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Abstract

Towards improved biomarker research: Data analytical
challenges of large-scale high-dimensional biological
data

This thesis takes a look at the data analytical challenges associated with the
search for biomarkers in large-scale biological data such as transcriptomics, pro-
teomics and metabolomics data. These studies aim to identify genes, proteins
or metabolites which can be associated with e.g. a diet, disease (e.g. cancer),
drug response or physiological status.

The value of these omics studies has to some extent been questioned as it
is often observed that the validity of claimed biomarkers has been very diffi-
cult to verify in other studies. On the other hand, in many studies it is difficult
to actually identify strong biomarkers when strict validation is applied; the lat-
ter phenomenon is to some extent masked by a publication bias, but has been
widely observed among researchers working with omics data.

In this thesis, the background of this apparent small effect size of the bio-
markers is investigated and followed by some suggestions which can potentially
improve the chances of a successful outcome of an omics study. A method
widely applied in the analysis of omics studies is Partial Least Squares (PLS)
regression which is one of the work horses within the chemometrics tool box;
a method which is used both for regression and classification purposes. This
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method has proven its strong worth in the multivariate data analysis through-
out an enormous range of applications; a very classic data type is near infrared
(NIR) data, but many similar data types have also be very successful.

On that background, the general characteristics of omics data are described
and related to the characteristics of classical NIR-type data. This shows that
omics data, which are generally much bigger data sets than classical data, are
not just simple extensions of NIR data. The sample type, analytical method and
the application types are different and introduce a larger complexity, weaker
signals and many potential sources of experimental and analytical bias and er-
rors. The risk of the latter is further increased by the complexity of the entire
omics experimental setup which often involves various project partners with
very specific competencies.

In order to optimize the basis of a sound and fruitful data analysis, sugges-
tions are given which focus on (1) collection of good data, (2) preparation of data
for the data analysis and (3) a sound data analysis. If these steps are optimized,
PLS is a also a very good method for the analysis of omics data.

The five research papers included in the thesis touch upon different aspects
of the issues discussed in the thesis.



Resume

Mod bedre biomarkørforskning: Dataanalytiske
udfordringer i højdimensionelle biologiske data

Denne afhandling ser på nogle af de dataanalytiske udfordringer, der findes i
forbindelse med jagten på biomarkører i store biologiske datasæt såsom tran-
scriptomics, proteomics og metabolomicsdata. Denne forskning har til formål
at identificere gener, proteiner eller metabolitter, som kan sige noget om f.eks.
kost, sygdom (f.eks. kræft), lægemiddelrespons eller en fysiologisk status.

Værdien af disse omics-studier er der i nogen grad blevet sat spørgsmålstegn
ved, da det ofte er konstateret, at gyldigheden af påståede biomarkører har været
meget vanskeligt at verificere i andre undersøgelser. På den anden side er det
i mange studier svært rent faktisk at identificere stærke biomarkører, når god
validering er anvendt. Det sidstnævnte fænomen er til en vis grad maskeret af
en publikationsbias, men er ofte observeret blandt forskere, der arbejder med
omics-data.

I denne afhandling er baggrunden for dette undersøgt, efterfulgt af nogle
forslag, som potentielt kan forbedre chancerne for et vellykket resultat af et
omics studie. En udbredt metode til analyse af omics data er Partial Least Squares
(PLS) regression, som er en af arbejdshestene i kemometri - en metode, som
bruges både til regression og klassifikation. Denne metode har bevist sit værd
i den multivariate dataanalyse i form af en nærmest uendelig række af app-
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likationer. En meget klassisk datatype er nærinfrarøde (NIR) data, men mange
lignende datatyper har med succes været kombineret med PLS.

På den baggrund er de generelle kendetegn ved omics data beskrevet og re-
lateret til de typiske træk af den klassiske NIR-type data. Dette viser, at omics
data, som generelt inkluderer langt større datamængder end klassiske data, ikke
bare er simple udvidelser af NIR data. Prøverne, analysemetoderne og applika-
tionerne er forskellige og bidrager til en større kompleksitet og svagere signaler,
og det betyder, at der er mange potentielle kilder til eksperimentelle og ana-
lytiske skævheder og fejl. Risikoen for sidstnævnte er yderligere forstærket af
kompleksiteten i hele det eksperimentelle setup i omics-studier som ofte in-
volverer forskellige projektpartnere med meget specifikke kompetencer.

I afhandlingen er der en række forslag som yder basis for en sund og frugtbar
dataanalyse; disse fokuserer på(1) indsamling af gode data, (2) forberedelse af
data til dataanalyse og (3) en sund dataanalyse. Hvis disse trin er optimerede er
PLS også en meget velegnet metode til analyse af omics data.

De fem forskningsartikler, der indgår i afhandlingen, berører forskellige as-
pekter af de områder, der drøftes i afhandlingen.
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C H A P T E R

1
Omics is difficult

1.1 What is omics?

The rapid development of omics technologies has created the possibility of uti-
lizing these approaches to investigate the molecular complexity of biological
systems and the effects induced in them by perturbations like disease, toxic sub-
stances, drugs, nutrition or other external intervening factors. The advances in
high-throughput omics analytical technologies such as DNA microarrays, LC-
MS, GC-MS, NMR or LC-NMR etc. have enabled the identification and quantifi-
cation of many of the components of a particular biological system in a single
experiment [55].

Conceptually, doing omics involves the study of “all” components of a bio-
logical system measured simultaneously. In practice though, “all” translates to
“many”, because the choice of analytical platform and of methodology dictate
some degree of filtering. Many different omics disciplines exist, all referring to a
study of some kind of totality within the specified biological domain. The major
omics areas within the life sciences are:

1



1 . O M I C S I S D I F F I C U LT

• Genomics. Involves areas such as (1) DNA sequencing, (2) comparative ge-
nomics studies across organisms, or (3) functional genomics which seeks
to assign functional terms to genes.

• Transcriptomics. mRNA is the object of study because it reflects which
genes are expressed in a given situation.

• Proteomics. Involves the study of all the proteins present.

• Metabolomics. Deals with the available metabolites in a given body fluid
or tissue. Metabolomics represents the omics level which is closest to phe-
notype. Potentially, this should provide good opportunities of identifying
metabolites correlated with given phenotypes.

The four system levels and the associated omes are visualized in Figure 1.1.
Genomics deals with sequencing and is fundamentally different in approach
from the remaining three, which are functional studies of the principal biomo-
lecules involved in proper functioning of the cell.

In systems biology, a relatively new biological research field, the interac-
tions between different biological levels are studied by combining omics tech-
niques. One example is the field of nutrigenomics which combines genomics,
transcriptomics, proteomics and metabolomics with nutritional information
with the purpose of obtaining an improved understanding of the interaction
between genetics and the metabolism of foods. A hot topic in that area is per-
sonalized nutrition.

Terminology

Different definitions exist on the different omics; specifically, the use of the
terms metabolomics and metabonomics is inconsistent in the literature, but
the understanding of the two terms seems to converge [18]. In the present the-
sis, the term omics is used for large-scale, high rank biological data and I will
stick to the term metabolomics when referring to omics studies on metabolites
present in biofluids or tissue.

2



1.1. What is omics?

Metabolite

DNA

mRNA

Protein

Clinical response

Genomics

Transcriptomics

Proteomics

Metabolomics

Figure 1.1: The levels of the bio system and the associated omics domains

Usually omics studies involve expertise from different scientific fields; in
Figure 1.2 some key actors in the process are shown. Obviously, it is study de-
pendent which people are involved. A generalized setting could be the following:
T H E B I O L O G I S T (a microbiologist, a medical researcher, a molecular biologist
or any scientist working within biology) got the idea to start the study and formu-
lated the research questions. T H E G E N E R A L P R A C T I T I O N E R ( G P ) checks
questionnaires and takes care of sample collection storage and shipping. T H E

A N A L Y T I C A L C H E M I S T analyzes the sample at his state-of-the-art analytical
facility, and T H E D A T A A N A L Y S T analyzes the data. All these project partners
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1 . O M I C S I S D I F F I C U LT

have a number of technicians, PhD students etc. associated. Throughout this
thesis we will meet these members of the omics experiment again.

½½½

Analytical
Chemist

Biologist

Data
Analyst

G.P.

Figure 1.2: The omics experiment - processes and people involved. Each ac-
tor in the inner circle represents a whole group of people including e.g. (lab)
technicians and a number of PhD or other students

1.2 Omics from the data analyst’s perspective

In the following, four cases are used for illustration of some major challenges re-
lated to omics experiments that I have experienced during my work as a chemo-
metrician. These cases are based on real ones. It is by no means the intention to
criticize these particular studies; rather I believe the issues addressed in these
cases can be encountered in many other omics applications, and it is there-
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1.2. Omics from the data analyst’s perspective

fore relevant to highlight them. I hope the people involved in these studies will
recognize that my purpose is merely to illustrate potential pitfalls.

Case I: Transcriptomics

A molecular biologist investigating the human immune response system con-
tacts the university chemometrics group for assistance with his transcriptomics
data. His study is about allergic contact dermatitis and in the experiment, 7 pa-
tients allergic to nickel and 5 controls were exposed to nickel at the skin surface
three times with a duration of 7, 48 and 96 hours respectively. In addition, all
participants were exposed to the same type of plaster but without nickel for a
period of 48 hours, termed “0 hours”. After each experiment, skin biopsies were
taken to evaluate transcription levels (mRNA) of practically the entire human
genome. The design was a fractional full-factor design with a total of 34 points
(full-factor: 4 x 12 = 48). The biologist wants to know about the genetic response
in the patients when they are exposed to nickel.

The chemometrician’s standard procedure in such cases is to do a Principal
Component Analysis (PCA), and at first, the results are quite appealing. The
patients and controls are quite well separated by the first principal component
(PC) (Figure 1.3).

The interpretations come from the loadings, but plotting these does not give
any clear answers (Figure 1.4).

It appears that the “0 hours” samples are also separated between the two
groups and as a result it may be possible to identify genetic markers which
can be used to diagnose nickel allergy without having to expose the patient to
nickel. Consequently, a PLS-DA model is built and using one component, the
two classes are completely separated in leave-one-out cross-validation. The
regression vector is used to identify the top-ten of up- or down regulated tran-
scripts; and by use of a database, functional terms associated with the identified
transcripts are given. The chemometrician hands these results to the biologist
who interprets the findings and together they publish the results. These appear

5
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Figure 1.3: Scores plot from transcriptomics data, where the patients (green)
and controls (red) are well separated

to be great findings but in a later experiment, it was not possible to verify these
markers.

Case II: Proteomics for ovary cancer diagnostics

Case II is an example of a proteomics study dedicated to the discovery of bio-
markers of ovarian cancer. A total of 256 serum samples from patients with
ovarian cancer or benign pelvic conditions were subjected to proteome analysis
by means of MALDI-TOF mass spectrometry (MS) following pre-fractionation.

After all the samples had been measured it became clear that reproducibil-
ity of the analytical procedure was too poor. The methodology was optimized
and in the second round, this was improved considerably through a simplified
approach.
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1.2. Omics from the data analyst’s perspective
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Figure 1.4: Loadings plot from transcriptomics data

When the data was subjected to chemometric analysis, the initial analysis in-
voked optimism as benign and malign samples were reasonably well separated.
However, during the analysis, an important interfering storage effect became
clear: The samples were transferred batch-wise from the clinical facilities to the
mass spectrometry facilities. Whereas the samples were stored at -80°C at the
hospital, they were stored at -20°C at the MS facilities because this was most
convenient and it was assumed that the samples were safely preserved at -20°C.

Due to the diagnostic procedure in the study, sample batches transferred
from the hospital were not randomized. As a result, storage time at the ana-
lytical facility was largely confounded with class membership and hence the
classification model was mainly depicting sample aging.
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Case III: Metabolomics - Twin data

Case III is based on the study published in P A P E R I V. In this study, 1H NMR
metabolomic profiles of healthy Danish twins were combined with genotypic
information about the same subjects to see if any associations between the two
sets of information could be found.

The reader is referred to the paper (and references herein) for more details
about the study. No significant associations could be found and this study is
an example of a study where the starting point is difficult: The distance across
several system levels (from genome to metabolome) is large in terms of mecha-
nistic linking. The number of plausible interfering genetic and environmental
effects in a healthy free-living population is very high, which shrinks possible
underlying effect sizes to a level below the limit of detection. Many other varia-
tions are probably much more dominating.

The first quick-and-dirty data analysis did not point to new positive discover-
ies. However, the intense hope of identifying new interesting biomarkers drove
the data analysis through a long course of data gymnastics where it was very
difficult to establish a finish line.

Case IV: Metabolomics - intervention study

A human food intervention study was initiated by a university group with great
expertise in human nutrition. The study was a full-factorial design with two fac-
tors (amount of protein in diet and glycemic index of diet, each with two levels
(high/low). The subjects were told to follow the diet and were supplied with all
ingredients. The participants were instructed to collect all their urine during 24
hours at 4 specified time points during the 8 week intervention. These urine
samples were then subjected to 1H NMR metabolomic analysis. The purpose
was to identify bio-markers for the given dietary patterns as outlined in the two
treatments.

Initially, no effect of diet could be documented. Speculations on the cause

8



1.3. The omics problems

of this initiated further investigations on intra-individual variations in urine
composition and it became clear that these were rather large relative to the
effect of treatment, so only after pooling of urine collection over time, an effect
could be observed. Furthermore it was concluded that the treatment variation
was too little to significantly accommodate for all the uncertainties present in
the data. One major uncertainty was the actual intake by the participants.

1.3 The omics problems

The four cases described above touch upon a number of problems associated
with studies of omics data, which will be further enlightened in this thesis. How-
ever, the common purpose for all four cases is to identify valid bio-markers, and
all cases fail this for different reasons.

Apparently, there are two ways in which they fail:

1. The identified bio-markers turn out to be false. or

2. No biomarkers can be identified.

The scientific literature documents that (1) is a problem which has received
increasing attention within all omics fields through the years and which has in-
voked some skepticism towards the value of omics studies [54, 53, 9, 50, 30, 29,
40]. Various examples of (2) can be found in literature also, but presumably the
balance between these two problems in literature is largely influenced by a pub-
lication bias towards more of (1). Although negative results can be very valuable,
true negative results are rather difficult to establish and hence (2) may end out
more or less inconclusive with respect to the question of whether biomarkers
are actually present or if they have just not been uncovered due to limitations
in the given experimental and data analytical setup.

Omics studies are often large studies involving several parties over longer pe-
riods of time and state-of-the-art technologies which make them very costly

9



1 . O M I C S I S D I F F I C U LT

scientific projects.

The high costs and massive efforts associated with omics studies make it rea-
sonable to investigate if the chances of successful outcome in omics studies can
be optimized.

Hypothesis

In many omics projects the possible true bio-markers are not strong
enough to manifest in the given experimental setup when standard
data analytical methods are applied, whereas false markers may
appear to be real.

The root causes of this must be found either in data, in the data analytical meth-
ods or in the combination of these. By gaining a deeper understanding of the
properties of omics data and the standard methods used for the analysis of these
data, we might be able to optimize our procedures and achieve better and more
reliable results from omics experiments.

Thesis structure

A data analytical method widely applied in omics data analysis is Partial Least
Squares (PLS) regression. This standard method, which is the focus of this thesis,
has proven very successful in combination with well-known data types such as
Near Infrared (NIR) spectral data and various other types with similar character-
istics. It is therefore natural to evaluate the properties of omics data in light of
the reasons why NIR data and the associated well-established methods are so
successful.

Through the following thesis structure the characteristics of NIR, PLS and omics
data are visited, followed by suggestions for obtaining better omics experiments.

10



1.3. The omics problems

Thesis outline

• The historical background for the development of PLS and the
type of data it was developed for.

• Characteristics of NIR type data and why PLS is well suited for
NIR.

• The role of software in the success of PLS and some issues as-
sociated with this.

• Characteristics of omics data.

• Possible solutions for more successful omics experiments.

– Data collection and experimental design.

– Data cleaning and pre-treatment.

– Data analysis and validation.

• Discussion and conclusion.

The thesis focuses on PLS and on omics studies with the objective of identi-
fying biomarkers. The cases outlined previously in this chapter and the papers
included define the type of considered omics applications. The following re-
search papers are included in this thesis:

11
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Included papers

PAPER I
Cross-validation of component models: A critical look at cur-
rent methods. [8]

PAPER II
Some common misunderstandings in chemometrics. [35]

PAPER III
Direct functional assessment of the composite phenotype
through multivariate projection strategies. [14].

PAPER IV
No genetic footprints of the fat mass and obesity associated
(FTO) gene in human plasma 1H CPMG NMR metabolic pro-
files. [36]

PAPER V
A simplified approach for identifying and separating unique
and bulk variations in microarray data. [34]

PA P E R I - I V have been accepted. The submission of PA P E R V was de-
layed for political reasons and meanwhile another paper with similar content
was published [55]. Consequently the paper will not be submitted.

12



C H A P T E R

2
The near infrared revolution

This chapter takes a brief look into the history of chemometrics, with particu-
lar emphasis on the contribution of one of the key developments, Partial Least
Squares Regression (PLS), to what might be called the Near-Infrared (NIR) revo-
lution.

2.1 Early chemometrics

Multivariate pattern recognition is an old field, but the branch of chemome-
trics evolved from the early 1970s. Papers like those of Bruce Kowalski [37, 38],
Svante Wold [67] and Luc Massart [43] were some of the first where multivariate
soft modeling methods were applied within analytical chemistry [17, 20]. Wold
coined the Swedish word kemometri in 1972 [67], and together with Kowalski
he founded the Chemometrics Society in 1974. After some years (around 1980)
The Chemometrics Society was split into two groups; one working primarily
with structure-activity correlation (QSAR) studies and one working in analytical
chemistry. The news bulletins from the early years of the Chemometrics Society
provide a good insight into the pioneering spirit and broad range of visited re-
search areas that made up the research field from the start. Advanced analytical

13



2 . T H E N E A R I N F R A R E D R E V O L U T I O N

chemistry is an integral part of large-scale omics studies and in the remainder
of this thesis focus will therefore be on this branch of chemometrics.

At the time when the Chemometrics Society was founded, spectra and chro-
matograms became increasingly common in analytical chemistry, to some ex-
tent replacing univariate observations from test-tube experiments. Instrumen-
tation simply produced much more data than could be handled reasonably by
existing methods and the complexity exceeded the capabilities of the human
mind. Therefore, new methods had to be developed to avoid that substantial
information remain unrevealed. The fact that (micro) computers capable of
dealing with the numerical and quantitative issues became ubiquitous was an
obvious fundamental co-trigger for the development of the field of chemome-
trics [20, 68, 28].

The chemometric methodology is often pragmatic and focused on problem-
solving rather than defining natural “laws” and chemical “truth”. This is fun-
damentally different to the traditional methodology of many scientific fields,
for example physics, which relies strongly on the fundamental laws and hard-
modeling. Analytical chemistry is a field with complex, noisy data which are
difficult to model 100% by hard-modeling. That leaves an obvious room for the
soft modeling tools of chemometrics [68, 69, 20, 17]. The soft modeling basically
follows a well-established concept from statistics which seeks to separate the
observed phenomena into a systematic (chemical) part, M, and a residual part,
E. [69]:

X = M +E
or

d at a = chemi str y +noi se

The model is intrinsically approximate and has limited validity in terms of
range and domain; however “All models are wrong, but some are still useful” as
stated by G.E.P Box [70]. The appropriate model may therefore serve as a good
basis for new theoretical insights.

14



2.1. Early chemometrics

Chemometrics facilitated a change in the chemical doctrine: the desired
information is not necessarily obtained by measuring the most selective signal
with the utmost precision; rather, combining several signals may be more infor-
mative [68].

One of most important influential modeling developments within chemo-
metrics has been that of Partial Least Squares (PLS) regression. It provided a
solution to a serious limitation of classical regression analysis, as will be illus-
trated below.

The limitations of existing methods - MLR

A fundamental mathematical problem throughout science is regression, Y =
bX +a, but the classical method for multivariate regression, multiple linear re-
gression (MLR), possesses some limitations; (a) it does not solve problems with
more variables than samples and (b) X cannot be close to singular, i.e. rows or
columns cannot be collinear. The reason for this shall be illustrated briefly:

MLR solves the regression problem Y = XB+E for a set of independent varia-
bles X and one or more response variables Y. With n samples and m variables
in X, MLR has the following properties:

1. There is a unique solution if m = n, given that X is full rank.

2. There is an infinite number of solutions when m > n.

3. For m < n a solution can be found by minimizing E = Y−XB. The least
squares solution is then B = (X′X)−1X′Y.

Thus, for a solution to be obtained in (3) the inverse (X′X)−1 must exist.
When X is highly collinear the inverse is either highly unstable or non-existing.

As a consequence, MLR is not well suited for spectral datasets such as Near
Infrared Spectroscopy (NIRS) data where the variables are highly collinear and
the number of samples may be lower than the number of variables.
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2 . T H E N E A R I N F R A R E D R E V O L U T I O N

PLS Regression

Partial Least Squares (PLS) regression was originated by Herman Wold within
the field of econometrics around 1975 and via Svante Wold, the method became
a cornerstone of chemometrics. PLS was useful for its ability to model many,
noisy, collinear data and thus circumventing the limitations of traditional re-
gression methods like MLR. Quoting Höskuldsson [27]:

”An important question is ’What situations are typical of those
where PLS methods can be expected to be good for modelling pur-
poses?’. They are the ones where there are many variables but not
necessarily many samples or observations.”

Description of PLS and the relevant algorithms (e.g. the original NIPALS algo-
rithm) can be found many places, e.g. [71, 21, 27, 72].

PLS assumes that a low-dimensional underlying latent structure, latent va-
riables, is present and that both X and Y are realizations of this [72]. At the same
time there are parts of X which are not primarily related to Y which are also
explained by the model and this might hamper interpretation. With a further
development of PLS, O-PLS, improved interpretability is sought by stripping off
the parts of W which are not primarily related to Y. [59].

PLS for classification

Discriminant PLS (PLS-DA) is a special use of PLS used for classification pur-
poses. It is the “PLS version” of classical linear discriminant analysis (LDA), i.e.
it also works for rank-deficient problems [72].

In PLS-DA regression, a model is built between the multi-dimensional dataset
X and a “dummy” class variable Y. Y is constructed so that each column yg
states the membership of objects to the g’th class, (normally) indicated by logi-
cal 0 and 1 values. Thus, with N samples belonging to one of G classes, Y is an
[N x G] matrix. In practice, closure is usually assumed so Y: [N x G −1]
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PLS-DA works well when classes are “tight’, i.e. they each occupy a small and
separated area in space. In these cases a discriminant plane can be found. If
there are large inhomogeneities within the classes other methods may be more
suitable [72]. PLS-DA is also not suitable for multi-class problems where the
classes are clusters along an underlying axis (Figure 2.1), since a discriminant
plane cannot be found; hierarchical methods such as CART may be better at
handling such conditions.

Figure 2.1: PLS-DA is not suitable for multi-class problems where the classes are
separated as clusters along an underlying axis

2.2 Near infrared spectroscopy and chemometrics

From the time of its emergence, PLS has been used for a wide array of applica-
tions within several areas of chemistry. Near Infrared (NIR) spectroscopy is an
analytical platform which has become very successful due to the introduction
of chemometrics. A search on Web of Science (WoS) and Google Scholar on
the combination of the terms "Near infrared" and PLS underlines this - WoS
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provides more than 3000 hits and Google Scholar gives nearly 15000 (including
citations).

The NIR spectrum ranges from approx. 780-2500 nm and consists of over-
tones and combination bands of the fundamental stretching and bending vibra-
tions found in the IR region. Any molecule containing hydrogen absorbs in the
near-infrared region. The complexity of the spectra is very high and until the
advent of chemometrics and the concurrent availability of necessary computa-
tional power, NIR spectra were generally considered impossible to utilize. MLR
(and Principal Component Regression, PCR) formed the starting point but the
introduction of PLS provided a major breakthrough. PLS facilitates full-range
spectra to be processed directly using PLS without prior compression or selec-
tion of variables, and the response variable can be modeled by a less complex
model.

The fact that C-H, O-H and N-H molecular vibrations are so well represented
by IR and NIR spectroscopy make the two spectral regions extremely well suited
for analysis of the major constituents of biological samples: fat, protein, carbo-
hydrate and water. The NIR region has the advantage over IR that the spectral
energies are higher (shorter wavelengths), therefore transmission mode is fea-
sible for amorphous and even solid samples of a reasonable thickness. This is
highly advantageous in terms of sample preparation.

Within the life sciences, all sorts of agricultural commodities and food sam-
ples including process intermediates have been subjected to NIR spectroscopy.
Grain is an all-time classic where Karl Norris did pioneering work [1, 19], and
every day grain is analyzed in versatile applications using NIR instruments. Fur-
ther work extended NIR spectroscopy to the analysis of analytes in food, animal
feeds, polymers, wool, natural and synthetic textiles, pharmaceuticals, chemi-
cals, and petroleum. It is clear that there are few areas of analytical chemistry in
which NIR spectroscopy has not been or cannot be utilized [15].

Multivariate modeling with NIR spectra has been used for all kinds of pur-
poses belonging to the three main categories of chemometrics: exploratory
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analysis, calibration and classification.

The exploratory analysis is useful for investigations of variations in data.
Expected clustering and trends can be visualized and analyzed, and most im-
portantly, unexpected phenomena may emerge. The workhorse of the unsuper-
vised exploratory analysis is Principal Component Analysis (PCA).

Calibration is regression of one or more dependent variables Y (e.g. pro-
tein, water) on a set of independent variables (e.g. NIR spectra of grain). The
resulting model may then be very suited for rapid routine analysis of e.g. raw-,
intermediate- or end products in a production setting.

Classification is the art of assigning class membership to samples based on
a set of attributes. An example could be classification of wheat grain as baking
wheat or wheat for animal feed.

All three categories of applications are relevant for NIR data, but calibration
is probably the more widely used of them - at least with respect to commercial
applications.

The massive amount of applications within NIR and related areas (IR, HPLC,
GC etc) developed through the last thirty years forms a considerable part of the
knowledge and experience which has been built up in the various chemometrics
groups.

2.3 Summary

In summary, PLS - one of the core methods of chemometrics - was developed
in a context where it was a true revolution to be able to handle 100 or even
1000 variables obtained on 20 or 50 samples. PLS facilitated the analysis of rank-
deficient problems, typical of e.g. spectral data, and played a major role in the
success of NIR spectroscopy.

