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Summary

The overall purpose of the present Ph.D. thesis is to show how new as well as known
chemometric methods can be applied to spectroscopic data. The spectroscopic measurements
are obtained as multivariate or multi-way data, which due to the complexity of the measured
samples can be rather complex. Therefore, chemometric methods are necessary in order to
resolve and fully understand the underlying structure reflected in the measurements.

Fluorescence spectroscopy and nuclear magnetic resonance (NMR) measured on fish muscles
are used as examples to illustrate the potential use of the methods on real products. Focus has
been on three main subjects, which are exemplified in the six included papers. The three
subjects are:

1) Exploratory analysis of spectroscopic data
2) Validation of models
3) Quantifying and handling errors in instrumental measurements

Application of spectroscopic measurements makes it possible to measure the product non-
destructively. However, such measurements can be rather complex due to the composition and
heterogeneity of the food product. This is illustrated by exploratory analysis of fluorescence
emissions of cod and salmon, fluorescence landscapes of fish muscle extracts and low-field
NMR measured on gadoid fish muscle. Using principal component analysis (PCA) and parallel
factor analysis (PARAFAC) to interpret the data, it is suggested that fluorescence spectra of fish
muscle are primarily due to the connective tissue, NADH, oxidation products, lipids, pigments
and amino acids. Slicing modelling of low-field NMR decays shows the distribution of water
within fish fillets and the division of water into different pools. The content of water in these
pools is correlated to the water holding capacity (WHC) of the fish muscle, which is an important
quality parameter.

Furthermore, the exploratory analysis shows how three-way data can be decomposed and
interpreted. Problems involved in PARAFAC modelling of fluorescence excitation-emission data
such as missing values and scatter are discussed and examples of how these can be handled
are illustrated.

Sampling is an important aspect to consider, since fish muscle as other biological material is
heterogeneous. An example is given of how sampling errors in instrumental measurements can
be quantified and handled when these measurements are used for estimating a reference value
by univariate or multivariate regression. Furthermore, it is shown how traditional univariate
statistics can be used in multivariate situations by calculating the net analyte signal.
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Validation is another important factor that should be considered in all data analysis. Validation is
necessary to ensure valid and reliable modelling and is included as a part of the chemometric
modelling in all the papers. In the thesis it is described how the chosen validation method
depends on the purpose of the data analysis and the chemometric model.

Overall, the project has illustrated that spectroscopic methods such as fluorescence and NMR in
combination with chemometrics can provide information about underlying chemical and physical
parameters in fish. The results are promising and give indications of considerable potential for
the used methods, which encourages further research and development.
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Resumé

Det overordnede formal med denne Ph.D. afhandling er at vise hvordan nye savel som kendte
kemometriske metoder kan blive anvendt pa spektroskopiske data. De spektroskopiske
malinger er opndet som multivariate eller multi-vejs data og kan pa grund af prevernes
kompleksitet vaere meget komplekse. Forstaelse og analyse af den underliggende struktur af
malingerne kan derfor ngdvendiggere anvendelse af kemometriske metoder.

Fluorescens-spektroskopi og nuklear magnetisk resonans (NMR) malt pa fiskemuskler er
benyttet som eksempler til at illustrere den mulige anvendelse af metoderne pa reelle produkter.
Der er fokuseret pa tre omrader, som er eksemplificeret i de seks vedlagte artikler.

1) Eksplorativ analyse af spektroskopiske data
2) Validering af modeller
3) Kvantificering og handtering af fejl i instrumentelle malinger

Anvendelse af spektroskopiske teknikker giver mulighed for at foretage ikke destruktive
malinger direkte pa produktet. Imidlertid kan saddanne malinger veere meget komplekse, da
produktet kan veere heterogent og indeholde mange forskellige komponenter. Dette er illustreret
ved eksplorativ analyse af fluorescens-emission malt pa torsk og laks, fluorescenslandskaber
malt pa ekstrakter af fiskemuskel og lav-felts NMR malt pa gadoide fisk. Ved anvendelse af
principal komponent analyse (PCA) og parallel faktor analyse (PARAFAC) er det foreslaet, at
fluorescensspektre malt pa fiskemuskler kan henfgres til bl.a. bindevaev, NADH,
oxidationsprodukter, lipider, pigmenter og aminosyrer. Slicing modellering af NMR relaksationer
har vist fordelingen af vand i torskefileter og er benyttet til inddeling af dette vand i forskellige
fraktioner. Koncentrationen af vand i disse fraktioner er korreleret til fiskemusklens
vandbindingsevne, der er en vigtig kvalitetsparameter.

| forbindelse med den eksplorative analyse er det endvidere vist, hvordan tre-vejs data kan
analyseres og fortolkes. Problemer involveret i udviklingen af en PARAFAC model for
fluorescens emissions- og excitationsdata kan skyldes manglende veaerdier og spredt lys. Det er
vist, hvordan sadanne faktorer kan handteres.

Sampling er et vigtigt aspekt at overveje, da fisk som andet biologisk materiale er heterogent.
Der er givet et eksempel pad, hvordan samplingfejl i instrumentelle malinger kan kvantificeres og
handteres, nar disse malinger anvendes til at estimere en referencemaling ved univariat eller
multivariat kalibrering. Det er endvidere vist, hvordan traditionel univariat statistik kan overfgres
til multivariate problemstillinger via beregning af det sakaldte “net analyte signal”.
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Validering er en anden vigtig faktor, der skal overvejes i forbindelse med dataanalyse.
Validering er ngdvendig til sikring af valide og palidelige resultater og er inkluderet som en del af
den kemometriske databehandling i alle vedlagte artikler. Det er beskrevet, hvordan den valgte
valideringsmetode afheenger af data, formalet med dataanalysen og den anvendte
kemometriske model.

Samlet set har projektet illustreret, at spektroskopiske metoder som fluorescens og nuklear
magnetisk resonans i kombination med kemometri kan give information om underliggende
kemiske og fysiske parametre af fisk. Resultaterne er lovende og giver indikationer af betydeligt
potentiale, som ansporer til yderligere forskning og udvikling.




New aspects of chemometrics applied to spectroscopy

List of papers and appendices

Paper |

On the fluorescence of muscle and connective tissue from cod and salmon

Charlotte M. Andersen and Jens Petter Wold. Journal of Agricultural and Food Chemistry, 51, 470-476
(2003)

Paper Il
Practical aspects of PARAFAC modelling of fluorescence excitation-emission data
Charlotte M. Andersen and Rasmus Bro. Journal of Chemometrics, accepted

Paper Il

Distribution of water in fresh cod

Charlotte M. Andersen and Asmund Rinnan. Lebensmittel Wissenschaft und Technologie, 35, 687-696
(2002)

Paper IV
On the relation between water pools and water holding capacity in cod muscle
Charlotte M. Andersen and Bo M. Jorgensen. Journal of Aquatic Food Product Technology, submitted

Paper V
Effect of sampling errors on predictions using replicated measurements
Charlotte M. Andersen, Rasmus Bro and Per B. Brockhoff. Journal of Chemometrics, submitted

Paper VI

Quantification and handling of sampling errors in instrumental measurements: A case
study

Charlotte M. Andersen and Rasmus Bro. In preparation

Appendix 1

Freshness assessment of thawed and chilled cod fillets packed in modified atmosphere
using near-infrared spectroscopy

Niels Boknaes, Kristina N. Jensen, Charlotte M. Andersen and Harald Martens. Lebensmittel
Wissenschaft und Technologie, 35, 628-634 (2002)

Appendix 2
Theory of net analyte signal vectors in inverse regression
Rasmus Bro and Charlotte M. Andersen, submitted

Appendix 3

Multivariate data analysis as a tool in advanced quality monitoring in the food production
chain

Rasmus Bro, Frans van den Berg, Anette Thybo, Charlotte M. Andersen, Bo M. Jergensen and Henrik
Andersen, Trends in Food Science & Technology, 13, 235-244 (2002)




New aspects of chemometrics applied to spectroscopy

Abbreviations

CPMG Carr-Purcell-Meiboom-Gill

DECRA direct exponential curve resolution algorithm

EEM excitation-emission matrix

FID free induction decay

M amplitude of an NMR signal

MLR multiple linear regression

MSEC mean squared error of calibration

NADH nicotinamide adenine dinucleotide, reduced form
NAS net analyte signal

NMR nuclear magnetic resonance

oLS ordinary least squares

PARAFAC parallel factor analysis

PC principal component

PCA principal component analysis

PCR principal component regression

PLS partial least squares

RMSECV  root mean squared error of cross validation
RMSEP root mean squared error of prediction

Se model error

Sy variance of errors in instrumental measurements (x)
Sy variance of errors in reference measurements (y)

T longitudinal or spin-lattice relaxation time constant
T, transverse or spin-spin relaxation time constant
Vpe variance of prediction error

WHC water holding capacity

WHC4 water holding capacity given as gram water per gram dry matter
WHC,, water holding capacity given in per cent relative to the original water content
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1. Introduction

During recent years there has been an increasing attention on food products. Eating quality,
food safety, nutritional value, environmental and economical factors are some of the aspects
which have received great interest from the public. This increased focus suggests a necessity
for the development of new methods and techniques that can be used for controlling and
monitoring a production process.

Spectroscopic techniques, such as near infrared, fourier transform infrared, fluorescence and
nuclear magnetic resonance (NMR), have shown promising possibilities for providing valuable
and accurate information regarding various chemical and physical factors of a product (Scotter
1997; Munck et al. 1998). The methods typically work rapidly in a non-destructive way, yielding
multivariate data containing general but accurate information on the relevant properties of the
samples. Development of fast non-destructive methods for measuring parameters such as
freshness, lipid content and texture has been an important research area in fisheries research in
recent years (Isaksson et al. 1995; 2002; Nordtvedt et al. 1998; Sigurgisladottir et al. 1999;
Jepsen et al. 1999; Bechmann et al. 1999; Jensen et al. 2002; Bgknees et al. 2002, appendix 1).
The fast instrumental methods may be implemented industrially, giving fast and highly
reproducible measurements suitable for controlling the end quality of the fish product and
continuously monitoring the production.

It is important to ensure optimal extraction of the relevant information in data when developing
new techniques such as spectroscopic measurements. Chemometrics — including multivariate
and multi-way analyses - is suited for handling complex data efficiently, providing information
that could not be obtained otherwise.

The objective of this thesis is to discuss aspects of chemometric modelling applied to
spectroscopic measurements. Fluorescence spectroscopic data and nuclear magnetic
resonance measured on fish muscles are used as examples to illustrate the potential use of the
methods on real products. Focus has been on three main subjects.

1) Exploratory analysis of spectroscopic data
2) Validation of models
3) Quantifying and handling sampling errors in instrumental measurements

These three subjects constitute an extensive group of parameters which one has to be aware of
in order to obtain reliable results from instrumental measurements. Knowledge about the
underlying chemical phenomena in the spectroscopic measurements is necessary in order to
extract information in data, which is important for the future purpose. Validation is an important
factor in almost every analysis and is necessary to ensure valid and reliable modelling.

13
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Furthermore, knowledge of how to sample can be used to minimise product variability,
maximise yield etc. Thus, information regarding optimal monitoring and handling of sample
variation is an extremely important step in the development of new techniques.

This project is a part of a larger framework programme, Advanced Quality Monitoring in the
Food Production Chain, involving several research groups working with various subjects within
food science. The overall purpose of the framework programme has been to introduce new and
known on-line/at-line techniques by developing new mathematical models based on real-world
problems including sensory, engineering and statistical parameters (Bro et al. 2002a, appendix
3).

1.1. Chemometrics applied to spectroscopy

Application of chemometrics enables exploratory analysis of complex data structures where no
initial hypothesis is necessary prior to the analysis. By exploratory data analysis the often large
multivariate data sets can be analysed in an intuitive straightforward manner, visually displaying
information that can not be seen by traditional data analysis. Subsequently, these results can be
used to improve the performance of existing analysis methods, establish robust and accurate
measurement methods, and illustrate possibilities for developing stable non-destructive
spectroscopic measurements for new applications.

Spectroscopic measurements are often performed non-destructively on complex food materials.
Thus, the measurements may be rather complex themselves, increasing the necessity for data
analytical methods that can handle these types of data. Furthermore, before industrial
application of instrumental techniques, it is important to understand the nature of the samples,
including the underlying chemical and physical phenomena. Such an understanding ensures
that optimal and relevant information is extracted from the data.

Validation is an important step in the development of new alternative analysis methods based
on spectroscopy and chemometrics. Validation can be seen as an assessment of the
appropriateness of the developed models, which includes an evaluation of how well data are
modelled and an evaluation of how well the model reflects the structure in data. It is used to
prevent incorrect model estimates and invalid interpretations leading to erroneous conclusions.
Other aspects of ensuring optimal model performance include evaluation of instrumental noise,
detection limits, influence from the surroundings and the sampling procedure.

Typically, measurements are influenced by significant errors due to the heterogeneity of the
biological material. Furthermore, instrumental measurements performed on a localised area of
an object can be used to represent the whole object. Such measurements will almost always be
influenced by a sampling error. Therefore, it is important to optimise the sampling procedure to

14
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ensure that the data collected are representative for the actual purpose and contain relevant
information. This is an important, but often neglected step when performing instrumental
measurements. Optimisation of sampling concerns both a quantification of the various types of
errors and, if possible and necessary, a correction for the sampling errors.

1.2. Outline of the thesis

The thesis is divided into four main chapters. Chapter 2 describes the chemometric and
spectroscopic methods used. The next three chapters include the main subjects of the thesis.

Examples of decomposing, visualising and interpreting complex spectroscopic data are given in
chapter 3 and the Papers |-1V. Papers | and Il deal with the application of fluorescence
spectroscopy describing (1) multivariate analysis of salmon and cod spectra especially in
relation to indication of freshness and the presence of collagen and (2) how fluorescence
landscapes can be decomposed by multi-way modelling. This includes how to handle problems
due to missing values and scatter. Papers Ill and |V concern the possibilities of describing the
distribution of water within the fish muscle and predicting water holding capacity (WHC) by the
use of low-field NMR.

Chapter 4 gives an introduction to various validation methods including a description of the
purpose of each method, how the methods work, and how the results can be interpreted and
visualised. Examples taken from Papers | to IV are used to illustrate the applicability of the
validation methods.

Sampling is treated in Chapter 5 and in the Papers V and VI. The contribution of different errors
in multivariate regression models is illustrated together with a description of how heterogeneity
of spectral measurements in fish muscles can be investigated and visualised. The main
objectives of the chapter and the two papers are (1) to show how the importance of sampling
errors in the spectroscopic measurements can be quantified and (2) to illustrate a method by
which such types of errors can be handled.

Chapter 6 presents conclusions and perspectives, describing the findings in the present project
and pointing out ideas for further work that turned up directly from the results shown in the
previous chapters.

15
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2. Chemometrics and spectroscopic methods

This chapter presents the chemometric and spectroscopic methods used in this thesis. Section
2.1 describes the chemometric methods applied. Section 2.2 describes theory of regression
modelling in situations with error in the independent variables, e.g. instrumental measurements.
Sections 2.3 and 2.4 introduce fluorescence spectroscopy and low-field '"H NMR, respectively,
which are the spectroscopic methods used.

2.1. Chemometrics

Chemometrics has been defined by the International Chemometric Society
(http://www.emsl.pnl.gov:2080/docs/incinc/chemdef.html (2003-02-03)) as

the science of relating measurements made on a chemical system or
process to the state of the system via application of mathematical or
statistical methods

The chemometric techniques make it possible to explore large data sets in an explorative and
non-selective way by decomposing the complex data into simpler structures, thus improving the
interpretation and understanding of the information in the available data.

Application of chemometrics has evolved during the last decades due to the development of
new instruments, algorithms and faster computers. In this project, the chemometric analysis is
based on spectroscopic measurements, which are obtained by fast, non-destructive instruments
making the techniques suitable for application on-line or at-line.

There are two main purposes for applying chemometrics: a qualitative and a quantitative. In the
qualitative analysis, the data are decomposed into a few factors, enabling the study of patterns
in the data, trends, outliers, etc, whereas the purpose of the quantitative analysis is typically to
predict a certain parameter using regression models. The chemometric methods are further
elaborated on in the following. Validation of the chemometric models is described in Chapter 4.

2.1.1. Data structure

Classical statistics typically deals with univariate data, characterised by zero-order
measurements. For such data, signals from interferents cannot be distinguished from the
analyte signal and the decomposition and understanding of data may in some situations be
difficult or even impossible. First-order measurements are characterised by a vector, for
example spectral measurements. Combining several first-order measurements gives a matrix
that can be analysed and decomposed with multivariate methods. Principal component analysis

17
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(PCA) is commonly applied for the descriptive analysis, whereas regression methods, such as
partial least squares regression (PLS) and principal component regression (PCR), are often
used for predictions.

Second-order data are obtained when the measurements of one sample can be represented as
a matrix. Combining several samples of second-order measurements gives a box (three-way
structure) that ideally, if the data are trilinear, can be analysed with N-way methods. PARAFAC
(PARAIllel FACtor analysis) is well suited for decomposing the N-way structure describing the
underlying phenomena in data. N-PLS is an extension of PLS to higher order situations and is
applied for regression and prediction.

In addition to the N-way methods, multi-way data can be unfolded and analysed with the
multivariate techniques. However, N-way methods generally give more adequate, robust and
interpretable models. Furthermore, N-way methods are less sensitive to noise and give loadings
that can directly be related to the chemical structure of the data. Geladi (1989), Kroonenberg
(1992), Harshman and Lundy (1984; 1994), and Bro (1996; 1997; 1998) give introductions to
some of the N-way methods.

2.1.2. Qualitative/descriptive analysis
2.1.2.1. Principal component analysis (PCA)

PCA is a bilinear model that extracts the systematic information in data by decomposing the
signals/measurements into principal components (PCs) using a least squares approach
(Equation 2.1) (Wold et al. 1987). The PCs describe independent variations in the data set.

F
X; =Y by +é€, i=1 =1, 1)
=1

In Equation 2.1, F is the number of PCs chosen by the analyst, x; is the measurement of the i-th
sample at the j-th variable, f; is the score of the j-th sample for the f-th component, pji is the
corresponding loading for the j-th variable and e; is the residual. Equation 2.1 can be expressed
in a matrix notation as

X=TP'+E 2.2)

where the matrix X holds the measured data with / samples and J variables. The model is made
by the product of the two matrices, T and P'. T is the score matrix containing the samples as
rows and PCs as columns. It contains the information about the amount of each component in
every sample. P is the loading matrix with the variables as rows and the PCs as columns

18
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containing information about the contribution of the variables to each PC. E is a matrix of
residuals, carrying the information in X that is not covered by the model and ideally contain no
chemical information.

2.1.2.2. PARAFAC (PARAllel FACtor analysis)

PARAFAC (Harshman 1970) can be seen as an extension of the bilinear PCA into the
multilinear situations. It was developed in 1970 independently by two research groups and was
named PARAFAC by Harshman and CANDECOMP (CANonical DECOMPosition) by Carrol &
Chang. Subsequently, PARAFAC has been developed and applied in many scientific fields such
as chemistry and food science (Munck et al. 1998; Bro 1998).

The PARAFAC model (Harshman 1970) is described by Equation 2.3 and illustrated for three-
way data in Figure 2.1.

F
2.3
X = Zaifbjfckf +E 3
=1

PARAFAC can be explained in a similar way as PCA. xiy is the intensity of the i-th sample at the
J-th variable (in the second mode) and at the k-th variable (in the third mode). ai by and ¢, are
the elements in the three loading matrices, A, B and C, respectively, and contain information
about the importance of the samples/variables to each component. As for PCA, the residuals,
eii, contain the variation not captured by the model. In Figure 2.1, the data, X, is decomposed
into two components (F) represented by a set of a, b and ¢. Choosing the right number of
components is important, as it ensures a unique solution that discovers the latent structure in

the data.

X |]- ' I E

a a,

Figure 2.1 Representation of the PARAFAC model for three-way data with two components.

In order for the PARAFAC model to provide unique solutions, it is necessary that all loadings
are linearly independent, meaning that no two loadings have the same shape. Ideally,
PARAFAC recovers the underlying structure uniquely, if the data are approximately trilinear, the
right number of components is chosen and the signal-to-noise ratio is appropriate. This means
that the estimated PARAFAC model cannot be rotated without loss of fit, as opposed to two-way
analysis where one may rotate scores and loadings without changing the fit of the model.
Bilinear models can therefore not estimate pure spectra without external information.
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By PARAFAC modelling, the true underlying phenomena in data can be identified up to a
scaling factor. Therefore, PARAFAC can be used for curve resolution. This is illustrated in
Paper Il and Section 3.2, showing how to estimate the pure excitation and emission spectra in
aqueous fish muscle extracts.

2.1.2.3. Slicing

Slicing was recently proposed by Pedersen, Bro and Engelsen (2001 and 2002). It is based on
the principles of Direct Exponential Curve Resolution (DECRA) (Windig and Antalek 1997) and
can be used to analyse data consisting of a sum of exponentially decaying curves. The
exponential function for one sample can be described by Equation 2.4

Pt
X :ZMferz,' (2.4)

=1
where xis a vector holding the signal, F is the number of exponential functions, M; denotes the
amplitude of the signal and Ty is the characteristic relaxation time constant for factor f.

The idea is to create second order data from the first order exponential decays by splitting the
data into two or more overlapping slabs yielding a three-way structure as shown in Figure 2.2.
The figure shows that the three-way structure is formed by two sub-matrices (slabs) that contain
the same number of variables. One of these holds the first number of variables (0 to b) and the
other holds the last number of variables (a to J). The two sub-matrices will be of the same size
and contain the same information, but shifted horizontally. The number of variables to shift
between two slabs is referred to as /ag. The transformation is possible since exponentially
decaying curves retain the relaxation characteristics when shifted in the variable direction. Only
the intensity of the signal changes. Slicing can be performed with more than two slabs and
different lag sizes. However, for simplicity only two slabs are shown in the figure. The optimal
number of slabs depends on the noise in data, the number of samples and the number of
exponential components (Pedersen, Bro and Engelsen 2002).

Slab 2 -\_\A
r—u& /

0 a

N
N

¥

Figure 2.2 lllustration of slicing yielding three-way data from two-way data
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When the splitting is performed in the same way for all samples in a data set, a three-way
structure is obtained. These three-way data can be decomposed by an N-way method such as
PARAFAC. This enables identification and interpretation of the underlying exponential profiles.
The loadings in the variable mode will be mono-exponential and for each factor these loadings
describe the exponential function of the corresponding component. Application of slicing
requires that the data contains more than one sample and that all samples contain the same
exponential phenomena. Decomposing NMR relaxation profiles by slicing based on PARAFAC
is described in Papers Il and IV and in Section 3.3.

2.1.3. Regression methods

PCR and PLS are multivariate regression methods often applied for relating multivariate data, X,
to a reference parameter, y, such as the concentration of a certain analyte, sensory score value
or storage condition. The overall purpose is to predict the reference value in future samples and
to interpret the relationship between the two data sets. The multivariate regression models can
be described as

y=Xb+e (2.5)

where b is the regression coefficient vector obtained by the calibration model and e denotes the
residuals containing model errors and other variation in data not captured by the model. PLS
performs a simultaneous decomposition of X and y in such a way that the information iny is
directly used as a guide for the decomposition of X after which regression of y is done (Martens
and Nees 1989). As for the decomposition methods described above, PLS works by generating
new latent components describing the variation in data that contains the information most
important for the relation between the two data sets.

N-PLS is an extension of PLS to multi-way situations and predicts y in a way similar to PLS (Bro
1996). The model is not unique (loadings can be rotated) and it can, therefore, not be used for
curve resolution, as is the case for PARAFAC. Compared with unfolding the data and using
bilinear PLS regression, N-PLS is claimed to give more stable and parsimonious models that
are easier to interpret and less influenced by noise due to the incorporation of information in all
modes (Bro 1996).

In addition, both PCA and PARAFAC can be used for regression and prediction. In these cases
the score values are used as independent variables and related to y by multiple linear
regression (MLR). For PCA, this gives PCR. MLR is the classical regression method, but does
not apply with covariate data (such as spectra). Furthermore, MLR does not apply when there
are more variables than samples.

21



New aspects of chemometrics applied to spectroscopy

2.2. Regression with errors in instrumental variables

This section describes data analytical methods that in Papers V and VI and Sections 5.3 and
5.4 are used to evaluate and handle errors in instrumental measurements (X). Section 2.2.1
deals with the theory of measurement error models used for correcting biased regression
parameters. The net analyte signal is illustrated in Section 2.2.2. It allows the calculation of
figures of merits such as sensitivity and signal to noise ratio. Here, it is used to represent a
multivariate signal as a univariate, which can be used for traditional statistical testing. Section
2.2.3 presents an expression of the prediction error variance that makes it possible to compare
the size of the errors influencing the predictions. The three data analytical methods are only
some of the methods that may apply in situations with errors in the instrumental variables, but
are the methods used in this work.

2.2.1. Measurement error models

Ordinary least squares regression (OLS) is widely used for regression and prediction. However,
correct use of OLS requires that errors in the instrumental variables are negligible. Otherwise,
the parameters estimated by OLS will be biased. However, when the aim is to predict new
samples, OLS will be adequate, giving the lowest prediction errors, if the residuals are
homoscedastic and independent of the x-variables. Furthermore, the samples to be predicted
should originate from the same distribution as the samples used for calibration (Fuller 1987).

When the two data sets do not come from the same distribution or when the purpose is to obtain
un-biased estimates of regression coefficients, OLS may no longer be the optimal regression
method. Measurement error models described by Cochran (1968) and Fuller (1987; 1995) are
examples of methods that can be used to investigate the effect of measurement/sampling errors
and to correct for these errors in the independent variables. The overall purpose is to provide
more accurate estimates of the regression coefficients by correcting the model parameters. This
is done by estimating the variance of the true x-variables and using this for regression modelling
instead of estimates of the measured x-variables. The theory of measurement error models is
described in Paper V and will thus not be considered further here.

Measurement error models have the drawbacks that they do not take the errors of each
individual sample into account and they assume the ratio of variances for the reference and the
instrumental variables to be constant. To overcome some of these problems, other methods
such as weighted least squares regression may be used (Ripley and Thompson 1987; Riu and
Rius 1995; 1996).
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2.2.2. Net analyte signal (NAS)

The net analyte signal denotes the part of a spectrum that is unique for the analyte meaning that
it is the signal important for predicting a certain parameter such as the concentration of an
analyte in a sample (Lorber 1986). There are several methods for calculating this signal (Lorber
et al. 1997; Xu and Schechter 1997; Faber 1998; Goicoechea and Olivieri 1999; 2001; Ferré et
al. 2001). Bro and Andersen (2002, appendix 2) present a new simple way, which is expressed
in Equation 2.6.

x,; =b(b'b) 'b"x; (2.6)

x;‘i denotes the net analyte signal of analyte k for the i-th sample, b is the regression coefficient
vector obtained by PLS or PCR and x; is the spectrum of the i-th sample. The scalar net analyte
signal is usually defined as the norm of the net analyte signal vector. However, this is not valid
for mean centred models and when the predicted value is below zero (Faber 1998; Bro and
Andersen 2002, appendix 2). Instead, one should apply Equation 2.7, which does not have the
problem of negative predictions.

T

X,; b
Xy

- 2.7)
.

Equation 2.6 has the advantages that it does not rely on any assumptions on the structure of the
data and it gives exactly the same predictions as the calibration model from which it is
calculated. The scalar net analyte signal makes it possible to represent the multivariate
calibration model as a univariate least squares regression model using the scalar values as
independent x-variables. In addition, the net analyte signal allows the calculation of figures of
merits (sensitivity, selectivity, etc.) that are used as quantitative measures of the performance of
the regression model.

2.2.3. Quantification of errors

An approximation of the prediction error variance (Vpe) obtained from a multivariate regression
model based on errors in the instrumental variables (X), error in reference measurements (y),
error in the estimated calibration model (regression vector) and model error is given by Faber
and Kowalski (1996; 1997). The expression makes it possible to compare the influence of the
different errors and is shown in Equation 2.8. It is an approximation based on a linearization of
the model. The expression assumes that the noise of all x-variables is of the same size for both
calibration and test samples, errors are small and that the data are unbiased. Further, all errors
are considered to be independently and identically distributed random variables with zero mean.
This may not always hold for instrumental variables such as spectroscopic measurements,
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where the noise may be correlated. However, as an approximation, the expression may still be
valid even in such cases.

Voe ~ (1 +h)(s2 +83, + b sh)+ 52 + b six (2.8)

siy denotes the variance of errors in the reference value. s3, and szx‘ are the errors in the
instrumental measurements for the calibration set and the test set, respectively. S§ and ssi are
the model errors for calibration and validation, respectively. h; is the leverage of the test sample
calculated from the scores and n denotes the number of samples in the calibration set. Equation
2.8 estimates the prediction error variance in case of a mean-centred model. The term 1/n
should be left out, if data is not mean-centred.

Equation 2.8 can be used for estimating the prediction error variance for new samples. In this
project, the approach is used to compare the relative impact of the different errors influencing
the predictions. The variance of the X and y measurements can be estimated e.g. from
replicated measurements, and the regression coefficients (b) and the leverage (h) are
determined from the calibration model and the scores of the test samples, respectively. The
model error contribution (Sﬁ) can be estimated from knowledge of the other error contributions
as suggested by Faber et al. (1998). This expression is given in Equation 2.9

s2 =MSEC -3, —|b|"six 2.9)

where MSEC denotes the mean squared error of calibration and the other factors are given as
above. Equation 2.9 gives one estimate of the model error for each model. The rationale for this
equation depends on the fact that MSEC is an estimate of (s2 +s2, +[b|" s2,) for a well
specified model.

To give an impression of the validity of this way of estimating the model error variance, a small
simulation study is described. The simulated data are made by randomly choosing scores,
loadings and regression coefficients for two-component models. True x-variables and y-values
of 50 samples are calculated from these model estimates. Random normally distributed noise
with a standard deviation of 0.015 is added to each x-variable. Noisy y-values are obtained by
adding random normally distributed model error and measurement error in y to each sample.
These error contributions have a standard deviation of 0.05 or 0.1. With the given noise
settings, the noise in X and y makes up less than 1% of the variation in data. Simulations are
performed 1000 times and the model error calculated by Equation 2.9 using two PLS-
components. The distribution of these estimates is shown in Figure 2.3, illustrating that the
estimated model errors are approximately normally distributed with a mean value around 0.0026
or 0.0104. These values are in accordance with the true model errors that are 0.0025 and 0.01,
respectively.
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Figure 2.3 Distribution of the model error estimated using Equation 2.9 for simulated data where noise

with a standard deviation of 0.015 is added to the x-variables. Error in y and model error are added to the
y-values. The standard deviation of these is 0.05 (a) and 0.1 (b).

Equation 2.8 estimates the true prediction error variance, denoted as the actual prediction error
variance. However, when y contains errors, this value can not be evaluated because the true
reference values are not known. Instead, an apparent prediction error is obtained, which is a
measure of the difference between the noisy measured y-values and the y-values predicted by
the model. This estimate will always be higher than the actual prediction error that estimates
variation between the true y-values and the y-values predicted by the model. The relationship
between the actual and the apparent prediction error is given by DiFoggio (2000) and
Fernandez Pierna et al. (2003) as shown in Equation 2.10. The difference between the two
prediction error estimates is due to the variance of errors in y.

actual MSEP = apparent MSEP - s? (2.10)

From Equation 2.8 and 2.10, the apparent prediction error variance can be estimated by
Equation 2.11 where the variance of y is added to the expression of the prediction error
variance.

V0 pparen ~ (V7 +1)(S3 5, + bl s3,)+3 [l sy, +55, 2.11)

Both Equation 2.8 and 2.11 give valid estimates of the prediction error variance. It is important
to decide which of those to choose. The difference is that Equation 2.8 estimates the error in
relation to the true y-values and Equation 2.11 estimates the error in relation to the measured y-
values. The apparent prediction error variance is used in Section 5.3 and Paper VI for
estimating the prediction error variance.
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2.3. Fluorescence spectroscopy

Fluorescence spectroscopy is commonly used in many scientific fields such as chemistry,
biochemistry and medicine. This section describes the basic theory of fluorescence including
examples of applications within food science. Focus is on factors important for multivariate and
multi-way analysis and for interpretation of the spectroscopic measurements. For a discussion
on instrumental and more specific areas reference is made to the textbooks of Munck (1989)
and Lackowicz (1999).

2.3.1. Fluorescence

Fluorescence is caused by an immediate radiation of light by molecules after excitation to an
excited singlet state. Excitation is due to absorption of light with a characteristic wavelength,
always in the UV or visual wavelength area. Only light in these areas possesses enough energy
to excite electrons. After absorption of light, thermal vibrations cause loss of a part of the
energy. Therefore, fluorescence will be of lower energy than the excitation light meaning that it
will be found at longer wavelengths. This shift between excitation and emission is called the
Stokes shift.

Not all molecules will exhibit fluorescence emission after excitation to the singlet state.
Phosphorescence and collisions with other molecules are ways by which the excited molecule
can return to the ground state without emitting fluorescence. When measuring fluorescence
directly on a food or a fish sample, chemical compounds occurring naturally within the sample
matrix induce fluorescence emission. This type of fluorescence is denoted as autofluorescence.
The fluorophores include mainly aromatic compounds but some carbonyls and molecules with
highly conjugated double bonds are also able to fluoresce. Each fluorescent molecule has a
characteristic excitation and emission spectrum, which can be used to separate and identify
fluorescent molecules as well as to differentiate between different substitutions and
conformations of the same molecule. These characteristic excitation and emission spectra also
gives a high degree of sensitivity and selectivity, which is one of the advantages of fluorescence
spectroscopy.

Fluorescence is influenced by several factors such as the solvent, pH and temperature. These
factors may induce a shift in the peak maxima, making fluorescence dependent on the sample
matrix, instrument, and experimental conditions. Quenching of the fluorescence signal is an
important factor in complex systems such as food and fish. It is caused by (1) a deactivation by
other molecules such as oxygen, halogens and amines, (2) an absorption of the excitation or
emitted light (concentration quenching), or (3) an absorption of fluorescence by another
molecule in the same sample (Lackowicz 1999). The third possibility is discussed in Paper |
where it is suggested that NADH and collagen fluorescence are absorbed by red pigments in
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the salmon muscle, such as astaxanthin. The reason for this phenomenon is that the emission
of NADH and collagen has peak maxima between 430 and 480 nm, which are in the same
wavelength area as the absorbance of the red pigments (Britton 1995).

2.3.2. Modelling fluorescence data

If a sample is measured at several emission wavelengths for several excitation wavelengths, an
excitation-emission matrix (EEM) is obtained (Figure 2.4). Ideally, such data will be trilinear and
can then be analysed with multi-way chemometric models such as PARAFAC. This enables
curve resolution and identification of the underlying spectral phenomena (Leurgans and Ross
1992; Ross and Leurgans 1995; Bro 1997).

Intensity
g

Emission s
(nm) 300 250 =0

Excitation (nm)

Figure 2.4 Example of a fluorescence excitation-emission matrix (EEM)

However, factors such as missing values, scatter and spectral similarities influence the
fluorescence EEMs making PARAFAC modelling problematic. There is no emission below
excitation, because the emission will always be of lower energy than the excitation. Hence,
these data elements do not conform to the trilinear model. This has to be taken into account and
is discussed in Paper I, explaining why emission below excitation cannot generally be set to
zero but should, for example, be given as missing values. However, an increased amount of
missing values makes parameter estimation more uncertain, as is also described in the paper.

Scatter disturbs the trilinearity of the fluorescence landscapes and may overlap with the analyte
signal. It is due to scattered light caused by small particles in the samples. There are two main
scatter phenomena: Rayleigh scatter and Raman scatter. Rayleigh scatter is seen at the same
wavelength as the excitation wavelength and shows up as diagonal lines in the fluorescence
landscape. It takes place when a molecule is excited to a higher vibrational level. There is no
electronic conversion and the absorption and emission will be of the same energy. The emitted
light thus has the same wavelength as the exciting light. Second order Rayleigh scatter appears
at twice the excitation wavelength. For interpretation and curve resolution by PARAFAC, both
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first and second order Rayleigh scatter must be handled, for example, by replacing the data
elements influenced by scatter with missing values.

Raman scatter is weaker than Rayleigh scatter and may not be recognised, if the fluorescence
intensity is high. It appears at longer wavelengths than the excitation wavelength with a constant
distance to the Rayleigh scatter peak and is due to vibrational energy being added to, or
subtracted from, the excitation photon. It has been shown that multivariate and multi-way
methods are capable of handling Raman scatter present in the fluorescence spectra (N@rgaard
1995; Nikolajsen et al. 2001). Raman scatter is not treated further here.

In Paper Il fluorescence EEMs measured on fish muscle extracts are analysed and some of the
problems involved in PARAFAC modelling caused by missing values and scatter are illustrated.
For example, it is shown how such phenomena result in unreliable parameter estimates, which

should be taken into account. These inferior loadings are handled by applying constraints.

2.3.3. Application of chemometrics in the interpretation of fluorescence measurements

The introduction of fluorescence spectroscopy for fast non-destructive measurements requires
that fluorescence is measured directly on the object, often a solid sample. The application of
solid-sample fluorescence spectrophotometry is shown in evaluations of fat and connective
tissue in beef (Wold et al. 1999; Egelandsdal et al. 2002), fish meal quality (Dahl et al. 2000),
light-induced oxidation in poultry and dairy products (Wold and Mielnik 2000; Wold et al. 2002)
and sugar quality (Baunsgaard et al. 2000a,b). In Paper | fluorescence emission is measured on
cod and salmon fillets and the emission spectra analysed with PCA, illustrating that
fluorescence emission is complex and involves several fluorophores such as collagen, NADH
and oxidation products (see Section 3.1 for a description of the results). Even though solid
sample spectrophotometry has advantages in industrial quality monitoring, the high sensitivity
and selectivity of the fluorescence spectra is lost due to lower signal intensities. Furthermore,
the complexity of the products gives rise to complex fluorescence signals. Interferences such as
re-absorption, various forms of light scattering, unknown fluorophores and quenching may
influence the fluorescence spectra, thereby reducing the sensitivity and selectivity.

Examples of the application of PARAFAC for resolving and describing fluorescence EEMs are
given by Ross et al. (1991), Jiji et al. (1999), Bro (1999), Baunsgaard et al. (2000c), Moberg et
al. (2001) and Pedersen, Munck and Engelsen (2002). Paper Il also provides an example of
how to use PARAFAC for curve resolution and interpretation of the underlying structure in the
fluorescence landscapes. From the EEMs measured on fish muscle extracts, pure excitation
and emission spectra are estimated illustrating that three fluorophores are present, one of which
is suggested to be tryptophan (see Section 3.2 for more discussion of the results).
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2.4. Low-field "H nuclear magnetic resonance (Low-field NMR)

Nuclear magnetic resonance is widely used as an analytical technique in many scientific fields.
With the development of NMR bench-top instruments it has become possible to obtain fast non-
destructive and reproducible NMR measurements for quality control within the food industry.
The signals measured are functions of time and give information about relaxation processes.
These relaxation phenomena can provide useful information on various aspects like moisture or
fat content as well as information on the physical structure of the sample.

This section deals with the theory of low-field NMR and includes a description of how to
measure and analyse the NMR decay curves. A more detailed description of the theory is given
in textbooks (Deleanu and Paré 1997; Ruan and Chen 1998) as well as in scientific review
articles (Rutledge 1992; Colquhoun 1993).

2.4.1. Nuclear magnetic resonance

NMR is observed for isotopes having a non-zero nuclear spin. Such nuclei contain a net
magnetic moment or net spin of the whole sample. The spin of each nucleus can be described
as miniature bar magnets interacting with each other and with an externally applied magnetic
field. When placed in an external magnetic field, the spins will align with the applied field. Some
spins are placed in parallel with the applied magnetic field and others are placed anti-parallel.
The energy difference between these two situations depends on the applied external magnetic
field.

The NMR signal is produced by absorption or emission of a photon caused by a radio frequency
pulse whose energy is equal to the difference between the two spin states. The pulse tips the
magnetisation away from the static field, inducing an NMR signal. The hydrogen atom is by far
the most commonly used nucleus. This is due to a high sensitivity and a large abundance in
most types of products. Other nuclei used in NMR are for example °C, "°F and *'P.

