and

ROP permeate). Thirty suggested combinations were calcu-

lated covering 56–667 ppm urea and 125–4800 ppm lactose.

From this set 10 combinations that cover the design space

uniformly were selected with the Kennard–Stone algo-

rithm.16 The 10 combinations were supplemented with

the three lowest urea stock solutions containing 46, 110

and 156 ppm urea, as well as one lactose stock containing

6061 ppm. In total, N¼ 32 measurements were performed,

spread over three measurement days by selecting a subset

of the 14 laboratory samples each measurement day.

Multivariate Calibration

Two separate PLS models were built relating the NIRS spec-

tra to the concentration of urea: (1) a model based on data

from laboratory standards made of known amounts of urea

and lactose (herein denoted lab model); and (2) a model

based on urea concentration determined by the enzyme

assay reference method applied to process samples (pro-

cess model). The process grab samples were split into a

calibration set for the process model, and an independent

validation set applied to both PLS models. The calibration
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set for the process model was the startup of the RO plant

from 05:12 to 09:17 h (Figure 2, N¼ 33 samples with urea

estimates from the three permeate sample collection loca-

tions), while the common validation set was formed by

samples taken from 10:03 to 14:29 h (I¼ 12� 3 samples).

One sample was removed from the process model calibra-

tion data as the urea concentration estimate was outside

the linear range of the enzyme assay (RO permeate 05:22 h,

N¼ 32). The preprocessed data were mean centered

before fitting PLS models. Model complexity during calibra-

tion was estimated by inspecting the shape of the regres-

sion vector, reduction in root mean square error of

calibration (RMSEC) and root mean square error of cross

validation (RMSEC) and the difference between the afore-

mentioned values. Partial least squares regression models

were built using the PLS toolbox (Ver. 7.9.5, Eigenvector

Research) in Matlab 2015a (MathWorks, Inc.). Prediction

uncertainty estimates were calculated in Matlab using in-

house routines based on Eq. 2 and Eq. 11.

Near-Infrared Spectroscopy

Near infrared spectroscopy spectra were measured with

an ABB Bomem MB Series FT-NIRS (Canada) with a

custom-made, temperature-controlled sample flow cell

with a path length of approximately 1mm. Each sample

was introduced into the cell and measured five times in a

row, each the average of 128 scans (total duration approxi-

mately 6min) over the spectral range 14 285–4000 cm�1 or

700–2500 nm with a spectral resolution of 8 cm�1. The

temperature of the flow cell was set to 27 �C, and we

assessed that the maximal temperature differences

between the five replicates was 0.1 �C. All samples were

measured over the course of three days, and the same

background – air, empty cell plus a 25% absorbance optical

filter – was used for all spectra obtained. For urea calibra-

tion the spectral range 2083–2257 nm was selected, and the

spectra were preprocessed using a Savitzky–Golay second

order polynomial fitting, second derivative, with a window

size of 17 points (approximately 62 nm).17 For all samples,

four of the five measured spectra were excluded based on

the Euclidean norm of the difference between the average

of all five preprocessed spectra and each given prepro-

cessed spectra. The spectrum closest to the mean was

included in the calibration data set with its corresponding

urea reference value. The spectral variation was estimated

in two ways: (1) from the three most similar replicate meas-

urements (discarding two out of five rather than four

Figure 2. UF and RO(P) sample collection trajectory illustrated by conductivity values; production start 05:12 h, and two feed tank

changes took place at 10:05 h and 13:05 h. (a) P1¼ ultrafiltration permeate; (b) P2¼ reverse osmosis permeate, P4¼ reverse osmosis

polisher permeate.
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spectra in the spectral selection procedure described

above) for each sample obtained for the process model

data set; (2) from the variation between three replicates

of those standards measured on all three measurement

days (only available for the lab model data set).

Results and Discussion

Regression Modeling

The present work describes two clear-cut approaches for

building prediction models for process monitoring. One

approach is to prepare laboratory samples reflecting the

expected variation in the process of interest. The advantage

is that the calibration space can be spanned by a small

number of samples of known concentration, making it fast

and economic. The risk is that the chemical composition of

the process is not captured, for example, by missing minor

interferents. The other approach is collecting actual pro-

cess samples and performing independent reference ana-

lysis, making full use of the inverse-calibration concept

behind PLS.12 The advantage is that the process compos-

ition is incorporated in the independents, assuming that

the right samples and a sufficient number of samples

are collected. Reference analysis is, however, often time-

consuming and expensive since typically many samples are

needed to span the calibration space using grab sampling

plus chance.

Depending on which calibration building approach is

taken different inputs are available for estimating the error

in X. Using laboratory standards, the same sample can be

measured repeatedly over time to incorporate long-term

reproducibility. However, a risk is that the determined

repeatability or reproducibility does not represent the

actual process sample composition, making the estimate

inapplicable. Alternatively, using process samples the same

sample material is not available on different days, forcing the

use of short-term repeatability based on repeated consecu-

tive measurements. The two approaches will also lead to

models with a different predictive performance and

uncertainty.

Figure 3 shows in two ways the average spectrum of all

lab model NIR spectra: with air and demineralized water as

reference. The shaded area shows the calibration range

applied for both PLS models and illustrates that the shoul-

der of the left-hand water band, a NIR combination band, is

included in the calibration range. It is well known from the

literature that small temperature changes shift the NIR

spectra’s water bands left and right.18 These temperature

shifts resulted in an uncontrolled sign-change of the left-

hand tail of a preprocessed spectrum if the temperature

was even marginally lower or higher than the background

measurement when using demineralized water as a blank.

Air was used as the background to avoid this issue. To

minimize the temperature/shift-induced variation from the

PLS models the spectrum closest to the average of all the five

spectra was selected. The objective was to avoid the more

extreme spectra by choosing the most representative one.

However, it cannot be guaranteed that the average tempera-

ture of the spectra obtained from each samples are identical,

and small temperature-induced shifts will still be present.

Interestingly, excluding the highly temperature-sensitive

water band shoulder from the calibration range was not an

option since this resulted in a lowered predictive perform-

ance from the models. Including more of the lactose absorp-

tion range above 2250nm (data not shown) also resulted in

reduced predictive performance.

Figure 4a–c show the preprocessed and mean

centered calibration data for the two PLS models, while

Figure 4d shows the corresponding regression vectors.

The extent of the temperature shift can be observed in

Figure 4b where the five consecutive measurements from

one lab model sample (high urea, medium lactose) are

shown together with the spectral variation of the full cali-

bration data set. The selected spectrum for this sample can

also be seen in Figure 4a, together with a low urea–high

lactose sample and a medium urea–low lactose sample. The

urea signal can be identified in Figure 4b in the high urea–

medium lactose sample, where high urea concentration

results in two valleys at 2150 nm and 2200 nm and a peak

around 2170 nm in the preprocessed (second derivative)

spectrum, in agreement with Shaw et al.6 and Olesberg

et al.5 Lactose absorbance can be seen very clearly in

Figure 4c where UF permeate samples contain high

amounts of lactose, while RO permeate and ROP permeate

samples do not. High lactose manifests itself as high absorb-

ance around 2240 nm in the preprocessed spectrum in

accordance with Olesberg et al.5

Two models were built (Figure 5 and Table 1): (1) on the

laboratory samples to yield the lab model, and (2) a model

Figure 3. Average spectra of lab model data set with air (solid)

and water (dashed, intensity-scaled for visual comparison) as

background; shade area is the range used in urea PLS regression

modeling.

Skou et al. 415

42



built on the process samples to yield the process model.

The complexity of both PLS models was estimated to be

five components. The two first components in the lab

model describe mainly X-variance (99.0% and 0.8%

explained variance) and almost no variation in y-variance

(0.3% and 15.7%). For the process model the first two

components explain relative more variation in y (17.8%

and 50.4%), but still primarily focusing on explaining

X (91.7% and 7.8%). This indicates that both data sets

have large amounts of spectral variation not related to

the urea information, and preprocessing has not been suc-

cessful in bringing the relevant information forward.

Inspecting the regression vectors in Figure 4d, the process

model appears over-fitted based on its irregular/non-

smooth appearance, also resulting in a large norm as seen

in Table 1. The process model’s calibration (Figure 5c

and Table 1) and prediction performance (Figure 5d and

Table 2) are close to each other, and in fact appear not

to be over-fitted (albeit with a bias in the high-range/P1

validation results). The calibration and validation perform-

ance for the lab model can be seen in Figure 5a and 5b and

in Tables 1 and 2. The urea calibration range is far wider

than the validation samples’ concentration, and the root

mean square error of prediction (RMSEP) increases consid-

erably compared to the RMSEC (13.0 ppm versus 9.7 ppm).

Especially, UF permeate/P1 samples are predicted with large

errors. Inspecting the spectral variation of the lab model

samples in Figure 4b and comparing with the process sam-

ples’ variation in Figure 4c, it is clear that the lab model

samples did not span a wide enough lactose variation and

the urea range span was too wide.

Estimating Prediction Uncertainty

The prediction error variance was calculated according to

Eq. 2 and Eq. 11 using the values presented in Table 3. Since

the prediction uncertainty is sample specific, each variance

component was extracted and averaged over the calibra-

tion and test set, before presentation in the table. The

variance of the prediction error (s2PE) was converted to

standard deviation of the prediction error (sPE) by taking

the square root. These values are tabulated together with

Figure 4. NIR spectra of (a) lab model data (shaded area is convex envelope) with three selected samples; (b) lab model data with one

sample in five consecutive measurements; arrow illustrating shift/order over time; (c) process model data with three samples from the

same time point (05:42 h) from different sampling locations–spectral variation from each location shaded convex envelope; (d) PLS

regression vectors for lab model (dashed) and process model (solid).
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the prediction performance (RMSEP) of the validation set

for comparison.

When comparing the average prediction performance

(RMSEP) with the averaged estimated prediction uncer-

tainty (sPE) the difference is small for the process model,

while the lab model shows a larger discrepancy. An explicit

bias term is not part of the prediction uncertainty error and

this might be the reason for this discrepancy as the lab

model exhibited some bias when validated (Figure 5b).

Regardless of which formulation of the uncertainty estimate

is applied the estimate will be the same as both Eq. 2 and

Eq. 11 reduce into Eq. 7 when spectral variance during

prediction and calibration is assumed to be the same.

Such insight into model predictive performance can prove

valuable, and this example serves as evidence that the esti-

mates are reasonable, trustworthy and easy to obtain.

The error in y was set to 1 ppm since this was both the

uncertainty claimed and the uncertainty found through

repeated measurements. Using the claimed uncertainty

of the vendor should be done with caution as this may

not reflect the uncertainty achieved under the given labora-

tory conditions.

The calibration error is determined by the size of the

calibration set (N), the prediction sample leverage (hi), and
the calibration uncertainty (MSEC; via Eq. 7), leading to

identical variances for both prediction uncertainty formu-

lations (Eq. 2 or Eq. 11). The leverage ranges of the cali-

bration and predicted samples are presented in Tables 1

and 2, respectively. Here, the leverages of the calibration

samples are similar for both models, but the leverages of

the validation samples are very different. The difference

between the two models is explained by the lab model

not spanning the validation sample space sufficiently, subse-

quently leading to larger prediction uncertainties. Intuitively

this can be understood from classical univariate calibration

where samples at the extremes of the model have larger

prediction errors, i.e., prediction uncertainty intervals

expand when moving towards the extremes of the

Figure 5. Partial least squares regression models for urea; (a) lab model calibration, (b) lab model validation, (c) process model

calibration, (d) process model validation. Symbols used: P1 samples, open squares; P2 samples, full circles; P4 samples, x; Lab samples,

open circles; x¼ y fit, dashed line; best fit through data, solid line.

Table 1. Summary of PLS calibration models.

Model A N hn jjbjj
RMSEC/MSEC

(ppm/ppm2)

Lab 5 32 0.05–0.50 4.81� 104 9.7/95

Process 5 32 0.06–0.31 144� 104 10.2/103

Table 2. Summary of validation of PLS models on the test set.

Model I hi RMSEP (ppm)

Lab 36 0.05–10.37 13.0

Process 36 0.03–2.24 12.1
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prediction model’s range. It should be recalled that leverage

only represents the modeled directions in the data and

does not reveal samples not fitting the model. This infor-

mation is found from the residuals, which should be moni-

tored independently to detect samples not compatible with

the model. Hence, this issue is not covered by the uncer-

tainty estimation procedure evaluated here.

The model error is directly connected with the estimate

of error in X. Using Eq. 6 to calculate the model error, it

becomes larger for the lab model than for the process

model, which is a consequence of the achieved MSEC in

combination with a low error in X and low error in y.

Intuitively, the model error can be understood as the error

in the relation between the spectral data, X, and the refer-

ence data, y, that is, deviations from Beer–Lambert law,

non-linearity at a very low or high absorbance and viola-

tions of the bi-linearity assumption in PLS. In other words, if

the error does not originate from spectral data or refer-

ence data it must be the lack of information in the spectral

data needed to explain the reference values.

In Table 3 the error in X when using Eq. 2 is high for the

process model and lower for the lab model, despite the

process data having a lower spectral variation (s2�x). This

intuitive discrepancy is explained by the irregular regression

vector seen in Figure 4d, also reflected in the size of the

Euclidian norm of b in Table 1. However, since the spectral

variance is not homoscedastic (equal variance for all wave-

lengths), taking the mean of all wavelengths and multiplying

this with the squared norm of the regression vector is not

satisfactory. Instead, the spectral error, or more precisely

the variance-covariance of the spectral error, should be

weighted by the size of regression vector at each wave-

length. Thus, if a wavelength with high variation (per

sample) does not contribute to the prediction (low bj
entry) the propagated uncertainty should be low. From

Table 3 the alternative error in X (Eq. 11) becomes much

lower compared to the original (Eq. 2). Still, the process

model shows more error in X compared to the lab model,

probably due to the noisy regression vector. The unex-

plained prediction variance released from the alternative

error in X term is absorbed by the model error term instead

as discussed above. This redistribution of variance is

reasonable since the uncertainty stems not from irrepro-

ducible spectra, but, e.g., from temperature-induced shifts.

Interestingly, the model error for both calibration strategies

converge (93 ppm versus 99 ppm), suggesting that the

temperature-induced shifts are similar for the two calibra-

tion data sets.

It should be noted that the original error in X definition

(kbk2s2�xÞmay under different circumstances underestimate

the spectral uncertainty (as seen, e.g., in Allegrini et al.15),

where it overestimates in our case. It is also important to

notice that the error in X term only reflects the spectral

variation put into the equation, i.e., reproducibility (long-

term) or repeatability (short-term). In our particular case,

however, it does not make a noticeable difference if samples

measured on the same day or measured over three days

are used (results not shown). This might be very different if

an NIRS-based urea monitoring scheme is implemented

over a longer time period, for example months or years.

If the calibration model is based on laboratory samples and

used in a production environment (e.g., an optical probe

mounted directly inside the process, including all the pro-

duction noise), attention should be turned towards esti-

mating a distinct Cpred as the variance–covariance of the

calibration data no longer represents that of the predicted

samples, and a correction for this is required.

The averaged standard deviations of the prediction

uncertainties (sPE) can be directly compared to the

RMSEP values. In Table 3, the estimates can be seen to be

very close to the observed average prediction error. This

suggests that the reduced expression of the uncertainty

estimate (Eq. 7) can estimate the predictive performance

sufficiently accurate, given that the PLS model is reasonable.

In essence the estimate is determined by two terms: (1) the

leverage of a sample; and (2) the MSEC. Thus, confidence

interval-based limits can be built directly from the PLS

model if the partition of the prediction error variation

into the individual parts is unnecessary. Conversely, confi-

dence bands cannot be built for PLS models with more than

Table 3. Summary of variance components calculated for the two PLS models for Eq. 2 and Eq. 11 based on the test set.

