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Abstract  

The objective of this PhD project is to use fluorescence 

spectroscopy as a tool to discriminate between cancer patients 

and healthy controls by measuring on a sample of blood serum or 

plasma. Further by using PARAFAC to extract relevant chemical 

information from the fluorescence landscapes, fluorescence 

spectroscopy might be a potential metabonomic tool. The 

fluorescence excitation emission matrixes are decomposed by 

PARAFAC yielding estimates of the underlying chemical 

compounds in the blood sample. By using the PARAFAC 

components as a basis for discrimination between cancer and 

non-cancer, it is possible to achieve understanding of the 

chemical changes causing the discrimination. Since fluorescence 

spectroscopy is sensitive and specific towards even small 

chemical changes, the combination of fluorescence spectroscopy 

and PARAFAC can be seen as an interesting alternative 

metabonomic tool. Examples are presented with colorectal cancer 

and breast cancer. The results show that fluorescence 

spectroscopy can be used to discriminate between cancer and 

control samples at a level comparable with known biomarkers, 

and by using PARAFAC, chemical knowledge about the 

discrimination is achieved. 

 

This thesis will go through some of the basic theory of the 

methods applied in both fluorescence spectroscopy and 

chemometrics. One important aspect in fluorescence spectroscopy 

is the instrument dependent bias in the measured data. For 

identical samples different instruments will give slightly different 

solutions, and in order to be able to compare fluorescence data 

across instruments, spectral correction is necessary. An example 

of some of the challenges in applying spectral correction by use of 

a commercial solution is given. Besides the chemometric methods 
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applied in this thesis some other aspects of chemometrics in 

connection to metabonomics are also discussed 

  

The thesis will briefly go through the basics of cancer and cancer 

detection and screening, focusing on colorectal cancer. A 

literature study on how fluorescence spectroscopy on blood has 

been used in connection to oncology has been conducted.  

 

Three scientific papers have been prepared in connection with 

this PhD project. Paper I is presenting an example of an improved 

method for intensity calibration of fluorescence spectroscopy by 

use of the integrated area under the water Raman peak. Paper II 

is an application of rotation of a PCA model to facilitate 

interpretation of the solution of a metabonomic application of St. 

Johns Worth Paper III is an example of fluorescence spectroscopy 

and chemometrics applied on blood plasma samples to 

discriminate between patients with colorectal cancer and various 

control groups. PARAFAC is applied and the potential for using 

fluorescence spectroscopy along with PARAFAC as a 

metabonomic tool is presented. 
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Resumé 

Formålet med dette PhD projekt har været at anvende 

fluorescens-spektroskopi til at skelne mellem kræftpatienter og 

raske ved at måle på enten en blodplasma- eller serumprøve. 

Samtidig er formålet at anvende PARAFAC til at ekstrahere 

relevant kemisk information fra fluorescensmålingerne for at 

undersøge om fluorescensspektroskopi er et muligt værktøj til 

brug inden for metabonomics. Fluorescenslandskaber kan med 

PARAFAC blive nedbrudt til kvalitative og kvantitative estimater 

af de underliggende kemiske komponenter i blodprøven. 

PARAFAC-komponenterne kan så danne udgangspunkt for en 

diskrimination mellem kræftprøver og kontroller, og dermed er 

der bedre mulighed for at opnå en øget forståelse for de kemiske 

ændringer, som er årsag til forskellen mellem kræftpatienter og 

raske. Denne mulighed gør fluorescensspektroskopi sammen 

med PARAFAC til et intressant alternativt værktøj inden for 

metabonomics. Der vil blive gennemgået eksempler indenfor 

tyktarmskræft og brystkræft. Resultaterne viser, at det er muligt 

at anvende fluorescensspektroskopi til at skelne mellem 

kræftpatienter og kontroller på niveau med kendte biomarkører. 

Ved at anvende PARAFAC er det samtidig muligt at opnå kemisk 

viden omkring diskriminationen. 

 

Denne afhandling vil gennemgå teorier, der ligger bag de 

metoder indenfor fluorescensspektroskopi og kemometri, der er 

anvendt i afhandlingen. Data fra fluoresensspektroskopi kan 

være meget afhængige af det spektroflouorometer, som er 

anvendt til at optage spektrene. Identiske prøver målt på 

forskellige spektroflouorometre kan give forskellige resultater. 

Hvis en metode, der er baseret på fluorescens-spektroskopi, skal 

kunne anvendes globalt, kræver det en spektral korrektion. Et 

eksempel på udfordringerne omkring implementering af spektral 

korrektion fra en kommercielt tilgængelig løsning er beskrevet. 
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Ud over de kemometriske metoder, som er anvendt i 

afhandlingen, vil andre metoder til kemometri i forbindelse med 

metabonomics blive diskuteret.  

 

Der vil blive givet en kort gennemgang af kræft og metoder til at 

detektere og screene for kræft, med særligt fokus på 

tyktarmskræft. Et litteraturstudie er gennemført omkring 

anvendelsen af fluorescensspektroskopi på blodprøver i 

forbindelse med kræft. 

 

I forbindelse med dette PhDprojekt er der blevet forberedt tre 

videnskabelige artikler. Paper I gennemgår et eksempel på en 

forbedret metode til at udføre intensitets kalibrering af 

fluorescensspektre ved at benytte arealet under vands raman 

spektrum. Paper II viser, hvordan anvendelsen af rotation af 

scorer og loadings i en PCA model kan gøre fortolkningen mere 

entydig. Metoden er anvendt i et metabonomic studie af 

Hyperikum-præperater. Paper III gennemgår et eksempel på 

anvendelse af fluorescensspektroskopi og kemometri på 

blodplasma til diskrimination af patienter med tyktarmskræft og 

forskellige kontrolgrupper. PARAFAC er anvendt, og potentialet 

for at kombinationen af fluorescensspektroskopi og PARAFAC er 

en mulig metode til metabonomics bliver præsenteret.  
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PLS-DA PLS – Discriminant Analysis   
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Notation: 

Fluorescence excitation/emission pairs are expressed as the 

excitation wavelength/emission wavelength designated nm. For 

example the tryptophan emission maximum at 350 nm after 

excitation at 280 nm is written 280/350 nm 

Three-way arrays are denoted as underlined bold capitals, two-

way matrices are denoted as bold capitals, vectors are denoted as 

a lower case letters in bold and scalars are denoted as a lower 

case letters in italic. 
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Chapter 1: Introduction 

New ways for easy and/or early detection of lethal diseases 

especially cancer is the main focus of a lot of research. The 

“omics” are huge topics in these areas, and the number of 

publications in metabonomics and metabolomics has increased 

exponentially within the last ten to fifteen years [78]. 

Metabonomics/Metabolomics deals with quantitative and 

qualitative measurements of metabolites/small molecules in tissue 

or body fluids in humans, or in plants in various extracts. The aim 

is to make profiles or fingerprints of specific cellular processes, 

and thereby hopefully gain enhanced understanding of the 

process, or change in the process upon stress (e.g. due to disease) 

[75;78]. The original definition of metabolomics is “the 

comprehensive and quantitative analysis of all metabolites in a biological 

system” [21], and for metabonomics it is "the quantitative 

measurements of the dynamic multiparametric metabolic response of 

living systems to pathophysiological stimuli or genetic modification” 

[73]. Despite the differences in the two definitions, the terms are 

often used indiscriminately. In this thesis the focus is on the 

metabolic response to cancer, and following the above definitions 

the term metabonomics will be used. 

 

The major parts of all metabonomic studies are based on data 

from mass spectrometry (MS) measurements, coupled to 

chromatographic techniques, or data from nuclear magnetic 

resonance (NMR) spectroscopy. These techniques can measure a 

great number of metabolites qualitative as well as quantitatively, 

and are thus excellent for the purpose. The MS-based methods are 

the most applied methods, as these are more sensitive, whereas 

NMR spectroscopy is more specific and with a higher 

reproducibility. It requires no pre separation of the samples and is 

thus faster and non-destructive [37;99]. The increased focus on the 

area has opened for new ways or new methods in performing 
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“omics” studies. The traditional ways have been through MS 

coupled to a chromatographic pre separation step, or NMR, but 

other methods such as Capillary Electrophoreses or even IR 

spectroscopy has been suggested [59]. In this thesis the 

possibilities of using fluorescence spectroscopy as a metabonomic 

tool will be discussed and evaluated. 

 

Fluorescence spectroscopy and metabonomics 

Compared to the traditional analytical methods in metabonomics, 

fluorescence spectroscopy has a much higher sensitivity, and can 

thus detect compounds in much lower concentrations. A 

drawback though is that the number of specific compounds 

measureable by fluorescence spectroscopy is low compared to the 

two others. In reference to the definition of metabolomics [21], 

fluorescence spectroscopy cannot be used to measure the total 

profile of metabolites. The high specificity of fluorescence 

spectroscopy allows for fluorescence spectroscopy to measure the 

important aromatic amino acids, and to differentiate between 

amino acids in different proteins or in the same protein but at 

different locations. This makes fluorescence spectroscopy a 

powerful tool for measuring specific and potentially important 

metabolites, and to detect even small changes in for example the 

micro environment of a blood sample [58]. Based on that, 

fluorescence spectroscopy can be seen as a potential metabonomic 

tool to measure the change in metabolites upon for example 

pathophysiological stimuli. Further; compared to MS or NMR, 

fluorescence is a fast and easy to use method and relatively cheap. 

 

In this thesis examples and discussions are shown for the use of 

fluorescence spectroscopy on blood as a tool in cancer diagnostics. 

The possibilities of introducing fluorescence spectroscopy along 

with PARAFAC as an alternative method for performing 

metabonomic research is presented. Autofluorescence on blood 

samples to detect cancer has been suggested before, and it is this 

work that this thesis will try to bring one step further. This is 

pursued in a study using a larger number of samples than the 

previous studies and further by applying PARAFAC analysis of 
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the fluorescence landscapes. By applying PARAFAC there is a 

chance for providing better options for understanding of the 

metabolic changes behind a possible discrimination between 

cancer and non-cancer (Paper III).  

 

Compared to targeted metabolite analysis, which is a focused 

analysis of specific compounds/metabolites, metabonomic studies 

provide a fairly unbiased measure of the metabolites and changes 

upon metabolic response. Instead of only measuring a few 

specific metabolites, the analytical methods often applied can 

measure several hundred metabolites. One of the major 

challenges in all “omics” studies is to extract the 

important/relevant biological information out of this sometimes 

complex data output, and for example discover new biomarkers. 

Multivariate data analysis/ chemometrics is part of the answer to 

this problem, and has thus in the recent years become an 

indispensable part of metabonomics [96]. This thesis will briefly 

go through some of the standard methods applied in 

metabonomics such as PCA and PLS. Similar to the research in 

the analytical part of metabonomics, research is conducted in 

finding new dedicated chemometric solutions to extract 

information from metabonomic data in the best possible way 

[88;96]. In Paper II made as part of this PhD, an application of 

rotations of a PCA model in a metabonomic study is presented. 

Rotations are applied to facilitate better conditions for 

interpretation of the result, and are well known methods within 

psychometrics, but more infrequent in chemometrics and natural 

sciences. In the study in Paper II rotations are applied on 

metabonomic data for the first time. The result shows that there is 

a potential for more frequent use within this field [53;88;96]. 

 

There are some challenges in applying fluorescence spectroscopy 

as a clinical method/diagnostic tool. Fluorescence spectroscopy 

outcome can vary depending on the spectrometer applied, both in 

terms of spectral characteristics and intensity of the signal. 

Consequently there is a need for calibration of the data before a 

method based on fluorescence spectroscopy can be globally 



 

15 

 

applied. An improved method on how to perform intensity 

normalization using the water Raman signal of a pure water 

sample is presented (Paper II), and in this thesis there is a 

discussion on the topic of spectral calibration.  
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Chapter 2: Fluorescence spectroscopy  

A major part of the work done during this PhD has been related 

to fluorescence spectroscopy. This chapter will briefly go through 

some of the basic principles in fluorescence spectroscopy. 

 

Fluorescence spectroscopy deals with excitation and emission in 

molecules. Any molecule can go into an electronically excited 

state when exposed to light of a wavelength (energy level) equal 

to the energy gap between the ground state and excited state. This 

is known as molecular absorbance of light. The amount of light 

absorbed is proportional to the concentration of the absorbing 

molecule. This connection is described in Lambert-Beers law, 

where the wavelength dependent absorbance A is described 

 

       (
  
 
)       

 

Where A is the absorbance I0 and I the intensity of incoming and 

transmitted light, ε the molar absortivity expressed in L×mol-

1×cm-1, c the concentration in mol×L-1 and l the effective pathway 

of the sample in cm [61]. Measurement of the absorbance of a 

sample over a wavelength range results in an absorbance 

spectrum.  

 

Absorbance only deals with the transition from ground state to 

excited state. Fluorescence involves the relaxation from excited to 

ground state. In most molecules this occurs as rapid non-radiative 

decay.  For a limited number of molecules with certain 

characteristics (see below) the relaxation is through emission of 

light. This phenomenon is called fluorescence.  
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Radiationless
Decay <10-12s

Internal
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S0

Fluorescence
10-9s

S2

S1

Absorption
10-15s

 

Figure 1: Example of a Jablonski diagram. 

 

The mechanism of the excitation/relaxation in the molecule can be 

illustrated through the Jablonski diagram seen in figure 1. 

Dependent on the energy of the light, the molecule is excited to 

different electronic singlet states S1, S2.. etc. Relaxation through 

emission of light though will in principle always occur from the 

lowest energy excited electronic state of a molecule (S1) (Kashas 

rule) [46], thus when excited to a higher energy excited electronic 

singlet state (S2 or S3), the molecule will undergo internal 
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conversion prior to emission.  Emission almost always occur at 

the lowest excited state, and thus at a specific energy level 

(wavelength), independent of the energy (wavelength) of the 

excitation light [52;97]. There is a loss of energy through light 

emission, and the emitted light is always red shifted (towards 

longer wavelength) relative to the excitation light [52;97]. The 

difference between excitation and emission wavelength is called 

the Stokes shift which relates to the energy loss.  

 

An emission spectrum is measured as the light emitted 

(fluorescence) across a broad wavelength range upon excitation at 

a fixed wavelength. Similarly, an excitation spectrum can be 

measured by measuring the emission at one fixed wavelength 

while exciting the molecule over a wavelength range. When 

measuring several emission spectra over a range of shifting 

excitation wavelengths a fluorescence landscape or an excitation 

emission matrix (EEM) will occur.   

 

As stated above, excitation to different singlet states and to their 

different vibrational levels occurs at specific excitation 

wavelengths. This is reflected in the excitation spectrum by 

“spikes” or “fingers” on top the overall absorbance spectrum 

reflecting the transitions to the different singlet states (e.g. S0→S1, 

S0→S2) and to different vibrational levels of the singlet states as seen in 

the Jablonski diagram. Theoretically, when measuring a single 

fluorescing molecule, the excitation and absortion spectrum will 

be identical. Emission almost always occurs from the lowest 

singlet state S1 to the ground state i.e. S1 → S0 transition, and the 

emission spectrum therefore will most often have only a single 

peak (Gaussian) shape. If there are “spikes” or “fingers” in the 

emission spectrum it is due to transition to a higher vibrational 

level of S0. The shape of excitation and emission spectra is often 

described in the mirror image rule, which says that the emission 

spectra, the S1 → S0 transition, is a mirror image of the 

excitation/absorbance spectrum of the S0→S1 transition [52;97]. 

As a consequence of the above described properties, the emission 

spectrum from a given fluorophore measured upon different 
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excitation wavelengths will only vary in intensity not shape, and 

the shape of the emission spectrum is thus independent of the 

excitation wavelength. The opposite is also true; the excitation 

spectrum is independent of emission. The fact that the 

fluorescence spectrum is measured as a function of two factors; 

excitation and emission wavelength, makes fluorescence 

spectroscopy a specific method that allows the scientist to assign 

spectra to specific chemical compounds. 

 

Fluorescence spectroscopy is a measure of photons. In modern 

instruments this is often done as single photon counting, but 

traditionally his has been done as an average conversion of light 

pulses into an analog electrical signal [52]. Both methods are 

capable of detecting few photons accurately which makes 

fluorescence spectroscopy a highly sensitive method. It is 

reported 100-1000 times more sensitive compared to other 

spectroscopic methods [52;93]. 

 

Fluorophores are typically compounds with aromatic rings, 

conjugated double bonds or similar rigid structures that prevent 

relaxation through torsional energy. Common examples of 

fluorophores are the aromatic amino acids, tyrosine, 

phenylalanine and tryptophan, where especially the latter is 

widely used in protein science. Other important fluorophores 

found in biological samples are coenzymes NAD(P)H and FAD 

and a suite of vitamins (A, B, D and E) [12]. Important to this 

thesis, the fluorescence properties of human serum were studied 

by Wolfbeis and Leiner (1985) [104]. They concluded that there 

are two dominant parts in the fluorescence landscape from blood; 

one area in the ultraviolet spectral area which is due to the 

aforementioned amino acids, and one area in the near ultraviolet 

and visible area which is characteristic of e.g. NAD(P)H, 

riboflavin and bilirubin (example of an EEM of a blood sample in 

the figure below). Naturally occurring fluorophores in a sample 

are called intrinsic fluorophores and emission from those are 

called autofluorescence, as opposed to extrinsic fluorophores, 

which are designed fluorophores that bind to a specific molecule 
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and are added to a sample before measuring fluorescence. 

Globally, the field of extrinsic fluorophores (fluorescencent 

probes) is a much larger field than the field of autofluorescence, 

and it is widely applied in molecular biology and the search for 

new biomarkers [27]. Only the field of autofluorescence is 

addressed in this thesis. 

 

 

 

Figure 2: Measured fluorescence landscape (EEM) of a diluted blood plasma 

sample. The visual wavelength area (app 380:600 nm) is plotted on a 

different scale to see the spectral shape. It is clear that there are two areas of 

fluorescence the UV area (below 380 nm) which is dominated by the “amino 

acid” fluorescence, and the visual area (above 380 nm) which is different 

cofactors and vitamins.  

External Conditions Affecting Fluorescence Emission 

The local environment surrounding a fluorophore can affect the 

fluorescence signal. Factors such as pH, temperature, 

concentration and polarity can in one way or another affect the 

emission from a given fluorophore. The polarity of the solvent is 

an especially important factor as it causes a shift in the emission. 

When the molecule is excited, the dipole moment is higher than in 

the ground state. In a highly polar environment a “solvent” 
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relaxation will occur, making the dipole moment between ground 

state and exited state smaller, and thus a lower energy difference 

between the two states. This will lead to a shorter emission 

wavelength (a blue shift) compared to the same molecule in a non 

polar environment. This is relevant when measuring a 

fluorophore in different solvents, but also when measuring macro 

molecules such as proteins that can contain several fluorescing 

groups e.g. tryptophan, at different positions, or two different 

proteins where the tryptophan group is located at different sites. 

A tryptophan molecule located on the outside of a protein can 

have a rather different local environment compared to a 

tryptophan molecule located central in the protein. The two 

tryptophan groups will then have different emission maximum, 

and can be discriminated from one another. Below is an example 

with fluorescence measurements of a folate-binding protein in 

suspension. Tryptophan is expected to be the dominant 

fluorophore in this protein, and it has different tryptophan groups 

at different locations. The emission spectrum following excitation 

at 280 nm (expected tryptophan excitation) has maximum at 353 

nm and a significant shoulder at 330 nm (figure 3 right plot). The 

excitation spectra at these two emission wavelengths (left plot), 

are identical with maximum in 280 nm, this is an example of 

difference emission in an internal and external sited tryptophan 

group [36].  
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Figure 3: Excitation and emission spectra of folate binding protein in pH 7.4 

suspension. Left; normalized excitation spectra, emission at 330 and 353 nm. 

Right; emission spectrum following the excitation at 280 nm. Data from [36] 

Concentration Effects  

The fluorescence intensity is dependent on the overall absorbance 

of the sample, and hence of the concentration of the fluorophore, 

but also from other absorbing substances in the sample. At low 

concentrations the relation between concentration and intensity 

known from Lambert-Beers law is also valid for fluorescence 

intensity. At high concentrations, the intensity can be affected by 

concentration quenching (sometimes described as inner filter 

effect). Part of the excitation and/or emitted light is reabsorbed by 

the sample, and the measured intensity of the fluorescence is thus 

decreased (quenched). In high concentration samples, the linear 

relation between concentration and fluorescence intensity is no 

longer valid (i.e. cannot be described by Lambert-Beers law).  

Depending on instrument and measuring conditions, the linear 

dependence is only present at absorbance below approximately 

0.05-0.1 [52]. The concentration quenching can be reduced or 

removed by reducing the absorbance in the sample by either 

diluting the sample or by reducing the pathway. For solid 
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samples or other samples that cannot be diluted, a way of 

reducing the pathway in fluorescence measurements is to change 

the measuring geometry from a right angle setup to a front face 

setup, where fluorescence is measured on the surface of the 

sample, and the pathway is reduced to the penetration depth of 

the light into the sample. It is also possible to correct for inner 

filter effect by normalizing the intensity to the absorbance at 

excitation and emission wavelengths [52]  

 

Concentration quenching in blood plasma 

Blood plasma is a highly absorbant and thus dilution or other 

precautions must be taken against concentration quenching. 

