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Summary

Accurate measurement of dietary intake in nutrition studies is crucial to investigate relationships
between diet and health. Dietary effects on disease risk are often small and may in some cases be
distorted due to errors in dietary assessment or lack of compliance in dietary studies. The common
tools used for assessment of dietary exposure in humans rely almost solely on self-reporting, which
is associated with a range of random and systematic errors such as under- and overreporting of cer-
tain foods and inter-individual differences in reporting behavior. Biomarkers measured in biological
samples, most often urine or plasma, provide a promising supplement to self-reporting, as they are
objective measures. However, the few currently available biomarkers cover the diet poorly and
more markers, in particular for intake of individual foods, are needed. A relatively new approach to
discover dietary exposure markers is by untargeted metabolomics, also known as metabolomic fin-
gerprinting. With this method, a large number of compounds are measured in a biological sample
and the resulting so-called ‘fingerprints’ are explored to discover patterns of metabolites related to
certain dietary exposures.

In this thesis, untargeted metabolomics has been applied to: 1) discover new urinary exposure
markers of individual foods (Paper I and II) and 2) develop a model based on measurements of
urine samples to estimate compliance to two dietary patterns (Paper III). Based on the results in
Paper I-111, it is discussed how metabolomic fingerprinting can contribute to the development of
new exposure and compliance measures for use in future nutrition studies.

Data from three studies have been analyzed. The first study is a controlled cross-over meal study
with three meals, each prepared with three different protein sources. This study has been used to
find markers for the individual meals and protein sources. The second study is a meal study with
single foods, which was used to confirm the food sources of the markers found in the first study.
The last study is a parallel intervention study with two dietary patterns; A New Nordic Diet (NND)
and an Average Danish Diet (ADD). Three analyses were conducted on this study. One to discover
exposure markers of individual foods, one to validate the markers found in the first study, and one
to develop a compliance model to estimate compliance to ADD and NND based on 24 h urine sam-
ples.

It was possible to find exposure markers for several individual foods and food groups such as cru-
ciferous vegetables, citrus fruits, fish, walnuts and chocolate. Some markers from the meal study
were also markers in the intervention study. Other markers were related to the meal matrix, or could
not be validated in the other study because the foods had not been reported often enough. When
validating the identified markers according to a range of common biological validation criteria, us-
ing other literature, several of the markers found were very promising exposure marker candidates.

The two dietary patterns ADD and NND were clearly reflected in urine samples and a multivariate
model, including 52 metabolites, proved to be a potentially suitable compliance measure for the
diets. The model was able to classify 81 percent of 139 validation samples to the correct dietary
pattern. The metabolites in the model were from several characteristic foods in ADD, while the
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NND diet was characterized by more general dietary traits, such as a high fruit and vegetable intake.
An analysis of other compliance measures, in which subjects with misclassified and correctly classi-
fied samples in the model were compared, supported the findings in the model.

Overall, the results in this thesis substantiate metabolomic fingerprinting as a promising tool to de-
velop new dietary compliance measures and exposure markers. However, for all analyses per-
formed, a large proportion of the markers found could not be identified which is a prerequisite to
better understand how dietary compliance is represented in the multivariate model and to validate
and further investigate new exposure markers. For the future, the identification of unknown markers
needs to be improved to gain more knowledge from studies applying metabolomic fingerprinting. In
addition, identified as well as unidentified marker candidates from previous studies should be taken
into account in the analyses of new studies. Finally, quantitative analyses of the best marker candi-
dates should be conducted to understand the full value of the markers found.



Resume

Praecis maling af kostindtag i ernaringsforskning er essentielt for at kunne bestemme sammenhan-
ge mellem kost og sundhed. Kostens effekt pé risikoen for at udvikle forskellige sygdomme er ofte
lille og kan i nogle tilfelde blive overset som folge af upracis bestemmelse af kostindtag eller man-
gel pa komplians (en persons efterlevelse af retningslinjerne i et studie) i erneringsstudier. De
gaengse metoder der anvendes til at bestemme kostindtag afthenger nasten udelukkende af selvrap-
portering og er associeret med en rakke tilfaldige og systematiske fejl sdsom under- og overrappor-
tering af bestemte fodevarer og inter-individuelle forskelle i maden at rapportere pa. Biomarkerer
der males i biologiske prever, oftest i urin eller plasma, udger et lovende supplement til selvrappor-
tering, da de er objektive mal. Dog daekker de fa eksisterende biomarkerer ikke en fuld kost serlig
godt og der er et behov for nye markerer, isar for indtag af individuelle foedevarer. Untargeted me-
tabolomics, ogsa kendt som metabolomic fingerprinting, er en relativt ny metodisk tilgang til at
finde kostmarkerer. Med denne metode er det muligt at male en lang rakke stoffer i en biologisk
prove pa samme tid og de resulterende sakaldte “fingerprints” (fingeraftryk) udforskes derefter for
at bestemme hvilke menstre af metabolitter, der er associeret med indtag af bestemte fodevarer eller
kosttyper.