Equation Model

Calibration

error* (ppm2)

Model error/s2e
(ppm2)

Error in X

(ppm2)

Error in y/s2�y

(ppm2)

SPE*/S
2
PE*

(ppm/ppm2)

2

Lab 192 89 3.6 1 15.1/286

Process 53 52 51 1 12.4/157

11

Lab 192 93 0.1 1 15.1/286

Process 53 99 3.6 1 12.4/157

*Based on Eq. 6 and Eq. 7, the error does not change between the two prediction uncertainties equations.
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one component. This follows the argument for using

sample-specific prediction intervals. In classical univariate

regression the bands are a function of the nominal differ-

ence, or distance, of the obtained value to the center

of the model. Equation 7 can be rewritten as

s2PEi
¼ 1þ 1=Nþ hið Þ �MSEC making the connection to

classical univariate regression even more obvious. In multi-

variate regression this distance is given by the leverage. The

leverage, however, is determined by the score value for

each loading,19 which means that a sample in the center

of the multivariate regression model can have a high lever-

age stemming from other spectral contributions not related

to the analyte of interest. Partial least squares regression

models describe other sources of variation not related to

the analyte of interest, therefore, the leverage cannot be

used in the same way for PLS models with more than one

component. For a one-component PLS model the leverage

will also be the score to the loading describing the analyte

of interest, and only in this case can calibration model

confidence bands be used. Instead sample-specific predic-

tion intervals can be calculated: PI� ¼ ŷi � ta=2,N�A�1s
2
PEi

,
where ta=2,N�A�1 denotes the critical value of a t-distribu-

tion with a-level confidence and N�A�1 degrees of

freedom.20

Process Monitoring

Figure 6 shows predicted urea concentrations together

with prediction intervals and the available reference

values, with the critical t-value of 2.06 for 95% prediction

(or confidence) interval with 26 degrees of freedom. For P1

validation samples, the prediction intervals often do not

capture the observed prediction uncertainty. Looking

back to the scatterplot of the validation data set, it can

be seen that P1 samples exhibit a bias. As mentioned

above, the uncertainty estimates are only valid when no

bias is present and consequently do not work for P1

samples.

Figure 6. Process model predictions of all NIRS samples with reference values (predictions, open circles; reference values, red

stars) and samples without reference samples (closed circles). Vertical lines show the sample specific 95% prediction interval. (a) P1;

(b) P2; (c) P4.
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A systematic decline in urea concentration is seen from

UF permeate to RO permeate to ROP permeate (Figure 6).

As expected, urea is not retained completely. Lee and

Lueptow3 reported the same phenomenon for labora-

tory-scale RO units and hypothesized that urea is very dif-

ficult to retain due to the chemical’s affinity to the

membrane material. In effect, urea seems to reach equilib-

rium across the membrane(s). If information about the

organic load is desired then urea may not be the obvious

target molecule. However, urea may in fact be the only

organic molecule permeating the membrane system

during normal operating conditions (NOC), an observation

supported by the very low conductivity values for ROP

permeate (Figure 2).

The samples collected in the present study cover the

first half of a production cycle and three types of samples.

In Figure 6 we observe that the UF permeate samples are

predicted with larger uncertainty, while the RO(P) samples

show a more consistent picture. During the sample collec-

tion run the process startup and two feed tank changes

were included. These operations were targeted to observe

potential abnormal operating conditions (AOC) and

thereby larger variation in the collected samples.

However, all process parameters monitored at the produc-

tion site as well as the laboratory reference measurements

and PLS prediction models indicated that the process was in

NOC during the tank switches. The dip in conductivity of

UF permeate seen in Figure 2 arises from short-time recir-

culation of permeate into the feed. The only large variation

observed was during startup. Since no AOC situation is

included in the present study the predictive performance

of the models is not truly challenged.

Near-infared spectroscopy can be used to quantify a

wide range of different vibrational bonds and could poten-

tially be used for RO performance monitoring via alterna-

tive routes. If, for example, leaks appear in the membrane

cartridges then some lactose would be expected to seep

into the RO and eventually the ROP permeate – a clear

AOC situation. Using the methods described in this manu-

script calibration models with sample-specific uncertainty,

limits can be built. This will, however, not be feasible using a

standard NOC process model data set (since the leakage

problem is an exception and data collection thus unfeas-

ible). Instead this has to rely on a lab model during the

calibration stage and process data during monitoring/

prediction.

When building predictive models for process perform-

ance monitoring, most often both laboratory samples

and process samples are combined to yield the best pre-

diction performance.21 In the present case the laboratory

samples did not span the desired variation and the process

samples do not cover large enough process variations

from only 10 h of production. Combining the two data

blocks did not significantly change the model performance

(data not shown). Improved prediction performance

would be achieved if laboratory samples were redone and

additional process samples collected over a long period

of time.

Conclusion

In order to reuse process water in the dairy industry the

quality must be guaranteed at all times. Urea may not be the

obvious chemical compound for monitoring membrane fil-

tration process performance, but it does constitute the

main organic matter. In this work it has been shown that

very low concentrations of urea can be quantified by NIRS

spectroscopy in connection with PLS regression. Critical

evaluation of the PLS predictions can only be trusted if

the prediction uncertainty is quantified. From the predic-

tion uncertainty estimation, diagnostics can be extracted

for evaluation of the model adequacy (calibration error)

as well as evaluation of the measurement setup (error in

X). This work shows that prediction uncertainties for PLS

regression models are not complicated to obtain, regard-

less of which calibration strategy is used, under the condi-

tion that the model is appropriate and unbiased.
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3.1. Estimating the prediction error — continued

3.1 Estimating the prediction error — continued

As discussed in Paper II the expression for estimating the sample-specific pre-

diction error can be reduced to

ŝ2PEi
=

(
1 +

1

N
+ hi

)
·MSEC

Intuitively this is a satisfying formulation when one considers that it consists of

three distinct parts: 1, the calibration error which can be considered the minimal

error one can expect from a normal sample; 2, one over the number of samples

(1/N) in the calibration set, which represents the robustness of the calibration and

shrinks for a larger dataset; and 3, the distance to the center of the PLS model for

this sample, the leverage hi. It also illustrates that correctly estimating the mean

square error of calibration, MSEC, turns out to be the most important figure of

merit, particularly when estimating all the specific error terms is not of interest.

The mean square error of calibration is often expressed as

MSEC =

∑N
n=1 (ŷn − yn)

2

N −A− 1
(3.1)

In Equation 3.1 N −A− 1 represents the degrees of freedom. However, this only

holds for true linear models such as multiple linear regression, where A represents

the number of response variables. With PLS (a bilinear model) A is the number

of components. However, it has been found that one PLS component consumes

more than one degree of freedom,64 making Equation 3.1 optimistic.

In the case where the number of calibration samples is low (small N) and

a complex model is needed (large A), the MSEC becomes very sensitive to the

choice of the denominator. The prediction error also inflates with a low number

calibration samples. In Figure 3.3 the prediction error estimates are shown using

N − 1 (an optimistic denominator often used in literature) and N − A− 1 in the

calculation of the calibration error. It’s worth mentioning again that the estimated

prediction errors are only valid if MSEC is unbias, i.e. the model is not over- or

underfitting.

In short, an incorrect choice of MSEC formulation and / or overfitting of the

PLS model can have a huge effect on the perceived prediction errors.
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3. Monitoring membrane permeate quality

Figure 3.3: Scatterplot of the urea concentration references against the urea
concentrations estimated with a five component PLS model.
95% confidence bands estimated with: MSEC estimated with
optimistic denominator, N − 1 (a) compared to N −A− 1 (b).

3.2 The multivariate detection limit

Closely linked to the estimation of prediction uncertainty in PLS models is the

detection limit. For univariate models where the detector signal is specific for a

given analyte, the detection limit (DL) is defined by IUPAC65 as

DL = xbl + (t1−α,ν + t1−β,ν) · sbl (3.2)

Here xbl is the mean of the signals obtained from a blank sample, α and β specify

the accepted Type I (false positive) and Type II (false negtive) error rates and

sbl the standard deviation of the signals from a measured blank sample. IUPAC

recommends that α = β = 0.05, which makes it possible to reduce Equation

3.2 slightly. This works well for univariate measurements where the signal only

depends on the compound of interest, i.e. the signal is specific. This is seldom the

case in multivariate calibration, where the signal can also depend on interfering

compounds.

In the pursuit to establish figures of merit for the so-called inverse multivariate

models (which includes PLS regression models) similar to those for univariate

models, Lorber et al.66 defined the net analyte signal (NAS). The NAS seeks to

find the part of the analyte signal that is independent from (orthogonal to, or lies

in the null space of) the interferents as illustrated in Figure 3.4. Ideally this vector

represents the unique signal of the compound of interest, and as a consequence

the length can be used for quantification purposes.

The NAS for a sample, x∗
k,i, is then obtained by projecting it onto the unique

analyte space as shown in Figure 3.4. In PLS the regression vector is assumed to
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3.2. The multivariate detection limit

Figure 3.4: Schematic illustration of the net analyte signal projection (x∗
k,i)

into the null space of the interferents (X−k) from Kalivas.68

point in the same direction as the NAS and with this insight Bro and Andersen67

show that the NAS can be obtained through the regression vector, b:

x∗
k,i = b

(
bT b

)−1
bTxi

The merit of the NAS is that the calibration problem now becomes univariate

and figures of merit from univariate statistics (hence Equation 3.2) can be used in

describing a multivariate model. While compressing the problem into a univariate

problem can seem appealing, it does not follow the argumentation for estimating

the prediction uncertainty in Paper II requiring sample-specific estimates. The

argumentation for sample-specific uncertainties for PLS calibrations is still that

the uncertainty depends on the concentration of interferents as well as the analyte

of interest, or in as stated in Paper II, that the distance to the center of the

model does not depend on the analyte concentration alone. This is illustrated

in Figure 3.5 where the estimated confidence limits per sample is plotted against

the estimated urea concentration. The consequence is that every sample will have

an associated multivariate detection limit.69 In this framework Boqué et al.69

as well as Allegrini et al.70 describe methodologies for obtaining sample-specific

multivariate detection limits.
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3. Monitoring membrane permeate quality

Figure 3.5: Sample-specific prediction errors against prediction urea con-
centration.

3.3 Tensorisation of NIRS data

The NIR spectrum of water is sensitive to changes in hydrogen-bond strength and

hydration.71,72 Solvents dissolved in water such as ions, organic monomers and

polymers can interact with water absorption bands and induce spectral changes.

In addition, temperature changes also effect the water spectrum by shifting band

positions or absorbance intensities. These changes were identified as the main

source of the prediction uncertainty in Paper II.

As a consequence, a large number of samples spanning different variations of

interferences are needed to make a PLS regression model robust. This is a known

challenge in PLS calibration. While it is a burden to collect a relative large data

set with the desired variation, the ability to detect unknown interfering compounds

(e.g. through residuals) is known as the first-order advantage. The term first-order

refers to the tensor algebraic notation where a first-order tensor is a vector. This

terminology is often used to classify calibrations in terms of the dimensionality of

the data.73–75 The simplest is a zeroth-order calibration where a single response

is collected per sample (e.g. urea quantification with enzyme kit), for a first-order

calibration a vector is collected per sample (e.g. a NIR spectrum) and when a

matrix is collected per sample a second-order calibration may be possible. If a

second-order calibration method can be used to quantify urea, a calibration could

ideally be constructed from one calibration sample — this is known as the second-

order advantage. It is therefore highly desirable to establish second-order methods

to reduce and simplify the modelling step.

Since temperature can shift the absorption bands in NIR spectra it can be specu-

lated that obtaining NIR spectra a different temperatures can be used to achieve

a second-order calibration. Peinado et al.76 tried this approach on two data sets:

1, spectra of mixtures of water, ethanol and iso-propanol measured at 30, 40, 50,

60 and 70◦C in the spectral range from 580 to 1090 nm, and 2, an in-line data
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3.3. Tensorisation of NIRS data

set where six batches consisting of either water, glycerine and ethanol separately

or binary mixes were measured during temperature cycles while also diluting the

batch. In the study by Peinado et al.76 PARAFAC was used to decompose the

NIR data set in to a trilinear model consisting of scores and two loadings (see Box

4). The obtained scores were related to the reference values (mass fractions of the

constituents) by multiple linear regression and the loadings were used to predict

scores of the validation samples. Then the multiple linear regression model was

used to predict the concentration of the new validation samples from the predicted

scores. The purpose of using PARAFAC was to capture the systematic temper-

ature variation in one of the loadings and thereby making the obtained chemical

compound scores (representing the concentrations) independent of temperature.

Using PARAFAC combined with multiple linear regression it was possible to im-

prove the predictions and obtain more parsimonious models compared to PLS

regression models. The predictions were especially improved when the test set

was measured at a temperature which was different from the calibration set (as

inter- or extrapolation). In an attempt to counter the temperature variation found

in Paper II, an experiment was conducted to create such a three-way NIR data

set.

My experimental set-up consisted of a peristaltic pump that circulated the sample

from the reservoir across the flow-cell and back to the reservoir as shown in Figure

3.7. The samples were gradually heated by a magnetic stirrer heating plate and the

actual temperature of the solution was measured with a Pt100 probe and logged

with a pHTemp2000 pH and temperature data logger (MadgeTech, U.S.). The

NIR spectra were acquired every 30 seconds during heating of the samples on the

same instrument and settings as described in the Paper II. The clock on both

the NIR spectrometer and the datalogger were synchronised and NIR spectra were

matched up with temperatures based on time of acquisition. Linear interpolation

between the obtained temperatures was used to compile spectra from 30-50◦C

with 1◦C intervals. Thus, every sample consisted of 21 NIR spectra obtained at

30-50◦C for each sample. NIR spectra were pre-processed using Savitzy-Golay

second derivative, after which the data cube was assembled such that samples

constituted the first mode, temperature the second mode, and wavelengths the

third mode. The dataset was then mean centered on the first mode (the sample

mode). The seven samples were either urea or lactose in water, or mixtures of

these two compounds as shown in Table 3.1.
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3. Monitoring membrane permeate quality

Box 4: PARAllel FACtor analysis - PARAFAC

PARAFAC is a multi-way decomposition method that can be viewed as a gener-

alisation of the two-way method pricipal component analysis.77,78 For simplicity

and the fact that PARAFAC is often used to solve trilinear problems, it is here

explained for the three-way case only. For a three-way data set, X (IxJxK), a

three-way PARAFAC model is given by three loading matrices A, B and C where

single elements can be expressed as

xijk =

F∑
f=1

aif bjfckf + eijk

Loading matrix A is referred to as scores and it contains the sample specific infor-

mation (usually concentrations). Graphically PARAFAC can be seen as in Figure

3.6.

Figure 3.6: Graphical illustration of a three-way PARAFAC model.

Whereas bilinear methods such as principal component analysis have rotational free-

dom leading to an infinite number of solution, PARAFAC does not, leading to one

unique solution. Obtaining a unique solution leads to unambiguous decomposition

which obviously is a very attractive feature.

However, to reach a valid PARAFAC solution three requirements must be met: 1,

data must be trilinear 2, the noise must be random and not too severe 3, the chemical

rank of the system — the number of independently varying chemical components —

must be estimated correctly. Typically excitation emission fluorescence spectroscopy

is a well behaving trilinear system where the underlying emission and excitation

spectra of the chemical phenomena can be retrieved (see Box 5 on page 61); GC-MS

is also trilinear under ideal conditions (see e.g. Paper IV for more information).

In Figure 3.8 the temperature induced variation can be seen. The data cube had

a chemical rank of three (water, urea and lactose) and thus a three component

PARAFAC model was fitted. The scores and loadings of the model can be seen in

Figure 3.9. From the spectral loadings the first component (blue line) is identified

as urea and the corresponding scores accurately describe the urea concentration

as seen in Figure 3.10. The remaining two components in the spectral loadings

are very similar from 2070 – 2225 nm after which lactose shows its specific signals

around 2270 and 2294 nm. Inspecting the temperature mode urea seems to be

temperature independent, in other words, the urea signal does not shift over the
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3.3. Tensorisation of NIRS data

Figure 3.7: The experimental set-up used to acquire the 3-way NIR dataset.

(a) (b)

Figure 3.8: Second derivative near infrared spectra of water and solutions
of water with lactose and / or urea. Urea absorption bands at
2155 nm and 2197 nm (a). Lactose absorption band at 2270
nm and an absorption band which was present in all samples at
2294 nm (b).
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3. Monitoring membrane permeate quality

Table 3.1: The exact concentrations of the laboratory samples used to gen-
erate the 3-way NIR dataset.

Sample No. Urea conc. (ppm) Lactose conc. (ppm)

1 5252 956
2 2221 4172
3 3148 0
4 1037 0
5 0 0
6 0 5445
7 0 2063

Figure 3.9: Three component PARFAC model with the seven samples at 21
different temperatures from 2070 - 2325 nm. Core Consistency
51.

temperature range used. Water and lactose NIR signals, however, are temperature

dependent and spectrally overlapping. Different attempts to separate the water

and lactose signals were performed using a PARAFAC model with constraints in

the temperature mode. The idea was to force lactose and water to have different

temperature loadings ideally leading to deconvolution of their spectral loadings.

