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 Abstract 

The complex and mysterious conversion of grain into flour, visco-elastic 
dough and soft spongy bread crumb has been studied from three different 
process analytical technology (PAT) perspectives. 
 
I. The heterogeneity of bulk wheat with respect to protein content was stud-
ied in order to quantify the variances and biases of the sampling process 
errors generated according to the theory of sampling (TOS). The analysis of 
individual grains in various lots of wheat showed a great variation in mean 
protein contents and heterogeneity. This inherent heterogeneity was shown 
to control the variances of the fundamental sampling errors (FSE) and the 
grouping and segregation errors (GSE) obtained in composite samples. The 
variances of the sampling errors were an order of magnitude higher than the 
variances of the total analytical errors (TAE). The sampling process was 
shown to influence the variances and biases of the results; hence common 
grab sampling was shown to generate unrealistic variance estimates and 
biased results as opposed to representative sampling by riffle splitting (Pa-
per I).  
 
II. A holistic view on the entire process from grain to bread was applied in 
wheat material diversified by agronomical measures as well as novel post 
harvest single-kernel near-infrared (SKNIR) sorting utilising the inherent 
constitutional heterogeneity of the internal complex quality traits. The effects 
of SKNIR sorting and agronomic treatments were quantified and compared 
and the functionality of the flour as well as the end product quality was pre-
dicted from multivariate spectroscopic analysis of grain, flour and dough. 
The SKNIR fractionation had significant effect on several protein and α-
amylase activity related parameters measured. Hence, the flour protein con-
tent was increased by 0.4 to 1.7%-points, wet gluten content was increased 
by 1.8 to 5.5%-points, Zeleny sedimentation volume was increased by 1.4 to 
3.5 mL, Farinograph water absorption was increased by 0.5 to 1.4%-points 
and falling number was increased by 10 to 48 s in the best of three equally 
sized fractions as compared to the starting materials (Paper II). The predic-
tion of flour functionality with partial least squares projections to latent 
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structures (PLS) and multi-block PLS (MBPLS) modelling was best using 
near-infrared reflection (NIR) spectroscopy of flour followed by near-
infrared transmission (NIT) spectroscopy of grain and flour, infrared (IR) 
spectroscopy and nuclear magnetic resonance (NMR) baking relaxometry 
and combinations thereof. The flour functionality parameters themselves 
were superior for prediction of corresponding bread quality as compared to 
the above mentioned spectroscopic methods due to unique information in 
the functionality parameters not well modelled by spectroscopy in the first 
place (Paper III). 
 
III. A novel chemometric method, 2D PARAFAC-Laplace decomposition, 
was developed for unique resolvation, quantification and interpretation of 2-
dimensional diffusion-relaxation NMR data obtained in bread dough of fat 
and water compartmentalisation and dynamics (Paper IV). 
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Resumé 

Den komplekse og forunderlige omdannelse af korn til mel, viskoelastisk dej 
og blød porøs brødkrumme er blevet undersøgt fra tre forskellige indfalds-
vinkler baseret på proces analytisk teknologi (PAT). 
 
I. Proteinheterogeniteten i hvedepartier blev undersøgt for at kvantificere 
varianser og systematiske fejl på afvigelser genereret i prøvetagningsproces-
sen jævnfør teorien om sampling (TOS). Proteinanalyser af enkeltkerner i 
forskellige partier viste en stor variation i gennemsnitsindhold og heteroge-
nitet. Det blev vist, at den iboende heterogenitet styrer de opnåede varianser 
af fundamentale prøvetagningsfejl (FSE) og grupperings- og segregeringsfejl 
(GSE) ved målinger af sammensatte prøver. Varianserne på prøvetagnings-
fejlene var en størrelsesorden større end varianserne på de totale analysefejl 
(TAE). Desuden blev det vist, at prøvetagningsprocessen havde betydning 
for varianser og systematiske fejl i resultaterne, idet almindelig prøvetag-
ning med ske gav urealistiske variansestimater og resultater med systemati-
ske fejl i modsætning til repræsentativ prøvetagning med spaltedeler (Arti-
kel I). 
 
II. Der blev anlagt et holistisk perspektiv på hele processen fra korn til brød. 
Hvedematerialet blev differentieret agronomisk samt ved fraktionering efter 
høst ved hjælp af en ny nærinfrarød enkeltkernesortering (SKNIR), som ud-
nytter materialets iboende konstitutionelle heterogenitet med hensyn til ker-
nernes indre kvalitet. Effekten af SKNIR-sorteringen og agronomiske be-
handlinger blev kvantificeret og sammenlignet. Funktionaliteten af melet og 
kvaliteten af det færdige produkt blev prædikteret med multivariat spek-
troskopisk analyse af korn, mel, dej og brød. SKNIR-fraktioneringen havde 
signifikant effekt på flere målte protein- og α-amylase-relaterede parametre. 
Således blev proteinindholdet øget med 0.4 til 1.7%-point, indholdet af våd-
gluten blev øget med 1.8 til 5.5%-point, Zeleny sedimentationsvoluminet 
blev øget med 1.4 til 3.5 mL, Farinograph vandabsorption blev øget med 0.5 
til 1.4%-point og faldtallet blev øget med 10 til 48 s i melprøverne fra den 
bedste af tre fraktioner i forhold til udgangsmaterialet (Artikel II). Optimale 
prædiktionsmodeller af melets funktionalitet blev opnået ud fra nærinfrarød 
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refleksionsspektroskopi (NIR) på mel og partielle mindste kvadraters pro-
jektioner på latente strukturer (PLS) og multiblok-PLS (MBPLS). Nærinfra-
rød transmissionspektroskopi (NIT), infrarød (IR) refleksionsspektroskopi 
og nuklear-magnetisk resonans (NMR) relaksometri af bageprocessen og 
kombinationer af førnævnte teknikker gav anledning til modeller med større 
fejl. Melets funktionalitetsparametre var bedre end ovenstående spektrosko-
piske teknikker til prædiktion af brødets kvalitet, idet funktionalitetspara-
metrene indeholdt unik information som ikke blev modelleret tilstrækkeligt 
godt ved spektroskopi (Artikel III). 
 
III. En ny kemometrisk metode, 2D PARAFAC-Laplace-opløsning, blev ud-
viklet til unik bestemmelse, kvantificering og fortolkning af NMR-data fra 2-
dimensionelle diffusions-relaksations-målinger af fedt- og vandfordeling og 
dynamik i dej (Artikel IV). 
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1. Introduction 

Enjoying a soft and spongy slice of freshly baked leavened wheat bread is by 
many considered an exquisite gourmet experience as well as a fulfilling 
meal. Ever since the invention or discovery of yeast fermented dough some 
5000 years ago by the Egyptians, wheat loaf bread has been a substantial 
part of the human diet – at least in some cultures. In the early days of bread 
making the raw material would be emmer (Triticum dicoccum) derived from 
the wild tetraploid, Triticum dicoccoides, as this was the most commonly cul-
tivated wheat at the time. Emmer was later replaced by the hexaploid spelt 
(Triticum spelta) and another tetraploid; durum wheat (Triticum durum), 
which had higher yield and naked kernels, which made it easier to thresh. 
However, while durum wheats still has about 10% of the wheat market to-
day, the rest is virtually covered by cultivars of hexaploid bread wheats, 
(Triticum aestivum)1. T. aestivum has the advantage of being highly adaptive 
and suited for a wide range of food products and feed (Belderok, 2000). It is 
cultivars of the latter which are the objects of observation in this thesis as 
they magically turn into dough and bread. 

1.1. Diversification of food 
Consumer demands are nourishing developments of a more diversified 
supply of high quality food products. Products with special attributes or 
characteristics are in high demand. Thus food products considered ‘speciali-
ties’ or with a special function, i.e. functional foods, can probably obtain 
higher prices in the marketplace, making products with a special story very 
lucrative for the industry. However, industrial processes have long been 
optimised for production of uniform products conforming to set specifica-
tions every day all year round, which certainly is a key quality attribute. 
Although consumers demand diversification and special treatment they also 
respond widely to recognition. E.g. a certain bread product should not 
change significantly in size, taste, texture or keeping qualities over the cause 

                                                      
1 It should be mentioned that there is a growing commercial interest for the historic 
species such as einkorn (Triticum monococcum), emmer and spelt as bread ingredi-
ents due to their special characteristics in regards to functionality, taste and aroma 
(Larsen, 1999). 
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of the year due to variation in raw material or other production parameters. 
This type of random diversification would be detrimental for consumer con-
fidence in the product as well as in the producing company. 

1.2. Process analytical technology (PAT) 
The two-fold demands to the food industry for both uniform and diversified 
quality products call for an increased focus of understanding the process 
from the raw material to the final product. That is the study of how raw ma-
terial properties in combination with process control influence the properties 
of the final product. This area has always been a focus point in the industry 
in general due to bottom line considerations. Assessing raw material quality 
and innovative engineering in that respect is not a new phenomenon. The 
concept of process analytical chemistry (PAC) in which process monitoring 
and control of key manifest parameters are employed to predict and insure a 
certain end product quality during the process has been around for a cen-
tury (Workman et al., 2005). However, it is the developments of new fast 
responding sensors, computers and advanced data analytical tools, which 
enable the industry and researchers to actually utilise the concept of PAC in 
full. At the turn of the century the United Stated Food and Drug Administra-
tion (USFDA) motivated a full integration of PAC in the pharmaceutical in-
dustry; “Process Analytical Technology (PAT) – A framework for innovative 
pharmaceutical development, manufacturing and quality assurance” (US-
FDA, 2004a). Furthermore PAT was introduced as a central part of current 
good manufacturing practices (CGMPs) in the industry (USFDA, 2004b). The 
PAT initiative (USFDA, 2005) was the first official regulatory acknowledge-
ment of the potentials of the integrated technologies involved as the key 
strategy to ensure products of high quality and safety and is foreseen to be a 
turning point for all technologies involved and for all industries involving 
controlled physical, biological and chemical processes in the production 
chain – not limited to the pharmaceutical industry. 
 
Although the historical definition of process analysis is limited to: “Chemi-
cal or physical analysis of materials in the process (stream) through the use 
of an in-line or on-line analyzer” or in short: “Analysis in the process”, the 
more embracing PAT approach is encompassing all aspects of a process, in 
short: “Analysis of the process” (Guenard and Thurau, 2005, Workman et al., 
2005) and considers a process a consecutive row of unit operation from raw 
materials to final products and wastes. Apart from the USFDA documents, 
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Bakaev (2005) has compiled a comprehensive introduction to the subject and 
Kourti (2006) reviews and emphasises the role of multivariate analysis in 
PAT. 

1.3. PAT applied to the bread production process 
Baking bread is such a process involving physical, biological and chemical 
unit operations and processes. The choice of seed grain determines the ge-
netic background which fundamentally controls the outcome of the crop. 
Environmental conditions and the tending of the crop with water, fertilizer 
and pest control during growth is obviously important for nutrient uptake 
and quality development. Milling the grains to flour involves several steps 
and process decisions. The flour quality prior to the actual baking is thus a 
result of a series of events or unit operations and thus may vary a great deal 
from one lot to the other. Baking condition such as choice, quality and con-
centrations of the product ingredients, mixing time and intensity, rising 
time(s) and temperature(s), baking time and temperature are of great impor-
tance for the viscoelastic dough to form and develop during fermentation 
and baking into a tasty sponge of protein, starch, fat and water with a 
golden brown and crisp crust. 
 
In order to gain process understanding and control which is the fundamen-
tal goal of PAT, relevant representative information must be gained by ap-
plying physical, chemical and biological analyses from the entire process 
from grain to the final perception of the consumer brain. By design, variabil-
ity should be controlled and relevant information recorded. Manifest pa-
rameters, e.g. protein, gluten and falling number, and physicochemical fin-
gerprints (spectra) recorded by spectroscopic multi-meters, such as near-
infrared (NIR), infrared (IR) and nuclear magnetic resonance (NMR) are ex-
plored by multivariate data analysis and related to final product quality. 
This conglomerate of multifactor design, representative sampling, chemical, 
physical and biological analyses and multivariate “top down” analysis was 
established as a field of chemistry in its own right in the 1970’s by Svante 
Wold and Bruce R. Kowalski (Kowalski, 1975). Chemometrics, which at the 
time was quite controversial with its ‘shoot first – ask later’ attitude to sci-
ence or “analyse everything together, multivariately” as opposed to COST 
analysis (Consider One Separate variable at a Time) (Wold, 1991) is now an 
essential, integrated and evolving technology in the PAT framework (Kourti, 
2006). 
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1.4. Aim 
By emphasising the “process analytical perspective” in the title, this thesis 
focuses on the great potentials of utilising of chemometric technology 
(Munck, 2005) in a broad sense in the bread-making process. The subtitle; 
“Sampling, diversification, prediction and chemometric method develop-
ment”, pinpoint the different perspectives of the work covered by Papers I-
IV. 

1.5. Outline 
Chapter 2 covers the process analytical toolbox i.e. three central PAT and 
chemometric elements utilised in this thesis; representative sampling, meas-

urements of chemical, physical and biological parameters as well as multi-
variate physicochemical fingerprinting by spectroscopy and data analytical 

methods. 
 
Chapter 3 covers the holistic view on the baking process including experi-
mental design, the exploitation of the inherent heterogeneity of bulk wheat 
for quality diversification using single-kernel near-infrared (SKNIR) sorting, 
and the prediction of flour functionality and end product quality. 
 
Chapter 4 explores the concept of NMR-baking by exploration of discrete 
and distributed exponential fitting for analysis of relaxing water and fat 
components in the baking process. An improved method, 2D PARAFAC-
Laplace decomposition, for analysing 2-dimensional diffusion-relaxation 
NMR data is presented. 
 
Chapter 5 concludes and put into perspective the results obtained regarding 
sampling, sorting, prediction, and chemometric method developments in the 
bread-making process and beyond. 
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2. The process analytical toolbox – 

chemometric technology 

Process analytical technology concerns every aspect of a process (USFDA, 
2004a). Chemometrics or chemometric technology (Munck, 2005) is a subset 
thereof – the toolbox for designing, sampling, analysing and understanding 
the process at hand. A handful of definitions of chemometrics presently co-
exist without causing wide scientific turbulence. IUPAC states in The Gold 
Book: “Chemometrics is the application of statistics to the analysis of chemi-
cal data (from organic, analytical or medicinal chemistry) and design of 
chemical experiments and simulations” (McNaught and Wilkinson, 1997). 
The International Chemometrics Society (ICS) established in 1974 presently 
agree on this definition: “Chemometrics is the science of relating measure-
ments made on a chemical system or process to the state of the system via 
application of mathematical or statistical methods.” Svante Wold states that 
chemometrics is: “How to get chemically relevant information out of meas-
ured chemical data, how to represent and display this information, and how 
to get as much information into data” (Wold, 1995). The journal, Chemomet-

rics and Intelligent Laboratory Systems (Chemolab), offers yet another defini-
tion: “Chemometrics is the chemical discipline that uses mathematical and 
statistical methods to design or select optimal procedures and experiments, 
and to provide maximum chemical information by analyzing chemical 
data.” Whether the actual experiments including sampling and instrumenta-
tion is a part of these definitions or not is not completely clear – at least they 
are not identical. Petersen et al. (2005) however states that designing an op-
timal sampling plan in order to get representative samples can be viewed as 
a special case of the experimental design, hence making sure by design, that 
the samples provide maximum chemical information as opposed to unnec-
essary random noise and bias. Munck (2005) solved the instrumenta-
tion/measurement issue by broadening the concept as data does not exist 
without the actual physicochemical measurements (univariate as well as 
multivariate by spectroscopy or other multi-channel sensors) and named it: 
“Chemometric technology.” This chapter on chemometric technology ap-
plied in the research presented in papers I-IV thus covers aspects of the The-
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ory of Sampling (TOS), selected analytical methods and specific multivariate 
data analytical tools. 

2.1. Democracy in science – representative sampling 
Walking the corridors of virtually any scientific department around the 
world involved in recording or handling empirical data, the word ‘sample’ 
is often heard. Sometimes the sample is involved in very advanced state-of-
the-art experiments being performed for the first time in the history. Some-
times the sample is part of a whole series of samples assembled to generate 
advanced calibration models in which future samples are to be estimated or 
evaluated. Sometimes the sample is the latest synthesis product of a chemi-
cal reaction. At other times the sample is a bag of material received by the 
test laboratory for analysis by some standard protocol. The term is treated 
and understood highly selective depending on scientific tradition and con-
fusions often occur especially with respect to the quality and validity of the 
analytical results obtained by analysing those samples. 
 
However throughout this text a sample is a specific part of something else – 
the lot2. Not just any part, but the part that ended up in the analytical vol-
ume based on democratic principles. A process in which all fragments, i.e. 
grains or flour particles had the same opportunity of ending up in ‘parlia-
ment’ being a physical average of the lot. In the sample cup parliament the 
representatively selected fragments are gathered to speak the case of the lot 
when ‘interviewed’ by either destructive or non-destructive analytical meth-
ods. The heterogeneity of the lot is by translation to the composite sample 
(Lamé et al., 2005) obeying the fundamental sampling principle (Gy, 1998) 
and ensuring physically unbiased samples for analysis.  
 
Having a learned attitude towards samples and sampling, scientists and all 
other professionals working with empirical data develop a strategy for deal-
ing with noise. The apparently random differences occurring when measur-
ing the same material many times, either repeating the experiment on the 
same sample or by actually extracting new samples from the lot, are often 

                                                      
2 The lot is all of the delimited material of which an average measurement is re-
quired. In Papers II and III for instance a lot is the entire collection of grains har-
vested in a specific growth year with a specific agronomical treatment or the entire 
collection of grains with a defined quality fractioned by the TriQ sorter. 
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confused in terms like analytical errors, measurement errors or sampling 
errors. The uncertainties accompanying all empirical results are thus not 
always understood. Specific results may sometimes be accompanied by the 
uncertainty supplied by the instrument manufacturer or by calculating the 
variance from replicate experiments or measurements. This could be both 
right and wrong depending on what is reported and why. 
 
Grabbing a sample from a lot or process of particular interest and bringing it 
to either in-house or external testing, measurements or recording involves 
costs. Some tests may even be very costly or crucial for the parties involved, 
hence spending just a little extra time on ensuring the quality of the sample 
may be worthwhile (Gy, 1986). Gy (1995b) hit the nail on the head by citing 
Kaye (1967): “The accuracy of many analytical data reports is a mirage be-
cause unwitting negligence and false cost consciousness have ensured that a 
sample of powder taken with cursory swiftness has been examined with 
costly precision” 

2.1.1. The Theory of Sampling (TOS) 

The key to understand empirical measurements, be it univariate as protein 
content of wheat or multivariate as a near-infrared spectrum, is to realise 
that “analytical results are estimates of unknown quantities” (Gy, 1995a) de-
rived in a multi-step process of sampling ending up with what we under-
stand as the analysis: 
 
Estimation = sampling + analysis (Eq. 2.1) 
 
The theory of sampling (Gy, 1986, 1995a, 1995b, 1998, 2004a, 2004b and 
2004c, Heydorn and Hansen, 2005, Pitard, 1993) can be viewed as a special 
case of probability and population statistics in which each fragment or oth-
erwise delimited part in the lot is considered an experimental unit. Even 
though Pierre Gy and his co-workers developed TOS more or less alone and 
against all odds (Gy, 1995a, 2004d) over a number of decades to overcome 
practical and theoretical obstacles for obtaining truly representative samples 
from more or less complicated materials, it is in no way in conflict with sta-
tistical theory. Lwin et al. (1998) cite others such as Wilson (1964) and In-
gamells and Switzer (1973) for their independent discovery of the theory, 
however Gy is considered the most dedicated to establish a comprehensive 
and accessible theory applicable for analysts at all levels. TOS can be consid-



 20 

ered applied statistics both in terms of understanding the theoretical prereq-
uisites of obtaining a representative sample, designing the sampling tools 
and right down to evaluating the quality of the estimates by assessing the 
variances and biases of the results. 

2.1.2. Accuracy, reproducibility and representativity 

Sampling is a mass reduction process in which a small part of the lot is se-
lected and subjected to analysis, with an objective goal of obtaining an accu-
rate and reproducible estimate of the true average value of the entire lot. If 
the sampling process produces results which are systematically deviating 
from the true value, i.e. either too high or too low, the difference is termed 
bias; hence an analytical result with high bias has low accuracy. The random 
deviation from the mean analytical result is assessed by the standard devia-
tion; hence a sampling process producing analytical results with a relatively 
large standard deviation has a low reproducibility. Gy (2004a) defined the 
sum of the squared bias and squared standard deviation as an objective 
measure for representativity. Thus optimising the sampling process with 
respect to both accuracy and reproducibility leads to more representative 
results. To answer the question whether an analytical result is representative 
or not, the analyst has to define acceptable levels of accuracy, reproducibility 
and representativity. The formal theory and relevant equations are pre-
sented and applied in Paper I.  

2.1.3. Properties of composite fragmented materials 

Wheat grain lots and wheat flour lots are materials composed of fragments 
of varying size, shape, surface properties, density and composition. Such lots 
are zero-dimensional (0D) as all fragments (grains or flour particles) are 
equally accessible from a sampling point of view, although the assembly of 
fragments in a stock pile or bag indeed appears three-dimensional to the 
analyst. A multi-phase continuous material such as dough or bread crumb 
may also be considered 0D as long as all parts of the material are equally 
accessible, hence conforming to the fundamental sampling principle. Further 
on lot dimensionality (0D, 1D, 2D and 3D) can be found in Gy (1998) and 
Petersen et al. (2005). Cases of process sampling and 1D sampling in relation 
to PAT can be found in Esbensen et al. (2007), Holm-Nielsen et al. (2006) and 
Petersen and Esbensen (2005). 
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The challenge in regards to extracting a truly representative sample relates 
to the uneven distribution of the analyte in the lot, e.g. the protein content is 
not the same in each individual wheat kernel as demonstrated in Paper I and 
utilised in Paper II and III. This fundamental variation between individual 
fragments defined as the constitutional heterogeneity of the lot (CHL) is the 
origin of the fundamental sampling error (FSE) and is responsible for the 
theoretically lower limit of the sampling reproducibility. An uneven distri-
bution of particles gives rise to the distributional heterogeneity of the lot 
(DHL). This distribution is caused by several factors, e.g. when a field of ripe 
wheat is harvested, the quality variations in the field are to a large extent 
preserved in the storage due to the autocorrelation of adjacent grains. 
Neighbouring grains simply tend to accompany each other hence preserving 
the distributional heterogeneity from the field during harvest and storage. In 
addition segregation of small, dense and slippery particles as opposed to 
large, light and rough particles during transport and storage leads to a more 
or less segregated lots and thus adds to the distributional heterogeneity of 
the lot. DHL is the origin of the grouping and segregation error (GSE) and 
either adds to or subtracts from the reproducibility measure3. DHL is also the 
cause to bias, when samples are extracted without proper attention to the 
sampling process, e.g. by grabbing the samples at easy accessible sites rather 
than ensuring a truly representative sampling process.  
 
Paper I is a total breakdown and quantification of the sampling and analyti-
cal errors in bulk wheat sampling and serves as a reference study in cereal 
sampling and emphasises the contributions to the order of magnitude of FSE 
and GSE by quantification of variances and biases of both correct representa-
tive sampling and incorrect grab sampling.  

2.1.4. Seven sampling unit operations 

The theory of sampling prescribes seven sampling unit operations (SUOs) 
which enable the enlightened analyst to estimate properties of any given lot 
and by reference to the sampling process substantiate that the results ob-
tained are both unbiased and reproducible. The seven SUOs are presented 

                                                      
3 The distributional heterogeneity may cause grouping of uniform material in which 
grab sampling may result in lower variance of replicate samples than would be ob-
tained by correct representative sampling, hence leading to a too optimistic repro-
ducibility measure and an unknown bias. 
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below and not necessarily in the order given elsewhere (Petersen et al., 
2005), but rather in the order of importance or practical implementation fol-
lowed by a short guidance. 
 
SUO 1: Always obey the fundamental sampling principle. Take a careful 

overview of how you are actually going to achieve the analyti-
cal volume from the entire lot. Does this process honestly en-
sure that all fragments have the same probability of ending up 
in the sample? By doing so the bias is reduced to zero and 
sleepless nights are avoided. 

SUO 2: Mix the lot. Mixing the lot prior to the mass reduction reduce 
the autocorrelation of fragments, hence reduce the GSE. 

SUO 3: Use composite sampling. This can be done easily by utilising 
commercially available dividers or splitters. These devices en-
sure accuracy and reproducibility with a minimum of labour 
and should always be preferred for laboratory scale mass re-
duction (Petersen et al., 2004). When going from stockpile to 
laboratory scale (a few kg) always go for a large number of in-
crements when composing the sample. Don’t be mean with 
size if not constrained. Composite sampling may also be 
achieved by averaging measurements of several increments, as 
done in Paper II and III when texture profile analysis is per-
formed on several slices of the bread crumb. Increasing the 
number of increments will reduce the GSE. 

SUO 4: Comminute whenever necessary. Comminution at selected stages 
of the mass reduction process is beneficial for reducing the FSE 
and simultaneously the GSE. The FSE and GSE of a flour sam-
ple are much smaller than the corresponding grain sample of 
the same analytical mass. 

SOU 5: Perform a heterogeneity characterisation for new materials and new 

sampling processes. Faithfully repeat the entire sampling process 
several times (at least ten times) in order to achieve the vari-
ance of the analytical result, i.e. the variance of the global esti-
mation error. That is the reproducibility to the order of magni-
tude. More thorough heterogeneity characterisations may be 
necessary for trouble shooting the process for sampling steps 
generating unnecessary large errors. 
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SOU 6: Turn large 2D and 3D lots into 1D for better access4. Even better 
just perform incremental sampling (SOU 3) while the lot is laid 
up in the first place. 

SOU 7: Perform variographic characterisation of 1D heterogeneity. In proc-
esses variography may elucidate systematic temporal and spa-
tial variations of great importance (Esbensen et al., 2007, Peter-
sen and Esbensen, 2005). 

 
Not all operations may be needed; rather a selected number of operations 
are needed depending on the problem at hand. An illustrative example of a 
heterogeneity characterisation was given by Whitaker et al. (2000) by deter-
mining the error contributions in the determination of deoxynivalenol 
(DON) in wheat using representative sampling by splitting and comminu-
tion in the effort to reduce masses in 20 kg lots to 25 g analytical volumes. 
The tested protocol showed that 22 % of the total variance, i.e. the variance 
ratio, was due to primary mass reduction by representative splitting 20 kg 
down to 454 g. The variance ratio of grinding the 454 g and automatically 
reduce mass to 25 g was 56% while the variance ratio of the analysis was 
22%. The total coefficient of variance (CV) of the global estimation error, i.e. 
of the total variance, was 13.6% for a 5 ppm sample, which was considered 
relatively low for this type of measurements. However attention to the 
comminution and automatic sampling mill may improve the global estima-
tion error. If the device is truly providing representative samples, an idea 
was to increase the analytical volume as suggested by Whitaker et al. (2000). 
Another multi-stage sampling process in particulate materials involving 
several crushing and mass reduction operations was presented by Lwin et 
al. (1998). In environmental research, studies have shown that contaminants 
can be extremely unevenly distributed. Lamé et al. (2005) showed that by 
taking a small sample for heavy metal analysis without proper attention to 
heterogeneity there is only a slight possibility, that the obtained analytical 
result will be a good estimate for the mean concentration. Hence proper 

                                                      
4 The dimensionality of the lot has not been covered here as lots regarded in this 
work are all considered zero-dimensional and thus fully accessible. Sometimes 0D-
lots are so big, e.g. a stock pile, that turning them into 1D by moving it on a con-
veyor belt is a practical and pragmatic solution to make all parts of he lot equally 
accessible. 
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sampling protocols are finding their ways into legislation to avoid the above 
mentioned “casino effect” - at least in The Netherlands. 
 
Mixing (SUO 2) is often sought of as an adequate operation for stating sub-
sequently grabbed samples to be representative. However, although mixing 
is disturbing the autocorrelation present, it does not remove autocorrelation. 
Mixing rather creates a new state of autocorrelation which usually has a 
lower distributional heterogeneity. One must keep in mind that the mixing 
operation used may have the direct opposite effect causing increased group-
ing or segregation. Thus stating a sample grabbed from a well mixed lot as 
representative could be a self-deception if not carefully substantiated. 
 
The main problem in assessing the true bias, i.e. the systematic deviation 
from the true average, is that the true value is unknown – and in most cases 
will remain so. That is probably why SUO 1 is so often neglected. However, 
model experiments with known quantities of constituents that do not react 
with each other clearly show that obeying the fundamental sampling princi-
ple is worthwhile. Mass reduction devices and protocols can in such cases be 
evaluated with respect to representativity, both in terms of reproducibility 
and accuracy. Such studies show that true splitting devises such as riffle 
splitters, rotational dividers and similar composite sampling strategies out-
perform all other methods for establishing unbiased analytical masses for 
analysis. Grab sampling compromise SUO 1 and should at all costs be 
avoided as they invariably produce biased results (Allen and Khan, 1970, 
Gerlach et al. 2002, 2003, Petersen et al., 2004, Smith, 2004, Venables and 
Wells, 2002). 

2.1.5. Heterogeneity equals diversity 

Although the heterogeneity observed in cereals and in all other parts of the 
physical world causes some theoretical and practical challenges for obtain-
ing average properties, heterogeneity or diversity opens up new possibili-
ties. In Paper II and III the heterogeneity of apparently homogeneous wheat 
lots are exploited by utilising dedicated equipment, the TriQ sorter, for 
measuring and sorting single fragments, i.e. wheat grains, according to an 
internal complex quality trait of each individual kernel (Dowell et al., 2006a, 
Löfqvist and Nielsen, 2003, 2004, Munck, 2008, Nielsen, 2002). This technol-
ogy opens up great perspectives for advanced ‘homogenisation’ and im-
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provements for all sorts of composite and particulate materials by sorting 
(Chap. 3). 

2.2. Physicochemical standard analyses of wheat 
A great number of standard analyses are endorsed by the American Associa-
tion of Cereal Chemists (AACC) and the International Association for Cereal 
Science and Technology (ICC) for characterisation of wheat and other cereals 
in a uniform and comparable way throughout the world. A few of these 
were utilised in Paper II and III to characterise the flour functionality. The 
chosen parameters cover central chemical, physical and biological proper-
ties; however do not encompass a complete characterisation, which was not 
possible according to the available nails principle at the time of analysis. 

2.2.1. Protein, moisture and ash 

Fast determination of flour protein content, moisture and ash is nowadays 
routinely performed using indirect measurement. Near-infrared transmis-
sion (NIT) spectra are recorded and the protein content calculated according 
to a global multivariate calibration in the Foss InfratecTM 1241 Grain Ana-
lyser fitted with a flower cup module. The principle recommended by ICC 
(ICC Recommendation No. 202) is based on multivariate calibration to the 
original determinations of protein using the Kjeldahl method, oven drying 
and combustion. The AACC has several approved methods based on near-
infrared analysis. 

2.2.2. Wet gluten 

Wet gluten content and gluten index are determined by washing the flour 
during mixing with subsequent centrifugation according to AACC Standard 
No. 38-12 and ICC Standard No. 155. Gluten consists mainly of protein 
(90%), lipids (8%) and carbohydrates (2%), the latter mainly water-insoluble 
pentosans capable of binding large amounts of water (Belitz and Grosch, 
1999). The gluten is responsible for the viscoelastic properties of wheat 
dough and forms the air-holding polymeric network which is fixed into a 
spongy crumb structure during baking. 

2.2.3. Zeleny sedimentation volume 

The sedimentation volume according to Zeleny, AACC Method 56-61A and 
ICC method 116/1, is a fast obtainable index for dough-mixing characteris-
tics and baking quality (Pinckney et al., 1957) of flour on a 14% moisture 
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base. The swelling volume of the gluten fraction in a diluted solution of lac-
tic acid and alcohol is measured in [mL]. Both high gluten content and good 
gluten quality result in high sedimentation values and may vary from 8 for 
low and weak gluten content to 78 for high and strong gluten content. 

2.2.4. Farinograph 

The rheology and water absorption of flour may be assessed by a dedicated 
mixing device called a Farinograph. Farinograph water absorption, devel-
opment time, stability and softening according to ICC standard no. 115/1 
and AACC method no. 54-21 are measures of flour water absorption to a 
specified consistency and the mixing properties and tolerance of the result-
ing dough. The measurements are carried out on a Brabender Farinograph 
instrument with a specially designed, thermostatic controlled mixing cham-
ber for either 300 g or 50 g of flour on a 14% moisture base. A time-
consistency curve is generated with a characteristic shape reflecting the in-
ternal quantity and quality of protein and starch. In Fig. 2.1, farinograms of 
bisquit, feed, hard bread and commercial bread wheat are shown. The con-
sistency is measured in arbitrary Farinograph units, FU, and water addition 
is adjusted so that the maximum consistency is 500 FU. The added water 
corrected for moisture content of the flour is the water absorption. Devel-
opment time, stability and softening are read on the farinogram according to 
Fig. 2.1A and represent the quality of the viscoelastic gluten network formed 
during mixing. 
 
The Farinograph water absorption is positively correlated to both protein 
content and the amount of damaged starch (Delwiche and Weaver, 1994, 
Mirablés, 2004). Intact starch granules absorb generally one third of their 
weight in water, while damaged starch may increase their weight up to 
three times (Mirablés, 2004). The amount of damaged starch is determined 
by the milling process and the grain hardness. Starch granules in hard wheat 
grains tend to fracture easer thus leading to a higher starch damage rate. 
Since damaged starch provide extra sugar to the fermentation process 
through easier degradation by α-amylases, increased bread volume is ex-
pected, however too much starch damage leads to small bread volume with 
a heavy crumb structure. A balance is preferred. Flours with strong gluten 
usually have a long development time and a high mixing tolerance reflected 
in a large stability and a low softening. 
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Figure 2.1: Typical farinograms with increasing development time. A: Relatively soft 
biscuit wheat (04SeBisc) with short dev. time, low stability, high softening. B: Fod-
der wheat (04SeFeed) with short dev. time, low stability and some softening. C: 
Hard bread wheat (04SeBre1) with intermediate dev. time, high stability and low 
softening. D: Commercially available bread wheat with long development time, 
intermediate stability and intermediate softening. 

2.2.5. Amylograph 

Amylograph gelatinisation maximum temperature, maximum viscosity and 
beginning gelatinisation temperature according to ICC standard no. 126/1 
and AACC method no. 22-10 are measures of the starch gelatinisation prop-
erties and simultaneously the α-amylase activity on a 14% moisture base. A 
water suspension of flour is stirred in the Brabender Amylograph rotating 
bowl while the temperature is increased linearly at constant heating rate of 
1.5°C/min. The heating rate corresponds to the heating rate during bread 
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baking and is thought to provide realistic information of the gelatinisation 
during bread baking. The viscosity is measured continuously and the peak 
viscosity in arbitrary Amylograph Units (AU) and the corresponding tem-
perature is read on the amylogram. High beginning temperature results 
from low amount of damaged starch, while high maximum gelatinisation 
temperature and high maximum gelatinisation is a result of low α-amylase 
activity. Compared to a real baking process the Amylograph suspension 
experiment is working at excess water which is not the case in bread were 
starch granules are only partly wetted due to water deficit (Hardacre, 2006). 

2.2.6. Falling number 

Falling number determination according to ICC standard no. 107/1 is a fast 
method for determining α-amylase activity in flour on a 14% moisture base. 
After a fast gelatinisation of the starch in an aqueous suspension of flour in a 
boiling water bath, the time consumption in seconds for a stirrer to fall 
through the gel undergoing liquefaction is determined. High activity results 
in low falling number. The falling number analysis is a fast and simple coun-
terpart to the more laborious Amylograph measurement. 

2.2.7. The 14% moisture base 

The often applied 14% moisture base is a standard base for many flour tests 
probably developed for practical and traditional reasons. Flour always con-
tains a certain amount of water typically in the order of 10-16% as it is hy-
groscopic by nature. Using the 14% moisture base practically means that the 
flour amounts used, mF(14%), in the tests above has to be corrected for actual 
moisture content, mF(Actual moisture), in order to work with a standardised 
amount of dry matter: 
 

moisture% Actual%100

%14%100
%)14(F)moisture% Actual(F

−

−
⋅= mm  (Eq. 2.2) 

 
In tests involving water addition, such as the Farinograph water absorption, 
the actual water content has to be taken into account when calculating water 
absorption on the basis of added water, mW, resulting in maximum consis-
tency of 500 FU: 
 

%100(14%)absorptionWater 
%)14(F

%)14(FWmoisture%) F(Actual
⋅

−+
=

m

mmm
 (Eq. 2.3) 
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2.3. Texture profile analysis (TPA) 
Objective determinations of food texture or mouth feel has long been a focus 
area for food technologist and the food industry, as texture is a fundamental 
quality attribute of food which determines the consumer acceptability to old 
and new products. Szczesniak (1963b) reviews a number of fundamental, 
empirical and imitative instruments of which many are still in use. The tex-
ture profile analysis (TPA) principle was introduced by Friedman et al. in 
1963 and has become a standard procedure for objective sensory evaluation 
of texture of various food products (Bourne, 2002, Bourne and Comstock, 
1981). It has many advantages to sensory panel evaluation. Experiments are 
low cost and easily standardised and reproduced. In addition it shows good 
correlations to sensory attributes (Friedman et al., 1963, Henry et al., 1971, 
Szczesniak, 1963a, Szczesniak, 1968, Szczesniak et al., 1963). This was also 
observed in the present study (Chap 3.3, Papers II and III). 
 
The analysis imitates the chewing mechanism of humans, by compressing 
and decompressing a standardised food sample with a piston moving at 
constant speed down and up twice with a pause in between. It combines as 
such the empirical and imitative principle in a relatively simple way 
(Szczesniak, 1963b). The force used to maintain constant speed is recorded 
continuously throughout the ‘chewing’ time. A time-force curve appears and 
traditionally specific features are extracted and calculated in order to charac-
terise the sample. The mean time-force curve of the bread crump using a 40 
mm diameter cylindrical steel probe with sharp edges on four slices of bread 
sample, (04SeBre1) is shown in Fig 2.2. 

2.3.1. Feature extraction 

The texture features which are typically extracted from the profiles like the 
one in Fig. 2.2 are listed in Table 2.1. Hardness 1 and 2 are forces used at 
maximum compression in first and second bite respectively. Resilience is the 
ratio between the work done from anchor 2 to 3 under decompression and 
the work done compressing the sample in the first place from anchor 1 to 2. 
If a sample bounces right back up in the same way it was compressed the 
resilience would be close to 1. Cohesiveness is much like resilience but based 
on the ratio between the second down stroke work and the first work, i.e. the 
areas under the down stroke curves, leaving a little time, typically 5 s, for the 
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sample to recover before compressing the sample the second time. The 
springiness describes the recovery height relative to full compression height. 
If compressed only very little, say below 50%, fresh bread can have resil-
ience, cohesiveness and springiness close to 1, as the crumb structure stays 
intact. These parameters are highly correlated in bread crumb, as they are 
featuring more or less the same physical phenomenon of recovery of a 
spongy product (Paper II). 
 

-5

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

1 5432

Down stroke Down strokeUp stroke ReturnWait

Time (s)

Adhesive Force

Hardness: H1
Hardness: H2

F
o
rc

e
 (

N
)

-5

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

-5

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

-5

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

1 5432

Down stroke Down strokeUp stroke ReturnWait

Time (s)

Adhesive Force

Hardness: H1
Hardness: H2

F
o
rc

e
 (

N
)

 
Figure 2.2: Average time-force curve of a texture profile analysis (TPA) of four bread 
slices. Three force parameters, Hardness: H1 and H2 and adhesive force (AF) are 
read directly at maximum compressions of 1st and 2nd ‘bite’ and at maximum nega-
tive force during the 1st up stroke. Anchors 1 to 5 are set to determine areas and 
lengths for calculation of further texture parameters (Table 2.1). 
 
Gumminess and chewiness are interaction terms involving hardness 1 and 
may be considered as an arbitrary measure for the energy needed to disinte-
grate a solid and masticate a semisolid food respectively (Bourne, 2002). 
 
Adhesive force is the maximum negative force of the bread sticking to the 
base plate and the moving piston on its way up from the first compression. 
Very sticky samples will exhibit large adhesive force. Adhesiveness is a simi-
lar feature, just based on the entire negative work exhibited, i.e. the area 
over the curve from anchor 3 to 4. The sample in Fig. 2.2 was the stickiest 
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sample in the entire investigation and thus illustrates the phenomenon even 
though wheat bread is usually not very sticky. Another parameter not in-
cluded in this study, stringiness, is used in semisolid foods such as ketchup, 
cream cheese and pudding and refers to the distance the sample is extended 
under decompression from anchor 3 in Fig 2.2 until breaking off (Henry and 
Katz, 1969). Other parameters regarding the negative part of the time-force 
curve can also be derived (Henry et al., 1971). In some harder foods such as 
apples, biscuits and potatoes an additional peak appears during the first 
down stroke due to fracturability (Bourne, 2002). 
 
Table 2.1: Some bread crumb texture profile parameters derived from the time-force 
curve of TPA. Numbers refer to the anchors in Fig. 2.2. 
Texture paramters: Abreviations and calc. Units

Hardness 1 H1 N

Hardness 2 H2 N

Adhesive Force AF N

Resilience Re = Area23/Area12 -

Cohesiveness Co = Area45/Area12 -

Springiness Sp = Length45/Length12 -

Gumminess Gu = Co·H1 N

Chewiness Ch = Gu·Sp N

Adhesivenes Ad = Area34 Ns  

2.3.2. Compression rate 

How much to compress the food is critical as it affects the assessment of the 
analysis. However, degrees of compression of 10 to 90 % have been reported 
and the effect of various compressions has been investigated (Bourne and 
Comstock, 1981). The more the food sample is compressed, the more infor-
mation is gained in terms of a more detailed curve shape. Most parameters 
are dependent of the degree of compression, with fracturability as the gen-
eral exception. Springiness and cohesiveness for some commodities appears 
to be less sensitive to degree of compression (Bourne and Comstock, 1981). 
 
The upper limit of relative compression varies with food properties, but get-
ting too close to this limit should be avoided. The recording of very hard 
foods may be halted if the instrument is overloaded and even small varia-
tions in the sample thickness may result in large variations in the recorded 
texture profile. 
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2.3.3. Correction for varying sample height 

Recordings of the four slices of bread sample 03AaViWV are superimposed 
in Fig. 2.3 to illustrate the effect of varying slice thicknesses. The available 
slicing equipment for this study, a meat slicer with a rotating blade, had 
only a limited reproducibility, thus variation in slice thicknesses were inevi-
table. The thicknesses represented in Fig. 2.3 are 17.8 mm, 20.3 mm, 20.7 
mm, and 23.0 mm which represents the upper limit of thickness variation 
found in this work. When compressed by 15 mm the degree of compression 
are 83.8%, 73.9%, 72.5% and 65.2% respectively. Clearly the thin slice was too 
thin as the recording stopped due to system overload. The successful meas-
urements however still suffer from variation in actual compression hence the 
hardness parameters will be ill determined based on these data. An alterna-
tive compensation for this was introduced in the following way. The points 
at which the slices were actually compressed by 60% were found and the 
force extracted, F60%. These points are marked by stars in Fig. 2.3 and are be-
tween 10 and 15 s along the time axis depending on slice thickness. F60% 
however is derived from samples which are still of varying thickness. 60% 
compression of 23.0 mm is 13.8 mm, while 60% of 17.9 mm is only base on a 
down stroke of 10.7 mm. Thus the force expected to be used on the individ-
ual slices if they would have been 20 mm, F60%,20mm, can be pragmatically es-
timated from the slice thickness d: 
 

 

mm20%60

mm20%,60
d

F
F =  (Eq. 2.4) 

 
Thus a linear relation ship is expected between thickness and force used to 
compress a given sample 60%. This was not explored, but reasonably sub-
stantiated by improved mean relative standard deviations of determinations 
of F60%,20mm, RSD(H160%,20mm) = 21.7% and RSD(H260%,20mm) = 21.0% as compared 
to F60%. RSD(H160%) = 22.2% and RSD(H260%) = 23.7%. This is indeed below 
RSD of the original hardness determinations of RSD(H1) = 40% and RSD(H2) 
= 39%. Thus H1 and H2 in the following imply H160%,20mm and H260%,20mm 
when recorded on the TA-XT2 Texture Analyser. 
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Figure 2.3: Time-force curves of four bread slices of bread sample 03AaViWV with 
varying thicknesses, — 17.9 mm, — 20.3 mm, — 20.7 mm, — 23.0 mm. The stars (*) 
are at 60% compression with respect to slice thicknesses. The circles (○) mark the 
vertical displacement when 60% compressions are normalised with slice thicknesses.  

2.4. Sensory texture profiling 
The ultimate quality test of food is sensory profiling by a panel of trained 
assessors. The ‘instrument’ does not differ much from other instruments in 
that a sensory panel return signals on request when presented to a sample. 
The sensors are human and the responses are given on an arbitrary scale 
depending on the attribute and setup, typically from 0 to 15. Thus the sen-
sory panel must be trained (calibrated) to respond consistently and uni-
formly to the samples. The training involves both a conceptual consensus on 
the attributes to be measures and an appropriate use of scale for the test at 
hand. Sensory profiling is thus an objective assessment of food quality as 
opposed to preference studies. From a commercial point of view, preference 
tests are sometimes considered the ultimate tests of foods – and may be used 
in combination with sensory profiling to pinpoint key attributes decisive for 
consumer preferences. 
 
Sensory profiling involves all five senses; sight, touch, smell, taste and hear-
ing, and relies on the brain to translate and separate the product stimuli into 
sensations, perceptions and responses on an arbitrary scale from none (0) to 
high sensation (15). Texture is determined by the touch of the product, either 
by the mouth or fingers or a combination and can be divided into kinaes-
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thetic and tactile senses (Meilgaard et al., 1991). In this thesis six texture 
properties of the bread crump were assessed. The mechanical properties, 
elasticity and fracturability were assessed by the fingers while hardness, 
chewiness and adhesiveness were assed by the mouth – all assessed by kin-
aesthetic senses. The moisture property on the other hand assessed in the 
mouth as dryness was assessed by tactile senses. Four additional properties 
was also assessed by the panel; yellowness (colour) of the bread crumb, af-
tertaste and cereal aroma and taste. The last two however were excluded in 
the investigations of Paper II and III due to low discriminative power be-
tween the samples. A description of the sensory attributes can be found in 
Paper II.  
 
