
Food spoilage is of major concern to the food industry, because it leads 

to considerable economic losses and to possible public health hazards. 

There has been considerable effort and research to preserve food which 

have mainly relied on the application of chemical preservatives or drastic 

physical treatments. However, chemical preservatives are becoming 

increasingly unpopular by the consumers, and some have even proven to 

be toxic and linked to different health problems. Physical treatments of the 

products, on the other hand, can deteriorate the sensory properties of the 

products, and may even destroy some of the nutrients and vitamins. In this 

context, ‘Biopreservation’, which is defined as the use of safe antibacterial/antifungal microorganism 

(so-called protective cultures) has unexploited potential to inhibit the growth of pathogenic 

microorganisms and enhance the shelf life of the final food product. In order to apply biopreservation 

in food products effectively, detailed knowledge on the metabolism of protective cultures is required. 

This PhD study mainly focused on the application of in vitro NMR spectroscopy for studying the 

metabolism of protective cultures. An analytical protocol was developed for real-time in vitro NMR 

measurements of bacterial fermentation, which includes guidelines from the sample preparation 

to the data processing and the modelling of the metabolic profiles. As a part of this work, an NMR 

data preprocessing technique, called ‘Reference Deconvolution’, was employed for the first time to 

improve the multivariate analysis of the in vitro real-time metabolomics data and proved a necessary 

and elegant solution to the inherent inhomogeneity problem of the samples in the in vitro NMR 

measurements of cells.  As the second part of the project, an accurate approach for quantifying mold 

growth and inhibition, based on multispectral images and k-means clustering was developed. The 

method was developed into a software package called ‘PCluster’, and was demonstrated to be very 

helpful in two other biopreservation related metabolomic studies. The developed analytical tools are 

expected to be very beneficial in the studies related to the biopreservation, and will be used in the 

future investigations of the protective cultures.
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Abstract 

 
Food spoilage is of major concern to the food industry, because it leads to considerable 
economic losses, a deteriorated environmental food-print, and to possible public health 
hazards. In order to limit food spoilage, research on the preservation of food products has 
always received particular attention by the food industry. Traditionally, such efforts have 
mainly relied on the application of chemical preservatives or drastic physical treatments. 
However, chemical preservatives are becoming increasingly unpopular by the consumers, and 
some have even proven to be toxic and linked to cancer and other health problems. Physical 
treatments of the products, on the other hand, can deteriorate the sensory properties of the 
products, and may even destroy some of the nutrients and vitamins. In this context, 
biopreservation, which is defined as the use of safe antibacterial/antifungal microorganism 
(so-called protective cultures) has unexploited potential to inhibit the growth of pathogenic 
microorganisms and enhance the shelf life of the final food product. In order to apply 
biopreservation in food products effectively, detailed knowledge on the metabolism of 
protective cultures is required. The present PhD project is mainly focused on the application 
of in vitro NMR spectroscopy for studying the metabolism of protective cultures. As an 
important part of this work, an analytical protocol was developed for real-time in vitro NMR 
measurements of bacterial fermentation, which includes guidelines from the sample 
preparation to the data processing and the modelling of the metabolic profiles. The protocol is 
applied in an experimental design with two strains of lactic acid bacteria. The results highlight 
some of the metabolic differences between the strains, in terms of nutrients consumption and 
metabolites kinetics.  As a part of this work, an NMR data preprocessing technique, called 
‘Reference Deconvolution’, was employed for the first time to improve the multivariate 
analysis of the in vitro real-time metabolomics data and proved a necessary and elegant 
solution to the inherent inhomogeneity problem of the samples in the in vitro NMR 
measurements of cells.  A second objective of the project was to develop an accurate 
approach for quantifying mold growth and inhibition. A new method was presented for 
quantifying mold growth and measuring different segments of mold colonies, based on 
multispectral images and k-means clustering. The method was developed into a software 
package called ‘PCLUSTER’, and was demonstrated to be very helpful in two other 
biopreservation related metabolomic studies. In one case, PCLUSTER was used to quantify 
how the concentration of diacetyl affects inhibition of the indicator molds and in the second 
case PCLUSTER served as an efficient tool for quantifying inhibition assays, and finding 
antifungal metabolites and metabolites that correlated positively/negatively with the 
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inhibition. The developed analytical tools are expected to be very beneficial in the studies 
related to the biopreservation, and will be used in the future investigations of the protective 
cultures. 
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1. Introduction 

This chapter provides a general overview and presentation of the objectives and the main 
directions of the thesis work, including a brief description of the thesis chapters, and the 
publications. 

1.1. The concept of food biopreservation 
Food spoilage is of major concern to the food industry, because it leads to considerable 
economic losses, and can also bring about public health problems. Therefore, the development 
and application of efficient preservation techniques is an obvious area of research when the 
shelf life of the food products needs to be extended. The common practice to preserve food 
relies on the application of chemical preservatives or drastic physical treatments. Although 
these methods are efficient in preserving food products, they may not, from other 
perspectives, be the best solutions. From consumers’ health point of view, chemical 
preservatives are not desirable as some have proven to be toxic and have been linked to 
cancer, cardiovascular disease, and aging (Parke and Lewis 1992). Drastic physical treatments 
such as the application of high temperatures, on the other hand, can deteriorate the sensory 
properties of the products and destroy some of the nutrients and vitamins. One of the other 
solutions for the preservation of food products, which is relatively new to the food industry, is 
biopreservation. Biopreservation can be defined as the use of safe antibacterial/antifungal 
microorganism in food products to inhibit the growth of pathogenic microorganism and 
enhance the shelf-life (Annou S 2007). Biopreservation is natural and can obviate the 
concerns that are associated with other preservation techniques. The food industry is 
experiencing an increasing demand from the customers’ part for products that are preserved 
naturally (i.e. having neither E-number nor any chemical preservatives on the ingredients list). 
Due to this consumers’ trend, and to the fact that replacing the common means of preservation 
by biopreservation can significantly benefit the public health, expanding knowledge and 
insight into developing efficient biopreservation systems for different food products is of 
great importance. 
 

In the context of food biopreservation, lactic acid bacteria (LAB) are definitely in the 
spotlight. Owing to their antagonistic properties and their metabolites, specific strains of LAB 
can preserve food. Numerous scientific studies have been carried out on the antimicrobial 
metabolism of LAB, but still many questions remain elusive. This demands further research 
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in the field and investigations on how optimum biopreservation can be provided for different 
food products. 

1.2. The main objectives of the project 
The goal of the present PhD project was to investigate the potential of using NMR 
spectroscopy for studying the metabolism of antifungal strains of LAB, or so-called protective 
cultures. The project included real-time in vitro NMR measurements of the fermentation of 
LAB and developing an analytical protocol for the future metabolomic studies of protective 
cultures. The other aspect of the project was developing an approach for quantifying 
inhibition, as this would allow evaluating the antifungal properties of different strains or 
samples in an experimental design, and discovering metabolites that contribute to the 
antifungal effect.  

1.3. A brief description of the outline of the thesis 
The different chapters in this PhD thesis present the research that has been performed to meet 
the objectives of the project, in addition to a concise presentation of the theory behind them. 
The thesis includes eight chapters and five peer-reviewed scientific journal papers. In the 
following a brief description on the content of the chapters and the publications is given. 
 
Chapter 1, the current chapter, defines the project and its objectives. It explains the motive 
behind the project and its significance. Chapter 2 describes the importance of preserving food, 
biopreservation, and the role of LAB in this context. It also describes some of the main 
metabolic pathways in LAB. Chapter 3 presents the principles of NMR spectroscopy and 
metabolomics, and the reason for which NMR was selected as an analytical technique to 
investigate the microbial metabolism. Chapter 4 provides brief theory and definitions of the 
multivariate data analysis and chemometrics methods that have been used throughout the 
project. Chapter 5 presents information, figures, and discussion regarding the in vitro NMR 
measurements of LAB fermentation. The chapter further elaborates on some of the practical 
aspects that are not included in the corresponding scientific paper. Chapter 6 presents the 
theory of multispectral imaging and explains the methodology behind ‘PCLUSTER’, the 
software that was developed for quantifying mold growth and inhibition, as well as more 
detail on the instructions of the software which are not included in the corresponding 
scientific paper. This chapter also describes two applications of PCLUSTER in biopreservation 
related metabolomic studies of LAB. It is demonstrated how PCLUSTER was successfully used 
to identify antifungal metabolites and investigate their effect on mold growth in a quantitative 
manner. Chapter 7 presents the main conclusions of the research performed, and  Chapter 8 
give the author’s personal account of the perspectives and outreach of the research, with 
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emphasis on how we can further improve our insight into the detailed molecular knowledge 
about biopreservation of food products. 
 
 
Papers: 
 

Paper I demonstrates how reference deconvolution of NMR data can improve the results of 
multivariate analysis, using the data from a triangular experimental design. It presents the 
theory of reference deconvolution, and shows how reference deconvolution can improve PCA 
and PLS models of the data from the designed samples. 
 
Paper II presents the results from using NMR spectroscopy to study real-time in vitro 
bacterial fermentation in a designed metabolomics study. The paper describes the developed 
protocol ˗from sample preparation to the kinetic modelling of metabolic changes˗ and makes 
suggestions regarding suitable data processing and data analysis techniques for in vitro NMR 
data. The paper addresses some of the challenges of in vitro measurements of cells and 
suggests solutions. Reference deconvolution is applied for the first time to a dynamic NMR 
study and the results clearly show that metabolomics can benefit from it.   
 
Paper III presents the developed approach for quantifying mold growth and inhibition by 
using multispectral imaging and k-means clustering. The developed freeware is called 
‘PCLUSTER’, and the paper demonstrates the application of PCLUSTER to three different 
sample sets (multispectral images), with the objective of quantifying mold growth and size of 
the colony segments of Penicillium molds.  
 
Paper IV is a metabolic study on the inhibition of mold growth by one of the strains of L. 
paracasei, focusing on the volatile metabolites. In this study, PCLUSTER was used to analyze 
multispectral images from the inhibition assays and to investigate how the concentration of 
diacetyl affects the inhibition of the indicator molds. 
 

Paper V presents another application of PCLUSTER in a biopreservation related study of two 
strains of L. paracasei. In this study, PCLUSTER software served as an efficient tool for 
quantifying inhibition assays, and was of great help in finding metabolites that contributed to 
the inhibition. 
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2. Food biopreservation 

This chapter aims at defining the concept of biopreservation that is used as a natural, safe and 
ecological approach for food preservation to reduce or avoid food spoilage. Furthermore, the 
reasons that necessitate it for the food industry to investigate and use appropriate preservation 
systems for different food products are discussed.  

2.1. Food spoilage and preservation 
Food spoilage is defined as a metabolic process that can change the sensory characteristics of 
food products, such as taste, smell and appearance, and make the products undesirable or 
unsuitable for human consumption. Food spoilage is associated with public health concerns, 
environmental and resource costs, and finally considerable economic losses for industry. Food 
spoilage is caused by a variety of microbes that use food as a source of carbon and energy. 
Among the microorganisms that can spoil food are bacteria, yeasts and molds. Bacteria 
constitute a large domain of prokaryotic (lack defined nuclei and other organelles) single-
celled microorganism. Yeasts are eukaryotic (have nuclei and other organelles) single-celled 
microorganisms that are classified as fungi, and molds are fungi that grow in the form of 
multicellular filaments called 'hyphae’. Some of the spoilage microbes are commonly found 
in many types of spoiled foods, whereas others are specific for certain food systems. Usually, 
multiple species are identified in a single type of spoiled food item, but there may be only one 
species (SSO: specific spoilage organism) that is primarily responsible for production of the 
compounds causing off-odor and flavor. Within a spoiling food system, there is often a 
succession of different populations that rise and fall, as different nutrients become available or 
are depleted (Doyle 2007).  
 

Molds and yeasts are important spoilage organisms in food production. Each year, 5 to 10 
percent of the world’s food products are lost by fungal spoilage (Yang and Chang 2010). 
When the food is to be stored for a prolonged period, use of additives and preservatives is 
essential, in order to maintain its quality and flavor. Their use prevents products spoilage due 
to the growth of bacteria and fungi. If spoiled food is consumed by customers, besides 
causing health problems for the consumers, it can ruin the reputation of the manufacturing 
company. Economic losses of food spoilage are also another nontrivial factor which cannot be 
ignored by industry. So, it is extremely important for food industry to preserve food and 
extend the shelf-life of the products.  
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So far, the approaches to enhance food safety and increase its shelf-life have mainly relied on 
finding more efficient chemical preservatives or on the application of more drastic physical 
treatments, for instance high temperatures, refrigeration, application of high hydrostatic 
pressure (HHP), ionizing radiation, pulsed-light, ozone, ultrasound technologies, etc. 
However, there are various disadvantages associated with these methods. Most of the physical 
treatments can alter nutritional properties of the products, and chemical preservatives, such as 
nitrites, have proven to be toxic and have been linked to cancer, cardiovascular disease, and 
aging (Parke and Lewis 1992). Maybe it is because of these findings, that there has been an 
increasing consumers’ trend in purchasing food products that are safe, minimally processed 
and free of chemical preservatives (Annou S 2007, Ghanbari, Jami et al. 2013). In this 
context, biopreservation represents a promising alternative to chemical preservatives, and if 
properly applied, biopreservation will ensure preservation of even minimally processed food 
products. 

2.2. Biopreservation by lactic acid bacteria  
Biopreservation is defined as extension of shelf life and enhanced safety of food products by 
the use of natural or controlled microbiota and/or their antimicrobial compounds of defined 
quality and at certain quantities, while changing the sensory properties of the products as little 
as possible (Stiles 1996, Hugas 1998, Vermeiren, Devlieghere et al. 2004, Annou S 2007). 
Biopreservation is an innocuous and ecological approach to the problem of food preservation 
and has gained increasing attention in recent years. Biopreservation permits the application of 
less severe heat treatments without compromising food safety, provides better preservation of 
food nutrients and vitamins as well as organoleptic properties of foods, and can serve to 
satisfy industrial and consumers demands (Galvez, Abriouel et al. 2007). 
 

Antagonistic cultures that are only added to inhibit pathogens and/or prolong the shelf life, 
while changing the sensory properties of the food product the least possible, are termed 
‘protective cultures’ (Castellano and Vignolo 2006). Protective cultures do not necessarily 
have to ferment food to provide the preserving effect, and in this regard, they differ from the 
‘starter cultures’ which are used specifically in the fermentation processes and cause a sensory 
alteration of the food. Although fermentation is a means of biopreservation, the concept of 
biopreservation is not limited to fermentation and is used in a broader sense.  
 

When using food protective cultures for biopreservation, there are a number of criteria and 
requirements that should be taken into account. Some of the most relevant and important 
requirements are summarized in Figure 2.1.The most important requirement is that the 
protective microorganisms should be safe and not pose any risk to the consumers’ health. 
Moreover, they should not alter the sensory characteristics of the food system and be 
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compatible with the food matrix. Another important requirement for a successful application 
of protective cultures is their efficiency and the ability to produce sufficiently active 
antagonistic metabolites against a broad range of relevant food-borne pathogen and/or 
spoilage bacteria and fungi. In addition, it is very important that the cultures are stable and 
capable of surviving adverse conditions encountered during the industrial treatment processes 
and storage of the products, and maintain their inhibitory activities (Annou S 2007, Ghanbari, 
Jami et al. 2013, Brosnan, Coffey et al. 2014).  

 

Figure 2.1. The main requirements of food protective cultures. 

Lactic acid bacteria (LAB) comprise a relatively diverse group of Gram-positive, non-
sporulating, catalase-lacking, cocci or rods microorganisms. LAB produce lactic acid as the 
major end product during the fermentation of carbohydrates. They only grow in complex 
media where fermentable carbohydrates and higher alcohols are used as an energy source, 
mainly to form lactic acid (Calo-Mata, Arlindo et al. 2008). LAB, which are considered as 
‘food-grade’ organisms, have a major potential for use in biopreservation, because they are 
safe to consume and during storage they naturally dominate the microflora of many foods 
(Stiles 1996). LAB are used to ensure safety, preserve food quality, develop characteristic 
new flavors, and to improve the nutritional qualities of food (Calo-Mata, Arlindo et al. 2008). 

Most LAB, due to their long history of safe use in food and feed fermentations, have received 
both GRAS (Generally Recognized As Safe) and QPS (Qualified Presumption of Safety) 
status in the EU, and thus, have good potential for future exploitation as antifungal biocontrol 
agents (Brosnan, Coffey et al. 2014). Properties that make LAB suitable for food preservation 
are: (i) they are generally regarded as safe, (ii) are not active and toxic on eukaryotic cells, 
(iii) become inactivated by digestive proteases, having little influence on the gut microbiota, 

Antimicrobial
activity

Compatibility

Safety

Effectivity

Stability
Requirements 

of food 
protective 
cultures

Fig. 2.1
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(iv) are usually pH and heat-tolerant, (v) have a relatively broad antimicrobial activity range, 
and can inhibit growth of many food-borne pathogenic and spoilage bacteria, and (vi) genetic 
manipulation of them is easy (Galvez, Abriouel et al. 2007). LAB are also increasingly being 
used as probiotics, owing to their contribution to the healthy microflora of human mucosal 
surfaces. They have also been introduced into animal feed owing to their contribution to the 
health of farmed animals and as biological control agents in aquaculture (Calo-Mata, Arlindo 
et al. 2008). 
 

LAB are widespread in most ecosystems and are found in soil, water, plants, and animals. 
Besides being responsible for many food fermentation processes, they are also commonly 
found in non-fermented foods such as meat products, seafood, fruits, vegetables, and cereals. 
They can also be found in the intestinal and respiratory tracts of humans and animals. LAB 
are widely used as starter cultures in the food industry for the production of fermented foods, 
including dairy (yogurt, cheese), meat (sausages), fish, cereals (bread and beverages such as 
beer), fruit (malolactic fermentation processes in wine production), and vegetables (sauerkraut 
and kimchi), and have associations with many different foods. Table 2.1 provides a list of 
different food systems and their associated LAB.  
 
It should be noted that not all LAB strains and species are safe. For instance, the genus 
Streptococcus includes many human and animal pathogens. Despite this, Streptococcus 
thermophilus is an important nonpathogenic organism that is used in the manufacture of 
yogurt and several cheese types. The best characterized LAB are those associated with milk 
fermentations, especially the subspecies of Lactococcus lactis (L. lactis). They preserve food 
by the low pH and lactic acid that they produce, as well as bacteriocins, in particular nisin that 
has found widespread application as a food preservative (Stiles 1996). 
 
Research into antifungal properties of LAB and biopreservation has increased in the past 
decade and shows that many LAB strains have the potential to combat the proliferation of 
fungi in various food and feed systems. In particular, as mentioned before, the demand to 
reduce fungal contamination in foods has seen an  increased demand by the consumer for the 
replacement of artificial chemical preservatives with natural biopreservatives (Annou S 2007). 
Studies into the applications of antifungal LAB strains are quite diverse and typically involve 
both in vitro and in situ food model studies, where a known fungus is tested against the 
antifungal LAB strain and where successful, applied to a final food (bread, cheese, yogurt) or 
beverage (fruit juice/fermented drink) products. The most promising areas where these 
applications have seen success include: (i) breads, (ii) dairy products, (iii) fruits and 
vegetables, (iv) silage, (v) seafood, and (vi) beverages like orange juice, and fermented 
seaweed drinks (Brosnan, Coffey et al. 2014). 
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Table 2.1. Different food systems and their associated lactic acid bacteria. 

 
Food Types 
 

Lactic acid bacteria 

 
Milk and dairy food 
 

 

‐ Hard cheeses and Edam cheese L. lactis subsp. cremoris, and subsp. lactis 
L. lactis subsp. cremoris, and subsp. lactis 
L. mesenteroides subsp. cremoris 
 

‐ Cultured butter, buttermilk, and Gouda 
cheese 

L. lactis subsp. cremoris, and subsp. lactis, and 
var. diacetylactis 
L. mesenteroides subsp. cremoris. 
 

‐ Swiss type cheeses L. delbrueckii subsp. bulgaricus  
L. helveticus 
 

‐ Dairy products in general L. brevis 
L. buchneri 
L. casei 
L. paracasei 
L. fermentum 
L. plantarum

  L. mesenteroides subsp. cremoris 
L. Lactis

  
Fermented milk products  

 
‐ yogurt  

 
 
Streptococcus thermophiles 
 L. delbrueckii subsp. bulgaricus 
L. lactis subsp. diacetylactis 
 

‐ acidophilus milk L. Acidophilus 
 

‐ kefir L. kefir 
L. kefiranofaciens 
 

Meat products 
 

 

‐ raw 
 

Carnobacterium divergens 
C. piscicola (maltaromicus)  
L. sake 
L. curvatus 
L. carnosum  
L. gelidum 
 

‐ Fermented meat 
 

Pediococcus acidilactici   
Pediococcus pentosaceus (inoculated into semi- 
dry sausages) 
L. sake 
L. curvatus 
L. farciminis (uninoculated) 
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Food Types 
 

Lactic acid bacteria 

 
Marinated fish products 

 
L. alimentarius 
C. piscicola 
 

Fermented vegetables 
 

 

‐ cucumbers, sauerkraut L. mesenteroides (initial fermentation) 
L. bavaricus 
L. brevis 
L. sake 
 

 
‐ olives22. 

 
L. plantarum 
 
L. mesenteroides 
L. pentosus 
 

‐ fermented vegetables in general 
 

Pediococcus acidilactici   
P. pentosaceus  
L. plantarum 
L. sake 
L. buchneri 
L. fermentum 

Baked goods 
 

 

‐ sourdough bread L. sanfrancisco (wheat and rye sourdough) 
L. farciminis 
L. fermentum 
L. brevis 
L. plantarum 
L. amylovorus 
L. reuteri 
 

Wine (malo-lactic fermented) L. oenos 
 

Adapted from (Stiles 1996). 
 

2.3. History of biopreservation by lactic acid bacteria 
Fermentation was the first form of biopreservation that was used by human beings. 
Fermentation seems to have originated from the Indian subcontinent and indications of 
developed agricultural and animal husbandry have been found that date back to before 1700 
BCE. Besides, artifacts discovered from Egypt and Middle East also suggest that fermentation 
was known to human from ancient times. Green plant material is one of the natural sources of 
lactic acid bacteria, and in the past the involuntary contamination of raw milk with a variety 
of lactic acid bacteria must have led to fermented products during the storage. The conversion 
of lactose to acids and mainly lactic acid prevented the growth of undesirable bacteria, and it 
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may have been a mere accident when people first experienced the taste of fermented food. 
Later on, applications of fermentation extended to other food products including bread, 
cheese, fermented vegetables like sauerkraut, and fermented meats. Fermentation became 
more and more popular over time, not only because of its preserving ability but also because 
of the desirable sensory properties that it adds to the fermented products (Ström, Sjögren et al. 
2002, Farnworth 2008). 

2.4. Metabolism of lactic acid bacteria  
The metabolism of LAB is very diverse, and can vary significantly between different strains. 
This definitely cannot be fully covered by this section, but some of the most important and 
relevant metabolic pathways of the commonly used strains of LAB in food industry will be 
briefly discussed in the following.  

2.4.1. Fermentation pathways 

LAB do not possess a functional respiratory system, and obtain their energy by substrate-level 
phosphorylation. LAB can utilize sugars like glucose through either the homo- or 
heterofermentative pathways. In the homofermentative pathway, that is also called glycolysis, 
homolactic fermentation, or the Embden–Meyerhof–Parnas pathway (EMP), as shown in 
Figure 2.2, the only end-product is lactic acid. Oxidation of glyceraldehyde-3-phosphate to 
1,3-bisphosphoglycerate produces NADH, which is oxidized to NAD+ when pyruvate is 
reduced to lactate by lactate dehydrogenases (LDH). Through glycolysis, 1 mole of glucose 
yields 2 moles of lactic acid, and  2 moles of ATP (Fugelsang and Edwards 2006, Von Wright 
and Axelsson 2011). 
 
In the heterofermentative or heterolactic fermentation pathway, also known as the pentose 
phosphoketolase pathway, the hexose monophosphate shunt, or the 6-phosphogluconate 
pathway, in addition to lactic acid, significant amounts of CO2, ethanol or acetate are 
produced from sugars.  In the heterolactic fermentation, 1 mole of glucose yields only 1 mole 
of ATP if the intermediate acetyl phosphate is reduced to ethanol, and 2 moles of ATP if the 
acetyl phosphate is converted to acetic acid (Fugelsang and Edwards 2006, Von Wright and 
Axelsson 2011).  
 

Hexoses other than glucose (mannose, galactose, and fructose) can also be utilized through 
these major pathways, after different isomerization and phosphorylation steps and being 
converted to either glucose-6-phosphate or fructose-6-phosphate. For galactose there are two 
different pathways, depending on whether it enters the cell as galactose-6-phosphate, or as 
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free galactose, but this will not be discussed in detail (Fugelsang and Edwards 2006, Von 
Wright and Axelsson 2011). 
 

The type of fermentation is an important taxonomic criterion for LAB. LAB can be obligate 
homofermentative (Group I), facultative heterofermentative (Group II), or obligate 
heterofermentative (Group III). Obligate homofermentative lactobacilli (e.g. L. acidophilus, 
and L. delbrueckii) ferment hexoses homofermentatively, but cannot metabolize pentoses. The 
characteristic enzyme in microorganisms that can metabolize hexoses by glycolysis is 
‘aldolase’, which as Figure 2.2 shows, catalyzes the conversion of 1 mole of fructose-1,6-
bisphosphate to 2 moles of glyceraldehyde-3-phosphate. Obligate heterofermentative 
lactobacilli (e.g. L. brevis, and L. fructivoransi) lack aldolase, and divert carbon flux through 
the pentose phosphate, or phosphoketolase (heterolactic fermentation) pathways. These 
lactobacilli possess phosphoketolase, the enzyme responsible for the formation of 
glyceraldehyde-3-phosphate and acetyl phosphate from xylulose-5-phosphate. Facultatively 
heterofermentative lactobacilli (including L. casei, and L. plantarum that is investigated in 
Paper V) ferment hexoses homofermentatively, and also ferment pentoses. These bacteria 
contain aldolase, and besides that, production of phosphoketolase is induced by pentoses 
(Fugelsang and Edwards 2006, Von Wright and Axelsson 2011). 

2.4.2. Alternative pathways for pyruvate 

Pyruvate has a key role in the fermentation pathways, and also helps to maintain the 
oxidation-reduction (redox) balance in the cell, by acting as an electron acceptor to form lactic 
acid. Depending on the type of the bacteria and the physiological conditions, pyruvate can be 
converted into other metabolites than merely lactate, through other biochemical pathways. 
Especially, under carbohydrate source limitation, the metabolism can shift towards mixed-
acid fermentation, in which acetic acid, formic acid, succinic acid and also ethanol can be 
produced besides lactic acid (Liu 2003, Lahtinen, Ouwehand et al. 2011). Some of the 
alternative pathways for pyruvate consumption are shown in Figure 2.2. 
 
Under carbohydrate source limitation and under anaerobic conditions, LAB can metabolize 
pyruvate to formic acid and acetyl-CoA in a reaction catalyzed by pyruvate–formate lyase 
(Thomas, Ellwood et al. 1979, Kandler 1983). The acetyl-CoA formed can act as an electron 
acceptor to yield ethanol, or it can be used for substrate-level phosphorylation and subsequent 
ATP synthesis, giving acetate as the end-product. Therefore, even LAB species with 
homolactic hexose metabolism can under certain conditions have lactate, acetate, formate, and 
ethanol as the final metabolic end-products. This phenomenon is called ‘mixed acid 
fermentation’ and is different from the normal heterolactic fermentation (Von Wright and 
Axelsson 2011). 
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Under aerobic condition, pyruvate can be converted to acetate by the pyruvate oxidase, where 
H2O2 is also formed. This pathway may lead to the significant aerobic formation of acetic 
acid. It has been shown that L. lactis can undergo homoacetic fermentation in cultures under 
substrate limitation and aerobic conditions (Smart and Thomas 1987, Von Wright and 
Axelsson 2011). 
 
In many strains of LAB, pyruvate can also be converted to diacetyl (butter aroma), acetoin, or 
2,3-butanediol. Diacetyl is a product of citrate metabolism and is responsible for the aroma 
and flavor of certain fermented dairy products. Pyruvate can be converted to α-acetolactate by 
acetolactate synthase (Lahtinen, Ouwehand et al. 2011), which according to the pathways 
shown in Figure 2.2, can be subsequently converted to diacetyl and acetoin. A-acetolactate is 
converted to diacetyl spontaneously through a slow chemical, and non-enzymatic reaction and 
diacetyl can be subsequently reduced to acetoin by diacetyl reductase. A-Acetolactate can also 
be directly converted into acetoin by acetolactate decarboxylase (Caspi, Altman et al. 2014). 
This pathway and synthesis of α-acetolactate is active only under the condition of surplus 
pyruvate, and as reported in literature, will be enhanced at lower pH values (Le Bars and 
Yvon 2008, Von Wright and Axelsson 2011).  

2.4.3. Catabolism of amino acids  

Metabolism of amino acids by LAB have important physiological roles including intracellular 
pH control, controlling the redox state of the cells, and being involved in metabolic stress 
responses. A wide range of general and specific regulators are involved in the catabolism of 
amino acids by LAB, which varies significantly between different strains. As LAB are widely 
used for the production of fermented food products by the industry, studying the catabolism 
of amino acids by LAB is relevant for the safety and the quality of fermented products. 
Studying the metabolism of amino acids by LAB has received special attention, because the 
products from amino acids catabolism can significantly enhance the sensory properties of 
food products. It is reported that in general, all amino acids can be metabolized by LAB, 
however there are significant differences between strains in their ability to degrade amino 
acids.  Different enzymes are involved in the catabolism of LAB, including 
aminotransferases, decarboxylases, lyases, and dehydrogenases (Tammam, Williams et al. 
2000, Williams, Noble et al. 2001, Liu, Holland et al. 2003). In the following, the catabolism 
of several amino acids are briefly described.  
 

Figure 2.3 shows the catabolic pathways of asparagine, aspartic acid, glutamine, and glutamic 
acid. Asparagine degradation generally starts by the asparaginases activity that catalyzes the 
hydrolysis of asparagine to aspartic acid and ammonia. For aspartic acid, three catabolic 
pathways have been reported that are catalyzed by three different enzymes: aspartate 
aminotransferase, aspartase, and aspartate decarboxylase. The pathway catalyzed by the 
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aspartate aminotransferase produces oxaloacetate and pyruvate, the pathway catalyzed by 
aspartase, depending on the physiological conditions can produce fumaric acid, succinic acid 
or malic acid, and finally the pathway catalyzed by aspartate decarboxylase can synthesize 
alanine (Fernández and Zúñiga 2006). 
 
There is not detailed knowledge on the catabolism of glutamine by LAB, but it has been 
observed that several strains of LAB can metabolize it (Kieronczyk, Skeie et al. 2001, 
Williams, Noble et al. 2001). Glutamine cyclotransferase activity that converts glutamine into 
pyroglutamate and ammonium has been reported for thermophilic LAB such as L. 
delbrueckii, L. helveticus, and Streptococcus thermophiles (Mucchetti, Locci et al. 2002).  

 

Figure 2.3. Catabolic pathways of asparagine, aspartic acid, glutamine, and glutamic acid by LAB. 
The following abbreviations are used: Aspdc, Asp decarboxylase; AspNt, Asp aminotransferase; 
Asnase, asparaginase; Glncy, Gln cyclase; Glnase, glutaminase; Gludc, Glu decarboxylase; Gludh, 
Glu dehydrogenase; Oxacdc, oxaloacetate decarboxylase; Sucdh, succinate dehydrogenase Reprinted 
from (Fernández and Zúñiga 2006). 
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Glutamic acid plays an important role as an intermediate in the catabolism of amino acids by 
LAB, as all the aminotransferases utilize glutamic acid as the donor substrate of amino 
groups. LAB strains that have active glutamate dehydrogenase (GDH), can produce α-
oxoglutarate from the deamination of glutamic acid, by the biochemical reaction  (Tanous, 
Kieronczyk et al. 2002):  
 

��������� � ����������� 	 					���					������ � � ������������� � ����������� � �� 

A-oxoglutarate (α-ketoglutarate) has a key role in amino acid catabolic pathways and a 
number of studies have shown that the addition of exogenous α-oxoglutarate can significantly 
increase the metabolism of amino acids by several LAB (Rijnen, Courtin et al. 2000, 
Tammam, Williams et al. 2000, Williams, Withers et al. 2000, Tanous, Kieronczyk et al. 
2002, Helinck, Le Bars et al. 2004).  
 
It has been reported that some strains of LAB can metabolize alanine when α-oxoglutarate is 
present, suggesting that alanine is metabolized by transamination (Tammam, Williams et al. 
2000, Williams, Noble et al. 2001). On the other hand, it has been reported that some other 
strains of LAB do not require α-oxoglutarate to utilize alanine (Liu, Holland et al. 2003), that 
can be explained by strain variations. Alanine racemase activity has been observed in L. 
reuterii (Thompson, Griffin et al. 2002), and L. plantarum (Hols, Defrenne et al. 1997). 
Alanine racemase plays an important role in alanine catabolism and is essential for cell wall 
biosynthesis in L. plantarum (Palumbo, Favier et al. 2004) and L. lactis (Steen, Palumbo et al. 
2005).  
 
It is shown by several studies that some strains of LAB can utilize proline (Tammam, 
Williams et al. 2000, Williams, Noble et al. 2001, Liu, Holland et al. 2003), but the catabolic 
pathways are not known. Proline can be converted to 1-pyrroline-5-carboxylate which can 
then be oxidized to glutamic acid, by proline dehydrogenase activity. Proline can also be 
utilized by pyrroline-5-carboxylate reductase, but the reaction is reversible and it can also be 
used in the biosynthesis of proline (Kenklies, Ziehn et al. 1999). It has been observed that 
some strains of LAB accumulate proline in response to osmotic stress (Jewell and Kashket 
1991, Molenaar, Hagting et al. 1993, Glaasker, Konings et al. 1996, Baliarda, Robert et al. 
2003). Therefore, proline’s main role may be in osmotic stress response rather than a source 
of energy (Poolman and Glaasker 1998, Fernández and Zúñiga 2006).  
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2.5.  Antimicrobial metabolites of lactic acid bacteria 
The antagonistic and inhibitory properties of LAB refer to the inhibition of other 
microorganisms through competition for nutrients and/or by the production of one or more 
antimicrobial metabolites.  
 
The antimicrobial metabolites can be divided into the low molecular mass non-proteinaceous 
compounds and the proteinaceous bacteriocins that are antimicrobial peptides. Low molecular 
weight compounds have a wide range of activity against both Gram-positive and Gram-
negative bacteria and fungi, whereas bacteriocins mainly inhibit Gram-positive bacteria 
(Niku‐Paavola, Laitila et al. 1999). The diversity of compounds that have been shown to 
provide antifungal activity include organic acids (lactic and acetic acids),  diacetyl, acetoin, 
phenyllactic acid, fatty acids,  cyclic dipeptides, reuterin, reutericyclin, antifungal peptides, 
bacteriocines, lactones, hydrogen peroxide, and others (Galvez, Abriouel et al. 2007, Calo-
Mata, Arlindo et al. 2008, Ghanbari, Jami et al. 2013, Brosnan, Coffey et al. 2014). A 
summary of some of the LAB antimicrobial compounds that have been identified and their 
inhibition spectrum is presented in Table 2.2. 
 
One of the main factors that lead to the preservation effect of LAB is definitely the production 
of organic acids. Acidification is highly used for preservation of food products like milk, 
vegetables, and sausages. LAB are characterized by their tolerance to low pH, allowing their 
growth under circumstances in which other bacteria are unable to grow.  
 
Organic acids have different modes of action for exerting their antimicrobial effects. The 
inhibition mechanism of lactic acid is probably related to the different solubility properties of 
its acid-base conjugates. The non-dissociated lactic acid can dissolve within the cytoplasm 
membrane, whereas its dissociated form is insoluble. This results in the acidification of 
cytoplasm and influences the trans-membrane pH gradient which in turn decreases the amount 
of available energy for the cells of other bacteria (Oda, Saito et al. 2002). Lactic acid can also 
interfere with metabolic processes such as oxidative phosphorylation (Calo-Mata, Arlindo et 
al. 2008). Acetic acid has proved to inhibit the growth of Gram-positive and Gram-negative 
bacteria, as well as yeasts and fungi. This effect is pH dependent and is more pronounced at 
pH values below 4.5. It is the un-dissociated form of acetic acid that contributes to the 
antimicrobial effect. Although its mechanism of action is not fully known, un-dissociated 
acetic acid may enhance lipid solubility, resulting in increased fatty acid accumulation on the 
cell membrane and consequently the rapid dissolution of the membrane. Lactic acid and acetic 
acid mixtures have a synergistic effect that reduces the minimum inhibitory concentration 
(MIC) of each acid in the mixture.  
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Table 2.2. A summary of some of the antimicrobial compounds identified from lactic acid bacteria. 
 
 

Class  LAB  Source
 

Compound(s)  Inhibition spectrum 

 
Protein 

 
L. coryniformis Si3 

 
sourdough  
 

 
proteinaceous compounds 
(approximately 3 kDa) 
 

 
mold: Aspergillus, 
Penicillium, Mucor, 
Talaromyces, Fusarium 
 
yeast: Debaryomyces, 
Kluyveromyces 
 

 L. paracasei subsp. 
paracasei M3 
 

cheese proteinaceous compounds  
(43 kDa) 

Saccharomyces cerevisiae 
 

Other 
compounds 

L. reuteri pig intestine reuterin mold: Aspergillus, Fusarium 
 
yeast: Saccharomyces, 
Candida,Torulopsis 
 

 L. sanfrancisco CB1 sourdough caproic acid, propionic acid, 
butyric acid, valeric acid 
 

Fusarium, Penicillium, 
Aspergillus, Monilia 
 

 L. plantarum VTT E–
78076 

beer benzoic acid, 
methylhydantoin, 
mevalonolactone,  
cyclo (Gly–Leu) 
 

Fusarium avenaceum 

 L. plantarum 21B sourdough phenyllactic acid, 
4-hydroxyphenyllactic acid 

Aspergillus, Eurotium, 
Endomyces, Penicillium, 
Monilia 
 

 L. plantarum MiLAB 
393 

grass silage phenyllactic acid, 
cyclo(Phe–Pro), cyclo(Phe–
OH–Pro) 

mold: Aspergillus, 
Penicillium, Fusarium 
 
yeast: Candida, 
Debaryomyces, 
Kluyveromyces, Rhodotorula, 
Saccharomyces,  
Phichia 
 

 L. plantarum MiLAB 
14 

lilac flowers hydroxy fatty acids 
(3-hydroxydecanoic acid, 
3-hydroxy-5-cis-dodecenoic 
acid, 
3-hydroxydodecanoic acid, 
3-hydroxytetradecanoic 
acid) 
 

mold: Aspergillus, 
Penicillium 
 
yeast: Kluyveromyces, 
Phichia, Rhodotorula 

 L. plantarum FST 1.7 malted barely phenyllactic acid, 
cyclo(Leu–Pro), 
cyclo(Phe–Pro) 
 

Aspergillus niger, Fusarium  

 L. plantarum AF1 kimchi cyclo(Leu–Leu), 
unidentified compounds 

Penicillium, Aspergillus, 
Epicoccum, Cladosporium 
 

 

Table modified from Ref. (Yang and Chang 2010). 
 



 

19 
 

Benzoic acid and its sodium salt are commonly used in the food industry as antifungal agents 
(Hazan, Levine et al. 2004). Dairy products can contain benzoic acid as some LAB are able to 
produce it (Garmiene, Salomskiene et al. 2010). The mechanism of benzoic acid action seems 
to be hindering macroautophagy. Macroautophagy is thought to allow cellular physiology to 
continue in the absence of external nitrogen resources, by the degradation of cellular contents 
(Hazan, Levine et al. 2004). Propionic acid is used in food as an antifungal agent, but can also 
hinder the growth of Gram-positive and Gram-negative bacteria. Propionic acid is produced 
by heterofermentative LAB in trace amounts. Propionic acid interacts with cell membranes 
and neutralizes the electrochemical proton gradient. The antifungal inhibition effect of 
propionic acid is often dependent on the decrease in pH caused by lactic acid, and is higher at 
lower pH values. Propionic acid also inhibits amino acid uptake. Salts of propionic acid, such 
as sodium propionate and ammonium propionate also show similar antifungal and anti-yeast 
effects at low pH (Reis, Paula et al. 2012).  
 

Most Lactobacilli species are able to produce hydrogen peroxide by the oxidation of lactate. 
H2O2 has antimicrobial effect even at refrigeration temperatures and can be beneficial in food 
preservation (Thomas, Milligan et al. 1994). In the presence of lactoperoxidase, H2O2 can 
oxidize thiocyanate ion (SCN ¯) into hypothiocyanite (OSCN ¯) which has antimicrobial 
characteristics.  This mode of action is mainly active against microorganisms that produce 
H2O2 as it requires both hydrogen peroxide and thiocyanate for optimum activity. However, 
hydrogen peroxide on its own is also known to be bactericidal, depending on the 
concentrations applied and the environmental factors such as pH and temperature (Reis, Paula 
et al. 2012).  
 
Bacteriocines are in general, cationic, amphiphilic, and membrane-permeabilizing 
antimicrobial peptides. Four classes of bacteriocins (I, II, III and IV) have been defined based 
on their chemical structure, molecular weight and thermal stability. Bacteriocines can also be 
classified based on their mode of action. Some of the members of the class I (lantibiotic) 
bacteriocins, such as nisin have shown a dual mode of action. They can prevent correct cell 
wall synthesis of bacteria by binding to peptidoglycan transporter lipids, and leading to the 
death of the cells. Moreover, they can also cause cells death by the formation of pores in the 
cell membrane. Large bacteriolytic proteins (bacteriolysins, formerly Class III), such as 
lysostaphin, can act directly on the cell wall of Gram-positive targets, leading to death and 
lysis of the target cell (Klaenhammer 1988, Reis, Paula et al. 2012). 
 

To expand the knowledge of antimicrobial properties of LAB, it is important to continuously 
expand our understanding of the influences that environmental factors have on the 
implantation and survival of protective cultures. Investigating the effect of different internal 
and external factors ˗such as pH, carbohydrate concentration, and temperature˗ on the 
metabolism of the strains and the excretion of antifungal compounds will allow optimizing all 
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the key factors and parameters in a way that the most efficient biopreservation system is 
ensured. It is also very important to select the optimum strain(s) for the desired food system 
and its specific conditions (e.g. its composition and storage condition), and to gain insight into 
the antifungal mechanisms of the selected protective cultures. Studying synergies between 
LAB and other bacterial cultures that can lead to enhanced biopreservation systems are also of 
interest. 

2.6. The effects of stress factors on the metabolism of 
lactic acid bacteria 

One of the areas that metabolomics has also been used in, has been investigating the 
metabolic responses of microorganisms to different environmental stress factors. The pattern 
of gene expression and the metabolome can alter considerably in response to external factors 
such as temperature, pH, ionic strength, and organic pollutants. These changes aim at adapting 
the cells to the new environment and increase viability (Lankadurai, Nagato et al. 2013). 
Stress factors usually induce a broader range of metabolites than just those that result from the 
major metabolic routes. In a food system, the stress derived metabolites, besides improving 
the survival and viability of cells under stress conditions in, can improve the sensory 
characteristics of food products.  
 
NMR has a great potential for investigating the effect of different stress factors on the 
metabolism of microorganisms and the metabolic shifts, as it allows in vitro measurements of 
bacterial fermentation. It allows rapid and quantitative measurement of the metabolites and is 
a very useful tool for discovering the stress response mechanism of microorganisms. 
 