I denne athandling er untargeted metabolomics blevet anvendt til at: 1) finde nye markerer i urin for
indtag af forskellige fodevarer (Artikel I og II) og 2) udvikle en model baseret pa malinger af urin-
prover til at estimere komplians til to kostmenstre (Artikel III). Baseret pa resultaterne i Artikel I-
I11, diskuteres det, hvorvidt metabolomic fingerprinting kan bidrage til udviklingen af nye ekspone-
rings- og komplians mal, der kan anvendes i fremtidige erneringsstudier.

Data fra tre studier er blevet analyseret. Det forste studie er et kontrolleret maltidsstudie med over-
krydsningsdesign, hvor der blev indtaget tre maltider, der hver blev tilberedt med tre forskellige
proteinkilder. Dette studie er blevet brugt til at finde markerer for de enkelte maltider og proteinkil-
der. Det andet studie er et maltidsstudie med enkelte fadevarer, som blev brugt til at bekraefte hvilke
fodevarer markererne i det forste studie stammede fra. Det sidste studie er et parallelt interventions-
studie med to kostmenstre: En ny nordisk hverdagsmad (NNH) og en gennemsnitlig dansk kost
(GDK). Tre analyser blev udfert pa dette studie. En for at finde nye markerer for indtag af enkelte
fodevarer, en for at validere de markerer, der blev fundet i det forste studie og en for at udvikle en
komplians model, der kan bruges til at estimere komplansen til NNH og GDK baseret pa 24 timers
urinprover.

Det var muligt at finde eksponeringsmarkerer for en rekke enkelte fodevarer og fedevaregrupper
som for eksempel korsblomstrede grontsager, citrusfrugter, fisk, valnedder og chokolade. Nogle
markerer, der blev fundet i méltidsstudiet, var ogsé markerer i interventionsstudiet. Andre markerer
var relateret til maltidet som helhed eller kunne ikke valideres, fordi fedevaren ikke var rapporteret
hyppigt nok i interventionsstudiet. En validering af markererne i forhold til en reekke biologiske
valideringskriterier ved brug af anden litteratur viste, at flere af de fundne markerer er meget loven-
de kandidater som eksponeringsmarkerer.
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De to kostmenstre NNH og GDK var tydeligt afspejlet i urinpreverne og en multivariat model,
hvori der indgik 52 metabolitter, var velegnet som et muligt kompliansmal for kostmenstrene. Mo-
dellen kunne klassificere 81 procent af 139 valideringsprever til det rigtige kostmenster. Metabolit-
terne 1 modellen var fra flere karakteristiske fadevarer i GDK, mens de reprasenterede mere gene-
relle fedevaregrupper i NNH. For eksempel hejt indtag af frugt og grent. En analyse af andre kom-
pliansmarkerer, hvor personer med misklassificerede preover i modellen blev sammenlignet med
personer med korrekt klassificerede prover, understottede resultaterne i modellen.

Alt i alt underbygger resultaterne i denne afhandling metabolomic fingerprinting som et lovende
vearktej til at udvikle nye eksponerings- og komplians markerer for kostindtag. Dog er der i alle
analyser en stor andel af de fundne markerer, der ikke kunne identificeres, hvilket er en forudsaet-
ning for bedre at forsta, hvordan komplians er repreesenteret i den multivariate model og for at vali-
dere og undersgge nye eksponeringsmarkerer nermere. For fremtiden skal identifikationen af nye
markerer forbedres for at fi mere viden ud af studier, der anvender metabolomic fingerprinting.
Desuden skal viden om identificerede, savel som ikke identificerede markerer, fundet i tidligere
studier inddrages i analysen af nye studier. Endelig skal der laves kvantitative analyser af de bedste
markerkandidater for at forstd den fulde veerdi af de fundne markerer.
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1. Introduction

‘In an ideal world, nutrition scientists would like to control precisely what a person eats or monitor
everything that a person has consumed, much the same way that we can control or monitor the diets

of caged lab animals’
(Wishart, 2008)