NIR spectroscopy is an analytical technique whose potential could not be
utilized fully until the advent of chemometrics due to the high complexity of
the spectral information. The NIR revolution was largely facilitated by chemo-
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metrics, and for many years NIR technology has succeeded in seemingly end-
less numbers of applications within analytical chemistry, not least within the
agribusiness. Analysis of NIR data and related data types has formed a substan-
tial part of the work undertaken by chemometricians and as such forms the
basis for the knowledge and frame of data analytical understanding present in
the various chemometrics groups today.
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3
Chemometrics on NIR data is
simple

In this chapter the properties of typical NIR data are examined and it is clarified
why the PLS method and the NIR data make a good match. NIR data are chosen
as a typical example of a “classical” type of data, which has been the basis of a
large part of the data analytical knowledge built up through the years.

3.1 NIR samples are uniform

Samples

The available number of samples in a well-designed typical NIR dataset is of
course application dependent; but 50 to 500 is not unusual. An important char-
acteristic of samples typically subjected to NIR spectroscopy is that often they
are available in ample numbers at a reasonable price. Sample preparation is
minimal and the scanning procedure is generally fast and un-destructive, allow-
ing many samples to be easily included. The limiting factor is often the reference
analyses, which are far more costly and time-consuming.

An important characteristic of samples from NIR PLS applications is that
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they are usually sampled from a very specific group of samples. Uniformity is
a quality parameter of agricultural and industrial products and consequently
complex interference is limited.

Often samples are obtained from random sampling which results in near-
normal distributions, but it can be beneficial for the regression to sample flat
[31]. It is not always straight-forward to sample flat because it may be very
difficult to guess what the reference value is, but Isaksson and Næs [31] have
suggested a method where the samples for reference analysis are selected based
on the spectra. Alternatively, design such as D-optimal design provides a strong
means for obtaining good parameter estimates during modeling.

Signals

Depending on the spectral width and resolution, an NIR spectrum may typically
consist of 50-500 variables. As an example, the Infratec 1241 Grain Analyzer
(FOSS Analytical) which is used worldwide for analysis of whole grain records
265 data points per scan.

NIR spectra are sensitive to temperature variations, mainly due to the state
of hydrogen bonds in the water fraction [10]. Minor fluctuations in temperature
are of less importance, in particular if a reasonable temperature variation is
included in the modeling.

The fact that NIR spectra consist of overtones and combination bands result
in spectra with broad and many overlapping peaks that are difficult to interpret
in detail visually.

Noise

NIR instruments have a very high signal to noise ratio which is typically 10000:1.
Sensitivity is around 0.1% for most constituents [10], thus, the technology is not
well suited for detection and quantification of low-concentration analytes.
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Scatter may be an important issue in NIR spectroscopy depending on the
nature of the samples. Frequently, NIR spectroscopy is carried out on highly
scattering samples where full adherence to Beer’s Law is not expected.

Instrument noise is low but biological variation (complexity of the sample
matrix) may challenge the data analysis. Again, using grain analysis as an exam-
ple, genetic background, storage conditions, harvest year, location, disease and
adverse weather conditions are factors which may introduce variations to an
extent which should be considered with respect to the purpose (e.g. accuracy)
and intended dynamic range for the model.

Nevertheless, the biological variation (within a given product type) is gener-
ally relatively low for agricultural and food samples in the sense that the genetic
and production variation are usually factors which are minimized in a produc-
tion setting.

Rank

As just described in chapter 2, a great expectation of chemometrics regarded its
ability to handle the “fat” matrices, i.e. matrices with much more variables than
samples.

With 100 samples and 265 variables, apparently this dataset is a fat matrix.
However, for several reasons, the “biological rank”, understood as the number
of biological phenomena at play in the dataset is much lower than this.

First, an inherent property of spectral data is collinearity between neighbor-
ing wavelengths, which reduces the rank considerably. Secondly, primarily the
major components (lipids, carbohydrates, water, protein) are present in concen-
trations suitable for NIR, thus the number of analytes giving signal is relatively
limited. Furthermore, the same chemical compound may be represented sev-
eral times in the spectrum as a result of several NIR-active functional groups in
the same compound and through the resonances from overtones and combina-
tions of these. Eventually signals from several compounds may often be very
correlated because the samples are very alike in their chemical composition -
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e.g in a production setting or as a result of shared biology such as genetics and
environment.

As a result, chemical/biological rank of NIR samples is typically below 15
and such a NIR dataset is really a good old “tall” dataset with 100 samples and
few phenomena (latent variables) that vary.

Curse of dimensionality is canceled for NIR data

It is a fundamental property of bound spaces that the volume increases expo-
nentially with the increase in dimensionality. This “curse of dimensionality” [5]
dictates that the number of samples needed to describe a multivariate system
accurately (i.e. maintain equal Euclidian distance between samples) grows ex-
ponentially with the number of variables [66], so we would need many samples
to describe a 265 dimensional space. However, as just described, the dimension-
ality of the underlying structure (rank) is much lower and as a consequence, the
“curse of dimensionality” does not have practical implications for low-rank data
like NIR data.

3.2 Preprocessing of NIR data is straightforward

The critical difference between inadequate and successful chemometric models
is often data pre-treatment, i.e. what is done to the data before using PCA, PLS
etc. The goal of preprocessing is to remove variation not related to the problem
of interest so that the variation of interest is more evident and can be modeled
more easily.

An important interfering phenomenon in NIR data which must generally be
taken care of, is light scattering from particles. This is a physical phenomenon
related to particle size and it is very often successfully corrected for using stan-
dard pre-processing methods like Multiplicative Scatter Correction (MSC) or
Standard Normal Variate (SNV). Some spectral areas may also be obviously
noisy and hence qualify for elimination. The number of variables in an NIR
spectrum is computationally manageable and the uniformity of the samples
usually make sample preprocessing reasonable straight-forward.
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3.3 PLS is perfect for NIR

If the purpose is to quantify the content of moisture, protein, carbohydrates or
lipids, NIR is generally a method of excellence, and very accurate determina-
tions can be made. The model prediction error is often much lower than the
error on the reference methods, thus the NIR technology and the chemometrics
perform at their best with this kind of application.

An essential part of the background for this success is that very often, the
predicted attribute is directly linked to the NIR spectrum via Beer’s law:

A = ε l c (3.1)

where A is the absorption by the analyte, ε is the molar absorption of the analyte,
l is the path length and c is the concentration of the analyte.

Thus, determining protein from an NIR spectrum is in theory straightfor-
ward because NIRS is sensitive to the amine N-H bonds, which are abundant in
proteins. There is a very direct connection between the signals and the param-
eter of interest, although this is to some extent disturbed by scatter and other
interferences mentioned above. Figure 3.1 shows an example of protein deter-
mination in cattle feed by use of NIR in reflectance mode and PLS modeling.

3.4 IR, GC, HPLC is also NIR

As already mentioned, this thesis is not about NIR, but rather about how omics
data are different from more classical data types, such as for example NIR data.
I would like to stress, that what is true for NIR regarding the general properties
of NIR data generally also applies to similar data types like IR, GC, HPLC etc.
Each method (and application) has its specific characteristics, but the central
elements such as rank, number of variables and samples, sample types and
the fact that a direct link between X and Y exists, is generally valid for all the
mentioned data types.
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Figure 3.1: Determination of protein in cattle feed by use of NIR and PLS. Data
from FOSS.

3.5 Software - a seductive necessity

A wide range of commercial software packages (e.g. The Unscrambler (CAMO),
SIMCA (Umetrics), PLS_toolbox (Eigenvector)) are available which provide good
tools for exploratory analysis and calibration of multivariate data in general, and
which are very well suited for NIR data. The packages differ slightly in terms of
structure and graphics and consequently possess different strengths and weak-
nesses but as a minimum they all contain a PCA module, a PLS module and
some possibilities for preprocessing. The available software packages are gen-
erally easy to use and can be applied after a relatively short introduction to the
concepts of chemometrics.

The availability of good software packages has been central for the massive
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success of NIR applications. They have made multivariate data analysis and
chemometrics possible for a large number of people with strong expertise in the
domain of their data but with limited insight into the complexity of multivariate
mathematical and statistical modeling. By means of the software, chemome-
trics and multivariate data analysis have found their way to new academic areas
and important corners of the industry - mainly the agricultural-, food- and phar-
maceutical industry.

With the relevant data at hand and basic knowledge about chemometrics it
is reasonably straightforward to make a PLS model which predicts the (quality)
parameter y from a NIR spectrum. All types of data require their specific pre-
processing, and the optimal model may require more advanced efforts and of
course some applications are more tricky than others, but some sort of standard
recipe generally works well.

The seamy side of the “ready-to-eat” software is that it promotes uncritical
“push-the-button” automated analysis. When the software automatically serves
given plots and figures of merits to the user, it is convenient for the inexperi-
enced user to uncritically assume these are the most relevant. This may mislead
the user in several ways:

• Relevant plots which are not directly served are not inspected although
they may contain important information.

• Some plots are interpreted wrongly because the graphical representation
(e.g. axis scaling) is inappropriate for the given purpose.

• The presented figures of merit are given way too much emphasis although
they may be irrelevant for the purpose at hand.

Many common misunderstandings and bad habits in chemometrics are re-
lated to these points. A selection of such problems is dealt with in detail in
P A P E R I I.
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Another software-related issue of more specific character is how to cross-
validate PCA models. Several cross-validation regimes have been proposed, and
the various software packages have different cross-validation routines imple-
mented. These routines were tested using both simulated and real data of a
spectral type and the results are shown in P A P E R I.

3.6 Summary

In this chapter the general properties of NIR data and related spectral type data
has been examined. In summary, this type of data is high-dimensional, has
more variables than samples (ratio possibly 2-10:1) but the chemical rank is rel-
atively low. The type of products under investigation are often samples related
to some kind of production where uniformity of samples is a fundamental qual-
ity parameter. The applications under study often rely on a direct link between
X and Y, such as Beer’s law, thus a clear signal from specific spectral regions are
generally observed. PLS handles this type of data very well.

It is beyond any doubt that chemometrics software has contributed consid-
erably to the spreading of chemometrics in general - not least with respect to
the use of PLS on NIR type data. Software assists the data analytical workflow
and readily provides figures and diagnostics to the user. It is however crucial
that these are interpreted with responsibility and there is a risk that the inexpe-
rienced user may be mislead.
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4
Why are omics data difficult
to handle?

In this chapter the properties of omics data are reviewed in detail. I will address
how omics data differ from more traditional NIR type data, and why this may
present more challenges to the data analysis. Some central topics are the varia-
tions present in omics data, including both biological variations and analytical
errors, and the types of scientific questions which are often addressed with an
omics approach. The range of published applications and designs is obviously
very diverse; nevertheless, I believe some general points can be made and the
cases outlined in the beginning of this thesis together with the included omics
papers (P A P E R I I I , P A P E R I V) will serve as the basis for this quest.

4.1 Omics data are true fat matrices

A clear characteristic of omics data is the high number of variables. Exactly how
many obviously varies with the application, but numbers in the range of 20000-
50000 are often seen. The number of samples also vary across applications, but
is generally substantially lower than the number of variables. The twin case in
P A P E R I V represents an omics application with very many samples (>1000),
whereas the microarray nickel case has 34 samples. The second case is quite
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typical for micro array experiments. Depending on the experimental design,
studies of human subjects are often labor-intensive, expensive and recruitment
may be difficult.

NIR data are also characterized by having more variables than samples, and
one might regard omics data as “extended NIR”. However, whereas the relatively
low chemical rank of NIR data means that they are not true “fat matrices”, omics
data are generally high-rank data and thus for most practical purposes under-
determined systems. The high rank of omics is a result of the complex biological
and environmental interactions at play (see more below).

It is difficult to estimate the biological rank of an omics dataset - not least due
to the fact the systems are generally underdetermined - at least when we con-
sider the noise level. The rank obviously depends on the biofluid, the analytical
platform and the design of the experiment. Due to the relatively low sensitivity
of 1H NMR, such profiles will probably only contain signals from about 10% of
the metabolome, i.e. a few hundred signals [62].

The fact that omics data are true fat matrices means that the number of
samples becomes a limiting factor. With a high noise level, many samples are
needed to accurately describe a multivariate system [66].

4.2 Biological variation is large in human omics data

In samples from a free-living population of human beings, it is expected that a
very complex biological variation is present which is not related to the attributes
of particular interest in the study. Some of the most important ones are high-
lighted here.

Studies of human beings will generally contain a diverse genetic background
variation relative to studies involving for example laboratory rats or cultivated
plants. An obvious genetic variation is the inclusion of both genders.
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One might argue, that due to the pathway-regulated nature of our metabo-
lism, biological rank cannot be very high. Levels of elements from the same
pathway could be expected to be correlated, but this is very often not the case.

Metabolism runs in all cells in a network of pathways within and across cells,
and bio-fluids such as blood or urine hence reflect what is going on in the sys-
tem as a whole at a given time point. Metabolites are synthesized from other
metabolites in a complex network of biochemical reactions [53] and phenom-
ena such as chemical equilibrium interfere [11].

The fact that each individual has a unique genetic profile and in particu-
lar that the physiological state is very different between individuals as a result
of current and accumulated physiological situation means that the regulation
varies between individuals and that “normal” states may vary considerably in
level among individuals. This reduces effect size and hence challenges both the
identification and threshold determination of univariate quantitative markers.

Our primary metabolism is largely influenced by the homeostatic regula-
tion (see section 4.5) which seeks to keep the system at an operational state.
However, environmental factors such as food intake, physical exercise or drug
intake result in relatively large fluctuations in the individual. Other fluctuations
are governed by well-regulated cycles such as the female hormonal system or
diurnal regulation i.e. levels are controlled by time of day. Some metabolites
show large variations under identical experimental conditions. C A S E I V (me-
tabolomics/dietary intervention study) underlines that intra-subject variation
may be considerable. Urine samples were collected during 24 hours, but still
the intra-individual differences were significant and further data-pooling was
necessary in order to see any effect of diet.

Age is a factor which exhibits both some biological impact, e.g. in the body’s
responses to metabolic or environmental changes, but also some impact on the
lifestyle due to differences in “life situations” and influence by the historical
context the subjects have been part of. These may greatly influence for example
dietary patterns.

Most studies include some exclusion criteria to prevent too strong interfer-
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ences with the phenotype of interest. In the GEMINAKAR study for example,
which is the basis for P A P E R I V, exclusion criteria were pregnancy, breastfeed-
ing, known diabetes or cardiovascular disease, and any condition precluding a
bicycle test [52]. Thus the subjects might suffer from other conditions which
may influence the NMR spectra.

Because of the biological complexity it can be difficult to align individuals
biologically and hence obtain uniform replicates. Ethical aspects will generally
restrict this for studies of humans, and even the study of bacteria during fermen-
tation can be difficult to standardize. An example of a transcriptomics study of
Lactococcus Lactis during milk fermentation is given in section 6.2. The ge-
netic response of the individual cells at a given time point will vary across the
population due to differences in micro environment.

4.3 Measurements are not merely biological signals

Omics signals do not always reflect the biological state they were intended to re-
flect. In addition to the biological variations mentioned above, sample work-up
and analytical errors may interfere with the signals.

Conceptually, omics experiments in general aim at getting signals from all
the specimens in the ome under study, but it is almost impossible to have a
method which can cover this across the wide dynamic ranges of concentration,
molecular size, and chemical characteristics. Thus, some extent of filtering is
associated with the choice of methodology. Furthermore, reproducibility of the
method - “robustness” - may considerably influence the variation of signals
present in the dataset, and this way add phenomena which are not related to
the state of the samples the moment they were taken.

These issues are general for analytical biology/chemistry but whereas clas-
sical techniques and applications can be optimized for the few specific signals
they are used for, this is much less feasible for omics data. The problems are
therefore much more pronounced in omics applications.

The underlying assumption that the information extracted from a measure-
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ment of a sample reflects the composition/state of the subject/object it is taken
from, may be violated in a number of ways:

The measurement may not reflect the sample subject

• Sampling may not be representative

• Sample composition may change as a result of sample han-
dling (storage, addition of stabilizers etc.)

• Data from different samples may not be directly comparable
due to the introduction of analytical artifacts (different sample
amount, shimming, temperature effects)

• Sensitivity may vary for specimen.

The sampling issue does not differ remarkably from other applications e.g.
NIR applications and is not discussed further here. Sample handling may be
more critical for omics data because the various constituents may interact differ-
ently with the handling procedures, which is illustrated below. Some analytical
artifacts are also highlighted in the following.

Changes in sample composition

Sample handling is a factor which may disturb the sample composition between
sampling and measurement time. When a blood or urine sample has been taken
from the subject or patient it is usually not instantly chemically analyzed. In
omics studies there is often a need to transfer samples between facilities for
data acquisition. Responsibility of sample care may then move with the samples
whereby knowledge and awareness of critical issues regarding sample handling
may be changed.

For both urine and blood samples some constituents are very sensitive to
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e.g. temperature, whereas others are not [39]. The proteomics case (C A S E I I)
is a very good example of how influential sample handling can be. In that case,
blood samples were stored at minus 80 °C after collection, and then transferred
batch-wise to another facility where minus 20 °C was the most feasible storage
possibility. After measurements were performed, the predominant variation
reflected for how long time the samples had been stored at -20 °C.

Some constituents are much more prone to transformation during storage
than others. Clark et al. [12] found that a wide range of constituents in whole
blood; albumin, apolipoproteins, cholesterol and triglyceride concentrations
were very stable and changed very little even by storage at room temperature,
but as the proteomics case shows, this is not the case for all constituents.

Stabilizing agents can be added to the sample to minimize deterioration.
These may affect chemical equilibria such as complexation or pH dependent
equilibria.

Analytical filtration, errors and biases

The analytical technique presents some limitations to the output data. In meta-
bolomics for example, the choice is often between a hyphenated mass spectrom-
etry based or an NMR based approach. Overall, the MS based methodology has
the advantage of high sensitivity but at the prize of a relatively poor repeatability.
The opposite is valid for NMR.

Below, some specific issues regarding the following analytical techniques
will be mentioned

• MALDI-TOF Mass Spectrometry for proteomics.

• 1H NMR for metabolomics analysis

MALDI-TOF MS for proteomics

Mass spectrometry is very sensitive and is superior with respect to detection
of low concentration analytes, but when applied in proteomics (and metabo-
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lomics) the wide dynamic ranges is a serious challenge. Varios concepts for
sample preparation have been suggested, but most of these lack thorough inves-
tigations and documentation on reproducibility and sensitivity to experimental
artifacts [65, 63].

Specifically in C A S E I I, IMAC beads were used for sample separation [64],
and the selectivity of these will affect the resulting MS data. Temperature might
also affect crystallization prior to to the MALDI ionization.

1H NMR for metabolomics

1H NMR has the advantage that it is adequately robust to present a good repeata-
bility. On the other hand, sensitivity is not very high and probably only around
10% of the metabolites present in a plasma sample will be present in the NMR
spectrum [62].

The choice of pulse program affects the signals. The Carr Purcell Meiboom
Gill (CPMG) sequence suppresses the signals of macromolecules such as lipo-
proteins, hence enhancing the signals of small metabolites. Overhauser En-
hancement SpectroscopY (NOESY) recordings provide a good overview of all
the types of molecules present in the sample matrix [4]. Still, pre-saturation of
the water resonance is indeed desirable. Sometimes water suppression is not
successful under automated conditions; in such cases the quantitative output
of neighboring peaks is of very little use (Figure 4.1).

pH variations in the sample induce peak shifts of pH-sensitive functional
groups such as carboxylic acid groups. This is shown for citric acid in plasma in
Figure 4.2, bearing in mind that plasma is quite pH stable.

4.4 Most measurements are irrelevant

The traditional hypothesis driven study is the strongly focused work which only
investigates phenomena hypothesized a priori. Ideally, it is designed to provide
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Figure 4.1: Poor water suppression affects neighboring regions

the strongest statistical power to detect the effect size in exactly the factors un-
der study.

The exploratory spirit which is an integral part of many chemometrics envi-
ronments represents another corner stone with mantra like “let data talk through
unsupervised modeling”. It is a beautiful concept that simple visualizations (like
those of PCA) can generate new hypotheses about biological phenomena at play
and as such cross the barrier formed by our intellectual capacity to hypothesize.
However, the exploratory spirit comes at a cost.

The fascination of the omics technology is often associated with the large
exploratory component. It is conceptually very attractive to measure “every-
thing” and extract the relevant information. Consequently, most omics studies
produce data where by far most of the measured variables are irrelevant.
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Figure 4.2: pH variation induces peak shifts. One finger of the citrate doublet of
doublets in plasma 1H NMR profile

In an omics experiment where we measure say 50.000 variables, we aim
to find 1,2, 10 or maybe 50 biomarkers. That is < 0.1% of the variables and
the remaining are more or less irrelevant. With M variables in a dataset, it is
possible to combine these in 2M −1 ways. For M = 1000, which is a quite low
number in an omics context, this means 1.0715∗10301 combinations and by far
the most of these would be completely irrelevant. Trying out all these combina-
tions would be computationally impossible but furthermore, considering the
statistical power of such an approach would stop the initiative immediately.

For a short moment, consider all the irrelevant variables as completely ran-
dom numbers. With so many variables and relatively few samples, it is very likely
that random correlations will be found. In Figure 4.3 the percentage of variables
that obtain Pearson’s correlation r 2 > 0.5, 0.6, 0.7 and 0.8 respectively is shown.
With 20 samples and 50.000 random variables, then 1458 variables will have
r 2 > 0.5, 442 variables will have r 2 > 0.6, 112 variables will have r 2 > 0.7 and 68
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variables will have r 2 > 0.8! It is no wonder it is possible to find biomarkers if
proper caution is not paid.
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Figure 4.3: Random correlations. The percentage of random-number variables
with r 2 larger than 0.5 - 0.8 as a function of the number of samples in the dataset

PLS can not handle many irrelevant variables

The PLS algorithm seeks to project X onto a hyper plane so that the projection of
X correlates well with y. In that way, PLS models both X and y. As a consequence,
modeling of datasets with a high degree of noisy and irrelevant variables will be
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largely influenced by the noise, in particular in the absence of strong signals.

This is illustrated in Figure 4.4. The figures shows how the cross-validation
prediction error (RMSECV) increases with the amount of irrelevant noisy varia-
bles for simulated datasets.
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Figure 4.4: Distribution of RMSECV of PLS models as a function of the number
of irrelevant variables.

This example was created with the following simple setup:

• Xr el : [50 samples x 3 relevant random variables]

• y is a [50 x 1] vector formed as a random linear combination of Xr el .

• Xi r r el [50 samples x N irrelevant random variables]

• X is a concatenated matrix of Xr el and Xi r r el : [50 x 3 +N ] + 10% ho-
moscedastic noise.
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• N ∈ {50,100,500,1000,10000}

For each value of N :

• Cross-validate an up to 25 LV PLS model using leave-one-out.

• Determine RMSECV and number of PLS components by minimum RM-
SECV.

• Repeat experiment 100 times.

The noise effect is adversed by application of scaling to unit variance (auto-
scaling) which is intended to compensate for the mismatch between absolute
signal size (peak height) and relevance of the analyte. This is due to the noisy
variables being amplified.

4.5 Weak links

Above, various issues regarding the enormous data matrix ( X) produced by the
high-throughput analytical platform have been considered. In this section two
other elements, namely the response variable ( y) and the link between X and
y are addressed.

The uncertain response variable

The response variables used in omics studies are often quite complex pheno-
types, such as conditions. Obese/lean and cancer/no-cancer are typical exam-
ples.

First of all, these conditions may be difficult to define and represent by one
response variable (as is often the case). A widely used obesity measure could
be simple BMI measurements although obesity as a condition can manifest in
various ways affecting BMI differently. Hence we search for obesity markers but
find BMI markers.

A basic condition in most disease studies is that the group of patients is
much more rare than the control group. As a consequence, the design may

40



4.5. Weak links

be poorly balanced. A means to circumvent this problem is to widen up the
included pathological pictures, i.e. include more subtypes and disease stages,
as was the case in C A S E I I I (cancer proteomics). These subclasses of the classes
may have very distinct responses in the biological snapshot which was taken
with the urine or blood sample.

As such, these conditions probably represent a mixture of phenomena which
are continuous and phenomena which are characteristic for distinct stages. As
a result there may be a considerable uncertainty in the phenotype.

Intervention studies have an uncertainty with respect to the actualized treat-
ment regimes. Drug intervention studies are generally well off with respect to
drug administration, but may also have the problem just described with a vari-
ation in the patients’ disease pattern. Food intervention studies have a funda-
mental problem of not knowing the exact food intake. Self-reporting is uncer-
tain (and difficult) and e.g. the problem of under-reporting for obese subjects is
a well-known phenomenon [25, 45].

Small effect size

It is a characteristic of many studies that the link between the omics data and
the phenotype may not be very direct - and is generally quite complex. A direct
effect of this is that observed effect sizes are shrunk. Figure 1.1 illustrates one
aspect of this problem, namely that the path from gene to clinical response (i.e.
phenotype) goes through several biological domains each of which interacts
both internally and with external (environmental) factors. Hence, possessing a
risk allele of a given gene for a given disease does not mean you have the dis-
ease. Other genes may enhance or cancel the effect of the gene and various
environmental conditions (triggers) may also be required for disease develop-
ment. As the figure illustrates, this problem increases as the distance in system
level increases between response and predictors, and genome-wide-association
studies are generally prone to this problem.

An important factor to consider here is the phenomenon of homeostasis.
We are still on this planet because we are very robust to many environmental
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variations. A complex network of feedback regulation systems ensures that the
necessary fundamental body functions keep running, i.e. elements such as os-
motic pressure, pH, water balance and temperature are kept within functional
limits. Traces of drug treatments are generally not too difficult to observe, but as
a consequence of the homeostatic control, dietary intervention studies which
in general involve healthy individuals might need rather extreme levels to leave
an effect. This was one of the problems in C A S E I V (Food intervention study)
where the administered diets were not very extreme, so the fundamental effect
size, i.e. ignoring shrinkage by other effects, was relatively small.

Thus, in omics applications we are often looking for small effect sizes (Fig-
ure 4.5, in particular when we are dealing with healthy individuals. Large effect
sizes will in many cases not be new discoveries as they are well known before-
hand. The marker we look for may well be of a multivariate character or several
univariate markers may be present each with small effect sizes.