As in other bacteria, LAB also use adaptive responses to protect their cells under stress 
responses. Except for some species, LAB in general are neutrophils and the optimum pH for 
their growth is between 5 and 9. At low pH values, the intracellular pH decreases and this 
affects the transmembrane pH gradient that is the motive force for many of the 
transmembrane transfer processes. The low intracellular pH value also reduces the activity of 
acid sensitive enzymes and can also damage proteins and DNA (De Angelis and Gobbetti 
2004). Acid stress can occur during fermentation of LAB or in the gastronomical tract when 
they are used as probiotics. When bacteria encounter acid stress, different metabolic reactions 
are initiated to maintain the neutral intracellular pH. The most important mechanism for 
regulating the homeostasis of internal pH in fermentative bacteria is proton ATPase that 
exports proton from the cytoplasm (Hutkins and Nannen 1993). For some of the strains 
including L. plantarum, the optimum pH value for ATPase is 5.0-5.5, whereas for other 
strains like L. lactis the optimum interval is 7.0-7.5 (Nannen and Hutkins 1991). The other 
important acid-stress response mechanism is arginine deaminase (ADI) pathway.  The 
catabolism of arginine and the production of ammonium through this pathway help to achieve 
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optimum internal pH. Besides, the extra ATP that is produced enables the extrusion of 
cytoplasmic protons.  Selecting strains that can express ADI pathway, in addition to the 
protection against acid stress, can enhance the sensory properties of food products. 
Decarboxylation of amino acids can also help to resist acid stress by consuming proton. 
Conversion of glutamine to glutamate can also help to maintain intracellular pH close to 
neutral. Glutamine can further be metabolized to γ-amino butyrate or glutamine. Malolactic 
fermentation can also help bacteria to cope with acid stress (Serrazanetti, Guerzoni et al. 
2009).  It is shown that if the cells are pre-exposed to sublethal pH, the viability of the cells 
will be higher during subsequent exposure to the lethal pH. This phenomenon is known as the 
acid tolerance response (ATR) (Jin, Zhang et al. 2012). ATR is used in fermented foods with 
probiotic strains to increase the viability of the cells in gastronomical tract.  
 
High temperatures can denature proteins and damage cell membrane and nucleic acids. Heat 
stress can also lead to the decrease in the intracellular pH by disturbing the transmembrane 
proton gradient (Piper, Ortiz-Calderon et al. 1997). The heat shock response is mediated by 
the synthesis of specific proteins (Hecker, Schumann et al. 1996).The genetic variation, the 
physiological state and environmental factors such as the growth medium, pH, and ionic 
strength can affect the heat resistance of lactobacilli. It is shown that for some of the species 
exposing the cells to a relatively high temperature before the lethal temperature challenge can 
considerably increase the viability of the cells (De Angelis and Gobbetti 2004).  
 
Depletion of the carbohydrate source or other essential nutrients, as well as the accumulation 
of the fermentation end products, can limit the exponential growth of bacterial cells and 
enforce the growth to enter the stationary phase.  Other stress factors such as heat, cold, 
osmotic, and oxidative stress can also enforce the growth to enter the stationary phase. The 
adaptive responses during the exponential phase of growth and the stationary phase are 
different. The adaptive responses during the exponential phase of growth involve only 
particular groups of genes to cope with specific stress factors. However, the stress responses 
in the stationary phase involve many groups of genes to cope with different stress factors. 
Besides, the responses in the stationary phase are developed without exposure to the stress 
conditions. 
 
Stress factors can induce metabolic shifts and change the metabolic profiles, as the result of 
the changes in gene expression patterns. For instance, for L. sanfranciscensis, it was shown 
that acid stress can cause overproduction of 2- and 3-methylbutanoic acids, reduced sugar 
consumption, and reduced primary carbohydrate pathway metabolites. Moreover, the 
consumption of branched-chain amino acids increased up to seven times under acid stress 
(Serrazanetti, Ndagijimana et al. 2011), which can enhance the sensory properties of food 
products. Investigating the metabolic rerouting of the microorganisms under stress conditions 
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can lead to valuable knowledge that can be used for improving the quality of fermented food 
by using stress factors for the overproduction of desired metabolites. 
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3.  Microbial metabolomics by NMR 

This chapter aims at providing a short overview of the principles of Nuclear Magnetic 
Resonance (NMR) spectroscopy and applications of this analytical technique in metabolomics 
studies, with a focus on bacterial metabolomics. In the last section, in vivo NMR spectroscopy 
is introduced and possibilities that it can offer the metabolomics studies of live organisms and 
microorganisms are highlighted. 

3.1.  Principles of Nuclear Magnetic Resonance 
spectroscopy 

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful analytical technique and can 
be used for qualitative and quantitative analysis of complex mixtures, kinetic studies, 
determination of the isotopic distribution within molecules, and structural elucidation of 
molecules (Ramos, Neves et al. 2002). Like any other spectroscopic method, NMR relies on 
the interaction between energy and matter (Weber and Thiele 2008), but unlike other 
spectroscopic methods it require a strong static magnet field. The origin of NMR dates back 
to 1946 when two independent groups of scientists at Harvard University and Stanford 
University observed proton resonance signals from paraffin wax and water, respectively. The 
founding pioneers of the subject, Edward Purcell and Felix Bloch, were awarded the Nobel 
Prize in physics in 1952 “for their development of new methods for nuclear magnetic 
precision measurements and discoveries in connection therewith”. Later on, two of the 
pioneers of modern NMR methods were awarded the Nobel Prize in chemistry; Richard Ernst 
in 1991, “for his contributions to the development of the methodology of high-resolution 
NMR spectroscopy”, and more recently Kurt Wüthrich in 2002, “for his development of 
NMR spectroscopy for determining the three-dimensional structure of biological 
macromolecules in solution”. In 2003, Paul Lauterbur and Peter Mansfield, who laid the 
foundation for snapshot MRI (image formation from data acquired in a fraction of a second), 
shared the Nobel Prize in Physiology or Medicine “for their discoveries concerning magnetic 
resonance imaging” (www.nobelprize.org , Pekar 2006). The field of NMR has benefited a 
rapid growth as an analytical technique and although having originated in the physics 
laboratories, nowadays, NMR is applied in chemistry, biology, medicine, materials science, 
food science and nutritional studies (Claridge 2008, Savorani, Rasmussen et al. 2013, Spyros, 
Dais et al. 2013). 
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In the following, some of the main theoretical aspects of NMR spectroscopy are briefly 

discussed. 

3.1.1. Nuclear spin and resonances 

The nuclei of all atoms, which consist of protons and neutrons, can be characterized by a 
nuclear spin quantum number, I, which can simply be called the ‘nuclear spin’. I may take 
values greater than or equal to zero which are multiples of 1/2. Nuclei with no nuclear spin 
(I=0) are not observed by NMR and are called ‘NMR silent’ or ‘NMR inactive’. The atomic 
nucleus is assumed to be spherical and rotating around its axis. Angular momentum, P, of a 
nucleus is calculated as: 
 
� � ���� � ��ħ                                                                                                                 (3.1) 
  
where ħ � � ���  , and h is Planck constant (6.6256×10-34 J.s), and as described above, I is 

nuclear spin. A nucleus with I≠0, behaves as a small magnet and its magnetic moment, µ, is 
quantized: 
 

 � � ��                                                                                                                              (3.2) 
 
where � is the magnetogyric ratio and is constant for each nuclide. Both angular momentum 
and magnetic moment are vector quantities, and are characterized by both magnitude and 
direction.  � can be considered as a measure of how magnetic a nuclide is. If the nuclide is 
placed in a static magnetic field, B0, which exists along the z-axis of a static Cartesian 
coordinate system, the microscopic magnetic moments (nuclear spins) align themselves 
relative to the field and can take up to 2I+1 possible orientations relative to the field, with the 
values ��	∈	-I -I+1 -I+2… I-1 I. Each orientation has its own energy level or state that can be 
calculated as: 
 
� � ����� � ����ħ��                                                                                                   (3.3) 
 
�� is the projection of the magnetic moment µ, along the magnetic field (z-axis) .  
 

The static field causes a circular motion of the magnetic moment about the axis of the applied 
field, which is called ‘Larmor precession’. Each nuclide precesses with a frequency which is 
specific to that nuclide that is known as ‘Larmor frequency’, �0, and is given by: 
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v� � � ������                                                                                                                       (3.4) 
           
 
Figure 3.1 shows a nuclear spin precessing in an external magnetic field B0.  
 

 

 
Figure 3.1. A nuclear spin precessing in an external magnetic field B0.   

Adapted from (De Graaf 2008). 

 
 
The angle between μ and B0, θ, is given by: 
 
cos	Ɵ� mI

�I�I���                                                                                                                       (3.5) 

 
So, when a nucleus with a 1/2 nuclear spin, such as 1H, is put in a magnetic field, the nuclei 
are distributed between two energy states, the parallel α state (mI= ½) or antiparallel β state 
(mI= -½), according to the Boltzmann equation. The state has lower energy and a higher 
population. According to Boltzmann law, the relative populations of the lower (Nα) and the 
higher (Nβ) energy levels are given by: 
 
��
�� � ��� � ��

���� � ���	���������                                                                                            (3.6) 

 
�� is the difference between the spins energy levels (Eβ ˗ Eα),, KB is the Boltzmann constant 
and T is the temperature . 
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Figure 3.2 presents a schematic illustration of the two mentioned energy states and a 
collection of the nuclei precessing around the B0 axis. 

Figure 3.2. a) Nuclear energy states of a 1/2 nuclear spin, b) a collection of the nuclei precessing 
around the B0 axis. Adapted from (De Graaf 2008). 

Based on the difference between the spins energy levels, it is radio waves from the 
electromagnetic spectrum that can cause the transitions between the different spin states. 1H is 
an NMR-active isotope of hydrogen which has a very high natural abundance and is the most 
commonly studied nuclide in NMR. 

3.1.2.  Chemical shifts and couplings 

In the atom, electron cloud surrounds the nucleus. When the atom is subjected to an externally 
applied magnetic field B0, a rotational motion is induced in the electron cloud and the 
electrons will rotate about B0 in an opposite sense relative to the proton spin precession. As 
electrons are charged particles, their motion will result in a magnetic moment. This gives rise 
to a small local magnetic field, Bloc, that may oppose the external field B0, and as a result, the 
nucleus experiences a slightly reduced field, which can be called effective field, Beff. 
According to the Lenz rule, Bloc is equal to σB0. The parameter σ is called the ‘shielding 
constant’ and depends on the density and distribution of the electron cloud that surrounds the 
nucleus. σ can take values ranging from 10-6 for the lighter nuclides to 10-3 for the heavier 
nuclides. Beff is be given by: 
 

                                                                   (3.7) 
  
 
As the resonance frequency of a nucleus depends on the (effective) magnetic field, this results 
in the differences in the resonance frequency of the nuclei in different molecules relative to 
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the Larmor frequency of the nuclide, based on the differences in their chemical environment. 
Taking this into account, Eq. (3.4) can be re-written as: 
 

                                                                                                  (3.8) 
 
This phenomenon is known as ‘chemical shift’ and is caused by shielding (screening) of the 
nuclei from the external magnetic field by the electron cloud that surrounds them. If chemical 
shifts are expressed in units of Hertz, this will make them dependent on the B0. To avoid this 
dependency, chemical shifts are expressed in terms of (parts per million) ppm, which is 
independent of the field strength. By convention, chemical shift, δ, is defined as: 
 

                                                                                                               (3.9) 

 
 is the frequency of the compound under investigation and ref  is that of a reference 

compound. The reference compound should ideally be chemically inert, should have a well-
resolved singlet (a unimodal signal with no splitting), and its chemical shift should be 
independent of external variables (such as temperature and ionic strength). Tetramethylsilane 
(TMS) is widely used as a reference compound for 1H and 13C NMR studies in organic 
solvents. For aqueous solutions, 3-(trimethylsilyl) propionate (TSP) or 2,2-dimethyl-2-
silapentane-5-sulfonate (DSS) can be used as the reference compound (Friebolin 2005, De 
Graaf 2008). If the density of the electron cloud that surrounds the nuclei is high, the nuclei 
will be highly shielded and will resonate at lower frequencies or higher magnetic fields. 
Whereas nuclei that are surrounded by electron clouds with lower density, will be shielded 
less and will resonate at higher frequencies or lower magnetic fields. Shielded nuclei give rise 
to smaller chemical shifts relative to the internal reference than de-shielded nuclei, which 
appear at larger chemical shifts. 
 

Functional groups can change chemical shifts of nuclei. If an electronegative atom or group is 
present in the vicinity of a nucleus, it will withdraw electrons and disturbs the electron density 
around the nucleus. This will cause a strong de-shielding effect and the chemical shift of the 
nucleus is shifted towards larger chemical shifts (higher frequencies) relative to the reference. 
The opposite effect can be observed with electron-donating substituent. The presence of such 
groups in the vicinity of a nucleus will increase the density of the electron cloud around it and 
the chemical shift will shift towards smaller chemical shifts (lower frequencies). In aromatic 
compounds, the circulation of p-electrons below and above the aromatic ring, which is 
referred to as the ‘ring current’, generates an anisotropic local magnetic field that has the 
same direction as the external field. As a result, the ring protons experience a pronounced de-
shielding effect and feel a higher magnetic field, which is associated with larger chemical 
shift values.  
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Chemical shifts provide valuable information about the chemical environment of the nuclei 
and are a great aid in structural elucidation of compounds. However, in addition to the 
chemical shifts, there is an additional feature in NMR spectroscopy that can help in assigning 
the signals and gaining chemical information from NMR spectra. This feature is called ‘scalar 
coupling’, ‘J coupling’ or ‘spin-spin coupling’ and is observed as the splitting of resonances 
into several smaller lines. The main cause for scalar coupling is the fact that the magnetic 
moments of the nuclei in a molecule can influence each other, both directly through space 
(dipolar coupling) and also through chemical bonds (scalar coupling). Dipolar interactions 
average to zero because of the rapid molecular tumbling; however this is not the case for the 
interactions that take place through the chemical bonds which results in the scalar couplings 
(Friebolin 2005).  
 

The quantum mechanical discussion related to the coupling will be avoided in this 
dissertation, but it can be briefly mentioned that the couplings are associated with transitions 
between energy levels or spin states. Multiplicity, or the number of the lines that a resonance 
is split into, can be calculated as: 
 

                                                                                                                   (3.10) 
 
M is the multiplicity, n is the number of equivalent neighboring nuclei that are coupled with 
the nucleus of interest, and I is the nuclear spin that was discussed earlier in this chapter. For 
I=1/2 nuclei, Eq. (3.10) can be simplified as: 
 

                                                                                                                       (3.11) 
 
For the simplest case, a coupled two-spin system, AX, the resonance of A and X will be split 
into doublets split by the coupling constant, JAX (Hz), centered at the Larmor frequency of A 
and X, as shown in Figure 3.3. Coupling constants are expressed in units of Hertz, and are 
independent of the magnetic field strength. 

 

Figure 3.3. Simulated NMR spectra of a simple AX coupling system.  
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The coupling can range from one- to five-bonds. One-bond and two-bond couplings that are 
known as ‘germinal coupling’, and also three-bond couplings that are known as ‘vicinal 
coupling’ can provide important structural information. The three-bond coupling is related to 
the dihedral angle that is formed by the three bonds (e.g. for 1H and 13C nuclei in H–C–C–H) 
and is the most informative one. Couplings can be heteronuclear and homonuclear, depending 
on the identity of the nuclei taking part in the coupling (Friebolin 2005, De Graaf 2008, 
Spyros, Dais et al. 2013).  

3.2. NMR data processing 
It is of high significance to optimize different acquisition parameters, such as pulse width, 
transmitter frequency, and receiver gain, in such a way that good quality data is ensured. 
Besides, appropriate processing of the acquired data can enhance the quality of the data even 
further, with specific emphasis on sensitivity and resolution enhancement. Data processing is 
performed before and after the Fourier transform of the FID. In the following subsections, 
different NMR data processing techniques are introduced and briefly discussed. Figure 3.4 
shows a flowchart of the NMR data processing techniques that were used and are discussed 
briefly in the following.  

Figure 3.4. A flowchart of the NMR data processing techniques. 

3.2.1.  Zero-filling 

Zero-filling is a term that is used to describe the procedure of increasing the digital resolution 
of the NMR spectrum by increasing the FID data points just before performing Fourier 
transform, by adding zeros to the end of the FID. Even if zero-filling may not enhance the 
resolution of a spectrum, it will improve the lineshapes and the appearance of the spectrum. 
This can be very helpful in resolving very small couplings in multiple structures. Usually 
zero-filling is used to double the data points.  
 

One should make sure that the FID has decayed to zero by the end of the acquisition time, 
because if not, baseline artifacts can occur after FT in the form of sinc wiggles. If the FID 
does not naturally fall to zero at the end of the acquisition time, window functions can be 
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employed to force the FID to zero, before performing zero-filling. It should be noted that after 
all, zero-filling cannot be a substitute for correct digitization of the recorded FID and 
optimizing acquisition parameters to get good quality data is of high significance (Claridge 
2008, De Graaf 2008, Spyros, Dais et al. 2013). 

3.2.2.  Apodization 

After collecting the data points for a reasonable number of scans and averaging the signals 
mathematically, the resulting time domain signal (FID) can benefit from a digital filtering 
type of manipulation, called ‘apodization’. Apodization is simply the practice of multiplying 
(convoluting) the FID with different window (weighting) functions which can be chosen to 
either enhance the sensitivity or resolution (or both if possible) in the final resulting spectrum. 
There are a variety of window functions that can be used on NMR data. Some of the most 
commonly used functions are demonstrated in Figure 3.5. 
 

Exponential window functions have a decaying form: , where lb is the line 

broadening parameter in units of Hz and is chosen by the operator, and t is time. As the initial 
part of the FID contains most of the signal and the tail mainly the noise, multiplying the FID 
with an exponential window function in which lb>0, will enhance signal-to-noise ratio 
(sensitivity) by digital filtration of the noise. But at the same time, truncating the FID tail will 
result in truncation artifacts or so called sinc wiggles. On the other hand, employing an 
exponential window function with lb<0, will yield enhancement of resolution at the expense 
of sensitivity decrease, as it will increase both the apparent decay rate and the noise amplitude 
at the tail of the FID. 
 

 

Figure 3.5. Some of the most commonly used apodization functions in NMR data processing. x-axis is 
time, and y-axis is intensity. 
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Lorentzian and Gaussian window functions (or a mixture of the two functions) are also 
commonly used for apodization. Equation 3.12 shows the Lorentz-Gaussian transformation, 
that converts a Lorentzian lineshape to a Gaussian lineshape (De Graaf 2008):  
 

                                                                                        (3.12) 

 

The first part is the inverse Lorentzian function and the second part is the Gaussian function. 
ffilter is the resulted window function that will be multiplied by the original FID. TL and TG are 
the linewidth of the Lorentzian and Gaussian functions respectively. Compared to the 
Lorentzian function, the Gaussian function has much faster decay from the peak and narrower 
wings. Although the true theoretical lineshape of NMR peaks is typically Lorentzian 
(Ebrahimi, Nilsson et al. 2014), it can often be advantageous to use a Gaussian shape as this 
has a narrower base and can improve resolution, but at a moderate cost in sensitivity. A 
narrower linewidth for Lorentzian or Gaussian window functions will enhance resolution, 
whereas a wider linewidth will enhance sensitivity. If a too narrow linewidth is chosen, the 
sensitivity will decrease dramatically, especially for the Lorentzian function, and if the 
linewidth is too wide, the resolution will decrease significantly. So, choosing between the 
Lorentzian and Gaussian window functions, and choosing the linewidth, is in fact a trade-off 
between resolution and sensitivity enhancement, and naturally depends on the objective of the 
analysis. Comparing the results of apodization with different window functions and 
linewidths is often worthwhile and can help in finding the optimum condition for the data 
being investigated (De Graaf 2008, Spyros, Dais et al. 2013, Ebrahimi, Nilsson et al. 2014). 

3.2.3. Fourier transform: the bridge between the time and frequency domains 

After excitation of a nuclear spin in a magnetic field, by the pulses emitted from the 
transmitter in an NMR spectrometer, the system will start to re-establish the equilibrium 
condition and lose the excess energy that is imparted into the system by the applied pulse. 
This is done by the relaxation of the excited spins (with the rates that are specific to different 
nuclei). During this process the transverse magnetization (in the rotating frame) will be 
detected by the rf coil of the detection channel. This signal is called the ‘free induction decay 
(FID)’. The FID is a complex signal that can be decomposed into real (absorption mode) and 
imaginary (dispersion mode) components by projections, as shown in Figure 3.6.  
 
The FID is a time-domain representation of the nuclear precession frequencies within the 
sample and its data content is not easy to use and not that informative as it is. To make the 
FID interpretable, one should transform the time-domain FID into the frequency-domain 
NMR spectrum. This transformation is performed by a mathematical procedure called 
‘Fourier transform (FT)’ and has the general form of:  
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                                                                                               (3.13) 
 

 is equal to 2π ;  represents the frequency domain and is a complex function, whereas 
f(t) represents the time-domain. It is usually only the real part of the spectrum that is 
displayed, however the real and imaginary parts both can represent the spectrum and it is only 
their phase that differs by 90◦. FT and its applications are not limited to NMR spectroscopy, 
and FT can transform any function from the time-domain to the frequency-domain. In the 
early days of FT NMR, it was often the FT step that was the rate-limiting stage in producing a 
spectrum, although with today’s computers and the use of the Cooley–Tukey algorithm 
(Cooley and Tukey 1965) for fast Fourier transform (FFT), the time requirements are not of 
much consequence anymore. Figure 3.7 demonstrates a number of simple FIDs and their 
corresponding spectra (Claridge 2008, De Graaf 2008, Spyros, Dais et al. 2013).  
 

 

Figure 3.6. The free induction decay (FID) of nuclear magnetization precessing at the Larmor 
frequency of the corresponding nucleus, after an excitation pulse. Mx and My represent the real and 
imaginary components of the complex FID, respectively. Reprinted from (De Graaf 2008). 
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Figure 3.7. Examples of simple FIDs that are transformed into their frequency-domain NMR 
spectrum by FT. Adapted from (Claridge 2008). 

3.2.4. Phase correction 

Phase correction is the process of correcting phase errors in the spectra. Phase errors can 
make the signals to have a dispersive line shape or be inverted. Figure 3.8 shows an example 
of a spectrum with phase errors and also a spectrum that is properly phased.  
 
There are two main reasons for the phase errors: 1) the delays in the pulse sequences, and 2) 
off-resonance effects. In the NMR pulse sequences, short time delays (tens of microseconds) 
are introduced between the closure of the transmitter after the implementation of each pulse 
and the opening of the receiver to acquire the FID. These delays are necessary to protect the 
receiver electronics from the harmful effect of the pulse. Because of these delays, the acquired 
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spectra will be a mixture of absorptive and dispersive signals, and the peaks will have some 
portion that is displaced below the baseline, not looking like their ideal Lorentzian shape. The 
second reason for the signals to be out of phase is off-resonance effects that originate from 
pulse imperfections. If the pulse power is not sufficient to excite all the nuclei in the sample 
equally, for the nuclei that resonate outside the excitation frequency bandwidth of the pulse, 
the magnetization will not flip exactly on the xy-plane after the 90◦ pulse. This will result in a 
phase difference between these nuclei that are namely off-resonance, and the nuclei that are 
on-resonance and are properly excited with the pulse. As proton nuclei have relatively narrow 
frequency dispersion, phase errors of this kind are usually small in 1H NMR, and being almost 
a linear function of frequency, are easy to correct. 

 

Figure 3.8. An example of an NMR spectrum before and after phase correction. 
 
 
Phasing the spectrum is a routine procedure and involves zero-order and first-order phase 
corrections. Zero-order correction is frequency independent and can correct phase errors that 
affect all the peaks equally. Whereas, the first-order correction is frequency dependent, and is 
necessary to correct more complicated phase errors (Claridge 2008, Spyros, Dais et al. 2013). 

3.2.5. Baseline correction 

To have accurate quantification by NMR, it is important to have a horizontal baseline. 
Especially in metabolomics studies where small peaks can be very important, baseline 
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distortions can hinder useful information. In case the first data points in FID are corrupted, 
because of high signal amplification or if the receiver electronics have not fully recovered 
from the influence of the RF pulse, this can result in a distorted baseline in the NMR 
spectrum. A truncated FID can also cause a distorted baseline. These can be avoided by 
proper adjustment of signal amplification and using a proper acquisition time to ensure full 
decay of the FID. Baseline correction methods try to model the baseline by fitting it to 
polynomial, sine or exponential functions, with polynomial function being the most common 
one. After modelling the baseline, it is simply subtracted from the spectrum to yield the 
baseline corrected spectrum (Spyros, Dais et al. 2013).  

3.3. Enhancing quality of NMR spectra 
In NMR spectra, peaks position and area contain useful qualitative and quantitative 
information. Factors like temperature fluctuations and changes in the pH of the sample can 
lead to the peaks shape changes or shift in the position of a chemical compound between a 
series of similar samples. From the perspective of multivariate analysis, if position or shape of 
the peaks of a specific compound change between the measurements, multivariate models 
become unnecessarily complex and interpreting them becomes difficult. Successful use of the 
multivariate models will only be possible if there is good reproducibility in the data and 
variations in peaks shape and position between measurements do not happen or are corrected. 
When peaks shift or shape changes happen, data will not be bilinear which implies that 
methods, such as Principal Component Analysis (PCA) (Wold, Esbensen et al. 1987), and 
partial least squares regression (PLS) (Wold, Martens et al. 1983) will not be efficient. 
Therefore, it is important to correct peaks shift and shape changes prior to the multivariate 
analysis. Reference deconvolution (see below) and the icoshift alignment program (Savorani, 
Tomasi et al. 2010) are two of the methods that can be very useful for correcting peaks shape 
changes and position shift, respectively. The theory of these methods and how they can 
benefit data analysis of NMR data are presented in the following.  

3.3.1. Reference deconvolution (Paper I) 

Most of the instrumental imperfections, such as magnetic field inhomogeneity, pulse phase 
and amplitude errors, and field instability, affect all the signals in an NMR spectrum equally 
and are independent of frequency of the resonances that they affect (Morris 1988, Barjat, 
Morris et al. 1995). Reference deconvolution is a data processing method that is highly 
effective at correcting systematic and frequency independent errors in NMR data. It extracts 
the signal of a known reference signal from the experimental data, compares it to the 
theoretically expected form, and constructs the correction function needed to convert the full 
experimental dataset into the form that it would have had if the unwanted perturbations 
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experienced by the reference signal had not been present. Reference deconvolution is fast, 
linear (to a good approximation—the noise structure is changed slightly because the 
experimental noise in the reference region is convoluted onto the full spectrum), and robust. It 
should be noted that reference deconvolution cannot correct instrumental imperfections that 
are frequency dependent. Examples include errors in the spectra that originate from 
temperature changes and gradients, as well pH variations (Barjat, Morris et al. 1995). 
Reference deconvolution has been known to NMR spectroscopists for many years, but it 
appears to have been neglected by the NMR-based metabolomics/chemometrics community.  
 

A number of different algorithms have been proposed for reference deconvolution (Wouters 
and Petersson 1977, Wouters, Petersson et al. 1977, De Graaf, Van Dijk et al. 1990), but they 
all share the same basis. One of the effective and simple algorithms that are used for reference 
deconvolution is FIDDLE (Free Induction Decay Deconvolution for Lineshape Enhancement) 
algorithm. The theoretical basis of FIDDLE has been discussed extensively in the literature 
(Morris 1988, Morris, Barjat et al. 1997, Metz, Lam et al. 2000), but a graphical illustration of 
the key elements is shown in Figure 3.9 and explained in the following. The NMR time-
domain data, the free induction decay or FID (Figure 3.9. (a)), are zero-filled (to retain all the 
spectral information), Fourier-transformed (FT), and phase-corrected to yield the raw NMR 
spectrum (Figure 3.9. (b)). A suitable reference signal in the spectrum is then chosen, and the 
rest of the spectrum is set to zero. The real part (the absorption mode) of this filtered spectrum 
is subjected to inverse Fourier transformation to give a complex FID that contains only the 
reference signal (Figure 3.9. (c)). Choosing to retain only the real part of the reference 
spectrum excludes dispersion mode signals, making clean extraction of the reference signal 
much easier; no information is lost if the initial FID was zero-filled. In parallel, a synthetic 
FID (Figure 3.9. (e)) is calculated for the reference signal, using the known frequency (or 
frequencies; in the case of a reference such as TSP, 29Si and 13C satellite signals are included) 
and a specified lineshape. The latter is chosen by the user, according to need; while the true 
theoretical lineshape is typically Lorentzian, it can often be advantageous to use a Gaussian 
shape, because of its narrower base. This choice of target lineshape is analogous to the choice 
of window function (apodization) in normal FT processing, and the same considerations for 
resolution or sensitivity enhancement apply, as discussed in Section 3.2.1. The most 
conservative choice is a Lorentzian lineshape of approximately the same width as the 
experimental reference signal (Figure 3.9. (d)); this regularizes the lineshape (and phase and 
frequency) with minimum change in resolution and S/N. A complex correction function 
(containing both real and imaginary parts) is then constructed by dividing the ideal reference 
FID (Figure 3.9. (e)) by the experimental reference FID (Figure 3.9. (c)). The cumulative 
effect of instrumental imperfections such as field inhomogeneity, pulse phase error, and 
modulation sidebands is to multiply the FID that would have been recorded if the instrument 
had behaved ideally by a complex time-domain error function. The correction function 
calculated here is the inverse of that function, so when the original (full) experimental FID 
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(Figure 3.9. (a)) is multiplied by the correction function, the result is a corrected FID (Figure 
3.9. (f)) in which all the multiplicative errors seen in the reference FID have been corrected. 
The corrected FID can then be Fourier transformed to yield the reference-deconvoluted 
spectrum (Figure 3.9. (g)), in which such imperfections as lineshape distortions, signal 
amplitude errors, and signal phase changes have been corrected (Morris, Barjat et al. 1997, 
Metz, Lam et al. 2000, Ebrahimi, Nilsson et al. 2014) 
 
For best results, the reference peak should be a well-resolved singlet, which is present with 
high signal-to-noise ratio (S/N) in all the spectra being deconvoluted. Typical examples of 
suitable signals are those from 3-(trimethylsilyl) propionic acid (TSP-d4), tetramethylsilane 
(TMS), and sodium 2,2- dimethyl-2- silapentane-5-sulfonate (DSS-d6), compounds that are 
commonly added to NMR samples to provide an internal standard for quantification and 
calibration of the chemical shift axis. The noise in the vicinity of the reference signal will be 
convoluted onto the entire spectrum, so if the S/N of the reference signal is too low, it can 
significantly degrade the quality of the data. 
 

Multiplets are a much poorer choice for reference signals as they have FIDs that have zero 
amplitude at regular intervals, which results in singularity problems that are mathematically 
challenging. The zeroes make interpolation necessary, introducing an element of non-linearity 
into the algorithm. While the use of a doublet as the reference signal has been reported 
(Barjat, Morris et al. 1995), most software for reference deconvolution does not cater for 
multiplet reference signals.  
 

The choice of the ideal peak lineshape and linewidth (the “target lineshape”) is important and 
warrants further discussion. The lineshape chosen for the ideal reference signal is typically 
Lorentzian or Gaussian or a mixture of the two, although there are many other possibilities. 
As noted earlier, there is a close analogy between the choice of target lineshape and the 
apodization procedure used in conventional Fourier transform processing. As most reference 
signals have a Lorentzian natural shape, and the effects of static field inhomogeneity also 
often approximate to a Lorentzian distribution of signal amplitude as a function of frequency, 
the choice of a Lorentzian target lineshape with a width close to that of the experimental 
reference line will produce a spectrum similar in appearance to the original but with errors in 
lineshape, phase, frequency, and so on corrected. However, it is often useful to change the 
target lineshape to aid the extraction of the features of interest from the data under analysis. If 
a Lorentzian target lineshape narrower than the experimental reference line is chosen, 
resolution will be increased, but at a severe cost in S/N; if too narrow a lineshape is used, 
numerical instabilities in the correction will cause severe spectral distortions. Choosing a 
lineshape wider than the experimental reference line will increase the S/N at a cost in 
resolution, with a maximum S/N improvement at twice the experimental linewidth (so-called 
matched filtration). The choice of a Gaussian or mixed lineshape is often a good alternative, 
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as the narrow base of a Gaussian improves resolution, but at a moderate cost in sensitivity. 
The optimum target lineshape naturally depends on the objective of the analysis, and 
comparison between spectra corrected with different target lineshapes is often worthwhile 
(Morris 1988, Ebrahimi, Nilsson et al. 2014). 

 

Figure 3.9. Schematic illustration of the FIDDLE algorithm for reference deconvolution. The 
reference peak is extracted from the experimental spectrum (b), and its inverse Fourier transform (c) is 
compared to that of “perfect” FID (e) to yield a correction function (e/c). The correction is then 
applied in the time domain to the entire experimental FID (a) to produce the corrected FID (f). 

In Paper I (Ebrahimi, Nilsson et al. 2014), the effect of reference deconvolution on the 
multivariate analysis results of NMR data for a triangular experimental design was 
investigated. The results verified that reference deconvolution can enhance the PCA and PLS 
models of NMR data. This can be very helpful in metabolomics studies by NMR data. In 
Paper II (Ebrahimi, Larsen et al. 2015), reference deconvolution was used to correct line 
broadening of NMR signals in in vitro measurements of bacterial fermentation. The results 
verified the great potential of reference deconvolution for improving the multivariate analysis 
results of in vitro NMR studies. 
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3.3.2.  icoshift alignment program 

The frequencies of NMR resonances are very sensitive to the chemical environment of the 
nucleus, and it is in fact this property that enables structural elucidation and identification of 
different compounds within a sample. However, this also means that the frequencies of the 
resonances can be affected by small fluctuations in the temperature, pH, salt concentration, 
and external field during the acquisition, or between the measurements of a set of samples. 
This will be a source of unwanted variations in studies like metabolomics where often at least 
several samples are measured and the data is analyzed by multivariate analysis techniques 
(Pearce, Athersuch et al. 2008). From the perspective of multivariate analysis, if the resonance 
frequencies of a specific compound change in different measurements, multivariate models 
become unnecessarily complicated, and the bilinearity/ trilinearity assumptions of the 
different multivariate analysis techniques such as PCA, PLS, and PARAFAC, will not be 
fulfilled. Successful use of the multivariate models will only be possible if there is good 
reproducibility in the data, and if the variations in peaks position between measurements are 
eliminated.  
 

Several solutions have been suggested for the alignment of 1D NMR data, from the pragmatic  
bucketing  procedure (Spraul, Neidig et al. 1994) to more advanced procedures such as 
Recursive Segment-wise Peak Alignment (RSPA) (Veselkov, Lindon et al. 2009), and 
interval Correlation Optimized Shifting (icoshift) (Savorani, Tomasi et al. 2010). The icoshift 
program is a very efficient alignment program for 1D NMR data. The algorithm aligns signals 
in defined spectral intervals between a series of spectra, by using the maximum correlation as 
the criteria. Owing to the use of fast Fourier transform algorithm, icoshift is very fast and can 
align all the spectra simultaneously. The MATLAB code for icoshift is freely available from 
www.models.life.ku.dk (Savorani, Tomasi et al. 2010). In Paper II (Ebrahimi, Larsen et al. 
2015), icoshift was successfully used for aligning the signals between the samples with 
different pH values. 

3.3.3.  Using reference deconvolution and icoshift in in vivo/ in vitro 
NMR studies 

In vivo/in vitro NMR studies suffer from the inhomogeneity of the samples, which can result 
in the broadening of the signals in the recorded spectra. Another problem associated with 
investigating live organisms with NMR is that the pH of the samples can change as the result 
of the cellular metabolism. The pH change can subsequently cause shift in the position of 
NMR signals from pH sensitive compounds, and this is not desirable in the multivariate 
analysis of the data. Therefore, for reliable analysis of in vivo NMR data, it will be a great 
advantage to correct peaks lineshape and position inconsistencies, if any. For the in vitro 
NMR measurements of the fermentation of LAB, that is presented in Paper II (Ebrahimi, 



  

40 
 

Larsen et al. 2015) and Chapter 5, number of the cells and inhomogeneity of the samples 
increase during the time course of fermentation, and this leads to the line broadening of the 
signals. Besides, the production of acids decreases the pH and causes shift in the position of 
some of the signals. Fig. 3.10 shows how reference deconvolution and icoshift can enhance 
the quality of time-series in vitro NMR data. It is recommended that both reference 
deconvolution and alignment by icoshift are used as routine processing techniques in in vitro 
NMR studies. 

 

Figure 3.10. Enhancing the quality of real time in vitro measurements of bacterial fermentation by 
reference deconvolution and icoshift. 
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3.4. Sensitivity in NMR spectroscopy 
Despite many advantages that NMR spectroscopy offers, such as easy sample preparation, its 
non-invasive nature, and the wealth of the information that it can provide, its main 
disadvantage compared to other analytical techniques such as mass spectroscopy is its low 
sensitivity. Because of the small energy difference between the nuclear spins, their population 
differences are not high. This is the key factor that makes NMR insensitive compared to other 
analytical techniques such as ultraviolet (UV) and infra-red (IR) spectroscopy, for which the 
energy difference between the ground and excited states are much larger.  
 
Sensitivity can define the lowest amount of a compound that can be reliably detected by an 
analytical technique, and therefore represents limit of detection (LOD) for a measurement. 
Signal-to-noise ratio can be a measure of sensitivity in a quantitative manner. Signal-to-noise 
ratio should be defined relative to a compound or a signal as the reference, and is calculated 
as: 
 

                                                                                                         (3.14) 

 
where P is the reference peak intensity, and is only reliable if the lineshape is ideal and the 
peak does not overlap with any other signals. Nrms and Npp are both noise levels, but estimated 
differently. Nrms is the noise calculated as the root-mean-square of the noise in a defined 
region of the spectrum where there are no resonances. A bandwidth of 200 Hz is commonly 
used. Npp is the peak-to-peak estimation of the noise and is calculated by subtracting the 
minimum value in the noise region from the maximum value. Nrms is approximately one fifth 
of Npp, and is more robust. Once comparing signal-to-noise ratios calculated for different 
spectra, one should know which method for noise estimation has been used, as they will give 
different values (Claridge 2008).    

3.5. Quantitative NMR spectroscopy 
NMR can provide a wealth of structural (qualitative) and quantitative chemical information. 
While chemical shifts and coupling constants give the structural information, signal intensities 
can be used for quantitative analysis. The quantitative nature of NMR is due to the fact that 
signal intensity in the spectrum is directly proportional to the number of the corresponding 
nuclei in the sample that give rise to that resonance. Signal intensity can be calculated by 
integrating the area under the peaks. It is mainly one-dimensional NMR spectra that are used 
in quantification studies. Proper optimization of acquisition parameters, such as the 
acquisition time, the relaxation delay, the pulse width, and the pulse power, is indeed very 
consequential to ensure a reliable quantitative measurement. Moreover, prior to the 
quantitative analysis, the data should be processed by the data processing techniques that were 
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discussed previously in this chapter (e.g. phase correction and baseline correction). Otherwise, 
the data will not provide accurate quantitative information. Multivariate analysis techniques 
enable the analysis and information recovery from complex NMR spectral data. NMR, as a 
quantitative analytical tool, offers a number of advantages over some of the other commonly 
used analytical techniques, such as chromatography and mass spectroscopy. NMR requires no 
or little sample pre-treatment, no prior separation of the analytes from a complex mixture is 
necessary, it is non-invasive and non-destructive and allows time-series studies of the sample, 
and finally it is not selective for any special groups of chemical compounds and makes 
simultaneous analysis of multiple group of compounds possible (Spyros, Dais et al. 2013).     

3.6. Metabolomics 
In 1998, the first definition of the term ‘metabolome’ was presented as the set of low-
molecular-mass compounds synthesized by an organism (metabolites) (Oliver 1998). Shortly 
after, in 1999, the term ‘metabonomics’ was presented by Nicholson et al., and defined as the 
analysis of changes in the metabolic status of an organism, as a consequence of drug 
treatment, environmental influences, nutrition, lifestyle, genetic effects, toxic exposure, 
diseases, etc (Nicholson, Lindon et al. 1999). A few years later, in 2002, the first detailed 
definition of the term ‘metabolomics’ was presented by Fiehn, as the qualitative and 
quantitative study of the metabolome in a biological system (Fiehn 2002). The biological 
system can be cell, tissue, organ, or organism. Nowadays, the terms metabolomics and 
metabonomics are often used interchangeably, while the word metabolomics is accepted and 
used more commonly (Metabolomics Society 2010, Savorani, Rasmussen et al. 2013). 
However, Nicholson and coworkers have distinguished between the two terms. He defines 
metabolomics as ‘‘the measurement of metabolite concentrations and fluxes and secretion in 
cells and tissues in which there is a direct connection between the genetic activity, protein 
activity and the metabolic activity itself’’, whereas metabonomics as ‘‘the quantitative 
measurement of the multivariate metabolic responses of multicellular systems to 
pathophysiological stimuli or genetic modification’’ (Nicholson, Lindon et al. 1999, 
Nicholson and Wilson 2003). Therefore, it can be useful to search for both terms while 
conducting a full literature search (Emwas, Salek et al. 2013). This is presented merely as a 
point to be aware of, however, throughout this thesis, only the term metabolomics will be 
used. 
 

Similar to other omics fields, metabolomics is a dynamic research field in the effort to 
understand biological systems, and can provide a view over the physiological state of living 
systems. Although in comparison with other –omics fields like genomics, transcriptomics, and 
proteomics, the term metabolomics was established much later, studies that focused on the 
metabolome were already performed (Oldiges, Lütz et al. 2007). Metabolomics is expected to 
advance the fields of functional genomics, systems biology, and metabolic engineering. 
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Metabolomics is multifunctional and based on the topic and the goal of the study, different 
analytical approaches can be used (Nielsen 2001, Kell 2004, Kell, Brown et al. 2005).   
 

Metabolomic studies can be divided into targeted analysis, metabolic profiling, metabolic 
fingerprinting, metabolic footprinting, and metabolomics. The definition of these terms are 
presented in Table 3.1 (Fiehn 2002, Kell, Brown et al. 2005). Targeted analysis may require 
extensive sample clean-up and selective sample preparation to avoid interference from other 
metabolites. In targeted analysis, by the selective sample preparation, most of the metabolome 
information can be ignored, however data quality can be improved and precise quantification 
of metabolites can be achieved. Metabolic profiling is a promising method for studying 
microbial metabolism in a quantitative manner. It can be used for the in vivo kinetic studies of 
the underlying metabolic networks (Buchholz, Hurlebaus et al. 2002, Chassagnole, 
Noisommit‐Rizzi et al. 2002, Wiechert 2002), and can clarify limiting biosynthetic steps, 
knowledge that can be used for iterative strain optimization (Oldiges, Kunze et al. 2004, 
Magnus, Hollwedel et al. 2006, Oldiges, Lütz et al. 2007). Metabolic fingerprinting allows 
rapid classification of samples and does not require extensive sample preparation or 
purification steps (Fiehn 2001). 
 

Table 3.1. Definition of the terms that are used to subdivide metabolomic studies based on their 
strategy and focus in studying the metabolome. 

Terms Definition 
 
Target analysis 
 

 
quantitative analysis of target groups of known metabolites 
 

Metabolic profiling 
 
 

quantitative analysis of a group of pre-defined metabolites, like 
members of a particular pathway 
 

Metabolic fingerprinting 
 
 

rapid classification of samples by analyzing their intra-cellular 
metabolites (endometabolome) of biochemical relevance 
 

Metabolic footprinting 
 

analysis of the extra-cellular metabolites (exometabolome) in a high-
throughput manner  
 

Metabolomics 
 

unbiased overview of the  patterns of the entire cellular metabolism 
 

 
 
The advantage of metabolic footprinting over metabolic fingerprinting is that as metabolic 
footprinting focuses on the exometabolome, time consuming and sometimes rather 
irreproducible quenching and extraction steps are not involved. The limitation imposed by 
metabolic footprinting is that the full pattern of the intra-cellular metabolites cannot be 
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captured, as phosphorylated compounds and other highly charged metabolites are unlikely to 
be present in the extracellular medium. Target analysis, metabolic profiling, and 
metabolomics are all quantitative approaches and require exact quantification of 
unambiguously identified metabolites. Metabolic fingerprinting and footprinting, on the other 
hand, are semi-quantitative approaches and even unknown metabolites peaks can be used in 
these approaches to gain insight. Semi-quantitative data can originate from peak areas or 
heights and is error-prone. However, it can be used to good effect to compare the metabolic 
content between biological samples (Oldiges, Lütz et al. 2007).    
    