1.1 Impact of exposure and compliance markers in nutrition research

It is well-known that poor nutrition increases the risk of developing lifestyle related diseases, such
as cardiovascular diseases, some forms of cancer and type two diabetes (Key et al., 2002; Mann,
2002; Mente et al., 2009; Ajala et al., 2013). Nutrition research is addressing this issue, aiming to
unravel the optimal nutrition for good health and disease prevention. In order to succeed, a key is to
establish causal relationships between diet and disease through well-designed studies and one of the
major obstacles in this regard is the need for accurate dietary assessment (Bingham, 2002; Fair-
weather-Tait, 2003; Penn et al., 2010). If dietary exposure is not estimated correctly, the association
found between dietary intakes and markers of disease risk will be biased (Livingstone & Black,
2003). Measurement of dietary intake is most often done by self-reporting and a large number of
methods have been developed to try to capture the habitual diet of individuals in this way. The most
commonly applied self-reporting methods are food frequency questionnaires (FFQ), where individ-
uals are asked about the average intake of a predefined number of food groups within a defined pe-
riod of time, and methods to estimate the diet on individual days, for example from weighed dietary
records (WDR) or 24 h recalls (Bingham, 2002). These methods have major drawbacks due to in-
herent systematic and random errors, such as misreporting, definition of appropriate food categories
and errors when converting food based records to individual nutrients using information from food
databases. In order to overcome some of the problems with dietary reporting, biomarkers have been
introduced as a means for data validation (Jenab et al., 2009). Biomarkers are measured in biologi-
cal samples, most often urine or plasma, and are therefore a more objective way to investigate die-
tary exposure. Two common biomarkers for validation of dietary records are estimation of total
energy expenditure (EE) from double labeled water and estimation of protein intake from total uri-
nary nitrogen excretion (Potischman & Freudenheim, 2003). By applying those measures, it has
been demonstrated that underreporting is a major problem in dietary assessment, in particular
among overweight subjects. Underreporters tend to overreport healthy foods such as fruit, vegeta-
bles and fish and underreport unhealthy foods such as sugar, confectionary and cakes (Livingstone
& Black, 2003; Bingham, 2003). Unfortunately, only few biomarkers exist for validation of report-
ed dietary intakes and the existing markers only cover limited aspects of the diet (Bingham, 2002;
Jenab et al., 2009). Availability of exposure markers for intake of individual foods would be a way
to broaden validation of data from dietary records but very few markers of individual foods are
known and even fewer have been validated. Discovery of new food exposure markers therefore
have a great potential to supplement the current dietary assessment tools. In some cases exposure
markers may also provide a better measure than what can be achieved from dietary self-reporting.



This is true in particular for estimation of dietary exposure to individual nutrients or food compo-
nents for which the content varies highly within and between the common food sources (Potisch-
man & Freudenheim, 2003; Wishart, 2008).

Another application of dietary exposure markers is for estimating compliance to a nutritional inter-
vention study (Llorach et al., 2012). The purpose of intervention studies is to investigate the effects
of well-defined dietary exposures that may consist of individual foods, compounds or whole diets.
An unexposed control group is compared to an intervention group and a good compliance to the
study is crucial for the study outcome and for the interpretation of the results (Vitolins et al., 2000).
Objective measures of dietary exposure in these studies would enable the investigator to identify
non-compliant subjects and remove data from those subjects prior to the statistical analysis in order
to reduce bias caused by non-compliance.

1.2 What defines a good exposure marker?

Dietary exposure markers should ideally reflect the intake of a food or food component accurately
and be applicable in many populations (Jenab et al., 2009). However, because foods undergo diges-
tion which is a complex process, sometimes with substantial inter-individual variation, ideal expo-
sure markers do not exist. Rather, the ideal exposure marker is a marker that is well understood and
thereby applicable because its limitations and advantages are known. The most important validation
criteria for dietary exposure markers are listed in Table 1.



Table 1 Biological and analytical validation criteria for dietary exposure markers

Known relation to the expo- It must always be ascertained that the association between food exposure
sure and the exposure marker is causal. For example the marker may be a me-
tabolite of a compound known to be present in a food.

Sensitivity and specificity The measured marker should be as unique to the exposure as possible. This
implies that the percentage of true positive measures (sensitivity), for expo-
sure, and true negative measures (specificity), for no exposure, should be
as high as possible.

Dose-response There should be a positive association between the level of exposure and
the measured level of the marker. The range of intake with a dose-response
should be known.

Inter-individual variation The main potential sources of inter-individual variation should be investi-
gated, such as genotypes, gender, age, smoking, gut microbiota etc.

Biolgical validation

Time of exposure An exposure marker may be acute, reflecting only recent intake of a food,
or long term, reflecting intake from days, months or even years. What type
of exposure is reflected by a marker should be determined.

Population The population where the exposure marker is applicable should be known.

Sample Timing and type of sample should be defined as well a storage conditions
and sample preparation.

Defined measure The marker should be quantifiable by a defined method and the analytical
error should be known.

Analytical valida-
tion

The information in the table is based on the following references: Spencer et al., 2008, Jenab et al., 2009, Manach et al.,
20009.

It is obvious from Table 1 that it takes a lot of work to validate an exposure marker and this is prob-
ably the main reason why so few markers are routinely used. In addition, one marker may not be
sufficient to describe an exposure. Rather, a combined measure including several markers may be
necessary and provide a stronger measure in some cases (Wishart, 2008), which further complicates
the validation procedure. All validation criteria can rarely be completely assessed. There will almost
always be more aspects to investigate which can further consolidate a marker for a given study set-
ting. Validation is therefore an ongoing process that can contribute to understanding which factors
are most important for the metabolism of a food or food compound and what a given dietary expo-
sure marker reflects.