Figure 4.5: Small effect sizes is a basic condition in many omics dataset
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4.6 Gathering of experts

It is another characteristic of omics studies that a wide range of competences
are needed for a successful outcome. A good biologist is required to put up the
good research question and make sure that relevant data is collected. The high-
throughput omics platforms are generally very advanced and require highly
skilled personnel in order to acquire high-quality data. Eventually, experienced
data analytical competences are needed to analyze the data.

C A S E I I (proteomics) illustrates how this expertise is not always integrated
throughout the process. Someone in the project might have known that samples
must be stored at minus 80°C until analysis but the experts at the proteomics
facility were not aware of this and intuitively felt that -20°C was adequate.

All these resources must be gathered and integrated appropriately in the
project. As these experts are generally found in different research environments,
it takes time and effort to establish good communication and collaboration over-
coming differences in scientific culture and vocabulary. This subject is further
commented in the end of this thesis (Chapter 9).

4.7 Summary of omics properties

This chapter shows that omics data are very complex data and not just simple
extensions of NIR. The (human) omics samples represent a much broader bi-
ological variation than the typical production samples which are usually the
focus of NIR experiments, and they are also difficult to obtain in high numbers.
The number of variables is comparable or higher in omics samples but the frac-
tion of relevant data (information) is little and difficult for PLS to extract from
the ocean of noisy data. A direct result of the massive biology encompassed
by omics technologies is data with a high biological rank. The limiting number
of samples makes it uncertain to extract the real underlying structure of the data.

The link between predictor and response variables is often much more com-
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plex, indirect and hence weaker in omics data than in NIR data, as it does rarely
rely on a direct physical/chemical fundamental like Beer’s law.

The intention of omics data is generally to obtain signals from as much
of the ome as possible, which presents some analytical challenges due to the
wide dynamic range. There is thus a compromise between getting a wide range
of signals (qualitative requirement) and (1) reproducibility due to complexed
analytical method or (2) non-linearities in signal gain across the range.
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5
Collect good data

It is now clear that the automated acquisition of large-scale data from the omics
domain results in substantial exploratory and regression related problems. The
properties of high-dimensional data can affect the ability of statistical models
to extract meaningful information, and having more complex measurements
means having more possibilities for errors and biases [30].

The path to useful results from omics experiments goes through three core
areas, which must all be addressed:

• How to obtain good omics data.

• How to prepare acquired data for data analysis.

• How to obtain useful results from omics data.

This chapter deals with the first area. First, by looking into experimental de-
sign matters, and afterwards by contemplating analytical considerations. Data
analysis is the overall focus of this thesis, therefore this chapter deals primarily
with design issues which affect data quality in general, rather than on platform
specific details.
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In the next two chapters (Chapter 6 & 7), data analytical issues are addressed;
chapter 6 focuses on proper cleaning of data prior to analysis, and chapter 7
deals with the actual data analysis, including validation.

5.1 Design

Biology is complex and human biology is by no means an exception. When on
top of this we add analytical error and bias, it is therefore crucial that we seek to
span the variation which is relevant to our study and minimize other influences.

From a data analytical point of view, a good design fundamentally seeks to
ensure a strong link between X and y. This is obtained by trying to fulfill the
following points:

• a well-defined response variable y (phenotype).

• a targeted descriptor matrix X, i.e. data which are relevant for the given
purpose.

• a fundamental sound biological relation between X and y.

• minimized analytical error and bias.

In other words, the design is a means to optimize the match of X and y.

Reduce ambitions, retain power

The previous chapter underlined that a fundamental challenge in omics studies
is the small effect size, hence low power.

When designing an omics experiment it is crucial to define the research
questions. This may sound trivial but as the case stories illustrate, the research
questions are often quite vague á la “we would like to know what is going on”.
Many studies will have a design which respects the basic hypothesis rather well
like in the transcriptomics case C A S E I. The idea that nickel allergic patients
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will respond to nickel exposure is reflected in the design, but the exploratory ele-
ment is much more unsubstantiated, and the cost of this has not been realized.

Apparently, the fact that (almost) the entire ome can be analyzed misleads
the researcher to believe we can tell the full story by measuring 20 samples. The
more focused the questions are, the easier it is to build a strong design which
will focus upon this. Too often we end up in a situation where the biologist
wants to know “everything” based on very few samples. The result is very low
power and high risk of over-fitting. Focused research questions assist defining
relevant descriptor and response variables.

Targeting of the descriptor matrix to contain a high fraction of relevant va-
riables improves the statistical power of the experiment. It is highly relevant to
consider how exploratory the experiment “can afford” to be; pilot studies can
indicate this.

Uncertainty in the response variable should be limited as has been pointed
out in the literature several times, e.g. [32, 13]. Obviously, a case-control search
for susceptibility genes for a certain disease suffers serious power reduction if
say, a group of the controls were actually genetically susceptible to the disease
but were not exposed to the disease. Moreover, including many subtypes in the
class variable may reduce the effect size.

It is valuable if the phenotypes (classes) to be modeled represent extremes;
the larger the variation between classes, the larger the effect size.

In the previous chapter it was mentioned that one of the classes is often
much less available (e.g. the patient class). This is a fundamental problem, but
it is important to realize beforehand that it may come at a cost to merge sev-
eral subclasses, although sometimes it may be successful. In these situations it
should be emphasized even more to focus the study towards expected relevant
biomarkers.

In Pere-Trepat et al (2010) [48] the same NMR dataset as in P A P E R I V is
analyzed for a different purpose; here the intention is to relate 1H NMR CPMG
plasma profiles to reported dietary habits. This is an example where the classes
are not necessarily well-defined, and it may be difficult beforehand to define
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them. This was solved by calculating a PCA model based on the dietary report-
ings (“how often do you eat apples?”, “How often do you eat fish?” etc). The
participants seemed to cluster according to some dietary pattern, which could
form the basis of dietary classes which were afterwards related to the NMR spec-
tra through PLSDA.

Know your background

It is an essential part of data analysis to be able to assess methodological re-
peatability and variations within individuals, such as diurnal and day to day
variations. It is usually difficult to obtain true biological replicates, i.e. repeated
experimental measurements from the same individual, but efforts should be
made to repeat as much of the process as possible, i.e. more than one blood
sample should be taken from the same individual, it should be measured on
different days, samples should be taken from similar subjects etc.

One way to get to know the background variation is through pilot studies,
which are excellent means to start mapping inter- and intra-individual varia-
tions. Pilot studies are often performed in order to make sure the assays and
instrumental part work satisfactory. What is sometimes missing is the pilot
study which gives an idea about effect sizes and so assists in dimensioning of
the study. Or the pilot study which investigates the underlying variations such
as clustering according to storage time or other experimental artifacts.

Essentially, many omics studies originally intended to be full-scale experi-
ments end up as pilot studies because fundamental parts were not adequately
clarified initially with the result that findings were negative or very weak. A lot
of insight and experience is gained through such a study, but it is a very costly
learning process. To some extent this is true for all the case stories outlined in
the beginning of this thesis.

Control variation

As described in the previous chapter, biological variation in omics is massive
and this makes it difficult to discover and quantify the systematic parts, in par-
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ticular because we often look for subtle effects. One way around this is to try to
reduce the included variation.

We must have variation but we do not want too much. On the one hand we
like to span variation in order to be able to draw conclusions which are generally
valid. It is of little interest to make conclusions which are so specific that they
are only valid for women aged 27 with red hair, who never smoked, shoe size 39
and born in a specific town in October. However, sometimes this may to some
extent be a sound road to follow. Start out simple, find candidate markers in
such a narrow study and expand the variation in the next study with focus on
the candidate markers instead of the full set. To T H E B I O L O G I S T such a study
may appear under-ambitious, and the possibility of short-cutting is probably
more appealing in many situations. However, this is the price of including so
much variation as opposed to much more targeted approaches.

5.2 Reduce analytical error and bias

It is important to realize that the choice of analytical methodology has some
important implications for the obtained omics data. Obtaining high signal to
noise ratio (S/N) for relevant signals and at the same time avoid introduction of
bias is the task. Sample handling may be critical for some applications, the ana-
lytical setup represents choices in terms of selectivity and sensitivity for certain
types of signals, and analytical artifacts are always present to some extent.

As pointed out, it is not the intention to go into details regarding the analyti-
cal setup. However, a few general issues are highlighted below.

Proper sample handling

As illustrated with the proteomics case story (C A S E I I, section 1.2), improper
sample handling may have detrimental effects to the samples or introduce bias.
This should be considered in relation to training of clinical staff, including the
PhD student who will do a lot of the practical work across the experimental
process. Make sure the necessary knowledge concerning stability of the specific
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bio-fluid is available. Various papers address sample collection and handling
issues for bio-marker studies, e.g. [26, 60]. Elements to consider are volatiles
(e.g in urine), use of stabilizing and preservative agents - how do they interfere
with the sample matrix?

This topic is highly relevant, nevertheless quite difficult to deal with in prac-
tice. Collecting 24 h urine from human beings in a normal daily life setting
(C A S E I V, section 1.2) obviously enforces a lot of practical challenges. Thus,
collecting “everything” disregarding the situation and ensuring well-controlled
storage are not easily taken care of.

Handle batch variations

It is often impossible to measure all the samples in one batch and as a conse-
quence, batch to batch variations may be introduced. One way to assess this
effect is through the use of quality control (QC) samples. Bijlsma et al ([7]) pool
blood samples from case and control samples separately and measure these
with each batch. This way batch variations are not as such taken care of, but
they are at least assessed and a potential source of bias has been addressed.

Choose appropriate analytical platform

Choosing the best suited method can reduce problems significantly. Choose a
platform which will give strong signals for the analytes expected to be relevant
in order to optimize S/N. If you expect lipo-proteins in a blood sample to be
important, do not measure it using a CPMG pulse sequence, which suppresses
macro-molecules in order to enhance signals from smaller molecules. Beware
of the limitations of the chosen method; 1H NMR for example, has a limit of
detection around 10 µM (down to nM in setups with small-diameter cryoprobes
and high field strength) [47].

A number of papers deal with the details of sample handling and analytical pro-
cedures for optimization of S/N and minimization of analytical bias in omics
studies. Several of these are relevant across the different omics.
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transcriptomics [6]
proteomics [44, 49, 63, 33]
metabolomics [4, 57, 39, 42]

The reader is referred to these for details on this highly important analytical
area.
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6
Prepare data for analysis

6.1 Data preparation is the most important part of the
data analysis

In order to utilize the advantages of PLS, data must be in a proper form when
parsed to the PLS processing. Fundamentally, there should be an approximately
linear relationship between X and y and X and y should be multivariately
normally distributed.

The best results are obtained if the fraction of relevant variables is high, noise
is low and the relevant signals are large. This is usually not the apparent char-
acteristics of omics data as shown previously (chapter 4). In the data analytical
process, it may thus be worth spending a major effort reducing and restructur-
ing data to a form which is more suitable for e.g. PLS. This is the process of data
preparation.
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Omics data contain too many variables

As described in Chapter 4, with M variables in a dataset, it is possible to combine
these in 2M −1 ways. For M = 1000, which is a quite low number in an omics
context, this means 1.0715∗10301 combinations, and if we were completely igno-
rant about these data, we would have to try all combinations to find the optimal
solution, which is problematic from a computational point of view and unde-
sirable in terms of statistical power. In other words, even if we possessed the
computational power to try all combinations the result would need very careful
validation because the risk of chance correlations, and thereby over-fitting, is
extremely high with these “fat” matrices.

However, this is where the use of a priori knowledge comes to play a major
role. Generally, we do have some knowledge about the underlying structure of
data which can help us analyze data in a way which we expect to be meaningful.
In the following section I will shed some light on how knowledge about data
(i.e. about design, analytical technique, biology) can be used to prepare very
complex high-dimensional omics data for PLS modeling by reducing them to
much more manageable datasets without a major loss of information and with
biological interpretation in focus.

6.2 Informed data preparation

Most of the variables in an omics dataset are irrelevant for our purpose and this
harms performance of the (PLS) data analysis as shown previously (Section 4.4).
The high level of noise and the low number of samples makes it very difficult to
reliably estimate the latent structures in data. However, we do know a lot about
data and if we make use of this knowledge in the data analysis to (1) get rid of a
lot of the noise and (2) structure data in a way which enables the data analysis
to give results that are directly biologically interpretable, then it is much more
likely that the data analysis will produce useful results. In this way, we try to
compensate for the low number of samples by guiding the modeling process by
our knowledge.
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The actual steps involved in this informed data preparation are data spe-
cific and obviously also depend on the intended processing method, but for PLS
which is the focus of the present work, some relevant elements could be subset
selection (variables and/or samples), alignment, averaging, and compression
to fewer but informative variables which represent data at a level which is suit-
able for interpretation. In the following this will be exemplified using data from
different omics domains.
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A priori, we know signals are related

Depending on the type of data, we may have information about the
way signals are related chemically. This may be at various levels, e.g.:

• Neighboring spectral variables are members of the same peak
(i.e. we know about peak shape).

• One analyte may give rise to several signals; for example:

– Spin-spin coupling patterns in NMR which result in peak
splitting (this is actually one signal, but resembles several
peaks).

– Each unique H in a molecule gives rise to one signal.

– An mRNA transcript may bind to several probes of a mi-
croarray chip.

– In mass spectrometry, a molecule is split into several frag-
ments each giving one or more signals (+ adducts).

• The analytes may be related in various ways, they can e.g.

– belong to the same type of response.

– belong to the same pathway.

– belong to the same cellular component.

– belong to the same chemically functional group.

On top of this, any knowledge regarding uninformative areas, e.g. the water
suppressed region in 1H NMR, signals conflicting with detection limits or tran-
scripts which have not been annotated with functional terms, can be used to
eliminate irrelevant variables.
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There is a lot of redundancy in data, and therefore a great potential for com-
pression. By a priori knowledge this compression can be guided to lead to mean-
ingful new variables (e.g. functional genetic terms or specific metabolites).

The major benefits of data compression

• Data reduction/compression - computationally important!

• An obtained data structure which is much lower in noise level,
thus scaling is less prone to boost the influence of noisy varia-
bles.

• A dataset with a substantially higher ratio of relevant to irrele-
vant variables.

• A set of chemically/biologically meaningful variables which
may possibly be examined at various functional levels.

• A reduced dimensionality of the model space, whereby model
uncertainty is decreased.

• Improved power.

The way a given dataset is meaningfully compressed is very dataset specific,
and experience must be built up for each type of data. Following a brief in-
troduction to the subject of ontologies, some examples of how informed data
preparation can be applied to transcriptomics data and 1H NMR metabolomics
data are given below.

Ontologies

Ontologies represent a means of structuring knowledge into a system suited for
computer-assisted high-throughput analysis. Examples of such formal represen-

57



6 . P R E P A R E D A T A F O R A N A L Y S I S

tation of knowledge can be found through the Open Biological and Biomedical
Ontologies (OBO) - an initiative establishing principles for the development of
ontologies within the biomedical domain. Several ontologies relevant for omics
data are well-established OBOs including the Gene Ontology (GO) and the PRo-
tein Ontology (PRO).

The ontologies are very comprehensive and complex database systems which
are inter-operable with other OBO ontologies. In the GO database, available in-
formation has been coded into three domains: molecular function, cellular com-
ponent and biological process. The GO-terms associated with a given genetic
sequence (e.g. a probe on an Affymetrix microarray chip) are termed annota-
tions and can be used to group genes according to selected properties.

Examples of informed data preparation

In P A P E R I I I the GO database is used for a functional genomics analysis. Sub-
sets of variables were selected on the basis of functional annotations and mod-
eled individually. The outcome of these models were then input to a joint model.

P A P E R V is also a transcriptomics application, but the design and data ana-
lytical approach is different from the type treated in this thesis, as it does not
involve PLS or comparison between two classes. Rather an unsupervised MCR
approach is applied to identify which genes in Lactoccus Lactis dominate the
different parts of a fermentation process. Nevertheless, it is relevant to mention
the data preparation process here.

In this application, data were cleaned by comparison of replicates to elimi-
nate from further analysis genes whose expression was not consistent. Hereby
an important element of uncertainty was eliminated. In this way replicates can
be used to qualify data and to estimate the uncertainty.

Filtering by putting thresholds on reproducibility, signal amplitude etc. is a
means of avoiding false discoveries. Other simple means are univariate t-tests
in particular if the consistency of such variable selection is assessed e.g through
bootstrapping as in PA P E R I V.
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1H NMR metabolomics

In P A P E R I V informed data preparation is incorporated for the analysis of 1H
NMR plasma profiles in a metabolomics context. The data preparation which
compressed the spectra from 32K data points to 171 variables is outlined in the
paper, but in the following further details about the procedure are given.

The NMR data

The dataset consisted initially of 1116 NMR spectra of human plasma samples
as described in the paper. The spectra were already phase-corrected, Fourier
transformed using a line broadening of 1 Hz, and an initial baseline correction
had been applied. The spectra were imported into MATLAB for the data analysis.

Spectral concatenation and data cleaning

Each spectrum was referenced against the alpha-glucose doublet peak at 5.23
ppm using a correlation optimized shifting (coshift) procedure [58]. After that,
the spectra were interpolated to a common axis with 32K data points between 0
and 8.5 ppm and concatenated to form a matrix. The spectral tails were trimmed
to 0.1-8.25 ppm and the water region 4.55-5.17 was removed. The spectra in-
cluding the water region are shown in Figure 6.1.

Subsequently, the spectra were inspected for obvious non-conformities, whereby
a couple of outlying samples were identified. A number of samples were not well
water suppressed as can be seen from the broadened water peak (approx 4.78
ppm) in Figure 6.1 and Figure 4.1.

Peak integration

The scope of the next step in the data preparation was to compress data by peak
integration. The strategy was to define each peak and model it by a PCA or an
MCR model. In theory, if peak regions could be defined that contained only one
peak, then a one-component model should be able to model the peak, and the
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Figure 6.1: Plasma NMR profiles (sample subset)

score value would then correspond to the peak integral.

As shown previously, (Figure 4.2) some peaks are shifted as a result of pH
variation in the samples, although plasma is actually a rather strong pH buffer.
Consequently alignment is required prior to peak modeling.

A peak region was defined manually for each peak along the chemical shift
axis. Whenever possible, doublets, triplets etc were put together in the same
region, but often overlapping peaks would hinder this. Focus was to represent
all peaks, rather than retaining structural information as this could be restored
at a later stage for selected compounds. During this process, only peaks which
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were significantly above the noise level were included. For each peak it was
evaluated whether it was convincing enough to be shown in a publication if it
turned out to be a biomarker, and excluded it was not.

Some peaks would be so tightly and complexly overlapping that it was not
possible to define separate regions for all these areas, and some intervals would
therefore contain more than one peak in practice.

The spectra were then aligned using the Icoshift algorithm [51], which shifts
peak intervals individually along the axis while preserving peak shape. Prior
to this each interval was inspected and it was decided whether alignment was
required. The effect of alignment was examined for each peak. Some peaks were
rather straight-forward to align whereas others required more parameter opti-
mization in order for good alignment to be obtained. In some cases alignment of
the Savitzky-Golay second derivative of a peak provided very good results, when
the hereby obtained spectral shifts were applied to the original (non-derivative)
spectra afterwards. A before-after alignment example is shown i Figure 6.2

3.612 3.614 3.616 3.618 3.62 3.622 3.624 3.626 3.628 3.63
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

3.612 3.614 3.616 3.618 3.62 3.622 3.624 3.626 3.628 3.63
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Before alignment After alignment

ppm ppm

Figure 6.2: Effect of alignment shown for one doublet. Left: before alignment,
Right: after alignment
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Some peaks were small shoulders on a broader peak and integration would
therefore mainly reflect the large background peaks. In these cases baseline cor-
rection was performed where the contribution of the large peak was minimized;
this procedure required a temporary broadening of the interval.

The next step was to develop a PCA model for each interval. Following, each
of these was inspected and compared to the original peak to make sure the ob-
tained loading actually reflected the peak it was intended to model. In some
cases the intervals had to be resized to obtain this, in a few cases two compo-
nents were needed and in a few cases MCR models provided more chemically
meaningful loadings.

Eventually, collecting the scores from each of 164 defined peak regions yielded
171 new variables. Thus by this procedure, the number of variables was reduced
to a much more manageable size and the noise level was lowered substantially.

All these steps were quite cumbersome and not very appealing if one who
generally seeks automation of such routines. However, considering the time it
took to collect the data, this process was really insignificant and concurrently a
lot of insight into the details in the data was acquired.

Summary

Omics data contains massive data amounts that are not easy to manage on
well-equipped standard PCs. Moreover - and most importantly - most of the
data is irrelevant and possibly harmful to the modeling, in particular in cases
of low effect sizes. However, if efforts are spent on cleaning and compression of
the complex X matrix, PLSDA may be very well suited for omics classification
purposes.

Applying a priori knowledge about the structure in data is a very useful way
to compensate for the general problem of too few samples by constraining the
possible model outcome. Knowledge about the analytical method and the bi-
ology behind can be used for informed data preparation whereby data is put
in a form which is well suited for PLSDA, and which leads to more readily in-
terpretable results. How to perform this data preparation is highly data- and
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application specific and requires that T H E D A T A A N A L Y S T consults both T H E

A N A L Y T I C A L C H E M I S T and T H E B I O L O G I S T. This part of the data analy-
sis may be rather time-consuming but considering the time frame of the data
collection, it is generally absolutely worth the effort.
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7
Analyze data properly

The previous two chapters dealt with collection of high-quality data and prepara-
tion of data for data analysis. Hereby the scene is set for the actual data analysis.

A very general objective of the data analysis within the omics area is clas-
sification and identification of biomarkers. This chapter is centered around
this quest. Focus will be on PLS used for discriminant analysis, PLSDA, which
is widely used within the omics area. It appears that as omics has processed
through the system levels from genomics to metabolomics, the influence of che-
mometrics has increased, and as a consequence, PLSDA and its relatives (e.g.
OPLS) are particularly well-spread methods within the field of metabolomics.

7.1 The work-flow of PLS for Discriminant Analysis
(PLSDA)

Discriminant PLS (PLSDA) is a special case of PLS used for classification pur-
poses. A regression model is built between the multi-dimensional dataset X
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and a “dummy” class variable Y as described in section 2.1.

The PLSDA workflow

After data cleaning (as described in Chapter 6) the PLSDA workflow
consists of the following primary steps:

1. Scaling

2. Modeling

a) Outlier detection

b) Variable selection

3. Identification of discriminatory variables (biomarkers)

4. Validation

This workflow is very generic for any PLS based modeling, and this is a main
point of the present work. If data has been properly prepared for the modeling,
then standard procedures can usually be applied with good chances of success.
In other words, the majority of the data analytical workload should be put into
the data preparation phase.

As a consequence, this chapter will be rather short; a few comments are
given on some issues, viz. scaling, variable selection and selection of biomarkers.
Eventually, the need for validation is emphasized.

7.2 Identification of biomarkers

Scaling

Scaling is a pre-processing step, which aims at bringing data to a form which
makes the processing method suited for the purpose at hand. Projection tech-
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niques such as PCA and PLS work on covariance which is highly dependent on
numerical levels.

For data measured in different units, scaling is generally required in order
to avoid that the projection only focuses on the variation spanned by variables
measured in small units. The variance of a variable measured in millimeters
might dominate a model completely, whereas if the same variable was mea-
sured in kilometers its variation would be insignificant and thus not reflected
in a projection model. A popular means of scaling is scaling to unit variance;
when combined with a mean centering operation this is called auto-scaling.
With auto-scaling all variables are given the same numerical influence to the
PLS model.

For data measured on the same scale, e.g. spectral data, scaling is not al-
ways required. However, peak intensities generally reflect concentrations and
these may not at all be proportional to the biological interest of the peak. Rather,
the small variance in a small peak may be just as interesting as variations in a
large peak, and it is not unlikely that many new discoveries are to be found in
the smaller peaks which are more difficult to handle than the "easy" analytes in
higher concentrations. Consequently, scaling may also be desirable for spectral
data.

The downside of auto-scaling is that the influence of noisy variables with
low intensities is increased dramatically, which is undesirable. The result may
be false conclusions based on random correlations with noisy variables. This is
a major reason why the noise level in data should be reduced in an initial data
preparation process (chapter 6).

As a result, various other types of scaling have been suggested; a popular
type of scaling within metabolomics is pareto-scaling [16] in which the intensity
of a variable is transformed by subtraction of the mean value and scaling by
the square-root of the standard deviation. The square-root operation on the
dispersion is the only deviation from auto-scaling.

Van den berg et al [61] has made a thorough investigation of the effect of
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various scaling types on the outcome of metabolomics data analysis. Table 1 in
this paper gives an excellent overview of the properties of selected scaling types.

A major benefit of the concept of informed data preparation as described in
the previous chapter is that the noise level is considerably reduced. Represent-
ing NMR data as peak integrals obtained through PCA modeling of each peak
produces a dataset which is almost noise free, and thus enables auto-scaling.

It is important to be aware that as scaling governs how the model inputs
are allowed to influence the model, the manifestation of potential biomarker
candidates will depend on the scaling method. Sometimes, this phenomenon
will invoke some skepticism in T H E B I O L O G I S T ’ S trust in the modeling. Vali-
dation is the only way to test if the scaling (and remaining data analytical setup)
is reasonable.

Selection of biomarker candidates

Various diagnostics and methods exist which can be used to select the variables
with the best discriminative power. It is outside the scope of this work to make
a thorough examination of these; rather I shall refer to [2] for a good overview.

An additional principle of variable selection not mentioned in the reference
above and which has gained increasing attention in the past years is the use
of regularization, which comes from the fields of machine learning. With reg-
ularization, a penalty is put on the parameters, whereby the model is pushed
in certain directions. Various types of regularizations exist; in particular the L1
norm regularization has gained attention.

Whereas L2 norm regularization of a regression vector penalizes large ele-
ments, L1 norm regularization penalizes all values equally. The result is a sparse
regression vector, i.e a vector with few non-zero elements, hence interpretation
is emphasized.

7.3 Validation, validation, validation!

As has been shown in the previous chapters, omics analysis includes a high
risk of chance correlations, and the statistical basis of finding strong evidence
is weak. Because of this, when the list of biomarkers has been identified, it is an
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absolute requirement that these be validated appropriately before it is relevant
to conclude anything about their existence. Most likely, many false discoveries
encountered within omics would have been avoided with adequate validation.

Validation is a process working at several levels (see e.g. [24] for an extremely
thorough elaboration on this). Assessing the statistical validity of (1) the method
and (2) the findings represent two core elements, but another level which is just
as important is the biological validation; the process of assessing the results in
a biological context based on the available knowledge of the area.