The size of the metabolome varies between the different biological systems. Microorganisms 
and prokaryotes that are considered to have the simplest biological systems have around 
several hundred metabolites, whereas, in plants, more than 200,000 metabolites or 
phytochemicals can exist. The cellular compartmentalization in eukaryotes makes their 
metabolome even larger and more sophisticated, as the metabolites will also differ based on 
their position in the organelles. This is opposed to the prokaryotes that have much simpler 
structure and are not compartmentalized (Mungur, Glass et al. 2005, Oldiges, Lütz et al. 
2007).  
 

Microbiology is one of the research fields that increasingly use metabolomics. Microbial 
metabolomics expands from new drug discovery efforts to metabolic engineering for studying 
genotype-phenotype correlations and improve strain selection. Most of the applications for 
this purpose are targeted approaches. Metabolomics has been able to identify metabolic 
bottlenecks in pathways. For glycolysis pathway for instance, the conversion of 
phosphoenolpyruvate (PEP) to pyruvate, which is catalyzed by pyruvate kinase (PK), has been 
identified as key regulatory points of glycolytic flux, at least under the circumstances of 

limiting glucose (Theobald, Mailinger et al. 1993, Neves, Pool et al. 2005). One of the 
challenges facing microbial metabolomics is effective instant quenching of the metabolism of 
the systems to study its metabolic state. In general, in prokaryotes, the intra-cellular 
metabolites tend to leak more in quenching with the common cold methanol protocol than in 
eukaryotes, which is attributed to the less robust cell wall and membrane structure in 
prokaryotes (Mashego, Rumbold et al. 2007). 

 
Different analytical tools have been used in metabolomics, to quantify metabolites and to 
investigate the metabolic fingerprinting or profiling. Mass spectrometry (MS) and NMR 
spectroscopy are the most commonly used techniques. However, other techniques such as 
Fourier transform infrared (FT-IR), enzymatic assays, gas chromatography, and high-
performance liquid chromatography (HPLC) have also been used in metabolomics. In 
principal, any analytical technique can be used for different parts of a metabolomics study, 
but there is a trend towards highly selective and sensitive methods, which require small 
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sample volume to avoid any necessity for sample dilution. Unlike proteins, DNA, and RNA, 
the low molecular weight of metabolites eliminates the chance of up-concentration by 
ultrafiltration techniques. Methods like freeze-drying can be used for up-concentrating the 
metabolites, but loss of volatile metabolites will prevent to capture the true metabolic view of 
the system. (Oldiges, Lütz et al. 2007, Emwas, Salek et al. 2013). MS has high sensitivity, and 
if coupled with chromatographic setups, provides a powerful analytical system for studying 
metabolites. By coupling to two-dimensional chromatographic techniques, even higher 
resolution can be achieved. However, MS normally requires prior separation steps by gas or 
liquid chromatography. NMR has lower sensitivity relative to MS; on the other hand, it does 
not necessarily need prior separation, and is highly reproducible and robust which can be very 
useful for a study with many samples (Oldiges, Lütz et al. 2007).  

3.7. The role of NMR in metabolomics 
NMR can offer many possibilities for metabolomics owing to its specific characteristics as an 
analytical technique, and can provide qualitative and quantitative information on chemical 
and biological samples. NMR is not selective for any special groups of chemical compounds 
and can be used for quantitative analysis of complex mixtures. This can be very desirable for 
non-targeted analysis of biological samples. Moreover, it requires no sample pretreatment, 
enjoys easy sample preparation, is non-destructive and leaves the sample for further analysis, 
and moreover is highly reproducible (Winning, Larsen et al. 2008, Emwas, Salek et al. 2013). 
The main limiting factor in using NMR in metabolomics is its low sensitivity. Nowadays, the 
significant advances in the hardware of spectrometers, like higher field strength, microprobes, 
cryogenically cooled probes, and also emerging NMR techniques such as the dynamic nuclear 
polarization (DNP), have made NMR a more efficient tool and have been able to improve 
sensitivity (Grivet, Delort et al. 2003, Emwas, Salek et al. 2013). Despite these, compared to 
some of the other analytical techniques, NMR still strives for sensitivity.  
 

Despite the relative low sensitivity, NMR has yet a great advantage for studying live 
organisms, owing to its non-destructive nature, i.e. it can be used for in vivo and in vitro 
measurements of biological processes. In vivo and in vitro NMR measurements allow real-
time investigation of biochemical processes, in a way that the metabolism is not disturbed by 
any means. This is a huge advantage for capturing a true image of the metabolism of the 
system, and observing changes that can be easily missed by any technique other than in vivo 
and in vitro screening. Based on these arguments, it can be concluded that the main limiting 
factor for using NMR in metabolomics is its sensitivity, and its unique strength which cannot 
be overlooked, is the feasibility of measuring live organisms and cells. This advantage puts 
NMR in a particular position in metabolomics.  
NMR has played a central role in metabolomics. It has been used for studying metabolism 
since early 1970s when isotope labelling and 13C NMR were used to study ethanol 
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metabolism in rat (Wilson, Burlingame et al. 1974). The wealth of information that was 
obtained by the early studies, made NMR popular for studying metabolism. Since then, 1H, 
13C, 31P NMR, and other nuclides, have been used widely in metabolomics studies related to 
human metabolism (Govindaraju, Young et al. 2000, Rothman, Behar et al. 2003), nutrition 
(Gibney, Walsh et al. 2005, Wishart 2008, Cevallos-Cevallos, Reyes-De-Corcuera et al. 
2009), disease diagnostics (Wang, Tso et al. 2010, Emwas, Salek et al. 2013), and biomarker 
discovery (Kim, Maruvada et al. 2008, Smolinska, Blanchet et al. 2012). Moreover, NMR has 
been used to study the metabolism of animals (Tikunov, Johnson et al. 2010), plants (Kim, 
Choi et al. 2010, Kim, Choi et al. 2011), and microorganisms (Grivet, Delort et al. 2003, 
Wishart 2008, Boroujerdi, Vizcaino et al. 2009, Sekiyama, Chikayama et al. 2011). Fig. 3.11 
summarizes the advantages of NMR and the possibilities that it offers metabolomics. 

 

Figure 3.11. The advantages of NMR spectroscopy and the possibilities that it offers metabolomics 
studies. 

3.8. NMR for studying microbial metabolism 
It was over 40 years ago, in 1972, that NMR was applied for the first time to investigate 
microbial metabolism. It was used to study the catabolism of 13C-labeled glucose by the yeast 
Candida utilis at a 1.4 T magnetic field. Although the sensitivity was quite low, using the 
labeled substrate allowed following the concentration profiles of several metabolites in the 
cells over time (Eakin, Morgan et al. 1972). Early papers in this field were actually feasibility 
studies rather than a source of biochemical knowledge (Grivet, Delort et al. 2003). Since then, 



 

47 
 

the advances in NMR instruments have made this technique more efficient in investigating 
microbial metabolism. In the following, some of the examples of the studies in the microbial 
metabolomics field that have benefited from the application of NMR are presented.  
 

Sauer et al. used 1H-13C correlation spectroscopy (COSY) for investigating the central carbon 
metabolism in E. coli, by measuring the intracellular extract. The application of the 2D NMR 
technique in this study led to new knowledge about the tricarboxylic acid (TCA) cycle in E. 
coli (Sauer, Lasko et al. 1999). Carbon-13 NMR has been extensively used to study the 
diversity and extent of carbon cycling in the carbohydrate metabolism of microorganisms, and 
has provided new insight into the field (Portais and Delort 2002). For instance, by using 
labelled pyruvate and/or lactate and the labelling patterns on alanine and aspartate, the Wood–
Werkman cycle in Propionibacterium freudenreichii, subsp. Shermanii was studied by 13C 
NMR analysis of the live cells, as well as the intracellular extracts (Deborde, Rolin et al. 
1999, Deborde and Boyaval 2000). In another study, 13C NMR analysis of the cell-free 
supernatant of the ferments from the end-point of fermentation clearly demonstrated the 
occurrence of a novel glycolytic pathway in Thermococcus zilligii (Xavier, da Costa et al. 
2000). In another study, 13C NMR analysis of the intracellular extracts was used for 
quantitative flux determinations in genetically engineered Bacillus subtilis producing 
riboflavin (Dauner, Bailey et al. 2001, Dauner and Sauer 2001).  
 

1H NMR has also been used for studying microbial metabolism and metabolic profiling. 1H 
NMR has been used for studying the metabolism and substrate utilization in E. coli and 
Pseudomonas aeruginosa. Cell-free supernatants of the ferments that were sampled during the 
time-course of the fermentations were measured by 1H NMR which proved to be a great 
profiling tool (Behrends, Ebbels et al. 2009). In another study, 1H NMR was used for 
investigating the effect of temperature on the metabolome of bacterium Vibrio coralliilyticus, 
by measuring the extracted intracellular metabolites in the different samples (Boroujerdi, 
Vizcaino et al. 2009). 1H NMR has also been used in the field of medical microbiology. In 
vitro 1H NMR has been used to study some of the metabolic reactions in gut microflora which 
are assumed to protect humans against colon cancer (Combourieu, Elfoul et al. 2001). These 
are only examples of the studies that have used NMR successfully for gaining new insights 
into the metabolism of the investigated bacteria. 

3.9. In vivo/in vitro NMR spectroscopy for studying 
microbial metabolism 

Regarding the growth of bacteria, ‘in vitro’ refers to growing and studying the bacteria in a 
controlled environment, whereas ‘in vivo’ refers to the non-controlled and native environment 
of the cells. In this section, the term in vivo will be used to refer to both in vivo and in vitro 
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studies, with the goal of just emphasizing the fact that the investigated microorganisms were 
alive.  
 

In vivo NMR approaches require no sampling and quenching of the metabolism and the 
process is not disturbed by any means. Sampling and quenching fractions of a fermentation 
batch is tedious and will introduce specific errors and irreproducibilities (Mashego, Rumbold 
et al. 2007). Moreover, the metabolic turnover rate is high and changes can happen in the 
milliseconds to seconds scale (van der Werf, Takors et al. 2007), and the lag between 
sampling a biological process and the measurement can lead to misinterpretations. The real-
time nature of in vivo NMR measurements prevents this problem. In vivo NMR is also very 
suitable for kinetic studies, as the time-series can be recorded on the same sample with no 
change in the condition. Moreover, some of the species can only be monitored under in vivo 
experiments ˗˗macromolecules such as glycogen, polyphosphates, and other intracellular 
polymers, as well as the proton and sodium transmembrane gradients. One of the drawbacks 
of in vivo NMR is related to the heterogeneity of the samples and accumulation of 
paramagnetic ions that can lead to the broadening of NMR signals (Grivet and Delort 2009). 
Reference deconvolution can be a good solution to solve the linebroadening problem of in 
vivo NMR, as is shown in Paper II (Ebrahimi, Larsen et al. 2015).   
 
Among the nuclides that have been studied for in vivo NMR studies of biological systems, 31P 
has been the most popular nuclide, as it allows for monitoring the intracellular pH, the 
dynamics of intracellular phosphate pools, and obtaining information about the energetic 
status of the cells by measuring metabolites like ATP and ADP. Besides, the natural 
abundance of 31P is 100% and it has a relatively high magnetogyric ratio. Carbon-13 NMR 
has also been widely used to establish metabolic routes and to follow the fate of individual 
carbon atoms through different pathways, thereby enabling the determination of carbon 
fluxes. Because of the broad range of carbon chemical shift, if 13C-labelled substrates are 
available, carbon will be the nuclide of choice (Ramos, Neves et al. 2002). The pattern of 
metabolites dynamics, which is acquired from carbon and phosphate in vivo NMR, has 
provided integrated description of different metabolic pathways in bacteria. Carbon-13 NMR 
can provide the information regarding the intermediates in glycolysis, NAD+/NADH, and 
end-products, while 31P NMR can provide the information regarding intracellular pH and 
phosphate, as well as nucleotide triphosphates that are important to understand the energetic 
state of the system (Ramos, Neves et al. 2002). 
  

Lactic acid bacteria (LAB) are one group of microorganisms that have been investigated by in 
vivo NMR. In 1984, in vivo NMR was used for the first time to study the metabolic regulation 
in LAB. In vivo 31P-NMR was used to measure the intracellular inorganic phosphate (Pi) and 
relative levels of glycolytic intermediates, in L. lactis (Thompson and Torchia 1984). Since 
then in vivo NMR of proton, carbon, and phosphate nuclides have been used to study LAB 
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metabolism. For instance, 13C in vivo NMR has been extensively used to investigate 
regulation of sugar metabolism in these microorganisms (Neves, Ramos et al. 1999, Ramos, 
Neves et al. 2002). In vivo NMR has also been used for understanding the metabolism of 
different carbohydrate sources by L. Lactis (Neves, Pool et al. 2005). L. lactis, due to its 
relative metabolic simplicity, is one of the most studied strains of LAB. Two dimensional 
NMR techniques have also been used for real-time in vivo measurements of bacterial 
metabolic dynamics. Sequential 1H-NMR and 1H,13C-HSQC (Heteronuclear Single Quantum 
Coherence ), were successfully used to investigate the linolenic acid hydrogenation pathway 
of a gastrointestinal bacterium, Butyrivibrio fibrisolvens (Fukuda, Nakanishi et al. 2009).  
 

One of the interesting applications of in vivo NMR has been to study the adaptive stress 
responses of microorganisms, when they are exposed to environmental stressors. NMR can be 
very helpful in this context, by allowing a real-time non-destructive and non-perturbing 
measurement of the rapid metabolic changes of microorganisms under the stress conditions. 
As an example of such a study, in vivo 13C NMR has been applied to investigate how the 
metabolism of yeast Saccharomyces cerevisiae is affected by the concentration of exogenous 
ethanol and to model the metabolic profiles (Martini, Ricci et al. 2004, Martini, Ricci et al. 
2006, Ricci, Aggravi et al. 2012). Other nuclides such as 23Na have also been used for in vivo 
NMR studies of microorganisms. For example, 23Na NMR spectroscopy was used to study the 
sugar transport and to investigate if it is sodium dependent in live Fibrobacter succinogenes 
cells (Delort, Gaudet et al. 2002, Delort, Gaudet et al. 2004). 
 

Different experimental setups have been devised for in vivo measurements, having two main 
types: perfused and non-perfused systems. In the perfused system, a physiological medium 
with controlled pH, gas concentration (e.g. O2 and CO2), and composition is circulated to 
provide the cells in the magnet with nutrients. In this case, metabolites do not accumulate in 
the medium, different experiments can be made on the same sample by changing the 
composition of the medium, and also cells can be kept alive in the magnet for a longer time. 
In this system, cells can be immobilized on a solid matrix to avoid their circulation with the 
medium (Grivet and Delort 2009). There are also other interesting setups for in vivo 
measurement, like non-perfused systems for anaerobic and aerobic cell growth, and also 
bioreactors. For the aerobic system, an airlift system is designed to continuously provide the 
sample with O2 (Santos and Turner 1986, Lemos, Serafim et al. 2003, Neves, Pool et al. 2005, 
Lemos, Dai et al. 2007). To increase sensitivity and decrease NMR data acquisition time in 
the in vivo studies, the group of de Graaf, designed a bioreactors that allows the in-magnet 
growth of the cells in high density. Despite being very interesting, this setup is not 
commercial and no other group has used it (Hartbrich, Schmitz et al. 1996, Gonzalez, de 
Graaf et al. 2000, Grivet and Delort 2009). Generally, wider NMR tubes (10-20 mm) are used 
for in vivo measurements, to increase the sample size and as a result the sensitivity (Grivet 
and Delort 2009). These are of course not all the examples of the studies that have applied 
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NMR successfully to obtain valuable knowledge and insight into microbial metabolism, and 
there is still a growing interest in applying NMR techniques in microbial metabolomic studies 
(Xu, Wang et al. 2014).  
 
In vivo NMR can serve as a very efficient tool for selection and optimization of industrial 
strains, and to enhance their properties and nutritional value. Therefore, food industry can 
benefit from in vivo NMR for studying microorganisms like LAB. 

3.10. The application of in vitro NMR in micro-PAT 
Present PhD study focused on studying the fermentation process of two strains of LAB by 
NMR spectroscopy, which we called ‘micro-Process Analytical Technology (micro-PAT)’. In 
micro-PAT concept, ‘micro-’ is derived from the subjects of the study that are microbes and 
PAT refers to studying the fermentation of bacteria which is a biological process. Process 
Analytical Technology (PAT) was first introduced by the American Food and Drug 
Administration (FDA) in 2004, for the quality control in the pharmaceutical industry (Food 
and Drug Administration 2004). However, the hypothesis and the concept are applicable to 
other manufacturing industries and processes, including biological processes. Multivariate 
data analysis and experimental design, analyzers such as spectrometers for real-time 
monitoring of processes, and finally continuous improvement and optimization are the main 
tools in PAT. In the context of biopreservation by lactic acid bacteria, PAT can help to 
improve and optimize the efficiency of biopreservation by real-time monitoring of the 
fermentation (Skibsted and Engelsen 2010). 
   

NMR can serve micro-PAT because it is a non-destructive analytical technique that allows 
real-time investigation of the fermentation process. This was the main factor that made NMR 
the analytical method of choice for our study. No other analytical technique has the potentials 
that are listed in Fig. 3.11 all together and from this aspect, NMR is genuinely unique for 
micro-PAT. The possibility of in vivo measurements by NMR allows studying the effect of 
different internal and external factors on the metabolism of microorganisms and optimizing 
them to shift the metabolism towards for instance the overexpression of desirable metabolites 
or suppressing the undesirable ones. It also allows comparing different strains and selecting 
more efficient strains for specific purposes such as biopreservation. 
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4. Multivariate data analysis and 
chemometrics in metabolomics 

Metabolomics provides an overview of the metabolic state of a biological system. The 
analytical techniques that are normally used in metabolomics allow for recording hundreds or 
even thousands of metabolites in a single measurement, which in itself is a great achievement, 
but at the same time creates very huge datasets that require efficient multivariate data analysis 
techniques to extract useful and tangible information. Multivariate data analysis and 
chemometrics enable quantitative modeling of multivariate and multidimensional data and 
can provide visual representation of the information. Nowadays, chemometrics is a well-
established field, and is used for multivariate calibration, pattern recognition and multivariate 
statistical process monitoring and control. Three basic categories of analysis techniques can 
be defined for chemometrics:  
 

a) Exploratory analysis: provides an unbiased and general overview of the data and is 

useful for detecting patterns and trends. 

b) Classification and discriminant analysis: identifies predetermined classes of the 

samples. 

c) Regression analysis and prediction models: models the quantitative relationship 

between two blocks of data 

 

In the following, a brief description is provided for the multivariate and chemometric 
techniques that have been used in this thesis and the included papers. 

4.1.  Principal Component Analysis (PCA)  
Principal Component Analysis (PCA) (Hotelling 1933, Wold, Esbensen et al. 1987, Jackson 
2005) is an unsupervised method, which is probably the most commonly used multivariate 
exploratory analysis technique, and can be used to extract and visualize the systematic 
variations in a data matrix X. If X has i rows (samples) and k columns (variables), the data will 
be spread in a k-dimensional space that the variable make, in which every sample is a point. In 
the commonly applied analytical platforms in metabolomics, one measurement can vary from 
several hundreds to tens of thousands of variables. As the human vision is limited to three 
dimensions, it is obviously not feasible to examine such data without reducing the 
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dimensions. This is where PCA becomes handy by reducing dimensions of the data. PCA 
allows the inspection of the k-dimensional data in subspaces and also finds dimensions that 
are the most informative ones, based on the percentage of the variance that they represent. 
 

Hidden latent variables or principal component’s (PCs) are made by the combinations of the 
measurement variables. The first PC is the direction in the k-dimensional space, which 
includes the highest distribution of the samples or the highest percentage of variance. The 
second dimension with the highest percentage of variance that is orthogonal (not correlated) 
to PC1, is taken as PC2, and the procedure continues to find enough PCs to explain all the 
systematic variance in the data. So, the dimension of the data is reduced from k to the number 
of PCs, which is usually much smaller than k, and uninformative (non-systematic) dimensions 
are ignored. Every two PCs make a two-dimensional sub-space˗ a plane. The coordinates of 
the projection of samples onto each PC is called scores T, and they are weighted averages of 
the variables (e. g. metabolites) in the data (Trygg, Gullberg et al. 2006).  
 

The visualization of the scores, which is called a scores plot, can be very informative as it 
gives an overview of all samples and how they relate to each other. Different groups of the 
samples, trends and outliers (deviating samples) can show up in scores plots. The other 
important plot that can be derived by PCA is the loadings plot, which shows which 
measurement variables (columns) of X make the PCs. The loading plots allow investigating 
which measurement variables (sometimes metabolites) correspond to the observed patterns in 
the scores plots (Trygg, Gullberg et al. 2006). 
 

A PCA model can be written and shown schematically in Figure 4.1. 

 

Figure 4.1. Schematic illustration of a PCA model. T and P are the scores and the loadings, and E is 
the residual matrix. i and k are the number of samples and variables respectively. n is number of the 
PCs. 
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Different data preprocessing techniques can be used prior to any multivariate analysis 
including PCA, to improve the biological information content of metabolomics data. 
Centering, scaling, normalization, and transformation can be used, which will not be 
discussed further here. For further reading about this, see (van den Berg, Hoefsloot et al. 
2006). 
 

Figure 4.2 shows an example of the PCA on a time-series in vitro NMR data from the 
fermentation of Lactobacillus rhamnosus DSM 20021, in which 1H spectra were recorded for 
24 hrs. The scores plot, as colored by time, shows the fermentation trajectory and the 
metabolism of the sample during fermentation. The loadings plot shows the peaks from the 
metabolites or nutrients that vary during fermentation and correspond to the pattern that the 
scores plot shows. Therefore, they can provide valuable information of the metabolic changes 
that happen during the investigated biological process. 

 

Figure 4.2. PCA results of a time-series in vitro 1H NMR data from the fermentation of Lactobacillus 
rhamnosus DSM 20021. a) the scores plot; b) the 1st loading plot; c) the 2nd loading plot. 

 

4.2. Partial Least Squares regression (PLS)  
Partial Least Squares Regression (PLS) method (Wold, Martens et al. 1983) is a supervised 
method and can be used when prior information about each sample is available. The 
information can be for example a quantitative value obtained from a reference method, or 
design information such as class membership of each sample. 
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The samples information is used as a response matrix Y. Then, PLS builds a quantitative 
relationship between the data, X, as the predictor (descriptor) matrix, and Y, as the response 
matrix (Wold, Ruhe et al. 1984). The Y matrix can contain both quantitative (e. g. 
concentration of one of the metabolites) and qualitative (e.g. class membership) information. 
The additional information in Y is used by the PLS method to focus only on the Y-related 
variance in X, e. g. separation between genotypes, rather than providing an overall view of all 
variation in the data in an unsupervised manner, as is performed by PCA.  
 

PLS is a regression method and as a result, PLS models can be used to predict the properties 
(Y-values) of new unknown samples, e. g. the genotype of a new sample, based on the 
previously calculated prediction models. The Y matrix can indicate different properties in each 
column. If Y contains qualitative information such as class membership of the samples, the 
PLS method is called PLS Discriminant Analysis (PLS-DA), in order to distinguish it from 
the situation where Y is quantitative (Trygg, Gullberg et al. 2006). 

4.3. Multivariate Curve Resolution-Alternating Least 
Squares (MCR-ALS) 

Multivariate Curve Resolution (MCR) (Lawton and Sylvestre 1971, de Juan, Jaumot et al. 
2014) is a method that can resolve a data matrix into the pure physical/chemical profiles of 
the chemical mixture components. MCR was originally developed to encompass evolutionary 
analytical data from a process or an analytical measurement. Multivariate curve resolution 
with alternating least squares (MCR-ALS) works by optimizing both the concentration profile 
and the pure spectral profiles in an iterative cycle (Tauler 1995). The basic assumption in 
MCR is that the data matrix is bilinear. Based on this, MCR decomposes the data into additive 
bilinear models for the chemical entities. The unique advantage of MCR is that the profiles 
are meaningful (Engelsen, Savorani et al. 2013), and for instance for a time-series NMR data, 
MCR will provide the time profiles and the spectral profiles of the individual chemical 
compounds in the sample. This characteristic helps enormously in the interpretation of the 
results and ensures that the results provided by MCR methods can be easily understood, as 
they present physical or chemical properties. This is one of the main differences of MCR 
compared to other bilinear data analysis methods. For instance, methods such as PCA do not 
provide the true chemical or scientific models, because the real mixed contributions do not 
hold the orthogonal or statistical independency as natural properties. However, these methods 
still have a strong exploratory value, as they are extremely robust compared to the more 
ambiguous MCR (Engelsen, Savorani et al. 2013). 
 

An MCR model of a time-series NMR data is built as shown in Figure 4.3. The time-series 
NMR data that is referred to in Figure 4.3 includes two chemical components, adenosine and 
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inosine. MCR resolved the data into time (concentration) and spectral profiles, which are both 
tangible chemical and physical properties. The iterative MCR-ALS method was applied to 
perform the mathematical decomposition of the data.  
 

 

Figure 4.3. An example of MCR-ALS applied to time-series NMR spectra. C and S are the time 
(concentration) and spectral profiles respectively, and E is the residual matrix. The time-series data 
shows consumption of adenosine and production of inosine. The plotted concentration profiles are not 
geometrically in scale with the time dimension of matrix X. 

MCR-ALS is performed in an iterative manner. It starts with estimating the number of the 
components presented in the data matrix, which is usually done by PCA or singular value 
decomposition (SVD) (De Lathauwer, De Moor et al. 1994). The second step is to calculate 
initial estimations of spectral or concentration profiles for each one of the chemical 
components. There are different methods for calculating the initial estimates. One of the 
methods can be using evolving factor analysis (EFA) (Maeder 1987, Keller and Massart 
1991) in one of the dimensions of the data in order to find selective regions of the signals, and 
then apply PCA on the selective regions to get the initial estimates. Methods such as SIMCA 
(Wold and Sjöström 1977) can also be used for this purpose. Then, an iterative alternating 
least squares process based on the following two equations strives to optimize the initial 
estimations that are introduced to the algorithm: 
 

                                                                                                                       (4.1) 
 

                                                                                                                       (4.2) 
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The sign ‘+’ denotes pseudo inverse, and C and S are the concentration and spectral profiles, 
respectively. Different constraints including non-negativity, unimodality and closure can be 
applied in order to reduce the number of the possible solutions for C and ST, during this 
iterative optimization process. This helps to direct the final solutions to the true profiles that 
make the observed experimental data. The iteration is stopped when the model is converged. 
It is when the relative difference between the values from two consecutive iterations reaches 
the defined threshold value or when number of the iterations exceeds the allowed number of 
iterations (Tauler 1995, de Juan, Jaumot et al. 2014).  
 

In Paper II, MCR-ALS was used to model the time profiles of selected metabolites, from the 
time-series NMR data, by applying nonnegativity constraint on both dimensions. 

4.4. Analysis of Variance-Simultaneous Component 
Analysis (ASCA) 

Analysis of variance (ANOVA) can provide information about the variance between and 
among groups of samples in an experimental design and their significance. ANOVA 
partitions the variance of a variable into components that originate from different sources, and 
the calculated p-values indicate the significance of design factors. ANOVA is used for 
univariate data, when only one variable, or in the case of metabolomics data only a single 
metabolite is measured in samples from an experimental design (Searle 1971). Although 
multivariate-ANOVA (MANOVA) is a multivariate generalization of ANOVA as presented 
in statistics, it is not efficient for analyzing big datasets that include many variables, because 
the assumption of the singularity of the covariance matrix will not be satisfied (Mardia, Kent 
et al. 1979, St and Wold 1990); in metabolomics data, typically, the metabolites can be highly 
correlated.       
 

ANOVA-simultaneous component analysis (ASCA) (Smilde, Jansen et al. 2005) is a 
multivariate generalization of ANOVA. ASCA can be applied to different types of data that 
have a balanced experimental design, or a temporal structure. Therefore, it can be applied for 
metabolomics, as well as other –omics datasets, especially that experimental design is being 
increasingly used in these fields (Smilde, Hoefsloot et al. 2008). By separating the variance 
into the effect matrices from the design factors, ASCA allows to investigate the importance of 
the design factors and also interpret the data. The current version of ASCA that was proposed 
by Smilde and co-workers in 2005, is based on the concepts of multilevel component analysis 
that have been proposed for time-resolved metabolic fingerprinting data (Jansen, Hoefsloot et 
al. 2005), and also simultaneous component models for analyzing multivariate time 
series (Timmerman and Kiers 2003). ASCA uses these concepts and generalizes it for data 
with a designed structure (Smilde, Jansen et al. 2005). 
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In Paper II, an experimental design was prepared with two strains of lactic acid bacteria, two 
pH values (pH 6.5 and 5.5), two levels of glucose concentration (2.5 and 0.25 g/l), and two 
batch fermentation replicates, and real-time in vitro NMR data were recorded of the samples 
fermentation. The data were then analyzed and the metabolic time profiles were extracted. 
ASCA was applied on the profiles, in order to investigate the significance of the experimental 
design factors, by investigating the resulted p-values, and also partition the variance of the 
data into the effect matrices from the design factors. Using PCA on the resulted effect 
matrices allowed investigating which metabolites were influenced by the different design 
factors. Such information is very valuable in a metabolomics study, and metabolomics can 
definitely benefit from ASCA.  

4.5. Clustering by k-means algorithm 
K-means clustering is an unsupervised algorithm that aims to find the best partitioning of n 
observations (or objects) into k clusters or groups, where k is a number defined by the user. 
The algorithm starts by randomly selecting k points (objects) as the initial groups’ centroids. 
Then, the Euclidean distance between all the objects and the centroids are calculated and each 
object is assigned to the cluster to the centroid of which it is the closest. In the next step, for 
each cluster, the object which is the most similar to the average of all the objects in the kth 
cluster is defined as the new centroid and objects are clustered again, based on their distance 
from the new centroids. The process of finding the new centroids and re-clustering the objects 
is repeated iteratively until the convergence criterion is met. The convergence criterion used 
in our method is minimizing the Within Cluster Sum of Squares (WCSS), which is the 
average squared Euclidean distance between the objects and their cluster centroids. This is a 
measure of how well each centroid represents the group or cluster members. The algorithm 
has converged when WCSS does not decrease any further with iterations or decreases below a 
predefined threshold (MacQueen 1967, Tran, Wehrens et al. 2005). Generally, for each 
clustering, replicate runs/restarts are performed. Restarts of k-means will help to make sure 
that the algorithm does not converge to local minima. Each one of the replicates begins from a 
different randomly selected set of initial centroids and the final solution that k-means returns 
is the global minimum which has the lowest WCSS.  
 

As presented in Paper III, k-mean clustering of multispectral images was used to develop a 
new and semi-automated approach for quantifying mold growth based on the colony size or 
area.  
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5. In vitro NMR studies of the fermentation 
of lactic acid bacteria (Paper II) 

In vitro NMR can provide valuable information about the dynamic metabolism of 
microorganisms. As discussed earlier in Section 3.9, it can be used for studying the adaptive 
responses of microorganism to different stress factors. Therefore, we developed a protocol for 
performing real-time in vitro NMR measurements of the bacterial fermentation and applied it 
to an experimental design with the factors of interest for the two strains of LAB, 
Lactobacillus rhamnosus DSM 20021 and Lactobacillus plantarum subsp. plantarum DSM 
20174. The experimental design included two levels of glucose concentration (2.5 and 0.25 
g/l), two pH values (pH 6.5 and 5.5), and duplicate fermentation batches (Paper II, (Ebrahimi, 
Larsen et al. 2015)). In the following, some of the experimental and data analysis results, 
including discussions that are not included in the paper for the sake of conciseness, are 
presented. 

5.1. Experimental design, sample preparation, and data 
acquisition 

When including the pH value as one of the factors in an experimental design, it is important to 
use buffer systems that are strong enough to keep pH relatively constant during the 
measurement. This becomes more important in experiments like LAB fermentation where pH 
drops over time. Therefore, in designing the buffer system for the samples, the buffering 
capacity was calculated to be sufficiently high to provide a stable pH value during 
fermentation. Sodium phosphate buffer was used with the concentrations of 0.15M and 0.5M, 
in order to provide buffering systems with pH 6.5 and 5.5, and  capacities of 0.09 and 0.10, 
respectively. Although the concentration of the pH 5.5 buffer is relatively high compared to 
the routine buffers that are used in the protocols for metabolomic studies by NMR, it allowed 
tuning and matching of the NMR probe, and the duration of the 90◦ pulses were between 18 
and 19 µs. However, the linewidths of the spectra for the pH 6.5 samples was slightly 
narrower than for the pH 5.5 samples, but as presented in Paper II (Ebrahimi, Larsen et al. 
2015), this difference was corrected by using reference deconvolution. For most strains of 
LAB, when pH drops below 4.8, the metabolic rates are greatly decreased, and the growth is 
retarded. Therefore, a strong buffer system was also necessary to ensure that the pH at the end 
of glucose consumption, especially for pH 5.5 samples and samples with the higher glucose 
concentration, would not drop too low to disturb the metabolism. Table 5.1 lists the pH values 
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of the samples at the end of the fermentation. The pH values at the end points of fermentation 
show that the buffer system has worked efficiently. 
 

Table 5.1. The final pH values of the samples after fermentation. ‘R’ refers to L. rhamnosus, ‘P’ to L. 
plantarum, ‘6.5’ to samples with pH 6.5, ‘5.5’ to samples with pH 5.5, ‘GH’ to samples with 2.5 g/l of 
glucose, and ‘GL’ to samples with 0.25 g/l of glucose.  

 PH final 

Samples replicate 1 replicate 2 

R 6.5 GH 6.30 6.30 

P 6.5 GH 6.29 6.29 

R 6.5 GL 6.52 6.56 

P 6.5 GL 6.52 6.53 

R 5.5 GH 5.35 5.36 

P 5.5 GH 5.30 5.21 

R 5.5 GL 5.59 5.44 

P 5.5 GL 5.57 5.41 

 
 
 
The bacterial cells that were used in the experiment where frozen at -80◦C in glycerol solution 
until use. The glycerol gave rise to strong signals in the NMR spectra which necessitated 
washing the cells twice with the chemically defined interaction medium (CDIM) prior to 
sample preparation, in order to ensure the decrease of glycerol concentration. Figure 5.1 
shows an example of the spectra from a sample without the cell wash. Glycerol signals are 
even stronger than glucose signals, and would definitely limit the receiver gain. Therefore, it 
was necessary to wash the cells before inoculation, and washing the cells twice with CDIM 
was able to eliminate most of the glycerol signal.  
 
In order to sterilize the NMR tubes, autoclaving proved to be more efficient than washing by 
ethanol. Due to the shape of NMR tubes, ethanol will not evaporate easily after wash and will 
appear in the samples, which is not desired. However, as ethanol was used to sterilize the 
bench, a very small amount can still be observed in the samples, as Figure 5.2 shows. The 
small residual ethanol did not change during fermentation and did not suppress cell growth. 
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Figure 5.1. Strong signals from glycerol in the samples without washing the cells prior to inoculation. 
Glycerol signals compared to the glucose signals, that can be observed in the zoomed figure, are much 
stronger. 

 

Figure 5.2. Ethanol triplet in one of the time-series. The signal was very weak compared to the signals 
from the nutrients and metabolites.  

In the recorded time-series data, lactate signals were quite broad, and for instance for the 
signal of the methyl group in lactate at 1.32 ppm, instead of the expected doublet form, a very 
broad signal was building up over the time course of fermentation. Figure 5.3a shows the 
lactate doublet for L. rhamnosus sample at pH 6.5 and the glucose concentration of 0.25 g/l.  
In order to verify that the broadening of lactate signals were due to the formation of Na/Ca 
lactate, cell free supernatant of the sample at the end point of fermentation was prepared using 
0.2 µm filters, and ethylenediaminetetraacetic acid (EDTA) was added to the solution. EDTA 
can form chelates with Na+/Ca2+ ions, and therefore release lactate. Figure 5.3b shows the 
spectra of the cell free supernatant with and without the added EDTA. After adding EDTA, 
the sharp doublet form of lactate is recovered which confirm that the line broadening is due to 
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the formation of Na/Ca lactate. The doublet shifts towards larger ppm values after addition of 
EDTA, due to the relatively high acidity of EDTA that can change the pH of the sample. This 
test was merely performed to explain the observed line broadening. For the purpose of the 
data analysis, the original samples and spectra were used. Special attention was paid to have 
the same time frame for preparation and measurement of all the samples. Besides, for each 
sample the pulse width (P1) and transmitter frequency (O1) were calibrated to enhance the 
spectral quality. 

 

Figure 5.3. Recovery of lactate doublet by addition of EDTA. a) time-series spectra of one of the L. 
rhamnosus samples, colored by time, b) spectra of the cell-free ferment of the sample with and without 
added EDTA. 

The use of 13C-labeled glucose for the time-series study was also investigated. Figure 5.4 
shows the 13C time-series spectra that were recorded for L. rhamnosus at pH 6.5 and 2.5 g/l of 
13C-labeled glucose. The goal of using labeled glucose substrate was to investigate if 
metabolites such as pyruvate that have key roles in the metabolic pathways of the bacteria can 
be observed. The only captured signals were from glucose and lactate. Glycerol signals were 
also observed, as the spectra were recorded before developing the protocol for washing the 
cells prior to inoculation, and therefore the cell suspension included considerable amount of 
glycerol. Considering the fact that the labeled substrate did not add more information to study, 
normal glucose was used for all the final measurements. 
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Figure 5.4. 13C time-series spectra of L. rhamnosus at pH 6.5 and 2.5 g/l of 13C-labeled glucose. 

5.2. Data processing 
Besides the routine NMR data processing techniques such as phase correction, Fourier 
transformation, zero-filling, and baseline correction, reference deconvolution was also used 
on the spectra to enhance the spectral quality and data analysis results. All the processing of 
the data were performed in DOSYToolbox (Nilsson 2009). Figure 5.5 shows the layout of the 
DOSYToolbox, and the dotted red boxes show the function of the different parts of the 
toolbox that were used for the data processing. For the reference target lineshape, Gaussian, 
Lorentzian, or the combination of the two lineshapes can be selected in the toolbox. 
Performing reference deconvolution by the DOSYToolbox is fast and easy, and considering 
the advantages that this method can offer multivariate analysis of the data, it is definitely 
worth trying it on different metabolomics data, and data from biological samples which are 
inherently inhomogeneous and the spectral quality can be an issue. The only prerequisite for 
being able to use reference deconvolution is the presence of a well-resolved singlet with high 
signal-to-noise ratio in all the processed spectra, to be used as the reference signal. The 
reference signal should be one of the strongest resonances in the spectrum to get the best 
results from reference deconvolution. 
 

While Paper I (Ebrahimi, Nilsson et al. 2014) showed the efficiency of reference 
deconvolution for improving multivariate data analysis (PCA, PLS) results of an artificial 
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metabolomics experimental design, Paper II (Ebrahimi, Larsen et al. 2015) demonstrates for 
the first time the advantageous use of reference devolution on real metabolomics data for 
improving the multivariate analysis (MCR-ALS) results of the NMR data. Reference 
deconvolution successfully corrected the line broadening problem of the spectra in the in vitro 
measurements, which makes the analysis results of the data by methods like MCR-ALS, as 
well as any other method that has bilinearity of the data as its basic requirement, more 
reliable.  
 

 
 

Figure 5.5. The layout of the DOSYToolbox. The dotted red boxes show the function of the different 
parts of the toolbox. The toolbox is freely available from dosytoolbox.chemistry.manchester.ac.uk. 

Spectral shifts of NMR signals can happen as the result of the change in pH or temperature. 
This is not a desirable source of variation when using multivariate analysis techniques for the 
analysis of the data. Therefore, post-acquisition alignment techniques are necessary prior to 
multivariate analysis of the data. One of the methods that has proved to be very useful for this 
purpose is icoshift program (Savorani, Tomasi et al. 2010, Savorani, Tomasi et al. 2013). It 
allows alignment of a series of spectra, either relative to a reference signal, or in the user-
defined intervals. For the time-series in vitro NMR data of the fermentations, the strong buffer 
system did not allow dramatic change of the pH and considerable shift in the signals of most 
of the nutrients and metabolites. However, for compounds such as acetic acid and histidine 
which are highly pH sensitive, even the small change in the pH resulted in large shifts in each 
time-series data, as well as between the time-series of the different samples. Such shifts are of 
course larger in samples with the higher glucose concentration that tend to produce more 
acidic metabolites by fermentation. In Paper II (Ebrahimi, Larsen et al. 2015), icoshift was 
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used to align each of the 16 time-series data, first relative to DSS signals, and then in defined 
intervals containing the selected metabolites. Intervals were defined for glucose, pyruvate, 
acetate, alpha-acetolactate, formate, glutamine, aspartate, adenosine, inosine, and adenine. 
The 16 time-series data were then augmented row-wise (along time-dimension) and icoshift 
was used again to align the selected signals. Figure 5.6 shows the alignment process 
schematically. 
 

 

Figure 5.6. The schematic illustration of the alignment procedure of the data. 

 
It is important to perform the alignment in a supervised manner, and the alignment results 
should be investigated before data analysis to ensure that the algorithm has not aligned non-
corresponding neighboring peaks in overlapping signals, or signals that sit very close to each 
other.  

5.3. Data analysis 
In order to model the metabolic profiles, MCR-ALS or second derivative of the signals were 
used. In the data analysis, we tried to model as many signals simultaneously as possible, 
because it is both statistically preferred, and will also reduce the analysis time. Because of the 
strong buffer system, the position of most of the signals remained stable during the 
fermentation, and MCR-ALS was used on the augmented data to model their profile during 
fermentation. However, for some of the pH sensitive compounds, shift in the position of the 
signals was observed. For singlet signals like acetate and pyruvate, which shift considerably 
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between the samples, a perfect alignment was not achieved and instead the minimum of the 
second derivative of the signal was used to model the profile. Figure 5.7 shows the pyruvate 
signal in L. rhamnosus sample at pH 6.5 and glucose concentration of 2.5 g/l, and its second 
derivative that was used for the subsequent modelling of the pyruvate profile. 
 

 

Figure 5.7. Calculating pyruvate signal in the L. rhamnosus sample, with pH 6.5, and glucose 
concentration of 2.5 g/l. a) pyruvate singlet, b) the second derivative of the signal, and c) calculated 
pyruvate profile. 

The chemical shift of inosine differed for the two pH values, and at pH 5.5, the inosine 
doublet partly overlapped with the adenos78ine doublet, as shown in Figure 5.8. Because of 
this overlap, a suitable alignment could not be achieved between pH 6.5 and 5.5 samples. 
However, as the signal position was fairly stable in individual time-series and also between 
the samples with the same pH value, adenosine and inosine signals were modeled by two 
component MCR-ALS models for pH 6.5 and 5.5 separately.  
 
Modeling by parallel factor analysis 2 (PARAFAC2) (Kiers, Ten Berge et al. 1999) was also 
tested on the data, as it can be a good solution for data in which signals shift between the 
measurements as has been successfully performed for hyphenated chromatographic data such 
as LC-MS before (Khakimov, Amigo et al. 2012). The data were first structured in a tensor 
with the dimensions spectra × time × samples, with the NMR spectra as the flexible 
PARAFAC2 dimension. PARAFAC2 was applied on the intervals of selected signals, and 
models with different number of components were fitted to investigate if the correct metabolic 
profiles can be modeled. However, as the pattern of the profiles for a metabolite can vary 
significantly between the samples with the different strain, pH, and glucose concentration, 
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correct profiles could not be modeled by PARAFAC2 for these data. In these data set, both 
the spectral and the time dimension vary between the samples, and this cannot be handled by 
PARAFAC2. For signals that do not shift between the samples, using PARAFAC2 on the data 
with the structure time × spectra × samples, with time as the flexible mode can give the 
correct profiles. However, due to these additional complications, MCR-ALS was preferred for 
the final analysis results.  
 