However well the sensory panel is trained, it is not possible to calibrate an 
entire panel to respond exactly uniformly with respect to all attributes. Dif-
ferent assessors thus utilise the scale differently with respect to level and 
range for each attribute. Data from sensory profiling thus need special atten-
tion in pre-processing and selection in order to extract all relevant informa-
tion and suppress noisy and irrelevant information. The sensory data in Pa-
per II and III has been evaluated using Martens et al. (2000) guide (Martens 
et al., no year) to remove level and range effects as well as assessors and at-
tributes with no discriminative power. An ANOVA partial least squares 
regression (APLSR) was calculated using design variables (0/1) for assessors 
and replicates as X and the sensory variables as Y. Thus X consisted of 
eleven variables corresponding to ten assessors and one replicate variable. 
The APLSR models the part of Y which is associated with assessor and repli-
cate level effects while the residual Y variation contains structure as well as 
noise concerning the samples. The operation is equivalent to mean centring 
every individual attribute over samples within each judge and over repli-
cates across all judges and samples. The Y residuals are subsequently used 
as level corrected sensory data for further analysis and evaluation of judges 
and attributes discriminative powers (Martens et al., 2000). Elaborations on 
individual assessor and attribute performance assessed by signal to noise 
ratios can be found in Appendix A. The level corrected data were averaged 
over judges and replicates; hence scales are not the original in Paper II and 
III. 
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2.5. Spectroscopy 
According to IUPAC in The Gold Book, spectroscopy is: “The study of 
physical systems by the electromagnetic radiation with which they interact 
or that they produce. Spectrometry is the measurement of such radiations as 
a means of obtaining information about the systems and their components. 
In certain types of optical spectroscopy, the radiation originates from an ex-
ternal source and is modified by the system, whereas in other types, the ra-
diation originates within the system itself” (McNaught and Wilkinson, 
1997). 
 
Electromagnetic radiation interacts with physical systems in various ways 
depending on the energy of the radiation and the available excitation states 
present in the system. The great advantages of spectroscopy in science as 
well as in industry are already well established and especially in combina-
tion with multivariate data analysis (Bakeev, 2005, Bro et al., 2002). Espe-
cially low energy techniques are of great advantage as they are non-
destructive and intact food samples can be characterised in a split second. 
Infrared (IR) and near-infrared (NIR) radiation interact with the vibrational 
states of covalent bonds as well as molecular rotational states (Osborne et al., 
1993). Low energy radio waves interact with spin states of nuclei in the ma-
trix which may be observed with nuclear magnetic resonance (NMR) spec-
troscopy (Callaghan, 1991). 

2.5.1. Vibrational spectroscopy  

Vibrational spectroscopy is of particular interest for research and industrial 
applications of various products since covalent bonds between atoms H, C, 
N, O and S, the constituents of all organic material, absorb light in the near-
infrared (NIR) and infrared (IR) region of the electromagnetic spectrum to 
change only the vibrational states of the molecules. Herschel (1800) was the 
first to discover the invisible “heat” radiation of the sun which we refer to as 
near-infrared light. Now some 200 years after, NIR, IR and Raman spectros-
copy is used in process monitoring and control (Bakeev, 2005) as well qual-
ity analysis of various products and raw materials. The spectrometers avail-
able are very accurate and reproducible and deliver physicochemical finger-
prints packed with information which can be readily extracted by chemom-
etrics (Munck, 2005). 
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In the IR region ranging from 4000 to 400 cm-1 (or 2500 nm to 25 µm), often 
referred to as the mid-IR, absorption changes the vibrational state of a mo-
lecular bond from the ground state to a discrete higher energy level (Coates, 
2005, Williams and Flemming, 1995). The absorption frequency is deter-
mined by the masses of the involved atom as well as a number of other fac-
tors, such as the type of vibration (symmetric stretching, asymmetric stretch-
ing, bending, rocking, wagging and twisting), other groups attached to the 
atoms, temperature and pH. Different functional groups have distinct ab-
sorption bands; however the entire molecule has a distinct vibration or fin-
gerprint.  
 
While IR spectra in principle contain all bands of the fundamental vibra-
tions5, the near-infrared spectra contain only overtone and combination 
bands of the most anharmonic vibrations, which primarily mean bonds and 
groups with hydrogen (C-H, O-H, N-H and S-H). Only pure overtones of the 
stretching vibrations are seen in the NIR region, the remaining vibration 
types are only represented as combination tones in the NIR spectra. The 
holographic overtone pattern of especially the stretching vibrations only 
overlaid by combination tones was nicely demonstrated by Pedersen and 
Engelsen (2001) for ethanol and is also observable from Fig. 2.4A and B in 
the NIR and IR spectra of wheat – although immensely more complicated 
than ethanol. The bands at 1465 and 1000 nm correspond to the 1st and 2nd 
overtones of the fundamental overlapping stretching vibration of O-H and 
N-H in the IR spectrum around 3300 cm-1 (Peaks 1), while the bands around 
1780, 1200 and 920 nm corresponds primarily to 1st, 2nd and 3rd overtones of 
the fundamental stretching vibration of C-H in the IR spectrum around 2927 
cm-1 (Peaks 2). This repeating pattern was suggested to be part of a harmonic 
series by Coblentz (1905), hence the concept of overtones. The combination 
tones from 1900 to 2500 nm completely dominate the NIR spectrum (Fig. 
2.4A) with dominating bands of O-H and N-H combinations at 1934 nm 
(Peak 6), amid combinations around 2100 nm (Peak 7) and C-H stretching 
combinations from 2280 to 2330 nm (Peaks 8). In Paper III the NIR and IR 
spectra are explored for prediction of flour and bread quality. However, 
only the fingerprint region of IR from 1900 to 700 cm-1 was utilised (Fig. 

                                                      
5 The more rigid bonds, symmetric bond and bonds with low dipole moment are 
usually not very intense in IR, but may be visible in the complementary Raman 
spectra (Jestel, 2005, Williams and Flemming, 1995). 
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2.4B). This part contain the Amid I and II bands (Peaks 3 and 4) and charac-
teristic C-O and C-N stretching bands (Peak 5). A comprehensive assign-
ment table of the IR region can be found in Williams and Flemming (1995), 
while Siesler et al. (2002) and Osborne et al. (1993) cover the NIR region.  
 

800 1000 1200 1400 1600 1800 2000 2200 2400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1000150020002500300035004000
0

0.05

0.1

0.15

0.2

0.25

Fundamental

stretch

Wavelength [nm] Wavenumber [cm-1]

L
o

g
 1

/R

A B

1

2

3
4 5

6

1

2

1

2

1st overtone

stretch

2nd overtone

stretch

O-H

N-H

O-H

N-H

O-H

N-H

C-H C-HC-H

2

Combination

overtones

7 8

800 1000 1200 1400 1600 1800 2000 2200 2400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1000150020002500300035004000
0

0.05

0.1

0.15

0.2

0.25

Fundamental

stretch

Wavelength [nm] Wavenumber [cm-1]

L
o

g
 1

/R

A B

1

2

3
4 5

6

1

2

1

2

1st overtone

stretch

2nd overtone

stretch

O-H

N-H

O-H

N-H

O-H

N-H

C-H C-HC-H

2

Combination

overtones

7 8

 
Figure 2.4: A: NIR spectrum of a typical bread wheat flour. B: The corresponding IR 
spectrum of the same wheat flour sample. Selected vibrational bands assigned: 1: O-
H and N-H stretch, 2: C-H stretch, 3: Amid I at 1640-1660 cm-1 (C-N + C=O stretch), 
4: Amid II at 1530-1540 cm-1 (N-H bend + C-N stretch), 5: C-O and C-N stretch, 6: O-
H combinations and N-H combinations, 7: Amid combinations, 8: C-H combina-
tions. 
 
The intensity and exact position of the absorption bands in IR and NIR are 
positively correlated to the change in dipole moments by absorption of the 
radiation. The dipole moment in turn is influenced by H-bonding, hence 
changes in pH and temperature is readily observable in NIR. The very broad 
and overlapping peaks in NIR spectra thus originates from both truly over-
lapping overtones and combination tones as well as distributions of different 
local molecular environments (more or less H-bonding) giving rise to broad 
peaks even for rather simple molecules such as water. 
 
In Fig. 2.5 the reason for the success of near-infrared transmission (NIT) 
spectroscopy is unfolded. NIT spectra of the major constituents of wheat; 
starch, gluten (protein), fat and water are superimposed with typical spectra 
of wheat grain and wheat flour. The NIT region form 850 to 1050 nm covers 
the 3rd overtone stretch of C-H bonds and 2nd overtone stretch of O-H and N-
H and due to the relative low absorbance (see Fig 2.4A) the sample thickness 
can be chosen quite freely up to a few centimetres. Large amounts of water 
in the samples may however influence the result. 
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Figure 2.5: NIT spectra wheat grain (—), wheat flour (---), wheat starch (—), wheat 
gluten (—), plant oil (—), water (—). Modified from Pedersen (2002). 
 
One of the great advantages of near-infrared spectroscopy (NIRS) in relation 
to food and feed analysis is the overwhelming amount of information pre-
sent. Not only does it present quantitative information of O-H, N-H, C-H, S-
H and C=O bonds in the irradiated samples, NIRS also provides an excellent 
tool for observing changes in the chemical conformation. This is because 
subtle changes in the chemical environment around those bonds influence 
the anharmonicity of the fundamental vibrations as well as the potential 
dipole moment change when a photon is absorbed. This may be looked 
upon a disadvantage, since these phenomena may devaluate Beer’s law that 
states a linear relationship between absorbed light at concentration. How-
ever on the contrary the wealth of information can be readily extracted when 
used in relation with chemometric technology (Munck, 2005). 
 
Multivariate NIR calibrations have been shown to work extraordinary well 
in agricultural product for fast determination of major as well as minor con-
stituents (Miralbés, 2004, Williams and Norris, 2001). Protein, gluten, starch 
and moisture content of cereals are nowadays only measured by NIT based 
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on global calibrations, while minor constituents and properties such as indi-
vidual amino acids determined independently of crude protein (Fontaine et 
al., 2002, Rubenthaler and Bruinsma, 1978) for feed production, rheological 
properties (Miralbés, 2004, Dowell et al., 2006b), gluten composition in terms 
of glutenin and gliadin contents (Wesley et al., 2001), starch damage (Os-
borne and Douglas, 1981, Osborne et al., 1982) and bread quality in terms of 
loaf volume and crumb structure (Delwiche and Weaver, 1994) are now be-
ing explored. 
 
The low-cost, speed, accuracy and non-destructiveness as well as stability, 
operator safety (no solvents) and ease of use (flat learning curve) of NIR 
technology makes it a versatile technology for quality screening of al sorts of 
agricultural products with respect to optimal end use, value and price set-
tlement as well as in breeding (Osborne, 2006).  

2.5.2. Nuclear magnetic resonance (NMR) relaxometry and diffusimetry 

Nuclear magnetic resonance is a versatile technique which can be used in 
various ways. The phenomenon utilised was discovered by Felix Block and 
Edward Purcell in 1946 for which they won the Nobel Prize in physics in 
1952 (Brown, 1995). Depending on the instrument, i.e. magnet size, type of 
probe and geometry an endless variety of chemical and physical phenomena 
can be observed and analysed, e.g. diffusion of water in a complex matrix, 
brain scanning for tumours, chemical structure determination and me-
tabonomic studies of complex biological fluids. The studied phenomena is 
determined only by the experimental setup and radio frequency pulse se-
quence and acquisition used (Callaghan, 1991). In this thesis however, only 
relaxometry and diffusimetry will be covered briefly as it was used to study 
water and fat compartmentalisation in dough and bread in Paper III and IV. 
 
1H, 13C, 17O and 31P are nuclei which act like small magnets with spins 
aligned parallel or anti parallel in a magnetic field and may be probed by 
NMR. The stronger the magnetic field the more magnetic is the sample. In 
this study only 1H-NMR has been used. 
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By applying a radio frequency equal to the so called Larmor frequency6 the 
spins are perturbed (exited) and the transverse bulk magnetisation can be 
measured by a coil while the spins relax back to equilibrium, i.e. low energy 
state. The frequency and relaxation speed depends on the configurations of 
the protons and may be utilised for characterisation of a given sample. The 
frequency pattern of the sample may be studied by recording a free induc-
tion decay (FID) followed by Fourier transformation to study the spectrum 
in which the chemical shifts of protons can be assessed. This is known from 
structure determination of pure chemicals and “omics”-studies of complex 
materials. Recording spectra however, require a strong magnetic field in 
order to obtain an appropriate resolution as it is based on very small differ-
ences in the Larmor frequencies for nuclei relative to local shielding by the 
surrounding electrons (Brown, 1995). 
 
Relaxation experiments in which spectral information is not of particular 
interest may be studied in fields as week as the earths magnetic field 
(0.05mT), using simple systems such as the Terranova-MRI (Magritek, Wel-
lington, New Zealand). However these experiments may equally well be 
determined in high-field instruments (>7 T) employing advanced supercon-
ducting electromagnetically induced fields (Paper IV). 
 
Relaxation takes place via two relaxation processes, spin-lattice and spin-
spin relaxation. The lattice is the local surroundings of the exited proton. 
Spin-lattice relaxation takes place by energy exchange between the excited 
nuclei and the local molecular lattice field with energy transition levels equal 
to the Larmor frequency. Thus relaxation causes a very small heating of the 
sample. Spin-lattice relaxation is also called longitudinal relaxation. Spin-
spin relaxation is caused by exchange of energy between exited protons with 
equal Larmor frequencies and thus disperses the energy. Spin-spin relaxa-
tion is also called transverse relaxation. Various relaxation experiments can 
be made to observe the different relaxation phenomena. Most common are 
the inversion recovery (Vold et al., 1968) and the Carr-Purcell-Meiboom-Gill 
(CPMG) experiments (Carr and Purcell, 1954, Meiboom and Gill, 1958) in 

                                                      
6 The Larmor frequency (ν) is proportional to the magnetic field strength (B): ν = 
γB/2π, where, γ, is the gyromagnetic ratio which for 1H is 2.675∙108 s-1T-1. Protons 
precess at the Larmor frequency and in order for absorption of the RF pulse to take 
place resonance must be present, hence the name: “nuclear magnetic resonance”. 
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which the longitudinal and the transverse relaxation can be explored and the 
characteristic relaxation time constants T1 and T2 respectively can be calcu-
lated for the components in the matrix studied. Depending on the actual 
instrumental setup NMR can be utilised in countless ways to study these 
spin states both spatially and dynamically in order to understand processes 
in complex materials and living tissues (Callaghan, 1991). 
 
In Paper III a series of CPMG relaxation experiments were conducted during 
rising, baking and cooling of a small dough sample within a variable tem-
perature probe of the 23.2 MHz (0.545 T) Maran benchtop pulsed NMR Ana-
lyser (Resonance Instruments, Witney, UK). The experiment was similar to 
the NMR-baking experiments of Engelsen et al. (2001), however this experi-
ment included cooling of the sample. The raw data of one sample is shown 
in Fig. 2.6. The relaxation baking profile were used as is for predictions of 
bread quality in Paper III, as it has previously been shown that the entire 
decay curves works well in exploratory and prediction studies of food ma-
trixes using PCA and PLS (Engelsen et al., 2001, Micklander et al., 2002, 
2003). 
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Figure 2.6: T2 relaxation-baking profile of a dough sample (Paper III). 
 
The possibilities to interpret and quantify the water and fat T2-components 
by fitting the exponential components are covered in Chap. 4. More ad-
vanced experiments involving diffusion-relaxation correlation studies were 
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also made in dough samples by combining the pulsed gradient stimulated 
echo (PGSTE) sequence with CPMG acquisition (Paper IV). The labile nature 
of conventional 2D Laplace transformation of such 2-dimensional exponen-
tial decays was addressed and a new chemometric method for analysing 
such data was proposed in Paper IV, the PARAFAC-Laplace decomposition.  

2.6. Exploratory data analysis 
As representative sampling is physically democratic (Chap. 2.1) so is multi-
variate exploratory data analysis with respect to the data. Every variable and 
every sample count and those who collectively covary or agree the most has 
the most to say. They determine the directions in the data – the common 
references or underlying phenomena. Covarying as well as outlying samples 
and variables are easily recognised in scores and loadings plots. Samples in 
the same group agree on the values of the trend-setting variables and are 
easily recognised in a scores plot. Samples or variables which stand out from 
the crowd are either very interesting or just simple outliers, as a result of 
erroneous sampling, measurements or laboratory failures (e.g. wrong label-
ling). Exploratory data analytical tools such as principal component analysis 
(PCA) (Hotelling, 1933, Pearson, 1901, Wold, 1966, Wold et al., 1987) and 
partial least squares regression (PLS) (Geladi and Kowalski, 1986, Kowalski 
et al., 1982, Wold, 1982) for bi-linear data matrixes and parallel factor analy-
sis (PARAFAC) (Bro, 1997, Harshman, 1970, Carroll and Chang, 1970) for 
multi-linear data are central to chemometrics. These tools provide virtually 
assumption-free analyses of the major trends and outlier detection in the 
data. The results are readily visualised in various plots for easy interpreta-
tion by the human brains cognitive apparatus (Munck, 2005). Although the 
soft  multivariate models (Wold, 1975, 1982) mentioned above have certain 
advantages, traditional univariate models for analysis of variance (ANOVA) 
still has a role to play and may provide complementary as well as confirma-
tory information (Paper II). 
 
The mathematical and statistical tools in science are an integral part of the 
solutions and the knowledge derived. Without comprehensive knowledge of 
the methods ‘out there’ and their use, the risk of drawing wrong conclusions 
is imminent. However, it is often the local scientific tradition (Kuhn, 1970) 
which governs the choice of data analytical methods used, making the new 
ideas of soft multivariate modelling in chemistry a struggle for those in-
volved in the early days (Esbensen and Geladi, 1990, Geladi and Esbensen, 
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1990). The food science community and the food industry has always been 
working with very complex system, hence adapting new methodologies to 
solve current problems has always been an integral part of the work, e.g. the 
Farinograph, texture analysis and fast determination of protein and moisture 
by chemometric technology are such examples. 
 
In general modelling data is all about separating structure from noise (Eq. 
2.5): 
 
Observed data = structure + noise (Eq. 2.5) 
 
The structure part is the model. The reason for modelling data is to bring 
insight into the system under observation and to answer various questions 
we have about a system: What are the trends and relations in the data? Does 
the model chosen explain the empirical data reasonably well? Is our a priori 
hypothesis valid? The noise part is the leftovers and is often used to validate 
the model and is as such part of the model. Does the noise part actually look 
like white noise, when plotted or is there still structure left in the noise? Or is 
extreme behaviour present in the sample or variables measured indicating 
outliers or malfunctioning equipment? 
 
Eq. 2.5 actually holds for all for all models of empirical data. The models 
used in this work (Paper I-IV) all conform to this basic contemplation. In the 
following PCA, PLS and ANOVA models and their use with respect to Pa-
pers I-III will be summarised. The PARAFAC model is presented in Paper 
IV. In addition different spectral data pre-treatment procedures will be cov-
ered. These are also part of any model, but are usually treated separately as 
the pre-treatment as the name implies is the first part of a stepwise operation 
followed by additional modelling, e.g. by PCA or PLS. In Chap. 4 multi-
exponential modelling of NMR relaxation and 2D-diffision-relaxation data 
will be covered in relation to 2D PARAFAC-Laplace decomposition (Paper 
IV). 

2.6.1. Principal component analysis (PCA) 

Principal component analysis (Hotelling, 1933, Pearson, 1901, Wold, 1966, 
Wold et al., 1987) decomposes a centred data matrix X into a structured part 
and a random part, i.e. noise (Eq. 2.5). Strictly X need not be centred for the 
analysis, however, the purpose of the analysis is to find the differences and 
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similarities between objects and simultaneously determine which variables 
are important for the decomposition. Hence, centring and eventually scaling 
of the variables across all samples prior to PCA is usually implied. 
 
In PCA, X is projected onto a new set of N latent variables chosen so that 
each latent variable, tn is orthogonal, i.e. uncorrelated, to each other and suc-
cessively describe as much of the variation as possible. A new coordinate 
system spanned in the X space is defined by N unit vectors pn’s formed by 
the analysis. Thus PCA is a reduction of dimensions from the number of 
variables, J, in X to N underlying virtual variables describing the structured 
part of data. The PCA model for X is: 
 

EptptptETPX ++++=+= NN...'''

2211  (Eq. 2.6) 
 
T = [t1, t2, …, tN] are the scores and P = [p1, p2, ..., pN] are the loadings. N is the 
number of components, underlying structures or effective rank of the ma-
trix. E is the residual matrix, the part of data, which was not explained by 
the model, TP’. E is also called noise and error matrix and has the same di-
mensions as X. E is often used as a diagnostic tool for identification of outly-
ing samples and/or variables. In Appendix B the non-linear iterative partial 
least squares (NIPALS) algorithm for calculation of the principal compo-
nents is presented with a numbers on example of a PCA analysis with plots 
of scores and loadings for interpretation. 

2.6.2. Partial least squares projections to latent structures (PLS) 

The first comprehensive tutorial was published by Geladi and Kowalski in 
1986. This paper offers what has become the classical introduction to PLS by 
a consecutive and graphical presentation of multiple linear regression 
(MLR), PCA, principal component regression (PCR) and PLS. By August 
2007 this paper has been cited 1441 times in source items indexed within 
Web of Science. 
 
PLS was first used on chemical data by Kowalski et al. (1982) and has be-
come a standard tool in chemometrics by turning collinear data (e.g. spectral 
data) into an advantage rather than a problem (Wold et al., 1984). 
 
PLS serves two major purposes. One is to establish a regression model be-
tween coherent X and Y data, e.g. NIT and flour quality parameters meas-
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ured, in order to predict or estimate future Y (response) quality data by only 
measuring X (predictor) and applying the already establish regression 
model: 
 

XBY =  (Eq. 2.7) 
 
B is the regression coefficients estimated during the calibration of the PLS. 
The other purpose is to identify information in X relevant for Y in an ex-
ploratory quest to understand the relation between X and Y, if any exists. 
While PCA was an unsupervised analysis only guided by the variance of X 
itself, PLS iteratively models both X and Y while exchanging scores in order 
to explain as much variation as possible of both blocks simultaneously and 
maximise correlation between X and Y scores. Thus the decomposition is 
supervised by the variation in Y. If only one response variable exists, the 
model becomes slightly simpler: 
 

Xby =  (Eq. 2.8) 
 
The PLS models are calculated using the NIPALS algorithms, PLS2 and PLS1 
respectively, similar to the one used in PCA (Appendix B) (Bro, 1996, Esben-
sen, 2000). PLS1 with only one response variable, y, is very fast as no itera-
tions are necessary for optimisation. Thus PLS consists of two ‘PCA-like’ 
models representing the outer relations: 
 

ETPX += '  (Eq. 2.9) 
FUQY += '  (Eq. 2.10) 

 
X is decomposed into T and P like in PCA, however under the influence of 
Y, hence T and P are called PLS-scores and PLS-loadings. E is the residual 
matrix of X. Similarly Y is decomposed into U = Y-scores and Q = Y-
loadings. A set of loading weights, W, are also calculated when X is pro-
jected onto U for each component. The regression coefficients are calculated 
from X- and Y-loadings and loading weights: 
 

'1' )( QWPWB −=  (Eq. 2.11) 
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For interpretation purpose P, W, Q and B are worth inspecting. High values 
generally mean high importance. W is the covariance of each variable in X to 
the variation in Y. Q are the Y-variables relevant to W. P contains both Y-
relevant as well as Y-irrelevant information, which may be difficult to inter-
pret. B is the direct link between X and Y, thus making these very important. 
However, interpretation may be an erratic affair since PLS is modelling both 
variations of interest and interferences in X. 

2.6.3. Variable selection 

While full scale modelling may be erratic, variable selection may reduce the 
number of variables for better modelling and interpretation. Several meth-
ods exist in which variables are selected collectively or individually in all 
possible combinations in order to automatically select the optimal set of 
variables for prediction purposes and interpretation purposes. Genetic algo-
rithms (GA) (Leardi, 2001), Jack-knife cross validation (Martens and Mar-
tens, 2000) and interval PLS (iPLS) (Nørgaard et al., 2000) are examples of 
such automatic iterative methods which help researchers to focus on the 
important parts of multivariate data and simultaneously filter out regions or 
variables which contain only noise or interfering information. However due 
to the sheer number of variables in modern data acquisition, the risk of over-
fitting should not be underestimated. In Paper I, iPLS was used as an algo-
rithm to select the most appropriate way to present single kernels in the 
near-infrared light beam. Although the input data was a number of concate-
nated and thus already separate NIT spectra blocks originating from differ-
ent sample presentations, the algorithm proved well suited as a data block 
selection tool.  

2.6.4. Multiblock PLS (MBPLS) 

In Paper III an opposing method to variable selection was used to evaluate 
whether conceptually meaningful blocks of coherent data would contain 
complementary data for better prediction of wheat and bread quality. The 
multiblock PLS (MBPLS) method did not differ from the PLS model pre-
sented above apart from X being a set of X blocks (X1 to X7) containing dif-
ferent kinds of information, e.g. NIT on grain, NIT on flour, NIR on flour, IR 
on flour etc. 
 
The fundamental model is actually the same and the prediction performance 
is exactly the same as if all conceptually separate blocks were merged in one 
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X block. The advantage is merely the ordering of data and the possibilities to 
interpret the outcome in a comprehensive way. Having a common NIPALS 
origin various multiblock PCA and PLS models and algorithms have been 
developed, optimised and changed over the years (Westerhuis et al., 1998) 
and will not be covered here. In this work the multiblock PLS as described in 
Qin et al. (2001), Westerhuis and Coenegracht (1997) and Westerhuis et al. 
(1998) with deflation of X using super scores has been used. The basic algo-
rithms for calculation of the models are available from 
www.model.life.ku.dk. 
 
Blocking can improve the interpretability when a large number of variables 
can be divided into conceptually meaningful blocks (Westerhuis et al., 1998). 
The blocks may contain information from different instrumental techniques, 
such as NIR and IR spectra on the same material as in Paper III and in Brás 
et al. (2005) or from the same instrument but at different stages in the proc-
ess as in Paper III, where NIT was used on grain lots and flour lots, or at 
specific time points in a process (Qin et al., 2001, Choi and Lee, 2005). The 
blocking of data is clearly problem dependent and based on the knowledge 
of the problem at hand. Multiblock modelling can be used in various ways 
either exploratory in order to identify important data sources or processing 
steps (Paper III, Westerhuis and Coenegracht, 1997, Brás et al. 2005) or in 
process monitoring for process control and fault detection (Qin et al., 2001, 
Choi and Lee, 2005). The MBPLS model used in this work may be calculated 
directly from ordinary PLS (Qin et al., 2001, Westerhuis et al., 1998). One of 
the problems with this current MBPLS approach is that the deflation of the 
blocks is based on the super-scores, thus effectively mixing up information 
in the blocks in the deflation step. Westerhuis and Smilde (2001) suggested 
deflating only Y by modifications of the algorithm to make the block 
weights, scores and loadings more interpretable. 

2.6.5. Weighting and scaling variables and blocks in MBPLS 

Weighting and scaling of individual variables and blocks requires some at-
tention as erroneous scaling/weighting may lead to blocks and/or individual 
variables having to much or too little influence on the model calculated. 
Within each block data are either centred, standardised (unit variance of 
each column) or range scaled or subject to a combination of those. Centring 
removes the offset and is often a standard procedure in multivariate data 
analysis, as centring focus the analysis on differences and similarities of in-
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dividual samples rather than the overall level. Standardising, i.e. dividing 
each entry of each variable with the standard deviation of the entries, evens 
out the difference in scale or unit of each variable. This is often used where 
variables are of different origin and thus of different scales, e.g. protein con-
centration, water absorption, falling number determined in a flour sample. 
Scaling in specific ranges may also be used, e.g. 0 to 1. In spectra or spectra 
like data, such as near-infrared spectra, NMR relaxation decay curves and 
chromatograms, were low intensity usually means low importance, scaling 
or standardisation may have detrimental effect by inflating noisy, low inten-
sity variables. 
 
After weighting the variables within each block, each block should be 
weighted in order to assure appropriate influence of each block. The number 
of variables in each block may vary immensely from a hand full to thou-
sands. Thus in order to induce equal importance of those blocks they are 
usually normalised to have block unit variance, i.e. the sum of squares of the 
entire block is adjusted to one, by multiplying each entry with the appropri-
ate constant. The MBPLS had comprehensive handles for this operation, 
while this could have been done equally well on ordinary multivariate cali-
bration software. 

2.6.6. Validation 

Validation of PLS models can be done in several ways. The goal is to estab-
lish the appropriate model complexity which is usually done by evaluating 
the Y prediction error. The point at which the prediction error is not decreas-
ing anymore by adding another component is the model complexity. The 
prediction error is evaluated by the root mean squared error (RMSE) of pre-
dicted versus measured y-values. This may be done either based on the cali-
bration (RMSEC), cross validation (RMSECV) (Paper I and III) or on an in-
dependent test set (RMSEP). The latter is of particular importance when the 
prediction error is estimated with regards to new samples to be predicted 
based on the model (Esbensen, 2000). 

2.6.7. Analysis of variance (ANOVA) 

Analysis of variance (ANOVA) developed by R.A. Fischer in the 1920’s is 
used in connection with a specific experimental design where controlled 
factors are varied and their effect observed on the response variable meas-
ured (Fischer, 1950 cf. Youden, 1951, Skovgaard, 1996). The model is chosen 
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in accordance with the factors varied and the actual design of the experi-
ment. This is by no means simple and involves a number of assumptions 
regarding the samples, the model parameters and the distribution of the 
noise. In addition the actual model and the tests made depend on a number 
of things, including missing values, random effects, blocks etc. On the other 
hand ANOVA belongs to the inferential statistics. Given the correct model 
and valid assumption, conclusion can be made regarding the factors varied 
associated with a probability of being wrong by coincidence. Hence the fo-
cus of the ANOVA is the factors varied – not the similarities of individual 
samples as in PCA or prediction of new samples as in PLS. In Paper II a 3-
factor ANOVA model was used to determine the effect of growth year, loca-
tion/cultivar and catch crop on a number of variables measured in a bread 
baking process. On top of this, the effect of sorting the bulk crop was inves-
tigated on the same material from the same growth years and locations. The 
model used conforming to Eq. 2.5 separating structure from noise: 
 
Xijk = μ + Ai + Bj + γk + εijk, i = 1,2; j = 1,2; k = 1,2,3 (Eq. 2.12) 
 
Xijk is the measured response, e.g. dry matter protein, μ is the overall mean 
value, Ai is the random effect of growth year 2003 or 2004, Bj is the random 
effect of location Arslev or Kiel, γk is the fixed effect of catch crop, winter 
vetch, fodder radish or no catch crop and εijk, is the residual unexplained 
residual. In the test of fractionation, γk is the fixed effect of fraction 1, 2 or 3. 
For the model parameters apply: ∑γk = 0 and Ai, Bj and εijk are independent 
and N(0,σA2), N(0,σB2) and N(0,σ2) respectively. All the lots involved in this 
investigation are independent. Eq. 2.12 omits the possible random interac-
tion effects of AiBj, Bjγk and Aiγk as these are of no interest in the specific in-
vestigation7. 
 
                                                      
7 Including the interaction terms in Eq. 2.12 would complicate the investigation im-
mensely as year and location are random factors. The actual F-tests to be made in 
the ANOVA regarding the main random as well as fixed effects would depend on 
which of the random interaction effects were considered significant (Skovgaard, 
1996). The conclusions made from such a complicated and elaborate task would be 
doubtful anyway due to the low number of experiments, i.e. low degrees of free-
dom, and the number of variables tested. Thus choosing the model with only main 
effects implies that the variance of the interaction terms are all zero, hence insignifi-
cant, σAB = σAγ = σBγ, = 0. 
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Given all the above is approximately valid, the hypotheses that σA2 = 0, σB2 = 
0 and γ1 = γ2 = γ3 = 0 can be tested. Probabilities (P-values) for there being no 
effect of the factors are calculated according to the ANOVA. Hence a small 
P-value indicates that a given hypothesis regarding the absence of effect is 
unlikely to be true. By convention P-values smaller than 0.05 are called sig-
nificant and marked with a ‘*’, while stronger degrees of significance below 
0.01 and 0.001 and marked with ‘**’ and ‘***’ respectively. Only the P-values 
are reported in Paper II. 

2.6.8. Pre-processing spectroscopic data 

The concept of pre-processing is to remove irrelevant systematic variation 
from the data without destroying the chemical information too much prior 
to multivariate modelling. The goal of pre-processing is either to improve 
the subsequent calibration model to gain better robustness and prediction 
performance (e.g. reduce the number of PLS components and/or the predic-
tion error) or to improve the interpretability of the models (e.g. improve 
scores, loadings and regression coefficients which may appear erratic in 
complex models). In altering the data by any rank reducing pre-processing 
method, there is a risk of over-doing it – and actually destroy the data. Pre-
processing is thus not the answer to all problems in data analysis. Often it is 
an iterative trial and error process in order to find a suitable method and its 
associated parameters to a current problem. The performances of the meth-
ods tested are evaluated towards an objective goal such as the prediction 
error, the number of model components and/or the fingerprint (plot) of the 
residual. However, the number of different pre-processing methods and 
alterations published is quite overwhelming (Gabrielsson and Trygg, 2006) 
and not one method can be said to be objectively superior to the other, but 
depends on samples, spectroscopic methods and available prior knowledge. 
The slow implementations in commercial software packages as well as pat-
ent rights make new methods less available for general applications. 
 
In light spectroscopy there are some acknowledged physical challenges, that 
can be met by hard modelling prior knowledge. Using spectroscopy to de-
termine the concentration of a chemical constituent, Beers law usually ap-
plies (Chap. 2.5.1) – stating a linear relation between the absorption of light 
and the concentration. The path length however, is not necessarily constant 
and contains both and additive component and a multiplicative component. 
This is true for almost all types of samples apart from transparent one phase 
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solutions. When multiple phases are present such as particles in air, slurries 
and emulsion the light passes through different materials and is refracted 
many times on its travel and thus does not experience the specified path 
length. It follows a completely different route depended on the number and 
character of interfaces encountered on the way. The number of phase transi-
tions and thus refractions determines the number of deflections from the set 
path. Samples containing small particles are thus thought to experience 
longer path length than samples of the same material containing large parti-
cles. This may lead to an additive effect in which spectra of the same mate-
rial is displaced constantly over the entire spectrum. In addition – photons 
travelling longer in the material are more likely to be absorbed, thus a 
multiplicative effect is observed. 
 
Consider photons at two energy levels, E1 and E2. E1 has an energy that is 
not very likely to be absorbed, while E2 is very likely to be absorbed – given 
they travel the same distance. That is due to the chemical composition of the 
material in which transition level E2 is present more than E1. Changing the 
path length a little by selecting differently sized or differently packed parti-
cles will lead to a proportional change in absorption at both wavelengths. In 
the spectra, this is observed as a bigger change in absorption at E2, than at 
E1. That is the multiplicative effect. 
 
In multiphase systems diffuse scatter will be observed caused by reflection 
of the light on the interfaces between phases. The smaller the particles – the 
more scatter is observed. This effect will result in apparent extra absorption 
in transmission mode as the reflection never arrives at the detector, while in 
reflection mode the prerequisite for measuring anything is the diffuse reflec-
tion from the sample. Thus in reflection mode bigger particles will lead to 
actual more absorption and vice versa for small particles (Dahm and Dahm, 
2001). 
 
In order to circumvent these physical effects dedicated methods have been 
developed. Multiplicative signal correction (MSC) sometimes called multi-
plicative scatter correction due to its origin in near-infrared scatter correction 
(Geladi et al., 1985) has become a reference to which new methods are com-
pared (Martens et al., 2003, Pedersen et al., 2002a). Martens and Stark (1991) 
introduced an extended version incorporating potential prior knowledge 
such as pure component spectra - later extended even further with wave-
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length dependencies and squared spectra. The extended multiplicative sig-
nal correction (EMSC) (Martens et al., 2003) is a pragmatic solution in which 
extensions may be added at will. Standard normal variate (SNV) with or 
without subsequent de-trending provide similar results as the MSC method 
(Barnes et al., 1989). The above mentioned methods have the advantage of 
preserving the shape of the spectra, which may be an advantage for interpre-
tation. Spectral derivation on the other hand does not preserve spectral 
shape, but effectively remove both additive (1st derivative) and multiplica-
tive effects (2nd derivative) while preserving relevant information (Savitsky 
and Golay, 1964). Delwiche (1995) combined the Savitsky-Golay derivation 
and the MSC, in that order, providing superior robustness and prediction 
error for prediction of protein content of single seeds using single-kernel 
near-infrared spectroscopy. This information was utilised and confirmed by 
Nielsen et al. (2003), Pedersen et al. (2002a) and in Paper I for prediction of 
protein in single wheat kernels. 
 
In Fig. 2.7 the effect of four different pre-processing methods is demon-
strated graphically with respect to the shape of the spectra and the informa-
tion discriminating the wheat lots involved. Fig. 2.7A shows the raw near-
infrared transmission spectra of thirty-two wheat grain lots investigated in 
Paper II and III. The spectra are coloured according to growth year and loca-
tion as well as winter cultivars. Clearly the spectra do not differ very much 
in shape but rather in general level due to different physical appearances of 
the grains. However, the physical appearance actually contributes to the 
discrimination of the lots. In Paper II the quality fractionated lots also re-
sulted in systematically different raw NIT spectra, thus indicating that inter-
nal quality can actually be seen on the outside of the grains. In Fig 2.7B the 
spectra are centred prior to principal component analysis in Fig. 2.7C. The 
growth years, 2003 and 2004, are clearly reflected on the first PC, while the 
second PC reflects the location, Aarslev vs. Kiel – disregarding the groups 
04Se and 04Wi, which by design are deviating from the other samples. In 
Fig. 2.7D the spectra was corrected with MSC. This changed the spectra 
quite dramatically and at the same time transformed one of the winter culti-
vars (pent) into an outlier on the first components in the corresponding PCA 
plot (Fig. 2.7F) and similarly the bread wheat lots (Bre1 and Bre2) from Sejet 
on the second PC. The growth years and locations have switched positions 
and are no longer as clear as in Fig. 2.7C. By using EMSC incorporating 
wavelength dependencies (Fig. 2.7G, H and I), the year and location groups 
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are better discriminated in the PCA plot and those outliers are not as pro-
nounced as in Fig. 2.7F. Taking the 2nd derivative in Fig. 2.7J indeed changed 
the shapes of the spectra and the subsequent centring and PCA score plot. 
By comparing the centred data in the middle column it is evident, that dis-
criminations between the samples are possible, but it also elucidate that the 
important spectra regions depend on the pre-treatments and thus affects the 
score plots of the first two principal components. 
 
In Fig. 2.8 five different strategies for pre-processing the same data as in Fig. 
2.7 were compared by subsequently fitting a PLS regression model to pro-
tein content. A combination of 2nd derivative and MSC clearly reduces the 
rank of the data, however the EMSC provides the best prediction error using 
9 PCs without encountering any local minima on the way. In similar ways 
the choice of EMSC as a general pre-processing for NIT of grain and NIT, 
NIR and IR of flour was made in Paper III. Experiments with a number of 
pre-treatment strategies for individual quality properties however may pro-
vide even better solutions (Delwiche and Graybosch, 2003). 
 
As can be seen from the results in figure 2.7 and 2.8 pre-processing is not 
really a data wash or convenient filter prior to the actual modelling as the 
results as well as their interpretation is very dependent upon the method(s) 
employed. Hence pre-processing is certainly an integral part of the data 
modelling process. A formal development in that direction is the orthogonal 
projections to latent structures (O-PLS and O2-PLS) algorithms which incor-
porates the orthogonal signal correction (OSC) (Wold et al., 1998) pre-
processing into the PLS algorithm (Trygg, 2002, Trygg and Wold, 2002, 2003, 
Verron et al., 2004). By removing all information not correlated, i.e. orthogo-
nal, to Y, the OSC filter and the O-PLS/O2-PLS has been shown to improve 
the interpretability of the PLS results (Samp et al., 2003, Svensson et al., 
2002). 
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Figure 2.7: NIT spectra of thirty-two wheat grain lots pre-treated with either noth-
ing, MSC, EMSC or Savitsky-Golay 2nd derivative (first column). The same spectra 
after subtraction of mean spectrum elucidate the major differences from average 
(second column). PCA scores of the centred data show major differences depending 
on the pre-treatment (third column). 
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Figure 2.8: Root mean squared error of cross validation (RMSECV) of protein con-
tent in five PLS models using different pre-processing methods of near-infrared 
transmission spectra of wheat grains. Optimal model complexity marked by ♦ in the 
first local or global minimum in each model. 

2.7. The PAT perspective revisited 
The aim of presenting sampling, analytical methods and data analysis to-
gether in this chapter (above) was to emphasise that in all empirical sciences 
these individual fields are integrated. Data-analysis does not exist without 
measurements and measurements not without mass reduction and/or sam-
ple presentation. The conclusions drawn from scientific studies are inher-
ently determined by the processes by which they were designed and ob-
tained. The PAT initiative (USFDA, 2005) with regards to pharmaceutical 
processes is the blue stamp of the holistic scientific approach in all sciences 
and is foreseen to become the standard in future scientific and technological 
projects and developments. 
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3. Diversification and prediction 

of bread wheat quality 

There is an increasing demand for flours meeting specific standards with 
regard to processing functionality as well as end product quality and uni-
formity (Mirablés, 2004). Thus improved abilities for fast determination and 
control of central quality parameters of both raw materials and during proc-
essing is very important. With reference to the inherent heterogeneity of 
bulk wheat (Paper I), processing by sorting to improve and diversify raw 
material according to quality poses a lucrative potential for providing dedi-
cated uniform raw materials with narrow specifications (Papers II and III). 

3.1. The holistic process analytical approach  
In this work the holistic approach has been central to the endeavour of 
grasping the entire complex conversion of wheat from grain to flour to 
visco-elastic dough and finally to spongy bread crumb. The experimental 
process line is shown in Fig. 3.1 and consists of: 1. Raw materials diversified 
by agronomic measures and prior knowledge. 2. Post harvest diversification 
of selected wheat lots by mixing and subsequent single-kernel sorting ac-
cording to a complex quality trait. 3. Milling. 4. Baking. The aim of the ap-
proach was first to evaluate the effect of sorting with regards to the quality 
of the resulting flours as well as the quality of the final bread products (Pa-
per II). Secondly the possibility to predict the end quality based on multi-
variate spectroscopic measurements on bulk grains, flours and dough was 
investigated (Paper III). An inventory of methods for characterisation at all 
levels from grains to consumption was used in an exploratory attempt to 
embrace the variations of the materials as well as the process using process 
analytical technology (Fig. 3.1). “A process is generally considered well un-
derstood when (1) all critical sources of variability are identified and ex-
plained; (2) variability is managed by the process; and, (3) product quality 
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Figure 3.1: The process analytical approach to the baking process starting with, 1. 
Raw materials, 2. Improvements of raw materials by mixing and sorting followed 
by, 3. Milling the grain lots to flour and 4. baking breads (left column). The product 
developments can be followed in the middle column, while the data derived from 
the process by standard methods as well as by spectroscopic techniques are indi-
cated in the right column. Some data closely related to the processes are shown in 
the left column along with the process steps. 
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attributes can be accurately and reliably predicted over the design space 
established for materials used, process parameters, manufacturing, envi-
ronmental, and other conditions” (USFDA, 2004a). 

3.1.1. A brief history on the experimental design 

Single-kernel sorting was not originally intended to be a part of this work. 
The idea however developed from a rescue plan, in order to ensure appro-
priate diversity in an organic wheat material with an expected low diversity, 
to a central part of the wheat quality perspective. Confronted with the fall of 
the original idea comprising a full scale study involving field trials with sev-
eral cultivars, fertilizing strategies and growth conditions this work suffered 
a minor set back. A new strategy had to be put in place without leaving the 
original process perspective. A search for material in storage from already 
performed field trials which fulfilled two major requirements was initiated. 
First requirement: The trial had to be of a certain size, so that a diverse mate-
rial with respect to baking quality would be available. Second requirement: 
enough material from each experimental unit should be available so that the 
entire process from grain to brain could be performed. Apparently the local 
Interreg IIIA programme trials already running fulfilled those basic re-
quirements, at least in terms of available material. However, the organic 
experiment focusing on the effects of various preceding catch crops for di-
versification of product yield and quality could be detrimental in terms of 
providing material of appropriate diverse nature. The organic fertiliser defi-
cient environment might lead to low quality grain lots with low diversifica-
tion, hence hampering the possibility to model and establish sufficient proc-
ess understanding. 
 
The solution came into place by utilising a new system under development 
by Bomill AB, Lund. Löfqvist and Nielsen (2003) had recently taken a patent 
on the TriQ sorting system for heterogeneous organic materials, such as 
grains. A laboratory scale single-kernel near-infrared (SKNIR) sorting device  
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had been developed for unsupervised8 or supervised9 sorting according to a 
complex quality trait. The system utilises the bulk heterogeneity (Paper I) as 
an integrated property of the population and as a source for bulk diversifica-
tion. 
 
By employing this technique to the organically grown material from the In-
terreg IIIA programme a new level of bulk diversification could be obtained. 
This diversification was utilised both for broader variation in the prediction 
study (Paper III) and for testing the effect of sorting as compared to the or-
ganic agronomic strategy of using catch crops to preserve and accumulate 
nutrients in the top soil for the subsequent wheat crops (Paper II). 

3.1.2. Materials and methods 

The raw material (Fig. 3.1 1st row) consisted of eighteen wheat lots of which 
fourteen originated form the Interreg IIIA organic field trial, while the re-
maining four conventional lots were generously donated by Sejet Plante-
forædling in Denmark. The lots from Sejet were included as references due 
to expected large diversity, i.e. one biscuit wheat (04SeBisc), one fodder 
wheat (04SeFeed) and two bread wheats (04SeBre1 and 04SeBre2). The four-
teen organic wheat lots were from growth year 2003 and 2004 and grown in 
two locations, Kiel in Germany and Aarslev in Denmark. Two winter culti-
vars, Capo and Pentium were grown in Kiel and Aarslev respectively only in 
2004 (04KiCapo and 04AaPent). Two spring cultivars, Combi and Vinjett 
were grown in Kiel and Aarslev respectively in both year 2003 and 2004 and 
subjected to three different preceding catch crops treatments; 1. No catch 
crop, 2. Winter Vetch (Vicia villosa), 3. Fodder Radish (Raphanus sativus var. 