It is difficult to give a clear definition of adequate validation. Optimally, the
full experiment (sample collection - data acquisition - data analysis) should be
repeated. However, this is rarely feasible to do in full scale within the structural
framework of the research; for example, this is most likely not possible to do
within the time-frame of a research donation or a PhD education. Hence, a
more pragmatic path may be suggested.

As mentioned previously (section 5.1) the use of pilot studies is encouraged.
These sub-studies validate the reproducibility and assess uncertainties of the
procedures and background variations in the experiment and are thus extremely
valuable in terms of consolidation of conclusions. It may be beneficial to use
smaller substudies iteratively in the procedure of optimizing the experiment.

Often, samples and data move physically during the experimental process,
and these transfer points represent natural borders of validation "boxes". Along
with the final data, the data analyst receives the knowledge about the uncer-
tainties of the data collection and analytical processes obtained through the
previous validation steps. The data analyst can then focus on the data analysis
and the validation of this.

Validation of the data analysis can be performed at several levels. Again, a
representative independent test set is ideal but as this is not always available,
other approaches may be used. Cross-validation tends to overfit data, but used
with sound reason cross-validation may provide a reasonable means to evaluate
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parameter estimates throughout the process. Below, a nice implementation of
cross-validation named cross-model-validation is illustrated.

However, first the importance of validation (and the proper use of scores
plots) is underlined by an example showing the capability of PLSDA to separate
groups on the basis of random numbers.

Example: PLSDA

Let us form two datasets X and y. X is a matrix of random numbers of dimen-
sions [50 x 100], i.e. consisting of 50 samples and 100 variables. y is a [50 x 1]
vector, where yi = 1 for i = 1, ...,25 and yi = 2 for i = 26, ...,50. A PLSDA model
is built upon these (non-sense) data. The resulting scores plot for PLS compo-
nents one and two is shown in Figure 7.1.
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Figure 7.1: The PLS-DA scores plot is appealing but dangerous. Scores plot of
PLSDA model based on 50 samples of 100 random variables randomly assigned
(50−50) to two classes shows perfect separation

Apparently, the two classes can be separated perfectly using PLSDA! How-
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ever, as would be expected, cross-validation underlines that there is no model
(Figure 7.2).
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Figure 7.2: Validation of PLS-DA model built on random numbers shows that
there is no model.

Cross model validation (CMV)

In the very clear non sense PLSDA example shown above, cross-validation is of
course absolutely adequate to enlighten model problems. In general however,
ordinary cross-validation (CV) results in overfitting, in particular because the
cross-validation normally applied does not handle the full modeling procedure.
Optimally, preprocessing, scaling, PLS parameters and variable selection should
also be validated. A way to do this is through so-called Cross Model Validation
(CMV) [3, 66, 22], a procedure which has been developed independently a cou-
ple of times and hence given different names: “leave one object completely out”
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(LOCO) [46] and “double-cross validation” [3].

CMV follows the same fundamental principles as CV, except that it works
across more or less the full modeling procedure rather than just the PLS mod-
eling itself. That is, prior to any modeling, data is split into segments. One
segment is then left on hold while the remaining segments are used to build a
PLS model, including pre-processing, modeling, variable selection etc. These
steps may involve CV for parameter estimation. Following this, the left out seg-
ment is manipulated using the obtained model to yield a prediction for each
sample in the segment. This prediction can be compared to the reference in the
usual CV way. The procedure is repeated with each segment left out sequentially,
resulting in as many sub-model-parameter sets as there were segments. It has
been shown that the error estimates obtained by this procedure are much more
realistic than those obtained by CV.

It should be emphasized that CMV does not necessarily lead to an optimal
solution, but it estimates the validity of the found ensemble of sub-models.

Biological validation

A core element of validation of results is the biological validation. The biological
validation is the sound reasoning of the biologist to speculate if the results make
sense in a biological context.

In order to be able to perform this validation, it is necessary that the results
are in a form which makes sense to the biologist. Very complex transformations
such as kernel methods or neural network models bring the variables to a form,
where interpretability is widely lost.

7.4 The iterative process

In order to obtain interesting and meaningful results from the data analysis,
it is important that T H E D A T A A N A L Y S T take part in a iterative process with
T H E B I O L O G I S T and T H E A N A L Y T I C A L C H E M I S T. The data analyst should
present data to the other two parties in a way which makes them (1) identify
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possible artifacts that should be dealt with, and (2) generate new ideas or lead
the data analyst to focus on specific areas of the results. The ability to visual-
ize such complex data in various compressed ways is a required competence
from the data analyst. Sharing of knowledge is a key element in successful data
analysis.
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8
Conclusion

Numerous high-dimensional so-called ’omics’ studies have been carried out
throughout the past 10-15 years with the purpose of identifying biomarkers
and obtaining a better understanding of the complex biology of our organisms.
These experiments are generally very costly and time-consuming and the results
have not been overwhelming. As a result, some skepticism with respect to the
potential of the omics technologies can be observed.

The main objective of this thesis was to characterize omics data and thereby
try to understand why they are difficult to handle with the standard chemomet-
rical approach which is well-established for many other data types such as NIR
data. On this basis, suggestions for how to improve the outcome of omics exper-
iments should be given.

Characteristics of classical applications

The dominating chemometrical regression method is Partial Least Squares (PLS)
regression and this method has also been widely used within the omics fields, in
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particular the special use for discriminant analysis, PLSDA. PLS was developed
and gained its popularity in a historical context where instruments produced
data amounts which traditional methods could not handle.

Near infrared (NIR) data was in this thesis characterized as a representa-
tive of the classical data types. NIR data are multi-dimensional but low rank,
and the typical PLS application on such data would involve a hundred samples
of some industrial biologically based intermediate or end product. The sam-
ples would be rather homogeneous as the production setting is optimized with
this as a quality parameter. A classical response variable would be one of the
major components fat, protein or moisture which is directly linked to the infor-
mation in the spectrum. The reference values might have been obtained by a
well-established wet chemistry method with low uncertainty.

The low rank means that a hundred samples is sufficient to describe the
system with a low uncertainty, so systematic and random variations can be well
separated by the PLS model. The relevant information is present in data and the
signal to noise ratio is high.

Characteristics of omics applications

Although the description above tends to over-simplify the data analytical chal-
lenges associated with NIR type applications it serves to underline some fun-
damental differences between NIR and omics data. Omics data are also high-
dimensional and usually with many more variables than NIR data. However,
they are not simple extensions of NIR data.

This thesis has focused on omics experiments involving human subjects,
and such studies introduce some important differences relative to NIR applica-
tions.

First of all the variation in data is much larger and more complex for several
reasons. Omics analytical technologies focus at measuring a much wider palette
of analytes and as such potentially provide a much more detailed picture. More-
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over, the biological variations, i.e. the genetic background, the environmental
influences and their interactions, are diverse and complex and difficult to con-
trol in experimental setups.

In omics experiments the response variable is often not particularly well-
defined and the link to the descriptor matrix may be less direct. On top of this,
analytical bias or errors are easily introduced.

The net result is that the effect size (or signal to noise ratio at application
level) is lower than for a typical NIR application. And whereas NIR data are
high-dimensional but low rank, omics data are high-dimensional high rank data.
In other words, the systems being analyzed in omics studies are much more
complex, and as a consequence, many more samples are needed to describe
them well.

The access to samples is generally more problematic and the number of
samples is therefore comparable to those of NIR experiments. Power is therefore
low for these experiments as a whole and obviously, the risk of overlooking small
effects or making false discoveries is much higher.

This effect is also reflected in the performance of PLS as this method also
needs high signal to noise to extract the true systematic pattern. With many
irrelevant variables PLS does not perform well; since the PLS model maximizes
covariance between descriptor matrix and the response variable, random cor-
relations will harm the model. As a result, weak signals are not detected and
random correlations may appear to be real.

It is a characteristic of omics studies that the experiments are large and
involve several experts across different scientific environments. Some central
elements of the practical part of the experiment include recruitment, training
of staff and subjects, clinical sample and data collection, and application of ad-
vanced analytical techniques. Other central players include the biologist who
originated the project and the data analyst who is supposed to extract the re-
sults.
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How to obtain better omics results

For an omics experiment intended to identify biomarkers of a given condition
the successful outcome is one or more biomarkers which can be reproduced
in a similar experiment. Getting better results from an omics experiments is
about realizing the issues above and try to minimize their influence through (1)
collection of high quality data and (2) good data analysis.

Good data collection

Characteristics of well collected data

• a well-defined response variable y.

• a targeted descriptor matrix X, i.e. data which are relevant for
the given purpose.

• a fundamental sound biological relation between X and y.

• minimized analytical error and bias.

The design, planning phase of the experiment should optimize this, and
in the practical phase skilled personnel should ensure the realization. An im-
portant question in the design phase is to set the balance between targeted
and exploratory analysis. This choice represents a trade-off between on one
side high power and signal-to-noise and on the other side the fascinating ex-
ploratory possibility of discovering new non-hypothesized phenomena.

The value of pilot studies is emphasized as not only the data but also the
experimental setup is complex and thus involves a high risk of introducing ana-
lytical errors and biases. Moreover, pilot studies can assist targeting the data
acquisition towards the most relevant signals and also indicate how exploratory
a given experiment “can afford” to be.
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Good data analysis

The data analysis should ensure that present biomarkers be identified and that
these are generally valid and not a result of chance correlations and over-fitting.
This is about applying a good modeling method, optimizing the input to the
modeling process and validation of the results.

Applying PLSDA as the modeling engine, optimizing model input involves
reduction of the fraction of irrelevant (noisy) variables to increase the chance
of identifying the relevant biomarkers. This is signal-to-noise enhancement
and will for any model improve chances of success if it is performed in a sound
manner.

Model validation should be performed at several levels. Both in a strict tech-
nical meaning by testing the model with ideally an independent test set, but also
validation by relating the outcome to prior knowledge and expected results (“bi-
ological validation”). In order to perform the latter, the obtained results must be
presented so that they are directly interpretable by the biologist in collaboration
with the data analyst. This may require some kind of data preparation which
transforms the data into other more meaningful variables.

Consequently, intelligent preparation of data for the actual classification
may be a key element in successful outcome and to some extent compensates
for the insufficient amount of available samples. Such data preparation is very
dataset specific; in this thesis some examples are given. P A P E R I I I deals with
transcriptomics data, and P A P E R I V compresses 1H NMR CPMG metabolic
profiles into a very manageable number of input variables. Data preparation
can be very time-consuming and very manual but considering the time it has
taken to collect data, I believe it is worth the effort.

When data has been properly prepared for the data analysis, the actual
PLSDA modeling is relatively straight-forward and does not differ remarkably
from the data analysis of NIR data. It is a main conclusion of this work that if
data has been properly collected and prepared, then PLS is generally suitable for
analysis of omics data. The problems with low signal-to-noise levels in omics
data are fundamental and will challenge any classification method, not only PLS.
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The data preparation based on external knowledge is therefore highly relevant
irrespective of the choice of classification method.

The complexity of the data and the limited number of samples, hence higher
risk of over-fitting enforces the need for proper validation; biological validation
should be a natural part of this.

The clarity of hind sight

It might appear that this thesis is largely built on criticism of hard work per-
formed by otherwise respected scientists. As stated previously, it is not the in-
tention of this work to criticize anyone in particular; rather I think the cases
presented in this thesis represent aspects of omics studies which are found to
some extent in many studies.

It seems easy to criticize in retrospect, but I fully respect that these experi-
ments were performed utilizing the knowledge present at the time being. Famil-
iarizing with the omics technologies is a process for all parties involved.
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8.1 Conclusions in brief

Conclusions in brief

1. The standard operating procedures (SOP) for chemometrics
analysis are developed in an era of NIR type data and works
well with this type of data.

2. Omics data are not just wheat NIR data with more variables.

• There are generally much more variables, whereas the
number of samples is comparable or smaller.

• The rank is higher.

• The amount of irrelevant data is substantial.

• The biological background diversity is much broader.

• The causal link between the large-scale dataset and the
response variable is often weaker and much more com-
plex.

3. Experimental design and data collection deserve special atten-
tion.

• All relevant competencies must be involved in the design
phase and protocols approved across the involved scien-
tific units.

• Pilot-scale experiments are necessary.

• High-quality data require great expertise.

• Targeted analysis has clear advantages.

continued on next page...
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Conclusions in brief ...continued

4. Preparation of data should be emphasized in the SOP for data
analysis of omics data.

• A priori knowledge is essential for a meaningful data com-
pression and structure

5. PLS is suitable for analysis of omics data with proper data pre-
sentation.

• Omics data analysis is prone to over-fitting.

• Scaling and selection criteria influence identification of
biomarkers.

• Data knowledge is fundamental for successful data analy-
sis.

6. Validation cannot be over-emphasized.

• Key elements of the experiment should be validated (mea-
suring chain validation).

• Over-fitting should be counter-acted by proper valida-
tion.

• Biological validation is essential.
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9
Some perspectives

The present analysis of the properties of omics data relative to more traditional
data types leads me to ask and comment on a few questions regarding some
very general aspects of omics experiments.

1. Focusing specifically on the data analytical part, it is obvious that the start-
ing point of the analysis is mathematically and biologically more complex
than that of NIR data analysis, and it is evident that the number of samples
is a limiting factor. Does it make any sense to perform the experiments at
all?

2. Automation through implementation of methods into commercial soft-
ware has been an important factor in the successful spreading of che-
mometrics previously. To what extent is omics data analysis suitable for
automation and implementation of such routines into software. Can the
data analyst participation be excluded with the right software at hand?

3. Some of the suggestions in this thesis invoke some changes in the tra-
ditional chemometric mindset, notably with respect to the exploratory
spirit.
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4. It is clear that omics experiments as a whole - not just data - are complex:
(1) They require expert knowledge across several scientific areas, and (2)
these competencies must be strongly coordinated in order to ensure suffi-
cient exchange of knowledge across the chain. In a traditional university
setting, (1) is probably the easiest to recognize, whereas the importance
of project management is much more overlooked. This topic is discussed
briefly.

Worth the effort?

For T H E B I O L O G I S T the high throughput nature of omics technologies is very
attractive, whereas the (conservative) data analyst may be considerably more
skeptical due to the limited number of samples. As has been shown in this thesis,
the combination of an un-targeted approach and few samples is difficult. As a
result the trade-off between an exploratory element and the statistical power
must necessarily result in a compromise.

I think it is important to realize this compromise, and in the design phase
identify where the given experiment should be located on this axis. This is also
important to communicate when publishing results.

Some disappointment can be felt in the omics fields, mainly due to lack of
general validity of discovered biomarkers. Great work has been done trying to
set publication standards for the various omics areas ([23, 56]) and I greatly wel-
come this work, particularly the requirements to state validation details, hence
forcing the focus upon this.

However, most likely the situation of having too few samples is not going
to change dramatically within the coming years. Nevertheless I do believe that
valuable findings can be made from omics experiments if they are optimized. I
think we have to accept that omics studies only rarely will provide very strong
conclusions; it is a basic condition but it does not mean we should not publish
useful results. I advocate a culture where authors do not oversell their findings
as valid markers if they are de facto only indications of such and a culture, where
the reader should not expect to find the ultimate truth in one paper claiming the
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discovery of a biomarker. Rather the repeated finding of a given marker across
experiments serves as the validation of it.

Automation?

The work flow of routine PLS data analysis has to a large extent been imple-
mented in commercially available software (see P A P E R I). By such software,
non-chemometrics specialists are capable of performing standard analysis.

However as P A P E R I I shows, the fact that non-skilled users apply the chemo-
metrical methods does result in some commonly occurring mistakes.

The question is to what extent omics analysis can be automated, as re-
quested e.g. in [41, 55]. Meaningful automation would both save time for
chemometricians and could enable non-chemometricians (i.e. T H E B I O L O -
G I S T or T H E A N A L Y T I C A L C H E M I S T) to perform the analysis themselves.

As shown in this work, the process of data preparation prior to analysis can
be a key factor for successful outcome of the experiment. This process is to a
large extent ad-hoc in the sense that every problem requires its own procedure.
However, some general work-flows and procedures can probably be established
for various types of data and problems and this way procedures can be semi-
automated.

As shown in this thesis (particularly P A P E R I I) the risk of automation is that
it tends to make the user forget his responsibility. Automation requires special
attention be paid to verification that the automatic routine produced useful
results. It is questionable whether a non-data analyst would be able to do some-
thing useful if the automation turned out to produce poor results.

In essence, I believe it is possible to make graphical user interfaces with
some sets of standard routines relevant for specific kinds of data types and to
build up some experience outside the data analytical world so that some of the
data analysis can be performed by e.g. the analytical chemist or the biologist.
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However in my view, omics data are generally too complex to be analyzed com-
pletely without the competencies of the data analyst.

Changes in the chemometrician’s set of mind

The exploratory spirit present within many chemometric environments has of-
ten resulted in a welcoming of many variables from experiments - to some ex-
tent in a “the more the merrier” fashion.

The fact that the number of samples represent a serious limitation - due to
the number of variables and due to the complexity of the data - is rather new
within chemometrics, and it has been a process to realize that we cannot be very
exploratory when we do not have enough samples to cover the large variation
present in human samples. Advocating strictly targeted analysis is a rather new
element within chemometrics.

Project management

All projects are of course different as dictated by their scope and combination
of involved people. Nevertheless, as a chemometrician, I have too often experi-
enced not to be involved in an omics project until the project initiator needed
someone to analyze his data. It is far from optimal not to be involved in the
design phase and in the pilot study phase, where the chemometrician’s input
may guide the process.

As illustrated in Chapter 4, an omics experiment usually involves partners
from several scientific areas, generally settled in different organizational struc-
tures and representing different scientific cultures. Such collaborations are com-
plex to manage, but in my point of view, it is necessary to put a higher emphasis
on this aspect in future omics projects.

One person (possibly a partner in the project) should be responsible for the
coordination and make sure the relevant competencies would gather at given
points in the process. This person should take care of communication and in
general be responsible for the overview of the project. A major challenge is that

86



usually none of the partners in an omics experiment is in a position to prioritize
the tasks for the other partners.

Figure 9.1 illustrates how the main actors in the omics experiment work
closely together during the experimental process of design, data collection and
data analysis. The project manager in the center should ensure that the relevant
parties communicate when appropriate.

½½½

Analytical
Chemist Biologist

Data
Analyst G.P.

Project 

 management

Figure 9.1: The omics experiment - processes and people
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Abstract In regression, cross-validation is an effective and
popular approach that is used to decide, for example, the
number of underlying features, and to estimate the average
prediction error. The basic principle of cross-validation is to
leave out part of the data, build a model, and then predict
the left-out samples. While such an approach can also be
envisioned for component models such as principal
component analysis (PCA), most current implementations
do not comply with the essential requirement that the
predictions should be independent of the entity being
predicted. Further, these methods have not been properly
reviewed in the literature. In this paper, we review the most
commonly used generic PCA cross-validation schemes and
assess how well they work in various scenarios.

Keywords Overfitting . PRESS . Cross-validation . PCA .

Rank estimation

Introduction

Cross-validation is a standard resampling technique used
in many chemometric applications. Results from cross-
validation often simplify the selection of meta-parameters,
such as the number of components, and also provide a
more realistic basis for residual and influence analysis.
However, most of the cross-validation techniques current-
ly used in component analysis have some built-in yet
seldom mentioned drawbacks, which can hamper the
interpretation of the results.

The concept of cross-validation was initially proposed
by Mosier [1] as a “design” for assessing the effectiveness
of model weights, and it has been explored mainly by Stone
[2], Geisser [3] and Allen [4]. In 1976 [5] and 1978 [6]
Wold laid the foundations for principal component analysis
(PCA) cross-validation, a method used to identify the
dimensions that best describe the systematic variations in
data. Eastment and Krzanowski [7] and Osten [8] later
developed an alternative method. Recently Louwerse and
co-workers [9] developed several cross-validation proce-
dures, based on the work of Eastment and Krzanowski, for
multiway models such as PARAFAC and Tucker.

In this paper a critical review of current cross-validation
techniques for component models is provided, focusing on
PCA. Some of the methods described have not been
described previously in the literature but have been
implemented in commercial software. This paper provides
a detailed description of the different implementations of
cross-validation. It is important, however, to note that many
software companies have included various ad hoc rules for
simplifying the decision about the number of components
to suggest. The implementations discussed in this paper
may differ in these rules. Therefore, it is not a review of
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specific software implementations, but rather a review of
generic types of cross-validation schemes.

The purpose of cross-validation, as described here, is to
find a suitable number of components for a PCA model.
Suitable implies that the model describes the systematic
variation in the data and preferably not the noise. The noise
can be loosely defined as any specific variation in a
measurement which is not correlated with any other
variation in the measured data. Thus, the aim is to find
the number of components for which adding more
components does not provide a better (in an overall least
squares sense) description of the data not previously
included. In this paper, as well as in the actual implemen-
tations of cross-validation, it will be assumed that the
residuals are not correlated across samples or variables.

Theory

In this section six cross-validation methods are described.
Four of these are commonly used in software, while two
additional ones are new proposals aimed at overcoming
some of the potential problems with the currently used
techniques. Some of the current methods have been
described in the literature previously, but none of them
have been compared to each other in detail. In the
following, no mention will be made of preprocessing, but
it is assumed that an appropriate preprocessing process is
applied before the analysis. In fact, preprocessing should
ideally be incorporated into the cross-validation scheme,
but to simplify the descriptions we have deliberately chosen
to look at models where no preprocessing is required. The
results presented will generalize to include preprocessing.

Row-wise cross-validation

This approach illustrates a cross-validation scheme similar
to the one used in the UNSCRAMBLER software (CAMO;
[10, 11]). A PCA model is sought for a data matrix X, and
in this approach each individual segment, consisting of a
defined number of whole samples, is left out in turn. In this
investigation, the segment will be restricted to one object
(one row of X); hence this is termed “leave-one-out cross-
validation.” For a maximum number of components F, the
following procedure is applied:

For number of factors, f=1,...,F

(1) for left-out sample(s) (or rows when more than one
row is left out) i=1,...,I

(a) Split X (I×J) into X(−i) and (xi)T, where X(−i) holds
all rows except the ith, and (xi)T is a row vector
containing only the ith row.

(b) Fit a PCA model to X(−i) by solving

min X �ið Þ � T �ið ÞP �ið ÞT�� ��2
f

ð1Þ
where �k k2f defines the squared Frobenius norm,
P �ið ÞTP �ið Þ ¼ I, and T �ið Þ;Pð�iÞ are of dimension
(I−1) × f and J×f, respectively, where J is the
number of variables.

(c) Project xi onto the loadings and find the scores of
the left-out sample as

ti
� �T ¼ xi

� �T
P �ið Þ ð2Þ

(d) Determine the residual variation of xi as

eið ÞT ¼ xið ÞT � bxið ÞT
¼ xið ÞT � tið ÞTP �ið ÞT

¼ xið ÞT � xið ÞTP �ið ÞP �ið ÞT
ð3Þ

(2) Collect all residuals in E (I×J×F); one I×J matrix for
each number of components

(3) Calculate mean residual validation variance and
correct for the degrees of freedom, resulting in the
mean predicted residual sum of squares (MPRESS):

MPRESS fð Þ ¼ 1

I J � fð Þ
XI XJ

e2ijf ð4Þ

Characteristics of row-wise cross-validation

Equations 2 and 3 show that the left-out data xi are used to
find the model of xi. Consequently, the residuals from the
model of xi are not independent of xi, which will result in
overfitting; i.e., the more components there are, the smaller
the residuals. This is not appropriate because the whole idea
of cross-validation is to avoid overfitting by estimating the
model independently from the data to be modeled. The
numerator in Eq. 4 is meant to correct for this overfitting,
but the underlying assumptions and hence validity of this
correction are not clear.

Another characteristic of the row-wise cross-validation is
that it enables the assessment of different types of sample-
specific errors. For example, by leaving out only one
replicate in each segment the repeatability can be assessed,
and by leaving out all replicates or possibly samples of, say,
a given day of analysis, the reproducibility can be assessed.

Cross-validation of Wold

The cross-validation method for PCA proposed by Wold [6]
relies on the special property of the NIPALS [12] algorithm
to cope with a moderate amount of randomly missing data.
In this cross-validation method a selected sequence of

1242 Anal Bioanal Chem (2008) 390:1241–1251



individual elements xij are left out in a diagonal pattern and
are regarded as “missing values.” A model is fitted to the
remaining data, and the fit of the model to the left-out
elements is calculated. The user has to choose the number
of segments, K. For the kth (k=1,...,K) segment, the element
numbers k, k+K, k+2K, etc., of the complete data set are set
to missing. The counting of elements is performed row-
wise (see Fig. 1). In this way, upon completing K segments,
all elements will have been left out once. The default
number of segments in commercial software is often seven,
and this number is also used here. This cross-validation
approach used to be implemented in the SIMCA software,
but a different proprietary method is currently used.

In this method one component is validated at a time. If
the first component is judged to be valid it is subtracted
from the full data set, and only the residuals are then used
to test whether the next component is valid.

The cross-validation method can formally be described
as follows. For a data matrix X (I×J) a PCA model is
sought. For the component, f, to be validated, the following
procedure is applied. For factor f

(1) Let X( f ) be the residuals after f−1 components, i.e.,
initially X(1)=X and subsequently X( f ) is the
residual matrix E( f−1) found in step 6.

(2) Calculate the sum of squared elements of X( f ):

SSx fð Þ ¼
XI XJ

x2ij fð Þ ð5Þ

(3) For the left-out segment k=1,...,K

(A) Split data X( f ) into X(−k)( f ) and X(k)( f ), where
X(−k)( f ) holds all observations except the elements
in the kth segment and X(k)( f ) holds only those.

(B) Estimate the next principal component (t(−k),
p(−k)) by fitting to X(−k)( f ) with the NIPALS
algorithm.

(C) Calculate the model of X(k)( f ) using

bxij fð Þ ¼ t �kð Þ
i p �kð Þ

j ð6Þ

(4) Find the total PRESS,

PRESS fð Þ ¼
XI XJ

e2ij fð Þ ¼
XI XJ

xij fð Þ � bxij fð Þ� �2

ð7Þ
(5) Form the ratio R

R fð Þ ¼ PRESS fð Þ
SSx fð Þ

ð8Þ

R<1 indicates that the predictions are improved with
the inclusion of the last component ( f ). If R>1, the
component did not improve the prediction errors.
Hence, the appropriate number of components is f−1.
Note that instead of using this specific rule, it is also
possible to use alternatives, such as looking for the
minimal PRESS, etc.