One PARAFAC component in the temperature mode was constrained to be linear

and increase over the temperature development, which is the opposite of the water

temperature dependency seen in Figure 3.9. However, this broke the correlation

between the urea concentration and any of the PARAFAC components (results

not shown). From a spectroscopic point of view, lactose and water may interact

(by e.g. forming hydrogen bonds), meaning that it may be impossible to separate

lactose and water. This is also hinted at by a low core consistency∗ of 51.

∗The core consistency is a measure of how appropriate the PARAFAC model is. A core
consistency of 100 indicates perfect fit79
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3.3. Tensorisation of NIRS data

Figure 3.10: Correlation between concentration of urea and scores from
three component PARAFAC model.

In conclusion the three component PARAFAC model showed the urea signal to

be unaffected by temperature and this information could be efficiently extracted

from the data cube. However, the lactose signal was found to be so strongly inter-

connected with the water signal that they could not be estimated independently

by PARAFAC.

The spectral range chosen for the detection of urea has been based on work

done in clinical research. Another spectral range may have been identified by

contrasting high concentration urea sample to water and finding the NIR active

areas. It can be expected that both the shoulder of the second overtone of water

which carries information about N-H and the short-wave NIR range (950-1050 nm)

also carrying information about N-H could be used instead.

It should be noted that no comparison with PLS prediction performance has

been made since the concentration range in this experiment is way above the con-

centrations investigated in the Paper II. The purpose of this experiment was to

explore the feasibility of using three-way NIRS method to overcome the tempera-

ture challenge. It should also be noted that setting up a commercial / professional

three-way NIRS solution modulating temperature may turn out to be too complex

for daily practise.
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Chapter 4

Characterising evaporator condensate

In the production process of protein and lactose ingredients, UF or RO retentate

are concentrated further via tubular falling film evaporators (Figure 4.1). In this

type of evaporator system the feed enters at the top and is spread over a calandria

(or liquor distributor) which is steam heated on the outside. The feed is pre-heated

to the operating temperature and is introduced into the unit where evaporation

takes place under vacuum, thus lowering the evaporation temperature resulting

in gentle processing. The calandria spreads the feed in thin films to increase the

surface to volume ratio thereby increasing the evaporation rate. Evaporator plants

are usually built as several units in series concentrating the product more and more

as it travels along the system, maximizing energy efficiency by heat recovery over

the successive stages. The vapour is collected as condensate and the concentrated

feed is sent to a spray drying operation. This evaporator condensate is another

process-water recovery source and will be the topic of this chapter.

Three evaporator plants are running at AFI: Lactose2 (L2) is the newest and

largest plant, while Wiegand1 (W1) and Wiegand2 (W2) are older and smaller.

W1 and W2 each have two sampling points that make it possible to collect con-

densate from the first evaporator stage, where the product is not as concentrated

as further downstream, and from the second (and last) evaporator stage. Conden-

sate streams are combined up-stream from the sampling point for L2 resulting in

samples that are composites of condensate from all evaporator stages in this plant.

Similar to the membrane permeate in Paper I, the evaporator condensate was

analysed with the less biased and un-targeted GC-MS and ICP-OES approach.

Several spectroscopic methods were also tried in an attempt to capture the quality

of the condensate over the course of full production runs on industrial evaporator

plants spread over two investigations.
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4. Characterising evaporator condensate

Figure 4.1: Schematic example of a circulating falling film evaporator from
Buflovak.80

4.1 First investigation

4.1.1 Materials and methods

The first investigation on evaporator condensate was focused around the L2 plant.

Twenty-four samples were collected in 250 ml sterile, amber, polypropylene sam-

ple bottles (ISOLAB, DE) over the course of a full production run (20 hours).

Conductivity (HI2030-01 edge with conductivity probe, Hanna instruments, US),

COD (2 ml water sample analysed as is with low range test tubes (0-150 mg O2·
l−1) digested in a AL125 thermoreactor at 150◦C for 120 minutes and measured

in a AL200 COD VARIO photometer all from Aqualytic, DE), NIR spectra (same

setup as in Paper II), ICP-OES (same setup as in Paper I), fluorescence EEM

spectra (F900 Edinburgh Instruments UK, excitation: 250–450 nm in 5 nm steps,

emission: 252–500 nm in 2 nm steps, 0.1 sec integration time, 1st and 2nd order

Reyleigh scatter removed) and UV-Vis spectra (Evolution 220 UV-visible spec-

trometer from ThermoFischer Scientific, quartz cuvette with 1 cm path-length,

190-1100 nm in 2 nm steps, 0.4 sec integration time) were measured on all sam-

ples while infrared spectra (ABB Bomem MB 100 FT-IR (CA) with attenuated

total reflectance crystal, 8 cm−1 resolution, 64 scans), ammonia / urea and lactose
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4.1. First investigation

(both kits from MegaZyme, IRE with 0.20 and 2.00 ml sample volume, respec-

tively) were measured on a selection of samples.

Box 5: Ultraviolet-visible and fluorescence spectroscopy

Ultraviolet-visible (UV-vis) and fluorescence spectroscopy are described together in

this box as they can be considered complementary techniques. A detailed account

has been done by Atkins and de Paula.81

Similar to NIRS (Box 3) UV-vis spectroscopy concerns excitation of molecules and

absorption of light. In UV-vis spectroscopy electrons are excited from the highest

occupied to the lowest unoccupied molecular orbital. This requires far more energy

than inducing fundamental vibrations and thus photons absorbed are in the visible

or UV range. UV-vis active compounds are called chromophores and most often

contain carbon-carbon double bonds, carbonyl or aromatic rings.

Figure 4.2: Jablonski diagram of elec-

tron excitation and po-

tential photon emission.

Ordinarily the energy absorbed by a chro-

mophore is degraded into thermal motion.

However, some molecules will emit a pho-

ton instead — these molecules are known

as fluorophores. Figure 4.2 illustrates the

energy diagram of UV-vis absorption and

the fluorescence emission of a photon.

In UV-vis spectroscopy the transmittance is

measured while in fluorescence spectroscopy

the emitted light is measured perpendicular

to the incident light. A sample will be ex-

cited with a number of wavelengths and an

emission spectrum for each can be collected

into fluorescence landscapes also known as

excitation emission (EEM) landscapes. In

this configuration fluorescence spectroscopy

focuses on the light emitted from the sam-

ple, but will also collect the scattered exci-

tation light known as Rayleigh scattering as

well as Raman scatter.

4.1.2 Results and discussion

The element concentrations in the evaporator samples were below the detection

limit (dl, reported for all elements in parenthesis in this paragraph) for aluminum

(13.6 µg·l−1), bismuth (34.3 µg·l−1), calcium (5.5 µg·l−1), cadmium (20.3 µg·l−1),

cobalt (5.8 µg·l−1), chromium (6.2 µg·l−1), copper (13.6 µg·l−1), magnesium (24.6

µg·l−1), manganese (11.1 µg·l−1), nickel (1.5 mg·l−1) and strontium (1.57 µg·l−1).
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4. Characterising evaporator condensate

Only sodium (35.0 µg·l−1), potassium (4.6 µg·l−1) and lithium (70.6 µg·l−1) could

be quantified in the evaporator samples; the time series are shown in Figure 4.3.

Figure 4.3: ICP-OES estimated concentrations of sodium, potassium and
lithium in evaporator condensate samples from L2 collected in
the first investigation over the course of a full production run.

Figure 4.4: COD and conductivity measurements on evaporator condensate
samples from L2 collected in the first investigation over the
course of a full production run.

Lactose quantification was performed for six samples and all were below the de-

tection limit (0.7 ppm). The same six samples were analysed for ammonia / urea.

While urea concentrations were below detection limit (1.3 ppm) for all samples the

ammonia concentration was estimated to be between six and eight ppm (detection

limit 0.7 ppm). Infrared and NIR spectra were not able to show any meaningful

results likely due to very low concentrations of compounds other than water, and

are left out of further reporting.

COD and conductivity in Figure 4.4 showed approximately the same pattern

where values increase after start-up to continue stable. The fluorescence signals

(see Box 5) were dominated by the Raman scatter of water and to remove this

artefact an EEM landscape of Milli-Q water was recorded and subtracted from each

sample EEM landscape. This correction was necessary to obtain useful PARAFAC

models but also had the adverse effect that shot-noise increased as can be seen
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4.1. First investigation

in Figure 4.5d. The EEM landscapes were decomposed with a two component

PARAFAC model (see Box 4). Component 1 shows a dynamic behaviour similar

to the COD with a small upwards shift after 12 hours of production. Identification

of the two fluorophores is challenging as they do not resemble known individual

fluorophores, but rather complex signals as explained by e.g. Henderson et al.56

Figure 4.5: PARAFAC decomposition of fluorescence EEM spectra ob-
tained from evaporator condensate samples from L2 collected in
the first investigation over the course of a full production run.
PARAFAC scores for the two components (a), emission loadings
for the two PARAFAC components (b), excitation loadings for
the two PARAFAC components (c), and an example of a EEM
landscape of the sample taken at the time-point marked by an
asterisks in top left plot (d).

The obtained UV spectra (see Box 5) only showed absorbance around 240–300nm

as can be seen in Figure 4.6a. The peak maxima over the production run after

an off-set correction using absorbance at 975 nm can be seen on the right. A low

signal to noise ratio makes it hard to evaluate if the dynamics are similar to the

dynamics seen in the COD and fluorescence data.

It seems that the evaporator condensate contains some organic compounds that

fluoresce and absorb light around 260–280 nm in the UV region. Chemically this

could indicate that aromatic amino acids were present in the condensate samples.

For fluorescence the signal could not be enhanced significantly without increasing

the acquisition time, and since this was already high (approximately 30 minutes
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4. Characterising evaporator condensate

Figure 4.6: UV spectra obtained from evaporator condensate samples from
L2 collected in the first investigation over the course of a full
production run (a), absorbance at 272 nm after an off-set cor-
rection at 975 nm (b).

Figure 4.7: UV spectra with 10 cm path-length of three evaporator con-
densate grab samples obtained from three evaporation plants at
AFI (a). In the legend the amino-N quantification are added.
The maxima between 250–300 nm of the three samples are
marked with asterisk (*). UV spectra with 10 cm path-length
of a whey protein concentrate dilution series (b).
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4.1. First investigation

per sample) another approach was sought. UV spectroscopy also detected a signal

and to increase sensitivity a cuvette with 10 cm path-length was tested. Three new

evaporator condensate grab samples — one from each evaporator plant — were

collected and tested on the new UV setup and the results are shown in Figure

4.7a.

An amino-N enzyme kit (Megazyme, IRE; quantifies the terminal nitrogen

of amino acids and peptides) was also tested as amino acids were suspected to

give rise to the signal. The hope was that the UV signal would be able to predict

amino-N concentration in the condensate. Based on Figure 4.7a there is no obvious

relationship between the amino-N quantifications and the intensity of the aromatic

amino acids peak around 270–280 nm across the three processing plants. The issue

can be analogous to what Henderson et al.56 described in the relationship between

fluorescence and TOC in that not all amino acids give rise to a UV signal, and

if the ratio between UV-inactive and UV-active amino acids changes over time,

from plant to plant or from feed to feed, it cannot be related directly to the UV

signal. The change in amino acids composition is also hinted at in the peak shift

from evaporator plant to evaporator plant. The amino-N quantifications are also

affected by changes in length of proteins and peptides, which could disturb the

relationship.

Unfortunately the amino-N quantifications came with a high uncertainty. From

the results shown in Figure 4.7a each sample was measured in triplicates. The

standard deviations were pooled and the 95 % confidence limit was estimated to

be ± 0.11 ppm for the method.

To get an idea of the amino acid concentration / protein level in the evaporator

condensate a dilution series of whey protein concentrate (80 % whey protein,

WPC80) was measured on the UV spectrometer (Figure 4.7b). The dilution that

resembles the evaporator condensate samples most is the 0.002% WPC sample

(orange line). This indicates that the concentration of amino acids is around 16

ppm WPC equivalents (= 0.8 · 0.002%WPC= 0.8 · 0.02gWPC·l−1 = 0.8 · 20ppm
WPC)

In order to identify the fluorescing and UV active compounds GC-MS was

performed on the three grab samples with the same method as described in Paper

I, with the exception that the sample workup was modified. Starting sample

volume was 10 ml in new 50 ml falcon tubes, sample dried in freeze-drier, re-

suspended in 1 ml Mili-Q water, 100µl transferred to GC inserts and dried again

before derivatization. The identified (to level two as in Paper I82) compounds

are reported in Table 4.1.
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4. Characterising evaporator condensate

Table 4.1: Identified compounds from first and second investigation. Sym-
bols: - indicate signals found to be less than the LOD (calculated
as the mean of the blanks plus five times the standard deviation
of the blanks) for all samples; + indicates signals found larger
than LOD in at least one measurement from a given sampling
point.

1st trial 2nd trial

Compound Rt L2 W1b W2b L2 W2a W2b

Butanoic acid 4.80 - - - - - +
Di-methyl ethanamine 4.99 - - - - - +
Butanediol 6.50 - - + - - +
Propanediol 6.59 - - + - - -
Lactic acid 6.76 + + + + - +
Pyruvic acid 7.01 - - - + - -
Hexanoic acid 6.89 - - + - - -
Alanine 7.15 - - + - - -
Glycine 7.33 - - + - - -
β-hydroxybutyric acid 7.69 + + + - - -
3-methyl butanoic acid 7.83 - - + - - -
Hydroxyisocaproic acid 8.38 + + + - - -
Benzoic acid 8.57 - + + - - -
Urea 8.64 - - + - - -
Octanoic acid 8.72 - + + - - -
Phosphoric acid 8.79 - - + + - +
Benzene-diol 9.14 - - - + - -
Succinic acid 9.14 - - + + - -
Uracil 9.43 - - - + - -
Glyceric acid 9.27 - - + - - -
Decanoic acid 10.44 - + + - - -
α-hydroxy glutaric acid 11.38 - - + - - -
Pyrimidinecarboxylic acid 12.69 - - - + - -
Phosphoric acid propandiol 12.99 - - - - - +
Citric acid 13.51 - - - - - +
Sugar 13.51 - + + + - +
Lactose 18.25 - - + - - +

a Sampling the first stage of the evaporators.
b Sampling the second stage of the evaporators.
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4.2. Second investigation

4.2 Second investigation

Based on the results from the first investigation of evaporator condensate above, a

second investigation was performed focussing on UV spectroscopy, amino-N quan-

tification and GC-MS.

4.2.1 Materials and methods

Sixty-one samples were collected from 13:35 till 13:37h the following day, again cov-

ering one full production run of approximately 24 hours. UV spectra (path-length

10 cm) and GC-MS was measured for all samples with the methods described

previously and amino-N was determined for twelve samples as described above.

Furthermore, two grab samples were taken from W2 from both the first and second

stage.

Figure 4.8: Maximum UV absorbance between 250–350 nm obtained from
evaporator condensate samples from L2 collected for the second
investigation over the course of a full production run. Amino-N
quantifications with 95 % confidence bands.

4.2.2 Results and discussion

The UV absorbance and amino-N quantifications are presented in Figure 4.8. Due

to the large uncertainty of the amino-N analyses and the limited process variation

over time it is hard to determine whether the UV absorbance correlates with the

amino-N quantifications.

Interestingly, the UV absorbance makes a small upwards step around 06:00h

similar to what was seen in COD and fluorescence in the first investigation. Figure

4.9a shows the two signals superimposed and on a relative time-from-start-up axis

rather than calendar time. To emphasize the similarity in dynamic behaviour the

time-axis is converted to per-centage of the complete production run in Figure 4.9b.

It seems that UV and fluorescence are capturing some time dynamic phenomena

related to the L2 plant from two independent runs. It is reasonable to expect

that UV and fluorescence are capturing the same underlying phenomena related
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4. Characterising evaporator condensate

to aromatic amino acids as these compounds are active in both spectroscopic

techniques.

Figure 4.9: UV absorbance from second investigation and PARAFAC scores
for second component from first investigation superimposed
across their respective production run times (a). As above but
plotted against per cent of total processing time (b).

No amino acids or peptides were detected with the GC-MS as shown in Table

4.1. As in Paper I the compounds are only reported as detected or not detected

relative to a detection limit. The samples were prepared as six replicates where

some of the chromatograms for the six replicates occasionally provided meaning-

less data, possibly due to moisture migrating into the sample vials as a result of

incomplete sealing. Moisture reacts with the derivatization agent consuming it

before other compounds can. Two examples of why only detect / non-detect is

used for reporting are shown in Figure 4.10. Lactic acid is quantified frequently

above the detection limit, while pyruvic acid is only occasionally observed. The

replicates for a given sample are sorted according to time of analysis, which can

be seen clearly for e.g. sample 1015 with lactic acid. Here a clear decline in signal

as function of time of analysis is apparent. For most samples the first replicate

gives the largest signal, underlining that the compound’s concentrations are close

to the detection limit.