2.4.2. Measuring NMR relaxations

After a radio frequency pulse is applied, the spins relax to their equilibrium states at a certain
rate. Relaxation time constants are used to characterise this decay rate. The constants, denoted
as Ty (spin-lattice) and T, (spin-spin), give information about molecular mobility and can,
therefore, be used to study chemical and physical properties of the sample. T; is a measure of
the time taken to restore the component parallel to the applied magnetic field and characterises
the time needed to obtain equilibrium between the spin system and the surrounding sample. T,
is @ measure of the time taken for the spins to reach equilibrium transverse to the external field
and, therefore, a measure of the duration of the NMR signal. It is due to interactions between
spins, chemical exchange and molecular diffusion.

29



New aspects of chemometrics applied to spectroscopy

In low resolution NMR, several pulse sequences are commonly applied such as inversion
recovery (measuring T;), FID (measuring 7>*)' and CPMG (measuring T»). The CPMG pulse
sequence used in Papers lll and IV is devised by Carr and Purcell (1954) and Meiboom and Gill
(1958). It is generally preferred for estimation of T; values, because the whole relaxation curve
is obtained in one measurement, and the contribution from inhomogeneity in the magnetic field
is avoided. The sequence is illustrated in Figure 2.5. First, a 90° pulse is applied, which tips the
magnetisation into a plane perpendicular to the applied magnetic field. After a short time,
denoted t, a 180° pulse is applied, then a new 180° pulse is applied after another two t periods,
and so on. The sequence produces broad peaks of NMR intensity denoted as echoes. A series
of echoes with decreasing intensity is obtained, if the process is repeated several times.
Typically, the maximum of every second echo is acquired to give the NMR decay curve.

{80 puise

\ 4

Figure 2.5 lllustration of the CPMG sequence with echoes as the solid line.
2.4.3. Application of chemometrics in the interpretation of low-field NMR decays

Low-field NMR measures the mobility of protons and is therefore suited for estimating the
characteristics of water and fat in the product. For this purpose chemometric methods such as
PCA and PLS have been applied in a number of studies where the whole decay curves were
measured (Hernandez and Rutledge 1994; Gerbanowski et al. 1997; Rutledge and Barros 1998;
Jepsen et al. 1999; Brendum et al. 2000; Pedersen et al. 2000; Brown et al. 2000; Thybo et al.
2000). However, since the NMR decay produced from the CPMG sequence can be described
as a sum of exponentially decaying curves the data can also be analysed with various
exponential curve fitting procedures.

Discrete exponential curve fitting gives a few characteristic relaxation components and related
magnitudes?® for each sample and is one of the traditional ways of analysing NMR decays. It
has been used to identify water pools and to interpret and evaluate the importance of these
pools to various quality parameters in meat and fish (Renou et al. 1985; Fjelkner-Modig and
Tornberg 1986; Lambelet et al. 1995; Steen and Lambelet 1997; Botlan et al. 1998; Jepsen et

' T,* is the spin-spin relaxation time constant measured by FID but depends on the homogeneity of the
magnetic field. Therefore, it is normally shorter than the real 7, value, which is measured by the CPMG
sequence.

2 The relaxation time constants and magnitudes are given in Equation 2.4 as T, and M, respectively.
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al. 1999). One advantage of discrete curve fitting is that the relaxation time constants and
magnitudes are estimated for each sample allowing the relaxation characteristics to be different.
However, knowledge of the number of relaxation components is required. Discrete exponential
fitting can be made on all samples together and is then denoted as “matrixfit”. It gives a few
characteristic relaxation time constants that are equal for all samples, but with magnitudes
varying among the samples.

By distributed exponential fitting, the relaxation curve for each sample is fitted to a continuous
distribution of characteristic relaxation times. It is claimed that in muscle foods water does not
exist in distinct pools, but the surroundings vary for each proton, giving different relaxation
phenomena (Brown et al. 2000; Bertram et al. 2002a). By distributed exponential fitting these
variations are taken into account and the method is, therefore, typically applied for interpretation
of the underlying exponential characteristics, as shown for pork meat by Bertram et al. (2001 a,b
and 2002a,b) and by Brown et al. (2000). Hills and Remigereau (1997) and Lillford et al. (1980)
give other examples of the use of distributed exponential fitting.

Distributed exponential fitting may give a more fully understanding of the underlying relaxation
characteristic since the relaxation phenomena of each proton is recognised. However, different
sample characteristics and noise levels may have an impact on the relaxation characteristics
obtained by distributed exponential fitting. In addition, there are many distribution curves, which
will have similar fit to a given measurement but different interpretations (Pedersen 2001).
Typically, the same overall relaxation characteristics are obtained by discrete exponential fitting.
Thus, discrete fitting may be preferred when the above mentioned considerations are taken into
account.

Slicing (Section 2.1.1.3) is used in Papers Il and IV to analyse the NMR decays measured on
cod muscle (see also Section 3.3). Paper Ill shows how the NMR relaxation curves measured
on cod muscle can be decomposed into two exponential components describing two water
pools whose concentration varies within the length of the fish and between the fish. In Paper IV
it is shown how the size of the exponential components obtained by slicing can be related to the
WHC. This illustrates a relation between WHC and the mobility of water within the fish muscle. It
should be mentioned that the results of slicing are similar to the results obtained by matrixfit.
However, there are advantages of slicing such as the possibility of using simple and well known
validation tools to find the number of relaxation components.

The methods discussed above for analysing low-field NMR relaxations are only some examples
of how the data can be analysed. There are advantages and disadvantages with all methods
and the choice of a certain analysis method may depend on the actual data and the purpose of
the analysis. In the experimental work performed here, slicing is primarily used, because the
purpose is to describe the water mobility with a few characteristic parameters that are common
to all samples.
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3. Exploratory analysis of spectroscopic data

It is important to understand the underlying chemical and physical phenomena that give rise to
the instrumental signals before spectroscopic measurements can be applied for industrial
quality assessment. This chapter gives examples of how data obtained by three different
methods can be analysed and interpreted. The three methods include two types of fluorescence
spectroscopic measurements and 'H low-field NMR.

3.1. Multivariate analysis of fluorescence spectroscopic
measurements

Fish muscle exhibits autofluorescence (Manohar 1969; Davis 1982), which has been related to
parameters such as lipid oxidation and freshness (Munck 1989; Undeland et al. 1998). Paper |
presents an explorative investigation of autofluorescence from salmon and cod muscle. An
indication of the fluorophores present is obtained a visual appearance of the scores and
loadings obtained by PCAs. In addition, an interpretation of changes due to storage time, site of
measurements and variations between the two fish species.

Fish muscle texture and the degree of gaping are two parameters important for fish product
quality. Gaping is a phenomenon where the connective tissue can no longer hold the muscle
blocks together. It has been found that the two parameters depend on the content of connective
tissue, in that higher collagen content is observed in fish with a firmer texture and low collagen
content is found in fish with tender meat vulnerable to gaping (Sato et al. 1986; Hassan et al.
1999). Since connective tissue and thereby collagen is important for the overall impression of
fish products, determination of collagen content and its degradation by a fast on-line method
can be important for controlling and optimising processing and marketing. Connective tissue
does emit autofluorescence, which is supposed to be due to collagen cross-links and
components such as pyrodinoline (Bailey et al. 1995). In addition, autofluorescence of bovine
connective tissue has been characterised (Swatland 1987a; Egelandsdal et al. 1996; 2002;
Wold et al. 1999). Therefore, it was supposed that collagen content, texture and degree of
gaping could be evaluated by measuring autofluorescence of fish muscles.

Collagen type | and type V are the two collagen types which occur naturally in fish muscle (Sato
et al. 1988; 1989; Mizuta et al. 2002). Therefore, fish muscle autofluorescence is compared with
autofluorescence of collagen type | and type V. Figure 3.1 shows the pure emission spectra of
the two types of collagen and the loadings of PCAs based on fluorescence spectra of salmon
and cod.
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Figure 3.1 a) Autofluorescence spectra of collagen type | (solid) and collagen type V (dotted) obtained
after excitation 330 nm, b) loadings of a PCA based on emission spectra of salmon obtained after
excitation 330 nm, and c) loadings of a PCA based on emission spectra of cod obtained after excitation at
330 nm. In b and ¢ the components are indicated by: PC1 (solid), PC2 (dotted), PC3 (dashed) and PC4
(dash-dotted).

The loadings obtained for salmon illustrate peaks in PC1 (shown as arrows in Figure 3.1)
corresponding to those of collagen type | and type V. Thus, collagen likely contributes to the
autofluorescence and to the variation in intensity. This is verified by orthogonal rotation of the
loadings. The loadings obtained from a PCA based on salmon spectra and spectra of collagen
types | and V are rotated orthogonally towards the loadings obtained from a PCA based only on
the salmon spectra (Jennrich 1970). This rotation results in similarities between the loadings
obtained from the two models (see Figure 8 in Paper ). The presence of collagen in cod muscle
is not so clearly identified. Only the loadings of PC1 have a large peak below 400 nm
corresponding to the peak of collagen type V. The orthogonal rotation also shows that collagen
fluorescence is not as pronounced for cod as for salmon (see Figure 9 in Paper I).

The fish were stored for different periods and changes due to storage time were studied.
Storage of cod for longer periods gives increased fluorescence intensity slightly above 500 nm,
which is probably due to some oxidation phenomena. In addition, a decrease in the peak with
position between 450 and 480 nm is possibly correlated to a decrease in the NADH content.
These two phenomena can be seen in the loadings of PC2 and PC3 in Figure 3.1c. The relation
between fluorescence intensity and lipid oxidation is confirmed by other studies showing
increased fluorescence intensity of aqueous and organic fish muscle extracts together with
increased lipid oxidation (Aubourg et al. 1998a,b; Aubourg and Medina 1999). The same was
illustrated by solid sample fluorescence spectrometry on a dried fish muscle system (Hasegawa
et al. 1992) and on herring filets (Undeland et al. 1998).

The actual fluorescent properties of the two fish species are probably quite similar, even though
differences in fluorescence characteristics have been found. Fluorescence microscopy showed
that the major source of fluorescence from adipose tissue was from the connective tissue fibres
located between the adipose cells (Swatland 1987b). Therefore, due to the larger fat content, it
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seems reasonable that collagen fluorescence is more pronounced for salmon. Fluorescence of
salmon muscle is probably re-absorbed by red pigments in the muscle fibres such as
astaxanthin. The absorption by those pigments may also be seen in PC3 (Figure 3.1b) where
the negative loadings between 430 and 480 nm correspond to the wavelengths with absorption
of the pigments (Britton 1995). This effect of pigments in salmon creates the visible contrast
between muscle fibres and connective tissue and explains why collagen fluorescence can be
visualised, whereas fluorescence of the muscles cannot. Cod muscle is white and no pigments
will re-absorb the autofluorescence. Together with the lower fat content, this indicates that
fluorescence of cod muscle is more intense than that of connective tissue.

In order to study the potential of using fluorescence spectroscopy for fast non-destructive
measurements of texture and gaping, predictions by PLS regression were performed. As shown
in Paper |, the predictions do not perform well, probably due to non-optimal sample
representativity, measurement error and small sample variation. For texture predictions, the
same weak relations are obtained as were found by application of visual/near-infrared
reflectance spectroscopy (Isaksson et al. 2002). However, it has been illustrated that
determination of beef and pork connective tissue by application of fast on-line fluorescence
probes is possible (Swatland 1991; Swatland 2000).

The possibility of measuring connective tissue in mammal meat by fluorescence spectroscopy
and the identification of collagen in the fluorescence spectra of salmon makes the method seem
promising as a rapid tool for determining such parameters. However, the results are not
unambiguous, for which reason other sampling methods and instrumentation should be tested.
In addition, the possibility to measure the decrease in NADH content and increase in lipid
oxidation of cod fillets indicates that fluorescence spectroscopy can be a valid method for
estimating the storage time of fish muscles in industrial applications.

3.2. Multi-way analysis of fluorescence excitation-emission matrices
(EEM)

Paper Il describes how fluorescence spectroscopic data can be decomposed, the underlying
chemical phenomena resolved and the data interpreted by PARAFAC modelling. This may be of
industrial importance, since in order to use fluorescence spectroscopy for quality
measurements, it is important to understand the underlying factors that govern the measured
spectral data. Fluorescence excitation-emission matrices (EEMs) of aqueous cod extracts have
been measured, enabling the use of PARAFAC for data analysis. The extracts were obtained
from frozen-thawed modified atmosphere packed cod fillets from the Barents Sea. The cod
fillets were stored at 2°C for up to 21 days. To expand the variation in the product, different
frozen storage temperatures, frozen storage periods and chill storage periods were used.
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Figure 3.2 Loadings of an unconstrained three-component PARAFAC model and of a three-component
PARAFAC model constrained with non-negativity in the first mode and non-negativity and uni-modality in
the second and third modes.

Initial analyses indicate that three fluorophores are present. The loadings of a three-component
PARAFAC model are shown in Figure 3.2 (left part). However, due to Rayleigh scatter and
missing values the loadings of this model do not give a valid description of the underlying
phenomena in the fluorescence landscapes. The sharp peak around 300 nm in the emission
loadings and the large negative region indicate that the model is not reliable. In Paper Il various
methods are used to evaluate and illustrate the inappropriateness of the model such as jack-
knife, visualization of residuals and appearance of the loadings.

It has been shown that PARAFAC can be accomplished even when non-trilinear parts in the
EEMs disturb the assumptions of the model. By a weighted PARAFAC model, elements in the
EEMSs are up- or down- weighted in such a way that the fluorophore signal will contribute most
to the modelling. It was applied to circumvent Rayleigh and Raman scatter overlapping with the
fluorescence landscapes (Jiji and Booksh 2000; Jiji et al. 2000). A weighted least squares fitting
method called maximum likelihood least squares (MILES), where the model parameters are
estimated by least squares algorithms in an iterative way, was suggested by Bro et al. (2002b).

In addition, constraining the model parameters can be used to handle non-trilinear parts.
Applying constraints may increase the modelling capability and ensure that the estimated
spectra make sense. For example, non-negativity constraints were applied to resolve the pure
spectra of three fluorescent dyes (Lee et al. 1991). Both non-negativity and uni-modality
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constraints were used to handle scatter and missing values when analysing fluorescence EEMs
of sugar solutions (Bro 1999; Baunsgaard et al. 2000a,c¢). In Paper Il it is shown that
constraining the parameters of the PARAFAC model with uni-modality and non-negativity
improves the interpretation, curve resolution and model stability. However, before applying
constraints, the appropriateness of these should be considered (Bro 1998). For the data
presented in Paper Il, non-negativity constraints are reasonable due to the fact that spectra of
pure analytes cannot be negative and negative loadings are obtained for the unconstrained
model (Figure 3.2). Furthermore, fluorescence spectra are generally characterised by one peak,
which together with the uni-modal appearance (apart from an unstable part) of the loadings
supports the appropriateness of uni-modality constraints. The loadings of the thus obtained
three-component constrained model (Figure 3.2) illustrate that application of the chosen
constraints is reasonable. Peaks are obtained at the same positions as for the unconstrained
model, but by applying constraints, negative parts are removed, and the loadings become uni-
modal. Indeed, for the emission loadings, the inferior peak caused by scatter and missing
values has been removed.

Two of the components estimated by the constrained model have the same position of the
excitation maximum, but different positions of the emission maxima that are found at 330 and
360 nm, respectively (Figure 3.2). Even though the two components have the same excitation
maxima, they are not equal since the emission maxima differ. The reason for the apparent
similarity of these loadings can be that they reflect the same fluorophores, but with different
substitutions or they appear in slightly different environments, thus leading to slight differences
in spectral characteristics. Standard addition showed that one of these components describes
the presence of tryptophan. The other may also be tryptophan, but with a substitution, or it may
be bounded to another molecule. There is a weak relationship between the relative
concentration of these compounds and the chill storage time indicating the development of
smaller protein fragments with the storage time. The fluorophore described by the third
component has its excitation maximum around 330 nm and emission maximum around 400 nm
(Figure 3.2). This component needs still to be identified, but may be NADH, even though the
peak values vary from those given in the literature (Munck 1989). The exact position of the
peaks depends on the sample matrix and the measurement conditions.

The objective of Paper Il is to illustrate and discuss the steps and problems involved in finding
the optimal PARAFAC model based on fluorescence data. The paper shows that fluorescence
EEMs can be modelled well by PARAFAC, even when the data are influenced by missing
values and scatter. In addition, the paper shows how fluorescence EEMs obtained from fish
muscle extracts can be analysed. However, in order to fully use fluorescence spectroscopy and
three-way modelling for fish quality measurements, more dedicated experiments are needed,
including measurements on other types of extracts, whole fish muscle and application of other
types of experimental design.
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3.3. Interpretation of low-field NMR relaxations

Water is found in large quantities in many food products and is known to be extremely important
for the overall stability and acceptability of foods. For example, sensory parameters, texture,
WHC and drip loss are factors that depend on the concentration and mobility of water. In fish
muscles, water can be seen as existing in different fractions depending on how tight the water is
bound to the muscle structure (Ruan and Chen 1998). The distribution of water into these
fractions depends on factors like storage treatment, freezing, mincing, etc. In recent studies
made on porcine meat, three water fractions were identified: one trapped between the fibres,
one outside the myofibrillar structure or even outside the muscle cells, and one tightly bound to
the muscle proteins (Bertram et al. 2001a and 2002b). The last was found in very low
concentrations that remained constant irrespective of how the meat was treated (Bertram et al.
2002b).

Low-field NMR is an ideal tool for quantification and characterisation of water in foods since it
measures the mobility of protons and thus also the mobility of water (Schmidt and Lai 1991;
Berendsen 1992). Several examples have illustrated the applicability of low-field NMR for
studying the water distribution in foods. For example, the relation between NMR relaxations and
the state of water within the food product is used to predict quality parameters such as the WHC
of meat (Brendum et al. 2000; Bertram et al. 2001b and 2002a,b) and of frozen-thawed cod
(Jepsen et al. 1999). Muscle changes taking place after slaughter influence the water
distribution and have been described by NMR relaxometry (Tornberg et al. 2000). Texture
changes in frozen cod have been correlated to changes in NMR relaxation parameters (Steen
and Lambelet 1997). Furthermore, sensory parameters such as juiciness and tenderness
depend on the water availability and have been correlated to the NMR relaxation constants
(Fjelkner-Modig and Tornberg 1986).

The following shows how low-field NMR can be used to describe the distribution of water within
gadoid fish muscles. The NMR measurements were obtained by CPMG pulse sequences (see
Section 2.4.2), giving information about the T, relaxation characteristics. Section 3.3.1 contains
a description of the distribution of water within cod fillets (Paper Ill), Section 3.3.2 describes the
distribution of water in four gadoid fish species and Section 3.3.3 discusses the relationship
between the distribution of water into different pools and WHC (Paper V). Accordingly, this
subchapter gives a thorough discussion of the applicability of low-field NMR for studying the
states of water in fish muscles and a few derived quality parameters.
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3.3.1. Distribution of water in cod

Water content and NMR relaxation profiles were measured in 40 to 60 samples taken
systematically from whole fillets of five cod. The NMR relaxations were analysed with the slicing
method (see Section 2.1.2.3), giving mono-exponential profiles corresponding to the common
characteristic water pools. Relaxation time constants (T, values) were calculated from these
profiles.

Two exponential functions were obtained, illustrating the presence of two different water pools
with the characteristic T, values of 50 and 94 ms. Figure 3.3 shows, for two of the five fillets, the
distribution of the score values of the slow relaxing component (component two) and the
distribution of water within the length of the fillet. The figure reveals that the water content as
well as the score values of the slow relaxing component (component two) generally increase
with the distance from the head. This indicates that the score values contain information about
the total water content, which can also be verified by the correlation of 0.94 between these
score values and the water content. The distribution of the water content is in agreement with
the results obtained by Dambergs (1963).
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Figure 3.3 Distribution of scores of component two and water content. The position is given as the
distance from the head (0 cm).

Water with the fastest relaxation is found in larger concentration near the head and water with
the slowest relaxation is primarily found near the tail. Cell sizes and muscle fibres are smaller
towards the tail compared with the rest of the fillet (Love 1988). Therefore, the variation in both
the total water content and the distribution of the water pools can likely be explained by the size
of the muscle cells or fibres meaning that water is bound more tight in the larger muscle fibres
closer to the head (Love 1988), which also contain less water as it is shown in Figure 3.3.
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3.3.2. Distribution of water in four fish species

Low-field NMR is used to investigate the distribution of water in four gadoid fish species (cod,
haddock, whiting, and saithe). The purpose is to see if the distribution of water varies
systematically between the four fish species. A three-component slicing model seems to give
the best description of the data. The reliability of this model is supported by fit values, core
consistency diagnostics, distributions of residuals and split-half analyses®. However, both
distributed and discrete exponential fitting point to two components being optimal®. Figure 3.4
shows some results obtained by distributed fitting. To the left, the distribution of T, values for ten
samples of each fish species is shown. All samples have a main water component with T,
values between 50 and 100 ms. Another smaller component has T, values ranging from 100 to
1000 ms, but the exact values vary between the samples. The distribution of the T, values also
differs within one fish species and between the fish species. The right part of the figure shows
an enlargement of the area containing the main component. Mean relaxation time distributions
of haddock and whiting are shown; illustrating that haddock typically has lower T, values than
whiting®. These differences between fish species and within one fish may explain why slicing
cannot model the data appropriately. Even though all samples contain two water pools, these
cannot be identified by slicing because of the large variation in the T values. The
appropriateness of two water pools in fresh gadoid fish muscle is supported by other studies
(see Paper Ill and Lambelet et al. 1995).
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Figure 3.4 a) Distributed exponential fitting of T, relaxation data from 10 samples of whiting, haddock,
saithe and cod and b) enlargement of the distributions between 20 and 100 ms for average distributions
of whiting (black) and haddock (grey). Averages are made for each fish.

All four fish species are gadoid and it is assumed that the muscle structure of the four species is
not very different. The relaxation time constants vary among the four fish species, but also
within one species. This indicates a variation in the water pool distribution. However, no

% See paper Il for a description of the validation methods that can be applied in PARAFAC. Split-half
analysis and distribution of residuals are explained in Chapter 4.

4 See section 2.1.2.3 and 2.4.3 for a discussion on the data analytic methods.

® Mean relaxation time distributions are the mean distribution of each fish. Eighteen measurements are
performed on each fish.
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systematic variation between the four fish species is found in the water pool sizes probably due
to a large variation within one fish species.

Slicing is a powerful data analytical method which can be applied when all samples have the
same underlying structure. However, as discussed above, slicing may give misleading
interpretations when these assumptions are not met. Therefore, the appropriateness of slicing
should always be considered, before using it for data analysis. This can be done by relating the
slicing results to other information about the data as illustrated above.

3.3.3. Relationship between water distribution and water holding capacity (WHC)

The ability of the muscle to hold water is important for the acceptability of the product since poor
WHC influences the texture, juiciness and overall impression of the fish product. An increased
amount of fish is frozen before sale or is sold as a frozen product. By freezing and thawing,
muscle proteins are degraded, which leads to decreased protein solubility and loss of functional
properties (Shenouda 1980; Mackie 1993). This decreases the WHC and the product quality.
Therefore, the development of instrumental methods, such as low-field NMR, to measure WHC
is industrially important. Furthermore, the applicability of low-field NMR for studying the
distribution of water into different pools enables a fundamental study of the relationship between
water in the muscle and WHC. Such knowledge can be used to optimise freezing and thawing
as well as the storage conditions.

Low-field NMR measured on cod fillets subjected to different freezing and storage treatments
are obtained and decomposed with slicing and discrete exponential fitting. The amount of water
in each pool is calculated as described in Paper IV and related to the WHC by multiple linear
regression (MLR). WHC is reported as (1) the amount of water present in the sample after
centrifugation relative to the original amount of water (WHC,,) or as (2) the amount of water
present in the sample after centrifugation relative to the amount of dry matter (WHC,). These
two quantities are perfectly correlated as long as the dry matter content does not vary among
the samples. However, when the dry matter content varies, as is the case here, the two
measures will give different WHC.

Tables 3.1 and 3.2 show the performance of the predictions including also the results obtained
by PLS regression using the whole relaxation curves as x-variables. Generally, large
correlations (r) and low error estimates (RMSECYV) are obtained; illustrating that low-field NMR
is a valid method to assess WHC in fish muscles. It is interesting that when expressing WHC
relative to the original amount of water (WHC,,), optimal predictions are obtained on whole and
minced muscle. The poor predictions obtained from the centrifuged fillets are reasonable, since
water is removed by the centrifugation and the samples contain no information about the
original water content. However, the centrifuged samples give good predictions when WHC is
expressed relative to the dry matter content (WHCy). The centrifuged samples have been given
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exactly the same treatment (mincing and centrifugation) as the samples used for the physical
determination of WHC. Therefore, it is reasonable that these samples give more accurate
estimated values and thus better predictions.

Table 3.1 Prediction of WHC,, expressed as percentage of water left after centrifugation
relative to the original amount of water. Variation in WHC,, is between 68 and 88 %.
RMSECYV is given in per cent.
Whole fillet Minced fillet Centrifuged fillet
r RMSECV (%) r RMSECV (%) R RMSECV (%)

PLS on whole relaxations®
0.86 2.95 0.77 3.75 0.60 4.80

M values obtained by slicing
0.73 3.96 0.83 3.27 0.67 4.47

M values obtained by slicing
0.77 3.84 0.68 433 0.48 5.47

“The PLS regressions are made with three components for whole and minced fillet
and one component for centrifuged fillet.

Table 3.2 Prediction of WHC, expressed as g water left after centrifugation relative to
the g dry matter. Variation in WHC,, is between 2.37 and 3.92 g/g. RMSECYV is given in
the original values (g/g).
Whole fillet Minced fillet Centrifuged fillet
r RMSECYV (g/g) R RMSECYV (g/g) r RMSECYV (g/g)

PLS on whole relaxations®
0.77 0.817 0.79 0.233 0.92 0.157

M values obtained by exponential fitting
0.68 0.272 0.82 0.221 0.79 0.246

M values obtained by slicing
0.77 0.248 0.70 0.276 0.92 0.156

@The PLS regressions are made with three components.

In contrast to the fresh fish muscles shown in the two previous sections, three water pools were
found. Presumably, the extra component corresponds to a water pool that develops during
freeze storage. The appearance of this water pool is likely due to protein deterioration and
leakage of water into the extracellular space and can be identified as thaw exudates (Lambelet
et al. 1995).

One objective of this study has been to investigate the relationship between the concentration of
water in the different pools and the WHC. This is evaluated from the multiple linear regressions
by a jack-knife approach that estimates the significance of the regression coefficients (Section
4.2.3). The prediction of WHC,, of whole and minced fillet shows that both the fastest and the
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slowest relaxing water are significant, indicating that a large concentration of water within the
myofibrillar structure and a low concentration of very mobile water ensures high WHC. However,
it may be that the concentrations of the two water pools are negatively correlated. In this
situation both of these will be found to be important by the jack-knife validation even though one
of them may not actually have an influence on the WHC. The slowest relaxing and loosest
bound water is removed during centrifugation and is probably also removed as a function of
lower WHC. Therefore, it is reasonable that this water pool is important for the predictions.
Prediction of WHC, of the centrifuged samples shows that the two fastest relaxing components
are significant. By centrifugation, part of the slowest relaxing water is removed and will probably
have only a limited influence on the predictions.

The above shows that low-field NMR is a valid method to measure WHC of fish muscle. One
purpose has been to evaluate low-field NMR as a non-destructive method, which can be applied
industrially. This makes the prediction performance of the whole fillets interesting and
encourages further studies. The good predictions obtained with the centrifuged samples are
interesting from a scientific point of view and can be used in research to improve the
understanding of the relationship between water mobility and WHC. In the longer run such an
understanding can be used to optimise storage and processing.
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4. Validation

Validation is an important aspect in all data analysis. The overall purpose is to ensure that the
model will work in the future for new, similar data. In addition, explorative methods such as PCA
and PARAFAC should be validated to assure that the interpretation is correct and reasonable.
For regression models such as PLS and PCR, validation should be more focused on obtaining
as good predictions as possible, meaning that the predicted value should be close to the value
of the reference measurement. Thus, validation includes, among other things, determination of
the number of components, outlier detection and evaluation of the estimated model parameters
(Harshman 1984).

Validation cannot be applied using a few general methods. The chosen validation method will
depend on the data, the problem, and the chemometric methods. In the following, several
validation methods will be described. Examples taken from the Papers | to VI are included to
illustrate the applicability of the various methods. The objective is to show the applicability and
interpretability of the methods and not to give the mathematical and statistical background.

The validation methods described here do not represent a full list of all possible methods. The
description rather illustrates some important methods and should give an indication of how the
models can be validated in many similar situations. Furthermore, it should be recognised that
the results obtained by a certain validation method are not the truth, but only provide indications.
The results should be related to external knowledge about the data in order to ensure that the
model is valid in relation to what is already known. For example, spectral measurements such
as fluorescence typically have a smooth form with positive and uni-modal peaks, as described in
Paper Il. This can be used to verify an obtained estimate of pure analyte spectra. Likewise, in
Papers Il and IV it is described that the loadings obtained from slicing modelling of NMR
relaxations should be mono-exponential, as they represent the pure relaxation profiles of the
different exponential components.
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4.1. Validation methods

4.1.1. Test set validation

Test set validation is used to determine the number of components to use in multivariate
calibration models and to give an estimate of the prediction errors. The Root Mean Squared
Error of Prediction (RMSEP) is typically used to evaluate the results. It is expressed as

o
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where y,is the predicted value of the i-th sample, y; is the measured/true value of the i-th
sample and n is the number of samples. When calculating RMSEP using increasing number of
components, the error estimate usually decreases until it reaches a minimum. The number of
components should be chosen at this minimum. With a further increase in the number of
components, RMSEP increases again or flattens out.

Test set validation can be applied when two sets of samples are at hand. One of these is used
for calibration. The other is used as an independent test set that should estimate the prediction
performance of new samples not included in the model. The test set can also be chosen by
taking samples out of one data set, if the data set contains enough samples. One part of the
samples will be used to make the model; the other will be used as an independent test set to
evaluate the predictions.

Test set validation requires that the two data sets are representative of future measurements,
that they span the expected variation in the samples and reflect the variation arising due to
sampling and measurement. Therefore, the actual measurements/samples in the test set have
to be chosen based on the information it is sought to reflect. Test set validation is used in
Papers V and VI to evaluate the prediction performance of unknown samples even though the
data sets contain few samples.

4.1.2. Cross validation

Cross validation is typically used to estimate the number of components in a calibration model
similarly to test set validation. It is performed by leaving out one sample or a group of samples
and using this sample or these samples for validating a model based on all other samples. After
that, another sample/group of samples is left out and used for validation. This procedure
continues until all samples or segments of samples have been left out exactly one time. The
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method is called full-leave-one-out cross validation when one sample is left out at a time and
segmented cross validation when a group of samples is left out.

The Root Mean Squared Error of prediction as estimated by Cross Validation (RMSECV) is
used to evaluate the results. RMSECYV is used and interpreted in the same way as RMSEP
described in the previous section. Cross validation is often chosen when the data set contains
only a few samples or when a representative test set cannot be drawn from the data. It is
applied in Paper | to estimate the number of components and obtain an indication of the amount
of variance explained in PCAs made on fluorescence spectra of salmon and cod. In Paper IV,
cross validation is used when predicting WHC of fish muscles from low-field NMR decays.

When segmented cross validation is used, it is important to consider how the segmentation of
samples is made. For example, if the data set contains replicates, these should be included in
the same segment, as it is done in Paper IV. If replicates are separated into different segments,
the model will be validated on the same samples that are used for calibration, and the error
estimates may be too optimistic. Another way to handle replicates is to average the replicates
and then use full-leave-one-out cross validation. However, in this approach variation between
replicates will not be detected.

4.1.3. Jack-knife validation

Jack-knife validation is used to evaluate the uncertainty of parameter estimates. It can be
considered as an extension of cross validation. Leaving out samples in the same way as for
cross validation creates a number of new data sets. One model is made on each of these data
sets, giving a set of parameter estimates for each of the “new” data sets. The model is validated
on the sample(s) left out (Efron and Tibshirani 1993). As for cross-validation, jack-knifing can be
performed by leaving out segments of samples or by leaving out only one sample at a time.

The jack-knifing results can be evaluated by calculating the standard deviation of the estimated
parameters, which is estimated by Wehrens et al. (2000) as

so= "y w-v (4.2)

n

where V, is the estimated value obtained when fitting the model on the data excluding sample |,

V' is the mean value of the estimated V; values, and n is the number of new data sets.

The theory and some applications of jack-knifing are described by Efron and Tibshirani (1993)
and by Martens and Martens (2000). Jack-knifing can be applied to eliminate useless variables
or to find outliers. The determination of significant x-variables in PLS regressions and the
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elimination of disturbing and useless ones is shown in a sensory assessment of cocoa drinks for
predicting physical and chemical parameters (Martens and Martens 2000). Bsknaes et al. (2002,
appendix 1) applied jack-knifing to determine significant wavelengths in the prediction of chill
storage time of frozen-thawed cod from near infrared spectroscopy. Paper IV shows the use of
jack-knifing for evaluating the importance of the different water pools in the prediction of WHC,
where the concentration of water in each water pool is obtained from low-field NMR decays.

Riu and Bro (2002) showed how identification of outliers in a trilinear model such as PARAFAC
can be performed based on jack-knifing results. This approach is used in Paper Il, which also
shows how the stability of the model parameters can be evaluated by jack-knife validation.

4.1.4. Bootstrapping

Bootstrapping is another resampling approach used to estimate the uncertainty of model
parameters. Many new data sets, called bootstrap samples, are created from the original data
set by sampling with replacement. As for jack-knifing, one model is made for each of these
bootstrap samples. This gives a number of estimated parameters from which statistical
estimates such as mean, standard error and confidence intervals can be obtained. The standard
error is obtained as expressed by Wehrens et al. (2000) (Equation 4.3) as

1
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where b is the number of bootstrap samples, Z; the i-th bootstrap estimate and Z the mean
value of the bootstrap estimates. It is important that the number of bootstrap samples is large
enough to ensure stable and reliable estimates.

A thorough description of bootstrapping is given by Wehrens et al. (2000) and Efron and
Tibhshirani (1993). The application of bootstrapping in PCR is described by Wehrens and van
der Linden (1997). Furthermore, bootstrapping is applied in Paper lll, illustrating how the
uncertainty of PARAFAC loadings can be used for choosing the correct model.

In jack-knifing all samples contribute equally to the model parameter estimation. When
resampling is performed with replacement as in bootstrapping, the estimated model parameters
depend on the actual samples selected. Furthermore, bootstrapping renders more difficult to
recognise phenomena occurring in very few samples. Therefore, jack-knifing should be
preferred for identifying outliers and detecting insignificant variables. In addition, jack-knifing is
easily performed using the cross validation schemes, whereas bootstrapping requires additional
calculations. However, bootstrapping may be preferred, when statistical uncertainty of
parameter estimates is of primary importance.
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4.1.5. Split-half analysis

Split-half analysis is used to estimate the number of components to use in models with a unique
solution such as PARAFAC. In the split-half analysis, the data is divided into two parts that are
analysed independently (Harshman 1984; Harshman and de Sarbo 1984). When the model is
fitted on the two parts, equal model parameters are obtained in the non-splitted directions
(modes) if the model is valid. Split-half analysis is a strong method to validate the model
dimensionality since the model parameters will only be equal if the correct number of
components is chosen.

It is important to consider how data is divided as both sets should contain all underlying
phenomena in the data. Furthermore, all split-half data sets should contain a sufficient number
of independent samples/variables. If the data set is too small, modelling each split-half data set
may not be able to reveal the important variation.

If one phenomenon is only present in one of the split-half data sets, the parameter estimates
may not be stable. This induces a risk of rejecting the model even though it may be true and
would have been accepted if the splitting had been performed in another way. In order to avoid
unfortunate splitting, where the split halves are actually different, it is suggested to divide the
data into four parts. The four parts are then combined two and two and the split-half analysis is
performed on different combinations of the four parts (Harshman 1984). Split-half analysis is
applied in Paper |l to validate fluorescence EEMs modelled with PARAFAC and in Paper Il and
IV to estimate the correct number of components to use in slicing models of low-field NMR
relaxation data.

4.1.6. Distribution of residuals

Residuals should ideally be randomly distributed, meaning that the remaining unexplained
variations would only be caused by random noise. A systematic distribution of the residuals is
an indication that the data contains systematic variation not included in the model and more
components have to be used. Therefore, the residuals should be investigated in order to find
any systematic variation.

In addition, sample specific residuals may be used to identify outliers, trends, etc. The
identification of outliers by investigating the distribution of sample residuals is illustrated in
Paper I, which also shows that the sum of squared residuals of each sample can be used as a
measure of outlier identification.
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5. Sampling

Instrumental measurements are of importance in industry, for example, for quality control or in
quality sorting in production. The instrumental measurement is meant to provide information
about the whole object, even though it only measures at a localised area. In these cases large
errors could arise if sampling is not considered sufficiently, since the expectation of the
measurement taken will not necessarily be representative of the average of the whole object.

Sampling involves selecting a part of a population for estimating a certain parameter of the
whole population. Measuring only a part of a population will always introduce an error, as the
part of the population measured will not be exactly the same as the rest of the population. This
causes a sampling error, which is defined as the difference between the measurement taken
and the measurement that would be obtained if the whole object was measured (Cochran
1977). Such errors decrease the applicability of the results, and it is important to find out
whether they are significant.

An important factor in the optimisation of sampling is that the sample should be as
representative as possible of other and future objects from the same population. Gy (1998)
defines a representative sample as a sample that is accurate, reproducible and precise. Besides
reducing the sampling error by choosing a representative sample, the number of samples
needed to obtain a reliable estimate is important. It is necessary to know the minimum number
of samples that should be measured in order to reduce the effect of sampling error, to be able to
detect significant variations between different groups and to avoid unnecessary measurements.

This chapter considers errors in instrumental measurements when these are used to predict
some parameter by univariate or multivariate regression. Section 5.1 describes the errors
influencing the predictions. In Section 5.2 it is illustrated how sample heterogeneity contributes
to the error in the instrumental measurements. Section 5.3 shows how errors can be quantified
and Section 5.4 contains an example of how errors in instrumental measurements can be
handled.
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5.1. Errors influencing predictions in multivariate regression

Various types of errors influence the predictions when relating multivariate instrumental
measurements to a certain quality parameter, for example, by PLS or PCR. The decomposition
of the errors contributing to the total prediction error of a measured sample containing errors in
the measurement of the reference value (y-error) is shown in Figure 5.1. When considering
errors in y, the total prediction error is denoted as the apparent prediction error. If the prediction
error is based on true reference values there will be no y-error and it will then be denoted as an
actual prediction error'. The total error is the error expected when predicting a parameter of a
new object which is not a part of the model estimation.

* sampling * sampling

* sample X-error Y * sample
treatment error in spectral -error treatment

* operator instrumental error in reference * operator

+ instrumental,_measurements measurements * bias of
error analysis

* bias of method
analysis method Total C—

prediction

* insufficient spanning
of the data

error

—— E . * lack of know-
i rror in ledge about
relation 1 . interferences
* lack of calibration «
information Model error * X-error
* inadequacy of model * Y-error
the: model * model error

Figure 5.1 Errors influencing multivariate regression and prediction.

The sampling error in both the instrumental (x-error) and the reference measurements (y-error)
may contribute significantly to the apparent prediction error. These errors are for example due to
variation in chemical and physical composition within the same object. The instrumental noise is
generally not very large due to high accuracy and reproducibility of the instruments considered
here. But together with instrumental drift it may contribute somewhat to the total prediction error.
Furthermore, the sample treatment introduces an error in both X and y due to weighing,
extraction, pre-concentration, contamination, storage conditions etc. Effects of the operator and
a bias due to the choice of a non-optimal analysis method may also be important.

! See section 2.2.3 for a discussion on the difference between apparent and actual prediction error.

52



New aspects of chemometrics applied to spectroscopy

The model error and the error in the calibration model reflect the part of the total error that
arises from the model or from estimating the model parameters. The model error is the
inadequacy of the model even for data without noise. It can be due to a non-linear relation
between the instrumental and the reference values, a lack of information in the instrumental
measurements for predicting the reference data or an inadequacy of the linear model used. The
error in the calibration model is a function of the three other types of errors. Furthermore, it may
be due to an insufficient spanning of the variation in data and lack of knowledge about
interferences.

The variance of the individual contributions can be added, if independence among the different
types of errors is assumed. Thus, it is possible to identify and combine all the individual errors
and from these to estimate the total prediction error. However, the error in the calibration model
is a function of the three other types of errors, which makes it more difficult to decompose the
total prediction error into the individual error components.