1.3 Metabolomic fingerprinting as a tool for marker discovery

Metabolomic fingerprinting, also known as untargeted metabolomics, is a holistic approach for dis-
covery of metabolic changes following some sort of perturbation such as a change in dietary habits
or development of a disease. As many metabolites as possible are measured simultaneously in a




biological sample and together, these metabolites consist a so-called ‘fingerprint’ which can be
compared between subjects or within subjects to find discriminant metabolites of the perturbation
studied (Dettmer et al., 2007). A metabolite is defined as any small molecule (typically <1500 Da)
that can be found in an organism (Wishart, 2008) and metabolites can be subdivided into several
categories depending on their origin or function. The group of exogenous metabolites is of interest
as dietary exposure markers, as it includes all metabolites derived from extrinsic sources such as the
diet (Scalbert et al., 2009; Dunn et al., 2011). The term nutrimetabolomics has been introduced by
Zhang et al. (2008) for metabolomics studies concerning nutrition. Studies conducted within nu-
trimetabolomics are mainly aiming to find new markers of dietary exposure and effect as well as
exploring potential interactions between dietary characteristics and phenotypes (Llorach et al.,
2012). The ultimate goal of nutrimetablomics together with other ‘omics’ disciplines is to make
possible a so-called personal nutrition where dietary recommendations can be provided at an indi-
vidual level (Zhang et al., 2008).

Our diet contributes a vast number of compounds that needs to be handled in one way or the other
by the body after intake (Gibney et al., 2005). Plant foods are rich in secondary metabolites. Con-
sidering polyphenols alone, more than 500 different compounds have been identified in plant foods
so far (Neveu et al., 2010). Processed foods can contain various additives and as soon as food is
prepared, cooked, mixed, heat-treated etc., even more compounds are formed. After intake, the die-
tary compounds are digested during which they may undergo several transformations before excre-
tion. The gut microbiota of the colon comprises more than 400 species and contributes largely to
digestion and biotransformation of non-nutritive compounds (Gibney et al., 2005). Microbial and
non-microbial products absorbed from the gut can be further modified by the endogenous metabo-
lism. As an example, phase I and II reactions are common in which compounds are typically
glycinated, sulfated or glucuronidated to increase the polarity which makes them more soluble in
urine and thereby easier to excrete (Gibney et al., 2005; Spencer et al., 2008). Altogether, our diet
can introduce an almost innumerable number of exogenous metabolites to the body and these are to
a large extent excreted into urine (Scalbert et al., 2009). In the study of dietary exposure, urine is
therefore often the biofluid of choice to identify markers of food intake.

With such a vast diversity of compounds originating from the diet, it is extremely difficult to predict
which metabolites would be the optimal exposure markers of choice to estimate intake of a given
food. This is why metabolomic fingerprinting is a very promising approach to identify new dietary
markers. Performing metabolomic fingerprinting on dietary intervention and cohort studies can re-
veal how individual foods and complex diets are reflected in urine and lead to discovery of new
promising exposure marker candidates (Wishart, 2008; Llorach et al., 2012).

The most commonly applied methods for metabolomics analysis are mass spectrometry (MS), in
most cases coupled with chromatographic separation, and nuclear magnetic resonance (NMR).
However, due to the chemical diversity and large variation in concentration ranges of metabolites,
no single analytical method can cover them all (Dunn et al., 2011). The highest number of metabo-
lites, several thousands, can be detected with MS but because the metabolites have to be ionized,
and ionization is matrix dependent, the method is semi-quantitative (Dettmer et al., 2007). Any



finding in untargeted metabolomics must therefore be validated further in a quantitative analysis.
Before this can be done, however, the metabolites must be identified. Compounds detected by ultra-
performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-qTOF-
MS), which was applied in the present work, are characterized by a retention time (RT), a mass-to-
charge ratio (m/z) and maybe a fragmentation pattern. The identification of a metabolite, keeping in
mind all the possible exogenous metabolites that may be formed from foods, is therefore a major
task. Even though several metabolite and chemical databases are available as well as a number of
automated tools to aid the identification of new compounds, this step is generally recognized as the
main bottleneck for discovery of new biomarkers by metabolomics (Dunn et al., 2013).

1.4 Nutrimetabolomic studies on exposure and compliance

The application of metabolic fingerprinting in nutrition research is still a relatively new field and a
large part of the research conducted has been focused on methodical aspects of the metabolomics
analysis in order to ensure sample stability and analytical reproducibility (Maher et al., 2007; Gika
et al., 2008a; Gika et al. 2008b; Guy et al., 2008). Main sources of biological and inter-individual
variation have also been investigated such as the effect of dietary standardization, gender, Body
mass index (BMI) and age (Wang et al., 2005; Slupsky et al., 2007; van Velzen et al., 2008; Ras-
mussen et al., 2010; Favé et al., 2011). Together, these studies have demonstrated that it is possible
to conduct a robust untargeted metabolomics analysis and discover clear patterns in the metabolom-
ic fingerprints for different physiological characteristics and dietary standardizations. Within the
last ten years, an increasing number of studies have started to apply untargeted metabolomics in
human nutrition. For the area of dietary exposure and compliance markers in urine, which are most
relevant to this thesis, the majority of published metabolomics studies performed in humans are
short intervention studies and meal studies. Meal studies have been conducted on chocolate, salm-
on, raspberries, biscuits, broccoli and an almond skin extract (Stella et al., 2006; Llorach et al.,
2009; Llorach et al., 2010; Lloyd et al., 2011b). The short term metabolic changes following intake
of a meal are generally very clear and a large number of discriminant markers are found in these
studies, especially if the diet is controlled. In addition, time-changes following intake of a meal
have been traced in some meal studies where urine has been collected at various time-points after
the meal (Llorach et al., 2009; Pujos-Guillot et al., 2013). Intervention studies have been performed
to investigate exposure and effect markers of capsules containing polyphenol rich extracts of red
wine, grapes and black tea (van Velzen et al., 2009; van Dorsten et al., 2010), chocolate (Martin et
al., 2009; Llorach et al., 2009; Llorach et al., 2013), nuts (Tulipani et al., 2011), soy products
(Solanky et al., 2005), an apple, strawberry and carrot drink (Walsh et al., 2007), different teas
(Wang et al., 2005; van Dorsten et al., 2006), milk and meat (Bertram et al., 2007) and whole grains
as compared to refined grains (Bondia-pons et al., 2013; Ross et al., 2013). A few studies have in-
vestigated dietary characteristics instead of individual foods such as high versus low protein diets
(Stella et al., 2006; Rasmussen et al., 2012b), meals with different fatty acid composition (Legido-
Quigley et al., 2010), high and low dietary glycemic index, diets differing in fiber contents (Ras-
mussen et al., 2012a) and three dietary patterns defined from self-reported intakes of 33 food groups