Oleiformis) or Turnip (Brassica rapa). The last two used interchangeably both 
from the Brassicaceae family. Thus the spring cultivars resulted in twelve lots 
diversified by growth year and catch crop treatment (2 cultivars/locations × 2 
growth years × 3 catch crops) (Fig. 3.1 1st row). This design was utilised in 

                                                      
8 Unsupervised sorting refers to sorting according to predicted scores on latent vari-
ables from principal component analysis (PCA) or similar multivariate methods. 
9 Supervised sorting refers to sorting according to a predicted value of a specific 
quality parameter (e.g. protein content), which can be predicted from the multivari-
ate signal based on a calibration method such as partial least squares regression 
(PLS-R) or similar methods. 
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Paper II for analysis of variance (ANOVA) with respect to the three factors 
(Chap. 2.6.7). 
 
Half of the material from each of the twelve spring lots was mixed within 
each location and growth year resulting in four mixture lots (03KiCoMx, 
04KiCoMx, 03AaViMx, 04AaViMx) (Fig 3.1 2nd row). The mixtures were 
sorted grain by grain into three equally sized fractions each (F1, F2 and F3) 
using the TriQ sorter (Fig. 3.1 3rd row). Hence, an alternative diversification 
within each year and location/cultivar were established and analysed with 
ANOVA in Paper II (2 cultivars/locations × 2 growth years × 3 TriQ frac-
tions). 
 
Only the organic lots were investigated in Paper II, while all available lots 
were included in Paper III. Two lots however were discarded. 03KiCoMx 
were discarded after fractionation, as too little material was left. 04SeBisc 
were discarded as this lot was unfortunately not submitted to conditioning 
with water prior to the milling. The missing conditioning step, mistakenly 
omitted due to high water content (16.3%), resulted in an inferior flour yield 
of only 58.3% and a markedly deviating particle size distribution as com-
pared to the rest of the wheat lots. 

3.2. Single-kernel diversity – a source for bulk diversification 
By grabbing a few wheat grains it is quite clear, that each kernel is unique 
and differs in readily observable morphological characteristics such as size, 
shape and colour (Fig. 3.2). In Paper I a great variation in kernel mass and 
protein content was found among the investigated lots. The average dry 
matter protein contents were between 9.9% and 15.8% with kernel standard 
deviations of 1.1% to 2.5%. Delwiche (1995) showed similar variation and 
also that the protein content of single kernels was not correlated to their 
mass. Other morphological properties have been assessed by image analysis 
together with protein content, density and hardness on individual kernel of 
European wheats (Nielsen et al., 2003). In their study the single kernel 
weight varied from 24.1 to 69.3 mg and the protein content from 6.8% to 17 
% dry matter, comparable to the findings in Paper I and Fig. 3.2. Nielsen et 
al. (2003) found that individual kernel density varied from 0.99 to 1.25 g cm-

3. Positive correlations between single-kernel protein content and kernel 



 62 

density, protein content and apparent vitreousness10, and density and ap-
parent vitreousness were found with correlation coefficients around r ≈ 0.6. 
Although single kernel hardness was positively correlated to apparent vitre-
ousness (r = 0.55) no convincing correlations between hardness and protein, 
and hardness and density were found. 
 

1 2 3 4 5 6 7

W01 Pentium

Mass [mg] 47.9 54.8 36.8 33.7 57.6 53.0 49.3

Protein [%dm] 9.7 10.9 10.6 9.3 10.2 11.3 9.4

W09 Pentium

Mass [mg] 61.7 35.0 46.6 37.5 33.4 44.7 53.2

Protein [%dm] 12.9 10.9 11.7 10.1 9.7 11.1 11.3

S10 Vinjett

Mass [mg] 47.3 48.3 24.2 46.4 39.3 43.1 29.3

Protein [%dm] 12.3 14.1 9.6 16.1 10.1 9.8 11.7

n.a. n.a.

1 2 3 4 5 6 7

W01 Pentium

Mass [mg] 47.9 54.8 36.8 33.7 57.6 53.0 49.3

Protein [%dm] 9.7 10.9 10.6 9.3 10.2 11.3 9.4

W09 Pentium

Mass [mg] 61.7 35.0 46.6 37.5 33.4 44.7 53.2

Protein [%dm] 12.9 10.9 11.7 10.1 9.7 11.1 11.3

S10 Vinjett

Mass [mg] 47.3 48.3 24.2 46.4 39.3 43.1 29.3

Protein [%dm] 12.3 14.1 9.6 16.1 10.1 9.8 11.7

n.a. n.a.

 
Figure 3.2: Heterogeneity in wheat lots with regards to appearance, mass and pro-
tein content visualised with seven random wheat kernels from three different wheat 
lots analysed in Paper I. 
 
In the milling industry the quality of the raw material is often assessed by 
the above mentioned parameters and the value as well as payment is often 
settled based on protein content. A high test weight, i.e. the bulk measure-
ment for density, is important for high flour yield while vitreousness and 
hardness is assessed for optimal milling processing determining flour parti-
cle size distribution and amount of damaged starch. Protein is thought to 
play a central role, as storage proteins surround and fill the spaces around 
the starch granules in the kernel endosperm entirely in hard wheats, while 

                                                      
10 Vitreousness is an assessment of how glassy as opposed to how opaque a kernel 
appears. In Fig. 3.2 kernel no 4 in sample S10 Vinjett has a much darker colour and 
vitreous appearance indicating that the space between starch granules is completely 
filled by the protein matrix.  
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only partly for soft wheats (Huebner and Gaines, 1992). Greffeuille et al. 
(2006) discuss the complexity of grain hardness, vitreousness and protein 
content in relation to milling. In their study of near-isogenic wheat lines, 
hardness appeared to be a genetic factor, while vitreousness was primarily 
an environmental factor, although hard wheat generally appears more vitre-
ous than soft wheat. Increased vitreousness had a positive effect on flour 
yield in soft wheat while a negative effect in hard wheat milling properties 
was observed. The protein content neither correlated to vitreousness nor 
hardness. These findings are supported by the low correlations found by 
Nielsen et al. (2003). While protein content is positively affected by growth 
conditions in more or less the same way as vitreousness their interdepen-
dency may in general be overemphasised, at least as a causal relation. Gref-
feuille et al. (2006) concluded that hardness may be related to adhesion 
forces between starch granules and the protein matrix, while vitreousness is 
related to endosperm microstructure or porosity. 
 
Huebner and Gaines (1992) report that cultivars classified as either hard or 
soft wheats are themselves quite heterogeneous with respect to individual 
kernel hardness. The sizes of kernels were apparently larger when growing 
close to the middle of the kernel head as opposed to top and bottom. Their 
origin on the kernel head, hence the kernel size however was not correlated 
to hardness. Hardness was apparently correlated to a single gliadin fraction 
separated on RP-HPLC, hence related to the quality of the protein. 

3.2.2 Single-kernel sorting 

Post harvest utilisation of the bulk wheat heterogeneity or diversity appears 
to be lucrative. However, in order to sort the grains to form more uniform 
and higher value fractions a series of events should take place. A system 
suitable for sorting should have an ultra-fast positioning device, an ultra-fast 
determination of quality, an ability to keep track of the individual grains and 
a mechanism to place the grain into the appropriate receiving bin. An objec-
tive goal of such a system could be sorting at least one ton an hour, corre-
sponding to 2.5∙107 grains with an average mass of 40 mg each. Quality de-
termination of one grain with subsequent delivery should take no more than 
0.14 ms. 
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3.2.3. Sorting with respect to grain morphology 

A starting point would be basing the quality determination on readily ob-
servable morphological features such as size, weight, density and colour. 
Nielsen et al. (2003) argue that positive but relatively low correlation be-
tween protein content, vitreousness and hardness to density is not enough 
for a quality sorting based on density grading. Yoon et al. (2002) also con-
cludes that the increased flour yield based on size and hardness sorting was 
insufficient to outweigh the cost of sorting. In barley, Elfverson et al. (1999) 
found only small differences in starch and β–glucan content with respect to 
the size of grains. Large grains had a tendency of containing more β–glucan 
and less starch as compared to fractions containing smaller grains. Protein 
contents tended to be lowest in the intermediate size fractions. Differences 
between cultivars were much larger. Elfverson et al. (1999) cite others for 
observing increasing, decreasing and no effect on protein contents based on 
grain size sorting in wheat depending on the starting material. They also 
noted that wheat in comparison to barley show much larger differences in 
chemical composition between fractions of grains. Pasikatan and Dowell 
(2004) did improve protein contents marginally by sorting mixtures of high 
and low protein wheat using a dual wavelength filter (920 nm and 1660 nm) 
which was partly reported to sort according to colour and vitreousness. 

3.2.4. Sorting with respect to internal quality trait 

With dedicated spectrometers and setups it has become possible to record 
near-infrared spectra of single kernels and relating these signals to various 
properties by chemometric calibration models. Prediction of hardness 
(Delwiche, 1993, Maghirang and Dowell, 2003, Nielsen et al., 2003), vitre-
ousness (Delwiche, 1993, Dowell, 2000, Nielsen et al., 2003) and protein con-
tent (Delwiche, 1995, 1998, Delwiche and Hruschka, 2000, Nielsen et al., 
2003) has been assessed by single-kernel near-infrared (SKNIR) spectros-
copy. While protein content appears to be well determined by SKNIR, hard-
ness and vitreousness calibrations are more difficult, probably due to large 
variations in the reference methods. Vitreousness is basically a subjective 
assessment (Dowell, 2000, Nielsen et al., 2003) and hardness determination is 
very dependent on the method e.g. accuracy of the hardness index of a sin-
gle kernel measured on the Single Kernel Characterisation System (SKCS) is 
difficult to determine, since the experiment cannot be repeated (Nielsen et 
al., 2003). Averaging over several kernels provided better models for deter-
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mination of bulk hardness (Maghirang and Dowell, 2003, Nielsen et al., 
2003). 
 
Clearly the accuracy of both near-infrared characterisation and the reference 
method must be good in order to establish prediction models on the level of 
single kernels. In a TOS perspective the single kernel constitutes the lot to be 
characterised and potentially sorted accordingly. By studying Fig. 3.2 it is 
clear that each individual kernel is quite heterogeneous themselves. Hence, 
assessing the entire chemistry non-destructively of a single kernel may not 
be straight forward. Sampling the kernel with NIT or NIR spectroscopy 
should ensure representative data of the entire kernel, the lot, in order to 
expect sufficiently robust models of the properties of interest. In the refer-
ence method, e.g. protein or hardness, the entire kernel (lot) is destroyed and 
the experiment cannot be repeated. Hence, the error in this destructive 
analysis is purely due to analytical error as no sampling is taking place. In 
Fig. 3 in Paper I, the error with respect to sample presentation of single ker-
nels in the NIT beam was investigated. It showed that the root mean squared 
error of cross validation (RMSECV) in PLS protein prediction model was 
highly influenced by kernel presentation in the spectrometer. Using a single 
recording, pointing the furrow of the grain down, while the beam enters 
from the top should be preferred to other directions or random positioning. 
RMSECV was in the order of 0.4 to 0.6 with the furrow down, while in the 
order of 0.5 to 0.7 using random positioning, when considering ±2×standard 
deviation of the RMSECV. This was similar to the performances of Delwiche 
(1998) in reflectance mode with the furrow pointing away from the beam. By 
averaging several recording better performances was obtained. While cover-
ing several directions more representative recordings should ideally be ob-
tained for minimization of kernel shape effects (Abe et al., 1996 cf. Pasikatan 
and Dowell, 2004). However, the results from Paper I showed that averaging 
three recordings of the kernels in the same position with the furrow down, 
ensuring representativity by re-positioning it between each recording, com-
pletely outperformed averaging over different directions. RMSECV went to 
0.36 %dm protein which compared to the standard deviation of the reference 
method of 0.16% was considered good. The reason for this apparently biased 
method being the best might be due to unfortunate scattering patterns when 
recordings were averaged from different directions. 
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In the TriQ sorter used in Paper II and III the kernels are measured only 
once and there are no controls of the kernel orientations (Paper I) in the 
measurement area, however this is of no practical importance as this would 
complicate and slow down the sorting mechanism significantly. The twenty-
four scans for each kernel used by Dowell et al. (2006a) in their sorting de-
vise seem superfluous considering the high accuracy of the NIR technology 
and the corresponding lower accuracy of most reference methods. The in-
creased time consumption on the NIR recording is probably not well spent 
when considering the capacity needed in such devises for practical and 
commercial use. This would be counteracting the purpose of the sorter for 
fast quality sorting of bulk materials. The performance of single recordings 
is sufficiently good relative to the variation found in different bulk lots. 
 
The potential of utilising SKNIR to sort according to an internal quality trait 
has now been acknowledged. As protein content as well as its quality is very 
important for loaf volume (Bushuk et al., 1969), sorting with respect to pro-
tein content may increase the value (Dowell et al., 2006a, Pasikatan and 
Dowell, 2004). Pasikatan and Dowell used a colour sorter equipped with a 
dual wavelength filter (920/1660nm) for separation high protein content ker-
nels from low protein content kernels. However the method was not very 
effective and several passes through the sorter were necessary. Each pass 
changed the resulting protein content by 0.1%-points. Dowell et al. (2006a) 
presented a system, which were able to record full spectra 950-1650 nm of 
individual kernels and successfully sort them into four different bins accord-
ing protein and hardness calibration. The capacity of the system was 30 ker-
nels/min. The system share some of the features of the TriQ sorter (Löfqvist 
and Nielsen, 2003) however the capacity was way too low for bulk sorting. 
Results from the laboratory scale TriQ bulk wheat sorter with a capacity of 
sorting 2 kg/hour (Löfqvist and Nielsen, 2003) utilised in Paper II and III 
were first reported in Nielsen (2002) showing a distinct sorting of grains 
with respect to protein content into three fractions. Raw wheat with average 
protein content of 12.3% was sorted into protein fraction <11%, 11-13% and 
>13%. Due to the considerable variation in the raw material the average pro-
tein fraction concentrations were 10.2%, 12.0% and 14.4% respectively with 
yields of 26%, 38% and 36%. Thus the high protein fraction was improved by 
2.1%-points compared to the starting material. Munck (2008) report Farino-
graph and Extensiograph results from fractionation with the TriQ sorter 
based on a calibration to bread volume. In three fractions of 35%, 45% and 
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20% yield the dough stability time was 1.7, 5.5 and 8.4 min, water uptake 
was 53.1%, 56.7% and 59.7%, dough elasticity height 100, 129 and 146 and 
wet gluten content 17.4%, 22,5% and 27.6% respectively corresponding to 
low, medium and high quality. 
 
Other commodities may be sorted in a similar way. Armstrong (2006) re-
ports on an SKNIR system for measuring individual corn and soybean mois-
ture and soybean protein content as the kernels slide down through a meas-
urement area. With a capacity of 10 kernels/s it is to be fitted with automatic 
feeding and sorting mechanisms currently being developed. Ritteron et al. 
(2004) suggest a SKNIR system for sorting brown rice with regard to mois-
ture and protein. Sorting Fusarium infested grains for reduction of deoxyni-
valenol (DON) content in bulk wheat was has also been reported (Delwiche 
et al., 2005) 
 
In Paper II the effects on grains, flours and breads of sorting four different 
mixture lots from two different growth years and two different loca-
tions/cultivars were presented. The sorting was based on a two component 
PCA model of SKNIR from lots with known baking quality. The lots were 
sorted into three equally sized fractions according to their PCA scores 
(Löfqvist and Nielsen, 2003). In total fifty-two parameters were measured to 
characterise the wheat lots from grain to brain. It was shown that the major 
variance in the material tested was due to climate (i.e. growth year) and lo-
cation/cultivar with no possibility to separate the effects of location and cul-
tivar as they were confounded in the experimental plan. The analysis was 
made using both PCA and ANOVA which provided complimentary infor-
mation and showed that the redundant information on the three levels, 
grain, flour and bread was coherent and thus validated each other. In Fig. 
3.3 parameters reflecting significant effects regarding sorting with respect to 
fractionation by SKNIR sorting are presented. Panels A to E are parameters 
determined at grain level on a Foss Infratec 1241TM which shows a pro-
nounced effect on protein levels (A), bulk grain density (B), Zeleny sedimen-
tation value (C), starch (D) and wet gluten content (E). Panels F to L shows 
similar results on the flour level on protein content (F), wet gluten (G and L), 
falling number, Farinograph water absorption (I), Softening (J) and gelatini-
sation temperature (K). 
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Although significant results were found on parameters measured on the 
bread level (Fig. 3.3 panels M to P), the diversification results were not simi-
larly convincing. The significance of final bread mass (M) and sensory per-
ceived dryness (P) can easily be explained by the fundamental difference in 
water absorption (I), while the TPA chewiness of fresh bread (N) and TPA 
cohesiveness of thawed bread (O) were not providing satisfactory trends 
with regards to fractionation. 
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Figure 3.3: Raw data plots of significant parameters from the fractionation treat-
ments (Table 3), 03AaVi ( ), 03KiCo ( ),04AaVi ( ) and 04KiCo ( ). Se Table 2 in 
Paper II for specifications of parameters presented. 
 
While the TriQ SKNIR fractionation clearly affected the protein level and 
quality as well as the amylase activity, the results regarding baking quality 
were not clear (Paper II). Significantly larger protein content and quality 
would normally lead to higher bread volume (Bushuk et al., 1969), thus frac-
tion 1 to 3 should provide increasing bread volumes relative to year and 
location/cultivar. This was however not the case and the baking results in-



 69

cluding the subsequent instrumental and sensory evaluation does not ap-
pear to be coherent with grain and flour results. The possibility of sample 
confusion with respect to flours used for the baking tests cannot be com-
pletely ruled out; however the baking tests using automatic baking machines 
may be the main source of unfortunate results (Chap. 3.2.5). 
 
For conceptual validation near-infrared transmission and infrared reflection 
spectra of the grains from fractions 1 to 3 for each of the years and location 
are presented in Fig. 3.4 from 850 nm to 1048 nm. A clear qualitative pattern 
is observed from the raw spectra. The overall absorption levels are highest in 
fraction 1 and falling through to fraction 3 in each group. This indicates that 
light absorption is decreasing with increasing fraction number. This might 
be due to the particle size distribution of the sample, thus small and rough 
particles leads to an effectively longer path length and loss of light which 
results in larger absorption. The NIT spectra of the grain lots in Fig. 3.4 thus 
confirm that the TriQ sorting actually physically as well as chemically diver-
sify the properties of the grain fractions in comparison to the starting mate-
rial as also seen in Fig. 3.3B in which the bulk grain density is increased with 
increasing fraction number. The unsupervised TriQ sorting calibration in the 
1100 to 1700 nm band was made on data without prior scatter correction, 
thus a vast part of the quality information is found in the first component of 
the raw data. 
 
In Fig. 3.5 multiplicative scatter corrected (MSC) IR spectra from 1700 to 
1450 cm-1 of the flours of fractions 1 to 3 are presented similarly for each 
group. The Amide I band at 1650 cm-1 corresponding to the C-N and C=O 
stretching vibration and the Amide II band at 1540 cm-1 corresponding to the 
N-H bending and C-N stretching vibrations clearly confirms the previous 
findings above in that the protein levels are increasing in fraction 1 to 3. 
There are apparently no distinct differences in the shape of spectra of either 
the fraction or the group. 
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Figure 3.4: Raw NIT spectra from 850 to 1048 nm of fractions 1 to 3 grains in each 
year and location/cultivar. Increasing absorption is found with decreasing fraction 
number. 
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Figure 3.5: MSC treated IR spectra from 1700 to 1450 cm-1 of fractions 1 to 3 flours in 
each year and location/cultivar. The amid I and II bands at 1650 cm-1 and 1540 cm-1 
respectively are clearly more intense with increasing fraction number. 
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3.2.5. Test baking using small automatic home-bakery 

In order to evaluate the end effect of bulk material diversification on end 
product quality, breads had to be baked in a uniform and reproducible way. 
Since a trained test baker was not at hand, the use of automatic household 
baking machines to produce fresh bread was utilised. Many test laboratories 
have a battery of this type of machines available for rapid screening and 
testing. Several reports on their general applicability are available (Graus-
gruber et al., 2001, Hansen and Hansen, 1992, 1993, Peltonen and Salovaara, 
1991, Zwingelberg and Brümmer, 1990). Although the machines are gener-
ally considered reproducible they may also mask some of the effects of vary-
ing flour quality, as when some machines bake relatively large breads com-
pared to detached breads of flour with low protein and low Zeleny sedimen-
tation volume (Zwingelberg and Brümmer, 1990). The home-bakery used by 
Grausgruber et al. (2001) produced reliable discriminating results only when 
mixing was conducted outside the machine – thus not being able to utilise 
the automatic feature. While using an automatic baking program similar to 
the one used in Paper II and III, they were unable to discriminate between 
flours classified in nine quality groups (QG) covering the entire quality 
range from feed wheats to high quality bread wheats with protein contents 
from 12.6% to 15.6%. In Paper II and III four Panasonic SD-253 units were 
used to assess the baking quality using a standard bread recipe. The ma-
chines did produce relatively uniform breads with a relative standard devia-
tion on volume below 3%. This was sufficient to discriminate effects of 
growth year and location/cultivar for a range of bread parameters such as 
mass, volume, hardness and elasticity. However results from Paper II and III 
showed that loaf volume was not directly correlated to protein and gluten as 
expected (Bushuk et al., 1969, Peltonen and Salovaara, 1991) rather to falling 
number, gelatinisation temperature and gelatinisation maximum (See be-
low).  
 
Bushuk et al. (1969) showed that baking test using the same mixing time for 
different cultivars and different protein contents may mask the true baking 
potential of the lots involved. Weak cultivars may be over-mixed, while 
strong wheats may be under-mixed which both result in smaller loaf vol-
umes than potentially possible. Likewise within a cultivar with different 
protein contents, the mixing time for the gluten to develop should be in-
creased with decreasing protein content to reveal its true baking potential. 
While at least some automatic home bakeries have a tendency to favour 
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weak doughs due to unfortunate mixing conditions they may still serve as 
semiautomatic devices by mixing the dough outside the machine (Graus-
gruber et al., 2001, Zwingelberg and Brümmer, 1990) in controlled mixing 
conditions e.g. in a Farinograph (Peltonen and Salovaara, 1991). In the Pana-
sonic SD-253 this would involve removing the mixing blade and covering 
the hole and shaft in the bottom of the pan by metal foil. 

3.2.6. SKNIR sorting in the future 

A commercially available laboratory scale single seed sorter (Luminar 3076 
“Seed Meister” NIR Analyser, Brimrose, Maryland, USA) has been available 
since 1996 for plant breeding purposes (Nielsen, 2002). The breeding per-
spective of sorting is indeed emphasised by others (Dowell et al., 2006a, 
Munck, 2008, Nielsen et al. 2003, Osborne, 2006). Munck (2008) foresee great 
potentials of bulk sorting if it can be made economically viable by increased 
market value of the product, and for breeding purposes. Comprehensive 
studies of genetic and environmental effects on sorting should however sub-
stantiate the benefit of sorting for breeding purposes. 
 
With regards to how to physically overcome individual kernel characterisa-
tion, classification and subsequent placing in the appropriate receiving bins 
with respect to the vast amounts of kernels in bulk material is a matter of 
inventive engineering. Löfqvist and Nielsen (2004) solved this in a scalable 
invention which potentially is capable of sorting several tons of grains or 
other particulate materials per hour. 

3.3. Predictions of flour and bread quality 
“The ability to predict reflects a high degree of process understanding” (US-
FDA, 2004a). With the vast amount of data available from grain, flour and 
bread level the potential of predicting end product quality is certainly pre-
sent. Especially near-infrared spectroscopy is generally used for routine 
quality assessments in breeding as well as in the cereal industry (Osborne, 
2006). In Paper III, the aim was to screen various fast spectroscopic methods 
for predicting manifest parameters determining flour quality and in turn use 
the same method to predict bread quality as determined by test baking in 
the automatic baking machines. 
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3.3.1. Predictions of flour functionality 

Near-infrared spectroscopy has long been used for rapid testing of flour in 
relation to it functionality in bread making. Osborne et al. (1982) described 
successful multiple linear regression (MLR) calibration to moisture, protein, 
particle size, colour and damaged starch using a filter instrument with ten 
filters in the range from 540 to 2310 nm. While Delwiche and Weaver (1994) 
were able to predict water absorption reasonably well, they were unable to 
predict mixing time and mixing tolerance using NIR. Similar results were 
obtained by Dowell et al. (2006b) who were unable to establish good PLS 
prediction models to most Mixograph, Farinograph and Alveograph pa-
rameters apart from Mixigraph absorption. Mirablés (2003, 2004) on the 
other hand showed that NIT of flour is a good method for predicting both 
Farinograph and Alveograph parameters. The results of Paper III regarding 
prediction of water absorption from with NIR is agreement with Mirablés 
(2004), however the results for stability and softening did not compare. 
Delwiche et al. (1998) successfully established NIR models for glutenin, gli-
adin, Zeleny sedimentation and Mixograph peak resistance. In a compre-
hensive study Dowell et al. (2006b) used four different NIR instruments for 
predicting 46 and 47 grain, milling, flour, dough, and breadmaking quality 
parameters of 100 hard red winter and 98 hard red spring wheat samples 
respectively covering the quality ranges of U.S. commercial wheat. Although 
high correlations were found for a number of parameters it was concluded 
that this was primarily caused by the strong correlation of these parameters 
to protein content (Dowell et al., 2006b, Mirablés, 2004). Apparently success-
ful modelling is dependent on the diversity of the wheat material assessed 
(Delwiche et al., 1998). 
 
In Paper III it was shown that near-infrared spectroscopy outperforms infra-
red of flour and nuclear magnetic resonance (NMR) relaxation profiling of 
the baking process for prediction of a large number of flour quality parame-
ters simultaneously. Protein content, wet gluten content and Farinograph 
water absorption were well modelled flour parameters with 99.0%, 95.8% 
and 95.7% of the variation explained using NIR. The α-amylase activity was 
similarly good modelled; 92.2%, 94.8% and 89.1% of the variances in gelati-
nisation temperature, gelatinisation maximum and falling number respec-
tively were explained. The Farinograph parameters, development time, sta-
bility and softening were less well determined as was gluten index and 
sedimentation volume.  
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3.3.2. Predictions of bread quality 

It is generally accepted, that protein content and protein quality are closely 
related but separate factors for determination of breadmaking potential in 
wheat. Roughly speaking, the quality of the protein is primarily determined 
by genetics, while the contents are determined by agronomical conditions; 
soil, fertilisers, climate and pests (Bushuk et al., 1969). The gluten proteins 
witch constitute 80 to 85% of the total wheat protein are responsible for the 
visco-elastic properties of dough. The monomeric gliadin fraction provides 
viscous properties, while the polymeric glutenin fraction is elastic and stabi-
lised by inter- and intra-chain disulfide bonds. While the complex discussion 
regarding gluten structure, composition and interaction with other wheat 
constituents such as lipids, arabinoxylans and non-gluten proteins is omitted 
in this thesis, the functionality measured by Zeleny sedimentation, gluten 
content, gluten index and rheology in the Farinograph are indeed indirect 
measures of the inherent gluten quantity and quality. Other constituents in 
wheat play a role regarding the functionality of wheat, but it is primarily the 
quantity and quality of the gluten proteins which govern the bread making 
functionality of wheat (Veraverbeke and Delcour, 2002). However, Grey-
bosch et al. (1993) found a number of biochemical components (lipid, protein 
and pentosan fractions) were necessary for determination of dough handling 
and loaf characteristics. 
 
Being able to predict protein content as well as the quality, chemical as well 
as rheological, and α-amylase activity may provide a fast one-step proce-
durere of great potential in the milling industry and in breeding pro-
grammes (Osborne, 1984). Devaux et al. (1986) was able to discriminate and 
classify common wheat varieties and three classes of wheat based on their 
recognised baking quality using NIR and a combination of principal compo-
nent analysis (PCA) and multiple discriminant analysis (MDA). Direct pre-
diction by Delwiche and Weaver (1994) of bread loaf height, internal grain 
appearance and overall bake score by NIR and PLS was unsuccessful. 
Dowell et al. (2006b) were able to predict loaf volume, but not crumb grain 
score 
 
Lots of the same cultivar but with varying protein contents usually result in 
bread quality with respect to loaf volume which is relatively linear corre-
lated to the protein content over a wide range (9-16%) using the same baking 
test. The bread quality of different cultivars with the same protein content 
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on the other hand is determined by a number of factors related to the spe-
cific cultivar (Bushuk et al., 1969).  
 
In the PLS and multiblock PLS modelling in Paper III it was shown that the 
functionality parameters of flour had an unsurpassed ability to predict end 
bread quality. However adding data blocks of NIT on grain and flour im-
proved the predictive performance of several parameters. Adding the NMR-
relaxation profiles improved predictions further for a few not well deter-
mined texture profile attributes, namely cohesiveness, springiness and resil-
ience. Especially bread mass, volume and density prediction models could 
be established emphasising the feasibility of such endeavours. However PLS 
models for TPA hardness, chewiness and gumminess and associated sensory 
perceived attributes; hardness, chewiness and fracturability were also satis-
factory considering the type of data which can be inherently noisy. Details 
may be viewed in Paper III. 

3.3.3. Process understanding gained 

The PLS is a fantastic tool for prediction of various chemical and physical 
properties from data containing several interferences which need modelling 
along with the properties of interest. On the same time the graphical ap-
proach of the chemometric method provides an opportunity to look inside 
the calibration and pinpoint the parameters or variables which are important 
and covarying with the parameters we wish to predict. Specifically the re-
gression coefficients may be used directly as a diagnostic tool (Paper III, Fig. 
7). 
 
It was shown that a number of instrumental and sensory texture attributes 
had virtually the same regression coefficients as the bread volume deter-
mined by the twelve flour functionality parameters only. Thus many of the 
attributes were responding to the same under lying phenomenon. In Table 
3.1 the correlation coefficients, r, between flour quality and bread quality is 
shown for further elucidation. Correlation coefficients larger than 0.7 have 
been emphasised with bold numbers for easy pattern recognition. The vol-
ume of bread in this analysis is governed primarily by falling number 
(FN_F) and the gelatinisation temperature, which were both negatively cor-
related (r = -0.75) to volume. The TPA hardness, gumminess and chewiness 
as well as sensory perceived fracturability, hardness and chewiness are all 
well correlated to bread volume (0.87 < |r| < 0.91). Two major lessons can be 
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derived. The good part is that these instrumental and sensory texture pa-
rameters are highly correlated, which may be confirmed directly in Table 
3.1. Future measurements of hardness and chewiness may thus be per-
formed instrumentally only. The second part is that volume naturally gov-
erns these texture parameters. Voluminous bread crumb must be softer than 
more compact bread – simply due to more empty space being compressed in 
the tests, be it instrumental or sensory. 
 
Similarly sensory perceived elasticity and dryness had similar correlation 
coefficients as those for bread mass. The bread mass is governed by the wa-
ter absorption as shown in Fig. 7B in Paper III and so is elasticity and dry-
ness. This may also be confirmed in Table 3.1. The water absorption was 
primarily diversified by location/cultivar, i.e. lots from Aarlev/Vinjett had 
water absorption of 51 to 55%, while Kiel/Vinjett and the remaining had wa-
ter absorption of 57.5 to 62%.  
 
A close look a Table 3.1 also shows that bread volume is not correlated to 
protein content and Zeleny sedimentation volume at all. These parameters 
are usually correlated to bread volume (Bushuk et al., 1969). This informa-
tion is pointing to problems with the baking procedure as already discussed 
above (Chap. 3.2.5). The large variation in falling number associated with 
the growth year (Paper II) and the unfortunate preference for weak dough in 
the baking machines (Grausgruber et al., 2001) is determining the outcome 
of this experiment. Apart from being slightly disappointing in light of the 
possibility of bringing forward the benefits of SKNIR sorting on the end 
bread quality; this is a perfect lesson in the power of gaining process insight 
via multivariate analysis of the entire process from grain to brain. One 
strength in this study which contained relatively few experimental units was 
that the entire history of each individual lot was known, making full trace-
ability possible regarding the original causes of the important variabilities 
identified (α-amylase activity and water absorption). Better prediction mod-
els may be obtained by ensuring even more diverse material. A more opti-
mal process would involve a modification og the baking process, e.g. by 
mixing outside the baking machines. 
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Table 3.1: Correlation coefficients of flour quality and bread quality parameters used 
in Paper III. Coefficient larger than 0.7 is emphasised with bold types. 
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4. Chemometric method development 

Analysis of NMR relaxation data is not straight forward. For prediction pur-
poses and exploratory studies using the entire relaxation curve as a spec-
trum apparently works well (Engelsen et al., 2001). The good correlations 
found with regard to texture and staling was the inspiration to use the entire 
baking profile for prediction of bread quality (Paper III). However the inter-
pretation of loadings is erratic in this type of investigation as they are diffi-
cult to relate to the physical compartmentalisation of water and fat in the 
sample. Instead the fundamental exponential relationship may be utilised 
for both quantification and interpretation. 
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Thus the individual decay curves (Fig. 2.6) in the CPMG-baking arise physi-
cally from exponential decaying magnetisation. As the decay rates depend 
upon the local physical environments in the sample the measured decay, 
M(t), is a sum of exponentials, each with a specific relaxation constant (T2i) 
and amplitude (M2i). In the window of observation only relatively mobile 
protons from water and fat can be observed, while protons bound in starch 
and protein decay so fast that no signal is recorded. Thus more rotational 
freedom results in higher T2-values. With this knowledge it is possible to fit 
Eq. 4.1 to a number of exponentials, either discretely or as a distribution and 
assess the various pools of T2i-values and their relative abundance, M2i. The 
residual, f(t), may be used to asses the goodness of the fit. The CPMG decay 
presented in Fig. 4.1 were recorded on a 23.2 MHz Maran Benchtop pulsed 
NMR Analyser, Resonance Instruments (Whitney, UK) using echo time, τ = 
100 µs and 8190 echoes. Only even numbered echoes were used. Details may 
be found in Paper III. 

4.1. Exponential fitting of spin-spin relaxation in the baking 

process 
The discrete fit and the continuous fit are used interchangeably. They both 
have their advantages and disadvantages, but used together they may actu-
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ally complement each other for better or at least more balanced interpreta-
tion. The distributed fit is thought to provide results, which are physically 
meaningful, as the idea of rigid discrete conditions in the sample seems 
unlikely. However the algorithms for fitting such problems suffer from be-
ing overwhelmingly labile (Butler et al., 1981). The mathematical problem is 
as such ill defined by the objective goal of estimating an endless number of 
parameters to a large number of correlated data. This problem is solved by a 
smoothing factor, which is a trade of between mathematically optimal solu-
tions and a desired amount of smoothness. Observe three exponential de-
cays in Fig. 4.1 recorded at the beginning of rising at 34°C, at 71°C during 
baking and at 34°C after cool down. 
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Figure 4.1: Max-normalised relaxation spectra of sample 04KiCapo at three stages in 
the baking process, as dough just after mixing at 34°C, in the baking process, at 71°C 
and as bread after cooling to 34°C. Different strategies for multi-exponential fitting 
are presented in Fig. 4.2 and Fig. 4.3. 
 
In Fig 4.2 the goodness of fit was assessed by inspecting the root mean 
squared errors (RMSE) of f(t) of A: distributed solutions with respect to 
smoothing weights and B: discrete solutions with respect to number of dis-
crete components. Note here that RMSE of the optimal distributed and dis-
crete models are equivalent. The apparently optimal weights are somewhat 
varying depending on the decay curve for the distributed solution. Experi-
ence with the algorithm shows that choosing the same smoothing parameter 
for all samples should be preferred when more samples are to be compared, 
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thus weight = 0.1 was chosen (Fig. 4.2A). In the discrete case, the complexity 
apparently increases from three to four after cooling (Fig. 4.2B). 
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Figure 4.2: Root mean squared errors (RMSE) of exponential models of sample 
04KiCapo presented in Fig. 4.1 and 4.3 A: RMSE as a function of smoothing weights 
in distributed fits at three points in the baking process. B: RMSE as a function of 
number of discrete exponential components at three points in the baking process. 
 
In Fig. 4.3 first column the exponential fits from Fig. 4.2A using the algo-
rithm of Butler et al. (1981) is shown (Fig. 4.3A, C and E). By varying the 
weight from 0.01 to 10 in the algorithm an increasingly smoothed result is 
obtained. The problem here is that all the results are solutions to Eq. 4.1. 
And since the results are determined by data as well as more or less subjec-
tive assessment of appropriate smoothness how may we trust the interpreta-
tion of the result as a truly objective analysis. It may be very difficult to de-
termine whether a certain peak is really a physical component or rather an 
unfortunate result of regularisation.  
 
In the 2nd column of Fig. 4.3 the distributed solution weight = 0.1 is superim-
posed with distributed fits assuming either two, three or four components 
(Fig. 4.3B, D and E). The distributed fit shows an intense peak around 10 ms 
throughout the dough (34°C), process (71°C) and bread (34°C). In the dough 
a tail towards the fast T2 values around 1 ms is observed. This tail has bud-
ded off at 71°C with a distribution below 1 ms, while in bread, it has moved 
closer to the major peak again. A small peak above 100 ms is seen through-
out, while a very slow component is present only in the bread – probably 
free water condensed from the vapour in the closed vial. The apparent as-
sessment is a quite stable system with three major components and a forth 
showing up after cooling. However the very fast components may be due to 
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Figure 4.3: Multi-exponential fits of data presented in Fig. 4.1. First column display 
different distributed results depending on regularisation smoothing weights used in 
the Butler, Reeds and Dawson (1981) algorithm at three different stages (A, C and E) 
of the baking process using different weights: — weight = 0.01, — weight = 0.1, --- 
weight = optimised, — weight = 1, — weight = 10. Second column display three dis-
crete fits of the same three stages (B, D and F) using two, three and four exponential 
components. Numbers refer to the relative abundance of the T2 components. The 
curves included for reference are identical to the black curve (weight = 0.1) in the 
first column. 
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an over fit. With a distance of 400 µs between each measurements it should 
be clear that all results below 1 ms is based on a very few points since such 
components are totally decayed within a couple of ms. 
 
The superimposed discrete fits are somewhat showing a similar pattern (Fig. 
4.3B, D and F). Regardless of the number of components chosen, the bulk 
peak around 10 ms is clearly modelled by one or two discrete peaks. The 
small peak above 100 ms is also modelled by the three or four component 
model in dough, all models in process as well as in bread. In the bread how-
ever the two and three component models are using only one component to 
model both the above 100 ms and the free water component, while this is 
handled better by the four component model. The fast component is handled 
in dough and bread by the three and four component models respectively, 
while none of the discrete fits acknowledge the fast component below 1 ms 
in the process (Fig. 4.3D). By assuming a three component discrete model 
throughout rising and baking and a four component model after cooling the 
results are comparable to Engelsen et al. (2001). 
 
For interpretation, determination of the number of components is crucial, 
whether it is in a distributed way or in a discrete way. Using jack-knife for 
determination of the number of components in individual transverse relaxa-
tion spectra as suggested by Pedersen et al. (2000) is not at stable solution to 
the problem. The results are also dependent on the number and size of the 
segments and how they are divided (123123123, 111222333 or randomly) all 
of which is decided by the investigator. 

4.1.1 Suggestion for robust determination of discrete exponential model 

complexity. 

An alternative approach based on the stability of the estimated T2 times and 
concentrations, M2 from a series recording of similar samples is presented 
below. The hypothesis is that in a stable mathematical solution the variation 
between the estimated parameters are smaller than in an unstable solution. 
In Fig. 4.4 two different wheat lots have been baked by the CPMG proce-
dure, each in four replicates. Discrete exponential models have been calcu-
lated using one to five components for all eight experiments and all thirty 
time-points in the baking process. Thus at each time-point the root mean 
squares standard deviation (RMSSD) has been calculated for log(T2i) and M2i 
values estimated from each sample and averaged over the components in 
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each solution and over the two different wheat lots. Thus Fig. 4.4 represents 
the stability of solutions with respect to number of components and time 
point in the baking process of log(T2i) and M2i. 
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Figure 4.4: Root mean squared standard deviation (RMSSD) of discrete exponential 
solutions in the baking process with respect to A: log(T2i) and B: M2i. 
 
In Fig. 4.4 the one component model should be disregarded, as this is a priory 
regarded unlikely despite its mathematical advantage. With regard to 
log(T2i) the stabilities of both the two and the three component model are 
superior (RMSSD < 0.03) to models with more components during rising 
and baking from 0 to 92 minutes (Fig. 4.4A). Immediately at the time of cool-
ing the two and three component models fail, while both the four and five 
components models appear as candidates with similar low RMSSD values 
around 0.05. With regard to M2i the two and three component model seems 
reasonably stable through the rising time (0-56 min), with the three compo-
nent model as the most stable (Fig. 4.4B). Shortly after heating starts (56 min) 
the two component model becomes superior until met by the four compo-
nent model during the cooling (100 min). These results point to a new hy-
pothesis regarding the exponential relaxation components during bread bak-
ing: During rising, a three component model is appropriate, while at ap-
proximately 50°C a two component model is adequate and after cooling 
down a four component model is taking over. This hypothesis is also sup-
ported by the distributed fit when the very fast component below 1 ms is 
regarded a consequence of over fit (Fig. 4.5). 
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Figure 4.5: Distributed CPMG-fit of the entire baking process (Fig. 2.6). Apparently 
the dough and bread matrix is dominated by a bulk water (T2 ≈ 10 ms) with re-
stricted rotational freedom and a minor component, probably associated with fat (T2 
≈ 200 ms). 
 
By looking at the entire baking process using the distributed fit the devel-
opment in T2 components may be followed. The entire process is dominated 
by a single intense peak around 10 ms depending on the process stage. This 
peak shifts slightly to the left as the temperature increases. This implies a 
further restriction of rotational freedom of this water which could be due to 
the wetting of starch granules and the gelatinisation. With further increase in 
temperature, T2 increases again, which may be due to temperature. The heat 
simply increases the rotational freedom of water. The generally low relaxa-
tion value of the bulk water is probably due to all water being more or less 
associated with surfaces within the matrix throughout the baking process. 
An even stronger bound component appears to be present (T2 ≈ 1 ms) at least 
during rising. Engelsen et al. (2001) associated this fast water component 
with protein, which looses affinity for water during baking. As was shown 
in Paper IV by varying the fat content, the small component at T2 ≈ 200 ms is 
probably due to fat. 
 
Another promising discrete method is the SLICING method, which based on 
a number of samples with similar components provide a discrete solution 
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with identical T2i values for all samples, while intensities of the components 
may vary (Engelsen and Bro, 2003, Pedersen et al., 2002b). The method how-
ever may also be used on single decay curves for individual assessment of 
T2i values (Manetti et al., 2004). 

4.2. Diffusion-relaxation correlation spectroscopy (DRCOSY) 
In order to gain further information regarding the components of dough and 
bread the T2 associated diffusion was assessed by 2D diffusion-correlation 
spectroscopy (DRCOSY). The idea is that different components exist which 
are characterised by different pairs of diffusions coefficients and spin-spin 
relaxation times (Paper IV). By adding an extra dimension, overlapping 
components may be resolved into separate components (Callaghan et al., 
2003, Hubbard et al., 2005, Qiao et al., 2005). The multi-dimensional decay 
has been used in porous media such as plants (Qiao et al., 2005), food (Gode-
froy and Callaghan, 2003, Hubbard et al., 2005) and rock samples (Song et 
al., 2002). 
 
As shown in Paper IV the 2D-Laplace inversion (Istratov and Vyvenko, 
1999) often used to analyse this type of data has similar labile characteristics 
as the distributed fits shown above generating spurious. The determination 
of the smoothing factor is crucial for the interpretation and different levels of 
noise may be detrimental for the analysis of the data (Hürlimann et al., 2002, 
Song et al., 2002).  
 
For this reason we suggested a new method, 2D PARAFAC-Laplace decom-
position, for analysing DRCOSY data, and for that matter similar 2D NMR 
correlation data. By utilising the PARAFAC model (Bro, 1997, Harshman, 
1970, Carroll and Chang, 1970) which has the ability to decompose multi-
linear data into unique components, a robust quantification and interpreta-
tion of the data can be established (Paper IV). The 2D diffusion-relaxation 
curves are tri-linear by definition as each point is a sum of intensities multi-
plied by two exponential functions (Paper IV, eq. 1). The PARAFAC compo-
nents are themselves 2D exponentials and may be translated to the T2-D do-
main by the Laplace inversion. 
 
The method extracted two components of the dough data. Component one 
had a T2 relaxation constant at 180 ms corresponding to the findings in 1D 
(above) with a diffusion constant D = 3∙10-12 m2s-1. This component varied 
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amplitude systematically with varying oil content of the samples. It was hy-
pothysed that the oil being relatively rotationally free and on the same time 
restricted in diffusion as compared to the diffusion rate of free water (D = 
2∙10-9 m2s-1) was in the form of small vesicles trapped in water films in the 
gluten network (Belitz and Grosch, 1999). 
 
The second component had two major peaks in the T2-D domain both with a 
T2 relaxation constant in the order of 10 ms corresponding to the findings in 
one dimension (above). The T2 relaxation constant for bulk water is in the 
order of 100 ms (Song et al., 2002). The Laplace components had diffusion 
constants in the order of D = 10-9 m2s-1 and D = 3∙10-13 m2s-1. Thus the single 
bulk water peak domination the CPMG-baking process was in reality as sum 
of two components. In the present investigation they show up in the same 
PARAFAC component, hence they were correlated. It must be emphasised 
that the major peak although restricted in rotational freedom can diffuse 
with the rate of free water. The major part of the water is thus associated 
with the enormous surfaces in the dough matrix while being able diffuse 
unhindered around in the matrix. The other Laplace component is tightly 
bound in the matrix, probably associated with beta-glucan which can absorb 
large amounts of water compared to protein or it may be bound to damaged 
starch. 
 