 

Figure 5.8. Adenosine and inosine signals in L. rhamnosus samples with pH 6.5 and 5.5, and the 
glucose concentration of 2.5 g/l. 

Pearson correlation coefficients were calculated between the metabolic profiles that were 
calculated as described in detail in Paper II (Ebrahimi, Larsen et al. 2015) and partly in this 
chapter. Figure 5.9 shows the heat maps colored by the value of the correlations between 
metabolites. As the heat maps presented in the paper are limited to high correlations, > 0.8 
and < -0.8, this heat map is presented to provide more details on the correlations between the 
metabolites. In Figure 5.10, the histograms of the heat maps are presented, with the bars 
colored based on the metabolites. The histograms show that the correlations between the 
metabolites in L. rhamnosus samples are influenced more by the change in pH and glucose 
concentration than L. plantarum samples. In L. rhamnosus, by the change of the pH from 6.5 
to 5.5, the correlations between metabolites considerably increase, meaning that more 
metabolites co-vary in the response to the acid stress (comparing the histograms ‘R-pH6.5-
GH’ and ‘R-pH5.5-GH’ in Figure 5.10). Adenine and alpha-acetolactate are two of the 
metabolites that are influenced the most. This degree of change in the correlation coefficients 
is not observed in L. plantarum samples and the metabolism of this strain is less altered by the 
decrease in pH. Besides the pH, glucose concentration also affects L. rhamnosus more than L. 
plantarum. For L. plantarum at pH 6.5, the correlation levels between the samples with high 
and low glucose concentration almost do not change. 
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Figure 5.9. The heat maps colored by the Pearson correlation coefficients between the metabolites. 
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Figure 5.10. The histogram of the metabolites correlation coefficients heat maps. 
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In metabolomics data with a balanced experimental design, ASCA can be used to investigate 
the effects of the different design factors. In Paper II (Ebrahimi, Larsen et al. 2015), ASCA 
was used on the metabolic profiles to assess if the metabolic changes of the data were 
significantly influenced by the type of the strain, pH, and glucose concentration. Figure 5.11 
shows the PCA results of the strain specific glucose concentration effect matrix. This matrix 
contains information on how the two different strains interact with the glucose concentration. 
It is obvious that the metabolism of L. rhamnosus is influenced more by the glucose 
concentration than the metabolism of L. plantarum; the shift in the fermentation trajectories of 
L. rhamnosus by the change in glucose concentration is highly significant. 
 

 

Figure 5.11. PCA results of the strain specific glucose concentration effect matrix (the interaction 
between the strain type and the glucose concentration). 

Figure 5.12 shows partial least squares discriminant analysis (PLS-DA) results of strain 
specific pH effect matrix. This matrix shows how the change in the pH affects the metabolism 
of the two strains. According to the figures, the change in the pH alters the fermentation 
trajectories, and pyruvate, formate, adenine, and acetate are among the main metabolites that 
are influenced. 
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Figure 5.12. Results from a PLS-DA of the strain specific pH effect matrix (the interaction between 
the strain type and pH). The dotted orange circles show the end points of the fermentations.  

5.4. Outcome 
This study focused on monitoring the fermentation process of two strains of LAB by in vitro 
NMR spectroscopy, which we call ‘micro-Process Analytical Technology (micro-PAT)’. In 
micro-PAT concept, ‘micro-’ is derived from the subjects of the study that are microbes and 
PAT refers to studying the fermentation of bacteria which is a biological process. NMR can 
serve micro-PAT due to its non-destructive nature that allows real-time investigation of the 
fermentation process. Therefore, an analytical protocol was developed for the in vitro 
measurements of the fermentation process of LAB and for the processing and analysis of the 
recorded time-series data.  
 

The developed protocol for the in vitro study of bacterial fermentation and metabolism 
includes guidelines from the sample preparation to the kinetic modelling of metabolic 
changes. The application of the protocol for the described experimental design was helpful in 
highlighting some of the metabolic differences between the samples and investigating how the 
different design factors affect the metabolism. In vitro NMR measurements of bacterial 
fermentations is very useful in obtaining a metabolic overview of the investigated 
microorganisms, including biopreservation studies where microorganisms like lactic acid 
bacteria are used to preserve food. The analytical protocol has the potential to be very useful 
in the microbiology field, and can also be widely used by food industry for the purpose of 
strain optimization in biopreservation studies, as well as in the fermentation technology. The 
new method facilitates investigating the effect of different environmental factors on the 
metabolism of bacteria, in a relatively short time frame.  
 



  

72 
 

One of the key points in the protocol was the application of reference deconvolution for 
enhancing the quality of the time-series NMR spectra. As the first application of reference 
deconvolution to metabolomic NMR data, it proved to be a necessary and elegant solution to 
the problem of the inherent inhomogeneity of the samples that is encountered in in vitro NMR 
measurements of cells. When number of the cells and the inhomogeneity of the sample 
increase over time and give rise to the time-dependent line broadening of the resonances, 
application of reference deconvolution is very advantageous. Moreover, in studies that have 
an experimental design with factors that can affect the quality of spectra, using reference 
deconvolution prior to any multivariate analysis technique can improve the analysis results by 
eliminating the undesirable sources of variation. In the experimental design of this study for 
instance, two pH values, 5.5 and 6.5, were used which led to slightly different spectral quality 
in the samples with the two different pH values; for samples with pH 5.5 the resonances in the 
spectra were slightly broader than pH 6.5 samples. If the data was analyzed by multivariate 
analysis techniques with no prior correction or enhancement of the lineshapes, the results 
would be influenced by the fact that the resonances are broader in pH 5.5 samples and the 
metabolic differences would not be described accurately. However, after the application of 
reference deconvolution, the lineshapes and the linewidths in each time-series and also 
between the different time-series are more consistent, and the results of applying different 
multivariate analysis techniques, like PCA, MCR, PLS, etc., that are based on the assumption 
of the bilinearity of the data, will be more reliable. Therefore, we recommend that reference 
deconvolution should be considered as a standard tool to enhance lineshapes and improve 
multivariate analysis results in in vivo and in vitro NMR studies, as well as studies in which 
the quality of spectra can suffer from the inhomogeneity of the sample or the magnetic field.  
 

Some of the calculated metabolic profiles from the time-series NMR spectra of the designed 
experiments are shown in Figure 5.13. For more detail on the experimental design and the 
calculation of the profiles, the reader is referred to Paper II (Ebrahimi, Larsen et al. 2015). 
The profiles can show the differences between the metabolism of the two investigated strains, 
as well as the difference in their response to the change in pH and carbohydrate source 
concentration. Such profiles will be the final output of the protocol. 
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Figure 5.13. Some of the calculated metabolic profiles for the real-time in vitro NMR study of the 
samples from the described experimental design.  

 

It is expected that the developed protocol, that benefits from the advantages of in vitro NMR 
as well as the spectral quality enhancement by reference deconvolution will be used for the 
investigation of the metabolism of target protective cultures. Ultimately, the results of the in 
vitro experiments will have to be held against reference measurements for the antimicrobial 
and biopreservation performance. Then, PCLUSTER, the software that is developed for the 
quantification of mold growth and inhibition, can be used to record inhibition assays against 
pathogenic bacteria or molds at the end of the in vitro NMR study (see Chapter 6). This will 
allow for the identification of antimicrobial metabolites and quantify how different 
metabolites affect inhibition. Moreover, in order to get a more comprehensive illustration of 
the metabolism, in parallel with the in vitro NMR studies, similar batch fermentations can be 
performed, followed by regular sampling and chromatographic fractionation. The fractions 
can be subsequently up-concentrated by freeze-drying and then measured by NMR. 
Undoubtedly, the combination of the analytical NMR protocol, PCLUSTER, and adding the 
insight from the chromatographic fractionation, can reveal new knowledge and insight into 
the metabolism of bacteria.  
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6. Quantifying mold growth by 
multispectral imaging 

In this chapter, the importance of quantifying mold growth, the approach that was developed 
for quantifying mold growth based on image analysis, and its application to two 
metabolomics studies are discussed. The new method is published in Paper III (Ebrahimi, van 
den Berg et al. 2015) and its applications for quantifying mold growth in two other studies are 
presented in Paper IV (Aunsbjerg, Honoré et al. 2015), and Paper V (Honoré, Aunsbjerg et al. 
2015). 

6.1. Quantifying mold growth 
In food microbiology as well as in other fields that investigate mold and bacterial metabolism, 
it is of great relevance to quantify mold growth, as this can provide a measurement tool to 
investigate how different parameters influence mold growth. For instance, in studies related to 
biopreservation of food products, where safe and controlled microorganisms are used to 
inhibit growth of disease-causing molds and bacteria (Chaillou, Champomier-Vergès et al. 
2005), a reliable mold quantification method can be most helpful. Such a method will allow 
optimizing biopreservation by investigating how mold growth is affected by different 
environmental factors and also different strains of protective cultures. This can be used by 
food industry for providing an efficient biopreservation system for food systems. However, 
predictive modeling of mold growth has been hindered by the lack of effective and reliable 
quantitative methods (Marín, Ramos et al. 2005, Marín, Cuevas et al. 2008, Ebrahimi, van 
den Berg et al. 2015).  
 
A number of approaches have been reported and used for quantifying mold growth, including 
colony forming units (CFU) counts, total ergosterol content and colony diameter (Marín, 
Ramos et al. 2005). CFU is one of the most frequently used methods for quantifying mold 
growth, but it reflects spore numbers rather than biomass and is, in general, a poor indicator of 
the extent of fungal growth. Measuring ergosterol content has also been used for mold growth 
quantification. Ergosterol is the dominant sterol in most fungi, and its concentration accounts 
for the total fungal population in a food sample (Taniwaki, Pitt et al. 2006). Although 
ergosterol has shown good performance as a fungal growth indicator for different species 
(Marín, Cuevas et al. 2008), it is not possible to determine ergosterol concentration accurately 
for very small colonies (e.g. a colony as small as 2 mm in diameter). By far, the simplest 
method to assess mold growth is measuring the colony diameter (or area). As molds often 
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grow in the form of surface colonies, colony diameters can be measured on Petri dishes over 
time and converted into growth curves (Taniwaki, Pitt et al. 2006). Colony diameter 
measurements show higher repeatability and sensitivity compared to ergosterol measurements 
(Marín, Morales et al. 2006), and diameters of very small colonies − for which ergosterol 
content cannot be measured accurately − can be easily determined. Although colony diameter 
does not take colony density and volume into account, it is the most suitable measure of the 
fungal biomass in solid substrates (Garcia, Ramos et al. 2010). Good correlation has been 
reported between ergosterol content and colony diameter (Marín, Morales et al. 2006). Colony 
diameter and size measurement is also non-destructive, and therefore, saves the sample for 
further analysis or time-series studies.  In general, colony diameter is measured manually 
(Wang, Yan et al. 2012), and sometimes just a visual inspection of the colonies is used to 
estimate mold growth and grade inhibition (Magnusson and Schnürer 2001). For manual 
measurement of colony area, the routine practice is to measure the diameters of the mold in 
the two main perpendicular directions and estimate the area or to overlay tracing paper on the 
mold colony, trace the shape, and then overlay the tracing paper on graph paper and count the 
squares. These procedures obviously lack accuracy and precision and they can be even less 
reliable when colonies have not grown in well-shaped circular forms. In addition, they can 
disturb the mold, and spread the spores around which will bias the results by increasing the 
apparent growth. Moreover, if the investigated molds are toxic, manual measurement of the 
colonies can pose potential health risks to the analyst. Based on the presented arguments, the 
commonly used methods for quantifying mold growth are not accurate. An adequate, rapid 
and objective method will allow studying the effect of many different parameters and 
conditions on mold growth patterns, and can thus provide valuable insight and knowledge 
(Ebrahimi, van den Berg et al. 2015). 
 
Paper III (Ebrahimi, van den Berg et al. 2015) presents a new and semi-automated approach 
for quantifying mold growth based on the colony size or area, using the unsupervised k-means 
clustering of multispectral images, recorded in the ultraviolet, visual and near-infrared 
regions. In order to test and demonstrate the efficiency of the new approach, three different 
sample sets were analyzed with the objective of quantifying white and green segments of 
Penicillium mold colonies. As white and green segments of the colonies relate to different 
stages of sporulation, their individual quantification can be informative. The results verified 
the efficiency of the proposed method for mold growth quantification. The new method and 
the related program, which is called ‘PCLUSTER’, were used in two other studies for 
quantifying mold growth. In the following, PCLUSTER as well as its applications are 
presented.  
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6.2. Multispectral imaging 
Multispectral imaging combines spectroscopy and imaging, and thus provides both spectral 
and spatial information about the samples. Each multispectral image is a three-dimensional 
data structure in which two of the dimensions provide spatial information of the sample, and 
the third dimension represents spectral information for each picture-element (pixel). In 
multispectral images, each pixel is associated with a spectrum. The structure of a 
multispectral image is shown schematically in Figure 6.1. In multispectral images, spectral 
information is provided for a range of wavelengths, including ultraviolet, visible, and near-
infrared which can provide much more information about the samples compared to e.g. the 
ordinary trichromatic (RGB) images. Multispectral images give information on the color, 
surface properties, water content and other important physical and chemical properties of the 
samples (Guo, Zeng et al. 2007, Dissing, Papadopoulou et al. 2013). This can be helpful in 
different fields from food quality control in industry to different biological research areas in 
academia (Ebrahimi, van den Berg et al. 2015).  

 

Figure 6.1. Schematic illustration of the structure of a multispectral image of mold colonies. X and y 
provide spatial information of the sample, and the wavelength dimension provides spectral 
information. 

6.3. PCLUSTER software˗˗ a new approach for quantifying mold 
growth (Paper III) 

A new approach for quantifying mold growth based on mold colonies area was developed. 
The method is based on clustering multispectral images by k-means, an unsupervised and 
simple clustering algorithm (MacQueen 1967, Tran, Wehrens et al. 2005), and provides an 
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accurate tool for measuring different segments of mold colonies. In order to perform the 
clustering and analysis of the images by the method in a semi-automated way, a Graphical 
User Interface (GUI) was developed using MATLAB 2012b (MathWorks, Inc., Natick, MA, 
USA). The outline of this software which is called ‘PCLUSTER’ is shown in Figure 6.2. 
PCLUSTER can be used for multispectral images that are recorded by VideometerLab2 
instrument (Videometer A/S, Hørsholm, Denmark), which have ‘.hips’ format. In the 
following, a brief description on the instructions of the software is presented. 
 
PCLUSTER can be started either by typing its name in MATLAB command window, or by 
clicking on its icon for the compiled version. Multispectral images are first imported into 
PCLUSTER, by selecting the import option of choice. Then, pressing the ‘Start analyzing the 
images’ icon will open the window for selecting a circular region of interest (ROI), which will 
be used for all the images in the imported set. 

 

Figure 6.2. The layout of PCLUSTER, the software for quantifying mold colony sizes. 

Choosing a ROI reduces the size of the images and accelerates the analysis. ROI selection 
window is shown in Figure 6.3. The software only uses the first image for this purpose, but if 
the images are recorded by putting the Petri dishes, or other objects of the study, in 
approximately the same position under the Videometer sphere during the images acquisition, 
the selected ROI can be safely used for all the images in a dataset. The selected ROI can also 
be saved to be used for other sets of images in future analysis runs. 
 
In the k-means algorithm, the number of clusters, k, is a user defined input. In PCLUSTER, 
images are clustered from 3 to 6 groups (K=3:1:6) and the results are shown as color-coded 
(so-called false negative) image objects which show membership of the pixels in the clusters 
(see Figure 6.2). Then, based on the graphical output, the optimum number of clustering and 
the meaningful clusters are selected by the user. Meaningful clusters are the ones that show 
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the colonies segments, and the optimum number of groups is the one that allows clustering 
different parts of the mold colony properly. For instance, in Figure 6.2, partitioning the pixels 
into 3 clusters is enough to segment the white and green parts of the mold colonies and 
separate them from the background. Selecting more than the optimum number of clusters will 
subdivide the colony segments further and can impose some errors on the quantification 
results, since only two colony segments can be chosen. The user can make a specific 
interpretation to the clusters, based on the color-coding of the pixels and select the meaningful 
clusters by ticking the corresponding check boxes (see Figure 6.2). PCLUSTER is specifically 
designed for Penicillium molds, for which the colonies are composed of white and green 
segments. However, the method and the explained concept can be applied to all types of 
molds. 
 
 

 

Figure 6.3. The window for selecting the region of interest (ROI) in PCLUSTER. a) selecting the region 
of interest, and b) the image reduced to the ROI. 

Different built-in options are included in PCLUSTER. One of these options that can be very 
useful allows omitting the unwanted growth on some of the plates. An example of such a 
situation is shown in Figure 6.4a. The image shows a Petri dish with triple spotting of mold 
on top. As marked with the ‘x’ sign, the small growth close to one of the colonies is the result 
of the splashes of the mold solution while spotting on the Petri dishes. The ‘Exclude regions’ 
button in the main page of the software allows defining areas that the user does not want to be 
included in quantifying the image. Figure 6.4b shows the window that the user gets for 
excluding the regions and the different options that are implemented for this purpose. After 
this step, the software re-clusters the image, without the excluded regions. Figure 6.4c shows 
the main window of PCLUSTER for an image after re-clustering. This option allows saving 
some of the images while avoiding quantitative errors. Figure 6.5 shows an example of an 
image with considerable contamination of the Petri dish with unwanted microorganisms 
during incubation. Although the contamination had spread all over the dish, the defined 
option was able to include only the main colonies in the analysis.  
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Figure 6.4. PCLUSTER’s built-in option for excluding unwanted regions from the images. a) an 
example of an image with unwanted growth of mold marked with the white ‘x’ sign, b) the window 
that opens by ‘Exclude regions’ button, and c) re-clustering of the image after excluding unwanted 
regions. 

 

 

Figure 6.5. An example of an image from a Petri dish with significant unwanted growth from 
contamination, and the re-clustering after excluding these regions by PCLUSTER. As shown by the red 
circle around the meaningful colonies, only the main mold colonies have been included in the analysis, 
and the growth from contamination has been excluded.  
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At the end of the analysis by PCLUSTER, the results are saved as Excel and Matlab files. The 
outputs are the size of the green and white segments of the mold colonies. So far, PCLUSTER 
has been used for analyzing few thousands of images from inhibition assays, and the results 
have verified the efficiency of the method for quantifying mold growth. Paper IV (Aunsbjerg, 
Honoré et al. 2015) and Paper V (Honoré, Aunsbjerg et al. 2015) include two applications of 
PCLUSTER, which are discussed in more detail in the following. 

6.4. Applications of PCLUSTER to metabolomics studies  
In this section, two applications of PCLUSTER for quantifying mold growth in metabolomics 
studies are presented. The first application successfully used PCLUSTER and the results of the 
quantitative image analysis to investigate the contribution of diacetyl to the antifungal effect 
of the studied strain of LAB. In the second application, PCLUSTER helped to quantify 
antifungal synergistic effects between six 2-hydroxy acid metabolites in three strains of LAB, 
by calculating correlations between the metabolic profiles of the bacteria and their inhibitory 
effects.  

6.4.1. Contribution of volatiles to the antifungal effect of 
Lactobacillus paracasei in defined medium and yogurt (Paper 
IV) 

The aim of the first study (Aunsbjerg, Honoré et al. 2015) was to investigate which volatile 
metabolites are associated with the antifungal properties of Lactobacillus  paracasei. Diacetyl 
was identified as the main volatile metabolite produced by L. paracasei DGCC 2132. As part 
of the study, inhibition assays were prepared for with-cell (C-ferments) and cell-free ferments 
(CF-ferments) of the strain, and reference plates with only the growth medium, using 
Penicillium sp. nov. DCS 1541, and Penicillium solitum DCS 302 as indicator molds. The 
plates were then incubated for 9 days, and multispectral images were recorded on 2, 3, 4, 5, 6 
and 9 days after the incubation, and analyzed by PCLUSTER to quantify mold growth and 
inhibition. 
 
In order to investigate how the inhibition of mold growth and concentration of diacetyl are 
correlated, solid agar plugs were taken from the plates of the prepared inhibition assay on 
days 0, 1, 2, 4, 6, and 9 after incubation, and diacetyl concentration was measured by 
headspace gas chromatography mass spectrometry (GC-MS). Figure 6.6 shows the profile for 
diacetyl concentration, and the total size of the mold colonies (combination of the green and 
white segments) for C-ferment, CF-ferment, and reference samples as resulted from 
PCLUSTER. The images shown beside the plots are from the Petri dishes after 4 days of 
incubation. 
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In the C-ferments, concentration of diacetyl reaches its maximum after 1 day of incubation, 
and decreases afterwards, whereas in the CF-ferments, diacetyl concentration stays constant in 
all days. The plots (Figure 6.6) of the mold colony size show how these changes affect mold 
growth. For CF-ferments, almost no inhibition is observed and sizes of the colonies and the 
shape of their plots are similar to those in reference samples, for both of the indicator molds. 
For C-ferments, it is observed that the growth of the colonies is inhibited by the presence of 
diacetyl. The high concentration of diacetyl in the first few days after incubation has delayed 
the growth of the indicator molds, but the colonies grow larger as the concentration of 
diacetyl decreases. The plots also show that diacetyl inhibits Penicillium sp. nov. DCS 1541 
more than Penicillium solitum DCS 302.  
 
In conclusion, PCLUSTER was successfully used in this study for investigating how 
concentration of diacetyl affects inhibition of the two mentioned indicator molds by L. 
paracasei DGCC 2132 in the inhibition assays. The results also allow comparing the degree 
of the inhibition of the two molds by the different samples. Such quantitative information on 
mold inhibition assays cannot be reliably obtained without having an accurate tool for mold 
growth measurement. For instance, the common practice of the manual measurement of the 
size of mold colonies cannot be relied on, as manual measurements lack precision and 
accuracy, and are prone to subjective errors.  
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Figure 6.6. Plots and profiles for investigating the effect of diacetyl concentration on mold growth. a) 
concentration of diacetyl in the agar plugs from the inhibition samples, b) the growth of  the 
Penicillium solitum DCS 302, and c) the growth of Penicillium sp. nov. DCS 1541, for C-ferments, 
CF-ferments, and reference samples. The images are from day 4 that is marked on the graphs by the 
dotted boxes. 

6.4.2. Metabolic footprinting for investigation of antifungal 
properties of Lactobacillus paracasei (Paper V) 

The aim of the second study (Honoré, Aunsbjerg et al. 2015) was to investigate the antifungal 
properties of three strains of Lactobacillus paracasei, by exometabolic profiling of the strains 
and find potential antifungal compounds. Multispectral imaging was used to record inhibition 
assays of the ferments from the three strains of LAB, Lactobacillus paracasei DGCC 2132, 
Lactobacillus paracasei DGCC 11287, and Lactobacillus paracasei DGCC 695, which were 
abbreviated as LAB A, B, and C respectively. Cell-free ferments of the strains were tested for 
the antifungal activity against two indicator molds, Penicillium solitum DCS 302, and 
Penicillium sp. nov. DCS 1541. The inhibition assays were incubated for five days, and 
multispectral images were recorded from day 2 to 5, on a daily basis. PCLUSTER was used to 
quantify white and green segments of the mold colonies. Figure 6.7 shows the analysis results 
for the three strains, and also reference samples which do not have any of the strains and are 
acidified to a pH value of 4.5.  
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Figure 6.7. The sizes of the mold colonies in the inhibition assays, as calculated by PCLUSTER, for the 
two indicator molds.  a) Penicillium sp. DCS302, and b) Penicillium sp. DCS1541. REF plates are un-
inoculated medium acidified to pH 4.5, and LAB A, B and C are the cell free ferments of the bacteria. 

Exometabolic profiles of the strains were obtained by using headspace solid-phase micro-
extraction gas chromatography mass spectrometry (HS SPME-GC/MS) and Liquid 
chromatography–mass spectrometry (LC-MS). In order to investigate how different 
metabolites correlate with the inhibition properties of the strains, Partial Least Squares 
Regression  (PLS) (Wold, Ruhe et al. 1984) was used to model the correlations between the 
profiles and the size of the white segments, green segments, as well as the total size of the 
colonies in the assays, for both of the indicator molds. Based on the PLS models, in all days 
there was a correlation between the growth of the indicator organism and the exometabolomic 
profiles. The best correlation was observed by using the green segments or the total colony 
size (the size of the white pixels did not change considerably after sporulation). Therefore, the 
following discussions are related to the PLS models that were calculated between the 
metabolic profiles as the X-block, and the total colony size as the Y-block. 
 
Based on the PLS models, the consumption of nutrients was correlated to reduced mold 
growth. Concentration of glucose, phenylalanine, leucine, isoleucine, and adenosine, showed 
a high positive correlation with the mold growth. However, some of the metabolites also 
showed high positive correlations with reduced mold growth. Among the major metabolites 
that showed inhibition effect against Penicillium sp. DCS 1541 were six 2-hydroxy acids, as 
listed in Table 6.1. 
 
In conclusion, the developed PCLUSTER approach for quantifying mold growth served as an 
efficient tool in this study for quantifying inhibition assays, and thus helped in finding 
metabolites that affect the inhibition. Therefore, PCLUSTER has great potential for use in 
bioassay guided fractionation of protective cultures fermentation, for finding antifungal 
compounds and metabolites that are responsible for antimicrobial effect. 
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Table 6.1. The list of the identified 2-hydroxy acids that correlated negatively with mold growth. 

Compound Abbreviation 

2- hydroxy-4- methyl pentanoic acid OH-Me-Pe 

2- hydoxy-3- phenyl propanoic acid OH-Phe-Pr 

2-hydoxy-3-(4-hydroxyphenyl)propanoic acid OH-(OH-Phe)-Pr 

2-hydroxy-3-(1H-indol-3-yl)propanoic acid OH-Ind-Pr 

2-hydroxy-3-methylbutanoic acid OH-Me-Bu 

2-hydroxy-4-(methylthio)butanoic acid OH-MeS-Bu 
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7. Conclusions 

The main aim of the present PhD project was to use NMR spectroscopy to study the 
metabolism of the antifungal strains of LAB. In order to achieve this, an analytical protocol 
was developed for real-time in vitro NMR measurements of bacterial fermentation and 
metabolism, from sample preparation to the kinetic modelling of the metabolic changes. As a 
non-destructive analytical technique, NMR provides a unique opportunity for studying the 
overall quantitative metabolism of bacteria. Bacterial fermentation can be performed in the 
NMR magnet and time-series spectra can thus be recorded in vitro. For in vitro NMR, no 
sampling and no quenching of the metabolism is required and the metabolic process is not 
disturbed. The developed analytical protocol was used for the measurements of an 
experimental design of two strains of LAB and the results, as presented in Paper II (Ebrahimi, 
Larsen et al. 2015), demonstrated significant metabolic differences between the strains and 
between the other design factors. The recommended sample preparation procedure is 
relatively easy and allows the investigation of different strains and experimental factors. The 
data analysis and kinetic modeling approaches that were used provide a good guideline for 
handling similar data and for extracting the correct metabolic profiles. The combined protocol 
shows the challenges that can be expected in the analysis of in vitro NMR data, and how 
different processing techniques can be applied to make the extracted profiles more reliable. 
 

One of the interesting NMR data processing methods that proved to be very beneficial in 
metabolomics, and especially in in vitro studies, was reference deconvolution. Reference 
deconvolution is a post-measurement NMR data processing method that can correct many 
systematic errors in NMR spectra. For the designed artificial metabolic experiments which are 
presented in Paper I (Ebrahimi, Nilsson et al. 2014), it was shown that reference 
deconvolution can be helpful in improving the multivariate analysis results of NMR data, by 
enhancing the lineshapes and bilinearity of the signals. PCA and PLS models were 
significantly improved when applied to reference deconvoluted data compared to the data that 
was not reference deconvoluted. The multivariate models became simpler, and fewer latent 
variables were required to explain the data. This makes reference deconvolution very useful in 
quantitative NMR spectroscopy and in applications where quantitative pattern recognition of 
NMR data is of interest. In Paper II (Ebrahimi, Larsen et al. 2015), reference deconvolution 
was used for the first time to improve the multivariate analysis results of real metabolomics 
data. In this case, reference deconvolution proved to be an elegant solution to the problem of 
the inherent inhomogeneity of the samples that is encountered in in vitro NMR measurements 
of cells and can lead to the broadening of the signals. In this study, reference deconvolution 
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improved MCR-ALS models that were used for extracting the metabolic profiles, by 
enhancing the bilinearity of the data. Based on the results that were presented in Paper I 
(Ebrahimi, Nilsson et al. 2014) and Paper II (Ebrahimi, Larsen et al. 2015), it is recommended 
that reference deconvolution should be considered as a standard tool to enhance lineshapes 
and improve multivariate analysis results of NMR data. 
 

Quantifying mold growth is of great relevance and interest in microbiology. Especially in 
studies related to the biopreservation of food products, the quantification of mold growth and 
inhibition in a reproducible and quantitative manner is highly desired, in order to compare the 
efficiency of the different strains of bacteria in preserving food, and to investigate the effect 
of different factors on inhibition. According to the literature, modeling of fungal growth has 
been hampered by the lack of an appropriate and accurate method for quantification (Marín, 
Ramos et al. 2005). Due to the importance of quantifying inhibition before actually studying 
the metabolism of the antifungal strains of LAB by NMR and other metabolomics platforms, 
one of the goals of the present PhD project was to develop an accurate method for quantifying 
mold growth. Therefore, a new approach was presented for quantifying mold growth, based 
on multispectral images and their clustering of by k-means algorithm. The method was further 
developed into a piece of software called PCLUSTER that allows measuring different segments 
of mold colonies in a semi-automated way. The only input that is required from the user is 
selecting the meaningful clusters. In Paper III (Ebrahimi, van den Berg et al. 2015), the theory 
of the method is presented and three different sets of samples were successfully analyzed by 
the method, with the objective of quantifying mold growth and the size of the colony 
segments of Penicillium mold. PCLUSTER was subsequently applied to two biopreservation 
related metabolomic studies of lactic acid bacteria. In Paper IV (Aunsbjerg, Honoré et al. 
2015) PCLUSTER was used to analyze multispectral images from the inhibition assays and was 
able to quantify how diacetyl affects inhibition of the indicator molds. In Paper V (Honoré, 
Aunsbjerg et al. 2015) PCLUSTER served as an efficient tool for quantifying inhibition assays 
and finding metabolites that affect the inhibition. The results of the applications of PCLUSTER 
verified that the method has great potential for use in bioassay guided fractionation of 
protective cultures fermentation, for finding antifungal compounds and metabolites that 
contribute to the antimicrobial effects, and for strain optimization and selection to achieve 
enhanced biopreservation. 
 

The project has been successful in providing analytical protocols regarding data acquisition 
and data analysis for in vitro NMR studies of bacterial metabolism and fermentation. In 
addition, the developed approach for quantifying inhibition and mold growth provides an 
efficient screening tool for the optimization of biopreservation. The combination of these new 
analytical techniques can be most helpful in future biopreservation studies. However, the 
developed tools are generic and can be used in many other contexts.  
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8. Outreach 

Food spoilage is a global challenge. It causes considerable economic losses in the food 
industry and for the consumers. It can threaten public health, and can ruin a sustainable food 
production by wasting the resources and energy that have been used for its production. These 
concerns are very serious and warrant increased research on the preservation of food products. 
Biopreservation is in particular interesting, due to the advantages that it offers over the 
commonly used methods of food preservation, and it is expected that the research in this field 
will continue to increase. In the long term, biopreservation may be able to completely replace 
the chemical preservatives, which will be a significant improvement in the quality and 
healthiness of food products. Considerable effort has already been devoted to this field, but 
biopreservation often remains elusive and multifactorial and will require considerable 
research efforts in the future. 
 

Introducing new and efficient methods for studying food protective cultures will thus be very 
helpful in expanding our knowledge in biopreservation. By gaining more knowledge in this 
field, efficient biopreservation systems can be designed and spread to commonly used food 
products. The analytical protocol for in vitro NMR measurements that was developed in this 
project, and the method for quantifying inhibition, PCLUSTER, are new tools which can be 
very beneficial for the research in biopreservation field. The in vitro NMR protocol will allow 
a reliable means for investigating the metabolism of protective cultures, the synergistic effects 
between bacterial strains or metabolites, and the effect of the different environmental factors 
on the metabolism. On the other hand, PCLUSTER provides an interactive tool for 
identification and quantification of the efficacy of new antifungal compounds, strain selection, 
and substrate optimization towards more efficient biopreservation solutions for different food 
systems.  
 

In order to obtain more information about the metabolism of the investigated bacteria and to 
partially compensate for the relative low sensitivity of NMR in the future studies, other 
metabolomics analytical techniques can also be used in parallel to the suggested methods. For 
instance, chromatographic fractionation can be used alongside or even in hyphenation. 
Parallel fermentations can be performed, one in the magnet of spectrometer for the purpose of 
real-time in vitro measurements, and one in a bioreactor that allows monitoring different 
parameters like pH, and can be sampled in specified time intervals. The fractions should be 
first quenched by corresponding protocols to stop the metabolism quickly and efficiently, 
whereafter the metabolome can be up-concentrated by freeze drying, fractionated by a 
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chromatography column, and measured by NMR or mass spectrometry (MS). The fractions 
can also be directly introduced to hyphenated analytiscal platforms such as LC/GC-MS or 
LC-NMR. The fractionation technique obviously does not have the real-time advantage that 
the in vitro approach can offer, but can provide valuable quantitative information on the low-
concentration metabolites that cannot be measured by NMR. This will be a powerful 
combination of analytical methods for investigating the detailed metabolism of selected 
strains of bacteria in a more targeted and detailed manner while still keeping the metabolic 
overview by in vitro NMR.  
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Cleaning up NMR spectra with reference
deconvolution for improving multivariate
analysis of complex mixture spectra
Parvaneh Ebrahimia*, Mathias Nilssona,b, Gareth A. Morrisb,
Henrik M. Jensenc and Søren B. Engelsena

NMR spectroscopy provides valuable data for metabolomics, but the information sought can be partly obscured by
errors from hardware imperfection, causing frequency, phase, and spectral lineshape to change significantly between
measurements. Clearly, this is a highly undesirable source of variation in multivariate quantitative studies such as
metabolomics. Fortunately, many hardware imperfections affect all resonances in the same way. They can therefore
be corrected for by comparing an experimental reference peak with the known correct peak shape, in a procedure
known as reference deconvolution. This post-measurement processing method can correct many systematic errors in
data. The aim of this study is to investigate how reference deconvolution can improve the results obtained by multivar-
iate analysis of NMR data. For this purpose, 1H NMR data were recorded for a set of 136 mixture samples. Spectra were
then produced with and without reference deconvolution and analyzed by principal component analysis and partial
least squares methods. The results showed that reference deconvolution resulted in simpler and improved models,
requiring fewer latent variables to explain the same or higher percentage of the variance. It was also evident that the
recovery of the design concentrations was significantly enhanced. This confirms that reference deconvolution can
significantly improve multivariate data analysis and should be considered as a standard tool in high throughput
quantitative NMR spectroscopy. Copyright © 2014 John Wiley & Sons, Ltd.

Keywords: reference deconvolution; NMR; multivariate data analysis; PCA; PLS

1. INTRODUCTION

The quality of NMR spectra has improved substantially with
recent improvements in spectrometer design and manufacture.
Despite these improvements, significant instrumental imper-
fections remain, and these are often the limiting factor in deter-
mining the amount and quality of information obtainable from
NMR experiments. This is particularly true for experiments involv-
ing multiple data acquisitions, such as multidimensional NMR
methods and chemometric studies, for which instrumental
reproducibility is vital. Most instrumental imperfections affect
all the signals in a spectrum in the same way [1]. For example,
magnetic field inhomogeneity broadens all lines to the same
extent, radiofrequency pulse phase error imposes the same
phase shift on all signals, and receiver gain variation changes
all signal amplitudes equally. Other imperfections in NMR data
vary from signal to signal, for example, shifts in peak position
due to changes in temperature, concentration, and pH. All of
these types of imperfection in NMR data represent sources of
unwanted, non-relevant variance and can blur the picture
obtained from the biological variance in a metabolomics study,
or any investigation relying on quantitative pattern recognition.
Any method that can reduce or suppress such unwanted spec-
tral distortion is a welcome addition to the arsenal of methods
available to the data analyst.

One data processing method that is highly effective at correcting
systematic errors in NMR data is reference deconvolution [1–5]. This
extracts the signal of a known reference material from the experi-
mental data, compares it to the theoretically expected form, and

constructs the correction function needed to convert the full
experimental dataset into the form that it would have had if the
unwanted perturbations experienced by the reference signal had
not been present. The reference signal should ideally be a well-
resolved singlet of high signal-to-noise ratio (S/N), for which the
theoretical lineshape is known [1]. Typical examples of suitable
signals are those from 3-(trimethylsilyl)propionic acid (TSP) and
tetramethylsilane (TMS), compounds that are commonly added to
NMR samples to provide an internal standard for quantification
and calibration of the chemical shift axis. Reference deconvolution
is fast, linear (to a good approximation—the noise structure is
changed slightly because the experimental noise in the reference
region is convoluted onto the full spectrum), and robust; it has
been known to NMR spectroscopists for many years, but it appears
to have been neglected by the NMR-based metabolomics/
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chemometrics community. The algorithm used in this article,
Free Induction Decay Deconvolution for Lineshape Enhance-
ment (FIDDLE), has been used in a wide variety of different
contexts [1–9] but has yet to be applied to chemometrics.
This study investigates how reference deconvolution can help

in multivariate data analysis of NMR data. For this purpose, a
ternary experimental design was prepared of 136 mixture
samples with different concentrations of lactic acid, propionic
acid, and lactose, and a constant artificial “metabolic” back-
ground consisting of eight different amino acids and carbohy-
drates. 1H NMR spectra were acquired using a standard
metabolomics protocol [10], except that a higher-than-usual
concentration of the reference material (TSP) was used. The effect
of reference deconvolution was then investigated by subjecting
the corrected and uncorrected experimental data to two of the
most common data mining methods, principal component
analysis (PCA) and partial least squares (PLS) methods. PCA and
PLS models from the corrected data were superior to those from
the uncorrected spectra, demonstrating the ability of reference
deconvolution to reduce systematic imperfections in NMR data
and, in turn, improve the consistency of a spectral dataset.

2. THEORY

A number of different algorithms have been proposed for refer-
ence deconvolution [2–4], but they are all based on the same
foundations. The FIDDLE algorithm is effective and simple; the
theoretical basis has been discussed extensively in the literature
[1,5,7,8], but a graphical illustration of the key elements is shown
in Figure 1 and explained in the following.
The NMR time-domain data, the free induction decay or FID

(Figure 1(a)), are zero-filled (to retain all the spectral information),

Fourier-transformed (FT), and phase-corrected to yield the raw
NMR spectrum (Figure 1(b)). A suitable reference signal in the
spectrum is then chosen, and the rest of the spectrum is set
to zero. The real part (the absorption mode) of this filtered
spectrum is subjected to inverse Fourier transformation to
give a complex FID that contains only the reference signal
(Figure 1(c)). Choosing to retain only the real part of the
reference spectrum excludes dispersion mode signals, making
clean extraction of the reference signal much easier; no infor-
mation is lost if the initial FID was zero-filled [6]. In parallel, a
synthetic FID (Figure 1(e)) is calculated for the reference
signal, using the known frequency (or frequencies; in the
case of a reference such as TSP, 29Si and 13C satellite signals
are included) and a specified lineshape. The latter is chosen
by the user, according to need; while the true theoretical
lineshape is typically Lorentzian, it can often be advanta-
geous to use a Gaussian shape as this has a narrower base.
This choice of target lineshape is analogous to the choice
of window function (apodization) in normal FT processing,
and the same considerations for resolution or sensitivity
enhancement apply [8]. The most conservative choice is a
Lorentzian lineshape of approximately the same width as
the experimental reference signal (Figure 1(d)); this regular-
izes the lineshape (and phase and frequency) with minimum
change in resolution and S/N. A complex correction function
is then constructed by dividing the ideal reference FID
(Figure 1(e)) by the experimental reference FID (Figure 1(c)).
The cumulative effect of instrumental imperfections such as
field inhomogeneity, pulse phase error, and modulation
sidebands is to multiply the FID that would have been recorded
if the instrument had behaved ideally by a complex time-domain
error function. The correction function calculated here is the
inverse of that function, so when the original (full) experimental

Figure 1. Schematic illustration of the FIDDLE algorithm for reference deconvolution. The reference peak is extracted from the experimental spectrum
(b), and its inverse Fourier transform (c) is compared to that of “perfect” FID (e) to yield a correction function (e/c). The correction is then applied in the
time domain to the entire experimental FID (a) to produce the corrected FID (f).
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FID (Figure 1(a)) is multiplied by it, the result is a corrected FID
(Figure 1(f)) in which all the multiplicative errors seen in the
reference FID have been corrected. The corrected FID can then
be Fourier transformed to yield the reference-deconvoluted
spectrum (Figure 1(g)), in which such imperfections as lineshape
distortions, signal amplitude errors, and signal phase changes
have been corrected [5,7–9].

For best results, the reference peak should be a well-resolved
singlet, which is present with high amplitude in all the spectra
being deconvoluted [1]. The noise in the vicinity of the reference
signal will be convoluted onto the entire spectrum, so if the S/N
of the reference signal is too low, it can significantly degrade the
quality of the data [5]. Multiplets are a much poorer choice for
reference signals as they have FIDs that have zero amplitude at
regular intervals, which results in singularity problems that are
mathematically challenging [9]. The zeroes make interpolation
necessary, introducing an element of non-linearity into the
algorithm. While the use of a doublet as the reference signal
has been reported [11], most software for reference
deconvolution does not cater for multiplet reference signals. In
this study, only singlet reference signals have been used.

The choice of the ideal peak lineshape and linewidth
(the “target lineshape”) is important and warrants further
discussion. The lineshape chosen for the ideal reference signal is
typically Lorentzian or Gaussian or a mixture of the two [1],
although there are many other possibilities. As noted earlier, there
is a close analogy between the choice of target lineshape and the
apodization procedure used in conventional Fourier transform
processing. As most reference signals have a Lorentzian natural
shape, and the effects of static field inhomogeneity also often
approximate to a Lorentzian distribution of signal amplitude as a
function of frequency, the choice of a Lorentzian target lineshape
with a width close to that of the experimental reference line will
produce a spectrum similar in appearance to the original but with
errors in lineshape, phase, frequency, and so on corrected.
However, it is often useful to change the target lineshape to aid
the extraction of the features of interest from the data under
analysis. If a Lorentzian target lineshape narrower than the experi-
mental reference line is chosen, resolution will be increased, but at
a severe cost in S/N; if too narrow a lineshape is used, numerical
instabilities in the correction will cause severe spectral distor-
tions. Choosing a target lineshape wider than the experimental
reference line will increase the S/N at a cost in resolution, with a
maximum S/N improvement at twice the experimental line-
width (so-called matched filtration). The choice of a Gaussian
or mixed lineshape is often a good alternative, as the narrow base
of a Gaussian improves resolution, but at a moderate cost in
sensitivity. The optimum target lineshape naturally depends on
the objective of the analysis, and comparison between spectra
corrected with different target lineshapes is often worthwhile.