Wolfbeis and Leiner, some of the pioneers in fluorescence 

measurements of blood (see later) suggested a 500 fold dilution in 

the Ultra Violet (UV) area (200 – 400nm) and a 20 fold dilution in 

the visual area (400-750nm) [104], others have suggested diluting 

to Optical dencity of 0.5 [64]. In an important study by Nørgaard 

et al. (see later), they adapted the Wolfbeis and Leiner dilutions 

but then added undiluted serum samples, which they measured 

in a front face setup to reduce concentration quenching. If 

concentration quenching can be reduced, there is a good rationale 

for measuring on the undiluted samples. Dilution is laborious and 

introduces an extra operational step where errors can be made. 

There are some other risks connected with dilution. One is that 

some compounds are diluted to a concentration below the 

detection limit, and thus potential discriminators are removed 

from the matrix. Another risk is the change in pH and/or polarity 

of the samples that dilution can cause, which can affect the 

emission profile of the sample. See example of how tryptophan 

emission is red shifted in the diluted sample in figure 4.   
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Figure 4: Emission spectra (excitation at 295 nm) of a plasma sample 

undiluted and diluted 100 times in PBS buffer (pH 7.4). Figure adapted from 

paper III.  

 

In the study with colorectal cancer conducted in connection to this 

PhD project a 100 fold dilution was chosen for the whole spectral 

area and like Nørgaard et al. the undiluted samples, in this case 

blood plasma, were included. For practical reasons it was not 

possible to measure the undiluted samples in front face geometry, 

instead in a standard right angle setup, but in a special cell with a 

shorter pathway in the excitation direction to reduce the 

absorbance, and hence the amount of concentration quenching. 

To minimize the laboratory work, the 100 fold dilution was 

chosen as a compromise for both the ultra violet and the visual 

spectral area. It might not be sufficient to give a linear 

dependence between intensity and concentration in the ultra 

violet spectral area, and there is a risk that the measured spectra 

to some extent are affected of concentration quenching, which can 

influence the achieved results. 
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Chapter 3: Standardization and Quality 

Assurance of Fluorescence Spectra 

Fluorescence spectroscopy has many advantages as explained in 

the previous chapter, but there are also some drawbacks. 

Fluorescence is generally dependent on the instrument used for 

data acquisition. Instruments differ in spectral resolution, and in 

wavelength accuracy in either the emission or excitation channel. 

The same sample measured on different instruments can give 

different results in both intensity and spectral characteristics. In 

order to compare results, and/or to pool data from different 

instruments to use in a joint data analysis, the data needs to be 

corrected. In Figure 5 is an example where spectral correction is 

needed. The same solution of the fluorophore DCM is measured 

on two different instruments, a difference in both spectral shape 

and maximum position is observed. 

 

Figure 5:  A solution of the fluorophore DCM measured on two different 

instruments. Spectra are normalized to maximum intensity. Blue is measured 

on a FS-920 (Edinburgh Instruments) and red is measured on a LS-55 (Perkin 

Elmer) same settings are used. 
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Depending on the purpose of the measurements and the aim of 

the subsequent data analysis, there are different needs for spectral 

correction and different methods to apply. Smaller independent 

measurements for feasibility studies or internal evaluation 

measured over a short interval of time needs none or minor 

corrections. On the other hand, a much more thorough correction 

is necessary if measurements are part of a larger study with a 

global perspective, or if the samples are measured over a longer 

period of time or on several different fluorescence instruments. 

 

For spectral correction, different options/standards exist 

depending on the purpose. One class of standards are standards 

that are used for determination and correction of instrument 

dependent spectral bias. These can be divided into two classes; 

physical standards and spectral fluorescence standards. Physical 

standards are standardized light sources and/or detectors that can 

be mounted within the sample compartment in the instrument. 

These standards are expensive in use and require expert skills to 

use, and are thus not convenient for the broad community of 

fluorescence instrument operators [35;83]. They are typically used 

by national metrological institutes such as the National Institute 

of Standards and Technology (NIST) and the German Federal 

Institute for Materials Research and Testing (BAM), or the larger 

instrument suppliers to correct new instruments. Most new 

instruments are thus “born” with a correction file made for this 

specific instrument [14;35;83] 

  

For the average fluorescence spectroscopy user, the spectral 

fluorescence standards are the obvious choice. A spectral 

fluorescence standard is a chemical compound with a known and 

stable spectral profile. Though finding suitable fluorescence 

standards has not been easy, the optimal fluorophore has a broad 

and unstructured emission spectrum, with little overlap between 

emission and excitation spectrum, small temperature dependence 

and of course a very stable emission profile[84]. Thus until 

recently only one certified reference material was available; 

Quinine sulphate from NIST [98] and only covering the spectral 
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area from 395 to 565 nm. Within the last few years more focus has 

come to this area, and two sets of standards have been made 

commercially available. A kit of five standard solutions from the 

BAM [80;84] covering the spectral area from 300 to 800 nm and a 

set of two cuvette shaped dyed glass standards from NIST that 

cover the spectral area from 395 to 780 nm when combined with 

quinine sulphate [14-17]. The BAM kit is even accompanied by a 

software (linkcorr®) that easily makes the correction file, with an 

attached estimate of the uncertainty. The corrections performed 

within the software are based on an algorithm made by Gardecki 

& Maroncelli (1998) [24], that fits a common, smooth correction 

factor for the whole spectral area covered by the standards.  

 

These new initiatives have made spectral corrections of 

instrument specific spectral bias more accessible for the average 

user, though as the following will show, there is still some work 

to be done.  

 

Test of BAM Standards 

One of the aims of this PhD project was to explore the possibilities 

of a model for early cancer detection based on fluorescence 

measurements. To apply such a model clinically there is indeed a 

need for quality assurance of the data, and spectral correction is 

thus vital.  Therefore a test of the BAM kit has been made, doing a 

small inter laboratory calibration of three instruments. 

 

For the test we used two different BAM kits, one was used on two 

instruments on University of Copenhagen and one kit on an 

instrument at Danish National Environmental Research Institute. 

The instruments on University of Copenhagen were an LS-55 

from Perkin Elmer, and an FS-920 from Edinburgh Instruments, 

the instrument at Danish National Environmental Research 

Institute was a Varian Cary Eclipse. By applying different kits at 

the two sites we have a situation similar to what we will find 

when data from two different laboratories should be compared. 

The achieved correction files from the BAM software linkcorr® 
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were then later used to correct emission spectra from a set of three 

fluorescence reference materials. (see below in figure 7). Results 

from the BAM solutions are shown in figure 6. The left column of 

plots in figure 6 shows the measured and the technical BAM 

spectra from each instrument. The technical spectra are the “true” 

emission profile of the standards as reported by the supplier, and 

it is clear that there is a difference between technical and 

measured spectra, and also a difference at spectra measured at the 

different instruments. Hence, there is a need for a calibration of 

the instruments. The correction factors in the middle plots have 

similar shapes for the all three instruments. The huge difference 

in the scale on the y axis is due to the different intensity scales in 

the instruments. The right columns of plots show how there is a 

reasonable agreement between the technical BAM spectra and the 

measured BAM spectra after correction. As the technical spectra 

are the ones used as target spectra for the correction, a good 

agreement is expected between the corrected spectra and the 

technical BAM spectra. Some deviations are seen between the 

technical and corrected spectra in the overlap between some of 

the emission standards. The deviations occur at the beginning or 

the tail of a spectrum, in the area, where the overlapping spectra 

have a higher intensity. The reason for this is found in the 

algorithm used for combining the correction factors for each of 

the standards. The standards have overlapping spectra, and for 

two overlapping spectra the spectrum with higher intensity is 

used to obtain the correction factor.  
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Figure 6: BAM correction applied on three different instruments. The red 

spectra are the technical BAM spectra, the blue spectra are the measured 

spectra. The correction factors are derived from the linkcorr® software 

 

In order to test the derived correction factors, we applied them on 

the set of three fluorescence standards in polymethyl 

methacrylate (PMMA) matrix from Starna covering the spectral 

area from approximately 300-600 nm, all equally measured on the 

same three instruments. If a proper emission correction is applied, 

we expect spectral agreement between the corrected spectra of the 

standard blocks from the three instruments. However this is not 

the case. As can be seen in figure 7, the correction does improve 

the agreement of some of the spectra slightly, but for others the 

agreement after correction is worse than before.  
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Figure 7: Starna reference blocks 3-5 measured on three different 

instruments; before (upper plot) and after (lower plot) BAM emission 

correction. 

 

For Starna block three and five (first and last spectrum), the 

correction seems to have some positive effect. Especially between 

the LS-55 and the Varian, the spectra are well aligned after the 

correction. For Starna block four (middle spectrum) the 

agreement between spectra from the three spectrometers is worse 

after than before correction. Both the spectra from the FS920 and 

the Varian have strange curvatures. This is illustrated in figure 8, 

where we see that the BAM corrected spectrum from block four 

measured on the FS-920 has a strange curvature exactly in 428 nm 

which is the point of intersection between the two BAM spectra, 

and there is a similar dip in the correction factor from the FS920 in 

428 nm (inserted in the figure). 
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Figure 8: BAM standards 3 and 4 (red) and BAM corrected Starna Block 4 

(blue) measured on the FS-920 instrument. Inserted is a section of the BAM 

derived correction factor from the FS-920 instrument. The vertical red line is 

at the intersection of the BAM standards at 428 nm in both main figure and 

inset. 

 For the Varian the deviation also occurs just after the point of the 

overlap between two BAM standards. It is unclear if the reason is 

a problem with the algorithm aligning the correction factors 

derived from the different standards. The algorithm calculates the 

correction factor for each BAM standard as the relation between 

the technical spectrum and measured spectrum. The individual 

correction factors are then normalized and intersections are 

smoothed by a weighted average (weighted by the measured 

intensity) of a range of 8 nm on each side of the intersection of the 

overlapping spectra [24]. Changing the spectral range of 

averaging did not solve the problem. It could be interesting to try 

a different algorithm to see if that could derive a more stable 

correction factor. Another reason for the problem could be that 

the signals of the standards are insufficient in that area, indicating 

that an extra standard covering that particular spectral area is 

needed to obtain a better correction. No suitable standard was 

found to test this. 

 

The above result is by no means a proof that the commercial BAM 

correction kit does not work, but it is clear that even with the 

ready to use kit as the BAM, spectral correction is not 
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straightforward to perform, and more work needs to be done in 

order to make proper and simple spectral correction.  

 

Excitation correction  

The spectral output of the light source is different over the 

wavelength spectrum.  In addition, the intensity at each 

wavelength can change with time, and finally fluctuations in the 

lamp can appear. Correction of the excitation channel is thus also 

necessary. Most spectrofluorometers are equipped with a 

reference detector located between the excitation monochromator 

and the sample compartment. A beam splitter leads a fraction of 

the excitation light to the reference detector, which will then 

correct the final result for the wavelength dependent output, by 

normalizing to the reference signal [52]. Otherwise, correction of 

the excitation channel is typically done using a quantum counter, 

which is a compound with a constant emission rate independent 

of the excitation wavelength. Thus the emission output is 

proportional to the output of the light source, and the corrected 

quantum counter excitation spectrum should be a flat line. 

Quantum counters applied are often Rhodamine B or Rhodamine 

101. The latter is less temperature dependent and has a broader 

wavelength range. [45;68;69] 

 

Intensity Calibration. (Paper I) 

The last step in the calibration/data correction before data analysis 

is the intensity correction. This is necessary for making 

quantitative comparisons between fluorescence data from 

different instruments, or data from same instrument made with 

different instrumental settings. Intensity correction is fairly 

simple, as it is done by relating the intensity of the acquired 

spectra to the spectra of a known standard measured at the same 

settings. The challenge is to find a suitable standard. Typically 

quinine sulphate or recently the standards from NIST [16;17] has 

been used, as they have a stable intensity profile. An alternative 

and less widespread method is to use the Raman scatter peak of 

water [18;98]. Raman scatter is a physical property of water, and 
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the intensity of the Raman peak is theoretically connected to the 

excitation wavelength. The Raman peak is therefore an excellent 

stable standard for intensity. The Water Raman approach has 

mostly been applied by use of only the maximum intensity (Peak 

height) of the emission of Raman spectrum [13]. In Paper I a slight 

alternative approach where the whole integral of the water 

Raman peak is used to correct for intensity is described [54]. The 

integral of the peak, or the area under the peak (Arp), is defined as 

the area calculated by the trapezoidal rule covering the spectral 

area in an interval of peak maximum ± 1800 cm-1 at the Raman 

peak following the 350 nm excitation. This equals the area 

spanning the spectral area from 371 nm to 428 nm. The relatively 

broad area is defined in order to ensure that the intensity on 

either side of the peak should be low and within the area of 

instrumental noise. The spectrum to correct is simply normalized 

to the integrated area of the Raman peak, and the intensity of the 

fluorescence spectrum becomes relative to Arp on a new scale of 

Raman units (R.U.).  

The shape/broadening of an emission spectrum depends of the 

instrument settings, especially the slit widths. The width of the 

Raman peak is accordingly dependent on the settings, and by 

using the whole integral of the Raman peak, instead of only the 

intensity at peak maximum is also possible to intensity correct 

data from different instrument settings to the same scale of 

Raman units (Figure 9). The correction is dependent on a suitable 

signal to noise level of both the spectrum to correct and the 

Raman peak; the example in the figure below with ex/em slit of 

1.5/5 nm illustrates this. 
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Figure 9: Spectra of quinine sulfate solution obtained at different slit 

settings (left) before and (right) after Raman correction. In the left plot all 

spectra are on the same scale of Raman Units. The spectrum with slit settings 

of 1.5/5 nm has a low intensity in the raw spectrum (as has the Raman peak 

at the same settings) and hence a low signal to noise value, this is the reason 

for the very noisy corrected spectrum. Figure adapted from Paper I 

By presenting fluorescence intensities on a relative scale of Raman 

Units, fluorescence results become inter comparable between 

instruments, independent of the original scale of the instruments, 

provide that the same excitation wavelength is used for the 

Raman peak. There is a strong wavelength dependence of the area 

under the Raman peak of λ-4 [7], thus it is important to report the 

excitation wavelength used for correction. The scale of R.U. is 

becoming standard within the field of aquamarine science and the 

area of fluorescence measurements of dissolved organic matter 

[91]. 
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Chapter 4: Chemometrics/Data 
Analysis 

The general topics for this thesis are within the fields of 

metabonomics and spectroscopy, and the analysis of data from 

these disciplines. Very often metabonomic data are synonymous 

with spectroscopic data, and thus the areas are in many cases 

coinciding. Common for both, coinciding or not, are the often 

large number of variables compared to samples, a situation that 

exclude us from using traditional statistic methods when 

analysing the data. Instead multivariate statistics/chemometric 

methods are applied. The chemometric methods applied in this 

thesis are mostly standard methods that are all thoroughly 

described in the literature. Thus, in most cases only a brief 

summary is given here. 

 

Chemometrics is the discipline of extracting relevant chemical 

information from often complex data structures acquired by 

measuring on any chemical/biological matrix. A huge advantage 

of chemometric tools is that they can often be used when classical 

statistical tools have problems. For example spectroscopic data, 

which often consist of highly correlated data points (e.g. 

absorbance of neighbouring wavelength points), is a challenge for 

traditional statistical methods. In chemometrics, linearly 

independent latent variables, which reflect the major 

variations/trends in data, are extracted. Chemometrics can thus 

reduce complex data structures to more simple systems with few 

latent variables that describe the important chemical variations in 

the samples. 

 

PCA 

One of the most fundamental and most applied chemometric 

methods is Principal Component Analysis (PCA). PCA is a useful 
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tool to get an overview of the data, to see initial clustering or to 

detect outliers [38;100;101]. 

 

Given a data matrix X of size i × j (objects × variables); PCA will 

reduce X into a systematic part and a residual (noise) part. The 

systematic part consists of possibly few latent variables, principal 

components, which summarize the most important variance in 

the data. The residuals are the part of X not explained by the PCA 

model. The projection of I objects in X onto the first loading vector 

provides the score values of the first component, t1. The direction 

of maximum numerical variation in the J dimensional variable 

space, is then described by the first loading vector p1. The PCA 

decomposition can be described by the following equation: 

 

        

 

 

T is the score matrix, 
  is the transposed loading matrix, and E 

represents the residuals. The scores and loadings are determined 

so as to minimize the residuals in the least squares sense [101].  

 

Multi-Way Data Analysis – PARAFAC 

PCA is a method for data in matrices (two-way data). When 

extending to three-way data as for example in fluorescence 

Excitation Emission Matrices (EEMs) (samples × emission × 

excitation), PCA cannot work directly on such a data array. It is 

then possible to unfold the data to a two-way matrix or it is 

possible to apply multi-way techniques such as PARAFAC or 

Tucker 3 directly on the data array, and thus exploit the second-

order advantages of the three way structure [89]. 

 

PARAFAC is the multi-way analysis of choice in this thesis due to 

its great advantages when applied on fluorescence EEMs where it 

can give estimates of the underlying emission and excitation 

spectra (se later). PARAFAC is based on the work of Cattell (1944) 

[11], and originally presented by Harshman (1970) [30] and 
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Carroll and Chang (1970) [10]. PARAFAC can be seen as a 

generalization of PCA to higher order data [8]. The data array is 

decomposed into trilinear components of three loading vectors, 

often described as one score vector and two loading vectors (in 

case of higher order data the decomposition is extended to 

quadrilinearity, quintilinearity,... etc.) . The part of X which is not 

described by the components is the residuals. In the perfect 

model, the sum of the components (the model) explains all the 

systematic variations in X and leaves all noise in the residuals (se 

graphical example in figure 10 below). The parameters of model 

are estimated as to minimize the sum of squares of the residuals 

in the equation 

  

      ∑   

 

   

             

 

where aif, bjf and ckf are the ith elements of the loading vectors for 

the fth PARAFAC component. 

  

 

Figure 10: The decomposition of X in a two component PARAFAC model 

into scores (a), loadings (b+c) and residuals (E) presented graphically. 

 

PARAFAC and Fluorescence Spectroscopy 

One important feature of the PARAFAC model is the uniqueness 

of the solution, as opposed to a bilinear model which has 

rotational freedom. Thus if the correct number of PARAFAC 

components is used on data with an approximately true trilinear 

structure and an appropriate signal to noise value, the solution 

from the PARAFAC model will give estimates of the true 
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underlying profiles of the variables [4;8]. This makes PARAFAC 

perfect for fluorescence spectroscopy when applied on EEMs. The 

loadings and scores can be treated as estimates of the excitation 

and emission spectra, and relative concentrations of the 

fluorophores in the samples respectively [4;8]. Below (Figure 11) 

is illustrated a decomposition of fluorescence EEMs into estimates 

of the true underlying excitation and emission spectra of the 

present chemical fluorophores. The sample depicted (contour plot 

lower right) is an EEM in the UV-area of a sample from an 

experiment with effect of detergent (reduced Triton X) on a folate 

binding protein (FBP); the experiment is fully described in [36]. It 

is clear from the contour plot that there are two defined peaks 

which both have excitation maximum around 280 nm, and 

emission maximum at approximately 320 and 350 nm 

respectively. The best PARAFAC model on the data though, gives 

three components in this case. Thus, we can extract information 

on three chemical compounds from the sample. From the 

excitation loadings (lower left figure) it is seen that all three have 

excitation maximum around 280 nm, which is the typical 

excitation maximum of the amino acid tryptophan, the expected 

dominating peak in protein emission. The reduced Triton X has 

excitation maximum at the same wavelength. The emission 

loadings though (upper right figure) all have different maximum 

values. The reduced triton X is known to have maximum at 

approximately 300 nm (the green loading), and the two other can 

be assigned to differently located tryptophans. In figure 12 the 

score values representing the relative concentrations of the three 

components are plotted as a bar plot. The PARAFAC solution 

thus allows us to describe the set of complex EEMs from the 

samples, as a matrix of concentrations of three defined chemical 

compounds. This nice relationship has made the combination of 

PARAFAC and fluorescence spectroscopy to a well established 

tool [4;12;91]. 
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Figure 11: An example of a PARAFAC decomposition of an EEM; lower right 

plot is an example of a contour plot of an EEM of a mixture of protein and 

detergent. Upper right and lower left plot are PARAFAC emission and 

excitation loadings respectively. 

 

 

Figure 12: Score values from the PARAFAC model, this represents the 

relative concentrations of the three components in the samples. 

 

PLS 

PCA and PARAFAC are both unsupervised methods used for 

exploring data or data mining. Partial Least Squares (PLS) 

regression is a regression method for establishing a mathematical 
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relation between X and Y. As opposed to PCA and PARAFAC, 

PLS is a supervised multivariate method for two-way data where 

a set of dependent variables, held in a matrix Y (or a vector y), are 

introduced. PLS regression will then find the variation in X that 

best describes the covariance between X and Y [26;102;103]. PLS 

regression can be described by the equation 

  

       

 

Where the regression coefficients are found by maximizing the 

covariance of the scores in a “PCA-like” decomposition of X and 

Y described by 

 

        

 

          

 

T and PT are the scores and transposed loadings in X, and U and 

QT are the scores and the transposed loadings of the Y space, E 

and F are the residuals in X and Y respectively [26; 103]. If Y is a 

matrix with several dependent variables, PLS is denoted PLS 2, 

when y is a vector of only one variable it is called PLS1 [103].  