5.2. Heterogeneity of biological materials

The heterogeneity of the object or population sampled has an important impact on the overall
sampling error (Gy 1998). When the object/population is homogeneous, the samples can be
taken out arbitrarily. However, for biological materials, homogeneity is almost never the case
and the samples must therefore be taken out in some kind of rational systematic way. Studies
have shown a large variation in chemical composition even between fish within the same batch,
where a batch is a group of fish caught at the same time or reared together by one farmer
(Nordtvedt et al. 1998 Refsgaard et al. 1998; Isaksson 1995).

The heterogeneity of instrumental measurements within a cod fillet is illustrated in Figure 5.2.
Low-field NMR relaxations are measured on samples taken at every 1.5 cm? and with the depth
corresponding to the thickness of the fillet. Data are analysed with multivariate image analysis
(Geladi et al. 1989; Esbensen and Geladi 1989) by which a PCA on all NMR relaxations
measured is made and the score values of PC1 plotted on a figure of the fillet.

Figure 5.2 Visualisation of the variation in low-field NMR measurements within cod fillets. A PCA is made
on low-field NMR relaxations and the score values of the first PC plotted. Different grey-scale levels
indicate the different levels of the score values.

53



New aspects of chemometrics applied to spectroscopy

The low-field NMR relaxations show a systematic variation between the head and the tail part,
corresponding to the distribution of water and protein (Paper Ill; Dambergs 1963). Thus, there is
a variation in the instrumental measurements, depending on which part of the fillet that is
measured. The variation within one fish can make the experiments quite complex because of
the variation in muscle fibre structure, connective tissue, chemical composition, etc. Therefore,
the heterogeneity of fish is important when performing instrumental measurements on a
localised area only. This has been demonstrated for low-field NMR in Paper Il and in studies
using near infrared spectroscopy on a number of different fish species (Sigernes et al. 1998;
Nordtvedt et al 1998; Downey 1992; Isaksson 1995). However, none of these studies go into
detail with optimisation of sampling in order to obtain optimal predictions. The sampling of
instrumental texture measurements made on raw salmon fillets is discussed in Paper | and has
been investigated by Sigurgisladottir et al. (1999) and Isaksson et al. (2002), illustrating that the
texture varies depending on where on the fillet measurements are taken.

5.3. Quantification of errors

Errors (e.g. sampling) in instrumental variables (X) may be important for multivariate regression
and prediction. Knowledge about the importance of these errors can reveal how errors influence
the prediction results and can be used for sampling optimisation. This section illustrates how
errors in instrumental variables can be quantified. Prediction of water content of fish muscles
from low-field NMR relaxations is used as an example in the following and in Paper VI. Paper VI
also shows an example of predicting analyte concentrations from fluorescence spectroscopic
measurements.

The approaches used in this and the next section apply for random errors. As shown in Figure
5.2 the variation in instrumental measurements within a fish seems to be systematic. However,
if one measurement is taken at a random position, the error arising from the specific location
can be considered random. Furthermore, the approaches assume that no bias is present, since
such errors will not be identified, even when they are of a considerable size.

An approach suggested by Faber and Kowalski (1996) is applied for quantification of errors
influencing the predictions (see Section 2.2.3 for a thorough description of the approach). Low-
field NMR relaxations are measured at 18 different positions within each fish. Predictions are
made using six randomly chosen NMR measurements from each fish in a calibration set and six
other NMR measurements in a test set. The six measurements are used directly without
calculating the average. The water content (reference value) is the same for the two data sets.
Thus, data from all fish are included in both the calibration set and the test set, but the x-
measurements in the two data sets differ. The mean variance of prediction error expressed as
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the mean of all samples is illustrated in Table 5.1. Table 5.1 also shows how much each error
term contributes to the prediction error variance.”

Table 5.1 Mean variance of prediction error and errors contributing to the mean variance of prediction
error expressed in per cent.

Mean prediction Errorin Model error  Contribution of Contribution of
error variance calibration (%) errors in X (%) errors iny (%)
model (%)
Cod 21 133 85.3 0.02 14
Saithe 1.9 76 91.2 0.001 1.2
Whiting 8.5 8.0 91.2 0.007 0.8
Haddock 1.4 3.6 93.5 0.007 29

The mean variance of prediction error is of the same order of magnitude for the four fish
species, but somewhat larger for whiting. For all four fish species, the model error is most
important, but also the error in the calibration model and the contribution of errors in the
reference measurements seem to have some influence on the predictions. The errors in X only
make up a small portion of the prediction error variance. This contribution is somewhat larger for
cod than for the three other fish species. Ideally, in PLS regression only the structural part of the
data is included in the model. Noise is left in the residuals. Therefore, it seems reasonable that
errors in X only make up a very small part of the total prediction error.

It can be assumed that when the error in X only constitutes a very small part of the prediction
error variance, it will not have a significant influence on the predictions. However, as shown in
Figure 5.3, the contribution of errors in X is important for cod but not for haddock. Improved
predictions will be obtained when using more replicates, if errors are important. For cod, lower
RMSEP is obtained when the number of replicates increases. This illustrates that errors in X are
important. For haddock, RMSEP does not change by increasing the number of replicates
probably because errors in X are not important. The number of replicates has to be considered.
Ideally, it should be as small as possible (to reduce the amount of experimental work) and
chosen as the number at which the error estimate (here RMSEP) no longer decreases
significantly by increasing the number of replicates.

" Mean prediction error variance and contribution of each error term is estimated by Equation 2.11.
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Figure 5.3 RMSEP as a function of the number of replicates in both calibration and validation for cod
(black line) and haddock (grey line).

5.4. Handling errors in instrumental variables

Knowledge of the contribution of instrumental error to the total prediction error makes it possible
to optimise sampling and calibration. For example, if the random spectral error is large, the total
prediction error can, as mentioned earlier, be reduced using replicates. Least squares
regression gives optimal predictions, when the assumptions underlying least squares estimation
are met. If not, it is important to consider if least squares regression still gives adequate
predictions or if one should find another method or modify the least squares expression. This
section shows an example of such a modification, which is based on the measurement error
theory and applies when the number of replicates in calibration and validation differs.

5.4.1. Correction of the regression coefficient in case of different numbers of replicates

The error in the x-variables varies depending on the number of replicates due to an averaging
effect. If the validation set is based on an average of another number of replicates than the
calibration set, the predictions obtained directly by least squares estimation may no longer be
optimal. This may be the case, even though all other conditions required for least squares
estimation to be optimal are fulfilled. In Paper V a correction of the regression coefficient is
proposed based on the measurement error theory. It is expressed in Equation 5.1 and applies
for univariate data®. The approach is an attempt to improve the prediction errors by obtaining a
least squares estimate corresponding to the number of replicates in the validation set. This is in
contrast to the general purpose of applying measurement error models where non-biased
parameter estimates are the primary aim.

8 The derivation of Equation 5.1 based on least squares regression and the measurement error theory are
described in paper 5.
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In Equation 5.1, bis.a denotes the least squares estimated regression coefficient for the
calibration set. b is a calculated regression coefficient that is equal to the regression
coefficient of the calibration set but corresponds to the number of replicates in the validation set.
Furthermore, s?, s? ., and s, ., are the variances of the true x-values and of the x-error in the
validation and the calibration set, respectively. When different numbers of replicates are used in
the validation and the calibration set, the variances of the two error estimates will be different

and the corrected regression coefficient will differ form the least squares estimate.

The application of Equation 5.1 is illustrated in the following and in Papers V and VI. Water
content of fish muscles is predicted from low-field NMR relaxations after which RMSEP is used
to evaluate the results.

5.4.2. Application of the correction for univariate and multivariate data

The application of Equation 5.1 requires univariate data. Therefore, the applicability of the
equation is illustrated choosing one variable on the NMR relaxation curve. Figure 5.4 shows the
prediction error estimates obtained for the four fish species. The left plot shows RMSEP
obtained from the least squares estimated regression coefficient as a function of the number of
replicates in the validation set. The middle plot shows the same, but RMSEP is obtained using
the corrected regression coefficient. These plots show how RMSEP changes with an increase in
the number of replicates. It was expected that the prediction errors would decrease by
increasing the number of replicates due to more accurate measurements. However, this is only
clearly seen for the whiting. For saithe, RMSEP even increases with an increasing number of
replicates in the validation set. Probably, this is due to other factors than the sampling error
such as an increased variability caused by the uncertainty in the estimated correction factors.

The right plot in Figure 5.4 shows the relative difference in RMSEP obtained by least squares
regression and when correcting for the number of measurements in the validation set. A positive
value indicates that the correction performs best. The difference is largest when only one
measurement is used for prediction. When the validation set is made of up to a few
measurements, there seems to be an advantage of correcting the regression coefficients.
However, this advantage diminishes when more than approximately three measurements are
used.

57



New aspects of chemometrics applied to spectroscopy

a) b) LEAST SQUARES c) RELATIVE
LEAST SQUARES
CORRECTED DIFFERENCE
11 1.1 0.14
@
H i
ool 1 3 2
. 2 0.9 % 5
% * c
B i Y 3
» B % |1 @ % e
2 0.7 % 207 5, H
% :.v%;"‘,...‘,.--.._,... E
!%_,.ﬂm.-lh.,,u - %’*M% s
05 ety 1 0.5 y H
8
&
03, 5 10 03, 5 0 0.02 : -
Nreplicates N(replicat es) Nreplicates

Figure 5.4 Prediction of water content from 'H low-field NMR relaxations. One variable from the NMR
relaxation curve is used as x-variable. Models are validated with full cross validation and include the
average of six replicates in the calibration set. a) RMSEP as a function of the number of replicates in the
validation set where the regression coefficient is estimated by least squares regression, b) RMSEP as a
function of the number of replicates in the validation set where the regression coefficient is estimated by
correcting the least squares regression and c) relative difference in RMSEP expressed as RMSEP
obtained by least squares regression minus the RMSEP obtained from Equation 5.1 relative to the least
squares estimate. The lines indicate: cod (solid black), haddock (solid grey), saithe (dotted black) and
whiting (dotted grey).

Paper VI shows how Equation 5.1 can be applied on multivariate data using the scalar net
analyte signals as univariate independent variables. Figure 5.5 shows RMSEP as a function of
the number of replicates in the validation set using the norm of the PLS regression vector as
regression coefficient (a) and the norm of the PLS regression vector corrected according to

Equation 5.1 (b). The right plot (c) shows the relative difference in RMSEP obtained by the two
methods.

Figure 5.5 shows that for cod and haddock the correction gives better predictions when very few
replicates are used in the validation set. Saithe does not show a clear difference between the
RMSEP obtained by the two methods probably because the errors in X are not important for the
prediction of the water content. With many replicates in the validation set neither cod nor
haddock show an effect of applying the correction. This is due to non-important errors in the
NMR measurements for these situations. By increasing the number of replicates, errors in the

instrumental measurements become less important and there is no effect of correcting for such
errors.
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Figure 5.5 Prediction of water content from 'H low-field NMR relaxations. Scalar net analyte signals are
used as x-variable. Models are validated with full cross validation and include the average of six
replicates in the calibration set. a) RMSEP as a function of the number of replicates in the validation set
where the norm of the PLS-regression coefficient vector is used, b) RMSEP as a function of the number
of replicates in the validation set where the correction is applied on the norm of the PLS-regression
coefficient vector and c) relative difference in RMSEP expressed as the difference in RMSEP relative to
RMSEP obtained using the norm of the regression coefficient vector. The lines indicate: cod (solid black),
haddock (solid grey), saithe (dotted black) and whiting (dotted grey).

The results obtained for whiting seem more peculiar, in that the application of the correction
gives poorer predictions with few replicates in the test set and better predictions with many
replicates. These results may be due to the larger RMSEP obtained for whiting, which indicates
that these models do not perform well. This can also be seen from Table 5.1 where the
prediction error variance is larger for whiting than for the other fish species.

As shown above, there is a difference between the results obtained for real univariate data
taking out one x-variable and when using the scalar net analyte signal as x-variable. The
variable taken out to make the univariate data may not contain all information in the NMR
relaxation profiles that are related to the water content. Furthermore, the univariate data may be
influenced by interferents, which are removed when calculating the net analyte signal (see

appendix 2). These factors entail that the two types of x-variables will give different models and
thereby different predictions.

The above shows that the correction is useful when applied on real data. If errors in the
instrumental variables are important, the regression coefficient should be corrected, so it
corresponds to the number of measurements in the validation set. This is typically the situation
with very few replicates. However, the application of the correction requires further studies
including other types of data. Such studies will lead to a thorough understanding of the

application of the correction on multivariate data and may illustrate where the advantages of the
method are most pronounced.
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6. Conclusion and perspectives

This project has elaborated on the application of known and new chemometric methods to
decompose, interpret and optimise spectroscopic measurements. Examples of using
fluorescence spectroscopy and NMR on fish muscles are illustrated. The focus has been on
three areas:

1) Exploratory analysis of complex spectroscopic measurements
2) Validation of models
3) Quantifying and handling sampling errors of instrumental measurements

6.1. Exploratory analysis of complex spectroscopic data

Applying fast instrumental methods, such as fluorescence spectroscopy and NMR, has in this
Ph.D. project been found to give informative and reliable data on several aspects concerning
fish quality. When performing non-destructive measurements, the data obtained may be rather
complex due to the large complexity of the food materials. This complexity is illustrated for
fluorescence emission of cod and salmon.

The fluorescence spectra are shown to be influenced by factors such as connective tissue,
NADH, oxidation products, lipids and pigments. This possibility of identifying various
fluorophores present in the fish muscle encourages further studies on the relationship between
the development or disappearance of certain fluorophores and the storage conditions or some
quality parameter. One aim would be to develop on-line techniques for quality control. For
example, the detection of NADH and oxidation products illustrates the possibility of using
fluorescence for determination of chill storage time of cod. However, more experiments are
needed before the potential of fluorescence spectroscopy for industrial determination of chill
storage time can be fully elucidated. Such experiments may include fish caught at different
seasons or places and fish treated with other storage conditions.

The applicability of fluorescence to measure the degradation of connective tissue has been
investigated by PCAs and by relating the spectra to texture and degree of gaping. Rather poor
predictions were obtained probably due to non-optimal sampling and small sample variation.
However, fluorescence spectroscopy may still be applicable as a fast non-destructive method
for quantification of collagen and may also be of importance within research investigating the
influence of collagen on fish quality. Other instrumentation or different sample preparation
should be tested in order to obtain a fundamental understanding of the fluorescence properties
of connective tissue. This may induce further knowledge of the potential for on-line
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implementation of fluorescence spectroscopy for measuring quality parameters related to the
connective tissue.

Fluorescence EEMs were obtained for fish muscle extracts and decomposed by PARAFAC,
illustrating how underlying spectral and chemical information can be extracted. PARAFAC
enables identification of pure excitation and emission spectra of the individual fluorophores.
However, modelling may be troublesome and also time consuming. For example, missing
values and scatter can cause problems which can be handled, for example, by constraining the
loadings with non-negativity and unimodality.

An initial investigation of the fluorophore composition in fish muscles is shown. However, further
experiments involving other types of extracts or whole fish muscle are needed to fully
understand the underlying chemical properties of the fish muscles.

The steps and problems involved in PARAFAC modelling are illustrated showing how
fluorescence spectroscopic data can be decomposed and interpreted and illustrates the
potential of three-way modelling of fluorescence excitation-emission data for resolving the
underlying chemical structure in the measured spectra. This may give an incentive to apply
PARAFAC modelling to fluorescence EEMs of other products.

Water content and the mobility of water are important for fish products, as they influence quality
parameters such as texture and WHC. Thus, knowledge of the distribution of water can be
important for product optimisation. Low-field NMR has been applied to study how water is
distributed in gadoid fish muscles. There is a variation in the total amount of water within one
fillet as well as in the content of the individual water pools. This variation likely relates to the
variation in cell and muscle fibre size and illustrates variations in the measurements, depending
on which part of the fillet that is used for the analysis. Further studies could be of interest
investigating the distribution and state of water within the fish muscle. This may contribute to a
more detailed knowledge of the composition of the muscle structure and the differences within
one fish and between different fish species.

WHC of frozen-thawed fish muscle has been predicted from low-field NMR relaxations. Low
error estimates and high correlations between the measured and the predicted WHC were
obtained, showing that NMR is a valid method for predicting WHC. Furthermore, the relationship
between WHC and the concentration of the individual water pools estimated from the NMR
relaxations encourages further studies that can illustrate how processing and storage influence
muscle structure and WHC. In the longer run, such studies can be used to optimise storage and
processing.
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6.2. Validation of models

Validation is an important aspect of data analysis. It is necessary to ensure valid and reliable
modelling and can be seen as an assessment of the appropriateness of the developed models.
In this project, experiments have not been made with the purpose of investigating validation.
Rather, validation has been an integrated part of the data analysis and has been included in all
the experimental work.

Various validation methods have been presented and applied in this thesis and in the included
papers. The thesis thereby illustrates how the choice of validation method depends on the
actual situation such as the type of data, models applied and purpose of the data analysis. For
example, it is shown that test set or cross validation should be used to evaluate the prediction
performance and can, together with split-half analysis, be used to estimate the number of
components in chemometric models. Jack-knifing and bootstrapping estimate the uncertainty of
the model parameters and are suitable for variable selection, outlier detection and evaluation of
the model reliability.

6.3. Quantifying and handling sampling errors of instrumental
measurements

The homogeneity of instrumental measurements within cod fillets has been investigated
illustrating that the measurements depend on which part of the fillet that is used for the analysis.
Therefore, sampling may be important when measurements are performed on a part of the fillet
and is necessary to consider in further experimental work.

Knowledge about the influence of errors (e.g. sampling) on predictions is important. The
quantification of errors can be done by an approach which gives the prediction error variance
based on factors such as the contribution of errors in the instrumental measurements, errors in
the reference measurements, error in calibration model and model error. By multivariate
regression, the largest part of the noise is left unmodelled in the residuals. Therefore, the
contribution of errors in the instrumental measurements typically only makes up a very small
part of the total prediction error. However, these errors may still be important. The approach is a
useful method for comparing the size of the errors influencing the predictions in multivariate
regressions and can be a valid method for optimising sampling and experimental conditions.
This should be investigated further using other types of data.

Least squares estimation gives optimal predictions when residuals are homoscedastic and there
is no model error. This is the case even with large errors in the instrumental measurements.
However, applying a correction of the regression coefficient for univariate data improves the
predictions when the instrumental error is considerable and the number of replicates used for
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calibration and validation differs. This correction is also applicable for multivariate data using the
scalar net analyte signal instead of the multivariate signals. However, the results are not
unambiguous and may be influenced by various types of errors. Therefore, in order to fully
understand when and how the correction can be applied more studies are required involving
other types of samples and other instrumental measurements.
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Autofluorescence of salmon and cod muscle was measured and compared with autofluorescence of
collagen type | and type V. Similarities between fluorescence of fish muscle and collagen were found
in that the same peaks were obtained around 390, 430, and 480 nm. These similarities are supported
by principal component analyses. Texture and gaping score were predicted from the fluorescence
spectra by partial least-squares regression. However, the predictions did not perform well. Relating
fluorescence to the gaping score gave a prediction error of 0.91 and a correlation of 0.43 when
measuring gaping on a scale from 0 to 5. There was no relation between texture and fluorescence
spectra. Fluorescence of fish muscle could be related to the storage time. However, this relation
seemed not to be induced by changes in collagen.

KEYWORDS: Salmon; cod; collagen; connective tissue; fluorescence

INTRODUCTION

The collagen content of fish muscle varies considerably from
species to species. Contents from approximately 3 to 20 g/kg
of fish muscle have been found in a number of fish species (/).
These values include the connective tissue of myocommata,
perimysium, and endomysium. Collagen type I and type V have
been identified, and it is stated that these two types of collagen
make up the major part of the intramuscular connective tissue
in fish muscle. Collagen type I is higher in content than collagen
type V (2=5).

It has been shown that the texture of fish muscles and the
degree of gaping depend on the content of connective tissue in
that a higher collagen content was observed in situations with
a firmer texture of the raw meat and a low collagen content
was found in tender meat vulnerable to gaping (/, 6). Since the
connective tissue and thereby collagen are important for the
overall quality of fish products, determination of the collagen
content and its degradation by a fast on-line method, such as
fluorescence spectroscopy, can be important for controlling and
optimizing processing and marketing.

Fluorescence spectroscopy has been used to study connective
tissue of ground bovine meat (7). The pure spectra of connective
tissue was estimated, and it was shown that excitation at 332
nm gave emission with high intensities between 400 and 520
nm. Egelandsdal et al. (8) studied the fluorescence of connective
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10.1021/jf020524d CCC: $25.00

tissue from bovine masseter muscle and found emission maxima
at 380 and 465 nm after excitation at 335 nm. The sources of
fluorescence from connective tissue are not fully understood at
the molecular level yet, but it is supposed that different collagen
cross-links and components such as pyridinoline are contributors
©, 10).

It has been known for long time that fish muscle is able to
cexhibit autofluorescence (71, /2), and it has been shown that
autofluorescence changes during frozen storage (/3). Previous
experiments measuring fluorescence of fish products have
primarily focused on the ability of fluorescence spectroscopy
as a method to follow lipid oxidation. Increases in fluorescence
of aqueous and organic extracts of cod, haddock, and sardine
during freeze storage (/4, 15) and of blue whiting during chill
storage (/6) were correlated to some measures of lipid damage.
Hasegawa et al. (/7) used solid sample fluorescence spectrom-
etry on a dried fish model system and found a correlation to
the oxidative deterioration. Another application of fluorescence
spectroscopy was the development of a method that can detect
bones in fish fillets (/8). Other sources contributing to the
autofluorescence of fish muscle may be proteins, amino acids,
NADH, FAD, pigments, and some nucleic acids. All these
factors will make fluorescence of heterogeneous materials such
as fish muscles very complex.

This paper presents an investigation of autofluorescence from
fish muscle especially in relation to the occurrence of collagen
type I and type V. By use of multivariate methods, the aim is
to indicate the presence of these fluorophores within cod and
salmon musclc. Changes in autofluorcscence characteristics
during storage are investigated as well as variations within the

© 2003 American Chemical Society
Published on Web 12/12/2002
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fillets. A second objective is to relate gaping and texture to the
autofluorescence spectra of salmon. This relation is expected
due to the influence of collagen on quality parameters such as
texture and gaping (/, 6) and the theory that collagen makes
up an important part of the autofluorescence of fish muscle.

EXPERIMENTAL PROCEDURES

Materials and Sample Preparation. Cod. Four gutted and bled cod
were obtained from Frederikstad, Norway, the day after catch. One
fillet from each fish was measured the day after slaughtering. The other
fillet was stored at 2 °C until the fifth day after slaughtering and then
measured. Head and bones were kept on during storage. Another five
fillets were bought from the fish auction hall in Oslo. The exact day of
catch of these fish from the auction hall was not known. However,
judged upon the odor, these fish were supposed to be older than the
fish mentioned previously.

Fluorescence was measured on three samples from each cod fillet.
Two samples were taken from the loin, one as close to the head as
possible and the other from the middle of the fillet between the tail
and the head. The third sample was taken as close to the tail as possible.
This gave a total of 39 samples, 12 from storage day one, 12 from
storage day five, and 15 obtained from the fish auction hall fillets.
Skin was removed from the fillets before cutting out the samples. The
samples were placed into specially designed sample cuvettes, which
exposed a flat circular surface with a diameter of 5 ¢cm for measurement.
Samples were placed in the cuvettes such that the interior of the fillets
was exposed for autofluorescence measurements. Thus, only fluores-
cence of the white muscle was measured. Before measurement, the
samples were conditioned at 18 °C for at least 1 h.

Salmon. Salmon were raised, slaughtered, and filleted at the Institute
of Aquaculture Research (Akvaforsk) in Norway. The fish were stored
with ice at 2 °C for I, 2, or 3 weeks before measuring. After | week
of storage 60 salmon were analyzed, after 2 weeks 60 new ones were
alalyzed, and after 3 weeks 30 additional salmon were analyzed. Texture
and gaping were measured at Akvaforsk, after which the fillets were
brought to thc Norwcgian Food Rescarch Institute (Matforsk) for
fluorescence measurements. These were measured 1 day after the texture
and gaping score determinations. Samples of salmon were taken from
the loin and were prepared as described for the cod. In addition, samples
as close to the tail as possible were taken from the fish stored for 1
week.

Collugen. Fluorescence was measured on collagen type T purified
from calf skin and collagen type V purified from bovine achilles tendon
(Sigma Aldrich Sweden AB, Stockholm).

Autofluor: Measur Fluorescence emission spectra
were measured directly on the fish muscle. An optical bench system
optimized for measuring rather large sample surfaces (up to diameter
2 6 cm) was used. The excitation light was generated by a 300 W
xenon light source (Oriel 6258, Oriel Corp., Stratford, CT). The light
was directed onto the samples at an angle of 45°, The spectra were
collected by an imaging spectrograph (Acton SP-150, Acton Research
Corp., Acton, MA) connected to a sensitive charge coupled device
(CCD-camera) (Princeton TEA/CCD-512-1'KBMI, Princeton Instru-
ments Inc., Trenton, NJ). A cutoff filter was positioned in front of the
spectrograph slit to suppress excitation light reflected from the samples.
The samples were excitated with a 332 nm (Oricl, bandwidth 10 nm)
interference filter where after the emission was measured from 360 to
600 nm. The exposure time was 4 s, and the temperature of the samples
ranged from 16 to 19 °C. For all samples, two spectra were collected
and the average was used for further analysis. The sample illumination
was not perfectly homogeneous, so samples were rotated 90—180°
between the two exposures. Spectrograph and detector were controlled
by the software WinSpec Ver. 1.4.3.4 (Princeton Instruments Inc.,
Trenton, NJ). Spectra were digitized to a resolution of 16 bit and the
length reduced from 512 to 256 points by averaging two adjacent
readings, resulting in one reading for approximately every 1 nm.

Images were collected with the same system. A Nikon 102 mm
photographic lens was mounted on the imaging spectrograph, the
spectrograph slit was removed, and the grating was exchanged with a
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mirror. Spectral images were created by placing a 40 nm bandwidth
interference filter with center wavelength 450 nm in front of the lens.
Samples were illuminated with 332 nm light, and fluorescence images
were measured. The spatial resolution of the images were 512 pixels/
35 mm. Exposure time for all images was 30 s. For both fish species,
a few samples from each storage period were used for collecting the
autofluorescence images.

Fluorescence emission from collagen type I and type V was measured
with the same optical setup as for the fish muscles.

Gaping and Texture. Gaping was evaluated according to the
procedure described by Andersen et al. (/9). Each fillet was given a
score from zero to five. Zero was given for a fillet without gaping,
and five was given for a fillet with severe gaping.

Fillet texture was evaluated instrumentally by compression using a
Texture Analyzer TA.XT2 (Stable Micro Systems, Surrey, England)
equipped with a cylindrical plunger (12.5 mm diam). The plunger was
pressed into the fillets at a constant speed of 1 mm s~! until it reached
90% of the sample height. The resistance force was recorded at the
maximum force obtained during compression. Two measurements were
performed on each fillet, and the mean value was used for the analysis.
The measurements were made in front of the dorsal fin, about 1.5 cm
above the lateral line.

Data Analysis. The fluorescence spectra were analyzed using the
multivariate methods principal component analysis (PCA) (20) and
partial least-squares regression (PLSR) (27). By principal component
analysis (PCA), the main systematic variation in data is extracted by
resolving the information into principal components (PCs). The data
(fluorescence spectra) are contained in a matrix X and decomposed
into a score matrix T and a loading matrix P. The residuals, which are
the variations that are not described by the scores and loadings, are
collected in a residual matrix E.

The general purpose of PLSR is to find a mathematical relation
between two data sets, X (fluorescence spectra) and Y (gaping score
or texture). PLSR performs a simultaneous decomposition of the X
and Y matrices in such a way that the information in the Y matrix is
directly used as a guide for the decomposition of X after which
regression of Y is done. The regression models were evaluated by the
correlation between the measured and the predicted values and by the
root-mean-squared error of prediction (RMSEP), which is defined by

where y; is the measured value of sample / and §; is the predicted value
of the same sample. All models were validated with full cross validation,
The data analysis was performed using The Unscrambler version 7.6,
CAMO A/S, Trondheim, Norway.

RESULTS AND DISCUSSION

Spectral Characteristics of Fish Muscle and Collagen.
Fluorescence emission spectra of purified collagen show that
collagen type I has peaks around 430 and 480 nm irrespective
of the excitation wavelength used (Figure 1). Collagen type V
has a peak just below 400 nm and a shoulder around 480 nm.

The autofluorescence spectra of the two fish species (Figure
2) are somewhat different but have common features that are
similar to those of collagen type I and type V. Especially for
salmon, the peaks and shoulders obtained at 390, 430, and 480
nm agree with the three peaks of collagen. The figure also shows
a difference in intensity between the salmon sample taken from
the loin and the sample taken from the tail. A difference between
the two cod samples is also seen, but it is not as clear as for the
salmon.

The gray scale images visualize the difference in fluorescence
measured around 450 nm between cod and salmon (Figure 3).
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Figure 1. Autofluorescence spectra of calf skin collagen type | (solid)
and bovine collagen type V (dotted) obtained after excitation at 330 nm.
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Figure 2. Autofluorescence of cod and salmon after excitation at 332
nm. Cod samples were stored for 5 days (left panel), from the middle
section (solid) and froim the tail part (dotted) of the same fillet. Salmon
samples (right panel) were from the middle section (solid) and the tail
part (dotted) of the same fillet. The arrows indicate the peak of collagen
as seen in Figure 1.

Figure 3. Autofluorescence images of cod stored for 1 day (left panel)
and of salmon (right panel). The excitation wavelength was 332 nm, and
the intensity of emitted light recorded at 450 nm.

The myocommata of salmon emits a bright white fluorescence,
whereas the muscle fibrils are more reddish/pink. The thin fibrils
of perimysial and endomysial connective tissue can be seen as
white stripes connecting two thick stripes of myocommata. In
contrast, the myocommata of cod emits slightly weaker fluo-
rescence than the muscle fibrils. The whole fillet emits a blue/
white fluorescence.

The actual fluorescence of the two species is probably quite
similar. In salmon, however, fluorescence from collagen and
other sources is most likely reabsorbed by the red pigments in
the muscle fibrils. These pigments, astaxanthin and cantaxanthin,
absorb strongly in the region 350—520 nm (22). This phenom-
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enon creates the visible contrast between muscle fibers and
connective tissue. Cod muscle is white, and no pigments will
reabsorb the autofluorescence. Therefore, fluorescence of the
muscle in cod is as pronounced as that of myocommata, and
for the particular sample shown here, the fluorescence of the
muscle fibers seems to be somewhat more intense. The peak at
430 nm of collagen type I can hardly be seen in the fluorescence
spectra of cod, which might be due to the larger fluorescence
of the muscle fibers, which do not allow this collagen peak to
be detected. However, this phenomenon needs to be studied
further.

Above, similarities between fluorescence of fish muscle and
mammalian collagen type I and type V are illustrated. The
collagen structure of fish muscle may not be exactly similar to
the structure of collagen isolated from a mammalian source,
and possibly the fluorescence of collagen from fish differs from
that measured on mammalian collagen. However, it has been
found that the structure and amino acid composition of collagen
type I and type V from fish muscle is quite similar to that of
mammalian and avian muscle (2, 3). Hence, it is expected that
the very small differences will not be detected by the method
used here. Even though we have not found any publications
stating that other types of collagen are present in fish muscles,
it might be possible. However, collagen type I and V are the
types found in largest concentration. Therefore, considering the
low concentration of other collagen types and the complexity
of the fish muscle, it is not expected that other types of collagen
will be detected by the method used here. Elastin is another
possible fluorophore but is only to be found in very low
concentration and is shown to have an cmission spectrum
different from that of collagen (23).

Explorative Data Analysis. Salmon. Two PCAs based on
emission spectra of salmon taken from the loin were made. One
of the models included the samples of collagen, and the other
was made only with the salmon samples. In this way 150
samples were used in the model without collagen and 152
samples were used in the model including collagen. Before
modeling, the spectra of collagen were normalized to be of the
same size as the salmon spectra. Three-component models
explained 96% and 97% of the variation in data for the models
with and without collagen, respectively. The observation that
the addition of spectral features from collagen did not lead to
an extra dimension in the models and that the two models
explain approximately the same amount of variation suggests
that collagen exhibits a major part of the autofluorescence of
salmon.

The loadings of the three components obtained by the two
models show similarities supporting the resemblance between
the fluorescence of salmon and collagen (Figure 4). The PC1
loadings describe an average intensity in the emission spectra
and illustrate peaks corresponding to those of collagen type I
and type V. Thus, collagen may be a great contributor to the
variation in intensity and, probably, the samples had different
amounts of collagen exposed for illumination.

The PC2 loadings of the model including collagen have a
clear peak around 390 nm corresponding to the peak of collagen
type V. The significance of this peak is illustrated by the score
values (Figure 5). All salmon samples have PC2 score values
around zero whereas collagen type V has a high PC2 score
value. This large difference between collagen type V and salmon
indicates that phenomena other than collagen contribute to the
autofluorescence of salmon. Both collagen type I and type V
vary from the salmon in PC3. Thus, PC3 may explain some
structure of collagen. Furthermore, in the model made without
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Figure 4. Loadings of PCAs based on emission spectra: (left) model
including samples of salmon and collagen type | and type V, PC1 (86%)
(solid), PC2 (8%) (dotted), and PC3 (3%) (dashed); (right) model including
only salmon samples, PC1 (78%) (solid), PC2 (13%) (dotted), and PC3
(5%) (dashed).
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Figure 5. PC2 score versus PC3 score for PCAs based on emission
spectra after excitation at 332 nm: (left) model including samples of salmon
and collagen type | and V; (right) model including only salmon samples.
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collagen there is a separation of the salmon samples as well.
This may be due to a variation in the amount of pigment exposed
for illumination. The large negative loadings of PC3 between
430 and 480 nm corresponds to the wavelengths with absorption
of the pigments (22). Even though salmon may contain both
tocopherol and vitamin A, these fluorophores do not seem to
influence the salmon spectra due to low concentrations, low
quantum Yyields, and excitation/emission maxima at other
wavelengths (24).

A separation of data depending on the storage time is obtained
both when modeling only salmon and when modeling collagen
together with the salmon (Figure 5). The possibility of
separating the samples according to the storage time illustrates
the advantage of multivariate methods, since it was not possible
to detect any variation of the storage time by studying the spectra
visually. For the model made without collagen, PC2 separates
samples stored for 2 or 3 weeks. PC3 separates samples stored
1 week from samples stored 2 or 3 weeks. There is no systematic
separation of the sample groups in PCI (not illustrated). As
mentioned, this component mainly describes a variation in the
overall fluorescence intensity.

Cod. Two PCAs based on autofluorescence spectra of cod
were made. One included the two samples of collagen type I
and type V, and the other was made only on cod samples. Thus,
the two models were made using 41 and 39 samples, respec-
tively. As for the models based on salmon, the collagen spectra
were normalized to have approximately the same intensity as
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Figure 6. Loadings of PCAs based on emission spectra: (left) model
including samples of cod and collagen type | and type V, PC1 (65%)
(solid), PC2 (26%) (dotted), PC3 (6%) (dashed), and PC4 (2%) (dash—
dotted); (right) model including only cod samples, PC1 (72%) (solid), PC2
(24%) (dotted), PC3 (2%) (dashed), and PC4 (2%) (dash—dotted).
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Figure 7. Scores of PC2 versus scores of PC4 from a PCA of the
autofluorescence spectra after excitation at 332 nm. Storage time: 1 day
(O); 5 days (x); old cod (). The PCA is made only on cod samples.

the cod samples. Four-component models explained 99% and
100% of the variation in data for the model with collagen and
the model without collagen, respectively.

There are similarities in the PC1 and PC2 loadings of the
two models (Figure 6). PC1 has a large peak below 400 nm
corresponding to the peak of collagen type V shown in Figure
1. PC4 explains 2% of the variation when including collagen
in the model and seems to describe the autofluorescence of both
collagen types since the loadings have a negative peak below
400 nm and two positive peaks around 430 and 480 nm
corresponding to the peaks obtained from pure collagen (Figure
1). When collagen is omitted from the model, there are still
peaks in the loadings of PC4 corresponding to peaks in the
spectra of the two types of collagen. Possibly, the fourth
component describes the variation in collagen also in the model
made on the basis of the data without collagen. However, there
is no apparent systematic variation in the score values of PC4
(Figure 7) in any of the models.

A systematic variation of the storage time is seen in PC2
(Figure 7). Samples stored | day have higher score values
corresponding to a larger peak between 450 and 480 nm.
Samples from the fish auction hall have PC2 score values that
are between the samples stored 1 day and the samples stored
for 5 days. Conclusions based on samples with only three
different storage times might be very weak. However, the
separation in the score values may be due to an increase in the
overall fluorescence intensity after longer storage. A broad peak
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Figure 8. Loadings of a PCA based on emission spectra of salmon excluding samples of collagen (solid) and orthogonal rotated loadings of a PCA

based on emission spectra of salmon and collagen (dotted).

above 500 nm developed after long storage may be so strong
that it increases the intensity of the whole emission spectrum.
This broad peak corresponds to the peak in the loadings of PC3
around 525 nm. As for the visual assessment (Figure 2) no
clear variation according to the sampling site was seen in any
of the components. Variation due to sampling site was expected
since a variation in collagen content between head and tail has
been shown for other fish species (25, 26).

The development of the peak slightly above 500 nm during
storage may be due to some oxidation phenomena (/6, 17, 27).
Adding a small amount of malondialdehyde directly to fresh
cod muscle resulted in a strong increase in fluorescence intensity
similar to the peak just above 500 nm (not illustrated). Wold et
al. (28) used the same approach. They showed that fluorescence
from poultry meat with added aldehydes exhibited fluorescence
similar to that of freeze stored poultry. It was also shown that
the emission from one sample can be caused by several
oxidation products (28, 29). Hasegawa et al. (/7) described that
emission developed just above 500 nm could originate from
protein related oxidation. Due to the low fat content of cod of
approximately 0.5%, it seems reasonable that the fluorescence
developed by oxidation is related to the proteins.

The importance of the wavelength area around 450 nm in
the PC2 loadings may be due to a decrease in the NADH
content. NADH may be used as an indicator of freshness and
makes up a large part of the fluorescence from fresh muscle.
The content and thereby the intensity decreases during storage
(30), which is in agreement with a decrease in the peak between
450 and 480 nm.

The fluorescence intensity obtained by the oxidation products
and by NADH seems to be so strong that only weak indications
of peak from collagen can be detected in the fluorescence spectra
of cod. This may also explain why the peak at 430 nm of
collagen type I is not seen in the fluorescence spectra. Probably,
measuring only the connective tissue would reveal all the
collagen peaks since NADII and oxidation products are found
in the muscle fibers

Collagen and Fish Muscle Fluorescence. The multivariate
analysis indicated the presence of collagen type I and type V
in the two fish species. Peaks possibly originating from
fluorescence of collagen were clearly seen for salmon, but only
collagen type V was easily detected in the spectra of cod. The
identification of collagen can be further verified by rotating the
loadings obtained from the PCAs. With application of orthogo-
nal rotation, the loadings obtained from the two data sets (with

and without collagen) should be approximately similar if the
two sets span the same variation (3/). By the rotation, the
loadings obtained from PCAs on the basis of data containing
collagen are regressed orthogonally on the loadings obtained
from PCAs on the basis of data without collagen. The results
thus obtained are illustrated in the Figures 8 and 9. For salmon,
the rotated loadings corresponds well with the loadings of the
model made on data without collagen. This similarity is not as
clear for cod, where only the loadings of the two first
components scem to be similar. These loadings may de-
scribe collagen type V, NADH, and lipid oxidation products.
Thus, rotating the loadings by orthogonal rotation supports the
results already indicated from the visual investigation. Another
way to identify collagen could be to relate fluorescence spectra
to a measured collagen content by partial least-squares regres-
sion.

The collagen content and its distribution depend on the
swimming activity of the fish (32). Furthermore, higher collagen
content in the tail part than near the head is found in flounder,
hake, and trout (25, 26). Therefore, it was expected that similar
variations could be detected within the fillets. For salmon, there
was an intensity difference between samples taken from the loin
and samples taken from the tail. The myocommata is thicker in
the middle section of the fillet compared to the tail part.
Therefore, this variation in intensity may be explained by how
much of the myocommata that was exposed for measurement.
Furthermore, for ground beef it was shown that the connective
and adipose tissue had almost the same emission spectra (7).
Fluorescence microscopy showed that the major source of
fluorescence from adipose tissue was from the connective tissue
fibers located between the adipose cells (33). Therefore, the
higher lipid content in the loin may add to the variation in
fluorescence intensity between the two parts of the fillet. In
addition, the larger amount of lipid and connective tissue in
the loin reduces the relative amount of pigmented muscle and
thus reduces the reabsorption by astaxanthin.