3. MATERIALS AND METHODS

3.1. Experimental design

A ternary mixture of lactic acid, propionic acid, and lactose was
designed using JMP software, version 9 (SAS Institute Inc., Cary,
NC, USA) with 16 increments from 0 to 15mM for each component,
which yielded a total of 136 mixtures (see experimental design in
Figure 2). Each ternary mixture was prepared in distilled water and
added to a metabolic background consisting of a mixture of amino
acids and carbohydrates (L-alanine, L-asparagine, L-glutamate,

L-leucine, L-phenylalanine, sucrose, glucose, and galactose) at
15mM each in distilled water. Sodium azide was added to prevent
the growth of bacteria and fungi (20mg per 100mL of the
metabolic background solution). Phosphate buffer with pH 7.4
was also prepared with deuterated water according to a protocol
for biological samples [10], which includes TSP as a chemical shift
reference. However, concentration of TSP was increased by a factor
of 10, relative to the concentration in the original protocol, to
10mM, in order to ensure high S/N for the TSP singlet to be used
as the reference signal in reference deconvolution. The 10-fold
increase in the concentration of TSP did not affect the pH of the
buffer. To prepare samples for NMR measurement, 200μL of the
artificial metabolic background and 200μL of the phosphate
buffer were added to 200μL of each ternary design mixture. In
the final samples, the concentrations of the ternary design
components varied between 0 and 5mM.

3.2. NMR data acquisition and processing methods
1H NMR spectra of the samples were recorded on a Bruker DRX
500 spectrometer (Bruker Biospin Gmbh, Rheinstetten, Germany)
operating at a proton frequency of 500.13MHz. For each
spectrum, 32,768 complex points were acquired in 64 scans with
a recycle delay of 2 s at a nominal temperature of 298 K. The
spectrometer was equipped with a 5-mm broadband inverse
(BBI) probe, and spectra were recorded using the one-dimensional
nuclear Overhauser effect sequence for suppression of the solvent
(water) signal. All processing of the data, including phase correc-
tion, apodization, Fourier transformation, baseline correction,
referencing to TSP signal, and reference deconvolution, was
performed using the DOSY Toolbox [12]. Spectra were processed
with and without reference deconvolution. Linewidths are
expressed as full widths at half-height throughout this paper.
Reference deconvolution was performed using the TSP methyl
signal as reference, using Gaussian or Lorentzian lineshapes with
linewidths ranging from 1 to 5Hz in 0.25 Hz increments. In order
to ensure comparability, FIDs that were not reference-
deconvoluted were weighted with Gaussian and Lorentzian
apodization functions adjusted to give reference linewidths
corresponding as closely as possible to those obtained using
reference deconvolution. For example, to make models of

Figure 2. A schematic illustration of the ternary experimental design. A
total of 136 mixture samples of lactic acid, propionic acid, and lactose
were designed by JMP software. To validate the PLS models (Section 4),
mixtures in the center of the design (shown by the dashed triangle)
were used as the calibration set, and the remainder of the samples as
the test set.
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conventional data and reference-deconvoluted with 3 Hz
Lorentzian data comparable, line broadening was added to the
FID in conventional data to make the width of the reference peak
equal to that of the reference signal. The resultant spectra from
the DOSY Toolbox were imported into MATLAB 2012b
(MathWorks, Inc., Natick, MA, USA) and further processed by
normalizing the spectra with respect to the TSP signal area.
The MATLAB code for the DOSY Toolbox is freely available from
dosytoolbox.chemistry.manchester.ac.uk.

3.3. Multivariate analysis

Prior to the multivariate analysis, spectral regions containing
only noise, water, or TSP signals were removed from the data.
The PLS Toolbox, version 7.0 (Eigenvector Research, Inc., WA,
USA), was used for the multivariate analysis. PCA models [13]
were calculated for mean-centered datasets. PLS models [14]
between the mean-centered data and concentration of lactic
acid in the samples were also calculated and cross-validated by
the leave-one-out method. Two of the samples were in all cases
identified as score outliers (outside the limit of confidence in the
primary scores plot) and removed from the datasets.

4. RESULTS AND DISCUSSION

Selected regions of the conventional and reference-
deconvoluted spectra from the 136 samples are shown in
Figure 3. The spectra were reference-deconvoluted with a
1.5 Hz Lorentzian target lineshape. The experimental linewidths
for the reference (TSP) signal in the spectra measured were around
1.5Hz; the aim here was to correct spectral errors while minimizing
any change in linewidth between uncorrected and corrected
spectra, in order to facilitate comparison.
Comparing the conventional and reference-deconvoluted

spectra in Figure 3, it can be seen that the signals from the
constant metabolic background in the samples are much more
consistent in the reference-deconvoluted spectra. For these

signals, reference deconvolution has significantly reduced the
effects of experimental and instrumental irreproducibilities—
which do not have a chemical/biological source—between the
spectra. Inspecting the lactic acid doublet, it is also clear that in
the reference-deconvoluted spectra, the lineshapes are much
more consistent, and the 16 increments in concentration in the
design can be easily observed. Depending on the nature and
extent of the lineshape errors in the experimental data, reference
deconvolution with a target linewidth equal to the experimental
width can increase or decrease S/N. The effect on S/N here was,
as expected for good quality data, marginal, with the S/N of
the lactic acid doublet for the average spectrum in Figure 3
decreasing from 3.0 × 104 in the normal spectrum to 2.9 × 104

in the reference-deconvoluted spectrum. Just as in conventional
processing of NMR data, the target lineshape in reference
deconvolution can be chosen to enhance either the sensitivity
or the resolution of the spectrum. Typical choices are a
Lorentzian target lineshape broader than the experimental
reference line for the former and a Gaussian lineshape narrower
than the experimental reference line for the latter. If necessary,
the target lineshape can be varied between datasets to maintain
the desired balance between resolution and S/N. Where the
spectral lines of interest are naturally broader than those of the
reference material, resolution enhancement is best achieved by
choosing a target lineshape for the reference that contains a
negative Lorentzian width contribution and a positive Gaussian
(i.e., the corresponding time-domain function corresponds to a
rising exponential multiplied by a decaying Gaussian). The
negative Lorentzian contribution should correspond to the
difference in natural linewidth between the signals of interest
and the reference.

In order to optimize the target linewidth, reference decon-
volution with a Gaussian linewidth varying from 1 to 5Hz in
0.25 Hz increments was performed on all the spectra. The
Gaussian lineshape was chosen because it represents a good
compromise between resolution and S/N. For each increment,
a PLS model was calculated between the spectral data and the

Figure 3. NMR spectra with and without reference deconvolution with a 1.5 Hz Lorentzian target lineshape: (a) signals from the constant metabolic
background without reference deconvolution; (b) signals from the constant background with reference deconvolution; (c) the doublet originating from
lactic acid without reference deconvolution; and (d) the doublet originating from lactic acid with reference deconvolution.
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concentration of lactic acid as the response variable. The resultant
root mean square error of cross-validation (RMSECV) and the
squared Pearson correlation coefficient of cross-validation (R2CV )
values as a function of target linewidth are plotted in Figure 4. It
can be seen that linewidths between 2 and 3Hz resulted in the
lowest RMSECVs and the highest R2CV values. As the optimum
region forms a plateau, a linewidth value of 2.5 Hz can safely
be chosen as the optimum. The optimum value will depend
strongly on the data: where peaks in the raw data are well
resolved, an increase in S/N is beneficial, while for crowded
spectra, resolution enhancement may be the better option.

In order to investigate further the spectral variance in the
ternary design, and demonstrate how reference deconvolution
can improve component modeling of the data, a PCA model
was calculated [15,16]. Figure 5 shows the PCA scores plot of
the normal spectra and that of the reference-deconvoluted
spectra. In this case, the reference-deconvoluted spectra were
calculated using the optimal 2.5 Hz Gaussian lineshape, and
the normal spectra were weighted with a �1.5 Hz Lorentzian
and a +2.5 Hz Gaussian apodization function in order to achieve
similar lineshapes and facilitate comparison. From Figure 5, it is
clear that the triangular design is much better recovered in the

scores plot from reference-deconvoluted data. Moreover, the
percentage of the explained variance for the first two principal
components is higher for the reference-deconvoluted data.
These are both strong and credible indicators that systematic
irregularities have been removed from the data by reference
deconvolution and that as a result, simpler PCA models are
required to explain the data.
In order to obtain a quantitative measure of the regularity of

the PCA scores plots shown in Figure 5, the distances between
the scores in normalized scores plots were calculated. This allows
numerical confirmation of the higher regularity observed for
reference-deconvoluted data. The density plot of the resulted
distance distributions (in PC1 and PC2 scores) is shown in
Figure 6. The average distance between the sample scores in a
normalized plot, considering the span of normalized plots and
the 16 increments in the ternary design, should be approxi-
mately 0.13 (dividing 2 by the 15 gaps between the scores in
the base of the triangle). As evidenced by the plot, for the
reference-deconvoluted data, a clear and well-defined peak is
observed around 0.13, as compared to the uncorrected data,
which only shows a broad shoulder. This implies that in the
scores space, the samples appear closer to the correct positions
expected for the ternary design. In addition, the distribution is

Figure 4. Root mean square error of cross-validation (RMSECV) and the
squared Pearson correlation coefficient of cross-validation (R2CV) of the PLS
models calculated for the experimental NMR data using reference
deconvolution with different Gaussian linewidths. Lactic acid concentra-
tion was used as the response variable. All the samples were included in
the models with the exception of the two outliers.

Figure 5. PCA scores plots of (a) raw data weighted with �1.5 Hz Lorentzian and +2.5 Hz Gaussian apodization functions and (b) data reference-
deconvoluted using a 2.5 Hz Gaussian target lineshape.

Figure 6. Score distance density plot showing the regularity of the PCA
scores. Plots show the density of the distances between the scores for the
uncorrected spectral data (red line) and reference-deconvoluted spectral
data generated using an optimal 2.5 Hz Gaussian linewidth (blue line).
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more regular for reference-deconvoluted data, and the density
of distances below 0.08 is zero.
Subsequently, PLS models were calculated between the

spectral data and the lactic acid concentration of the samples.
Models were calculated for a number of different sets, including
uncorrected data, reference-deconvoluted data with 1.5 Hz
Lorentzian target linewidth, uncorrected data with 1 Hz
Lorentzian apodization, reference-deconvoluted data with
2.5 Hz Lorentzian linewidth, uncorrected data with �1.5 Hz
Lorentzian and 2.5 Hz Gaussian apodization, and reference-
deconvoluted data with 2.5 Hz Gaussian target linewidth. To test
the predictive ability of the PLS models, the central part of the
triangular design—shown with dashed lines in Figure 2—was
used as the calibration set (28 samples) and all the other samples
in the design as the test set (106 samples). The statistics for all
the PLS models are summarized in Table I. The most noticeable
result is that for the PLS models built on the reference-
deconvoluted data, each latent variable explains more variance
compared to the uncorrected data, and fewer latent variables
are needed to describe the data adequately. For the uncorrected
data, both with and without apodization, PLS models composed
of four latent variables are appropriate, whereas for reference-
deconvoluted data, only three latent variables are needed. This
is mainly because in reference-deconvoluted data, variations in
peaks shape and amplitude due to instrumental inconsistencies
—as were observed for lactic acid doublet in Figure 3—have

been corrected. As a result, the data become more bilinear, and
simpler multivariate models can be constructed to explain the
data and focus on the interesting variance. The root mean
square error of calibration (RMSEC) and root mean square error
of prediction (RMSEP) values decrease when window functions
are applied; this is attributable to the smoothing effect of
apodization and broadening of the lines. However, both RMSEC
and RMSEP values are further improved in the reference-
deconvoluted data when compared to uncorrected data with
corresponding apodization (linewidth); this improvement is not
attributable to the smoothing effect. Consistent with the
prediction errors, the squared Pearson correlation coefficients
of the calibration (R2cal ) and the prediction (R2pred ) are higher in
the PLS models of the reference-deconvoluted data.

The percentages of the cumulative variances captured for the
X and y blocks are given in Table I. The cumulative variance
captured for the X block shows an increase with apodization of
the raw data and increases by approximately 10% when refer-
ence deconvolution is used. Plots of the variance captured for
the X and y blocks versus number of latent variables are shown
in Figure 7; uncorrected data, uncorrected data with 2.5 Hz
Gaussian apodization, and reference-deconvoluted data with
2.5 Hz Gaussian target lineshape are included. Inspection of the
X variance captured for each latent variable in Figure 7(a) shows
that for the models built on the reference-deconvoluted data,
the latent variables explain more of the variance in the X block,

Table I. Statistics of the PLS models between the spectra and lactic acid concentration as the response variable

Datasets Number
of LVs

RMSEC R2cal RMSEP R2pred X Cum.
Var. (%)

y Cum.
Var. (%)

FT 4 0.0080 0.995 0.0213 0.994 83.06 99.52
RD 1.5 Hz Lorentzian 3 0.0022 0.999 0.0096 0.999 97.72 99.96
FT 1.5 Hz Lorentzian Apodization 4 0.0055 0.998 0.0132 0.997 83.77 99.78
RD 2.5 Hz Lorentzian 3 0.0034 0.999 0.0055 0.999 95.79 99.91
FT 2.5 Hz Gaussian Apodizationa 4 0.0073 0.996 0.0220 0.994 86.16 99.60
RD 2.5 Hz Gaussian 3 0.0022 0.999 0.0058 0.999 98.40 99.96

Samples from the central part of the triangular design were used as the calibration set and all the other samples as the test set
(the two outliers were removed—see Section 3.3).
FT, uncorrected spectral data; RD, reference-deconvoluted spectral data; LVs, latent variables.
aBesides +2.5 Hz Gaussian apodization, �1.5 Hz Lorentzian apodization was also used to eliminate the natural linewidth.

Figure 7. Captured variance in the X and y blocks versus number of latent variables. (a) Variance in the X block and (b) variance in the y block; plots
from normal Fourier-transformed data, Fourier-transformed data with 2.5 Hz Gaussian apodization, and reference-deconvoluted data with a 2.5 Hz
Gaussian target lineshape are shown in blue, green, and red, respectively.
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and that with only three latent variables, almost all the X
variance is explained. In contrast, for the uncorrected datasets,
lower X variance is explained for each latent variable. The
cumulative variance captured for the response variable (y block
in Table I) is also higher in the reference-deconvoluted data than
for uncorrected data. Figure 7(b) shows the y variance captured
for each latent variable; for the reference-deconvoluted data,
only two latent variables explain almost 100% of the variance,
whereas for the uncorrected spectra, at least four latent vari-
ables are required to explain a comparable amount of variance
in the y block.

5. CONCLUSIONS

For a designed set of 136 samples, 1H NMR spectra were
recorded and processed with and without reference decon-
volution. Then, PCA and PLS models were calculated, and a
comparison was made between the models of the data with
and without reference deconvolution. The results clearly
demonstrate that reference deconvolution substantially
improves PCA and PLS models of the NMR data. This is mainly
because reference deconvolution corrects systematic artifacts
such as lineshape errors, and as a result, data become more
bilinear. The resultant multivariate models become simpler, as
they can capture more of the relevant variance, and fewer latent
variables are needed to explain the data. Reference decon-
volution can be particularly helpful in quantitative NMR spectros-
copy, and where quantitative pattern recognition of NMR data is
of interest, for example, in NMR-based metabolomics. Investiga-
tions are in progress to study the extent to which multivariate
analysis of data from real NMR metabolomics studies can benefit
from reference deconvolution.
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Abstract 

Lactic  acid  bacteria  (LAB)  play  an  important  role  in  the  food  industry  as  starter  cultures  to 
manufacture  fermented  food, and as probiotics.  In recent years, there has been an  increasing 
interest  in  using  LAB  cultures  for  biopreservation  of  food  products.  It  is  therefore  of  great 
interest  to  study  the  detailed metabolism  of  these  bacteria.  This  study  presents  an  efficient 
analytical protocol for real‐time in vitro NMR measurements of LAB fermentation, from sample 
preparation over data acquisition and preprocessing to extracting the metabolic kinetic profiles. 
The analytical protocol is applied to an experimental design with two LAB strains (Lactobacillus 
rhamnosus  DSM  20021  and  Lactobacillus  plantarum  subsp.  plantarum  DSM  20174),  two  pH 
levels  (pHi 6.5 and 5.5),  two  levels of glucose concentration  (2.5 and 0.25 g/l), and  two batch 
fermentation  replicates.  All  the  design  factors  proved  to  be  strongly  significant  and  led  to 
interesting  biological  information.  The  protocol  allowed  for  detailed  real‐time  metabolic 
analysis of 11 major metabolites that are involved in the glycolysis, pyruvate catabolism, amino 
acid catabolism and cell energy metabolism. Among the obtained biological knowledge are the 
different  patterns  of  glutamine  and  aspartic  acid  consumption  by  the  two  strains.  It  was 
observed that L. plantarum consumes more glutamine at low pH (pH5.5) whereas the opposite 
applies to L. rhamnosus. Regarding aspartic acid, both of the strains consume  it higher at  low 
pH, and overall L. plantarum consumes it more. L. rhamnosus did not consume aspartic acid at 
pH  6.5.  The  developed  analytical  protocol  allows  relatively  easy  investigation  of  different 
fermentation factors, such as new strains, temperature, and pH. 
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1. Introduction 

Lactic acid bacteria  (LAB) play a very  important  role  in  food  industry, and are used as  starter 
cultures to manufacture dairy products, sourdough bread, fermented sausages, and etc. (van de 
Guchte,  Serror  et  al.  2002).  Some  of  the  strains  of  lactobacilli  are  used  as  probiotics,  and 
different health benefits have been claimed for them when used as food supplements (Ljungh 
and Wadstrom 2006, Kumari, Catanzaro et al. 2011). In recent years, LABs are increasingly being 
used by  food  industry  for biopreservation, which  is  regarded as an ecological  solution  to  the 
problem  of  food  spoilage  and  can  be  defined  as  the  controlled  use  of  antifungal  and/or 
antibacterial microorganisms or their metabolites for the purpose of food preservation (Annou S 
2007,  Delavenne,  Ismail  et  al.  2013).  There  are many  health  and  consumer  political  issues 
associated with the chemical preservatives that are commonly added to food products, whereas 
the use of biopreservation does not raise such same concerns. However, in order to provide an 
efficient biopreservation  system, detailed knowledge about  the metabolism of  the protective 
cultures and their responses to different environmental factors is of great importance.  
 
Environmental  metabolomics,  that  investigates  the  interactions  of  organisms  with  their 
environment and how they respond to different environmental stressors (Lankadurai, Nagato et 
al. 2013),  can be very useful  in  the biopreservation  studies, as well as other  studies  that are 
related to the application of LAB for enhancing  the sensory properties of food products. Growth 
and survival of bacteria that are used as biopreservatives depend upon their stress response, i.e. 
how  they  can  adapt  to  the  environmental  changes  such  as  pH,  temperature,  carbohydrate 
source concentration, other exogenous metabolites and cell population density. Sometimes, the 
adaptive metabolic responses of the cells can  lead to the secretion or  increased production of 
desired  antimicrobial metabolites.  In  fermented  food  products,  the  reroute  of  the  bacterial 
metabolism under the stress condition can result in the production of more diverse metabolites, 
and  such  stress  induced metabolites  can  in  certain  cases  significantly  enhance  the  sensory 
quality  and  structural  properties  of  the  food  system  (Serrazanetti,  Guerzoni  et  al.  2009). 
Therefore,  stress  conditions  can  be  designed  to  augment  the  quality  of  fermented  food 
products.  In order  to  achieve  this,  a detailed understanding of  the metabolism of  the  target 
microorganism  and  the  mechanisms  of  stress  resistance  is  a  prerequisite.  The  choice  of  a 
suitable  analytical  platform  and  carefully  designed  experimental  plans  can  provide  this 
knowledge. 
 
Nuclear magnetic  resonance  (NMR)  spectroscopy  is  a powerful  analytical  technique  that  can 
provide  qualitative  and  quantitative  information  on  chemical  and  biological  samples.  Proton 
NMR has been  increasingly used  in systems biology and metabolomics  (Nicholson and Lindon 
2008), but  it was already applied  to study microbial metabolism about  forty years ago  (Eakin, 
Morgan et al. 1972). NMR has a great potential for studying living organisms, owing to its non‐
destructive  nature,  i.e.  it  can  be  used  for  in  vivo  and  in  vitro measurements  of  biological 
processes with no quenching of the metabolism required. Sampling and quenching fractions of a 
fermentation  batch  is  tedious  and  likely  to  introduce  specific  errors  and  irreproducibilities 
(Mashego, Rumbold et al. 2007). Moreover, the metabolic turnover rate is high and changes can 
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happen  in  the milliseconds  to  seconds  scale  (van  der Werf,  Takors  et  al.  2007),  and  the  lag 
between the sampling a biological process and the measurement can lead to misinterpretations.  
Present study presents an efficient analytical protocol for real‐time in vitro 1H NMR analysis of 
bacterial  fermentations. The protocol  is applied to an experimental design with two strains of 
LAB, Lactobacillus  rhamnosus DSM 20021 and Lactobacillus plantarum subsp. plantarum DSM 
20174  (hereafter,  L.  plantarum),  two  initial  pH  (pHi)  values  and  two  levels  of  glucose 
concentration of a chemically defined medium. The kinetic profiles of selected metabolites are 
modeled by multivariate curve resolution alternating  least squares (MCR‐ALS) analysis (Lawton 
and Sylvestre 1971, de Juan, Jaumot et al. 2014), or by using the second order derivative of the 
signal, after preprocessing  the data with  reference deconvolution  (Morris, Barjat et  al. 1997, 
Morris  2007)  for  lineshape  enhancements  between  the  time‐series,  and  icoshift  (Savorani, 
Tomasi et al. 2010)  for spectral alignment. The  results of  the experimental design are  further 
analyzed by ANOVA‐simultaneous component analysis (ASCA) (Smilde, Jansen et al. 2005), and 
metabolite‐metabolite correlations presented in heat maps.  

2. Materials and methods 

In  this  section,  the  experimental  design  and  procedure,  as  well  as  the  data  acquisition, 
processing and analysis are presented.  In the  last subsection, some theory and background on 
the relevant metabolism of lactic acid bacteria are presented. 

2.1. Experimental design and sample preparation 

The experimental design of the study includes two strains of LAB, L. rhamnosus DSM 20021 and 
L. plantarum DSM 20174, two  levels of glucose concentration, 2.5 and 0.25 g/l, and two  initial 
pH (pHi) values, 6.5 and 5.5 (See Fig. 1S, the Online Resource). The goal was to investigate how 
the fermentation and the metabolism of the bacteria are influenced by the design factors, and 
observe some of their biological differences. In order to avoid the full repetition of the names of 
the samples in the paper, the following abbreviations were used: ‘R’ for L. rhamnosus, ‘P’ for L. 
plantarum,  ‘GH’  for  samples with high  glucose  concentration,  and  ‘GL’  for  samples with  low 
glucose concentration. As an exmaple, ‘R6.5GH’ refers to the L. rhamnosus samples with pHi 6.5 
and high glucose concentration. The abbreviations  for  the samples names are  listed  in Fig. 1S 
(the  Online  Resource).  The  strains  were  obtained  from  Leibniz  Institute  DSMZ‐German 
Collection  of Microorganisms  and  Cell  Cultures  (DSMZ,  Braunschweig,  Germany).  Chemically 
defined interaction medium (CDIM) was prepared as described previously (Aunsbjerg, Honoré et 
al. 2015), but glucose and lactate were excluded. This CDIM was used as the growth medium for 
the  bacteria.  All  the  chemicals  that were  used  to  prepare  the  CDIM  and  the  samples were 
obtained  from  Sigma‐Aldrich  (Schnelldorf, Germany). Water  that was  used  for  preparing  the 
CDIM  was  freshly  produced  Milli‐Q  quality  (Merck  Millipore,  Billerica,  MA,  USA)  water. 
Phosphate buffer was prepared with pH 6.5 (0.15M and the buffer capacity of 0.09), and pH 5.5 
(0.5M and the buffer capacity of 0.10). The buffers were used to adjust the pH of the CDIM to 
6.5 and 5.5, and glucose was added to make the two glucose levels of the design. The prepared 
CDIM were  filter‐sterilized by 0.2 µm pore  size  filter  (Nalgene®, Thermo Fisher Scientific  Inc., 
Waltham, MA, USA), before storage in the freezer and also prior to use in the experiments. The 
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strains  were  stored  in  Ringer  solution  with  10%  v/v  glycerol  at  ‐80  ◦C  until  use.  Before 
inoculating the CDIM, the cells were centrifuged for 15 min at 6000×g and 4 ◦C and washed with 
CDIM  twice,  to wash  out  glycerol  and  avoid  its  signals  in  the  1H NMR  spectra,  as  they  can 
overlap with the signals of interest. Then, the cell pellets were used to inoculate CDIM with 107 
CFU/ml.  Deuterated  water  (D2O)  containing  0.1%  4,4‐dimethyl‐4‐silapentane‐1‐sulfonic  acid 
(DSS)  was  sterilized  by  0.2  µm  pore  size  syringe  filters  (Minisart®,  Sartorius,  Goettingen, 
Germany)  prior  to  sample  preparation.  DSS  signal  serves  as  an  internal  reference  for  the 
calibration of chemical shift axis. The samples were prepared by adding 1200 µl of CDIM and 
300 µl of D2O/DSS solution to the cell pellets after the wash. One ml of the samples was put in 
autoclave sterilized NMR tubes for in vitro measurements. To follow the cell growth in parallel, 
200 µl of  the  sample was put  in 96‐well plates, besides 200 µl of  the pure  cell‐free CDIM as 
reference, both in duplicates, to measure optical density (OD) during the fermentation. For all of 
the 8 samples in the design, duplicate samples were prepared and analyzed by this procedure. 

2.2. Data acquisition and data processing 

The  sample  in  the  tube was  fermented  inside  the magnet of  the NMR  spectrometer at 37  ◦C 
(310  K)  for  24  hours,  and  1H NMR  spectra  of  the  sample were  recorded  every  14 minutes, 
resulting  in 102  spectra  for  each  experiment.  The  spectrometer was  a Bruker Avance‐III  600 
spectrometer  (Bruker Biospin Gmbh, Rheinstetten, Germany) operating at a proton  frequency 
of 600.13 MHz (14.1 T), using a double‐tuned TCI probe (cryoprobe) equipped for 5 mm sample 
tubes.  All  the  spectra were  recorded  using  the  ‘noesygppr1d’  pulse  sequence,  employing  a 
spectral width of 20 ppm, an acquisition  time of 843 s, a recycle delay of 10 s, and 64 scans. 
Taking the duplicates  into account, the final acquired NMR data consisted of 16 data matrices, 
having 102  spectra  in  the  rows and  the ppm variables  in  the  columns. The processing of  the 
data,  including  phase  correction,  apodization,  Fourier  transformation,  baseline  correction, 
referencing to DSS signal, and reference deconvolution, was performed using the DOSY Toolbox 
(Nilsson 2009). For reference deconvolution, DSS singlet and a 5 Hz Gaussian target  lineshape 
were used. 
 
Reference deconvolution is a post‐measurement NMR data processing method that can correct 
many systematic errors in NMR spectra. It is previously shown by designed artificial ‘metabolic’ 
experiments that reference deconvolution can be helpful in improving the multivariate analysis 
results  of NMR  data,  by  enhancing  the  line‐shapes  and  bi‐linearity  of  the  signals  (Ebrahimi, 
Nilsson et al. 2014). In this work, reference deconvolution was used to solve the line broadening 
problem of  the  in  vitro  fermentations,  and  thus  to preserve  the bi‐linearity of  the data.  The 
latter  is  a  pre‐requisite  for  application  of  methods  such  as  multivariate  curve  resolution 
alternating least squares (MCR‐ALS) (Engelsen, Savorani et al. 2013). 
 
The  data was  then  imported  into MATLAB  2013b  (MathWorks,  Inc.,  Natick, MA,  USA),  and 
further processed by normalizing the spectra relative to the DSS signal area. Then, the  icoshift 
program  (Savorani, Tomasi et al. 2010) was used  to align  the  signals,  first  relative  to  the DSS 
signals and then in the defined intervals, which included the signals of interest. For a few signals 
such  as  acetate  perfect  alignment  could  not  be  achieved  due  to  large  shifts  between  the 
samples with the different pHi values. As the  last preprocessing step, and prior to multivariate 
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data analysis, spectral regions containing only noise, water, or DSS signals were excluded from 
the data. 
 
The OD of the samples in the 96‐well plates were measured at 600 nm, automatically every 14 
minutes,  in  parallel  with  the  in  vitro  NMR  measurements,  by  a  Multiskan™  FC  Microplate 
photometer  (Thermo  Scientific  Inc.,  Waltham,  MA,  USA).  The  plates  were  shaken  by  the 
instrument for 2 s before each reading. Only 100 readings were possible for each experiment, as 
it was  the maximum  allowed  number  of  readings  for  each  time‐series measurement  on  the 
photometer. The OD curves where plotted by averaging the duplicate wells of the sample and 
subtracting the mean OD value of the CDIM. 
 
2D  NMR  spectra  of  some  of  the  ferments  at  the  endpoint  of  the  fermentation  were  also 
recorded primarily to assist the assignments of the signals; these data was not used in the data 
analysis. 
 

2.3. Data analysis 

2.3.1. Extracting the metabolic profiles 

Kinetic  metabolic  profiles  were  extracted  by  using  multivariate  curve  resolution‐alternating 
least squares (MCR‐ALS) algorithm (de Juan, Jaumot et al. 2014) on spectral intervals containing 
the  signals  that were well‐aligned between  the  spectra, or by modeling  the minimum of  the 
peaks second derivative for (singlet) resonances that could not be aligned by icoshift (Savorani, 
Tomasi et al. 2010), because of the considerable shift or concentration difference between the 
samples.  For MCR‐ALS modeling, MCR‐ALS  graphical  user  interface  (GUI) was  used  (Jaumot, 
Gargallo  et  al.  2005).  Non‐negativity  constraints  were  applied  on  both  the  spectral  and 
concentration  (time) profiles. As  the  initial  concentrations of  the nutrients  in  the CDIM were 
known, their profiles were scaled accordingly.  

2.3.2. Heat maps and ASCA 

Pearson correlation coefficients were calculated between the kinetic profiles of the metabolites 
in each sample (duplicates were averaged). In order to focus on the significant correlations, the 
coefficients less than ‐0.8 were set to ‐1, and the coefficients greater than +0.8 were set to +1. 
The coefficients that were in‐between were all set to zero. Correlation coefficients are shown in 
heat maps that are colored by the value of the coefficients.  

Analysis of variance‐simultaneous component analysis  (ASCA)  (Smilde, Jansen et al. 2005) was 
performed  on  the  extracted  metabolic  profiles  and  the  OD  profiles,  excluding  lactate  and 
glucose profiles, by using  an  in‐house MATLAB  code.  The null hypothesis was  tested  for  the 
main and  interaction ASCA effect matrices by a permutation test with 50,000 permutations,  in 
order to evaluate the statistical significance as expressed in the p‐values. Some of the resulting 
effect matrices were analyzed further by principal component analysis (PCA). Prior to the PCA, 
the residual matrix was added to the effect matrices and autoscaling was used. 
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2.4. Metabolism of lactic acid bacteria 

Fig. 1 shows homolactic fermentation (glycolysis pathway) in which pyruvate and subsequently 
lactate  are  produced  from  glucose.  The  transfer  of  a  phosphate 
group from phosphoenolpyruvate  (PEP)  to ADP,  which  is  catalyzed  by  pyruvate  kinase  (PK), 
yields one molecule of pyruvate and one molecule of ATP. This reaction  is  identified as one of 
the bottlenecks in glycolysis, at least under the circumstances of limiting glucose concentration. 
It is suggested that after the addition of glucose or close to its depletion, the high concentration 
of  intracellular  inorganic phosphate, Pi,  leads to the reduced activity of PK and as a result the 
accumulation of PEP and the formation of a metabolic bottleneck at this level (Neves, Pool et al. 
2005, Kowalczyk and Bardowski 2007). However, it seems that it is not only a single enzyme, but 
rather many different enzymes that control the glycolytic flux (Brian J. Koebmann 2002).  
 
Pyruvate can be reduced to lactic acid, through the reaction: 
 

 
 
catalyzed by lactate dehydrogenase (LDH) (Hung and Yellen 2014). NAD is an important cofactor 
for some of  the  reduction‐oxidation  reactions  in biochemical processes such as  the glycolysis. 
The cytosolic free ratio of NADH/NAD+ determines the redox state of the cell and is important to 
keep  the  redox  balance  in  the  cell  during  glycolysis.  It  is  suggested  that  NADH/NAD+  can 
regulate glycolysis by affecting the activity of involved enzymes such as LDH (Neves, Pool et al. 
2005).  Accordingly,  the  ratio  of  lactate/pyruvate  is  regulated  by  the  redox  state  of  the  cell 
according  to  the  above  biochemical  reaction,  and  NADH/NAD+  ratio  is  the main  factor  that 
controls how much of the metabolized pyruvate  is reduced to  lactate during glycolysis   (Hung, 
Albeck et al. 2011, Sun, Dai et al. 2012).  
 
Depending  on  the  type  of  the  bacteria  and  the  physiological  conditions,  pyruvate  can  be 
converted  into  other metabolites  than  lactate,  through  other  biochemical  pathways.  In  this 
metabolism  that  is  known  as mixed‐acid  fermentation,  acetic  acid,  formic  acid,  succinic  acid, 
and  also  ethanol  can  be  produced  in  addition  to  lactic  acid.  A  higher  NADH/NAD+  ratio 
stimulates higher LDH activity and consequently promotes homolactic metabolism and higher 
lactate  formation  from  pyruvate. On  the  other  hand,  a  lower NADH/NAD+  ratio  reduces  the 
activity  of  LDH  and  shifts  the metabolism  towards mixed‐acid  fermentation  (Kowalczyk  and 
Bardowski 2007). Some of the alternative pathways for pyruvate consumption through mixed‐
acid  fermentation  are  shown  in  Fig.  1.   Acetic  acid  is one of  the  important metabolites  that 
pyruvate can be converted to. Pyruvate dehydrogenase can convert pyruvate to acetyl‐CoA and 
subsequently acetate kinase can catalyze the production of acetate from acetyl‐p. The activity 
of pyruvate oxidase can also lead to the production of acetate from pyruvate. Pyruvate can also 
be converted to alpha‐acetolactate by acetolactate synthase (Lahtinen, Ouwehand et al. 2011), 
which according to the pathways shown in Fig. 1, can be subsequently converted to diacetyl and 
acetoin.  Acetolactate  is  converted  to  diacetyl  through  a  slow  chemical,  and  non‐enzymatic 
reaction  and  diacetyl  can  be  subsequently  reduced  to  acetoin  by  diacetyl  reductase. 
Acetolactate  can  also be directly  converted  into  acetoin by  alpha‐acetolactate decarboxylase 
(Caspi, Altman et al. 2014). Synthesis of alpha‐acetolactate is active only under the condition of 
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surplus pyruvate, and will be enhanced at low pH values (Le Bars and Yvon 2008). By mixed‐acid 
fermentation  pyruvate  can  also  be  converted  into  formic  acid.  This  pathway  is  catalyzed  by 
pyruvate–formate lyase, which is highly sensitive to oxygen. 

Metabolism of amino acids by LAB have important physiological roles including intracellular pH 
control,  controlling  the  redox  state  of  the  cells,  and  being  involved  in  metabolic  stress 
responses.  As  LAB  are  widely  used  for  the  production  of  fermented  food  products  by  the 
industry, studying the catabolism of amino acids by LAB is relevant for the safety and the quality 
of  fermented products.  Studying  the metabolism of  amino  acids by  LAB has  received  special 
attention,  because  the  products  from  amino  acids  catabolism  can  significantly  enhance  the 
sensory  properties  of  food  products.  It  is  previously  reported  that  for many  of  LAB  strains, 
catabolic pathways of amino acids start with transamination, which requires presence of alpha‐
ketoglutarate (Amarita, Requena et al. 2001, Helinck, Le Bars et al. 2004). LAB strains that have 
active glutamate dehydrogenase  (GDH) can produce alpha‐ketoglutarate  from deamination of 
glutamic acid, by the biochemical reaction (Tanous, Kieronczyk et al. 2002):  

��������� � �����������	 					���					������ � � ������������� � ����������� � �� 

As catabolism of amino acids can produce aromatic compounds, especially from the aromatic, 
branched‐chain and, sulfur‐containing amino acids, strains that have higher activity of GDH can 
be used for flavor enhancement in food products (Kieronczyk, Skeie et al. 2003, Helinck, Le Bars 
et al. 2004, Liu, Nauta et al. 2008). Amino acids can also be used as energy sources, play a role in 
controlling  intracellular  pH,  or  be  involved  in  the  pathways  regarding  cells  stress  responses 
(Fernández and Zúñiga 2006). There  is not detailed knowledge on the catabolism of glutamine 
by LAB, but it has been observed that several strains of LAB can metabolize it (Kieronczyk, Skeie 
et al. 2001, Williams, Noble et al. 2001). For aspartic acid, three catabolic pathways have been 
reported that are catalyzed by three different enzymes: aspartate aminotransferase, aspartase, 
and  aspartate  decarboxylase.  The  pathway  catalyzed  by  the  aspartate  aminotransferase 
produces  oxaloacetate  and  pyruvate,  the  one  catalyzed  by  aspartase,  depending  on  the 
conditions  can  produce  fumaric  acid,  succinic  acid  or  malic  acid,  and  finally  the  pathway 
catalyzed by aspartate decarboxylase can synthesize alanine (Fernández and Zúñiga 2006). 

Nucleosides are very important endogenous metabolites in LAB, as they are used as the building 
blocks of DNA and RNA after phosphorylation and forming of nucleotides. They also serve a very 
important role in cells energy metabolism. Some bacteria can use nucleosides as carbon source 
by  degrading  their  pentose  ring. Moreover,  it  is  reported  that  adenosine may  be  utilized  as 
nitrogen  source  without  degradation  of  purine  ring  (Kilstrup,  Hammer  et  al.  2005).  To 
metabolize  adenosine  as  a  purine  source,  it  should  be  deaminated  by  adenosine  deaminase 
(ADD) to yield inosine. Inosine can then undergo phosphorolytic cleavage, generating ribose‐1‐P 
and  hypoxanthine,  catalyzed  by  purine  nucleoside  phosphorylase  (PNP),  according  to  the 
following reaction: 
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PNP can also convert adenosine into adenine (Kilstrup, Hammer et al. 2005). 

 

3. Results and Discussion 

3.1. The time‐series NMR spectra and the extraction of the metabolic profiles 

When  the  number  of  cells  increases  during  fermentation,  the  samples  can  become 
inhomogeneous because of the cells coagulation. The inhomogeneity in the sample will result in 
the  line broadening of  the  signals  in  the NMR spectra  towards  the end of  the  fermentations. 
Therefore,  for  a  time‐series measurement  of  fermentation,  signals will  get  broader  over  the 
time‐course of  fermentation, as  long as  the cells are propagating. Lineshape changes by  time 
will definitely  lead  to errors  in quantitative multivariate analysis of  the metabolic  changes of 
such data, by methods such as principal component analysis  (PCA), partial  least squares  (PLS) 
regression,  and multivariate  curve  resolution‐alternating  least  squares  (MCR‐ALS)  that  have 
bilinearity of the data as their main principal. Reference deconvolution was used on the data, in 
order to enhance the quality of the spectra and to solve the line broadening problem. 
 
Fig. 2 shows some of the signals from one of the time‐series spectra processed with and without 
reference deconvolution (RD) with a 5 Hz Gaussian target  lineshape, and subsequently aligned 
by icoshift program. As can be observed from the figure, RD significantly improves the quality of 
the spectra, and the  lineshapes become more consistent between the spectra after reference 
deconvolution, which  in  turn makes  the data more  suitable  for bilinear modelling. Fig. 2 also 
shows that the signals from the amino acids  like  lysine, arginine, and  iso‐leucine which do not 
change significantly during the  fermentation become more consistent between  the reference‐
deconvoluted  spectra,  which  again  leads  to  simpler multivariate models  and  facilitates  the 
visual  inspection  of  the  data.  Moreover,  Fig.  2  shows  that  using  icoshift  on  reference‐
deconvoluted data corrects  the  shifts  in  the position of  the  resonances between  the  spectra. 
This will also lead to the improved multivariate data analysis results.  To our knowledge, this is 
the first application of reference deconvolution to  improve the multivariate analysis results of 
real metabolomics data. In any further analysis of the data and modeling the metabolic profiles, 
the reference deconvoluted and icoshifted data was used. 
 
Table 1  lists the metabolites that were observed to change during fermentation.  It also shows 
the specific signals of each metabolite that was used for extracting the kinetic profiles, and the 
method  that was applied  for  this purpose  (see Section 2.3). The NMR signals of  the modeled 
metabolites  in one of the  ‘R5.5GH’ time‐series are shown  in Fig 2S (the Online Resource). The 
signals were assigned by using human metabolome database (HMDB) (Wishart, Tzur et al. 2007, 



10 
 

Wishart, Knox et al. 2009, Wishart, Jewison et al. 2012), and biological magnetic resonance bank 
(BMRB) (Ulrich, Akutsu et al. 2008) databases. As adenosine and inosine signals overlap slightly, 
one MCR‐ALS model with  two  components was  used  to model  the  profiles  of  both  signals 
simultaneously.  Besides,  as  inosine  signal  shifts  between  the  samples with  pHi  6.5  and  5.5, 
models were calculated for the two pH values separately.    

3.2. Cell growth and substrate depletion  

The  extracted metabolic  profiles,  as well  as  the OD  curves  are  presented  in  Fig.  3.  To  avoid 
repetition of the samples names, abbreviations that are defined in Section 2.1 and Fig. 1S (the 
Online Resource) will be used  for discussing  the profiles. The OD curves  (Fig. 3(a))  show  that 
cells  grow  more  rapidly  in  samples  with  pHi  6.5,  and  in  samples  with  the  high  glucose 
concentration. Cell growth  (OD values)  is  lower  in all  samples with pHi 5.5, and  this effect  is 
more pronounced in L. plantarum samples. According to the glucose profiles (Fig. 3(b), and Fig. 
3(c)), L. plantarum depletes glucose faster in samples with high glucose concentration, whereas 
in  samples  with  low  glucose  concentration,  L.  rhamnosus  depletes  glucose  faster.  In  the 
beginning of  the  fermentation  L.  rhamnosus  consumes glucose  faster, but  since  L. plantarum 
continuously increases its glucose consumption rate, it overhauls L. rhamnosus towards the end 
of the fermentation process.The rate of glucose consumption decreases in the low pHi value and 
this affects L. rhamnosus more than L. plantarum. Both of the studied strains can obtain energy 
from glucose through the glycolysis pathway, which is shown in Fig. 1.  

3.3. The homofermentative pathway and mixed‐acid fermentation  

Pyruvate is a key metabolite in the homofermentative pathway where it is converted to lactate 
as the main metabolic end‐product. Fig. 3(d) and Fig. 3(e) show the kinetic profiles of lactate, for 
high and low glucose concentration, respectively. For both strains, a higher amount of lactate is 
produced and more pyruvate  is accumulated at pHi 6.5 samples compared to pHi 5.5 samples. 
This  difference  can  be  explained  by  the  difference  in  the  intracellular  pH.  At  pH  6.5,  the 
intracellular pH is close to neutral (~7.5), whereas at pH 5.5, the intracellular pH is close to 6.5 
(Siegumfeldt, Rechinger et al. 2000). This  leads to the higher activities of PK and LDH (the two 
enzymes that catalyze the production of pyruvate and lactate respectively) in samples with pHi 
6.5,  in  which  the  intracellular  pH  is  closer  to  the  optimum  pH  of  the  enzymes  activity.  In 
addition, the activity of LDH seems to be higher  in L. plantarum samples, as higher amount of 
lactate  is produced  in  these  samples  (Fig. 3(d)  and  Fig. 3(e)). On  the other hand, as  Fig. 3(f) 
shows, more pyruvate is accumulated in L. rhamnosus samples, which can result from the lower 
activity of LDH that converts pyruvate to lactate. According to Fig. 3(e), for ‘P6.5GL’ and ‘P5.5GL’ 
samples, the patterns of the  lactate profiles are different from the other samples.  In  ‘P5.5GL’, 
the concentration of lactate increases slightly even after glucose depletion, whereas it remains 
constant  in  the  other  samples.  According  to  the  extracted metabolic  profiles,  after  glucose 
depletion (see Fig. 3(b)), pyruvate concentration decreases  in samples with the higher glucose 
concentration (see Fig. 3(f)). However, this decrease is not observed in samples with low glucose 
concentration. Samples with the  lower glucose concentration have a  lower metabolic flux and 
NADH/NAD+ ratio, which as discussed earlier  in Section 2.4 can  lead to the reduced activity of 
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enzymes  that  are  involved  in  the  conversion  of  pyruvate  to  other  metabolites.    (Brian  J. 
Koebmann 2002). 
  