(O'Sullivan et al., 2011). Other observational studies have been conducted to find markers of habit-
ual food exposures, most often based on FFQ. The advantage of observational studies is the mixed
dietary background and the uncontrolled setting, which increases the chance of finding food mark-
ers with a high specificity. However, not all markers may be discovered in such studies due to many
sources of biological variation, errors associated with use of FFQ and the semi-quantitative nature
of MS data. In a study based on FFQ dietary records and 24 h urine samples collected by a stand-
ardized procedure, models were developed to discover markers of 38 individual foods and food
groups (Lloyd et al., 2013). A few known food markers from previous studies were identified
among the discriminant metabolites to confirm that the models gave biologically meaningful dis-
criminants. In general, frequently consumed foods and food categories consisting of distinct foods
resulted in the best models, whereas reliable models could not be developed for a range of less fre-
quently consumed and more diverse food groups. In two recent studies, data from cohort studies
and controlled dietary studies have been analyzed and compared to find markers of citrus (Pujos-
Guillot et al., 2013) and a diet high in fruit and vegetables as defined by consumption of cruciferous
vegetables, soya foods and citrus (May et al., 2013). These studies are interesting because they
highlight the interdependency of the study design for the markers discovered. Pujos-Guillot et al.
(2013) compared the markers found by LC-MS based metabolomics from a meal study, an interven-
tion study and a cohort study on citrus. This study demonstrated that the citrus markers found were
not the same in all studies and that the same marker could be ranked high in one study setting and
low in another. The number of discriminant features found decreased from 605 in the meal study to
19 in the cohort study. In May et al. (2013), the results from a dietary intervention study on high
and low fruit and vegetable diets were compared to results from a cohort study based on the third
and first tertiles of self-reported fruit and vegetable intake from FFQ and from three day WDR.
While 2857 discriminant ions were found in the intervention study, only around 50 ions were sig-
nificantly different also in the cohort study in which the differences between high and low fruit and
vegetable consumers were much less pronounced.

Overall, the studies applying metabolomic fingerprinting to discover urinary exposure and effect
markers of foods and diets have proved that dietary exposures can be distinguished in the urine
metabolome. The dietary exposure markers found by metabolomics so far has been reviewed by
(Llorach et al., 2012). According to this review food exposure markers can be divided into two
main classes: A class of compounds which is metabolised by the gut microbiota before absorption
and another class that is not. Common examples of microbially derived markers are hippuric acid,
3- and 4- hydroxyhippuric acid and hydroxyphenylacetic acids. Microbial markers are commonly
found for polyphenol rich diets and are normally not specific to individual foods. Creatine, creati-
nine and carnitine, which are not produced by the gut microbiota, have been found several times as
markers of high meat diets and proline betaine, which is thought to be an inert metabolite, has con-
sistently been found as a marker of citrus consumption. Except from these common examples, the
studies conducted until now are generally too few and diverse to point out the most promising
markers. A great advantage of the metabolomics approach is that identified markers which occur
consistently across different studies and study designs already at this discovery stage can be evalu-
ated according to most of the biological validation criteria listed in Table 1, such as sensitivity and



specificity, known relation to the exposure and time of exposure. This provides a short-cut to pick
out the best marker candidates before performing an analytical validation and further investigation
of a marker.

1.5 The New Nordic Diet

All studies in this thesis are related, directly or indirectly, to a dietary pattern which has been named
The New Nordic diet (NND). The term NND was first put forward by Bere & Brug (2009) as a re-
gional healthy diet that could be a Nordic equivalent to the Mediterranean diet, which has long been
famous for its health potential. The advantage of developing regional healthy diets is that such diets
are based on familiar foods to the region and therefore probably easier to adopt. A diet consisting of
foods that can be grown within the region is also more environmentally friendly (Bere & Brug,
2009). Much in line with this, the NND applied in the studies in the present thesis, was developed
based on four main criteria: Health, palatability, local produce and sustainability (Mithril et al.,
2012). The NND is defined by intakes of fifteen food groups which were selected based on their
health potential and the potential for a large scale local production. The macro- and micronutrient
compositions of the diet are largely based on the Nordic Nutrition Recommendations (Nordic
Council of Ministers, 2004) and only deviates for a few nutrients (Mithril et al., 2013). To make the
diet more sustainable, it is seasonal, based on local products and mainly organic. The palatability of
the diet has been taken into account by including foods which develop good organoleptic properties
when grown in a Nordic climate.