Cod did not show the same variations within one fillet.
Probably this is due to the relatively low contribution of collagen
to the fluorescence spectra, the low fat content of cod, and the
fact that other fluorophores inside the muscle flesh are clearly
more pronounced such as NADH and lipid oxidation products
as mentioned above. Even though there is a variation in collagen
content within the cod muscle, the content and the variation
may be so low that it cannot be easily detected with the
fluorescence techniques used here.
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Figure 9. Loadings of a PCA based on emission spectra of cod excluding samples of collagen (solid) and orthogonal rotated loadings of a PCA based

on emission spectra of cod and collagen (dotted).

Relating Fluorescence of Salmon to the Gaping Score and
Texture. Autofluorescence spectra of salmon were correlated
to the gaping score and to the texture by partial least-squares
regression (PLSR). Above it was suggested that collagen type
I and type V cause a major part of the structure in the
autofluorescence spectra of salmon. Furthermore, texture and
gaping are supposed to be influenced by the collagen content
as well as its degradation during storage. Therefore, it was
expected that the autofluorescence spectra could be correlated
to either the texture, the degree of gaping, or both.

There seemed to be some relation between the autofluores-
cence spectra and the gaping score. A five-component PLS
model gave a correlation of 0.43 between measured and
predicted values and a RMSEP of (.91 when the gaping scores
varied between O and 3. The gaping score was evaluated
subjectively and could be influenced by errors. Furthermore,
the fluorescence intensity expressed how much collagen that
was exposed at the surface of the sample and not the total
amount of collagen within the fillet. Thus, the sample measured
may not be representative for the whole fillet, which may induce
errors in the predictions. It could be relevant to study the relation
between gaping score and fluorescence in more detail using
other instrumentation or sample preparation to develop on-line/
at-line techniques for quality sorting. Since gaping occurs along
myocommata, measurements can for instance be done in these
arcas.

The correlation between the measured texture, which varied
between 5.5 and 14.1 N, and the texture predicted by the
fluorescence measurements was close to zero. This low cor-
relation may be explained by a variation due to the sampling
technique, a very low variation in collagen content or texture,
or that there is in fact no relation between texture and
fluorescence.

As denoted by Sigurgisladottir et al. (34), optimizing the
sampling technique is important for texture determinations. A
relatively small area of the muscle is sampled by the cylindrical
probe used here. Fluorescence is measured on another small
part of the fillet. Thus, it may be that measurements performed
on these small samples are not representative for the whole fillet
and the two samples may not correspond exactly to each other.
Furthermore, it has been shown that Kramer shear force
measurements gave better texture determinations than the texture
profile analysis used here (35) and should be used when more
experiments are to be made.

Collagen contents of 2.9 g/kg (5) and 6.6 g/kg (36) have been
found in salmon. Supposedly, the variation in collagen in the
salmon muscle is so small that the correlation to texture and
partly to the gaping score cannot be found. The relation between
collagen content and texture or gaping found in other studies
has been shown for different fish species with a much larger
range in collagen content (/, 6).

A relation to texture might be found if other instrumentation
or a different sample preparation is used. One could either
homogenize the samples or measure only myocommata.

Furthermore, concerning collagen degradation, we cannot
exclude the possibility that even though collagen is degraded,
the collagenous fluorophores may still remain active for which
reason the degradation will not be measured with the technique
used here.

In conclusion, collagen type I and type V seem to be major
contributors to the structure of the fluorescence spectra.
Although low correlations were obtained between fluorescence
and texture and gaping on salmon, the method is still promising
as a rapid tool for determining such quality parameters. Other
sampling methods and instrumentation should be tested in this
cffort. The study shows that fluorescence from fish muscle is
complex and depends on factors such as freshness, oxidation,
and site of measurement.
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Summary

This paper presents a dedicated investigation and practical description on how to apply
PARAFAC modeling to complicated fluorescence excitation-emission measurements. The steps
involved in finding the optimal PARAFAC model are described in detail based on the
characteristics of fluorescence data. These steps include choosing the right number of
components, handling problems with missing values and scatter, detecting variables influenced
by noise and identifying outliers. Various validation methods are applied in order to ensure that
the optimal model has been found and several common data-specific problems as well as their
solutions are explained. At last, interpretations of the specific models are given. The paper can
be used as a tutorial for investigating fluorescence landscapes with multi-way analysis.

KEYWORDS: validation, scatter, missing values, outliers
Introduction

Fluorescence spectroscopy has been used in many scientific fields, such as chemistry,
medicine, environmental and food science. However, fluorescence signals can be rather
complex and, therefore, the analysis might become complicated due to interferences, scatter,
overlapping signals, etc.

When autofluorescence of every sample is measured at several emission wavelengths for
several excitation wavelengths, the interpretation can be facilitated by the use of multi-way
models such as PARAFAC [1], Tucker, and N-PLS [2-4]. If the data are approximately trilinear,
curve resolution is possible by the use of PARAFAC, possibly providing estimates of the spectra
and concentration profiles of the underlying chemical analytes, thus relating the measured
autofluorescence of mixtures to chemical knowledge about the material [2,5]. When modeling
fluorescence data, interference from scattered light (primarily Rayleigh and Raman scattering)
can give a slight model inadequacy influencing the estimated model parameters. Furthermore,
other factors such as quenching and instrumental noise can cause problems. Therefore,
considering the various influential contributions is important when analyzing fluorescence
excitation-emission data and when interpreting the derived models.

Several studies have explored and described the underlying chemical phenomena in
fluorescence spectral data by applying multi-way modeling such as PARAFAC. For example,
Ross et al. [6] have described the underlying structure of fluorescence spectra obtained from
pigment complexes in pea thylakoids. In other studies, PARAFAC models based on
fluorescence landscapes of sugar solutions were used to obtain information regarding both
sugar quality and process parameters [7,8]. It was shown that tryptophan and tyrosine as well
as high molecular weight Maillard reaction polymers and polyphenolic compounds were
important fluorophores. In an investigation of the interactions between a non-fluorescent DDT-
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type pesticide and a fluorescent dye, PARAFAC was employed to find the fluorescence profiles
of complexed dye states [9]. Furthermore, the ability to quantify trace pesticides and polycyclic
aromatic hydrocarbons by fluorescence spectroscopy and PARAFAC modeling was
investigated by Jiji et al. [10]. They showed a possibility for resolving the analyte spectra from
overlapping fluorescence signals, scatter and instrumental background. PARAFAC was also
applied to describe and predict the amount of dissolved chlorophyll and pheophytin pigments
[11]. Dioxin content of fish oils were estimated by PARAFAC modeling of fluorescence
landscapes [12]. It was suggested that the relations obtained were due to quenching effects or
other complex chemical factors in the fish oils.

There are several references describing the theory and giving examples of PARAFAC modeling
[1,3,4,13,14]. Furthermore, the applications given above illustrate the advantages of using
PARAFAC for analyzing fluorescence spectroscopic data and show how PARAFAC can be
applied to interpret such data. However, no articles discuss in depth the practical aspects of
using PARAFAC for decomposing fluorescence excitation-emission matrices (EEMs). Important
practical issues such as how to determine the optimal number of components, how to handle
disturbing scatter signals and how to deal with missing values, find outliers and validate the
model are mostly just described superficially.

This paper demonstrates in detail how the use of a suitable mathematical model such as
PARAFAC can help understanding the underlying spectral and chemical phenomena in a
complex system. In particular it provides guidelines and tools for proper handling of many of the
typical problems that arise in the modeling of fluorescence excitation-emission data. Thus, the
paper can be used as a tutorial for investigating fluorescence landscapes with multi-way
analysis. Measurements on fish muscle extracts are used as an example and illustrate a
possibility of using fluorescence spectroscopy for on-line quality monitoring in the fish industry.
Additionally, fluorescence excitation-emission matrices of solutions with known concentrations
of four fluorophores are analyzed. Including both data sets in the presentation provides an
illustration of how both well-characterized (and well-behaved) data as well as less well-
characterized data can be analyzed.

Materials and methods

Fish data

A factorial design with two frozen storage temperatures (-20°C and -30°C), four frozen storage
periods (3, 6, 9 or 12 months) and five chill storage periods (0, 3, 7, 14 or 21 days at 2°C) was
used. Cod (Gadus morhua) from a single catch were caught in February 1999 in the Barents
Sea. Experiments after 3 months of frozen storage at -20°C were left out for practical reasons
giving a total of 35 storage conditions. The chill storage was made in modified atmosphere
(40%C0,/40%N,/20%0,). Three packs with each storage treatment were analyzed giving a
total of 105 samples.

90



New aspects of chemometrics applied to spectroscopy

Aqueous extracts were made by homogenizing 25 g fish muscle with 75 ml water. The pH was
reduced to 5.2 with 2 M HCI and the mixture was heated to 70°C, cooled to room temperature
and filtered to remove precipitated proteins. This treatment provides a clear solution containing
a number of fluorophores but of lower chemical complexity than if the raw fish muscles were
measured. The extracts were stored at -30°C.

The extracts were measured spectrofluorometrically at 22°C in a 10 by 10 mm thermostated
quartz cuvette on a Perkin Elmer LS50 B spectrofluorometer. Raw non-smoothed data was
recorded. For every sample, an excitation-emission matrix (EEM) was obtained by measuring
the emission spectra from 270 to 600 nm in 2 nm intervals with excitation at every 10 nm from
250 to 370 nm. These wavelengths were chosen from a preliminary experiment based on which
areas that showed the highest variability (not shown). The measurements started with the
highest excitation wavelength and ended with the lowest in order to minimize
photodecomposition of the sample [15]. Based on the visual appearance of the preliminary
experiments excitation and emission slit widths were both set to 7 nm and the scan speed was
750 nm/s.

All measurements were made within a few days to minimize the effect of instrumental drift and
change in lamp intensity. Such changes could have required suitable standardization [16]. A
solution of 15 g ordinary white sugar per 100 ml double deionized water was used as standard
and measured three times a day to verify that instrumental changes did not influence the results
[16]. No considerable variations among the sugar samples were found. The fish muscle extracts
were measured in random order.

Data with known fluorophores

This data set contains fluorescence landscapes of 27 samples containing different
concentrations of four fluorophores with rather similar spectral properties [17]. The four
compounds are: Phenylanaline, 3,4-dihydroxyphenylalanine (DOPA), 1,4-dihydroxybenzene
and tryptophan.

The measurements were performed on the same Perkin EImer LS50 B fluorescence
spectrofluorometer as the fish data with excitation wavelengths ranging between 200 and 315
nm (5 nm interval) and emission wavelengths ranging from 250 to 459 nm (1 nm intervals). Both
excitation and emission slit widths were set to 5 nm and the scan speed was 1500 nm/min.

Multi-way data analysis

Ideally, the data arranged in an / x J x K three-way array will be trilinear [2]. The first index (/)
refers to the samples, the second (J) to the emission wavelengths, and the third (K) to the
excitation wavelengths (Figure 1).
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Emission (J=16%)

Figure 1 Arrangement of the data in a three-way structure

PARAFAC [1,13] was used to model the data. The PARAFAC model can be written as
F - .
X = 2. aybyC + €y i=1.Lj=1.Jk=1.K
f=1

where Xjy is the intensity of the /-th sample at the j-th variable (emission mode) and at the k-th
variable (excitation mode). ay, by and ¢y are parameters describing the importance of the
samples/variables to each component. The residuals, ey, contain the variation not captured by
the model.

The PARAFAC components will be estimates of the signals from the individual fluorophores if
the data are approximately low-rank trilinear and when the correct number of components is
used. In that case, the scores in ay may be interpreted as the relative concentration of analyte f
in sample i. The J-vector by with elements by (=1,..,J) is the estimated emission spectrum of this
analyte and likewise c; is the estimated excitation spectrum. In order for the decomposition to be
unique and provide meaningful estimates, some mathematical conditions must be fulfilled. For
example, no two spectra may be identical. In fact, if all spectra and concentration profiles are
linearly independent, the decomposition is unique. More relaxed conditions can also be given
[18]. The model states that for each analyte, the contribution to the measured excitation-
emission matrix is agbrc;’, which is the landscape of a pure analyte scaled by the concentration.
This reflects that additivity and linearity of the signal is assumed to be valid. A change in
concentration only changes the magnitude of the contribution (ax) not the actual shape (bsc;').
Both concentrations and spectra are only determined up to a scaling because e.g. the vector b
may be exchanged with ¥zby as long as for example ¢ is exchanged with 2¢;. Such a change will
not change the contribution to the model (asbie” = aisbi2¢;").

Inner-filter effects caused by high concentrations, scattering and quenching can disturb the
trilinearity of the data. Furthermore, abundance of missing data (see later) and spectral
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similarities can lead to uncertain estimates. Therefore, the chemical interpretation should be
exercised with care. In the following it is shown how a PARAFAC model can be validated using
fit values, visual assessment of the loadings, residual analysis, core consistency diagnostic,
jack-knifing and by a split-half analysis [19].

For further in-depth descriptions of PARAFAC theory and algorithms we refer to other
publications [1,2,4,5,13,14]. All analyses were performed with the N-way toolbox
(www.models.kvl.dk) and Matlab ver. 5.3 (The MathWorks Inc., Natick, MA).

Data-pretreatment

For the fish data set, emissions from 270 to 280 nm were removed from the data to reduce the
amount of Rayleigh scatter and missing values. This gives a three-way array of the size 105 x
161 x 13. For the data set with the four known fluorophores, the size of the array is 27 x 210 x
24.

There is no emission below the excitation wavelength as this would correspond to higher energy
being emitted than the energy causing the emission. Therefore, below the excitation
wavelength, the emission is zero (or some noise equivalent to zero) regardless of the chemistry.
Hence, for a complete EEM landscape a triangular part will be trivially zero which has to be
respected by the subsequent model. These zero-values do not conform to the trilinear model
which is valid for the remaining part of the data. If this is not respected, misleading results can
be obtained. The most common way to handle this problem is to set these values to missing in
the analysis.

It is worth considering in more detail why emission below excitation cannot generally be simply
set to or kept at zero in PARAFAC modeling. Emission wavelengths below the excitation
wavelength do not exhibit any fluorescence and the measured intensity is therefore zero up to
noise. However, a part of an estimated excitation spectrum may have non-zero values at
wavelengths higher than the corresponding estimated emission spectrum. An example of this is
given for tyrosine in Figure 2 (upper part). The PARAFAC model of a measured excitation-
emission landscape is found as the outer product of the estimated excitation and emission
spectrum. Hence, for emission below excitation, the model will have non-zero values as shown
for tyrosine. However, this is physically impossible in practice. No fluorescence will occur and
only zero signal (plus possible scatter) will be measured. Thus, the tri-linear PARAFAC model
will not be valid for this part.
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Figure 2 lllustration of the inadequate use of PARAFAC for fluorescence emission below the excitation
wavelength. Top plots show the emission and excitation spectrum of tyrosine. The left middle plot show
the emission spectra measured at several excitation wavelengths with emission below excitation set to
missing. A smaller fraction indicated by the circle is shown blown up below. The right middle plot and
lower plot shows the same but with emission below excitation set to zero. As can be seen lower-right, a
rank-one approximation is not valid when zeros are present because the different emission spectra no

longer have the same shape due to the incorporated zeros.

The middle-left-hand plot in Figure 2 shows that similar spectra are obtained for different
excitation wavelengths when the model of the data is set to missing for emission below
excitation. The plot also shows that a one-component bilinear model can model the data
adequately because all spectra have the same shape regardless of excitation. The relevant
parts of the plot are shown in detail in the lower left part of the figure (indicated by a circle in the
middle plot). When the emission is set to zero as in the middle-right-hand plot, an interesting
phenomenon appears. Every emission spectrum is now different in shape because the zeros
appear at different places for different excitations. Clearly, such a data set can not be modeled
by a single bilinear component as is the model in PARAFAC. In fact, many components are
needed in order to handle the fact that every emission spectrum is different. This is
contradictory to the underlying assumptions and hence the incorporation of zeros hinders

adequate analysis of data.

In the above example, the problematic area is only the emission wavelengths slightly below the
excitation wavelengths. The problem is that the chemical model, which is only valid for emission
above excitation, is extended below for mathematical reasons. Emissions far below the
excitation wavelength, though, are mostly zero both physically and mathematically. Hence, in
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these areas it is less problematic to introduce zeros. However, other problems than the above-
mentioned can cause zeros to be invalid. For example, for a double-fluorophoric molecule, a
double-peak might occur in both the excitation and the emission spectra of the molecule and
then this can lead to ghost peaks in the emission below excitation area. These will then be
incorrectly forced to zero if zeros are maintained in this area. Before discussing the possible
ways to handle emission below excitation another problematic feature of EEM data is described.

Scattering (or reflection) is brought about by small particles in the samples, and causes the light
to deviate from its original path and spread in all directions. The scattering does not contain any
information on the fluorescence properties of the sample. Even non-fluorescent samples give
rise to several peaks in a fluorescence spectrum. These peaks arise from elastic Rayleigh
scatter, inelastic Raman scatter and complex, but predictable, harmonic order reflections of
these same scatter peaks caused by the diffraction grating employed in the monochromator of
the instrument (Oth, 1st etc. order scattering). In fluorescence EEMs, the scatter effects show up
as diagonal lines across the landscapes. For elastic scattering there is no energy loss, so the
scattered emission wavelength is identical to that of the exciting light. For inelastic scattering
there is an energy loss associated with the scattering light, i.e. the scattered emission is shifted
to longer wavelengths compared to the incident light. Both Rayleigh and Raman scattering
intensities will vary with solvent type and the quantity of dissolved particles in solution but
Rayleigh scatter is often the most troublesome to handle [15]. Due to Rayleigh scatter, emission
in a window around the excitation wavelength does not conform to a trilinear model or rather,
the emission above the excitation has a contribution from the trilinear fluorescence signal as
well as from the non-trilinear scatter signal.

There are several ways to deal with the non-chemical areas (the zeros and the scatter). In this
case, the emission measurements up to slightly above the excitations are simply set to missing.
Emissions obtained at the wavelengths around twice the excitation wavelength will be
influenced by second order Rayleigh scatter and were also replaced with missing values. The
algorithms used to handle the missing data are described by Bro [4]. In the literature other
approaches have also been adopted [14,20-24], such as using zeros or down-weighting
elements where emission is lower than excitation. The purposes of using these alternatives are
basically the same (minimize the influence of non-trilinear parts) and no systematic
investigations have yet been made to compare them. The current experience is that as long as
the influence of the most significant Rayleigh scatter containing parts are minimized, the results
are often similar.
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Results and discussion

The steps and problems involved in finding a valid PARAFAC model for describing fluorescence
excitation-emission data are given below. The appropriate number of components is determined
based on several different criteria. For example the visual appearance of the loadings is a useful
diagnostic because fluorescence spectra of liquids are typically characterized by broad and
often uni-modal peaks. Furthermore, the variance explained by the model, the number of
iterations and the so-called core consistency diagnostic [4] are used. An important discussion
on the influence of scatter and missing values is included in the following. How to correct for
possible artifacts from these by constraining the model is described next. Only the determination
of the number of components for the fish data set is illustrated in detail, since the procedure is
similar for the other data set. An evaluation of the reliability of the score values by a jack-knife
based approach is used together with the leverage and the distribution of sample residuals for
identifying outlying samples. After removing grossly disturbing outliers, the models are validated
by a split-half analysis. All diagnostic tools used to assess the models have pitfalls and only by
using several quantitative as well as qualitative tools, a thorough conclusion can be reached.

Building the PARAFAC model
Fish data

Initial PARAFAC modeling

Unconstrained PARAFAC models are calculated using from one to five components. It is
expected that a two-component model is optimal since the fluorescence landscapes contain two
visually recognizable peaks (Figure 3). However, peaks of fluorophores with a low quantum
yield or low concentration may not be seen because of the dominant response of other
fluorophores. This is especially so, when their excitation and emission maxima are in the same
wavelength areas as the dominant ones. Therefore, it is possible that more than two
fluorophores contribute to the fluorescence spectra obtained here.
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Figure 3 Examples of fluorescence excitation-emission landscapes. Emission spectra were collected
from 280 to 600 nm after excitation from 250 to 370 nm. Note that triangular parts of the landscapes have
been set to missing.
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The explained variance indicates that three components are optimal because the increase
obtained with more than three components is small relative to the increase in explained
variance obtained using up to three components (Table 1). Additionally, the percentage of
variance explained using three components is adequate for this type of data. This is known from
experience but can also be quantitatively evaluated based on the pooled standard deviation of
replicate measurements, which is found to vary between 0.9 and 9.3. Comparing this with the
pooled residuals of the three-component model of 4.3 and 6.5 for the two-component model
shows that, for both the two-component and the three-component model, the amount of un-
modeled variation in the data agrees with the variation between replicates and, thus, the un-
modeled part of the data can largely be attributed to expected residual variation. The pooled
residual variation is found as the average standard deviation for all data elements.

Table 1 Explained variance and core consistencies in percentages vs.
the number of components for PARAFAC models of the fluorescence
data with from 1 to 5 components

Number of
1 2 3 4 5
components

Explained
variance (%)
Core Consistency
(%)

84.7 98.1 99.4 99.6 99.8

100 100 37 31 10

The core consistency diagnostic is an approach suggested for finding the number of
components to use in multi-way models such as PARAFAC [4]. A so-called Tucker3-like core
array is calculated from the data and the PARAFAC loadings. The relative sum-of-squared
difference between this core and a superdiagonal core of ones is called the core consistency. It
is usually expressed in percentages. A PARAFAC model can be represented as a constrained
Tucker3 model where the core has been forced to a superdiagonal of ones (trilinearity) and the
consistency provides a quantitative measure of how well the loadings represent variation in the
data consistent with this assumption. If the core consistency is not close to 100%, the model
does not give an appropriate description of the data and a lower number of components should
be chosen (see Bro [4] for more details). Core consistencies for the five models are shown in
Table 1. A two-component model gives a core consistency of 100 %. The core consistency of
the three-component model of 37 % indicates that this model might not be stable and hence
core consistency points to two components being optimal. However, as noted above the
percentage of variation explained for these data points to three components possibly being
adequate. It is not uncommon that different diagnostics point to different number of components,
especially in this early stage of an analysis. Further elaboration will help to clear up such
controversies and no final conclusions are drawn at this stage.
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When fitting a model several times from random starting positions, the same solution is typically
obtained for all or most models if the right number of components is chosen. When too many
components are extracted, the number of local minima (different model fit values when fitting
from different starting points) often increases. In the actual situation, the three-component
model repeatedly converged to the same solution. This does not provide conclusive evidence,
but together with the conclusions from looking at the fit-values, it does indicate that three
components may be feasible.

A so-called two-factor degeneracy is a situation in which two of the components are virtually
identical but of opposite sign [25]. This typically occurs when too many components are
extracted. Here, no degeneracy is found for the three-component solution. Although absence of
local minima and degeneracies are only to be used as very ad hoc diagnostics, these signs
together with the fit values do indicate that three components might be an option upon further
analysis.

Visual appearance of the loadings

When the fluorescence data follow a trilinear model, the correctly validated PARAFAC emission
and excitation loadings are estimates of the pure analyte fluorescence spectra when the correct
number of components is used. Figure 4 shows the loadings of the two- and three-component
models. The emission spectra in both models have characteristics that are not consistent with
the expectations. The sharp peaks around 300 nm and the large negative regions indicate that
the models are not correctly identifying spectra of pure chemical components.
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Figure 4 Emission and excitation loadings of two- and three-component PARAFAC models. The lines
indicate: component one (solid), component two (dotted) and component three (dashed).
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Probably, the high and narrow peak in the estimated emissions of component three (Figure 4) is
an artifact caused by a combination of the large amount of low-emission missing data (Figure 3)
and the presence of small amounts of scatter remaining in the specific area. This will be
elaborated on below.

Jack-knife validation of the loadings

One way to evaluate the stability of the model is by an exploratory use of the jack-knife method.
Jack-knifing is a resampling method that can be used for assessing the uncertainty of the model
parameter estimates such as scores and loadings [26]. Multiple models are fitted by leaving out
one sample at a time. For these data, then, 105 versions of the loadings are obtained, which
can be used for evaluating the model stability and for outlier detection [27]. Figure 5 shows the
standard errors of the 105 estimated emissions for the three-component model. Large standard
errors are obtained for component three in the wavelength area with the high and narrow peak
(Figure 4). Also for component two a part of the wavelengths corresponding to areas with
supposedly unreliable loadings have high standard errors. This component shows emission
loadings with both a negative and a positive peak.

emission loadings standard errors

400 500 600

nm
Figure 5 Standard errors of the loadings of the three-component PARAFAC model (Figure 4) obtained by
Jack-knife validation. Jack-knife is performed by leaving one sample out at a time. The lines indicate:
component one (solid), component two (dotted) and component three (dashed).

Explaining artifactual loadings

By jack-knifing, a quantitative measure of the uncertainty is obtained, but no explanation for the
problematic loading shapes can be obtained from these results directly. The sharp low
wavelength peak is, in fact, a spurious result of the pattern of missing values. In order to see
why the peak appears, the structure described by component one and two of the three-
component model are subtracted from the original data. Thus, only noise and the structure
described by the third component remains in these residuals and hence represents the variation
that component three is seeking to explain. Visualizing this part of the data, can help
understanding why the estimated emission profile is peculiar. Figure 6.a shows an example of
these residuals illustrating the peak caused by a chemical phenomenon corresponding to the
broad peak of component three. The high and narrow peak around emissions at 300 nm is not
visually detectable. In addition, the outer product of the emission and excitation loadings of
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component three is given (Figure 6.b). The outer product provides a full landscape but if the
missing elements in the data are set to missing in the component three landscape, Figure 6.c is
obtained. The high and narrow peak in the emission loadings causes a narrow peak in the full
landscape positioned in a part where there are no measurements. The peak arises because it is
describing a small remaining scatter peak in the original landscape in the low excitation area
(circle in Figure 6.a). Due to the pattern of missing values, the size of this small peak relative to
the large chemical peak is largely unrelated. Thus, the magnitude of the two peaks in
component three cannot be compared directly. The apparent large sharp peak is an artifact that
appears due to the combined effect of the small amount of Rayleigh scatter left and the missing
data. As such the peak is correct but its relatively high magnitude is disturbing from an
exploratory point of view. A similar explanation of the inferior appearance of the loadings of
component two can be given even though the appearance of component two differs from
component three.
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Figure 6 a) Example of an excitation-emission matrix after removing component one and two obtained
from the three-component PARAFAC model, b) outer products of emission and excitation loadings of
component three of the three-component PARAFAC model and c¢) as in b) with the wavelength areas
corresponding to missing values in the original data set to missing.

The above indicates that more data elements need to be set to missing because there are still
parts influenced by scatter. However, setting more elements to missing would mean that parts
of the interesting chemical variation are also eliminated which leads to a lower information level,
which is not feasible. There are several alternative ways of dealing with this problem [4,24,28].
Below it will be shown how the application of constraints on the parameters can be helpful to
this end. It is emphasized, though, that the apparently artifactual peaks are not incorrect
numerically but merely annoying in visual interpretation of the parameters. Before applying
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constraints an initial look at the currently obtained score values is performed to check for
extreme outliers.

Initial evaluation of score values

Extreme score values in the sample mode indicate possible outliers. Figure 7 shows scatter
plots of the scores obtained from the three-component PARAFAC model (loadings are shown in
Figure 4). All scores are of similar magnitude and no extreme outliers are indicated on the basis
of the score values. However, there may be more subtle outliers, which can not be identified
only by studying the score values. More dedicated diagnostics will be needed for identification of
such outliers but is postponed as the immediate check for gross outliers suffices at this stage of
the analysis.
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Figure 7 Scatter plot of the score values obtained for the three-component PARAFAC model.

The score plot shows an unexpected partly collinear behavior of the scores for two of the
components. While this may be due to chemical properties of the system, it is disturbing that it
apparently only occurs for a (major) part of the data. If this is reflecting a real underlying
phenomenon, then likely an unfortunate sampling has been used. However, comparing with
Figure 4, the corresponding emission spectra seem to be partly confounded having a similarly
shaped low-emission peak. Most likely these two components are hence partly describing the
same underlying phenomena, possibly caused by scattering. In the actual model described
later, the same phenomenon is not observed, hinting at the appropriateness of the constraints
suggested next.

Applying Constraints

Constraining the parameters of the PARAFAC model can be helpful in terms of interpretability,
curve resolution and stability of the solution. It may be argued that constraints should not be
necessary if the data behave according to the model. However, as exemplified above, minor
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details in the data can impose large changes in the estimated parameters that disturb proper
interpretation. Constraints can help to remedy such problems. Caution is needed though, to
make sure that the constraints are not otherwise disturbing the appearance of important
phenomena.

The loadings shown in Figure 4 are uni-modal apart from the unstable part. It is expected that
that the real spectra are non-negative and thus, constraining with both non-negativity and uni-
modality could possibly help in modeling the problematic part of the fluorescence landscapes.
Various combinations of non-negativity and uni-modality constraints in the three modes were
tried and evaluated by explained variance, core consistency and visual appearance of the
loadings. It was found that applying non-negativity in the sample mode and both uni-modality
and non-negativity in the two other modes (excitation and emission) performed well. The
loadings thus obtained for two- and three-component models are illustrated in Figure 8. The
visual appearance of the loadings indicates that the constrained models give a more appropriate
description of the underlying spectral phenomena than the un-constrained models, not being
excessively influenced by the minor remaining scatter variation. The second excitation
component of the two-component constrained model has a shoulder indicating that the data
contain more than two components.

In order to validate the appropriateness of constraints, the changes caused by these must be
explainable. For example, for non-negative constraints the loadings should show peaks at
reasonable positions compared to the raw data but with negative parts removed. The changes
can be seen by comparing Figure 8 with Figure 4. The loadings have been forced to be uni-
modal whereby inferior peaks caused by scatter and missing values have been removed. The
danger of applying constraints is that the parameters are forced to correspond to the a priori
knowledge without necessarily being more adequate. However, by comparing the solutions
carefully, the risk of misleading models can easily be avoided. In this case, the spectral profiles
are similar to the unconstrained profiles except that understood low-variance artifacts are
removed.
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Figure 8 Emission and excitation loadings of two- and three-component PARAFAC models constrained
with non-negativity in mode one and non-negativity and uni-modality in mode two and three. The lines
indicate: component one (solid), component two (dotted) and component three (dashed).

A core consistency of 59 % for the three-component model shows that systematic variation is
present in all three factors. Compared with the core consistency of the three-component un-
constrained model of 37 % (Table 1) this shows that applying constraints increases the model
validity although the core consistency is still lower than hoped for. This, probably, reflects that
the three components are somewhat difficult to estimate. The explained variance increases from
97.6 to 99.1 by increasing the number of components from two to three. The last value should
be compared with the explained variance of the three-component unconstrained model of
99.4% (Table 1). The fit of a constrained model will be lower than for an un-constrained model
per definition, but the similarity of fits shows that the constrained model is mainly filtering off
insignificant noise and not systematic variation. Hence, the constraints seem valid also from this
perspective.

From the discussion above, the non-negativity and uni-modality constrained three-component
model is found to give a valid description of the excitation-emission data.

Data with known fluorophores

Since the data set contains four analytical compounds, it is expected that four PARAFAC
components are appropriate and the reliability of four components will be verified below. Initial
modeling indicates the presence of four or five components as evaluated from the explained
variance and the number of iterations (Figure 9). When too many components are included, the
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number of iterations will typically increase dramatically as seen for the six-component model.
However, the number of iterations can only be used as an indication since e.g. highly correlated
components will often require many iterations and a model with too many factors can
sometimes be easy to fit. Furthermore, an unlucky initialization may lead to many iterations
even though the model is perfectly sound. Still, using ad hoc measures such as the number of
iterations, number of local minima etc. is useful in practice.
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Figure 9 Fit values and number of iterations as a function of the number of components, all data included
(top) and low excitation and emission removed (bottom).

The five-component model indicates that the low excitations are very noisy. This is seen in
Figure 10, which shows an example of the residuals of sample one. The reason for this noise is
to be found in the properties of the instrument. In order to reduce the effect of the noise,
excitations below 230 nm were excluded as were also emissions below 260 nm.
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240
Excitation (nm)

—"" 220

Figure 10 Residuals of sample one from a five-component PARAFAC model.
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After excluding the noisy part it becomes clear that four components provide a valid PARAFAC
model. The four-component model explains approximately 100 % of the variation in the data
and the number of iterations increases considerably when fitting more components. The
reliability is further verified by the excitation and emission loadings, which have shapes
resembling pure spectra (Figure 11).
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Figure 11 A four-component PARAFAC model on all calibration samples with low excitations removed,
emission mode loadings (left) and excitation mode loadings (right). The lines indicate: component one
(black solid), component two (black dotted), component three (gray solid) and component four (gray
dotted).

Finding outliers

Fish data

The three-component model constrained with non-negativity in the first mode and non-negativity
and uni-modality in both the second and the third mode is chosen for further detailed analysis
and validation. After the initial analysis, the possible presence of more subtle outliers should be
monitored for and possibly removed. Here, jack-knife resampling and an investigation of the
residuals is used for the identification of outliers.

An identity match plot obtained from the jack-knife procedure is suggested by Riu and Bro [27]
for identification of outliers. In the plot, the predicted score of the sample left out is plotted
against the score obtained by the overall model. Potential outliers will be placed away from the
ideal identity line, showing that the quantitative information of the samples differs markedly
whether or not the sample is included in the analysis. The plot is made for each of the three
components separately (Figure 12, upper plots) showing that sample number 42 is a clear
outlier. Its score values differ markedly depending on whether it is included in the model or not.
Hence, its spectral characteristics are not covered by those of the remaining samples which
almost per definition makes it an outlier.
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Figure 12 Upper plots: Identity match plots of the scores from the constrained three-component
PARAFAC model, lower-left plot: fluorescence excitation-matrix of sample 42 and lower-right plot:
residuals of sample 42 for a three-component PARAFAC model.

The fact that sample 42 is an outlier is supported by the fluorescence landscape and the
residuals of this sample. The lower-left plot in Figure 12 shows the fluorescence landscape. One
of the peaks contains elements with an intensity larger than what can be measured with the
given instrument settings (out-of-range). These elements are given as missing values in the
data set. Even though this peak has a similar shape as the same peak in all the other samples,
it is possible that the larger amount of missing values makes the modeling of the sample difficult
or uncertain. This is supported by the systematic variation left in the residuals shown in the plot
to the right. Thus, there is significant structure in the fluorescence landscape of sample 42,
which is not modeled.

Other diagnostics than the identity match plot can be used for detecting outliers by the jack-knife
technique. For example, an outlying sample may have a large uncertainty in the score values as
estimated from the resampled models. Furthermore, an indication of an outlier could be a
sample where the estimated loadings obtained when leaving out this sample differ from the
corresponding loadings obtained from all samples. These approaches were also applied here,
but did not indicate additional outliers.
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All samples should have low residuals compared to the measured spectra. Furthermore,
residuals should ideally be randomly distributed, meaning that the remaining unexplained
variations would only be caused by random noise. Sometimes though, systematic variation can
remain in the residuals reflecting unmodeled scatter effects of chemical interactions. The model
may still be valid, as long the estimated parameters can be properly validated.

A constrained three-component PARAFAC model with sample 42 left out shows that three other
samples may be considered outliers as judged from their residuals. The upper-left plot in Figure
13 shows the sum of squared residuals of each sample. Fairly large values are observed for the
samples 14, 37 and 82, which also have systematically distributed residuals (Figure 13).
Therefore, new models are evaluated with those samples removed.

An explained variation of 99.1 % and a core consistency of around 50 % is obtained irrespective
of the removal of outliers or not. Figure 14 shows the loadings of PARAFAC models with sample
42 left out and with the samples 14, 37, 42 and 82 left out. The loadings of the two models are
similar indicating that the three samples (14, 37 and 82) are of similar type as the remaining and
hence help in supporting the model. Therefore, these three samples are kept in the model.
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Figure 13 Plots illustrating possible outliers in a constrained three-component PARAFAC model where
sample number 42 is removed. Sum of squared residuals for all sample and distribution of residuals for
sample 14, 37 and 82 are shown.
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Figure 14 Emission (left) and excitation (right) loadings for constrained three-component PARAFAC
models with sample 42 left out (black solid) and samples 14, 37, 42 and 82 left out (gray dashed).

Data with known fluorophores

Another way to illustrate the presence of outliers is by a residual and influence analysis. This is
illustrated for the four-component PARAFAC model made on the fluorescence landscapes of
the four analytes. Figure 15 shows that no samples have very large residuals but the samples 2,
3 and 4 seem to have somewhat large leverages. As for the other data set, the influence of the
high-leverage samples on the model parameter estimates should be evaluated. It was found
that the loadings did not change by removing the possible outliers and the samples should,
therefore, be kept in the model.
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Figure 15 Influence plot of four-component PARAFAC model. The sum-of-squared residuals summed
within the sample mode are plotted against the leverage of the first mode components. Each sample is
labeled by number.

108



New aspects of chemometrics applied to spectroscopy

The samples 2, 3, and 4 have high concentrations of hydroquinone, tryptophan or DOPA. Thus,
the high residuals may be due the high concentrations leading to slightly changed line-shapes of
the spectra e.g. due to inner-filter effects.

Split-half validations

In order to finally validate the appropriateness of the models build on data with the chosen
outliers removed, split-half analysis [19] is applied. In the split-half analysis, different subsets of
data are analyzed independently. Due to the uniqueness of the PARAFAC model, the same
spectral loadings will be obtained from different samples if the samples reflect the same
fluorophores, when the correct number of components is chosen and enough data are available
in each subset.

Fish data

A model constrained with non-negativity in the first mode and uni-modality together with non-
negativity in the second and third mode is used. In addition, one sample (42) has been excluded
as an outlier. The samples are divided according to storage temperature. Thereby all variation in
the fluorescence spectra will be found in both data sets. The loadings obtained from two split-
half data sets are illustrated in Figure 16. The differences between the two data sets can hardly
be discerned and the chosen model, therefore, seems to give a reliable and adequate
description of underlying fundamental phenomena.

Loadings
Loadings

300 400 500 600 250 300 350

Emission (nm) Excitation (nm)
Figure 16 Results from a split-half analysis. The split-half is performed by dividing the samples into
groups depending on the storage temperature. Solid lines show samples stored at -30°C and dotted lines
show samples stored at -20°C.
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Data with known fluorophores

The split-half analysis was performed by dividing the samples into two subsets where both
subsets contain information on all four fluorophores. The splitting was made in two ways giving
four different subsets that were pair-wise independent. The graphical representation in Figure
17 illustrates the reliability of four components.
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Figure 17 Results from split-half analysis, emission mode loadings (left) and excitation mode loadings
(right).

Interpretation

Interpretation of scores and loadings of the fish data

The estimated excitation spectra have maxima at 290 nm and 330 nm (Figure 8). This
corresponds to the peaks in the raw fluorescence landscapes (Figure 3). Component one and
two have the same position of the excitation maximum but different positions of the emission
maxima that are found at 360 and 330 nm for the two components, respectively. In fact, the
excitation loadings of those two components are almost identical. The reason for the similarity of
these loadings can be that they reflect the same fluorophores but with different substitutions,
one or both are bounded to another molecule or that they are identical fluorophores appearing
in slightly different electronic environments. This leads to slight differences in spectral
characteristics. This was also illustrated by Ross and Leurgans [5] who showed that the
estimated excitation spectrum of tyrosine dissolved in water was almost similar to the estimated
excitation spectrum of tyrosine bound to phosphate. However, the minor differences in the
loadings were sufficient for estimating them separately. The possibility of separating
fluorophores with similar excitation maxima shows the value of using PARAFAC for curve
resolution and for describing the underlying spectral phenomena. The fluorophore described by
component three has excitation maximum around 330 nm and emission maximum around 400
nm.