Paper IV showed a quantitative relation of the PARAFAC components to the 
known water and fat content and the method worked as a filter removing 
spurious peaks present in the raw data. With PARAFAC working on a set of 
2D decay curves, the noise and small artefact occurring randomly in the data 
was removed when calculating the components. 
 
Further work regarding these results is needed. Analysis of the baking proc-
ess similar to that mentioned above in 1D may elucidate more of the water 
and fat dynamics available. By measuring diffusion-relaxation during bak-
ing and applying the PARAFAC-Laplace procedure at each temperature 
unique diffusion-relaxation spectra may be obtained. The dynamics of espe-
cially the water components should be interesting to follow. The PARAFAC-
Laplace method however, works on a set at spectra in which components of 
interest is varied. Alternatively the SLICING method may be used for 
unique resolvation using only one sample (Engelsen and Bro, 2003, Manetti 
et al., 2004). 
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5. Conclusions and perspectives 

This work has been concerned with various aspects of wheat quality for 
bread making. The process from grain to bread has been assessed on three 
major levels of different perspective. A basic study regarding the fundamen-
tal heterogeneity of particulate materials such as bulk wheat has been per-
formed with respect to truly representative sampling for estimating the true 
average property or concentration of an unknown critical component of the 
lot, e.g. the protein content (Paper I). The fundamental heterogeneity or di-
versity of bulk wheat was utilised in a holistic perspective of the entire bak-
ing process from grain to the sensory perception of bread texture by the hu-
man brain on bulk wheat diversified by sorting according to an internal 
complex quality trait (Paper II and III). A zoom on water and fat compart-
mentalisation in bread dough lead to an investigation of the analytical prop-
erties of the current 2D-Lapace inversion technique and the development of 
a novel chemometric method for analysing diffusion-relaxation correlation 
spectra in nuclear magnetic resonance spectroscopy (Paper IV). 
 
Paper I demonstrated the applicability of Pierre Gy’s theory of sampling 
within bulk wheat and serves as a reference study for quantifications of the 
sampling errors involved in all attempts to estimate true average properties 
of composite materials not limited to protein content in wheat. The funda-
mental, the grouping and segregation and the analytical errors contributing 
to the global estimation error were quantified. The sampling errors were an 
order of magnitude larger than the analytical errors in composite samples of 
forty-two seeds and thus stress the importance of true replicates of the entire 
sampling process for assessing the variance of the global estimation error. 
The comparison of grab sampling with truly representative sampling by 
riffle splitting showed that grab sampling may lead to erroneous variance 
estimates – either too high or too low as well as biases on the analytical re-
sult of unknown size. The investigation also contributed to support the fea-
sibility of utilising the inherent heterogeneity for improving bulk market 
value by sorting according to important properties such as the protein con-
tent. 
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Paper II and III showed that sorting grains post harvest with respect to an 
internal complex quality trait using single-kernel near-infrared (SKNIR) 
technology was very effective for diversification of organically grown wheat 
as compared to diversification based on different preceding catch crops 
tested in two growth years and two locations/cultivars. The SKNIR sorting 
improved the protein and wet gluten contents markedly. The Zeleny sedi-
mentation volume, Farinograph water absorption and falling number were 
likewise improved. The bulk grain density of the best quality fraction was 
also increased compared to the starting material. The potential added value 
was apparently only limited by the constitutional heterogeneity of the bulk 
wheat. 
 
In the prediction of a number of flour functionality parameters near-infrared 
reflectance spectroscopy on flour was found superior as compared to NIT on 
grain, NIT on flour, IR on flour and NMR relaxometry on the baking process 
and combinations thereof. However, the flour functionality parameters as 
predictors were themselves superior to all the spectroscopic techniques for 
predicting bread quality in terms of dimensions and texture. The α-amylase 
activity, Farinograph development time and softening and gluten index 
were all very important variables for the prediction of volume and texture 
parameters; hardness, chewiness and fracturability. Farinograph water ab-
sorption was important for prediction of bread mass and sensory perceived 
elasticity and dryness. It was also shown that the automatic mixing function 
in the baking test using an automatic home-bakery should be avoided since 
an unfavourable preference for weak doughs by the machine technology 
may mask effects of varying protein quantity and quality. 
 
In Paper IV a novel method for analysing 2D diffusion-relaxation correlation 
data from a number of samples with varying properties of interest was pro-
posed and tested on bread doughs. The method combines two well known 
methods; PARAFAC and 2D-Laplace inversion and solves a number chal-
lenges in this type of data, not limited to water and fat compartmentalisation 
and dynamics in dough. The PARAFAC resolves 2D diffusion-relaxation 
multi-exponentially decaying landscapes into unique quantifiable compo-
nents which are subsequently translated to the T2-D domain by Laplace in-
version for interpretation. Furthermore the concatenated procedure simpli-
fies the determination of defining appropriate regularisation of the labile 
Laplace inversion and filters artefacts of individual diffusion-relaxation re-
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cordings which might else be interpreted as true components in the T2-D 
domain. 
 
The four papers and the present thesis thus examine a few but very impor-
tant aspects of the complex process of bread making. The concepts of sam-
pling, chemometric technology for sorting and prediction of end product 
properties as well as chemometric method developments however reach far 
beyond the applications in wheat, dough and bread presented herein. 
 
Dedicated equipment for sampling in various materials will be developed 
and tested in order to ensure just estimations of critical properties and 
methods routinely used in test laboratories today will be considered bad 
laboratory practices in the future. A process which will be driven by cus-
tomer demand for trustworthy analytical results and substantiated by het-
erogeneity characterisations and quantification of hidden errors generated in 
present procedures. The responsibility of the sampling process will move 
into the domain of the test laboratories and not rely on simplified instruc-
tions on how to prepare the sample prior to shipment and analysis. Al-
though the importance of sampling processes have been known for decades 
especially in certain industries where the analytical results have been central 
for running the operation, this quest is only now beginning in areas such as 
environmental studies, biology and food science and industry. 
 
Industrial and consumer demands for diversified quality product can at 
least in some areas be met by sorting on internal quality as shown for wheat 
as long as the fragments sorted have a reasonable macroscopic size for prac-
tical handing by the equipment. However, the theoretical as well as the prac-
tical size limit for handling individual fragments is on the molecular scale, 
known as nano-technology. 
 
New methods for analysing chemical and physical phenomena are continu-
ously being developed which will demand new user-friendly mathematical, 
statistical and chemometric methods for interpretation and quantification of 
the observations. The enormous amount of data being collected everywhere 
is generating a new frontier of data management and treatment to ensure 
manageable traceability and possibilities of extraction and analysis without 
endless conversions with the risk of trace destruction and confusions. 
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The integrated official initiative by the United States Food and Drug Ad-
ministration for implementing the above mentioned process analytical tech-
nologies in the pharmaceutical industries is foreseen to have marked effects 
on research and developments in a wide range of industries as well as in a 
number of natural sciences. 
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Appendix A – Correction of sensory data 

Due to the instability of the sensors in ‘the sensory instruments’ certain pre-
processing evaluations and steps were necessary in the sensory data. The 
emphasis is on analysing the relative differences between samples rather 
than the absolute ratings given by the assessors and to remove attributes and 
assessors which do not contribute to the discrimination of the samples. In 
the following the pre-processing of the sensory data presented in Paper II 
and III is outlined in detail according to Martens et al. (2000) and Martens et 
al. (no year) guidance. 
 
Histograms of ten sensory attributes determined by ten assessors in dupli-
cates of the thirty-four (two more than presented in Paper II and III) bread 
samples are presented in Fig A1 and A2. Although data appear evenly dis-
tributed they do not show to what extent the assessors used the scales 
equally, nor whether they drift from replicate 1 to replicate 2. The aftertaste 
attribute (Fig. A1J) appears skewed in the distribution and might be working 
better after logarithmic transformation (Fig. A2). Although the log-corrected 
aftertaste had a better distribution, the original data were used in the subse-
quent data analysis. In Fig. A1 and the following four, attributes; yellowness, 
fracturability, hardness and chewiness were named colour, porosity, firm-
ness and compactness respectively. They were renamed at a later stage, for 
better conceptual interpretation. 
 
The X and Y loading of the level correction APLSR (Chap. 2.3) is presented 
in Fig. A3A. Y loadings in Fig. A3A show that highest level differences be-
tween judges and replicates are found in adhesiveness, chewiness (compact-
ness), cereal aroma, wheat taste and fracturability (porosity). These differ-
ences were removed by utilising the Y residual after maximum PLS compo-
nents (eleven) for further analysis (below). Note that only 9% of X can be 
explained by each component since all assessor-discriminating variables are 
orthogonal. However the APLSR-model itself is not very interesting, as it is 
only used as a method to remove level effects. 
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Figure A1: Histogram plots of 10 sensory attributes used in evaluation of bread 
samples showing that the entire sensory scale (0 – 15) has been utilised evenly across 
assessors and samples. In J, Aftertaste the distribution is clearly skewed and a loga-
rithmic transformation might be appropriate (see Fig. A2) 
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In order to analyse assessor and attribute performances for discriminating 
individual bread samples an APLSR was calculated with the thirty-four dif-
ferent breads as X 0/1 design variables and the level corrected sensory data 
as Y. The model loadings can be seen in Fig. A3B.  
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Figure A2: Log transformation of Aftertaste data ensures an even distribution of the 
attribute. 
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Figure A3: X- and Y-loadings plots of A: APLSR (level correction) of Assessors and 
replicates as X and sensory attributes as Y, B: APLSR of 34 products as X and level 
corrected sensory attributes as Y. 
 
The products were best differentiated by yellowness (colour), elasticity, dry-
ness and fracturability (porosity) on the first component, while hardness 
(firmness), fracturability (porosity) and chewiness (compactness) span the 
second component. Wheat and cereal tastes as well as adhesiveness and af-
tertaste do not contribute much to the differentiation of the samples. 
 
In order to assess assessor and replication performances for discrimination 
of 34 bread samples the signal to noise ratio (S/N) is explored by comparing 
variation left after the optimal number of PCs (here 2) compared to average 
variations in the original data (Fig A4A). The original average variation in 
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signal levels along the x-axis indicates a variation in the use of the scales 
among the assessors, while the y-axis is the variation left after optimal num-
ber of PCs, i.e. the noise. Hence the S/N-ratios can be assessed graphically by 
the individual assessor’s relative distances to the line indicating an S/N-ratio 
of 1. Assessor number 94 is generally using a much wider range of the sen-
sory scale (highest) than assessor number 101 (lowest). However their S/N 
levels are in the same order of magnitude. Assessor number 93 indicated by 
an arrow generally have difficulties in discriminating samples. 
  
The residuals for the individual sensory attributes are assessed similarly by 
averaging over sample and replicate variation at zero PCs and two PCs 
equal to no modelling and optimal model. In Fig. A4B the attributes yellow-
ness (colour), elasticity and fracturability (porosity) are strongly contributing 
to the discrimination of individual samples. Dryness and hardness (firm-
ness) also contribute, while cereal aroma and wheat taste are worthless for 
this investigation. The remaining attributes; chewiness (compactness), after-
taste and adhesiveness are less strong. 
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Figure A4: S/N-plots for assessors and replicates (A) and sensory attributes (B). 
PC_00 corresponds to average signal variation before APLSR modelling and PC_02 
corresponds to the noise level (variation) after optimal number of PCs. Assessor 
number 93 and attributes cereal aroma and wheat tastes marked with arrows do not 
contribute to the discrimination of individual samples. 
 
A detailed investigation of S/N plots for individual attributes (Fig. A5) 
showed that assessor number 93 indeed had low S/N ratio in all but yellow-
ness (colour) attribute. Assessors 100 and 101 were having difficulties in five 
and six attributes respectively however their overall S/N ratios of 1.1 and 1.3 
respectively in Fig. A4A and Fig A5F indicate that they are doing an overall 
reasonable job. The displays of five individual attributes in Fig A5A-E ex-
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emplify the variation in the difficulties of determining certain attributes. 
While all assessors could differentiate well on yellowness (colour) (Fig. 
A5A), none could differentiate on wheat taste (Fig. A5D). In Fig A5B, C and 
E, the attributes chewiness (compactness), hardness (firmness) and elasticity 
were determined well by some assessors and bad by others. In summery the 
table included in Fig. A5F indicates that even though some assessors had 
difficulties in many attributes, their overall S/N ratio ensures their place in 
the panel. 
 
The plots presented were utilised to make an informed selection of data for 
further analysis by expelling assessor number 93 data and attributes cereal 
aroma and wheat taste. Fig. A4B also supports the choice of not standardis-
ing the sensory attributes for the present analysis. Those attributes with high 
S/N ratios were also those with highest intensities. Weighting those down 
and those with low S/N ratios up would only complicate interpretation and 
on the same time affect the robustness negatively.  
 
Discussion – why this might not have been the best approach 

The procedure followed above evaluated assessors and attributes with re-
spect to differentiating individual samples from the rest. Correlating thirty-
four orthogonal directions to the ten sensory attributes with APLSR may not 
necessarily be the most appropriate strategy since a lot of the bread samples 
are actually expected to be quite similar, e.g. baked from lots originating 
from the same year and location/cultivar. The unfortunate choice is reflected 
in the low model complexity (two components) and low explained X and Y 

variations. Only one of 34 directions in X can be explained at a time, i.e. one 
sample as opposed to all the others, i.e. 3%. Thus only the most extreme 
samples are explaining the variations in Y, 19% on the first component and 
7% on the second (Fig. A3B). Another approach could have been choosing a 
discriminator X matrix based on differences of special interest such as year, 
location/cultivar or fractionation differences. This would focus the assessor 
and attribute evaluations on their ability to discriminate special properties of 
interest. 
 
Although the evaluation of assessors and attributes might not have been 
optimal, it does not affect the overall analysis presented in Paper II and III in 
a detrimental way. The sensory analyses of bread products using eight at-
tributes were averaged over nine assessors and the two replicates. However 
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more attention to how data are corrected might point to new interesting fea-
tures in the data not jet explored. 
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Figure A5: Assessor S/N ratios for attributes A: Yellowness (colour), B: Chewiness 
(compactness), C: Hardness (firmness), D: Wheat taste and E: Elasticity. The table in 
F rank individual assessors performances by number of attributes determined with 
difficulties and overall S/N ratio (Fig. A4A). 
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Appendix B – The NIPALS algorithm 

with a PCA example  

Although originally calculated differently by Pearson (1901), Hotelling 
(1933) and successors, the workhorse in actually calculating the principal 
components is the nonlinear iterative partial least squares (NIPALS) algo-
rithm11 developed by Herman Wold and co-workers in the 1960’s and 70’s 
(Wold, 1966, 1975).  
 
The NIPALS algorithm: 
1. Centre X across samples, i.e. subtract the mean of all variables in X from 
each row in X. 
2. Scale variables in X, e.g. scale to unit variance to give each variable equal 
weight in the PCA (Optional). 
3. n = 1, Xn = X 
4. First guess on score vector, tn is first column in Xn: tn = Xn•1  
5. Loading vector, pn is calculated by projection of Xn’ on tn: pn = Xn’tn / |Xn’tn| 
6. Score vector, tn,new is calculated by projection of Xn on pn: tn,new = Xnpn 
7. If tn,new ≠ tn then go to step 5, thus step 5 – 7 is the iterative loop which con-
tinues until convergence: tn,new = tn 
8. Deflation of Xn: Xn+1 = Xn – tnpn’ 
9. n = n + 1 
10. Go to step 4 as long as n ≤ N 
11. The residual, E = XN+1 
 
That is all. The PCA model is especially appealing due to the lack of a priory 
assumptions regarding the distribution of the variables and relation between 
them. The only assumption made is that data can be described reasonably 
well by a number of linear combinations determined by the data itself. In 
statistics, PCA is thought of as a useful descriptive tool among other more 
familiar tools such as means, medians, standard deviations and correlation 
coefficients. In that sense, PCA is an overview of data from which no general 

                                                      
11 Alternatively singular value decomposition (SVD) may be used (Eckart & Young, 
1936, Golub and Reinsch, 1970). 
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inference can be made. In chemometrics and applied science however PCA 
is additionally thought of as an exploratory hypothesis generating tool from 
which valuable general conclusions can be made, important variables found, 
outliers detected etc. (Esbensen, 2000). General conclusions should however 
be substantiated by proper validation, e.g. repeating the entire experiment 
and observe the same structure based on a new PCA. The beauty of this is 
that only the data speak with minimal interference from the researchers. 
  
The following small illustrative example may serve as a numbers-on experi-
ence of NIPALS for those who have come this far and still are mystified by 
the magic of this explorative projection tool. This example takes you through 
PCA including various plotting options of scores and loadings for interpre-
tation using a small example of simulated centred data. Centring the data 
serve as a magnifier focusing on sample differences and similarities, rather 
than the general level that usually is of minor interest. Four samples, s1 to 
s4, are investigated by two variables, V1 and V2. The data is presented in 
Fig. B1 as a data table, a matrix, as spectra, and as points in the variable 
space. 
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Figure B1: Simulated data. A: Data table with four samples in rows and two vari-
ables recorded in columns. B: The data in A represented by a matrix Xc, c for cen-
tred. C: Data presented graphically as spectra. D: Each sample as a point in the 
Euclidian space spanned by variables V1 and V2. 
 
From any representation of the data, A,B, C or D in Fig. B1 it is quite simple 
to see that sample 1 and 2 are quite different from sample 3 and 4 – and each 
two pairs are quite similar. Samples, s1 and s2, have high values in both V1 
and V2 and vice versa for s3 and s4. It is easy to see in this example, but 
were there just a few more variables and a few more samples – the problem 
could turn very complex. The purpose here is to gain confidence in PCA by 
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seeing the expected and being able to follow the algebra numerically. We 
could just place a ruler somewhat close to the diagonal in Fig. B1D and state 
that it was surely the direction of the major variation and subsequently pro-
ject the samples onto this line and read the scores. That is exactly what prin-
cipal component analysis does. 
 
Now we want to perform a principal component analysis. We want to estab-
lish the direction in the variable space spanning the major variation and the 
scores along the new variable. We start the PCA algorithm by choosing the 
first column of X as proxy score vector: 
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This is a first suggestion of a direction in variable space. In fact, step 5a is a 
projection of X’ onto t1 in the four dimensional sample space. It is not possi-
ble to depict this projection in four dimensions graphically at the present 
stage of human intellectual development. However projections in dimen-
sions >3 is completely analogue to projections in dimensions ≤ 3 - in a 
mathematical sense. 
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In Step 6a, X is projected on the suggested p1 direction in the variable space. 
Convergence criterion is not met in 7a, and t1,new are now used as t1 when the 
algorithm iterates back to step 5: 
 
Step 5b: 
 









=
















=



















−

−









−

−

−

−
=

6150.0

7885.0

6.15

20
/

6.15

20
........../

8.2

2.2

8.2

2.2

2

2

1

2

2

2

1

2
1p  

is inserted into 6b and so forth until convergence at: 



















−

−
=

807.2

192.2

807.2

192.2

1t and 









=

6154.0

7882.0
1p , which is reached in just 3 iterations. In Fig. B2 it is now seen 

that the direction in the variable space indicated by p1 indeed appears to be 
the direction of the major variance in X. By projecting the samples onto this 
direction, the scores t1 can easily be verified graphically, this is why t1 = Xp1 
in step 6 of the NIPALS Algorithm is called the projection of X on p1. 
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Figure B2: Unit vector p1 found by PCA. p1 is an intuitively reasonable direction 
spanning the major variation in data. By projecting each sample on to p1 their scores 
can be visualised. 
 
In step 6 it is seen that t1 is a linear combination of X, and p1 and is a 
weighted sum of the original variables in which p1 contains the weights of 
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each original variable in the latent variable. The more weight a variable has, 
the more important it is in determining the direction in the original variable 
space. The loading vector p1 can also be considered a spectrum and the score 
values in t1 the amount of this spectrum in each of the samples. This compo-
nent, t1p’1 is subtracted from X in the step 8: 
 
Step 8a:  
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This step removes everything correlated to t1 in direction p1 and is thus 
called orthogonalisation of each element in X with respect to p1 or a deflation 
of X. This can readily be seen in Fig. B3, where all points in space forms a 
line (a plane in higher dimension data). Now the algorithm returns to step 1: 
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And so t2 becomes
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in step 3a. As this is the last component, p2 and 

t2 are determined directly without extra iteration steps, logically because all 
point in X2 are exactly on a straight line orthogonal to p1 (Fig. B3).  
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Figure B3: X2 plot (●) in the variable space. X has been collapsed along the p1 direc-
tion and reduced the dimensionality by 1. X2 is now 1-dimensional with no variation 
left along the first principal component. 
 
Now, T = [t1 t2] is the same as X, just projected onto a two new latent vari-
ables given by P = [p1 p2]. The full model of X is thus: 
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Graphically the model can be viewed as weighted sums of components or 
spectra (Fig. B4). 
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Figure B4: X, decomposed as a linear combination of scores and loading spectra. 
Variable V1 and V2 are positively correlated in p1 and negatively correlated in p2. 
 
Finally we will visualise the scores and loading in 2D plots. The score plot is 
a graphical representation of the samples in the PC space. The relevant PCs 
to inspect are those we critically choose as being significant. A number of 
ways to determine and validate the relevant PCs are described elsewhere 
(Esbensen, 2000) and will not be elaborated upon here. In this case we con-
sider the full rank model with two principal components. When plotting 
loadings and scores simultaneously either next to each other or in the same 



 123

plot, it is important to plot on equal scales, as is done here. That is to get a 
correct mutual graphical interpretation of the data (Kroonenberg, 1997). This 
is not always the default option in software for multivariate data-analysis. 
Zooming on the plots for better visualisation of groupings and connections 
in samples and variables are of cause allowed, but caution should be exhib-
ited not to over interpret the connections between scores and loadings.  
 
Samples s1 and s2 are situated together along the first PC in the score plot in 
Fig. B5. They both have high scores on PC1, while s3 and s4 have equally 
low scores. The score plot thus depicts similarities among samples in X. PC1 
explains 97.6% of the variation in X. PC2 explains the rest, 2.4% and is seen 
as s1 and s4 being slightly higher than zero, while s2 and s3 are slightly 
lower than zero. 
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Figure B5: 2D scores and loadings plot of samples and variables in X. The figures 
confirm, what we already knew, s1 and s2 are similar and s3 and s4 are similar. The 
loadings plot shows, that both V1 and V2 contributes to the principal components. 
 
The associated loadings plot depicts how the original variables span the 
principal components. It is seen that variable V1 and V2 have equal lengths 
of one. That is the case in higher order models too, however not necessarily 
visualised, but here the model is complete and we can see all dimensions. If 
we had chosen a one component model and considered PC2 random noise, 
loading vector V1 would be slightly longer than V2 along PC1. Only their 
projection on PC1 would be observed, i.e. 0.82 and 0.62. Generally high load-
ings far from the origin can be interpreted as important for the principal 
components observed. In this case V1 is slightly more important than V2 in 
explaining PC1. 
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Loadings are sometimes interpreted the same way as the scores above, i.e. 
variable loadings close together are co-varying while those far from each 
other are uncorrelated or independent. As we shall see – this could be 
wrong. In this case at least, V1 and V2 directions are orthogonal to each 
other, i.e. inner product is zero, and thus uncorrelated – if we follow the 
previous argument. By superimposing scores and loadings (Fig. B6), it is 
quite easy to see that, for each sample 2D-score, a projection can be made on 
the loading vectors, and the original variable values, x11, x12, x21 and x22 etc. 
read, as indicated on the plot. So effectively PCA is a rotation of data.  
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Figure B6: Scores and loadings superimposed in a 2D bi-plot with normalised P and 
all variance stored in T. Effectively a rotation of X with emphasis of successively 
describing as much of the variation as possible. The original X data can be read by 
projecting the samples onto the loadings. 
 
And we also note that V1 and V2 are correlated in that high V1 is always 
associated with high V2 and vice versa. The correlation of V1 and V2 can 
also be calculated from the original data: 
 

[ ]

949.0
1016

2

1

2

1

2222

'

)()(

))((

1

2

1

2

1

1

22

1

1

V1V2 =



















−

−
−−

===

−−

−−

=

∑∑

∑

∑∑

∑

==

=

==

=

v2v1

v2v1

n

i

i

n

i

i

i

n

i

i

n

i

i

n

i

i

i

n

i

i

v2v1

v2v1

v2v2v1v1

v2v2v1v1

r
 

 



 125

But this correlation was not reflected graphically in the loading plots in Fig. 
B5 and B6, by loadings pointing in the same direction. This is however much 
better visualised if each vector in T is normalised with their lengths, thus 
making the tn vectors orthonormal, hereafter called un. n is the n’th principal 
component. The variability is then transferred to P. The lengths are effec-
tively the eigenvalues or singular values, λ1 and λ2 in singular value decom-
position (SVD)12 (Eckart and Young, 1936).  
 

222111 '' pupuX λλ +=  and 222111    , utut λλ ==  

 

This means that we might as well scale the loadings with the singular val-
ues, rather than the singular vectors, ui. It is straight forward to calculate the 
singular values from the scores: 
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12 SVD is an alternative to the NIPALS algorithm in which X is decomposed in sin-
gular vector matrices, U and V, with an additional diagonal matrix, ΛΛΛΛ, containing 
the singular values, λn in decreasing order. The connection between PCA and SVD is 
straight forward: X=UΛΛΛΛV’=TP’, where T=UΛΛΛΛ and P=V. ΛΛΛΛ contains the variance in 
each component and it can be shown that 22

ΛX = . λn2 is thus the amount of vari-

ance explained by component n. 
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Now we can scale the loadings: 
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This construction is called principal component scaling and has the advan-
tage, that the angles between loadings reflect their correlation, r = cos(θ) 
(Kroonenberg, 1997). This was not evident from Fig. B5 and B6. The distance 
between samples in the plot is the standardised distance and does not reflect 
graphically with their closeness how similar they are with respect to the 
principal components as in Fig. B5 and B6. However, by projection of sample 
scores on the variable loading – similarities can be observed (Fig. B7). This 
representation is thus complementary to Fig. B6. Note that the loadings are 
still orthogonal, only their representations in the 2D-plot have changed. 
 

- 1

0

1

- 1 0 1 2 3 4

s4
s1

s3
s2

PC2

PC1

Bi-plot

x12 x22

x11 x21 V1

V2

θ

- 1

0

1

- 1 0 1 2 3 4

s4
s1

s3
s2

PC2

PC1

Bi-plot

x12 x22

x11 x21 V1

V2

- 1

0

1

- 1 0 1 2 3 4

s4
s1

s3
s2

PC2

PC1

Bi-plot

x12 x22

x11 x21 V1

V2

- 1

0

1

- 1 0 1 2 3 4

s4
s1

s3
s2

PC2

PC1

Bi-plot

x12 x22

x11 x21 V1

V2

θ

 
Figure B7: Principal component weighted bi-plot of scores and loadings in X. The 
cosine of the angle, θ, between the loadings is equal to the correlation between the 
variables, when the fit is perfect (Kroonenberg, 1997). The lengths of the loadings 
are proportional to their variance in the original data. 
 
Often bi-plots are presented using symmetric scaling of scores and loadings 
in which the variability divided equally with ΛΛΛΛ0.5 to U and P, respectively. 
The advantage is that scores and loadings are situated in the same plot as in 
Fig. B6 and B7 and sample similarities, variable similarities and evaluation 
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of original variable values by projection of scores onto loadings should ide-
ally by available simultaneously (Fig. B8). 
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Figure B8: Symmetrically ΛΛΛΛ0.5 scaled bi-plot of scores and loadings. Projections of 
sample points onto loading variables makes it possible to evaluate the relative mag-
nitudes of variables (x11, x12,..) for each sample. Samples does not appear as similar 
as in Fig. B5 and Fig. B6, neither does variables as in Fig. B7.  
 
However the bi-plot with symmetric scaling in Fig. B8, although often used, 
is like sitting between two chairs. It is easy to interpret the samples as being 
quite different and the variables uncorrelated in Fig. B8. For a fast overview 
of data the above example points to an alternative representation of scores 
and loading rather than the conventional (Fig. B8). Two bi-plots with scaled 
scores (Fig. B7) and scaled loadings (Fig. B6) respectively should ideally be 
presented in order to both visualize sample similarities and differences as 
well as variable correlations and on the same time make projections of scores 
onto loadings possible for fast evaluation of original variables. 
 
It is even tempting to suggest scaling both scores and loadings in the same 
plot. This might have the advantage of graphically pinpoint the sample to 
variable interaction in an instant (Fig. B9). Note however projections of sam-
ple scores onto variable loadings can only be assessed qualitatively, but 
powerfully indeed. 
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Figure B9: Bi-plot with both scores and loadings scaled with the SVD eigenvalues. 
This plot has the advantage of displaying both sample and variable relations simul-
taneously and thereby increase the interpretability. Projections of scores onto the 
loading is however not possible. 
 
Note: If the data in this example (Fig. B1) were standardised, the picture 
would be more or less the same. Variables would have equal weight and 
loadings would become equally important with lengths one. Loadings and 
scores appear in the same space in bi-plots which could be an advantage 
when interpreting data. However, standardising does not solve the risk of 
over- or under-interpreting scores/loadings and bi-plots as outlined above. 
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Abstract

An in-depth heterogeneity analysis of wheat lots from varying field experiments with respect to protein concentration was conducted in order
to quantify and compare both sampling and analytical errors as defined by the Theory of Sampling (TOS). Thirty wheat samples of forty-two seeds
were extracted from three different wheat lots. Half of these were extracted using a non-optimal spoon (grab sampling) and the other half were
extracted using a riffle splitter. Ten additional samples of forty-two seeds were extracted using a riffle splitter from ten different wheat lots. The
protein content of every single-seed was determined by Near-Infrared Transmission (NIT) spectroscopy based on a multivariate calibration to
Kjeldahl with Partial Least Squares Regression (PLS-R). The effect of orientation and number of replicate measurements of the individual seeds in
the NIT beam was investigated for minimizing the analytical error as well the resulting time requirements. Remarkably, the best prediction model
with respect to Root Mean Squared Error of Cross Validation (RMSECV) was obtained by only recording three replicate NIT spectra of the seeds
in only one specific orientation.

The variance of the Global Estimation Error (GEE) of both the riffle splitter and the spoon sampling processes was estimated as well as its
components, the Fundamental Sampling Error (FSE), the Grouping and Segregation Error (GSE), the Incorrect Sampling Errors (ISE) and the
Total Analytical Error (TAE). The bias induced by non-probabilistic spoon extraction was also estimated. The GEE variance of the spoon
extractions was seventy percent higher than that of the riffle split samples. The sampling variances of FSE, GSE and ISE were all of the same order
of magnitude, each approximately ten times higher than the TAE variance. The squared bias of the spoon sampling was approximately twice the
magnitude of the sampling variances and thus contributed significantly to the representativity score. Spoon sampling representativity was three
times the size of that for the riffle splitter. Order of magnitude estimates of the Constitutional Heterogeneity (CHL) as well as the Distributional
Heterogeneity (DHL) for a forty-two seed riff le split sample was derived. In this investigation the fundamental concepts of TOS have been
investigated and estimates of all sampling and analytical errors have been presented for a specific zero-dimensional composite material. The ability
of TOS for quantifying and evaluating the various error contributions to the overall estimation of the protein concentration was confirmed.
© 2006 Elsevier B.V. All rights reserved.
Keywords: Theory of Sampling (TOS); Heterogeneity; Wheat; Sampling error; Analytical error; Single-seed NIT; Single-kernel analysis; Representative sampling;
Uniform materials
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1. Introduction

When scientists, technicians or authorities measure any
property, spectrum or concentration of critical components in a
set of samples, the objective is to obtain results which are
approximately correct — meaning both accurate and reproduc-
ible, seeking representativity of the analytical sample with
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respect to the lot from which it was extracted. Thus, in the
sampling process, from lot to analytical volume, a mass
reduction that may exceed 1:100.000 comes into focus [1–7].
It is not possible to compensate a weak primary sampling under
any circumstances.

For quality assurance and error estimation, analysis is often
performed in replicates. Barring the circumstances where assur-
ance may be constrained by lack of available material, costs,
analytical safety or time, the practice of replication cannot be
emphasized enough. In case of largely diverging or unexpected
results, experiments are sensibly repeated to investigate the
suspicious variation. However, this practice may also cause biased
results and underestimation of the true variance: This occurs when
the unexpected and apparently unexplainable results are discarded
in favour of the expected, less diverging or explainable results.
Apart from pure operational errors that should ideally be the sole
reason for discarding results, the origin of anomalous results may
often be explained by the fact that the lot and samples derived from
it are indeed more heterogeneous than assumed and that
consequently the countermeasures taken, i.e. replication of
experiments or mixing, are inadequate.

The absence of homogeneity in the physical world is the
justification of Pierre Gy's Theory of Sampling (TOS) [1–7]. All
properties of natural systems and samples are to some degree
always spatially unevenly distributed. Homogeneity is a scale
dependent feature and we tend to categorize systems with appar-
ent low heterogeneity such as for example grains, flour, suspen-
sions, fluids, sand on the beach, soil or lots of (apparently)
identical products as homogeneous. In some instances the hetero-
geneity scale is many orders of magnitude smaller than the scale
of the sampling instrument in which cases heterogeneity may not
be the main source of variation [8]. However, as this study will
demonstrate, assuming homogeneity without preceding investi-
gation or theoretical considerations should be avoided—with the
exception of solutions in thermodynamic equilibrium [9].

TOS defines a sampling process of a given lot to be repre-
sentative, and thus unbiased, when all fragments or groups of
fragments have an equal probability of ending up in the sample.
This fundamental sampling principle [1] can always be applied
when the lot is zero-dimensional; a zero-dimensional lot is by
definition a three-dimensional collection of material in which all
parts of thematerial are equally accessible— possiblywith a little
work, e.g. a pile of grain, a bag of soil or lots of wheat seeds as
investigated in the present case. In TOS the fundamental sampling
principle is referred to as correct sampling, which is a technical
term used to signify that all appropriate principles contained in
TOS leading to a demonstrable representative sampling process
have been invoked. Strictly representative sampling may some-
times not be possible when the lot by size or higher order
dimensionality is appropriate to handle as a zero or one dimen-
sional lot [10], e.g. a landfill site (2-D), a mining site (3-D) or an
invaluable historical relic (3-D). 2-D and 3-D are indeed special
cases with problem-dependent solutions. For more on lot dimen-
sionality refer to Petersen et al. [11].

This study aimed to perform an in-depth heterogeneity
analysis to estimate and compare the various error contributions
associated with the sampling of apparently homogeneous lots of
wheat grain. This type of material is usually referred to as
“uniform”, and is commonly considered to be significantly less
heterogeneous than what merits thorough sampling considera-
tions. Mass reduction in the form of representative riffle splitting
is compared to grab sampling using a spoon to extract samples.
The unique situation with grain lots compared to most other
materials is that it is possible to measure the protein grade of
every single seed using near-infrared spectroscopy as well as the
mass due to their manageable size. Others have used single-seed
near-infrared spectroscopy to classify [12,13] and determine
protein content [14–19] as well as other characteristics of wheat
[14,19–21]. Delwiche and Hruschka [18] presented single-seed
measurements as a method for determining the bulk protein
concentration using near-infrared reflectance spectra from 300
single seeds. The method had a reproducibility comparable to the
usual bulk protein determination of whole grains using near-
infrared transmittance NITwith the advantageous added ability of
retaining information about the variability [17,18], i.e. heteroge-
neity of the lot.

The specific feature of the present study, compared to nearly all
other sampling work, is that the composition of each grain is
available through single-seed NIT analysis — each analytical
result equating the composition of each fragment in the TOS
parlance. This will make it possible to directly calculate the
compositional heterogeneity, a feature which is otherwise very
nearly always only estimated by indirect, approximate means [1–
6,8], which will allow the study to present a complete breakdown
of all sampling errors involved in grain characterisation, including
an independent optimization of the orientation of the single seeds
in the NIT beam, leading to an estimate of the analytical error as
well as a quantification of the compositional as well as the
distributional heterogeneity of typical grain lots. The applicability
of TOS for 0-dimensional lots is investigated in the present study
and the implication for other composite particulate samples should
be readily appreciated.

2. Theory

Sampling is representative mass reduction of the lot, i.e. the
material of interest, to allow the analytical procedure to produce
the data output desired. However, the data recorded from the
analysis are only estimates of the true properties of the lot [11].
For estimation of the grade, aL, i.e. the true mass proportion of
the critical component in the lot, L, the relative errors of the
analytical result, aR, are defined by TOS:

The global estimation error (GEE):

GEE ¼ aR−aL
aL

: ð1Þ

The total sampling error (TSE):

TSE ¼ aS−aL
aL

: ð2Þ

The total analytical error (TAE):

TAE ¼ aR−aS
aL

: ð3Þ
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where aS is the true unknown grade of the critical component in
the sample and:

GEE ¼ TSEþ TAE: ð4Þ

TOS further specifies that TSE is composed of three additive
errors: the fundamental sampling error (FSE), the grouping and
segregation error (GSE) and the incorrect sampling errors (ISE):

TSE ¼ FSEþ GSEþ ISE: ð5Þ

FSE is an inevitable error due to the variation in grade, mass,
size or shape of the individual fragments, F, in the lot. TSE is
fundamentally limited by FSE, and is as such a material constant
that can only be reduced by crushing the lot into even smaller
particles before the sampling process. GSE is the error arising
from fragments not being randomly distributed in the lot, but
instead are spatially grouped to various degrees due to poor
mixing or forces making the fragments stick together. In
particulate material, gravitational segregation very nearly
always contributes to the internal sorting of particles by size,
density and shape during transport, handling, storage and
potential mixing [1,11]. GSE can be reduced bymixing the lot, by
extracting more and smaller increments from the lot or by
introducing crushing and dissolution steps in the sampling process.
Dutch legislation on the reuse of soil has recently implemented
such steps in their sampling strategy. In order to obtain cost
effective estimates of the degree of contamination, single
representative analytical results are obtained from composite
samples that undergoes both mixing, splitting and crushing steps
[7]. FSE and GSE are both errors that are defined as correct
sampling errors (CSE) [3]. Extracting samples in a non-
probabilistic way, e.g. by taking the sample from an easily acces-
sible site or by using tools and procedures that generate failures in
delimitation, extraction and handling of the sample, generates errors
that overall are defined as incorrect sampling errors (ISE). We refer
to Gy [1,3] and Petersen et al. [11] for a thorough description of
these errors. ISE are purely circumstantial andmay be small or large
depending on the material and the sampling process; ISE do not
follow any statistical distribution. ISE is the source of biased
analytical results that may or may not have a large variation when
repeated. Making replicate measurements to qualify the quality of
any measurement by stating the variance or standard deviation
alone is thus inadequate if not accompanied by a full documen-
tation of the sampling process, because using a fully representative
sampling process is the only way to avoid an uncontrolled, indeed
impossible-to-estimate, sampling bias [1–6,8,11].

The implication of the relationship between these sampling
errors is that it is only possible to arrive at a sampling error of
comparable magnitude to FSE by extracting the sample
fragment by fragment in a totally random fashion. This is, of
course, not practically implementable for most materials.
However, samples comprising of multiple randomly selected
increments, I, of groups of fragments is usually possible; this
process is called composite sampling. Extracting samples,
increment by increment, is what makes GSEs inevitable with
an impact dependent on the degree of mixing and the number
of increments in the final sample. Representative sampling
can thus be said to be about eliminating ISE, while
simultaneously reducing GSE and TAE maximally — to
achieve a replication variation in GEE of an acceptable level
determined by the context. Within this TOS context, selecting
an appropriate sample size is very much dependent upon the
material heterogeneity in addition to the sampling process
itself. TOS is adamant in arguing that choosing sample size is
impossible without an appropriate heterogeneity analysis of
the material in question [1–4]. This aspect has been
operationalised recently in a very hard-headed, practical
context [11].

Assessing the essential relationships between the individual
sampling errors can be stated in a statistical fashion by their
means and variances. The mean error or the bias of replicate
measurements is:

mðGEEÞ ¼ mðFSEÞ þ mðGSEÞ þ mðISEÞ þ mðTAEÞ; ð6Þ

while the variance of GEE is a sum of variances:

r2ðGEEÞ ¼ r2ðFSEÞ þ r2ðGSEÞ þ r2ðISEÞ þ r2ðTAEÞ: ð7Þ

Pierre Gy [3] in a particularly prescient mood, redefines the
concepts of accuracy and reproducibility by stating that a
sample is accurate when:

mðISEÞ ¼ 0 ð8Þ

leading to:

mðTSEÞc0; ð9Þ

thus making accuracy a property of the sampling process, i.e.
the rule of uniform selection probability must be obeyed to state
that a sample is unbiased (fundamental sampling principle).

Reproducibility, sometimes denoted precision, is based on a
user-defined threshold, σ0

2, which the variance of TSE must not
exceed:

r2ðTSEÞ ¼ r2ðFSEÞ þ r2ðGSEÞ þ r2ðISEÞb ¼ r2
0: ð10Þ

In addition, Gy also defines a new score, the representativity
as the sum of the variance and the squared bias of TSE. Thus,
for a sample to be representative it must be both accurate and
reproducible. For this, the user-defined threshold of represen-
tativity, r0

2, must not be exceeded:

r2ðTSEÞ ¼ m2ðTSEÞ þ r2ðTSEÞb ¼ r20: ð11Þ

The representativity thus defined is a useful score for ranking
different sampling processes and equipment [22]. By introducing
the representativity as a score that can be either under or above the
user-defined threshold, rather than a nebulous principle, Gy [3]
allows for certain flexibility with respect to the accepted bias. This
is to state that it is acceptable to use a sampling protocol which is
not strictly representative as long as the level of bias is known and



Table 1
Summary of riffle split the wheat lots with an overview of their characteristics including estimates of the true protein concentrations, constitutional heterogeneity and
the fundamental error associated with protein determination of the lot using one or an average of forty-two randomly selected seeds

ID Cultivar Year Growth place
in Denmark

Lot mass
ML [g]

# seeds in
FSE calc.

Av. seed
mass Mi*
[mg]

Protein
conc aL
[%dm]

FSE: sample=one seed FSE: sample=forty-two seeds

s2(FSE)
[×10−3]

s(FSE)
[%]

s
[%dm]

CHL

[×10−3]
s2(FSE)
[×10−5]

s(FSE)
[%]

s
[%dm]

W01 Pentium 2002 Norsminde 4686 203 (7) 48.0 11.1 12.6 11% 1.2 11.4 27.1 1.6% 0.2
W02 Ritmo 2002 Ruballegaard 2833 203 (7) 39.6 10.6 19.2 14% 1.5 20.7 49.3 2.2% 0.2
W03 Claire 2002 Ruballegaard 2631 204 (6) 40.0 9.9 14.8 12% 1.2 15.0 35.7 1.9% 0.2
W04 Bussard 2002 Harlev 3169 39 (3) 40.6 10.4 11.3 11% 1.1 8.8 21.0 1.4% 0.2
W05 Galatea 2000 Abildgaard 7824 41 (1) 52.9 11.2 24.5 16% 1.8 28.0 66.7 2.6% 0.3
W06 Batis 2002 Kiel (G) 2876 39 (3) 43.4 13.1 21.7 15% 1.9 21.0 50.0 2.2% 0.3
W07 Bussard 2002 Kiel (G) 3726 41 (1) 42.6 12.5 25.9 16% 2.0 27.2 64.8 2.5% 0.3
W08 Renan 2002 Kiel (G) 3818 38 (4) 46.5 10.8 21.3 15% 1.6 24.7 58.8 2.4% 0.3
W09 Pentium 2003 Aarslev 656 38 (4) 43.1 11.8 44.0 21% 2.5 36.4 86.7 2.9% 0.3
S10 Vinjett 2003 Aarslev 671 38 (4) 41.0 11.4 39.5 20% 2.3 46.6 111.0 3.3% 0.4
S11 Leguan 2002 Foulum 612 39 (3) 34.1 14.1 18.6 14% 1.9 21.7 51.7 2.3% 0.3
S12 Leguan 2002 Foulum 584 42 (0) 34.4 12.5 13.6 12% 1.5 13.5 32.1 1.8% 0.2
S13 Leguan 2002 Foulum 467 37 (5) 33.9 15.8 19.2 14% 2.2 16.4 39.0 2.0% 0.3

(G)=Germany (# outliers) TAE: 0.6–1.6 2.5–4.0% 0.4 1.5–3.9 0.4–0.6% 0.06

Boldfaced lots were also used for spoon sampling. For comparison the variance of total analytical error is indicated on the bottom line and is not subtracted from the
values in the table, as indicated in Eq. (14).
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within an accepted threshold. However, bias is only very rarely
known— andwhy bother toomuch about thiswhen representative
sampling equipment actually does exist for a wide variety of
purposes.

Riffle splitters and similar dividers are specifically designed
to eliminate ISE and reduce GSE by insuring a uniform
selection probability throughout the mass reduction. Their
design and performance vary considerably, however. This was
studied by Petersen et al. in a comprehensive overview [22], in
which seventeen types of mass reduction equipment were
investigated and compared with respect to accuracy, repro-
ducibility, representativity as well as practical applicability by
sampling a composite particulate material of known compo-
sition. It was shown that many of them are by design not
working properly, actually introducing bias and excessive
variation into the sampling process. All of the tested splitters
and related dividers were orders of magnitude superior to
various spoon and shovel methods investigated with respect to
accuracy, reproducibility and for some also ease of use. Other
studies resulted in similar findings with other particulate
materials [23,24].

In commercial, industrial and academic laboratories, the
materials under investigation often vary tremendously in total
mass and physical properties, thus affecting which scale and
mass reduction technique is most appropriate. For instance,
most of the above mentioned dividers are all but useless if the
materials are wet or sticky, or when the particle aggregates do
not have reasonable flow properties. In order to perform sound
mass reduction of such a variety of samples laboratories should
ideally have a set of dividers and techniques, in multiple scales,
to suit all appropriate sampling needs.

2.1. Calculations of TOS parameters

From the Root Mean Squared Error of Cross Validation
(RMSECV) of a Partial Least Squares Regression (PLS-R)
protein calibration it is possible to determine the variance of
TAE for a sample composed of N seeds.:

s2ðTAEÞ ¼ RMSECV2

a2Ld N
: ð12Þ

Note that throughout this paper variances and standard
deviations are presented as: s2(relative error) and s(relative
error) e.g. s2(TAE) and s(TAE), which is equivalent to
coefficient of variance, CV2 and CV and relative standard
deviation, RSD2 and RSD.