 

Classification 

In chemometrics and statistics one is often trying to solve the 

problem of classification of samples into classes based on 

measurements of various parameters (quality measurements, 

chemical profiles, spectral profiles, etc.). Several methods exist to 

perform classification; which is the better depends on the nature 

of the data and the purpose of the analysis. A classical method is 

Fishers Linear Discriminant Analysis (LDA) from 1936 [22], or its 

closely related Canonical Discriminant/Variate Analysis (CDA or 

CVA) [39;40]. Discriminant analysis seeks the direction in the data 

that maximizes the distance between the groups, as opposed to 

PCA which will find the direction with maximum variance in the 

data. This is illustrated in the figure below (Figure 13); PCA 

would find the direction of the blue arrow as the direction of the 
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largest variance, whereas a discriminant analysis would find the 

magenta direction as the direction separating the groups [6]. 

 

 

Figure 13: Major directions found in a dataset by either PCA (blue line) or 

LDA (magenta line) 

LDA and CDA are still widely applied methods, and in case of 

full rank linear data they might still be the best methods in terms 

of misclassification rate [31]. For nonlinear data, a quadratic 

version of LDA exists (QDA) and likewise more advanced 

techniques that will be able to handle such data [87]. The problem 

with LDA arises when data does not have full rank (rank 

deficiency) due to either more variables than samples, or highly 

correlated variables. LDA cannot be applied directly on such data 

due to a noninvertible covariance matrix. In that case, the rank of 

the data must be reduced by for example PCA prior to using 

LDA. Another possibility is to use methods like Extented 

canonical variate analysis (ECVA) that solves the eigenvector 

problem in CVA by finding the direction of maximum distance 

between groups by applying PLS, and hereby overcome the rank 

deficiency problem [76]. 

 

PLS-DA is a popular classification method applied in 

chemometrics and often applied in metabonomic studies. PLS-DA 

classification is a discriminant analysis like LDA, and as 

illustrated in figure 13, PLS-DA will also search for the direction 
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that best separates the groups. Basically, PLS-DA is a PLS 

regression, but instead of using a continuous Y, Y is a binary 

dummy matrix representing class membership. For a dataset with 

i samples and k classes, Y is a matrix of size (i×k) where each row 

contains (k-1) zeros and the value of one in the column 

representing its class. Modelled class membership is calculated 

from the predicted Y value according to a given threshold value. 

Given a threshold value of say 0.5, a predicted value  ̂ >0.5 means 

that the sample is assigned to the class, and a  ̂ ≤ 0.5 means that 

the sample is not assigned to the class [103]. A threshold value of 

0.5 is not necessarily the best solution. Any threshold value 

between 0 and 1 can be used dependent on the problem at hand.  

 

PLS-DA is widely applied in metabonomic studies and some 

criticism has been made [50]. A common problem is for example 

lack of or improper validation. With the use of a dummy y 

consisting of only zeros and ones over fit is a huge risk if proper 

validation is not applied. In the often very large number of 

variables used in e.g. “omics” or spectroscopic applications there 

is a great chance, that even if there is no correlation of interest 

between X and y, it is possible to find an arbitrary direction in the 

X space that correlates nicely to the zero-one direction in y. A 

proper validation of the model would show that this correlation is 

not valid.  

 

Another important thing to remember in PLS-DA is how to 

choose the number of Latent Variables (LV).  In PLS the right 

number of LV’s to use is based on evaluation of root mean 

squared error of prediction or cross validation (RMSEP / 

RMSECV), or predicted residual sum of squares (PRESS) which is 

a measure of the total prediction error. In PLS-DA the Y values of 

1 and 0 have been set to the samples to state class membership, 

and are not really related to the nature of the data, and thus we 

cannot expect perfect prediction. From a classification perspective 

it is of no interest if the sample is predicted as 0.95 or 0.85, where 

the latter will result in a higher RMSECV, in both cases the 

sample would be classified as belonging to the class. Instead of 
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prediction error the classification error is a much better criterion 

to evaluate upon, as it is more important for model performance 

[50]. 

 

 

Sensitivity and Specificity 

The performance of a binary classification like LDA or PLS-DA is 

often given in terms of sensitivity and specificity. Sensitivity is the 

measure of positives that are correctly classified as positives (true 

positives) as a fraction of all positives, and specificity is the 

measure of negatives that are correctly classified as negative (true 

negatives) as a fraction of all negative samples [3;70]. A 

classification with perfect discrimination (no overlap) between 

two classes will thus result in a sensitivity and specificity of 100%. 

The concept of sensitivity and specificity is closely related to the 

concept of type I and type II errors. A low sensitivity, i.e. a high 

rate of false positives is synonymous with a high rate of type I 

error, and in parallel, a low specificity is synonymous with a high 

type II error meaning a high rate of false negatives.  

Classification models for discrimination between two groups, e.g. 

diseased and healthy, are based on some defined threshold value 

of a certain classifier, for example the concentration of a 

biomarker or a predicted value from a multivariate projection. In 

a perfect (100%) classification the threshold value is naturally 

given by the class separation though this is seldom the case. Often 

there will be an overlap between the groups, and the threshold 

value must be determined by the analyst. When choosing a 

threshold value in a non-perfect classification it is a trade-off 

between the specificity and sensitivity values [25]. In for example 

diagnostic tests, a false positive result can be expensive due to 

unnecessary and sometimes high risk follow up tests and it can 

cause unnecessary anxiety for the patient [9]. A high specificity is 

thus preferred in these kinds of tests and a stricter threshold can 

be set to obtain this, the trade-off is then a higher amount of false 

negative and a lower sensitivity [108;109]. The threshold value, 

where the sum of sensitivity and specificity is maximized, can be 

found as the intersection between the probability distributions for 
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the outcome of positives and negatives from the test. The relation 

between “threshold”, sensitivity and specificity can be illustrated 

in a Receiver Operator Characteristic (ROC) curve [70] (see 

example in Figure 14).  

 

Figure 14: Example of a ROC-curve. The red marker on the curve represents 

the point of maximized sum of specificity and sensitivity. The dashed 

diagonal represents the random outcome line. The abscissa is reversed to 

represent specificity values; alternatively it can be (1-specificity). 

 

In the ROC-curve the sensitivity is along the ordinate and 1-

specificity (i.e. false positive rate) along the abscissa (some time it 

is depicted with the specificity along a reverse abscissa). The 

upper left corner then represents the perfect classification with a 

sensitivity and specificity of 100%, and the diagonal line 

represents a random outcome. The closer the outcome is to the 

top left corner the better [70]. In a perfect two-class classification 

model the ROC-curve will follow the ordinate and the upper limit 

of the scheme and thus give an area under the curve (AUC) of 1. 

For non-perfect models the AUC will be smaller than one. The 

extent of overlap between the groups is decisive for the AUC; a 

large overlap will give small sensitivity and specificity values 

independent of the threshold value. A total overlap and thus no 

discrimination will give a ROC curve following the diagonal, and 

an AUC of 0.5. AUC’s lower than 0.5 could indicate a wrong 
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hypothesis, and by inversing the test a good classification could 

be obtained [108;109]. The ROC curve and the AUC allows us to 

compare different diagnostic tests at any given specificity or 

sensitivity value independent of the prevalence of the disease [70] 

 

Rotation of PCA Scores (Paper II)  

PCA scores and loading plots are good reviews of the major 

trends in data but sometimes the result can be difficult to 

interpret. Imagine that we are specifically interested in how 

specific variables influence the variation in data, and we then 

have a complex solution where these variables have similar 

loading values in all components, then it would be difficult to 

draw any conclusions regarding their influence in the samples. In 

that case it might help to look at the system from a different 

perspective. This is possible by rotating the solution towards a 

more simple solution. The solution of a PCA model is not unique, 

meaning that there is rotational freedom in the model. The scores 

or loadings in the model can be rotated if their associated 

loadings or scores counterparts are similarly counter-rotated [14].       

The rotation principle can be described as follows: 

 

If we define an orthogonal m × m rotation matrix Q (Q × QT=I), we 

can rotate a PCA model by Q, simply by multiplying the original 

score and loading matrices T and PT by Q and QT, whereby the 

rotated scores, S, and the new rotated basis, M, are obtained:  

 
 

STQ  
ΤΤT MPQand   

 

This means that 

 
ΤΤΤΤ SMPTQQTP   

 

The original PCA model is then converted into the rotated model, 

ESM    with scores S and loadings M that are rotated 

versions of T and PT. The new model explains exactly the same 



 

47 

 

variation, though with different components. Notice that the 

components are no longer principal components as they no longer 

represents the original directions found in the least squares fit. 

 

The idea behind rotation of a PCA model is to establish better 

conditions for interpretation of the model. This is typically done 

by rotating towards a more simple structure. In the example 

below (Figure 15), orthogonal rotation of the loadings has been 

applied on the loadings from a PCA model on some 

chromatographic data. In the left plot which shows a section of 

the original loadings, the information about the compound in the 

chromatogram is spread over five components, whereas in the 

right plot with the rotated loadings, almost all the information is 

concentrated in only one component. Thus we can find samples 

containing this compound in the direction of this rotated 

component only. 

 

Figure 15: loadings from a PCA model on chromatographic data. Left: 

original loadings, right: rotated loadings. 

 

There are many different principles on how to determine the 

rotation matrix Q. In the above example the varimax criterion has 

been applied. The varimax criterion suggested by Kaiser [43] is 

the most often applied criterion for orthogonal rotation of any 
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coordinate system. It is often described together with the 

quartimax rotation principle under the common name orthomax 

rotation [28] maximizing the objective function:  
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pjf is the rotated loading value for the jth variable on component f, j 

= 1,…,J are the variables, and f = 1,…,F the components; γ (0 ≤γ ≤ 

1) determines the rotation, for γ = 0 the function becomes the 

quartimax criterion and if γ=1 it is the varimax criterion. The 

typical differentiation between the two extreme methods of the 

orthomax criterion is that the varimax criterion is said to simplify 

the columns of the loading matrix, whereas, the quartimax 

criterion simplifies the rows [47]. Thus maximizing the varimax 

criterion provides a solution where the loading values in one 

specific component are either high (in absolute value) or close to 

zero to the extent possible. Maximizing the quartimax criterion 

provides a solution where one variable will have high loading 

values in only one component, and low in the others. A drawback 

of quartimax can be that it often leads to one loading vector 

representing a general offset in the data whereas this is not 

typically the case for varimax.  

 

Theory of rotations is primarily described in connection with 

psychometrics, and only few applications are published within 

chemometrics and natural sciences. There are some differences in 

how PCA are performed in psychometrics and chemometrics that 

has an influence on the rotation criterion. In chemometrics the 

loadings are typically normalized columnwise to a unit length of 

one whereas in psychometrics normalization of loadings is 

uncommon. Normalization of the loadings will cause that the two 

“extreme” solutions of the orthomax criterion; varimax and 

quartimax, or in fact all solutions to orthomax, will provide the 

same solution [29;48]. The reason for this is illustrated below. 

Since rotations primarily are described in connection to 
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psychometrics this fact is sometimes ignored, and thus not often 

recognized in the chemometric world. 

 

Looking at the second term of the orthomax equation above 
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The squared loading elements of each column are summed, and 

thus for the normalized loadings the sum 
2

1

J

jf

j

p


  is equal to one 

regardless of rotation. Hence, the second term of the equation will 

be constant, and maximizing the whole criterion will only be a 

matter of maximizing the first term. This will reduce any 

orthomax criterion, when applied to normalized loadings, to the 

quartimax criterion.  

The problem is of course only relevant when rotation is applied to 

loadings. Following the ‘symmetry’ of the PCA model it is equally 

possible to rotate the scores in the PCA model towards simple 

structure. The scores are not usually subject to normalization and 

orthomax rotation is then dependent on the value of γ. 

 

In Paper II rotations of both scores and loadings are implemented 

in an application of metabolic profiling of St. Johns Worth. 

Rotations enhanced interpretation of the metabolic background of 

sample clustering, on both a level of individual variables and on 

the total profile of clustered samples. It is hereby shown how 

rotations with advantage can be applied to complex “omics” data 

to facilitate the visual interpretation, and we believe that the 

method has general applicability in metabonomic, metabolomic, 

and metabolite profiling studies. 
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Chapter 5: Cancer, Definitions, 
Detection, Screening 

A large part of this thesis is concerned with measurement of 

autofluorescence in blood samples to detect cancer. The following 

will briefly describe some of the methods usually applied to 

detect, and screen for cancer. Focus will be on colorectal cancer.  

 

Cancer is a disease caused by malignant cells that display a 

significant growth dysregulation, often resulting in tumours that 

have the ability to invade adjacent tissue and in some cases 

spread to other parts of the body (metastasis). A tumour is the 

result of mutations in cells that allow them to proliferate 

abnormally. Thus, it is a combination of “gain of function” 

mutations in the genes that induce growth of the cell, and a “loss 

of function” mutations in the genes that normally restrain growth 

(tumour supressors). Cancer tumours differ from benign tumours 

by their ability to invade and destroy surrounding or distant 

tissue, whereas benign tumours are circumscribed and therefore 

often can be removed [49;72;79]. The reason why malignant 

tumours can spread to adjacent tissue lies in a change a in the 

mechanisms on the surface of cells that control how cells interact 

with the extracellular matrix. The cell-cell contact is weaker and it 

thus allows the cancer cell to leave the tumour and grow in non-

homologous tissue [51].    

 

In this PhD project a set of blood plasma samples from colorectal 

cancer patients have been measured. Colorectal cancer is caused 

by malignant tumours appearing in the colon, rectum or 

appendix. The tumours stem from adenomatous polyps that 

develop into malignant tumours. This progress is in many cases 

very slow, and in the vast majority of colorectal cancers, a change 

in the polyps occurs up to 15 years before the malignant change 
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begins. The frequency of adenoma polyps in the colon increases 

with age, and can be identified in up to 20% of the population, but 

only 10% of the adenomas will develop into cancer [5;27;79]. 

 

The progression of colorectal cancer is typically staged in the 

Dukes classification system from Dukes A to Dukes D, depending 

on how deep the tumour penetrates the layers of the bowel wall 

and whether it has spread to the lymph and finally other organs. 

Other general staging systems exist for all types of cancer; for 

example the “Roman Numeral Staging” which classifies cancers 

in stages I – IV, where I is “local cancers that have not spread”, 

and IV is “cancers that have metastasized to other parts of the 

body, with II and III in between [86].   

 

In Denmark colorectal cancer is the second and third most 

frequent malignant disease among women and men respectively. 

In all of Europe it was the most frequent cancer type in 2008, and 

the third leading cause of all cancer related deaths in the 

industrialized part of the world [20;95].  

 

Detection and diagnostics 

Traditional detection and diagnostics of cancers is done by 

various techniques depending on the type of cancer. Often a 

combination of tumour biopsy and methods like ultrasound 

images, Xray, CT or MR scanning is applied. Common about 

these methods is that they are either laborious, and/or requires 

expensive equipment. Especially the CT and MR scanners are 

extremely expensive, and require educated personnel to operate 

[1]. These methods are typically not applied unless there is a 

suspicion of cancer, i.e. the patient has experienced symptoms (for 

example a lump in the breast or testicles, or blood in the stool), or 

there is a “positive” test result from a screening program (see 

below). Hence these methods are best suited to diagnose and 

stage cancer in a progressed stage. The standard method for 

examination of the colon and hence for colorectal cancer is 

colonoscopy, but this is also an expensive and laborious method, 
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and there is a small risk of colonic perforation. Thus colonoscopy 

is not suitable for population screening.  

 

Screening programs for cancer 

By early detection of cancer, the chances for cure and survival are 

better, as the disease has not yet developed much, and the risk of 

metastases is smaller [90]. In a test of a screening program, early 

detection of colorectal cancer has reduced mortality by 33% in an 

18 years follow up study [42]. Early detection of cancers can thus 

be crucial. To induce early detection of cancers huge effort is put 

into finding methods to do systematic screening for cancer. For 

some types of cancers, screening programs are established, for 

example mammography for breast cancer and smear test for 

cervix cancer. Both are in many countries offered systematically to 

women of a certain group of age.  

 

Due to the slow evaluation of adenomas to malignant tumours in 

colorectal cancer, and the improved survival rates with early 

detection, a lot of effort has been put into developing screening 

programs for colorectal cancer. Following these efforts, large 

screening programs have been tested and in some countries 

launched as permanent programs [32;33]. The most applied 

method in these screening programs is the fecal occult blood test 

(FOBT), detecting blood in the stool that can indicate cancer. The 

FOBT is most often followed by a colonoscopy in positive cases 

[9;42].  

Two different approaches of FOBT exist; one is a guaiac based 

method, sensitive to peroxidase activity, which reacts to the haem 

group in blood. The risk is that there can be false positives from 

other peroxidases from e.g. fruit or from haem from red meat. The 

other type is an immunochemical test specifically sensitive 

towards human haemoglobin, and this avoids diet induced false 

positives [42]. There are large deviations on reported sensitivity 

and specificity values for FOBT in the literature. Generally 

specificity values are higher than sensitivity values, and the 

immunochemical method show slightly better accuracy than the 

guaiac [9]. In most of the executed screening programs for 
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colorectal cancer the guaiac method was preferred, though recent 

studies recommend the immunochemical method [32-34]. Tests 

have proved that screening with FOBT can reduce mortality with 

13-33%. A problem with the FOBT test for population screening is 

a low compliance; in an American screening program less than 

60% of the target group were up to date with the screenings [55]. 

Even though the test is easy to perform, and in most cases can be 

performed at the patient’s own home, the unpleasantness of 

handling in stool samples is likely to be the reason for the low 

compliance [55;92]. A screening method requiring only a blood or 

urine sample would probably give a better compliance and huge 

effort is put into finding a screening method based on body fluid 

samples, most likely as a biomarker [71;82]. 

 

Biomarkers 

Since the 1960’s scientists have realized that cancer or tumour cell 

activity can be reflected in the blood stream. Cancer cells or 

mechanisms connected to the cancer cells can result in reduced or 

elevated concentrations of some molecules. More recent results 

have shown that changes in DNA, of for example the growth and 

tumour suppressor regulations, can be seen as a result of cancer 

activity [90]. These molecules or DNA sequences found in the 

blood are called serum tumour markers or biomarkers. Due to the 

easiness of sampling blood, huge efforts have been put into 

discover and use suitable markers to monitor cancer treatment, 

and further to detect and diagnose cancer [81;105]. Serum tumour 

markers or biomarkers can be molecules such as enzymes, 

isoenzymes, serum proteins and hormones. The concentration of a 

certain biomarker can give information on the stage of cancer and 

can thus be used for an individual targeted treatment, and 

subsequently monitoring of the effect of treatment and 

progression of the cancer. Today more than 50 named markers are 

known and applied clinically. Some of the most applied markers 

are the prostate-specific antigen (PSA) used for prostate 

screening, and the carcinoma-associated glycoprotein antigen 

(CA-125) used to diagnose ovarian cancer [27]. Despite the heavy 

research in biomarkers for early detection, even the best known 
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and most applied markers have low specificity values leading to a 

high number of false positives. Elevated levels of these markers 

do not manifest until an advanced stage of the malignancy, and 

the clinical use is thus “limited” to applications of prognosis, 

selection, and monitoring of cancer treatment [63].  

 

Biomarkers in colorectal cancers 

For colorectal cancer a number of biomarkers have been 

suggested. 

Carsinoembryonic antigen (CEA) is a well-known biomarker that 

has elevated levels in colorectal cancer patients. Elevated levels of 

CEA are also found in other groups; for example liver patients 

and smokers, and the sensitivity and specificity for detecting 

colorectal cancer are too low (0.34/0.93) to recommend stand-

alone diagnostic use. CEA is thus primarily used to detect 

recurrence in patients with previous colorectal cancer, or as a 

supplement to other examinations in the detection of the disease 

[23;94]. 

Other biomarkers have been suggested for diagnosis or early 

detection of colorectal cancer, e.g. carbohydrate antigen 19-9 (CA 

19-9), the Plasma Lysophosphatidylcholine Levels, free DNA, or 

urokinase receptor (Upar), some with more promising results 

than others, though none have yet been accepted for clinical use 

[19;23;60;71;107]. 
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Chapter 6: Fluorescence Spectroscopy on 

Blood Samples in a Diagnostic Context 

In the following a brief review is given of some of the work 

applied in the field of using fluorescence spectroscopy on human 

blood to diagnose or detect cancer or other diseases. An overview 

of some of the important publications is given in table 1.     

 

The idea of using autofluorescence measurements of blood to 

discriminate cancer from non-cancer was first presented by 

Leiner, Wolbeis and co-workers in the 1980’s [55-58;104]. They 

considered the fluorescence EEM of a blood sample as a 

“fingerprint” that can be used to monitor the health status of a 

person. The hypothesis was that it would be possible to observe 

deviations in the fluorescence spectrum from “normal” healthy 

subjects to diseased subjects [58]. This theory fits well into the 

present theories of metabonomics, and without knowing it Leiner, 

Wolfbeis and co-workers in fact introduced the theory of 

fluorescence based metabonomics. In their series of studies on 

fluorescence spectroscopy (EEMs) on blood (sera) from both rats 

and humans they discovered deviations in the autofluorescence 

from tumour-bearing subjects compared to healthy subjects. In 

rats with a hepatoma they reported a decrease in tryptophan 

fluorescence and an altered fluorescence from NAD(P)H. They 

used rats which they killed at different time of cancer progress, 

and observed the differences in fluorescence even at an early 

stage of the disease. In sera from human patients with 

gynecological tumours compared to age and weight matched 

healthy women they experienced a blue shift in the tryptophan 

fluorescence. Based on that study they suggested that the relative 

ratio between the fluorescence at 287/365 nm and 287/337 could 

be used to detect cancer. In a follow up study by Hubmann et al. 