(6) Fit a PCA model (t, p) to the complete data set X( f )
with one component. Determine the residual variation
as E( f )=X( f )−tpT

(7) Increase f by 1 and go back to step (1).

Characteristics of Wold’s cross-validation

Wold’s cross-validation scheme provides both a way to
calculate PRESS by a specific leave-out pattern and a
criterion for the selection of the number of components.

From step (3) it can be seen that the cross-validation of
component f is based on a model where the first f−1
components are estimated from the complete data set and
only component f is estimated on a segmented basis. This
means that, when leaving out elements, the estimates of
these left-out elements bxij depend on the f−1 component
PCA model, where xij was included. Hence, the left-out
elements and their predicted values are not independent and
overfitting can be expected.

Cross-validation of Eastment and Krzanowski (EK)

In 1982, Eastment and Krzanowski [7] suggested an
approach that could be used to choose a feasible number
of components in PCA. The incentive was to create a cross-
validation approach that ensured that each data point was
not used at both the prediction and the assessment stages,
thus avoiding problems with overfitting. The approach
intends to use as much of the original data as possible in
order to predict a left-out element for each possible choice
of factors f=1,...,F (i=1,...,I and j=1,...,J).

In order to ensure that the residuals are independent of
the data element being predicted, the following scheme is
adopted. For each combination of i (1,...,I) and j (1,...,J),
one PCA model is fitted to X(−i) and another PCA model is

: Missing in 1st segment

: Missing in 2nd segment

Fig. 1 The pattern of missing values used in Wold cross-validation
for K=7
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fitted to X(−j); that is, they are fitted to the data with row i
left out and to the data with column j left out. The PCA
models are represented as singular value decompositions:

x �ið Þ ¼ U �ið ÞS �ið ÞV �ið ÞT ð9Þ
and

x �jð Þ ¼ U �jð ÞS �jð ÞV �jð ÞT ð10Þ
In Fig. 2, a graphical representation of the data for the

PCA model of X(−i) is provided, where the gray area
designates the part of the data (row i), not the part of the
model. Similarly, the model of X(−j) is created by excluding
the elements in column j.

It is apparent from Fig. 2 that the parameters in V(−i) and
S(−i) are not influenced by sample i. Likewise U(−j) is not
influenced by the jth column of X. From the model in the
figure, the “loadings” in V(−i) do not provide the means to
predict sample i. However, the scores in U(−j) which are
independent of variable j also contain scores for the ith
sample. Hence, by combining the two models, an estimate
of element xij can be obtained which is independent of the
value in xij. The crucial aspect of this approach is deciding
how to combine the two models into one estimate.
Eastment and Krzanowski [7] suggest using the following
combination of the two models

bxij fð Þ ¼
Xf

u �1ð Þ
i fð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s �jð Þ fð Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s �ið Þ fð Þ

q
v �ið Þ
j fð Þ ð11Þ

The square roots of the two sets of singular values are
used to accommodate for the possible differences in their
magnitudes. Some attention is required to avoid problems
with sign indeterminacies that can occur when matching
two different models. This sign incompatibility is mended
by what Eastment and Krzanowski called a “parity check,”
where the products of component scores and loadings, per
component, are given the same sign as the corresponding
product of the component scores and loadings found for the
full data.

The MPRESS( f ) expresses the mean difference between
the actual and the predicted value:

MPRESS fð Þ ¼ 1

IJ

XI XJ bxij fð Þ � xij
� �2 ð12Þ

In order to determine the number of components,
Eastment and Krzanowski introduced a diagnostic called
W, which compares the gain in MPRESS between two
levels of model complexity:

W fð Þ ¼ MPRESS f � 1ð Þ �MPRESS fð Þ
Dfit fð Þ � MPRESS fð Þ

Dr fð Þ
ð13Þ

where Dfit fð Þ ¼ I þ J � 2f is the number of degrees of
freedom lost in fitting the fth component and Dr( f ) is the
number of degrees of freedom remaining after fitting f
components. Prior to modeling, and with no centering, Dr

( f )=IJ, so after fitting f factors Dr fð Þ ¼ IJ �Pf
1 I þ J�ð

2f Þ. Originally [7], Eastment and Krzanowski suggested that
the factor f should be included as long as W( f )>1; this
threshold was later modified to a value of 0.9 by Krzanowski
[13].

Characteristics of the Eastment and Krzanowski
cross-validation

The rationale behind the Eastment and Krzanowski (EK)
approach is that the two PCA models can be combined. The
authors [7] argue that this is possible because the PCA
model is unique. However, the conclusion that the models
are comparable due to this uniqueness is based on a
misunderstanding. It is true that the PCA model is unique
and hence the same solution is obtained every time the
model parameters are estimated from one particular data
set. However, if the parameters are found from different
subsets, then different parameters are generally found.

As an example, consider a situation where there are
two components in a data set. In one set of samples, it is
mainly one phenomenon that is present; hence a PCA
model will primarily reflect this phenomenon in its first
loading. Another subset primarily reflects the second
phenomenon, and hence a PCA model would primarily
reflect the second phenomenon in its first component.
Therefore, even in the absolutely noise-free case, the
uniqueness of the PCA model does not imply anything at
all with respect to whether the same components of
different models can be compared. The components in a
bilinear model have rotational freedom. Uniqueness is
obtained in PCA by adding restrictions (orthogonality,
maximum variance per component). These additional
constraints will affect PCA models of different subsets
differently and will not yield, for example, the same first

Fig. 2 Eastment–Krzanowski (EK) cross-validation. Data for one of
two submodels is obtained by leaving out element xij. Likewise, the jth
column of X is left out, whereby X(−j), U(−j), S(−j) and V(−j) are
obtained
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loading vector when models are fitted to comparable but
different subsets of data. As expected, and as seen in the
simulation study below, this problem is most pronounced
for small amounts of data.

An additional, possibly minor, problem relates to the
parity check.The parity check is simple, but it is a source of
overfitting because it implies that the sign of the prediction
is chosen using information from the data element that was
excluded.

Louwerse et al. [14] note that EK’s estimates of xij, bxij,
are biased because the matrices S(−i) and S(−j) systemati-
cally underestimate S. On average, this bias is eliminated
by correcting S(−i) by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I= I � 1ð Þp

and S(−j) by a
factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J= J � 1ð Þp

[19].

Cross-validation by Eigenvector

This approach illustrates a cross-validation scheme similar to
the one used in the PLS_Toolbox software (Eigenvector) [15].
In this approach, PCA models are calculated with one or
several samples left out and then the model is used to predict
estimates of the left-out samples [16]. Assume, without loss
of generality, that leave-one-out cross-validation is used. A
PCA model is determined from the I−1 remaining samples.
For the left out sample, each variable is predicted indepen-
dently through the following procedure. First a score value
for the left-out sample is estimated in a least squares sense
using the J−1 remaining variables of that sample and the
PCA model where the jth row of the loading matrix has been
excluded. This score value combined with the PCA loading
matrix with all variable loadings included gives an estimate
of the kept-out element xij. In essence, this is a missing data
problem where the missing variable is predicted from the
model and the sample observation excluding the one variable
[16].

(1) Leave out one or several samples and calculate a PCA
model (T, P) on the remainder.

(2) For each factor f=1,...,F,
for the left-out sample(s) i=1,...,I, then
(a) for the left-out variable(s) j=1,...,J:

(i) Estimate the score as

t �jð ÞT ¼ x �jð ÞT
i P �jð Þ P �jð ÞTP �jð Þ

� ��1
;

where P(−j) is the loading matrix P found in step 1
with the jth row excluded. x �jð ÞT

i is a row vector
containing the ith row of x except for the jth
element.

(ii) Estimate the element x(ij) as bxij fð Þ ¼ t �jð ÞpTj ,
where pj is the jth row of p

(iii) Find the prediction error of the (i,j)th element
eij fð Þ ¼ xij � bxij fð Þ

(b) Estimate

PRESS fð Þ ¼
XI XJ

eij fð Þ� �2 ð14Þ

Characteristics of Eigenvector’s cross-validation

In contrast to the other methods, the PRESS values estimated
with Eigenvector’s method are actually independent from the
predicted elements. Furthermore, the Eigenvector method,
like the row-wise method, possesses the advantage that
sample-specific error measures such as repeatability and
reproducibility can be calculated based on leaving out
samples in different patterns. The least squares element of
the method requires that variables are correlated, and thus it
is particularly suited to “spectral type” data.

EM cross-validations

Some of the cross-validation techniques mentioned so far
display two significant problems. Either overfitting is
introduced, because the model with which left-out elements
are predicted is not independent of the left-out elements, or
an unintended additional error is introduced because the
rationale behind the method is not correct. Both of these
problems can be eliminated though, by properly designing
the cross-validation procedure as outlined below. The two
suggested methods are called expectation maximization
(EM) approaches in the following, because the remedies
suggested are special cases of EM [17].

Cross-validation based on an improved Wold procedure
(EM-Wold)

A revised cross-validation approach based on the Wold [6]
procedure is presented that removes the problem with the
original method by estimating all components simulta-
neously for each segment. Then, however, the NIPALS
approach for handling missing values is no longer feasible,
as this is only optimal for one-component models. Instead,
the full PCA models are calculated for each number of
components using imputation, as described by Kiers and
Bro [18, 19]. Unlike NIPALS, such an approach can
calculate several-component PCA models in a true least
squares sense even when data elements are missing. The
price paid for this is that the estimation depends on the
number of components, and hence solutions must be
calculated anew for each number of principal components.
The procedure is as follows. For factors f=1,...,F

(1) For left-out element k=1,...,IJ

(A) Split data into X(−k) and x(k), where X(−k) holds all
data except the kth element xk.
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(B) Fit a PCA model to X(−k) by solving

min X �kð Þ � TPT
�� ��2

f
ð15Þ

(C) Find the model of the whole data set as bX fð Þ ¼ TPT

(D) Determine the residual of the left-out element as
ek fð Þ ¼ xk � bxk fð Þ

(E) Calculate PRESS( f )

PRESS fð Þ ¼ 1

IJ

Xk¼IJ

ek fð Þð Þ2 ð16Þ

As can be seen, the prediction of the left-out element is
independent of the left-out element, and no additional error
is introduced by the estimation method because the PCA
model is estimated in a least squares sense (Eq. 15).
Algorithms for estimating the model with missing data in a
least squares sense are readily available, as described in the
literature [18, 19].

Cross-validation based on an improved Eastment
and Krzanowski procedure (EM-EK)

It is also possible to correct the procedure of Eastment and
Krzanowski [7] to take the rotation problems into account.
This correction consists of a simple remedy before match-
ing the scores and loadings. The assumption in the
Eastment and Krzanowski [7] approach is that for a given
left-out element, xij, the model of the element is defined by
the subspaces given by U(−j) and V(−i). However, the scale

and rotation is not defined immediately. In order to define
those, a model based on U(−j) and V(−i) is found to
maximize the fit to the data that have not been left out.
This is done through an iterative procedure where the
model of X(−ij) is determined from

bX ¼ U �jð Þ U �jð Þ
� �þ� �

X �ijð Þ V �ið Þ V �ið Þ
� �þ� �T

ð17Þ

Hence, we obtain a projection onto the spaces spanned
by the given scores and loadings without assuming that the
columns of these are pairwise-matched. As the element xij
in X(−ij) is missing, the above cannot be calculated
immediately. Rather, iterative imputation is used to deal
with the missing data in the following way. The missing
element is initially replaced with its original value. Other
values can also be used, but convergence is typically fastest
when the original value is used. Note though that the
original value does not affect the actual solution; it only
provides an initial estimate. Subsequently, the missing
element is replaced with the estimate from Eq. 17 and the
procedure is repeated until the missing element does not
change significantly. Upon convergence, an estimate of the
missing element is obtained which is in the same subspace
as that dictated by the Eastment and Krzanowski [17]
approach, but where the scaling and rotation ambiguities
have been resolved. In essence, this is missing data
imputation by expectation maximization [17].
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Selection of the number of components

The series of f-dependent PRESS values obtained from the
cross-validation form the basis for choosing the optimal
number of components. The row-wise and Eigenvector cross-
validations leave it up to the user to choose the number of
components, whereas Wold and EK provide explicit ways to
select components through the R and W statistics. Alterna-
tively, one may simply choose the number of components
representing either the global minimum PRESS value or the
first local minimum PRESS. The latter approach is often used
in practice. In the following we have applied all of these four
different criteria to all methods in order to assess the influence
of the selection method. It is worth noting that in many real
applications of PCA, visual interpretation of the cross-
validation results is used as an important guide when
selecting the right number of components. However, this is
not important in this study, where the focus is on the extent to
which cross-validation provides consistent results in general.

Hence automated selection of the number of components is
the only criterion used.

Simulation and discussion

The capability of the six cross-validation methods described
above was examined by performing a simulation study.
Datasets of rank one, three or five containing either 10 or
100 variables and either 10, 100 or 300 samples were
created and homoscedastic noise was added at a level of
either 1 or 10%. For the rank three and five datasets,
correlation between underlying loadings was set to either 0,
0.3 or 0.9. Figure 3 illustrates how low and high
correlations are reflected in the data structure. All combi-
nations of these parameters sum to 84 different dataset
configurations. The rank-one data cannot be set to have
different correlations between loading vectors as there is
only one loading vector, and so correlations were not varied

0

50

R
ow

-w
is

e

0

50

W
ol

d

0

50

E
K

0

50

E
ig

en
ve

ct
or

0

50

E
M

 W
ol

d

-6 -4 -2 0 2 4 6
0

50

GlobalMin

E
M

 E
K

-6 -4 -2 0 2 4 6

LocalMin

-4 -2 0 2 4 6 Z

W

-4 -2 0 2 4 6 Z

R
Fig. 4 Distributions of deviations from reference rank for method–criterion combinations. The reported numbers are the percentage of models
with a given deviation from the reference rank. Negative values correspond to underfitted and Z= zero components assigned

Anal Bioanal Chem (2008) 390:1241–1251 1247



for rank-one data. Ten different datasets were created for
each configuration, and all 840 datasets were subjected to
rank estimation by each of the six PCA cross-validation
approaches, resulting in a total of 5040 runs.

Since no offset was included in the data, all PCA
modeling was performed without the use of mean
centering (or any other preprocessing). Eight principal
components were calculated for each dataset and PRESS
or MPRESS values calculated as described above. The
cross-validation algorithms were implemented according
to the descriptions above; Wold’s using seven segments,
row-wise and Eigenvector using leave-one-out cross-
validation. For comparative purposes, success rates were
calculated on the basis of a binary (correct/incorrect)
comparison of the selected number of components and the
known rank of the dataset. The number of components
was selected by the following four criteria:

(A) Minimum (M)PRESS
(B) Wold’s R criterion (see Eq. 8). If R(F=1)>1 the result

is zero components.
(C) Krzanowski’s W criterion (see Eq. 13). If no W values

were found to exceed 0.9 the result is zero components.

(D) The choice of the first local minimum value of (M)
PRESS was also investigated, but a clear result was
not obtained and so this was kept out of the following.

Result of simulations

Figure 4 evaluates the cross-validation methods and criteria
across noise, correlation, and number of samples and
variables. It shows that W and R are the criteria best suited
to the Wold and Row-wise methods, but they tend to
provide conservative rank estimates. The simplest criterion,
GlobalMin, is not useful for Wold’s method, but it is very
well suited to the EK, Eigenvector and EM methods,
although it has a tendency to result in overfitting in the EK
case. In the following, the row-wise and Wold methods are
used in combination with the W criterion, whereas Global-
Min is used with the remaining methods.

It was expected that higher noise and higher correlation
would present greater challenges to the cross-validatory
rank estimation. Figure 5 suggests that this may be valid for
the correlation part, whereas—with the noise levels at play
here—a high noise level is only critical if correlation is also
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high, in which case all methods fail. In Table 1, Fig. 4 and
Fig. 6 the (noise,correlation)=(10%, 0.9) cases have been
excluded. Intrinsically, the rank-one configurations did not
contain these critical combinations, and all methods
performed well for rank-one data, irrespective of the noise
level and the number of samples and variables.

According to Fig. 6, a higher number of samples
improves the results slightly, whereas the number of
variables seems to have a considerably greater impact.
The EK method in particular performs poorly for a low
number of samples and/or variables, but the row-wise and
Wold methods also require many variables and samples to
provide reliable results. For an insufficient number of
variables (and samples) it is no longer clear which criterion
to use. The percentages in Figs. 5 and 6 and in Table 1 are

of course based on sample estimates. Ninety-five percent
confidence intervals will be at most ±3.7% around the
results in Table 1, and ±9.0% around the results in Figs. 5
and 6. Hence our main findings remain if we take into
account the ranges of these confidence intervals.

Although also influenced by the matrix size, the EM EK,
EM Wold and Eigenvector methods are clearly the best at
handling relatively small datasets, and GlobalMin is
consistently (across settings) the best criterion to use for
these methods. Each cross-validation method obtained an
overall success rate as listed in Table 1.

A short comment is given on computational aspects.
These were not the focus of this study, and so intensive code
optimization was not undertaken. Figure 7 shows how the
computer time was spent during the simulations; clearly, the
EM methods are very computationally intensive. Inherently
calculation time increases rapidly with number of elements
for these methods. It should be noted that eight principal
components were calculated for all datasets, which dis-
agrees slightly with the original outline of Wold’s method.

Real data: UV-VIS

A set of real process data was subjected to cross-
validation by the six methods. The data consist of UV-
VIS spectra for eight batches of the two-step chemical
reaction of 3-chlorophenylhydrazonopropane dinitrile

Table 1 Overall success rates for each tested cross-validation method
using the optimal criterion and excluding extreme noise and
correlation combinations

Method Success rate (%)

Row-wise 38
Wold 49
EK 34
Eigenvector 72
EM Wold 65
EM EK 81
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with 2-mercaptoethanol to form 3-chlorophenyl-hydrazo-
nocyanoacetamide and the byproduct ethylene sulfide
[20]. Prior to analysis, the original dataset was reduced
by extracting every ninth object and every second
variable, resulting in 31 samples and 201 variables.

Figure 8 shows the PRESS patterns obtained for cross-
validations of the batch 4 dataset, and since little variation
was found between batches, this is representative of the
differences between the methods. All PRESS patterns show
a decrease for three principal components, but after that the
picture differs. The row-wise method displays a gradual
decrease in PRESS as more components are added. The
result for Wold’s method looks similar, but for most of the
batches (five of eight) a very small PRESS increase was

detected for four principal components. Wold’s method is
the only one which had some noticeable batch differences
(not shown).

The EK method evaluated by the GlobalMin diagnostic
consistently suggests eight components. However, by using the
W criterion which was originally associated with the method,
we find that three components are suggested for all batches.

Eigenvector’s method suggests three principal compo-
nents in six of eight batches and four in the remainder.
Again, a steep decrease in PRESS is observed for three
components, but a clear increase in PRESS is also observed
following the suggested number of components, making the
manual choice of model complexity relatively simple. This
quality is even more pronounced for the EM Wold method,
which consistently suggests three principal components
throughout the eight batches.

The other EM method, EM EK, displays a local PRESS
minimum for three components, but the global minimum is
observed at six components. This slightly “bumpy”
behavior of the PRESS pattern after three components is
found to a greater or lesser extent in the results of all eight
batches. Nevertheless, three components is suggested for
four of the batches, and only the example in Fig. 8 suggests
that as many as six components should be included.

The figure illustrates the fact that rank estimation by cross-
validation consists of two parts: (A) formation of a PRESS
sequence and (B) selection of the optimal model based on (A).
The main focus of this study has been (A); however, it has
been necessary to automate (B) through the use of the criteria
described in this paper in order to summarize the results of the
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simulation. Many experienced users would probably choose
to select three components based on any (or most) of the bar
plots in Fig. 8, but with greater confidence for the EM Wold
than for, say, the row-wise pattern. As for the simulations
here, it is clear that for the less experienced user or for an
automated selection, the choice of method greatly affects the
resulting PRESS values.

Conclusion

There are many approaches that can be used to perform
cross-validation of PCA models. However, few of them are
trivial extensions of the original idea of cross-validation,
and therefore the question of whether they provide
meaningful results remains to be shown thoroughly in
practice. In this paper, the different approaches have been
described and their seldom-mentioned deficiencies have
been highlighted. When tested on simulated “spectral type”
data, theoretical weaknesses and method performance could
be linked. In terms of accuracy in rank estimation, the
Eigenvector and EM methods in combination with the
GlobalMin criterion outperform the other methods under
most circumstances, and were particularly superior in cases
involving few variables and samples. Considering compu-
tational effort too, the Eigenvector method represents a very
good choice based on the results of this study.
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Some common misunderstandings
in chemometrics
Karin Kjeldahla and Rasmus Broa*

This paper describes a number of issues and tools in practical chemometric data analysis that are often either
misunderstood or misused. Deciding what are relevant samples and variables, (mis-)use of common model diag-
nostics, and interpretational issues are addressed in relation to component models such as PCA and PLS models.
Along with simple misunderstandings, the use of chemometric software packages may contribute to the mistakes if
not used critically, and it is thus a main conclusion that good data analysis practice requires the analyst to take
responsibility and do what is relevant for the given purpose. Copyright � 2010 John Wiley & Sons, Ltd.

Keywords: PCA; PLS; misunderstandings; model interpretation; data analysis

1. INTRODUCTION

The field of chemometrics is successfully being applied within
many scientific branches. The chemometric tools enable the
analysis of complex multivariate data, whereby the extraction of
the relevant information is facilitated. However, getting meaningful
results requires not only meaningful data but also meaningful
analysis and understanding of the purpose of the analysis.
During the process of solving problems with data analysis, a

number of statistical numbers and more or less standardized
visualizations may assist the analyst in (1) selecting the right
experiments and measurements, (2) building the optimal model
and (3) interpreting the model. The appropriate usage of these aids
is important for the result, but years of extensive teaching
experience anddata analytical guidancewithinmany research areas
show that a number of common misunderstandings exist that may
hamper appropriate multivariate data exploration and modeling.
By highlighting some of the important problems, it is the hope

to eliminate some erroneous conclusions and improve the
performed data analysis in general. This paper focuses on some
common problems seen for component models such as those
obtained with PCA and PLS regression, and both optimization
and interpretation issues are addressed. First, some points about
which samples and variables to use are commented, then the
usage of model diagnostics for optimization and interpretation is
addressed, and eventually issues regarding model interpretation
are discussed. In essence, it is all about the use of sound, rational
thinking and responsibility instead of ‘push-the-button’ auto-
mated data analysis. Most of what is explained in this paper is far
from new, but it seems that it is necessary to reiterate these issues
from time to time. A number of papers have been written that
highlight similar issues and these are highly recommended for
further insight [1–5].

2. USING THE RIGHT SAMPLES AND
VARIABLES

The selection of samples and variables to include in the modeling
is of major importance for the results and for the applicability of

the model for future use. The purpose of the modeling should be
in strong focus during the phases of experimental design and
data modeling, so that the collected samples and variables reflect
the relevant variation for the given purpose—not necessarily the
samples most easily at hand or the full spectrum simply provided
by the instrument.

2.1. Samples

If the aim of an analysis is to build anMSPC (multivariate statistical
process control) model that should detect abnormal samples in a
production setting, the best sensitivity is obtained when the
samples used for building the model are as close to normal as
possible. Typically, this is what could be called a one-class
classification model, used for detecting whether a new sample is
similar to the defined normal class [6]. This is also relevant in
settings similar to MSPC such as diagnostic models or models
meant for monitoring adulteration.
Samples from Design of Experiments (DoE) represent the

extremes of the variation and should not be used for that type of
application. Rephrased using an oversimplified example: if a
model is meant to detect whether a new sample represents
normal-sized people, the model should be made from normal-
sized people, not the extremes.
Remarks:

� In an ideal case, the normal samples in an MSPC model would
follow the same underlying variation and hence be efficiently
modeled with, e.g. a PCA model if the samples are approxi-
mately following a multi-normal distribution [6].

� A well-controlled process exhibits purely random variation in
its quality parameters because the process control is handling
and removing the influence of all systematic effects. If this is
not the case, it is implicitly an indication that there is still a job
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for the engineers in controlling the process. This also means
that ideally, anMSPCmodel will describe a very low percentage
of the variation and be difficult to validate in a traditional
chemometric way. This is not necessarily the case, when the
MSPC approach is used, e.g. in medical diagnostics where
individual systematic differences are usually significant.

DoE samples can be strong players for building a good
regression model when focus is on accurate predictions. It is here
important that the design reflects the variation that is expected in
the future and within the range where good predictions are
important for the application. That is, there is no need to build a
model that predicts alcohol content with training samples
between 0 and 100% if only the range between 3 and 10% is
important. On the other hand, also keep in mind that extrapolation
outside the validated range is generally risky business.

2.2. Variables

Sometimes an enormous number of variables are at hand, e.g. in
spectroscopic applications. Typically, the individual variables are
not chosen based on relevance for the problem but simply

because the instrument provides them. A resulting model and its
interpretations can depend highly on the variables included in
the model. Therefore, only the variables relevant for the given
purpose should be included but that does not necessarily imply
intensive variable selection down to the very fewmost important
variables. Robustness and detection of relevant outliers are also
factors to consider in this matter.
Outliers detected from irrelevant data are irrelevant outliers as

shown with an example from spectroscopy (Figure 1), where
VIS-NIR spectra of beer samples are subjected to PCA.
Here, some samples are identified as outliers using the full

spectrum in a PCA model. However, PCA reflects the main
variations in data, and may as such be misleading if the main
variations are not relevant for the given purpose. In the example
in Figure 1, only a part of the spectrum is relevant for the quality
parameter of interest. Basing the PCA model on only this part
results in detection of completely different and much more
relevant outliers, those that are outliers in relation to the quality
parameter.
In untargeted analysis of, for example, omics data, the problem

is even more pronounced. In such a case, the majority of the
variables may be irrelevant for a stated purpose and hence

Figure 1. Use the relevant variables. (a) Full spectrum and (b) corresponding score plot. (c) Selected spectral window and (d) corresponding score plot.

The score plots are colored according to the value of the quality parameter of interest, and it is clear that the scores in (d) directly reflect this parameter.
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interpretations based on the total datasets should be performed
with utmost care.
In conclusion, using the right samples and variables is all about

spanning the relevant variation. Relevance can only be determined
based on an agreed understanding of what the specific purpose of
analysis is and what the relevance of the measured samples and
variables is in that context. This becomes highly relevant when
using model diagnostics such as ‘explained variance’ as shown
below.