Being able to analyse individual grains makes it is possible to
estimate the constitutional heterogeneity with respect to the
protein grade, CHL, which is a material constant:

CHL ¼ s2ðhiÞ; ð13Þ

where hi is the heterogeneity contribution of the individual
seeds, i.e. the errors weighted by the individual masses, Mi, to
the average seed mass, Mi⁎:

hi ¼ ai−aL
aL

d
Mi

Mi⁎
: ð14Þ

From CHL the variance of FSE for a defined increment size
with N seeds can be deduced from Gy [1]:

s2ðFSEÞ ¼ 1
MS

−
1
ML

� �
CHLMi⁎−s

2ðTAEÞ ¼ 1
NMi⁎

−
1
ML

� �

� CHLMi⁎−s
2ðTAEÞcCHL

N
−s2ðTAEÞ

ð14Þ
Having established both TAE and FSE it is possible to

estimate the variance of GSE by subtraction rearranging Eq. (7):

s2ðGSEÞ ¼ s2ðGEEsplitÞ−s2ðTAEÞ−s2ðFSEÞ ð15Þ



146 E. Tønning et al. / Chemometrics and Intelligent Laboratory Systems 84 (2006) 142–152
The variance of GEEsplit is easily calculated from replicate
splitting of the sample. Likewise, the variance of ISE can be
estimated from:

s2ðISEÞ ¼ s2ðGEEspoonÞ−s2ðFSEÞ−s2ðGSEÞ−s2ðTSEÞ ð16Þ
In the same way the biases of the individual sampling

strategies can be calculated using Eq. (6).
Fig. 2. Sample presentation in the Infratec 1255 Food and Feed Analyzer fitted
with the single seed autosampler cassette. The seed is oriented here with the
elongated furrow down towards the detector and the germ pointing to the centre
of the carrousel.
3. Experimental

3.1. Material

From four different field trials in Denmark and in Germany,
thirteen wheat lots with masses from 467 g to 7824 g were
chosen based on availability and expected mutual variation in
both physical and chemical properties as well as variations in
constitutional heterogeneity. The lots represented seven winter
and two spring wheat cultivars, with varying growth conditions,
which will not be discussed further here for the present purpose
(Table 1).

3.2. Sampling

Five spoon samples, each consisting of forty-two seeds, were
obtained from each of the lots W01, W02 and W03. Each
extraction was initiated by stirring the lot thoroughly followed
Fig. 1. A: 20 g wheat seed sample ready for the last mass reduction split. This is
the smallest mass split by the Rational Kornservice riffle splitter. B: A 10 g
sample from the riffle splitter equating 290 seeds arranged in a linear array.
Every 6th seed is picked starting randomly from seed 1 to 6, in this case No. 2. A
total of 48 seeds were picked and reduced to 42 by random selection and stored
separately in order to retain identity.
by shovelling forty-two seeds into the spoon. Five split samples,
also of forty-two seeds, were subsequently obtained from each
of the same three lots above. Single samples of the same size of
the remaining ten lots were likewise extracted. All of these latter
samples were extracted using a riffle splitter from Rationel
Kornservice with 18 chutes of width 16 mm each. The splitter
was ranked among the better acceptable sampling devices in the
survey of mass reduction hardware [22]. This instrument splits
the original sample in two representative sub-samples of equal
mass. One was chosen by random selection, flipping a coin, and
subsequently split again. This procedure was repeated until the
mass of the last randomly chosen half was between 10 and 20 g;
the last split was thus performed on a minimum of 20 g of
sample (Fig. 1A). After this point the riffle splitter was no
longer able to perform its function in a proper way, as the
subsequent splits would be too coarse in relation to the sample
and fragment (seed) sizes. To continuously ensure uniform
selection probability the resulting 10–20 g subsample consist-
ing of approximately 250–500 seeds were laid out on a line in
random order. Starting from a random position among the first
six seeds a 1:5 split was performed by systematically selecting
every sixth seed, disregarding broken seeds (Fig. 1B). From the
now countable number of seeds still in line, forty-two [25] seeds
were randomly chosen. The resulting forty-two seeds-size sample
was thus effectively obtained by randomly extracting it fragment
by fragment, although still affected by the internal grouping and
segregation in the original lot as well as throughout the sampling
process. In order to retain identity throughout the subsequent
measurements, every single seed was stored separately in marked
microtiter plates at 15–20 °C. In all, forty samples of forty-two
individual marked seeds (1680 seeds) were obtained, i.e. five
spoon samples and five split samples of W01, W02 and W03
respectively and one split sample of W04 to S13 respectively.
With respect to the lot masses (Table 1), samples of forty-two
seeds represent mass reductions in the range from 1:3500 to
1:330.

For calibration purposes a subset of seven seeds from each of
the samples of W01 to S13 were chosen by random selection.
The resulting ninety-one single seeds thus represented the major
variations in the material composition. The calibration set was
used for protein calibration and optimization of orientation in
the NIT beam (below).
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For reference (see next paragraph) a subset of four seeds was
randomly selected from W01, W03, W05 and S10.

3.3. NIT spectroscopy

The near-infrared spectra were recorded on an Infratec 1255
Food and Feed Analyzer from FossTecator, Höganäs, Sweden,
mounted with a single seed autosampling cassette with slots for
twenty-three single seeds. The time consumption for measuring
one spectrum of each of the twenty-three seeds was approxi-
mately 90 s. Nineteen seeds were measured in every single run
along with the four reference seeds. The position of the reference
seeds were changed randomly between the slots with every
change of seeds in order to asses the performance of the individual
slots as well as the effect of time, since measurements were
performed over a period of eight months. For the ninety-one
calibration and 4 reference seeds near-infrared transmission
spectra from 850 nm to 1050 nm were recorded in triplicate in
eight different orientations of the seeds in the cassette, i.e. with the
elongated furrow up, down, to the left or to the right and the germ
either towards the centre or towards the edge of the cassette. In
Fig. 2, a schematic representation of the experimental setup
relative to the NIT beam is shown with the seed oriented with the
elongated furrow down and the germ towards the centre of the
cassette.

This orientation was found to be optimal (see Results and
discussion), thus all other 1585 seeds as well as the reference
seeds were measured in triplicate in this orientation. Between
each of the triplicate measurements the seeds were positioned
again, so that the position of the individual seed in the slot was
not exactly identical in the three spectral recordings. This
introduces a realistic “presentation variance”.

3.4. Mass, dry matter content and protein

The masses of all individual in-situ seeds were recorded on a
Mettler/Toledo scale, type AB204. The ninety-one calibration
seeds were then crushed and dried at 130 °C for 2 h and their
masses were recorded again for determination of dry matter
content. The nitrogen content was determined by a modified
Kjeldahl method according to AACC Method 46-12 previously
reported by Pedersen et al. [15]. The replication error of themethod
was shown to be 0.16% dry matter protein and thus a relative error
of 1–2%, since the protein %dm is in the range from 9.9 to 15.8.

3.5. Calibration

In order to evaluate the effect of the different orientations of the
seeds in the near-infrared light path, NIT spectra were selected
individually or collectively and averaged in various ways and
correlated to reference protein content with partial least squares
regression (PLS-R) [26,27]. The selected and averaged spectra
were mean centred and scatter-corrected before calibration by
applying a combination of second derivative (Savitzky–Golay,
2nd order polynomial) followed by multiplicative scatter correct-
ion (MSC) which has been found to work well for the single-seed
protein system [15,16]. For convenience, interval partial least
squares regression (iPLS) [28] in MATLAB version 6.5 (The
MatWorks, Inc., Natwick, MA) was used to calculate the numer-
ous models by constructing a consecutive series of the selected
spectra before analysis. The models were cross validated using
leave one out (LOO) validation and their performance with regard
to the root mean squared error of cross validation (RMSECV)
could easily be assessed. Outlying recordings from six seeds,
three winter and three spring cultivars from different lots, were
discarded in the calibration process due to unparalleled behaviour
in the models. Three of the outlying seeds were either compa-
ratively small or odd-shaped, while the other three did not have
apparent deficiencies judged from digital pictures taken before
crushing, however theywere all recorded in the last bin (no. 23) of
the autosampler cassette.

3.6. Prediction

Protein concentration predictions of all seeds were per-
formed using Camo Unscrambler 8.0 on the basis of the optimal
model, i.e. with the lowest RMSECV. Eighty of 1589 recordings
with prediction deviations (based on both the leverage and the
residual of the new sample) above 0.84, i.e. above the range
found for the calibrations seeds (0.18–0.82), were discarded as
outliers. The main reasons for large deviations were systematic
errors due to occasional misalignment of the last bin in the
autosampler cassette (30 recordings) as well as odd-shaped
seeds (31 recordings), as were found for the calibration outliers,
while 19 recordings had to be discarded due to operational
errors. Delwiche [16] also found small seeds most difficult to
measure — with higher prediction errors if measurement and
predictions were repeated.

3.7. Calculation of TOS parameters

In this investigation only five replications were made of each
of the lots W01, W02 and W03 (Table 1). In order to assess the
order of magnitude of the above mentioned variances and biases
associated with grain sampling, variances and squared biases
were averaged before presentation in Fig. 5. An average of the
distributional heterogeneity, DHL, associated with the splitting
technique down to forty-two seeds was also calculated using
Eqs. (13) and (14) keeping in mind that index, “i”, now refers to
an increment of forty-two seeds.

4. Results and discussion

The first goal was to establish a single-seed protein NIT
calibration meant to span the entire variation to be encountered in
thirteen different wheat lots.Although the calibration is only based
on seven randomly selected seeds from each of the samples
originating from these lots, it does show a remarkable robustness,
as was also the case in previous studies on single-seed
investigations such as Delwiche [16]. In a comparison with five
other pre-treatment strategies including no pre-treatment and
extended inverted signal correction (EISC) [29], Pedersen et al.
[15] showed that fewer PLS components and a lower RMSECV
and RMSEP was found by pre-treating averaged single-seed NIT



Fig. 3. RMSECVof 21 individual PLS-R calibrations as presented by i-PLS on eighty-five calibration seeds. Error bars indicate 1×standard deviation of multiple
models made on subsets of recordings with the indicated seed orientations.
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spectra with second derivative+MSC [30,31]. This combination
showed a prediction error of 0.48 %dm protein using 5 PLS
components, while EISC pre-treated model had a similar
prediction error of 0.49 %dm protein at the expense of being
less parsimonious, however, using 7 PLS components. That parti-
cular investigation was based on a calibration set of 415 wheat
seeds and a test set of 108 seeds and further used in developing a
screeningmethod for characterization of single-kernel wheat [14].
None of these studies, however, assessed sample presentation as a
possible source of error.

Because a single seed is itself a heterogeneous unitwith respect
to its internal constitution, measuring it non-destructively
necessitates that the near-infrared light should transmit through
as much of the seed interior as possible. If this cannot be achieved
by a single recording, multiple scans from different orientations
would presumably work towards better representativity of the
ultimate averaged NIT spectrum. This was indeed similar to the
hypothesis of Delwiche [16] who suggested that it might be
possible to improve model error by averaging NIT recordings of
the seed presented in various orientations.

In Fig. 3 the percentage of protein RMSECV is presented as a
function of the different sample presentation strategies realised.
The first eight strategies, which would be among the fastest, are
when a single orientation is used for all recordings. Error bars
indicate the standard deviation of the RMSECV derived by
running the model several times on subsets of the orientation in
question. Two orientations have RMSECV significantly lower
than the others: the furrow down and the germ pointing towards
the centre or the edge of the cassette respectively. Averaging over
the three replicates of each orientation improved markedly on
most of the models, but still showed the orientations with the
furrow down as the best (bar No. 10 and 14 indicated with black
and grey bars in the figure) — each validating the other, since
pointing the germ towards the centre or the edge is a symmetrical
change not expected to alter the spectra.

The last five strategies are from left to right as indicated by the
seeds in Fig. 3: A single recording for each seed in a random
orientation; 2: averaging two random orientations subject to the
constraint that one orientation is with the furrow either to the left
or to the right and the other with the furrow up or down; 3:
averaging four orientations disregarding the direction of the
germ; 4: averaging over all eight orientations; 5: average of all 24
recordings of every single seed. The last one indicated by the
black bar is the only one to compete with strategy No. 10, both
with an RMSECVof only 0.36, far less than has previously been
found [14–16] where sample presentation has not been
addressed in detail. Why one orientation is better and faster
than averaging all orientations is not clear and should
investigated further and apparently rejects the hypothesis of
Delwiche [16]. However, the origin of this paradox may be
found in the surface characteristics of the individual seeds. The
opposing site to the furrow is the smoothest and most uniform
surface of wheat seeds in general. When the near-infrared light
meets the surface one may hypothesise that a more uniform
scatter pattern emerge which in turn increases the effectiveness
of the scatter correction employed. Light scatter from more
fractured surfaces — especially the furrow side, may be more
difficult to handle, thus leading to larger model error when used
either alone or in averages with other orientations.

The model using four PLS components associated with
optimal seed orientation, also shown in Fig. 2, was used for
recording all the 1589 remaining seeds (including the four
reference seeds) in triplicate in order to predict their protein
content and heterogeneity. Considering the relatively small
model based on only 85 random seeds, remarkably few seeds
were discarded as outliers, only 86 of 1680, 33 of which were
from instrumental errors, 19 from operational errors and the rest
due to poor model fit. Discarded outliers were not replaced,
since the seeds were selected completely by random in quite
different lots and not by their appearance and was as such an
expected outcome of the sampling. Obviously not all of the
variability found in the lots would be accounted for in the
prediction model, thus leading to a few unpredictable outliers to
be discarded.



Fig. 4. Comparison of the relative errors from estimating the protein content of three wheat lots from forty-two seeds selected by splitting or by spoon sampling. The
relative errors of TAE and FSE are from Table 1 and are presented here again for comparison; they are identical for both split and spoon sampling. Bias is calculated by
assuming the concentrations from Table 1 are true concentrations, following [11].
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For the prediction error RMSECV was used, though rounded
up to 0.4 %dm protein, keeping in mind that no test set was made
and that LOO cross validation per force gives rise to
overoptimistic prediction errors [26]. However, prediction errors
using test sets in other robust single seed investigations [14–16]
were not markedly different from the cross validation errors. And
even though test sets are preferred, they are not crucial for this
Fig. 5. Breakdown of the average GEE variance for samples of W01, W02 and W03
spoon sampling are also presented, the latter to be compared to the representativity
investigation, since the analytical error is an order magnitude
lower than the sampling errors encountered below and a
potentially over- or underestimation will have no severe effect
on the interpretations and conclusions made.

A summary of the results from the thirteen lots mass-reduced
to forty-two seeds by splitting is presented in Table 1. Since the
sampling of W01, W02 and W03 was repeated five times, 210
for both spoon and split sampling. The squared bias and the representativity of
of the split sampling in that s2(GEE split)= r2(split).



Fig. 6. The same errors as presented in Fig. 5 in relative and absolute values, the latter assuming a protein concentration of 10 %dm to be related to the units of the
analyte.
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seeds were used for calculations here, while only 42 seeds were
used for the remaining samples. Disregarding the outliers, the
following parameters are presented;Mi*, the bulk protein content,
aL, the single seed variances, s2(FSE) and standard deviations, s
(FSE) (relative) and s (absolute %dm protein), constitutional
heterogeneity (Eqs. (13) and (14)), CHL and the derived fun-
damental errors of a forty-two seed size sample.

It is noteworthy that the heterogeneity of the individual samples
varies markedly. Themasses and single seeds ranged from 6.2 mg
to 79.0 mg with a dry matter protein content varying from 6.9%–
22.5%. As shown by Delwiche [17], there is no useful relation
between kernel mass and protein content— however, it cannot be
stated that the protein content is randomly distributed along the
different masses. Bulk protein concentrations vary from 9.9 to
15.4 %dm protein with average seed masses ranging from 33.9 to
52.9 mg. The standard deviation of the single seed protein varies
from11 to 21% relative and 1.1 to 2.5%dmprotein. The analytical
error (RMSECV=0.4) from the PLS-R model is indicated in the
last line and, as expected, constitutes only a fraction of the seed
variation. The constitutional heterogeneity used to calculate the
fundamental error of samples with a higher number of seeds also
varies correspondingly from as low as 8.8×10−3 (W04) to as high
as 46.6×10−3 (S10). The fundamental standard deviation of a 42
seeds sizes sample thus varies from 0.2 to 0.4 %dm protein.

The relative standard deviation and biases of the first three
samples are presented in Fig. 4 for both split and spoon (grab)
sampling strategies. For all strategies the standard deviation of
the global estimation error from five replicates are shown (dark
grey) together with the fundamental sampling error (light grey) as
well as the total analytical error (white) fromTable 1. Since FSE is
limiting GEE, the standard deviations found should all be higher
than s(FSE) [1,3]. This is also the case in all but one case, W03
split, which probably is due to the very few samples extracted—
only five. Although we might expect the grab-sampled (spoon)
samples to be much higher in s(GEE), this cannot clearly be
deducted from this figure. Even though W01 and W03 demon-
strate such behaviour, W02 does not. However, the spoon sam-
plings of W01 and W02 are remarkably biased, while this is not
the case for the rest. It must be noted that bias is calculated on the
necessary assumption that results from the splitter are unbiased
and the true protein concentration is the one found in Table 1;
however, this assumption would appear to be amply substantiated
[22]. Strictly speaking, bias should then be understood as
difference between spoon- and split-sampled mean values.
Overall the figure shows that spoon samples have either high
standard deviation or high bias or both compared to split samples,
which is expected according to TOS [1–6,8,11,22].

In order to break down the variance into its additive contri-
butions, the squared errors in Fig. 4 were averaged and sub-
sequently presented in Fig. 5. It is clearly seen that s2(GEEsplit)
is the sum of three contributions s2(TAE)=3×10−5, s2(FSE)=
34×10−5 and s2(GSE)=22×10−5, the latter found by sub-
traction using Eq. (15). s2(GEEspoon) has an extra contribution
from s2(ISE)=43×10−5 also found by subtraction (Eq. (16)).
Clearly all three sampling errors have a significant impact on
the global estimation error. They are all of the same order of
magnitude, which is approximately ten times the total analytical
error (TAE).

In addition, the squared bias, m2=89×10−5, is introduced in
the error balance, to be added to the s2(GEEspoon) to form the
representativity score (here called a score, since it emerges from
two variables, the standard error and the bias, that are usually not
added together, but can be used to rank different techniques or
strategies [22]). Since a lower representativity score is optimal it is
very easy to see that the unbiased splitting strategy (as per
representative sampling) for this material (s2(GEEsplit)=r

2
split)

has a significantly lower magnitude compared to that of the spoon
sampling. Clearly spoon sampling or grab sampling both increase
sampling variance and introduce bias of unknown size. This is in
accordance with other studies on sampling strategies of other
particulate material [22–24] and thus stresses the importance of
representative sampling even in apparently homogeneous lots.

Others have suggested the use of appropriate sampling rather
than representative sampling as a better way to assess estimation



Table 2
DHL estimated based on five split sampled increments of 42 seeds of samples
W01, W02 and W03

ID # Inc. Mn* [mg] DHL [×10−5]

W01 5 1950.0 37
W02 5 1620.0 145
W03 5 1630.0 9

Average: 64
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uncertainties [10]. This distinction between appropriate and
representative is rather artificial, however, since the causes of
variance and biases in analytical results are agreed upon and
representative sampling must be the appropriate sampling strat-
egy whenever it is economically sound and indeed physically
possible and desirable, i.e. whenever the lot is or can be turned
into a zero- or one-dimensional lot [11].

Since variances are difficult to interpret quantitatively, apart
from their additive properties, the result fromFig. 5 is presented in
Fig. 6 as standard deviation both on a relative scale and on the
absolute scale, allowing assessment in the original measurement
units. From Table 1 the impact of FSE can easily be enlarged with
standard deviation of up to 4%. This in turnwill have an impact on
GSE which is related to FSE and thus will also impact GEE
significantly, even though sampling is conducted in a represen-
tative way. As suggested by Delwiche and Hruschka [18], near-
infrared reflectance spectroscopy of single seeds may be a good
way to characterize the protein concentration of bulk samples. They
suggested using averaged spectra from 300 seeds (canonical
number) in order to determine the bulk protein concentrationwith a
standard deviation of 0.25% protein (12% moisture basis).
Apparently our studies suggest that 42 seeds would actually do
the job just fine, even incorporating the significant sampling errors
(Fig. 6) which were acknowledged as being one of the large
unknowns in Delwiche and Hruschka's study [18].

However, the fundamental error in their study was larger —
comparable to W09 and S10 (Table 1), and they did not include
the grouping and segregation error which is shown here to be of
comparable magnitude to the fundamental error. They instead left
themodel error playing a greater role, since they averaged theNIR
spectra and protein contents before modelling. In our study the
RMSECV is a part of the overall kernel variance and is as such
diminished the more seeds are accumulated in the sample. Never-
theless, theirs and our studies both point to using approximately
300 seeds, when the fundamental error (approximately the stan-
dard deviation between seed protein concentration) can be as high
as 3 %dm protein and the grouping and segregation error is
estimated to be of the same magnitude. With sampling errors of
this order there is no reason to perform scans in triplicate. To
generalize from the present work, and that of Delwiche, we
tentatively suggest a constitutional heterogeneity of protein in
wheat to be expected up to the order of 50×10−3.

Usually CHL is not experimentally available in particulate
material, in which case DHL can be used to assess an appropriate
sample size as well as the number of increments needed for a
representative sample. Rough estimates of the distributional hete-
rogeneities, i.e. the weighted variances of 42 seed-sized samples
are presented in Table 2. The average value of 64×10−5 is,
however, not a result to rely upon in future studies, since it
inherentlywill vary a lot from lot to lot depending on both the size
of the fundamental error as well as the grouping and segregation
in the actual investigation.

5. Conclusions

From studies of two alternative sampling strategies, represen-
tative splitting versus direct grab sampling, in thirteen different
wheat lots it is concluded, with emphasis, that representative
sampling is a must, even in apparently homogeneous materials
like ordinary wheat lots.

Quantification of all additive and inevitable sampling errors
shows that both the fundamental (FSE) and the grouping and
segregation error (GSE) have a significant impact compared to
analytical errors in the present material. Both the variance of FSE
and GSE were an order of magnitude larger than the variance of
TAE. The variance of the incorrect sampling errors (ISE) and the
squared bias from grab sampling were found to be even larger,
thus inflating the variance of GEE and the representativity score
alarmingly. Even for the exceedingly uniform grain-typematerial,
heterogeneities are highly significant — and thorough sampling
considerations deal effectively in reducing or eliminating all these
sampling errors.

Moreover indications were observed that presenting single
seeds in a certain way, i.e. with the elongated furrow pointing
towards the detector in the NIT beam, leads to prediction models
with significantly lower prediction error compared to all other
strategies for presenting the seeds. This thought-provoking result
is hypothesised to be due to the different scatter patterns induced
by the surface structure of the seeds.
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Abstract 

This paper explores the effects of fractioning heterogeneous bulk wheat by fast 

single-kernel near-infrared (SKNIR) sorting according to an internal complex 

quality trait using a fast prototype object sorter. The effect of sorting was 

compared to diversification by means of varying the preceding catch crops in an 

organic field experiment in two growth years and two locations. In the resulting 

twenty-nine wheat lots, fifty-two quality parameters were measured on grains, 

flours and breads. The data was analysed by principal component analysis 

(PCA) and analysis of variance (ANOVA). Within each year and 

location/cultivar the SKNIR fractionation had a significant effect on bulk grain 

density, protein and wet gluten content, Zeleny sedimentation volume, 

Farinograph water absorption, Farinograph softening, falling number and 

gelatinisation temperature. In comparison, varying the preceding catch crops did 

not show any coherent systematic. This investigation shows that the fast SKNIR 

sorter can qualify a given heterogeneous wheat grain lot and potentially improve 

the market and functional value post harvest especially with emerging sorting 

equipment capable of sorting several tonnes per hour. 

 

 

 

Keywords: Wheat quality, single-kernelnear-infrared sorting, quality 

fractionation, heterogeneity, functionality, baking, breeding, SKNIR, NIT, 

chemometrics, grain, flour, dough, bread, organic farming, catch crops 

 

List of abbreviations used: ANOVA = analysis of variance; A-PLS = 

ANOVA-PLS; DON = deoxynivalenol; NIT = near-infrared transmission; PC = 

principal component; PCA = principal component analysis; PLS = partial least 

squares; SKNIR = single-kernel near-infrared; TPA = texture profile analysis 
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Introduction 

The quality of wheat is presently controlled by factors directly related to the 

primary production conditions such as choice of cultivar, soil quality, weather, 

availability and quality of fertilisers, pressure from pests, i.e. weeds, insects and 

diseases. In addition organic farmer restrictions regarding mineral fertilizers and 

the use of pesticides significantly reduce the possibilities of ensuring a specific 

crop quality at the time of harvest (Frederiksson et al., 1997; Johansson et al., 

2001; Triboi and Triboi-Blondel, 2001). Apart from the consumer preference for 

products produced with minimal environmental impact the organic crop may 

thus be suited for anything from energy source to industrial bread production 

depending on internal chemical and physical quality and uniformity (Haglund et 

al., 1998; Kihlberg et al., 2004). 

 

More attention has recently been drawn to the fact that even though a batch of 

plant material, such as wheat, appears uniform there exist significant variation in 

the quality of individual grains, e.g. the protein content may vary from 5 to 20% 

in some wheat lots (Delwiche and Hruschka, 2000; Pedersen et al., 2002; 

Tønning et al., 2006). If sorted according to internal quality a potential 

diversification may increase the value and uniformity of wheat from both 

organic and conventional farming. Single-kernel near-infrared (SKNIR) 

spectroscopy in combination with chemometric tools such as partial least 

squares (PLS) has been utilised to predict protein, vitreousness, density and 

hardness of single kernels of wheat (Delwiche, 1993, 1995, 1998; Nielsen et al., 

2003, Tønning et al., 2006) and may serve as a relevant technology for such 

endeavours. Baking quality and dough handling properties can be predicted in 

bulk ground wheat (Delwiche et al., 1998; Delwiche and Weaver, 1994) and is 

already determined routinely from near-infrared transmission (NIT) spectra 

recorded in commercially available instrumentation such as the Foss Infratec
TM
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1241 Grain Analyser with built-in calibrations for parameters such as 

Farinograph water absorption, stability, wet gluten and Zeleny sedimentation 

volume in addition to the standard protein and moisture calibrations. 

Developments in SKNIR systems for fast determination of attributes and sorting 

are now in the making. Dowell et al. (2006) reported a system which sorted 

wheat kernels with respect to protein and hardness respectively and prose millet 

according to amylase content. Sorting wheat with respect to infestation with 

Fusarium graminearum which pose a health risk due to production of the 

mycotoxin deoxynivalenol (DON) was successfully conducted by Delwiche et 

al. (2005) using high speed optical sorting. Pasikatan and Dowel (2004) tried to 

separate mixtures of high and low protein wheat kernels on a commercial colour 

sorter equipped with near-infrared filters. Rittiron et al. (2004) made an initial 

suggestion for a brown-rice sorting machine with respect to moisture and dry 

matter protein content. Also for corn and oil-seed a SKNIR system for fast 

determination of quality attributes has been developed (Armstrong, 2006). 

Fractionation by other means such as physical appearance, size and weight is an 

alternative to the internal quality trait determined by near-infrared technology 

(Elfverson et al. 1999; Yoon et al., 2002).  

 

A new industrial “TriQ” SKNIR sorting system with a capacity of sorting 

several tonnes per hour utilising the heterogeneity of bulk wheat is coming to 

the market (Löfqvist and Nielsen, 2003; Löfqvist and Nielsen, 2006). It 

diversifies bulk crops post harvest by sorting the material kernel by kernel using 

SKNIR technology calibrated to internal quality. The ultra fast TriQ sorting 

system arranges and fix each individual grain into separate perforated 

depressions in a rotating drum in such a way that the quality of each individual 

grain can be discretely determined and subsequently be discretely handled 

according to its quality. Preliminary results from a prototype sorter has been 
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presented in which a wheat lot with an average dry matter protein content of 

12.3% was sorted according to protein content <11%, 11-13% and >13% 

(Nielsen, 2002). The relative yields were 26%, 38% and 36% with average 

protein contents of 10.2, 12.0 and 14.4%, respectively. Increased protein content 

and quality is well known to improve loaf volume (Bushuk et al., 1969). 

 

Post harvest catch crops may immobilise, preserve and accumulate nutrients in 

the top soil in order to prevent unnecessary loss of valuable nutrients. Catch 

crops have been shown to prevent leaching of nutrients – especially nitrogen as 

nitrate or ammonia dissolved in the soil water (Eriksen et al., 2006; Francis et 

al., 1992). Leaching nutrients may potentially harm the recipient such as 

naturally nutrient deficient ecosystems or water supply areas. Ideal catch crops 

are able to cover the post harvest field very fast and utilise available nutrients by 

developing an extensive and deep root system in order to catch leaching 

nutrients and bring them to the surface before they are completely lost to the 

recipient (Kristensen and Thorup-Kristensen, 2004). Especially in organic 

farming where nutrients are deficient, expensive and less available for the plants 

the use of legumes and post harvest catch crops with deep root systems may in 

addition to the environmental effect also affect the quality of the subsequent 

crop (Eriksen et al., 2006). 

 

The aim of this investigation was to explore the quality diversification effects of 

fast post harvest SKNIR sorting of organic wheat compared to the effects of 

varying the preceding catch crops. Two different catch crops, winter vetch and 

fodder radish or turnip were used for differentiating organically grown wheat 

quality as compared to no catch crop in two growth years and two locations. On 

top of this, a laboratory scale prototype TriQ SKNIR sorting system was tested 

on the same material by which each grain was sorted into three different quality 
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fractions (Löfqvist and Nielsen, 2003). The quality of the field lots and SKNIR 

fractions were determined in a multi-step investigation of resulting grains, flours 

and breads. Fifty-two quality parameters were measured ranging from protein 

content in the grain lots over instrumental texture of the bread to sensory panel 

evaluations, i.e. from grain to brain. 

 

Experimental 

Materials 

Twelve lots of organically grown spring wheat from factorial Danish/German 

field trials in 2003 (03) and 2004 (04) were used and further diversified by 

SKNIR sorting. Growth sites were Aarslev (Aa) in Denmark and Kiel (Ki) in 

Germany, respectively. Two spring cultivars, Vinjett (Vi) and Combi (Co) were 

used. Three different catch crops were grown prior to cultivation of the spring 

cultivars. The catch crops were: Winter Vetch (Vicia villosa) (WV), Fodder 

Radish (Raphanus sativus var. Oleiformis) (FR) or Turnip (Brassica rapa) (Tu). 

The last two are both from the Brassicaceae family and were used 

interchangeably. Combi was available from Kiel, 2003 and 2004 using Winter 

Vetch, Fodder Radish or no catch crop (NC). Vinjett was available from 

Aarslev, 2003 and 2004 using Winter Vetch, Fodder Radish/Turnip or no catch 

crop. Each of the fourteen lots was accumulated from three plots and varied in 

size from 7.9 kg to 18.2 kg subject to availability (Table 1). Climate, soil 

properties and yield were not subjects of interest in this investigation and will 

not be reported here. 

 

From each growth year and each location approximately half of the grains from 

each catch crop treatment were mixed forming a mixture treatment (Mx) (Table 

1). The mixtures were then sorted grain by grain into three approximately 

equally sized fractions representing a low (F1), medium (F2) and high (F3) 
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baking quality using laboratory scale TriQ SKNIR sorter (BoMill AB, Lund, 

Sweden) with a capacity of 2 kg h
-1

 (Table 1). The TriQ sorter recorded a near-

infrared reflection spectrum of each kernel from 1100 nm to 1700 nm with a 

bandwidth of 10 nm using a tungsten lamp and a diode array spectrometer. A 

calibration PCA model based on raw spectra from thousands of kernels of 

various origins had previously been established (Löfqvist and Nielsen, 2003). 

The entire lot of grains was subsequently sorted by classification based on a 

combination of the scores on the first two latent variables calculated from the 

spectra. The complex quality targets were set individually for each mixture in 

order to achieve approximately equally sized fractions (F1, F2 and F3) (Table 

1). 

 

The mixing and subsequent fractionation resulted in four mixture lots and 

twelve (4 × 3) sorted lots based on the distribution of qualities within each 

mixture. The mixture lot from Kiel, 2003 however was excluded in the 

subsequent process due to a very small lot size (0.5 kg). Two additional winter 

cultivars, Capo (Capo) available from Kiel, 2004 only and Pentium (Pent) 

available from Aarslev, 2004 only, both grown without preceding catch crop 

was included for reference. In total twenty-nine lots varying in size from 3.7 to 

15.2 kg secured enough material for the entire processing of grain to flour and 

bread with subsequent measurements (Table 1). The abbreviations in brackets 

above were used to form lot names for easy identification, thus a Vinjett lot 

from Aarslev, 2004 grown after Fodder Radish has ID: 04AaViFR. 
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Table 1: Experimental design with two locations/cultivars, AaVi and KiCo and two growth 

years, 03 and 04. In each block three different preceding catch crop strategies, NC, FR/Tu and 

WV were used. A mixture (Mx) of these was subsequently fractionated by the TriQ system, 

F1, F2 and F3 (Arrows). The mixture proportions as well as yields in the approximately 

equally sized fractions are indicated. Two winter cultivars with no preceding catch crop were 

also included. Flour yield and dry matter ash content of the flour is shown for reference. 

Mmix Sorting Mres Fl. Yield Ash DM

Lot [kg] [kg] [%] [%]

2003 Aarslev Vinjett (03AaVi)

No Catch (NC)   3.6  (20.8%) 4.1 71.3 0.53

Fodder Radish (FR)   6.0  (34.7%) 6.4 68.2 0.51

Winter vetch (WV)   7.7  (44.5%) 8.2 67.6 0.50

Mixture (Mx) 17.3  (100%) 3.8 71.8 0.61

Fraction 1 (F1) 4.1 (30.4%) 68.3 0.49

Fraction 2 (F2) 4.5 (33.3%) 68.1 0.50

Fraction 3 (F3) 4.9 (36.3%) 68.2 0.52

2004 Aarslev Vinjett (04AaVi)

No Catch (NC)   6.7  (29.3%) 7.1 65.9 0.51

Turnips (Tu)   8.9  (38.9%) 9.4 66.6 0.51

Winter vetch (WV)   7.3  (31.9%) 7.8 69.2 0.53

Mixture (Mx) 22.9  (100%) 5.4 66.8 0.58

Fraction 1 (F1) 5.9  (35.1%) 69.0 0.50

Fraction 2 (F2) 5.5  (32.8%) 68.9 0.50

Fraction 3 (F3) 5.4  (32.1%) 69.4 0.51

2003 Kiel Combi (03KiCo)

No Catch (NC)   5.3  (32.7%) 5.6 68.9 0.50

Fodder Radish (FR)   5.4  (33.3%) 5.9 68.1 0.49

Winter vetch (WV)   5.5  (34.0%) 5.8 66.1 0.49

Mixture (Mx) 16.2  (100%) 0.5 * n.a. n.a.

Fraction 1 (F1) 4.9  (31.6%) 68.8 0.50

Fraction 2 (F2) 5.5  (35.5%) 69.3 0.51

Fraction 3 (F3) 5.1  (32.9%) 71.9 0.52

2004 Kiel Combi (04KiCo)

No Catch (NC)   7.1  (31.0%) 7.1 66.5 0.48

Fodder Radish (FR)   8.4  (36.7%) 8.3 66.1 0.49

Winter vetch (WV)   7.4  (32.3%) 7.4 66.3 0.49

Mixture (Mx) 22.9  (100%) 4.7 68.6 0.52

Fraction 1 (F1) 5.3  (30.8%) 72.3 0.51

Fraction 2 (F2) 6.3  (36.6%) 70.3 0.49

Fraction 3 (F3) 5.6  (32.6%) 69.3 0.51

2004 Winter Crops

04AaPent 16.2 65.4 0.57

04KiCapo 11.2 67.3 0.47

* This lot was too small and not included in further analysis

Mmix Sorting Mres Fl. Yield Ash DM

Lot [kg] [kg] [%] [%]

2003 Aarslev Vinjett (03AaVi)

No Catch (NC)   3.6  (20.8%) 4.1 71.3 0.53

Fodder Radish (FR)   6.0  (34.7%) 6.4 68.2 0.51

Winter vetch (WV)   7.7  (44.5%) 8.2 67.6 0.50

Mixture (Mx) 17.3  (100%) 3.8 71.8 0.61

Fraction 1 (F1) 4.1 (30.4%) 68.3 0.49

Fraction 2 (F2) 4.5 (33.3%) 68.1 0.50

Fraction 3 (F3) 4.9 (36.3%) 68.2 0.52

2004 Aarslev Vinjett (04AaVi)

No Catch (NC)   6.7  (29.3%) 7.1 65.9 0.51

Turnips (Tu)   8.9  (38.9%) 9.4 66.6 0.51

Winter vetch (WV)   7.3  (31.9%) 7.8 69.2 0.53

Mixture (Mx) 22.9  (100%) 5.4 66.8 0.58

Fraction 1 (F1) 5.9  (35.1%) 69.0 0.50

Fraction 2 (F2) 5.5  (32.8%) 68.9 0.50

Fraction 3 (F3) 5.4  (32.1%) 69.4 0.51

2003 Kiel Combi (03KiCo)

No Catch (NC)   5.3  (32.7%) 5.6 68.9 0.50

Fodder Radish (FR)   5.4  (33.3%) 5.9 68.1 0.49

Winter vetch (WV)   5.5  (34.0%) 5.8 66.1 0.49

Mixture (Mx) 16.2  (100%) 0.5 * n.a. n.a.

Fraction 1 (F1) 4.9  (31.6%) 68.8 0.50

Fraction 2 (F2) 5.5  (35.5%) 69.3 0.51

Fraction 3 (F3) 5.1  (32.9%) 71.9 0.52

2004 Kiel Combi (04KiCo)

No Catch (NC)   7.1  (31.0%) 7.1 66.5 0.48

Fodder Radish (FR)   8.4  (36.7%) 8.3 66.1 0.49

Winter vetch (WV)   7.4  (32.3%) 7.4 66.3 0.49

Mixture (Mx) 22.9  (100%) 4.7 68.6 0.52

Fraction 1 (F1) 5.3  (30.8%) 72.3 0.51

Fraction 2 (F2) 6.3  (36.6%) 70.3 0.49

Fraction 3 (F3) 5.6  (32.6%) 69.3 0.51

2004 Winter Crops

04AaPent 16.2 65.4 0.57

04KiCapo 11.2 67.3 0.47

* This lot was too small and not included in further analysis  
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Milling 

The lots were milled on a laboratory scale mill, Brabander Quadromat Senior 

(Duisburg, Germany) separating the bran and germ from the endosperm. The 

process involved a conditioning step in which 0.7 to 2.2% of water was added 

depending on the actual moisture content of the grains. Grains and water were 

mixed in a rotating drum for 2.5 to 8.5 hours in order to soften the bran prior to 

the milling. The flour yield varied from 65.4% to 72.3% with 99.3% to 99.8% of 

the flour in particle sizes smaller the 160 µm (sieve size). Flour yields and ash 

contents are reported in Table 1 for reference. The flour lots were kept in airtight 

plastic containers. 

 

Characterisations 

Physicochemical characterisations throughout the entire process from grain lots 

to bread were carried out in the following steps. A list of all parameters 

measured with a brief description can be found in Table 2. 

 

Grain NIT analysis 

Approximately 800 g of grain, representative for the lot, was poured into a Foss 

Infratec
TM

 1241 Grain Analyser. Ten NIT spectra from 850 - 1048 nm for every 

2 nm were recorded and averaged. Dry matter protein, bulk grain density, 

moisture content, Zeleny sedimentation volume, dry matter starch content and 

wet gluten content was automatically calculated based on the built-in global 

Foss calibration. 

 

Flour NIT analysis 

Moisture, dry matter protein, dry matter ash, Farinograph water absorption, 

Farinograph stability and wet gluten content were predicted by Foss Infratec
TM

 

1241 Grain Analyser using the Foss world-wide calibration. Two Infratec
TM
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flour cups were filled for each lot with flour and inserted into the hopper. For 

each cup ten near-infrared transmission scans from 850 nm to 1048 nm were 

recorded and averaged. Results from the replicate measurements were averaged. 

 

Standard flour test 

The falling number was determined in duplicates according to ICC Standard No. 

107/1 and averaged. Farinograph water absorption, development time, stability 

and softening were determined in a 50 g mixing chamber according to ICC 

Standard No. 115/1. Zeleny sedimentation volume was determined in duplicates 

according to AACC Standard No. 56-61A and ICC Standard No. 116/1 and 

averaged. Amylograph gelatinisation maximum and temperature at maximum 

gelatinisation was determined in duplicates according to ICC Standard no. 126/1 

and AACC Standard No. 22-10 and averaged. Wet gluten and gluten index were 

determined in duplicates according to AACC Standard No. 38-12 and ICC 

Standard No. 155 and averaged. 

 

Dough preparations and bread baking 

For each lot, three breads were made in household baking machines (Dubuc and 

Boudreau, 1992; Grausgruber et al., 2001; Hansen and Hansen, 1992, 1993; 

Peltonen and Salovaara, 1991; Zwingelberg and Brümmer, 1990), Panasonic 

Automatic Bread Bakery, SD-253 in the following manner. 7.1 g of dry yeast 

was distributed evenly in the pan around the kneading blade. Then 600 g of flour 

on a 14% moisture base were added followed by 8.4 g table sugar and 8.4 g salt. 

5 mL 0.48% ascorbic acid solution corresponding to 40 mg ascorbic acid/kg 

flour and tap water at 25ºC up to a total water amount corresponding to 

Farinograph water absorption (500 FU) was added. The baking process was 

initiated using the following SD-253 program settings, Size: XL, Bread type 

selection: BASIC, Option: BAKE RAPID and Crust colour: MEDIUM. The 
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basic program ran for 115 min. as follows: 20 min. kneading, 20 min. rising, 1 

min. kneading, 39 min. rising and 35 min. of baking. 

 

Immediately after baking, the breads were removed from the baking pans and 

left on a wire rack to cool for 90 minutes. The breads were weighed and the 

longitudinal as well as the transverse circumference, cL and cT, over the bread 

centre were measured. The volume of the bread was estimated by assuming a 

cuboid shaped bread with length and width determined by the pan size, 175 mm 

× 130 mm, and the height determined from circumferences: 

 

2

mm1302/mm1752/
Height TL −+−

=
cc

 (Eq. 1) 

 

This cuboid assumption does not take the individual more or less rounded 

shapes with cracks and pores of the bread crusts into account, but serves as an 

adequate substitute for the actual volume and for density calculation. 

Additionally the relative water loss during baking and cooling was registered. 

Two breads were frozen to -18ºC for texture and sensory analysis of thawed 

bread, while one was used immediately for texture analysis of the fresh bread 

crumb. 

 

Texture profile analysis of fresh bread crumb 

From each lot, one bread was cut into nine approximately 20 mm slices on a 

slicing machine. Actual slice thicknesses varied between 17.9 and 23 mm. Only 

slice no. 2, 3, 7 and 8 were used for texture profile analysis (TPA). The end 

slices 1 and 9 as well as centre slices 4, 5 and 6 were discarded to avoid 

influences from the crust and the kneading blade perforation respectively. The 

TPA was conducted by placing an entire slice of bread on the base plate of the 

TA-XT2 Texture Analyser, Stable Micro Systems fitted with a cylindrical 40 
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mm SMS steel probe with sharp edges. The force used to compress and 

decompress the bread crumb 15 mm (75%) twice with a 5 s delay between the 

first and the second compression was recorded. Test speed was 1 mm s
-1

, trigger 

force 0.02 N and post test speed was 5 mm s
-1

 after second down stroke. From 

each time-force curve and actual slice thickness the following nine parameters 

were extracted and calculated (Table 2) and the results from the four slices were 

averaged: 

Hardness 1 at 60% compression (H1): Force at 60 % compression during first 

down stroke corrected for deviation from 20 mm slice thickness. H1 = F60%,20mm. 

The force at 60% compression, F60%, and thickness, d in mm, were given by the 

TA-XT2. Thus the force expected to be used on the individual slices if they 

would have been 20 mm, F60%,20mm, can be calculated: 

 

 

mm20
%60mm20%,60

d
FF =  (Eq. 2) 

 

Hardness 2 at 60% compression (H2): Determined in the same way as H1 above, 

only for second down stroke. The 60% compression corrected with sample 

thickness was used as a more robust hardness measures in stead of the less 

robust maximum compression (75%) which due to the high compression rate is 

very sensitive to deviations in sample height. Adhesive Force (AF): The 

maximum negative force exhibited during first up stroke. Adhesiveness (Ad): 

The work done by the bread crumb to hold on to load cell, i.e. the negative area 

under the curve, during first up stroke. Resilience (Re): Area under curve during 

first upstroke until zero force divided by area under curve during first down 

stroke. Cohesiveness (Co): Area under curve during second down stroke divided 

by area under curve during first down stroke. Springiness (Sp): Distance 

travelled during second down stroke divided by distance travelled under first 
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compression (15 mm). Gumminess (Gu): Gu = Co·H1. Chewiness (Ch): Hh = 

Gu·Sp. 

 

Texture profile analysis and sensory evaluation of thawed bread crumb 

One bread was thawed at room temperature and equilibrated for 16 hours before 

cut into 20 mm slices. One slice was used for TPA on a Stevens Metric QTS 25 

connected to a Windows personal computer running Stevens Farnell QTS25 

Profile version 1.1WT 14-May-96. The test speed was 1 mm/s and trigger point 

0.05 N using the same probe as for fresh bread. The parameters hardness 1 (H1) 

and hardness 2 (H2) were the maximum force used at 75% compression (15 

mm) during first and second compression as no information on actual sample 

thickness was available from the QTS25. The rest of the parameters were 

extracted and calculated as for fresh bread (Table 2). The remaining slices were 

used for sensory profiling. Sensory profiling was performed in a sensory 

evaluation laboratory according to international standards (ASTM STP 913). 