(1990), it was suggested that an increased level of alpha-2 
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globulins and a decreased level of albumin in malignancies could 

explain the observed tryptophan shift [41;58]. Based on the 

findings by Leiner and co-workers, Madhuri et al. (1997) did a 

study where they used the ratio between tryptophan and NADH 

fluorescence to detect and prognose oral cancer. The results were 

promising, though they only used a limited number of samples. 

Nørgaard et al. (2007) did a study where they adapted the setup 

from Leiner and measured fluorescence EEMs on human serum 

from breast cancer patients in different stages and healthy 

controls. Their study though did not involve spectral assignment, 

but instead they used a multivariate approach (see more later), 

which gave good classification between cancer and control. The 

result was compared with three traditional tumour markers used 

for breast cancer, which also were substance for a multivariate 

analysis. Their study showed that the spectral analysis gave better 

results than the tumour markers. Common to all the studies 

above is the relatively low number of samples. A larger number 

of samples are required to validate the results. 

 

Porphyrins in Acetone Extracts 

The studies above all use raw or diluted plasma or serum, but 

other approaches have been made to use autofluorescence of 

blood in a diagnostic context. Instead of using whole (or diluted) 

serum or plasma for analysis, several publications suggest an 

acetone extract of blood for the fluorescence measurements 

[44;61;64-66]. The acetone extracts is from either plasma, serum or 

the solid cellular elements left when the plasma or serum is 

separated from the blood. These studies are all about measuring 

porphyrin levels in the blood samples. The background for this 

approach is some earlier studies which have shown elevated 

porphyrin levels in cancer patients [85]. 

 

Porphyrins are present in blood only in small concentrations, and 

the area of porphyrin emission is dominated by other 

fluorophores in higher concentrations. Hence, it can be hard to 

detect porphyrins directly in the raw serum or plasma by 
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fluorescence. Using an acetone extraction of blood leads to 

removal of many of the interfering fluorophores, and porphyrins 

can then easily be measured by fluorescence. Studies on acetone 

extract of blood serum or plasma have all found that porphyrin 

emission around 630 nm in cancer patients is elevated compared 

to healthy patients [66]. The reason for the elevated levels of 

porphyrin in the cancer patients is however not totally clear. One 

theory is that the elevated levels found in cancer is due to an over 

expression of porphyrins in the cancer cells. In a study made by 

Aiken and Hue (1994) on pure sera (no acetone extract), they had 

similar observations of elevated levels of porphyrin emission, 

though they found no difference in the levels of total porphyrin 

measured by HPLC in the same samples [2]. The latter suggests 

that the reason is rather a change in the relative protein 

composition in cancer patients. The effect of that is a decrease in 

the amount of protein-bound bilirubin in sera and consequently a 

loss in the intensity of the background emission signal. Another 

explanation could be a change in serum lipoprotein composition 

[2]. Despite the rather positive results of the acetone extract 

method, this method has not yet been clinically accepted. 
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Table 1: Overview of some important publications in fluorescence spectroscopy on human blood and cancer. 

Work Blood source Application/Aim of study N samples Discrimination method/conclusion 

Wolfbeis and 

Leiner (1985) 

Human serum To map and assign total amount of 

fluorophores in human serum 

 A list of expected important fluorophores 

found in blood serum. 

Leiner et al. 

(1983) 

Rat serum 

Diluted 500 times in 

PBS 

Yoshida ascites hepatoma-bearing 

rats in different stages (fluorescence 

measured in the UV area) 

8 cancer 

8 controls 

Decrease in tryptophan fluorescence in 

tumour bearing animals. 

Leiner et al. 

(1983) 

Rat serum 

Diluted 20 times in 

PBS 

Yoshida ascites hepatoma-bearing 

rats in different stages (fluorescence 

measured in the Vis area) 

8 cancer 

8 controls 

Clustering method based  on two 

wavelengths (trp and NAD(P)H 

Leiner et al. 

(1986) 

Human Serum 

Diluted 20 and 500 

times in PBS 

gynecological tumours 31 cancer 

19 controls 

Fluorescence intensity of 287/365 

expressed as percent of 287/337 

Hubmann et al. 

(1990) 

“Synthetic” and 

human sera diluted 

to Abs280 < 0.1 A 

To study the reasons for the 

observed differences found by 

Leiner et al. 

30 human serum samples  

Madhuri et al. 

(1997) 

Human Plasma 

diluted to O.D 0.5 

Oral cancer 3 controls 

13 cancer (3 in stage I, 4 in 

stage II and 3 in stage III 

and IV respectively)   

 

 

 

Ratio between intensity of trp and 

NAD(P)H 
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Work Blood source Application N samples Discrimination method 

Aiken and Hue 

(1994) 

Synthetic, bovine and 

human sera 

Different types of cancer cancer  26 control 

120 cancer 

Difference in porphyrin fluorescence 

505/620 and 505/660  

 

Madhuri et al. 

(1999) 

Acetone extract of 

human plasma 

Liver disease 13 controls 

19 liver patients 

Discriminant analysis using the ratios 

between emission 465/620 and emission 

465/520 after excitation at 405 nm 

Madhuri et al. 

(2003) 

Acetone extract of 

human plasma 

Oral cancer 36 healthy controls 

20 cancer in stage I and II 

23 cancer in stage III and IV 

Discriminant analysis using different 

ratios of porphyrin emission.  

Masilamani et 

al.(2004) 

Acetone extract of 

cellular elements of 

blood 

Various cancer types 25 healthy control 

70 non cancer patients 

5 benign tumour patients 

77 cancer 

Relative intensity between 400/590 and 

400/630 

Lualdi et al. 

(2007) 

Acetone extract of 

human plasma 

Colorectal  cancer 169 healthy controls 

172 patients 

Difference in intensity at 405/623  

Nørgaard et al. 

(2007) 

Human Serum 

Undiluted, 20 and 

500 times diluted 

Breast cancer 13 controls 

11 solitary metastases 

15 multiple metastases 

ECVA on unfolded EEM (best result with 

ECVA on emission spectra from ex 230 

nm 

Kalaivani et al. 

(2008) 

Acetone extract of 

cellular elements of 

blood 

Breast cancer 35 controls 

28 early stage cancer 

18 advanced stage cancer 

LDA  on six ratios between porphyrin and 

flavin peaks  
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Chapter 7: Examples of Fluorescence 
Spectroscopy and Multiway Analysis 
Applied in Detection of Cancer 

This chapter will discuss the multivariate and multiway 

advantages of applying fluorescence spectroscopy in a diagnostic 

context.  Some examples are shown where fluorescence 

spectroscopy and multivariate and multiway methods have been 

used in an attempt to detect cancer from human blood samples.  

 

The Multivariate Approach 

In the literature examples discussed in the previous chapter, only 

the paper from Nørgaard et al. (2008) [77] uses a multivariate 

approach to analyse the spectra. The others use either intensities 

at single wavelength pairs, or ratios between wavelengths. The 

conclusion from the studies of Leiner and co-workers was that 

their method/approach had potential for pattern recognition. The 

operational output from their study was a simple ratio between 

two data points in the EEM consisting of, in their case, 300 data 

points, thus they did most likely not fully exploit the possibilities 

in their data. The reason is that they did not possess the necessary 

tools to do this. From a metabonomic point of view this exclusive 

focus on single wavelength pairs can be a limiting factor 

compared to the approach where the whole spectral area is 

measured. The latter gives better options for getting a broader 

insight to changes in the metabolic state. The same criticism can 

be applied to the acetone extract approach where the method is 

related only on porphyrins.  

 

In the Nørgaard et al. study [77], the full EEMs were measured, 

and in order to fully exploit the potential of the full data matrix 

they applied chemometrics on the unfolded EEMs. The result was 

a good classification between breast cancer patients and controls 

by using multivariate classification techniques on the total 
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spectral area, and perfect classification using only emission 

spectra following excitation at 230 nm. By using chemometrics on 

the full data matrix instead of only a limited number of data 

points, Nørgaard et al. were able to, not only, classify cancer from 

healthy, but in addition they found interesting subgroups among 

the diseased that could give further information on the patients. 

Hereby they utilized the collected data better. 

 

Multivariate to Multiway! PARAFAC Opens for the 

Metabonomic Approach 

The advantages in analysing EEMs with PARAFAC are described 

in chapter 3. By applying PARAFAC on the whole spectral area, 

the rather complex fluorescence EEMs can be reduced to scores 

and loadings, where the loadings are (provided a good 

PARAFAC model) good estimates of the fluorophores in the 

sample, and the score matrix contains estimates of the 

concentrations of the fluorophores. The result of the PARAFAC 

analysis can be seen as a chemical profile of the samples along 

with a concentration profile of the chemical compounds, thus we 

have a qualitative and quantitative analysis of a number of 

metabolites. The solution of the PARAFAC analysis of the 

fluorescence EEMs is thus in concurrence with the definition of 

metabonomics, and this opens for fluorescence spectroscopy as a 

metabonomic tool. 

 

Example 1 - Colorectal Cancer (Paper III) 

A larger experiment with autofluorescence on blood samples 

(citrate plasma) from a study on colorectal cancer was performed 

as part of this PhD project. The scope of this study was to apply 

PARAFAC on EEMs in an attempt to extract relevant background 

information for a potential difference between cancer and 

controls. This could then be an example of a fluorescence based 

metabonomic study. A larger set of samples (304 subjects, 

compared to Leiner et al. 50 samples and Nørgaard et al. 39 

samples) was used in the study. 



 

64 

 

 

The samples in this study are a part of a larger sample set from a 

multi-centre cross sectional study conducted at six Danish 

hospitals of patients undergoing large bowel endoscopy due to 

symptoms associated with colorectal cancer [60;74]. The present 

sample set is designed as a case control study with one case group 

and three different control groups. These three control groups are 

divided into 1) healthy subjects with no findings at endoscopy, 2) 

subjects with other, non malignant findings and 3) subjects with 

pathologically verified benign adenomas. Sample handling, data 

acquisition and data treatments are described in paper III. 

 

Evaluating the mean spectra of the different groups confirms 

some of the expected findings based on the literature. Figure 16 

show mean spectra from two selected spectral areas. Tryptophan 

emission (290/350) in the cancer group is slightly blue shifted 

compared to the other groups (Figure 16 upper plot). The 

emission spectra following excitation at 345 nm is deviating in the 

cancer group (figure 16 lower plot). The lower spectra could be 

assigned to NAD(P)H. Generally, the cancer group is deviating in 

a great part of the measured spectral area when only looking at 

the mean spectra.  
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Figure 16: Mean emission spectra of the four groups; blue: no findings, red: 

other nonmalignant findings, magenta: adenomas, green: cancer. Upper plot; 

emission spectra after ex 290 nm, lower plot; emission after ex 345 nm.   

The results are positive and confirm the findings from previous 

works. Unfortunately it is not that simple when we look at 

individual persons rather than the population estimates. There is 

a huge biological variation in the samples, and hereof following a 

large standard deviation on the mean values. This is illustrated in 

figure 17. The figure shows the mean intensity at 290/337 

(resembles the 287/337 wavelength used by Leiner et al.); the 

cancer patients clearly has a higher mean value than the other 

groups, but the standard deviations in all groups are large and 

overlapping. A classification built exclusively on this single 

intensity would thus not be good. Similar exercises can be 

performed on the ratio between 287/337 and 287/365, which was 

suggested by Leiner and co-workers. Again a large variation 

within the groups gives heavily overlapping standard deviations, 

which makes classification troublesome (not shown). 
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Figure 17: Mean intensity at 290/337 nm in the different groups, with the 

standard deviation marked as an error bar. 

 

Multivariate/Multiway approach 

Instead of using single wavelength pairs in an attempt to 

discriminate between the groups, we applied multivariate and 

multiway data analysis methods on the whole measured spectral 

area.   

Emission and excitation loadings from PARAFAC models on the 

three measured setups (undiluted in two spectral areas and 

diluted; see chapter 1 or paper III for more information) are seen 

in the figure below. All together 19 components were extracted, 

though some of the components in the models on the diluted and 

the undiluted samples must reflect the same compounds, so the 

actual number of chemical compounds reflected is less than 19. 

The pooled score matrices from the three models with all 19 

components, holding the relative concentrations of the 

compounds, were used in a discriminant analysis. The result was 

classification models with sensitivity and specificity values 

around 0.75 and with area under the ROC curve of 0.7-0.8 for 

discrimination between cancer and one or all of the control 

groups. A high specificity value is often preferred in diagnostic 

tests (see chapter 3), and by changing the threshold it is possible 

to get models with specificity value of 0.9, and a sensitivity of 0.5. 

(see figure 19). These results are at level with the performance of 
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known immunochemical tests used to classify colorectal cancer 

(e.g. carcinoembryonic antigen (CEA)) see chapter 5. This result 

confirms the result from Nørgaard that a simple fluorescence 

measurement can perform as good as biomarker tests. 

 

 

Figure 18: PARAFAC excitation and emission loadings from models on the 

three measuring setups on the plasma samples. Upper: Undiluted large 

spectral area, Middle: Undiluted Selected spectral area for Porphyrins, 

Lower: 100 × diluted large spectral area. Figure adapted from paper III 
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Figure 19: ROC curve from PLS-DA model based on all PARAFAC loadings, 

for discrimination between cancer patients and control samples from the 

group “other non malignant findings”. Red circle marks the “optimal” 

sensitivity and specificity value, green circle marks specificity and 

sensitivity for specificity at 0.9. 

Further analysis of the results revealed that some of the 

PARAFAC components were more correlated to the cancer 

patients and some more to the controls. In both groups there were 

compounds which could be tentatively assigned to tryptophan, 

but those correlating more to the cancer patients were blue shifted 

compared to those correlating more to the controls (see figure 20). 

These results are in concurrence with the findings from Leiner, 

Wolfbeis and co-workers, who also reported a blue shift in 

tryptophan in cancer samples [56-58]. This result indicates that 

beside the classification, the PARAFAC based solution provides 

the researcher with additional information that can give an 

understanding of the mechanisms behind the classification in 

concurrence with the ideas of metabonomics. 
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Figure 20: Four PARAFAC excitation and emission loadings: blue and blue 

with asterisk are correlated with cancer, red and red with asterisk are 

correlated with control samples. The loadings correlated with cancer are blue 

shifted in the emission compared to the loadings correlated to the control 

samples. Figure adapted from paper III 

 

Besides using PARAFAC on the EEMs, PLS-DA was also applied 

directly on the unfolded spectra. This was the approach taken by 

Nørgaard el al. Discriminations achieved by PLS-DA was in the 

same level as those obtained by use of the PARAFAC scores (see 

paper III). In mere classification there is thus not much to gain by 

applying PARAFAC, but for a chemical analysis of the result, the 

PARAFAC loadings are much easier to interpret than the PLS-DA 

loadings.  

 

Some of the PARAFAC models in the above example gave 

loadings that were not easy to assign to specific chemical 

compounds. In some cases, the shape of loadings indicates that 

they are not only reflecting one single chemical compound, but 

rather a number of compounds or maybe the interaction between 

several compounds. The consequence is that the qualitative aspect 

of the PARAFAC model is limited. The PARAFAC loadings will 

still reflect variations in the fluorescence spectra, and the peak 
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positions in the loadings will still have a chemical connection, but 

it is no longer possible to associate a PARAFAC component to 

only one single fluorophore. The scores no longer reflect only one 

concentration, and a change in the loading/score value cannot be 

traced back to the change in only one compound. From an 

analytical point of view this is not optimal, as it limits the 

possibilities to draw solid chemical conclusions from the analysis. 

If fluorescence spectroscopy should be used as a metabonomic 

tool it is necessary to solve this problem. Blood plasma is a very 

complex matrix with potential interference from various 

compounds and a huge biological variation. In order to make 

more optimal PARAFAC models, it is possible that many more 

samples are required. More samples will cover more of the 

biological variation found in the samples and there are thus better 

options for separating some of the confounding loadings. 

Describing more of the biological variability with more samples, 

more PARAFAC components are also expected and thus maybe a 

better chance for finding chemical compounds relevant for cancer 

separation. Another option that might provide better PARAFAC 

models is to ensure optimal measuring conditions; if for example 

the spectra suffer from inner filter effect, finding the optimal 

dilution could potentially help. 

 

Example 2 - PARAFAC on Breast Cancer Data 

In another example, PARAFAC has been applied on some of the 

breast cancer data from the paper of Nørgaard et al. The data 

used are from serum diluted 20 times and measured in the UV 

area. The absorbance is thus expected to be within the area of 

linear dependence between concentration and fluorescence, hence 

maybe better options for PARAFAC modelling. A five component 

PARAFAC model was fitted to a selected spectral area. This area 

was chosen because it displays some significant sub-grouping 

among the cancer patients with progressive cancer (see reference 

[77] for details) 
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This PARAFAC model gave a clear clustering of the cancer 

samples and the controls in the first vs. the fourth component 

(highlighted green and blue in the loading plot below). From the 

spectra it was expected to see discrimination in the fifth 

component (dashed purple) which is reflecting the peak found in 

the patients with progressive cancer. 

 

 

Figure 21: Excitation and emission loadings from a five component 

PARAFAC model on a spectral selection of the breast cancer data. The 

highlighted blue and green loadings (component one and four respectively) 

are used for separation of cancer and non-cancer, see below. The dashed 

purple (component five) is the loading separating the metastasis patients. 

 

Component one (blue) which has excitation maximum at 340 nm 

and emission maximum just outside the modelled area can 

tentatively be assigned to NAD(P)H, whereas component four 

(green) has both excitation and emission maximum outside the 

modelled area, and assignment is not possible. Expanding the 

spectral area to cover the area where these two compounds 

expectably have emission maximum did not give good 

PARAFAC models, and did not improve the classification.  
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Figure 22: PARAFAC scores of component one vs. component four. The 

coloured classes are; Blue circles: healthy controls; green triangles: cancer 

patients with solitary metastases; red squares: cancer patients with multiple 

metastases. 

 

The PARAFAC score plot in figure 22 shows the clustering of the 

samples. No separation is experienced between solitary and 

multiple metastasis, whereas there is good, though not perfect, 

separation between cancer and controls. One sample from the 

group of solitary metastasis is located far from the other cancer 

samples, and within the group of controls. From a modelling 

point of view there is no outlying behaviour of that sample, and 

removing it is hence not feasible on that account. Still, it seems 

plausible that the sample may be misclassified in the original 

sample set.  

The PARAFAC model is based on a relatively small number of 

samples, and including more samples in the model would give a 

better idea whether this sample is off, or if it is within the normal 

variation in patients with solitary metastases. 

 

In a direct classification based on ECVA on the unfolded spectra 

Nørgaard et al. achieved good results with few classification 

errors dependent on which spectral areas and dilutions they used. 

In discriminating controls from cancer (solitary and multiple in 

one common group), a total classification error of 10 out of 38 was 
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obtained, whereas when discriminating controls from solitary 

metastases, as a sort of early detection, they only had two errors 

out of 24 samples. In this study, PLS-DA models were calculated 

based on the scores from the PARAFAC model. Classifications 

were performed both on the total score matrix, and on a score 

matrix of the scores from component one and four only. The 

results are seen in table 2. Both in terms of sensitivity, specificity 

and area under the ROC curve the results are promising. The 

classification error in discriminating the cancer groups from 

controls, pooled or individual is at level with the results achieved 

from Nørgaard et al.  

Table 2: Results from PLS-DA models for classification of breast cancer 

samples from control samples based on PARAFAC sores.   

Model Groups Sens Spec AUC Classification error 

False 

positive 

False 

negative 

 

 

Full score 

matrix 

Control vs. 

cancer (pooled) 

0.96 0.85 0.86  2 1 

 

Control vs. 

Solitary 

0.91 0.77 0.79 3 1 

Control vs. 

Multiple 

1 0.92 0.91 1 0 

 

Score 

vectors  

1+4  

Control vs. 

cancer (pooled) 

0.92 0.92 0.90 1 

 

2 

 

 

Control vs 

solitary 

0.91 0.85 0.91 2 1 

Control vs. 

Multiple 

0.93 0.92 0.88 1 1 

 

 

There is not much difference between classifying on the whole 

score matrix or on the matrix of only the two discriminating 

components. Most of the discriminating information is thus found 

in those two components. Comparing the results with Nørgaard 

et al. there is a slightly better classification error for 

discrimination between cancer and controls (only cross validated 

results are compared), whereas in discrimination between solitary 

and controls the result is the same or slightly worse. The latter is 

possible due to the one deviating sample. 
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As in the previous example with colorectal cancer patients, 

PARAFAC analysis of the fluorescence EEMs compared to 

“standard” chemometric analysis of the unfolded spectra did not 

give improved classification. The decomposition of the complex 

spectra into PARAFAC components allows the analyst to focus on 

components one and four when searching for a biochemical 

understanding of the mechanisms behind the discrimination. 