In Figure 1 and 2, the macronutrient composition and intake levels of the fifteen food groups in
NND are given in comparison with an Average Danish diet (ADD). In addition to the listed criteria
for macronutrients and food groups, the NND diet contains at least 50 % organic foods and more
than 95 % foods produced in the Nordic region. The corresponding numbers for ADD are less than
10 % organic foods and less than 50 % foods of Nordic origin (Poulsen et al., 2014).
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Figure 1 Macronutrient composition of NND and ADD. Target ranges for energy percentages (E%) of protein, added
sugar, carbohydrate (including fibre and excluding added sugar), saturated fatty acids (SFA) and fat (excluding SFA).
Data from Poulsen et al. (2014).
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Figure 2 Target ranges for intake of food groups in NND as compared to ADD. The target intakes of NND and ADD
are marked as crosses and circles, respectively. The bars represent the target ranges of intake as applied in the interven-
tion study (section 3.3). For NND data points without bars there is no upper limit of intake. Data from Poulsen et al.
(2014).



It is evident from Figure 1 and 2 that large contrasts can be found for several food groups between
the diets, especially vegetables, berries and root vegetables, while the macronutrient composition is
very similar. This makes NND a very interesting diet to study from a metabolomics perspective.
With metabolomic fingerprinting, individual characteristic NND foods as well as the whole NND
dietary pattern in comparison to ADD can be assessed and contribute new exposure markers of
foods and the dietary pattern as a whole. Several of the food components in NND have never been
investigated with metabolomics before such as lingonberry, sea buckthorn, rhubarb, beetroot, celer-
iac and parsley root. Working with NND therefore opens up for new discoveries in the area of food
exposure markers. As part of the OPUS project (see preface), large intervention studies have been
conducted with NND in school children (Damsgaard et al., 2012) and in overweight adults (Poulsen
et al., 2014) in order to investigate the potential health benefits of the diet. The metabolomics con-
ducted in this PhD concerns mainly the adult intervention study which is presented in section 3.3. In
addition, a meal study with nine Brassica-containing NND meals has been analyzed (section 3.1).
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2. Objectives

Two main objectives are investigated in this thesis:

1. How untargeted metabolomics can be applied in the search for new food exposure markers.

Paper I and II deal with exposure marker discovery in three different nutritional study set-
tings. The results from the studies are summarized and the potential food exposure markers
(PEMs) are validated based on other published findings. Based on the validation, it is dis-
cussed how metabolomic fingerprinting can contribute to exposure marker discovery. What
are the main strengths and limitations and which promising aspects are still largely unex-
ploited.

2. How untargeted metabolomics can contribute to development of compliance measures in nu-
tritional intervention studies.

To my knowledge, the compliance model in Paper III is the first attempt to determine die-
tary compliance to a dietary intervention study from characteristic urinary metabolomic fin-
gerprints. Due to the limited literature available on the subject, the second objective of the
thesis will be discussed by elaborating on the findings in Paper III. A range of parameters
related to the urine samples, the subjects and compliance will be compared between misclas-
sified and correctly classified samples in the developed compliance model, with the aim of
obtaining a better understanding of the potential of such a model.

The two study objectives are addressed separately in section five and six, respectively. Section sub-
headings are organized by subject to provide an easy overview of the issues considered. Results and
discussions are not separated in the individual sections. Overall conclusions for the study objectives
are provided in section seven.

2.1 Focus areas and limitations

Metabolomics is a comprehensive method that involves multiple steps from sample preparation to
marker identification (van den Berg et al., 2011). The choice of analytical strategy for samples, pre-
processing and the statistical analysis will unavoidably influence marker discovery (Scalbert et al.,
2009; Rasmussen et al., 2010; Giirdeniz et al., 2012) and the findings in a metabolomics study are
therefore very closely related to the whole analytical pipeline. It is not possible to carry out and
compare every possible procedure for sample and data analysis in order to find the best one. In un-
targeted metabolomics you win and you lose. The method opens up for finding new biomarkers that
would be difficult to discover by other means but you can never be sure that you find all and that
the ones you find are true markers and not artifacts introduced somewhere in the experiment (The-
odoridis et al., 2008). The explorative nature of metabolomics is exciting because you never know
where data will lead you to. However, at the same time, it is innate in the method that a dataset can

11



neither be explored fully nor fully understood. There is always a large proportion of unknown fea-
tures and a high level of complexity in the data that cannot be completely elucidated. This thesis
will not go into detail with the more technical aspects of the metabolomics methodology, such as
the choice of analytical method and the common statistical tools for data analysis. Only the strate-
gies applied for data analysis in the studies in Paper I-I1I will be discussed.