The basic trained panel with many years of sensory experience was composed of 

10 assessors (4 males/6 females, aged from 30-55 years). They were trained for 

6 hours in sensory profiling of bread. Bread slices were cut vertically in halves 

and served to the assessors. The twenty-nine bread samples were served in 5 

sensory sessions. The panel evaluated 10 sensory attributes: yellowness, 

elasticity, fracturability, hardness, dryness, chewiness, adhesiveness and after 

taste, which are described in Table 2. Two attributes, wheat bread aroma and 

wheat bread taste intensities were discarded, as no systematic variation was 

found. Results from one assessor were likewise discarded due to low signal to 

noise ratio on all attributes. TPA and sensory analysis was repeated another day 

on a second thawed bread. TPA results were averaged. Replicate variation as 

well as assessor variation in the use of scale was removed by ANOVA-PLS (A-

PLS) with X as replicates and assessors 1 to 10 assigned with either zeroes or 
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ones and Y as sensory data. The Y residual after 11 PCs was extracted from the 

A-PLS result, averaged over judges and replicates and was hereafter used as 

level corrected sensory data in the subsequent analysis (Martens et al., 2000). 

 

Data processing 

A total of fifty-two parameters (Table 2) from grain to brain were recorded for 

twenty-nine wheat lots and arranged in one data matrix (29 × 52). Similarities 

and dissimilarities of the samples as well as the co-variation of variables were 

evaluated by principal component analysis (PCA) on mean centred and 

standardised data in LatentiX (Version 1.00, Latent5, Copenhagen, Denmark, 

www.latentix.com). The effect of growth year, location/cultivar and catch crop 

were evaluated by a three-factor ANOVA on all parameters for the twelve catch 

crop lots and the effect of growth year, location/cultivar and fractionation were 

likewise evaluated by a three-factor ANOVA on all parameters for the twelve 

fractionated lots in The Unscrambler (Version 9.2, Camo, Norway). In order to 

extract and compare the effects of catch crop treatments and TriQ fractionation 

only, the growth year and location/cultivar variation was removed by 

orthogonalisation against Y, a dummy matrix of 27 samples × 4 groups 

(03AaVi, 04AaVi, 03KiCo and 04KiCo) with ones and zeros corresponding to 

‘belong to group’ and ‘not in group’ respectively (Andersson, 1999; Svenstrup 

et al., 2005). 

 

XYYYYXX '1'

ortho )( −−=  (Eq. 3) 

 

X was the data matrix with all measurements, except for winter cultivar lots 

04AaPent and 04KiCapo which did not belong to any of the groups. Both 

matrices were mean centred before orthogonalisation and the inverse term in Eq. 

3 was in practise the pseudo-inverse as the centred Y’Y is not full rank. 
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Orthogonalisation was performed in Matlab (Version 6.5.0.180913a Release 13, 

The MathWorks, Inc., USA). 

 

Table 2: List and ranges of quality parameters measured with short descriptions and four letter 

abbreviations used in Table 3 and Figs. 1B and 2B. Abbreviations: first two letters refers to 

parameter and last two to origin: ~ = NIT prediction, _ = original test, G = grain, F = flour, FB 

= fresh bread, TB = thawed bread. 

Parameter Code Description Min Max Mean Std.

Predicted by NIT on grain in Foss Infratec 1241

Protein Pr~G Dry matter protein concentration in grain [%] 9.4 13.3 11.4 0.9

Density De_G Density of bulk grains determined by weight module [kg/hL] 71.2 86.1 79.2 4.0

Moisture Mo~G Moisture content in grain [%] 11.4 16.6 13.4 1.4

Zeleni Ze~G Sedimentation test at 15% moisture in grain [mL] 28.7 45.7 35.7 4.4

Starch Sc~G Dry matter starch concentration in grain [%] 66.2 69.4 67.7 0.9

W. Gluten WG~G Wet gluten in grain determined at 14% moisture [%] 18.2 29.8 23.3 3.5

Predicted by NIT on flour in Foss Infratec 1241

Moisture Mo~F Moisture content in flour [%] 13.9 15.8 14.7 0.5

Ash As~F Ash content in flour [%] 0.47 0.61 0.51 0.03

Protein Pr~F Dry matter protein concentration in flour [%] 8.8 12.0 10.4 0.8

Water Abs. WA~F Farinograph water absorption in flour determined at 14% moisture [%] 51.7 59.1 54.6 2.3

Stability St~F Farinograph stability in flour determined at 14% moisture [min] 2.7 8.3 3.6 1.5

W. Gluten WG~F Wet gluten in flour determined at 14% moisture [%] 22.8 30.7 26.2 2.1

Standard flour tests

Falling Num. FN_F Falling number determined at 14% moisture [s] 212 442 312 76

Water Abs. WA_F Farinograph water absorption in flour determined at 14% moisture [%] 51.1 61.8 56.1 3.3

Dev. Time DT_F Farinograph development time in flour determined at 14% moisture [min] 1.3 4.7 2.0 0.8

Stability St_F Farinograph stability in flour determined at 14% moisture [min] 0.9 8.0 3.6 2.2

Softening So_F Farinograph softening in flour determined at 14% moisture [FU] 45 155 88 25

Zeleni Ze_F Sedimentation test at 14% moisture in flour [mL] 26.0 37.5 31.5 2.9

Gel. Temp. GT_F Amylograph gelatinisation temperature in the gel. maximum [ºC] 70.4 89.4 80.4 7.7

Gel. Max. GM_F Amylograph gelatinisation maximum [AU] 195 1630 685 513

W. Gluten WG_F Wet gluten in grain determined at 14% moisture [%] 14.8 27.5 21.3 3.0

Gluten Ind. GI_F Gluten quality index, percentage strong gluten [%] 71.2 100.0 95.2 7.5

Bread proportions

Mass Ma_B Mass of bread after cool down [g] 855 919 884 19

W. Loss WL_B Relative water loss during baking and cool down [%] 0.19 0.27 0.23 0.02

Volume Vo_B Bread volume estimated from circumference after cool down [L] 2.62 3.87 3.19 0.41

Density De_B Based om volume and mass after cool down [g/L] 0.23 0.34 0.28 0.04

Texture profil analysis on fresh bread using TA-XT2 Texture Analyser

Hardness 1 H1FB Force recorded at 60% compression during first down stroke [N] 3.2 14.5 7.2 3.0

Hardness 2 H2FB Force recorded at 60% compression during second down stroke [N] 2.4 9.1 4.9 1.9

Adh. Force AFFB Maximum negative force recorded during first up stroke [N] 0.02 0.46 0.16 0.10

Cohesiveness CoFB Work done during second down stroke relative to work done during first down stroke [-] 0.58 0.73 0.65 0.04

Springiness SpFB Recovery height relative to compression length [-] 0.84 0.96 0.90 0.03

Gumminess GuFB Gumminess = Cohesiveness × Hardness 1 [N] 2.2 8.4 4.6 1.7

Chewiness ChFB Chewiness = Gumminess × Springiness [N] 2.0 7.5 4.1 1.5

Resilience ReFB Positive work done during first upstroke rel. to work done during first down stroke [-] 0.22 0.36 0.27 0.03

Adhesiveness AdFB Negative work done during first upstroke [Ns] 0.02 2.16 0.54 0.49

Texture profil analysis on thawed bread using Stevens QTS-25

Hardness 1 H1TB Maximum force recorded during first down stroke (75% comp) [N] 16.3 61.6 31.9 12.0

Hardness 2 H2TB Maximum force recorded during second down stroke (75% comp) [N] 13.2 43.5 24.7 8.8

Adh. Force AFTB Maximum negative force recorded during first up stroke [N] 0.00 0.12 0.04 0.03

Cohesiveness CoTB Work done during second down stroke relative to work done during first down stroke [-] 0.27 0.45 0.35 0.04

Springiness SpTB Recovery height relative to compression length [-] 0.74 0.96 0.85 0.05

Gumminess GuTB Gumminess = Cohesiveness × Hardness 1 [N] 5.5 21.0 11.0 4.0

Chewiness ChTB Chewiness = Gumminess × Springiness [N] 5.0 17.3 9.2 3.3

Resilience ReTB Positive work done during first upstroke rel. to work done during first down stroke [-] 0.01 0.05 0.02 0.01

Adhesiveness AdTB Negative work done during first upstroke [Ns] 0.01 0.86 0.22 0.23

Sensory panel evaluations on thawed bread

Yellowness YeTB Rating of the colour yellow in the crumb -4.8 5.1 0.4 3.1

Elasticity ElTB Recovery of crumb height rated after compression between thumb and forefinger -3.5 3.5 0.2 2.0

Fracturability FrTB The tendensy of the crumb to fracture while stretching the crumb between the hands -2.1 4.1 0.4 1.7

Hardness HaTB The hardness of crumb rated at first bite -2.9 2.3 -0.2 1.7

Dryness DrTB Rating of the crumb dryness in the mouth when chewing -3.1 2.8 0.0 1.3

Chewiness CwTB The amount of mastications before the crumb bite is ready to swallow -2.2 1.5 -0.2 1.1

Adhesiveness AhTB The tendency of the crumb to stick in the mouth and forming a lump when chewing -1.9 1.5 -0.1 0.9

Aftertaste AfTB Intensity of non-specific after-taste (e.g. sourish, staled, yeast) -1.0 2.9 0.1 1.3  
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Results and Discussion 

The PCA overview in Figure 1 of the first two components explaining 34% and 

21% of the variation by screening the twenty-nine wheat lots with fifty-two 

parameters shows the most pronounced patterns in the data. In the score plot, 

Fig. 1A, four distinct groups of lots are seen corresponding to the four 

combinations of growth year and location/cultivar. First principal component 

(PC) is thus primarily determined by growth year while second PC is determined 

by location/cultivar, hence climate, environment and genetics are the 

fundamental sources of variability with regard to the wheat lots and parameters 

measured here. As Combi was exclusively grown in Kiel and Vinjett only grown 

in Aarslev, the effects of location and cultivar are confounded and cannot be 

distinguished further. However, in the present study the effects of sorting as 

compared to catch crop diversification is in focus and thus the fundamental 

variability due to genetics, climate and environment as seen in Fig. 1A 

conveniently spans the data space. Within each group the various treatments are 

indicated. Since fractions 1 to 3 (F1, F2 and F3) are sorted from a mixture (Mx) 

of the field treatments (NC, FR and WV), the fractioned lots within each group 

was a priory expected to posses properties in the same order of magnitude as the 

field treatments only spanned systematically according to internal complex 

quality trait and the variability present in the mixture. The PCA elegantly 

demonstrates that bulk diversified fractions 1 to 3 span the entire variation range 

in all groups, fractions 1 and 3 being the extremes. However, in group 03AaVi, 

the no catch crop (NC) treatment lot appears to be a mild outlier. Thorough 

inspection of data indicates that the data for this particular lot are indeed 

generally relatively extreme compared to the data of lots from the same year and 

location/cultivar. Although extreme relative to the group, it does not represent 

an unlikely variation. At this stage, it is not detrimental for the analysis. The 

direction of the fractions 1 to 3 appears to be influenced by both PC1 and PC2, 
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thus the effect of fractionation appears to be systematic as opposed to the catch 

crop treatment. The winter cultivars 04KiCapo and 04AaPent are apparently 

quite similar to the Combi lots from Kiel 2004 (04Ki). 

 

The corresponding loadings for the fifty-two parameters in Fig. 1B are 

coherently clustered and should be examined along with the two ANOVAs in 

Table 3. The overall confirmatory coherence between the parameters measured 

at all levels of the process from grain to brain validates the results of individual 

parameters. Most of the significant parameters for factor year have high absolute 

scores on PC1 and likewise for the significant parameters for location/cultivar 

on PC2. However the PCA plot (Fig. 1A and B) contains more than year and 

location/cultivar variation in the first two PC’s and may appear messy without 

the statistical information in Table 3. The block effects of growth year and 

location/cultivar are not of particulate interest here, however included for 

completeness and only briefly covered in the following. Bread texture and 

volume along with enzyme activity and gluten content and quality span the first 

PC (Fig. 1B). This immediate major quality differentiation by physical 

appearance where lots from 2003 are more compact than lots from 2004 can 

seen by inspecting Fig 1A and 1B simultaneously. This is probably primarily 

due to higher alpha-amylase activity in the more recent lots (2004) represented 

by falling number (FN_F), gelatinisation temperature (GT_F) and gelatinisation 

maximum (GM_F) in cluster 3 in Fig 1B. The falling number for 2003 is 

recorded to 329 – 442 s, while for 2004 it is 212 – 318 s. Correspondingly the 

gelatinisation maximum and gelatinisation temperature varies from 545 to 1630 

and from 86.1 ºC to 89.4 ºC respectively in 2003 lots, while for 2004 they are 

varying from 195 to 450 and from 70.4 ºC to 82.2 ºC respectively. This is 

confirmed in Table 3 in which all alpha-amylase activity measures as well as 

bread volume, density and hardness are highly significant (P < 0.001 and P < 
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0.01) with respect to the growth year factor. The potential contrary effect on 

bread volume due to slightly higher wet gluten content in 2003 compared to 

2004 (P < 0.01) was probably masked by the strong difference in enzymatic 

activity level. The location/cultivar (PC2, Fig. 1B) affected primarily 

Farinograph water absorption (P < 0.001) with pronounced effects on bread 

mass and related texture parameters, such as cohesiveness of fresh bread (P < 

0.01) and sensory elasticity and dryness attributes (P < 0.01 and P < 0.001). 

 

Going through the effects of varying catch crops in Table 3, it is clear that this 

strategy as a mean to diversify crop quality needs more attention in the choice of 

catch crop or the procedures for optimising the effect. No systematic, coherent 

and significant diversification was observed. However catch crops may still be a 

sensible way to increase yield and reduce nutrient loss and the resulting 

environmental impact (Eriksen et al., 2006; Francis et al., 1992; Kristensen and 

Thorup-Kristensen, 2004). The apparent significant results and results with low 

P value with respect to cohesiveness, springiness and resilience in TPA of fresh 

bread and hardness 1 and 2, gumminess and chewiness in TPA of thawed bread 

should not be considered viable results. They lack coherence with other 

physicochemical parameters and are redundant in each block of data. CoFB, 

SpFB and ReFB are describing more or less the same spongy or elasticity 

property in the fresh bread, which is not confirmed in thawed bread, where 

H1TB and H2TB are naturally correlated to GuTB and ChTB as they are 

functions of H1TB (Table 2). So even though five P < 0.05 (nearly six) indicate 

five (six) features of interest they are only due to two underlying phenomena 

which properly appear significant due random noise in the already rather noisy 

data from TPA. 
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Figure 1: Principal component analysis (PCA) of twenty-nine samples and fifty-two variables. 

A: Score plot of 03AaVi ( ), 03KiCo ( ),04AaVi ( ), 04KiCo ( ),04KiCapo and 

04AaPent ( ). PC1 explains primarily the year variation and PC2 primarily the 

location/cultivar variation. The two winter cultivars, 04KiCapo and 04AaPent are located in 

the same group as 04Ki. TriQ fractions 1, 2 and 3 are connected within each group. B: 

Loadings plot with all parameters arranged in coherent clusters especially important for year 

and location/cultivar variation. 
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Table 3: Two separate three factor ANOVAs for every quality parameter. 1. Catch crop 

treatment. 2. TriQ SKNIR sorting fractionation. Year and location/cultivar are blocks in each 

ANOVA. 

Data block Attribute

NIT on grain Pr~G 0.12
NS

0.83
NS

0.13
NS

0.085
NS

0.26
NS

0.0023
**

De_G 0.000010
***

0.0015
**

0.64
NS

0.00000000020
***

0.000000043
***

0.000080
***

Mo~G 0.0017
**

0.071
NS

0.76
NS

0.15
NS

0.84
NS

1.00
NS

Ze~G 0.36
NS

0.26
NS

0.16
NS

0.11
NS

0.25
NS

0.0028
**

Sc~G 0.39
NS

0.88
NS

0.57
NS

0.89
NS

0.012
*

0.032
*

WG~G 0.000032
***

0.12
NS

0.16
NS

0.00023
***

0.99
NS

0.0018
**

NIT on flour Mo~F 0.13
NS

0.63
NS

0.85
NS

0.10
NS

0.60
NS

0.94
NS

As~F 0.96
NS

0.0082
**

0.72
NS

0.41
NS

0.45
NS

0.13
NS

Pr~F 0.051
NS

0.50
NS

0.14
NS

0.073
NS

1.00
NS

0.0024
**

WA~F 0.017
*

0.0043
**

0.67
NS

0.15
NS

0.0054
**

0.22
NS

St~F 0.013
*

0.054
NS

0.75
NS

0.027
*

0.085
NS

0.47
NS

WG~F 0.048
*

0.56
NS

0.17
NS

0.032
*

0.37
NS

0.0025
**

Flour tests FN_F 0.000026
***

0.91
NS

0.86
NS

0.0000019
***

0.72
NS

0.010
*

WA_F 0.23
NS

0.0000087
***

0.30
NS

0.018
*

0.00000090
***

0.010
*

DT_F 0.12
NS

0.23
NS

0.41
NS

0.11
NS

0.052
NS

0.078
NS

St_F 0.00021
***

0.35
NS

0.59
NS

0.051
NS

0.46
NS

0.20
NS

So_F 0.064
NS

0.24
NS

0.90
NS

0.021
*

0.64
NS

0.050
*

Ze_F 0.58
NS

0.41
NS

0.62
NS

0.48
NS

0.61
NS

0.051
NS

GT_F 0.00000028
***

0.98
NS

0.58
NS

0.0000000065
***

0.25
NS

0.046
*

GM_F 0.00026
***

0.078
NS

0.59
NS

0.00037
***

0.041
*

0.69
NS

WG_F 0.0092
**

0.78
NS

0.23
NS

0.0024
**

0.44
NS

0.00094
***

GI_F 0.022
*

0.22
NS

0.45
NS

0.010
*

0.065
NS

0.50
NS

Bread dim. Ma_B 0.035
*

0.0000047
***

0.90
NS

0.050
NS

0.00000066
***

0.0037
**

WL_B 0.00062
***

0.00062
***

0.31
NS

0.0024
**

0.045
*

0.13
NS

Vo_B 0.0078
**

0.045
*

0.56
NS

0.0042
**

0.21
NS

0.36
NS

De_B 0.0042
**

0.013
*

0.58
NS

0.0021
**

0.054
NS

0.35
NS

Fresh bread H1FB 0.0065
**

0.12
NS

0.60
NS

0.00011
***

0.0076
**

0.13
NS

TPA H2FB 0.0028
**

0.18
NS

0.66
NS

0.000068
***

0.023
*

0.13
NS

AFFB 0.19
NS

0.020
*

0.49
NS

0.0077
**

0.0018
**

0.70
NS

CoFB 0.95
NS

0.0047
**

0.046
*

0.79
NS

0.0069
**

0.38
NS

SpFB 0.35
NS

0.024
*

0.085
NS

0.17
NS

0.052
NS

0.057
NS

GuFB 0.0040
**

0.18
NS

0.74
NS

0.000028
***

0.011
*

0.081
NS

ChFB 0.0040
**

0.25
NS

0.84
NS

0.000019
***

0.011
*

0.046
*

ReFB 0.31
NS

0.0051
**

0.041
*

0.25
NS

0.010
**

0.075
NS

AdFB 0.30
NS

0.025
*

0.38
NS

0.27
NS

0.0022
**

0.68
NS

Thawed bread H1TB 0.24
NS

0.83
NS

0.049
*

0.072
NS

0.31
NS

0.87
NS

TPA H2TB 0.15
NS

0.99
NS

0.047
*

0.037
*

0.36
NS

0.93
NS

AFTB 0.27
NS

0.12
NS

0.32
NS

0.019
*

0.0095
**

0.40
NS

CoTB 0.22
NS

0.52
NS

0.26
NS

0.38
NS

0.40
NS

0.043
*

SpTB 0.39
NS

0.0048
**

0.32
NS

0.31
NS

0.31
NS

0.97
NS

GuTB 0.063
NS

0.77
NS

0.026
*

0.023
*

0.20
NS

0.85
NS

ChTB 0.062
NS

0.35
NS

0.016
*

0.025
*

0.14
NS

0.76
NS

ReTB 0.40
NS

0.88
NS

0.60
NS

0.79
NS

0.34
NS

0.90
NS

AdTB 0.68
NS

0.45
NS

0.40
NS

0.10
NS

0.027
*

0.45
NS

Thawed bread YeTB 0.80
NS

0.00080
***

0.80
NS

0.77
NS

0.00016
***

0.81
NS

Sensory eval. ElTB 0.12
NS

0.00017
***

0.68
NS

0.95
NS

0.00021
***

0.11
NS

FrTB 0.041
*

0.047
*

0.94
NS

0.00080
***

0.79
NS

0.052
NS

HaTB 0.058
NS

0.33
NS

0.95
NS

0.0017
**

0.23
NS

0.18
NS

DrTB 0.69
NS

0.0068
**

0.28
NS

0.12
NS

0.00076
***

0.00041
***

CwTB 0.065
NS

0.10
NS

0.80
NS

0.0022
**

0.32
NS

0.50
NS

AhTB 0.25
NS

0.034
*

0.87
NS

0.14
NS

0.35
NS

0.14
NS

AfTB 0.095
NS

0.032
*

0.96
NS

0.13
NS

0.046
*

0.56
NS

Location TreatmentYear Location Treatment Year

Fraction ANOVACatch crop ANOVA
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Fractionation on the other hand clearly exhibit pronounced significant effects for 

sixteen quality parameters. In addition fifteen quality parameters have close to 

significant P-values and at the same time lower P-values than for the 

corresponding catch crop factor (Table. 3). This was further visualised by 

removing the year and location/cultivar variation by employing 

orthogonalisation (Eq. 3) to the data matrix excluding lots 04AaPent and 

04KiCapo which did not belong to any of the groups. Now only the effects of 

catch crop treatments and fractionation remain. By PCA of the othogonalized 

matrix without 03AaViNC, which in this context appeared to be an outlier, a 

clear treatment pattern emerged, which may be viewed in Fig 2 parallel to Table 

3, last column. The scores plot in Fig. 2A shows that the first PC separates the 

fractions and at the same time show that the sorting diversification expanded the 

fundamental variation in the original lots encapsulated by the circle. It is 

noteworthy that the low quality fractions (F1s) are differentiated along PC2, 

while higher quality fractions, F2 and F3 are more specific. This is conceptually 

in agreement with the two component unsupervised calibration model which 

controls the sorting (Löfqvist and Nielsen, 2003). The significant parameters 

(Table 3) as well as those non-significant but low P values are responsible for 

the major variation along the first PC, indicated by ‘*’ and ‘ ’ in Fig. 2B. The 

short distance in the loadings plot (Fig. 2B) between the related parameters 

measured at various steps in the process validates the findings. Protein contents 

determined in grain and flour (Pr~G and Pr~F) are present in the exact same 

spot, thus confirms the findings. Likewise for wet gluten contents determined 

from grain NIT spectra (WG~G), flour NIT spectra (WG~F) and standard test 

(WG_F). Zeleny sedimentation volume (Ze~G and Ze_F) and Farinograph water 

absorption (WA~F and WA_F) also have similar values along the first PC 

regardless of how they were determined. None of the residual variation at higher 

order PCs (not shown) was found to explain variation due to fractionation. The 
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preceding catch crops used in the field did not have any systematic effect on the 

grouping of samples in the PCA scores plot (Fig. 2A) and confirm the findings 

in the ANOVA (Table 3). Thus, it is observed that the protein content, the 

quality of protein in terms of wet gluten and Zeleny sedimentation value and the 

subsequent dough handling properties in the Farinograph and the alpha-amylase 

activity are all differentiated by the TriQ fractionation. The fractionation 

strategy thus works well for these quality parameters on the different initial 

mixtures, with fraction 1 as low, fraction 2 as medium and fraction 3 as high 

quality. Having a high falling number may not be beneficial in itself as it leads 

to compact bread, but by keeping it relatively high; the possibility to regulate the 

amylase activity level is preserved. 

 

The resulting breads are consequently differentiated on mass (P < 0.01) and 

sensory perceived dryness (P < 0.001) due to water absorption (P < 0.05) (Table 

3). TPA chewiness of the fresh bread and cohesiveness of the thawed bread are 

both significant, however only with P < 0.05. The apparent lack of significant, 

coherent parameters regarding bread quality due to fractionation is most 

probably due to an unfortunate baking test method (see below). 
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Figure 2: Principal component analysis (PCA) of twenty-six samples (without winter cultivars 

04AaPent and 04KiCapo and outlier 03AaViNC) after removal of year and location/cultivar 

variations by orthogonalization (Eq. 3). A: Scores plot of 03AaVi ( ), 03KiCo ( ),04AaVi 

( ) and 04KiCo ( ) where PC1 explains the major variance in TriQ fractions which are 

connected with lines in each group. B: The loadings plot with ANOVA significant parameters 

(*) and parameters with low but non-significant P value for fractionation ( ). 

 

In summery the raw data of central grain and flour quality parameters extracted 

by the preceding multivariate analysis along with bread volume are presented in 

Table 4 for Aarslev/Vinjett lots and in Table 5 for Kiel/Combi lots. The data 

include results from catch crop treatments and their weighted means 
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corresponding to the mixture value and results from SKNIR fractionation and 

their weighted means. The means are included for validation of the results of 

individual fractions. The actual diversification obtained by fractionation can be 

compared to the variation in the starting material in terms of the different catch 

crop treatments. It is apparent that the systematic effect of SKNIR fractionation 

is pronounced, not only by significance level, but also by actual levels of the 

individual parameters. From the figures in columns F1, F2 and F3 in Table 4 and 

5 it is evident, that the concept of sorting may add value to an otherwise low 

quality crop. In the lots used here the flour protein was increased by 0.5 to 1.7 

%-point, wet gluten by 1.8 to 5.5 %-point and Zeleny sedimentation value by 

1.4 to 3.5 mL as compared to the weighted means of the starting material. 

Comparable but higher values were found at the grain level. Flour water 

absorption was increased by 0.5 to 1.4 %-point, development time by 0 to 1.6 

min, stability by -0.3 to 4.0 min, softening decrease by 6 to 34 FU and falling 

number increase by 10 to 48 s in fraction 3 as compared to the weighted mean of 

the starting material. Thus in this experiment, one third of the starting material 

was increased in quality and value (Fraction 3), one third remained close to 

average quality (Fraction 2) and one third was left of low baking quality 

(Fraction 1). The included farinograms gives a clear graphical representation of 

the dough consistency characteristics in the three fractions with increasing 

development time and stability through the fraction from 1 to 3. 

 

The obtainable differentiation and level of quality by TriQ sorting is only 

determined by the inherent heterogeneity of the lot being fractioned and the 

target size of the fractions. The differentiation between low (F1) and high (F3) 

quality regarding protein, wet gluten and water absorption for instance is greater 

for the Aarslev lots as compared to the Kiel lots. The heterogeneity of these 

parameters was thus bigger in Aarslev prior to the sorting. Larger differentiation 
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is obtainable if the fraction size is not an issue, but rather a specific target 

quality is the aim of the fractionation regardless of the potential yield (Nielsen, 

2002). The potential increased value of fractioning a given lot should be based 

on a test on a representative sample to evaluate the heterogeneity (Tønning et 

al., 2006) and the potential outcome of the sorting. 

 

The expected increasing bread volume with increasing fraction number, hence 

increasing protein content and quality (Bushuk et al., 1969), is only seen in the 

Aarslev/Vinjett lots, where the difference in protein content and wet gluten 

content between fraction 1 and fraction 3 is much larger than in the Kiel/Combi 

lots. Counteracting interaction between enzyme activity levels and protein 

content and quality, and especially an unfortunate choice of baking test not 

capable of differentiating wheat lots (Grausguber et al., 2001; Zwingelberg and 

Brümmer, 1990) appears to mask the potential effect of the SKNIR diversified 

protein quality on bread volume and further bread quality parameters. Although 

the SD-253 provided reproducible loaf volumes with relative standard deviation 

< 3% similar to other reports (Dubuc and Boudreau, 1992; Hansen and Hansen, 

1992, 1993; Peltonen and Salovaara, 1991), the kneading procedure in the 

automatic home-bakery apparently favours weak flours to ensure relatively good 

baking results regardless of the flour quality used. The baking test would 

probably provide much better results if the mixing was conducted outside the 

baking machine (Grausgruber et al., 2001; Zwingelberg and Brümmer, 1990), 

e.g. in the Farinograph mixing chamber (Peltonen and Salovaara, 1991). 
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Table 4: Raw data of parameters of particular interest and farinograms for field treatments as 

well as SKNIR fractionation for Aarslev Vinjett lots. ***, ** and * refers to significance 

levels P < 0.001, 0.01 and 0.05  respectively in separate three factor ANOVAs for every 

quality parameter with respect to SKNIR fractionation with year and location/cultivar as 

blocks from Table 3. Italic numbers are weighted means of three field treatments and three 

SKNIR fractions. Bold numbers are systematically affected by SKNIR fractionation. 
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Table 5: Raw data of parameters of particular interest and farinograms for field treatments as 

well as SKNIR fractionation for Kiel Combi lots. ***, ** and * refers to significance levels P 

< 0.001, 0.01 and 0.05  respectively in separate three factor ANOVAs for every quality 

parameter with respect to SKNIR fractionation with year and location/cultivar as blocks from 

Table 3. Italic numbers are weighted (W) means of three field treatments and three SKNIR 

fractions. Bold numbers are systematically affected by SKNIR fractionation. 

A
b

r.
U

n
it

s
N

C
F

R
/T

u
W

V
W

. 
M

ea
n

F
1

F
2

F
3

W
. 

M
ea

n

  
  

  
2

0
0

3
 K

ie
l 

C
o

m
b

i 
(0

3
K

iC
o

)

G
ra

in
D

en
si

ty
 *

*
*

D
e_

G
[k

g
/h

L
]

8
6

.1
8

5
.8

8
5

.7
8

5
.9

8
2

.9
8

3
.4

8
3

.9
8

3
.4

P
ro

te
in

 *
*

P
r~

G
[%

]
1

2
.4

1
1

.9
1

1
.9

1
2

.1
1

1
.3

1
2

.2
1

2
.2

1
1

.9

W
. 

G
lu

te
n

 *
*

*
W

G
~

G
[%

]
2

7
.4

2
6

.3
2

6
.2

2
6

.6
2

4
.6

2
6

.9
2

7
.1

2
6

.3

Z
el

en
y
 *

*
Z

e~
G

[m
L

]
3

9
.2

3
5

.9
3

6
.5

3
7

.2
3

3
.9

3
7

.1
3

8
.4

3
6

.5

F
lo

u
r

P
ro

te
in

 *
*

P
r~

F
[%

]
1

1
.0

1
0

.5
1

0
.7

1
0

.7
1

0
.0

1
1

.2
1

1
.2

1
0

.8

W
. 

G
lu

te
n

 *
*

*
W

G
_

F
[%

]
2

4
.6

2
3

.9
2

4
.5

2
4

.3
2

0
.9

2
4

.6
2

6
.1

2
3

.9

G
lu

te
n

 I
n

d
.

G
I_

F
[%

]
9

4
.1

8
7

.7
1

0
0

.0
9

4
.0

1
0

0
.0

1
0

0
.0

8
9

.6
9

6
.6

Z
el

en
y

Z
e_

F
[m

L
]

3
4

.1
3

3
.1

3
2

.5
3

3
.2

3
0

.2
3

5
.2

3
6

.0
3

3
.9

F
a
ll

. 
N

u
m

 *
F

N
_

F
[s

]
3

4
3

4
2

3
3

9
5

3
8

7
3

2
9

4
0

8
4

4
2

3
9

4

G
el

. 
T

em
p

. 
*

G
T

_
F

[°
C

]
8

7
.6

8
9

.3
8

8
.4

8
8

.4
8

6
.1

8
9

.1
8

9
.4

8
8

.3

G
el

. 
M

ax
.

G
M

_
F

[A
U

]
7

8
5

1
0

6
5

8
9

0
9

1
4

5
4

5
9

4
0

9
3

5
8

1
3

W
at

er
 A

b
s.

 *
W

A
_

F
[%

]
5

8
.4

5
8

.5
5

8
.4

5
8

.4
5

7
.5

5
8

.7
5

8
.9

5
8

.4

D
ev

. 
T

im
e

D
T

_
F

[m
in

]
2

.1
2

.0
2

.3
2

.1
1

.5
1

.7
2

.1
1

.8

S
ta

b
il

it
y

S
t_

F
[m

in
]

5
.9

5
.5

4
.8

5
.4

3
.2

7
.1

7
.3

5
.9

S
o
ft

en
in

g
 *

S
o
_

F
[F

U
]

6
0

5
0

6
5

5
8

8
0

5
0

4
5

5
8

B
re

a
d

V
o
lu

m
e

V
o

_
B

[L
]

2
.8

3
2

.6
6

2
.8

3
2

.7
8

2
.8

1
2

.6
4

2
.6

7
2

.7
0

  
  

  
2

0
0

4
 K

ie
l 

C
o

m
b

i 
(0

4
K

iC
o

)

G
ra

in
D

en
si

ty
 *

*
*

D
e_

G
[k

g
/h

L
]

7
7

.7
7

7
.7

7
7

.9
7

7
.8

7
7

.2
7

8
.0

7
8

.4
7

7
.9

P
ro

te
in

 *
*

P
r~

G
[%

]
1

0
.9

1
1

.5
1

1
.4

1
1

.3
1

0
.5

1
1

.0
1

2
.1

1
1

.2

W
. 

G
lu

te
n

 *
*

*
W

G
~

G
[%

]
1

8
.2

1
8

.9
1

8
.8

1
8

.7
2

0
.5

2
1

.3
2

4
.2

2
2

.0

Z
el

en
y
 *

*
Z

e~
G

[m
L

]
3

2
.2

3
5

.5
3

4
.4

3
4

.1
2

8
.7

3
1

.6
3

6
.2

3
2

.2

F
lo

u
r

P
ro

te
in

 *
*

P
r~

F
[%

]
9

.6
1

0
.1

1
0

.0
9

.9
9

.5
9

.8
1

0
.8

1
0

.0

W
. 

G
lu

te
n

 *
*

*
W

G
_

F
[%

]
1

8
.3

2
0

.1
2

0
.2

1
9

.6
1

7
.6

1
9

.0
2

2
.1

1
9

.6

G
lu

te
n

 I
n

d
.

G
I_

F
[%

]
1

0
0

.0
1

0
0

.0
1

0
0

.0
1

0
0

.0
1

0
0

.0
1

0
0

.0
1

0
0

.0
1

0
0

.0

Z
el

en
y

Z
e_

F
[m

L
]

3
0

.4
3

2
.2

3
0

.8
3

1
.2

2
7

.3
3

0
.3

3
4

.7
3

0
.8

F
a
ll

. 
N

u
m

 *
F

N
_

F
[s

]
2

7
2

2
2

8
2

4
2

2
4

6
2

2
1

2
4

1
2

6
3

2
4

2

G
el

. 
T

em
p

. 
*

G
T

_
F

[°
C

]
7

5
.8

7
2

.0
7

1
.7

7
3

.1
7

0
.4

7
1

.7
7

2
.9

7
1

.7

G
el

. 
M

ax
.

G
M

_
F

[A
U

]
3

3
0

2
3

0
2

4
0

2
6

4
2

1
0

2
4

0
2

6
0

2
3

7

W
at

er
 A

b
s.

 *
W

A
_

F
[%

]
5

8
.3

5
9

.0
5

8
.9

5
8

.8
5

8
.6

5
8

.3
5

9
.7

5
8

.8

D
ev

. 
T

im
e

D
T

_
F

[m
in

]
1

.3
1

.7
1

.5
1

.5
1

.5
1

.3
1

.6
1

.5

S
ta

b
il

it
y

S
t_

F
[m

in
]

1
.0

1
.8

1
.5

1
.5

0
.9

1
.5

1
.6

1
.3

S
o
ft

en
in

g
 *

S
o
_

F
[F

U
]

1
2

0
9

0
1

0
0

1
0

3
1

5
5

1
1

0
9

0
1

1
7

B
re

a
d

V
o
lu

m
e

V
o

_
B

[L
]

3
.0

9
3

.5
3

3
.3

7
3

.3
4

3
.7

1
2

.9
8

3
.0

3
3

.2
2

C
a
tc

h
 c

ro
p

 t
re

at
m

en
t

S
K

N
IR

 f
ra

c
ti

o
n

a
ti

o
n

A
b

r.
U

n
it

s
N

C
F

R
/T

u
W

V
W

. 
M

ea
n

F
1

F
2

F
3

W
. 

M
ea

n

  
  

  
2

0
0

3
 K

ie
l 

C
o

m
b

i 
(0

3
K

iC
o

)

G
ra

in
D

en
si

ty
 *

*
*

D
e_

G
[k

g
/h

L
]

8
6

.1
8

5
.8

8
5

.7
8

5
.9

8
2

.9
8

3
.4

8
3

.9
8

3
.4

P
ro

te
in

 *
*

P
r~

G
[%

]
1

2
.4

1
1

.9
1

1
.9

1
2

.1
1

1
.3

1
2

.2
1

2
.2

1
1

.9

W
. 

G
lu

te
n

 *
*

*
W

G
~

G
[%

]
2

7
.4

2
6

.3
2

6
.2

2
6

.6
2

4
.6

2
6

.9
2

7
.1

2
6

.3

Z
el

en
y
 *

*
Z

e~
G

[m
L

]
3

9
.2

3
5

.9
3

6
.5

3
7

.2
3

3
.9

3
7

.1
3

8
.4

3
6

.5

F
lo

u
r

P
ro

te
in

 *
*

P
r~

F
[%

]
1

1
.0

1
0

.5
1

0
.7

1
0

.7
1

0
.0

1
1

.2
1

1
.2

1
0

.8

W
. 

G
lu

te
n

 *
*

*
W

G
_

F
[%

]
2

4
.6

2
3

.9
2

4
.5

2
4

.3
2

0
.9

2
4

.6
2

6
.1

2
3

.9

G
lu

te
n

 I
n

d
.

G
I_

F
[%

]
9

4
.1

8
7

.7
1

0
0

.0
9

4
.0

1
0

0
.0

1
0

0
.0

8
9

.6
9

6
.6

Z
el

en
y

Z
e_

F
[m

L
]

3
4

.1
3

3
.1

3
2

.5
3

3
.2

3
0

.2
3

5
.2

3
6

.0
3

3
.9

F
a
ll

. 
N

u
m

 *
F

N
_

F
[s

]
3

4
3

4
2

3
3

9
5

3
8

7
3

2
9

4
0

8
4

4
2

3
9

4

G
el

. 
T

em
p

. 
*

G
T

_
F

[°
C

]
8

7
.6

8
9

.3
8

8
.4

8
8

.4
8

6
.1

8
9

.1
8

9
.4

8
8

.3

G
el

. 
M

ax
.

G
M

_
F

[A
U

]
7

8
5

1
0

6
5

8
9

0
9

1
4

5
4

5
9

4
0

9
3

5
8

1
3

W
at

er
 A

b
s.

 *
W

A
_

F
[%

]
5

8
.4

5
8

.5
5

8
.4

5
8

.4
5

7
.5

5
8

.7
5

8
.9

5
8

.4

D
ev

. 
T

im
e

D
T

_
F

[m
in

]
2

.1
2

.0
2

.3
2

.1
1

.5
1

.7
2

.1
1

.8

S
ta

b
il

it
y

S
t_

F
[m

in
]

5
.9

5
.5

4
.8

5
.4

3
.2

7
.1

7
.3

5
.9

S
o
ft

en
in

g
 *

S
o
_

F
[F

U
]

6
0

5
0

6
5

5
8

8
0

5
0

4
5

5
8

B
re

a
d

V
o
lu

m
e

V
o

_
B

[L
]

2
.8

3
2

.6
6

2
.8

3
2

.7
8

2
.8

1
2

.6
4

2
.6

7
2

.7
0

  
  

  
2

0
0

4
 K

ie
l 

C
o

m
b

i 
(0

4
K

iC
o

)

G
ra

in
D

en
si

ty
 *

*
*

D
e_

G
[k

g
/h

L
]

7
7

.7
7

7
.7

7
7

.9
7

7
.8

7
7

.2
7

8
.0

7
8

.4
7

7
.9

P
ro

te
in

 *
*

P
r~

G
[%

]
1

0
.9

1
1

.5
1

1
.4

1
1

.3
1

0
.5

1
1

.0
1

2
.1

1
1

.2

W
. 

G
lu

te
n

 *
*

*
W

G
~

G
[%

]
1

8
.2

1
8

.9
1

8
.8

1
8

.7
2

0
.5

2
1

.3
2

4
.2

2
2

.0

Z
el

en
y
 *

*
Z

e~
G

[m
L

]
3

2
.2

3
5

.5
3

4
.4

3
4

.1
2

8
.7

3
1

.6
3

6
.2

3
2

.2

F
lo

u
r

P
ro

te
in

 *
*

P
r~

F
[%

]
9

.6
1

0
.1

1
0

.0
9

.9
9

.5
9

.8
1

0
.8

1
0

.0

W
. 

G
lu

te
n

 *
*

*
W

G
_

F
[%

]
1

8
.3

2
0

.1
2

0
.2

1
9

.6
1

7
.6

1
9

.0
2

2
.1

1
9

.6

G
lu

te
n

 I
n

d
.

G
I_

F
[%

]
1

0
0

.0
1

0
0

.0
1

0
0

.0
1

0
0

.0
1

0
0

.0
1

0
0

.0
1

0
0

.0
1

0
0

.0

Z
el

en
y

Z
e_

F
[m

L
]

3
0

.4
3

2
.2

3
0

.8
3

1
.2

2
7

.3
3

0
.3

3
4

.7
3

0
.8

F
a
ll

. 
N

u
m

 *
F

N
_

F
[s

]
2

7
2

2
2

8
2

4
2

2
4

6
2

2
1

2
4

1
2

6
3

2
4

2

G
el

. 
T

em
p

. 
*

G
T

_
F

[°
C

]
7

5
.8

7
2

.0
7

1
.7

7
3

.1
7

0
.4

7
1

.7
7

2
.9

7
1

.7

G
el

. 
M

ax
.

G
M

_
F

[A
U

]
3

3
0

2
3

0
2

4
0

2
6

4
2

1
0

2
4

0
2

6
0

2
3

7

W
at

er
 A

b
s.

 *
W

A
_

F
[%

]
5

8
.3

5
9

.0
5

8
.9

5
8

.8
5

8
.6

5
8

.3
5

9
.7

5
8

.8

D
ev

. 
T

im
e

D
T

_
F

[m
in

]
1

.3
1

.7
1

.5
1

.5
1

.5
1

.3
1

.6
1

.5

S
ta

b
il

it
y

S
t_

F
[m

in
]

1
.0

1
.8

1
.5

1
.5

0
.9

1
.5

1
.6

1
.3

S
o
ft

en
in

g
 *

S
o
_

F
[F

U
]

1
2

0
9

0
1

0
0

1
0

3
1

5
5

1
1

0
9

0
1

1
7

B
re

a
d

V
o
lu

m
e

V
o

_
B

[L
]

3
.0

9
3

.5
3

3
.3

7
3

.3
4

3
.7

1
2

.9
8

3
.0

3
3

.2
2

C
a
tc

h
 c

ro
p

 t
re

at
m

en
t

S
K

N
IR

 f
ra

c
ti

o
n

a
ti

o
n

 



 28 

Conclusions 

 

This paper demonstrates that the fundamental variations in the bulk material is 

determined by climate (year), location (soil, local climate) and cultivar 

(genetics) while the  SKNIR fractionation on top of this variation base is 

superior as compared to catch crop diversification. The catch crops may 

however still be useful in the prevention of recipient pollution and nutrient 

conservation in the field. While this study demonstrates that the SKNIR sorting 

may serve as a way to increase crop value in organic farming as compared to 

various field treatments with insignificant effect its potential reach far beyond. 

In the future we foresee the sorting associated with appropriate chemometric 

calibrations as a breeding tool for improved nutritional value and for bioactive 

compounds such as betain, dietary fibres, polyphenols etc. and in quality added 

value in specialised high value gourmet products, bread production, biscuit 

production or animal feed and simultaneously as a filter for defect mycotoxin 

infected seeds (outliers). The present very high prices on the world market for 

energy combined with an increasing demand of cereals for feed in South East 

Asia have recently drastically increased the world market price on wheat. This 

tendency if sustainable will support industrial SKNIR sorting in the future. Even 

low quality fractions, e.g. mycotoxin infested fractions, may be economically 

utilized for heating and bio-ethanol. Emerging prototype sorting equipment with 

a capacity of 1 to 10 T h
-1

 may very well be integrated in a farm silo system – 

sorting the crop as it is harvested and stored. Alternatively a mobile system may 

become a part of the standard equipment in the regional machine pool. By up-

scaling the system it may also be used by the milling industry. 
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ABSTRACT 

 

Five spectroscopic technologies and combinations thereof were evaluated for 

prediction of twelve standard wheat flour parameters using partial least squares 

(PLS) and multi-block PLS (MBPLS). This was repeated on twenty-one quality 

attributes of breads baked from the flours to evaluate the feasibility for 

predicting end product quality at an early stage. Thirty-two diverse wheat lots 

were evaluated throughout an entire baking process from bulk grains to white 

bread. Near-infrared transmission (NIT) spectra were obtained from grains and 

flours. Near-infrared reflectance (NIR) and infrared (IR) spectra were obtained 

from the flours. The baking process was evaluated by nuclear magnetic 

resonance relaxometry of dough baked inside a temperature controlled magnet 

(NMR-baking). Flour functionality was assessed by protein and gluten contents, 

sedimentation, falling number, amylograph and farinograph recordings. Bread 

quality was assessed by mass, volume and instrumental and sensory texture 

analysis. NIT and NIR proved most powerful for prediction of flour quality. The 

flour quality parameters were indispensable for prediction of bread quality and 

when combined stepwise with NIT and NMR-baking data blocks the explained 

variance was further improved. The diversification of the wheat material and the 

baking method used were important for interpretation and require much more 

attention in the future. 
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Turning wheat into delicate and satisfactory spongy aromatic bread is an almost 

magic experience. The formation of the perfect visco-elastic dough capable of 

forming an air holding stable network of mainly protein and starch involves 

numerous chemical, physical and biological events to take place in timely order 

and intensity. Although bread making involves mixture of several ingredients, 

such as flour, yeast, water, oil, salt and sugar, it is the natural quantities and 

qualities of protein, starch and fat in the wheat which are the prerequisite for a 

good and dedicated bread product. The content and quality of the gluten fraction 

of the wheat protein is acknowledged to be the most important for the 

determination of end product quality of baked products (Bushuk et al 1969, 

Veraverbeke and Delcour 2002, Wesley et al 2001).  