Investigating press juices and aqueous extracts of fish muscles, a fluorophore associated with
dissolved muscle proteins was earlier shown to have excitation/emission maxima at 292/340 nm
[29]. Thus, the two fluorophores obtained in the present study with excitation maxima around
290 nm might be related to the presence of muscle proteins. Tryptophan, tyrosine and
phenylalanine are the amino acids responsible for the fluorescence of proteins.
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Adding tryptophan in various concentrations to the cod extracts and comparing the thus
obtained fluorescence with the fluorescence measured on pure extracts indicates the presence
of tryptophan. It is found that loadings of a PARAFAC model made on fluorescence spectra of
cod extracts with added tryptophan are similar to the loadings of the PARAFAC model made on
fluorescence spectra of the pure cod extracts (Figure 18.a-b). The presence of tryptophan in the
cod extracts is further substantiated by a linear relation between the score values of component
one and the concentration of tryptophan added to the extracts (Figure 18.c). The fluorophore of
component two, which has the same excitation spectrum as the tryptophan component but
different emission spectrum might also be tryptophan with a substitution or bounded to another
molecule. There is no linear relation between the scores of this component and the tryptophan
concentration.
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Figure 18 Emission (a) and excitation (b) loadings for a three-component PARAFAC model made on
fluorescence spectra of cod extracts added with tryptophan (solid) and excitation and emission loadings
for a three-component PARAFAC model made on fluorescence spectra of the pure cod extracts (dotted).
Relation between the score values of component 1 and the concentration of added tryptophan (c).

The scores of the model are estimates of the relative concentrations of the fluorophores
identified by the loadings and are therefore measures of the amount of the fluorophores present.
For component two and perhaps also component one, there are weak correlations to the chill
storage time (Figure 19). These relations could not be seen when comparing visually the
intensity of the two peaks with the chill storage time. The change in fluorescence intensity with
storage time has been shown in other studies [30,31]. However, the present study illustrates an
explorative way of identifying chemically meaningful quality parameters that can possibly be
monitored industrially.

Another study using the same fish material showed a correlation between the chill storage time
and drip loss of water and between chill storage time and the sensory parameter juiciness [32].
When proteins degrade, smaller peptides are produced. This reduces the ability of the muscle to
hold water and results in an increased drip loss related to the development of smaller protein

111



New aspects of chemometrics applied to spectroscopy

fragments. Thus, the increase in the score values may reflect an increase in the content of small
peptides produced during chill storage. This is also verified by the positions of peak maxima in
the excitation and emission loadings of component one and two.
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Figure 19 Relation between chill storage time and scores of the constrained three-component PARAFAC
model. Scores are corrected for the different weight of fish muscle used for making the extracts. The lines
indicate different freeze storage time: 3 months (solid black), 6 months (dotted black), 9 months (solid
gray) and 12 months (dotted gray).

No relation was found between the score values and the freeze storage temperature nor
between the score values and the freeze storage time. This suggests that these two storage
conditions do not have an effect on the development or disappearance of fluorescent chemical
compounds in the fish muscle extracts.

Fluorescence correlated to lipid oxidation was found to have excitation maximum at 360-370 nm
[33,34]. In the present study, fluorescence with excitation larger than 370 nm was not measured
because no emission was obtained for excitation larger than 370 nm. Therefore, lipid oxidation
is probably not detected. The NADH does have an important impact on autofluorescence
originating from fresh fish muscle [35], but it has been found that the NADH content of fish
muscle has almost disappeared after freezing and thawing [29] and probably NADH will have no
or only very little influence on the fluorescence spectra obtained in this study. However,
component three with excitation/emission maxima around 330/400 nm may conform to the
excitation and emission maxima of NADH that are found at 340 and 450 nm, respectively [35].
The difference in peak maxima between the component obtained here by PARAFAC and the
value for NADH given in the literature may be an effect of the sample matrix in that the exact
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position of the peaks depends on the sample composition and the measurement conditions.
However, if component three describes NADH, an effect of the chill storage time is expected,
which was not seen. Yet, the relation between fluorescence of fish muscle and NADH or lipid
oxidation should be investigated more thoroughly because the NADH content decreases and
lipid oxidation develops during storage. Therefore, prediction of these parameters by
fluorescence spectroscopy could be an indicator of fish freshness.

Itis not possible to identify fully the underlying spectral phenomena that PARAFAC found to be
contributing to the fluorescence of aqueous cod extracts. In order to do so, several approaches
can be feasible. Chromatographic separation before fluorescence measurements as was shown
by Baunsgaard et al. [7] may improve the identification of the fluorophores. In addition, specific
peptide sequences can be separated by capillary electrophoresis. This may be used for
identifying the component with excitation maximum at 290 nm, which was not tryptophan.
Furthermore, standard addition can be used for verifying the presence of certain fluorophores as
shown for tryptophan.

Using the model on new data

Below it is shown how the parameters of the PARAFAC model can be used on new
fluorescence spectroscopic data e.g. for the determination of analyte concentrations. In the data
set with the four fluorophores, the concentration of the four analytes in each sample is known.
Therefore, it is possible to make a calibration model from the relation between the score values
and concentration of one of the analytes. If the PARAFAC model is made only on a part of the
samples, the scores of the samples left out can be estimated by fitting a new PARAFAC model
with the spectral loadings fixed to those of the original solution. From the estimated scores, the
concentration of the analyte can be estimated from the calibration model.

The loadings of component four resemble the pure spectra of tryptophan. Therefore, score
values of this component and the corresponding analyte concentrations are used for making a
univariate calibration model for tryptophan. Three samples were not used in building the
PARAFAC model and the score values of these samples as well as the analyte concentration
can be estimated from the model. Figure 20 shows the tryptophan concentration predicted from
the calibration model versus the known concentrations illustrating that the calibration model
performs well. The concentration of tryptophan in the samples left out (test samples) is obtained
from the estimated score values and the regression coefficient of the calibration model. In the
predicted versus measured plot it is seen that sample 5 is not predicted well, whereas good
predictions are obtained for sample 10 and 15. A high residual and large leverage was obtained
in the estimation of the score values of sample 5. This reveals that it is an extreme sample and
also explains why the tryptophan concentration is not predicted well.
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Figure 20 Predicted versus reference concentration of tryptophan. Test samples are shown with solid
circles.

Conclusion

This paper has given a presentation of the steps involved in finding an optimal PARAFAC
model. Focus has been on the practical application of PARAFAC modeling of complex data.
Problems with e.g. scattering and missing values have been given special attention. It has been
shown when and how to apply constraints, identify outliers and validate the model. Finally,
model interpretation and the possibility to use the results of the PARAFAC model on new
samples are illustrated.
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Low-field "H nuclear magnetic resonance (NMR) transverse relaxation was used to measure water mobility and distribution of water
in fresh cod fillets. The NMR relaxations were analysed with the so-called SLICING method giving uni-exponential profiles from
which the transverse relaxation time (Ty-values) and the relative sizes of the water populations were calculated. Two water
populations with the Tr-values of 50 and 94 ms were obtained. The shortest relaxation time was primarily found near the head, and
water with the longest relaxation time was primarily found near the tail. This variation can be explained by the smaller muscle cells
and muscle fibers in the tail, which may influence the distributions of water into the different pools. The amount of one of the water
populations was correlated to the overall water content with a correlation coefficient of —0.94.

© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: water distribution; water populations; NMR; SLICING

Introduction

This paper describes the distribution of water within
Water is one of the most important components for the ~¢od fillets. The variation in water content and the
quality of food matrices including fish muscle. Water ~Variation in the populations of water within cod
influences quality attributes such as appearance, texture fillets will be investigated by measuring the water
and storage stability. The water content of fish muscles ~¢ontent physically and by measuring NMR relaxations.
can be separated into different populations according to  Low-field 'H nuclear magnetic resonance (NMR)
the mobility and how tight the water molecules are Measures the mobility of protons and is therefore a
bound to the muscle structure. It is not only the total ~direct technique for investigating both the total quantity
amount of water that is important for the overall quality ~©f water and the state of water within the fish muscle.
of the product, but also its state and mobility (Ruan and ~ Low-field 'H NMR has been used to measure and
Chen, 1998). describe changes in properties of fish muscle occurring
The heterogeneity within biological materials has during frozen storage and processing (Lambelet e/ al.,
implications on the results of most types of analyses 1995 Steen and Lambelet, 1997) and for investigat-
made on that material. Therefore, it is important to ing quality attributes of pork meat (Larsson and
know about this variation before analysing muscle- 1ornberg, 1988; Brondum er al., 2000; Bertram et al.,
based food. Only very few studies have tried to 2000).
characterize the heterogeneous distribution of the water ~1he use of a fast bench-top NMR hardware makes it
content in lean gadoid fish species. Dambergs (1963) possible and easy to acquire entire relaxation curves. In
showed an increase in the overall water content of cod ~ this paper, these will be analysed with a multivariate
from the head-end to the tail-end. There was an inverse technique—SLICING—enabling interpretation of the
relationship between water and protein content within underlying phenomena of the measurements. SLICING
the fish muscle basically because these are the only 1S @ chemometric tool that resolves multivariate data,
significant components in the muscle. where the signals measured are an additive sum of

exponentials. SLICING has been used for describing

NMR relaxations of frozen and chill stored cod fillets

*To whom correspondence should be addressed. (Jensen ez al., 2002), and minced and processed meat

E-mail: aar@kvl.dk (Pedersen et al., 2001).
0023-6438/02/$35.00 doi:10.1006/fst1.2002.0924
© 2002 Elsevier Science Ltd. All rights reserved. All articles available online at http://www.idealibrary.com on Ill!)gl':’
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Materials and Methods

Materials

Five cod were caught in @resund, Denmark, in August
2000. They were immediately brought to the laboratory
where they were stored on ice for 5-7 days such that all
fish were in a post-rigor state when they were measured.
The five fish were coded A-E and were weighed before
filleting. The weights were 1.0, 0.7, 0.6, 1.3 and 1.5kg for
the fish, A, B, C, D and E, respectively. Only one fillet
from each cod was used for the analyses, since it was
supposed that there was no difference between the two
sides of the fish.

NMR measurements

The cod fillets were divided in squares of 1.5cm?
retaining information on the anatomical position of the
square. The samples were taken from each of the squares
such that one sample is measured for every 1.5c¢m both
in the horizontal and the vertical direction of the fillet.
The number of samples measured was 59, 37, 38, 58 and
62 for the five fish, respectively, giving 254 samples in
total. Each of the samples were weighted and prepared
for the measurements. Blood, bone and red muscle,
though, were manually excluded from the samples.

The measurements were performed on a Maran Benchtop
Pulsed NMR analyser (Resonance Instruments, Witney,
U.K.) operating at 23.2MHz and equipped with an
18 mm variable temperature probe head. The receiver was
adjusted to 3% and the receiver delay was set to 6s.
Previous experiments showed that a receiver delay of 6
was enough for recovering of the magnet. Transverse
relaxations were measured using the Carr—Purcell-
Meiboom-Gill (CPMG) sequence (Carr and Purcell,
1954; Meiboom and Gill, 1958). For each measurement
eight scans were performed with 1024 echoes and Tau at

500 us. Tau is the 90-180° interpulse spacing in the
CPMG sequence. Only even echoes were recorded, which
gives 512 echoes measured for each sample.

All measurements were performed at 4°C. Before
measuring, the samples were equilibrated for 30 min at
the chosen temperature. The fish were introduced into
the NMR probe by placing samples of 2-4 g into glass
tubes that matched the inner diameter of the 18 mm
NMR sample tubes. The sample preparation was
performed as carefully as possible in order not to alter
the muscle structure by the manual treatment.

Water content

The water content was determined on exactly the same
samples as were used for the NMR measurements, after
the NMR relaxations were measured. The fish samples
were kept in the small glass tubes and dried overnight at
110 °C. They were weighed before and after drying.

Data analysis

The measurements of six of the squares taken from the
fillet were considered as outliers. Three of these were
removed because of extreme water content, due to
measurement errors. The three remaining outliers were
removed due to high modeling residuals in X and Y,
caused by errors in the NMR-measurements. The decay
of mobile protons is measured by 'H low-field NMR
relaxations. In cod, the protons that can be measured
with low-field NMR will almost exclusively be found in
the water molecules. Thus, the amplitude of the signal will
depend on the amount of water in the sample and thus
the weight of the sample since all the samples contain
approximately the same concentration of water. In order
to properly handle the fact that the measured samples are
of different weight, the measurements are normalized
using maximum normalization. By this method, the
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Fig. 1

Normalized CMPG curves. Each line represents the relaxation curve of one sample. Only some of the samples are shown
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is made on the three-way data from (a)

maximum of each relaxation curve is set to one and all
other elements in the profile scaled accordingly.

Theory of SLICING. The normalized CMPG relaxa-
tion curves, illustrated in Fig. 1, are sums of exponen-
tially decaying curves.
N
A=Y Mye /T
n=1

Where A(7) is the NMR signal, N is the number of
exponential components, and M,, is the amplitude of the
nth exponential and thus a measure of the relative
concentration. 75, is the corresponding spin—spin relaxa-
tion time constant and ¢ is the acquisition time. Due to
the normalization, the sum of the amplitudes (A7, is one.
Equation [1] represents the ideal case of the NMR signal.
In real samples there will always be some noise, and a
noise factor should then be included in the equation.
SLICING is a method based on the principles of direct
exponential curve resolution algorithm (DECRA)
(Windig and Antalek, 1997). The idea is to split the
spectrum into two (or more) overlapping parts (slabs),
where the size of the overlap is determined by the lag
term generating a three-dimensional array. Most of the
relaxation curve is present in both slabs. This operation
is illustrated in Fig. 2a. The dimensionality of the matrix
will then increase from 7 (samles) X L (measurement
points) to I x (L-maximum /ag) x number of slabs (K).
Below, this will simply be shortened to 7 x J x K.
The three-dimensional array (X) has the size I xJx K
and contains the elements x;;, where the first index (i)
refers to the samples, the second (/) refers to the time
and the third (k) refers to the slab number. It can be
shown that the rearranged three-way data follow a so-
called PARAFAC model (Eqn [2]) (Harshmann, 1970;
Bro, 1997) when the original data is of the form
described by Eqn [1]

Eqn(l]

F
Xk = Y aybyery + e
7=

(i=1,...;j=1,....0;k=1,....,K) Eqn[2]

The element x;; is the original value in the position (i, j,
k) of the data cube X. aqris the object score (magnitude)
for factor f (first mode), beyis the estimated decay curve
for the pure component f (second mode), and loading

E

(a) The SLICING method yielding three-way data from two-way data. (b) A visualization of the PARAFAC model. (b)

ces gives the ratio between the different slabs (third
mode). The term ey contains residual variation not
captured by the model. Another way of presenting the
PARAFAC model is shown in Fig. 2b. The X-cube
represents the sliced data array. In the figure, the array is
decomposed into two sets of factors, where each of these
sets is called a triad. The factors (triads) are found
simultaneously via an alternating least-squares algo-
rithm (Bro, 1997) and are represented by a set of a—c.
The E-cube to the right represents the noise that is left
unmodeled. Noise is here defined as the variation in the
data that contains no chemical information. Ideally, the
estimated decay curves (b) are uni-exponential and by
fitting one exponential to these, the corresponding 75-
value can be found.

If the residuals show random behavior and no
systematic trend, it can be presumed that only noise is
left unexplained and hence the N estimated profiles
explain the variation in the data up to the noise.
Furthermore, if the model is adequate each second mode
loading should be exponential because the PARAFAC
model can be shown to uniquely recover the underlying
model when correctly specified (Windig and Antalek,
1997). If too many components are extracted, the curves
will reflect this, one or more being nonexponential. The
appearance of the spectral loadings, bootstrapping
(Wehrens er al., 2000) by the use of split-halves
(Harshmann and de Sarbo, 1994) and the distribution
of the residuals will be used to estimate the right number
of components.

Results and Discussion

According to Love (1970) there are no systematic
differences between the chemical composition of the left
and the right fillets of cod muscles. Thus, analyses
performed on one of the fillets (left or right side) are
used in this study to determine the general distribution
of water within a fish.

Distribution of the water content
Figure 3 visualizes the distribution of the water content
over the entire fillet. The figure shows the water content
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Fig. 3 Distribution of the water content within the fillets of the five fish. The water content is denoted in g water per g fish
muscle and is shown as a function of the distance from the head (position 0). Differences across the fillet are shown with different
marks: (*) is the sample closest to the belly, (O) is 1.5cm from the belly, (A) is 3cm from belly, ((J) is 4.5cm from belly, (O) is

6cm from belly and (+) is 7.5cm from belly

as a function of the distance from the head. Generally,
there is an increase in the water content going from the
head to the tail. It seems that the smaller fish A-C have
a similar water content distribution. Going from the
head to the tail, the water content is getting a little lower
towards the middle of the fish. Beyond that the water
content increases with the highest content found at the
tail-end of the fish. Fish D and E do not have the same
distribution. The water content increases constantly
from the head towards the tail. However, at some point

the water content stops increasing, and in the last points
it even decreases, especially for fish E. It is probable that
this is reflecting a fundamental difference between
smaller and bigger fish, but this cannot be investigated
further with the present data.

The results correspond to the results obtained by
Dambergs (1963). There, cod fillets were divided in
three parts (head, middle/belly and tail) and showed an
increase in water content going from the head to the tail.
The results obtained by Dambergs (1963) were found as
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an average over the whole year and it is likely that the
same variation would have been obtained in this study if
more experiments were performed at other seasons. The
opposite variation in water content was found in catfish
and herring (Brandes and Dietrich, 1953; Jafri, 1973),
which both have a higher fat content than cod.

Cell sizes and muscle fibers are smaller towards the tail
compared with the rest of the fillet. This may have an
influence on the distribution of the water content within
the fillet corresponding to the results shown in the
figure. Furthermore, the lower water content around
10 cm from the head seen for fish A-C can be explained
by the fact that the largest muscle cells and muscle fibers
are found around myotome number 12 (Love, 1988). An
effect of sampling may explain some of the unexpected
variations such as the decrease in water content in the
outermost end of the tail. In some cases especially in the
tail where very small samples are obtained, it is possible
that a little part of red muscle is included in the samples
because of the difficulty in separating red and white
muscle in those small pieces of muscle flesh. Since red
muscle has lower water content (Mannan ez al., 1961),
it can explain why the water content decreases at the
tail end.

Iwt/vol. 35 (2002) No. 8

SLICING modeling

The two-dimensional data were sliced using a lag of 1,
and with two slabs, increasing the dimensionality of the
matrix from 248 x 512 to 248 x 511 x 2.

Choosing the optimal number of factors. Figure 4
illustrates the results obtained from slicing models with
two or three factors. From the loading plot (Fig. 4a) it is
clear that the two first factors are both exponential,
indicating that at least two populations of water are
present. It is imperative that the right number of
components are chosen in the model, because all
components change with the total number of compo-
nents. For example, the faster relaxing factor has a 7»-
value of 49.8 and 49.5ms for the two- and three-factor
models, respectively. The second 7T»-values are 104.3 and
81.5ms. The third factor for the three-factor model is
probably not exponential, since it does not seem to
decrease towards zero, but rather to a limit of
approximately 0.03. There might be two reasons for
this behavior: either the model is overfitted, or there is
some kind of offset in the data. The offset may be due to
the way data are collected in that all data were
constrained to have positive values (H.T. Pedersen,

2018
2016
0014
0012
G0t
0,008
0.006
0004
0002 FARA A el e
o 206 00 00 800 600 200 0 00 400 800 360 1500 1200
(a) Time (ms) {b) Tiene (ms)

[ 200 400 #00 300 1000 1200
©) Tames )

Fig. 4

{d Sample rumber

(a) Second mode loadings (black) and exponential fit (gray) after three components. (b) Squared residuals summed over

relaxation time from PARAFAC models with two (black) and three (gray) factors. (c) The B-loadings from three-factor models
on the raw data (black) and the corrected data (gray). (d) The A-scores for the third factor. Black is the model on the raw data

and the gray is the model on the corrected data
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pers. commun.). Figure 4b shows the residuals along the
time axis for the two- and three-factor models. From
this figure, it is clear that some information is gained by
going from two to three factors. Thus, application of a
three-factor model could be an advantage. Furthermore,
when increasing the model complexity from two to three
factors, the residuals become less structural as can be
seen in Fig. 4b.

Corrections of the data. The possible presence of a
minor third factor could be caused by an offset effect
(Fig. 4a), as noted above. In order to investigate if the
model could be improved by correcting for this artifact,
the mean of the last 50 measuring points are subtracted
from the whole spectra. The correction is done sample
wise and is based on the assumption that the decays are
measured sufficiently long so that the signal should
effectively be zero unless there are offsets. As can be seen
from Fig. 4c, the second mode loadings for the third
factor has become exponential by the correction
indicating the presence of a third minor factor.
However, upon studying the scores (Fig. 4d) of the
third factor, it becomes clear that some of these are
negative, which gives no chemical meaning. Thus, only
the two main factors give strictly positive score values.

Bootstrapping. To support the conclusion of a two-
factor model, and further investigate the effect of
correcting the data, bootstrapping (Wehrens et al.,
2000) is performed. Two- and three-factor SLICING
models are made on 100 split-halves (Harshmann and de
Sarbo, 1994) of the dataset with raw data and of the
corrected data, giving rise to 4 x 200 models in total.

For comparing the results from the bootstrapping, uni-
exponential fits to the second mode loadings are made.
Mean and standard errors of the uni-exponential fits are
calculated and are given in Table 1. Since the sample sets
contain the same water populations, the standard error
of the 7>-values should be as small as possible. Large
standard errors indicate an unstable model, hence too
many factors. By investigating the results in Table 1, it
becomes clear that for both datasets the standard error
of the third factor is very large. Furthermore, it was
found that only 45% of the three-factor models made
with corrected data have three exponential second mode
loadings. The correction seems appropriate for the two-
factor model since the standard error decreases going
from the noncorrected to the corrected data. The
bootstrapping thus supports the conclusion that the

Table 1

two-factor model is the optimal, but that the corrected
data should be used.

For the two-factor model made on all data corrected for
the offset, the fast relaxing factor has a 75-value of
approximately 50 ms and the slower relaxing factor has
a T»>-value of 94 ms. Thus, one of the water populations
is relatively tightly bound to the muscle structure and
the other is less tightly bound.

Lambelet et al. (1995) obtained T»-values of 1 and 65ms
by exponential fitting. The low 7,-value was only
obtained when tau was as low as 12 us. In the present
experiment a tau of 500 us was used and it therefore
seems reasonable that a component with a 7»-value of
Ims could not be detected. Modeling only one
component gave a T>-value of approximately 66ms,
which agrees with the slower relaxing component
obtained by Lambelet er al. (1995). It seems that
SLICING gives a possibility for identifying two water
populations with great similarities, which could not be
identified with the bi-exponential fitting as was used
by Lambelet et al. (1995). Another study made on
frozen—thawed cod gave three exponential components
(Jepsen et al., 1999). These had T»-values of 34, 62 and
526 ms. Four populations of water with 7>-values of 37,
56, 126 and 361 ms were obtained by the SLICING
technique applied on NMR-relaxations of minced
frozen—thawed cod (Jensen et al., 2002). The two
components with the 7%-values of 56 and 126 could
correspond to the water populations obtained in the
present study. Thus, it seems as two more water
populations are developed during processing such as
mincing or freezing. Furthermore, the variation in 7»-
values between this study and other studies may be
due to variations in the sample preparation, season,
places of catch, etc. Differences in instrumentation,
parameters used and the ways of analysing the data may
also cause a variation in the experimentally determined
T»>-values.

For whole, minced and homogenized pork three
exponential components were obtained by distributed
exponential fitting (Fjelkner-Modig and Tornberg, 1986;
Larsson et al., 1988; Bertram et al., 2001). As
mentioned, only two components were obtained
in the present study. It might be that fresh fish
muscle in contrast to pig muscle contains only two
populations of water. Furthermore, the variation and/or
the content of the third water population may be so
small that it cannot be described by the method used
here.

Mean relaxation times (in ms) and the standard error of second mode loadings obtained from two and

three factor bootstrapping on 100 split-half models performed on both noncorrected and corrected data.

Uncorrected data

Corrected data

Two factors Three factors

Two factors Three factors

Mean s.e. Mean s.e. Mean s.e. Mean s.e.
T 49.8 0.6 49.5 0.6 49.6 0.4 46.5 1.8
T 104.3 2.8 81.5 1.7 93.7 1.2 82.6 5.7
T3 467.7 100.8 203.1 73.6

The number of samples for these tests is 248.
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Interpretation of the SLICING model

Distribution of the different types of water between the
cod fillets. The score values (first mode) describe how
much each water population contributes to the NMR
relaxation phenomena and may thus be used as a
measure of the relative concentrations of the popula-
tions of water. Figure 5 shows a score plot of factor one
(relating to 75 ,) vs. factor two (relating to 75,) of all
the fish. The plot is coded according to each of the fish
(A-E). The ellipses are made for helping in the
interpretation of the plot. The ellipses are centered in
the mean of each fish along each of the two axes. The
range in each direction is the standard deviation for that
fish’s scores in the specific direction of variation.

By comparing Fig. 5 with Fig. 3, it might seem odd that
fish B and D look so similar in Fig. 5. However, by
investigating Fig. 3 further, and taking into account that
the NMR-signal is mostly due to the water in the fish, it
comes as no surprise that fish B and D overlap in Fig. 5.
The range of the water content for fish B is higher than
for fish D, but the range of the water content of fish D is
inside the range of fish B. Therefore, it is expected that
the ellipse for fish D should be inside the ellipse for fish
B, which also is the case in Fig. 5.

From Fig. 5, it is seen that the samples from the five fish
are grouped together illustrating some variation among
the fish. The grouping shown in Fig. 5 can be related to
the average water content of the five fish. Fish E has the
highest water content of 82.02/100 g, fish B and D have
the next highest of 81.53/100 g and 81.20/100 g, respec-
tively, whereas fish A and C have the lowest water
content of 80.74/100g and 80.53/100g, respectively.
There is an inverse relation between these two types of
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water. The reason for this is that by normalizing the
spectra to one, the scores will approximately add up to a
constant value. Thus, when there are only two factors in
the model and the noise level of the raw data is low, the
score values will be highly correlated.

Comparing heterogeneity within the fish. Figure 6
illustrates the scores of the first factor vs. the relative
position of each sample. The scores are obtained from
the two-factor SLICING model made on all fish with
correction for offset. The results will be more or less the
same if the figures are made using the results obtained
from PARAFAC models made on each fish (figure not
shown). Further, if the scores from the second factor
were used instead of the scores from the first, the same
results would be obtained. This, however, is of no
surprise since the two factors are highly correlated.

There is a clear relation between the scores obtained
from the PARAFAC model and the position of the
sample. The black line in each figure is the ‘best line’
fitted to minimize the distance from every sample to the
line (corresponding to the first component in a PCA).
The correlation coeflicients illustrate that fish A, C and
E are fairly homogenous, whereas the largest correlation
between the score values and the horizontal position is
found for fish B (Table 2 and Fig. 6). However, the same
results are not obtained by looking at the range of the
values, where the greatest variation is found for fish E.
The low correlation and large range obtained for fish E
seems to be due to a curvature in the score-values, and is
consistent with what is seen in Fig. 3. Fish A has two
samples close to the head, which have fairly low score-
values compared to the others. By removing these two
samples, the correlation coefficient increases to —0.66. It
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Fig. 5 Scatter plot of the scores of factor 1 vs. the scores of factor 2 obtained from a two-factor PARAFAC model on the raw
data. Samples are coded according to fish: fish A (*), fish B (O), fish C (A), fish D (0) and fish E (¢)
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Fig. 6 Plot of the horizontal position of each sample vs. the A-scores of the first factor obtained from a two-factor PARAFAC

model on the raw data

Table 2 Correlation between the first score and the
horizontal position (r), and the range in the first score.
Both are done for each fish separately

A B C D E
No. of samples 59 36 34 57 62
r 0.57 0.85 0.69 0.74 0.75
Range 1.20 1.05 0.88 1.06 1.09

becomes clear that fish A is homogenous up to the tail-
end where the score values start to drop. Fish C seems to
be homogenous in the middle of the fish, while to both

sides of the middle there is a steady decrease of the score
values. The reason why fish A and C in some part of the
fillet are more homogenous than the other fish is not
known.

There are some samples near the tail of fish D, which
clearly do not follow the trend of the other samples. This
might be due to some red muscle being included in the
samples, and as mentioned earlier, red muscle contains
less water than white muscle and will thus give a
different signal. If these few samples at the tail-end of
the fish are removed, the results for fish D improve,
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Fig. 7 Relation between the water content and the score value:

giving a correlation coefficient of —0.88. Thereby, the
relation between the score values and the sample
position increases resulting in a larger correlation
coefficient than is obtained for fish B.

The negative correlation between the score values of the
two factors means that samples with a high content of
the water population described by factor one will have a
low content of the water population described by factor
two. Thus, samples from the head part contain more of
the fast relaxing component, whereas samples from the
tail part contain more of the slow relaxing component.
This is consistent with theory. The muscle fibers are
smaller towards the tail where the cell sizes also get
smaller (Love, 1970). It is suggested that a separation of
the water into two populations is due to an anatomical
compartmentalization. The water with the shortest
relaxation time is likely intracellular water and the
water with the longest relaxation time is extracellular
water (Cole et al., 1993). In that case the intracellular
water that is found in a higher amount near the head is
bound more firmly to the muscle fibers than the
extracellular water. The more loosely bound extracel-
lular water is found in a larger amount near the tail. The
relative size of intra- and extracellular water is in
agreement with the variation in cell and muscle fiber
sizes. Furthermore, the distribution of the score values is
in accordance with the theory of the separation of water
into the intracellular and the extracellular parts.
Above, it was shown that the score values of the first
factor decrease when samples are taken from a position
closer to the tail. This was also the case for the overall
water content (Fig. 3). Therefore, the relative amount of
each water population may correlate to the total amount
of water. This is illustrated in Fig. 7 where the water
content is plotted against the score values of the first
factor. It is illustrated that there is a linear relation

s of the first factor

between the two parameters. Furthermore, a correlation
coefficient of —0.94 is found. This variation in water
content and content of the different water populations
illustrates the importance of how sampling is performed
when instrumental measurements are performed on a
small part of the fish.

As mentioned, other studies have already shown the
multi-exponential distribution of water within muscle
tissue. However, low-field NMR combined with SLI-
CING is a new way of analysing the states of water in
various products. Compared with exponential fitting,
SLICING is a fast, easy and stable method giving the
underlying exponential decays of the NMR relaxations.
When analysing the NMR relaxations of fresh cod fillets,
it has been shown that two populations of water can be
identified. The concentration of the populations varies
within the length of the cod fillet and seems to be related to
the overall water content. Thus, these results illustrate the
possibility for studying the distribution of the populations
of water between and within other fish species.
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Abstract

Low-field "H nuclear magnetic resonance (NMR) relaxations were measured on muscle, minced
muscle and centrifuged mince from cod that had been treated under various freeze and chill
storage conditions. Using multi-way chemometrics, uni-exponential profiles were obtained, from
which the transverse relaxation times (T,-values) and the relative water pool sizes (M-values)
were determined. Three pools of water were identified with the relaxation times and M-values in
the centrifuged samples reflecting the removal of loosely bound water. The M-values and the full
NMR-signal decays were correlated to two measures of water holding capacity (WHC) in a way
that WHC related to the original water content could be predicted well from the whole and the
minced muscle. The centrifuged samples gave optimal predictions of WHC related to the dry
matter content, probably because the centrifuged samples are similar to the samples used for
measuring WHC. The two WHC quantities were also correlated to the water distribution itself as
measured by the relative pool sizes.

Keywords: fish, water mobility, NMR relaxation, PARAFAC

Introduction

Water is the main constituent of muscle and has as such an important influence on quality-
related parameters like appearance, texture and storage stability of muscle-based food.
However, it is not merely the total water content that governs stability and quality. Rather, the
cellular distribution, binding state and mobility of the water is important (7).

Muscle tissue water can be considered as distributed into different “pools” according to its
mobility, which depends on how tight the water molecules are bound to sub-cellular structures,
e.g. myofibrils. In porcine meat, three pools of water have been identified: one trapped between
the fibres, one outside the myofibril structure or even outside the muscle cells, and one tightly
bound to the muscle proteins (2). The distribution of water between these three pools depends
on factors like storage time, freezing, mincing etc. Changes in water distribution are mainly a
result of damage to proteins leading to denaturation and aggregation. This results in a
decreased protein solubility and loss of functional properties such as the ability to hold water.
The water holding capacity is an important quality parameter correlating with sensory attributes
like texture and juiciness (3).

Time-domain 'H low-field nuclear magnetic resonance (NMR) spectroscopy is a technique that
measures nuclear spin relaxation of hydrogen atoms. The relaxation rate depends on the
mobility of the nucleus and thus the water mobility in the sample of question. Transverse spin
relaxations in heterogeneous material normally follow a multi-exponential decay, indicating that
there are several groups of water molecules with different mobility. The number of exponential
components, characterized by their relaxation time constants (7,-values), depends on the

133



New aspects of chemometrics applied to spectroscopy

physical and chemical conditions of the system and corresponds to the water pools existing in
the muscle tissue. It has been claimed that water does not exist in distinct pools, but that each
proton has its own environment and thereby its own T,-value (4,5). From this it follows that a
distribution of T,-values rather than a few discrete values should be sought for. However, it is in
fact possible to resolve the NMR relaxation curves into a few mono-exponential components by
the use of chemometric methods (6,7), possibly because exchange between slightly differently
positioned water molecules within a certain micro-environment is faster than the resolution of
the NMR instrument.

The present paper describes the distribution of water in cod muscle determined from low-field
NMR relaxation measurements by chemometrics. The relation between the water distribution
and the water holding capacity is shown for fish muscle treated under various processing and
storage conditions. Additionally, the ability to predict water holding capacity from low-field NMR
relaxation curves by the classical bilinear method, partial least squares (PLS) regression, is
demonstrated.

Materials and methods

Sample preparation

Cod were caught in the Barents Sea or the Baltic Sea and underwent twelve different
treatments, varying in freeze storage conditions and chill storage time (Table 1). The cod were
filleted, de-skinned and vacuum packed during the chill storage period. Two fillets were
measured in each code.

Samples of fish muscle were taken from the loin part at the inner side of the fillet and placed
carefully in the NMR glass tubes in order not to alter the muscle structure by the manual
treatment. The rest of the loin part of the fillet was minced and used for determination of water
holding capacity and dry matter content as well as for NMR measurements on the minced
samples. A third type of sample was used for the NMR measurements, namely the centrifuged
mince from the analysis of water holding capacity (see below). All samples were of
approximately 3 g. Measurements were performed in triplicate.
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Table 1 Treatments and storage conditions of the samples.

Place of Treatment Freeze storage Freeze storage 2 weeks of chill
catch temperature (°C) time storage

1 Barents Sea -24 24 months yes

2 Barents Sea -24 24 months no

3 Barents Sea glaced -24 24 months yes

4 Barents Sea glaced -24 24 months no

5 Barents Sea saltglaced -24 24 months yes

6 Barents Sea saltglaced -24 24 months no

7 Baltic Sea -24 2 months yes

8 Baltic Sea -24 2 months no

9 Baltic Sea -20/-30° 14 weeks yes

10 Baltic Sea -20/-30° 14 weeks no

11 Baltic Sea -30 2 weeks yes

12 Baltic Sea none yes

“The cod were stored at fluctuating temperature.

NMR measurements

The measurements were performed with a Maran Benchtop Pulsed NMR analyser (Resonance
Instruments, Witney, UK) operating at 23.2 MHz and equipped with an 18 mm variable-
temperature probe head. Transverse spin-relaxation was measured using the Carr-Purcell-
Meiboom-Gill (CPMG) pulse sequence (8,9). Only even echoes were sampled, spaced by 1.2
ms, and the number of sampling points was 512 for each measurement. The probe temperature
was 30 °C, and samples were thermo-equilibrated for 30 min before measurements.

Water holding capacity

Water holding capacity was determined on approximately 2 g of minced fillet taken from the loin
piece. The samples were weighed, placed in plastic tubes with a special filter bottom (pore size
0.1 mm), centrifuged (1500g, 10 °C, 5 min) and weighed again (70). Each analysis was made in
quadruplicate. Water holding capacity is defined in two ways: as the amount of water left in the
mince after centrifugation relative either to the amount of water originally present in the samples
(WHC,,) or to the dry matter content (WHC,).
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Data Analysis

The NMR relaxation curves were divided by the sample weight and the number of variables
reduced from 512 to 256 by averaging each second sample point. The transverse spin-
relaxation curve is a sum of exponential decays:

t

r
A(t)=> me™ +noise M
f=1

where Ai(f) is a vector containing the NMR signal from sample j at time ¢, F is the number of
exponential components corresponding to the number of water pools, my is the amount of the
f-th component in sample j and Ty is the spin-spin relaxation time of the water pool described by
component f. A low amount of noise is also present as indicated.

The F components were extracted from the measured relaxation curves by tri-linearization and
parallel factor analysis (PARAFAC; 11-13) as previously described (6,7,74). This procedure is
based on the principles of the Direct Exponential Curve Resolution Algorithm (75). The
PARAFAC model recovers uniquely the underlying structure of tri-linear data as so-called
loadings. Thus, from the NMR curves, mono-exponential loadings are obtained, and from the
logarithm of these, the transverse spin-spin relaxation times (7,) can be determined by weighted
linear regression. Subsequently, the exponentials can be generated and the size of the water
pools, the m-values, calculated from Equation (1) by multiple linear regression. The size of the
water pool is given as the absolute value (m-value) or as a value (M-value) relative to the total
amount of water.

Multivariate calibrations for predicting the measured water holding capacities from the low-field
NMR relaxation curves themselves or from the determined m-values were made by the use of
PLS regression and multiple linear regression (MLR), respectively. The regression models were
evaluated by the correlation between the measured and the predicted values and by the root
mean squared error of prediction as estimated by cross-validation (RMSECV). A jack-knife
approach was used for evaluating the importance of the m-values as measures of the water
holding capacity. An excellent review of these methods is given in the monograph by Martens
and Martens (16).

The data analysis was performed using Matlab® Ver. 5.3 for Windows (Math
Works, USA) and The Unscrambler® Ver. 7.6 (CAMO, Norway).
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Results and discussion

Identifying the water pools

The first and important step in describing the water pools is to determine the number of pools.
This is because the PARAFAC solution, based on minimising the sum of squared residuals, is
dependent on F (in Equation 1). In the present case, split-half analysis (data split between
replicates) (17), principal component analysis, and examination of how well the loadings
obtained were true single exponentials, all pointed to the existence of three components in
intact cod muscle tissue as well as in the minced muscle. A more thorough description on how
to estimate F from this type of data is found in Jensen et al. (7). This reference reported on a
fourth component in cod mince. The discrepancy is probably due to differences in the storage
conditions of the fish. In another study, low-field NMR relaxation measurements on fresh cod
muscle showed two exponential components only (78). This indicates that a third water pool
develops during frozen storage, which was also shown by Lambelet et al. (79). Possibly, the
development of a third exponential component during freeze storage is due to protein
denaturation (719).

The estimated T,-values (Table 2) show that the centrifuged samples had faster relaxing
components, i.e. less mobile water, except for T,4. The relaxation parameters measured in
whole and minced samples were similar, showing that the change in structure caused by the
mincing process did not influence the mobility of water. The structure partly collapses by the
mincing. This apparently results in a lower relative amount of tightly bound water (cf. the M-
values in Table 2) and is possibly due to a larger protein-water interface area. Water is removed
by the centrifugation leading to a low amount of the loosest bound water. A similar result was
reported by Bertram et al. (20) who showed that there was also a slight increase in the fastest
relaxing water fraction in centrifuged samples of minced pig muscle.

Table 2 7, and M-values of the three water pools in intact muscle, mince and
centrifuged mince from cod treated as described in the present paper. The
M-values are the relative concentration of water in each pool and are given in
percent as the average of all samples.

Intact muscle Mince Centrifuged mince
T>1 (ms) 35 39 41
T2 (MS) 83 87 66
Tz (Ms) 467 394 230
M (%) 71 60 59
M, (%) 10 10 35
M5 (%) 19 30 6
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The water pool sizes, as expressed by the m-values (Equation 1), apparently did not vary in a
systematic way governed by the treatment of the fish. One reason may be the existence of a
large biological variation between fish within the same code, blurring a smaller effect of the
different treatments in the experimental design. It was expected that samples from batch 12,
which had not been frozen, would exhibit a unique water distribution, since freezing changes the
structure of the muscle proteins and thereby affects the binding of water molecules (27,22).
However, this was not apparent from the present results.

Predicting the water holding capacity

The water holding capacity was determined by centrifuging the samples and measuring how
much water that disappeared during the centrifugation step. It is reported in two ways: as the
amount of water left in the sample relative to the original amount of water (WHC,,), or as the
amount of water left in the sample relative to the amount of dry matter (WHC,). These two
quantities are perfectly correlated as long as the dry matter content does not vary among
samples. In the present case, the variation in dry matter content was substantial, causing an
observable difference in the relation between the NMR relaxation and the two measures of
WHC. Furthermore, both WHC and dry matter content varied between samples to a degree high
enough that usable regression models could be made.