3. MODEL DIAGNOSTICS

For assessment of overall model performance or for model
optimization such as deciding how many components to use or
selection of variables, model diagnostics form a good support
when applied properly. Software packages readily produce and
present a range of diagnostic numbers, which sometimes may
mislead the inexperienced user.
A great deal of model diagnostics is based on cross-validation;

it is thus essential that the validation is performed adequately
and produces reliable results. It has been stated several times that
cross-validation, and in particular leave-one-out cross-validation,
is optimistic and that care should be taken to reduce this bias
through reasonable segmentation, combination with other
techniques such as permutation tests, and cross-model validation
[7–10]. Such issues will not be described in detail here.

3.1. What explained variance explains

It is a commonly met misunderstanding in both PCA and PLS
modeling that higher explained variance or higher correlation
means a better model. The two measures are, in many situations,
directly linked, so that for a PLS model, the squared correlation
coefficient R2 can be interpreted as the proportion of the variance
of the reference values, which can be explained by the fitted line
[11].
One specific PCA model may explain 95% of the variation, and

upon removing an outlier, the model explains 57%, so the new
model is a poorer model? Percentages are relative numbers and
such are not meaningful to compare at all in this case because

they refer to two different datasets and hence the percentages
are relative to two different sets of samples. One or the other
model may be better, but this is impossible to state from a relative
measure such as a percentage or a correlation. Instead an absolute
measure has to be used such as the prediction error; preferably a
validated error. This is also illustrated by an example from univariate
regression (Figure 2). In this situation, removing an extreme sample
reduces the percentage variance explained but actually decreases
the error. This reflects the fundamental property of the explained
variance that it depends on not only the performance of the
model but also the distribution of the data. One extreme sample
may influence the model’s overall explained variance consider-
ably, thus masking a much poorer fit to the remaining ‘normal’
samples.
Remarks:

� Similar arguments can be made about comparing different
approaches to preprocessing. It is not possible to assess and
choose between different preprocessing methods solely by
how much variance a subsequent PCA model describes of the
preprocessed data.

� The same arguments hold for using correlations as for percen-
tage variance explained. Correlation is a relative measure and
cannot be meaningfully used for comparing different datasets.

An additional point to consider is the relevance of the explained
variance. It is of minimal interest that a model explains 90% of the
variation if the interesting information is within the remaining
10%. Figure 3 shows an example where a score plot of a model
that explains 73% of the variance is colored according to two
different external variables (male/female and ill/healthy). Clearly,
73% explains the major part of the male/female information, but
the ill/healthy information is not explained within these 73%.
In conclusion, explained variance is ameasure that only with care

should be used as a figure of merit during model optimization. On
the other hand, percentage of variance is indeed a useful measure
for conveying the quality of a final model once modeling decisions
have been taken. For example, it may be useful for application
specialists to know that the presented productionmodel explains
44% variation or that the model of the spectroscopic data only
explains 79% variation.
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Figure 2. Example of the noncomparability of percentages across different datasets. To the left, a univariate regression describes almost 100% of the

variation giving an error of 0.07. Upon removing the extreme upper-right sample, the explained variance is reduced, but so is the error.
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3.2. PLSDA: RMSECV is not useful

PLS used for classification, PLS-DA, is essentially just ordinary PLS
regressionwith a special binary ‘dummy’ y-variable. It may therefore
be tempting to optimize the model with respect to the root mean
square error of cross-validation (RMSECV) ‘as usual’, but this is most
often not optimal for classification purposes. RMSECVmeasures the
model error in terms of deviations from the dummy reference, and
larger deviations contribute more to the RMSECV than lower
deviations. However, this approach does not include any
considerations about the actual class borders or the classification
rules, and basically, the predictions are rather irrelevant.
The interesting thing is how the predictions or scores are used

for classification. The scores are the projections of the samples
on the basis given by the training samples, and this is the space
that in multiple, yet manageable dimensions best reveals the
similarity of the new sample compared to the training samples.
Here classification rules can be set and, on the basis of these,
misclassification rates can be calculated as a much better measure
of model performance.
Remark:

� The validation is always a critical point. By small sample sizes,
validated misclassification rates can be very sensitive to the
choice of segmentation; hence, it can be difficult to assess
whether an obtained rate of misclassification is substantially
biased relative to random results. If you toss a coin ten times,
and obtain 8 heads and 2 tails, does that imply the coin is
biased? [12].

3.3. PLSDA: Is the score plot validated?

Quite often—also inmany published papers—scores and loadings
from PLS-DA are shown and interpreted for a model that is not
validated! Sometimes it is argued that validation is not needed
because interest is only in visualization not classification, but this is
nonsense. If validation shows that themodel is not valid, it explicitly
means that parameters such as scores and loadings cannot be
trusted. For illustration, a PLSDAmodel is made on a random data
matrix of 100 samples� 100 variables, assigned 50/50 to two
classes, hence a completely meaningless datasets. As can be seen
in Figure 4, the score plot from PLS-DA shows excellent
separation between the classes. Validation of course shows that
the model is completely invalid.

4. MODEL INTERPRETATION

4.1. Loadings

It is sometimes heard that in a loading plot, two variables close to
each other are highly correlated. This is particularly relevant for
PCA loading plots, like the one in Figure 5, but goes for PLS
loading plots as well. This is not possible to claim unless the
explained variance of the individual variables is assessed. In
Figure 5 the two variables C-Glucose and H-MCHC are close to
each other but also close to (0, 0), which means that they are
(probably) not well explained by the two displayed principal
components. Consequently, very little can sensibly be concluded
about these two variables, and hence nothing about their
similarity/correlation.
Remark:

� It could actually be that C-Glucose and H-MCHC, are highly
correlated, but if they are measured in very low numerical
values and not appropriately scaled, this cannot be seen from
the loading plot directly. A correlation loading plot would
reveal that the variables are well-explained and that they
are then correlated.

Figure 4. Score plot for a PLSDA model of random data. Excellent—but
meaningless—class separation is obtained.

Figure 3. Two identical score plots (PC1, PC2) colored according to two different nonincluded variables: (a) male/female and (b) ill/healthy. Explained
variance¼ 73%.
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Another set of variables, H-Hgb and C-Calcium are also closely
positioned in the loading plot, but their more peripheral position
reflects that they are far better explained in the plotted
components. It is therefore appropriate to assume that they
are correlated. However, even with H-Hgb and C-Calcium one
should be careful about conclusions until the explained variability
of these variables has been checked. This two-component model
explains 72 and 64% of H-Hgb and C-Calcium, respectively, and
there is no way to know what holds for the remaining variation. A
scatter plot of H-Hgb and C-Calcium does therefore not show an
impressive correlation as could possibly erroneously be deduced
from looking only at the loading plot.

5. SCATTER AND BIPLOTS

It is common practice in chemometrics to make scatter plots of
e.g. scores in order to spot groupings, outliers or other types of
patterns in data. Scatter plots are excellent tools for doing so, but
there are some very simple premises that have to be known in
order not to misinterpret such plots. Geladi et al. [14] have written a
tutorial on this subject, the essence of which is paraphrased in the
following. Most of all, the scales on such a plot are crucial to be
aware of when making interpretations. Consider the map shown in

Figure 6 (left). This is a (fairly) distance-preserving plot of part of the
world. Three cities are highlighted: New York in USA, Copenhagen
(northmost in Europe) and Rome (southmost in Europe). As can be
easily seen, Rome and Copenhagen are closer to each other than to
New York. Consider instead the alternative plot in Figure 6 (right). In
this plot, it seems that New York is not much further away from
Rome than Copenhagen is. Clearly this interpretation is wrong and
clearly the reason is that the horizontal and vertical axes cannot be
compared. The scale is different on the two axes.
While the above example is quite simple, it is interesting that

when we move to a scatter plot of scores, many users will be just
as happy with assessing distances in any of the above plots. Both
of the above plots are correct, but they allow for different types of
evaluations. If a user wants to look at a score plot and say that two
samples are similar (implicitly meaning similar with respect to the
data input to the model) because the samples are closely
positioned, then the axes that the scores are plotted upon must
be comparable. Most programs will not be able to produce such a
plot because the plottingmostly just aims at filling the window, hence
stretching the axes and completely destroying the opportunity to
assess distances. There is a simple solution though: just avoid
stretching the axes and plot on a scale where the loadings are
normalized. Then the scores do reflect distances in the data space.
Remarks:

� If distances are to be assessed in a loading plot, then again, the
scale of the two axes should be comparable. Therefore, the
loadings should be re-scaled so that they are given in terms of
normalized scores.

� When it comes to bi-plots, the situation is a bit complicated
because it is actually not possible to make a plot that maintains
distances in both row and column space. The theory of bi-plots
[15] provides means for reasonable compromise plots where
the incorrectness is equally spread on scores and loadings.
Apart from this, the main fault, in bi-plots though, is still that
many software packages simply plot the scores and loadings
on top of each other filling out the entire window of the plot.
Clearly, this completely ruins the possibility for making detailed
meaningful interpretations of the plot.

Correlation loadings (or scores) can, to some extent, alleviate
some of the problems mentioned above, but while such are
useful, they also destroy some of the intrinsic interpretational
possibilities of scatter and bi-plots.

Figure 6. Two maps showing the same part of the world, either true to the surface distances (left), or with different scaling on the axes (right).

Figure 5. PCA loadings plot. H-Hgb and C-Calcium are highly correlated

within the variation explained by PC1 and PC2, whereas nothing similar is

certain about C-Glucose and H-MCHC regardless of their close position.

Data from Reference [13].
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5.1. Correlation and regression coefficients

An essential element of regression modeling is correlation.
Various correlations are used for assessment of model perform-
ance, variable selection and form the basis of model interpret-
ation. However, as already shown above, correlations are not
perfect measures for all purposes and should not be trusted and
used blindly. There are more pitfalls to be aware of; some of these
shall be highlighted here.
First of all, a correlation is basically a mathematical construc-

tion, which in many cases has a meaningful interpretation useful
for real-life data. This interpretation is not always as straightfor-
ward as it may appear. Correlations may be coincidental, so that
nonrelevant data by chance happen to display a good correlation
with a variable of interest. This is particularly relevant for datasets
of few samples and many variables as is mostly the case for omics
data, for example.
Figure 7 shows how the number of samples affects the

probability of obtaining a correlation of� 0.5–0.8 or higher when

comparing two variables consisting of only random numbers. If
we have a dataset of 30 samples and 50 000 variables (e.g.
microarray data), and we wish to see how each of the 50 000
variables correlate with another variable y (e.g. glucose concen-
tration), then if none of the 50 000 variables are actually causally or
indirectly related to y, we will still expect to find 8–9 variables that
have a Pearson’s correlation r higher than �0.7. We may then
mistakenly suggest these as biomarkers if adequate validation is
not implemented. The latter is not a trivial task for such data, as
cross-validation is generally of limited use [8].
Correlation does not imply causation! This is fundamental, but

it still seems to be forgotten sometimes. In some cases,
correlations are directly causal, such as the relation between
absorbance and concentration of an analyte where Beer’s law
applies. Such a direct relation is necessary for causal explanations.
In other cases, the correlation is only an observed correlation

as the relation between sales of ice cream and the number of
drowning accidents, where an underlying factor (the sun) is the
direct causal link. Such relations are true and absolutely valid to apply
for predictions, e.g. for health diagnostic purposes; one should just
be aware of the limitations with respect to interpretation.
It is consequently highly important to try to identify whether

the correlation is causal before explanatory conclusions are
made. Often confounding factors are present that are not easily
revealed or unexpected and hence not taken care of by the
experimental design. Below (Figure 8) is a classification example,
where the search for mass spectrometry biomarkers for ovarian
cancer would be seriously misled if the effect of sample storage
time (Figure 8a) is not recognized. Imagine that healthy samples
are collected first and samples from ill patients later. An apparently
near-perfect diagnostic model could then be developed (Figure 8b),
and the m/z¼ 6638.41 variable claimed a cancer biomarker, but it
merely reflects sample age [16].
Remark:

� Sometimes, thorough variable selection is performed with the
purpose of reducing the dataset to a very low number of
variables, which are then believed to be candidates as causal
markers. It may however be the case that noncausal variables
are stronger markers, and by this procedure they will thus be
among the few selected variables whereas the causal variables
may have been removed.
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Figure 7. Effect of sample size on the risk of obtaining a Pearson’s
correlation r of � 0.5–0.8 from random numbers.

Figure 8. High degree of confounding of storage factor with class membership gives optimistic classification results and misleads biomarker search.
(a) Effect of sample age on selected m/z variable. (b) With poor sampling due to unexpected confounding, a model on the full m/z-spectrum separates

samples from healthy (o) and ill (þ) patients well [16].
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Regression coefficients may be used for interpretation and
variable selection. The units of these match both the independent
variables, X, and the dependent variable y; consequently, the
scaling of X must be kept in mind when interpreting regression
coefficients. Interpretation is most straightforward if all variables of
X are brought to the same numerical level by scaling to unit
variance (‘auto-scaling’) or similar. In this case the regression vector
may reflect the relative importance of the individual variables, but it
may not be that simple. With spectral data, overlapping signals
introduce phenomena in the regression vector that disturb
interpretation. Seasholtz and Kowalski [17] elaborate neatly on
this; in essence, what happens to the regression vector in case of
overlapping (¼ nonorthogonal) signals is shown in Figure 9. As the
pure spectra of two analytes begin to overlap, the ideal
regression vector no longer looks like the pure spectrum
because negative parts and shifts in position of peak maximum
are introduced. The presence of such phenomena may blur
interpretation seriously. Similar problems occur for nonspectral
data. For example a correctly estimated negative regression
coefficient can easily be obtained for a variable that is positively
correlated to the response.

6. CONCLUSION

In this paper we looked at a number of commonly occurring
mistakes in the use of chemometrics. Generally, the problems

often appear to be a result of a combination of misunderstand-
ings and noncritical push-the-button analysis. What often
happens is that the software readily throws plots and diagnostics
in the face of the user, and the inexperienced user is inclined to
apply these rather uncritically. Using well-known, widely used
diagnostics seems safer and more ‘correct’ than sound reasoning,
although the latter is often preferable. The only way to go is to take
responsibility: decide what is relevant by support of biological/
chemical knowledge and sound reasoning and always keep the
purpose of the modeling in focus!
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vector.
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We present a novel approach for the analysis of transcriptomics data that integrates functional annotation of
gene sets with expression values in a multivariate fashion, and directly assesses the relation of functional
features to a multivariate space of response phenotypical variables. Multivariate projection methods are used
to obtain new correlated variables for a set of genes that share a given function. These new functional
variables are then related to the response variables of interest. The analysis of the principal directions of the
multivariate regression allows for the identification of gene function features correlated with the phenotype.
Two different transcriptomics studies are used to illustrate the statistical and interpretative aspects of the
methodology. We demonstrate the superiority of the proposed method over equivalent approaches.

© 2008 Elsevier Inc. All rights reserved.

Introduction

Gene expression profiling is used to study the gene regulatory basis
of phenotypic or developmental characteristics. Statistical analysis of
transcriptomics data is normally addressed through a two-step
process: first, a statistical test is performed to derive a P value for
the association of individual gene expression values to the phenotype
or experimental condition(s), and a number of bsignificant genesQ are
selected on the basis of an arbitrary P value threshold. Most commonly
used methods apply modifications of the t statistics or ANOVA to
generate hypothesis testing of differential expression [1–4]. Secondly,
selected genes are further analyzed to identify their relevant
association to cellular functionalities [5,6]. Fisher's exact test, the
Kolmogorov-Smirnov test, or the chi-squared are common statistics to
identify functional classes with a significant enrichment within the
pool of differentially expressed genes [7]. This widely used approach
presents a number of drawbacks. On one hand, the univariate nature
of the by-gene statistical assessments implies that any informative
correlation pattern within gene expression will be ignored. On the
other hand, strong P value corrections need to be applied to deal with

the concomitant multiple testing scenarios and this can seriously
hamper the identification of significant features on large datasets [8].
Furthermore, as functional assessments—which paradoxically have
their foundation on the correlated nature of gene activity—are
performed after univariate gene selection, results are dependent on
the P value cutoff of choice, which can be problematic. Thus, too strict
P value thresholds may lead to univariately nonsignificant genes (that
are in fact significant in the multivariate space, but remain
undetected) while too permisive cutoffs may result in multivariate
important features getting lost among irrelevant information. Finally,
when the target phenotype is not composed by a single variable but a
space of different measurements (e.g., age, gender, different clinical
parameters), the evaluation of differential expression under a
univariate strategy can imply multiple and difficult assessments.

Multivariate approaches to gene expression analysis try to overcome
these limitations. Principal component analysis (PCA), factor analysis, and
multiple correspondence analysis are multivariate space reduction
methodologies that exploit the correlation structure in the data to
identify relevant patterns of variation [9,10]. These approaches have been
applied to the analysis of transcriptomics data and have showed their
potential in capturing relevantassociations in themultivariate expression
space that would escape to univariate analysis [11–13]. Several authors
have proposed different strategies for deriving gene-associated
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significance values of differential expression in this multivariate analysis
context. Lu et al. [13] used the Hotelling T2—a multivariate extension of
the univariate t statistics—to select significant genes, and proposed a
recursive method to deal with the singular data structures that appear
when the number of variables greatly exceeds the number of observa-
tions. Landgrebe et al. [14] applied ANOVA on PCA results to identify
components with a significant difference between experimental groups
and applied a VIP-like statistics to evaluate component significance.
Nueda et al. [15] employed the gene leverage along with a permutation

test to find significant contributions to the multivariate projection. In all
these examples data analysis focuses exclusively on expression values
and does not incorporate a priori knowledge. Approaches that consider
the functional role of geneswhile trying to capture the cooperative acting
of the set of genes as a whole are, e.g., the so-called gene set methods,
suchas theGSEA [16] and FatiScan [17]. In thesemethodologies, genes are
ranked according to a measure of differential expression and the
enrichment of functional classes towards the extremes of this ranking,
rather than a single group of genes, is tested. Thesemethods have proven

Fig. 1. PCA analysis of toxicogenomics data. Samples are labeled by the treatment group: HI, high bromobenzene dose; ME, medium bromobenzene dose; LO, low bromobenzene
dose; CO, placebo; UT, untreated control. _6, _24 and _48 denote hours of administration. Closeness in the projected space indicates similarity between samples. (a) PCA score plot
with gene expression data. (b) PCA score plot on physiological variables. (c) PCA score plot on functional variables.
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to be very sensitive as they do not require genes to be significantly
declared, but still follow a prior univariate test to generate the gene rank
which, on the other hand, can normally only be derived for two-class
problems. Recent work has tried to combine multivariate statistics with
functional assessment toovercomesomeof the limitationsof thegene set
methods. Kong et al. [18] proposed a methodology in which functional
expression submatrices—i.e., the set of gene sharing the same function—
were used to create projected functional subspaces which subsequently
were tested by Hotelling T2 statistics for their ability to separate between
treatments. The same basic idea, but with a different statistical approach,
is followedbyNettleton et al. [19]. These authors apply themultiresponse
permutation procedure (MRPP) [20] to test against the null hypothesis of
invariant distribution of gene expression among different treatment
classes. Different in their purpose are the methods which combine
multivariate expression with gene function to identify significant co-
occurrences of functional classes [21,22] or predict gene function from
transcriptomics data [23,24].

Still, all thesemethodologies dealwith a single response variable—at
twoormore levels—if any, to evaluate significant functional associations.
Very little has been done in the multivariate analysis of complex
phenotypic determinations that follow transcriptomics profiling. Such
data are of special relevance in biomedical research where composite
clinical framesneed to beunderstood in the lightof gene activity [25,26].

In this work we present a novel approach for the analysis of
transcriptomics data that integrates functional annotation and
expression values in a multivariate fashion and directly assesses the
relation of functional features to a multivariate space of response
variables. Our method benefits from the correlation patterns between
both gene and gene functions to identify a functional signature that
best predicts the phenotypic outcome.

Results

Troxicogenomics dataset

PCA analysis of both gene expression data (Fig. 1a) and phenotypic
variables (Fig. 1b) revealed a first component of variability that

basically differentiates the high bromobenzene dose treatment at 24
and 48 h from the rest of the conditions. A pretty similar PCA score
plot was found for gene expression and phenotypic variables,
indicating that the major pattern of the variability in both datasets
had similar structures and related to the intensive administration of
the drug.

The initial GO term filter procedure generated a total of 1140 GO
terms from the three main GO branches. After PCA-based transforma-
tions 823 functional components were created with an average
explained variance of 40k. In most cases GO terms were represented
by one functional variable and only in a few cases up to two variables
were derived by a single functional class. Table 1 summarizes the
results of the analysis procedure.

PCA analysis of the new matrix of functional variables showed a
projected space similar to that obtained previously with gene
expression and clinical data (Fig. 1c), but explained variance for the
first and most discriminating component was clearly higher (46k
with functional variables versus 20k with gene expression data),
indicating a more compact signal in the transformed data. PLS (partial
least squares) regression was then applied to relate the measured
physiological parameters to the new space of functional variables. The
number of components was selected by leave-one-out cross-valida-
tion, resulting in a 7-component model with maximal overall
predicting value. Analysis of the R2, Q2, and VIP parameters for
individual physiological variables permitted the identification of
differences in relation to the functional data (Table 2). Variables
such as ASAT, bilirubin, LDH, and ALAT showed important contribu-
tions (high VIP) and were well predicted by the model (high Q2),
which means that these parameters are highly related to the gene
functional response triggered by the toxic compound. Other variables
such as total protein or albumin were low contributors to the model
and failed to be predicted, indicating their poor association to the gene
expression pattern revealed in the analysis. These variables were
removed from the final PLS model which obtained an average
prediction error of 0.58 and a determination coefficient R2 of 0.75,
both highly significant (P value ~ 0). It is worth noting that R2 values
were in general high, also for poorly predicted variables, which

Fig. 1 (continued).
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illustrates the optimistic nature of this parameter to evaluate the
validity of a regression model.

Graphical analysis of the PLSmodel discovers further aspects of the
data. The score plots associated with the functional and physiological
data matrices showed a stronger differentiation between the high
bromobenzene doses at 24 and 48 h and the remaining samples
(Figs. 2a and 2b), indicating that the physiological response to the
gene expression effects of toxic compound is mainly concentrated
under these conditions. Additionally, the Y biplot of the PLS model
(Fig. 2c) revealed a positive correlation (same orientation in the
projected space) of these high toxicity levels with the most responsive
cellular compounds, while other parameters, such as glucose and
kidney weight, showed a negative relationship. In fact, increased
levels of ASAT, bilirubin, LDH, ALAT, and phospholipids have been
associated with the response to xenobiotics and are considered as
markers of toxicity [27], while plasma glucose concentrations tend to
decrease for the imbalance in energy requirements [27].

Selection of significant functional variables in the PLS model was
done by resampling methods. Fifty functional classes were selected at
a P value b 0.05. Functional variables are represented in the Y biplot
by open dots (Fig. 2c). Significant variables are depicted colored.
Significant GO terms include response to stimulus, heme binding, fatty
acid metabolic process, oxidoreductase activity, glutathione transferase,
apoptosis, ribosomal unit, and cytoskeleton (see Supplemental Material
T1 for a complete list). Fig. 3 shows the DAG of the significant
functional terms corresponding to the Biological Process GO branch.
Significant functional categories extensively explain the cellular
adaptative response to drug administration which includes conjuga-
tion to glutathione by glutathione transferase, modification in
oxidative, heme containing enzymes, activation of the ribosome
machinery for protein synthesis, and cytoskeleton reorganization [27].

Breast cancer dataset

The breast cancer dataset contained nearly 10 times the number
of probes of the toxicogenomics dataset. Still data transformation by
PCA on functional classes rendered a not very different compression
result: 1901 functional variables with an averaged explained variance
of 44k (Table 1). PCA and PLS score plots of both gene expression and
functional data showed a different distribution of p53+ and p53-
samples along the first component, which was more pronounced
when samples were labeled by their ER status (Figs. 4a and 4b). This
is in agreement with observations in the original work on the
incompleteness of the p53 sequence determinations to establish the
p53 deficiency status in breast tumors [28]. The PLS analysis with
functional variables resulted in a 3-component model with signifi-
cant Q2 and R2 parameters. Again, only a subset of clinical variables
was well predicted by the model, namely the p53seq, ER status,
histological grade, and PgR status for which the mean R2 and Q2 were
0.45 and 0.30, respectively (Supplemental Table T2). Furthermore, the
Y loading plot of the PLS model showed a negative correlation
between the p53 genotype and the ER status and histological grade
(Fig. 5), which has been described in previous reports [29]. Sixty-five
significant functional variables were detected by resampling. The
corresponding Gene Ontology terms pointed to functions related to
the immune response, cell division and proliferation, cytoskeleton
organization, estrogen receptor signaling—already highlighted by
Miller and co-workers [28]—and also to novel functional activities
such as activation of JNK activity, fiber development, and chemokine
activity. The complete list of significant functional terms in the breast
cancer study is provided as supplemental material T1.

Comparison with other functional assessment methods

We compared the functional class results in the toxicogenomics and
breast cancer examples, respectively, to two traditional univariate
pathway analysis methods, namely the enrichment analysis by the
Fisher exact test [30] and the Gene Set Enrichment Analysis provided by
the FatiScan [17]. Additionally, we compared our results in both data
examples to those obtainedwith themultivariate approach proposed by
Konget al. [18]where theHotelling T2 statistics is used tofind treatment-
associated significant differences between functional class-defined gene
expression submatrices. GO term comparisons were done using the
Blast2GO software [31]. In contrast to our strategy, all comparing
methodologies required the selection of two contrasting conditions—HI
bromobenze treatment vs control in the toxicogenomics example, and
p53seq label for the breast cancer study—to define the analysis. In both
study cases, traditional univariate approaches provided a reduced and
semantically less rich, i.e., consisting of more general terms, set of
significant functional classes (see Supplemental Table T1). On the
contrary, the Hotelling T2 method by Kong et al. consistently generated
a far too large selection of GO classes (256 and 1520 GO terms for
toxicogenomics andbreast cancer datasets, respectively)which included
most of the functions detected as significant by our method and many
others suspiciously false positives, such as neural activity-associated
processes in the case of the toxicogenomics liver samples and eye and
bone specific functions in the case of the breast cancer data. Detailed
information in functional results is provided in Supplemental Table T1.