 

In the food industry there is an increasing demand for thorough quality 

specifications with respect to chemical, physical and biological properties of 

flour products (Mirablés 2004) to ensure end product specifications. Since flour 

functionality determination is a time consuming and laborious task involving 

wet chemistry and physics, the simultaneous prediction of some or all essential 

flour functionality measures from rapid spectroscopic techniques is of great 

interest. Standard biochemical parameters such as protein, wet gluten, moisture, 

ash and starch content are already routinely determined by near-infrared 

transmission spectroscopy with great accuracy. The prediction of protein 

composition from NIR is showing promising results. Wesley et al (2001) 

established calibrations for the glutenin and gliadin fractions and Fontaine et al 

(2002) presented good calibration with respect to individual amino acids. The 

feasibility of predicting rheological properties as determined by Farinograph, 

Mixograph and Alveograph measurements of dough using NIR has been 

assessed multiple times with varying success (Delwiche and Weaver 1994, 

Delwiche et al 1998, Dowell et al 2006, Hrušková et al 2004, Mirablés 2003 
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2004). Similarly the prediction of bread quality in terms of loaf volume, density 

and crump structure using NIR has been assessed (Delwiche and Weaver 1994, 

Delwiche et al 1998, Dowell et al 2006). The feasibility of establishing good 

prediction models with regard to the physical rheological properties is governed 

by the chemical information in the NIR region regarding protein content and 

composition (Wesley et al 2001). The success of those studies is apparently 

controlled by the diversity of the materials used. The most successful studies 

used very diverse materials (Delwiche et al 1998, Mirablés 2003, 2004) and it is 

noted that the ability to predict rheological properties is largely governed by the 

high correlation to crude protein content. Prediction of instrumental texture in 

bread has been assessed by nuclear magnetic resonance relaxation (Engelsen et 

al 2001).  

 

Vibrational spectroscopy has proven extremely useful in the food and 

pharmaceutical industries for monitoring raw materials, process streams as well 

as end product quality (Dyrby et al 2002, Zachariassen et al 2005). Infrared as 

well as near-infrared spectroscopy provides a complex fingerprint of the internal 

chemical and physical composition of the irradiated food item which can be 

used for internal process monitoring and control in most applications. 

Vibrational spectroscopy measures the different vibrational energy states of 

molecular bonds. In the infrared region primarily the fundamental vibrational 

states are observed, while in near-infrared region it is the overtones and 

combination tones that are observed - primarily of anharmonic bonds that is C-

H, N-H and O-H in biological materials. Although prediction of reference 

quality parameters is useful, the spectra contain much more information as they 

are complete maps of the material and in the case of living material a 

physicochemical map or fingerprint of the entire phenome (Munck 2005). 

 



 5 

Another useful non-destructive technique is becoming more and more useful for 

qualifying food materials namely nuclear magnetic resonance (NMR) 

spectroscopy which studies the nuclear spin energy states of molecular nuclei, 

primarily the hydrogen (H) (Callaghan 1991). As the energy states of these 

nuclei are determined by the physical and chemical environment in which they 

are situated, very detailed information is available of complex systems such as 

food and natural products. One NMR technique is relaxometry in which H-

atoms are exited in a magnetic field and the protons relaxation back to 

equilibrium is observed over time. The so called transverse relaxation (T2-

relaxation) can be observed by Carr-Purcell-Meiboom-Gill (CPMG) pulse train 

(Carr and Purcell 1954, Meiboom and Gill 1958) and has been used to observe 

water and fat compartmentalisation in dough and bread as well as throughout the 

baking process (Engelsen et al 2001) using a temperature ramp. By observing 

the fat and water dynamics taking place during the baking process more detailed 

information may be obtained of both the process as well as the flour quality. 

Thus NMR pose an interesting screening tool for dynamic fingerprinting of food 

stuffs during processing and cooking (Micklander et al 2002,  Mortensen et al 

2005) as well as baking and texture prediction (Engelsen et al 2001). 

 

Normally standard baking tests require a fully equipped test bakery with trained 

staff for performing reproducible tests. In this study the use of automatic home-

bakeries was adopted due to the overall good reproducibility (Hansen and 

Hansen 1992, 1993, Peltonen and Salovaara 1991) and their general use in for 

screening purposes in breeding test laboratories. Some report that the home-

bakeries may lack discriminative power due to an unfortunate preference for 

weak doughs, which may mask the true potentials of wheats tested this way 

(Grausgruber et al 2001, Zwingelberg and Brümmer 1990). By ensuring large 
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diversity in the wheat materials analysed here (Tønning et al submitted), this 

was a priori considered a minor problem. 

 

In process analytical technology (PAT) (USFDA 2004), a concept initiated in 

the pharmaceutical industry and now entering other industries including the food 

industry, multivariate data handling and analysis plays a central role due to the 

need for process understanding and control (Kourti 2006). New methods 

handling large and diverse data sets from several spectroscopic sources and 

process steps are needed and different multi-block solutions have been 

suggested. In classical calibration problems there are just two blocks of data, the 

descriptor X-block and the reference Y-block to be predicted. Relations between 

samples and variables within the X and Y blocks, respectively, can thus be 

evaluated by hierarchical modelling, such as principal component analysis 

(PCA) (Hotelling 1933, Wold et al 1987). The relation and calibration between 

X and Y can be handled by partial least squares regression (PLS) (Geladi and 

Kowalski 1986, Wold et al 1983). In modern process studies however, having 

just one X block and one Y block is unusual. Thus the need for more advanced 

modelling tools taking the structure and information of conceptually meaningful 

blocks into account is evident. An early application of multi-block PLS 

(MBPLS) concerning the combination of data from various spectroscopic 

sources for prediction of product quality dates back to 1984 (Frank et al 1984). 

MBPLS is basically a large PLS model in which data from conceptually 

meaningful blocks are treated separately with respect to pre-treatment, scaling 

and weighting relative to each other (Qin et al 2001, Westerhuis and 

Coenegracht 1997, Westerhuis et al 1998, Westerhuis and Smilde 2001). Other 

multi-block approaches exist in which common and unique information is 

separated for detailed assessment, Serial PLS (S-PLS) (Berglund and Wold 

1999), Generalised orthogonal multiple co-inertia analysis PLS (GOMCIA-PLS) 
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(Vivien and Sabatier 2003), L-PLS (Martens et al 2005). The multiblock 

methods are generally applied to process monitoring (Choi and Lee 2005, Qin et 

al 2001, Westerhuis and Coenegracht 1997).  Brás et al (2005) used MBPLS and 

S-PLS to compare and combine near-infrared and mid-infrared spectra for 

prediction of protein and moisture in soy beans. Felício et al (2005) performed 

similar near-infrared and mid-infrared experiments for gasoline and gas oil 

parameters, comparing single PLS, MBPLS and S-PLS. Vivien et al (2005) used 

GOMCIA-PLS in prediction of sensory data of peas from near-infrared data. 

 

The aim of this study was to predict wheat flour functionality in terms of 

standard physicochemical parameters and wheat bread quality in terms of bread 

dimensions, instrumental texture and sensory evaluation by NIT spectroscopy of 

grain, NIT, NIR and IR spectroscopy of flour, NMR relaxation profiles of dough 

to bread and from milling process parameters. By using MBPLS, the individual 

and combined techniques are compared and the potential of complimentary 

information in different blocks is utilised (Fig. 1). In addition the sources of 

wheat material diversity are discussed in relation to the possibility of predicting 

quality parameters in flour as well as in bread. 

 

MATERIALS AND METHODS 

 

Wheat Material 

Twenty-nine organic wheat lots from Aarslev (Aa) in Denmark and Kiel (Ki) in 

Germany grown in 2003 (03) and 2004 (04) were used. Two spring cultivars; 

Vinjett (Vi) grown in Aarslev and Combi (Co) grown in Kiel were diversified in 

the field by varying preceding catch crops. The catch crops were: No catch crop 

(NC), Winter Vetch (Vicia villosa) (WV), Fodder Radish (Raphanus sativus var. 

Oleiformis) (FR) and Turnip (Brassica rapa) (Tu). The last two are both from 
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the Brassicaceae family and were used interchangeably. Mixture lots from each 

year and location were formed and subsequently diversified in a laboratory scale 

TriQ single-kernel near-infrared (SKNIR) sorting device (BoMill AB, Lund, 

Sweden) according an internal baking quality trait into three quality fractions 

(F1, F2 and F3) (Löfqvist and Nielsen 2003). Two winter (Wi) cultivars; Capo, 

available from Kiel 2004 and Pentium, available from Aarslev 2004 was used 

without further diversification. Detailed information regarding the above 

mentioned twenty-nine wheat lots is available from Tønning et al (submitted). 

Additionally three conventionally grown lots from Sejet Planteforædling 

(Denmark) (Se) were included for reference. These lots were experimental 

cultivars assigned as feed (Feed) and bread wheats (Bre1 and Bre2) according to 

prior knowledge. The abbreviations in brackets above were used to form lot 

names for easy identification, thus a Vinjett lot from Aarslev 2004 grown after 

Fodder Radish has ID: 04AaViFR. The lots are presented in Table I with flour 

extraction rate (yield), ash content, protein content and falling number for 

reference. 

 

Milling 

The lots were milled on a laboratory scale mill, Brabander Quadromat Senior 

(Duisburg, Germany) separating the bran and germ from the endosperm. The 

process involved a conditioning step in which 0.4 to 2.2%-points of water was 

added depending on the actual moisture content of the grains. Moisture was 

determined by near-infrared transmission – see below. Grains and water were 

mixed in a rotating drum for 2.5 to 8.5 hours in order to soften the bran prior to 

the milling. The white flour particle size distributions were determined by 

controlled shaking of 100 g of flour through of a stack of sieves with 

consecutively smaller sieve sizes with two rubber cubes in each sieve for 10 

min. Sieve seizes were 1000, 500, 250, 160 and 63 µm respectively. A total of 
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ten parameters were registered regarding the milling process (X6): Moisture 

content of the grain lots (12.1 – 15.4%), target conditioning moisture content 

(14.3 – 15.8%), conditioning water added (0.4 – 2.2%-points), conditioning time 

(2.5 – 8.5 h), relative milling yield of coarse bran (21.7 – 27.7%), fine bran (5.0 

– 10.1%) and white flour (65.0 – 72.3%) and flour particle size <63 µm sieve 

size (17.7 – 31.7%), 63-160 µm sieve size (67.7 – 81.8%) and >160 µm sieve 

size (0.2 – 0.7%). The flour lots were kept in airtight plastic containers. 
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Fig. 1. Conceptual overview of the stepwise partial least squares (PLS) and multi-block 

(MBPLS) screening approach. The number of variables in each block is indicated above. 

Arrows indicate individual PLS models as well as MBPLS combing two or more blocks. 

 

Grain NIT analysis 

Approximately 800 g of grain representative for the lot was poured into a Foss 

Infratec 1241 Grain Analyser. Ten NIT spectra from 850 - 1048 nm for every 2 

nm were recorded and averaged (X1). Bulk grain density (De_G) was 

automatically determined (Table II). Automatically predicted grain quality 

parameters were reported in Tønning et al (submitted). 
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TABLE I 

Thirty-two wheat lots of six grouped according to origin and diversification. Arrows 

indicate how the mixture lot (Mx) in each group was sorted into approximately equally 

sized fractions by SKNIR. Flour yield, ash content, dry matter protein and falling 

number is given for reference. Further data may be found in Tønning et al (submitted). 

Mmix Sorting Mres Fl. Yield Ash DM Protein Fall. Num.

Lot [kg] [kg] [%] [%] [%] [s]

2003 Aarslev Vinjett (03AaVi)

No Catch (NC)   3.6  (20.8%) 4.1 71.3 0.53 12.0 376

Fodder Radish (FR)   6.0  (34.7%) 6.4 68.2 0.51 10.1 399

Winter vetch (WV)   7.7  (44.5%) 8.2 67.6 0.50 10.4 397

Mixture (Mx) 17.3  (100%) 3.8 71.8 0.61 10.6 365

Fraction 1 (F1) 4.1  (30.4%) 68.3 0.49 9.5 372

Fraction 2 (F2) 4.5  (33.3%) 68.1 0.50 10.4 404

Fraction 3 (F3) 4.9  (36.3%) 68.2 0.52 11.9 404

2004 Aarslev Vinjett (04AaVi)

No Catch (NC)   6.7  (29.3%) 7.1 65.9 0.51 11.0 252

Turnips (Tu)   8.9  (38.9%) 9.4 66.6 0.51 9.6 234

Winter vetch (WV)   7.3  (31.9%) 7.8 69.2 0.53 10.1 234

Mixture (Mx) 22.9  (100%) 5.4 66.8 0.58 10.5 264

Fraction 1 (F1) 5.9  (35.1%) 69.0 0.50 8.8 212

Fraction 2 (F2) 5.5  (32.8%) 68.9 0.50 10.0 237

Fraction 3 (F3) 5.4  (32.1%) 69.4 0.51 11.9 250

2003 Kiel Combi (03KiCo)

No Catch (NC)   5.3  (32.7%) 5.6 68.9 0.50 11.0 343

Fodder Radish (FR)   5.4  (33.3%) 5.9 68.1 0.49 10.5 423

Winter vetch (WV)   5.5  (34.0%) 5.8 66.1 0.49 10.7 395

Mixture (Mx) 16.2  (100%) 0.5* n.a. n.a. n.a. n.a.

Fraction 1 (F1) 4.9  (31.6%) 68.8 0.50 10.0 329

Fraction 2 (F2) 5.5  (35.5%) 69.3 0.51 11.2 408

Fraction 3 (F3) 5.1  (32.9%) 71.9 0.52 11.2 442

2004 Kiel Combi (04KiCo)

No Catch (NC)   7.1  (31.0%) 7.1 66.5 0.48 9.6 272

Fodder Radish (FR)   8.4  (36.7%) 8.3 66.1 0.49 10.1 228

Winter vetch (WV)   7.4  (32.3%) 7.4 66.3 0.49 10.0 242

Mixture (Mx) 22.9  (100%) 4.7 68.6 0.52 10.1 251

Fraction 1 (F1) 5.3  (30.8%) 72.3 0.51 9.5 221

Fraction 2 (F2) 6.3  (36.6%) 70.3 0.49 9.8 241

Fraction 3 (F3) 5.6  (32.6%) 69.3 0.51 10.8 263

2004 Winter Crops

04AaPent N.a. 65.4 0.57 9.8 267

04KiCapo N.a. 67.3 0.47 9.4 318

2004 Sejet conventional

04SeFeed N.a. 65.0 0.46 8.5 356

04SeBre1 N.a. 69.5 0.49 12.4 388

04SeBre2 N.a. 65.2 0.47 11.1 392

* This lot was too small and not included in the analysis

Mmix Sorting Mres Fl. Yield Ash DM Protein Fall. Num.

Lot [kg] [kg] [%] [%] [%] [s]

2003 Aarslev Vinjett (03AaVi)

No Catch (NC)   3.6  (20.8%) 4.1 71.3 0.53 12.0 376

Fodder Radish (FR)   6.0  (34.7%) 6.4 68.2 0.51 10.1 399

Winter vetch (WV)   7.7  (44.5%) 8.2 67.6 0.50 10.4 397

Mixture (Mx) 17.3  (100%) 3.8 71.8 0.61 10.6 365

Fraction 1 (F1) 4.1  (30.4%) 68.3 0.49 9.5 372

Fraction 2 (F2) 4.5  (33.3%) 68.1 0.50 10.4 404

Fraction 3 (F3) 4.9  (36.3%) 68.2 0.52 11.9 404

2004 Aarslev Vinjett (04AaVi)

No Catch (NC)   6.7  (29.3%) 7.1 65.9 0.51 11.0 252

Turnips (Tu)   8.9  (38.9%) 9.4 66.6 0.51 9.6 234

Winter vetch (WV)   7.3  (31.9%) 7.8 69.2 0.53 10.1 234

Mixture (Mx) 22.9  (100%) 5.4 66.8 0.58 10.5 264

Fraction 1 (F1) 5.9  (35.1%) 69.0 0.50 8.8 212

Fraction 2 (F2) 5.5  (32.8%) 68.9 0.50 10.0 237

Fraction 3 (F3) 5.4  (32.1%) 69.4 0.51 11.9 250

2003 Kiel Combi (03KiCo)

No Catch (NC)   5.3  (32.7%) 5.6 68.9 0.50 11.0 343

Fodder Radish (FR)   5.4  (33.3%) 5.9 68.1 0.49 10.5 423

Winter vetch (WV)   5.5  (34.0%) 5.8 66.1 0.49 10.7 395

Mixture (Mx) 16.2  (100%) 0.5* n.a. n.a. n.a. n.a.

Fraction 1 (F1) 4.9  (31.6%) 68.8 0.50 10.0 329

Fraction 2 (F2) 5.5  (35.5%) 69.3 0.51 11.2 408

Fraction 3 (F3) 5.1  (32.9%) 71.9 0.52 11.2 442

2004 Kiel Combi (04KiCo)

No Catch (NC)   7.1  (31.0%) 7.1 66.5 0.48 9.6 272

Fodder Radish (FR)   8.4  (36.7%) 8.3 66.1 0.49 10.1 228

Winter vetch (WV)   7.4  (32.3%) 7.4 66.3 0.49 10.0 242

Mixture (Mx) 22.9  (100%) 4.7 68.6 0.52 10.1 251

Fraction 1 (F1) 5.3  (30.8%) 72.3 0.51 9.5 221

Fraction 2 (F2) 6.3  (36.6%) 70.3 0.49 9.8 241

Fraction 3 (F3) 5.6  (32.6%) 69.3 0.51 10.8 263

2004 Winter Crops

04AaPent N.a. 65.4 0.57 9.8 267

04KiCapo N.a. 67.3 0.47 9.4 318

2004 Sejet conventional

04SeFeed N.a. 65.0 0.46 8.5 356

04SeBre1 N.a. 69.5 0.49 12.4 388

04SeBre2 N.a. 65.2 0.47 11.1 392

* This lot was too small and not included in the analysis   
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Flour NIT analysis 

Two flour cups were filled for each lot with flour and inserted into the hopper of 

the Foss Infratec 1241 Grain Analyser. For each cup ten near-infrared 

transmission scans from 850 nm to 1048 nm were recorded and averaged (X2). 

Dry matter protein contents (Pr~F) along with other parameters reported 

elsewhere (Tønning et al submitted) were automatically calculated based on the 

Foss world-wide calibration. 

 

Flour NIR analysis 

Near-infrared reflectance spectra from 780 nm to 2498 nm in 2nm steps were 

recorded of flour filled ring cups on a Foss NIR Systems 6500 spectrometer with 

spinning sample module by averaging 16 scans. Background recordings were 

made using 8 scans. All lots were sampled in duplicates and subsequently 

averaged (X3). 

 

Flour IR analysis 

Infrared spectra from 1900 to 700 cm
-1

 for approximately every 2 cm
-1

 were 

recorded on an ABB/Bomen instrument with a diamond attenuated total 

reflection (ATR) unit. A small amount of flour was placed on the diamond and a 

pressure of 5 N/cm
2
 was applied. A total of 64 scans were averaged by the 

instrument. Background recordings were made using 128 scans. All lots were 

sampled in duplicates and subsequently averaged (X4). 

 

Standard flour test 

The falling number (FN_F), was determined in duplicates using Standard No. 

107/1 (ICC 1998) and averaged. Farinograph water absorption (WA_F), 

development time (DT_F), stability (St_F) and softening (So_F) were 

determined in a 50 g mixing chamber using Standard No. 115/1 (ICC 1998). 
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Zeleny sedimentation volume (Ze_F) was determined in duplicates according to 

Approved Method 56-61A (AACC 2000) and Standard No. 116/1 (ICC 1998) 

and averaged. Amylograph gelatinisation maximum (GM_F) and temperature 

(GT_F) at maximum gelatinisation was determined in duplicates according to 

Standard no. 126/1 (ICC 1998) and Approved Method 22-10 (AACC 2000) and 

averaged. Wet gluten (WG_F) and gluten index (GI_F) were determined in 

duplicates according to Approved Method 38-12 (AACC 2000) and Standard 

No. 155 (ICC 1998) and averaged (Table II). The data was stored in data matrix 

Y1=X7 and with bulk grain density (De_G) and protein content (Pr~F). 

 

Dough preparations and bread baking 

For each lot, three breads were made in household baking machines (Grausguber 

et al 2001, Hansen and Hansen 1992, 1993, Zwingelberg and Brümmer 1990), 

Panasonic Automatic Bread Bakery, SD-253 in the following manner. 7.1 g of 

dry yeast was distributed evenly in the pan around the kneading blade. Then 600 

g of flour on a 14% moisture base were added followed by 8.4 g table sugar and 

8.4 g salt. 5 mL 0.48% ascorbic acid solution corresponding to 40 mg ascorbic 

acid/kg flour and tap water at 25ºC up to total water amount corresponding to 

Farinograph water absorption was added. The baking process was initiated using 

the following SD-253 program settings, Size: XL, Bread type selection: BASIC, 

Option: BAKE RAPID and Crust colour: MEDIUM. The basic program ran for 

115 min. as follows: 20 min. kneading 20 min. rising, 1 min. kneading, 39 min. 

rising and 35 min. of baking. Immediately after second kneading at 40 min, 

approximately 2 g of dough was transferred from one of the baking machines to 

a 13 mm vide glass vial which was inserted into an 18 mm sized glass NMR 

tube and closed with a plastic cap and placed in the variable NMR temperature 

probe for NMR-baking (see below). 
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Immediately after baking, the breads were removed from the baking pans, 

weighed and left on a wire rack to cool for 90 minutes. The breads were 

weighed again (MaFB) and the longitudinal as well as the transverse 

circumference, cL and cT, over the bread centre were measured. The volume of 

the bread was estimated by assuming a cuboid shaped bread with length and 

width determined by the pan size, 175 mm × 130 mm, and the height determined 

from circumferences: 

 

2

mm1302/mm1752/
Height TL −+−

=
cc

 (Eq. 1) 

 

This cuboid assumption does not take the individual more or less rounded 

shapes with cracks and pores of the bread crusts into account, but serves as an 

adequate substitute for the actual volume (VoFB) and for density (DeFB) 

calculation. Additionally the relative water loss during baking and cooling 

(WLFB) was registered (Table II). The data was stored in matrix Y2 along with 

instrumental texture analysis and sensory analysis. Two breads were frozen to -

18ºC for sensory analysis of thawed bread (See below), while one was used 

immediately for texture analysis of the fresh bread crumb (See below). 

 

Dynamic NMR-baking profiling 

A 2 g dough sample (above) was rised and baked in a 23.2 MHz Maran 

Benchtop pulsed NMR Analyser, Resonance Instruments (Whitney, UK). 

CPMG recordings were made using the following settings: dwell time, DT = 50 

µs, echo time, τ = 100 µs, number of echoes, NE = 8190, points recorded for 

every echo, NECH = 1, receiver delay, RD = 1s, number of scans, NS = 8. Only 

even numbered echoes were used. Instrument dead time was 10 µs. The 

temperature was controlled by a continuous flow of air in the range from 34ºC to 

96ºC and back to 34ºC mimicking the temperature at the centre of the bread 
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during rising, baking and cooling. A measurement were made every 4 min for 

120 minutes, thus a total of 30 CPMG curves were recorded. The temperature 

was regulated after each measurement allowing approximately 3 min for 

stabilising the internal sample temperature. Ten recordings were made at 34ºC 

(raising time), then one recording at each of the temperatures, 36, 41, 46, 51, 56, 

61, 66, 71, 76, 81, 86, 91 and 96ºC (baking) and finally seven recordings at 34ºC 

(cooling). Before multi-block analysis the redundant data were reduced from 

4095 time points to 95 time points for each relaxation curve in the following 

way. The initial time points 1 to 20 was were kept without alterations, time 

points 21 to 95 were reduced to 25 points by averaging every three points, time 

points 96 to 495 were reduced to 25 point by averaging every 16 points, and 

time points 496 to 4095 were reduced to 25 points by averaging every 144 

points. Every NMR baking profile (30x95 data points) was max-normalised to 

the first acquisition point of the first CPMG curve to even out possible sample 

mass variations in the measurement area of the magnet. Relaxation curves were 

concatenated prior to the multi-block analysis (X5) (Fig. 2E). 

 

Texture profile analysis of fresh bread crumb 

From each lot, one bread was cut into nine approximately 20 mm slices on a 

slicing machine. Actual slice thicknesses varied between 17.9 and 23 mm. Only 

slice no. 2, 3, 7 and 8 were used for texture profile analysis (TPA). The end 

slices 1 and 9 as well as centre slices 4, 5 and 6 were discarded to avoid 

influences from the crust and the kneading blade perforation respectively. The 

TPA was conducted by placing an entire slice of bread on the base plate of the 

TA-XT2 Texture Analyser, Stable Micro Systems fitted with a cylindrical 40 

mm SMS steel probe with sharp edges. The force used to compress and 

decompress the bread crumb 15 mm (75%) twice with a 5 s delay between the 

first and the second compression was recorded. Test speed was 1 mm s
-1

, trigger 
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force 0.02 N and post test speed was 5 mm s
-1

 after second down stroke. From 

each time-force curve and actual slice thickness from the TA-XT2 the following 

nine parameters were extracted and calculated and the results from the four 

slices were averaged: 

Hardness 1 at 60% compression (H1): Force at 60 % compression during first 

down stroke corrected for deviation from 20 mm slice thickness. H1 = F60%,20mm. 

The force at 60% compression, F60%, and thickness, d in mm, were given by the 

TA-XT2. Thus the force expected to be used on the individual slices if they 

would have been 20 mm, F60%,20mm, can be calculated: 

 

 

mm20
%60mm20%,60

d
FF =  (Eq. 2) 

 

Thus a linear relationship is expected between thickness and force used to 

compress a given sample 60%. This assumption holds as long as deviations in 

thickness are small and improve the relative standard deviation on the hardness 

measure. Hardness 2 at 60% compression (H2): Determined in the same way as 

H1 above, only for second down stroke. The 60% compression corrected with 

sample thickness was used as a more robust hardness measures in stead of the 

less robust maximum compression (75%) which due to the high compression 

rate is very sensitive to deviations in sample height. Adhesive Force (AF): The 

maximum negative force exhibited during first up stroke. Adhesiveness (Ad): 

The work done by the bread crumb to hold on to load cell, i.e. the negative area 

under the curve, during first up stroke. Resilience (Re): Area under curve during 

first upstroke until zero force divided by area under curve during first down 

stroke. Cohesiveness (Co): Area under curve during second down stroke divided 

by area under curve during first down stroke. Springiness (Sp): Distance 

travelled during second down stroke divided by distance travelled under first 
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compression (15 mm). Gumminess (Gu): Gu = Co·H1. Chewiness (Ch): Hh = 

Gu·Sp (Table II). The data was stored in matrix Y2. 

 

Sensory evaluation of thawed bread crumb 

One bread was thawed at room temperature and equilibrated for 16 hours before 

cut into 20 mm slices. Sensory profiling was performed in a sensory evaluation 

laboratory according to international standards (ASTM STP 913). The basic 

trained panel with many years of sensory experience was composed of 10 

assessors (4 males/6 females, aged from 30-55 years). They were trained for 6 

hours in sensory profiling of bread. Bread slices were cut vertically in halves 

and served to the assessors. Thirty-two bread samples were served in 5 sensory 

sessions with 6 or 7 samples, respectively. The panel evaluated 10 sensory 

attributes: yellowness, elasticity, fracturability, hardness, dryness, chewiness, 

adhesiveness and after taste, which are described in Table II. Two attributes, 

wheat bread aroma and wheat bread taste intensities were discarded, as no 

systematic variation was found. Results from one assessor were likewise 

discarded due to low signal to noise ratio on all attributes. Sensory analysis was 

repeated another day on the second bread. Replicate variation as well as assessor 

variation in the use of scale was removed by ANOVA-PLS (A-PLS) with X as 

replicates and assessors 1 to 10 assigned with either zeroes or ones and Y as 

sensory data. The Y residual after 11 PCs was extracted from the A-PLS result 

and was hereafter used as level corrected sensory data in the subsequent analysis 

(Martens et al 2000) (Table II). The data was stored in matrix Y2. 
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TABLE II 

Quality parameters for flour functionality (Y1) and bread quality (Y2). 
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Data analysis 

NIT spectra of grains and NIT, NIR and IR spectra of flours were pre-processed 

in the Unscrambler (Version 9.2, Camo, Norway) using extended multiplicative 

scatter correction (EMSC) in order to remove additive, multiplicative and 

channel and squared channel dependent scatter resulting from physical 

variations in the samples (Martens et al 2003, Martens and Stark 1991). The 

spectroscopic data (X1 – X5) were centred and the milling data (X6), flour 

functionality (Y1) and bread quality data (Y2) were centred and scaled to unit 

variance. 

 

The multivariate data analysis was separated into two parts. In the first part 

MBPLS was used to screen the ability of the five spectroscopic techniques (X1 – 

X5) and the milling conditions (X6) individually and in combinations to predict 

twelve physicochemical flour parameters (Y1). In the second part, the twelve 

physicochemical variables were transferred to the explanatory blocks as X7. X1 – 

X7 was used to predict twenty-one bread quality attributes (Y2). Y2 contained 

four dimensions, nine TPA attributes and eight sensory perceived attributes. A 

conceptual overview of the block structure is presented in Fig. 1. The PLS and 

MBPLS regression models were calculated using the Multiblock-Toolbox (van 

den Berg et al 2001) from www.model.life.ku.dk in Matlab (Version 

6.5.0.180913a Release 13, The MathWorks, Inc., USA) and validated with full 

cross validation. The predictor blocks (X1 – X7) were equally weighted to norm 

1. 

 

RESULTS AND DISCUSSIONS 

 

In Fig. 2 the eight different data-blocks (X1-X6, Y1-Y2) for the 32 samples are 

presented after pre-processing and centring. NIT of grain and flour, NIR and IR 
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of flour (X1-X4) are presented after EMSC and centring, NMR-baking profiles 

(X5) are shown as concatenated and centred relaxation curves and milling 

process parameters (X6) as well as flour quality parameters (Y1=X7) and the 

bread quality parameters (Y2) are presented as scaled to unit variance and 

centred. An overview of the major variance in all blocks are shown in eight 

corresponding PCA scores plots in Fig. 3 showing the first two principal 

components. The sample origins are present as more or less distinct groups in all 

plots, however, the groups are not located relative to each other in the same way, 

which indicate that the individual blocks may contain both similar and 

complementary information regarding the lots. Within each group of spring 

wheats (03Ki, 03Aa, 04Ki and 04Aa) which were diversified post harvest using 

the TriQ SKNIR quality sorter the resulting fractions are connected with lines. 

Especially the flour functionality block (Y1) in Fig. 3G contains patterns 

influenced markedly by the quality diversification by fractionation. This 

systematic relation is not as pronounced in the remaining plots at least not in the 

first two PCs presented, although X1, X2, X3 and X4 in Fig 3A, B, C and D do 

indicate some systematic variation with respect to the fractionation. It is 

noteworthy that the post harvest sorting fractions in Fig. 3G are spanning much 

more variation in each group than the starting material varied by agronomical 

measures using different preceding catch crops. Finding the flour functionality 

greatly influenced by the fractionation is very encouraging in terms of the 

potential for post harvest diversification for added value. This was investigated 

further in Tønning et al (submitted). 
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Fig. 2. Eight blocks of data. A: EMSC and centred NIT of grains, B: EMSC and centred NIT 

of flour, C: EMSC and centred NIR of flour, D: EMSC and centred IR of flour, E: Centred 

NMR-baking profiles of dough, F: Auto-scaled milling parameters, G: Auto-scaled flour 

quality parameters and H: Auto-scaled bread quality parameters. Colours according to origin 

(see text and legend in figure and parameter abbreviations in Table II). 
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Fig. 3. Eight PCA plots of the data blocks presented in Fig. 1. A: EMSC and centred NIT of 

grains, B: EMSC and centred NIT of flour, C: EMSC and centred NIR of flour, D: EMSC and 

centred IR of flour, E: Centred NMR-baking profiles of dough, F: Auto-scaled milling 

parameters, G: Auto-scaled flour quality parameters and H: Auto-scaled bread quality 

parameters. Colours according to origin (see text and legend in figure and sample 

abbreviations in Table I). 



 22 

The prediction of flour functionality parameters in the Y1-block were 

investigated using the spectroscopic methods and the milling parameters (X1-X6) 

as predictor blocks with PLS and MBPLS. In Fig. 4A the explained variance of 

Y1 can be viewed using separate X-blocks as well as the combination of NIT of 

grain and NIT of flour (X1X2). Other combinations of two and three blocks were 

also investigated, however not displayed, since combining other blocks did not 

improve the overall model performance. With single blocks, the best predictions 

were obtained using either NIT on grain (X1), NIT on flour (X2) or NIR on flour 

(X3). They model 70.2%, 73.6% and 78.9% of Y1 using six, nine and ten PLS 

components respectively. In comparison IR (X4) were performing less 

satisfactory explaining only 68% of Y1. This confirms the near-infrared 

advantages over the mid-infrared (MIR) for prediction of internal quality traits 

as also noted by Brás et al (2005) arguing that the MIR region has a lower 

penetration depth and thus is very susceptible to variations in particle size 

distribution and general sampling and sample presentation issues due to very 

small sample size. The NMR-baking profiles (X5) were generally unable to 

describe flour functionality. The milling process parameters (X6) had no effect 

on (correlation to) the flour functionality (Y1) parameters presented here, hence 

conveniently ruling out the milling process as a source for systematic variation 

in the flour quality. 
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Fig. 4. PLS and MBPLS modelling performances. A: Explained flour functionality variance 

vs. number of PLS (MBPLS) components using individual predictor blocks and selected 

combinations. X1: ---, X2: ---, X3: ---, X4: ---, X5: ---, X6: ---, X1X2: —. B: Explained bread 

quality variance vs. number of PLS (MBPLS) components using individual predictor blocks 

and selected combinations. X1: ---, X2: ---, X3: ---, X4: ---, X5: ---, X6: ---, X7: ····, X1X7: —, 

X1X2X7: —, X1X5X7: —, X1X2X5X7: —. 

 

By using MBPLS, it was possible to combine two or more blocks for prediction 

of Y1. The blocks were weighted equally to norm 1, regardless of the number of 

variables in the individual blocks. Thus NIT of grains containing 100 variables 

had the same weight in the modelling as the NMR-baking profiles with 2850 

variables. Although different weighting could be used, equal weighting was a 

pragmatic solution when the relative importance of the individual blocks was 

unknown. If two blocks contain complimentary information about Y1 variables, 

the degree of explanation is expected to increase, when the blocks are combined, 

while combining block containing only similar information about Y1 a worse or 

an equal model is expected. By combining NIT of grain (X1) and NIT of flour 

(X2), the overall explained Y1-variance was increased to 79.1% using eight 

principal components (Fig. 4A). The NIT technique was used on grain and flour, 
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hence also conceptually complementary which is important in order to gain 

better model performance by combining blocks (van den Berg et al 2001). NIT 

on grain was probably particular important as some of the major variations in Y1 

seen in Fig. 3G were due to fractionation based on single-kernel near-infrared 

technology on the raw material (Löfqvist and Nielsen 2003, Tønning et al., 

submitted). Other blocks may contain complimentary information, but while this 

was not related to Y1, combining those blocks with NIT or NIR blocks (X1-X3) 

did not improve the explained variance of Y1. 

 

In Fig. 4B the accumulated explained variances of the twenty-nine bread quality 

(Y2) attributes are shown for the seven individual predictor blocks, now 

including flour quality parameters (Y1) as the seventh predictor block (X7). 

While X1 to X6 all explain less than 50% of the bread quality variance 

respectively, the flour quality block distinctively explains 59.9% of the variance 

regarding bread quality using only four PLS components. Although the 

spectroscopic techniques in principle are truly physicochemical fingerprints of 

the entire sample physics and chemistry, they are outperformed as predictors by 

the twelve standard flour tests. However by combining X7 with NIT on grain 

(X1), the prediction was improved to 61.5% using five components. Further 

addition of NMR-baking profiles (X5) or NIT of flour (X2) improved explained 

Y2 variance to 61.7% with six PLS components and 63.3% with seven PLS 

components respectively. Combining all above mentioned blocks (X1X2X5X7) 

the explained Y2 variance was increased to 64.3% with eight PLS components. 

Thus the conceptually different blocks do contain relevant complementary Y2-

related information. 

 

The rough evaluations in Fig. 4 of the various X-blocks and their combinations 

as predictors for the total Y-variances do not provide detailed information of the 
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ability for predicting individual quality parameters. In Table III, X1, X2, X3 and 

X1X2 are evaluated with respect to model complexity, i.e. number of optimal 

PLS components, correlation coefficient (r), RMSECV and explained Y1-

variations for the optimal models in each response variable.  

 

TABLE III 

Optimal number of PCs for individual flour functionality parameters using the four 

PLS and MBPLS models with the best overall performances (abbreviations in Table II). 

X1: NIT grain X2: NIT flour X3: NIR flour X1X2: NIT grain + flour

#Comp r RMSECV %Y #Comp r RMSECV %Y #Comp r RMSECV %Y #Comp r RMSECV %Y

De_G 5 0.83 2.2 68.6 7 0.90 1.74 80.0 6 0.92 1.51 84.9 8 0.94 1.37 87.6

Pr~F 11 0.96 0.26 91.6 5 1.00 0.089 99.0 6 0.99 0.090 99.0 10 0.99 0.102 98.7

FN_F 6 0.93 27 86.5 12 0.89 34 79.1 10 0.94 24 89.1 8 0.93 27 86.9

WA_F 13 0.95 1.02 90.8 10 0.96 0.91 92.7 12 0.98 0.70 95.7 13 0.98 0.70 95.6

DT_F 4 0.80 0.23 63.8 2 0.74 0.26 54.7 4 0.68 0.29 44.5 5 0.75 0.26 55.1

St_F 5 0.85 1.15 71.7 3 0.79 1.34 62.0 12 0.86 1.14 72.5 7 0.82 1.27 65.8

So_F 5 0.76 16.5 57.8 8 0.83 14.2 68.6 3 0.71 17.9 50.3 8 0.88 12.1 77.2

Ze_F 8 0.79 2.1 61.8 4 0.86 1.73 74.2 7 0.89 1.58 78.6 4 0.84 1.83 71.2

GT_F 7 0.94 2.6 88.9 13 0.89 3.6 78.5 13 0.96 2.2 92.2 9 0.94 2.6 89.0

GM_F 10 0.93 178 86.6 11 0.91 199 83.3 12 0.97 111 94.8 8 0.94 172 87.6

WG_F 10 0.97 0.85 93.3 10 0.96 0.87 92.8 8 0.98 0.67 95.8 8 0.97 0.75 94.8

GI_F 5 0.73 5.0 52.4 6 0.75 4.9 54.7 8 0.77 4.7 57.2 7 0.76 4.7 57.0  

 

The optimal models are highlighted and the corresponding predicted vs. 

measured plots are presented in Fig. 5A-L. Clearly NIR of flour (X3, Table III) 

is the individual technique which provides the best modelling power as was 

concluded from Fig. 4A. Protein (Pr~F) and wet gluten (WG_F) contents are 

very well determined with 99.0% and 95.9% explained using relatively few PLS 

components, six and eight respectively. A clear diversification in protein and 

gluten contents was achieved by the TriQ fractionation (Fig. 5B and K). 

Amylase activity measures; falling number (FN_F), gelatinisation temperature 

and maximum (GT_F, GM_F), were also well predicted with 89.1%, 92.2% and 

94.8% explained, however using ten, thirteen and twelve PLS components 

respectively. In comparison Dowell et al (2006) was unable to predict falling 

number using near-infrared reflection and transmission. From Fig. 5C, I and J it 

is clear that each group had a distinct level of amylase activity, high in 2004 and 

low in 2003, and although diversified further by the TriQ fractionation, the 

groups are clearly determining the outcome of the regression. Hence the good 
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correlation to amylase activity could at least partially be caused by confounding. 

The correlation may thus have and indirect origin or component not specifically 

connected to the amylase activity itself, but rather relate to other factors 

discriminating the groups. Farinograph water absorption (WA_F) was well 

predicted with 95.9% explained variance using twelve PLS components due to 

great differences with respect to the location and cultivar as well as TriQ 

fractionation effect (Fig. 5D). The associated Farinograph parameters, 

development time (DT_F), stability (St_F) and softening (So_F) were less well 

predicted although a clear effect of TriQ fractionation is observed in Fig. 5E, F 

and G. Softening was best predicted by combining NIT of grain and flour 

(X1X2) explaining 77.2%, while stability was explained by 72.5% using NIR on 

flour (X3) and development time was explained by 63.8% using NIT on grain 

(X1). In comparison Dowell et al (2006) and Mirablés (2004) got similar result 

for water absorption predicted by NIT however Mirablés (2004) provided much 

better predictions for the remaining Farinograph parameters, while Hrušková et 

al (2004) got worse result using NIR. Zeleny sedimentation was explained by 

78.6% using NIR (X3) and had a marked effect of the TriQ fractionation (Fig. 

5H). This was similar to Delwiche et al (1998) and Dowell et al (2006). The 

unfortunate distribution of gluten index (GI_F) with two thirds of the lots having 

GI=100% resulted in poor predictions (Fig. 5L). It is quite clear from Table III 

and Fig. 5, that the rough overall evaluation made in Fig. 4A suggesting an 

optimal model complexity using six, nine, ten and eight principal components 

was inadequate to determine the actual best predictor block or combination and 

the optimal model complexity for prediction of the individual parameters. 

Although a combination of NIT of grain (X1) and NIT of flour (X2) appeared 

superior, NIR on flour (X3) was performing best with regards to individual 

parameters. It is quite clear that the diversity of the lots included is very 

important for establishing good prediction models (Delwiche et al 1998), 
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however also the origin of the variation as presented in Fig. 5A-L may be 

important in order to gain process understanding. 
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Fig. 5. Predicted vs. measured of all flour quality parameters using the MBPLS models 

highlighted in Table III. Samples are coloured according to origin and fractions from quality 

sorting are connected with lines. Legend in figure. 

 

While flour functionality was determined by biochemical as well as rheological, 

i.e. physical parameters, the bread quality was determined primarily by physical 

parameters reflected in bread dimensions, texture profile analysis and sensory 

texture analysis. The relation of bread physical quality back to physicochemical 

measurements, i.e. spectroscopy as well as functionality, is thus quite complex 

and make predictions much more difficult which was demonstrated in Fig 4B 

with ample clarity. For a closer look at what is gained by combining the blocks 
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using MBPLS for prediction of bread quality, Table IV contains the similar 

information as Table III only regarding prediction of each individual property of 

bread quality. The best models with respect to both low complexity and low 

RMSECV are highlighted in the table, showing that bread mass (Ma_B), relative 

water loss (WL_B), TPA adhesiveness (AdFB) and sensory attributes, elasticity 

(ElTB), fracturability (FrTB) and dryness (DrTB) were not predicted better by 

adding more blocks to X7. By adding NIT of grain (X1) with the same weight as 

the flour quality parameters to the predictors, the bread volume, TPA hardness 1 

and 2 (H1FB, H2FB) as well as the related parameters gumminess (GuFB) and 

chewiness (ChFB) were improved as was the hardness and adhesiveness 

evaluated by the sensory panel (HaTB and AhTB).  

 

TABLE IV 

Optimal number of PCs for individual bread quality parameters using the four PLS and 

MBPLS models with the best overall performances (abbreviations in Table II). 

X7: Flour functionality X1X7: NIT grain + Flour func. X1X2X7: NIT grain, flour + Fl.func. X1X2X5X7: NIT gr., fl., NMR, Fl.func.

#Comp r RMSECV %Y #Comp r RMSECV %Y #Comp r RMSECV %Y #Comp r RMSECV %Y

Ma_B 4 0.97 5.0 94.2 5 0.97 5.2 93.6 14 0.98 3.7 96.8 7 0.96 5.7 92.2

WL_B 3 0.84 0.0119 70.3 4 0.84 0.0120 69.8 5 0.82 0.0126 66.9 4 0.83 0.0122 69.1

Vo_B 5 0.91 176 82.2 6 0.92 164 84.5 5 0.91 169 83.7 6 0.90 184 80.6

De_B 5 0.93 0.015 86.4 6 0.95 0.014 89.5 5 0.94 0.014 88.5 8 0.94 0.015 87.6

H1FB 4 0.90 1.3 81.8 5 0.92 1.22 83.9 5 0.92 1.20 84.6 6 0.92 1.19 84.8

H2FB 4 0.92 0.76 84.7 5 0.93 0.69 87.4 6 0.94 0.69 87.4 7 0.93 0.70 87.1

AFFB 3 0.72 0.096 51.5 3 0.72 0.095 52.1 6 0.74 0.092 55.1 6 0.72 0.096 51.6

CoFB 2 0.51 0.036 26.1 5 0.55 0.036 28.0 7 0.61 0.034 33.5 8 0.73 0.029 52.2

SpFB 4 0.44 0.025 18.1 5 0.48 0.025 21.3 5 0.49 0.025 22.1 8 0.66 0.021 42.5

GuFB 4 0.93 0.64 86.7 5 0.94 0.60 88.5 6 0.94 0.59 88.7 7 0.94 0.61 88.2

ChFB 4 0.93 0.55 87.2 5 0.94 0.51 88.6 6 0.94 0.52 88.5 7 0.94 0.54 87.6

ReFB 2 0.45 0.029 20.2 5 0.46 0.030 18.8 7 0.49 0.030 17.6 8 0.60 0.027 32.5

AdFB 2 0.53 0.80 28.2 2 0.53 0.81 27.6 6 0.54 0.82 25.9 1 0.50 0.83 24.3

YeTB 4 0.80 1.9 63.9 5 0.81 1.87 64.8 9 0.85 1.69 71.2 7 0.81 1.86 65.1

ElTB 8 0.84 1.13 70.8 9 0.81 1.24 64.6 10 0.83 1.20 67.3 13 0.86 1.08 73.5

FrTB 6 0.82 1.12 67.2 6 0.81 1.16 64.8 6 0.80 1.18 63.9 5 0.78 1.23 60.6

HaTB 5 0.82 1.02 67.4 6 0.85 0.93 72.4 7 0.87 0.88 75.6 5 0.83 1.00 68.6

DrTB 6 0.87 0.67 75.2 6 0.84 0.74 69.7 13 0.86 0.72 71.9 8 0.82 0.78 66.7

CwTB 3 0.81 0.72 65.5 4 0.80 0.73 64.5 7 0.84 0.67 69.9 5 0.78 0.78 60.1

AhTB 5 0.63 0.73 35.7 9 0.74 0.64 51.0 8 0.71 0.66 48.1 1 0.69 0.66 47.0

AfTB 3 0.85 0.65 71.5 4 0.86 0.63 73.6 5 0.86 0.62 74.2 3 0.84 0.66 71.1  

 

Further texture and sensory attributes were improved by adding NIT of flour 

(X2) to the predictors; TPA adhesive force (AFFB) and gumminess (GuFB), 

sensory yellowness (YlTB), hardness (HaTB), chewiness (CwTB) and aftertaste 

(AfTB). Explained variance of TPA cohesiveness (CoFB), springiness (SpFB), 

resilience (ReFB) and Hardness1 (H1FB) were improved by adding the NMR-



 29 

profiles (X5), thus confirming that CPMG relaxation curves of dough and bread 

contain information regarding texture (Engelsen et al 2001). However the 

instrumental spongyness represented by the cohesiveness, springiness and 

resilience (CoFB, SpFB, ReFB) as well as the instrumental and sensory 

adhesiveness parameters (AFFB, AdFB and AhTB) were not easily predicted. 