All work in the present thesis has been done on urine and urinary markers will therefore be the fo-
cus even though other biological samples can of course be used for biomarker discovery as well.

When reviewing the literature, metabolomics studies and, preferably, LC-MS metabolomics studies
are emphasized. Dietary exposure markers can also be found by measuring known metabolites of
foods directly in a targeted approach (Kuhnle, 2012). However, such markers would not necessarily
be found in a metabolomics study due to the limited metabolite coverage and the dependency on all
other detected compounds during marker discovery.
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3. Studies analyzed

Data from three studies have been investigated: A cross-over meal study with Brassica-containing
meals (MEAL), a range of short-term single food studies (FOOD) and a six month parallel interven-
tion study comparing two dietary patterns (INTER).

3.1 Design of MEAL

The MEAL study was a cross-over study with nine test meals performed in 17 healthy normal
weight males and females. On each test day, the diet was controlled from 9 am to 5 pm, including a
breakfast at 9 am, a snack between 9 and 11 am, a test meal between 12 andl pm and a dinner be-
tween 4 and 5 pm. The breakfast, dinner and snack were standardized meals and the test meal con-
sisted of three types of Brassica-containing meals (a Soup, a Pie and a Barleyotto), each served in
three versions with three different protein sources (vegetarian, meat and fish). On each test day, one
meal was served and subjects were randomized to one of the three protein sources. Each meal was
served once per week in a random order and the study was completed within three weeks.

Urine samples were collected from 9 am until intake of the test meal (Urine 1), from intake of the
test meal until 2 h after the test meal (Urine 2), from 2 h after the test meal until dinner (Urine 3)
and from intake of the dinner until 9 am the following morning (Urine 4). After removing 1.5 mL
from each of Urine 1-4, the urine samples were pooled into a 24 h sample.

Data used for the metabolomics study:

e List of ingredients from the test meals
e UPLC-qTOF-MS analysis of Urines 1-4 and the pooled 24 h urines

More detailed information on the study is given in Paper 1.

3.2 Design of FOOD

In the FOOD studies, experiments were performed with eight single foods (white cabbage, Brussels
sprouts, carrot, parsley root, kale, chicory salad, brown beech mushroom and fava beans) prepared
in the same way as they were served in the MEAL study (raw, fried or boiled) except that all other
ingredients were omitted. The food was served ad libitum between 12 and 1 pm. Urine was collect-
ed from 11am until intake of the food (Urine 1) and from intake of the food until 3 pm (Urine 2).
Except from the test food, participants were only allowed to drink water from 9 am until 3 pm.
Three to four subjects participated in each study. The participant characteristics were comparable to
the MEAL study but no subject participated in both studies and the participants were not the same
in all FOOD studies.

13



Data used for the metabolomics study:
. UPLC-qTOF-MS analysis of Urines 1-2

More detailed information on the study can be found in Paper I.

3.3 Design of INTER

The INTER study had the two dietary patterns, ADD and NND, as intervention arms. Three day
WDR were collected three times (week 0, 12 and 26) and 24 h urine samples were collected five
times (week 0, 4, 12, 20 and 26) during the study. At baseline (week 0), the diet was standardized.
The two intervention diets were defined as described previously in section 1.5 (Figure 1 and 2).
Participants collected all their foods free of charge at a small supermarket at the University of Co-
penhagen and the dietary intake was monitored by registering all foods brought home from the shop
buy each household (couples who both participated in the study or singles). During monitoring,
participants could select their own foods in the supermarket as long as the foods chosen overall
were in accordance with their assigned dietary pattern. Para-aminobenzoic acid (PABA) tablets
were given to the subjects on days of urine collections to measure the completeness of urine sam-
ples.

The subjects enrolled were men and women aged 18-65 with an increased waist circumference and
preferably one or more additional risk factors of the metabolic syndrome. Out of 181 subjects, who
were randomized to the two diets, 107 study completers provided urine samples and dietary records
at week 0,12 and 26.

For the metabolomics studies in Paper II and 11, the following data from the study were used:

e One day WDR made on the same day as the urine collections

e Total amount of foods registered over the full study period in the supermarket for partici-
pants with a household size of one

e UPLC-qTOF-MS analysis of 24 h urine samples

More details on the study and the subsets of data applied in the metabolomics analyses is described
in Paper II and III and in the main paper from the study (Poulsen et al., 2014).
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4. Analytical strategies applied

The metabolomics data analyses carried out for discovery of potential exposure markers (PEMs)
and for investigation of compliance are illustrated in Figure 3 and Figure 4, respectively. The dif-
ferent analytical steps (data preprocessing and —treatment, statistical analyses and feature valida-
tion) are described briefly in section 4.1-4.3.
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Figure 3 Analytical strategy applied for discovery of PEMs. Separate analyses were carried out for the MEAL and
INTER datasets to find PEMs. The PEMs in MEAL were further validated using data from FOOD and INTER. Sens:
sensitivity; Spec: Specificity; Y/N: yes/no; PLS-DA: Partial least squares discriminant analysis.