The evaporator W2 was sampled from both the first and final stage. In the

first stage no compounds could be detected in the samples, while some compounds

were found in samples from the second stage (Table 4.1). This suggests that the
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4.2. Second investigation

evaporator condensate quality deteriorates as the product stream becomes more

concentrated.

From Table 4.1 it is clear that lactic acid is the most often found compound.

Vourch et al.31 analysed five condensate samples from different processes and

quantified lactic acid together with lactose, ethanol, acetone and acetoin. The

concentrations reported are all in the µg·l−1 range. These compounds are very

volatile (except lactose) meaning that acetone, ethanol and acetoin will not be

detected with our presented method. Acetone and ethanol accounted for far the

most organic material of the measured compounds in the analysed evaporator

condensates by Vourch et al.31. This suggests that the work-up procedure for

our presented GC-MS method is not ideal as many volatile compounds will be

overlooked.

Figure 4.10: PARAFAC2 scores for selected compounds for all replicates of
the eleven evaporator condensate samples analysed with GC-
MS. Replicates order according to analysis sequence. Samples
collected during the second investigation. Lactic acid (a) and
Pyruvic acid (b).

Recently solid-phase microextraction (SPME) technology has emerged as an al-

ternative and automated sampling / work-up method in analytical chemistry.83

Instead of freeze-drying the samples to concentrate compounds, a polymer coated

object is emerged into the sample or presented to the headspace of the sample.

The compounds will then migrate into the polymer, effectively up-concentrating

the compounds; later they are released directly into a GC with a thermal desorp-

tion unit. Stir-bar (magnetic stirrer bar coated in the SPME material, usually
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4. Characterising evaporator condensate

polydimethylsiloxane also known as PDMS), also know as stir-bar sorptive extrac-

tion (SBSE), has been used for quantification in wastewater83 and food84 samples

with impressive detection limits in the ppb range. The reason for the high perfor-

mance is the fact the much more polymer can be used to coat the stir bar compared

to for example a single fibre typically used in aroma analysis. However, in order

to truly be quantitative matrix effects must be handled by e.g. matrix matching

calibrations, use of internal standards, and / or standard addition. Hopefully, this

is less challenging in process-water since the matrix is modest in complexity com-

pared to e.g. food and wastewater. To establish a SBSE method some work will be

required to find optimal extraction conditions (salt concentrations, temperature,

time, pH and more).85

4.2.3 Conclusions

So far it has not been possible to determine a key quality attribute for evaporator

condensates from AFI. UV and fluorescence spectroscopy indicate that amino acids

or peptides are present in the water streams, but quantification of these compounds

has not yet been successful.

In future studies alternative work-up strategies should be considered focusing

on quantifying volatile organic compounds and amino acids to avoid overlooking

potential quality attribute candidates as the current methods may have done. Stir-

bar sorptive extraction seems to be an obvious method due to the (reported) high

sensitivity.

The evaporation processes investigated here appear, similar to RO membrane

filtration processes, to be quite stable over production runs. However, this is under

the assumption that fluorescence and UV spectroscopy do capture some important

quality aspect of the process-water.
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Chapter 5

Extreme observations in food processing

In Paper I urea was identified as the main organic compound permeating the

membranes. Paper I and Paper II suggested that the investigated processing

plant performed very consistent, hence was running under Normal Operating Con-

ditions (NOC). However, the additional data presented in Chapter 2 (Figure 2.6

on page 29) documenting two occasions of lactose permeating through in quan-

tifiable concentrations might suggest that the process may be disturbed, or was

running under Abnormal Operating Conditions (AOC) from time to time. All pro-

cesses will occasionally run under AOC due to (external) disturbances and for this

processing plant it appears that the lactose concentration occasionally increases

in the permeate.

In Paper I the growth potential was investigated on actual process-water

samples under NOC. However, it could be relevant to perform these experiments

on process-water samples collected during AOC or mimicking AOC, leading to the

best imaginable growth conditions for microbes or a worst-case scenario in terms

of process-water storage time. If a worst-case scenario is to be defined for further

microbiological work and risk assessment, sampling campaigns may have to run

for extensive amounts of time to — by chance — find such a (worst-case) situation.

The worst-case scenario in this case is defined by the highest concentration of urea

and lactose that can be expected (within a defined time-frame).∗ Fortunately,

statistical tools have been developed to characterise and estimate such worst-case

scenarios and these will be the main topic of this chapter.

5.1 Extreme value theory

In most measurement based sciences extreme observations are habitually consid-

ered outliers as they do not follow the bulk of the data acquired. Due to the

infrequent nature of extreme observations they are often disregarded in statistical

∗Since urea is retained poorly disturbances will not affect the concentration significantly and
lactose should probably be the focus.
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5. Extreme observations in food processing

Figure 5.1: Illustration of the block maxima (here denoted Annual Maxima,
AM) and point over threshold (POT) method by Abild et al.88

evaluations. In some scientific fields — e.g. hydrology — focus has naturally been

on the extreme situations. Extreme rainfall and flooding both have major impact

on those affected by it, and describing these situations has been of much interest.86

Extreme value theory has evolved from mathematical statistics and Gumbel was

among the first to present statistical applications.86,87

In EVT the first step is to separate the extreme observations from the non-

extreme observations. For EVT to give reliable estimates these extreme observa-

tions must be independent and identically distributed (IID). Generally speaking

there are two approaches in extracting extreme observations: 1, block maxima

method (BM) and 2, the point over threshold method (POT). Both methods were

illustrated by Abild et al.88 reproduced in Figure 5.1. Next some aspects of EVT

will be explained and illustrated through laboratory generated data as well as

simulations.

Laboratory experiment In order to test out EVT a laboratory experiment was

set up in which liquid was drawn from two separate vessels by separate pumps.

One containing 250 ml juice (Ribena), 25 ml 5M HCl and 8l de-mineralised water,

and one containing a 0.9 % NaCl solution. The two liquids were joined in a T-

junction and mixed before measuring pH. The pumps drawing the solutions were

turned on and off in random patterns, switching every 20 seconds to induce random

variation, using a USB control unit (K8055 from Velleman inc., BE). The pH value

was logged every fifth second to generate the data set seen in Figure 5.2.

We could think of this laboratory experiment as a process signal of a pH

adjustment step in e.g. a continuous membrane separation process. It may be

paramount that pH is kept below a upper-desired value and it is important to

know how often — if ever — pH rises above e.g. 3 during a given time-span,

say 600 minutes (pH is recorded every 5 seconds so this is equivalent to 7.200

observations). Control charts can be put in place to warn operators to take action

as shown in Figure 5.3a, but this does not give a complete description of the

frequency with which the situation will potentially occur.
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5.1. Extreme value theory

Figure 5.2: pH values obtained from laboratory experiment drawing two
liquids at random and mixing.

Figure 5.3: Control limits (two and three times the standard deviations)
added to the pH values from the laboratory experiment (a), as
well as a histogram of the data (b) and the autocorrelation of
the pH signal (c).

In the laboratory experiment EVT was applied using the BM approach blocking

26 (= 2.2 minutes) consecutive observations together. This led to overall 79 ex-

treme observations which are modelled with the generalised extreme value (GEV;

explained in Paper III) distribution shown in Figure 5.4a. The pH (return-level)

that on average can be expected during 600 minutes of processing is

T = 7200/26 = 277

3.4 = F−1(1− T−1)

Notice that 7200 observations represents the time, T, of 600 minutes, but must

be in the same unit or scale as the extracted maxima. Since an extreme was
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5. Extreme observations in food processing

Figure 5.4: Generalised extreme value distribution fitted to block maxima
extracted extreme values from the laboratory experiment (a)
and the autocorrelation between the extracted extremes (b).

extracted every 26th observation, the time must also be converted back. The

average time (return-time) between observing pH values of 2.5 can be estimated

via the cumulative distribution function as

T = (1− F (x))−1 = (1− F (2.5))−1 = 22

48min =
22blocks · 26obs/block · 5sec/obs

60sec/min

Again this time estimate is in unit block as for the return-level. This is converted

to observation by multiplying with the block size to get the estimate in terms of

observations, and since observations are recorded in 5 seconds intervals it must be

multiplied with five and then divided by 60 to obtain the estimate in process time.

Extreme value theorem The extreme value theorem (also known as the Fisher-

Tippett-Gnedenko or Fisher-Tippett theorem) states that regardless of the under-

lying distribution of the original data set, the (IID) extreme observations will follow

three and only three extreme value distributions: Gumbel, Fréchet or Weibull.87,89

Fisher and Tippett gave the key results in 1928, while Gnedenko published the

formal proof in 1943.87

The fact that extremes extracted from any distribution will lead to one of the

three extreme value distributions makes it the extreme value analog to the central

limits theorem.89 Figure 5.5, 5.6 and 5.7 show examples of the theorem in action by

sampling extremes from three very different parent distributions (triangle, normal

and log-normal) and using the BM method leads to very good fits for the GEV

distribution. Inferring which of the three extreme value distributions the extreme

samples follows must be done via the tail-parameter, ξ.
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5.1. Extreme value theory

Figure 5.5: Example of the extreme value theorem. 100.000 observations
drawn from a triangle distribution (b), blocking data into sub-
sets of 100 observations and extracting maxima from each block
(a) and the resulting extreme value data set and generalised ex-
treme value probability distribution fitted onto (c).

Figure 5.6: Example of the extreme value theorem. 100.000 observations
drawn from a normal distribution (b), blocking data into sub-
sets of 100 observations and extracting maxima from each block
(a) and the resulting extreme value data set and generalised ex-
treme value probability distribution fitted onto (c).
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5. Extreme observations in food processing

Figure 5.7: Example of the extreme value theorem. 100.000 observations
drawn from a log-normal distribution (b), blocking data into
subsets of 100 observations and extracting maxima from each
block (a) and the resulting extreme value data set and gener-
alised extreme value probability distribution fitted onto (c).

Some application of EVT EVT has been applied in many other scientific

fields such as wind engineering for bridge building and estimating pipe corrosion:

• Bridge building:88 To verify the structural integrity of the Great Belt bridge

(DK) the fastest expected wind speeds across the Great Belt over the ex-

pected life-time of the bridge was estimated. To estimate the maximum wind

speed a total of nine annual maxima were extracted from the complete data

record of 9 years of consecutive 10-minute averages.

• Pipe corrosion:90,91 Process pipes are subject to damage from corrosion,

fatigue, creep and interaction between these three factors. To ensure that

the pipe’s integrity is not at risk, the thinnest / most damaged part of the

pipe is estimated using EVT. Rather than having a full data record covering

the entire pipe, the pipe will be inspected at different locations.

The two examples illustrate different scenarios in which to apply EVT. When

studying pipe corrosion finding the thinnest part of the pipe is the goal and samples

are taken to find this. Pipes are not sampled periodically in an evenly distributed

or random fashion, but rather places that are expected to be more corroded are

probably targeted, while at the same time being constrained by physical accessi-

bility of the pipe (i.e. under water, under ground or otherwise inaccessible). In
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contrast, wind speeds across the Great Belt were recorded every ten minutes year-

round leading to a complete data record. In this view dividing the data into one

year blocks (which was the accepted norm) could seem overly reductionist. Ten

years before the paper by Abild et al., Cook92 (inspired by Jensen and Franck93)

suggested to extract the maximum from each individual storm rather than the an-

nual maximum. The approach was named Method of Independent Storms (MIS).

With MIS Cook identified on average one hundred storms per year, dramatically

increasing the number of observations to use for the BM method.

Independence of observations From Figure 5.2 signal correlation is evident in

the laboratory experiment and expected since the system will have some memory

effect due to holding times and mixing. Figure 5.3 shows conventional control

limits of two and three standard deviations (a), the histogram of the data set (b)

and the autocorrelation (c).

Knowledge on the autocorrelation can help choose which EVT approach (BM

or POT) is most appropriate since both assume IID extreme observations. POT is

more näıve in this sense as it will over-estimate the number of extreme situations

when autocorrelation is present simply due to the fact that extreme as well as

non-extreme observations correlate. In the BM approach data is sub-sampled and

only one observation per block is extracted. This leads to a smaller number of

extreme observations, but also guarantees that they are independent (assuming

the segmentation is done properly). In the pH process signal example the autocor-

relation gives us a good indication that data should be sub-sampled in blocks of at

least 26 observations (2.2 minutes), which lead to uncorrelated extreme observa-

tions. Cook92 showed one way of doing this for wind speed and we show another

example for food processing in Paper III.

Blocking has another advantage other than (ideally) ensuring independent ex-

treme observations; it can also help target the analysis. Targeting should be un-

derstood in the sense that several underlying phenomena can be investigated. For

example, in a production facility producing 24 hours a day, it may be interesting

to investigate if all eight hour shifts have the same probability of extreme events

and by stratified blocking this question can be addressed.

Identically distributed observations As mentioned before, the extracted ex-

tremes must also be identically distributed. This is an established assumption in

regular statistical analysis. However, in EVT this assumption may be more dif-

ficult to satisfy seeing that usually many observations have to be collected over

extended periods of time to ensure at least some extreme observations occur. Col-

lecting data over extended time periods increases the risk of the parent distribution

changing, e.g. climate change will effect precipitation patterns in future hydrology

investigations.
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EVT is very much a tool for risk assessment. Interestingly, it has seen very few (or

no) applications within microbiological risk assessment based on an open litera-

ture search. Neither has EVT found its way (yet) into food processing technology.

In Paper II we suggest how to apply EVT to both characterise food process-

ing performance of a key quality attribute and microbiological load in the final

product.
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This tutorial presents extreme value theory (EVT) as an analytical tool in process

characterization and shows its potential to describe production performance, eg,

across different factories, via reliable estimates of the frequency and scale of extreme

events. Two alternative EVT methods are discussed: point over threshold and block

maxima. We illustrate the theoretical framework for EVT by process data from two

different examples from the food‐processing industry. Finally, we discuss limita-

tions, decisions, and possibilities when applying EVT for process data.
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1 | INTRODUCTION

Production without variation in areas such as food and dairy
technology is a utopia. Despite the evermore sophisticated
measurement and control strategies,1 some residual
uncertainty from both production technology and biological
variation will always remain in the highly complex systems
involved in food processing. During production, extreme
values will occur in the process parameters periodically
and thus have impact on final product composition. Even
if no direct consumer risks are introduced under those
extreme situations, a better description of and knowledge
on these events can be a valuable asset from a manage-
ment‐level or control and optimization point of view.
Despite extreme situations occurring infrequently by nature,
the consequences can be significant of lost revenue, and
with the ever‐increasing scale of operations encountered in
the food industry, the ability to characterize extremes is
economically relevant. In process‐monitoring extreme values
of key‐processing parameters are habitually considered
outliers, or otherwise not regarded in a statistical sense.
These very large deviations from the desired set‐point
(either on the low or high end) lie in the very tails of the
statistical distribution. Normal and related distributions from

classical statistics focus on the mean and the spread around
the mean, and often do not describe tail behavior well.

Describing a process parameters’ extreme behavior can be
very informative: how often do we see a deviation from the
set‐point of this size (the so‐called return‐time), how large a
deviation can we expect to see over the course of 1
production run (return‐level), or are different production sites
running the same process observing extremes at the same rate
(plant‐ or company‐wide optimization and alignment)? These
are some of the answers and information statistical analysis of
extreme observations can provide. By extreme value analysis
(EVA) process, managers can acquire systematic and
objective measures of the process performance that were
previously unknown. Extreme value analysis is normally
associated with risk management to perform probabilistic
analysis of rare, but severe, events, in a much more informed
way; here, we argue that EVA can be a relevant tool for every-
day process management as well. Extreme value theory
(EVT) contains the tool set to describe extreme observations.
In many fields such as hydrology, wind engineering, material
testing, and finance (see, eg, other studies2-4), these tools have
been picked up and are used efficiently. However, there are
very few publications dealing with the application of EVA/
EVT principles and techniques to process characterization.