Fig. 3(g) shows the kinetic profiles of acetic acid, which is one of the metabolites that pyruvate 
can  be  converted  to  through mixed‐acid  fermentation.  As  the  profiles  show  all  the  design 
factors affect the formation of acetic acid. Overall, L. plantarum samples produce more acetic 
acid than L. rhamnosus samples, and its highest yield is observed in ‘P6.5GL’ samples (Fig. 3(g)). 
Amongst  the  L.  rhamnosus  samples,  the highest acetic acid was achieved at pHi 6.5 and  low 
glucose  concentration.  The higher production of  acetic  acid  in  samples with  the  low  glucose 
concentration can be explained by the smaller NADH/NAD+ ratio in these samples that shifts the 
fermentation  towards  mixed‐acid  fermentation.  Besides,  among  the  samples  with  the  low 
glucose concentration, the activity of acetate kinase is higher in samples with pHi 6.5 that leads 
to a higher production of acetate (Fig. 3(f)). In a similar way, the lower production of acetate in 
samples with  high  glucose  concentration  is  related  to  the  higher NADH/NAD+  ratio  in  these 
samples that stimulates homolactic fermentation.  In samples with high glucose concentration, 
formation of acetic  acid  is  increased  close  to or  after glucose depletion, whereas  in  samples 
with  low  glucose  concentration,  acetic  acid  is  formed  already  from  the  beginning  of  the 
fermentation.  This  trend  is  observed  by  comparing  the  acetic  acid  profiles  of  ‘P6.5GL’  and 
‘P6.5GH’ samples (Fig. 3(g)), for  instance.  In samples with high glucose concentration, close to 
the  depletion of  glucose,  the  reduced NADH/NAD+  ratio  stimulates mixed‐acid  fermentation, 
whereas  in  the  samples with  low glucose concentration  the  small NADH/NAD+  ratio  from  the 
beginning of the fermentation shifts the metabolism towards mixed‐acid fermentation. 
 
 Fig. 3(h) shows the kinetic profiles of alpha‐acetolactate. Alpha‐acetolactate can be produced 
from pyruvate  in mixed‐acid fermentation, catalyzed by acetolactate synthase (ALS). According 
to  the  alpha‐acetolactate  profiles  (Fig.  3(h)),  alpha‐acetolactate  is  accumulated  only  in  L. 
rhamnosus samples, at least to a concentration that is detectable by NMR. However, according 
to Kyoto Encyclopedia of Genes and Genomes  (KEGG)  (Kanehisa and Goto 2000) both of  the 
strains have ALS genes. The reason that alpha‐acetolactate is accumulated and observed in only 
one of the strains may be attributed to the difference in the activity of ALS or diacetyl synthase 
between  the  strains.  The  highest  concentration  of  this metabolite  is  produced  in  ‘R5.5GH’ 
samples, which have high amount of accumulated pyruvate and also a lower pH value˗˗the two 
factors  that enhance  the production of  alpha‐acetolactate  (Le Bars  and  Yvon 2008).  ‘R6.5GL’ 
samples produce the lowest amount of alpha‐acetolactate, which can be explained by the same 
reasoning.  A  considerable  decline  in  the  concentration  of  alpha‐acetolactate  is  observed  in 
‘R5.5GH’ samples after glucose depletion (Fig. 3(h)), which  implies that diacetyl or acetoin are 
produced. However, signals from acetoin and diacetyl could not be  identified, presumably due 
to  their  low  concentration.  It  is  previously  reported  that  for  Lactococcus  lactis,  under  the 
condition of surplus pyruvate, at pH 5.0 alpha‐acetolactate was mainly converted into diacetyl, 
whereas between pH 5.5 and 7.0, it was mainly converted into acetoin (Le Bars and Yvon 2008).  
Diacetyl and acetoin are redox pairs, and depending on the free NADH/NAD+ ratio  in the cells, 
and also activity of diacetyl reductase, the ratio of  the diacetyl that  is reduced to acetoin can 
vary. Activity of alpha‐acetolactate decarboxylase also affects the rate of the direct conversion 
of  alpha‐acetolactate  into  acetoin.  The  extracted  alpha‐acetolactate  profiles  are  not  as 
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reproducible as the other profiles for the duplicates. Alpha‐acetolactate is highly unstable and in 
the presence of oxygen will be converted to diacetyl through the related chemical reaction, and 
under anaerobic condition it can be converted to acetoin.  

Fig. 3(i) shows the formic acid profiles. Pyruvate can be converted to formic acid by pyruvate–
formate  lyase.  Only  ‘R5.5GH’  and  ‘P5.5GH’  samples  produce  formic  acid  according  to  the 
profiles,  with  the  highest  amount  being  produced  by  ‘R5.5GH’.  The  other  samples  do  not 
produce  detectable  amount  of  formic  acid.  Accordingly,  it  can  be  concluded  that  pyruvate–
formate  lyase  is  active  in  the  low  pH  value,  pHi  5.5,  and  when  there  is  higher  amount  of 
carbohydrate  source  present,  and  under  these  conditions,  it  is more  active  in  L.  rhamnosus 
samples. 

3.4. The catabolic pathways of amino acids 

The kinetic profiles of glutamine catabolism are shown  in Fig. 3(j). According to KEGG, both of 
the  studied  strains  have  GDH  (Kanehisa  and  Goto  2000).  When  examining  the  extracted 
metabolic  profiles  for  glutamine  (Fig.  3(j)),  L.  plantarum  samples  consume  higher  amount  of 
glutamine  compared  to  the  L.  rhamnosus  samples.  Besides,  in  L.  plantarum  samples,  the 
consumption  of  glutamine  is  higher  at  pHi  5.5  than  at  pHi  6.5  (Fig  3(j)).  For  L.  rhamnosus 
samples,  ‘R6.5GH’ and  subsequently  ‘R5.5GH’ consume  the highest amount of glutamine. For 
both L. plantarum and L. rhamnosus, more glutamine  is consumed  in samples with the higher 
glucose  concentration.  For  samples  with  the  lower  glucose  concentration,  glutamine  is 
consumed  to  a  much  lower  extent,  with  ‘R5.5GL’  samples  being  the  lowest  (Fig.  3(j)).  As 
glutamine, after being converted to alpha‐ketoglutarate, plays a role in the catabolism of amino 
acids  by  starting  the  transamination  step  as  the  amino  group  acceptor,  augmenting  its 
consumption  can  benefit  the  catabolism  of  amino  acids.  This  can  be  of  high  interest  for 
enhancing the sensory properties of food products, as the catabolism of some amino acids can 
lead to the  formation of desirable aroma compounds. For this purpose, the application of the 
strains  that  have  high  GDH  activity  and  also  optimizing  influential  parameters  like  pH  for 
increasing glutamine  consumption will be helpful. The extracted  kinetic profiles of glutamine 
provide interesting information about the efficiency and the differences of the two investigated 
strains  in metabolizing glutamine.  It  is observed  that L. plantarum consumes more glutamine 
than  L.  rhamnosus  (Fig.  3(j)),  which  can  be  attributed  to  the  higher  activity  of  GDH  in  L. 
plantarum.  Another  interesting  observation  was  the  contradictory  effect  of  pH  on  the 
consumption  of  glutamine  by  the  two  strains;  for  L.  plantarum,  the  low  pH  value  (pHi  5.5) 
enhances  glutamine  consumption,  whereas  for  L.  rhamnosus  samples,  consumption  of 
glutamine  is  higher  at  pHi  6.5  (Fig.  3(j)).  These  information  can  be  very  helpful when  these 
strains are used  in  food products. Signals  from  the  catabolic products of glutamine were not 
strong enough to be identified reliably by NMR. 

The  kinetic  profiles  of  aspartic  acid  catabolism  are  shown  in  Fig.  3(k).    According  to  KEGG 
(Kanehisa and Goto 2000) both of the studied strains have aspartase, which suggests that they 
can consume aspartic acid and produce fumaric acid, succinic acid or malic acid (Kanehisa and 
Goto 2000). According  to  Fig 3(k),  L. plantarum  samples  consume more aspartic  acid  than  L. 
rhamnosus, and aspartic acid consumption increases at the high glucose concentration and the 
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low pHi value. For L. rhamnosus samples, only ‘R5.5GH’ samples consume considerable amount 
of aspartic acid, and at pHi 6.5 samples, consumption of aspartic acid is very low.  

3.5. Nucleosides and cell energy metabolism 

Fig  3(l)  shows  the  extracted  kinetic  profiles  for  adenosine.  In  our  experiment,  L.  plantarum 
samples consume much more adenosine compared to L. rhamnosus samples. In all L. plantarum 
samples adenosine is depleted, which is not the case in L. rhamnosus samples (Fig. 3(l)). For L. 
plantarum,  the  rate  of  the  adenosine  consumption  is  higher  in  samples  with  high  glucose 
concentration and the higher pHi value, with glucose concentration having the main effect (Fig. 
3(l)).  The  same  glucose  concentration  dependence  was  observed  for  the  L.  rhamnosus.  In 
‘R6.5GH’ samples, adenosine is consumed at the same rate throughout the fermentation, but in 
‘R5.5GH’ the rate of the adenosine consumption increases considerably after glucose depletion 
(Fig. 3(l)). L. rhamnosus samples with  low glucose concentration consume the  least amount of 
adenosine  among  all  the  other  samples. One  of  the  reasons  for  the  higher  consumption  of 
adenosine at the higher glucose concentration is the higher rate of cell propagation and nucleic 
acid consumption  for  the new cells. Fig. 3(m) shows  the kinetic profiles of  inosine. Adenosine 
can be converted to  inosine by ADD or to adenine by PNP. As Fig. 3(m) shows,  inosine  is only 
produced  in L.  rhamnosus samples, and analysis of  the genome sequences  from L. plantarum 
indicates that ADD is missing in these species (Kanehisa and Goto 2000). The maximum amount 
of  inosine  is  formed  in  ‘R5.5GH’ samples  (Fig. 3(m)). PNP based on KEGG  (Kanehisa and Goto 
2000)  is present  in both of the strains. Fig. 3(n) shows the kinetic profiles of adenine. Adenine 
can  be  synthesized  from  adenosine  by  purine  nucleoside  phosphorylase  (PNP).  As  Fig.  3(n) 
shows, adenine  is  synthesized  in  the  samples, and  the patterns of  its profiles are  similar but 
inversed  relative  to  the  shape of  the  corresponding adenosine profiles. Overall,  L. plantarum 
samples  have  a  higher  rate  of  adenine  synthesis,  and  the  highest  amount  of  adenine  is 
accumulated in ‘P6.5GL’ and ‘P5.5GL’ samples (Fig. 3(n)). In these samples, the concentration of 
adenine increases till the end of glucose depletion, but declines afterwards, especially in one of 
the  ‘P6.5GH’  samples. Amongst  the  L.  rhamnosus  samples,  the highest amount of adenine  is 
synthesized  in  ‘R5.5GH’.  In  ‘R6.5GH’,  the  concentration  of  adenine  decreases  till  the  end  of 
glucose depletion, but starts to rise afterwards (Fig. 3(n)).  

3.6. Experimental design and significant factors 

In order to investigate the significance of the experimental design factors, and to analyze some 
of the effect matrices, ASCA was applied on the extracted metabolic profiles  including the OD 
profiles. Fig. 4 shows the workflow for the data analysis and the ASCA results. As glucose was 
one of the experimental design factors and lactate production is highly correlated to the glucose 
consumption,  these  two metabolites were  excluded  prior  to ASCA,  in  order  to  focus  on  the 
variation of the other metabolites.  Based on the p‐values of the effect matrices in Fig. 4, all the 
design  factors,  strains,  pH,  and  glucose  concentrations  are  statistically  highly  significant.  The 
preliminary  ASCA  results  showed  that  the  p‐values  for  the  variance  that  is  related  to  the 
replicates  were  not  significant,  as  can  be  expected  for  a  correctly  performed  experiment. 
Therefore,  in  the  final ASCA,  replicates were not  included as  the design  factors. The p‐values 
verify the experimental design and the experimental work.   
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The matrices  that  represent  the  strain  related  and pH  related  variances of  the dataset were 
constructed by adding  the  residual matrix  to  the corresponding effect matrix  that  is given by 
ASCA, and were subsequently autoscaled and analyzed by PCA. Fig. 5(a) shows the scores and 
the  loadings biplot of  the PCA  analysis of  the ASCA  separated  strains effect matrix.  The  first 
loading  mainly  describes  consumption  of  adenosine,  glutamine,  and  aspartic  acid,  and  the 
concomitant  production  of  acetic  acid  and  adenine.  The  second  loading  mainly  describes 
production of inosine, pyruvate, alpha‐acetolactate, and formic acid. The PCA biplot shows that 
both  L.  rhamnosus and  L. plantarum  can metabolize adenosine, glutamine, and aspartic acid, 
but L. plantarum consumes them more. Furthermore, L. plantarum can produce more acetate 
and  adenine, whereas,  L.  rhamnosus  can  produce more  inosine,  pyruvate,  acetolactate,  and 
formic acid. This information was presented in a more segmented, but detailed manner by the 
extracted profiles, but  the PCA  results of  the ASCA  separated  strain effect matrix, provides a 
more  general  and  comprehensive  overview  of  the  strains  differences  in  terms  of  the 
productions and consumption of the metabolites.  

Fig. 5(b) shows the PCA results of the pH separated effect matrix. For samples with pHi 6.5, the 
end points of the fermentation mainly lead towards pyruvate and acetate, and for the samples 
with pHi 5.5, towards alpha‐acetolactate, adenine, formate, and inosine. As observed from this 
plot,  aspartate  consumption  increases  at  pHi  5.5  than  at  pHi  6.5,  whereas  consumption  of 
adenosine and glutamine decrease.  

The  strain  specific  pH  effect matrix  (the  interaction  between  the  strains  and  pHi) was  also 
analyzed by PCA. The  resulting  scores and  loadings plots are presented  in Fig. 3S  (the Online 
Resource).  In  the  scores  plot,  only  samples with  the  high  glucose  concentration  are  shown, 
because the samples with the lower glucose concentration are not influenced by the pH change 
as much as  the  samples with  the higher glucose concentrations. The combination of  the  first 
and  the  third  PCs  show  the  fermentation  trajectories  of  the  two  strains  and  how  they  are 
affected by  the  change  in pHi. The  strains  follow quite different  trajectories at  the  same pHi 
value, and also the metabolic shift in their metabolism due to the change in the pHi is different.  
The perturbation in L. rhamnosus fermentation by pHi change is more pronounced than in the L. 
plantarum,  as  the metabolic  shift  from  ‘R6.5GH’  to  ‘R5.5GH’  is  stronger  than  the  shift  from 
‘P6.5GH’ to ‘P5.5GH’. 

3.7. Pearson correlations and metabolite‐metabolite heat maps 

  Fig. 4S  (the Online Resource)  shows  the  correlation between  the metabolites as heat maps, 
calculated  as  described  in  Section  2.3.2.  These  maps  show  which  metabolites  are  highly 
correlated during the fermentation process. Table 1S shows number of the positive correlations 
that  are  bigger  than  0.8  and  the  negative  correlations  that  are  smaller  than  ‐0.8,  for  all  the 
samples. For L. rhamnosus samples with the higher glucose concentration, the numbers of the 
positive and negative correlations are increased considerably by the change of the pHi from 6.5 
to 5.5. This means that the change in the pH can significantly alter the metabolic state of the L. 
rhamnosus  samples with  the  higher  glucose  concentration  and by  the  decrease  in  pH, more 
metabolites will decrease or increase concordantly, to reach a new metabolic equilibrium. This 
probably will help the cells to deal with the exerted pH stress. For L. plantarum samples with the 
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high  glucose  concentration,  the  numbers  of  the  positive  and  negative  correlations  decrease 
slightly at pHi 5.5 compared to pHi 6.5. However, this level of perturbation in the metabolism is 
not  comparable  to  the  change  that  is  observed  in  the  corresponding  L.  rhamnosus  samples. 
Therefore,  it  can be  concluded  that  the metabolism of  L.  rhamnosus  is more  sensitive  to pH 
decrease than the metabolism of L. plantarum. For L. rhamnosus and L. plantarum samples with 
the  lower  glucose  concentration,  the  numbers  of  the  positive  and  negative  correlations 
between  the  metabolites  are  smaller  compared  to  the  samples  with  the  higher  glucose 
concentration. The numbers do not change between the two pHi values. This may be due to the 
fact that the concentration of glucose  in these samples is too low for the metabolism to reach 
equilibrium,  and  therefore  the  cells,  being  under  the  shortage  of  the  carbohydrate  source, 
cannot respond to the pH stress by shifting to a new metabolic state.  

4. Concluding remarks 

An efficient analytical protocol was developed for in vitro NMR studies of bacterial metabolism, 
from  sample  preparation  to  kinetic  modelling  of  metabolic  changes.  The  protocol  was 
successfully applied to an experimental design involving two LAB strains, two pH values and two 
initial glucose  levels, where all  the design  factors proved  to be  strongly  significant and  led  to 
interesting biological  information. One of  the  interesting biological  findings was  the different 
patterns  of  glutamine  consumption  by  the  two  strains.  As  glutamine  plays  a  role  in  the 
catabolism of  amino acids,  augmenting  its  consumption  can benefit  the  catabolism of amino 
acids, and consequently enhance the sensory properties of food products. Using the developed 
protocol, NMR proved  to be an excellent analytical platform  for  studying  the gross  real‐time 
details of bacterial metabolism. As for the data processing, reference deconvolution proved to 
be  a  necessary  and  elegant  solution  to  the  inherent  inhomogeneity  of  in  vitro  NMR 
measurements of cells.  It  is recommended that reference deconvolution should be considered 
as a standard tool to enhance lineshapes and improve multivariate analysis results. The protocol 
can be used  for studying different aspects of bacterial metabolism, and allows  relatively easy 
investigation  of  different  fermentation  factors  such  as  new  strains,  cohabitations,  new 
substrates and deleterious metabolites, as well as temperature and pH.  
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Fig. 2  Enhancing  the quality of  real‐time  in  vitro measurements of bacterial  fermentation by 
reference  deconvolution  and  icoshift.  Reference  deconvolution  can  enhance  the  lineshapes 
consistencies and correct line broadening, and icoshift can align the resonances and correct the 
shifts in peaks position. 
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Fig.  3  The  calculated  metabolic  profiles 
and  the  optical  density  curves.  The 
profiles that are marked with the asterisk 
are scaled using their initial concentration 
in the CDIM.  
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Fig.  4  The workflow  for  extracting  the metabolic  profiles  by MCR‐ALS  and  subsequent ASCA 
analysis. Some of the profiles were extracted by 2nd derivative approach. The explained variance 
and the p‐values of the ASCA effect matrices are shown. ‘XStrain’, ‘XpH’, and ‘XGlucose’ are the main 
effect matrices of the corresponding design  factors.  ‘XStr×pH’ and  ‘XStr×Glc’ are the strain‐pH and 
strain‐glucose  interaction  effect matrices,  and  ‘XpH×Glc  ’  is  the  pH‐glucose  interaction  effect 
matrix. 
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Fig. 5 PCA results of the ASCA effect matrices: a) strains effect matrix, b) pH effect matrix. The 
arrows on the scores trajectories show the time progression. 
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Table 1 List of the modeled metabolites, the specific signal that was used for extracting the 
profiles, and the modelling approach that was applied.   

 
Metabolites 

 
NMR signal  Signal type  Profile extracting approach 

 

glucose 

 

5.23 ppm  doublet 

 

MCR‐ALS on all the data 

lactate  1.32 ppm  doublet MCR‐ALS on all the data

pyruvate  2.36 ppm  singlet 2nd derivative approach

acetic acid  1.91 ppm (pH 6.5)‐ 1.94 ppm (pH 5.5) singlet 2nd derivative approach

α‐acetolactate  1.50 ppm (pH 6.5)‐ 1.51 ppm (pH 5.5) singlet 2nd derivative approach

formic acid  8.46 ppm  singlet MCR‐ALS on all the data

glutamine  2.45 ppm  quartet MCR‐ALS on all the data

aspartic acid  2.70 ppm  doublet of doublet MCR‐ALS on all the data

adenosine  6.06 ppm  doublet MCR‐ALS on pH 6.5 and 5.5 

datasets  separately 

inosine  6.08 ppm (pH 6.5)‐6.09 ppm (pH 5.5) doublet MCR‐ALS on pH 6.5 and 5.5 

datasets separately 

adenine  8.20 ppm (pH 6.5)‐ 8.22 ppm (pH 5.5) singlet 2nd derivative approach 
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Supplementary Materials 
 

 

Fig.  1S  The  experimental  design.  The  presented  abbreviations  for  the  two  strains  and  the 
samples are used throughout the article in order to avoid the full repetition of the names. 
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Fig.  3S  PCA  results  of  the  ASCA  separated  strain  specific  pH  effect matrix  (the  interaction 
between strain and pH). The arrows on the scores trajectories show the time progression. 
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Fig. 4S The heat maps of the Pearson correlation coefficients calculated between 
the metabolic  profiles  of  the  samples. Only  correlation  coefficients  bigger  than 
+0.8 (red) and smaller than ˗0.8 (blue) are colored.  
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Table‐Online Resource 

 

Table 1S Number of the significant correlations between the metabolic profiles in the calculated 
heat maps. 

  R 6.5 GH  P 6.5 GH  R 6.5 GL  P 6.5 GL  R 5.5 GH  P 5.5 GH  R 5.5 GL  P 5.5 GL

# of  IcorrI  > 0.8  42  44  30  38  62  40  30  38

# of  IcorrI  < ‐0.8  32  40  20  30  58  32  20  30
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a b s t r a c t

Quantifying mold growth is of great relevance and interest in microbiology. However, predictive
modeling of filamentous fungal growth has been hampered by the lack of an appropriate and accurate
method for quantification. An adequate, rapid and objective method will allow studying the effect of
many different parameters and conditions on mold growth patterns and can thus provide valuable
insight and knowledge. This study outlines a new approach for quantifying mold growth by providing an
accurate tool for measuring different segments of mold colonies. The method is based on clustering
multispectral images by k-means, an unsupervised and simple clustering algorithm. In order to
demonstrate the efficiency of the new approach, three different sample sets were analyzed by the
developed method, with the objective of quantifying mold growth and size of the colony segments of
Penicillium mold. The results verify the ability of the proposed method to quantify mold growth and
colony composition (relative size of the white and green segments) accurately. This provides a robust
measure for interpreting inhibition activity against mold in different samples and makes a quantitative
comparison possible. Among the virtues of the method are: 1) the ability to quantify very small differ-
ences in the size of colonies which cannot be easily discriminated by visual inspection, 2) the ability to
quantify mold growth on transparent as well as on opaque media (e.g. milk), and 3) no prior assumptions
for the shape and multiplicity of colonies. The accuracy and non-destructive characteristic of the method
allow dynamic quantification of mold growth which can be very valuable in predictive microbiology and
in studies related to biopreservation of food products.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In food microbiology, it is of great relevance and interest to
quantify mold growth and investigate how different parameters
influence the process � for instance, in studies related to bio-
preservation of food products, where safe bacteria are used to
inhibit growth of disease-causing microorganisms (Chaillou et al.,
2005). However, predictive modeling of filamentous fungal
growth has been hindered by the lack of adequate quantitative

methods (Marín, Cuevas, Ramos, & Sanchis, 2008; Marín, Ramos, &
Sanchis, 2005). A number of approaches have been reported and
used for this purpose, including colony forming units (CFU) counts,
total ergosterol content and colony diameter (Marín et al., 2005).
CFU is one of the most frequently used methods for quantifying
mold growth, but it suffers from serious drawbacks. It usually re-
flects spore numbers rather than biomass and is, in general, a poor
indicator of the extent of fungal growth. CFU also appears to
correlate poorly with other parameters such as ergosterol content
(Taniwaki, Pitt, Hocking, & Fleet, 2006) which is the second most
commonly used method to quantify mold. Ergosterol is the domi-
nant sterol in most fungi, and its concentration accounts for the
total fungal population in a food sample (Taniwaki et al., 2006).
Although ergosterol has shown good performance as a fungal
growth indicator for different species (Marín et al., 2008), it is not
possible to determine ergosterol concentration accurately for very
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small colonies (e.g. a colony as small as 2 mm in diameter). By far,
the simplest method to assessmold growth ismeasuring the colony
diameter (or area). As molds often grow in the form of surface
colonies, colony diameters can be measured on petri dishes over
time and converted into growth curves (Taniwaki et al., 2006).
Colony diameter measurements show higher repeatability and
sensitivity compared to ergosterol measurements (Marín, Morales,
Ramos,& Sanchis, 2006), and diameters of very small colonies� for
which ergosterol content cannot be measured accurately � can be
easily determined. Although colony diameter does not take colony
density and volume into account, it is the most suitable measure of
the fungal biomass in solid substrates (Garcia, Ramos, Sanchis, &
Marín, 2010). Good correlation has been reported between ergos-
terol content and colony diameter (Marín et al., 2006). Colony
diameter and size measurement is also non-destructive, and
therefore, saves the sample for further analysis or time-series
studies. In General, colony diameter is measured manually
(Wang, Yan, Wang, Zhang, & Qi, 2012), and sometimes just a visual
inspection of the colonies is used to estimate mold growth and
grade inhibition (Magnusson & Schnurer, 2001). For manual mea-
surement of colony area, the routine practice is to measure the
diameters of the mold in the two main perpendicular directions
and estimate the area or to overlay tracing paper on the mold
colony, trace the shape, and then overlay the tracing paper on graph
paper and count the squares. These procedures obviously lack ac-
curacy and precision and they can be even less reliable when col-
onies have not grown in well-shaped circular forms. In addition,
they can disturb themold, and spread the spores around which will
bias the results by increasing the apparent growth. Moreover, if the
investigated molds are toxic, manual measurement of the colonies
can pose potential health risks to the analyst.

This study proposes a new and semi-automated approach for
quantifyingmold growth based on the colony size or area, using the
unsupervised k-means clustering of multispectral images, recorded
in the ultraviolet, visual and near-infrared regions. Multispectral
imaging combines spectroscopy and imaging, and thus provides
both spectral and spatial information on the samples, which in this
study are mold colonies grown on different media in standard petri
dishes. The k-means clustering algorithm is a simple procedure
which was employed to subdividemultispectral images of themold
colonies on petri dishes, and quantify different segments of the
mold colonies.

In order to test and demonstrate the efficiency of the new
approach, three different sample sets were analyzed with the
objective of quantifying white and green segments of Penicillium
mold colonies. As white and green segments of the colonies relate
to different stages of sporulation, their individual quantification can
be informative. The first set of the analyzed samples was inhibition
assays for indicator fungi spotted on the cell-free ferments of
antifungal bacterial cultures in a chemically defined interaction
medium (CDIM), which had a transparent background. The second
set of samples was inhibition assays for indicator fungi spotted on
the acidified un-inoculated CDIM samples with different pH values.
The third set of samples consisted of inhibition assays for indicator
fungi spotted on the ferments of the microbial strains on a milk-
based medium, which had an opaque background. The new
method, called ‘PCluster’, performs the analysis of the images in a
semi-automatic way and is distributed as a freely available MATLAB
Graphical User Interface (GUI). The results verify the ability of the
proposed strategy to quantify mold growth and colony composition
in response to an inhibitor challenge, both on transparent and
opaque media. By colony composition, we refer to the relative area
(size) of the white and green segments of a colony. For example, if
there are two colonies having the same total area, it can be
deducted that the one with the bigger size of the green segment, is

more advanced in growth. This is one of the arguments whichmake
separate quantification of the different segments of the mold col-
ony advantageous.

2. Theory and methods

2.1. K-means clustering

K-means clustering is an unsupervised algorithm that aims to
find the best partitioning of n observations (or objects) into k
clusters or groups, where k is a number defined by the user. The
algorithm starts by randomly selecting k points (objects) as the
initial groups' centroids. Then, the Euclidean distance between all
the objects and the centroids are calculated and each object is
assigned to the cluster to the centroid of which it is the closest. In
the next step, for each cluster, the object which is the most similar
to the average of all the objects in the kth cluster is defined as the
new centroid and objects are clustered again, based on their dis-
tance from the new centroids. The process of finding the new
centroids and re-clustering the objects is repeated iteratively until
the convergence criterion is met. The convergence criterion used in
our method is minimizing the Within Cluster Sum of Squares
(WCSS), which is the average squared Euclidean distance between
the objects and their cluster centroids. This is a measure of how
well each centroid represents the group or cluster members. The
algorithm has convergedwhenWCSS does not decrease any further
with iterations or decreases below a predefined threshold (Mac
Queen, 1976; Mohd, Beg, Herawan, & Rabbi, 2012; Tran, Wehrens,
& Buydens, 2005). Generally, for each clustering, replicate runs/
restarts are performed. Restarts of k-means will help to make sure
that the algorithm does not converge to local minima. Each one of
the replicates begins from a different randomly selected set of
initial centroids and the final solution that k-means returns is the
global minimum which has the lowest WCSS.

2.2. Multispectral images

Each multispectral image is a three-dimensional data structure
in which two of the dimensions provide spatial information of the
sample, and the third dimension represents spectral information
for each picture-element (pixel; see Fig. 1). Spectral information is
provided for a range of wavelengths, including ultraviolet, visible,
and near-infraredwhich can providemuchmore information about
the samples compared to e.g. the ordinary trichromatic (RGB) im-
ages. Multispectral images give information on the color, surface
properties, water content and other important physical and
chemical properties of the samples (Dissing et al., 2013; Guo, Zeng,
& Wu, 2007). This can be helpful in different fields from food
quality control in industry to different biological research areas in
academia.

2.3. Developed approach for quantifying mold growth

The k-means clustering algorithm was used to subdivide mul-
tispectral images of the mold colonies on petri dishes and quantify
different segments of the mold colonies. A graphical illustration of
the procedure is presented in Fig. 1. Images were acquired using the
VideometerLab 2 instrument (Videometer A/S, Hørsholm,
Denmark). In these images, each pixel is associatedwith a spectrum
and can be considered as an object in aw-dimensional space, where
w is number of the wavelengths. Each image data cube is unfolded
into a matrix, where the n rows are the pixels and the w columns
are the wavelengths (n >> w; see Fig. 1). Then, the k-means algo-
rithm is used to cluster the pixels in this unfolded matrix, using the
information from all the spectral bands. The concept is the same as
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clustering objects in e.g. a three-dimensional Cartesian coordinates,
just expanded to a w-dimensional space. The final outputs of the
analysis are quantification of different segments of the mold col-
onies in pixel-counts and the corresponding average spectrum for
each segment. For instance, for the Penicillium molds that were
used in this study, mold colonies consist of white and green seg-
ments. Results of the analysis are thus number of the white and
green pixels in the mold colony and their average spectra (see
Fig. 1). This allows quantifying the mold growth as well as the
composition of the colony.

To perform the clustering and analysis of the images in a semi-
automated way, a Graphical User Interface (GUI) has been devel-
oped using MATLAB 2012b (MathWorks, Inc., Natick, MA, USA). The
layout of the GUI, which is called ‘PCluster’, is shown in Fig. 2.
PCluster is specifically designed for Penicilliummolds, for which the
colonies are composed of white and green segments. However, the
method and the explained concept can be used for all types of

molds. Multispectral images are first imported into PCluster, and
then the user selects a circular region of interest which will be used
for all the images in the imported set. In the k-means algorithm, the
number of clusters, k, is a user defined input. In PCluster, images are
clustered from 3 to 6 groups and the results are shown as color-
coded (so-called false negative) image objects which show mem-
bership of the pixels in the clusters (see Fig. 2). Then, based on the
graphical output, the optimum number of clustering and the
meaningful clusters, k, are selected by the user. Meaningful clusters
are the ones which show the colonies segments, and the optimum
number of groups is the one which allows clustering different parts
of the mold colony properly. For instance, in Fig. 2, partitioning the
pixels into 4 clusters is enough to segment the white and green
parts of the mold colony and separate them from the background.
Selectingmore than the optimum number of clusters will subdivide
the colony segments further and will impose some errors on the
quantification results, since only two colony segments can be

Fig. 1. The workflow for quantifying mold growth by multispectral images. The outputs of the analysis allow different samples to be quantified and discriminated.

Fig. 2. The layout of the designed Graphical User Interface (PCluster).
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chosen. The user can make a specific interpretation to the clusters,
based on the color-coding of the pixels and select the meaningful
clusters by ticking the corresponding check boxes (see Fig. 2).
Although it may not seem so at the first sight, the procedure is quite
simple and will come natural to the user in a short while.

This method is more accurate than the manual measurement of
mold colony size. Fig. 3 shows two images of mold colonies and also
the clustered images, which allow quantification of the different
segments of the colonies as different clusters of pixels. It is obvious
that manual measurement of these colonies in perpendicular di-
rections and calculating the area would not provide the true size of
the colonies, as the colonies do not grow quite symmetrically.

3. Materials and methods

3.1. Microorganisms and culture conditions

The bacteria and molds which were used in this study are listed
in Table 1. All bacterial strains were freeze dried and kept at �18 �C
until use. Indicator molds were stored at �80 �C, in 20% glycerol
and water, containing 0.1% Tween 80 (Merck).

3.2. Ferments of chemically defined medium

Chemically defined interaction medium (CDIM) was prepared as
described by (Aunsbjerg, Honor�e, Vogensen, & Knøchel, 2015). In
addition, an enhancedmedium (CDIMþ) was prepared by adding an
extra agent to the standard medium (proprietary information,
DuPont Nutrition Bioscience ApS, Brabrand, Denmark). Both media
were inoculated with 107 CFU/mL of Lactobacillus paracasei DGCC
2132 (LAB A) or L. paracasei DGCC 11287 (LAB B) and incubated for
22 h at 37 �C. All batches were made in triplicate. An overview of
the batches and the average pH values are presented in Table 2.
After fermentation, all the batches were centrifuged (5000 g,
15 min at 5 �C), followed by a filtration step through a 0.45 mm filter
(Frisenette ApS, Knebel, Denmark). Two plates of cell-free ferments
were prepared for each replicate, by mixing the extracts with agar
(1%) and pouring into petri dishes.

3.3. Acidified un-inoculated chemically defined medium samples

To investigate the influence of acidification with lactic acid on
mold growth inhibition, un-inoculated samples were prepared by
titrating CDIM with 80% DL-Lactic acid to pH values of 4.0, 4.5, 5.0,
5.5, 6.0 and 6.5 in the 6 samples. Subsequently, two plates of each
sample were prepared by mixing with agar (1%) and pouring into
petri dishes.

3.4. Ferments of milk-based medium

Skim milk powder (Lactalis, Laval, France) was dissolved in
distilled water (10% solution) and heat-treated at 90 �C for 10 min.
To prepare reference (control) batches, milk solutions were inoc-
ulated with 20 DCU (Internal dosing unit) of YO-MIX® 410 starter
culture. For HOLDBAC® YM-C (HB) batches, in addition to 20 DCU of
the starter culture, milk solutions were inoculated with 20 DCU of
HOLDBAC® YM-C, which is an antifungal culture. Control batches
were included to provide a reference to compare the HB batches
with and investigate how the antifungal culture can enhance in-
hibition. Prior to inoculation, the pH of the heat-treated milk was
approximately 6.5. After inoculation, both the control and HB
batches were fermented to a pH value of approximately 4.6. Four
biological replicates of reference and HB were prepared and incu-
bated at 43 �C for 8 h. Then, for each replicate, six plates of cell-
containing ferments were prepared by mixing with agar (1%) and
pouring into petri dishes.

3.5. Mold inhibition test

Inhibition tests were performed using Penicillium sp. DCS 1541
and Penicillium solitum DCS 302 indicator fungi for CDIM batches,
and Penicillium sp. DCS 1541 and Penicillium glabrum DCS 305 for
the ferments of milk-based medium (see Table 1). In all the three
sample sets, half of the prepared sample plates were used for each
of the tested indicator fungi. Plates of CDIM andmilk ferments were
spotted with 20 mL of 105 spores/mL indicator molds. CDIM plates,

Fig. 3. Two examples of mold colonies (top) and the corresponding clustered images
(bottom; clustered images are slightly magnified by the software).

Table 1
Bacteria, commercial cultures and fungi used in the study and their incubation
temperatures.

Microbial strain Incubation temperature (�C)

CDIM Milk

Antifungal bacteria
Lactobacillus paracasei DGCC 2132 37 43
Lactobacillus paracasei DGCC 11287 37 43
Commercial cultures
YO-MIX® 410 e 43
HOLDBAC® YM-C e 43
Indicator fungi
Penicillium sp. DCS 1541 25 25
Penicillium solitum DCS 302 25 25
Penicillium glabrum DCS 305 25 25

Table 2
An overview of the batches from the ferments of the chemically defined medium
(CDIM).

Batches Description Average pH values

LAB A Lb. paracasei DGCC 2132 in CDIM 4.54
LAB Aþ Lb. paracasei DGCC 2132 in CDIMþ 4.33
LAB B Lb. paracasei DGCC 11287 in CDIM 5.72
LAB Bþ Lb. paracasei DGCC 11287 in CDIMþ 4.46

‘Lb.’ is the abbreviation for ‘Lactobacillus’.
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both inoculated and un-inoculated batches, were spotted in trip-
licate, whereas milk plates were spotted with a single spot. Fer-
ments of CDIM, acidified un-inoculated samples and milk plates
were incubated at 25 �C for 4, 5 and 6 days, respectively.

3.6. Multispectral image acquisition

AVideometerLab 2 spectral imaging instrument (Videometer A/
S, Hørsholm, Denmark) was used to acquire the multispectral im-
ages. To record images by this instrument, the sample is placed
inside the sphere of the instrument e so-called Ulbricht
sphere � where diffused light from light emitting diodes (LEDs) is
provided at 18 different wavelengths, ranging from 405 to 970 nm,
and a single-channel image is recorded for each wavelength. The lid
of the petri dishes was removed prior to image acquisition to avoid
reflection. The size of all the acquired images was 2056� 2056� 18
and the size of each pixel, for the present configuration and
instrumental settings, was 45.8 mm � 45.8 mm. For the ferments of
CDIM, multispectral images were recorded after 2, 3 and 4 days of
incubation of the indicator molds which were used to perform the
inhibition tests. For the acidified samples, multispectral images
were recorded after 3, 4 and 5 days of incubation of the indicator
molds. The samples were taken out of the incubator, the images
were recorded and then the samples were returned back to the
incubator. Recording the images is quick, taking less than a minute
per sample. For the milk ferments, multispectral images were
recorded only once, after 6 days of incubation of the indicator
molds. Some representative images (shown here as conventional
RGB) of the CDIM andmilk samples after incubation of the indicator
molds are shown in Fig. 4.

3.7. Analysis of multispectral images

The images were analyzed by PCluster, as detailed in Section 2.1.
For all the acquired images, the number of the white and green
pixels in the mold colony and their average spectrawere calculated.
The analysis time depends on the performance of central process-
ing unit (CPU) of the computer and also the size of the images. For
this study, the required time was on average a few minutes per
image, using a standard office computer. Unwanted growth on
some of the plates, caused by splashes of the mold solution while
spotting (see Figs. 3 and 4), was removed from the images before
quantification, using one of PCluster's built-in options. This allows
saving some of the images while avoiding quantitative errors.
PCluster, including the full MATLAB source code, is freely available
from www.models.life.ku.dk.

4. Results

In this section, the results of analyzing the images from the three
designed experiments are presented and interpreted. The goal was
to demonstrate the capability and potentials of the method in
providing a quantitative comparison between different samples, in
terms of mold growth and inhibition. The difference between the
inhibition properties of the samples, although briefly discussed, is
not the main interest of the article and is merely included to verify
the performance of the method and provide examples of the
analysis results.

4.1. Ferments of chemically defined medium

For the ferments of the CDIM, the images were analyzed with
the aim of quantifying the size of the green and white segments of
the mold colonies as a function of incubation days. The calculated
sizes of the segments (in pixels unit) are shown in Fig. 5a. For all the
batches and both tested molds, after 2 days of incubation, mold
colonies are quite similar in size. Results show that at this stage, the
colonies are only composed of white segments; green segments,
which indicate amore advanced stage of themold growth, have not
appeared yet. After 3 days of incubation, mold colonies grow larger
and, as the spores mature, they turn fromwhite to green. According
to the colony sizes, the inhibition of Penicillium sp. DCS 1541 is
higher in comparison with P. solitum DCS 302. Moreover, the mold
colonies grew less on the batches with the enhanced medium (LAB
Aþ and LAB Bþ) compared to the batches with the standardmedium
(LAB A and LAB B). Among all the batches and for both of the in-
dicator molds, the lowest inhibition is observed for LAB B. After 4
days of incubation, the growth patterns between the molds are
discriminated better and the batches spotted with these molds are
separated as two distinct groups in Fig. 5a. The average spectra of
the green and white segments of the colonies, as shown in Fig. 5b,
have different patterns and their intensities are clearly different in
all the spectral channels, as expected.

4.2. Acidified un-inoculated chemically defined medium samples

For the acidified un-inoculated CDIM, the images were analyzed
and the green and white segments of the mold colonies were
quantified. The aim was to investigate and compare the growth
patterns of the two indicatormolds in response to pH variations. For
both of the indicator molds, the correlation between the size of the
green and white segments (and also the sum of the two segments)
with pH of the samples and the growth of the colonies were exam-
ined. The best correlationwas observed for the green segments and
data fromthewhite segmentswill not be shownordiscussed further.
Sizes of the green segments of the colonies, as a function of the pH of

Fig. 4. Sample RGB images of the ferments from the chemically defined medium,
spotted with Penicillium sp. DCS 1541 (top) and milk medium, spotted with Penicillium
glabrum DCS 305 (bottom).
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the samples at different days of the incubation are shown in Fig. 6.
For both of the indicator molds, size of the green segments in the
colonies naturally increases by days of incubation. For P. solitumDCS
302, growth seems to be inhibited at lower pH values and this trend
is observed for all days. By increasing the pH from 4.0 to 5.5, growth
increases, whereas by increasing the pH further, the growth does not
seem to be influenced. Contrary to P. solitum DCS 302, growth in
Penicillium sp. DCS 1541 is not significantly affected by pH. For
Penicillium sp. DCS 1541, the image of the sample with pH 6 in day 5
of incubation was not recorded properly and could not be analyzed.

4.3. Ferments of milk-based medium

For the ferments of milk-based medium, images were analyzed
with the aim of quantifying green and white segments of the mold
colonies. Results are shown in Fig. 7.

For control (reference) batches, which were only inoculated
with the starter culture, mold colonies have grown much larger
compared to HB batches, that in addition to the starter culture were
inoculated with a culture known to have antifungal properties. On
average, considering the total colony size regardless of the compo-
sition, Penicillium sp. DCS 1541 colonies on the control batches are 3
times larger than on theHBbatches. For P. glabrumDCS305, colonies
are approximately 9 times larger on the control compared to the HB
batches. In the control batches, P. glabrumDCS305has a significantly
higher growth rate compared to Penicillium sp. DCS 1541. Sizes of the
green and white segments of P. glabrum DCS 305 colonies are
respectively around 5 and 3 times larger, when compared to Peni-
cillium sp. DCS 1541. For HB batches, the colonies are only composed
of white segments, and the more mature green spores have not
appeared, even after 6 days of incubation. Although size of the col-
onies for the two types of the molds are quite close in HB batches,

Fig. 5. Results of analyzing the images from the ferments of the chemically defined medium. a) size of the green and white segments of the colonies (in pixels unit); b) average
spectra of the green and white segments. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Sizes of the green segments of the mold colonies (in pixels unit) for the acidified un-inoculated chemically defined medium samples. a) Penicillium sp. DCS 1541; b)
Penicillium solitum DCS 302. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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they still appear as two separate groups in Fig. 7a. The average
spectraof the greenandwhite segments of the colonies are shown in
Fig. 7b. As expected, white and green segments of themold colonies
have different spectral patterns and their intensities are also
different in all the spectral channels.