Looking at the mean concentrations for these two components 

(figure 23) it is clear that there is a difference between the 

concentrations in controls and cancer patients. The standard 

deviations are rather high, which must be expected in biological 

samples. Especially for component one in the solitary samples the 

standard deviation is high, the deviating sample in the solitary 

sample has a high score value for this component, and can 

possibly explain some of this deviation. Component one, which 

probably can be assigned to NAD(P)H, seems to have higher 

concentration in the control samples than in the cancer samples, 

and component four (unassigned) has higher concentration in the 

cancer samples. These findings are in conflict with a recently 

published work by Yu and Heikal (2009) who reported elevated 

concentrations of NADH in breast cancer cells compared to 

healthy breast cells [106]. The findings are of course in different 

media, blood serum versus living breast cells, but it would be 

interesting to look further into. The number of samples applied in 

this study (39) is too small to draw solid conclusions. A larger 

study would allow a more thorough analysis of the mechanisms 

behind the discrimination, with a more accurate spectral 

assignment. 
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Figure 23: Relative mean concentrations of PARAFAC component one and 

component four in the different groups of individuals. Blue: control, green: 

solitary metastasis, red: multiple metastasis. Standard deviations are shown 

in the error bars.   

Porphyrins in Plasma – and PARAFAC 

Many of the applications with autofluorescence on blood found 

in the literature applied the method of acetone extract of blood 

serum or plasma. The target of those studies was to measure 

porphyrins, and the acetone extract removes some of the 

interference when measuring porphyrin emission. In the present 

colorectal cancer study, the area of porphyrin excitation and 

emission was also included in the measurements. The 

measurements were applied directly on the undiluted plasma, no 

acetone extract was applied. The reason for not using the acetone 

extract was for one thing the laborious and hazardous work 

connected to the extraction. The other reason was that by 

applying PARAFAC it should be possible to extract both 

estimates of the porphyrin emission spectrum along with 

estimates of the interfering background emission. The measured 

spectrum of this area was dominated by “background” signal 

with only a small “bump” indicating porphyrin emission. A 

PARAFAC model fitted to this specific area with three 

components gave two components of the interfering background 

but also one component which could be assigned to porphyrin 
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with maximum at 400/620 nm (see figure 17 middle plots). 

However, opposed to the acetone extract application described, 

the level of porphyrins found in the cancer patients was not 

elevated compared to the controls, and hence no classification of 

colorectal cancer vs. non cancer could be based exclusively on the 

porphyrin levels. This was further verified in a formal 

multivariate classification model based on that particular spectral 

range. Elevated porphyrin levels has previously been found in 

colorectal cancer [62;85], and it would be interesting to go further 

into why there was not found any differences in the porphyrin 

levels in this study. A direct comparison between porphyrin 

found by PARAFAC and porphyrin found by the acetone extract 

method could be interesting. An expansion of the measured 

spectral area could also be interesting as it would give better 

options for modelling the background signal. Aiken and Hue 

(1994) suggested that the difference between cancer and controls 

was a change in the interfering background emission. 
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Chapter 8: Conclusion 

The examples in the previous chapter have shown that 

fluorescence spectroscopy on human blood samples, (serum or 

plasma) has a clear potential when it comes to discriminating 

between cancer and control samples. Previous results from for 

example Leiner and co-workers and Nørgaard et al have thus 

been confirmed. In the present studies PARAFAC was further 

applied to decompose the fluorescence data into estimates of the 

excitation and emission spectra of the underlying chemical 

compounds. It was shown how PARAFAC applied on “clinical” 

fluorescence data might provide better options for understanding 

some of the biochemical changes behind the discrimination 

between cancer and control samples. At the same time it was 

shown, that classification models based on the raw unfolded 

spectra performed equally well as a model based on PARAFAC 

scores, in terms of sensitivity and specificity values. If the purpose 

is only classification a two-way method like ECVA or PLS-DA 

might be a better choice as these methods can be more operational 

in terms of for example variable selection. If the purpose is to gain 

more understanding of the chemical mechanisms behind the 

classification, and thus use fluorescence spectroscopy as a 

metabonomic tool, PARAFAC must be applied on the spectra. To 

obtain conditions suitable for a chemical interpretation of the 

classification it requires of course chemically meaningful 

loadings. The PARAFC approach thus requires optimal 

conditions for measuring fluorescence with limited concentration 

quenching and suitable concentrations of the fluorophore. In the 

colorectal example shown in this thesis, some of the PARAFAC 

loadings are ambiguous which might be due to non-optimal 

measuring conditions. Interpretation of the important PARAFAC 

components in the classification indicated a blue shift in 

tryptophan emission in the cancer samples, confirming findings 
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from Leiner and co-workers, but this effect alone could not 

explain the classification. In the example with breast cancer data, 

two PARAFAC components in a five component model are 

important for the classification. The measuring conditions for 

these samples are assumably better, and one component can be 

most likely be assigned to NAD(P)H. This example thus left the 

analyst with the knowledge that the NAD(P)H concentration has 

impact on cancer classification. 

 

The above results show the potential for fluorescence 

spectroscopy combined with PARAFAC as a metabonomic tool, 

though they also reveal that much work yet has to be done. Bigger 

or additional sample sets should be measured, and work should 

be done in finding optimal measuring conditions for doing 

perfect PARAFAC models on blood plasma/serum which is a 

very complex biological medium. 

 

The conclusions based on the results found here in these and in 

previous studies is that fluorescence spectroscopy seems to be a 

potential method within cancer diagnostics, monitoring and 

maybe screening. Compared to traditional methods used for 

detection, where some requires very expensive equipment (MR, 

CT, X-ray), fluorescence spectroscopy is a cheap method, though 

at present state not a direct alternative. The sensitivity and 

specific values found by fluorescence spectroscopy are 

comparable to any known biomarker used for colorectal cancer. 

An operational comparisons to biomarker analysis, will reveal 

that the onetime investments in fluorescence spectroscopy is 

higher, but the running costs of the ELISA kits detecting the 

biomarkers are high, and at the same time fluorescence 

spectroscopy is faster and much easier to use. There is a potential 

to use fluorescence spectroscopy as a screening method, either as 

a standalone method, or combined with other methods. 

Compared to the FOBT method mentioned in a previous chapter, 

fluorescence spectroscopy on a blood sample might have a better 

chance of satisfying compliance as it avoids unpleasantness of 

handling stool.  
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The basic concept of metabonomics is to measure all relevant 

metabolites affected by for example pathophysiological stimuli. 

The different analytical methods typically applied in 

metabonomics can measure different metabolites, but no methods 

are capable of measuring the total amount of metabolites. The 

individual methods have so to say an “analytical filter” which 

limits the number of molecules that can be detected. Compared to 

traditional metabonomic tools such as LC-MS and NMR, the filter 

of fluorescence spectroscopy might allow fewer molecules to be 

measured, but the sensitivity and specificity is very high. 

Operational fluorescence spectroscopy is cheaper and much 

simpler than MS and NMR. As a metabonomic tool, fluorescence 

spectroscopy can find some unique results, which potentially can 

give new insight to the metabonomic state. For a total measure of 

all metabolites, the different methods complement each other, 

and even more insight to the metabonomic state can be achieved.  

 

To use a fluorescence based method globally it requires quality 

insurance of data. One aspect of this is the need for proper 

spectral calibration of fluorescence instruments. The test of the 

commercial solution from BAM applied on three instruments 

illustrated the need for a calibration. More work needs to be done 

before an easy to use solution is easy to use for the average 

spectroscopy user. 
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Fluorescence data of replicate samples obtained from different fluores-

cence spectrometers or by the same spectrometer but with different

instrument settings can have great intensity differences. In order to

compare such data an intensity calibration must be applied. Here we

explain a simple calibration method for fluorescence intensity using only

the integrated area of a water Raman peak. By applying this method to

data from three different instruments, we show that it is possible to

remove instrument-dependent intensity factors, and we present results on

a unified scale of Raman units. The method presented is a rapid and

simple approach suitable for routine measurements with no need for

hazardous chemicals.

Index Headings: Fluorescence spectroscopy; Intensity standardization;

Water Raman peak.

INTRODUCTION

Fluorescence spectroscopy is a popular analytical method
applied in a wide range of fields.1–3 It has the advantage of
being highly sensitive (down to ppb) and selective, which
makes it a powerful analytical tool for both quantitative and
qualitative analysis.4 There are, however, certain drawbacks.
The fluorescence signal can be instrument dependent, and
therefore there is a need for standardization if fluorescence data
are to be compared between instruments.

For fluorescence data there are three data correction stages
that have to be considered prior to data analysis (Fig. 1). The
first stage is correction for the spectral properties of the
instrument (excitation and emission correction). This removes
the instrument-specific spectral biases. This correction step is
important and new approaches are currently being assessed and
developed by the National Institute of Standards and
Technology (NIST, Gaithersburg, MD) and the Federal
Institute for Materials Research and Testing (BAM, Ger-
many).5–7 The second stage is correction for the absorption
properties of the sample (often referred to as inner filter
effects4). In optically thin samples with low absorbance, this is
not necessary.8 After completing these first two stages, data
should be spectrally inter-comparable between instruments and
over time. However, the intensity of the fluorescence signal is
not yet calibrated, and this is done in the final stage. In the
same sense as the spectral position of the peak can be in-
fluenced by the instrument, the intensity of the fluorescence
signal is also very dependent on the instrument. Different
instruments have different detector systems and/or use different
photomultipliers; hence they often use different scales for the
fluorescence intensity. Additionally, the fluorescence intensity
is almost always (except for photon counting systems) given in
arbitrary units (A.U.). This makes quantitative fluorescence

spectroscopy difficult across different instruments. When
working with well characterized and known fluorophores, this
is a minor problem that can be circumnavigated using a series
of concentration standards. This is, for example, done in the
routine measurement of the plant pigment chlorophyll a in
marine research.9 However, when working with a complex
mixture of potentially unknown fluorophores a different
approach is required. To date the majority of fluorescence
studies attempt to avoid this problem either by carrying out all
measurements on the same instrument or by using an external
well-characterized standard such as quinine sulfate or, more
recently, using reference standard material 2941, both supplied
by NIST.10–12

There is, however, an alternative less widespread method
that uses the scattering properties of pure water as a
quantitative standard. This involves the properties of the water
Raman peak. The technique has been applied before13,14 but
not explained or demonstrated thoroughly or clearly in the
literature. Also, applications so far are nearly exclusively found
within the aquatic sciences though this method can be applied
universally to a broad range of fluorescence applications. Here
we explain the approach in a simple way and emphasize its
utility as a straightforward and robust calibration technique.
The technique is demonstrated for single excitation and
emission wavelength pair fluorescence measurements, but it
is equally applicable for 2d and 3d fluorescence spectra. A
minimum of data are presented in order to make the
presentation user friendly and to stress the simplicity of the
method.

RAMAN SCATTER BAND AND THE
CALIBRATION APPROACH

Pure water has two clear scatter peaks: Rayleigh and Raman
(Fig. 2). The first is due to direct scattering of the incident light
and therefore occurs at the same wavelength as the excitation.
The water Raman peak is, however, a result of non-elastic
scatter. A fraction of the incident photons lose energy to
vibration in water molecules and the photon is then scattered at
a higher wavelength than the incident light. The energy loss in
water has a fixed frequency of approximately 3400 cm�1.15 The
Raman peak has a relatively low intensity and is often
overshadowed by the fluorescence of even moderate concen-
trations of fluorophores that fluoresce at these wavelengths.

The wavelength-dependent Raman cross-section of water is
a fixed property of water and the integral of the measured
Raman peak (Arp) (Fig. 2) is directly proportional to it.15 Arp

can therefore be used to calibrate measurements made on
different instruments, or made with different instrumental
settings as the peak height and width will vary accordingly.
Raman peaks measured for each setup used to measure samples
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can then be used to calibrate the data accordingly. This is
particularly relevant for applications in which the concentration
span of the fluorophore of interest is so wide that it is necessary
to change the instrument setup, or equally in situations where
samples are measured at different locations. The spectral
position of the Raman peak in a water-based solution for any
specific excitation wavelength (kex) can be calculated using Eq.
1 as illustrated in Fig. 2:

Raman peak position ½kemðnmÞ�

¼ 1 3 107 1 3 107

kex

� 3400

� ��1

ð1Þ

In order to calculate the integral of the Raman peak (Arp) one
needs to define the wavelength band over which to integrate.
Assuming pure water is used, the signal on either side of the
peak should be very low and within instrumental noise. As the
width of the Raman peak varies depending on instrumental
setup, we suggest that a relatively broad fixed band is used.
This ensures that it is valid for as broad as possible a range of
excitation wavelengths and instrumental parameters. We have
chosen to define the Raman peak width as peak position
61800 cm�1. For an excitation wavelength of 350 nm, this
equates to a band spanning from 371 to 428 nm. Depending on
applications, alternative Raman peaks (i.e., from a different
excitation wavelength) may be used, but it is important to
report which excitation wavelength has been used for the
calibration. We suggest the Raman peak from 350 nm
excitation as this is already used for signal-to-noise determi-
nations and it is within the range of many fluorescence
spectrophotometers. Arp is dependent on the excitation

wavelength chosen and is calculated according to Eq. 2:

Akex
rp ¼

Z k2
em

k1
em

Ikem
dkem ð2Þ

Ik is the measured spectrally corrected intensity of the Raman
peak at emission wavelength k. For practical use, Arp is
obtained by summing the intensity at every wavelength. It is
important to note that some fluorescence spectrophotometers
record emission data at intervals other than every 1 nm. This
has to be taken into consideration before calculating Arp.

To perform the calibration the fluorescence of a sample at
any wavelength is normalized to Arp determined daily for the
particular instrumental setup (Eq. 3). The fluorescence signal at
all measured wavelengths is now calibrated to so-called Raman
Units (R.U.), which is in turn quantitatively independent of
instrument specificities and therefore comparable to measure-
ments from other instruments or from the same instrument but
with different settings.

Fkex;kem
ðR:U:Þ ¼ Ikex;kem

ðA:U:Þ
Arp

ð3Þ

It is important to note that this approach differs from another
commonly used Raman intensity normalization approach, in
which the measured signal is normalized to the peak intensity
alone rather than Arp (e.g., Giana et al. (2003)16; Holbrook et al.
(2006)7). Only normalizing to Arp will result in a truly universal
scale that should be independent of instrumental parameters,
provided that spectral corrected data is used.5,6 This will be
demonstrated with some simple examples.

EXPERIMENTAL

In order to demonstrate the approach, a simple inter-
calibration was carried out on three different instruments. A
series of concentration standards of quinine sulfate were made
using quinine sulfate obtained from NIST in perchloric acid
(HClO4) according to the procedure from Velapoldi and
Mielenz.10 The series of concentration standards consisted of
concentrations of 0, 1, 2.5, 5, and 7.5 ppb. Fluorescence

FIG. 2. Excitation–emission matrix for a MilliQ water sample showing the
Rayleigh and Raman scatter bands. Also plotted are the calculated Raman peak
wavelengths according to Eq. 1. Insertion is the emission spectrum at 350 nm
excitation showing the Rayleigh and Raman peaks. The area under the Raman
peak has been marked to illustrate the Arp.

FIG. 1. Flow chart of the different correction steps for fluorescence data.
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measurements were carried out on a Varian Cary Eclipse, an
LS 55 Perkin Elmer, and an FS920 Edinburgh Instruments
fluorescence spectrophotometer. For all measurements excita-
tion and emission slits were set to 5 nm. Water Raman spectra
were recorded with an excitation wavelength of 350 nm and
emission wavelengths from 365 to 430 nm. Fluorescence of
quinine sulfate (QS) was measured at an excitation wavelength
of 250 and emission wavelength of 450 nm. The photo-
multiplier tube (PMT) voltage was varied during the
measurements. For the Varian, the voltages used were 800,
850, 900, 950, and 1000 V, and for the LS55 700, 750, 800,
850, and 900 V were used. The FS920 is a photon-counting
instrument and hence the detector voltage could not be varied.
All the samples (QS solutions and water samples) were
measured using the different instrument setups. All samples
were measured in replicates of at least five and the mean value
was calculated and used for the data analysis. The whole
experiment was repeated a month later with a new batch of QS
standards. Additionally, spectra of a single sample were
measured (ex. 250 nm, em. 300–600 nm) on the Varian with
different excitation and emission slit width settings (5/5, 10/5,
2.5/5, 1.5/5, and 5/2.5 nm). Five parts per billion (5 ppb) QS
and detector voltage of 950 V was used for these measure-
ments. Emission spectra were corrected for the wavelength-
dependent spectral bias using a correction factor derived by use
of secondary emission standards provided from BAM.5 In
addition, during measurement the source intensity in all three
instruments was normalized to that of an internal reference
detector.

RESULTS AND DISCUSSION

As stated above, sometimes it can be necessary to change the
instrument setup in order to obtain the best spectra from a set of
samples. The effects of this and the result of the subsequent
Raman calibration are illustrated in Fig. 3. A greater detector
voltage results in a greater fluorescence signal on the same
solution (Fig. 3, left panel). This makes quantitative compar-
ison of the measurements impossible. Applying Raman
calibration to the data removes these differences and places
all measurements on an equal scale of Raman units (Fig. 3,
right panel). It is now straightforward to make quantitative
judgments of the fluorophore of interest across measurements
with different instrument setups.

The instruments applied in this study were from three
different manufactures, and they use different techniques for
detecting the fluorescence signal. The FS 920 from Edinburgh
Instruments is a photon-counting instrument, whereas the two
other instruments use an arbitrary scale from 0 to 1000, but
these are not equally calibrated. This will, of course, give three
different results in terms of intensity, thereby making inter-
instrumental comparison impossible without applying intensity
calibration. The Raman calibration applied here removes these
instrument-specific intensity factors and is thus suitable for
such inter-instrument intensity calibration. The results of two
series of concentration standards of QS measured on two
different days on the three instruments after Raman calibration
are shown in Fig. 4. Put on a Raman unit scale, the same
concentration of QS gives the same intensity independent of
instrument.

FIG. 3. Fluorescence of quinine sulfate at different concentrations measured using variable photomultiplier tube (PMT) voltages on a Varian Cary Eclipse. (Left)
before and (right) after Raman calibration. Raman units can easily be converted to QS-equivalents by the equation QS¼ RU/0.0767.
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In the above example we have varied the PMT voltage of the
instruments, but as illustrated in Fig. 5 similar results are
obtained if excitation and emission slit widths are varied
instead. Different slit widths result in different intensities of the
spectrum, but after Raman correction the intensities are equal.
Of course, changing the slit widths can in extreme cases change
the spectral shape of the peak. Especially if there are narrow
and well defined peaks, some of the resolution will be lost. This
is of course not handled by the Raman correction. The Raman
corrected spectrum with slit settings 1.5/5 is noisy due to the
fact that both the Raman peak and the raw spectrum have low
intensity and, hence, have a low signal-to-noise ratio. This is a

general limitation of the method: if the instrument setup
applied does not allow measuring a Raman peak with a proper
signal-to-noise ratio, too much noise will be introduced to the
normalized spectra and the method will not work as well as
intended. In some situations, using a Raman peak of a lower
excitation wavelength can solve this problem, as it will give a
better signal-to-noise ratio on the Raman peak. However, in
general the 350 nm excitation Raman peak is suitable. There is
a fixed relationship dependence between Arp from different
excitation wavelengths,15 which makes it possible to recalibrate
to different Raman peaks, should it be required.

The above results reveal that Raman calibration is a suitable
tool for calibrating fluorescence measurements onto a ‘‘global’’
scale that makes it possible to quantitatively compare
measurements from different settings on one instrument or
between instruments. This calibration method is not only
applicable for single excitation and emission wavelength pair
fluorescence measurements (Fig. 3) but is also valid for spectral
measurements (Fig. 5) as well as excitation–emission matrices
(EEMs). Equation 3 is valid for all excitation–emission
wavelength pairs measured, hence the subscripts kex and kem.
The integral of one, fixed, Raman peak (Arp) is used to
normalize the whole spectrum or EEM.

A major advantage of this approach compared to other
calibration methods, such as the quinine sulfate method, is that
no standards are required, thus removing operational steps
(weighing, dilution, etc.), and the risk of degradation of the
chemicals, which all can cause errors. The Raman approach
involves no hazardous chemicals and requires only pure water
(preferably deionized and ultraviolet exposed), which is
available in most laboratories. To simplify the approach
further, sealed cuvettes (cells) with pure water are also
available from most instrument manufacturers and are suitable
for this approach. In Fig. 6 a plot of three water Raman peaks is
shown; one is from a fresh MilliQ sample, whereas the other

FIG. 4. Raman corrected fluorescence intensity of a standard series of quinine
sulfate. Two identical series are measured on two different days, on three
different instruments.

FIG. 5. Spectra of quinine sulfate solution obtained at different slit settings (left) before and (right) after Raman correction.
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two are obtained from sealed water cells. The three spectra are
more or less identical (coefficient of variation for Arp ,2%),
even though one of the sealed water cells is 10 years old. The
sealed water cell can thus ensure a uniform water quality every
day for a long period of time. It should also be noted that this
calibration procedure is universal, and the Raman signal of
water can be used irrespective of sample solvent/matrix.