Received: 14 December 2016 Revised: 8 March 2017 Accepted: 9 March 2017

DOI: 10.1002/cem.2896

Journal of Chemometrics. 2017;e2896.
https://doi.org/10.1002/cem.2896

Copyright © 2017 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/cem 1 of 12

81



Moisture content is 1 key quality attribute in produc-
tion of spray‐dried milk powder. High moisture content
leads to accelerated deterioration (and impaired shelf life),
which may demand reprocessing of the batch or lowering
the market quality grade, while low moisture content
indicates drying more than was needed. Over drying thus
implies spending extra energy and money on processing,
and consequently selling more milk solids for the same
price. It is therefore of utmost importance that the process
parameter moisture content in milk powders is under
control. While small variations from the desired moisture
content may not impair powder quality nor impose consid-
erable extra expenditure, large deviations (extreme observa-
tions) are likely to cost substantial amounts of money and
should be visible (and to some extent predictable) from
statistical inference. At Fonterra, gross composition,
including moisture content, of whole milk powder is mea-
sured approximately every hour at‐line by Near InfraRed
Spectroscopy–based predictions.5 For our investigation, mois-
ture data from three separate production lines in two factories
were collected fromAugust 2015 toMarch 2016, and this data
set will serve as an example on how to apply and interpret EVT
in process characterization. In 1 facility, moisture data were
collected from two parallel fluid beds (denoted Factory 1a
and Factory 1b henceforth) that were fed from the same drier,
while data collected from Factory 2 originate from a separate
production line. To eliminate differences resulting from
product specific target values, the data are transformed to

percentage deviation from set‐point*:

Δ% ¼ set−point moisture%ð Þ−measured moisture%ð Þ: (1)

The data from Factory 1a are visualized in Figure 1. In
this tutorial, we look explicitly at large positive values for
Δ%, meaning powder dried more than is economically
desirable.

The process parameter in Figure 1 can be considered a
stationary series since the set‐point is known for each
observation from the processing recipe, and we can thereby
remove—or detrend—the product‐specific levels. If a set‐
point is not available, additional measures must be taken in
the form of detrending or filtering.6 This will however not
be the focus of this tutorial. As first approximation, our
hourly moisture measurements x—with numerous small and
independent disturbances acting upon them such as sampling
variation, analytical error of the NIR measurement, etc—
could be thought of as following the standard normal
distribution using the well‐known Gaussian cumulative
distribution function (CDF; Equation 2a) and probability
density function (PDF; Equation 2b):

F xð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p ∫ x
−∞ exp −

x−μð Þ2
2σ2

 !
dx; (2a)

*Note that the difference is chosen so that the extremes we want to investigate
are positive. This is done for computational convenience; if the minima of the
former are of interest the order could be switched.

FIGURE 1 Factory 1a data (n = 4565): A, small extract from the data record with product dependent set‐points (red line); B, histogram; C,
empirical cumulative distribution function; and D, deviation from set‐point over time
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f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2σ2π

p exp −
x−μð Þ2
2σ2

 !
; (2b)

where μ is the distribution location (or expected mean) of x,
and σ2 represents the spread (or expected variance) in the data
set. Note that there is no elementary function available for the
CDF of a normal distribution, but we included an open form
here to compare with other data distributions presented later
on in the tutorial. The data from Factory 1a is fitted to 2a,
and the results are shown in Figure 2.

Looking at the results in Figure 2, it is clear that the bulk
of the data is modeled well by the normal distribution but that
extremely high (and low) moisture deviations from set‐point
do not follow this expectation—a deduction that could
already be made from the empirical distributions shown in
Figure 1A,B and even the raw data in Figure 1C. The aim
of this tutorial is to discuss modeling strategies and statistical
inference on these tail extremes.

Extreme value theory and EVA are, despite their long his-
tory, only infrequently considered in the food industry—and
almost exclusively for risk assessment in areas such as heavy
metal intake from seafood.7,8 Most of the work presented in
EVT literature tends to be more theoretical and mathematical,
and the number of practical application stories is small. An
exception is the excellent introduction by Geladi and
Teugels9 that provides an introduction to extreme value the-
ory and suggested the methods could be useful in process
characterization.

In EVT, an essential step is separating the extreme from
nonextreme observations in a data set. The present manu-
script will use the so‐called generalized extreme value
(GEV) distribution for the block maxima (BM; also known
as the Gumbel method) approach in which data are divided
into conceptually meaningful blocks, and from each block,
the maximum Δ% (or, eg, some parameter minimum in other
investigative scenarios) is collected to form a new array of
data points to model on. As an alternative, the point over

threshold (POT) methodology is applied where a threshold
is determined and all values exceeding it, collectively over
the full data record, are extracted and used for modeling. It
is emphasized again that the tail or extreme values of many
processes do not match well with the bulk distributions
commonly used, and this was already recognized early on
in the development of modern/present day statistical infer-
ence.10 The history of EVT will not be covered here; for
this, we refer to the recent review by Gomes & Guillou11

plus references therein and the somewhat dated, but excel-
lent, introduction by Geladi & Teugels.9 The focus in this
work will be on the practical aspects. Through real process
data, we will demonstrate how the methods can be applied
and interpreted and show the usefulness of characterizing
extreme events in industrial food production, despite the
sometimes challenging theoretical background/frameworks
found in literature.

2 | BLOCK MAXIMA

Traditionally, BM has been used in, eg, hydrology where
obvious periodicity or blocking is present because parameters
such as annual extreme water levels are used. From these
values, statistical likelihoods such as how high could the
100 year flood be (a return‐level), or how frequent can a flood
of this magnitude be expected (a return‐time). As another
example, in the field of wind engineering, yearly maxima
have traditionally been used to estimate extreme wind speeds.
To extract independent identically distributed (IID) extreme
values, a blocking scheme called method of independent
storms was introduced. Here, the fastest recorded wind is
extracted from each storm defined by in‐between lull periods
(originally suggested by Cook in 1982).12,13 In characterizing
a sequence or time series originating from an industrial pro-
duction as shown in Figure 1D, finding a blocking scheme
is not so straightforward.

FIGURE 2 Normal distribution fitted to Factory 1a deviation in moisture content from set‐point data (n = 4565); A, cumulative distribution
function; B, QQ‐plot; and C, probability density function

TUTORIAL 3 of 12

83



Food‐processing equipment will be subjected to produc-
tion stops due to regular cleaning, maintenance, and limited
supply from upstream, rendering block size less obvious in
this semicontinuous mode of operation. The disruptive food
production process implies the need for a filtering approach
to blocking since no fixed or natural periodicity exists as
opposed to, eg, hydrology. Spray driers habitually run several
days in a row, and production only stops for CIP or lack of
feedstock. One such time segment we will call a production
run for convenience although semicontinuous production is a
more accurate description since there should ideally be no
dynamic trends in between stops.5 It is safe to assume that
individual production runs are independent, and in our exam-
ple, no explicit information about production stops was avail-
able. To systematically segment the process data into runs, we
suggest and applied a filtering procedure. First, all appropriate
production runs were identified based on two criterion: (1)
more than 3 hours between two consecutive measurements
marks a new run and (2) runs shorter than six hours are elim-
inated. During a continuous production period, the data were
segmented every 24 hours to obtain more blocks inside the
same production run. Implicitly, it was assumed that 24 hour
blocks were sufficient in extracting independent observations
of extreme events. The overall result of the extraction filtering
can be seen in Figure 3A,B, where the average block size is
21.3 hours. The average lengthwill later on be used to translate
statistical findings back into production hours.

Formally, consider eX (n × 1) containing n observations of
a parameter of interest, in our case, the full record of hourly

deviation from the moisture set‐point (Figure 1D). Split eX
into k blocks—eg, 24 hour periods—and extract the maxi-
mum from each block into X (k × 1), thus containing k local
maximum of Δ% that will be modeled on. It was shown by
Fisher et al10 in 1928 that the parent distribution F of the
extreme values in X will have attractors (asymptotes) that
belong to 1 of 3 distributions: Gumbel (Equation 3a; also
known as the extreme value type I distribution), Fréchet
(Equation 3b; type II) or reverse Weibull (Equation 3c; type
III) with the respective CDFs11 (see Figure 4):

F xð Þ ¼ exp − exp −
x−b
a

� �� �
; ξ ¼ 0; x ∈R; (3a)

F xð Þ ¼ exp −
x−b
a

� �−1=ξ
 !

; ξ> 0; x> 0 x≤ 0; F xð Þ ¼ 0;j

(3b)

F xð Þ ¼ exp − −
x−b
a

� �−1=ξ
 !

; ξ< 0; x> b x≤ b; F xð Þ ¼ 1;j

(3c)†

FIGURE 3 Histogram of extreme observations extracted from Factory 1a by the A, block maxima (BM) and C, point over threshold (POT)
approach superimposed onto the histogram of all observations. Values extracted with B, BM (k = 203) and D, POT (k = 299) superimposed onto
all data measured over time (n = 4565)

†The regular Weibull distribution is defined for minima only; the equation
shown above is known in literature as the reverse Weibull distribution.
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where b is the location parameter of the extreme value distri-
bution, a is the scale or dispersion parameter, and ξ is the
shape parameter or extreme value index. It is interesting to
note the similarity between the three extreme value distribu-
tions (EVDs) in 3a and the limiting cases they represent. In
a type III situation, the extremes are (upper) bounded; while
for type II, the EVD tail is thick, and a wider range of
extremes is predicted. The corresponding and slightly more
involved PDFs (4a) can also be seen in Figure 4:

f xð Þ ¼ 1
a
exp −

x−b
a

þ exp −
x−b
a

� �� �� �
; ξ

¼ 0; x∈R; (4a)

f xð Þ ¼ ξ

a
x−b
a

� �−1−ξ

exp −
x−b
a

� �−ξ
 !

; ξ > 0; x ≥ 0;

(4b)

f xð Þ ¼ ξ

a
x−b
a

� �ξ−1

exp −
x−b
a

� �ξ
 !

; ξ< 0; x> b: (4c)

The 3 different distributions from 3a and 4a can be gener-
alized (or combined) into the GEV distribution11:

GEV ξ; xð Þ ¼
F xð Þ ¼ exp − 1þ ξ

x−b
a

� �−1=ξ
 !

; ξ≠ 0; 1þ ξ
x−b
a

≥ 0;

F xð Þ ¼ exp − exp −
x−b
a

� �� �
; ξ ¼ 0; x∈R:

8>>>><
>>>>:

(5)

The shape parameter, ξ, determines the type of EVD
(more Gumbel, Fréchet, or reverse Weibull like). If the
shape parameter is estimated to be below 0, the data fol-
lows a Weibull‐type distribution (ξ<0), which is charac-
terized by a finite tail, where the Gumbel (ξ=0) and
Fréchet (ξ>0) distributions have infinite tails, with the
latter being more heavy tailed (Figure 4B). This shape
parameter is thus a key indicator to characterize the
behavior of extremes in a production proces and gives
the freedom to maneuver between the classical type I,
II, and III EVDs. It is advisable to interpret the model
parameter estimates at the end of an analysis because it
might be beneficial to characterize the process perfor-
mance of extreme values in terms using the three ξ
architypes (3a and 4a).

FIGURE 4 A, cumulative distributions function (CDF) and B, probability density functions (PDF) for block maxima distributions; C, CDF and D,
PDF for point over threshold distribution
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The PDF for the GEV distribution is

GEV ξ; xð Þ ¼
f xð Þ ¼ 1

a
1þ ξ

x−b
a

� �−1−1=ξ

exp − 1þ ξ
x−b
a

� �−1=ξ
 !

; ξ≠0;

f xð Þ ¼ 1
a
exp −

x−b
a

� �
exp − exp −

x−b
a

� �� �
; ξ ¼ 0:

8
>>>><
>>>>:

(6)

Using this distribution and the parameter estimates, the
next obvious step is statistical inference on the data. The
return‐time, T, is the average frequency by which a value of
level x can be expected, and it is obtained from the CDFs12

in Equations 3 or 5:

F xð Þ ¼ 1−T−1; (7a)

T ¼ 1−F xð Þð Þ−1: (7b)

The return‐level is the value that on average can be
expected over a period T and can be estimated from the
inverse of the CDF:

x ¼ F−1 1−T−1� � ¼ bþ a
ξ

1− − ln 1−T−1� �k� �� �
; ξ≠ 0;

(8a)

x ¼ F−1 1−T−1� � ¼ b−a ln − ln 1−T−1� �� �
; ξ ¼ 0: (8b)

Parameters estimated in Equations 3, 4, 5 and 6 are in the
unit “block.” Each extreme observation represents the block

from which it was extracted and thus the time span covered
by the block. Consequently, the return‐time estimated by the
EVDs will be expressed of number of blocks, not production
hours directly. This will be elaborated upon in the Section 4.

The BM extreme observations from Figure 3B are fitted
to the generalized EVD from Equations 5 and 6, shown in
Figure 5A‐C, using a maximum likelihood estimation proto-
col (MATLAB® R2014b including the Statistics Toolbox™,
Mathworks, USA).

3 | POINT OVER THRESHOLD

The POT approach is more decision free compared to BM.
Rather than extracting the most extreme observation per
block, and thus having to define the unit block, all values
exceeding a defined threshold are extracted from data series
eX. It is argued that with a properly defined threshold, more
relevant extreme data are extracted this way, leading to more
observations and a lower uncertainty in the parameter estima-
tion. The extracted values can be modeled by the asymptotic
generalized Pareto distribution (GPD):

GPD ξ; xð Þ ¼
F xð Þ ¼ 1− 1þ ξ

x−b
a

� �−1=ξ

; ξ≠ 0; 1þ ξ
x−b
a

x> 0;

F xð Þ ¼ 1− exp −
x−b
a

� �
; ξ ¼ 0; x> 0:

8>>><
>>>:

(9)

with the corresponding PDF

FIGURE 5 Generalized extreme value/GEV distribution (k = 203); A, cumulative distribution function (CDF); B, QQ‐plot; and C, probability
density function (PDF); generalized Pareto distribution (GPD) (k = 299) D, CDF, E, QQ‐plot, and F, PDF

6 of 12 TUTORIAL

86



GPD ξ; xð Þ ¼
f xð Þ ¼ 1

a
1þ ξ

x−b
a

� �−1−
1
ξ; ξ≠0;

f xð Þ ¼ 1
a
exp −

x−b
a

� �
; ξ ¼ 0;

8>>>><
>>>>:

(10)

where ξ again is the shape parameter, a is the scale
parameter, and b is the location parameter. The location
parameter, b, however, is directly determined by the
selected threshold. An example of the GPD can be seen in
Figure 4. To estimate, eg, return‐time T, the extraction
procedure is assumed to behave according to a Poisson
process with rate parameter λ = k/n, where k is the number
of data points extracted (which is thus a function of the
selected threshold) and n is the total number of
observations—in our case, hourly moisture measure-
ments.12 From Equation 9 and the rate parameter λ, the
return‐time T for a value of level x using POT can be
estimated2:

F xð Þ ¼ 1− λTð Þ−1; (11a)

T ¼ λ 1−F xð Þð Þð Þ−1: (11b)

The POT return‐level can be estimated through the
inverse CDF:

x ¼ F−1 1− Tλð Þ−1
� �

¼ bþ a
ξ

1− λTð Þ−ξ
� �

; ξ≠0; (12a)

x ¼ F−1 1− Tλð Þ−1
� �

¼ bþ a ln λTð Þ; ξ ¼ 0: (12b)

While the advantage of POT is usage of typically more
data points leading to better estimation of model parameters,
the challenge is where to set the threshold value. Setting it too
close to nonextreme values will bias the estimated parameters
towards nonextreme or normal process behavior, while set-
ting the threshold too excessive will lead to high uncertainty
in the estimated parameters due to an insufficient number of
data points—an example of the so‐called bias‐variance trade‐
off in model building. Despite threshold selection being the
most crucial decision when using the POT method in EVT,
no clear‐cut strategy has been established.14 A heuristic
approach was chosen here by evaluating the fit in QQ‐plots
(similar to what is shown in Figure 2B) for different POT
threshold choices. It was observed that the uncertainty in
the estimate increases when lowering the threshold, as a
result of the bias‐variance trade‐off described previously.
The shape parameter ξ did not fluctuate much and remained
close to 0.1. The threshold value for further evaluation was
set to be 0.22% moisture difference between process set‐point
and measured hourly value. The parameter estimation and

distribution fitting using this threshold and GPD is presented
in Figure 5D‐F.

It should be recognized here that the POT strategy is
more influenced by, eg, steady‐state behavior/detrending of
the data record. An exaggerated example could be if we apply
the POT approach to the (raw) data shown in Figure 1A,
which illustrates a set‐point change. If a fixed threshold is
applied, only extreme data points from the second phase
would be extracted, masking the extreme production values
from the first part. This way, the assumption of IID observa-
tions ending up in the EVT data record is violated. The BM
method on the other hand always (forcibly) samples from
the entire data length.