5. Discussion

For the ferments of the CDIM, the developed
approach � Pcluster � could accurately quantify mold growth,
based on the area of the white and green segments of the mold
colonies. The areas are presented in pixels unit. Pixel is the building
unit of an image and for all of the images in the current study, the
size of each pixel was 45.8 mm � 45.8 mm. As the number of the
pixels and their size was constant between the images, pixel could
easily be used as a measure of area for a quantitative comparison of
mold growth. Converting number of the pixels to the more
commonly used units of area, is just a matter of multiplying them
by the area of each pixel. Differences between the growth patterns
of the two indicator molds, at different days of incubation, could be
discriminated. Moreover, the results could show howmold growth
was influenced by the change in the medium.

For the acidified CDIM samples, influence of the pH on the
growth of the indicator molds could be quantified. The method
detected the differences between the two indicator molds in
terms of their response to pH variation and their growth patterns.
The variation which was created between the samples could be
converted into objective measures. This can be very helpful in
investigating how different parameters influence mold growth
patterns.

The method could also quantify mold growth and size of the
white and green segments in the ferments with the milk-based
medium. Looking at the RGB images of some of the milk plates,
the white edge of the mold colonies is not easily distinguishable on
the white milk background (see Figs. 3 and 4), whereas the pro-
posed method, benefitting from the advantages of multispectral
imaging in combination with k-means clustering, could quantify
the white sporulating segments reliably. For the HB batches, the
differences in the size of the colonies for the two types of the in-
dicator molds were small, and visual inspection of the plates would

not allow deciding which mold was inhibited more efficiently. The
results also demonstrated how the mold growth and colony
composition (relative size of the segments) differs between the HB
and the control batches. The average spectra of the white and green
segments have very different spectral patterns in both the CDIM
andmilk-based samples, and it is because of these different spectral
patterns of the colony's segments that they can be reliably clustered
as different groups by the k-means algorithm.

Themethod does notmake any assumptions for the shape of the
colonies, and can also quantify mold growth on transparent media,
like the CDIM used in the first and second sets, as well as on opaque
media, like the milk-based medium in the third set. Furthermore,
the semi-automated analysis, using PCluster, can discriminate be-
tween the molds in a less labor-intensive and a more objective way.
Following mold growth with appropriate imaging systems that
allow comparative studies over time, and using the developed
methodology for quantifying the colonies can be very useful in
predictive microbiology and in studying how different parameters
affect biopreservation of food products by antifungal bacterial
cultures.
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Lactic acid bacteria with antifungal properties can be used to control spoilage of food and feed. Previously,
most of the identified metabolites have been isolated from cell-free fermentate of lactic acid bacteria with
methods suboptimal for detecting possible contribution from volatiles to the antifungal activity. The role of
volatile compounds in the antifungal activity of Lactobacillus paracasei DGCC 2132 in a chemically defined in-
teraction medium (CDIM) and yogurt was therefore investigated with a sampling technique minimizing vol-
atile loss. Diacetyl was identified as themajor volatile produced by L. paracaseiDGCC 2132 in CDIM.When the
strain was added to a yogurt medium diacetyl as well as other volatiles also increased but the metabolome
was more complex. Removal of L. paracasei DGCC 2132 cells from CDIM fermentate resulted in loss of both
volatiles, including diacetyl, and the antifungal activity towards two strains of Penicillium spp. When adding
diacetyl to CDIM or yogurt without L. paracasei DGCC 2132, marked inhibition was observed. Besides diacetyl,
the antifungal properties of acetoin were examined, but no antifungal activity was observed. Overall, the
results demonstrate the contribution of diacetyl in the antifungal effect of L. paracaseiDGCC 2132 and indicate
that the importance of volatiles may have been previously underestimated.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Antifungal lactic acid bacteria (LAB) have been studied in a range
of foods and feed like sourdough (Black et al., 2013; Lavermicocca
et al., 2000), dairy products (Schwenninger and Meile, 2004)
fermented vegetables (Yang and Chang, 2010), and silage (Ström
et al., 2002). While most of the efforts have been directed towards
finding new potent strains, there is an increasing interest in under-
standing the antifungal mechanism including the identification and
quantification of bioactive compounds produced by these strains. Sev-
eral recent reviews exist on antifungal compounds produced by LAB
(Crowley et al., 2013a; Dalié et al., 2010; Schnürer and Magnusson,
2005; Schwenninger et al., 2011). Phenyllactic acid (PLA) has been

reported as an antifungal compound of LAB in several publications.
However, Ndagano et al. (2011) found the MIC value of PLA against
Aspergillus spp. and Penicillium sp. to be far higher (180 mM) than
the concentrations produced by LAB (0.1–0.5 mM). The same tenden-
cywas observed for lactic acid and acetic acidwhichwere produced in
concentrations much lower (44.8–76.8 and 1.2–7.5 mM, respectively)
than the observedMIC values (N500mMand 83–125mM, respective-
ly). This suggests that the antifungal effect is due to synergistic or ad-
ditive effects of several compounds.

Schwenninger andMeile (2004) described the antifungal properties
of a co-culture of Lactobacillus paracasei subsp. paracasei and
Propionibacterium jensenii in fermented milk and cheese. They conclud-
ed that the inhibition was not solely based on the organic acids pro-
duced since acetic and propionic acids did not fully explain the
antifungal effect (Schwenninger et al., 2008). Furthermore, some obser-
vations indicate a loss of antifungal activity upon cell removal
(Schwenninger and Meile, 2004). This could indicate that some of the
antifungal compounds disappear in cell-free fermentates, e.g. by being
degraded, volatile or being consumed. Bacteria can produce a wide
range of volatile organic compounds (Kai et al., 2009; Schulz and
Dickschat, 2007). Several studies have shown the antifungal potential
of some of these bacterial volatiles. Pseudomonas spp. isolated from ca-
nola and soybean plants produced the antifungal volatiles cyclohexanol,
decanal, 2-Ethyl-1-hexanol, nonanal, benzothiazole and dimethyl
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trisulfide (Fernando et al., 2005). In another study, unidentified soil
bacteria produced the antifungal volatiles trimethylamine, 3-
Methyl-2-pentanone, dimethyl disulfide, benzaldehyde and N,N-
Dimethyloctylamine (Chuankun et al., 2004). In spite of this, most
of the studies on antifungal compounds produced by LAB strains
focus on the non-volatile, liquid cell-free fermentate, often using
bioassay-guided fractionation (Ström et al., 2002) and/or pre-
concentration, e.g. extraction and drying (Schwenninger et al.,
2008). These concentration techniques are well suited for concen-
trating compounds less volatile than water (or the solvent). Howev-
er, compounds more volatile than water will be lost in the process.
The aim of the current study was to examine the role of the major
volatile compounds produced by the antifungal L. paracasei DGCC
2132. We screened fermentations in both chemically defined inter-
action medium (CDIM) and milk using qualitative and quantitative
methods and minimal sample processing in order to elucidate the
volatile profile. Diacetyl was identified as amajor volatile compound.
The antifungal activity of cell-containing as well as cell-free
fermentates was tested towards selected fungal spoilers. The activity
of cell-containing fermentate was also investigated after diacetyl
formation had been inhibited by converting the precursor enzymat-
ically. The antifungal effect of added diacetyl and acetoin was fur-
thermore examined at concentrations comparable to those
produced by L. paracasei DGCC 2132. The results help to explain the
role of diacetyl in the antifungal effect of L. paracasei DGCC 2132
and highlight the likely importance of volatiles.

2. Materials and methods

2.1. Chemicals and materials

2,3-Butanedione (diacetyl) with purity 97%; 3-hydroxy-2-
butanone (acetoin) with purity ≥96%; Hydrochloric acid (37%) and
2-hydroxypropionic acid (DL-lactic acid) ≥85% were purchased from
Sigma-Aldrich (Schnelldorf, Germany). α-Acetolactate decarboxyl-
ase, ALDC (3000 ADU/g) was supplied by DuPont Nutrition Biosci-
ences ApS (Brabrand, Denmark). Tween 80 was from Merck, and
UHT Milk was from MILSANI®.

2.2. Microbial strains, media and growth conditions

L. paracasei DGCC 2132 isolated from a dairy matrix was used in
these studies. The strain had previously been identified by 16S rRNA se-
quencing. YO-MIX™ 410 starter culture (DuPont Nutrition Biosciences
ApS, Denmark)was used for the production of yogurt. Freeze dried bac-
teria were stored at−18 °C until use.

Penicillium sp. nov. DCS 1541 (tentative name Penicillium salamii,
closely related to Penicillium olsonii, Centraalbureau voor
Schimmelcultures, Fungal Biodiversity Centre) and Penicillium
solitum DCS 302 were used as indicator molds since they had previ-
ously been isolated from spoiled fermented dairy products and ini-
tial results had shown different sensitivities towards antifungal
LAB (unpublished results). Molds were grown on malt extract agar
(Galloway and Burgess, 1952) (MEA, 30 g/L malt extract, 5 g/L pep-
tone, 15 g/L agar) for 5–7 days and spores were harvested by adding
water containing 0.01% Tween 80 (Merck). The harvested spores
were supplemented with 20% glycerol (v/v) and stored at −80 °C
until use. All bacteria and mold strains were supplied by DuPont
Nutrition Biosciences ApS, Brabrand, Denmark.

2.3. Culture conditions

To test the antifungal activity of L. paracasei DGCC 2132 in yogurt,
UHT-milk (MILSANI®) was inoculated with 10 DCU/100 L YO-MIX™
410 starter culture (DuPont Nutrition Biosciences ApS, Denmark) and
107 CFU/mL of L. paracasei DGCC 2132 followed by fermentation at

43 °C for 7 h. Yogurt without added L. paracasei DGCC 2132 was used
as control.

A chemically defined interactionmedium (CDIM) used for growth of
L. paracaseiDGCC 2132 and antifungal activity tests was prepared based
on defined media previously reported for growth of fungi (Andersen
et al., 2003; Bockelmann et al., 1999; Emeh and Marth, 1976; Hobot
and Jennings, 1981; Meyers and Knight, 1958), LAB (Morishita et al.,
1974; Møretrø et al., 1998; Saguir and de Nadra, 2007; Savijoki et al.,
2006) and other potential antifungal species such as propionic acid bac-
teria (Dherbécourt et al., 2008; Glatz and Anderson, 1988).

CDIM (200 mL) was inoculated with L. paracasei DGCC 2132
(107 CFU/mL) in 250 mL blue cap flasks and fermented at 37 °C
for 22 h to obtain a cell-containing fermentate (C-fermentate). pH
was measured continuously in batches every 15 min during fer-
mentation (Cinac, Alliance Instruments, Frepillon, France). All
batches were made in triplicate. Cell-free fermentates (CF-
fermentates) were prepared by centrifugation of C-fermentate
(5000 ×g, 15 min at 5 °C) followed by filtration of the supernatant
through a 0.45 μm filter (Frisenette, ApS). Un-inoculated CDIM kept
at 37 °C for 22 h and acidified with lactic acid to pH 4.5 was used as
reference (REF).

REF, C-fermentate, and CF-fermentate were tempered in a 48 °C
water bath. After mixing with melted, tempered agar (1%), the media
were poured into petri dishes. The plates were used after solidification
and a short drying period (b3 h).

2.4. Antifungal activity test

Antifungal activity of L. paracasei DGCC 2132 was tested by spotting
20 μL of spore dilution (105 spores/mL) of each mold in triplicate on
plates of yogurt and plates of REF, C-fermentate and CF-fermentate
and incubating at 25 °C for 9 days. Mold growth was documented by
recording and analyzing multispectral images with the objective of
quantifying area of the mold colonies.

Contribution of volatiles to antifungal activity was assessed in a
“plate-on-plate” test system without direct contact between molds
and C-fermentate. A REF plate was spotted with 20 μL of a mold spore
dilution (105 spores/mL). On top of the REF plate a C-fermentate plate
or a REF plate (control) was placed upside down and sealed with
Parafilm® M. The inhibitory activity was assessed by growth on REF
plates after 4 days of incubation at 25 °C.

2.5. Acquisition and analysis of multispectral images

A VideometerLab 2 spectral imaging instrument (Videometer A/S,
Hørsholm,Denmark)was used to record objective and reproducible im-
ages of the petri dishes with spotted mold. Images were recorded after
2, 3, 4, 5, 6 and 9 days of incubation. To record multispectral images
by the VideometerLab, the sample was placed inside the sphere of the
instrument (Ulbricht sphere) where diffused light from light emitting
diodes (LEDs) was provided at 18 different wavelengths, ranging from
375 to 970 nm. A single-channel image was recorded for each wave-
length. The size of all the acquired images was 2056 × 2056 × 18 and
the lid of the petri dishes was removed prior to image acquisition to
avoid reflection.

The images were subsequently analyzed using PCluster, an in-house
MATLAB Graphical User Interface (GUI) developed by Ebrahimi et al.
(unpublished results). PCluster is specifically designed for Penicillium
molds, for which the colonies are often composed of white and green
segments; however, itsmain idea and the concept can be used for quan-
tifying all types of molds. PCluster clusters the pixels in the multispec-
tral images with the objective of quantifying mold growth. The
outputs of PCluster are the size (in pixels unit) of the green and white
segments of the mold colonies and their average spectra. In the current
study, quantification of mold growth was based on the total size (area)
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of the colonies by summing up the number of pixels in the white and
green segments of the colonies.

2.6. Analysis of volatiles by Gas Chromatography Mass Spectrometry

Volatiles were measured by headspace Gas Chromatography Mass
Spectrometry (GC–MS) configured for two types of headspace sam-
pling. For qualitative screening and semi-quantitative work, headspace
solid-phase microextraction (HS-SPME) was employed. For quantita-
tive purposes, static headspace sampling (SHS) was used.

Using the two methods, three types of samples were analyzed: Liq-
uid fermentations in CDIM (SPME + SHS), liquid fermentations in
milk (SPME) and solid CDIM agar plugs (SPME + SHS).

2.6.1. Liquid calibration and sampling
Calibration solutions were prepared by acidifying CDIM with DL-

lactic acid to pH 4.5 and adding diacetyl in the concentrations 0, 10,
25, 50, 100 and 200 μg/mL. The solutions were stored for a maximum
of 24 h at 5 °C. Aliquots of 2 mL of both calibration solutions and CDIM
inoculated with L. paracasei DGCC 2132 were transferred to 20 mL
headspace vials and sealed. Real-time development of volatiles during
fermentation at 37 °C and 43 °C in liquid samples of milk and at 37 °C
in liquid samples of CDIM, was monitored by having a set of subsam-
ples of the inoculated medium placed in the GC autosampler, and the
headspace was sampled alternately from the vials. Samples were
maintained at 37 °C (for CDIM fermentations) or at 37 °C and 43 °C
(for milk fermentations) during headspace sampling and in between
analyses by SHS GC/MS.

2.6.2. Solid calibration and sampling
Calibration plates with diacetyl were prepared by acidifying CDIM

with DL-lactate to pH 4.5 tempering at 48 °C in a water bath and adding
diacetyl in the concentrations 0, 10, 30 and 90 μg/g, respectively, follow-
ed by mixing with 48 °C agar (1%). The calibration range was selected
according to the observed production during fermentations. The devel-
opment of volatiles in plates of C-fermentate or volatiles present in
plates of CF-fermentate was monitored by daily sampling of agar
plugs from plates placed in a 25 °C incubator. Plugs were taken from a
sample plate (C- or CF-fermentate) or a calibration plate by using an
inverted sterile 1000 μL pipette tip (BioHit, Sartorius, Helsinki,
Finland) with vacuum suction. The plug was transferred to a 20 mL
headspace vial, sealed and frozen at −18 °C. Collected agar plugs
were stored at −18 °C for a maximum 14 days prior to analysis by
SHS GC/MS.

Headspace analyses were performed using a CTC PAL autosampler
(CTC Analytics, Zwingen, Switzerland) mounted on an Agilent 6890
GC coupled to an Agilent 5973N single quadrupole MSD (Agilent Tech-
nologies, Waldbronn, Germany). The CTC PAL could be configured for
both solid phase microextraction headspace analysis and static head-
space analysis. Both the CTC PAL and Agilent GC/MS were controlled
by AgilentMS Chemstation E. 02.00.49. Details on SPME and SHS instru-
mental conditions are listed in Table A.1.

2.7. Antifungal activity of diacetyl and acetoin

Antifungal activity of different concentrations of diacetyl and
acetoin in CDIM (0, 10, 45, 60, 75 and 200 μg/mL) was tested at
high (6.5) and low (4.5) pH levels, respectively. DL-Lactic acid or
HCl was used to acidify CDIM to pH 4.5. Plates were prepared by
mixing with tempered agar (1%) after the addition of diacetyl and
acids. Antifungal activity of different concentrations of diacetyl (0,
45, 75 and 200 μg/mL) was tested in yogurt and milk acidified with
DL-lactic acid to pH 4.5. Plates of CDIM, milk and yogurt were spotted
with 20 μL of spore dilution (105 spores/mL) of each mold in tripli-
cate and incubated at 25 °C for up to 20 days.

2.8. Reduction of inhibition by addition of α-acetolactate decarboxylase

Diacetyl is formed from a spontaneous chemical oxidation and de-
carboxylation of themetabolic intermediateα-acetolactate (AL) formed
from pyruvate (Fig. 1). Alternatively, AL can be converted to acetoin by
α-acetolactate decarboxylase (ALDC) (Kleerebezem et al., 2000; von
Wright and Axelsson, 2011). To promote the formation of acetoin
from AL rather than diacetyl to reduce the inhibitory effect, 400 μg/mL
ALDC was added to CDIM prior to inoculation of L. paracasei DGCC
2132 (107 CFU/mL). Plates of C-fermentate with and without added
ALDCweremade bymixingwith agar (1%). Antifungal activitywas test-
ed against P. solitum DCS 302 as described in Subsection 2.4.

2.9. Production of volatiles in yogurt with and without L. paracasei DGCC
2132

UHT-milk at 5 °C was inoculated with 10 DCU/100 L YO-MIX™ 410
starter culture (DuPont Nutrition Biosciences ApS, Denmark) and with
10 DCU of both starter culture and 5 × 106–107 CFU/mL L. paracasei
DGCC 2132. After mixing, 6 × 5 mL aliquots were pipetted to 20 mL
headspace vials and capped. The vials were placed in an autosampler
thermostated at 37 °C. The headspace of the vials was sampled alter-
nately with a cycle time of 20 min and analyzed by HS–SPME–GC/MS
as described in Subsection 2.6.

3. Results

3.1. Antifungal activity of bacterial fermentate with and without cells

L. paracasei DGCC 2132 showed antifungal properties against
P. solitum DCS 302 and Penicillium sp. nov. DCS 1541 in both CDIM
and yogurt (Figs. 2 and 5). The cell-containing CDIM fermentate (C-
fermentate) showed antifungal activity towards both molds, with
Penicillium sp. nov. DCS 1541 being more sensitive. The cell-free
CDIM fermentate (CF-fermentate) had little effect on the indicator
mold growth (Fig. 5b, c).

In the plate-on-plate test system, with no direct contact between C-
fermentate and indicator molds, both molds were completely inhibited
for 4 days, results of P. solitumDCS302 are shown as an example (Fig. 3),

Fig. 1. Schematic biochemical pathway for diacetyl and acetoin in lactic acid bacteria modified from VonWright and Axelsson (2011). Enzymesmarked in bold, ALDC: α-acetolactate de-
carboxylase, AR: acetoin reductase.
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strongly indicating the inhibitory role of some volatiles. Methylene blue
was added to C-fermentate as a redox indicator to test if suppressed
mold growth was due to oxygen exhaustion. The color of the C-
fermentate remained blue throughout incubation thereby indicating
that lack of oxygen was unlikely to be the reason for mold growth inhi-
bition in the plate-on-plate test system (results not shown).

3.2. Diacetyl production and inhibition by C-/CF-fermentate

Chemical analysis of the headspace of CDIM during fermentation
with L. paracasei DGCC 2132 identified diacetyl as the primary volatile
compound measured. Production of diacetyl was detected within the
first few hours of fermentation with an increased production rate after
20 h of fermentation (Fig. 4). Prolongation of fermentation time in-
creased diacetyl concentration further (data not shown). Besides
diacetyl, traces of acetoin were observed in the CDIM fermentation.

To test if decreased antifungal activity of CF-fermentate compared to
C-fermentate was due to difference in the volatile content, the diacetyl
was measured in plugs from C-fermentate as well as CF-fermentate
plates after 0, 1, 2, 4, 6, and 9 days of incubation at 25 °C. Diacetyl con-
centration increased in C-fermentate from 58 to 74 μg/g after 1 day of

incubation and then decreased upon further incubation. Diacetyl
concentration in the CF-fermentate was 9 μg/g at all days (Fig. 5a).

Growth of the two molds was quantified based on the size of the
colonies calculated from the multispectral images of REF, CF-
fermentate and C-fermentate plates during incubation (Fig. 5b and
c). Growth of both molds was similar on CF-fermentate and un-
inoculated REF plates. Plates with CF-fermentate were overgrown
after 5 and 6 days for Penicillium sp. nov. DCS 1541 and P. solitum
DCS 302, respectively. In contrast, the presence of LAB cells in C-
fermentate caused a delay in the onset of growth until day 3 for
P. solitum DCS 302 and until day 4 for Penicillium sp. nov. DCS 1541,
as well as a markedly reduced growth rate of Penicillium sp. nov.
DCS 1541.

3.3. Antifungal activity of diacetyl and acetoin

Diacetyl was added to CDIM in concentrations corresponding to
those produced by L. paracaseiDGCC 2132 as well as in higher concen-
trations as used in previous mold inhibition studies (Jay, 1982a). In-
creasing diacetyl concentration correlated with increased inhibition
of indicator molds, with Penicillium sp. nov. DCS 1541 being the
most sensitive target organism. Mold growth was markedly inhibited
on un-inoculated CDIMwhen diacetyl was added in the concentration
corresponding to the amount present in C-fermentate at days 0 and 2
(~60 and 45 μg/mL, respectively) (Fig. 6). At 75 μg/mL diacetyl mold
growth was suppressed for up to 5 days (data not shown).

Penicillium sp. nov. DCS 1541 was more sensitive to diacetyl at
pH 4.5, whereas P. solitum DCS 302 was more sensitive at pH 6.5. The

a

c

b

d

Fig. 2. Antifungal activity of L. paracasei DGCC 2132 in yogurt fermented at 43 °C for 7 h.
Indicator molds: Penicillium solitum DCS 302 (a, c) and Penicillium sp. nov. DCS 1541 (b,
d). Yogurt without (a, b) and with added L. paracasei DGCC 2132 (c, d). Images were re-
corded after 4 days incubation at 25 °C.

CDIM plate with spotted mold

C-ferment or REF plate

a b

Fig. 3. Influence of volatiles in L. paracaseiDGCC 2132 C-fermentate (plate on top) on growth of Penicillium solitumDCS 302 spotted in triplicates on a REF plate (bottom). Control: The C-
fermentate plate was replaced with a REF plate. Growth of mold on REF plate with a C-fermentate plate on top (b) and a REF plate on top (a), respectively, was assessed visually after
incubation at 25 °C/4 days.
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Fig. 4. Diacetyl formation and pH change during initial fermentation of L. paracasei DGCC
2132 in CDIM at 37 °C. pH was measured continuously in 5 replicates while diacetyl was
measured during fermentation in two replicates.
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use of HCl to acidify CDIM showed same results as lactic acid (data not
shown). If high amounts (200 μg/mL) of diacetyl were added to either
CDIM, milk or yogurt, P. solitum DCS 302 did not grow until day 14,
and no growth of Penicillium sp. nov. DCS 1541 was observed after
20 days (data not shown).

Acetoin did not show antifungal activity towards the two molds at
any of the concentrations tested (data not shown).

3.4. Reduction of inhibition by addition of α-acetolactate decarboxylase

ALDC has been used in the brewing industry to remove diacetyl
which is considered an off flavor in beer (Yamano et al., 1995). ALDC
was added to CDIM prior to inoculation with L. paracasei DGCC 2132
in order to promote the formation of acetoin from AL and thereby de-
creasing the formation of diacetyl during fermentation. The addition of
ALDC did not influence growth of molds on un-inoculated plates of
CDIM (data not shown). Upon the addition of ALDC to the C-
fermentate, the inhibitory effect of the fermentate decreased (Fig. 7).

3.5. Production of volatiles in yogurt with and without L. paracasei DGCC
2132

The volatiles in the headspace of yogurt with and without added
L. paracaseiDGCC 2132weremeasured by SPME–GC/MS in order to fol-
low their formation when the antifungal L. paracasei DGCC 2132 was
added to yogurt. Two temperatures were used for fermentation, 37 °C
and 43 °C. A number of volatiles were detected in both types of yogurt.
When L. paracasei DGCC 2132 was added together with the starter cul-
ture at 37 °C, some of the easily identifiable changes were increased
amounts of diacetyl and acetoin but also some relative increases in

potential antifungal compounds like 2,3-pentadione, acetic acid, and
butanoic acid were observed (results not shown). This reflects a more
complex volatile profile due to the milk medium and the additional
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tion at 25 °C.
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effect of the starter culture. In yogurts fermented at 43 °C the addition of
L. paracasei DGCC 2132 markedly increased the formation of diacetyl
(Fig. 9), whereas nomarked difference was seen for other volatile com-
pounds (Fig. 8). Storage of yogurts at 5 °C for 9 days increased diacetyl
production markedly to 13.5 ± 0.54 μg/mL in yogurts with added
L. paracasei DGCC 2132 compared to lower levels of 3.1 ± 0.20 μg/mL
in yogurt without the antifungal strain.

3.6. Antifungal activity of diacetyl in yogurt and acidified milk

The antifungal activity of yogurt with added diacetyl against
P. solitum DCS 302 and Penicillium sp. nov. DCS 1541 supported the re-
sults obtained in CDIM (Fig. 10). Similar results were observed for
milk acidified with lactic acid and added diacetyl (results not shown).

4. Discussion

Many earlier studies of bacterial cultures with antifungal effect have
focused on identification of potent antifungal compounds in cell-free

fermentates (Crowley et al., 2013b; Magnusson and Schnürer, 2001;
Rouse et al., 2008; Schwenninger et al., 2008). However, we observed
loss of antifungal activity of culture fermentates after cell removal, an
observation alsomade by Schwenninger andMeile (2004). Sincewe ob-
served antifungal activity in a plate-on-plate test with no direct contact
between C-fermentate andmold, volatiles seemed to be involved in the
antifungal activity.Wemoreover found thatmost of the volatile diacetyl
produced during fermentation disappeared when preparing cell-free
fermentates. A reason for this could be that volatiles are easily lost in
the steps involved in cell removal e.g. centrifugation, filtration and
heating of fermentate prior to mixing with agar. If this is not taken
into account, the contribution of volatiles to the antifungal activity
could be overlooked or underestimated.

In CDIM, the main volatile compoundmeasured in the headspace of
C-fermentate during fermentation was diacetyl. Diacetyl production in-
creased rapidly at pH below 5 and increasing fermentation time was
found to further increase diacetyl (data not shown). This is in agree-
ment with a study on Lactobacillus casei by Branen and Keenan (1971)
who observed a rapid increase in diacetyl content at pH below 5.5
with the highest production measured between pH 4.5 and 5.5. In
CDIM, the concentration of diacetyl was 22 μg/g after the initial 22 h
of fermentation and it rose to 58 μg/g during the preparation of C-
fermentate plates indicating continuous production of diacetyl by
L. paracasei DGCC 2132.

When molds were spotted on CDIM with levels of diacetyl corre-
sponding to those found in the plates of C-fermentate (~60 μg/g) inhibi-
tion was observed for up to 3 days. Diacetyl levels corresponding to
those found in CF-fermentate (~10 μg/g) showed no antifungal activity.
This indicated that the high diacetyl concentration in C-fermentate was
themain cause of the inhibitory activity (Fig. 6). The addition of diacetyl
as a single compound to yogurt and acidifiedmilk showed inhibitory ac-
tivity against the two molds with results similar to CDIM. The results
from yogurt are shown as an example (Fig. 10).

a b

Fig. 7. 400 μg/mL ALDC was added to CDIM prior to inoculation with L. paracasei DGCC
2132 to decrease formation of diacetyl. C-fermentate (a) and C-fermentate with added
ALDC (b). The influence of added ALDC on inhibition of P. solitum DCS 302 was tested
after fermentation at 37 °C/24 h. Plates were incubated at 25 °C until mold growth
appeared.

1
4

7

5

9

10

11

13 14632

*

8 12
* * * 15

Fig. 8. Total ion chromatogram of headspace of yogurt fermentations after 7.2 h at 43 °C with added L. paracaseiDGCC 2132 (top) andwithout L. paracaseiDGCC 2132 (bottom). Peak an-
notations are 1: CO2, 2: Acetaldehyde, 3: Dimethylsulfide, 4: Acetone, 5: 2-Butanone, 6: 2-Pentanone, 7: Diacetyl, 8: Ethanol, 9: 2,3-Pentadione, 10: 2-Heptanone, 11: Acetoin, 12: 2-
Nonanone, 13: Acetic acid, 14: Propanoic acid, and 15: Butanoic acid, *: System peaks.
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Diacetyl is a common volatilemetabolite in fermentedmilk products
(Ott et al., 2000) with reported concentrations between 0.045 and
27 μg/g depending on the product (Rincon-Delgadillo et al., 2012). The
presence of diacetyl and acetoin contributes positively to the buttery
or creamy flavor perception but the range of sensory acceptable levels
varies between different dairy products. In environments, where
workers are constantly inhaling very high peak levels of diacetyl, such
as in microwave popcorn production, exposure to high concentrations
of diacetyl has been associated with serious respiratory illness (SCOEL,
2014). However, consumption of fermented milk products is not ex-
pected to present any risk since both the concentration of naturally pro-
duced diacetyl in the dairy products and the vapor pressure at
consumption temperature are very low and the exposure is infrequent.
Yogurt is a complexmediumwhich, in itself, contains numerous volatile
compounds apart from diacetyl after fermentation. When L. paracasei
DGCC 2132 was added together with the starter culture at 37 °C a
marked increase in diacetyl and acetoin was observed. In addition, po-
tential antifungal compounds like 2,3-pentadione, acetic acid, and
butanoic acid slightly increased. Co-fermentation of the L. paracasei
DGCC 2132 strain with a yogurt starter culture at 43 °C demonstrated
a marked increase in diacetyl as compared to yogurt without
L. paracasei DGCC 2132 (Fig. 9), whereas other volatile compounds did
not increase (Fig. 8). The diacetyl productionwas, however, lower in yo-
gurt than in CDIM due to the shorter fermentation time of yogurt.
Diacetyl levels continued to increase with longer fermentation time
(Fig. 9) as well as during storage at 5 °C. The addition of the antifungal
L. paracasei DGCC 2132 greatly increased the concentration of diacetyl
in yogurt. The measured levels may still be too low to explain all of
the inhibition, indicating involvement of synergistic or additive interac-
tions with other compounds. Another aspect could be that the
employed sampling techniques do not measure diacetyl associated
with the milk/yogurt matrix and therefore unavailable for measure-
ment in the headspace although it may still contribute to the antifungal
effect. Further studies could include analysis of the liquid phase after di-
lution with acetone (De Leonardis et al., 2013; Macciola et al., 2008).

The antifungal properties of diacetyl as an isolated compound were
assessed as early as 1941 towards several molds including Penicillium
sp. and Fusarium sp. with inhibition observed at concentrations above
86 μg/mL (Lagoni, 1941). Other studies showed that molds and yeast
were sensitive to diacetyl concentrations of 100 and 200 μg/mL, respec-
tively (Jay, 1982a, 1982b), with increased activity at low pH for some
molds (Jay, 1982a). The mechanism behind the inhibition of mold
growth has not been elucidated and little is known of interactions
with other compounds. Here, we found that the Penicillium strains
were totally inhibited for up to 5 days in CDIM with added diacetyl

concentrations above 75 μg/mL and, furthermore, that the influence of
the pH was strain dependent.

Suomalainen and Mäyrä-Mäkinen (1999) found that levels of
diacetyl and acetic acid increased in a bacterial culturemixwith activity
against yeast and Bacillus spp. While the amount of acetic acid doubled,
the diacetyl levels increased dramatically in yogurt and in quark from
b0.5 to 24 and from 0.6 to 49 μg/mL, respectively. The addition of the
protective culture increased the sensory properties of the products
which the authors explained by the increased diacetyl production. The
inhibitory effect was not investigated, but it was assumed, based on
the data from Jay (1982b), that the diacetyl levels would be insufficient
to account for the antifungal activity. Similar statements are found in
several reviews on antifungal LAB (Caplice and Fitzgerald, 1999;
Schnürer and Magnusson, 2005) and a recent review on antifungal
compounds produced by LAB does not mention diacetyl at all
(Crowley et al., 2013a). This may reflect that previous approaches
have underestimated the potential contribution of diacetyl to the anti-
fungal activity of LAB strains. Apart from the loss of volatiles in many
sampling operations, some caution in the interpretation of volatile pro-
duction from fermentations should be exerted since the equilibriumbe-
tween the headspace and liquid phase is influenced by temperature, pH
and other factors (Pawliszyn, 1997). In this study, two headspace sam-
pling techniques were employed to follow the dynamics of volatiles in-
dependent of the matrix. For initial profiling of the headspace, SPME
was used as an unbiased, sensitive screening technique and SHS was
used for absolute quantification of e.g. diacetyl. There may, however,
still be changes in compounds which are not readily detected.

The differences in diacetyl production between LAB strains may be
the absence or decreased activity of the acetoin reductase (AR), which
reduces diacetyl to acetoin or could be due to the absence or suppres-
sion of ALDC, resulting in the formation of diacetyl instead of acetoin
from accumulated AL (Kleerebezem et al., 2000). ALDC was added to
CDIM prior to inoculation with L. paracasei DGCC 2132 in order to test
if the low antifungal activity observed in CF-fermentate was caused by
a decrease in diacetyl content after cell removal. The addition of ALDC
markedly decreased the antifungal activity of the C-fermentate, al-
though the activity was not completely abolished. The expected higher
amounts of acetoin caused by the ALDC addition could not explain the
remaining antifungal activity of C-fermentate when ALDC was added,
since acetoin showed no antifungal activity at the relevant concentra-
tions. Jay et al. (1983) also found low antifungal activity of acetoin.
We observed remaining activity after the ALDC addition which could
be a result of antifungalmetabolites other than diacetyl or inefficient re-
moval of all diacetyl by the added ALDC.

Lactic acid bacteria known as diacetyl producers have been associat-
ed with antifungal properties, but no causal link between the antifungal
effect of these cultures and their diacetyl production has previously
been documented. Here, we link the production of volatile diacetyl by
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Fig. 10. Influence of 0, 45 and 75 μg/mL diacetyl added to yogurt on growth of P. solitum
DCS 302 (top) and Penicillium sp. nov. DCS 1541 (bottom). Images were recorded after
4 days of incubation at 25 °C.
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L. paracasei DGCC 2132 with inhibition of Penicillium strains thereby
pointing at a previously overlooked contribution to the anti-mold effect
of LAB. A multitude of bacterial metabolites, both volatile and non-
volatile, may influence potential mold growth and the interactions can
be complex and depending on many factors. The use of cultures with
continuous production of diacetyl and other synergistically active com-
pounds may have a strong potential as clean label ingredients in prod-
ucts prone to fungal spoilage but further knowledge is needed to
optimize cultures for specific products and spoilage organisms.
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ABSTRACT 
 
Some lactic acid bacteria with antifungal properties are applied for bio-preservation of food. 
For understanding their antifungal mechanism, there is an ongoing search for the bioactive 
molecules. With focus on formed metabolites, bioassay guided fractionation and 
comprehensive screening have identified compounds as antifungal. Although active, the 
compounds have been found in concentrations too low to account for the effect. It has been 
hypothesized that the formation of metabolites and consumption of nutrients during 
bacterial fermentations form the basis for the antifungal effect, i.e. the composition of the 
exometabolome. To build a more comprehensive view of the chemical changes induced by 
bacterial fermentation and the effects on mold growth, a strategy for correlating the 
exometabolomic profiles to mold growth was applied. The antifungal properties were 
assessed by measuring mold growth of two Penicillium strains on cell free ferments of three 
strains of Lactobacillus paracasei pre-fermented in a chemically defined medium. 
Exometabolomic profiling was performed by reversed phase liquid chromatography in 
combination with mass spectrometry in electrospray positive and negative modes. By 
multivariate data analysis, the three strains of Lb. paracasei were readily distinguished by 
the relative difference of their exometabolomes. The relative differences correlated to the 
relative growth of the two Penicillium strains. Metabolic footprinting proved as a 
supplement to bioassay guided fractionation for investigation of antifungal properties of 
bacterial ferments. Additionally, three previously identified and three novel antifungal 
metabolites from Lb.  paracasei and their potential precursors were detected and assigned 
using the strategy. 
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LIST OF ABBREVIATIONS 
 
 
ArAT Aromatic aminotransferase 
BCAA Branched chain amino acid 
BcAT Branched chain aminotransferase 
BPC Base peak chromatogram 
CDIM Chemically defined interaction medium 
CF Cell free ferment 
Da Dalton 
ESI Electrospray ionization 
FID Flame ionization detector 
GC Gas chromatography 
id Internal diameter 
ID Inhibition degree 
IS Internal standard 
LC Liquid chromatography 
m/z mass-to-charge ratio 
MIC Minimal inhibitory concentration 
MS Mass spectrometry 
Neg Negative, as for negative electrospray mode 
OD Optical density 
PC Principal Component 
PCA Principal Component analysis  
PLSR Partial least squares regression 
Pos Positive, as for positive electrospray mode 
ppm Parts per million 
REF Reference, un-inoculated substrate 
UPLC Ultra performance liquid chromatography 
TIC Total ion chromatogram 
VIP Variable importance in Projection 
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INTRODUCTION 
 
The use of lactic acid bacteria as an additional safety is widely used in food products to help 
controlling fungal spoilage. Much work has been invested in identifying the antifungal 
metabolites produced by lactic acid bacteria. Focus has been on bioassay guided 
fractionation [1], i.e. with a hypothesis of finding one or several compounds responsible for 
the antagonistic effect e.g. [2–5]. Over time, numerous compounds have been assigned as 
antifungal as compiled in recent comprehensive reviews [6, 7]. Although the activity of 
compounds have been shown, the level produced in biological system has been below 
minimal inhibitory concentration (MIC) [8–10]. Some studies have shown that combinations 
of metabolites increase the antifungal activity of ferments which could indicate synergistic 
effects between metabolites [10–12]. The strategy of bioassay guided fractionation is 
especially suited for detecting one or few potent antagonistic compounds, but has 
shortcomings when the effect is composed. 
 
Recent studies have employed more comprehensive analytical screening strategies with a 
minimum of sample preparation or fractionation [13, 14]. The workflow excludes sample 
preparation steps like solid phase extraction (SPE), where loss of bioactive compounds have 
been observed [13, 15]. Instead, untreated or pre-concentrated cell free ferments (CFs) are 
studied on hyphenated high performance chromatography – high-resolution mass 
spectrometry analytical platforms. This enables recognition and quantification of multiple 
known compounds [13].  
 
Within the potential of state-of-the-art analytical platforms, the analytical coverage can be 
expanded to go beyond the recognized compounds to include all available signals. Then, the 
study becomes an untargeted or data-driven study of the CF or exometabolome of lactic acid 
bacteria. Studies of an extensive range of extracellular metabolites including residual 
nutrients have been defined as exometabolomic footprinting  [16]. Exometabolomic studies 
hold potential for new learning related to the antifungal properties of lactic acid bacteria. 
The mode of action of a new antibiotic compound was elucidated using this strategy [17]. 
Paczia et al. (2012) demonstrated the dynamics of extended overflow metabolism showing 
passive and active transportation of central metabolic intermediates to the extracellular 
environment during batch fermentations [18]. The change in metabolism of branched chain 
amino acids (BCAA) as stress induced by acidic conditions was examined for Lactobacillus 
sanfranciscensis [19]. 
 
By adopting the workflow of untargeted metabolomics, the present study aimed at providing 
a supplementary tool for investigating the antifungal properties of three strains of 
Lactobacillus paracasei. The three Lb. paracasei strains were fermented in a chemically 
defined interaction medium (CDIM). The CFs were subjected to metabolic footprinting and 
tested for effect on growth of two Penicillium indicator strains. With this approach, the 
dynamics for both nutrient availability and formation of metabolites was taken into account. 
The data driven approach applied multivariate methods for identifying biomarkers from 
correlations between compounds and biological effect. The correlations were converted into 
hypotheses for targeted studies and tested in model systems to test for causal links between 
compound concentrations and biological activity.  
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MATERIALS AND METHODS 
 
Chemicals  
Solvents and chemicals, including formic acid, acetic acid, propionic acid, butanoic acid, 2-
ethylbutanoic acid, lactic acid (80%), 2-hydroxy-3-methylbutanoic acid (= ’2-hydroxy-
isovaleric acid ‘), 2-hydroxy-3-phenylpropanoic acid (=‘phenyllactic acid’), 2-hydroxy-3-(4-
hydroxyphenyl)propanoic acid (= ‘(4-hydroxyphenyl)lactic acid’), 2-hydroxy-3-(1H-indol-3-
yl)propanoic acid (=’indolelactic acid’), 2-hydroxy-4-methylpentanoic  acid (= ‘2-
hydroxyisocaproic acid’), 2-hydroxy-(4-methylthio)butanoate Calcium salt, inosine, 
hypoxanthine, L-phenyl-D5-alanine, sodium chloride, sulfuric acid, diethyl ether, acetonitrile 
and ethanol were purchased from Sigma-Aldrich (Schnelldorf, Germany) with purity in 
excess of 95% or as pro analysis quality unless otherwise specified.  All water employed was 
of freshly prepared Milli-Q quality (Merck Millipore, Billerica, MA, USA).   
 
Microbial strains 
All strains used in these studies were supplied by DuPont Nutrition Biosciences ApS. The 
strains and their growth conditions are listed in Table 1.  
 
Table 1 Overview of microbial strains and their growth conditions.    

Microbial strain Short name Growth 
medium 

Incubation 
temperature 

Lactobacillus paracasei DGCC 2132 LAB A MRS 37°C 
Lactobacillus paracasei DGCC 11287  LAB B MRS 37°C 
Lactobacillus paracasei DGCC 695  LAB C MRS 37°C 
Penicillium solitum DCS 302 DCS 302 MEA 25°C 
Penicillium sp. nov. DCS 1541* DCS 1541 MEA 25°C 
MRS, Man Rogosa Sharpe (Oxoid) 
MEA, Malt extract agar [20] (30 g/L malt extract (Becton Dickinson), 5 g/L peptone (Becton Dickinson), 15 g/L 
agar (Becton Dickinson)) 
*Tentative name Penicillium salamii, closely related to Penicillium olsonii, Centraalbureau voor 
Schimmelcultures, Fungal Biodiversity Centre 
 
 
 
Preparation of Lactobacillus paracasei cell free ferments (CFs) 
The three strains of Lb. paracasei were pre-inoculated in MRS and incubated at 37°C 
overnight. The cells were harvested by centrifugation followed by washing of cells twice in 
0.9% NaCl. A chemically defined interaction medium (CDIM) was prepared as described by 
Aunsbjerg et al. [21]. Blue cap bottles (250 ml) with CDIM were inoculated with washed cells 
of the three strains to an optical density at 600 nm (OD600) of 0.05. Five biological replicates 
were made of each batch. Batches were placed in a 37°C water bath with CINAC pH 
electrodes monitoring pH every 15 minutes throughout fermentation. Aliquots were taken 
from each batch after 65 hours of fermentation and placed on ice. The biomass of a 45 ml 
sample aliquot was determined as the dry mass after filtration through Advantec GB140 
(Toyo Roshi Kaisha, Ltd, Japan). CFU/ml and OD600 was in addition measured after 65 hours 
of fermentation.  
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CFs were prepared by centrifuging at 4500 g for 10 min at 0°C (Heraeus XR3 Multifuge, 
Thermo Fisher Scientific, Waltham, MA, USA) and the supernatant was filtered through a 
sterile 0.45 µm pore size filter (cellulose acetate membrane, Q-Max, Frisenette Aps, Knebel, 
Denmark). Aliquots (1000 µl) of the filtrate were distributed into eppendorf tubes for liquid 
chromatography/mass spectrometry (LC/MS) analysis, frozen on dry ice and stored at -80°C.  
 