Fluorescence intensity differences, inter-instrumental or due
to instrument setup, can be calibrated for using the integral of
the water Raman peak (Arp). By Normalizing all fluorescence
data to the integral of the Raman peak from excitation at 350
nm we have shown that it is possible to calibrate fluorescence
data onto a global scale of Raman Units. Hereby we enable a
direct comparison of fluorescence intensity from different

instruments or from the same instrument using different
instrumental settings and over time. It is important to stress
that this is only an intensity normalization/calibration proce-
dure. No spectral changes occur from applying this method.
The problem of spectral correction should, if necessary, be
addressed as an independent operation prior to the intensity
calibration.5–8
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Introduction
�
1H-NMR spectroscopy is an attractive analytical
technique for assessment of samples of biological
origin, i. e., biofluids and plant extracts. The tech-
nique is non-destructive, applicable to intact bio-
material and information-rich with regard to
molecular structure elucidation. Thus, the tech-
nique has been widely used as the analytical plat-
form to generate information-dense data in me-
tabonomic, metabolomic, and metabolite profil-
ing studies. However, 1H-NMR spectra of biologi-
cal samples can be extremely complex as they
may contain thousands of distinctive resonances.
Therefore, visual inspection of a series of such
spectra may only release a small percentage of
the total information available.
Computer-based methods are often used to re-
duce the complexity of data to a suitable level.
In 1H-NMR-based metabolite profiling studies,
principal component analysis (PCA) is often used
[1]. Graphical outputs from PCA enable research-
ers across disciplines to discuss detailed facets of

conceivably complex mathematical models. A
PCA model uses orthogonal and intrinsically ab-
stract latent variables. This means that interpre-
tation of the model in terms of finding the con-
nection between loadings and the variables used
in the analysis can be difficult. Even though a PCA
bi-plot of scores and loadings provides insight
into the structure of the data, it can still be diffi-
cult to interpret the many correlations occurring
in NMR-based metabonomic studies.
In this study we explore a route to simplify the
interpretation of complex PCA models with re-
spect to the influence of individual compounds
on the observed clustering of samples. 1H-NMR
spectra and HPLC-PDA profiles of extracts of 24
commercially available preparations of St.
John's wort, a popular herbal medicine, are
used as model data sets. Metabolite profiles
based on 1H-NMR spectroscopy have previously
proven useful for assessment of herbal medi-
cines or plant extracts using different two-way
chemometric methods [2], [3], [4], [5], [6], [7],
[8], [9].

Abstract
�

This paper describes the application of orthogo-
nal rotation of models based on principal compo-
nent analysis (PCA) of 1H nuclear magnetic reso-
nance (NMR) spectra and high-performance liq-
uid chromatography-photo diode array detection
(HPLC-PDA) profiles of natural product mixtures
using extracts of antidepressive pharmaceutical
preparations of St. John's wort as an example.
1H-NMR spectroscopy of complex mixtures is of-
ten used in metabolomic, metabonomic and me-
tabolite profiling studies for assessment of sam-
ple composition. Interpretation of the derived
chemometric models may be complicated be-
cause several sample properties often contribute
to each principal component and because the in-

fluence of individual metabolites may be shared
by several principal components. Furthermore,
extensive signal overlap in 1H-NMR spectra poses
additional challenges to the interpretation of PCA
models derived from such data. Orthogonal rota-
tion of PCA models derived from 1H-NMR spectra
and HPLC-PDA profiles of the extracts of St. John's
wort preparations facilitate interpretation of the
model. Using the varimax criterion, rotation of
loadings provides simpler conditions for under-
standing the influence of individual metabolites
on the observed clustering. Alternatively, rota-
tion of scores simplifies the understanding of
the influence of whole metabolite profiles on the
clustering of individual samples.
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In an earlier study comprising commercial preparations of St.
John's wort obtained from retail stores in Denmark, interpreta-
tion of the full-resolution 1H-NMR data was based on separate
PCA models derived from samples formulated as tablets and
capsules, respectively [8]. Moreover, another data set derived
from St. John's wort preparations originating from several conti-
nents and based on HPLC-PDA profiles has been analyzed by ap-
plying parallel factor (PARAFAC) analysis [10]. This provided rel-
ative concentrations of individual compounds, which were used
to facilitate comparison of samples by PCA. Interpretation of the
PCA model in terms of constituents responsible for the differen-
ces and similarities in composition between preparations was
straightforward, because the analysis focused on well-character-
ized compounds. However, the influence of each compound was
shared by several components, complicating the interpretation
of the PCA model, because more components had to be interpre-
ted to understand the interrelationship between individual
compounds and the samples. In the present study the data set
size of the originally investigated 1H-NMR data set [8] has been
extended to include St. John's wort preparations from several
continents, previously investigated [10] by HPLC-PDA. The aim
of this study is to be able to interpret the full-resolution 1H-
NMR data as well as HPLC-PDA data from PCA models based on
the entire collection of samples.
To simplify complex PCA models of data sets based on 1H-NMR
spectra and HPLC-PDA profiles, rotations of loadings and scores
have been performed. Such rotations can lead to model repre-
sentations where individual variables are more exclusively rela-
ted to distinct components rather than being shared across
many. Rotations can be performed with techniques such as vari-
max and quartimax rotation [11]. The use of rotations in multi-
variate data analysis is not a new approach, and it has been used
for decades in some areas, e.g., in psychometrics [12]. However,
in natural sciences in general and metabolomics and metabo-
nomics in particular the use of rotations of PCA models is far
more limited, although a few recent examples can be found
[13], [14], [15], [16]. Traditionally, the use of rotations in PCA
modelling has not been strictly needed, because multivariate
modelling has usually been performed on fairly simple data.
Even though data sets with hundreds or thousands of variables
have often been used in chemometrics, the real underlying
complexity of the data was usually low, involving either a few
independent components, or many but highly correlated varia-
bles as in analysis of profiles of electronic or vibrational spec-
tra. Nowadays, data sets such as those arising in metabolomic,
metabonomic and metabolite profiling studies have a much
higher complexity. Thus, rather than analyzing, e. g., UV spectra
profiles spanning the whole variable domain, it is common to
study variables represented by separate narrow peaks, like
those present in 1H-NMR and mass spectra. This creates the
need for additional mathematical tools to simplify interpreta-
tion.
In this paper, we present an application of rotated PCA models of
1H-NMR and HPLC-PDA data representing complex natural mix-
tures.

Materials and Methods
�

Extracts of St. John' s wort preparations
The extracts of twenty-four different commercial preparations
of St. John's wort were the same as described elsewhere [10].

Thirteen preparations were formulated as tablets (preparations
1 – 4, 11, 12, 14, 16, 17, 21 – 24), and the remaining as capsules
(preparations 5 – 10, 13, 15, 18 –20). Preparations 1 – 10, 23, and
24 originated from Europe, preparations 11 and 17 from Asia,
preparations 12, 13, 15, 16, 18, and 20 –22 from North America
and preparations 14 and 19 from Africa. For one of the brands,
two different batches were obtained (preparations 7 and 8). For
acquisition of NMR data, the extracts were lyophilized twice
with 2 mL of methanol and 90 mL of water and once with 2 mL
of D2O.

NMR experiments
NMR experiments were performed on a Bruker Avance spec-
trometer (1H resonance frequency of 600.13 MHz) (Bruker Bio-
Spin) using standard Bruker library pulse sequences. 1 D 1H-
NMR spectra were recorded using a 5 mm TXI probe. Samples of
the extracts (15 mg) were dissolved in 700 μL of DMSO-d6

(99.8 atom% of deuterium) and transferred into 5 mm NMR
tubes. Each sample was prepared in triplicate. For each sample
128 transients were collected using 64 k data points with a spec-
tral width of 16 ppm, using 30° pulses and inter-pulse delay of
4.41 s in order to obtain practically fully relaxed spectra. The
spectra were Fourier-transformed to 128 k data points, using
line broadening of 0.1 Hz, and referenced to internal TMS.

HPLC-PDA data
The HPLC-PDA data, aligned using an extended algorithm of cor-
relation optimized warping (COW), were the same as described
previously [10].

Pre-treatment of 1H-NMR data
1H-NMR data were phased and referenced in Xwin-nmr ver. 3.1
(Bruker BioSpin) and imported into MATLAB ver. 7.0.1 software
(MathWorks) for further data pre-treatment and data analysis.
A cubic polynomial baseline correction was applied and regions
corresponding to residual solvents (δ = 2.48 – 2.54), water
(δ = 3.16 – 3.52), residual extraction solvents (δ = 7.36 – 7.40,
7.76 – 7.82, and 8.56 – 8.60), and compounds not considered in-
teresting in relation to this work (fatty acids δ = 0.82 – 0.88, 1.20
– 1.30, and 2.14 – 2.22) were excluded. This exclusion resulted in
a data set containing 77,717 variables (NMR descriptors). After
exclusion of the specified regions, data were autoscaled using
an offset of 500,000 with the following equation:

This offset was chosen based on a visual assessment of the mag-
nitude of variables containing only noise or baseline. The use of
an offset prevents these noise areas to have too much influence
on the models.

Software for rotation
The rotations were performed using a general rotation tool for
PCA models made in MATLAB. The tool is available from
www.models.life.ku.dk (September, 2008).
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Results and Discussion
�

Principles of rotation of PCA models
Given a data matrix X of size I × J (objects × variables), principal
component analysis is a way of partitioning X into a systematic
part and a residual (noise) part. The systematic part consists of
possibly a few latent variables, i. e., principal components that
summarize the largest variance in the data. The projection of I
objects in X onto the first loading vector p1 provides the score
values of the first component, t1, which describes maximal varia-
tion in the data. Subsequent components are found similarly and
describe as much as possible of yet unexplained variation. PCA
can be described by X = TPT + E where T is the score matrix hold-
ing the above score vectors as columns, PT is the transposed
loading matrix, and E is the residuals. The scores and loadings
are determined so as to minimize the residuals in a least-squares
sense.
For a given PCA model, it is possible to rotate the scores or load-
ings in the model without affecting the overall fit of the solution
if either the loadings or the scores are similarly counter-rotated
[17]. Hence, rotation is simply a way to represent the systematic
variation differently. The actual variation described by the over-
all PCA model is not changed.
If Q is an m × m orthogonal matrix, i. e., Q × QT = I and we define
S = TQ and MT = QTPT then TPT = TQQTPT = SMT. Hence, X = SMT + E
is a model with scores S and loadings M that are rotated versions
of the original ones, and which represents exactly the same fit to
the data.
The major challenge when applying a rotation to a PCA model is
how to choose the rotation matrix Q. From a mathematical point
of view, there is an infinite number of ways to define Q and dif-
ferent criteria for its choice have been developed [11], [12], [17],
[18], [19]. The main principle of these criteria is to rotate towards
a simpler structure, i. e., the rotation procedure seeks to establish
a simpler relationship within the individual loadings so that
these become easier to interpret [20]. An example of a simple
structure could be the largest possible loading of a variable in
one component, resulting in diminished loadings of the same
variable for other components. Hence, samples in the direction
of this loading vector can be clearly associated with distinct var-
iables.
As an example, consider a loading matrix, which reads:

This is a complicated structure because both original variables
contribute significantly in both components (columns of P). Ro-
tating this model by a rotation matrix Q (which in this case hap-
pens to be equal to P) yields

This is a loading matrix with an obviously simple structure, be-
cause now every manifest or measured variable is only associ-
ated with one latent variable. Thus, rotations are used to obtain
another view of the model in which each variable is maximally

correlated with one component and reaches a near-zero correla-
tion with other components. The fit of the overall explained var-
iance of the model is unchanged upon the rotation, but the
scores and the contribution of explained variance of each com-
ponent in the PCA model as well as the loadings will inevitably
change. In a PCA model, the first component explains the largest
fraction of variance and the subsequent components describe
progressively smaller fractions. Upon rotation, this is no longer
the case.
Rotating the PCA model towards simplicity of scores rather than
simplicity of loadings is equally feasible, as follows from the
symmetry of the PCA model. However, most studies published
so far have used rotation of the PCA model for obtaining simpler
loadings [15], [16], [17]. Rotation of scores can be particularly
useful when a certain clustering is expected among the samples,
as shown in the following paragraphs.
Two general categories of rotations are available, orthogonal and
oblique rotations. In the first category, the angular dependence
between the original set of loading vectors is preserved (as in
the simple example stated above), whereas in the latter catego-
ry, the angles between loading vectors are not necessarily pre-
served. The quartimax and varimax criteria are orthogonal rota-
tions, whereas criteria such as oblimin, promax and simplimax
represent oblique rotations [19], [21].
One advantage of the orthogonal rotations is that orthogonality
makes the numerical approaches simpler and better behaved. A
potential drawback could be that orthogonality between load-
ings is seldom the reality of the underlying features. However,
the aim of rotations as presented here is not to find the `true'
profiles, but rather to find a mathematical representation that
can simplify interpretation. None of the traditional rotation
methods, be they orthogonal or not, can provide estimates of
real profiles in normal situations. Hence, the choice of rotation
method should generally not be guided by a quest for true pro-
files. If such estimates are sought, then the family of curve-reso-
lution methods is useful. In this study we focus on orthogonal
rotations.
Among orthogonal rotations, the quartimax criterion described
by Ferguson [11], [17], [22], as well as the varimax criterion de-
scribed by Kaiser [11], [23] have been commonly described un-
der the orthomax criterion [24]. The principle of the orthomax
rotations is to maximize the orthomax criterion given by:

where pjf is the loading value for variable j on component f,
j = 1,…,J represent variables, and f = 1,…,F represent components;
0 ≤ γ ≤ 1. If γ = 0 the equation becomes the quartimax criterion
and if γ = 1 it becomes the varimax criterion.
The varimax criterion is by far the most often applied method
among the orthogonal rotations [13], [14], [15], [16]. Maximizing
the varimax criterion provides a solution where the variance of
the squared loading elements is maximized. For two competing
solutions, the one having a higher varimax criterion value will
have optimized loading values in each principal component,
i. e., values that are either high (in absolute value) or close to
zero. This is a solution that fulfils the definition of a simple struc-
ture [11]. On the other hand, maximizing the quartimax criterion
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maximizes the variance of each (squared) variable, i. e., optimi-
zes loadings for each variable to a high value in one component
and low or zero values in other components. Hence, quartimax
minimizes the number of components needed to explain each
variable. Kaiser stated that there is a possible bias with the quar-
timax, as it tends to give one general factor [11]. The varimax ro-
tation principle is the rotation principle applied in this study.

Interpretation of rotated PCA models based on 1H-NMR
spectra of St. John's wort extracts
1H-NMR spectroscopy is a non-selective technique that gives
unique signals for each hydrogen-containing secondary metabo-
lite above a certain concentration limit. Preparations of St. John's
wort are complex mixtures containing many different metabo-
lites, and 1H-NMR spectra of these preparations are very com-
plex and show hundreds of signals.
Interpretation of the derived PCA models at the individual com-
pound level requires assignment of individual resonances of
these compounds. Assignment of 1H-NMR spectra of major con-
stituents of extracts of commercial preparations of St. John's
wort was performed using 2 D NMR experiments (COSY, TOCSY,
J-resolved, HSQC and HMBC) with reference to data reported by
Bilia et al. [25]. Due to the complexity of the 1H-NMR spectra of
the extracts, complete assignments were limited to major con-
stituents. The 2 D NMR results guided the choice of authentic
samples used for spiking, performed in order to confirm identifi-
cation, especially the differentiation between closely related
compounds. This led to the assignment of all resonances of
chlorogenic acid, rutin, hyperoside, isoquercetin, quercetrin,
and quercetin.
PCA models presented in this study are all based on data sets ob-
tained from the full-resolution 1H-NMR spectra (77,717 varia-
bles). Using the full spectral resolution rather than binned (inte-
grated) data enhances the interpretation possibilities of derived
models. 1H-NMR spectra of natural product extracts often con-
tain signals from several closely related compounds, and the
use of integrated data may lead to loss of identity of individual
signals and hence to loss of important information [8].
The PCA model of the preprocessed 1H-NMR data used 12 com-
ponents to explain 93 % of the total variance in data. The number
of components was chosen based on the explained variance, and
on evaluation of loadings and residuals. 2 D score plots of the

first six components are shown in ●� Fig. 1. An excellent separa-
tion according to supplier was achieved indicating that consider-
able differences between the preparations exist. This is likely
due to the fact that standardizations according to procedures de-
scribed in relevant pharmacopoeias [26], [27] only require
standardization of a few among many constituents present. The
score plots shown in ●� Fig. 1 clearly illustrate that it is hardly
possible to find any exclusive preparation, i. e., none of the prep-
arations is completely differentiated from the others by means
of specific scores and loadings. The individual clustering of prep-
arations shows that the content of all detected hydrogen-con-
taining compounds is different between suppliers. Interpreta-
tion of the contributions of individual plant metabolites to the
observed clustering is of utmost importance for understanding
the patterns displayed in the score plots.
The loadings of the PCA model were subsequently rotated using
the varimax criterion, while the scores were counter-rotated.
Score plots of the first six components of the rotated PCA model
are shown in ●� Fig. 2. It is apparent that the first five compo-
nents mainly describe features in individual preparations (prep-
arations 14, 9, 4, 17, and 15, respectively), whereas the sixth com-
ponent describes features in several preparations. Thus, rotation
of loadings enabled exclusive clustering of individual prepara-
tions by means of specific loadings. This simplifies interpreta-
tion, because individual metabolites only influence a few com-
ponents in the rotated PCA model as opposed to the non-rotated
model, where the influences of individual metabolites are parti-
tioned over several components. Moreover, it is also apparent
from ●� Fig. 2 that the explained variance of each component
has changed upon rotation and that the explained variance
does not follow component number in a descending order. Nev-
ertheless, the total variance explained by the rotated and the
original model is exactly the same.
The loadings derived from the non-rotated as well as the rotated
PCA model have been transformed using the reciprocal of the
scaling factor for each variable to be able to interpret the load-
ings of autoscaled data. In ●� Fig. 3, the back-scaled loadings cor-
responding to the first six components are shown for both mod-
els. It is apparent that the loadings of the rotated PCA model are
more simple to interpret, e.g., the signal at δ = 5.18 [H-1 of glu-
cose (Glc) in sucrose (Suc), a pharmaceutical excipient] almost
exclusively influences the fourth component, and the resonan-

Fig. 1 Score plots of the first six components derived from a PCA model based on 1H-NMR spectra of 24 preparations of St. John's wort. All samples were
measured in triplicate.
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ces of the pharmaceutical excipients, α- and β-lactose (α- and β-
Lac) at δ = 4.89 (H-1 Glc, α-Lac), 4.32 (H-1 Glc, β-Lac), 4.20 (H-1
Gal, β-Lac), and 4.18 (H-1 Gal, α-Lac) almost solely influence the
second component. Analysis of the same signals in the loadings
derived from the non-rotated PCA model reveals that the reso-
nance signal of Suc (δ = 5.18) influences the first six components.
The resonance signals of α- and β-Lac (δ = 4.89, 4.32, 4.20, and
4.18) influence the first, second, fourth, fifth, and the sixth com-
ponent. Thus, interpretation of these resonances only requires
analysis of two components when the rotated PCA model is
used for interpretation, whereas interpretation of six compo-
nents is necessary when the non-rotated PCA model is used. In
fact, the loadings corresponding to the second and fourth com-
ponent of the rotated PCA model provide good approximations
of real 1H-NMR spectra of Suc and α- and β-Lac, respectively.
Suc and α- and β-Lac are primarily pharmaceutical excipients
and not constituents of St. John's wort. The clustering of extracts
of commercial preparation of St. John's wort due to the exci-
pients may seem uninteresting. However, this example illus-

trates the possibility of using rotations of PCA models to obtain
unique loadings for outlying samples, which may be a valuable
tool for identifying causative sources for outliers. Moreover, in
the specific case of medicinal products, this example illustrates
that rotations of PCA models can be used to separate clustering
due to excipients from that due to genuine constituents of the
plant.
An interesting observation in ●� Fig. 3 is the distribution of the
influence of signals in the region around δ = 2. The influence of
these signals is distributed over the first, third, fifth, and the
sixth component in the original as well as the rotated PCA mod-
el. The interpretation of the influence of these signals seems
more straightforward using the loadings derived from the origi-
nal PCA model, since mostly the third component is influenced
by these signals, whereas the influence of these signals is equally
distributed over the above-mentioned four components in the
rotated PCA model. As already mentioned, no change in the over-
all fit of the model occurs upon rotation and the aim is to obtain
a more simple structure with a few high loading values and
many small (ideally zero) loading values. The cost can be that
some loading elements do not change at all or become even
more complex upon rotation, even though the overall represen-
tation is simpler. Thus, it is not possible to obtain a perfect de-
scription of every element in the matrix without changing the
overall fit. Therefore, the application of rotated PCA models
should be seen as an additional opportunity rather than a re-
placement of the original PCA model.
To be able to interpret the influence of individual plant metabo-
lites on the observed clustering, a closer look at the loadings is
necessary. The influence of quercetin on the observed clustering
has been further analyzed by looking at the H-5' signal of quer-
cetin (δ = 6.89). Loadings corresponding to this signal are shown
in ●� Fig. 4 for the non-rotated PCA model (●� Fig. 4A) as well as
the rotated PCA model (loadings rotated) (●� Fig. 4B).
Comparison of the loadings corresponding to H-5' of quercetin
clearly illustrates that interpretation of the influence of querce-
tin on the observed clustering is facilitated using the rotated
loadings (●� Fig. 4B) as compared to the non-rotated loadings
(●� Fig. 4A). Interpretation is aided since the influence of querce-
tin is partitioned over many components in the non-rotated PCA
model, whereas in the rotated PCA model the influence of quer-
cetin is described mainly by the sixth and seventh components.

Fig. 2 Score plots of the first six components derived from a rotated PCA model (loadings rotated) based on 1H-NMR spectra of 24 preparations of St. John's
wort.