Table 2
PLS model parameters for the Y data structure (physiological variables) of the
toxicogenomics dataset

Physiological variable R2 Q2 VIP

ASAT 0.94 0.81 5.54
Bilirubin.tot 0.89 0.67 5.02
LDH 0.92 0.67 5.66
ALAT 0.90 0.66 5.27
Phospholipids 0.81 0.61 4.16
Liver.BW 0.79 0.51 3.23
Liver 0.72 0.48 2.38
Body.Weight 0.59 0.43 2.14
Glucose 0.58 0.43 2.69
Creatin 0.72 0.43 4.41
Kidney.BW 0.61 0.39 2.76
GSH.corr 0.57 0.37 3.03
Triglycerides 0.63 0.36 1.77
Cholesterol 0.67 0.35 3.64
Urea 0.54 0.27 1.97
ALP 0.72 0.27 3.05
AG.ratio 0.59 0.15 3.05
Tot.Protein 0.53 −0.03 2.85
Kidneys.weight 0.20 −0.09 0.78
Albumin 0.38 −0.12 1.98

Table 1
Quantitive figures in the analysis procedure of the toxicogenomics and breast cancer datasets

Origina data PCA transformation to funcional data PLS model

Probes Annotated
GO terms

GO term
selection

Functional
variables

Mean expl.
var.

Mean GO
level

No. comp. Average R2 Average Q2 Significant
funct. vars.

Toxicogenomics 2665 7411 1140 823 0.4 6.7 7 0.75 0.58 50
Breast cancer 22283 10940 3129 1901 0.44 6.2 4 0.45 0.3 65
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Discussion

The proposed method integrates in one analysis three basic elements
of transcriptomics studies: gene expression data, functional annotation,
and phenotype characteristics, providing a direct relationships between
gene function and response variables. The integrative analysis of
transcriptomics data has been the subject of recent statistical develop-
ments [18,32–34]. Our method differs from other approaches in that it
translates gene expression to a distinct expression signature of the
functional class. By applying PCA on gene sets that share a function, the
major expression patterns associated to the functional class can be
identified and used as novel variables to study the phenotype. With this
approach, two potentially critical problems can be overcome based on the
assumption that important genes are correlated to similar genes. First of
all, theunimportantgenesaredramatically reduced innumberswhichcan
be decisive to be able to detect significant variations. Secondly, the
important (as well as unimportant) variation is expressed in a reduced
form by scores from principal component analysis. Hence, ideally, each
phenomenon appears only once and therefore has a better chance of
influencing the further analysis. A key element to achieve this is the
criterion for selecting Gene Ontology terms and functional components.
We applied a simple filtering procedure on the set of initial GO terms to
avoidannotation redundancies thatarise fromthehierarchical structureof
the Gene Ontology. In this way candidate GO terms are guaranteed to
collect at least partially different annotation sets. More important even is
the criterion for selecting functional components. Component selection in
dimension reduction approaches are habitually based on cross-validation
or scree-plot analysis [35]. These procedures consist of building and
evaluating different models by leaving out one or more observations that
are then predicted by the model built, or using as many components as
needed to reach a given amount of explained variance. In our case, the
purpose of component selection is to identify a relevant expression
features of the functional class, rather than to test prediction ability or
sufficiently explain the functional submatrix. Therefore we choose a
criterion that would select functional variables when they collect an
amount of variance above what could be considered random noise. The
effect is an important reduction in functional classes from the original GO
set and a selection of terms of medium hierarchy depth level (mean value
around 6.5) with a sufficient explanatory capacity (~40k on average).

Compared with common univariate statistical approaches for the
assessment of gene functional enrichments [5,16,17], the method
proposed in this work differentiates for its consideration of the
coordinative behavior between functional classes—not only within—
and therefore potentially capturing the cooperative activity of functional
processes. This implies that covariance between genes is particularly
stressed in our approach, since a functional class of differentially
expressed genes but not correlated gene members might not be
detected by ourmethod but could be identified by a univariate strategy.
Compared to another published multivariate method, our approach
seems to achieve a good trade-off between sensitivity and selectivity in
the selection of significant functional classes.Wepostulate that the two-
step strategyof ourmethod—creation of functional variables followedby
PLS inference—and significance criterionbasedon thedistributionofVIP
values of the randomized PLS models are key for obtaining a sensible
selection of functional variables. The simple randomization of expres-
sion values in functional submatrices would tend to create in too
compacted Hotelling T2 null distributions that would declare as
significant an excessive number of variables in the Kong et al. method.

Furthermore an additional aspect in our approach is that the analysis
is not restricted to pairwise comparisons between conditions, but it can
evaluate the composite phenotypedynamically and for the relationships
within outcome parameters. This last consideration of multiple
phenotypic characterizations in microarray datasets was likewise
addressed by Fellenberg et al. [36]. In this work, Correspondence
Analysis was used to study relationships between transcriptomics data
and extensive sample annotations. The authors developed an interesting

method to extract relevant phenotypic characteristics and map them to
gene expression features by multivariate projection methods. However,
this work does not incorporate the gene functional information which
can provide amore interpretable result, in terms of biological processes,
to the relationship phenotype-transcriptome, and also does not exploit
an inferential relationship, such as PLS does, to achieve an optimized
projection of the gene expression and the phenotypic spaces.

All together, our results indicated that the proposed method is
effective in extracting informative functional signatures that differ-
entially correlate with diverse aspects of the phenotype. We believe
that this approach will be of great help in the study of the molecular
mechanisms behind the observed characteristics of organisms and to
unravel genotype-phenotype functional relationships.

Material and methods

The proposed method

Schematically, our proposal uses multivariate projection methods
to obtain new correlated variables for gene sets which share a given
function. These new bfunctional variablesQ are then used to perform
a multivariate regression on a set of response variables. The analysis
of the principal directions of the multivariate regression allows for
the identification of gene function features correlated with the
phenotype. The proposed method consists of the following steps:

1. Find the functional annotation of the genes in the transcriptomics
dataset. For each functional term, create a bsubexpressionmatrixQ
with all associated genes.

2. Performprincipal component analysis in eachof thenewexpression
matrices and select a numberof components that collect nonrandom
variation.

3. Collect the PCA scores of the selected components into anewmatrix
of bfunctional variables.Q These functional variables represent
coordinative expressionpatterns of genes associatedbya functional
label.

4. Use this newmatrix to perform partial least square (PLS) regression
on the response variables.

5. Select significant functional variables in the PLS by bootstrap.

In principle, any functional vocabulary can be used to elaborate
functional variables. In this work we have taken the Gene Ontology
scheme (http://www.geneontology.org) as it is the most extensive
vocabulary for the description of gene function. We considered all
termspresent in theDirectAcyclicGraph (DAG)encompassedby thegene
collection of the transcriptomics datasets but removing all annotation
redundant terms. A term is considered annotation redundant within a
given gene collection if it has a child termwith identical gene annotation
set. For example, if GO:0006915 (apoptosis) has 15 annotated genes and
parent termGO:0012501 (programmed cell death) back-inherits these and
only these 15 genes, then programmed cell death is considered annotation
redundant and removed from the initial set of functional classes.

Principal component analysis projects a data matrix into a space of
lower dimension while keeping most of the variability in the original
data [9].

The PCAmodel for each functional class can be expressed in matrix
notation as

X ¼ ABT þ R;

where A (I×F) is the matrix collecting the F functional variables, B
(J×F) is the loading matrix that indicates the importance of each gene
on each functional variable, and R is the residual matrix. Dimension
reduction is possible when there exists a correlation structure in the
dataset, i.e., where there is a sufficient number of genes with
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correlated expressions. In this sense, PCA can be considered as a
summarizing method and in our approach the profile given by the
observations scores of each principal component reflects a coordi-
nated behavior of a group of genes within the functional class and
defines the so-called functional variables. Selection of functional
variables is done based on the amount of variance explained by the
corresponding component, normalized by the number of genes in

the functional class. Components—i.e., functional variables—are
selected in this case if their normalized variance is greater than
the average gene variance of the complete dataset.

The relationship between functional variables and phenotypic
variables is analyzed by partial least squares [10]. PLS is a dimension
reduction regression approach which finds a projected space that
maximizes the correlation between independent and dependent data

Fig. 2. PLS analysis of toxicogenomics data. Samples are labeled by the treatment group: HI, high bromobenzene dose; ME, medium bromobenzene dose; LO, low bromobenzene
dose; CO, placebo; UT, untreated control. _6, _24 and _48 denote hours of administration. (a) X_score plot showing the relationships between treatments according to the dimension
reduction of the functional data. (b) Y_score plot showing the relationships between treatments according to the dimension reduction of the physiological variables. (c) Y_ biplot
shows the projection of both functional and physiological variables. Variables poorly explained by the model are given in gray. Functional variables are represented by dots and
colored when significant.
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structures, as well as the explained variability within both
data matrices.

The PLS models the data through the use of the following
expressions,

T ¼ XW4 ¼ XWðPTWÞ−1

X ¼ TPT þ E

Y ¼ TCT þ F

where X and Y are the matrices of functional and physiological
variables, respectively. T is the matrix that maximizes the covariance
betweenX and Y, P the loadingmatrix forX, C the loadingmatrix for Y,
W andW* areweightingmatrices that indicate the importance of each
functional variable in the new projected space, and E and F the
residual matrices for X and Y, respectively.

Each component of the PLS model represents a pattern of
variation that relates independent and dependent variables. There-
fore, by analyzing the weights of functional and response variables
in the PLS model we can identify gene function features that are
associated with the observed phenotype. The significance of the PLS
model is habitually given by the R2 and Q2 statistics, which indicate
respectively the explanatory and predictive power of the model.

The R2 is defined as the fraction of the total sum of squares which is
captured by the model. For a model with F components,

R2 ¼ SSMF

SST
;

where SSM is the sum of squares of the model with F components and
SST is the total sum of squares.

Q2 parameter is given by

Q2
cum Fð Þ ¼ 1−

PRESS Fð Þ
SST

PRESSF ¼
XI

t¼1

r2i ;

which indicates the sum of squares of the prediction errors brQ for the
observations not included in the model during the cross-validation
procedure.

Furthermore, the importance of each functional variable in the
model can be computed by the VIP parameter, which is the sum of the
contributions of the variable to the model components moderated by
the weight of the component. This VIP parameter computes the
influence on Y of every term xk in the model, according to

VIPFK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XF

f¼1

w2
fk4 SSYf−1−SSYf

� �� �
4

K
SSY0−SSYF

vuut :

Finally, we include a permutation test to determine the probability
of the computed model parameters to occur by chance and to select
significant functional terms. This permutation is performed on the
original datamatrix and therefore affects the steps of generation (PCA)
and selection (PLS) of functional variables.

Datasets

We have applied the proposed method to two different datasets
The first dataset corresponds to a toxicogenomics study in which

the effect of bromobenzene in liver toxicity in rats is analyzed [27]. In
this experiment, rats are administrated the drug bromobenzene at
three different doses (high, medium, and low) and liver/blood/urine
samples are taken after 6, 24, and 48 h of treatment. There are control
(no administration) and placebo (only drug vehicle administration) rat
groups. For each experimental condition one to three rats were taken
for gene expression profiling and microarray experiments were done
with a dye-swap design on a custom cDNA microarray. Gene
expression information is available for 2665 genes. Additionally,
physiological and morphological determinations were conducted on
the same rats, including body weight (g), kidneys weight (g), kidney/
BW (g/kg), liver (g), liver/BW, bilirubin tot, ASAT, ALAT, LDH, albumin
g/L, ALP (U/L), creatin umol/L, cholesterol (mmol/L), glucose (mmol/L),
phospholipids (mmol/L), triglycerides (mmol/L), tot.protein (g/L), urea
(mmol/L, A/G ratio, GSH corr. (M) [27].

The second dataset is a breast cancer study by Miller and co-
workers [28]. This work explores the relationship between the p53
(TP53) pathway and breast tumor severity. The Affymetrix U133 A
and B human GeneChips (~25,000 probes) were used to assess the
genome-wide transcriptome profile of 251 primary invasive breast
tumors for which detailed information on p53 status (p53+, mutant;

Fig. 2 (continued).
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Fig. 3. Gene Ontology Direct Acyclic graph of the pool of Biological Process significant terms detected by the PLS model on functional variables. Term color intensity is proportional to the importance of the functional class in the PLS model.
Hexagonal nodes are the actual selected GO terms. For a fuller view of this figure, please see Appendix A.
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p53-, wt) was available. Additionally tumors were characterized by
their estrogen-receptor (ER) status, Elston histological grade, PgR
status, age at diagnosis, tumor size (mm), lymph node status, DSS
TIME (disease-specific survival time in years), and DSS EVENT
(disease-specific survival event; 1=death from breast cancer,
0=alive or censored).

These two datasets represent two analysis scenarios. The
toxicogenomics dataset contains a multifactorial experimental
design with strong gene expression signals associated to the
treatments. A relative low number of genes and a wide array of
response variables are present. The breast cancer dataset illustrates a
typical cancer study with a large number of cases and a genome-wide
transcriptomics profiling. A few clinical parameters were evaluated
for each patient and gene expression signals are expected to be more
diluted.

Data preprocessing and analysis

The toxicogenomics dataset was obtained directly from the
authors, normalized by lowess, and centered genewise for each
dye-swap pair as in [37]. Breast Cancer Affymetrix data were
downloaded from the GEO database as global mean normalized
data. Physiological/clinical variables were scaled in all cases and
missing values were imputed by the kth nearest neighbors
algorithm [38]. Gene Ontology functional annotations were
obtained from public repositories. Annotated Gene Ontology DAG
structures were generated with the Blast2GO software [31].
Noninformative reference distributions for the toxicogenomics and
breast cancer dataset were generated by bootstrap. One thousand
bootstrap runs were executed, in each case resampling both
column- (samples) and row-wise (genes). Resampling by columns

Fig. 4. X_score plot PLS model for breast cancer data. PLS model computed with functional variables. Tumor samples are labeled either for their p53 genotype (a) or ER status (b).

381A. Conesa et al. / Genomics 92 (2008) 373–383



eliminates the relationship between the gene expression and the
phenotype, while rearrangements by rows will destroy the
coordinative structures within each functional class. The P value
corresponding to the PLS model parameters (R2 and Q2) and the
importance of functional variables (VIP) were computed as the
frequency of occurrence of true data values in the respective
reference null distributions. Significance threshold was set to 0.05.

All computations were performed in R, using limma [3], pls [39]
and EMV packages. Scripts are available on request to the authors.
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Abstract In this paper it was investigated if any genotypic

footprints from the fat mass and obesity associated (FTO)

SNP could be found in 600 MHz 1H CPMG NMR profiles of

around 1,000 human plasma samples from healthy Danish

twins. The problem was addressed with a combination of

univariate and multivariate methods. The NMR data was

substantially compressed using principal component anal-

ysis or multivariate curve resolution-alternating least

squares with focus on chemically meaningful feature

selection reflecting the nature of chemical signals in an

NMR spectrum. The possible existence of an FTO signature

in the plasma samples was investigated at the subject level

using supervised multivariate classification in the form of

extended canonical variate analysis, classification tree

modeling and Lasso (L1) regularized linear logistic regres-

sion model (GLMNET). Univariate hypothesis testing of

peak intensities was used to explore the genotypic effect on

the plasma at the population level. The multivariate classi-

fication approaches indicated poor discriminative power of

the metabolic profiles whereas univariate hypothesis testing

provided seven spectral regions with p \ 0.05. Applying

false discovery rate control, no reliable markers could be

identified, which was confirmed by test set validation. We

conclude that it is very unlikely that an FTO-correlated

signal can be identified in these 1H CPMG NMR plasma

metabolic profiles and speculate that high-throughput un-

targeted genotype-metabolic correlations will in many cases

be a difficult path to follow.

Keywords FTO � NMR � CPMG � Data compression �
ECVA � MCR-ALS

1 Introduction

The quantitative genetic contribution to body mass index

variation and hence to obesity is well established (Walley

et al. 2009; Yang et al. 2007) and has been confirmed in

the population used for the present study (Schousboe et al.

2003). Many obesity candidate genes have been discov-

ered, among which the most consistent associations have

been found between body weight and single nucleotide

polymorphisms (SNP) in the fat mass and obesity associ-

ated FTO gene (Frayling et al. 2007; Jess et al. 2008;

Kring et al. 2008), confirmed in a recent meta-analysis

(Peng et al. 2011).

The FTO gene is located on chromosome 16. To date,

the locus with the strongest association with obesity is the

rs9939609 (Walley et al. 2009), which is one of a cluster of

several SNPs located in the first intron of the gene. The

verification of the association between the FTO gene and
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body mass strongly supports the suggestion that this gene

has common variants (the AA and AT genotypes) that

predispose to obesity, relative to the wild (TT) genotype

(Peng et al. 2011). Varying effect sizes of the FTO locus

have been reported but a number of studies states an effect

size of about 30 % increase in the risk of obesity or an

average of 0.35 kg/m2 (0.1 z-score units for BMI) per

susceptibility allele (Peng et al. 2011).

Expression studies indicate that FTO is widely expres-

sed in many tissues, but has its highest expression in the

brain, particularly the arcuate nucleus of the hypothalamus

(Frayling et al. 2007), where it is believed to be involved in

energy uptake rather than energy expenditure (Berentzen

et al. 2008, Haupt et al. 2009). The findings of Wardle

(Wardle et al. 2008) that the FTO risk allele was associated

with reduced satiety responsiveness in children support this

putative functional role, whereas another study (Has-

selbalch et al.2010) found no association between FTO and

increased energy intake or food preferences. The study by

Wahlen et al. (2008) indicates a role of FTO in fat cell

lipolysis, and a study by Pitman et al (2012) indicates an

important role in cellular energy balance. A meta-analysis

by Wang et al. (2012) suggests that several SNPs in FTO is

associated with the metabolic syndrome.

Gerken et al. (2007) suggested that FTO catalyzes

demethylation of 3-methylthymine in DNA, with con-

comitant production of succinate, formaldehyde, and car-

bon dioxide, but a direct functional role of the FTO gene in

obesity development remains unsolved. It is likely that the

FTO variants are in linkage disequilibrium with the true

causative variant (Saunders et al. 2007).

Since the mechanism of how the FTO variants influence

the size of the body and especially the fat mass is essen-

tially unknown, we undertook an exploratory analysis of

the possible association between these gene variants and

the metabolomic profile in blood. As part of the Danish

nationwide GEMINAKAR study which took part

1997–2000 fasting blood samples were collected from

healthy Danish twins and analyzed for a number of con-

stituents. Genotyping with respect to the FTO locus

rs9939609 was also conducted for a subset of the twins,

and at a later stage, Nestlé Research Centre (Lausanne,

Switzerland) subjected the plasma to 1H CPMG NMR

analysis for metabolomics studies (Peré-Trepat et al.

2010).

The purpose of the present study was to combine these

two datasets and investigate whether the FTO (rs9939609)

genotype is reflected in the blood composition as measured

with 600 MHz 1H CPMG NMR.

In this paper, we attempted to identify metabolic asso-

ciations between FTO polymorphism and metabolic sig-

natures through the interrogation of 1H CPMG NMR

generated metabolic profiles with a combination of multi-

variate and univariate statistics.

2 Materials and Methods

The GEMINAKAR study regarded the relative influence of

environmental and genetic factors on especially the meta-

bolic syndrome, and was based on data from 756 healthy

Danish twin pairs. The details of the GEMINAKAR study

are described elsewhere (Benyamin et al. 2007; Schousboe

et al. 2003). The blood samples were collected during the

years 1997–2000, added NaF as an anti-coagulant and

preservative and stored at -80�C until 2005 when the

plasma was subjected to NMR analysis, whereby individ-

ual fasting metabolic profiles were obtained. SNP data was

obtained from the same blood samples. Combined NMR

and SNP data was available for 1116 individuals.

Data handling and analysis was performed using the

commercial software package MATLAB�, ver. 7.10.0

including PLS_Toolbox ver. 5.5.1.

2.1 SNP data

The FTO SNP (rs9939609) was genotyped by conducting

allelic discrimination using pre-designed Taqman� SNP

genotyping assays (Applied Biosystems). The conditions

described by the manufacturer were applied. PCR was

performed in the ABI Prism 7700 and analyzed using the

Sequence Detection System software (Applied Biosys-

tems). The distribution of the three FTO genotypes is

shown in Table 1.

2.2 NMR acquisition and preprocessing

Metabolic profiles of fasting blood plasma were measured

at 298 K on a Bruker DRX 600 MHz spectrometer

equipped with a 5 mm probe (Bruker Biospin, Rheinstet-

ten, Germany). 1H NMR spectra were registered for each

blood plasma sample using a standard Carr–Purcell–Mei-

boom–Gill (CPMG) spin echo pulse sequence with water

suppression. For each sample, 256 scans were collected

into 32 K data points using a spectral width of 13.9790 Hz,

corresponding to an acquisition time of 1.95 s.

Table 1 Distribution of FTO genotypes in this study

Genotype Number of subjects (%)

TT 349 34

AT 482 47

AA 197 19
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Prior to Fourier transformation, NMR data were multi-

plied by an exponential weighting function corresponding

to a line broadening of 1.0 Hz. The acquired NMR spectra

were manually corrected for phase and baseline distortions,

and referenced to the chemical shift of the alpha-glucose

doublet peak at 5.23 ppm using TOPSPIN software (ver-

sion 2.1, Bruker Biospin, Rheinstetten, Germany). The

CPMG plasma spectra included 22 K data points over the

range of d 0.1 to 8.25 (Rezzi et al. 2007). CPMG NMR

acquisition is more suited for the detection of small mol-

ecules by providing an attenuation of broad signals arising

from macromolecular species (proteins and lipoproteins

mainly). Interpolation of all the spectra to the same

chemical shift was performed. The water peak at d
4.55–5.17 ppm was removed and NMR spectra normalized

to a constant total sum of all intensities within the specified

range prior to the chemometrics analysis. 85 spectra out of

1,116 were excluded due to poor data quality or obvious

outlying sample nature such as the presence of e.g. ethanol

or drugs.

The very high number of variables represents a com-

putational challenge, but may potentially also hamper the

data analysis adversely by substantial power reduction and

by presence of spurious correlations in data. It is therefore

desirable to reduce the data in a reasonable way. An inte-

gration approach was applied in the following way:

1. Define K spectral regions, if possible so that each

region contains only one peak. Omit peaks which one

would not trust if they turn out to be significant, i.e.

peaks with very weak intensities or regions with many

overlapping small signals. Obvious spin-spin coupling

splits (i.e. doublets, triplets etc), with no interfering

peaks should be put in same region, but emphasis is

rather on representing all informative signals than

taking care of structural information. For each peak

region, j:

(a) Align peaks using the Icoshift tool (Savorani

et al. 2010). Icoshift shifts the peaks of each

region individually and preserves the peak shape.

Possibly apply Savitzky–Golay differentiation to

the spectra prior to alignment for improved

alignment and apply the resulting spectral adjust-

ment to the original spectra.

(b) If the peak is a small signal on a shoulder of large

broad parent peak, model the parent peak as

baseline and subtract this from the small peak.

(c) Decompose region by Principal Component

Analysis (PCA) (Hotelling 1933) or Multivariate

Curve Resolution (MCR) (Tauler and Barceló

1993) using a reasonable number of components

l; l 2 1; 2f g determined manually for each region.

For improved robustness, include only the

approx. 80 % most normal samples as determined

by initial PCA submodels for each class (AA,

AT, TT) for the modeling, but eventually project

all samples onto the regional PCA or MCR

model. The choice of method (PCA or MCR) was

made by comparison of the spectra with the

obtained loadings; the shape of the loadings

should ideally only model the peak of interest in

the region and not artefacts arising from inter-

fering signals. After this step, each region is

represented by l score variables.

2. Collect scores to form the new matrix X.

Eventually, three extreme outliers were removed by use

of PCA diagnostics from a model on X, resulting in a

dataset consisting of 1,028 samples and 171 variables

originating from 164 peak regions.

2.3 Data analysis

Immediately after the preprocessing, the dataset was split

in a training set of 800 samples and a test set of 228

samples by Kennard–Stone subset selection (Daszykowski

et al. 2002; Kennard and Stone 1969) with the constraint

that (twin) siblings should be put in the same set. The two

datasets had comparable composition with respect to FTO

classes.

2.4 Distribution of variation

The distribution of variation sources was estimated for

each variable using simple analysis of variance (ANOVA),

with gender as categorical and age as linear effects. For the

total variable space simple means of the contributions to

the individual variables were used.

2.4.1 Data quality

An initial confirmation of data quality of both full spectra

and the compressed data was performed by (a) modeling of

age and (b) visual verification that multivariate gender dif-

ferences were present. Age was modeled by Partial Least

Squares (PLS) regression and gender differences were

visualized via PCA. Where PCA captures main variation

that in turn also relates to gender differences, it does not

clearly elucidate signals in relation to age. PLS was applied

to unravel patterns related to this external information.

2.5 Modeling

The relation between the metabolomic and the genotypic

profiles was investigated both uni- and multivariately on

the basis of the compressed variables:

Fat mass and obesity associated gene in human plasma
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1. Multivariate classification.

2. Univariate significance testing.

2.5.1 Multivariate modeling

Multivariate classification was performed using extended

canonical variate analysis (ECVA) (Nørgaard et al. 2006).

Furthermore a classification tree model (CART) (Breiman

et al. 1984) and a Lasso (L1) regularized linear logistic

regression model (GLMNET) (Friedman et al. 2007, 2010)

were fit. The Lasso approach represents a linear method

which incorporates variable selection, i.e. this approach

will be successful if the signal is only in a minor part of the

variables. The CART approach is assumption free in the

sense that non-linearity and even non-monotonicity and

interactions can be captured by this approach, however,

with the price of having high variance. In addition, ECVA

is a linear method in a truncated subspace. All of these

methods represent different strategies where the chance of

success depends on the distribution of the true signal, i.e

linear or non-linear, latent variables, few variables, inter-

actions etc. The Lasso and CART models were not able to

describe the validation data; it is therefore concluded that

these models do not describe a true systematic variation in

data, hence they are not meaningful and results will not be

shown for these.

The ECVA modeling aims to separate the two classes by

seeking new directions which separate the variation

between the classes relative to the variation within the

classes. This is a supervised method, and consequently

there is a risk of over-fitting in the sense that optimistically

good separation may be found. For the ECVA modeling,

AA and TT samples were included to simplify the problem

to a two-class problem with only the most extreme groups.

The apparent drawback of this is the reduced sample size.

Consequently, the experiment was repeated observing AA–

AT versus TT and AA versus AT–TT. This extension

confirmed conclusions from the simplified approach,

therefore only the AA versus TT results are shown in this

paper.