4 | INTERPRETATION OF THE
MODELS

Figure 5 shows the CDF, QQ‐plot, and PDF for the two
EVT strategies (BM and POT) applied to the moisture
deviation data record from Factory 1a. For comparison,
the classical normal distribution theory, applicable to the
bulk data, is seen in Figure 2. From the QQ‐plot of the
normal distribution, it is clear that the positive (and nega-
tive) tail of the data collection is not modeled effectively,
while for both the BM and POT method, the extremes
are modeled well. Selected return‐times T for Factory 1a
are presented in Table 1. Note that the return‐time for
BM (Equation 7b) comes of blocks, not directly production
hours. To make the results between BM and POT compara-
ble and make the finding more suitable for daily production
practice, the BM return periods are multiplied with the
average block time span (21.3 hours). The smallest exceed-
ance level of 0.2% from the set‐point cannot be determined
for the POT model since the threshold was set at 0.22%.
The normal distribution return‐time estimates are sensible
for an exceedance of 0.2%, but at 0.4%, they significantly
deviate from the EVT‐based estimates, and for an exceed-
ance of more than 0.5%, no meaningful result can be
obtained under the normal distribution assumption.

The results in Table 1 also highlight a distinction between
BM and POT. Taking the return‐times for 0.4%, for example,
the POT analysis in combination with all hourly observations
from 1 production campaign of 8 months (Figure 1D) pre-
dicts a deviation of 0.4% on average every 67 production
hours. It does not take into consideration any systematic var-
iation from factors such as seasonal weather influences, time‐
after‐last‐maintenance, etc, which might lead to extreme
values occurring more often than normal over certain inter-
vals, hence lumped together. Block maxima and its 24‐hour
filtering approach on the other hand implicitly constrain the
influence of some of these external aspects on the extreme
values. The same 0.4% deviation case for BM should thus
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be read: with all hourly observations from 1 production cam-
paign of 8 months, using the 24‐hour filtering strategy, we
predict a deviation of 0.4% on average ever 129 production
hours. The latter might initially seem overly complex, but
the two are complementary.

In Table 1, the discrepancy between BM and POT results
for EVT analysis decreases as the exceedance from the set‐
point increases (while at the same time leading to wider
uncertainty intervals, as expected). To visualize this pattern,
Figure 6 shows the exceedance from set‐point as a function
of return‐time for BM and POT.

Table 2 shows the EVT parameter estimation results for
all 3 factories. From the BM method, the shape parameter
can be observed to be above 0 for Factory 1a,b, while Factory
2 has a shape parameter confidence interval that includes 0.
This suggests that the extreme observations in Factory 1a
and 1b follow a Fréchet/type II distribution, which is the
heavy‐tailed infinite profile (Figure 4B), while the extreme
observations in Factory 2 follow a Gumbel/type I distribution
with the infinite, but not so heavy tail profile (Figure 4B).
This information supports the estimated return‐levels above
that indicate Factory 1a and Factory 1b are more prone to
produce milk powder with a larger deviation from the mois-
ture set‐point given the same production time.

Many approaches can be taken to use the information
captured in the EVT models. As an example, Table 3
describes the expected return‐level after 720 hours of produc-
tion for the three different production lines. As expected,
Factory 1a and Factory 1b have almost identical estimates
since they are fed from the same spray drier. Factory 2 on
the other hand has a significantly lower return‐level, telling
us that over a period of 720 hours, a much smaller worst case
extreme deviation can be expected.

TABLE 1 Return‐times in production hours for selected exceedance levels for the normal distribution, EVT‐BM, and EVT‐POT; 95% CIs esti-
mated from Naïve bootstrapping15

Δ% Normal Distribution Return‐Time, h BM Return‐Time, h POT Return‐Time, h

0.2% 12 [11‐14] 39 [36‐45] ‐

0.3% 71 [54‐95] 73 [62‐92] 31 [28‐35]

0.4% 753 [477‐1221] 129 [103‐174] 67 [56‐80]

0.5% 1.51·104 [0.72·104‐3.21·104] 212 [161‐305] 129 [105‐171]

0.6% 53·104 [19·104‐160·104] 327 [227‐503] 234 [179‐343]

Abbreviations: BM, block maxima; CIs, confidence intervals; EVT, extreme value theory; POT, point over threshold; ‐, not available/not defined

FIGURE 6 Return‐times versus exceedance from set‐point for
moisture contents for Factory 1a; estimated Return‐times (solid line)
and 95% CIs (dashed) estimated from naïve bootstrapping.15 BM, block
maxima; CIs, confidence intervals; POT, point over threshold

TABLE 2 Modeling choices and estimated extreme value distribution parameters for the 3 production lines; 95% CI estimated from bootstrapping

Factory 1a Factory 1b Factory 2

BM Avg. block size: 21.3 Avg. block size: 21.3 Avg. block size: 14.7
ξ = 0.330 [0.238‐0.500] ξ = 0.388 [0.287‐0.496] ξ = 0.037 [−0.077‐0.148]
a = 0.098 [0.081‐0.113] a = 0.092 [0.079‐0.105] a = 0.121 [0.108‐0.133]
b = 0.173 [0.159‐0.188] b = 0.151 [0.138‐0.165] b = 0.179 [0.160‐0.201]

POT b = 0.22 Δ % b = 0.22 Δ % b = 0.22 Δ %
λ = 0.0655 λ = 0.0519 λ = 0.0509
ξ = 0.199 [0.050‐0.342] ξ = 0.098 [−0.072‐0.240] ξ = ‐0.099 [−0.255‐0.018]
a = 0.105 [0.085‐0.127] a = 0.144 [0.115‐0.182] a = 0.144 [0.121‐0.175]

Abbreviations: BM, block maxima; CI, confidence interval; POT, point over threshold.
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5 | MICROBIOLOGICAL DATA CASE

To illustrate the diversity of EVA/EVT applications in the
food industry, a second example deals with biological counts
in whole milk powder. These counts are determined in a qual-
ity assurance laboratory a variable number of times for one
batch of produced powder. Data from July 2013 to February
2016 are available from two factories, here called J and K.
The batch size and processing speed (kg·hour‐1 or an equiva-
lent) differs from site to site, and the timescale is expressed in
number of produced batches over a time period. Biological
counts have been masked due to confidentiality reasons.
For this case, only the BM approach is used since we
expect count observations within 1 batch to be correlated,
and to get rid of this signal correlation, a blocking strategy
can be used. Two blocking extreme value strategies were
applied: (1) pool all observations during a 10 day period
and (2) pool all observations from 10 consecutive batches.
Figure 7 shows counts obtained from Factory J over 2 full
and 1 partial production season. For Factory J, the 10‐day
blocking strategy and the 10‐batch blocking strategy are
quite different. Factory K (data not shown) follows a more
constant production schedule, leading to more similar
blocks for the two strategies.

Generalized extreme value models were fitted to the data
extracted with the 10‐day and 10‐batch blocking strategies for
both factories J and K. The PDFs and QQ‐plots can be seen
in Figure 8. From the QQ‐plots in Figure 8A‐B, it follows
that the fit for Factory J differs somewhat between the strate-
gies—this is also observed in Figure 8C where the PDFs do
not overlap completely. However, when estimating return‐
times for the biological counts higher than level B, the results
converge. For Factory K, the two strategies only result in very
slight differences in the model fits (Figure 8D‐E) leading to
almost completely overlapping PDFs (Figure 8F). Comparing
the 10‐batch strategy between the two factories (Figure 8G),
it is obvious that they do not have the same extremal behav-
ior; the same is observed for the 10‐day strategy in Figure 8
H. The conclusion is that the blocking strategy is less impor-
tant as long as it is reasonable and that EVT can be used to
compare the two factories biological counts extremal behav-
ior, illustrating the versatility of applying EVT on production
and process data.

6 | CONSIDERATIONS IN EXTREME
VALUE ANALYSIS

The natural focus in EVT is in, eg, hydrology extreme
flooding or other low frequency events estimated via extrap-
olation from the available sparse data. In the characterization
of food production systems on the other hand, extremes with
a moderate frequency might be of economic significance,
while extrapolated extremes such as an unrealistically
high‐moisture value in milk powder are prevented by the
automated controls and operator interventions. From this per-
spective, production characterization as discussed in this
investigation can be seen as operating on the left‐hand side of

TABLE 3 Estimated return‐levels for moisture exceedance during
720 hours (30 days) of production for the 3 production lines; 95% CI
estimated from Naïve bootstrapping15

Factory 1a (Δ%) Factory 1b (Δ%) Factory 2 (Δ%)

BM 0.82 [0.68‐1.06] 0.84 [0.67‐1.05] 0.68 [0.59‐0.78]

POT 0.83 [0.71‐0.97] 0.85 [0.74‐0.97] 0.66 [0.59‐0.72]

Abbreviations: BM, block maxima; CI, confidence interval; POT, point over
threshold.

FIGURE 7 Biological counts for 2 full and 1 partial season; blocks illustrate 10‐day and a 10‐batch pooling strategy; y‐axis is in arbitrary and
truncated biological counts for confidentiality reasons
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Figure 6 while flooding is naturally positioned on the right‐
hand side (out of necessity).

A potential limitation with the BM strategy in extreme
value analysis is not using all extreme observations available
as compared to the POT approach. However, Ferreira and
De Haan16 argue that there are several practical reasons for
using the BM method: often only BM values (such as
monthly or yearly maxima) are available, and the method
may thus be easier to apply as block periods appear natu-
rally. Moreover, if the observations in the data record are
not IID, the POT method may not be appropriate. The last
argument is relevant in process monitoring. The rapid col-
lection of data from a production process often results in
high autocorrelations in the signal; implicitly meaning that
POT extracted values may not be independent. Setting the
threshold for the POT method may alter the dependency
(correlation) between the extracted data but not necessarily
solve the problem.

This threshold is a parameter that must be defined by the
user, and yet, no clear‐cut method has been established.14

Similarly, how to select the best blocking scheme when using
the BM method is not readily obvious. In this case, however,
one can use domain knowledge as guideline to set up an
appropriate plan. We note that return‐time estimates at a
return‐level 0.5 % for our moisture values in milk powder
example did not change significantly as a function of either
threshold selected (tested from b = 0.1% to 0.4%‡) or
blocking size (from 10 to 40 hours§) for, respectively, the
POT or BM approach.

‡Threshold, return‐time for 0.5 % deviation from set‐point for Factory 1a:
0.10% (RT (h) = 123 [99 ‐ 158]), 0.22% (129 [105 ‐ 171]), 0.40% (119 [99
‐ 146]).
§Block size, return‐time for 0.5 % deviation from set‐point for Factory 1a:
10 hours (RT (h) at 0.5 % = 204 [152 – 300]), 24 hours (212 [161 – 305]),
40 hours (223 [171 ‐ 307]).

FIGURE 8 Overview of model fit across strategies and factories: A, Factory J 10‐batch strategy; B, Factory J 10‐day strategy; C, probability
density functions (PDFs) for Factory J; D, Factory K 10‐batch strategy; E, Factory K 10‐batch strategy; F, PDFs for Factory K; G, PDFs for 10‐
batch strategy across factories; and H, PDFs for 10‐day strategy across factories
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An advantage of the BM approach is using the shape
parameter to characterize the processing system. In the mois-
ture case, factories 1a and 1b’s extreme observations sug-
gested the Fréchet or type II extremal distribution inferring
a heavily tailed pattern, while Factory 2’s extreme observa-
tions showed a Gumbel distribution with a less heavy tail pat-
tern. In the case of industrial process characterization where
several observations per batch are available, we are inclined
to recommend using the BM method with a suitable blocking
scheme. Despite the fact that not all extreme observation may
be included, the ones that are included are more likely to
obey the assumptions of the models.

Care should be taken concerning the sampled signal
when applying extreme value theory. Extreme value theory
requires long series of observations to contain a reliable
amount of extreme data points from a stable, in control sys-
tem. In a production environment, this can prove difficult
as, eg, continuous process improvements (hence, permanent
optimization and tuning) may perturb the system. For exam-
ple, if the analytical method changes, ie, the NIRS calibra-
tions are updated or adjusted and this changes the
uncertainty in predictions, this new data cannot necessarily
be combined with old data. Or, if the manufacturing practice
changes, the system may also change, thus invalidating the
models built on historic records. This is true for all statistical
models, but since EVT works on extremes, often collected
over long time periods, these models are more at risk than
most others.

In the cases presented here, extreme events occur over
time, as explicitly expressed in the equations. However, time
T can be converted to a simple counting probability. An
example could be measuring the active pharmaceutical ingre-
dient in many pills from 1 true batch process with NIR or
Raman spectroscopy. From such data, the return‐time or,
more relevant, the probability of producing pills with a too
low or high API contents could be estimated in the unit
one‐in‐so‐many pills for example.

It is important to note that alternative approaches incor-
porating the full data set when inferring on the extreme
values are possible. These modeling strategies will likely be
more challenging (in model selection, statistical skills of the
modeler, more parameters to estimate, etc) and should also
take into account autocorrelation where relevant, but should
be considered as alternatives to EVT.

Obtaining knowledge regarding the expected frequency
of a specific exceedance, or size of an exceedance during a
certain time period, can be used to uncover risk. Combining
this knowledge with production costs can help focus and
identify future improvements or savings. This decision is
most likely unique to each the specific manufacturer, but
regardless of whether an unknown risk or need for improve-
ment is identified, it will at least be known. Despite EVT
research being dominated by—in our opinion—overly

complicated theory and abstract concepts, the tools can suc-
cessfully be applied in process characterization. We hope that
this tutorial will make EVT more accessible in both research
and daily industrial practice.
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5.2. Estimating uncertainty

5.2 Estimating uncertainty

In Paper III confidence intervals were estimated via the näıve bootstrapping

approach as suggested by Naess and Clausen.94 The bootstrap relies on the as-

sumption that the uncertainty of a statistical parameter (here the return-time

or return-level) can be estimated from the variability generated by calculating

the statistic numerous times from new datasets constructed through random re-

sampling (with replacement) of the original dataset. This is known as the plug-in

principle.95 The bootstrap samples for the food processing case were constructed

by re-sampling the extracted extreme observations into new datasets and fitting

the GEV distribution, estimating either the return-time or return-level and col-

lecting these bootstrap estimates. In total 1000 bootstrap samples (and estimates)

were calculated. From these estimates the 2.5% and 97.5% confidence limits could

be found for the three parameters a, b and ξ.

However, during calculation of the confidence intervals for the manuscript,

meaningless result were often obtained from a given bootstrap sample. This was

a consequence of the models not converging to meaningful solutions, leading to

estimates of size infinite or simply not converging leading to not-a-number results.

Investigating this issue it became apparent that some bootstrap samples were

chosen awkwardly, generating datasets not resembling those of the original dataset.

Due to the asymptotic nature of the extreme value distributions, this can lead

to estimates that are e.g. outside the numerical limits of Matlab (> 1016), or

situations were it is impossible to fit the data sufficiently well.

Figure 5.8: Examples of good (b) and problematic (c) bootstrap sample
compared to the original data set (a) derived from the labora-
tory experiment.

Although failure to converge happened very seldom in the analysis of the pH

process signal data (Figure 5.2), poor bootstrap samples could be found. Figure

5.8 shows the original data set and an example of an unluckily / unfortunate

(defined by an estimated return-level larger than 8) and well-chosen bootstrap

sample. The tail-parameter (ξ) can be seen to differ considerably from both the
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5. Extreme observations in food processing

good bootstrap sample and the original data set model’s tail-parameter. Of course

the purpose of bootstrapping is to find the boundaries, but due to the asymptotic

nature of the distributions this is not always feasible.

For the publication this issue was circumvented by simply removing the non-

numerical results obtained from the bootstrap procedure and finding the limits

from this reduced set of bootstrap estimates. Circumventing this issue, however,

is not a solution to the problem. How the problem ideally should be solved is

left for further research, but the most promising strategy could be to switch from

näıve/non-parametric to a semi-parametric tactic where the residuals rather than

the observations are re-sampled.

5.3 Future applications of EVT in food processing

In EVT extremes are extracted from data records. In the case of Abild et al.88

and the laboratory experiment presented in this chapter full data records were

available with the aim of finding extreme observations. In the process data in

Paper III records were available, however the goal of these measurements was not

to identify extreme, but to monitor the process. The extremes could be modelled

in the latter case as an added benefit of the monitoring strategy despite not being

the original intention. The situation is different for e.g. the pipe corrosion scenario,

the long-term study in Section 2.2 and the evaporator condensate characterisation

investigations in Chapter 4 — here samples must be chosen / sampling must be

done with the explicit aim of finding extreme observations. While pipe-corrosion

problems are spatial and process characterisation are temporal, they still share the

burden of choosing when / where to sample, or put differently, a sampling strategy

is needed in these cases. In future novel applications of EVT it will probably be

helpful to distinguish which scenario an application fits.