WHC,, and WHC, were predicted by PLS regression using as x-variables the whole relaxation
curves, and by MLR using as x-variables the m-values obtained from Equation 1. The
predictions were validated by cross-validation, leaving replicates in the same segment, and
evaluated by the correlation between the measured and the predicted water holding capacity
and by RMSECV. The results are shown in Table 3 and 4. The predictions of the water holding
capacity performed well, illustrating that low-field NMR is a valuable method for assessing water
holding capacity in fish muscle, as was also indicated by Jepsen et al. (23). It is interesting that
when expressing the water holding capacity relative to the original amount of water (WHC,,),
optimal predictions were obtained on whole and minced muscle. The poor predictions obtained
from the centrifuged fillets are reasonable since water is removed by the centrifugation and the
samples contain no information about the original water content.

Conversely, the centrifuged samples gave the best predictions when expressing water holding
capacity relative to the dry matter content. The centrifuged samples were given exactly the
same treatment (mincing and centrifugation) as the samples used for estimating the water
holding capacity. Therefore, it is reasonable that these samples give a more accurate estimate
of WHC, and thus better predictions.
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Table 3 Prediction of percent water left after centrifugation relative to the
original amount of water (WHC,,) from low-field NMR relaxations, m-values
obtained by slicing. Variation in WHC,, is between 68 and 88 %. RMSECV
is given in per cent.

Whole fillet Minced fillet Centrifuged fillet

R RMSECV r RMSECV r RMSECV
PLS on whole relaxations®
0.86 2.95 0.77 3.75 0.60 4.80
MLR on m-values
0.77 3.84 0.68 433 0.48 547

*The PLS regressions are made with three components for whole and
minced fillet and one component for centrifuged fillet.

Table 4 Prediction of percent water left after centrifugation relative to the
amount of dry matter (WHC) from low-field NMR relaxations, m-values
obtained by slicing. Variation in WHC,, is between 2.37 and 3.92 g/g.
RMSECYV is given in the original values (g/g).

Whole fillet Minced fillet Centrifuged fillet

R RMSECV r RMSECV R RMSECV
PLS on whole relaxations®
0.77 0.817 0.79 0.233 0.92 0.157
MLR on m-values
0.77 0.248 0.70 0.276 0.92 0.156

“The PLS regressions are made with three components.

A main objective of this study has been to determine the relation between the different water
pools and the water holding capacity. This was evaluated from the multiple linear regressions by
a jack-knife approach estimating the uncertainty of the regression coefficients (16). Predicting
WHC,, of whole and minced fillet from the m-values showed that both the fastest relaxing water
and the slowest relaxing water are significant. This indicates that a large amount of water tightly
bound to the muscle structure and a low amount of water loosely bound ensures a high water
holding capacity. The slowest relaxing, i.e. loosest bound water is removed during centrifugation
as seen in Table 2. Probably, part of this water is also lost for samples with decreased water
holding capacity. It is therefore reasonable that this water pool is important for the quantification.

When predicting WHC4, the centrifuged samples gave the best predictions, from which the two
fastest relaxing components were found to be the most important. By centrifugation, the loosely
bound water is largely removed. Only a very low concentration of the slow relaxing water is left
in the samples having but a small influence on the regression model.

The results show that low-field NMR is a valuable tool for improved understanding of the relation
between water mobility and of fish muscle. Furthermore, due to its potential as a non-destructive
method for measuring water holding capacity, it could be of use in the industry for at-line or
even on-line applications.
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Effect of sampling errors in predictions using replicated
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Summary

Measurement error modelling is used for investigating the influence of measurement/sampling
error on univariate predictions of water content and water holding capacity (reference
measurement) from nuclear magnetic resonance (NMR) relaxations (instrumental) measured on
four gadoid fish species. Reliability ratios illustrate that the four fish species are influenced
differently by the error. However, the error seems to influence the predictions of the two
reference measures in the same way. The effect of using replicated x-measurements is
illustrated by simulated data and by NMR relaxations measured several times on each fish. The
standard error of the physical determination of the reference values is lower than the standard
error of the NMR measurements. In this case lower prediction error is obtained by replicating
the instrumental measurements. A general formula is given for how to correct the least squares
regression coefficient when another number of replicated x-measurements is used for validation
than for calibration. It is shown that the correction should be applied when the number of
replicates in validation is less than the number in calibration.

Keywords: measurement error model, replicates, predictions
Introduction

Instrumental methods, such as nuclear magnetic resonance (NMR) and near infrared
spectroscopy, are of significant interest in many applications as they provide means for
obtaining rapid on-line/at-line measurements enabling better control of production and quality.
Regression techniques are commonly applied when fast instrumental measurements are used
for estimating a parameter, for which alternative more direct determinations would be time
consuming, expensive etc.

Least squares regression is strictly applicable only when the independent variables are
measured without error. This is almost never the case since the very act of measurement
implies the presence of error. Error is seldom due to one simple and specific cause but is the
result of several contributing causes. For example, measurement and sampling error will have
significant contributions to the overall error of the independent variable.

Itis important to evaluate whether errors in the instrumental variable are important and, if so,
develop methods that correct for the influence of these errors on the regression model.
Measurement error models described by Fuller [1,2], Stefanski [3] and Jonsson [4] are
examples of techniques that can be used to investigate the effect of measurement/sampling
error and to correct for these errors in the independent variables. In practical sampling, the
measurement error theory has been applied to various subjects such as an investigation of the
correlations between dust lead and children’s blood lead [5], a prediction of the amount of
uranium enrichment as a function of the gamma count rate [6], predicting defoliation in a forest
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stand by measuring the gypsy moth egg mass density [7] and in the sampling of insects from
Russian wheat aphid [8].

It is claimed that if the aim is to predict new samples, ordinary least squares estimation will be
adequate giving the lowest prediction errors if the samples that are to be predicted come from
the same distribution as the samples used for calibration [1]. However, in other situations
measurement error modelling may improve the predictions [4,7].

This paper provides guidelines on how to analyse data with error in the independent variable.
The case with only one independent variable is described and analysed. The focus is on
prediction; which influence does the error have on the predictions and what is the importance of
replicated measurements. This includes investigating the effect of changing the number of
replicates and how to find the optimal number of replicates to use in future predictions.

The theory of the measurement error models is described in the next section. After that the
advantage of using a correction based on the measurement error theory to simulated data is
discussed and at last the theory is applied on real data. Low-field 'H NMR relaxations measured
on fish muscle are used as examples. These data have shown to be correlated to the water
content and the water holding capacity of fish muscle [9,10].

Theory

“Measurements” and “samples” are used for describing the data structure. Since the problem
concerns how to sample and measure analytically, a single x-value is defined as a
measurement. In the models, averages over a finite number of measurements are used. These
averages are denoted as samples.

Regression models
The classical linear regression model with one independent variable is defined by
Y= Bo + B +E F=12,..n (eq. 1)

where g is called the model errors in the following and is assumed to be independent and
normally distributed N(O, Uf). The vector (x4,x2, .....,Xn) is either fixed by design or given by a
random distribution N(z, af). Furthermore, it is assumed that the vector (&1, &, ....,&) is
independent of the vector (x4,x2,.....,Xn). The model error reflects the intrinsic error in the linear
relationship between y and x. It may be due to an error in y, a non-linear relation between x and
y or a lack of information in x for predicting y. There are two types of errors in y; one due to the
natural variation in y and the other due to measurement/sampling error in the determination of
the actual y-values used in the modelling.
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Least squares parameter estimation

The parameters of the regression model can be estimated with least squares estimation where
the slope is estimated by Equation 2.

n

¢ X=X~
b ="y

x > (x—x)? (eq.2)

b, . is the maximum likelihood estimator and is an unbiased estimator for 3, , sfy is the
covariance between the x- and the y-samples and Sf is the variance of the x-samples. The
intercept (/%) is estimated using the estimator of the slope and the average values of the
independent and dependent variables (Equation 3).

bys =Y — by )X (eq. 3)

In general terms, least squares estimation is aimed at minimising the sum of squared deviations
of the observed values for the dependent variable from those predicted by the model (Equation
4).

Q(b01b1):Z(yi_bO_b1Xi)2 (eq. 4)
=

!

Measurement error model

Measurement error may have a great influence on the results depending on the purpose of the
study. If measurement error is present, the measured x-values (x;) used in the linear regression
model can be written as the true value (Xiye) plus a contribution from the measurement error

().

Xi = Xigue TY; (eq. 5)
The measurement error (u;) is a random error and is assumed normally distributed N(O, Gf) and
independent of the x-values. Furthermore, the measurement error is independent of the model
error given in Equation 1. The relation between the variances of the measured x-values, the true
x-values and the measurement error can be described by

2
X

2

2
Sy = Sx,true + Su (eq 6)

where sf‘tmedenotes the variance of the true x-values and s? denotes the variance of the

measurement errors.
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Estimating the regression coefficients be the measurement error model

Six parameters have to be estimated in the measurement error model (4, Of,af,af,ﬂo,ﬁq).
However, only five parameters can be estimated from the vectors x and y [1]. Thus, an infinite
number of models will fit when applying the measurement error theory to any type of data.
Therefore, it is necessary to obtain additional information of one of the parameters in order to
properly estimate the linear regression model. Here, it is assumed that the measurement error is
known or that it can be estimated from repeated measurements. By correcting the variance of
the x-values in Equation 2 for the measurement error, the true parameters of the linear
regression model can be estimated without bias as shown in Equation 7 and 8. In ordinary least
squares regression, the slope is estimated by dividing the covariance between x and y with the
variance of x (Equation 2). When correcting for the measurement errors, the covariance
between x and y is not divided by the variance of x but by the variance of x minus the variance
of the measurement error (Equation 7). Thus, the estimated slope from the measurement error
model will always be numerically larger than the biased least squares estimated slope. The
intercept is estimated from the mean of x and y and from the estimated slope (Equation 8).

S
b =7 (eq. 7)
1,measerror Sf —Sf
bO,measerror =y- b1,measerror X (eq 8)

Buonaccorsi [7] suggests a modified version of Equation 7, when the error variances and
covariances vary from unit to unit. However, this modification will not be pursued here.

The ratio between the least squares estimated regression coefficient (b,s) and the regression
coefficient estimated with the measurement error model (b1 measerror) IS called the reliability ratio
(r) (Equation 9).

_ Sf,true _ b1,|s
8. tSE b (eq. 9)

x,true 1,measerror

The reliability ratio is a measure of how much the regression coefficient is attenuated by the
measurement error and is thus, indirectly, a measure of the size of the measurement error. As
the reliability ratio approaches one, the measurement error will have less influence on the
estimates.
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Prediction

The correction of the regression coefficients described above is meant to provide more accurate
estimates of the coefficients. However, even though these estimates are more accurate, this
does not imply that the predictions obtained with them are more accurate. In fact, prediction by
least squares estimation is normally preferred even when there are measurement errors. This
holds theoretically if (y,x;) is distributed as a bivariate normal random variable and if the
samples to be predicted are a random selection from the same population that generated the
samples used for calibration. It is claimed that correction for measurement error should be
applied when an experimental design is used giving either fixed predictors in the calibration or in
the test set [7]. However, applying the measurement error theory to simulated data using fixed
x-variables could not substantiate this claim (results not shown). This is supported by Johnsson
[4] who found that for fixed x in the test set, ordinary least squares regression gave the lowest
prediction errors unless the mean x-values of the samples to be predicted lies far away from the
mean x-values used for calibration. An advantage of measurement error models with respect to
predictions can be obtained in situations with unequal sampling density, another subsampling
method used for the samples in the test set, varying means for the true values in the random
case or when the error variance in x is non-constant [4,7]. Jonsson [4] provides theory for
estimating regression coefficients that give optimal prediction in cases where the measurement
error variance of the samples in the test set varies from the mean error variance in calibration.
In addition, Ganse et al. [11] used the theory of the measurement error models for predicting
new samples with mean values that vary from the mean values of the original samples. In the
following, the situation where samples are based on different numbers of measurements during
calibration and validation will be elaborated on, explaining how to apply the least squares
regression model and the measurement error theory to yield proper predictions.

Prediction in case of replicated measurements

Predictions obtained directly by least squares estimation may no longer be optimal if the x-
values in the test set are based on an average over another number of measurements than is
used for calibration. This may be the case even though all other conditions required for least
squares estimation to be optimal are fulfilled. The reason is that the measurement error will be
different when the number of measurements differs due to the averaging effect. Instead, a new
regression coefficient that corresponds to the least squares estimate using the new number of
measurements in the samples of the test set should be calculated, thus decreasing the
prediction errors [1].

Equation 9 showed a relation between the least squares estimated regression coefficient, the
corrected regression coefficient and the variances of the x-variable corresponding to the two
regression coefficients. Using this relation, the least squares regression coefficient
corresponding to the number of measurements in the samples of the test set can be calculated
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from the least squares estimated regression coefficient and the estimated variances of the true
x-values and the measurement error (Equation 10).

2 2
b Sx,lrue + Su.cal

1,Iscal Sz + Sz

x,true u,val

b (eq. 10)

1 )sval —
Sf’caland sfivalare the variances of the measurement error for calibration and validation,
respectively. In the following, the variance of the measurement error for the validation set is
determined from the variance of the measurement error for the calibration set but is calculated
in accordance with the number of measurements in the validation set. When the two data sets
are based on different numbers of measurements, these variances will be different. b scalis the
least squares estimated regression coefficient of the calibration model. by s is the least
squares estimator of the regression coefficient corresponding to the validation set obtained by
correcting the least squares estimated coefficient from the calibration set according to Equation
10. Using this when predicting the samples in the validation set, lower prediction errors may be
obtained than if the least squares estimated regression coefficient based on the calibration set
is used. It is worth noting that the correction just discussed is not related to the correction in
Equation 7, which has the purpose of improving the estimate of the regression coefficient itself.
The correction in Equation 10 is merely an attempt to correct the coefficient to be an estimate of
the least squares coefficient for a different number of measurements.

Simulated data

Data sets are made using a number of true x-values (samples). These are drawn from a N(0,1)
distribution. Slope and intercept in the regression model are set to 20 and 80, respectively, and
the true y-values are calculated using the randomly chosen x-values. When calculating the y-
values, a model error is added, so the data follow the normal linear regression model (Equation
1). This error is drawn from a N(0,0.04) distribution. Measurement error is added to the x-values
by adding a randomly normally distributed error N(0,1) to each x giving a number of noisy
replicated measurements. Modelling is performed by regressing the y-values on the average of
the replicated x-values and the predictions are evaluated by comparing the root mean squared
error of prediction (RMSEP). RMSEP is defined as

ONASDS
RMSEP = +-—n—— (eq. 11)
¥ n

where y,is the predicted value of the i-th sample, y; is the measured value of the i-th sample and
n is the number of samples. Even though data are simulated with known measurement errors,
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the variance of this error is estimated from the actual data included in the modelling as shown in
Equation 12

s2=n" (x; —X; ) 1a(n-1) (eq. 12)
=1 j=1

a=(12..)andn=(12....))

where a is the number of samples, n is the number of measurements within each sample, X, is
the average of the measurements of the i-th sample and x; is the measured value for the j-th
measurement of the i-th sample.

Predictions are made using ten samples in the calibration set each being an average of ten
measurements. The models are validated with test sets using 10,000 samples in the test set.
These samples are made by taking the average of between one and 20 measurements. The
large number of samples in the test set ensures that the predictions obtained are perfectly
accurate. The predictions are performed in two ways (i) using ordinary least squares estimates
and (ii) using corrected regression coefficients (Equation 10) in order to obtain the least squares
estimates corresponding to the number of measurements in the test set. The modelling is
repeated 1000 times and the average RMSEP is calculated.

Figure 1 shows that increasing the number of measurements in the test set reduces the
prediction error. With up to around five measurements in the test set there seems to be a
significant advantage in correcting the regression coefficients. This is not obtained when the
number of measurements used for validating the model is larger than the number of
measurements in the calibration set. As is also given by Equation 10, the two methods give
exactly the same results when the same number of measurements is used in both the
calibration and the test samples. It seems as the results get noisier when the number of
measurements in the test set gets large in that there is an increase in the relative difference of
the prediction errors.
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Figure 1 Prediction error as a function of the number of measurements in the test set. a) RMSEP(corr)
obtained by correcting the regression coefficients in accordance with Equation 10 (grey dashed) and
RMSEP(Is) obtained by least squares estimation (black solid) and b) Relative difference in RMSEP
obtained by the two methods. The values stated are the average of 1000 simulations validated with test
set validation. Ten samples that are the average of ten measurements are used for calibration and 10000
samples (average of the number of measurements denoted) are used for validation.

In real applications there are usually not as many samples available as is used above and the
results will depend more on the actual samples in the data set. There may be errors due to
variation in the material, time effects, pre-treatment, a variation in repeatability, etc. Probably,
the results will not follow exactly what is expected from the theory and what is illustrated above.
Therefore, predictions are also performed using only ten samples for both calibration and test
set validation in order to see how well a potential gain in predictive ability can be verified with
smaller data sets. As above the calibration sets are made by averaging over ten measurements.
Figure 2 illustrates the RMSEP obtained using different numbers of measurements in the test
set.

01
b)
0.08
0.06

0.04

0.02

(RMSEP (Is)-RMSEP (corr)/RMSEP (corr)

2
0 5 10 15 20 0 5 10 15 20
Measurements in validation Measurements in validation

Figure 2 RMSEP as a function of the number of measurements in the test set. a) RMSEP(corr) obtained
by correcting the regression coefficients in accordance with Equation 10 (grey dashed) and RMSEP(Is)
obtained by least squares estimation (black solid) and b) Relative difference in RMSEP obtained by the
two methods. The values stated are obtained using ten samples for both calibration and validation. The
models are validated with test set validation using the average of ten measurements in the calibration set
and the number of measurements denoted in the test set.

152



New aspects of chemometrics applied to spectroscopy

Although the results are noisier, the same tendencies are seen as was obtained when there
were many samples in the test set. RMSEP decreases as the number of measurements used in
the test set increases. Furthermore, there is a small difference in RMSEP obtained by the two
methods. The relative difference is largest when very few measurements are used for making
the test set. As above, it seems as correcting the regression coefficients is an advantage when
five or less measurements are used for validation.

To conclude, the simulations indicate that corrections are feasible in situations where the
predictions of the test set are made using fewer replicates than are used in calibration. It is
further indicated that the improvement can be reasonably reliably estimated even for small
sample sets.

Fish data

Prediction of water content and water holding capacity from 'H low-field nuclear magnetic
resonance (NMR) relaxations are used as examples of applying the measurement error theory
to real data. The overall purpose is to investigate how to sample instrumental measurements
taken at a localized area and from these predicting a parameter of the whole fish.

The data

Fish of four species were analyzed; including 12 whiting, 12 haddock, 12 saithe and 15 cod. All
fish were caught in the North Sea and landed on the West coast of Jutland, Denmark. Whiting
and saithe were caught in May 2001, whereas haddock and cod were caught in August 2001. In
order to estimate the measurement error and the effect of replicated measurements, the NMR
relaxations were measured 18 times at points spread throughout the whole fish (Figure 3).

Figure 3 Sampling of NMR measurements.

Low-field NMR measurements were performed at 4°C on a Maran Benchtop Pulsed NMR
analyser (Resonance Instruments, Witney, UK) operating at 23.2 MHz and equipped with an 18
mm variable-temperature probe head. The receiver gain was adjusted to 3% and the receiver
delay was set to six seconds. Transverse relaxation was measured using the Carr-Purcell-
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Meiboom-Gill (CPMG) sequence [12,13]. For each measurement 8 scans were performed with
a 500 us 90°-180¢ interpulse spacing (7).The NMR relaxations consist of a whole relaxation
curve meaning that each measurement contains approximately 500 variables. One of these
variables was used as the x-values in the regressions (measurement no 88 obtained after
approximately 0.2 s of relaxation).

The samples were introduced into the NMR probe by placing pieces of 2-4 g intact fish muscle
into a glass tube that matched the inner diameter of the 18 mm NMR sample tube after which
the samples were thermo-equilibrated for 30 min before measurement.

Water content was determined on exactly the same samples as were used for the NMR
measurements, after the NMR relaxations were measured. The fish samples were kept in the
small glass tubes and dried overnight at 110°C. They were weighed before and after drying. The
total water content of each fish was found as the average of all water content determinations
from the same fish.

Water holding capacity was determined on approximately 2 g of minced fillet using the part of
the fillets that was not used for NMR measurements and water content determinations. The
samples were weighed, placed in plastic tubes with a special filter bottom (pore size 0.1 mm),
centrifuged (1500g, 10 °C, 5 min) and weighed again [14]. Each analysis was made in
quadruplicate. Water holding capacity is defined as the amount of water left in the mince after
centrifugation relative to the dry matter content.

Errors in the independent and dependent variables

The error in the NMR data can be divided into the error due to instrumental noise and the
sampling error. NMR relaxation curves are supposed to be very accurate. Thus, the sampling
error is assumed to make up almost all error in the instrumental data and is due to the variation
in chemical and physical composition within the same fish. This includes the variation in muscle
fibre structure and muscle cell size.

The samples are weighed before and after centrifugation or drying for the determination of water
holding capacity and water content, respectively. Even though weighing is performed carefully, it
will always contribute with some uncertainties to the estimates. An error caused by diffusion of
water to the sample surface either during drying or centrifugation may be important in case the
method is not fully optimised. This gives a variation between replicates when estimating the
amount of water removed during the centrifugation step or during drying. The samples are
homogenised before determining the water holding capacity. However, there will always be
some heterogeneity within the sample. Thus, the reference measurements will be influenced by
some sampling error as is the case for the NMR measurements.
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The standard errors of the instrumental and physical determinations (Table 1) show that the
water content is measured with the largest precision. Furthermore, the precision in the
determination of the water holding capacity is larger than the precision of the NMR relaxations.
The variation between fish (s.d.) is lowest for the determination of the water content but is of the
same size for the NMR data and the water holding capacity (Table 1). From the above it is
supposed that the variation in the NMR relaxations has a larger influence when predicting the
water content than when predicting the water holding capacity.

Table 1 Mean values, standard error (s.e.), relative standard error (r.s.e.) and standard deviation (s.d.)
for the NMR measurements, water holding capacity (WHC) and water content. Mean values are the
average value obtained for each fish species and given as an intensity value for the NMR
measurements, g water/g dry matter for the WHC and % (w/w) for the water content. The standard error
of the measurements are calculated for each fish from replicated measurements. The average of these
errors are used as the standard error for each fish species. Relative standard error is the standard error
relative to the mean value. The standard deviation denotes the standard deviation of the mean values
obtained for each fish species.

Measurements Fish
Mean s.e. r.s.e. s.d.
Whiting 0.094 3x107° 0.04 0.14
x Haddock 0.073 3x10° 0.04 0.07
= Saithe 0.069 3x10° 0.04 0.13
Cod 0.082 3x10° 0.04 0.05
Whiting 4.10 0.03 6x 107 0.12
®} Haddock 3.83 0.03 7x10° 0.04
é Saithe 3.86 0.02 6x 107 0.05
Cod 3.85 0.04 10 x 107 0.06
_ Whiting 82.16 0.25 3x10° 15 x 102
g é Haddock 81.24 0.20 2x10° 5x 107
= g Saithe 80.67 0.15 2x10° 9x10°
Cod 81.40 0.17 2x10° 7x10°

Regression coefficients and reliability ratios

For each fish species separately, least squares regression coefficients are calculated from
Equation 2 together with the regression coefficients corrected for the measurement error
(Equation 7). The models are validated by full-leave-one-fish out cross validation. The average
of the 18 NMR measurements taken on each fish is used as the x-values. Since the samples
consist of an average of 18 measurements, it is possible to estimate the variance of the
sampling error from Equation 12 where n is the number of measurements for each fish and a is
the number of fish. The variance of the sampling error will be an estimated value and it may not
correspond exactly to the true variance. This adds to the uncertainty of the models and may
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increase the prediction error and induce deviations from the theory. The reliability of this
estimate is supported by the small confidence intervals of the estimated measurement error
variance that are found to be of the size 2x10° to 5x10®. Furthermore, it was found that the
measurement error follow the assumption of a normal distribution with a mean value around
zero. The estimated regression coefficients and reliability ratios are shown in Table 2.

The regression coefficients become numerically larger when correcting for the sampling error as
it is expected from Equation 7. By studying the reliability ratios it is seen that the models made
on whiting and saithe are less influenced by the sampling error than the models obtained from
haddock and cod. Whiting and saithe are the fish species that shows the greatest variations in
the NMR data (Table 1). Therefore, it can be supposed that a larger variation in the data gives
more stable models and the sampling error will have a lower impact on the regressions. This is
supported by the fact that the standard error of the NMR data is of the same size for the four
fish species.

Table 2 Regression coefficients (slope) obtained by cross validation of linear regressions (Equation 2)
and regression coefficients obtained from the measurement error models (Equation 7). Models are
made on each fish species and validated with full leave-one out cross validation (leaving one fish out
at a time).

Least squares Correcting for the Reliability ratio
estimation sampling error
b1,Is b1,measermr b1 \s/b1,measerror
Water content
Whiting 89.50 95.99 0.93
Haddock 6.46 8.78 0.74
Saithe 38.85 42.14 0.92
Cod 50.33 70.66 0.71
Water holding capacity
Whiting 22.90 24.56 0.93
Haddock -3.11 -4.24 0.73
Saithe 1.88 1.92 0.98
Cod 11.59 16.27 0.71

In some situations, especially when predicting the water holding capacity, the regression
coefficients are very low indicating that the relation between the dependent and the independent
variables is not large. The poor relations between the NMR relaxations and the water holding
capacity may be due to a large error in the physical determination of the water holding capacity,
a low variation in the physically determined values or that the relation between the two values is
in fact very low.
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Prediction with replicated measurements

Predictions are made using data sets obtained by averaging over the same number of
measurements in the calibration and the test set. This is done in order to evaluate the effect of
replicates on the predictive ability. The regression models are validated with full-leave-one-fish-
out cross validation and the average prediction error of six independent models is calculated.
The actual measurements used in each of the independent models are chosen systematically;
when the number of measurements increases by one, the same measurements as was used in
the previous model together with one new is applied. The results are shown in the Figures 4 and
5. The prediction error expressed in percentage is approximately ten times lower for the water
content compared with the water holding capacity. This is in agreement with the difference in
the errors of the reference measurements (Table 1).

1 i, 1 1
- whiting - haddock
= 0.8 1 = 0.8
§ 0.6 § 06 -
g 0.4 OE'J 0.4
x 0.2 3}
0 0
0 10 0 10
Number of measurements Number of measurements
o | — sithe | T cod
§_ 0.8 1 § 0.8
§ 0.6 E 0.6l
2 0.4] g 0.4
X 0.2 L)
0 0
0 5 10 0 5 10
Number of measurements Number of measurements

Figure 4 Predicting the water content. Prediction errors are given in percentage (relative to the total water
content) as a function of the number of replicates used in both the calibration and the validation set. The
results are the average of six models validated with full-leave-one-fish out cross validation.
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Figure 5 Prediction of water holding capacity. Prediction errors are given in percentage (relative to the
water holding capacity of each fish) as a function of the number of replicates used in both the calibration
and the validation set. The results are the average of six models validated with full-leave-one-fish out
cross validation.

Generally, there is no large improvement of increasing the number of replicates. Only for
whiting, the relative prediction error decreases steadily with the number of replicates. Whiting is
the fish species that varies the most (Table 1), which as mentioned may give a more valid and
stable model. When predicting the water content of the other fish species, there seems to be an
improvement using three or four replicates. For the water holding capacity, the prediction error
does not decrease as much with increasing number of replicates. As mentioned, the error in the
physically determination of the water holding capacity is larger than the standard error obtained
for the water content, which may give less improvement of an increased number of
measurements compared with the prediction of the water content. Furthermore, other factors
may influence the regressions, decreasing the predictive ability and thereby give results that are
not expected. These factors may be that there is not a strict linear relationship between NMR
data and the water holding capacity or that the NMR data does not contain enough information
that relates to the water holding capacity.

The above indicates that when the standard error of the reference measurements (and the
model error) is lower than the standard error of the instrumental measurements, more than one
instrumental measurement is needed in order to obtain the lowest prediction error. In this case
three or four measurements are needed to obtain optimal predictions of the water content.
However, the exact number of measurements to take may vary depending on the material,
experimental conditions, actual measurements etc.
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Prediction in case of different conditions in the calibration and prediction set

In the following, it is investigated how averaging over different numbers of measurements in the
test set influences the prediction error. Predictions are made with averages of six
measurements in the calibration set and averages of one to 12 measurements in the validation
set. The models are validated with full-leave-one-fish-out cross validation. For each number of
measurements used in the validation set, the average prediction errors of six models are
calculated. The actual measurements used in each model is chosen so that; when the number

of measurements increases by one, the same measurements as was used in the previous
model together with one new is used.

Figure 6 illustrates the results obtained when predicting the water content. Especially, whiting
and cod follow what is expected from the theory and the simulations. RMSEP decreases as the
number of measurements used for prediction increases. The relative difference between the
prediction error obtained by least squares regression and when correcting for the number of
measurements in the test set is shown in the right plot. It is largest when only one measurement
is used for validation. WWhen the test set is made of up to a few measurements, there seems to
be an advantage of correcting the regression coefficients as was also seen for the simulated

data. However, this advantage diminishes when more than approximately three measurements
are used.
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Figure 6 Prediction of water content from "H low-field NMR relaxations. One variable from the NMR
relaxation curve is used as x-variable. Models are validated with full cross validation and include the
average of six replicates in the calibration set. a) RMSEP as a function of the number of replicates in the
validation set where the regression coefficient is estimated by least squares regression, b) RMSEP as a
function of the number of replicates in the validation set where the regression coefficient is estimated by
correcting the least squares regression and c) relative difference in RMSEP given as RMSEP by obtained
by least squares regression minus the RMSEP obtained from Equation 10 relative to the least squares

(dotted grey).

estimate. The lines indicate: cod (solid black), haddock (solid grey), saithe (dotted black) and whiting

159



New aspects of chemometrics applied to spectroscopy

The results obtained for saithe do not show the same tendencies as are seen for the other fish
species and the simulations. RMSEP increases with the increase in the number of
measurements used for validation. Also, the difference between the two error estimates
increases with the number of measurements. Remarkably, saithe shows inferior results
compared to cod and haddock. Together with whiting, saithe is the fish species that is least
influenced by the sampling error (Table 2) and the inferior results may thus be due to other
factors than the sampling error such as an increased variability caused by the uncertainty in the
estimated correction factors. The results obtained when predicting the water holding capacity
show similar tendencies as the results obtained when predicting the water content and are not
shown here.

The above illustrates that the theory of the measurement error models is useful when applied on
real data. However, the results are also influenced by various types of errors that are not
necessarily covered by the measurement error model and may sometimes be more influential,
such as seen for the saithe. As was obtained for the simulations, the regression coefficients
should be corrected so they correspond to the number of measurements in the test set if the
number of measurements in the test set is much lower than the number of measurements in the
calibration set. There does not seem to be an advantage of correcting the regression
coefficients when the models are validated on samples consisting of many repeated
measurements.

Conclusion

A simple general methodology to investigate the effect of the different types of errors of data in
a specific situation has been given. Sampling error in the independent variables induces an
effect on the estimated regression model. In case of lower standard error in the reference
values, improved predictions can be obtained by replicating the measurements of the
independent variables.

The paper gives guidelines on how to correct the estimated regression coefficients in order to
obtain optimal predictions in the case where the number of measurements varies between the
calibration samples and the samples to be predicted.
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Paper VI

Quantification and handling of sampling errors in instrumental
measurements: A case study

Charlotte M. Andersen and Rasmus Bro
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Abstract

Instrumental measurements are often used to represent a whole object even though only a
small part of the object is actually measured by the instrument. This can introduce an error due
to the inhomogeneity of the product. Together with other errors resulting from the measuring
process such errors may have a serious impact on the results when the instrumental
measurements are used for multivariate regression and prediction. This paper gives examples
of how errors influencing the predictions obtained by a multivariate regression model can be
quantified and handled. The relevant errors contributing to the prediction error are: error in
instrumental measurements, error in reference measurements, error in the estimated calibration
model and model error. The size of the four error contributions are estimated by an errors-in-
variables approach and the importance of the different errors is evaluated. An approach based
on the theory of the measurement error models is used to show how the influence of errors in
the instrumental measurements can be partly adjusted for. The approach can be used when the
number of replicates used for calibration and validation differs. With few replicates in validation
and when the error in the instrumental measurements has some impact on the predictions, the
approach seems to provide more accurate predictions than the naive approach. Prediction of
water content of cod fillets from low-field NMR relaxations and prediction of analyte
concentration in mixed solutions from fluorescence emission spectra are used as examples to
show the applicability of the methods.

Keywords: errors, replicates, predictions
Introduction

Instrumental methods, such as nuclear magnetic resonance (NMR) and fluorescence
spectroscopy, are of significant interest in many applications as they provide means for
obtaining rapid on-line/at-line measurements enabling better process and quality monitoring.
Such instrumental measurements are generally characterized by high signal-to-noise ratios.
However, the adequacy of the measurement as a representation of the sample may be
hampered by sampling error. Such errors may in combination with measurement errors lead to
biased regression parameter estimates, which can affect the predictions. Therefore, it is
important to evaluate whether such errors are important and, if so, develop methods that take
these errors into account.

This paper presents an investigation of the errors influencing predictions obtained by
multivariate regression. This is illustrated by two examples. The first concerns the prediction of
water content from low-field NMR relaxations. In the other example, the concentration of three
analytes in solutions is predicted from fluorescence spectra. The evaluation of errors includes
1) quantification and visualization of the different error contributions that influence the model
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parameters and the predictions and 2) how errors in the instrumental measurements can be
handled.

The quantification is illustrated by an errors-in-variables approach suggested by Faber and
Kowalski (1996). They presented a method to estimate the prediction error variance for each
sample based on errors that are important for the parameter estimation and the predictions.

Andersen et al. (2002) proposed a correction of the regression coefficient that can be used to
handle errors in instrumental measurements and in certain situations improve the predictions.
The correction applies in situations where the number of replicates in calibration and validation
differs and gives the least squares estimate of the regression coefficient corresponding to the
number of replicates in the validation set. It is based on the measurement error theory (Fuller
1987) and requires univariate data.

Univariate data is obtained from the multivariate measurements by calculating the scalar net
analyte signal. The net analyte signal was defined by Lorber (1986) as the part of a signal that is
unique for a certain analyte. Later, it has been shown that the scalar net analyte signal gives an
exact univariate representation of the multivariate regression model (Faber 2000; Bro and
Andersen 2002).

Theory
The multivariate regression model can be expressed as
y=Xb+e @)

where y (/x1) is a vector containing the measured reference values, X (/xJ) is a matrix holding
the instrumental measurements containing measurement/sampling errors, b (Jx1) denotes the
estimated regression coefficient vector, e (/x1) is a vector holding the residuals and / and J are
the number of samples and variables in X.

Multivariate regression models, such as partial least squares (PLS) and principal component
regression (PCR), are commonly applied for relating multivariate instrumental measurements to
a reference value as for example the concentration of a certain analyte. By extracting a number
of latent factors containing the systematic variation in data, the influence of errors in the
instrumental measurements is ideally minimized. However, modeling may not be perfect and
part of the error originally present in data is affecting the model parameter estimates.

The model performance is typically validated by the root mean squared error of calibration
(RMSEC), which is defined as
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RMSEC =1 —— @)

where ﬁiis the predicted value of the j-th calibration sample, y; is the measured value of the i-th
calibration sample and n is the number of samples. The ability of the model to predict new
samples is estimated by the root mean squared error of prediction (RMSEP), which is given as

2
(yiiyi) (3)

where ﬁiis the predicted value and y; is the measured value of the i-th sample in the test set.
Sometimes cross validation is used as an alternative to test set validation (Martens and Martens
2001).

Quantification of errors

An expression of the prediction error variance based on the errors that influence modeling and
prediction is applied for the quantification of errors. The expression, which is shown in Equation
4, gives a sample-specific variance of prediction error and is based on a suggestion of Faber
and Kowalski (1996; 1997). The expression includes a contribution to the prediction error from
the errors in the instrumental variables (X), errors in the reference measurements (y), errors in
the estimated calibration model (regression vector) and the model error.

When the predictions are compared in practice, the true reference values are not known. Thus,
to obtain an estimate of the apparent variance obtained from the noisy y-measurements, an
apparent prediction error variance can be defined. It is noted though that this error contribution
is not the real in the sense that it is not reflecting an actual error in the predictions but merely
reflecting the imperfect data that are used in the evaluation of the predictions. The difference
between the actual and the apparent prediction error is the variance of the error in y, which is
also the difference between the expression given by Faber and Kowalski and the expression
used here.

Model error Erroriny
Error in calibration model l Errorin X l

CooTTTTTTTTTTT T A T 4)

Voe ~ (1, +h) (s +55, +[b[ s+ 52 +|b|'s3, + 2,
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Equation 4 is an approximation based on linearization of the model and allows a comparison of
the different error contributions. Assumptions are that the noise of the independent variables
has similar size for the calibration and the test samples, errors are small and that data are
unbiased meaning that all errors are considered to be independently and identically distributed
random variables with zero mean. This may not always hold for instrumental variables e.g.
spectroscopic measurements, where the noise is often correlated. However, as an
approximation, the expression may still be valid even in such cases.

The regression coefficients (b) are incorporated in Equation 4 by their Euclidian

norm. siy denotes the variance of errors in the reference value. s, and sixi are the errors in the
instrumental measurements for the calibration set and for the test set, respectively. sg and

s:l are the model errors for the calibration model and for the test sample, respectively. h; is the
leverage of the test sample calculated from the scores and n denotes the number of samples in
the calibration set. Equation 4 estimates the variance of the prediction error in case of a mean
centered model. The term 7/n should be left out if data is not mean centered.

The influence of the four error contributions on the prediction error variance can be evaluated by
comparing the size of these four error terms. The error in X is estimated by

Si=n"Y Y (% X Vla(n 1) "
i=1 j=1

where a=1,2....i denotes the number of samples, n=1,2....j denotes the number of replicates
within each sample, X; is the average of the replicates of the i~th sample and x; is the
measured value of the j-th replicate and the /-th sample.s)z( is obtained for each variable in X and
the average of all variables is used in the calculations. The error in y is estimated from
replicated measurements. Furthermore, the regression coefficient (b) and the leverage (h;) are
estimated from the calibration model and the scores of the test samples, respectively.

The model error is estimated by Equation 6 as suggested by Faber et al. (1998).
s2 =MSEC -2, - |b|[ s« 6)
MSEC denotes the mean squared error of calibration and the other factors are given as in

Equation 4. Equation 6 gives one overall estimate of the model error for each model and is valid
when errors in X and y are not too large.
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Net analyte signal formulation of regression model

Several methods have been published showing how to calculate the net analyte signal (Lorber
et al. 1997; Xu and Schechter 1997; Faber 1998a; Goicoechea and Olivieri 1999 and 2001;
Ferré et al. 2001). Here a method proposed by Bro and Andersen (2002) is used, which only
relies on the specific regression model and not on any additional assumptions on the structure
of the data. The net analyte signal (x;yi) for analyte k and sample j is given as

X,; =bb"x, =b(bb) 'b"x, 7)

where b is the regression coefficient vector estimated e.g. from a mean centered PLS or PCR
calibration model and x; is a vector holding the signal of the i-th sample. Having estimated the
net analyte signal vector, the scalar net analyte signal is given as

x*.:x*.xB ®)
S

where ||0” denotes the Euclidian norm. It has been stated that the scalar net analyte signal is the
norm of the multivariate net analyte signal (Faber et al. 1997). However, for mean centered
models and when the predicted value is below zero this is not valid and Equation 8 should be
applied (Faber 1998b; Bro and Andersen 2002).

Using the scalar net analyte signal, the multivariate calibration model can be represented as a
univariate least squares regression model as given in Equation 9 (Faber 2000).

Yi= bXI:,i +6 9)

where b is a scalar regression coefficient and e; denotes the residuals. Predictions obtained
using the scalar net analyte signal as x-variable will be identical to the predictions obtained
directly by the multivariate regression if the norm of the regression coefficient vector obtained by
PLS or PCR is used as b (Ferré et al. 2001).