A major advantage of the applied data reduction is that it

produces essentially noise free data, and thus up-weighting

of small peaks is not associated with noise boosting.

Consequently, data for the ECVA models was autoscaled,

i.e. each variable was mean-centered and scaled to unit

variance. Prior to this, the compressed spectral data was

adjusted for age and gender variation as described below.

The performance of the ECVA modeling was assessed

by a combination of cross-validation and permutation

test. Specificity and sensitivity were first assessed by

cross-validation where the samples were split randomly

into 16 segments where each segment conserved the class

distribution. This was repeated 200 times, whereby 200

(specificity, sensitivity)-pairs were obtained. To assesses if

the obtained performance was better than random, model-

ing and cross-validation were repeated 1,000 times with a

shuffled class membership.

2.5.2 Univariate significance

Each of the 164 individual spectral regions was tested in

parallel. A test statistic, pj ðj ¼ 1; ::; 164Þ, was obtained for

each spectral region by comparing two nested generalized

linear models predicting the occurrence of A in the FTO

locus via logistical regression.

ln
pi

1� pi

� �
¼ b0 þ xijbþ �ij ð1Þ

with a pure intercept spectral independent model:

ln
pi

1� pi

� �
¼ b0 þ �i ð2Þ

where pi refers to the probability of locus A for the i’th

person (i ¼ 1; . . .; n). xij is the derived scores for person

i spectral region j corrected for age and gender information

(see handling of covariates below).

The deviance (-2*log likelihood) between the two

models dev0j - dev1j is assumed v2(dfj) with dfj = df0 -

df1j.

Thus a significance test was produced for each spectral

region (p1, .., p164), such that the minimum p value refers

to the most interesting spectral region. The 164 spectral

regions were split into a set of significant regions and a set

of non significant regions using the method of Benjamini

and Hochberg (1995) for control of false discovery rate

(FDR).

The selected spectral regions suffer from selection bias,

that is; the most significant regions are selected due to a

combination of true effect size, but also by chance. This

bias is known as winner’s curse (Zöllner and Pritchard

2007). The spectral regions were investigated for selection

consistency by applying a non parametric bootstrap pro-

cedure evaluating the frequency of selection for individual

regions at different FDR settings.

2.5.3 Handling of covariates

The plasma profiles systematically reflect gender and age,

hence a priori correction for those was appropriate. Let

D be a design matrix corresponding to gender and age, such

that the first and second column are dummy vectors for

male and female respectively and the third column is age.

Linear correction for both age and gender can be done by

orthogonalization with respect to D:

K. Kjeldahl et al.
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Xcorr ¼ I� DðDTDÞ�1DT
� �

X ð3Þ

It is assumed that the FTO is independent of gender and

age. Nevertheless the collected data might exhibit a small

partial confounding with either gender or age. Under such

circumstances (3) is an overcorrection, and subsequent

models will suffer from that. In order to remove

information only related to gender and age, while

retaining all information related to FTO, the design

matrix D is projected onto the null space of FTO. Let

F be an FTO design matrix with three columns

corresponding to TT, AT and AA. For the ECVA models

only TT and AA columns were included.

D� ¼ ðI� FðFTFÞ�1FTÞD ð4Þ

D* is then used for correction of X in Eq. (3).

3 Results

3.1 Data source

PLS models of subject age based on (a) raw spectra

(without water peak) and (b) compressed data showed good

performance in both cases. Fig. 1 shows the performance

of the model with the compressed data, similar results were

found for the full-spectrum model. Model complexity was

estimated using six-fold cross-validation on the training set

in both models, and performance was assessed using the

test set. The two models showed comparable root mean

squared error of prediction (RMSEP) at 6.5 and 6.8 years

respectively.

Gender differences could also be recognized using PCA

for both data sets. Figure 2 shows a scores plot for the

compressed data set, where it is obvious that gender dif-

ferences are found in this data set. PCA is an unsupervised

method, i.e the model has not been ‘‘‘requested’’’ to model

gender differences, rather it extracts underlying features.

The largest variations manifest in the first principal com-

ponents, and in this case, gender differences were best

revealed in the combination of PC2 versus PC6.

Examination of the distribution of variation sources

across all variables reveals that both age and gender at most

contribute with 1 % variance for single variables, and

0.1 % across all variables (results not shown). The per-

formance of a model without correction of age and gender

are practically identical, and hence omitted.

3.2 Multivariate classification

ECVA classification models were built to separate the two

extreme genotypes (TT, AA). Cross-validation estimated a

mean sensitivity of 0.42 and specificity of 0.70. These

values are quite poor, and it is not obvious whether they are

better than random. The permutation test (Fig. 3) showed

that the obtained performance appear to be slightly better

than random, although not very robust.

3.3 Univariate significance

Each of the 164 spectral regions was tested one by one,

resulting in p values ranging from 0.028 up to 0.991.

Correction for multiple testing by FDR control by Benja-

mini and Hochberg at level 0.05 leads to a significance

threshold of 0.0003. No variables survived this level.
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Ignoring the multiple testing correction, seven regions

were found to have p B 0.05. The positions of these in the

NMR spectrum are shown in Fig. 4. The p values and the

FDR control were bootstrapped and by this procedure, the

frequency of ‘‘winning’’ (i.e. being selected as significant)

was assessed for each of the variables. The seven variables

were selected as significant at a frequency between 44 and

56 %, which is not overwhelming, but considerably higher

than the average of 20 %.

The validity of the seven regions was evaluated with the

test set of 228 samples. The mean values of each of the

seven regions are shown in Fig. 5, and it is obvious that the

results from the training set are not valid for the test set.

The result of region 44 is the only one where effect size

and pattern across genotypes are comparable between the

training and the test set. In fact region 65, 151 and 161

display completely opposite effect for the two sets. Closer

investigation of the distribution of intensities of region 44

showed that differences were so small that they were of no

value for any purpose (not shown).

As a final attempt, the seven selected regions were used

as input to a multivariate ECVA model following the same

procedure as described above. The resulting model is

expected to give too optimistic results for the training

performance relative to validation performance because the

seven variables have been pre-selected to be the most

discriminatory for the training set. AUC for the associated

training ROC curve was 0.59, which is a very poor clas-

sifier. Both test set validation and permutation test con-

firmed that the combination of the seven selected variables

could not be associated with FTO genotype (not shown).

4 Discussion

Possible markers of the FTO gene in NMR based plasma

profiles could be interesting candidates for further inves-

tigations of how the FTO influences body mass and fat

mass. The results show that we have not been able to

identify reliable plasma markers of the FTO genotype

when we took care of multiple testing by Benjamini–

Fig. 3 Sensitivity (left) and specificity (right) obtained by multivar-

iate ECVA models (green), compared to permutation test (blue)

Fig. 4 NMR regions with p B 0.05
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Hochberg FDR control. The use of a test set illustrated that

candidate markers with p \ 0.05 had very little validity.

This underlines that multiple testing situations require

careful handling of p values and that the use of test sets is

recommendable.

Does that mean that the FTO gene does not leave any

footprint in a blood sample? There may be several reasons

why we did not make any positive findings in this study.

We shall here address (a) the quality of the data, (b) the

data analysis and (c) the overall research questions.

The data quality check indicated that the substantial data

compression from 29,027 to 171 variables did not result in

massive information loss since the information in the

compressed data was adequate to model a highly complex

attribute such as age, which was found to contribute with

less than 1 % of the variation in the 171 variables. One

could consider to include more than 164 spectral regions as

many more are definitely present, but visual inspection of

the remaining spectral regions made us very uncertain

about concluding anything about these as most of them

were close to the noise limit or weak shoulder peaks dif-

ficult to align etc.

Low sensitivity is an intrinsic problem in NMR and as a

result only around hundred metabolites give signal in the

NMR spectrum, which is about 10 % of the total metabolome

(Viant et al. 2008). On top of this, the CPMG pulse sequence

filters the signals by suppressing signals from macromole-

cules. Lipo-proteins are thus suppressed in these spectra,

which potentially could be an important loss of information. It

might thus have been useful to combine the CPMG recordings

with e.g Overhauser enhancement spectroscopy (NOESY)

recordings which provide a good overview of all the types of

molecules present in the sample matrix (Beckonert et al.

2007). LC-MS is an alternative platform with much higher

sensitivity but this technique certainly represents other chal-

lenges. In any case recording of more information conse-

quently lowers the statistical power.

In the data analysis, four (three multivariate and one

univariate) classification paths were investigated. The

ECVA modeling investigates multivariate solutions where

all variables are active. The LASSO search path recovers

sparse solutions and it is hence the assumption that a

combination of a subset of the variables has discriminatory

power. Classification trees are scale invariant and superi-

ority of such a model relies on non linearity compared to

the linear ECVA and LASSO models. If the different

regions are independent, multiple univariate tests sorts the

regions in terms of association with FTO. The different

models reveal different representations of the biological

system and this exhaustive search confirms lack of con-

sistent information opposed to wrong modeling choices.

In this study we searched for any kind of metabolic

response in a plasma sample correlated with the FTO

genotype. The metabolic profile is a result of a very

complex network of interactions between genetic and

environmental factors and at system level there is a long

path from genotype to metabolic profile. Epistatic effects,

either at the genomic or phenotypic level may mask the

signal, interactions with the environment and the fact that

the whole homeostatic system is very robust shrink the

correlation between genotype and metabolic profile.

In particular, we have previously investigated the influ-

ence of dietary preferences on the 1H CPMG NMR-based

metabolic profiles of blood plasma (Peré-Trepat et al. 2010).

The dual nature of the information generated from blood

plasma compositional analysis reflects individual metabolic

adaption to specific lifestyle, as well as the results of tight

homeostatic regulatory processes. We described that five

major dietary patterns were significantly reflected in the

biochemical composition of blood plasma, as per variations

in the concentration of circulating lipids and amino acids.

This source of metabolic variation is a major contributor to

inter-individual metabolic differences, which often repre-

sent a larger source of variance when compared to the one

associated to gender and age. These metabonomic applica-

tions therefore illustrate the complexity of associating spe-

cific genotypes to metabolic profiles of a systemic biofluid.

Also, the relative lack of sensitivity of NMR spectroscopy

combined with the use of acquisition conditions depleting

the signals from macromolecules, can be considered as an

additional challenge to identify very subtle metabolic dif-

ferences associated with specific genetic polymorphism.

Despite the reported approximate effect size of 0.1

z-score units (Hennig et al. 2009) for BMI per suscepti-

bility allele we did not find metabolic signatures suggesting

how the FTO gene variant may operate. The variation

related to age and gender is only around 0.1 % across all

171 variables, and at most 1 % for single variables,

revealing a high degree of unexplained variation. Targeted

analysis opposed to un-targeted metabolic profiling exam-

ining a narrow range of biological relevant metabolites in

connection with FTO expression and genetic and envi-

ronmental confounders would increase the probability of

discovery. This is supported by a range of recent works (An

et al. 2010) which suggest data driven analysis in combi-

nation with mechanistic understanding as a strategic path to

uncovering associations from high throughput methods. In

this way, narrowing the model range by a priori parameter

restriction leads to more statistical power, which is critical

for data with large degree of unexplained variation.

5 Conclusion

This study shows that 1H CPMG NMR plasma profiles do

not contain signals which can be strongly associated with
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FTO genotype. We speculate that high-throughput un-tar-

geted genotype-metabolic correlations in many cases is a

difficult path to follow due to correlation shrinkage by

multiple interacting factors and inadequate power. Never-

theless, we believe it is worthwhile to explore also this

possibility for getting knowledge about how the genotypes

work in cases, where we have no information guiding us to

the mechanisms.
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ABSTRACT 

This paper presents a robust analysis of time course DNA microarray data using principal 

component analysis (PCA) and multivariate curve resolution (MCR). The method 

identifies a selection of unique genes, which are genes with a distinct characteristic 15 

profile, and identifies of a larger group of genes, which have a common underlying 

structure. It is a step-wise method, which identifies unique genes as outliers in an initial 

PCA model. These genes are removed with the knowledge that they are relevant for the 

process studied. The rest of the genes contain a common systematic variation, which is 

identified and visualized by MCR analysis. The MCR analysis leads to a set of distinct 20 

phenomena which are characteristic of a large number of genes. The genes with the 

highest score values in this model are evaluated further and are the ones, which together 

with the unique genes are most important candidates for describing the process studied.  

Data from a milk fermentation process by the lactic acid bacteria Lactococcus lactis are 

used as an example. The results obtained supports the conclusions from previous studies 25 

but the approach illustrates a simple, easy and robust way of obtaining information from 

complex data structures. 

 

KEYWORDS: Multivariate data analysis, DNA microarrays 

30 



INTRODUCTION 

Within life sciences a lot of effort is dedicated to the discovery and understanding of 

fundamental physiological processes within cells. At the genetic level, genes are up- or 

down-regulated to accommodate to the altered needs in the cells’ protein composition due 

to cellular homeostatic responses or other influences, such as disease or treatment. 35 

Mapping of the gene expression responses to specific conditions is a key to 

understanding and hence control of the metabolic pathways and is therefore of great 

interest (Sorek and Cossart 2009). 

 

The DNA microarray technology represents an attractive tool in this area because the 40 

expression level of thousands of genes within a cell of any organism can be measured 

simultaneously at a given time point. This facilitates a wide range of gene expression 

profiling experiments such as investigation of the genetic response to given treatments or 

tissue-specific monitoring of physiological state over time. Cancer diagnostics, drug 

development and optimization of fermentation processes are examples of areas, which 45 

benefit from the use of microarrays. The subject of this paper is a time course experiment 

where the gene expression of a culture is monitored during a fermentation process. 

 

Microarray data are typically large data sets containing information about many genes for 

a few experiments. Thus, there is a need for data analytical methods, which can extract 50 

the relevant information from these large and complex data structures. Some challenges 

in the analysis of microarray data is a large number of missing values, noisy data and few 

replicates. Furthermore, the timing of many biological processes are not well-defined, 

making replicates even more difficult to obtain. There are several ways of analyzing data 

from DNA microarrays such as classical statistical hypothesis testing and cluster analysis 55 

techniques. Other methods are the various multivariate data analytical techniques such as 

principal component analysis (PCA) (Alter et al. 2000; Holter et al. 2000; Jonnalagadda, 

and Srinivasan 2008) and multivariate curve resolution (MCR) (Jaumot et al. 2006; 

Wentzell et al. 2008; Jaumot et al. 2010). Such methods are especially relevant for time 

course data since they enable a continuous representation of all genes in a time series 60 

experiment even when measurements are only performed at a few time points. 



 

This paper presents a robust and simple analysis of time course microarray data using a 

combination of PCA and MCR. These are both well-established methods but here they 

are used in a slightly different way than normal. The data analysis approach enables a 65 

separation of the individual genes into two groups: one group consisting of distinct genes 

showing unique individual variation that needs to be analyzed separately and another 

large group of genes that are characterized by showing the same underlying patterns. This 

group is further simplified by a selection of the most characteristic genes, which are used 

in MCR to determine the underlying fermentation profiles of the genes and the 70 

distribution of the genes in relation to these profiles. Microarray data of the bacteria 

Lactococcus lactis obtained during the fermentation of milk is used as an example. 

Lactococcus lactis is a bacteria typically used in milk fermentations and is also 

genetically well characterized (Kok et al. 2005). During fermentation of milk, a change in 

pH, chemical composition, etc. takes place in the sample matrix surrounding the cells and 75 

the purpose is to identify how the bacteria sense these changes. If for example the 

bacteria are exposed to stress, it would be seen as an increased expression of stress 

related genes. This information can be used to remove the stress factors, thus increasing 

the effectiveness within the industry.  

 80 

Methods 

Experimental 

Reconstituted skim milk was inoculated with Lactococcus lactis whereby the 

fermentation started. Samples were taken twelve times during the fermentation process 

(100, 150, 200, 250, 300, 350, 400, 500, 600, 800, 1000 and 1100 min) and subjected to 85 

microarray analysis. The whole experiment was made in duplicate. 

 

Data analysis 

The microarray analysis contained information from 1204 annotated genes in duplicates 

and only these were used in the data analysis. Since the main changes in the bacterial 90 

growth took place around 400 min, this level was defined as reference (=1). All mRNA 

levels were normalized relative to this.  



The method developed is based on the chemometric techniques principal component 

analysis (PCA) and multivariate curve resolution (MCR).  The microarray data were 

arranged in a matrix, X (i,j), with the genes in the rows (i) and the measured time points 95 

in the columns (j).  

PCA extracts the main systematic variation of X by resolving the information into 

principal components (PCs) (Wold et al. 1987):  

 

 E'TPX   100 

 

where T is the score matrix, containing information about the amount of each component 

in every sample (gene). P is the loading matrix and contains information about the 

contribution of the variables (time points) to each PC. The PCA model describes the 

underlying latent variables, and as consequence, genes which do not follow the common 105 

underlying structures can be identified as unique genes and can be removed for separate 

observation. The remaining genes then all follow the underlying structure and the PCA 

model can then be used to describe this. 

An alternative to PCA is MCR which can be used for more natural description of time 

domain phemonena.MCR resolves the data into a similar model consisting of scores and 110 

loadings that are nonnegative as opposed to PCA that provides orthogonal scores and 

loadings. Using MCR as an alternative final representation instead of PCA can lead to a 

model which is easier to interpret and visualize. The MCR model can be written as (de 

Juan and Tauler 2003): 

 115 

 ECSX
T   

The data, X, is decomposed into C and S
T
, which contain the responses of the mRNA 

levels and the fermentation profiles, respectively. The parameters are constrained to be 

non-negative. For both models, E denotes the error matrix, which contains the variation 

in data not explained by the given model. These residuals can be different in the two 120 

models. In both PCA and MCR, the number of model components to include has to be 

chosen by the user. In this case, cross-validation has been used as the main tool together 

with visual assessment of the models (Bro and Kjeldahl 2008).  



 

RESULTS AND DISCUSSION 125 

Initially, clearly incorrect outliers and inconsistent replicates are removed from the data. 

Thus, only the reliable measurements are used in the main data analysis where the unique 

samples are identified first as outliers in PCA. This is followed by MCR modeling of the 

underlying structure in the larger group of data that follows a common trend. Figure 1 

shows a flow chart of the method as well as the sizes of the data matrices that change 130 

during the consecutive analysis steps.  

 

The data is arranged into a matrix, X1, with the genes as rows and the measured time 

points as columns. Concatenating the data from the two experimental runs gives a data 

matrix of the dimension 2438 × 12 (Figure 1.b). A closer look into the data shows that 135 

some samples have a considerable amount of missing values, which makes the modeling 

difficult . They are removed from the data set together with their replicate. In total, the 

data from 15 genes were removed. 



 

Figure 1 a) Flow chart of the method developed for the analysis of DNA microarray data 140 

set, b) – e) dimensions of the data matrices X1 to X4. 

 

A new PCA is made on the reduced data set. The scores of principal component one and 

two show that almost all genes are placed in a group near the origin (Figure 2). In 

addition, there are few genes spread out along the first two PCs. The projected 145 

measurements from the two experiments of some of these are placed close together such 

as uspA2 and osmC, whereas a few others display high variance between replicates, e.g. 
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trmA and yfiA. For these data, it is essential that the results obtained from the two 

replicate experiments are similar. Thus, the PCA indicates that further data reduction is 

necessary to ensure reliable and valid conclusions including consistency across the two 150 

experiments.   

 

Figure 2 Scores of principal components 1 and 2 for a PCA made on the data matrix with 

the 2408 genes as rows and the 12 measured points as variables. Genes are marked by 

their names. 155 

 

The genes with the largest variation between the two experiments are removed from the 

data set. These genes are found by the pooled standard deviation between the two 

experiments calculated for each gene. It is obtained as: 

 160 
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where k denotes the number of measurements obtained for each gene. In this case, it is 

12. xi1 and xi2 denote the relative mRNA levels for the two experiments, respectively. The 

subscript i (1,2,….,12) indicates the 12 time points where the mRNA levels have been 165 

measured. All genes with a pooled standard deviation of less than 1.5 are retained in the 

data set. In total, 1126 genes are found to follow this criterion. The limit of 1.5 for the 

pooled standard deviation has to be chosen carefully. If it is too high, genes with 

inconsistent replicates may be included in the data set. If it is too low, some of the unique 

genes or genes that are of utmost relevance for the main variation may be excluded.  170 

 

Since it is found that the measurements of the remaining genes are precise, the following 

data analysis is made on average values obtained from the two experiments. Thus, the 

size of the data matrix, X2, is 1126 × 12 (Figure 1.c). Again, a PCA is made. The scores 

of the first two components show that two genes are separated from the others (Figure 3). 175 

It is the same two genes as were identified in the previous PCA as having extreme score 

values, osmC and uspA2. These two genes have fermentation profiles differing from the 

others. They can be considered as unique genes whose expression is important for the 

bacteria during the fermentation. The expression of those two genes varies considerably 

from the others. It is seen that the mRNA levels increase dramatically after 500 min of 180 

the fermentation and have the highest concentrations at the end of the fermentation of all 

genes (Figure 4.a). Both genes are related to stress and code for universal and osmotic 

stress, respectively.  



 

Figure 3 Scores of PC1 and PC2 for a model made on the matrix with the size 1126 × 12. 185 

The two outliers are marked by their name. 

 

The two genes with the characteristic profiles are then removed from the data set, which 

then obtains the dimension 1124 × 12 (Figure 1.d). The raw fermentation profiles of the 

genes left in the data set are in the same level, indicating that there are no more extreme 190 

genes or outliers (4.b).  
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Figure 4 Fermentation profile of the genes, a) the two unique genes: uspA2 and osmC are 

marked and b) the data set with the two unique genes removed. Averages over the results 195 

from the two experiments are shown.  

 

There are still more than 1000 genes left in the data and these genes together behave 

according to the same underlying latent variation as expressed by the PCA model. In 

order to simplify the interpretation and understanding, the genes with the most distinct 200 

profiles are selected using the scores from a PCA. The 100 genes with the largest 

Mahalanobis distance to the origin are found. It is these genes that contribute most to the 

model and thus the genes with the most archetypical fermentation profiles. The 

Mahalanobis distance of gene (i) is calculated as (Maesschalck et al. 2000): 

 205 

)'Torigin(*)T(cov(inv*)Torigin()i(D iimahal   

 

where T denotes the score matrix and Ti is the scores of the i’th sample (gene). The 100 

genes with the highest Mahalanobis distances are retained in a new data matrix, X4, with 

the dimension 100 x 12 (Figure 1.e). These genes are evaluated by multivariate curve 210 

resolution (MCR), giving the underlying fermentation profiles and the relative mRNA 

levels of the 100 chosen genes. The number of components in this model is related to the 

number of characteristic fermentation profiles. Three components are found to be present 

in the current data set (Figure 5). They explain 8%, 34% and 53% of the variation in the 

data, respectively. As evidenced by the loadings in Figure 5, the first component 215 

describes genes that are almost not expressed in the beginning of the fermentation and 

whose expression increase during the exponential growth and ends at a high level. 

Component two explains genes that are first up regulated but are down regulated as the 

bacteria experiences exponential growth. The third component contains information 

about genes that are highly expressed at the initiation of the fermentation but which 220 

decrease sharply as the fermentation runs. 

 



 

Figure 5 Loadings of the MCR model. The lines indicate component one (dotted), 

component two (solid) and component three (dashed). 225 

 

The fermentation profiles of the genes with the highest scores in the three components 

show the similarity with the profiles estimated by MCR (Figure 6). Also, the unique 

genes excluded previously, uspA2 and osmC (Figure 4.a), display profiles similar to the 

profiles of the genes described by component one.  230 
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Figure 6 Fermentation profiles of the genes with the highest score in component one (a), 

component two (b) and component three (c) 

 

For the results shown, 100 genes were chosen from the PCA scores and the calculated 235 

Mahalanobis distances. It was also tried to make the MCR model with other numbers of 

genes. This gave similar estimated fermentation profiles and only a little variation in 

genes identified as important for the three MCR components. Thus, it was found that the 

number of genes included in the MCR model is not critical for the interpretation of the 

final results. 240 

 

From previous studies, important genes were identified together with their relationship to 

the fermentation process. These findings are confirmed in this analysis, and the approach 

suggested here ensures a robust and relatively easy identification of the fermentation 

profiles, unique genes as well as the group of genes that displays a common underlying 245 

structure. The present data contains information from approximately 1200 genes. As 

shown this is too many to give a full understanding of all of these from a visual 

inspection of scores and loadings. However, the fact that most of the genes can be 

described by the same underlying variation evidenced through the PCA/MCR model 

makes it feasible to perform a reduction based on selecting the most distinct of the bulk 250 

of genes behaving similarly. This is not a large data set compared with other microarray 
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data where data reduction is even more important. The method developed could be an 

important tool in situations with larger data sets and when these are not as well known. 

The method may not only apply to microarray data, but shows possibilities in the analysis 

of other large and complex data structures such as NMR and LC-MS based 255 

metabonomics data sets. Furthermore, the principle in separating irrelevant information, 

unique genes and the main underlying structure can be adopted using other multivariate 

or multi-way techniques as well as other statistical calculations.  

  

There are other applications of MCR in the study of DNA microarrays. However, none of 260 

these use a stepwise procedure including removal of all irrelevant data, identification of 

the unique genes and finally an evaluation of the main systematic variation in the group 

of data containing a common underlying structure. Jaumot et al. (2006) turns the data 

matrix such as the experiments make up the rows and the genes make up the columns. 

The results of their analysis are pure gene expression profiles and the relative 265 

contribution of each experimental condition. This makes sense in their study since the 

purpose is to discriminate between the experiments using the microarray data. Wentzell 

et al. (2006) studies time course microarray data. They use a weighted approach where 

the non-uniform error distribution, missing data, etc. are handled through the model 

algorithm. For both studies, information about the behavior of the individual genes has to 270 

be identified after the modeling step. For example, Wentzell et al (2006) finds the most 

important genes as the genes with the largest correlation to the profiles extracted by MCR 

in contrast to the use of Mahalanobis distances and score values. Jaumot et al (2010) 

compares two MCR algorithms for microarray time series analysis; the present paper 

focuses on simplicity and robustness.  275 

 

Conclusion 

The paper shows a robust multivariate approach to the study of DNA microarray data. 

The method identifies individual genes with a unique fermentation profile and a larger 

group of genes with a common systematic variation. It is a step-wise procedure, which 280 

first removes outliers and inconsistent replicates. It is followed by the main data analysis. 

This secures a robust identification of the most important information present in the data.  
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