In the opening of this chapter the microbiological worst-case scenario for membrane

permeate was outlined as an application that EVT could help solve. This would

be a pipe-corrosion type of problem, where several production runs should be

sampled a number of times similar to what was done in the long-term monitoring

investigation. From these individual subsamples (production runs) the maxima

could be extracted, and the maximum expected lactose concentrations inferred

via the extreme value distributions. In order to get reliable estimates maybe up

to 20 production runs should be sampled say five times each (speculative values).

However this is not a straight forward method and is linked to active research

in the pipe-corrosion estimation community.90 This maximum estimated lactose

concentration could then serve as input to the optimal growth medium / worst-

case growth scenario in this type of process-water. This will aid in generating

trustworthy microbiological assessment of process-water.
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5.3. Future applications of EVT in food processing

It should be noted that this worst-case scenario is only valid for the specific

processing plant and not necessarily for any other plant running a similar pro-

cess for several reasons including variations in feed composition and operating

conditions such as temperatures and pressures, the physical organisation of the

membranes, the age of the membranes, etc. In this regard any processing plant

should ideally be characterised in its own right as many factors weigh-in on e.g.

process-water quality. Due to deterioration and ageing of the system they should

also be characterised periodically to ensure compliance.

The potential applications of EVT in food production are many. In addition to

extreme deviations of key quality parameters and extreme microbial loads in the

final product many more examples could be imagined such as the deviation of

declared and actual weight of packaged products, characterizing and comparing

milk suppliers with regards to fat, protein, lactose, somatic cell count or acidifi-

cation speed for cheese. In principle any key quality attribute that is measured

can potentially be described with EVT. In this sense it should be considered com-

plementary to other more often calculated parameters such the mean, the spread

around the mean, and autocorrelation for dynamic behaviour, thus providing ad-

ditional information.
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Chapter 6

Conclusions and perspectives

6.1 Conclusions

In the explorative work of this thesis, urea was found to be the main organic

compound permeating RO membranes. Other larger organic molecules, including

lactose, long-chain fatty acids, glycerol-phosphate and glutamic acid, were also

found to permeate through in low concentrations. Element concentrations were

overall very low as indicated by conductivity measurements, and co-varied closely

as shown by ICP-OES quantification.

Urea permeates the RO membranes due to its similarity to water and thus

constitutes a special case compared to other compounds such as lactose. Regard-

less, it was by far the most dominant organic molecule and therefore interesting to

quantify in the process-water stream. NIRS was applied to quantify urea in labo-

ratory scale and due to the relative low sensitivity of NIRS thorough uncertainty

estimation was needed.

Despite the low nutrient level found in the membrane permeate, some micro

organisms isolated upstream in the process were able to grow in the permeate. In

order to establish appropriate holding times for this process-water stream worst-

case scenarios should be set-up. In order to describe worst-case scenarios a novel

statistical method, EVT, was explored and applied to a food processing system

(not directly related to process-water). The results suggest that EVT could be of

interest in microbial growth experiments.

Finally, evaporator condensate was tentatively characterised with a broad range

of analytical techniques. Though results indicate aromatic amino acids, e.g. some

protein source, was systematically present in the evaporator condensates. How-

ever, it was not possible to further identify the compound(s). It is suggested that

additional analytical techniques such as SPME based GC-MS be used to capture

volatile compounds to get a better understanding.
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6.2 Perspectives

In order to consolidate the use and storage of process-water future studies on

membrane permeate could include stratified sampling as discussed in section 5.3

in defining a worst-case scenario for microbial growth. This scenario should act

as the growth medium for microbiological growth studies to evaluate allowable

holding times.

To verify whether all carbon has been accounted for in the process-water

stream, the approach by Vourch et al.31 for dairy process-water and Busetti et al.12

for wastewater where quantified compounds are compared to TOC or DOC could

be implemented. Hence, process water could be analysed for TOC and comparing

this to theoretical TOC contributions by the identified main organic compound

(in this case urea in ROP membrane permeate). This will verify whether urea is

indeed the main organic compound and help clarify whether any compounds were

overlooked.

New analytical methods such as SBSE GC-MS should be considered as an al-

ternative to the silylation derivatisation based GC-MS presented in this work. The

evaporator condensate study indicated that volatile compounds were overlooked

and this could also be the case for membrane permeates.

The present PhD project has dealt with the potential use of reclaimed process-

water. In this scenario water is reclaimed from the raw material and used for

a given purpose and then discharged. This relieves the immediate water-stress

on the factory and is the foundation for further work. In Denmark the Dan-

ish Agriculture & Food Council, is working on a dairy industry-wide exemption

(branchekode in Danish) from current legislation to allow the use of water fit-for-

purpose rather than only distinguishing potable and non-potable water. In this

framework effluents and process-waters of different qualities are distinguished and

used appropriately. This will hopefully help producers to use lower quality water

streams in lieu of potable water when appropriate. A system where process-water

is segmented into different qualities with distinct storage life could be imagined.

Process-water could be classified into e.g. high quality process-water which can sit

for several days, intermediate quality which should be used within 24 hours and

low quality which is discarded immediately.

This thesis work is part of the REWARD project which in the full title states

that process-water is intended for reuse. In REWARD the vision is to make the

the food and bioprocessing industry self-sustainable.9 Self-sustainable factories —

or closed-loop factories to use the terminology from circular economy — will be

required to reuse process-water. While this work has focussed on the direct quality

of process-water in a reuse scenario the long-term quality must also be taken into

consideration. Build-up of persistent chemicals may become an issue. However,

98



6.2. Perspectives

currently process-water is not yet being reused in the dairy industry (or any other

industry to the best of the authors knowledge).

The studies presented in the thesis have been based on processes at AFI pro-

cessing facility in Nr. Vium (DK) where protein and lactose based ingredients

are produced. If the principles studied here are to be rolled out in e.g. cheese

production facilities, for using process-water reclaimed from whey, additional con-

siderations should be taken. The starter cultures responsible for the acidification

and flavour development in cheese production are prone to bacteriophage (virus)

infections.96 Bacteriophage infections are responsible for delayed and failed acid-

ification and one suggested to inflict large variability into the final product with

great economic consequences.97,98 Bacteriophages propagates during acidification

and are released into the water phase and are often found in high concentrations

in the whey. Viruses are known to pass RO membranes (mainly due to some loss

of integrity) and are also very challenging to monitor in real-time. Great care

should be taken before implementing the results presented in this body of work.

Simply put, the specific scenario and end-use should be considered carefully before

implementing the use of process-water a food production process.
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[38] Riera, F. A., A. Suárez, and C. Muro (2013). Nanofiltration of uht flash cooler
condensates from a dairy factory: Characterisation and water reuse potential.
Desalination 309, 52–63. doi:10.1016/j.desal.2012.09.016.

[39] Aydiner, C., S. Topcu, C. Tortop, F. Kuvvet, D. Ekinci, N. Dizge, and
B. Keskinler (2013). A novel implementation of water recovery from whey:
”forward-reverse osmosis” integrated membrane system. Desalination and Water
Treatment 51 (4-6), 786–799. doi:10.1080/19443994.2012.693713.

[40] Zmievskii, Y. G., I. I. Kirichuk, and V. G. Mironchuk (2014). Membrane
treatment of wastewater obtained after the whey processing. Journal of Water
Chemistry and Technology 36 (6), 309–316. doi:Doi 10.3103/S1063455x14060095.
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a b s t r a c t

Evaluation of GC–MS data may be challenging due to the high complexity of data including overlapped,
embedded, retention time shifted and low S/N ratio peaks. In this work, we demonstrate a new approach,
PARAFAC2 based Deconvolution and Identification System (PARADISe), for processing raw GC–MS data.
PARADISe is a computer platform independent freely available software incorporating a number of newly
developed algorithms in a coherent framework. It offers a solution for analysts dealing with complex
chromatographic data. It allows extraction of chemical/metabolite information directly from the raw
data. Using PARADISe requires only few inputs from the analyst to process GC–MS data and subsequently
converts raw netCDF data files into a compiled peak table. Furthermore, the method is generally robust
towards minor variations in the input parameters. The method automatically performs peak identification
based on deconvoluted mass spectra using integrated NIST search engine and generates an identification
report. In this paper, we compare PARADISe with AMDIS and ChromaTOF in terms of peak quantification
and show that PARADISe is more robust to user-defined settings and that these are easier (and much
fewer) to set. PARADISe is based on non-proprietary scientifically evaluated approaches and we here
show that PARADISe can handle more overlapping signals, lower signal-to-noise peaks and do so in a
manner that requires only about an hours worth of work regardless of the number of samples. We also
show that there are no non-detects in PARADISe, meaning that all compounds are detected in all samples.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In chromatographic methods, such as gas or liquid chromatog-
raphy coupled with mass spectrometry detectors, the goal is to
identify compounds and compare their concentrations across and
within samples. To achieve this goal, data processing must fulfil
two criteria: (I) it must correctly determine the mass spectrum
of the individual compounds for identification and; (II) it must
accurately calculate the abundance of chromatographic peaks cor-
responding to those compounds in each sample. These two tasks
are often challenging and time consuming mainly due to the co-
elution of chromatographic peaks within a single chromatogram, as
well as retention time (RT) shift of peaks across samples. These two
challenges lead to mixed mass spectra and complicates compound
identification and quantification. For these reasons processing of
GC–MS data is challenging using currently available techniques that
may perform inadequately both with respect to identification and
quantification leading to compounds being wrongly interpreted or
simply left undetected.

∗ Corresponding author.
E-mail addresses: lgj@msomics.com (L.G. Johnsen), peter.b.skou@food.ku.dk

(P.B. Skou), bzo@food.ku.dk (B. Khakimov), rb@life.ku.dk (R. Bro).

Most traditional vendor software quantifies compounds based
on peak area or height using total ion count (TIC), base peak chro-
matogram (BPC) or from the extracted ion chromatogram (EIC)
by selecting m/z value(s) typical for the given compound. These
approaches are susceptible to co-eluting compounds since a con-
tribution to the signal from other compounds is not adequately
handled and may significantly affect both quantitative and quali-
tative results. Furthermore, it is challenging to estimate baseline
contributions and this may also lead to errors in quantification.
Most of currently applied approaches use simple subtraction of
background from nearby baseline or a shoulder of a given peak
of interest. Often this is not sufficient to handle overlapping and/or
co-eluting peaks.

A more recent approach dealing with overlapping signals is to
model the signals using e.g. Gaussian curves [1]. However, these
models are not unique [2], instead, a number (actually infinitely
many) of completely different sets of Gaussian peaks can model
the data equally well. Hence, the solution becomes arbitrary. The
development of the software package Automatic Mass spectral
Deconvolution and Identification System (AMDIS) [3] was a big step
towards resolving complex data. AMDIS automatically calculates
the area of the deconvoluted component in terms of the area of
the reconstructed total ion current (TIC) chromatogram. AMDIS is
freely available standalone software, and is also implemented in

http://dx.doi.org/10.1016/j.chroma.2017.04.052
0021-9673/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
0/).
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commercial software like Masshunter (Agilent Technologies, USA).
Another commercial software is ChromaTOF (LECO Inc., USA) that
became a common tool to process GC–MS data based on a Time-
Of-Flight (TOF) mass analyser. Like in AMDIS, ChromaTOF performs
automatic deconvolution of peaks from each sample separately and
compares the deconvoluted spectra against integrated libraries.
Estimation of the peak area in ChromaTOF can either be based on
the TIC, BPC, deconvoluted mass spectra or any m/z ion(s) that are
defined by the user. ChromaTOF utilises a proprietary deconvolu-
tion technique, but it requires several input parameters, concerning
noise level, peak width, retention time shift allowance and more, to
be set by the user depending on the sample type and data quality.
After peak detection, ChromaTOF can generate the final metabo-
lite table by aligning peaks across samples based on user defined
parameters such as RT shift window, noise level, spectral similar-
ity and how often peaks are detected among investigated samples.
Both AMDIS and ChromaTOF perform calculations on each sample
independently of the other samples.

A completely different approach for handling co-elution and
retention time shifts, is to use the so-called PARAllel FACtor anal-
ysis2 (PARAFAC2) model [2,4]. PARAFAC2 is able to deconvolute
co-eluted, retention time shifted and low signal-to-noise (S/N)
ratio chromatographic peaks for all investigated samples in a given
retention time region simultaneously [2]. In contrast to other meth-
ods, the PARAFAC2 approach only requires a single parameter to
be set by the user prior to achieving sufficient data processing for
the given retention time region of the chromatogram. This param-
eter is the number of factors (or real chemical compounds) in
the investigated region of the chromatogram. There are simple
methods for determining this number as will be explained later.
PARAFAC2 modelling allows extraction of the pure spectra of co-
eluting compounds as well as it simultaneously computes their
peak areas (relative concentrations). The compounds are quan-
tified using the entire pure spectrum and retention time region
corresponding to a specific peak. It has previously been shown
that PARAFAC2 is superior to commercial solutions [5,6]. How-
ever, current implementations of PARAFAC2 are not accessible for
non-mathematical users and requires extensive coding for efficient
use. Here, we develop an integrated approach called PARAFAC2
based Deconvolution and Identification System (PARADISe), which
combines workflow from raw data inspection to metabolite (rela-
tive) quantification and identification in a graphical user interface
(GUI). Within the PARADISe approach, we included tools required
in all steps of the GC–MS data processing; 1) data visualization, 2)
division of data into retention time intervals, 3) PARAFAC2 based
deconvolution of peaks, 4) validation and extraction of deconvo-
luted peaks, 5) identification of compounds from raw as well as
deconvoluted mass spectra using NIST search engine and NIST mass
spectra library and/or any other libraries in NIST format, 6) genera-
tion of the final metabolite table. In the following sections, several
examples are provided illustrating the power and limits of PAR-
ADISe.

2. Materials and methods

2.1. Preparation of a standard mixture sample

Ten chemical compounds including valine, alanine, serine, thre-
onine, gamma-aminobutyric acid (GABA), ascorbic acid, fumaric
acid, citric acid, gallic acid and p-hydroxyphenylacetic acid were
used to prepare a standard mixture sample. Compounds were pur-
chased from Sigma-Aldrich (Sigma-Aldrich Denmark A/S, DK) at
the highest available purity. The standard mixture sample was pre-
pared by mixing equal volumes of 20.0 mM solutions of compounds
in milliQ water. Thus, in the final standard mixture sample the

concentration of each compound was 2.0 mM, which was used for
preparation of ten different dilution series samples where concen-
tration of each compound ranged from 0.05 to 0.6 mM.

2.2. GC–MS analysis of standard mixture samples

Prior to GC–MS analysis 30 �L of each dilution series sam-
ples were dried using ScanVac (Labogene, DK) at 40 ◦C inside
150 �L glass inserts, sealed with air tight magnetic lids into GC–MS
vials and derivatized by addition of 30 �L trimethylsilyl cyanide
(TMSCN) [7]. All steps involving sample derivatization and injection
were automated using a Dual-Rail MultiPurpose Sampler (MPS)
(Gerstel, GmbH & Co. KG, DE). Following reagent addition, the sam-
ple was transferred into the agitator of the MPS and incubated at
40 ◦C for 40 min at 750 rpm. This procedure ensures precise deriva-
tization time and reproducible sample injection. Immediately after
derivatization, 1 �L of the derivatized sample was injected into a
cooled injection system (CIS4, Gerstel, GmbH & Co. KG, DE) port in
splitless mode. The septum purge flow and purge flow to split vent
at 2.5 min after injection were set to 25 and 15 mL min−1, respec-
tively. Initial temperature of the CIS port was 40 ◦C, and heated at
12 ◦C s−1 to 320 ◦C (after 30 s of equilibrium time), where it was kept
for 5 min. After heating, the CIS port was gradually cooled to 250 ◦C
at 5 ◦C s−1, and this temperature was kept constant during the run. A
GC–MS consisted of an Agilent 7890 B gas chromatograph (GC) and
a high-throughput Pegasus GC-TOF-MS mass spectrometer (LECO
Inc. USA). More details of GC oven and cooled injection system
(CIS4) condition were the same as previously described [7]. Mass
spectra were recorded in the m/z range of 45–600 with a scanning
frequency of ten scans sec−1, and the MS detector and ion source
were switched off during the first 4.5 min of solvent delay time.
The transfer line and ion source temperature were set to 280 ◦C and
250 ◦C, respectively. The mass spectrometer was tuned according
to manufacturer’s recommendation using perfluorotributylamine
(PFTBA). The MPS and GC–MS was controlled using vendor soft-
ware Maestro (Gerstel, GmbH & Co. KG, DE) and ChromaTOF (LECO
Inc., USA). Samples were randomised prior to derivatization and
GC–MS analysis, and a blank sample containing only derivatization
reagent, and an alkane mixture standard (all even C10-C40 alkanes
at 50 mg L−1 in hexane) were analysed at least between five real
samples prior to monitor GC–MS performance.