Plotting the concentration of the reference values versus the scalar net analyte signal illustrates
the relation between the two sets of variables where the contribution of error in the instrumental
measurements and the prediction errors can be shown as the deviation from the regression line
in the horizontal and vertical direction, respectively. However, the visualization does not show
which of the two error terms that has the largest influence on the predictions.
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Correction of the regression coefficient

Andersen et al. (2002) proposed a correction of the regression coefficient based on the
univariate least squares regression model (Equation 10). The correction may improve the
predictions in situations where the assumptions underlying least squares regression are not
met.

y = bO,Is + b1 ||sx +e (1 0)

In Equation 10 the vector x holds the independent measured variable, the vector y holds the
measured reference measurements and e denotes the errors, which are assumed to be
independent of the x-variables and normally distributed. Least squares regression gives optimal
predictions if the underlying assumptions are met but may give biased parameter estimates if
these are not met.

If errors are present in the independent data, the x-value measured can be given as the true
value (Xie) plus a contribution from the error (Ax;) (Equation 11).

X, =X

i i,true +AXi (11)
Assuming that the error (Ax;) is random normally distributed and independent of x; and g;, the
relation between the variances can be written as

2 2 2
Sx = sx,true + SAx (12)

From the theory of the measurement error models (Fuller 1987), the regression coefficient
corrected for bias (b1 measerror) €an be estimated from Equation 13 where the variance of the x-
variables are corrected for the measurement error. The variance of X and the covariance
between X and y (Sfy) can be found directly from the measurements. Furthermore, the variance
of errors in X can be estimated from Equation 5 if replicates are measured. In ordinary least
squares regression, the regression coefficient is estimated by dividing the covariance between
X and y with the variance of X. When correcting for the measurement errors, the covariance
between X and y is not divided by the variance of X but by the variance of X minus the variance
of the measurement error.

sZ

b PRy (13)
1,measerror ~—  _2 2
Sy —Sax
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The ratio between the least squares regression coefficient (b, s) and the regression coefficient
estimated from the measurement error model is called the reliability ratio (r). It can be estimated
from Equation 14, which also shows the relationship between the errors.

2 2
_ S Sx,true _ b1,ls
SZ

+s2 b a9
x,true Ax

1,measerror

Predictions obtained directly by least squares estimation may be biased if the measurement
error variance is changed compared to the measurement error variance in the samples used for
estimating the regression coefficient.

For example, the predictions will not be optimal if the x-values are made by averaging over a
number of replicates and this number differs between calibration and validation. The reason is
that the measurement error will be different when the number of measurements differs due to
the averaging effect. Instead, a new regression coefficient that corresponds to the least squares
estimate of the number of replicates in the test set is estimated. This correction of the
regression coefficient is given in Equation 15, which is based on the relations shown in Equation
14.

+ S cal (15)

b, 2
2 2
Sx + SAx,val

Jsval — ™1 Jscal

In Equation 15, sixm, and sixvva,are the variances of the errors in the instrumental
measurements for the calibration and the validation set, respectively. When the two data sets
are based on different numbers of replicates, these variances will be different. by sc.a) denotes the
least squares estimated regression coefficient for the calibration set. by ,q is a calculated
regression coefficient that is equal to the regression coefficient of the calibration set but
corresponding to the number of replicates in the validation set. It is different from the regression
coefficient of the calibration model when the number of replicates in calibration and validation
differs. Application of this corrected regression coefficient may give better predictions than if the
least squares estimated regression coefficient based on the calibration set (b4 scal) is used
(Andersen et al. 2002).

The expression suggested in Equation 15 applies for univariate data. However, in the present
study the NMR relaxation curves and the fluorescence emission spectra are obtained as
multivariate signals. Equation 7, 8 and 9 showed that the scalar net analyte signal can be used
to represent a multivariate regression model as a univariate regression model. This approach is
used here in order to apply Equation 15 on the multivariate signals. The norm of the PLS or
PCR regression vector is used as the regression coefficient of the calibration model (b4 5:a)) @nd
the variances of the errors in the instrumental measurements of the calibration and the
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validation set are estimated by Equation 5. After correcting the regression coefficient by
Equation 15 the scalar net analyte signals are used for the prediction of the y-values.

Experimental

Data set 1

The total water content of fish is an important quality parameter influencing e.g. the sensory
impression and texture. Therefore, it is relevant to predict the water content by a fast non-
destructive method, such as low-field NMR. However, a practical problem is that only a minor
fraction of the fish can be analyzed. This gives a sampling variation when the sample measured
is not representative of the whole fish. Therefore, knowledge about the importance of sampling
errors is important. The variation in instrumental measurements within a fish may be systematic
if a certain part of the fillet is chosen for measurement each time. However, when the measured
part of the fillet is chosen randomly as is done here, the sampling error will be a random error,
and the theory described above, which applies for random errors, can be used.

Fish of four species are analyzed; including 12 whiting, 12 haddock, 12 saithe and 15 cod. All
fish were caught in the North Sea and landed on the West coast of Jutland, Denmark. Whiting
and saithe were caught in May 2001, whereas haddock and cod were caught in August 2001. In
order to estimate the sampling error and the effect of replicated measurements, the NMR
relaxations were measured 18 times at points spread throughout the whole fish (Figure 1).

Figure 1 Sampling of NMR measurements.

Low-field NMR measurements were performed at 4°C on a Maran Benchtop Pulsed NMR
analyser (Resonance Instruments, Witney, UK) operating at 23.2 MHz and equipped with an 18
mm variable-temperature probe head. The receiver gain was adjusted to 3% and the receiver
delay was set to six seconds. Transverse relaxation was measured using the Carr-Purcell-
Meiboom-Gill (CPMG) sequence (Carr and Purcell 1954; Meiboom and Gill 1958). For each
measurement 8 scans were performed with a 500 ps 90°-180° interpulse spacing (7). Only even
echoes were recorded, of which only every second was used. This gives 256 echoes measured
for each sample.
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The fish were introduced into the NMR probe by placing pieces of 2-4 g intact fish muscle into a
glass tube that matched the inner diameter of the 18 mm NMR sample tube after which the
samples were thermo-equilibrated for 30 min before measurement. The sample preparation was
performed as carefully as possible in order not to alter the muscle structure by the manual
treatment.

The water content was determined on exactly the same samples as were used for the NMR
measurements, after the NMR relaxations were measured. The fish samples were kept in the
small glass tubes and dried overnight at 110°C. They were weighed before and after drying. The
total water content of each fish is used in the data analysis. It is found as the average of all
measurements from each fish.

Data set 2

The concentration of three analytes; catechol, hydroquinone, and indole, in mixed solutions is
predicted from fluorescence emission spectra. The data set contains 48 samples with different
concentrations of the three analytes.

Fluorescence emission spectra measured with a Perkin Elmer LS50 B spectrofluorometer after
excitation at 275 nm are used for predicting the concentration of catechol and indole, whereas
emission spectra obtained after excitation at 290 nm are used for predicting the concentration of
hydroquinone. These excitation wavelengths are chosen because excitation maximum was
found at these wavelength positions.

All samples were measured in five replicates by scanning the sample five times and leaving the
sample in the instrument. Thus, there is no variation in the fluorescence spectra due to sample
inhomogeneity and only instrumental noise contributes to the errors in the instrumental
measurements. The y-values are given in M as the value, which it is aimed at reaching. The
concentration of the analytes in the samples may not be exactly similar to the stated value due
to errors in making the samples. However, with the given data the error in the reference values
can not be estimated. Therefore, an error of zero in y is assumed. The mean concentrations are
2.7 x 10, 7.0 x 10®%and 1.7 x 10" M for catechol, hydroquinone and indole, respectively.

Results and discussion

Multivariate regressions are performed by regressing the water content or analyte concentration
(y-variable) on the NMR relaxations or fluorescence emission spectra (x-variables) using PLS
regression. For data set 1, two components are used in the PLS models since initial analysis
showed that this was reasonable. Furthermore, PLS models are made on each fish species
separately due to large differences between the four fish species. For data set 2, it was found
that one- or two-component models gave the best predictions.
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Quantification and visualization of errors

Data set 1

Predictions of water content are made using six randomly chosen NMR measurements of each
fish, in a calibration set and six other NMR measurements in a test set. Average values are not
used in the modeling but each measurement is used in the model one by one. The calibration
set and the test set will contain different x-measurements but the same y-values. The mean
variance of prediction error is obtained from Equation 4 and shown in Table 1. One value is
obtained for each sample, but the average of all samples for each fish species is given in the
table. Table 1 also shows how much each of the four error terms contributes to the total
prediction error variance.

The mean variance of prediction error is of the same magnitude for the four fish species with
whiting showing somewhat larger values. This indicates that prediction of water content of
whiting is influenced by larger errors. For all four fish species, the errors in the NMR relaxations
only make up a little part of the prediction error variance. However, for cod this contribution is
larger than for the other three fish species. As it will be shown below this variation illustrates a
difference in the importance of errors in the instrumental measurements. The model error is the
error term that contributes most to the total prediction error variance, indicating that substantial
improvements must come from including new types of information in the model. Furthermore,
the error in the calibration model and the errors in the reference measurements seem to have
some, although not a large contribution to the total prediction error variance. The size of these
two error terms is approximately similar for the four fish species with the error in the calibration
model being somewhat larger for cod and the error in y being somewhat larger for haddock.

Table 1 Mean variance of prediction error and errors contributing to the mean variance of prediction
error given in per cent.

Mean variance of Errorin Model error  Contribution of ~Contribution of
prediction error calibration (%) errors in X (%) errors iny (%)
model (%)
Cod 21 13.3 85.3 0.02 14
Saithe 1.9 76 91.2 0.001 1.2
Whiting 8.5 8.0 91.2 0.007 0.8
Haddock 1.4 36 93.5 0.007 29

The contribution of errors in X is made up of the squared norm of the regression coefficient
vector and the estimated errors in X. These values are shown in Table 2. The regression
coefficients (inverse sensitivities) are larger for cod and whiting indicating that the water content
of these samples is predicted with larger uncertainty. Thus, even though the estimated error in X
for cod is lower than for the other fish species, the contribution of these errors in X will be larger.
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Table 2 Regression coefficients and errors in X
for the four fish species

bl S
Cod 3x107° 142
Saithe 4 x10™ 240
Whiting 2x10° 1047
Haddock 4x10* 920

Replicates are typically used for minimizing the effect of large measurement errors. This is
illustrated in Figure 2, which shows RMSEP as a function of the number of NMR relaxation
replicates, where average values of the replicates are used. The larger importance of errors in X
for cod is shown by the decrease in RMSEP with increasing number of replicates. Thus, even
though the errors in the NMR relaxations of cod only makes up a very little part of the total
prediction error variance, these are still important when predicting the water content. For
haddock, there is no change in RMSEP with the change in the number of replicates showing
that in this situation, errors in X may be negligible.

RMSEP

035 3 4 5 6 7 8 9
n(replicates)

Figure 2 RMSEP as a function of the number of replicates in both calibration and validation for cod (black
line) and haddock (grey line).

Figure 3 shows, for cod and haddock, the water content versus the scalar net analyte signal. In
this figure, the average of six replicates are shown in contrast to the results given in Table 1,
which shows results obtained using the samples individually. The samples of cod are placed
closer to the regression line than the samples of haddock. This can be explained by the larger
estimated errors in the NMR relaxations obtained from haddock. As seen in Table 2 these
estimated errors are approximately seven times larger for haddock than for cod.

175



New aspects of chemometrics applied to spectroscopy

coD HADDOCK
3 82 3 82
= =
2 K] * .,
S s S 81 N ¢
(3] o T
B ° E ./
k] © d e,
2 80 R .

.
200 100 0 100 200 200 -100 0 100 200
NAS NAS

Figure 3 Plots of water content in per cent (g water/g fish muscle) versus the scalar net analyte signal
(NAS) of the average of the samples in the calibration set.

The above illustrates well that both the error in X and the size of the regression coefficient are
included in the estimated contribution of errors in X to the prediction error. Even though the error
in the NMR relaxations of cod is very low, the contribution of these errors is large due to the low
sensitivity. Furthermore, the error in the NMR relaxations of haddock is large, but due to the
large sensitivity, the contribution of these errors will not be large.

Data set 2

Table 3 shows the contribution of errors in the calibration model, model error and errors in the
fluorescence spectra when predicting the concentration of the three analytes. The mean
variance of prediction error given as the average value of all samples is shown as well.
Regression models are made with two components for catechol and indole and one component
for hydroquinone using the five replicates for 24 of the samples in the calibration set and the five
replicates of the other 24 samples in the test set. As for data set 1 average values of the
replicates are not used.

Table 3 Mean variance of prediction error and errors contributing to the mean variance of prediction
error given in per cent.

Mean variance of Errorin calibration  Model error (%) Contribution of

prediction error model (%) errors in X (%)
Catechol 8x 107 5.4 946 5x 10"
Hydroquinone 1x10™" 55 94.5 2x10°
Indole 1% 1072 5.4 94.6 1x10™

For all three analytes the prediction error variance is very small (107 to 10™?) relative to the
analyte concentrations (10°to 10°®). The model error makes up the largest amount of the
prediction error variance. Also the error in the calibration model seems to be important. The
contribution of instrumental noise (errors in X) is very small. In order to investigate the
importance of instrumental noise further, predictions were made with different number of
replicates where averages over replicates were used. However, for all three analytes, no
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change in RMSEP is obtained by changing the number of replicates. This further substantiates
that errors in X are not important.

Figure 4 shows a plot of the analyte concentration versus the scalar net analyte signals for
catechol and indole illustrating that the predictions perform well. The samples of indole are
placed very close to the regression line whereas the catechol samples are more spread out.
Both the contribution of errors in X and the prediction error variance (Table 3) are larger for
catechol than for indole, which may explain the differences seen in Figure 4. The absolute
values of the contributions of errors in X are 3.9 x10™"*for catechol and 1.3 x 107 for indole.

CATECHOL . INDOLE

Concentration {mol/l)
e
Concentration (mol/l)

s /

0

2300 -100 100 300 500 300 -100 100 300 500
NAS NAS

Figure 4 Plots of analyte concentration versus the scalar net analyte signal (NAS) with all samples
illustrated individually.

Application of the correction based on the net analyte signal

Below, the applicability of the correction (Equation 15) is shown for the four fish species (data
set 1). No effect of applying the correction was found when predicting the analyte
concentrations (data set 2) from fluorescence spectra due to the very low prediction error
variance and the very low influence of errors in the fluorescence spectra. Therefore, these
results are not discussed further. The scalar net analyte signals are used as univariate x-values
and the norm of the regression coefficient vector obtained from PLS modeling is used as the
regression coefficient. Thus, the predictions will be similar to the predictions obtained directly
from multivariate modeling. Regressions are made with averages of six replicates in the
calibration set and averages of one to 12 replicates in the validation set. The models are
validated with full-leave-one-fish-out cross validation. For each number of replicates used in the
validation set, the average RMSEP of ten models is calculated. In the previous sections only
results for one model were used. The actual NMR relaxation curves used in each model is
chosen randomly.

Figure 5 shows RMSEP obtained directly from the PLS regression model (Figure 5.a) and by
correcting the norm of the PLS regression vector (Figure 5.b). For cod and whiting RMSEP
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decreases with increasing number of replicates. This is in agreement with the previous results
showing that these two fish species are more influenced by errors in the NMR relaxations.

The relative difference in RMSEP between the two methods is illustrated in Figure 5.c. A
positive value indicates that the application of the correction performs best. The figure shows
that application of the correction may be an advantage for cod and haddock, when averages
over few replicates are used in the test set. For these situations a positive relative difference in
RMSEP is obtained. With more replicates in the test set of cod and haddock, the two methods
give almost the same prediction errors. Saithe does not show any difference between the two
methods and the relative difference in RMSEP is approximately zero irrespective of the number
of replicates in the test set.

The above indicates that application of the correction may be preferred when errors in the
instrumental variables have an influence on the predictions. When these errors are not
important there will be no advantage of using the correction and the RMSEP obtained by the
two methods will be approximately similar. This is seen for cod and haddock with more than

about three replicates in the test set. For saithe this is seen for all numbers of replicates in the
test set.

The results obtained for whiting seems more peculiar in that the application of the correction
gives poorer predictions with few replicates in the test set and better predictions with many
replicates. This may be due to the larger RMSEP and mean variance of prediction error
obtained for whiting, which indicates that the regression models may not perform well.

a) b) LEAST SQUARES c) RELATIVE
LEAST SQUARES
Q CORRECTED DIFFERENCE
1 s 025
@
0s b L] R 1 E 02 1
LS
08 08| 5 1 E 015 T
Gabe, o
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z 06 {8 e 1 & oos 1
o
05 E osF 12 o 4
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04 b 0af ™ 1 @ -00s 1
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Figure 5 Prediction of water content from "H low-field NMR relaxations. Scalar net analyte signals are
used as x-variable and the norm of the regression vector obtained by PLS used as the regression
coefficient. Models are validated with full cross validation and include six replicates in the calibration set.
a) RMSEP as a function of the number of replicates in the validation set, b) RMSEP as a function of the
number of replicates in the validation set where the regression coefficient is corrected as given in
Equation 15 and c) relative difference in RMSEP given as RMSEP by obtained directly by the norm of the
regression vector minus the RMSEP obtained using the correction. The lines indicate: cod (solid black),
haddock (solid grey), saithe (dotted black) and whiting (dotted grey).

178



New aspects of chemometrics applied to spectroscopy

The results for cod, saithe and haddock show that the application of the correction is an
advantage when there are few replicates in the validation set and when the errors in X are
important for the predictions. However, the inferior results obtained for whiting indicates that the
correction only applies when the regression model is valid. More experiments are required
before the method can be generally applied. It is important to find out in which situations the
correction is valid and in which situations it is not.

Conclusion

Sampling errors and instrumental noise are two types of errors that may affect regression and
prediction. This paper has presented ways of quantifying, visualizing and handling errors in
instrumental measurements when these are used for estimating a reference value by
multivariate regression. The methods presented are but a few examples of how the effect of
errors can be evaluated and handled.
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Appendix 1

Freshness assessment of thawed and chilled cod fillets packed in
modified atmosphere using near-infrared spectroscopy

Niels Boknaes, Kristina N. Jensen, Charlotte M. Andersen and Harald Martens
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Freshness Assessment of Thawed and Chilled Cod Fillets
Packed in Modified Atmosphere Using Near-infrared
Spectroscopy

Niels Boknas*, Kristina N. Jensen, Charlotte M. Andersen and Harald Martens

N. Boknes, K. N. Jensen, C. M. Andersen: Technical University of Denmark, Department of Seafood Research
(DIFRES), Danish Institute for Fisheries Research, Seltofts Plads, Building 221, 2800 Kgs. Lyngby (Denmark)
H. Martens: Technical University of Denmark, Institute of Biotechnology, Seltofts Plads, Building 221, 2800 Kgs.
Lyngby (Denmark)
( Received September 11, 2001; accepted June 20, 2002)

Near-infrared reflectance (NIR) spectra was recorded of 105 samples of cod mince prepared from chill stored thawed cod fillets of
varying quality in modified atmosphere packaging (MAP). Traditional chemical, physical, microbiological and sensory quality
methods developed for assessing fiesh fish products were determined on the same cod fillets. The purpose was to evaluate the potential
of NIR spectroscopy for estimating (i) frozen storage temperature, (ii) frozen storage period and (iii) chill storage period of
thawed-chilled M AP Barents Sea cod fillets. Furthermore, the potential for measuring of selected quality attributes as drip loss,
water holding capacity and content of dimethylamine by NIR was evaluated. The results of the investigation were presented using
multivariate modelling methods such as partial least-squares regression (PLSR) and discriminant partial least-squares regression
(DPLSR). Systematic differences in the NIR measurements on minced cod fillets were primarily due to the chill storage duration
(days at 2 °C) on thawed-chilled M AP fillets. PLSR models based on wavelengths selected by a new Jack-knife method resulted in a
correlation coefficient of 0.90 between measured and predicted duration of chill storage period (days at 2 °C). The root-mean-square
error of cross-validation (RMSECV ) was 3.4 d at 2 °C. NIR measurements provided promising results for evaluation of freshness for
thawed-chilled MAP cod fillets completing the traditionally quality methods. However, it is necessary to study the effect of e.g.
sample preparation, season, fishing ground and cod size together with more sophisticated pre-treatments of NIR spectra before the
NIR method can be integrated as a method for evaluation of thawed-chilled MAP cod fillets.

© 2002 Elsevier Science Ltd. All rights reserved

Keywords: fish; frozen storage; MAP: multivariate analysis; NIR: thawing

Introduction (NIR) spectroscopy for the estimation of processing
conditions is an attractive possibility because it is fast,
The use of ‘frozen at sea’ cod raw material instead of easy to handle, inexpensive to use and has the ability to
fresh cod fillets for the production of chilled products carry out many samples as routine. NIR spectroscopy is
packed in modified atmosphere packaging (MAP) for already a well-established method for determining fat
retail sale seems promising (Beknes et al., 2002). The and water content in fish (Sollid and Solberg, 1992;
quality of thawed MAP fish product depends on Downey, 1996; Wold et al., 1996; Wold and Isaksson,
processing conditions as (i) frozen storage temperature, 1997). In addition, recent studies have shown good
(ii) frozen storage period and (iii) chill storage period for correlations between NIR spectroscopy and quality
cod fillets (Boknas et al., 2000, 2001, 2002). The limiting  attributes of frozen gadoid fish (Jergensen and Jensen,
factor for the shelf-life of fresh MAP cod products is  1997; Bechmann and Jorgensen, 1998; Pink ef al., 1998,
Photobacterium phosphoreum growth and trimethyla-  1999). In recent Norwegian studies, NIR has also been
mine (TMA) production (Dalgaard er al, 1993; used to assess freshness of cod, measured as days on ice
Dalgaard, 1995) and the quality can be evaluated using (Sigernes et al., 1998). However, the assessment of
a series of time-consuming physical, chemical and processing conditions for thawed—chilled MAP cod
sensory parameters. However, near-infrared reflectance fillets by NIR spectroscopy has, to our knowledge,
never been performed.

*To whom correspondence should addressed. The objectives of the present study were to evaluate the

E-mail: nib@dfu.dk potential of NIR spectroscopy to estimate (i) frozen
0023-6438/02/$35.00 doi:10.1006/fst1.923
© 2002 Elsevier Science Ltd. All rights reserved. All articles available online at http://www.idealibrary.com on Iﬂ!%l:“‘
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storage temperature, (ii) frozen storage period, (iii) chill
storage period and (iv) measurements of drip loss, water
holding capacity (WHC) and dimethylamine (DMA) of
thawed cod fillets from the Barents Sea packed in
modified atmosphere and stored at 2 °C. Multivariate
data analysis was used to determine the correlation
between NIR spectroscopy and the selected storage
conditions and physical/chemical measurements.

Materials and Methods

Experimental design

A factorial design with two frozen storage temperatures
(=20 or —30 °C), four frozen storage periods (3, 6, 9 or
12 mo) as shown in Table 1 and five chill storage periods
(0, 3, 7, 14 or 21d at 2°C) was used as previously
described by Beknes ez al. (2002). Cod (Gadus morhua)
were caught, processed and frozen on-board a Russian/
Greenlandic freezer trawler in February 1999 in the
Norwegian zone (72 °N, 16 “W) of the Barents Sea. Tow
duration was 6h and catch size about 6 metric tonnes,
primarily cod for this single catch. Cod of
1.5-3kg were deheaded and gutted immediately after
catch. Cod were bled in seawater for about 30min at
4°C and then filleted and skinned by, respectively, a
BAADER 190 and BAADER 51 (Nordischer Maschi-
nenbau Rud. BAADER, Liibeck, Deutchland). Cod
fillets were trimmed manually for bones, parasites and
blood stains. Boneless fillets were manually interleaved
packed when separating cod fillets with plastic film in
the blocks. The packed fillet blocks, each containing ca
6.8 kg, were frozen in a horizontal plate freezer until a
core temperature of —25°C was reached (ca. 2h).
Frozen cod blocks were packed in cardboard boxes
and placed in the cold store on-board the freezer trawler
(ca. —30 °C). After 10 wk, the frozen blocks were landed
and transported to the Danish Institute for Seafood
Research (DIFRES) where they were randomly divided
into two portions and kept at —20 and —30°C,
respectively. From each portion, frozen blocks were
collected after 3, 6, 9 and 12 mo and sawed into pieces of

Table 1
chill storage temperature. All seven batches were stored

Iwt/vol. 35 (2002) No. 7

less than 100 g. Afterwards, frozen cod pieces weighing
altogether ca. 250 g were placed in trays with absorbent
drip pads and packed in Riloten bags (Danisco Flexible,
Lyngby, Denmark) containing a modified atmosphere
with 40% CO,, 40% N, and 20% O, (AGA, Copenha-
gen, Denmark). The fish-to-gas ratio was ca. 250 g cod
and ca. 500mL gas. Packed fillet pieces were then
thawed for 20 h at 5 °C whereafter they were transferred
for chill storage at 2 °C. After different days of chill
storage, three packs from each batch were removed and
homogenized for NIR analysis. The thawed MAP cod
fillets (ca. 100g) were homogenized for 15s using a
Speedy meat mincer (Krups, No. 7180-70, Ireland).
Reference measurements of the selected quality attri-
butes: drip loss, WHC and content of DMA were
described in the corresponding study (Beknas er al.,
2002). For all experiments frozen and chill storage
temperatures were recorded by loggers (Tinytag, Gemini
Data Loggers Ltd., Chichester, U.K.).

Near-infrared measurements

For NIR analysis, minced cod was placed standardized
in a tube (weight of 10 g cod mince, height of 3.5cm and
measured surface area of ca. 3cmz). Alfterwards, the
tubes were placed in a black cylinder and NIR
reflectance spectra was recorded from the surface of
the cod mince. During measuring, the cod samples were
stored on ice. NIR reflectance spectra was measured in
duplicate for each pack (three packs per batch) with an
InfraProver, Il Fourier transform spectrometer (Bran
and Luebbe, Germany) using an optical fibre bundle as
described by Bechmann and Jergensen (1998). The
spectra were sampled at 12cm ™! intervals from 4,500 to
9,996cm ™" (1,000-2,222 nm), i.e. 459 data points per
spectrum. Preliminary data analysis revealed two
extreme samples, which were removed as outliers before
further data analysis. The six reflectance measurements
for each batch were averaged before pre-treatment and
modelling of the data. Different types of pre-treatment
of the resulting NIR spectra were tested, and the
following was chosen due to its simplicity and its

Storage characteristics for all batches including frozen storage period and frozen storage temperature and

at —29.0+2.7 °C for the first 3mo of frozen storage.

Results were shown as average + S.D. CO, concentration during chill storage was 33.7+3.5% for all the seven

batches
Frozen
Storage storage Chill storage

Batch period (mo) temperature (°C) Temperature (°C)
A% (=30 °C) 3 -29.042.7° 2.140.5°
B (<30 °C) 6 -31.5+2.9° 2.540.6°
C? (=20 °C) 6 -24.6+4.3° 2.5+0.6°
D (-30 °C) 9 322+42.6° 2.140.7°
E“ (-20 °C) 9 23.5+4.0° 2.140.7°
F“ (-30 °C) 12 32.4+3.4° 2.540.2°
GY(-20 °C) 12 23.4+3.6° 2.5+0.2°

“Significant (P <0.05) P. phosphoreum growth and TMA production during chill storage in MAP.
®No significant (P>0.05) difference between frozen storage temperatures.

“No significant (P>0.05) difference in chill storage temperature.

“No significant (P>0.05) P. phosphoreum growth and TMA production during chill storage in MAP.
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Fig. 1 NIR reflectance spectra measured on minced thawed MAP cod fillets showed: (A) all the 35 averaged raw NIR spectra;
(B) all the 35 averaged and MSC NIR spectra and (C) averaging and smoothing of all the 35 averaged and MSC NIR spectra

successful modelling (see below). Each average reflec-
tance spectrum was corrected for additive and multi-
plicative main effects using multiplicative scatter
correction (MSC) (Geladi er al., 1985) for eliminating
the effects of physical phenomena like the light-
scattering effects of particles with different sizes and
shapes (Isaksson and Neas, 1988; Helland ez al., 1995).
Since the MSC-treated and averaged reflectance spectra
was rather noisy, they were averaged and smoothed in
the final modelling. Batch mean of NIR spectra on
minced cod fillets before and after pre-treatment (MSC,
averaging and smoothing) was shown in Fig. 1. The
number of wavelength channels was reduced down to
230 by averaging of adjacent wavelengths of the MSC-
treated NIR reflectance spectra. Afterwards, the spectra
was smoothed by a moving average filter based on three
neighbouring wavelength channels.

Multivariate data analysis

Partial least-squares regression (PLSR) (Wold et al.,
1983) was used for the multivariate calibration in
(i) qualitative modelling and (ii) quantitative modelling.
In the qualitative modelling, discriminant partial least-
squares regression (DPLSR) (Wold et al., 1983) was
used in order to gain overview of the data (see also
Martens and Martens, 1986; Martens and Jorgensen,
1998; Jacobsen et al., 1999, 2001). In order to investigate
the effect of (i) frozen storage temperature, (ii) frozen
storage period and (iii) chill storage period for thawed—
chilled MAP cod fillets, DPLSR was employed to
predict qualitative main effects of the experimental
design (Y), from the averaged and smoothed MSC-
treated NIR data (X). This means that each frozen
storage temperature (—20 or —30°C), each frozen
storage period (3, 6, 9 or 12m) and each chill storage
period (0, 3,7, 14 or 21 d at 2 °C) were represented by an

indicator variable (with values 0 or 1). No standardiza-
tion (weighting) was used on X and Y variables in the
qualitative modelling. The model was validated by full
cross-validation.

In the quantitative modelling, PLSR was employed to
determine the predictive ability of the NIR spectra (X)
and the duration of chill storage period (now repre-
sented as one single quantitative variable y, representing
the number of days at 2 °C) for thawed MAP cod fillets.
Furthermore, PLSR was used to determine the pre-
dictive ability of the NIR spectra and, respectively,
(i) drip loss, (ii)) WHC and (iii) content of DMA. For
analysing PLSR results, a newly developed modified
Jack-knife method for estimation of parameter uncer-
tainty in PLSR was used (Martens and Martens, 1999).
In this case, a manual selection of wavelengths with
P>0.1 was used for elimination of nonsignificant
wavelengths in the NIR spectra. In the quantitative
modelling, the NIR data (X variables) was standardized
(weighting with 1/standard deviation) since it improved
the predictability. The single y-variables were not
weighted. The PLSR models were validated by
full cross-validation. Multivariate data analysis was
performed using The Unscrambler®™ Ver. 7.6 (CAMO,
Norway).

Results

Experimental design

The experimental batch characteristics including tem-
peratures for frozen and chill storage were shown in
Table 1. The growth of P. phosphoreum and TMA
production in the thawed—chilled MAP cod fillets was
showed in the corresponding study (Beknas er al.,
2002).
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Multivariate data analysis

Qualitative modelling. The data set consisted of 35
samples (7 batches x 5 periods of chill storage) in an
NIR spectra matrix (35x459) and a design matrix
(35x10). The design matrix contained qualitative
indicators for the main eflects, i.e. 0 or 1 variables
for (i) frozen storage temperature (—20 or —30 °C), (ii)
frozen storage period (3, 6, 9 or 12mo) and (iii) chill
storage period (0, 3, 7, 14 or 21d at 2 °C). The DPLSR
model contained three factors explaining 64% of the
variance in X and 22% of the variance in Y. The scores
for the first two factors were shown in Fig. 2.

In the scores plot (Fig. 2), differences in chill storage
between 0 and 21d expanded the first factor for the
DPLSR. Samples with few and many days of chill
storage were mostly placed at the left and the right in the
plot, respectively (Fig. 2). This indicated a weak
tendency for the fact that the first factor accounted for
most of the variation due to the chill storage period of
thawed MAP cod fillets. No systematic differences in
MSC-treated NIR spectra for frozen storage tempera-
ture and period were observed according to the second
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Fig. 2 Scores plot of factor 1 vs. factor 2 from DPLSR
analysis including NIR spectra and all three design variables.
Letters indicate different frozen storage temperatures and frozen
storage periods (see Table 1). Numbers indicate the period of
chill storage in days at 2 “C. Explained variance for X" were 44
and 14% and for Y 6 and 7% for factors 1 and 2, respectively
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and third factor. However, this qualitative modelling
indicated that NIR spectra could be used for estimating
chill storage period of thawed MAP cod fillets.

Quantitative modelling. PLSR models using NIR for
estimating the period of chill storage (y=days at 2 °C)
and selected quality measurements of thawed MAP cod
fillets were evaluated. The PLSR models were based on
MSC-treated NIR spectra for all 35 samples indepen-
dent of frozen storage temperature and period. In order
to reduce the risk of chance correlations in the Jack-
knifed variable selection, the number of wavelength
channels was reduced down to 230 by averaging and
smoothing wavelengths of the MSC-treated NIR
reflectance spectra.

An initial PLSR model was developed, using all 230
wavelength channels of smoothed MSC-treated NIR
reflectance spectra as X-variables and chill storage
period (0, 3, 7, 14 or 21d at 2 °C) as y-variable (Table
2). The Jack-knife method was used for selecting
significant wavelengths in smoothed MSC-treated NIR
spectra. All wavelengths that were found to give
nonsignificant contributions (P>0.1) estimated by full
cross-validation using the Jack-knife method were
eliminated in order to remove detrimental X-variables
from the model. To further guard against incidental
chance correlations, single significant wavelength chan-
nels, i.e. with non-significant neighbours on either side,
were also eliminated. The regression coefficients for the
PLSR models before and after elimination of nonsigni-
ficant wavelengths were shown in Fig. 3. The significant
wavelengths in Fig. 3B were not directly connected to
water or protein. However, the significant wavelength
region between 7600 and 8000cm ™! (connected with
C-H groups) could possibly be related to protein
changes during chill storage. The PLSR models were
evaluated for their number of factors, root-mean-square
error of cross-validation (RMSECV), correlation be-
tween predicted and measured values, and by the
amount of explained validation variance of the Y data.
These results were shown in Table 2.

When the Jack-knife method was used to select
significant NIR reflectance wavelengths, a lower predic-
tion error of the chill storage period by MSC-treated

Table 2 Validation of PLSR-models for the prediction of chill storage period (days at 2 °C), drip loss, DMA and
WHC for thawed—chilled MAP cod fillets from NIR data using full spectrum (230 wavelengths) or selected
wavelengths of averaged and smoothed MSC-treated NIR data

Number of Correlation % Y var.
y-Value X-values Resulting range PLSR factors RMSECV?  coefficient expl.’
Chill storage (d) Full spectrum 0-21 4 49 0.77 6l
Chill storage (d) Selected wavelengths® 0-21 3 3.4 0.90 81
Drip loss (%) Full spectrum 3.2-13.8 3 2.3 0.69 49
Drip loss (%) Selected wavelengths® 3.2-13.8 2 2.0 0.78 63
DMA (mg DMA-N/100g)?  Full spectrum 015 <0.1
WHC (%)" Full spectrum 62.5-84.8 <0.1

“The root-mean-square error of cross-validation (RMSECV) is expressed in the same units as for the y-value.
®Amount of variance in the Y-matrix explained by the models (%).

“Significant wavelengths selected by the Jack-knifing method with P<0.1.

“Since no correlation between NIR and y-value was established, no validation values were reported.
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Fig. 3 Regressions coeflicients from PLSR models for pre-
diction of chill storage period (days at 2 °C). The regressions
coefficients were shown for the optimal number of factors in
the model: (A) before elimination of nonsignificant wave-
lengths in a four-factor model and (B) after elimination of non-
significant wavelengths in a three-factor model
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Fig. 4 The relation between duration of chill storage (days at
2°C) of thawed MAP cod (abscissa) and predicted chill
storage period (days at 2°C) determined from the NIR
measurements (ordinate) as obtained by a cross-validated
PLSR model based on only significant Jack-knifing wave-
lengths. The solid line indicates y = x. Letters indicate different
frozen storage temperatures and frozen storage periods (see
Table 1). Numbers indicate the period of chill storage in days
at2°C

NIR spectra was found (an increase from 61% to 81%
of explained variance). The initial use of all NIR
wavelengths may thus have included too many noisy
and irrelevant X-variables in the model (Table 2).
Results from PLSR modelling for prediction of WHC,
DMA and drip loss were also shown in Table 2. These
PLSR results showed the same tendency for a quite
good prediction of drip loss by NIR as obtained for
prediction of chill storage period. However, we obtained
very low correlations (<0.1) between NIR and mea-
surements of DMA or WHC (Table 2).

Discussion
Systematic differences in the NIR measurements on

minced cod fillets, observed in the qualitative calibration
models (Fig. 2) were primarily due to the chill storage

duration (days at 2°C) on thawed—chilled MAP cod
fillets. In contrast, frozen storage temperature and
frozen storage period did not influence the NIR
measurements very much, at least not in a clear and
systematic way. The final quantitative calibration model
for prediction of chill storage period, after elimination
of nonsignificant wavelength channels, showed quite
good predictive ability in the cross validation (Fig. 3).
Compared to the full spectrum model, the Jack-knifed-
based variable selection apparently caused an appreci-
able improvement (from 61% to 81% of explained
variance) in the prediction of the number of days of chill
storage at 2 °C ().

To what extent could this cross-validated improvement
be an artefact? The cross-validation by itself is quite safe
(Martens and Dardenne, 1998), since the only way the
predicted y-variables of the samples have been used,
other than for estimating the cross-validated prediction
error (RMSECYV) itself, is to determine one single
parameter—the optimal number of factors. Hence, the
initial result (61% prediction ability) is good enough.
However, the combination of Jack-knife-based variable
selection and cross-validation needs to be scrutinized. In
the Jack-knife-based testing, a high number of more or
less independent wavelength channels are assessed with
respect to their apparent effect on model stability, and
only the best ones are retained in the model. Then, in the
cross-validation, the prediction error estimation is based
on more or less the same criterion—the X~y agreement
between each individual sample and the other samples.
Therefore, there is a risk of overfitting that is not
detected by the cross-validation. If many incidentally
significant X-variables survive the Jack-knife testing (we
expect about 10% of nonsense variables to survive the
chosen test level), then their combination may create an
artificially high cross-validated gain in the predictive
ability to be too high.

Preliminary quantitative modelling (results not shown),
based on the original, unsmoothed NIR spectra with
rather noisy 459 X-variable channels indeed indicated
some over fitting even in the cross-validation, because
the resulting regression coeflicient vector was quite
noisy. This was the reason why the number of X-
variables was reduced to 230 and smoothed, and finally,
that the few retained lonely individual wavelength
channels were eliminated manually. With this proce-
dure, we expect the estimated prediction error
RMSECYV of the final calibration model to be realistic
for the models predictive ability in new samples of the
same general kind.

This final PLSR model for prediction of chill storage
period gave a correlation coefficient of 0.9 and
RMSECYV on 3.4d. The prediction of chill storage (days
at 2 °C) was obtained more or less independently of the
previous frozen storage temperature and frozen storage
period. In an earlier study concerning prediction of
storage period for fresh cod fillets with no precedent
frozen storage treatment, Sigernes et al. (1998) found a
correlation coefficient of 0.95 and RMSECV on 28h.
Hence, it seems that NIR has a future potential of
measuring chill storage duration for the thawed MAP

187



New aspects of chemometrics applied to spectroscopy

cod fillets (Table 2). This could be very useful in
practice, because the application of traditional methods
for the quality assessment of MAP cod fillets including
number of P. phosphoreum and TMA production were
difficult due to differences in microbiological spoilage of
thawed—chilled MAP Barents Sea cod (Table 1) depend-
ing of the precedent frozen storage temperature
(Boknes et al., 2002).