Fig. 3 Back-transformed loadings corresponding to the first six compo-
nents derived from the PCA model (A) and the rotated PCA model (load-
ings rotated) (B).
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Further analysis of the loadings corresponding to the sixth and
seventh components reveals that the sixth component is also
positively influenced by other flavonoid glycosides (rutin, hy-
peroside, isoquercetin, quercetrin) and chlorogenic acid. The
seventh component only describes the influence of quercetin
on the clustering in the positive direction of this component as
disclosed by H-5' shown in ●� Fig. 4 and other resonances of
quercetin at δ = 7.67 (H-2'), 7.55 (H-6'), 6.42 (H-8), and 6.19 (H-
6) (data not shown). A score plot of the sixth and seventh com-
ponent of the rotated PCA model is shown in ●� Fig. 4C. Analysis
of this score plot and the corresponding loadings reveals that the
clustering of preparations 2, 5, 6, 7, 8, and 16 in the positive di-
rection of the sixth component of the rotated PCA model is due
to higher levels of rutin, hyperoside, isoquercetin, quercetrin,
quercetin, and chlorogenic acid, whereas the clustering of prep-
aration 3 in the positive direction of the seventh component is
due only to higher levels of quercetin as compared with other
preparations.

Interpretation of rotated PCA models based on HPLC-
PDA profiles of St. John' s wort extracts
To illustrate the simplified interpretation provided by rotated
PCA models, an example using an extremely condensed yet com-
prehensive data matrix will follow. The data matrix contains rel-
ative concentrations of St. John's wort plant metabolites derived
from PARAFAC analysis of HPLC-PDA profiles. Identification of
the plant metabolites represented by the chromatographic
peaks was provided by HPLC-PDA-SPE-NMR-MS experiments
[10].

Interpretation of the first three components in the derived PCA
model has been described in detail in previous work; however,
the interpretation of the influence of several plant metabolites
involved analysis of several components [10]. The loadings of
the derived PCA model were therefore rotated. Score plots of
the first four components of the rotated PCA model in associa-
tion with a loading bar plot are shown in ●� Fig. 5. It is apparent
that each component explains the influence of individual plant
metabolites, and the rotated PCA model facilitates interpretation
of the observed clustering.
The first four components of the rotated PCA model describe the
influence of guaijaverin, quercetrin, miquelianin, and quercetin
3-O-β-D-(2-O-acetyl)galactoside, respectively (●� Fig. 5C). Thus,
the clustering of preparations 14, 17, and 23 in the negative di-
rection of the first component is caused by a higher content of
guaijaverin. Preparations 12, 13, 21, and 22, all originating from
North America, contain higher levels of quercetrin as compared
with other preparations, which cause their separation in the
positive direction of the second component (●� Fig. 5A). Higher
levels of miquelianin cause the separation of preparations in
the positive direction of the third component. In agreement
with earlier results [10], higher levels of miquelianin as com-
pared with other preparations influence the clustering of prepa-
rations 9 and 23. Preparation 23 displays a more distinct dis-
crimination in the positive direction of the third component
(●� Fig. 5B) due to a higher level of miquelianin in this prepara-
tion as compared with preparation 9. The influence of querce-
tin-3-O-β-D-(2-O-acetyl)galactoside on the observed clustering
is described in the fourth component. The presence of higher
levels of this plant metabolite in preparations 5, 7, 8, 14, and 23

Fig. 4 Back-transformed loadings corresponding to all twelve components derived from the PCA model (A) and the rotated PCA model (loadings rotated)
(B). The score plot of the sixth and seventh component of the rotated PCA model shows a tight clustering of preparations.
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explains their discrimination from other preparations in the pos-
itive direction of the fourth component (●� Fig. 5B).
Rotation of loadings thus eases interpretation of the influence of
individual plant metabolites on the observed clustering. If, on
the other hand, the aim of the study is to gain knowledge about
the plant metabolites influencing the clustering of individual
samples, rotation of scores can be a valuable tool. To interpret
the influence of metabolic profiles on the clustering of individual
samples, rotation of scores from the derived PCA model based on
the condensed data matrix with relative concentrations has
been performed. This aids interpretation of plant metabolites in-
fluencing the clustering of individual samples.
Score plots of the first four components of the rotated PCA model
(scores rotated) in association with a bar plot of the correspond-
ing loadings are shown in ●� Fig. 6. It is apparent that rotation of
scores provides discrimination of individual preparations or
closely related preparations. Thus, preparation 17 is discrimina-
ted in the negative direction of the first component (●� Fig. 6A),
and therefore interpretation of the loadings corresponding to

this component provides information about plant metabolites
influencing the clustering of this preparation. From the loading
bar plot it is seen that guaijaverin and biapigenin influence the
clustering of preparation 17 (●� Fig. 6C), in agreement with earli-
er results [10]. As opposed to the non-rotated PCA model, which
also provided discrimination of preparation 17 in the first com-
ponent, the loadings derived from rotated PCA model (scores ro-
tated) is not confounded by the influence of other preparations.
Interpretation of plant metabolites influencing the clustering of
preparation 23 required analysis of several components of the
non-rotated PCA model [10]. Rotation of scores provides easier
interpretation of plant metabolites influencing the clustering
of this preparation by analysis of a single component – the
third component of the rotated PCA model (scores rotated)
(●� Fig. 6B). Thus, plant metabolites influencing the clustering
of preparation 23 in the positive direction of the third compo-
nent are directly seen in the loading bar plot corresponding to
this component (●� Fig. 6C). This shows that higher levels of
miquelianin, guaijaverin, and quercetin 3-O-β-D-(2-O-acetyl)-

Fig. 5 Score plots of the first four components derived from the rotated PCA model (loadings rotated) (A and B). Loading bar plot of the corresponding four
components is shown in (C). The PCA model is based on HPLC-PDA profiles of extracts of preparations of St. John's wort [10].
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galactoside, and to a minor degree also higher levels of rutin,
hyperoside, and isoquercetin, are responsible for the observed
clustering of preparation 23, in agreement with earlier results
[10].
In conclusion, this study has illustrated the advantages of using
rotated PCA models for aiding interpretation of PCA models de-
rived from 1H-NMR spectra as well as from HPLC-PDA profiles of
herbal remedies. Rotation of loadings led to simpler visualiza-
tions in terms of interpretation of the influence of individual me-
tabolites on the observed clustering, since the number of com-
ponents influenced by individual metabolites was reduced as
compared to the non-rotated PCA model. For the 1H-NMR data,
only a few components of the rotated PCA model described the
influence of quercetin, whereas for the HPLC-PDA data each
component of the rotated PCA model described the influence of
an individual plant metabolite. Rotation of scores of the PCA

model derived from the HPLC-PDA data set led to conditions,
where the whole plant metabolite profiles that are characteristic
for individual preparations could be derived from the rotated
PCA model. This approach is especially valuable for understand-
ing the clustering of individual preparations or groups of clus-
ters. Rotation of PCA models illustrated in this study is believed
to have general applicability in metabonomic, metabolomic, and
metabolite profiling studies.
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Abstract Fluorescence spectroscopy Excitation Emission

Matrix (EEM) measurements were applied on human blood

plasma samples from a case control study on colorectal

cancer. Samples were collected before large bowel

endoscopy and included patients with colorectal cancer or

with adenomas, and from individuals with other non

malignant findings or no findings (N = 308). The objective

of the study was to explore the possibilities for applying

fluorescence spectroscopy as a tool for detection of colo-

rectal cancer. Parallel Factor Analysis (PARAFAC) was

applied to decompose the fluorescence EEMs into esti-

mates of the underlying fluorophores in the sample. Both

the pooled score matrix from PARAFAC, holding the rel-

ative concentrations of the derived components, and the

raw unfolded spectra were used as basis for discrimination

models between cancer and the various controls. Both

methods gave test set validated sensitivity and specificity

values around 0.75 between cancer and controls, and poor

discriminations between the various controls. The PARA-

FAC solution gave better options for analyzing the

chemical mechanisms behind the discrimination, and

revealed a blue shift in tryptophan emission in the cancer

patients, a result that supports previous findings. The

present findings show how fluorescence spectroscopy and

chemometrics can help in cancer diagnostics, and with

PARAFAC fluorescence spectroscopy can be a potential

metabonomic tool.

Keywords Fluorescence spectroscopy � Colorectal

cancer � Chemometrics � PARAFAC � Metabonomics

1 Introduction

The idea of using autofluorescence measurements of blood

to discriminate people with cancer from non-cancer was

first presented by Leiner, Wolbeis and co-workers in the

1980s. They considered the fluorescence excitation emis-

sion matrix (EEM) of a diluted blood serum sample as a

base for pattern recognition to monitor the health status of

a person. The hypothesis was that, due to the high sensi-

tivity of fluorescence spectroscopy, it would be possible

to observe even small deviations in the fluorescence spec-

trum from ‘‘normal’’ healthy subjects to diseased subjects

(Leiner et al. 1983, 1986; Wolfbeis and Leiner 1985). This

hypothesis actually fits well into the present theories of

metabonomic based diagnostics. Metabonomic based

diagnostics explores metabolites in a biological system and

its response to a stress situation such as disease. Metabo-

nomics is often based on non-targeted quantitative and

qualitative measurements using nuclear magnetic reso-

nance spectroscopy (NMR) or chromatography [liquid

(LC) or gas (GC)] combined with mass spectroscopy (MS)

(Nordström and Lewensohn 2010; Zhang et al. 2007).

In the present study we explore the possibilities for
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introducing fluorescence spectroscopy of blood plasma

samples as an alternative metabonomic tool for detection

of cancer.

Other publications have followed up on the work from

Leiner and co-workers or applied other strategies in using

autofluorescence on blood to detect cancer (Hubmann et al.

1990; Kalaivani et al. 2008; Leineret al. 1986; Madhuri

et al. 1997, 1999, 2003; Masilamani et al. 2004; Nørgaard

et al. 2007; Uppal et al. 2005; Xu et al. 1988). Different

approaches have been used; some use extracts or controlled

fractions of the plasma, whereas others use the plasma

or serum merely diluted or with no sample treatment at

all. The studies by Madhuri et al. (1999, 2003) and by

Masilamani et al. (2004) use an acetone extract of blood

plasma in order to reduce spectral interference in their

attempt to measure emission from porphyrins. The results

from these studies show elevated levels of porphyrins in

cancer patients compared to healthy patients. In the present

study we will therefore also have a focus on emission from

porphyrins.

Common for almost all of the previous studies was the

use of only few or single specific wavelength pairs as

opposed to the whole spectral approach combined with

chemometrics used in the present study. Only the study

from Nørgaard et al. (2007) applied chemometrics in their

data analysis, and they got promising results on serum

samples from breast cancer patients. The use of chemo-

metrics allows us to use the whole spectrum instead of

focusing on single wavelength pairs. Multivariate data

analysis/chemometrics is a cornerstone in metabonomics

used to extract important information from the complex

data output, and hereby hopefully identify specific metabo-

lites with discriminatory or predictive ability (biomarkers)

that can be used e.g. for a diagnostic purpose (Ragazzi

et al. 2006; Ward et al. 2006). The lack of methods to

extract the useful information from the EEMs was exactly a

problem for Leiner and co-workers and hence, despite the

rather complex EEM measurements, the outcome of their

analysis was a simple ratio between two wavelength pairs.

In the present study, we apply chemometrics on the fluo-

rescence spectra to discriminate between blood plasma

samples from colorectal cancer (CRC) patients and healthy

individuals. We apply two different methods of data

analysis; one which has been applied previously using the

raw spectra as input to the classification model, and one

where we extract underlying chemical information from

the spectra by Parallel Factor Analysis (PARAFAC) (see

materials and methods for a description of PARAFAC).

The combination of fluorescence spectroscopy and

PARAFAC has not previously been applied in a diagnostic

test approach. The combination of PARAFAC and three-

way fluorescence data (the EEMs) is especially fruitful, as

the parameters of the PARAFAC model can be seen as

estimates of the relative concentrations (scores) and the

emission and excitation spectra (loadings) of the fluoro-

phores in the sample (Andersen and Bro 2003; Bro 1997).

As for conventional NMR and LC–MS this chemical

identification opens for fluorescence spectroscopy as a

metabonomic tool.

Fluorescence spectroscopy is widely applied in bio-

marker research though almost solely in the field of labeled

fluorescence, where designed fluorescence probes are used

to detect the presence of specific biomarkers (Hamdan

2007). In autofluorescence or intrinsic fluorescence, natu-

rally occurring fluorophores are measured with or without

minimal sample preparation (Lakowicz 2006). The number

of fluorophores in a blood sample is limited compared to

the number of compounds detectable by MS and NMR,

though among the fluorophores, biologically important

compounds are found. In blood for example, the amino

acids tryptophan, tyrosine and phenylalanine and also some

cofactors and flavonoids NAP, NAD(P)H, FAD are among

the fluorophores (Wolfbeis and Leiner 1985). Compared to

MS and NMR, fluorescence spectroscopy is highly sensi-

tive and can thus measure concentrations down to parts per

billion (Lakowicz 2006). The fluorescent signal from a

fluorophore is dependent on the surrounding environment.

For example, tryptophan groups in different proteins or on

different positions in the same protein can have different

excitation and emission maxima, and can thus be distin-

guished from each other (Abugo et al. 2000). In fact Leiner

et al. (1986) showed a difference in the fluorescence from

the amino acid tryptophan in human serum from healthy

individuals and patients with gynaecological malignancies.

In the practical data acquisition, fluorescence spectros-

copy has some advantages compared to both traditional

metabonomic techniques. Sample preparation is limited to

a minimum of only diluting the sample, and the time of

acquisition can be down to few minutes, depending on the

spectral area covered and the integration time. A spectro-

fluorometer can be small and compact compared to MS and

NMR, and the price is often much lower. Compared to

standard diagnostic tools such as X-ray, MR and CT

scanning, fluorescence spectroscopy is very cheap, but at

the present stage not a viable alternative. Compared to

targeted methods for single biomarkers based on immuno-

chemical tests the onetime investment in fluorescence

spectroscopy is, like in MS and NMR, relatively high, but

the running costs are much lower, and fluorescence spec-

troscopy is faster and easy to use.

Some drawbacks of fluorescence spectroscopy are the

instrument dependent results that call for spectral correction

before they are globally comparable (DeRose and Resch-

Genger 2010). The fluorescence intensity is also highly

dependent on the overall absorbance of the sample. At low

concentrations of fluorophores (and/or low absorbance), the
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linear relation between concentration and intensity known

from Lambert-Beers law is also valid in fluorescence

spectroscopy. At higher concentrations/high absorbance

this relation is broken. This phenomenon is called concen-

tration quenching or the inner filter effect (Lakowicz 2006).

Blood plasma is highly absorbent, and thus precautions

must be taken to avoid or reduce inner filter effects. In the

present study the samples are both diluted and undiluted.

For the undiluted samples the pathway of the exciting light

is reduced to reduce absorbance.

Colorectal cancer is one of the most frequent malignant

diseases for both women and men in the western world. In

Denmark in 2008, 4194 cases of CRC were diagnosed, which

accounted for more than 12% of all malignant diseases (The

Danish Cancer Society 2010; The Danish National Board of

Health 2010). The 5-year survival rate of CRC patients is

approximately 50%, only ovarian, lung, and pancreas can-

cers have lower rates (UK, national statistics, 2010). The low

rate is primarily due to high recurrence frequencies in some

patients undergoing intended curative resection and dis-

seminated disease at the time of diagnosis in other patients.

At present fecal occult blood test (FOBT) combined with

subsequent colonoscopy in those with positive tests is the

method of choice for early detection of colorectal cancer. In

recent years national screening programs based on FOBT

have been introduced in several countries. The FOBT has

been criticized for limited compliance rates, which reduce

the advantage of the test, and therefore new, improved

screening modalities with high compliance rates are urgently

needed (Jenkinson and Steele 2010). The only accepted

serum biomarker for CRC is carcinoembryonic antigen

(CEA), but with sensitivity and specificity values of 0.34/

0.93, this is only accepted for prognosis after detection.

Other biomarkers have been suggested with similar or better

performance, for example free DNA (Flamini et al. 2006)

and plasma lysophosphatidylcholine levels (Zhao et al.

2007). None of these biomarkers have yet been clinically

accepted. In search for alternative methods with improved

detection rates, and/or better compliance rates in screening

for CRC, a metabonomic approach with broad unbiased

search for changes in the metabolic profile is a possible

solution. Interesting results have been published by Ward

et al. (2006) by use of MALDI MS. The present paper will

explore whether a solution with fluorescence spectroscopy

could be an interesting approach.

2 Materials and methods

2.1 Samples

Human plasma samples (sodium citrate anticoagulant)

from 308 individuals were used for the experiment. The

samples are a part of a larger sample set from a multi-

centre cross sectional study conducted at six Danish hos-

pitals of patients undergoing large bowel endoscopy due to

symptoms associated with CRC (Nielsen et al. 2008). The

present sample set is designed as a case control study with

one case group (verified CRC) and three different control

groups. The three control groups are (1) healthy subjects

with no findings at endoscopy, (2) subjects with other, non

malignant findings and (3) subjects with pathologically

verified adenomas (Lomholt et al. 2009). Each of the groups,

case and controls, consisted of samples from 77 individuals.

Additional control samples, standardized pooled human

citrate plasma, were purchased from 3H-Biomedical AB,

Sweden.

2.2 Sample handling and data acquisition

Before measurements, the samples were defrosted on wet

ice (0�C) for app. one hour, or until thawed, and each

sample was divided in four aliquots of 200 lL to 1 mL for

different analytical methods. The divided samples were

immediately refrozen at -80�C. The standardized plasma

samples were received in 50 mL aliquots, and stored at

-80�C. Before use they were thawed at 0�C and divided

into aliquots of 300 lL, and refrozen at -80�C. For fluo-

rescence measurements, the samples were defrosted on wet

ice (0�C) for app. 40 min.

The samples were measured both undiluted and in a

hundred fold dilution in Phosphate Buffered Saline (PBS)

(pH 7.4). The diluted samples were prepared immediately

after the samples were thawed, and then stored on wet ice

(0�C) until measured (app. 20 min). The non diluted frac-

tions of the samples were measured as fast as possible after

thawing. Fluorescence spectra were acquired on an FS920

spectrometer (Edinburgh Instruments) with double mono-

chromators and a red sensitive photomultiplier (R928P,

Hamamatsu) in a cooled detector house. The EEMs were

acquired for the samples using the following settings.

Diluted and undiluted samples were measured with exci-

tation from 250 to 450 nm with a 5 nm increment, and

emission from 300 to 600 nm with a 1 nm increment.

Integration time was 0.05 s. This spectral area consists of

light in both the ultra violet and visual area. The ultra violet

area is dominated by excitation and emission from the

aromatic aminoacids tyrosine and tryptophan hence the

fluorescence from proteins. The visual area covers among

other things excitation and emission from vitamins and

cofactors (for example riboflavin and NAD(P)H) (Wolfbeis

and Leiner 1985). In an attempt to capture emission from

porphyrins, additional EEMs were acquired from the

undiluted samples with excitation wavelengths from 385 to

425 nm with a 5 nm increment and emission wavelengths

from 585 to 680 nm with a 1 nm increment, and an
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integration time of 0.2 s. Every day a spectrum of the PBS

used for dilution was measured with the same settings as

the diluted samples. Excitation and emission slit widths

were set at 4 nm for all measurements. The fluorescence

data were corrected for the wavelength dependent excita-

tion intensity by an internal reference detector in the

spectrometer. Likewise the spectra were corrected for

instrument dependent emission spectral biases by a cor-

rection factor supplied with the instrument. Total time

spent for measuring all three EEMs was app. 40 min.

Diluted samples were measured in a 10 9 10 mm

quartz cuvette. To reduce inner filter effect in the undiluted

samples, these were measured in a 2 9 10 mm quartz

cuvette with the 2 mm in the emission direction.

An external cooling system was mounted on the spec-

trometer keeping the measurement temperature constant at

15�C. To monitor the performance of the fluorescence

instrument, a standard plasma sample was measured every

day. All spectra were saved as ASCII and exported to

Matlab� by an in-house routine. The raw spectra are

available for download at http://www.models.life.ku.dk/.

2.3 Data analysis

Some samples were discarded due to either obviously

erroneous measurements, or too little sample material.

From the three different EEMs acquired, the numbers of

samples ready for data analysis were then 301, 295 and 300

from low wavelength undiluted, high wavelength undiluted

and diluted, respectively. Before the actual data analysis,

the data were subjected to certain signal processing steps

meant to appropriately handle and minimize the influence

from non-relevant artifacts. When measuring fluorescence

EEMs, non-chemical phenomena such as Rayleigh scatter

and second order fluorescence may be present (Lakowicz

2006). These were removed and replaced with missing data

and zeros using in-house software (Andersen and Bro

2003). For the diluted samples, a background spectrum of

the solute PBS, measured the same day as the sample, was

subtracted from each sample in order to remove possible

Raman scatter (McKnight et al. 2001). All samples were

intensity calibrated by normalizing to the integrated area of

the water Raman peak of a sealed water sample measured

each day prior to the measurements. This converts the scale

into Raman units and allows comparison of intensity of

samples measured on other fluorescence spectrometers

(Lawaetz and Stedmon 2009).

A data reduction/decomposition of the fluorescence

EEMs to less complex features was performed using the

multi-way decomposition method called PARAFAC. A set

of fluorescence EEMs can be seen as a three-way data array

(I 9 J 9 K), where I is the number of samples measured

(objects), J the number of emission wavelengths, and K the

number of excitation wavelengths. Just as PCA is decom-

posing a two-way data matrix, a three-way data structure

can be decomposed by PARAFAC into a number of latent

PARAFAC components, by minimizing the sum of squared

residuals e in the PARAFAC model (equation below).