Headspace Solid-Phase Microextraction Gas chromatography Mass Spectrometry for 
Monitoring Fermentation Volatiles 
The ferments were analyzed for the volatile profile by headspace solid phase 
microextraction gas chromatography with mass spectrometric detection (HS SPME-GC/MS). 
The method was as described in Aunsbjerg et al. [22]. In brief, the analysis was performed 
using a CTC PAL autosampler (CTC Analytics, Zwingen, Switzerland) mounted on an Agilent 
6870 GC coupled to Agilent 5973N single quadrupole MSD (Agilent Technologies, 
Waldbronn, Germany). Both the CTC pal and Agilent GC/MS were controlled by Agilent MSD 
Chemstation E. 02.00.49. Immediately after inoculation, an aliquot of 2 ml were transferred 
to 20 ml headspace vials. The samples were placed on the autosampler thermostated to 
37°C and the headspaces were alternately sampled by SPME with an extraction time of 900 
seconds. The GC was mounted with a 60m x 0.25mm internal diameter (id) Agilent J&W 
(Santa Clara, CA) GC column DB-1701 (cross-linked and surface bonded 14% cyanopropyl-
phenyl/86% dimethylpolysiloxane) with a film thickness of 1 µm. The carrier gas was helium 
flowing at 2.0 ml/minutes. The SPME fiber (85 µm Carboxen/polydimethylsiloxane (Supelco, 
Bellafonte, PA) was desorbed for 30 seconds with a split ratio of 1:5 split/split less injector 
kept at 260°C. The oven was initially held at 60°C for 2 min then the temperature was 
increased to 110°C with a rate of 10°C/minute and then to 240°C with 20°C/minute. The 
transfer line and MS was held at 260°C and 230°C, respectively. The ionization voltage was 
70 eV, and MS scan range was mass-to-charge (m/z) 29-300. 
 
 
Mold growth assay 
Mold growth on Lb. paracasei CF: CFs and un-inoculated CDIM acidified to pH 4.5 with DL-
lactic acid (REF) were mixed with agar (1%) and poured into petri dishes. Antifungal activity 
of 3 of 5 biological replicates of the three Lb. paracasei CFs and REF was tested against P. 
solitum DCS 302 and Penicillium sp. nov. DCS 1541. The molds were spotted (20 µL of 105 
spores/ml) on plates in triplicates and incubated at 25°C for 2-5 days.  
 
Multispectral images of Lb. paracasei ferments were recorded on day 2-5 on a daily basis 
using a VideometerLab 2 spectral imaging instrument (Videometer A/S, Hørsholm, 
Denmark). Diffused light from light emitting diodes (LEDs) were provided at 18 different 
wavelengths, ranging from 375 to 970 nm. Single-channel images were recorded for each of 
the 18 wavelengths (from 375 to 970 nm). The instrument was mounted with a JAI (JAI A/S, 
Valby Denmark) model BM-500GE 32 bit camera with a resolution of 2056 x 2056 resulting in 
a pixel size of 45.8 µm. The lid of the petri dishes was removed prior to image acquisition to 
avoid reflection. The multispectral images were subsequently analyzed using a modified 
version of PCluster, a GUI developed under MATLAB environment  (Version 2012b, 
MathWorks, Inc., Natick, MA, USA) by Ebrahimi et al. [23]..  In the modified version of 
PCluster, the pixels in the multispectral images were clustered with the objective of 
quantifying different segments of the mold colonies, and as a result, quantifying mold 
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growth and mold color of colonies. The outputs of the analysis were number of the white 
and green segments in the colonies and their average spectra. Mold growth was calculated 
as the sum of white and green pixels.  
 
Minimal inhibitory concentrations of identified compounds 
The six identified 2-hydroxy acids (Table 4) were tested for their minimal inhibitory 
concentration (MIC) against the two Penicillium strains. Solutions of CDIM acidified with DL-
lactic acid (pH 4.5) were prepared with 0 (REF), 0.1, 1, 5 and 10 mg/ml of all six compounds, 
respectively. The test solutions were distributed into a sterile flat-bottomed 96 well 
microplate (Fisher Scientific) and 104 spores/ml of each Penicillium strain were added to the 
wells. Triplicate determinations were made. Microplates were incubated at 25°C for up to 48 
hours. OD600 at start (t0) and after 48 hours (tf) was recorded at 600 nm using a Varioskan 
Flash (Thermo Fisher Scientific Oy, Finland). The inhibition degree (ID)  was calculated and 
evaluated as [10]: 
 
 ID = [OD600(test solution, tf) - OD600(test solution, t0)]/ [OD600(Reference, tf) - 
OD600(Reference, t0)]  
 
The minimal inhibition concentration (MIC 50) was defined as the concentration providing ID 
< 0.5 [10]. 
 
 
Metabolic footprinting by Liquid Chromatography Mass Spectrometry (LC/MS) 
Frozen CFs were thawed in an Eppendorf Thermomixer Comfort (Eppendorf Nordic Aps, 
Horsholm, Denmark) for 10 minutes at 20°C with 750 rpm. A pooled sample (MIX) was 
prepared by sampling and mixing 200 µl of each CF included in the study. Aliquots of 200 µl 
of the CF, the MIX sample or MiIli-Q water (solvent blank) were diluted with 800 µl 0.1%v/v 
formic acid in water containing 0.06 mmol/l L-phenyl-D5-alanine as internal standard (IS). 
The diluted solution was centrifuged at 13300 x g for 10 minutes prior to analysis 
(Spectrafuge Labnet International Inc. Edison, NJ, USA). The LC/MS system was equilibrated 
with a minimum of ten replicate injections of the MIX sample prior to analyzing samples. 
Sample injections were performed in duplicate. Each set of replicates were placed in 
randomized brackets containing ten samples (representing two replicates of the five 
biological treatments) and one MIX sample. Each injection bracket was initiated by a solvent 
blank (Milli-Q water) treated as sample. The LC/MS analysis was performed using an Agilent 
(Agilent Technologies, Waldbronn, Germany) modular 1290 ultra performance liquid 
chromatography (UPLC) instrument coupled to a Bruker (Bruker Daltonics, Billerica, MA) 
maXis 4G single quadrupole time-of-flight  mass spectrometer (MS) via an electrospray 
interface. The UPLC was mounted with a Waters (Waters Corporation, Milford, Ma, USA) HSS 
T3, 2.1 x 150 mm id column packed with 1.8 µm particles. Mobile phases were A) 
water/formic acid 1000/1 v/v and B) acetonitrile/formic acid 1000/1 v/v. Vials were kept at 
5°C in the autosampler prior to injection of 10 µl. Elution was performed with a flow of 400 
µl/min and a gradient starting at 0% B at t=0 and kept for 1.0 minute, then to 100% B at 15 
minutes and kept for 0.5 minutes. Then back to 0% B over 0.1 minutes and maintained for 
4.4 minutes. The electrospray interface with nebulizer at 2.5 bar and dry gas at 9.0 L/min at 
200°C was operated in both positive and negative mode (capillary voltage at 4000 V and 
3200 V, respectively). Mass spectra in the range m/z 60 – 1250 were acquired with a 
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frequency of 3 Hz. Spectra were saved as centroided. The m/z axis was calibrated with 
sodium formate clusters (solution of water/2-propanol/1 mol/l sodium hydroxide/formic 
acid 250/250/2.5/0.5 v/v/v/v) infused prior to each chromatographic run via a divert-valve-
loop setup. The instrument was controlled using Bruker Daltonics micrOTOFcontrol version 
3.1 and acquired data was handled with Data Analysis version 4.0 SP4.   
 
Identification and quantification by LC/MS 
Stock solutions of the individual standards (Table 4) of 1 mg/ml were prepared. Dilution 
series of combinations of the stock solutions were prepared with concentrations of ca. 3, 10, 
30, 100 µg/ml of each of the six 2-hydroxy acids. The dilution series were used for preparing 
calibration solutions and for spiking CFs of LAB C. Aliquots of 400 µl of the dilution series 
were added to 200 µl of either 0.1% formic acid (calibration solutions) or the CF (spiked 
ferments) and additional 400 µl 0.1%v/v formic acid in water containing 0.12 mmol/l L-
phenyl-D5-alanine as IS. The samples were analyzed by the LC/MS conditions listed 
previously. Verification of identity by retention time assignment and mass spectrum of 
compounds was made by analyzing solutions of 0.1 mg/ml. 
 
 
Quantification of organic acids by gas chromatography with flame ionization detection 
(GC/FID) 
Aqueous stock solutions of standards were prepared containing the six 2-hydroxy acids of 
interest (Table 4) and the IS, 2-ethylbutanoic acid. Aliquots of standards (0.5-400 µl) or CF 
samples (100, 200, 300 µl) mixed with IS solution (50 µl) were derivatized with 2 ml ethanol 
in sulfuric acid (concentrated, p.a.) 150/50 v/v for 2 hours at 80°C. The solution was cooled 
to ambient temperature and 10 ml of a 10 w/w% sodium chloride in water was added. The 
combined solution was extracted with 2 ml diethyl ether for 30 minutes by vigorous shaking.  
The diethyl ether extracts were analyzed on an Agilent (Agilent Technologies, Waldbronn, 
Germany) 6890N GC with flame ionization detector (FID). The Agilent GC was controlled by 
Agilent GC Chemstation rev. B.04.01 SP1. The GC was mounted with a 10m x 0.10mm id 
Quadrex (Quadrex Corporation, Bethany, CT) 007-FFAP (nitroterephthalic acid modified 
polyethylene glycol polymer) column with a film thickness of 0.1 µm. The carrier gas was He 
flowing at 0.8 ml/min. The sample injection was 1 µl with split ratio of 1:100 in a split/split 
less injector kept at 250°C. The FID was held at 240°C. Two different temperature gradients 
were employed. For low boiling derivatives, the oven initially was held at 40°C for 2 minutes 
then temperature was increased to 240°C with a rate of 20°C/minute. For higher boiling 
derivatives, the oven start temperature held at 150°C for 2 minutes, and then was increased 
to 240° with a rate of 20°C/min to 240°C held for 10 minutes. 
 
 
Data processing 
Metadata like pH (from CINAC) and biomass as well as randomizing injection sequences was 
handled in Microsoft Excel 2007 (Microsoft). Prior to feature extraction, chromatographic 
data of MIX samples (total ion chromatograms (TICs) and base peak chromatograms (BPCs)) 
were inspected visually for irregularities like drift in intensities and retention time. Bruker 
raw data files were converted into mzXML files by Bruker CompassXport v.3.0.5 (Bruker 
Daltonics). Feature extraction made with MZmine2 [24]. Peak detection was based on an 
m/z tolerance of 0.001 Dalton (Da) or 5 parts per million (ppm) and a peak duration time 
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range of 0.025 – 0.35 minutes. Chromatograms were deconvoluted using the ‘local minimum 
search’ algorithm, de-isotoped and peaks were aligned using the Join aligner algorithm. Peak 
lists were filtered using a criterion of minimum a feature being detected in five 
chromatograms (the data set held 5 biological replicates analyzed twice; technical 
duplicates). The peak list was gap filled and filtered for duplicate peaks with a retention time 
tolerance of 0.1 minutes and 0.001 Da or 5 ppm. Multivariate data analysis was performed in 
MATLAB R2013a version 8.1.0.604, 64-bit (MathWorks, Natick, MA, USA) and PLS Toolbox 
version 7.3.1 (Eigenvector Research, Inc., Wenatchee, WA, USA). 
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RESULTS 
 
Characteristics of Lb. paracasei Fermentations and Cell Free Ferments 
The three Lb. paracasei strains were fermented in parallel for 65 hours (end of 
fermentation). All three strains were diacetyl producing (data not shown). From an initial 
similar inoculation concentration (in terms of OD), two of the strains LAB B and LAB C 
fermented to a lower pH than LAB A. Corresponding to the larger decrease in pH, the LAB B 
and LAB C strains generated significantly higher amount of biomass and higher cell counts 
than LAB A and LAB C (Table 2).  
 
Table 2 Characteristics of Lb. paracasei fermentations (average ± standard deviation)  
 Lb. paracasei strain 

(Short name) 
 

DGCC2132 
(LAB A) 

DGCC1128
7 

(LAB B) 

DGCC695 
(LAB C) 

Reference 
(REF) 

Cell count (log CFU/mL, n=3) 
    Start of fermentation 
    End of fermentation 
 

 
6.8 ± 0.1 
7.8 ± 0.1 

 
7.6 ± 0.1 
9.4 ± 0.2 

 
6.9 ± 0.2 
9.4 ± 0.2 

 

OD600 (abs, n=5),       
    Start of fermentation                                                         
    End of fermentation 
 

 
0.052 ± 0.002 
0.50    ± 0.04 

 
0.048 ± 0.002 
1.42  ± 0.02 

 
0.050 ± 0.004 
1.50  ± 0.05 

 

Diacetyl production during 
fermentation 
 

 
Yes 

 
Yes 

 
Yes 

 

pH (n=5)                                 
    Start of fermentation                                  
    End of fermentation 
 

 
6.55 ± 0.03 
4.53 ± 0.08 

 
6.55 ± 0.03 
3.84 ± 0.06 

 
6.56 ± 0.05 
3.77 ± 0.07 

 

Biomass (g/L, n=5) 
    End of fermentation 
 

 
0.15 ± 0.01 

 
0.56 ± 0.02 

 
0.65 ± 0.01 

 

Mold growth after three days 
at 25 °C (103 pixels, n=3) 
DCS 302 
DCS 1541 

 
 

6.31 ± 0.25 
6.70 ± 0.22 

 
 

5.19 ± 0.27 
4.82 ± 0.01 

 
 

4.40 ± 0.18 
4.51 ± 0.10 

 
 

7.38 ± 0.07 
8.01 ± 0.25 

 
The growth of the two indicator molds, P. solitum DCS 302 and Penicillium sp. nov. DCS 1541 
was tested on the agar plates of un-inoculated media at pH 4.5 and CFs of the three Lb. 
paracasei strains. On a daily basis, mold growth was monitored by multispectral imaging 
which was processed into a measure of the sum of white and green pixels. Mold growth was 
characterized by only white pixels on day two and from day three and onwards by both 
white and green pixels as outlined in supplementary material S1. From day three and 
onwards, the three Lb. paracasei CFs could be ranked according to the mold growth: REF > 
LAB A > LAB B > LAB C (Table 2).  
 
 
Metabolic footprinting by Liquid Chromatography Mass Spectrometry (LC/MS) 
The chemical profiles of the Lb. paracasei exometabolomes (i.e. CFs) were generated by 
reversed phase-LC/MS via both electrospray ionization (ESI) positive (pos) and negative (neg) 
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mode. The two ESI polarities were complementary in detecting both substrate components 
and metabolites as shown in Fig. 1. Compounds with acidic protons, like carboxylic acids, 
were more prone to detection in ESI neg by formation of M-H ions. The most intense peaks 
of the ESI pos were amino acids, adenosine and adenine from the CDIM. The most polar 
amino acids (like arginine, asparagine, aspartic acid, glutamine, glutamic acid) were only 
slightly retained on the column and eluted within or just after the void volume. 
  

 
Fig. 1 Base peak chromatogram of CF of LAB C showing electrospray positive (with insert of 
enlargement of retention time 4.0 – 7.0 min) and negative (inverted) mode with annotation of 
selected peaks. 
 
 
Feature extraction using MZmine2 resulted in 977 features in ESI pos and 142 features in ESI 
neg mode. The metabolites for both polarities were normalized with the corresponding 
feature representing IS. Especially in ESI pos mode, compounds were represented with 
multiple features due to different adducts and in-source fragmentation. As an examples 
glucose was observed as [M+Na]+, [M+NH4]+, [M+K]+, as [2M+Na]+ cluster and as 
corresponding in-source fragments after water loss. Glucose adducts and clusters where 
designated “Glc” and in-source fragments “Glc*”. At least two sets of features represent the 
sum of positional isomers closely eluting, namely ‘Leu+Ile’ covering leucine and isoleucine 
and ‘OH-Me-Pe’ covering 2-hydroxy-Y-methylpentanoic acid with Y being 3 or 4.  
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Principal component analysis (PCA) after mean centering and Pareto scaling grouped the 
samples according to their origin, i.e. un-inoculated CDIM (REF), the ferments of the three 
Lb. paracasei strains and a centered group of the pooled quality control sample 
(Supplementary material S2). 
 
The technical replicates (n=2) were averaged for each biological replicate (n=5). For each of 
the two ESI modes, scores and loadings of PCAs of the averaged data are shown in Fig. 2. The 
first principal component (PC) for both ESI pos and neg mode data was correlated with both 
acidification and biomass production, i.e. grouping of LAB A versus LAB B and LAB C. 
Inspection of loadings of pos mode data showed that components from the CDIM such as 
glucose, amino acids (leucine + isoluecine, (Leu+Ile); phenylalanine (Phe), tryptophane (Trp), 
tyrosine (Tyr)), adenosine (AR) and adenine (A) were positively correlated with principal 
component 1 (PC1).    Accordingly, PC1 correlated negatively with nutrient consumption.  
 
For ESI neg data, PC1 loadings correlated positively with formation of 2-hydroxy acids, e.g. 
lactic acid (La), 2-hydroxy-3-phenylpropanoic acid (OH-Phe-Pr), 2-hydroxy (4-
hydroxyphenyl)propanoic acid (OH-(OH-Phe)-Pr) and 2-hydroxy-4-methylpropanoic acid (OH-
Me-Pr). Consumption of glucose (Glc), amino acids (Phe,Tyr) and the intermediate inosine 
(IR) correlated negatively with PC1.    
 
According to the highest loadings in PC2 in positive mode, the three LAB strains differed by a 
preference for metabolizing aromatic (Phe, Tyr, Trp) or branched chain (Leu + Ile) amino 
acids. Corresponding to this, LAB C produced relatively higher amounts of branched 2-
hydroxy acids (seen in negative mode), whereas the LAB B had relatively higher amounts of 
the corresponding aromatic catabolism 2-hydoxy acids products.  
  
 
Exploring the Correlation between Exometabolite Profiles and Mold Growth 
Correlation between the exometabolomes and mold growth were explored by partial least 
squares regression (PLSR) with the exometabolome profile as  independent X data block and 
mold growth as dependent Y data block. In the previous section, exploratory multivariate 
data analysis of the two analytical modes demonstrated that the exometabolome contained 
information to differentiate the Lb. paracasei CFs, both in terms of nutrient consumption 
and formation of metabolites. The two sets of data (ESI pos and neg) were merged into one 
X data block to obtain a more comprehensive description of the differentiation. Low 
molecular weight organic acids like formic, acetic, propionic, butanoic acid, were analyzed by 
targeted GC/FID analysis. All these analytes were either below limit of quantification or not 
detected (Table 4) and were not included in the X data block. 
 
The merged X data block was group-scaled (i.e. variance scaled to equal sum-of-square 
weighing) and mean centered. The mold growth Y data was mean centered. Partial least 
squares regression (PLSR) was performed with the mold growth for day 3 for each of the two 
indicator organisms versus the merged X data block. The characteristics of the resulting PLSR 
models as well as loading and scores plots are listed in supplementary material S3. For both 
organisms, the PLSR models of all days showed correlation between growth of the indicator 
organism and exometabolomic profile. All following observations below are based on PLSR 
models for day 3 growth of each of the two indicator molds (DCS 302 and DCS 1541). 
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Fig. 2  PCA plot of biological replicates (normalized with IS, pareto scaled) of the three Lb. 
paracasei strain  ferments showing PC1 and PC2 scores (top) and loadings (below) for ESI pos (left) 
and ESI neg data (right). Identified features designated with abbreviations and unidentified as 
mass to charge at retention time are listed in Table 3. 
 
 
According to the loadings for latent variable 1 in supplementary material, increased mold 
growth, correlated to relatively high amounts of primarily glucose (as several adducts), 
phenylalanine, leucine + isoleucine and adenosine. Reduced mold growth was strongly 
correlated to depletion of these nutrients. The residual amount of each of the highest 
ranking nutrients was estimated as the sum of relative responses of all the compounds’ 
adducts and in-source fragment features (Fig. 3).  
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Fig. 3 Relative responses of nutrients in the CDIM (REF) and three Lb. paracasei CFs showing 
almost complete depletion of glucose and glutamine in LAB C but only limited consumption of 
other nutrients. (Sum of responses from adducts and in-source fragments; average ± standard 
deviation, n=5) 
 
None of the observed nutrients were completely depleted. However, glucose and glutamine 
were almost depleted in LAB C ferments. For all ferments all other measured nutrients 
remained at more than 50% of the content observed in the CDIM. Besides consumption of 
nutrients, formation of metabolites correlated positively with reduced mold growth. Among, 
the major metabolites were 2-hydroxy-4-methylpentanoic acid (OH-Me-Pe), 2-hydoxy-3-
phenylpropanoic acid (OH-Phe-Pr) and 2-hydoxy-3-(4-hydroxyphenyl)propanoic acid (OH-
(OH-Phe)-Pr) (Table 3). The variables (or features) mostly influencing the overall model were 
identified by calculation and inspection of variable importance in projection, or VIP scores 
[25]. For both mold models, the variables were grouped according to a positive or negative 
correlation to mold growth and within the groups ranked according to VIP scores and listed 
with the univariate Pearson correlation coefficient towards mold growth (Table 3).  
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Table 3  Features in Lb. paracasei CF which correlated positively (top) and negatively (below) in latent variable 1 with mold growth and sorted according 
to VIP score (decreasing from top to bottom) 

Observed 
m/z 

Ret.  
time 
[min] 

ESI 
Polarity 

  
Ion/adduct 

  
Assignment a 

  
Abbreviation Exact m/z 

m/z 
Error 
[ppm] 

Pearson correlation 
coefficient (R) b 

DCS 302 DCS 1541 
Features positively correlated with mold growth   
203.0526 1.03 Pos [M+Na]+ Glucose Glc 203.0526 0.2 0.98 0.97 
166.0864 4.02 Pos [M+H]+ Phenylalanine Phe 166.0863 0.6 0.72 0.87 
132.1020 3.57 Pos [M+H]+ Leucine + Isoleucine Leu + Ile 132.1019 0.5 0.95 0.87 
120.0808 4.02 Pos [M-H-COOH+H]+ Phe in-source fragment Phe* 120.0808 0.5 0.55 0.77 
268.1041 3.56 Pos [M+H]+ Adenosine AR 268.1040 0.2 0.87 0.79 
183.0917 5.76 Pos [M+H]+ Unk-42; C12H10N2  183.09@5.76 - - 0.87 0.98 
137.0459 3.61 Pos [M-C5H8O4+H]+ Inosine in-source fragment IR* 137.0458 0.6 0.94 0.98 
198.0972 1.03 Pos [M+NH4]+ Glucose Glc 198.0972 0.1 0.96 0.99 
188.0707 4.64 Pos [M-NH3+H]+ Trp in-source fragment Trp* 188.0706 0.4 0.36 0.67 
205.0973 4.64 Pos [M+H]+ Tryptophan Trp  205.0972 0.5 0.09 0.01 
267.0736 3.61 Neg [M-H]- Inosine IR 267.0735 0.3 0.97 0.97 
150.0584 2.02 Pos [M+H]+ Methionine Met 150.0583 0.5 0.80 0.87 
136.0618 1.94 Pos [M+H]+ Adenine A 136.0618 0.4 0.21 0.54 
180.0867 1.04 Pos [M-H2O+NH4]+ Glucose in-source fragment Glc* 180.0867 0.2 0.95 0.99 
383.1159 1.03 Pos [2M+Na]+ Glucose Glc 383.1160 -0.2 0.97 0.98 
231.1128 5.39 Pos -  Unk-47 231.11@5.39 231.1128 0.0 0.88 0.98 
269.0882 3.61 Pos [M+H]+ Inosine IR 269.0880 0.6 0.94 0.99 
182.0812 3.55 Pos [M+H]+ Tyrosine Tyr 182.0812 0.4 0.32 0.65 
118.0863 1.66 Pos [M+H]+ Valine Val 118.0863 0.3 0.91 0.95 
Features negatively correlated with mold growth   
131.0714 5.90 Neg [M-H]- 2-hydroxy-Yc-methylpentanoic acid                       OH-Me-Pe 131.0714 0.3 -0.92 -0.81 
165.0558 6.39 Neg [M-H]- 2-hydroxy-3-phenylpropanoic acid OH-Phe-Pr 165.0557 0.5 -0.62 -0.79 
181.0507 4.77 Neg [M-H]- 2-hydroxy-3-(4-hydroxyphenyl)propanoic acid OH-(OH-Phe)-Pr 181.0506 0.6 -0.48 -0.69 
169.0761 5.47 Pos [M+H]+ Unk-28; C11H8N2  169.08@5.47 - - -0.77 -0.58 
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251.0773 2.00 Neg [M-H]- Unk-981 251.08@2.00 - - 0.09 -0.21 
117.0557 4.67 Neg [M-H]- 2-hydroxy-3-methylbutanoic acid OH-Me-Bu 117.0557 -0.4 -0.79 -0.60 
162.0761 1.89 Pos [M+H]+ Unk-43; C6H11NO4 162.08@1.89 - - -0.81 -0.95 
89.0243 1.83 Neg [M-H]- Lactic acid La 89.0244 -1.0 -0.78 -0.91 
204.0667 6.62 Neg [M-H]- 2-hydroxy-3-(1H-indol-3-yl)propanoic acid OH-Ind-Pr 204.0666 0.4 -0.17 -0.44 
217.0830 2.47 Neg [M-H]- Unk-991; C8H14N2O5  217.08@2.47 - - -0.83 -0.95 
217.0972 5.22 Pos [M+H]+ Unk-66;C12H12N2O2  217.10@5.22 - - -0.97 -0.91 
147.0452 6.39 Neg [M-H2O-H]- In-source fragment of PLA OH-Phe-Pr* 147.0452 0.3 -0.61 -0.78 
137.0458 2.79 Pos [M+H]+ Hypoxanthine Hx 137.0458 0.4 -0.84 -0.96 
130.0863 1.84 Pos -  Unk-97 130.09@1.84 - - 0.04 -0.24 
219.0976 2.47 Pos [M+H]+ Unk-40 = Unk-991 219.10@2.47 - - -0.88 -0.98 
219.1339 1.71 Pos [M+H]+ Unk-85; C9H18N2O4  219.13@1.71 - - -0.96 -0.89 
202.1085 6.14 Neg -  Unk-1004 202.11@6.14 - - -0.66 -0.46 
252.1091 3.60 Pos -  Unk-67 252.11@3.60 - - -0.69 -0.45 
158.1176 6.08 Pos - Unk-126 158.12@6.08 - - -0.66 -0.41 
149.0279 4.72 Neg [M-H]- 2-hydroxy-4-(methylthio)butanoic acid OH-MeS-Bu 149.0278 0.6 -0.55 -0.73 

 
a) Unk = Unknown identified with tentative elementary composition where possible 
b) Correlation between mold growth and feature response 
c)  Y = 4 or 3, i.e. 2-hydroxy-4-methylpentanoic acid or 2-hydroxy-3-methylpentanoic acid 
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Minimal inhibition concentrations  
The contents of selected carboxylic acids were quantified by targeted LC/MS and GC/FID 
resulted in concentrations listed in Table 4. Chemical inhibition studies were performed with 
the 2-hydroxy acids (number 1-6 in Table 4 below) individually as presented in 
supplementary material S4. Minimal inhibition concentration for 50% inhibition (MIC 50) of 
the individual compounds, estimated as the lowest concentration where the inhibition 
degree was below 0.5 [10], was in the range of 5 to 10 mg/ml for all six compounds. This MIC 
50 value was more than 75 times higher than the concentration produced of the most 
abundant of the six acids (OH-Me-Pe at 65 mg/l). 
 
 
 
Table 4 Quantification of produced and identified metabolites with highest VIP scores in mold 
growth models (average ± stdev, n=5) and minimal inhibitory concentration for 50% inhibition 
(MIC 50) 
L. paracasei strain 
Compound  
(abbreviation; number) 

LAB A 
 
mg/l 

LAB B 
 
mg/l 

LAB C 
 
mg/l 

Limit of 
detection 
mg/l 

MIC 50 (g/l) 

DCS 302 DCS 1541 

2-hydroxy-Ya-methyl pentanoic acid 
(OH-Me-Pe; #1) 

 
12.3 ± 0.2 

 
24.5 ± 0.5 

 
65 ± 6 

 
0.3 

 
5  

 
5 

2-hydroxy-3-phenylpropanoic acid  
(OH-Phe-Pr; #2) 

 
<2 

 
21.1 ± 0.9 

 
11.6 ± 1.0 

 
0.8 

 
5 

 
5 

2-hydroxy-3-(4-hydroxyphenyl) 
propanoic acid  
(OH-(OH-Phe)-Pr; #3 ) 

 
 
<1 

 
 
15.8 ± 0.7 

 
 
6.5 ± 0.4 

 
 
0.4 

 
 
10 

 
 
10 

2-hydroxy-3-methylbutanoic acid 
(OH-Me-Bu; #5) 

 
5.6 ± 0.1 

 
5.3 ± 0.3 

 
23.4 ± 2.2 

 
0.7 

 
5 

 
5 

Lactic acidb  

(La) 
9.6 x 103 ± 
0.6 x 103 

15.6 x 103 ± 
0.5 x 103 

16.8 x 103  
± 0.4 x 103 

1 x 103  
NA 

 
NA 

2-hydroxy-3-(1H-indol-3-
yl)propanoic acid  
(OH-Ind-Pr; #4) 

 
<3 

 
4.4 ± 0.2 

 
<3 

 
0.9 

 
5 

 
5 

2-hydroxy-4-(methylthio)butanoic 
acid 
(OH-MeS-Bu; #6) 

 
1.2 ± 0.03 

 
4.4 ± 0.2 

 
2.7 ± 0.2 

 
0.2 

 
10 

 
10 

Formic acidb 

(Fo) 
ND ND ND 10 NA NA 

Acetic acidb 

(Ac) 
<10 <10 <10 3 NA NA 

Propionic acidb 
(Pr) 

ND ND ND 1 NA NA 

Butanoic acidb 

(Bu) 
ND ND ND 1 NA NA 

a) Y = 4 or 3, i.e. 2-hydroxy-4-methylpentanoic acid or 2-hydroxy-3-methylpentanoic acid 
b) Quantified by GC/FID 
ND: Not detected, i.e. below limit of detection 
<xx: Detected, but below limit of quantification of xx mg/ml 
NA: Not analyzed 
 
DISCUSSION 
Recent studies showed that a major contributor to the antifungal properties of LAB A (Lb. 
paracasei DGCC 2132) owed to release of diacetyl during the metabolism of live cells. 
Removal of the cells from the LAB A ferment effectively reduced the diacetyl concentration 
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and consequently reduced the inhibitory effect. After removal of cells, some residual 
antifungal effect remained in the cell free ferment, indicating other factors contributing to 
antifungal activity [22]. 
 
The purpose of this study was to demonstrate the use of an untargeted metabolomics 
approach for investigation of the factors responsible for the antifungal effect observed in CFs 
of selected Lb. paracasei strains. Fermentation of CDIM by the selected Lb. paracasei strains 
induced relative changes in the exometabolomes in terms of a) consumption of nutrients 
and b) formation of metabolites. By removal of cells and hence the main contribution from 
diacetyl, the relative growth of molds on the cell free ferments (CF) would provide the 
biological response to the combined change in the exometabolomes. Hereby the mold 
growth assists to assign the factors that contribute to antifungal effect in the CF. Potentially, 
this approach could serve as a supplement to bio-assay guided fractionation for identifying 
antifungal metabolites. 
 
The three Lb. paracasei strains were selected based on their variation in effect on mold 
growth, i.e. inhibitory properties. However, LAB B and C produced more biomass and 
acidified to lower pHs than LAB A.  All three strains were diacetyl producers, but the 
inhibition factor from diacetyl was considerably reduced by removing cells by centrifugation 
and filtration as previously observed [22]. Mold growth was assessed by recording and 
analyzing multispectral images. Spores of Penicillium are normally white in the initial growth 
phase. As the mold matures the color of the spores often change into green-grey or blue-
green, and the development is dependent e.g. on the composition of the medium [26]. By 
the use of multispectral images, the approach allows for precise and objective description of 
the growth of Penicillium spp. by measuring the white, green segments and the total area of 
the mold growth (sum of white and green segments) [23].  Visually observed differences in 
mold growth during incubation were best described by the development of total (or green) 
amount of pixels as the number of white pixels remained constant.  
 
The LC/MS-based metabolic footprinting of the CF was designed to include a wide range of 
nutrients and metabolites. However, the use of the reversed phase protocol excluded 
compounds more hydrophilic than e.g. glucose and lactic acid. Furthermore, the LC/MS 
footprint did not include low molecular short chain fatty acids like formic, acetic, propionic 
and butanoic acids. According to literature, these compounds contribute to the antifungal 
properties of lactic acid bacteria (e.g. [10, 11]) and were included in the study via GC/FID 
analysis. All four acids were either not detected or below a limit of quantification, which was 
more than 300 times below MIC values (e.g. MIC of acetic acid at pH 4.0 [10]: 3 g/L). Hence, 
these were not included in the multivariate data analyses. In spite of these limitations, the 
three Lb. paracasei strains could readily be classified by PCA. This classification was based on 
both the relative consumption of nutrients and formation of metabolites.  
 
The sole purpose of doing PLSR was to identify compounds in the exometabolome which 
correlate with mold growth. The very limited number of Lb. paracasei strains did not allow 
the model to be used for any prediction of mold growth. Although the two indicator molds 
responded slightly different to the three Lb. paracasei CFs, their respective PLSR models 
showed practically similar ranking of the variables.  
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In terms of the consumption of nutrients, glucose ranked highest and was together with 
glutamine the only medium components almost fully consumed (by LAB C). Other nutrients 
remained at 50% or more of the initial content. The metabolites which had the highest 
correlation with decreased mold growth was lactic acid (primarily fermentation product of 
glucose), together with additional six 2-hydroxy acids and several unidentified compounds. 
Two metabolites, probably intermediates from metabolism of nucleotides [27], namely 
inosine and hypoxanthine also correlated with mold growth. However, the two compounds 
were not considered relevant factors for reduced mold growth based on the absence of anti-
mold effect previously reported for other nucleosides [2]. Based on the PLSR model and 
GC/FID data it was hypothesized, that the minimal mold growth should be due to primarily 
three factors, namely (complete) consumption of glucose, acidification by lactic acid and 
formation of six known metabolites.  
 
To our knowledge, indolelactic acid, 2-hydroxy-(4-methylthio)butanoic acid and 2-hydroxy-3-
methylbutanoic acid have not previously been reported as antifungal compounds produced 
by Lb. paracasei strains. MIC 50 values obtained during this study were in accordance with 
the previously reported 2-hydroxy acids from LAB (2-hydroxy-4-methyl-pentanoic acid - MIC 
10 g/L [28], phenyllactic acid – MIC 4 g/L [29] , 4-hydroxyphenyllactic acid - MIC 5 g/L [2]). 
The six 2-hydroxy acids were recognized as metabolites from lactic acid bacteria catabolism 
of amino acids [19, 30]. Their structural similarity with amino acids (Leu, Phe, Tyr, Trp, Met, 
Val) suggested that the metabolites were formed via the transamination route via a keto 
acid, which is reduced by a hydroxyacid dehydrogenase (Fig. 4). This is supported by the 
loadings observed where e.g. 2-hydroxy-3-phenylpropanoic acid was inversely correlated 
with the precursor Phe ( 
). 
 
  

 
Fig. 4 Catabolism of amino acids (AA) with the focus on transamination of amino acids for 
formation of hydroxy acids in LAB. Enzymes are marked in red: BcAT, ArAT, AspAT, branched-chain-
, aromatic- and aspartat aminotransferase; GDH, glutamate dehydrognase, HycDH, hydroxy acid 
dehydrogenase, KdcA: alpha-keto decarboxylase. Adapted from [31] 
 
Even though the screening method favored these compounds, it was striking that 
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acids are decarboxylated and reduced/oxidized. Products from this pathway would be 
aldehydes, alcohols and carboxylic acids with a Cn-1 carbon chain. Aldehydes and alcohols are 
expected to have lower responses in ESI neg mode than corresponding carboxylic acids. 
These metabolites could have been detected by a more sensitive method like headspace 
sampling followed by GC/MS [19]. The headspaces of the fermentations were analyzed 
during fermentation by SPME-GC/MS to test for decarboxylated metabolites. For LAB A, B 
and C the main observed components were diacetyl and acetoin and the method was not 
able to detect any components related to the decarboxylation metabolic pathway outlined 
in Fig. 4. However, detecting the 2-hydroxy acids is in accordance with presence of the genes 
for both D-and L-hydroxy acid dehydrogenases (HycDH) in Lactobacilli (and especially for Lb. 
casei) as described by Liu [31]. It was interesting to notice that none of the corresponding 
keto acids were detected being the precursors for the 2-hydroxy acids. Although the used 
exometabolomic approach is simplistic, it demonstrates the potential embedded in including 
the combinations of compounds. Hereby, it holds promise being a valuable supplement to 
e.g. bioassay guided fractionation for finding novel compounds and factors responsible for 
antimicrobial effect. 
 
 
CONCLUSION 
Exometabolomic footprints of Lb. paracasei strains were correlated to mold growth to assist 
in identifying the factors responsible for the antifungal properties of the bacteria. For the 
selected mold growth test system, both nutrient consumption and metabolite formation 
correlated with the inhibition observed. The study demonstrated metabolic footprinting as a 
valuable supplement to bioassay guided fractionation for investigation of antifungal 
properties of bacterial cultures. Additionally, the strategy enabled the detection and 
assignment of three previously identified and three novel antifungal compounds and 
indicated potential precursors for the metabolites. 
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Supplementary material S1:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Growth at 25°C of indicator mold strains a) Penicillium sp.  DCS302 and b) Penicillium sp.  
DCS1541 spotted on plates of REF (un-inoculated CDIM acidified to pH 4.5) and cell free ferments 
of LAB A, B and C. (average ± standard deviation, n=3) 
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Fig. 1 Pareto scaled PCA scores and loadings of PC1 versus PC2 for ESI neg data (top, a) + b)) and ESI 
pos data (top, c) + d)) for un-inoculated medium (REF), Lb. paracasei ferments (LAB A, B and C) and 
pooled control samples (MIX).  
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Fig. 1 PLSR Model for Penicillium sp. DCS 302, day 3 scores plot a), latent variable 2 versus 2 
loadings b), predicted versus observed mold growth c) and VIP scores d). Loadings from Pos 
variables are marked with green stars, and Neg variables are marked with red triangles.  
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Fig.2 PLSR Model for Penicillium sp. DCS 1541, day 3 scores plot a), latent variable 2 versus 2 
loadings b), predicted versus observed mold growth c) and VIP scores d). Loadings from Pos 
variables are marked with green stars, and Neg variables are marked with red triangles.  
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Supplementary information S4: 

Table 1 Inhibition degree of OH-Me-Pe, OH-Phe-Pr, OH-(OH-Phe)Pr, OH-Ind, OH-Me-Bu and OH-
MeS-Bu towards P. solitum DCS 302 Penicillium spp. DCS 1541 in CDIM acidified with DL lactic acid 
to pH 4.5 (Average ± standard deviation, n=3). Compounds are added in the concentrations 0.1, 1, 
5 and 10 mg/mL. The lowest concentration needed to give MIC 50 is highlighted in bold 

 
Compound Concentration Inhibition Degree (48 hours) 
(abbreviation) mg/ml DCS 302 DCS 1541  
OH-Me-Pe 0.1 1.07 ± 0.20 1.13 ± 0.13 

 
1 0.75 ± 0.03 0.87 ± 0.02 

  5 0.36 ± 0.04 0.32 ± 0.05 
  10 0.06 ± 0.01 0.07 ± 0.01 
OH-Phe-Pr 0.1 0.89 ± 0.03 1.01 ± 0.03 

 
1 0.79 ± 0.10 1.01 ± 0.14 

  5 0.33 ± 0.02 0.45 ± 0.03 
  10 0.01 ± 0.05 0.05 ± 0.07 
OH-(OH-Phe)Pr 0.1 0.98 ± 0.13 1.13 ± 0.08 

 
1 0.80 ± 0.03 1.01 ± 0.02 

  5 0.71 ± 0.03 0.98 ± 0.08 
  10 0.43 ± 0.04 0.40 ± 0.49 
OH-Ind-Pr 0.1 0.81 ± 0.03 1.06 ± 0.04 

 
1 0.77 ± 0.07 1.09 ± 0.06 

  5 0.49 ± 0.02 0.26 ± 0.03 
  10 0.02 ± 0.05 0.01 ± 0.04 
OH-Me-Bu 0.1 0.87 ± 0.03 1.31 ± 0.04 

 
1 0.69 ± 0.03 1.15 ± 0.03 

  5 0.41 ± 0.02 0.53 ± 0.01 
  10 0.06 ± 0.02 0.00 ± 0.00 
OH-MeS-Bu 0.1 0.78 ± 0.03 1.24 ± 0.05 

 
1 0.76 ± 0.14 1.33 ± 0.06 

  5 0.60 ± 0.02 1.19 ± 0.02 
  10 0.53 ± 0.06 0.32 ± 0.40 

 
 



Food spoilage is of major concern to the food industry, because it leads 

to considerable economic losses and to possible public health hazards. 

There has been considerable effort and research to preserve food which 

have mainly relied on the application of chemical preservatives or drastic 

physical treatments. However, chemical preservatives are becoming 

increasingly unpopular by the consumers, and some have even proven to 

be toxic and linked to different health problems. Physical treatments of the 

products, on the other hand, can deteriorate the sensory properties of the 

products, and may even destroy some of the nutrients and vitamins. In this 

context, ‘Biopreservation’, which is defined as the use of safe antibacterial/antifungal microorganism 

(so-called protective cultures) has unexploited potential to inhibit the growth of pathogenic 

microorganisms and enhance the shelf life of the final food product. In order to apply biopreservation 

in food products effectively, detailed knowledge on the metabolism of protective cultures is required. 

This PhD study mainly focused on the application of in vitro NMR spectroscopy for studying the 

metabolism of protective cultures. An analytical protocol was developed for real-time in vitro NMR 

measurements of bacterial fermentation, which includes guidelines from the sample preparation 

to the data processing and the modelling of the metabolic profiles. As a part of this work, an NMR 

data preprocessing technique, called ‘Reference Deconvolution’, was employed for the first time to 

improve the multivariate analysis of the in vitro real-time metabolomics data and proved a necessary 

and elegant solution to the inherent inhomogeneity problem of the samples in the in vitro NMR 

measurements of cells.  As the second part of the project, an accurate approach for quantifying mold 

growth and inhibition, based on multispectral images and k-means clustering was developed. The 

method was developed into a software package called ‘PCluster’, and was demonstrated to be very 

helpful in two other biopreservation related metabolomic studies. The developed analytical tools are 

expected to be very beneficial in the studies related to the biopreservation, and will be used in the 

future investigations of the protective cultures.
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