During chill storage, significant changes in texture for
thawed MAP cod fillets have previously been reported
(Guldager et al., 1998; Boknzs et al., 2000, 2001, 2002).
However, textural changes obtained for thawed—chilled
MAP cod fillets have been related to inevitable processes
during freezing, thawing and chill storage such as
protein denaturation and enzymatic reactions (Shenou-
da, 1980; Rehbein, 1988). Such textural changes might
be influenced in NIR spectra shown in the present study.
This is confirmed in the present study using averaged
and smoothed MSC-treated NIR data for predicting
drip loss of thawed-chilled MAP cod fillets with a
correlation coefficient of 0.78 and RMSEPCV of 2.0%.
In addition, a recent study also showed the potential for
using visual/near-infrared reflectance spectroscopy for
nondestructive estimating of texture in farmed Atlantic
salmon (Salmo salar) (Isaksson et al., 2001). Recently in
Canadian studies, NIR spectroscopy has been used to
predict DMA content in frozen minced Atlantic red
hake (Urophycis chuss) with correlation coefficient
higher than 0.95 (Pink ef al., 1998, 1999). In contrast,
a very low correlation coeflicient (<0.1) between NIR
spectra and DMA content in thawed—chilled MAP
cod fillets was obtained in the present study. This
might be related to the very little formation of DMA
during frozen and chill storage as DMA content was
found to be below 1.5mg DMA-N/100 g for all batches
in the present study (Beknas et al., 2002). Furthermore,
a very low correlation coefficient (<0.1) on predicting
WHC by NIR was also found in the present study.
In contrast, recent studies (Jorgensen and Jensen,
1997; Bechmann and Jorgensen, 1998) showed higher
correlation using NIR measured on the skin of whole
thawed cod or on centrifuged cod mince for determining
WHC in thawed cod fillets. However, it was also
shown that the use of NIR spectra of mince as in
this study was inferior to the use of spectra of the
centrifuged mince (Jorgensen and Jensen, 1997). This
might explain the very low correlation coefficient
between NIR on raw cod mince and WHC obtained in
the present study.

In conclusion, NIR is a promising method for
estimating duration of chill storage period of
thawed-chilled MAP cod fillets. However, before NIR
can be introduced for the evaluation of thawed—
chilled MAP cod fillets, it is necessary to develop a
calibration model spanning the variations related
to e.g. chill storage period, sample preparation, season,
fishing ground and cod size. Furthermore, data
modelling could be optimized using other more
sophisticated pre-treatments for NIR measurements on
raw thawed MAP cod fillets instead of measuring on
minced cod.
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Appendix 2

Theory of net analyte signal vectors in inverse regression

Rasmus Bro and Charlotte M. Andersen
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Abstract

The net analyte signal and the net analyte signal vector are useful measures in building and
optimizing multivariate calibration models. In this paper, a consistent theory for its use in inverse
regression is developed. The theory of net analyte signal was originally derived from classical
least squares in spectral calibration where the responses of all pure analytes and interferents
are assumed to be known. However, in chemometrics, inverse calibration models such as
partial least squares regression are more abundant and several tools for calculating net analyte
signal in inverse regression models have been proposed. These methods yield different results
and most do not provide results that are in accordance with the chosen calibration model. In this
paper, a thorough development of a calibration-specific net analyte signal vector is given. This
definition turns out to be equivalent to the one recently suggested by Faber [Faber 1998a]. A
needed correction of the net analyte signal in situations with negative predicted responses is
also offered.

Keywords: multivariate calibration, figures of merit
Introduction

In multivariate inverse calibration, a regression model is sought, predicting the response y of
size /x1 from the multivariate measurements in X (/xJ). The regression vector b (Jx1) is found
to minimize the residuals, e (/x1), in the equation

y=Xb+e 1

often subject to some additional constraints with respect to X. For example, in principal
component regression (PCR), X is constrained to be in the subspace of the first principal
components whereas in partial least squares regression (PLS), a slightly different criterion is
used.

The net analyte signal vector is a convenient diagnostic that enables figures of merit (sensitivity,
limit-of-detection etc.) to be calculated in a manner similar to univariate regression. The net
analyte signal vector was originally defined by Lorber [Lorber 1986] as the part of a measured
signal that is orthogonal to the interferents. Although, net analyte signals have mainly been
discussed in relation to spectral data and especially in settings where Beers law is assumed to
be valid, the principle is general and applicable and useful for any multivariate calibration model.
In the following, though, the net analyte signal is discussed under the premise of spectral data.

The underlying idea of methods for calculating the net analyte signal is to separate the
contributions in the calibration data matrix, X, into one originating solely from the analyte of
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interest (called X, to reflect that the k-th analyte is the analyte of interest), and another from
other sources of variability such as interferents (X.).

X :Xk +ka (2)

X« denotes the unique part of the analyte signal and X is the matrix describing the signal
orthogonal to that. Ideally, the unique analyte part lies in the null-space of the space spanned by
the spectra of the interferents. From a matrix spanning the space of the interferents (X), the net
analyte signal vector of a sample, /, is calculated by

x;,i = (1= (X )X )x (3

where x; is the spectrum of the i-th sample, | is an identity matrix and “*” denotes a
pseudoinverse. The net analyte signal is usually taken as the norm of x;,i and can be used
similar to a univariate signal in univariate linear regression [Faber 2000]. For e.g. mean-
centered data, a complication arises in calculating the net analyte signal. This will be treated
upon deriving a consistent algorithm for the net analyte signal vector.

The matrix 1-(X", )X _, projects the calibration spectra onto the space orthogonal to that
spanned by the spectra of all analytes except the sought k-th analyte. Thus, in order to find the
net analyte signal vector of a certain analyte it is necessary to find the projection matrix,
1-(X7, )X, , which involves finding the matrix describing the interferent spectra, X.. There are
several ways to estimate this matrix.

Lorber et al. [Lorber et al. 1997] suggested a method that uses PCR or PLS. First, the
calibration matrix X is rebuilt using A significant PCR or PLS components, yielding X..,. Second,
a rank annihilation step in the A-dimensional space is used for finding the part of the original
matrix spanned by the interferents.

ka = xreb ’aykxT “4)

where yy is the projection of the vector of responses y (/x1) onto the A-dimensional subspace
andis given by y, =X X ¥ . The vector x is a linear combination of the rows of X, which is
chosen to include a contribution from the spectrum of the k-th analyte. Any reasonable spectrum
can be used for this purpose even though it is recommended to use a spectrum that contains

maximal information of the analyte. The scalar « can be calculated as
a=1x"X"y, (5)

Xu and Schechter [Xu & Schechter 1997] proposed another approach where y is used to define
X. The calibration matrix X is scaled by dividing each spectral vector of matrix X with the
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corresponding y-value such that each spectral vector contains the same contribution of the
analyte

Xies = ®)

In the next step, the average of the scaled vectors is calculated and subtracted from all the
scaled vectors. This gives a mean-centering pre-treatment of the scaled matrix removing the
constant contribution of the analyte.

X ki = xi,sc - Xsc (7)
Combining x; for all samples provides an estimate of Xy. A similar approach is described by
Goicoechea and Olivieri [Goicoechea & Olivieri 1999]. The mean calibration spectrum is

obtained as in Eq. (8) and the contribution of the analyte is subtracted from the data matrix X as
shown in Eq. (9).

X=X ®

T
yX
X, =X-"= ©)
‘ y
where y denotes the mean calibration concentration of the analyte. Goicoechea and Olivieri
[Goicoechea & Olivieri 2001] proposed to define X as the projection of X orthogonal to y as
illustrated in Eq. (10).

X =[-y(y'y)"y"IX (10)

Booksh and Kowalski [Booksh & Kowalski 1994] also described the net analyte signal vector
and suggested a relation to the regression vector but they did not provide an operational
method for its calculation. Faber [Faber 1998a] put forward an idea which does not require
calculation of X. In this method the net analyte signal vector is calculated as

X =b(b'b) 'y (1)

where y is the concentration of the analyte in the unknown sample (in practice, the prediction of
the concentration is used). This method was derived from the fact that the regression vector is
the part of the analyte signal orthogonal to the signals of the interferents [Sanchez & Kowalski
1988]. The rationale for this development was to circumvent the computational burden in some
of the prior methods and it was argued that the new method was an alternative that gave similar
results as the older methods.
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Theory

Most of the current approaches for calculating the net analyte signal vector suffer from the same
problems. Unless noise-free data are used, the net analyte signal vector will not be proportional
to the regression vector. Despite that this proportionality should theoretically be present, the
indirect calculation of the net analyte signal vector introduces errors that propagate to the net
analyte signal vector. This is unsatisfactory both from a theoretical and a practical point of view.

A further complication with some approaches is that the net analyte signal vector is to some
extent independent of the calibration method. Hence, it can be impossible to compare different
competing calibration models by their net analyte signal vector as it will be the same regardless
of calibration method. This is unsatisfactory because the net analyte signal is a property of a
specific model and not of a given data set. Building a calibration model for a specific data set
can yield different models depending on the purpose of the model (robustness, accuracy etc.).
E.g. when a model is validated to be robust over long periods, less components are likely
significant than if the model is tested for highest possible accuracy over shorter periods. Hence,
a data set as such can not have an associated net analyte signal vector. Unless idealized, this
is only possible for a specific model built with a specific purpose in mind.

In this paper, a very simple calculation of the net analyte signal and its vector is derived. It has
the advantage of not relying on any additional assumptions on the structure of the data and to
provide a net analyte signal vector which will yield exactly the same predictions as the
calibration model for which it is supposed to provide information. Furthermore, it handles mean-
centering automatically in a way similar to that suggested by Faber [Faber 1998b)].

The matrices Xy and X can be defined under the premises of a given (rank-reduced) calibration
model in the following way. First of all, the null-space of the model can be disregarded. For e.g.
PCR, the null-space is given by the projection matrix I-PP* where P (JxF) is the F-dimensional
loading matrix This part of the space is not used for predicting and is regarded as noise in the
model (used for diagnostic purposes). Instead of dividing the data into two different parts as is
usually done in net analyte signal derivations, the model is divided into

X=X +X  +X, (12)

all orthogonal to each other. The matrix Xy is the part of the signal of the analyte which is
orthogonal to the signal of the interferents and the noise and X is the part of the data in the
subspace spanned by the interferents (including the part of the analyte signal within that
subspace). The residual matrix X, is e.g. defined as X(I-PP*) for PCR but follows similarly for
other calibration methods.
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Within the space of the model given by PP*, the part given by the regression vector b is
assumed to be in the same direction as the net analyte signal vector. Otherwise, the predictions
are influenced by other than analyte variation. Hence the null-space of this direction must be
equivalent to the space spanned by X. Therefore, the matrix X can be found as

X, =XPP*(I-bb") (13)
and hence

X, =XPP'bb" =Xbb’ (14)

This means that the net analyte signal vector is simply found by projecting the data onto the
space spanned by the regression vector. The main result in this paper is therefore that the net
analyte signal vector of a certain sample, x;, is found as

X;, =bb'x, =b(b"b) 'b"x, (15)

where b is the regression vector from the calibration model. Note that estimated values are
used throughout, because the interest is in assessing a specific (estimated) model, not a
theoretical construct. The above definition of the net analyte signal circumvents the problems of
the older methods and can be seen to be identical to the one proposed by Faber when
exchanging bTxi with y. Thus, it retains the computational ease of his method. However, as
opposed to earlier, it is argued that this is the way to calculate the net analyte signal vector and
not just an alternative.

The net analyte signal is usually defined as the norm of the net analyte signal vector. However,
as pointed out by Faber, this is not valid for models that include centering [Faber 1998b]. In fact,
this definition is not even valid for non-centered models in situations where the response is
predicted to be below zero (an example is given below). By properly deriving the calculation of
the net analyte signal, the problem disappears. The prediction of y for a new sample, x;, is
defined as

y-xb-x'b (1o

because the net analyte signal is the part of x; in the direction of b. In case of centered data, x;,
corresponds to the centered data and the prediction is of the centered response. This in itself
poses no problems, but given that the net analyte signal multiplied by the sensitivity (%) ) is
supposed to equal the prediction of y, the definition of the net analyte signal, x;, follows Js
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P=xo= =
X‘.:x*.Tb (17)
0= b

With this definition of the net analyte signal, the magnitude remains as when calculated by the
norm but the sign is automatically set to be consistent with the obtained prediction of y. In
practice, the correction above is equivalent to the one suggested by Faber [Faber 1998b]
because the magnitude of the net analyte signal in Eq. (17) remains unaltered, whereas the sign
changes with the sign of the prediction as also implied in Fabers approach. It is emphasized,
though, that it is necessary to use this approach even in situations where there is no centering
involved.

Results

In order to verify the adequateness of this definition of the net analyte signal vector, a small
example is given to illustrate the differences between some of the methods. The data set
consists of five simple laboratory-made samples. Each sample contains different amounts of
tyrosine, tryptophan and phenylalanine dissolved in phosphate buffered water.

Table 1 Concentrations of amino acids in calibration
samples. The concentrations are given in pM.

Sample Tryptophan Tyrosine Phenylalanine

1 2.67 0.00 0
2 0.00 13.30 0
3 0.00 0.00 900
4 1.58 5.44 355
5 0.88 4.40 297

The samples were measured by fluorescence (excitation 269 nm chosen here, emission 250-

450 nm, 1 nm intervals) on a PE LS50B spectrofluorometer with excitation slit-width of 2.5 nm,
an emission slit-width of 10 nm and a scan-speed of 1500 nm/s. The data set is hence 5 x 201
(Figure 1).
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Emission spectra

900

850 300 350 400 450
Emission intensity
Figure 1 The emission spectra of the five samples.

A calibration model for tryptophan is made using PLS. Three components are expected to be
optimal but in order to explore the net analyte signal vectors calculated by different methods, a
one- and a two-component model is also evaluated. No centering is performed as zero signal
from an analyte is equivalent to zero concentration.

The results of using the new net analyte signal vector and the one proposed by Lorber (as
implemented in the PLS_Toolbox ver. 2.1) are shown in Figure 2. For the three-component
model, there is virtually no difference between the two methods. For example, for sample two
and three, both methods suggest that the net analyte signal is zero which is consistent with the
zero concentration of tryptophan (Table 1).

For the two-component model, however, the net analyte signals differ. For example, for sample
two and three, the new method suggests that the net analyte signal is still zero while Lorbers
method does not. Looking at the predictions of the two-component model (Table 2), it is seen
that indeed the predictions for sample two and three are close to zero. This is correctly reflected
in the net analyte signal of the new method but not for Lorbers method.
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Figure 2 Results from a one-component (left), two-component (middle) and a three-component (right)
PLS model for tryptophan is given. Each row represents one sample and the dash-dotted line is the
spectrum. The dashed line is the new net analyte signal vector and the solid line is the one calculated by
Lorbers method. In the left columns, the solid (Lorber) and dash-dotted (spectrum) lines are overlapping
completely, whereas the solid (Lorber) and dashed (new) are overlapping completely in the right-most
column.

For the one-component model, another interesting feature is clearly displayed. The net analyte
signal from Lorbers method is completely overlapping the original spectrum thus changing
dramatically shape from sample to sample. This is counterintuitive as the net analyte signal
vector must be one specific direction independent of the actual sample. The same problem is
not present with the suggested calculation of the net analyte signal vector.
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Table 2 Results from a two-component PLS model. Note the
negative net analyte signal of sample three.

True
Sample concentrationPredicted NAS,., NAS ;wmer

1 2,67 2,70 4,71 4,71
2 0,00 0,03 0,06 0,41
3 0,00 -0,04 -0,06 1,02
4 1,58 1,54 2,69 2,69
5 0,88 0,87 1,52 1,53

Conclusion

A new consistent and general method for calculating net analyte signal vectors and net analyte
signals in inverse calibration has been defined from a theoretical point of view. The theory and
method is consistent with earlier literature for ideal cases, but has several advantages in
applications on real data.
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Appendix 3

Multivariate data analysis as a tool in advanced quality monitoring in
the food production chain

Rasmus Bro, Frans van den Berg, Anette Thybo, Charlotte M. Andersen, Bo M. Jargensen and
Henrik Andersen
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This paper summarizes some recent advances in mathe-
matical modeling of relevance in advanced quality mon-
itoring in the food production chain. Using chemometrics —

* Corresponding author.

multivariate data analysis — it is illustrated how to tackle
problems in food science more efficiently and, moreover,
solve problems that could not otherwise be handled before.
The different mathematical models are all exemplified by
food related subjects to underline the generic use of the
models within the food chain. Applications will be given
from meat storage, vegetable characterization, fish quality
monitoring and industrial food processing, and will cover
areas such as analysis of variance, monitoring and handling
of sampling variation, calibration, exploration/data mining
and hard modeling.

(© 2002 Elsevier Science Ltd. All rights reserved.

Introduction

There is an increased public and political focus on
food production. Safety, nutritional value, eating qual-
ity, ethical, environmental, economic and social aspects
are all issues that the food industry needs to be aware of
and respond to. This is a result of the fact that most
food industries produce low profit products, the ever
rising wages in most industrialized countries, and the
ever ongoing changes in life style. Increased information
and purchasing power have triggered the latter, hereby
making customers increasingly sophisticated, demand-
ing and powerful. This leads to a necessity for eflicient
tools in monitoring, optimization, characterization,
speciation and general handling of raw materials, pro-
cesses intermediates and final products. Together with
prediction of quality throughout the production chain,
this becomes a must for the food industry to be compe-
titive at the global niche markets of the future.

Optimal utilization of available data obtained
throughout the production chain is an important aspect
of developing the tools necessary to fulfill the above
mentioned demands. Often, the food industry performs
a number of different measurements throughout the
process, typically for specific, dedicated purposes. This
generates a large amount of data, which is seldom used
outside its direct scope. Rather, it is used distinctly for
one specific purpose. However, it can be of great interest
to combine all available information in order to extract

0924-2244/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
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even more relevant information from the collected data.
Moreover, introduction of alternative measurements
will also be necessary to accomplish the future demands,
especially in relation to the prediction of quality. For
example, on-line or in-line spectroscopy is a promising
area where non-destructive and cheap measurements
can be made providing multivariate and very general but
accurate information on different chemical and physical
properties of the samples measured (Archibald & Kays,
2000; Bro, 1998; Colquhoun, 1998; Engelsen, Mikkel-
sen, & Munck, 1998; Isaksson, 1990; Munck, Norgaard,
Engelsen, Bro, & Andersson, 1998; Scotter, C., 1994;
Scotter, C.N.G., 1997; Shibata, Ono, & Hirano, 2000,
Simpkins & Harrison, 1995).

In this paper, examples will be given on how
advanced multivariate data analysis can be helpful in
analyzing complicated data sets obtained from mon-
itoring production at different steps in the food pro-
duction chain. The focus will not be on the mathematical
aspects of these methods, but rather on the practical
results obtained. The examples thus serve as illustrations
of the benefits that can be obtained by utilizing multi-
variate data analysis on food related data. Emphasis is
on the areas: visualization, optimization and calibration;
all three are of importance in relation to developing tools
ensuring optimal control in future food production.

The findings reported here were acquired in an ongo-
ing project named Advanced Quality Monitoring invol-
ving several partners with quite distinct disciplinary
backgrounds in Danish food research tradition. The
paper illustrates the necessity of joining forces to solve
complicated food chain related problems by modern
scientific methods.

Visualization

Exploratory data analysis is an often neglected but
highly useful discipline (Andersson, 2000; Munck e? al.,
1998; Tukey, 1977; Weihs, 1993). Usually, data analysis
is performed as a confirmatory exercise, where a postu-
lated hypothesis is claimed, data generated accordingly
and the data analysed in order to either verify or reject
this hypothesis. In effect, no new knowledge is obtained
in confirmatory analysis except the possible verification
of a prior postulated hypothesis. Confirmatory analysis,
though, is highly useful in many forms of traditional
quality control.

In contrast, using exploratory analysis, the data are
gathered in order to represent as broadly and well as
possible the problem under investigation. The data are
analysed and through the, often visual, inspection of the
results, hypotheses are suggested on the basis of the
empirical data. Thus, the aim in exploratory analysis is
broader than in confirmatory analysis. Rather than
defining the whole problem mentally and merely verify-
ing these mental constructs through data and analysis,
the empirical real-life observations of the problem are
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used to obtain knowledge of the underlying character-
istics. This gives an increased possibility for obtaining
new, different and interesting information about the
problem, possibly leading to new hypotheses. Conse-
quently, exploratory data analysis is an extraordinary
tool in displaying thus far unknown information from
established and potential monitoring methods, which
subsequently can be used to establish solid measuring
methods of importance in food quality control. Two
examples will be given on how to use dedicated mathe-
matical models combined with relevant advanced mea-
surements to extract, display and understand important
underlying causes and effects in different food problems.

Characterizing water distribution of food samples by
low-field NMR

The distribution and mobility of water in complex
systems such as muscle-based food are important for
perceived eating quality and in many cases also for
suitability for processing and storage. In the muscle,
water may e.g. be bound tightly to proteins, encom-
passed by the muscle fibrils, in the cytoplasm or sarco-
plasm, or in the extra-cellular fluid.

Low-Field Nuclear Magnetic Resonance (LF-NMR)
transverse relaxation measurement is the method of
choice when the task is to probe the state of water in
samples from such food systems. Although it is possible
to imagine a large number of possibilities (for example,
water—protein interactions) and consequently an almost
continuous distribution of water mobilities, it turns out
in practice that a few compartments or pools of water
can be identified from the LF-NMR transverse relaxa-
tion signal (Pedersen, Bro, & Engelsen, 2002). This
signal is a weighted sum of mono-exponential decays,
the number of which equals the number of different
pools. The weights are proportional to the pool size
(amount of water) and the relaxation times are a [unc-
tion of the characteristic water mobilities. These para-
meters therefore provide a useful picture of the states of
water in a given sample. From the matrix of pool sizes
(each row representing a sample and each column a
pool) one can often predict quality-related properties by
multivariate calibration methods.

Traditionally, the LF-NMR transverse relaxation
signal has been treated by curve fitting methods. A set
of parameters is obtained independently from each
sample. The main problem is the highly correlated
parameters, and if the number of components is not
known, over-fitting is a realistic risk. Comparisons
between samples are also impeded by the fact that the
resulting relaxation times may differ profoundly among
samples so that it is not obvious whether the compo-
nents are comparable at all. It is therefore practical to
stabilize the model fit by forcing a set of components to
be common to all samples, if such a set can be assumed
to exist. The number of components obviously depends
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on how close the relaxation times are. The samples will
thus differ in the relative amounts of the various com-
ponents which are linear parameters that can be deter-
mined analytically.

The most difficult task is to find the set of common
relaxation components. Here, modern developments in
multi-way chemometrics have provided a powerful tool:
parallel factor analysis (PARAFAC) combined with a
data rearrangement that will result in tri-linear data
(Pedersen et al., 2002; Windig & Antalek, 1997). The
PARAFAC model is a mathematical model that, under
certain mild conditions, can separate measured signals
into the underlying contributions (Bro, 1997; Harsh-
man, 1970; Harshman & Lundy, 1994). This method
was recently applied to the study of water states in pre-
frozen cod stored in modified atmosphere at +2°C
(Jensen, Guldager, & Jorgensen, in press). It was possi-
ble to identify four pools of water and to determine how
the water distribution changed during frozen storage
dependent on the temperature (—20 or —30°C; Fig. 1).
Moreover, the distribution during cold storage could be
observed to change in a way only slightly dependent on
the storage temperature. Combined with other methods
such as microscopy and calorimetry, measuring the
water distribution as described provides new insight in
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those changes in the muscle that lead to quality dete-
rioration during storage.

Combining multiple data sets with multi-block methods

Many data analysis problems can be specified in terms
of blocks. For example, a single block of spectra can be
analyzed by Principal Component Analysis (PCA)
(Wold, Esbensen, & Geladi, 1987) to find the main
phenomena in the set. The same block of spectra can be
used together with a block of quality values to build a
predictive Partial Least Squares (PLS) regression model
(Vandeginste & Massart, 1997) so that the quality can
be predicted in the future directly from the easily mea-
sured spectra. In many research and process questions,
different but distinct sources of information are avail-
able on the same set of objects. Examples are different
analytical techniques (spectroscopy, rheology, wet-
chemistry, etc.) collected on the same samples or the
same parameters measured on the same samples at dif-
ferent stages in a production process. In recent years,
methods have been developed to handle multiple blocks
of this kind (Westerhuis, Kourti, & MacGregor, 1998).
These modeling methods are extensions of well estab-
lished so-called one- and two-block factorial models
such as PCA and PLS.

Relative amplitude

01

0.2

Time (s}

Fig. 1. "H NMR relaxation signals and water pools in samples from thawed cod. Intact cod muscle was frozen for three months at —30°C

and subsequently for three months at the temperature indicated (=30 or —20°C). After thawing, the muscle samples were minced and the

spin-spin relaxation signals recorded. From these signals four water pools (marked I-1V) could be identified with pool I being the most mobile

(free) water. The normalized relaxation curves and the relative amount of water in the four pools are shown for each of the two storage
conditions. The figure was constructed from data in Jensen, Guldager, & Jargensen (2002).

207



New aspects of chemometrics applied to spectroscopy

238

R. Bro et al./ Trends in Food Science & Technology 13 (2002) 235-244

™ Product Composition?

i

Particle Size Distribution?

w Wheat flourmilt ;
Y
7
NIR Composition
‘ 1 Dry matter
2 Ash
f 3 Protein

4 Starch

5 Damaged
starch

Monitoring map
SNV-NIR
in-process {off-line)
data laboratory
data
1000 A (nm} 2500 0 size {(um) 500

Fig. 2. Building blocks of the wheat flourmill data-set.

The concept of multi-block modeling will be illu-
strated using data from a wheat flourmill (Nielsen, Ber-
trand, Micklander, Courcoux, & Munck, 2001). At six
different streams in the mill, samples were taken. A
seventh sample was composed from equal proportions
of the first six. The samples were separated in six size
fractions labeled a—f, where f is the remaining fraction
after separation (see Fig. 2; Berg, 2001). Fast (in-pro-
cess) near infrared (NIR) spectral analysis and slower
(laboratory) chemical composition and laser-scatter size
distribution analysis are collected for all the samples. In
order to emphasize chemical information in the spectra
over the scatter information, a standard normal variate
signal correction is applied to the NIR. After this action
there are four contributors in the factor model: the two
predictor blocks NIR and SNV-NIR and the two
response blocks composition and distribution. The aim
is to create a monitoring-map that will show the position
of future mill samples using only their NIR-spectra. For
this purpose a multi-block PLS model is constructed
that seeks to predict the two blocks of chemical and
distribution data from the two blocks of NIR data (see
Fig. 3).

Fig. 3 provides a visualization of the multi-block
model in terms of the samples marked by their labels. It
is remarkable that an accurate summary of all the indi-

sample scores
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Fig. 3. Multi-block monitoring-map for the wheat flourmill data-
set; ‘S"is SNV-NIR, ‘N’ is NIR, “‘C" is chemical composition and ‘D’ is
particle size distribution.

vidual 1437 variables organized in four different blocks
can be given in such a condensed map. Samples that lie
close together are similar while samples that are distant
are dissimilar. It is seen that the horizontal axis primarily
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explains the size distribution. Next to the axis, the rela-
tive block contribution is plotted which shows that all
four blocks of data have a considerable contribution in
this direction, moderately dominated by the NIR and
Distribution data. Thus NIR and distribution data
are the ones mainly reflecting size distribution. The
second axis — dominated by the SNV-NIR and
Compositional/Chemical direction — splits of the
samples from location 6, which are known to be
chemically different in composition (Nielsen et al.,
2001). The f-samples are seen to form a separate
cluster in the map.

The essence of multi-block methods is to do data
analysis thinking in terms of building blocks rather than
individual variables. This significantly reduces the risk
of being overwhelmed even when a lot of (different)
data, related to the same set of objects, has to be ana-
lysed. Being an extension of ‘conventional’ factorial
models — PCA and PLS — all their strong features
remain valid, augmented with block-specific (preferably
graphic) information and diagnostics.

Optimization

Optimization is a challenging problem in any process
industry. Optimization can be used to minimize product
quality variability, maximize yield, minimize energy
consumption, etc. In the food industry, optimization is
often based on empirical observations, which do not
take into consideration all processing steps involved. In
a more scientific setting, optimization is often per-
formed in a systematic way through experimen-
tally designed data analysed by so-called analysis of
variance (Hirsh, 1977; Latorre, 1984; Massart et al.,
1988; Montgomery, 1991; Morgan, Burton, & Church,
1989; Stahle & Wold, 1989). Various important
factors are systematically and independently varied
in order to verify their influence and interactions on
the property under investigation. In this section, two
interesting and new applications of optimization are
described.

Visualizing experimentally designed data of meat
storage properties

Modified atmosphere packaging is widely used to
extend the shelf life of fresh meat. One aspect of opti-
mizing the atmosphere is to retain the red color of the
meat, which is favorable for consumer preferences.
Meat color was monitored in an experiment using
Longissimus dorsi muscles of several animals. The fac-
tors varied were storage time, storage temperature, O,
content in headspace, and amount of light exposure.
Red color was measured for different settings of these
factors; the settings being defined through a D-optimal
design because the limited number of samples pro-
hibited a full or fraction factorial design to be used (Bro
& Jakobsen, 2002).

It is characteristic of many biological systems, that the
influence of different factors on certain properties, such
as the color in this case, is not simple. Often, the influ-
ence of one factor is dependent on the level of other
factors. Hence, there are interactions between the fac-
tors. In fact, the interactions may be mainly responsible
for the relation between the factors and the property.
For example, the influence of soil type and fertilizer on
wheat yield is mainly a function of the combination of
the two factors rather than independent functions of
both.

A new model called GEneralized Multiplicative
ANalysis OF Variance—GEMANOVA (Bro, 1998; Bro
et al., 2001; Bro & Heimdal, 1996; Heimdal, Bro, Lar-
sen, & Poll, 1997) has been suggested for analysing data
where interactions are likely to be the main source of
variation. The GEMANOVA model was applied to the
above meat data and the result is illustrated in Fig. 4.
The GEMANOVA model states that the color can be
explained by two independent phenomena: the initial
color of the meat and the degradation of color. The
absolute degradation is thus independent of the initial
level of color. The initial color of the meat is shown in
the lower right part of Fig. 4 where the model estimates
are compared to the actual measured color of the six
different muscles used, showing excellent agreement.
The degradation is given by a three-way interaction
between storage time, temperature and light exposure.
Oxygen is (surprisingly) found to have no significant
effect in the investigated domain. For a specific storage
time, temperature and light exposure, the estimate of
the absolute degradation is found by reading the ordi-
nate of the three corresponding graphs in Fig. 4 and
multiplying these together. Thus at storage time zero
there is no degradation as the storage effect is zero
(upper left). On the other hand, going from temperature
2 to 8°C, it is seen that the temperature eflect increases
from 1.2 to 2.4. Therefore, the effect of this change will
be that the overall decrease is twice as high at 8°C as it
is at 2°C, regardless of all other factors.

As can be seen, this multiplicative model of the three-
way interaction generates a model which is easily and
intuitively understood in terms of the underlying pro-
blem. A similar understanding would not be possible
with a traditional ANOVA model.

Characterizing the effect of biological inhomogeneity
with analysis of variance

In many applications, instrumental measurements are
performed at only one specific part of the product due
to the size of the measurement device. The measure-
ments are subsequently related to the overall properties
of the sample. This introduces a random sampling error
that can be reduced by measuring replicates at different
parts of the sample. The number of replicates used
for building the calibration model and used for future
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Fig. 4. Results of GEMANOVA model showing the influence of storage, temperature, light and muscle on meat color. Oxygen has no
significant effect.
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Fig. 5. (left) Difference in the average prediction error, Root Mean Squared Frror of Prediction (RMSEP), between the corrected estimation

and least squares estimation when six replicates are used for calibration and from one to 12 replicates are used in prediction; (right) an

example of the predicted water content versus the measured water content obtained with nine replicates in the calibration set and only one
measurement in prediction (crosses—least squares; circles—corrected least squares).

prediction may not be the same. In such situations, ing this correction based on the theory of the
the predictions can be improved by correcting the measurement error models is illustrated in Fig. S
regression coefficients so that they correspond to where prediction of water content of fish muscle
the least squares estimate with the number of repli- from 'H low-field NMR relaxations is used as an
cates in the calibration set. The advantage of apply- example.
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The difference between the predicted error obtained
using direct least squares regression and when correcting
for the number of measurements in the prediction set is
largest when only one measurement is used for predic-
tion. When the measurements of the prediction samples
consist of few replicates, there seems to be an advantage
in correcting the regression coefficients. However, this
advantage diminishes when more than approximately
three measurements are used for each sample.

An example of the improved predictions obtained by
the correction is shown in Fig. 5. The model is cali-
brated using samples with nine replicates and validated
on a test set where the samples are measured only
once.

Calibration

Although calibration of sensors and measurements is
a universal task of process operators and laboratory
technicians throughout the food industry, many novel
methods of data handling are interesting supplements to
current technologies. Specifically the use of multivariate
calibration as propagated in the field of chemometrics
can turn measurement signals with no apparent selec-
tivity into models with good predictive performance for
a wide variety of properties (Martens & Neas, 1989).
Three examples will hint on the diversity of potential
applications.

Predicting final product sensory quality from low field
NMR measurements on the raw product

Texture is an important quality attribute for cooked
potatoes. It is closely related to the dry matter content.
The potato product industry is demanding methods that
can predict the final texture of potatoes non-destruc-
tively. This will enable sorting of potatoes in gradings of
various texture qualities with less variability, having a
more appropriate quality for a given final product. This
will increase the quality within products, reduce the
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waste, and increase the income as well as the satisfaction
of the consumers.

Low field '"H NMR (LF-NMR) is known to reflect
compartmentalization of water phases and hence tex-
ture in many food products such as meat, bread and fish
mince. For potatoes, a prediction of texture in cooked
potato samples from raw sample measurement by
LF-NMR have shown high correlations for many sen-
sory texture attributes using NMR relaxation curves
(Fig. 6) as well as bi-exponential fit parameters (75s)
(Thybo, Bechmann, Martens, & Engelsen, 2000; Thy-
gesen, Thybo, & Engelsen, 2001). In a recent experi-
ment, 23 potato samples of different varieties and dry
matter content were investigated. A PARAFAC (see
above) prediction of the sensory attributes was com-
pared with a PLS prediction using NMR relaxation
curves as well as Tps (Povlsen, Rinnan, van den Berg,
Andersen, & Thybo, 2002). The results are given in
Table 1 and show that most of the sensory attributes are
well predicted from LF-NMR. The PLS predictions
seemed to give the best predictions.

LF-NMR is a non-destructive method and hence
interesting for process monitoring of texture in the food

Table 1. Prediction of sensory texture attributes using low-field
NMR given by correlation coefficients between measured and
predicted attributes
Sensory texture PLS on PLS on PARAFAC on
attributes rel bi-exp ial relaxati
curves® fitting parameters® curves®
Hardness 0.80 0.81 0.66
Cohesiveness 0.84 0.83 0.74
Adhesiveness  0.74 0.63 0.53
Mealiness 0.85 0.90 0.73
Graininess 0.71 0.76 0.62
Moistness 0.85 0.90 0.76
2 Four-factor models. ® M, and T, values used.
O mealiness r = 0.90
81 @ moistness = 0.84 e
7 <0
/
&
o]

8 5
5
B
a3l
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Fig. 6. (left) Low-field "H NMR relaxation curves of four examples of different potato varieties; (right) prediction curves of mealiness and
moistness using NMR.
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industry. Through multivariate calibration modeling,
quality can be assessed directly and quickly giving more
relevant and time-critical information for controlling
the process.

Prediction of sensory texture attributes from full
uniaxial compression curves on raw material

Uniaxial compression is a destructive instrumental
approach to determining mechanical properties such as

Table 2. Prediction of sensory texture attributes using uniaxial
compression given by correlation coefficients between mea-
sured and predicted attributes

Sensory texture PLSR on full PLSR on 4

attributes force-deformation curve parameters
curves
Hardness 0.89 0.81
Cohesiveness 0.84 0.82
Adhesiveness 0.78 0.63
Mealiness 0.81 0.76
Craininess 0.77 0.75
Moistness 0.79 0.72

Fluorescence EEM of one sugar sample

300
z 200
a
£ 100
200
200
400 300
Emission 800 400 Excltation

Estimated concentrations

50 100 150

Sample (8 h shift)

200 250
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hardness, crispness or springiness. Uniaxial compres-
sion is not considered a rapid instrumental method, but
can be used for (off-line) randomly sampled quality
control.

In uniaxial compression a sample from a potato tuber
is compressed (e.g. 75% at constant velocity). Usually,
two to four parameters are extracted from the com-
pression curves (force and deformation at fracture and
moduli before fracture) and used for further interpreta-
tion and correlation with sensory texture attributes.

Using multivariate data analysis it is possible to use
the full compression curve instead of only a few features
extracted. Compared with the information content of
the four curve features, more information may be found
using the full curves. Prediction of sensory texture
attributes of cooked potatoes from either full curves or
from curve parameters on raw samples are given in
Table 2. Most of the sensory attributes were better
predicted from full curves than from curve parameters.
This indicates that more information is found in the
full curves and that these can replace the traditional
calculation of curve parameters. This may be an

comp. 1

"Tyrosine"

"Tryptophan"

comp. 4

300
Wavelength (nm)

400 500

Predicting color

35 1
30
25 |
20
15 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90
Days

Fig. 7. Sugar samples were taken every eighth hour, dissolved in water and measured spectrofluorometrically. An example is shown upper
left. PARAFAC decomposition of the data provides relative concentrations (lower left), relative excitation spectra (not shown) and relative

emission spectra (upper righr). The four concentrations

are used for predicting color of the sugar shown lower right.
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advantage as some of the curve parameters (e.g. mod-
uli) are defined in many different ways making the
comparison of results difficult (Thybo & van den Berg,
2002).

Predicting sugar quality from fluorescence-based
mathematical chromatography

In the sugar industry, sugar is manufactured from
either beet or cane. Through a number of unit opera-
tions, the crystalline product is obtained. The main
quality parameters are color and ash content (Ner-
gaard, 1995b). These are used externally for reporting
quality and internally for controlling the last part of the
process. Measuring these parameters requires manual
sampling and wet-chemical laboratory work. It is thus
expensive and there is a certain lag between the actual
sampling and the determination of quality. Having a
cheaper, faster, on-line measurement would be highly
beneficial for process control purposes.

This can be made possible by the use of fluorescence
spectroscopy and indirect multivariate calibration as
first described by Nergaard (1995a, 1995b). The results
have been further refined over the years. Bro (1999)
showed that the fluorometric data of sugar can be
decomposed into chemically meaningful components
with the use of a PARAFAC model. In this case, fluor-
escence excitation-emission matrices (EEM) as shown
in Fig. 7 (upper left) are measured on sugar samples
dissolved in water. A sample is taken every eighth hour,
the frequency with which the quality parameters are
determined traditionally. In all, 268 samples are taken,
covering the 3 months’ yearly production.

A PARAFAC model of these fluorescence data
directly provides relative concentrations, emission and
excitation spectra of the underlying chemical analytes as
shown in Fig. 7. Thus, the holistic fluorometric char-
acterization of the sugar samples can be expressed by
only four underlying phenomena. This means that dur-
ing the three months, any sugar sample can be fully
characterized with respect to its fluorescence fingerprint
by varying amounts of four different estimated fluor-
ophores. These four relative amounts/concentrations
are shown in the lower left part of the figure. The most
intriguing aspect in this model though, is that the dis-
entangled fluorophores, determined solely from the
direct measurements, can be identified on a chemical
basis. In this case, comparing the emission and excita-
tion spectra with known fluorophores, two of them are
identified as tryptophan and tyrosine, respectively. As in
ordinary chemical chromatography, these findings can
be further substantiated in different ways (Baunsgaard,
Andersson, Arndal, & Munck, 2000; Baunsgaard, Ner-
gaard, & Godshall, 2000).

By multiple linear regression it is possible to make
quantitative models, e.g. predicting the color of the
sugar from the four concentrations found by PAR-
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AFAC as shown in the figure. Thus, a quantitative
model is obtained which is much easier to handle than
the standard wet-chemical approach and which has a
chemical basis making it more transparent (directly
related to the four components) and descriptive than the
standard methods.

Conclusion

In this paper we show that the recent advances in

chemometrics, e.g. combined with the use of new on-line
or at-line spectroscopic measurements provide an
important
Through the use of dedicated mathematical models it is
possible to overview huge data sets and complicated
problems in an intuitive and straightforward manner.

and interesting direction of research.

Examples have shown the benefit of proper visualiza-

tion in data analysis in e.g. details on the water dis-
tribution of products or modeling of large data-set via
multi-block methods. Also shown are the promising
prospects of optimization in e.g. the parameter estima-
tion for storage and packaging, or the characterization
of in-homogeneity in raw materials for the food industry.
In the last paragraph the potential of multivariate cali-
bration was demonstrated by examples on the prediction
of final product properties from measurements on the
raw material and the use of advanced modeling techni-
ques for process parameter monitoring and prediction.

All these benefits arise [rom the proper use of

advanced mathematical models and show that explora-
tory, multivariate data analysis guided by visualization
is a fruitful complementary discipline in food research,
and can generate results that either immediately or
readily can be used in combination with existing food
quality monitoring methods or potential measuring
methods at a level which in the future can fulfill the
demands that the food industry is facing with regard to
totally quality control.
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