Xijk ¼
XF

f¼1

aif bjf ckf þ eijk

aif is the ith element of the score vector, bjf the jth element

of the loading vector of the emission mode and ckf the kth

element of the loading vector for the excitation mode, for

the fth PARAFAC component. If the correct number of

PARAFAC components is used to decompose data with an

approximately true trilinear structure and an appropriate

signal to noise value, the solution from the PARAFAC

model will give estimates of the true underlying profiles of

the variables. This makes PARAFAC perfect for fluores-

cence spectroscopy when applied on EEMs. The loadings

and scores can be treated as estimates of the excitation and

emission spectra, and relative concentrations of the fluo-

rophores in the samples respectively (Andersen and Bro

2003; Bro 1997).

PARAFAC models were fitted applying nonnegativity

constraints on all parameters in the model (Andersen and

Bro 2003); hence the estimated parameters were found in

such a way that they would not be negative. Models were

validated by split-half analysis (Harshman and DeSarbo

1984) combined with trained judgment of the loadings.

PARAFAC models were fitted separately to each of the

three sets of EEMs. The score matrices from the PARA-

FAC analyses were pooled to one matrix with 19 variables,

which were subjected to further data analysis. PCA was

fitted to get a preliminary overview of the data. Classifi-

cation models were built using PLS-DA, a PLS regression

with the pooled PARAFAC scores as independent X vari-

ables and a dummy matrix as the dependent Y variable

with ones for samples belonging to the class, and zeros for

samples not belonging to the class (Wold et al. 2001).

Forward selection was applied for variable selection. For

all classifications, the data sets were divided into training

and test sets (10–30% in test set). The training sets were

used for model building, and the test samples were used for

validating the models. During model building of the

training sets, the models were cross validated with 10% of

the samples randomly removed in each segment and

averaging over ten repetitions for each cross-validation run.

The test sets for subsequent model validation were ran-

domly selected from the data with the same relative

number of samples removed from each class.

As an alternative to building classification models on the

three combined PARAFAC score matrices, classification

was tried directly with the raw spectra as the independent
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variables. Variable selection was applied using Interval

PLS (iPLS) (Nørgaard et al. 2000). Before the direct

classification the three-way array of EEMs were unfolded

to a two-way matrix.

All data analyses were performed in Matlab R2010�

(The Mathworks Inc.) and chemometric analyses were

performed in PLS_Toolbox v.5.8.2 (Eigenvector Research,

Inc).

3 Results and discussion

Spectra from the three setups are seen in Fig. 1. Comparing

the spectra from one undiluted sample and a sample diluted

100 times (leftmost and rightmost spectra respectively in

the figure) the effect of dilution is clear. In both the raw

undiluted sample and in the diluted, the major peak is in the

region with fluorescence from the aromatic amino acids

tryptophan and tyrosine (phenylalanine is also among the

fluorescing amino acids, but it has excitation/emission

maximum outside the measured area). For the undiluted

sample there are two distinct peaks in that area, whereas in

the diluted sample there is only one distinct peak. Fur-

thermore in the undiluted sample a distinct peak is seen

with emission maximum at a higher wavelength. The

complex peak structure indicates that it is a mixture of

several peaks, which could reflect analytes such as

NAD(P)H, FAD, Riboflavin etc. (Wolfbeis and Leiner

1985). This peak structure is not apparently visible in the

diluted sample.

It is also worth noticing that the intensity of the diluted

sample is higher than the raw. This shows that even though

the raw sample is measured in a micro cuvette, it still

suffers from inner filter effect. Though it was also observed

that the dilution in PBS buffer had an effect besides the

reduced inner filter effect, a slight blue shift was observed

in emission following excitation at 295 nm in the diluted

samples. This might be explained by a slight change in the

configuration of the proteins, which can change the emis-

sion profile.

The high wavelength area of the undiluted samples was

measured separately in order to capture possible fluores-

cence from porphyrins. In the diluted samples this area

gave no signal and was therefore not measured. In Fig. 1,

middle plot, the high wavelength area primarily shows the

descending tail of a peak with maximum outside the

measured area, but a closer inspection of the EEM reveals a

little bump at app. 405/610 nm which is in accordance with

literature values of porphyrin fluorescence (Madhuri et al.

2003).

In order to monitor the performance of the fluorescence

spectrometer, a standard plasma sample was measured

every day. The standard deviation among these standard

samples was up to five times lower than the standard

deviation for the real samples, indicating good performance

of the instrument and consistent sample handling, and at

the same time revealing a large biological variation among

the real samples.

On each of the three measured areas, a PARAFAC

model was fitted. Due to the high complexity of the plasma

matrix and the large biological variation in the samples, a

large number of PARAFAC components was expected,

which makes modelling more challenging. For the undi-

luted samples in the main spectral area (excitation from

250 to 450 nm, emission from 300 to 600 nm), ten

PARAFAC components were chosen. To the spectra from

the diluted samples, a model of six PARAFAC components

was fitted. Only a reduced area of the spectra from the

diluted samples was used, as the highest emission and

excitation wavelengths did not contribute positively to the

model. To the last selected area, the high wavelength area

of the undiluted samples, a three component PARAFAC

model was fitted. The number of PARAFAC components

reflects the chemical rank of the system. For each com-

ponent we get a set of loadings and scores, which are

estimates of the excitation and emission profiles for the

underlying chemical compounds. The excitation and

emission loadings for the three models are seen in Fig. 2.

Many of the components can be identified chemically but

some are more difficult and even impossible to assign to

specific chemical analytes. Despite the large number of

PARAFAC components it is possible that some of these

peaks reflect more than one chemical compound and the

non-Gaussian peak shape of some of the loadings supports

this.

In case of ‘‘just’’ making a model to discriminate

between cancer and non cancer the issue would be to;

objectively and in an unsupervised manner reflect the

underlying variation, and then chemical assignment is of

secondary concern. On the other hand if we at the same

time want to gain knowledge about the reason for the

discrimination and hereby move fluorescence spectroscopy

into the world of metabonomics, chemical identification is

an important parameter. A perfect PARAFAC model will

give loadings which are estimates of the underlying exci-

tation and emission spectra, and therefore we expected

more unambiguous loadings with better options for

chemical assignment. The reason for such non-ideal

behaviour can be a low signal of some analytes, correlation

between different compounds or non-linear behaviour due

to quenching and similar phenomena. Given the relatively

low number of samples and that some of the samples are

not diluted, it is actually impressive that the PARAFAC

models come out as chemically interpretable as they do.

Still, we anticipate that the interpretability would be pos-

sible to improve if many more samples were included in
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the model and possibly also by using targeted standard

addition of hypothesized analytes in the modelling phase.

Qualified presumptions on the chemical origin of some

of the loadings are made. In both the undiluted and the

diluted samples, several loadings are seen with excitation

maximum from 250 to 305 nm, and emission maximum

from app. 330 to 350 nm. In this region, fluorescence from

protein-bound tryptophan is strong. The emission from

Fig. 1 Different EEMs

recorded on one sample. Left:
undiluted sample in main

spectral area. Middle: undiluted

sample in high wavelength area

(notice the axes are different

from the two other). Right:
sample diluted 100 times in PBS

Fig. 2 PARAFAC excitation

and emission loadings from the

three datasets. Upper: undiluted

main area. Middle: undiluted

high wavelength area. Lower:

diluted main area
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tryptophan can shift when the polarity of the microenvi-

ronment changes, hence tryptophan which is bound to

different proteins, or at the internal or external parts of a

protein, can give rise to different emission maxima. In fact,

literature values are reported for tryptophan emissions from

307 to 355 nm (Vivian and Callis 2001). This can explain

the numerous peaks for tryptophan emission. Some of the

excitation loadings fit well with excitation of tyrosine (app.

265 nm) whereas there is no emission loading supporting

the presence of tyrosine emission (app. 300 nm). Energy

transfer from excited state tyrosine to tryptophan is a

known phenomenon and a reasonable explanation of the

absent emission from tyrosine (Lakowicz 2006).

The peaks with maximum at higher wavelengths in both

the undiluted and diluted samples can possibly be assigned

to compounds such as NAD(P)H, FAD and FMN. In the

model from the high wavelength region, it is worth notic-

ing that the little, hardly visible ‘‘bump’’ in the pure spectra

gives a clear component with excitation/emission maxi-

mum at 400/620 which is in agreement with literature

values for porphyrins. There are two other components in

this model. One has excitation maximum at 420 nm, but

emission maximum outside the measured area, and the

other has both excitation and emission maxima outside the

measured area. The loadings are in agreement with some of

the peaks in the undiluted ‘‘main’’ area (two rightmost

peaks in Fig. 2 upper right), and could be tentatively

assigned to compounds such as NADH or flavins.

The score matrices from the three PARAFAC models

are ‘‘pooled’’ into one common score matrix. This matrix

now contains all the quantitative information extracted

from the fluorescence measurements. Thus we have

reduced the complex spectra with several thousand vari-

ables to a matrix with 19 variables consisting of estimated

relative concentrations of the underlying chemical com-

pounds of the plasma samples. This matrix is now the input

to a classification analysis. Note that absolutely no infor-

mation about the health status of the patients has been used

for building the PARAFAC models. This is important from

a validation point of view, as it ensures that the matrix is

simply an unbiased representation of the raw data.

3.1 Classification

The combined score matrix is used for building classifi-

cation models. An initial exploratory PCA analysis of the

score matrix explains 52% of the variation in the first three

components and needs more than 12 components to explain

95% of the variation. The somewhat low explained varia-

tion is most likely due to the biological variation in the data

and shows that the 19 PARAFAC scores are not overly

redundant. No clear separation of cancer and control

samples is found by the PCA analysis. There is thus no

unsupervised direction in the variable space directly sepa-

rating cancer from controls and hence the major part of the

variation in the data is not related to the cancer/non cancer

issue at all. Supplementary information such as age, gen-

der, smoking habits, and co-morbidity could not explain

further of this variation either. It is most likely just indi-

vidual differences.

The score matrix with 19 variables was used as input to

a PLS-DA classification model. During model building,

some samples were removed as outliers based on evalua-

tion of residuals and Hotellings T2 (Jackson 1991). Clas-

sification models were built for all combinations of cancer

and control and also control/control. Models are cross

validated and the models are tested on a set of samples left

out during model building. The huge biological variation

from the raw data is still reflected in the extracted 19

variables in the score matrix. Therefore it makes sense to

apply variable selection to select those variables of the 19

that reflect the variation relevant for discriminating cancer

and non-cancer. We applied forward selection on the cali-

bration data to find the optimal variables for classification.

In the different models the number of variables was

reduced from 19 variables to between five and 15 variables.

Results from the different models with sensitivity and

specificity values for the cross validated and the tested

models as well as area under the receiver operating char-

acteristic (ROC) curve are seen in Table 1. A PLS-DA

model with all the three control groups pooled to a com-

mon control versus the cancer patients gives an area under

the ROC curve of 0.69 with optimal sensitivity and spec-

ificity values of 0.70 in the cross validated model, and

similar values of 0.73 and 0.77 validated on new samples.

Similar values are obtained on models with cancer vs.

controls from the group of healthy individuals with no

findings, and cancer vs. other non malignant findings.

These models give areas under the ROC curves of 0.75 and

0.77, and sensitivity and specificity values between 0.73

and 0.80. In the models of cancer vs. adenomas, the area

under the curve, sensitivity and specificity values are at the

same level as the model with all controls. The results are to

some extent surprising as one would expect it to be easier

to discriminate between individuals with no findings and

cancer, than between individuals with adenomas and can-

cer. Models of the different controls against each other give

poor models with area under the curve values of 0.5–0.6.

Even though they have different imbalances (adenomas or

other non malignant findings), the controls are thus not

much different from a fluorescence point of view. This

result is important for future work of building better

diagnosis models, as it underlines that the essential dif-

ferences found in this study are related to cancer, non-

cancer. In a different study on the same samples searching

for differences in plasma levels of soluble urokinase
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plasminogen activator receptor (suPAR), the level of dis-

crimination between cancer and other non malignant find-

ings was better than between cancer and no findings. The

discrimination between cancer and adenomas was less

significant in this study (Lomholt et al. 2009).

The sensitivity and specificity values in Table 1 are

found as the optimal value (maximizing the sum of the

two). In diagnostic models, a high specificity value is often

preferred as this reduces the number of false positives. For

the models cancer vs. other non malignant findings and

cancer vs. no findings we get sensitivity values of 0.48 and

0.43 at specificity values of 0.9. The result achieved by use

of fluorescence spectroscopy and PARAFAC is thus com-

parable to the performance of the known biomarkers for

CRC; CEA that has sensitivity and specificity values of

0.34 and 0.93.

The table above shows the results of the different clas-

sification models. The different models are based on dif-

ferent data, and thus use different variables for

classification. A score and a loading plot for the classifi-

cation model of cancer vs. other non malignant findings

based on the PARAFAC scores are seen in Fig. 3. As

expected from the sensitivity and specificity values, there is

not a perfect separation between the two classes. However,

there is a tendency towards separation along the diagonal

from the second to forth quadrant in the score plot of the

first vs. third PLS-DA component. From the loading plot

we can see which variables are important for this separa-

tion. The loadings are likewise separated along a diagonal,

with samples that are positively correlated to the ‘‘cancer

direction’’ and samples negatively correlated to the ‘‘cancer

direction’’ or positively correlated to the control samples;

in this case the samples with other non malignant findings.

A similar exercise can be done for all models.

Common for the models with cancer vs. one or all

groups of controls is that the variables 1, 2, 8, 16 and 19 for

several of the models are negatively correlated to the

cancer direction, and likewise variables 6, 7 and 10 are

positively correlated to the cancer direction. These vari-

ables are thus important in the discrimination between

cancer and controls, though a model based on only those

variables does not perform as well as models with more

variables. The excitation and emission loadings from

components seven and 10 which are positively correlated

to cancer and likewise from components eight and 17

which are positively correlated to the controls are shown in

Fig. 3 (lower plot). From the excitation and emission

loadings these variables can most likely be assigned to

tryptophan (variables 7 and 17) or tyrosine, with energy

transfer to tryptophan (variables 1 and 4). They have pair

wise similar excitation loadings, but the tryptophan emis-

sions in the ‘‘cancer variables’’ are all shifted to shorter

wavelengths (blue shift) compared to the ‘‘control vari-

ables’’. This confirms the findings from Leiner et al. (1986)

who also experienced a blue shift in tryptophan emission in

blood from cancer patients.

As opposed to what was expected, variable 3 (excita-

tion/emission at 400/620), which corresponds to porphyrin,

was not correlated to cancer. Several studies have shown

elevated porphyrin levels in the blood from cancer patients

(Madhuri et al. 2003; Masilamani et al. 2004; Xu et al.

1988). In this study all the subjects were included due to

symptoms associated with CRC, and thus, even though

three of four do not have cancer, some cellular biochemical

imbalance might be expected, and therefore elevated levels

could be expected in some of these controls. Additionally,

the studies showing porphyrin to be important used acetone

extracts of either blood plasma or cells, and not pure blood

plasma as in the present study.

In the above models, PARAFAC scores were included

from measurements on both diluted and undiluted samples,

and as explained earlier there are some important effects of

dilution. Fluorescence measurements on the undiluted

samples may suffer from inner filter effect due to the high

absorbance from the plasma samples. Diluting the samples

induce physical/chemical changes in the plasma causing

blue shift in the spectra. We found that variables from both

the diluted and undiluted measurements were important for

detecting cancer. Modelling only on scores from the diluted

or undiluted samples gave similar but slightly worse

Table 1 PLS-DA models for classification of different classes based on the PARAFAC scores

Groups Sensitivity CV Specificity CV AUC CV Sensitivity predict Specificity predict

Crc vs. no 0.68 0.84 0.75 0.73 0.77

Crc vs. onf 0.79 0.73 0.76 0.79 0.73

Crc vs. ade 0.73 0.74 0.77 0.92 0.63

Ade vs. no 0.57 0.55 0.50 0.45 0.43

Ade vs. onf 0.47 0.75 0.57 0.47 0.47

Onf vs. no 0.63 0.58 0.59 0.53 0.40

Crc vs. all controls 0.70 0.70 0.69 0.74 0.71

Crc cancer, No no findings, Onf other non malignant findings, Ade adenomas, All all three control groups, CV cross validated
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models compared to the combination of scores from the

diluted and undiluted samples, thus predictive power is

gained by including both. From an analytical point of view,

measuring only on the undiluted samples would be pre-

ferred as it makes the measurements faster and simpler to

perform. Additionally there is a risk that the changes in

sample matrix due to dilution could break some of the

cancer specific correlations/interactions and thus make

discrimination more difficult. A more thorough study

addressing this could be interesting. In fact in analysis of

the raw spectra (see below) better models were obtained

using only the undiluted samples.

3.2 Classification on the raw data

A study similar to this on breast cancer by Nørgaard et al.

(2007) applied discrimination only on the raw spectra. The

authors did recommend applying more advanced tech-

niques such as PARAFAC on the spectra but did not pursue

this. Recall that we have used PARAFAC here, in order to

provide more direct chemical information on how a pos-

sible classification can come about. Nevertheless, it is

interesting to see whether we have gained anything from a

quantitative point of view by applying PARAFAC on the

data. Hence, classification models were built directly on the

raw spectra as well. We have analyzed both diluted and

undiluted samples individually and combined, and

achieved similar results. However, the results from the

undiluted measurements were slightly better than the

alternative results, and are thus the only ones presented

below. In Table 2 the results from the classifications based

on the raw spectra are shown. Compared to the results

based on the PARAFAC scores, these classification models

perform equally well and these results are thus also com-

parable to the performance of CEA. Again the models on

control vs. control perform worse than the cancer vs.

control models. As for the models based on the PARAFAC

scores we have applied variable selection on the models.

Different variables are used for the models, but some of the

same areas are represented in all four models.

Although it is possible to trace the original wavelengths

behind the variables, these do not give the same intuitive

information compared to the PARAFAC loadings. The

scores and loadings for the model classifying cancer and

other non malignant findings (Fig. 4) show a fairly good

separation between the two groups in the first and fifth

components. The loadings can be traced back to wave-

lengths around maxima for tryptophan, and the loading for

the fifth component has a second derivative-like shape,

which can be connected to the shift in the spectra from

control to cancer that was shown above in the models based

on PARAFAC scores. The results are thus similar, which

was expected as it is originally the same data. Still, the

extracted features by PARAFAC make the interpretation

more straight forward and more comprehensive.

4 Conclusion

We have introduced excitation emission matrix fluorescence

measurements on human blood plasma combined with

multivariate data analysis as a potential alternative method

to discriminate CRC patients from healthy controls, and

controls with other cellular imbalances than cancer. With

Fig. 3 Upper left: PLS-DA

score plot of the first vs. third

PLS-DA component from the

model cancer vs. other non

malignant findings on

PARAFAC loadings. Triangles
are cancers and circles are

controls. Upper right:
corresponding loading plot.

Lower: selected PARAFAC

excitation (left) and emission

(right) loadings. Dark gray line
(loading #7) and dark grey with

asterisk (loading #10) are

correlated with cancer, light
gray (#8) and light gray with

asterisk (#17) are correlated

with control samples
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sensitivity and specificity values of app 0.75 on a test set,

the results are comparable to the known biomarker CEA.

Previous studies with fluorescence spectroscopy have

obtained similar results on other types of cancer but with a

smaller number of samples. We obtained similar results in

regards to discrimination whether we applied classification

directly on the raw unfolded spectra or extracted estimates

of the underlying fluorophores by use of PARAFAC. By

the latter method, however, we obtained better conditions

for a chemical interpretation/understanding of the results.

We could see a blue shift in the tryptophan emission from

cancer patients as one of the reasons for discrimination, a

phenomenon described earlier in the literature. The use of

PARAFAC on the fluorescence data to extract qualitative

and quantitative chemical information from the human

blood plasma samples, and base classification on this

information is an example on how fluorescence spectros-

copy can be used as a tool for metabonomic research.

Compared to biomarker tests, fluorescence spectroscopy is

an inexpensive alternative, and with minor sample prep-

aration it is easy to perform the analysis. Further research

is needed but we believe that there is room for fluores-

cence spectroscopy as metabonomic tool in cancer

research.
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Table 2 Results from the PLS-DA on the raw unfolded spectra

Groups Sensitivity CV Specificity CV AUC CV Sensitivity predict Specificity predict

Crc vs. no 0.64 0.79 0.73 0.73 0.67

Crc vs. onf 0.73 0.79 0.75 0.73 0.73

Crc vs. ade 0.78 0.71 0.74 0.64 0.87

Ade vs. no 0.68 0.61 0.63 0.33 0.63

Ade vs. onf 0.84 0.34 0.55 0.70 0.33

Onf vs. no 0.45 0.82 0.62 0.20 0.82

Crc vs. all controls 0.69 0.7 0.73 0.67 0.83

Crc cancer, No no findings, Onf other non malignant findings, Ade adenomas, All all three control groups

Fig. 4 Left: score plot of the

first component vs. the fifth

component for the PLS-DA

model on cancer (triangles) vs.

other non malignant findings

(circles) on the raw spectra.

Right: loadings from the first

component (dark gray) and the

fifth component (light gray)
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