2.3. Analysis of complex samples

The dataset investigated in this study consisted of 69 samples
including blank samples and pooled quality control samples. The
complex samples are media samples obtained from fermentation
of CHO cells in complex media, the cells are removed by filtration
and the spent media is kept on −20 ◦C until the time of derivati-
zation. Prior to the analysis, the samples were derivatized using
a procedure based on the protocol described by Smart et al. [8].
All samples were analysed in a randomised order. A 6890N GC in
conjunction with a 5975 B quadrupole mass spectrometer (Agilent
Technologies, USA) were used to analyse the samples. The system
was controlled by ChemStation (Agilent Technologies, USA).

3. Theory

PARADISe is based on PARAFAC2 modelling, which allows
simultaneous deconvolution of pure mass spectra of peaks and inte-
gration of areas of deconvoluted peaks for all samples. Resolved
peaks are identified using their deconvoluted pure mass spectra
and the final peak table is generated. Thus, PARADISe is based on
five major steps:
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1. Define intervals
2. Resolve compounds
3. Validate models
4. Identify compounds
5. Create peak table

PARADISe, integrates all these as outlined below.
Intervals are selected manually through an interactive TIC plot

in such a way that approximate baseline-resolved intervals, with
preferably less than six peaks, are obtained. As will be illustrated
later, the specific definition of the intervals is not critical (within
reason). Having defined each interval, the PARAFAC2 model can
resolve the underlying and possibly overlapping compounds in
each of these intervals. For each interval, a separate PARAFAC2
model is built. To do so, the number of chemical compounds
(including baseline) must be defined for the specific PARAFAC2
model. PARADISe will by default calculate models with one to eight
components, and it is the user that must decide which of the mod-
els to use. Automated methods exist for determining the number of
components [5] but in PARADISe, the user has to do this. Normally,
the number of components is set to the highest number that still
maintains a sufficiently high core consistency (above 50%). Visu-
alizations of the models can be used for intervals that may pose
special problems to further guide the user but this is mostly not crit-
ical. Once the model for a given interval is determined, compounds
of interest can be tagged (e.g. compounds that are not baseline or
tails from peaks surrounding the interval) and only these com-
pounds will be included in the final report. For a more thorough
description of the theory behind PARAFAC2 the reader is referred
to the supplementary material.

The PARAFAC2 model of each compound provides the relative
concentration (peak area) directly and users can evaluate elution
profiles of deconvoluted peaks. Identification is also a crucial part
of the chromatographic analysis, and PARADISe enables the user
to make library lookups of both mass spectra from raw data and
PARAFAC2 deconvoluted mass spectra (pure compound spectra).
The lookup is performed by exporting relevant spectra to the NIST
MSsearch, which therefore must be installed prior to use the library
lookup function. The user can then perform the evaluation of any
library hits directly in the MSsearch software.

PARADISe is built around two main interfaces; one, which is
used for inspection of raw data and creation of intervals, and one,
which is used to visualize and validate models prior to select decon-
voluted peaks and to create a final report. The software is compiled
via Matlab and is thus platform independent and can work with-
out NIST software. However, using the PARADISe without the NIST
software eliminates the possibility of performing library searches
of mass spectra. An overview of the full workflow is illustrated in
Fig. 1.

Two formats of raw data can currently be imported; either data
in the cdf format for mass spectrometry, or for users who are famil-
iar with Matlab, data can be imported from the Matlab format.

4. Results

In the following we will illustrate the capabilities of PARADISe
through a number of small examples, each aimed at different typical
challenges encountered in chromatographic data analysis.

4.1. Quantification

Quantification is an important part of data analysis. To illustrate
the capabilities of PARADISe concerning quantitative determina-
tion of compounds, a dilution series of the standard mixture sample
were analysed. The obtained data was processed using ChromaTOF,

Fig. 1. Flowchart illustrating the workflow in PARADISe; from loading of raw data to
generation of the final report with relative concentrations of detected compounds.

AMDIS and PARADISe (Fig. 2 and Fig. S2). All three software pack-
ages performed equally well when the S/N ratio of peaks was high.
However, for the lower S/N ratio peaks, AMDIS and ChromaTOF
results were sensitive to the settings of the user-defined parame-
ters, while PARADISe performance was more consistent regardless
of S/N ratio of peaks.

4.2. Co-elution

To demonstrate application of PARADISe to complex GC–MS
profiles, a data set obtained from GC −MS analysis of spent media
from cell cultures grown in complex media was investigated. One
of the huge advantages of using PARADISe is its ability to deconvo-
lute overlapping peaks. An example of the deconvolution power is
illustrated in Fig. 3. The TIC of this data interval shows one peak, one
baseline and one tail from a neighbouring peak. Upon inspection of
the data using PARADISe, it becomes apparent that the interval is
covering not one but three peaks and the interval is therefore best
described with a five-component PARAFAC2 model: one compo-
nent describing baseline, one the tail and one for each of the three
peaks, respectively (see Fig. 3). Inspection of characteristic m/z ions
(m/z 127, 216, and 130) of the deconvoluted peaks shows that the
three peaks can be recognised from the corresponding extracted
ion chromatograms (bottom plots in Fig. 3). It is worth to mention
here that PARADISe allows such a deconvolution and provides pure
spectra of deconvoluted peaks for even more complex chromato-
graphic data intervals, without any user defined settings, besides
the number of components.
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Fig. 2. Illustration of obtained relative concentrations from AMDIS, ChromaTOF and PARADISefrom dilution series analysis of GABA (red and blue correspond to replicates).
GABA was not detected by AMDIS in the most diluted samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 3. Top: TIC of the interval, row 2: obtained elution profiles from a five-component model, row 3: model spectra obtained from the five-component model. Row 4: EIC
of characteristic masses from the model (extracted from raw data).

VIII



L.G. Johnsen et al. / J. Chromatogr. A 1503 (2017) 57–64 61

Table 1
An overview of the data processing steps that require user defined parameters in three different GC–MS data processing software, AMDIS, ChromaTOF, and PARADISe. The
number of hourglass indicates how many parameters must be set by the user in the given step of data proccessing, (−) indicates that this step is not performed by the
software, and empty cells illustrate steps that do not require any parameters to be set by users for the given software.

Data proccessing steps that
require parameters to be
set by the user

Software

AMDIS ChromaTOF PARADISe

1) Define RT intervals for
processing

– –

2) Deconvolution

3) Peak filtering and
removing baseline

4) Mass spectrometer
dependent parameters

5) Processed data
validation

6) Alignment of peaks
across samples

–

4.3. Low signal-to-noise

In contrast to other approaches, PARADISe is not so sensitive to
the S/N ratio of peaks and is able to deconvolute extremely small
peaks directly from the raw data (Figs. 4 and 5). In Fig. 4, the PAR-
ADISe results reveal that the investigated noisy interval actually
contains two overlapping peaks with a very low S/N ratio. Inspec-
tion of characteristic m/z values in the raw data confirms that,
within the given interval, two compounds are eluting with different
mass spectra. Subsequently, a four-component PARAFAC2 model
deconvoluted two peaks corresponding to two chemicals plus two
components reflecting the background.

The second example (Fig. 5) shows how well the mass spectra
from a low S/N ratio peak is modelled using PARADISe. Despite
extreme low S/N ratio of this peak, its deconvoluted mass spectrum
allowed identification using the NIST mass spectral library, found as
dimethyl malonic acid. The identity of this compound was validated
with an authentic standard, which was found to have the same
retention time and mass spectrum.

4.4. Baseline

Baseline contributions present in a raw GC–MS data heav-
ily influence both peak identification and quantification, thus it
is important that data processing techniques can remove base-
line contributions. In the model illustrated in Fig. 4 two different
baselines are present and shows that it is possible to automati-
cally remove these artefacts using PARADISe. It is often seen that
the baseline is modelled using more than one PARAFAC2 factor,
because the background is often a mixture of several contribu-
tions (e.g. column bleed, derivatization reagent, mobile phase, or
electronic noise) All models presented in this paper illustrate how
the PARADISe approach removes baseline contributions as separate
PARAFAC2 components from eluting compounds eliminating any
need for raw data pre-treatment.

4.5. Retention time drift

In the examples illustrated throughout this paper, differ-
ent degrees of shift in RT are present (see Figs. 3–5). In all
cases, PARADISe handles the drift without any prior assumptions

about maximum allowed shift. PARADISe is also able to correctly
determine peaks that have severe RT shifts across samples that
sometimes result in complete cross RT shifts with nearby eluting
peaks as well as with co-eluting peaks. This is only possible due
to the unique mass spectrum of each compound and flexibility of
deconvolution engine, PARAFAC2. However, in order to correctly
determine all peaks present in a given chromatographic data inter-
val, the width of the interval must be wide enough to cover RT
shifts.

4.6. Limitations

There are two major cases when PARADISe fails to deconvolute
GC–MS peaks: 1) when a GC–MS data interval contains two or more
peaks with identical mass spectra, 2) when a GC–MS data inter-
val contains two or more peaks that co-vary completely in their
concentrations. In both cases PARADISe will find those co-varying
peaks as a single compound. In the example illustrated in Fig. 6, two
of the four peaks are lumped into one common component (Elution
profile 4). This happens regardless of how many PARAFAC2 compo-
nents are included in the model. Inspection of the raw data reveals
that the two peaks have identical mass spectra (Top two rows, right
in Fig. 6). It is a premise of PARAFAC2 that each chemical compound
in a given interval must have at least slightly different spectral sig-
nature. Hence, when two compounds have identical spectra as here,
they cannot be separated in a PARAFAC2 model. The only alter-
natives then are either 1) to split the data in between the two
peaks, or 2) try to separate the peaks by other means (chemically
or mathematically).

One can also choose either to exclude the compound from the
final data set, or to use it, bearing in mind, that the reported concen-
tration profile/spectra will be a combination of both peaks. Working
within smaller retention time intervals minimizes the risk of mod-
elling problems if different peaks co-vary across samples.

5. Discussion

PARADISe excels in simplicity because only little input is needed
from the user to obtain valid models of the compounds and the
inputs typically have a feasible range of settings so that the exact
choice is not critical. The data must be split into retention time
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Fig. 4. Top left: TIC from raw data. Top right: EIC from raw data of selected m/z. Middle: elution profiles obtained from a four-component model. Elution profile 3 and 4
represent baseline. Bottom: spectra obtained from a four-component model.

Fig. 5. Top: TIC from raw data, Elution profiles and spectra obtained from a two-component model. Bottom: comparison between the model spectra 1 and the NIST library
spectra of dimethyl malonic acid. Profile 2 is representing baseline.

intervals with approximate baseline separation. The interval bor-
ders should be determined in a reasonable manner, meaning that
the peaks of interest should be included in the interval without

cutting off any tailing or fronting. Even tails from peaks adjacent to
the intervals, as shown in Fig. S1, does not pose a problem. Further,
as few compounds as possible should be included when selecting
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Fig. 6. Top left: TIC from raw data. Top 2 rows, right: spectra obtained from three different samples of the two peaks eluting at 13.58 and 13.62 min, respectively. Row 3:
elution profiles obtained from a four-component model. Bottom row: spectra obtained from a four-component model.

intervals. Selecting a simpler (fewer compounds) interval reduces
computation time and prevents small errors accumulating in more
complicated models with many compounds.

Unlike some tools for processing of GC–MS data, the same model
describes all samples when using PARADISe. This means that if
a model is accepted as valid, all samples are well described in
that particular interval and the developed method can routinely
be applied to new samples without any user interaction.

An added benefit from using PARADISe is that there will not be
any non-detects. In many methods, the user must specify param-
eters used to define a peak (e.g. peak width, signal to noise levels
etc.). This means that if a peak does not match these criteria they
will appear as “not detected”. In most cases this will be due to a peak
being lower than the limit of detection. These missing values will
cause problems if the data is to be used in either classical statistics
[9] or multivariate statistics. In more severe cases, a peak may actu-
ally be present but not fulfilling the initially set parameters. If the

user does not recognize this, it will most likely be wrongly inter-
preted. In PARADISe there are no assumptions made about peak
shape, signal-to-noise ratio or expected retention time shifts. When
peaks are deconvoluted there will always be an estimate of the con-
centration (also in cases with signal being lower than the limit of
detection), and the problems with missing values are therefore not
an issue. In essence, the problem of non-detects is moved to the
subsequent data analysis. All peaks are quantified and the possible
decision of where to set the limit of detection can be decided after
the quantification has been performed.

PARADISe cannot process one sample at a time but requires sev-
eral samples prior to processing any dataset. It is not enough to
analyse the same sample several times or to make dilutions of the
samples and analyse these. If one wants to use PARADISe at least
five samples with independent variations must be included in the
sample set and preferably more.
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To be able to compare the user-friendliness of the software
AMDIS, ChromaTOF and PARADISe, we divide the workflow into
five parts below for easier comparison:

1) Define RT intervals for processing. Division of the chromato-
graphic data into smaller RT intervals is needed for reducing
complexity when processing data using PARADISe prior to
obtain reliable deconvolution.

2) Deconvolution. The deconvolution step in AMDIS and Chro-
maTOF requires parameters such as peak width, resolution,
sensitivity, and shape to be set by users. The number of com-
ponents must be determined in PARADISe.

3) Peak filtering and removing baseline. The peak filtering step
requires parameters like S/N ratio, mass threshold, baseline off-
set, minimum abundance in AMDIS and ChromTOF.

4) Mass spectrometer dependent parameters. Mass spectrometer
dependent parameters such as m/z range, scan direction, instru-
ment type, file format, threshold are also crucial when using
AMDIS.

5) Alignment of peaks across samples. Several parameters such as
maximum allowed RT shift, spectral similarity, detection fre-
quency (e.g., a peak must be present at least in 50% of samples)
are required in ChromaTOF when aligning peaks across samples
prior to a final metabolite table.

In Table 1 a summary is given, indicating how many parameters
the user needs to set for each step.

PARADISe can be used for targeted analysis, where only the
target compounds are processed, as well as untargeted analysis.
In cases with routine targeted high-throughput GC–MS methods,
interval-files can be predefined and reused. However, it is impor-
tant to stress that the user should still inspect the raw data before
processing the data. This is, in fact, underestimated in many data
processing software packages, but we strongly advice data inspec-
tion prior to use PARADISe.

6. Conclusions

We have demonstrated a new approach called PARAllel fac-
tor analysis 2 based Deconvolution and Identification System
(PARADISe), integrating multi-way modelling for processing of
raw GC–MS data from several samples simultaneously. PARADISe
combines entire workflow from raw data inspection to peak decon-
volution and metabolite identification in a graphical user interface.
It allows handling very complex situations with severe co-elution
even with resolution close to zero. With PARADISe, a single stan-
dalone platform is presented covering the entire workflow from

inspecting raw data to identification, including deconvolution of
peaks across all samples simultaneously, determination of relative
concentrations and compilation of a compound table. The ability to
export mass spectra, deconvoluted (pure) as well as raw, to spectral
databases can save large amounts of time and will increase the hit
quality.
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Food processing requires large amounts of water to the extent 

that even in Denmark local scarcity is challenging the food 

production industry. In the dairy industry process-water – wa-

ter reclaimed from existing process streams such as Cleaning-

In-Place or cheese whey processing for protein recovery – is an 

obvious candidate to replace potable water while in-turn mini-

mizing wastewater discharge. In this work the process-water 

stems from equipment already present in the dairy industry, 

namely membrane filtration permeate as well as evaporator condensate. To ensure safe-

for-use, high quality process-water at all times key quality attributes must be identified and 

(ideally) monitored continuously in the future.

This thesis deals with the chemical characterization of selected process-water streams, and 

identifies and tests relevant measurement techniques. Chemical characterization was per-

formed using analytical techniques developed in the field of metabolomics. The first inves-

tigations focused on membrane permeate, and led to the identification of urea as the main 

organic compound, next to low levels of other organic compounds. Near infrared spectros-

copy as potential on-line analytical method was tested to monitor the variation. Evaporator 

condensate was also investigated, but no conclusive identification could be made. Finally, 

extreme value theory – a statistical tool set – was applied to demonstrate a new direction in 

monitoring and characterizing of process dynamics in the dairy and food industry.
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