Only 28% to 55% of the variation in these parameters was explained in the 

models although the diversity is clearly caused by major differences between 

location/cultivar with the Aaslev/Vinjett lots being the most spongy and least 

adhesive (Fig. 6 G, H, I, L, M and T). In Tønning et al (submitted) 

location/cultivar factor was indeed significant for these attributes. The remaining 

attributes are predicted reasonably well considering the nature of the data. 

94.2%, 70.3%, 84.5% and 89.5% of mass, relative water loss, volume and 

density respective could be explained (Fig. 6A-D), 84.8 to 88.6% of TPA 

hardness, gumminess and chewiness could be explained (Fig. 6E, F, J and K), 

while 67.2% to 75.5% of the sensory attributes was explained (Fig. 6N-U except 

T). As with the prediction of Y1 the rough overall modelling of all parameters in 

Y2 in Fig. 4B was inadequate to evaluate which combination of predictor blocks 

were actually optimal for the prediction of individual attributes. However, the 

flour functionality block (X7) was able to model bread mass, relative water loss, 

sensory elasticity, fracturability and dryness. Adding the NIT blocks of grain 

and flour (X1 and X2) an improvement of the prediction of bread volume and 

density as well as most of the related texture parameters was observed. 
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Texture profile analysis:
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Fig. 6. Predicted vs. measured of all bread quality parameters using the MBPLS models 

highlighted in Table IV. Samples are coloured according to origin and fractions from quality 

sorting are connected with lines. Legend in figure. 
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In order to visualise how the bread quality data (Y2) are related to the flour 

functionality (X7) in these data, the regression coefficients of the PLS models 

corresponding to the first column in Table IV is shown in Fig, 7A and B. In Fig. 

7A the regression coefficients for bread volume and all similar looking 

regression coefficients are shown. The volume is primarily determined by 

falling number, Farinograph development time and softening, Amylograph 

gelatinisation maximum and temperature and to some minor extent bulk grain 

density, protein content and gluten index. Thus the flour functionality 

parameters in Y1 (X7) which were predicted less well; development time, 

softening and gluten index, by fast spectroscopic techniques were very 

important in the determination of end quality in terms of volume. This explains 

the difficulties in determining end bread quality directly from spectroscopic 

analysis (Fig. 4B). The attributes with essentially similar regression coefficients 

are conceptually in agreement; TPA hardness, chewiness and gumminess and 

sensory perceived hardness, chewiness and fracturability, i.e. voluminous bread 

is easy to fracture and is generally softer and needs less mastication compared to 

more compact bread. The origin of variations in these attributes may be ascribed 

partially to growth year (α-amylase activity) and diversification by sorting 

(Farinograph development time and softening), which can be confirmed by 

observing the corresponding panels in Fig. 5C, E, G, I and J and Fig. 6C, E, F, J, 

K, P, Q and S. 
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Fig. 7. Selected regression coefficients for PLS models predicting bread quality (Y2) from 

flour functionality (X7). A: Bread volume: ····, TPA hardness 1: —, TPA hardness 2: —, TPA 

gumminess: —, TPA chewiness: —, Sensory hardness: ---, Sensory chewiness: ---, Sensory 

fracturability: ---. B:  Bread mass: ····, Sensory yellowness: ---, Sensory elasticity: ---, 

Sensory dryness: ---, Sensory aftertaste: ---. 

 

In Fig. 7B the regression coefficients for bread mass and all similar looking 

regression coefficients are shown. The mass is (naturally) primarily determined 

by Farinograph water absorption. Sensory perceived dryness and elasticity as 

well as yellowness and aftertaste were essentially determined by the same 

parameter. Hence, bread with high water content appears less dry and less elastic 

to the sensory panel. The origin of these variations may be ascribed primarily to 

location/cultivar, which can be confirmed by observing the corresponding panels 

in Fig. 5D and Fig. 6A, N, O, R and U. 

 

These data coherently states that being able to predict bread mass and bread 

volume indirectly provides information regarding key texture attributes of the 

bread crumb. However it is not completely clear why protein content, gluten 

content and Zeleny sedimentation volume is of such comparable little influence 
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on bread volume (Fig. 7A) as would normally be expected (Bushuk et al 1969, 

Veraverbeke and Delcour 2002, Wesley et al 2001). Apparently the large 

difference in α-amylase activity between the growth years and an unfortunate 

preference for weak doughs in the baking machines (Grausgruber et al 2001) 

may influencing the outcome of this investigation and possibly mask the 

expected effects of protein quantity and quality on the resulting bread products. 

This challenge has been discussed further in Tønning et al (submitted) while 

focusing on the effects of the TriQ SKNIR fractionation effects. 

 

CONCLUSIONS 

 

In this study PLS and MBPLS modelling was used to screen several fast 

multivariate tools and their combinations for prediction of flour as well as bread 

quality. It was shown that near-infrared transmission spectroscopy of grain and 

flour in combination appeared superior for predicting twelve flour functionality 

parameters simultaneously although NIR on flour was the single block 

explaining the largest number of individual flour quality parameters. Good 

predictions were made for protein, water absorption, wet gluten, falling number, 

gelatinisation temperature and gelatinisation maximum. Development time, 

softening and Zeleny were predicted reasonably well, while stability and gluten 

index were not explained well by any method. The prediction of bread quality 

was primarily based on flour functionality although adding NIT of grain, NIT of 

flour and NMR-baking profiles did improve the predictive ability of the data 

collected. Bread dimensions were well predicted as were instrumental texture 

attributes, hardness, gumminess and chewiness. Of sensory perceived attributes; 

yellowness, elasticity, fracturability, hardness, dryness, chewiness and aftertaste 

were all well determined considering the origin of the data. The MBPLS method 

proved useful for screening the various blocks of data and their combinations; 



 34 

however screening results should be followed by more thorough investigations 

of performance on individual variables as shown here. The flour functionality 

parameters proved essential for prediction of end product quality. Especially 

bulk grain density, water absorption, development time, softening, falling 

number, gelatinisation temperature and gelatinisation maximum and gluten 

index were important for prediction of end product quality. By assessing the 

origin of the variation more inight is gained regarding possible confounding 

effects. 
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Abstract

This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion–relaxation
correlation NMR spectra prior to 2D-Laplace inversion to the T2–D domain. The decomposition is advantageous for better interpreta-

tion of the complex correlation maps as well as for the quantification of extracted T2–D components. To demonstrate the new method
seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance
(NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr–Purcell–Meiboom–Gill
(CPMG) pulse echo train. By varying the gradient strength, 2D diffusion–relaxation data were recorded for each sample. From these
double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion–relaxation components, explain-
ing 99.8% of the variation in the data set. These two components were subsequently transformed to the T2–D domain using 2D-inverse
Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct
distribution with peak intensity at D = 3 · 10�12 m2 s�1 and T2 = 180 ms. The water component consisted of two broad populations of
water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10�9 m2 s�1, T2 = 10 ms and
D = 3 · 10�13 m2 s�1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were
effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-
water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the
samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of dif-
fusion–relaxation spectra, as it improves not only the interpretation, but also the quantification.
� 2007 Elsevier Inc. All rights reserved.

Keywords: DRCOSY; PARAFAC; Laplace inversion; Diffusion; Relaxation; Correlation spectroscopy; NMR; PGSTE; Dough; Water; Oil
1. Introduction

Characterisation of water and fat components in food is
of prime importance due to its modulation of important
properties such as taste, texture, oxidation and shelf life.
1090-7807/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmr.2007.05.018
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Diffusion correlated NMR relaxometry is a unique tech-
nique for characterisation of dynamics, compartmentalisa-
tion and phases of fat and water in food, as it is able to
measure complex solid or semi-solid food matrices such
as meat, cheese, dough and bread. This correlation tech-
nique, in which 2D-Laplace inversion NMR is used to pro-
vide a map in T2–D space, is used to analyse the complex
multi-exponential behaviour of the relaxation and diffusion
rates in heterogeneous systems. It enables us to obtain a
plot that is easy to interpret and separates components of
a system via their dynamics, revealing additional informa-
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tion by correlating these molecular motions when com-
pared with a 1D technique [1–3].

2D diffusion–relaxation data are double-exponentially
decaying landscapes and thus second order data structures.
Data from series of complex samples can with advantage
be analysed using multi-way chemometric methods, as
these will provide for unique resolution of pure component
landscapes. Multi-way analysis has successfully been
applied in several chemical fields including fluorescence
emission–excitation spectroscopy [4] and 2D NMR spec-
troscopy [5,6]. The key issue in multi-way analysis is to
have access to boxes of data rather than tables of data.
Usually, a single spectrum is recorded for each sample.
Data for several samples are then gathered in a matrix/
table. If, instead, the data are recorded as a function of
two variables (e.g. residual magnetisation as a function of
time, yielding relaxation, and as a function of magnetic
field gradient, yielding diffusion), then the data from one
sample are contained in a matrix. For several samples a
box of data is obtained. Such multi-way data can be mod-
elled with specialized tools that take particular advantage
of the data structure. Most notably, the so-called PARA-
FAC model [7] is an interesting alternative to traditional
data analysis tools, because it allows resolving complex
mixture measurements into the pure single-component
spectra. The advantage of PARAFAC in this context is
its ability to provide unique solutions to data that are
approximately multi-linear. T2–D weighted relaxation data
is one example of trilinear data. These can be decomposed
by PARAFAC into a few pure and unique physico-chemi-
cal components with exactly the same data structure as the
original data. A subsequent T2–D Laplace inversion of the
resolved components will then provide the T2–D distribu-
tion profile of the pure components. The PARAFAC algo-
rithm thus works as a filter, extracting only the systematic
variation from a coherent set of DRCOSY recordings,
while leaving out the non-systematic variation in the resid-
uals. The combined method constitutes a significant
improvement to the complex T2–D Laplace inversion of
individual samples in which the researcher has no objective
means of assessing if individual peaks represent physico-
chemical components or artefacts that appear due to the
ill-conditioned problem and unfortunate choice of regular-
isation. A conceptual sketch of the new composite method
demonstrated in this paper is shown in Fig. 1.

2. Theory

The correlated measurement of diffusion and spin rela-
tions by NMR requires the use of an r.f. and magnetic field
gradient pulse train which ‘‘encodes’’ for both parameters
on the same nuclear spin magnetisation. The separate
encoding methods for diffusion and relaxation are
described in detail elsewhere [8]. The combined DRCOSY
method uses a pulsed gradient stimulated echo (PGSTE)
[9,10] followed by a Carr–Purcell–Meiboom–Gill (CPMG)
pulse echo train [11,12]. During that CPMG train the spin
magnetisation signal, M, relative to the initial echo ampli-
tude, M0, is sampled, both as a function of time, t, during
the train, and gradient strength, q2 applied in the PGSTE
sequence before the train. This the signal is acquired in a
2D (t, q2) space as:

Mðt;q2Þ
M0

¼
X

pðD;T 2Þe�q2DðD�d
3Þe

�t
T 2 þ eðt;q2Þ and q¼Gcd;

ð1Þ
where D is the diffusion observation time, c is the gyromag-
netic ratio, d is the gradient duration and G is the gradient
strength. Eq. (1) thus assumes a distribution of diffusion
coefficients, D, and relaxation times, T2, with joint proba-
bility, p [13].

In order to obtain the distribution p, the experimental
data must be inverted using 2D-Laplace inversion. This is
done according to Song et al. (2002) [14] by considering a
the discrete matrix form of Eq. (1):

M ¼ K1XK02 þ E ð2Þ
where K1 and K2 are the known matrices of the exponen-
tials in Eq. (1) for the observation time and gradient
strengths used while choosing a discrete number of relaxa-
tion times and diffusion coefficients in a specified range.
Thus, the window of observation and resolution is chosen
by the investigator and the applicability (robustness) limits
of the algorithm. X is the unknown T2–D distribution ma-
trix extracted by minimising:

v2 ¼ kM� K1XK02k2 þ akXk2 ð3Þ
where a is a regularisation factor set by the user depending
on the desired smoothness of the result and i Æ i is the
Frobenius norm. Choosing an appropriate a is not straight-
forward; however, when following the usual guidelines [14],
in which a is adjusted to just minimize v2, the results are of-
ten readily interpretable. In contrast to the PARAFAC
model, the Laplace inversion problem is ill-conditioned
and depends on the algorithm used for regularisation and
the set of parameters used. Thus, caution must be taken
when interpreting and quantifying peaks in the T2–D

spectra.
In this work we aim to investigate if the inherent labile

nature of the Laplace inversion procedure can be improved
by resolving (filtering) the unique components using the
PARAFAC algorithm [7] prior to the 2D-Laplace transfor-
mation of the data. Using parallel factor analysis (PARA-
FAC) we stack the 2D landscapes of the different samples
in a 3D array, M, of the size: I · J · K. I is the number
of samples, J is the number of gradient steps and K is the
number of time points. If the data is tri-linear, each obser-
vation point, mijk in M, can be described uniquely as:

mijk ¼
XF

f¼1

aif bjf ckf þ eijk; i ¼ 1; . . . ; I ;

j ¼ 1; . . . ; J ; k ¼ 1; . . . ;K

ð4Þ



Fig. 1. Concept scheme of the method demonstrated. Raw 2D diffusion–relaxation NMR data (upper left) can be directly transformed into the T2–D

domain (upper right) by Laplace inversion or as suggested here via spectral decomposition by PARAFAC (lower left) to unique T2–D PARAFAC-Laplace
components (lower right).
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where F is the number of PARAFAC components, af, bf

and cf are the PARAFAC scores of lengths I, J and K,
respectively, and aif is the ith element of af, bjf is the jth ele-
ment of bf and ckf is the kth element of cf. A graphical rep-
resentation of the PARAFAC model with two components
is found in Fig. 2, where M is the original box of data.
Mode 1 is samples, mode 2 is relaxation time, t, and mode
3 is the gradient strength, q2. PARAFAC decomposes the
data into two unique components consisting of three load-
ing vectors, one for each mode, and a residual matrix, E.
By taking the outer product of loading 2, bf, and loading
3, cf, of each component the components are now repre-
= + +
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Fig. 2. Graphical representation of a 3-way array, M, decomposed by
PARAFAC into two unique components and a residual, E. See text for
thorough explanation.
sented by a 2D-loading spectrum with an associated sample
loading, af, holding the concentrations of the components
of in each sample. The sample loading vectors are also
termed score vectors. Thus each sample is now decomposed
into a weighted sum of unique 2D diffusion–relaxation
spectra and a residual matrix. The weights are the sample
scores in mode 1.

Eq. (4) is completely unaffected by the underlying distri-
butions in Eq. (1) of the pure physico-chemical compo-
nents, as the PARAFAC algorithm is not restricted by
the mathematical relationship within the components.
PARAFAC simply extracts independently varying additive
components. The prerequisite for this extraction is, that a
number of samples is recorded in a manner by which the
components of interest are purposely varied either by
design or by natural variation.

The aim of this investigation is to demonstrate that
PARAFAC in practice is able to resolve pure 2D diffu-
sion–relaxation components on a set of samples containing
the same components, but in different proportions. When
this is achieved and the quantification is thus in place,
interpretation is straightforward by subsequent application
of the 2D Laplace inversion to the pure 2D diffusion–relax-
ation components. The hypothesis is that application of
PARAFAC will facilitate a more direct interpretation
and robust application of the 2D Laplace inversion. The
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particular experimental system used comprises wheat
doughs. This system was chosen, because it provides suffi-
cient complexity in the T2–D spectrum and because of the
inherent interest in developing robust 2D-inverse Laplace
methods for the food industry.

3. Experimental

3.1. Materials

Five wheat flour samples from a Danish/German field
experiment were used. They were chosen for their diverse
quality with respect to baking quality and functionality.
An even greater diversification of samples in this investiga-
tion was obtained by mixing the following ingredients:
wheat starch (Unmodified, Sigma CAS 9005-25-8), wheat
gluten (Sigma, CAS 8002-80-0), commercially available
soy oil and commercially available high-grade wheat flour
available in New Zealand (trademark: Champion).

3.2. Characterisations

An extensive characterisation of the Danish/German
wheat flours was performed for other purposes and will
be elaborated elsewhere. The mixing property with regards
to water uptake was investigated using a Farinograph
according to ICC standard No. 115/1. The commercially
available flour was characterised using a Foss NIRS
(near-infrared reflectance spectroscopy) Bench Analyser
with an in-house calibration at Weston Milling, Lower
Hutt, Wellington for estimation of several parameters
including moisture and Farinograph water absorption.
The water content of the flours as well as the starch and
the gluten were determined by gravitational method prior
to mixing the doughs. Two gram of the materials were
dried at 130 �C for 1.5 h and scaled before and after
according to ICC standard No. 110/1 (Table 1).

3.3. Dough preparations

Twelve samples were prepared by mixing wheat starch,
wheat gluten and soy oil following a full factorial design
with three centre points (Fig. 3) and with the commercially
available wheat flour as filler to a 43 g dm sample, i.e. equal
to 50 g sample at 14% moisture. The factorial ingredients
were used in three levels each: starch: 0, 10.0 and
20.0 g dm; gluten: 0, 3.5 and 7.0 g dm; oil: 0, 1.0 and
2.0 g (Fig. 3). The dry matter mass of commercial flour
was thus dependent on the levels of pure ingredients and
varied between 14.0 and 43.0 g dm. To all mixtures 30 g
of water was added, thus assuming an average of 60%
water uptake based on 14% moisture in all the mixtures.
The sum of the moisture contents of the ingredients and
the added water in the samples added up to 37 g in all mix-
tures equal to 46% of the total mass (Table 1). The mixed
samples were prepared and recorded in random order. The
Danish/German wheat flour samples were included for nat-
ural variation in the experimental setup (Fig. 3). They were
only mixed with water according to their water absorption
and actual moisture content (Table 1).

A 50MDD Laboratory Mixer, Lincoln, New Zealand
was used for preparing the doughs. In the running mixer
the flour samples and, respectively, the mixture samples
were added to the mixing chamber. The ingredients of
the mixture samples were added consecutively in the fol-
lowing order: flour, starch, gluten and soy oil. After tem-
pering at 34 �C for 2 min the dough preparation was
initiated by adding water (34 �C) in amounts correspond-
ing to the water absorption capacity and the energy coun-
ter was simultaneously reset. The doughs were mixed for
49–259 s depending on the dough consistency development
until the energy input reached 10.0 Wh/kg dough. The aim
of the procedure was to add an equal amount of work into
each sample and thus to produce samples in a uniform and
reproducible way.

3.4. NMR recordings

Immediately after preparation a small amount of dough
was inserted bit by bit into a 5 mm wide NMR tube using a
piston rod to pack the material while avoiding air bubbles
to form. The tube was filled up to 3 cm in order to fully
cover the sampling area of the tube. The tube was inserted
into a Bruker Avance 300 System fitted with a Bruker
36 T m�1 gradient coil, capable of applying a strong spe-
cific perturbation of the magnetic field along the z direc-
tion. The machine was operated from a UNIX PC
running xwinnmr version 3.6.

A DRCOSY pulse program was written consisting of a
pulsed gradient stimulated echo (PGSTE) followed by a
Carr–Purcell–Meiboom–Gill (CPMG) echo train (Fig. 4).
The p/2 and p hard pulses were applied for 5.2 and
10.4 ls, respectively. The PGSTE was initiated by a p/2
hard pulse, initiating a free induction decay (FID) followed
by a magnetic field gradient pulse, two consecutive p/2
hard pulses and a magnetic field gradient pulse of exactly
the same size as the first after which a stimulated echo
occurs depending on the size of the gradient. The peak
intensities of echoes were then recorded during a CPMG
sequence.

In 25 consecutive PGSTE+CPMG runs the gradient
strength was varied from 0 to 12.96 T m�1 in 25 approxi-
mately exponentially spaced steps with constant diffusion
observation time, D = 20.00 ms and gradient duration,
d = 2.00 ms with ramp times of 500 ls in 10 steps, i.e. ramp
up time of 500 ls, stable time of 1500 ls and ramp down
time of 500 ls. The q-encoding gradient pulses were
flanked by delays of 500 ls immediately before and after
the gradient. The latter was applied specifically to allow
for the ring down of induced eddy currents in the sur-
rounding metals before applying the 2nd p/2 hard pulse,
the spin-conserving pulse. During the z-storage time of
16,489.6 ls before the 3rd p/2 hard pulse a crusher gradient
(homospoil) was ramped in 4 steps of 50 ls to 5% of max-
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Fig. 3. The experimental design. Twelve mixture samples (S01–S12) in a
full factorial design of experiment with three factors; Starch at 0, 10.0 and
20.0 g; gluten at 0, 3.5 and 7.0 g; soy oil at 0, 1.0 and 2.0 g. There are three
centre points (S1G1F1) and the sample with high levels in all factors
(S2G2F2) is represented twice. Five additional samples (S13–S17) are
indicated. See Table 1 for details.
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imum gradient strength (i.e. 1.8 T m�1) and kept for 1.0 ms
before being ramped down again. By destroying unwanted
transverse magnetisation the crusher effectively removed
potential interference from the spin echo of the initial r.f.
pulse-FID generated by the second hard pulse and thus
also the FID from the second r.f. pulse that would other-
wise become an echo after the third r.f. pulse. In order
for the gradient to stabilise, i.e. reach steady state, ten
dummy gradient pulses as described above, but without
the hard pulses, were applied before the initial p/2 hard
pulse.

The spin echo signal from the PGSTE pulse sequence
was recorded during the subsequent CPMG pulse sequence
with a time delay of 100 ls between the p hard pulses
(10.4 ls) and the echo centres, thus the echo time,
s = 105.2 ls. Three points in every second echo centre were
recorded and subsequently averaged. Fourthousand and
ninety-six even echoes were acquired during the 1.724 s
CPMG pulse sequence. Four scans were made for every
gradient step with a repetition delay of 1.977 s. The entire
DRCOSY pulse sequence would thus run for 398.9 s.

3.5. Data processing

Data processing was performed using commercially
available software packages, Prospa V2.0.12, Magritek,
Wellington, New Zealand and Matlab Version 6.5 release
z

Fig. 4. The pulse program as used to collect the 2D diffusion–relaxation data.
made at peak intensity for every 2nd echo.
13, The MathWorks, Inc. Conversion and pre-processing
of the data was made in Prospa as were the 2D-inverse
Laplace transformations, while PARAFAC was run in
Matlab using the N-way toolbox [15] from www.mod-
els.life.ku.dk. For every sample the resulting matrix of
25 · (3 · 4096) real and imaginary recordings was imported
into Prospa. The three points in every echo were averaged
and the real and imaginary recordings were summed. Since
the DRCOSY pulse sequence does not produce meaningful
data at zero gradient strength, the first data row was
removed. The first column representing the initial echo
recording was also removed due to deviating non-exponen-
tial values in the first of the three points recorded. Follow-
ing this procedure the total data set was reduced to the
dimensions: 17 samples · 24 gradient steps · 4095 acquisi-
tion times. As there was no internal standard and no con-
trol of the actual sample mass in the measured volume of
the NMR tube, all samples were normalised with maxi-
mum intensity, i.e. the intensity of the first acquisition
point assuming similar amounts of fast relaxation compo-
nents in the samples.

For every gradient strength, Gi, the gradient axis values
were calculated by:

gradaxisi ¼ q2 D� d
3

� �
¼ ðGicdÞ2 D� d

3

� �
ð5Þ

with the gyromagnetic ratio c = 2.675 · 109 s�1 T�1 and
Gmin = 0.216 T m�1 and Gmax = 12.96 T m�1 the gradient
axis thus spans from 0.258 · 109 to 929.447 · 109 s m�2.
The time axis associated with T2 relaxation consisted of
equidistant time point for every 420.8 ls corresponding
to every 2nd echo beginning at time point 7.8416 ms corre-
sponding to the actual duration of the two gradient pulses
and the disregarded first echo. These axes were required
when performing the 2D-inverse Laplace transformations
in Prospa of the raw sample recordings as well as the
PARAFAC components and residuals (see below).

A two-component PARAFAC model was calculated
using non-negativity constraints in all three modes. For
each component in each sample the three modes, intensity,
aif, time, bf, and gradient, cf, were subsequently multiplied:
aif bf cT

f , as illustrated in Fig. 2. Thus, for each of the seven-
Snglei
Point
acquisition

Effectively a PGSTE followed by a CPMG echo train, where acquisition is

http://www.models.life.ku.dk
http://www.models.life.ku.dk
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teen samples, four 2D-matrices (raw, components 1 and 2
and the PARAFAC-residual) were produced and subse-
quently imported into Prospa. 2D-Laplace inversions were
performed using the optimal regularisation factors, a, as
determined by testing a range of reasonable values for each
sample, component and residual (Fig. 8). T2 and D axes,
i.e. the observation window, were chosen as follows:
T2,min = 1 · 10�3 s, T2,max = 1.5 s, Dmin = 1 · 10�16 m2 s�1

and Dmax = 1 · 10�7 m2 s�1 in 24 logarithmically spaced
steps in both directions. The T2 and D boundaries were
chosen purposely too wide to include T2–D space where
no intensities should be observed. This helps in determining
the quality of fit, keeping the elasticity of the regularisation
factor in mind.

T2–D correlation pairs were identified from the resulting
spectra of raw data, components 1 and 2 and the PARA-
FAC residuals from each sample and quantified by their
sum relative to total spectral intensity of each raw sample
spectrum, respectively. The qualitative as well as the quan-
titative aspects were compared for two selected samples
and the intensity ratios of components 1 to component 2
were compared to the known ratios of oil and water in
the samples.

4. Results and discussion

The major variation introduced in this investigation was
imposed by the factorial design varying the major compo-
nents, starch, gluten and fat of wheat dough, while keeping
the water concentration constant. This was, however, not
the case of the additional flour samples that included only
natural variation and water concentration corresponding
to the optimal water absorption (Table 1). Despite the rel-
atively complex composition of dough with protons associ-
ated with carbohydrates, protein, fat and water, it was
expected that only protons associated with molecules with
high rotational and translational (diffusion) freedom could
be observed in this experiment. Thus, only water and oil
components were expected, possibly influenced by the pro-
portions of other components, i.e. starch and gluten, of the
mixture. Wheat flour contains 1.5–2.5% lipids of which
roughly one third is mono-, di- and tri-glyceride lipids,
one third is starch lipids and one third is bound lipids (gly-
colipids and phospholipids). In dough, glycolipids and glu-
ten-bound phospholipids are thought to form a laminar
phase, stabilising a micro-emulsion of free phospholipids
and acyl lipids in water all encapsulated by the gluten net-
work [16].

Table 1 lists the mixture proportions of the samples. The
assumed water absorption of 60% in the commercial flour
was not correct, as the true value was determined to
64.1%. However, this is of no importance in the current
study, since the optimal water absorption of the mixtures
was unknown and the water absorption level was set
merely to be able to form a visco-elastic dough, regardless
of the proportions of starch, gluten, fat and flour. The
varying mixing time thus reflects the variation in rheologi-
cal properties of the various mixtures. As expected, high
levels of starch and/or fat prolong the mixing time, while
high levels of gluten hardens the dough, resulting in shorter
mixing times. The diverse proportions of major ingredients
were thus expected to create variation in the micro-envi-
ronments for water and fat in the mixtures to be explored
by the NMR recordings.

The PARAFAC model of the seventeen recorded double
exponentially decays was derived from running the model
with 1–4 components. The validity of the models was ini-
tially explored by simultaneous inspection of the loadings,
the explained variance, core consistency and number of
iterations [7,17]. From this exercise it was easily concluded
that only a model with either two or three components
could be valid. The two-component model had a core con-
sistency of 100%, while that of the three-component model
was close to 60%. By subsequent inspection of the loadings
the third component displayed deviant behaviour from the
exponential decay in the gradient mode and thus the two-
component model was chosen. The chosen two-component
model presented in Fig. 5 explains 99.8% of the variation in
the entire data material.

In Fig. 5 the PARAFAC results were normalised to
maximum intensity in the exponential decay modes (i.e.
modes 2 and 3), thus leaving the relative variation in the
sample mode for direct quantification of components
(Fig. 5a). Due to the second order advantage of the PARA-
FAC algorithm the scores in mode 1 need only to be scaled
to one reference value in order to give the pure component
concentrations. In the two component PARAFAC model,
component 1 scores were positively correlated with the
added fat content, while component 2 scores were inversely
correlated. Since the NMR recordings are only expected to
return signals from oil and water, components 1 and 2 were
quantitatively assigned to oil and water, respectively, on
the basis of the scores (Fig. 5a). In mode 2, the relaxation
time mode in Fig. 5b, two distinct exponentially decaying
components are resolved; component 1 with a significantly
slower decay than component 2, both decaying to approx-
imately zero intensity. In mode 3, the gradient intensity
mode in Fig. 5c, two distinct, apparently exponentially
decaying components are observed; component 1 has a sig-
nificantly slower diffusion than component 2. Component
2, however, clearly appears to be multi-exponential with
a very slow diffusing covarying feature that does not reach
zero intensity within the chosen limits of gradient strength.

A powerful visualisation taking the outer product as
illustrated in Fig. 2 of the individual component vectors
from mode 2 and mode 3 of the two PARAFAC compo-
nents is presented in Fig. 5d and e. The combined corre-
lated decays are readily visualised for further
interpretation by transformation to the T2–D domain. It
is thus possible by PARAFAC to decompose raw 2D-
decays from each sample into their pure components and
a sample specific residual matrix. This is done in the left
columns of Figs. 6 and 7 for two markedly different sam-
ples, S01: S0G0F0 and S08: S2G2F2, presented with equal
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Fig. 5. Two component PARAFAC model of DRCOSY data. (blue) Component 1, (red) Component 2. (a) Mode 1: Relative intensities (scores) of
components 1 and 2 for each individual sample/mixture. (b) Mode 2: Normalised intensities of components 1 and 2 in the relaxation time direction. (c)
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interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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scaling for proportional interpretation. For interpretation
and further quantification the raw data, the two compo-
nents and the residual 2D-data are transformed into the
T2–D domain by 2D-Laplace inversion in the right column.
Figs. 6 and 7 are thus the actual decomposition conceptu-
ally presented in Fig. 1.

In Fig. 6 sample S01: S0G0F0 is presented both in the
time-gradient domain and in the T2–D domain. From the
raw data (Fig. 6a) it is quite clear that the data is composed
of both fast and slow diffusing features as well as fast and
slow relaxation features. By the 2D-Laplace inversion
(Fig. 6b) this is nicely visualised as nine peaks as T2–D

pairs along with their approximate relative intensities listed
in Table 2. Peaks with less than 1% of maximum intensity
are not represented in the figure nor in the table, for which
reason the sum of listed peaks only sums to 99.1%. In com-
parison, sample S08: S2G2F2 displays eight peaks in
Fig. 7b. Peaks P1–P7 are common for both S01 and S08,
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Table 2
Intensities of peaks P1–P10 as identified in Figs. 6 and 7 in the T2–D domain for sample S01 and S08

Peak T2 [ms] D[m2 s�1] S01: S0G0FO S08: S2G2F2

Raw PARAFAC Raw PARAFAC

Comp 1 (%) Comp 2 (%) Residual (%) Sum (%) Comp 1 (%) Comp 2 (%) Residual (%) Sum (%)

Total int All All 100.0 2.2 102.5 0.1 104.8 100.0 12.0 92.8 1.4 106.2
P1 10 1 · 10�9 88.6 95.9 95.9 78.1 86.8 86.8
P2 13 3 · 10�13 4.5 4.3 4.3 6.4 3.9 3.9
P3 6 1 · 10�16 1.5 1.6 1.6 0.9 1.5 1.5
P4 50 1 · 10�12 0.6 0.6 0.6 0.6 0.6 0.6
P5 180 1 · 10�12 1.8 2.2 2.2 10.2 12.0 12.0
P6 1.6 5 · 10�14 0.6 0.0 1.4 0.0
P7 2.5 1.5 · 10�8 0.2 0.0 1.1 0.0
P8 1.3 5 · 10�10 0.5 0.0 0.0 0.0
P9 130 8 · 10�11 0.8 0.0 0.1 0.0
P10 300 3 · 10�8 0.0 0.0 1.1 0.0
Sum 99.1 2.2 102.5 0.0 104.6 99.6 12.0 92.7 0.0 104.8
Residual 0.9 0.0 0.0 0.1 0.1 0.4 0.0 0.0 1.4 1.4

Intensities are presented as relative to total intensity of the respective raw spectrum. Peaks are summed leaving an unrealised residual for each spectrum,
i.e. Raw, Comp 1, Comp 2 and PARAFAC-Residual. The PARAFAC-Laplace peaks are summed horizontally.
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while P8 and P9 are only present in S01 and P10 is present
only in S08.

The challenges in the interpretation of the similarities
and deviations of these and the remaining samples are
overwhelming, although some delimitation can be put for-
ward by manual inspections. Peaks with diffusion coeffi-
cient higher than say 10�8 m2 s�1 must be considered
noise, since the limit of diffusion in this system must be
considered to be the diffusion of free water, i.e.
2 · 10�9 m2 s�1. Likewise, peaks below T2 = 10 ms are
unlikely, since the duration of the pulsed gradient time
(7 ms) and the storage time (16.5 ms) would probably ren-
der such signals extinct prior to the first recordings by the
CPMG train. Thus, P6, P7, P8 and P10 in Figs. 6b and 7b
are artefacts due to noise and the ill-conditioned Laplace
inversion. P3 is a typical border phenomenon due to a
small offset in the raw data along the gradient direction.
Thus, by reasoning it is possible to reduce the problem to
five peaks of interest. Apart from peak P9 present only in
S01, all relevant peaks are present in both samples. P1 is
by far the most intense with 88.6% for S01 and 78.1% for
S08 (Table 2) and considering the high diffusion coefficient
it must be water being able to move freely in the matrix,
although restricted in rotational freedom (T2 = 10 ms),
thus probably associated with the surfaces of the matrix,
i.e. the gluten network. P2 at 4.5% and 6.4%, respectively,
equally restricted in rotational freedom is much more
restricted in diffusion with a broad distribution of diffusion
coefficients that indicate tightly bound water, probably
associated with water absorption by swelling starch gran-
ules. P4 is very small, 0.6% for both, and only identified
as a peak due to the new method (see Section 4 below).
P5 varies markedly between the two samples, 1.8% in S01
and 10.2% in S08, proportional with the difference in oil
content for the two samples. In Fig. 7b, S08 peak P5 forms
a double peak which will be discussed below. With
D = 10�12 and T2 = 180 ms P5 is most probably fat
restricted in diffusion by the size of the vesicles in the water
matrix and at the same time with more slow relaxation
than the ‘‘free’’ water molecules.

4.1. Qualitative analysis

We will now demonstrate the experiment interpretation
from the point of view of the new method. The samples S01
and S08 were decomposed into the two PARAFAC com-
ponents (Figs. 6c, e and 7c, e) corresponding to their rela-
tive amounts in the raw data and the sample-specific non-
systematic residual (Figs. 6g and 7g). The residual is the
difference between original sample recording and the
PARAFAC components. While transforming the PARA-
FAC components 1 and 2 and the residual rather than
the raw data by 2D-Laplace inversion only common struc-
tures to the entire set of samples are investigated (Figs. 6d,
f, h and 7d, f, h). Keeping in mind that 99.8% of all the var-
iation in the set of 2D-multi-exponential data is explained
by just two PARAFAC components justifies this approach
when investigating these data.

First we observe that only peaks P1–P5 are represented
in the PARAFAC-Laplace components 1 (Fig. 6d, f) and 2
(Fig. 7d, f). The residuals did not contain any significant
exponential behaviour, which was also the case for all other
samples and accordingly the T2–D plots are empty (Figs.
6h and 7h). Component 1 contains one peak only (Figs.
6d and 7d)—the P5 fat component described above. Being
a PARAFAC component shows that this component varies
between samples independently from the other compo-
nents. This is in fine accordance with the fact that oil con-
tent was varied purposely in the design of the experiment.
PARAFAC-Laplace component 2 in Figs. 6f and 7f con-
tains P1–P4, in which P4 was only recognised in its own
right by this method. In the T2–D spectra of the raw data
this was not readily observed, as this peak was both small
and overlapping with P5. The PARAFAC-Laplace decom-
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position thus shows that the water found in three different
compartments in the matrix is highly covarying, which in
turn indicates that the water compartmentalisation in this
study of dough at 34 �C is highly unaffected by the propor-
tions of starch, gluten and oil. In Table 2 the proportionate
intensities of the peaks in the PARAFAC-Laplace compo-
nents are presented relative to total intensity of the
summed peaks of the raw Laplace data. Due to the non-
uniqueness and labile character of the Laplace algorithm
these intensities do not add up to 100%—but relatively
close. The relative proportions of the components (Compo-
nent 1/Component 2) in S01, 2.2%/102.5% directly corre-
spond to the summed proportions, 1.8%/95.2% in the
spectrum of the raw data as in the S08 case where the
12.0%/92.7% component ratio corresponds to the 10.2%/
86.0% ratio of the summed raw data. This quantitatively
confirms that the PARAFAC-Laplace decomposition is
equivalent to ordinary direct 2D-Laplace inversion. The
relative quantitative information is conserved.

The fact that the two components when transformed
into the T2–D domain have only a few distinct features
suggests that other features found (i.e. P6–P10) in the
individual raw spectra are only artefacts inflated by the
ill-conditioned properties of the Laplace inversion.
The Laplace inversion estimates many parameters based
on one sample only which gives a poor independent
variable to parameter ratio. Although every 2D-landscape
is generated from multiple scans of thousands of data
points, they are strongly covarying, thus giving a single
error the possibility to be inflated by the data analysis.
Artefacts from unfortunate sample presentation in the
spectrometer, such as different packing of the material,
air bubbles or bad mixing of the sample may turn up in
the spectra and mistakenly be interpreted as components.
PARAFAC resolvation prior to 2D-Laplace inversion
significantly reduces these artefacts by the inherent second
order advantage of reducing noise and uniquely extracting
pure covarying components.

The optimal regularisation factor in the 2D-Laplace
inversion was calculated independently for raw sample
spectra, PARAFAC components 1 and 2 and PARAFAC
residuals individually. A high factor produces results with
many sharp features, while a low factor produces a
smooth result. The optimum is somewhere in between,
where the residual variance expressed by v2 is close to
the mathematical optimum, i.e. lowest obtainable value
that at the same time produces relatively smooth and
interpretable plots. The actual regularisation chosen is
somewhat subjective and based on experience. From
Fig. 8 the regularisation factors were chosen to the near-
est order of magnitude. Note that v2 for the PARAFAC
residuals did not vary significantly in the a-plot, as it is
noise being modelled by the 2D-Laplace inversion algo-
rithm with no or insignificant exponential behaviour left.
In practice, the regularisation factor is quite difficult to
determine from sample to sample, but should ideally be
the same for all samples in order to interpret and com-
pare spectra, i.e. with the same smoothness independent
of the variations in signal-to-noise ratio from sample to
sample.

The signal/noise ratios for the PARAFAC components
do not vary from sample to sample, as they are represented
in all samples—just in different proportions. This leads to a
key point that only these two—not seventeen a’s need to be
determined, i.e. aopt = 108 for component 1 and aopt = 109

for component 2 (Fig. 8). The fact that components 1 and 2
use different regularisation factors is due to their difference
in intensity and thus different signal/noise ratio. In this
example the most intense component dominates when
determining the regularisation of the raw sample data. This
is nicely illustrated by the samples presented in Figs. 6b and
7b in which peak, P5, appears as a single peak in T2–D

spectrum of S01, while it is a double peak in S08. The water
peak, P1, is the dominant signal and will as an apparent
optimum choose araw = 109 (Fig. 8), even though this value
is not optimal in relation to the weaker peak(s). Thus, non-
significant features and noise in the data lead to confusing
sharp peaks, double peaks (Fig. 7b) and non-physical
peaks in spectra. On the other hand, focusing on the
weaker peaks in the raw data by choosing a smaller a
would eliminate non-physical peaks, but at the same time
broaden the more intense peak(s) and even intercept smal-
ler true peaks. PARAFAC analysis prior to the 2D-
Laplace inversion elegantly solves this dilemma by separat-
ing the true physico-chemical components prior to the
change of domain by Laplace inversion.

Because artefacts are introduced by the Laplace trans-
formation as described above and because the choice of
regularisation factor plays a significant role depending on
the signal/noise ratios of the sample spectra the theoreti-
cally possible route of running PARAFAC in the T2–D

domain as indicated in Fig. 1 by arrow with a question
mark was quickly abandoned.

4.2. Quantitative analysis

The ratio between oil and water can be studied quantita-
tively, and these data are presented in Fig. 9. A theoretical
ratio is calculated from a commonly accepted level of acyl
lipids in flour (0.7%) and the amount of fat which was added
to the samples. In both water and oil the approximate num-
ber of H-atoms relative to molecular mass is 1/9, thus the
relative abundance of fat–H to water–H can be calculated
directly by their masses and by their presence in the
DRCOSY data. Component 1 versus component 2 ratios
are plotted for each sample directly from the PARAFAC
scores in mode 1 (Fig. 5a) as well as from PARAFAC-
Laplace spectra of the same components and summed to
total intensity as done for S01 and S08 in Table 2.

Fig. 9 shows the quantitative ratio determined by the
PARAFAC scores as well as PARAFAC-Laplace volumes
of the components 1 and 2. They are both perfectly corre-
lated (r = 0.971) with calculated oil/water ratios in the
samples. In the calculation of the natural oil content the
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Fig. 9. Calculated water/oil ratios plotted with PARAFAC scores ratios and PARAFAC-Laplace volume ratios of component 1/component 2.
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average oil contribution from flour (0.7%) was included as
an offset. However, the gluten added in the mixtures may
also contain significant amounts of lipids, as these are usu-
ally not easily extracted from gluten without destroying the
gluten [16]. However, as no quantitative information was
available, the eventual gluten bound fat was neglected in
the calculations. The PARAFAC scores ratio and the
summed PARAFAC-Laplace volume ratios of the two
components are perfectly correlated, i.e. r = 1.000, because
the 2D-Laplace inversion is performed on the exact same
two components for each sample. Thus, for pure quantifi-
cation purposes the Laplace domain transformation may
actually be superfluous.

The PARAFAC scores ratios in Fig. 9 do not overlap
the calculated fat/water ratios, because the PARAFAC
analysis cannot take the relaxation during gradient
encoding in the first 7.8416 ms into account. Fast relaxing
compounds (say, T2 < 20 ms) are thus significantly under-
estimated. The ratios of the summed T2–D spectra of the
two components should ideally be exactly overlapping the
calculated ratios. However, some of the water signal was
probably lost during acquisition due to T2 and T1 relaxa-
tion during gradient and storage time.

In Fig. 9 sample S06: S0G2F2 indeed looks like an out-
lier (knowing the fat content to be high). This is probably
due to bad mixing or packing of the material in the tube
prior to the recording. However, this outlying sample does
not destroy the PARAFAC-Laplace model—it is only the
proportions of water and oil that seem unlikely, taking
prior knowledge into account. When leaving this sample
out of the model, the correlation coefficient between the
calculated and the PARAFAC estimated fat/water ratios
was: r = 0.997.

Although both the PARAFAC ratios and the spectra
ratios of the components are far from the known fat/water
content, the near 100% correlation with known fat/water
ratio is useful. Knowing the actual fat/water ratio of just
one sample, the remaining samples can be calculated from
the PARAFAC scores ratios, even if the fast relaxing water
relaxation signal was not recorded quantitatively. That is
the 2nd order advantage which is of great value in cases
where the method of recording the signal, i.e. the
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DRCOSY, cannot be set optimally for quantitative record-
ing of the signals from fast relaxing components. As long as
all 2D diffusion–relaxation spectra are recorded identically,
relative comparisons are always possible based on the
PARAFAC scores only. The unique PARAFAC resolva-
tion of all varying components is based on having 2D-
matrices of data for each sample, rather than just 1D-
vectors.

5. Conclusions

The method combining the unsupervised PARAFAC
model with 2D Laplace inversion has shown to be a signif-
icant improvement in the analysis of two-dimensional
multi-exponential data recorded by DRCOSY. It allows
identification and quantification of pure components and
it reduces artefacts and stabilises the subsequent 2D
Laplace inversion. This approach supports research by
identifying real systematically varying components while
filtering artefacts associated with unfavourable condition-
ing of the Laplace inversion.

The new procedure can be regarded as a step towards
automatic analysis of DRCOSY and similar data as an
alternative to biased human interpretation. The analysis
requires a homologous set of samples in which specific fac-
tors of interest have been varied either by experimental
design or by natural diversity of the materials investigated.
In a future publication we will demonstrate that double
SLICING [18–20] can be used to extract discrete T2–D
components from a single COSY recording.
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