INTER
Preprocessed and

protreated data matrix Figure 4 Analytical strategy for development of a compli-

/ ance measure in INTER. A partial least squares discrimi-
nant analysis (PLS-DA) model was developed as a com-
MODEL subset pliance measure to distinguish the dietary patterns NND
and ADD. The compliance model was built from a subset
of urine samples (MODEL) and another set of samples
A from the same study was used to evaluate model perfor-

mance (VALIDATION).

l VALIDATION subset

g

Compliance model

4.1 Data preprocessing and -treatment

4.1.1 Preprocessing

Preprocessing is in many ways the foundation to performing a good metabolomics study. The pur-
pose of preprocessing for LC-MS based metabolomics is to convert raw data files, in which RT, m/z
and ion intensities are measured continuously throughout a sample run, into a two-dimensional data
matrix that is used throughout the following data analysis. The two-dimensional data consist of
paired RT and m/z values that together define a detected feature in one direction and samples in the
other direction. For each combination of a feature and a sample, the ion intensity, represented by the
integrated peak area of the feature, is calculated. The key in preprocessing is to determine the bio-
logically relevant signals in raw data as accurate as possible when detecting and integrating peaks
and at the same time minimize peaks from sources of analytical noise (Katajamaa et al., 2007).

Two main critical steps in data preprocessing are peak detection within samples and peak alignment
between samples. Various methods can be applied for these steps and the choices of software for
preprocessing as well as the parameter settings are crucial for the result (Giirdeniz et al., 2012). In
Paper I-11I, mzMine2 (Pluskal et al., 2010) has been applied for preprocessing of raw data. This
software has the advantage of a gap filling algorithm after peak alignment which decreases the risk
of missing peaks in a sample. Also, mzMine2 has good visualization tools for the conversion and
alignment steps (Giirdeniz et al., 2012). For the MEAL and the INTER datasets, a subset of 10-20
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representative samples were used to optimize the parameter settings. Due to a large number of sam-
ples in MEAL (close to 1000), a high noise level of 40-50 for peak detection was applied, as the
software otherwise could not handle the data. In INTER, on the other hand, the noise level was set
to 15. This is the main explanation why 6933 features were detected in total in MEAL compared to
13327 in INTER. Features with low intensities in all samples may have been missed in MEAL dur-
ing preprocessing, while more noise will be present in INTER that should be reduced before the
statistical analysis (see section 4.1.3).

4.1.2 Normalization

For nutrition studies, the metabolic changes of interest are often subtle and smaller than inter-
individual differences (Rezzi et al., 2007; Scalbert et al., 2009; Heinzmann et al., 2011). Nutritional
effects may therefore be overshadowed, if random and systematic errors caused by sample collec-
tion, as well as biological and analytical variation, are not minimized. A robust analytical method
and study design are the basis for performing a good metabolomics study but the choice of addi-
tional normalization procedures and data pretreatment are also influencing the study outcome (van
den Berg et al., 2011). For urine samples, an important issue is the biological variation in urine con-
centrations (Ryan et al., 2011). Concentration differences should ideally be corrected by determina-
tion of the renal elimination rate but such a measure is not feasible to obtain. Common approaches
suggested for normalization of urine are to adjust the samples according to creatinine level, osmo-
lality or ion intensity across samples (Warrack et al., 2009). In the literature, creatinine, volume and
normalization according to total ion current (TIC) has been applied for nutrition studies analyzed by
MS based untargeted metabolomics (Legido-Quigley et al., 2010; van Dorsten et al., 2010; Lloyd et
al., 2011b; Pujos-Guillot et al., 2013). To my knowledge, only one study has compared the different
approaches in which it was concluded from the separation in a principal component analysis (PCA)
that an ion intensity based measure and normalization to the same osmolality performed best (War-
rack et al., 2009). However, this study was an in vivo toxicology study on rats and the conclusion
may therefore not be the same for human nutrition studies. More work would need to be done to
understand how the variations in urine concentration influence data analysis and how to best solve
this issue. In the MEAL and INTER studies, TIC was used for normalization across samples.
Besides normalization across samples, normalization can also be performed in the feature direction
(Goodacre et al., 2007). In the MEAL and INTER studies, all samples from the same subject were
placed within the same plate to minimize analytical intra-individual variation. This allows a normal-
ization of data for either analytical variation between plates or inter-individual differences. Howev-
er, as individual and plate variation will always be mixed, normalizing for one of these will always
be biased by the other.

In the MEAL dataset, a large number of samples (40-45) were available from each subject due to
the cross-over design. For this reason, few subjects were represented on a plate and inter-individual
differences within plates were evident (Figure 5). In the statistical analysis applied for the study,
intra-individual differences were not considered in the multivariate model and it was therefore im-
portant to make this correction before the statistical analysis to make full use of the cross-over study

17



design (van Velzen et al., 2008). Normalization in this study was performed feature-wise by adjust-
ing the mean peak area of a feature across all samples from a subject to the same mean value for all
subjects. In the INTER dataset, the study had a parallel design. Adjusting such data for individual
differences would interfere with the nutritional intervention. Instead, plate correction was per-
formed for this dataset by a feature-wise normalization to obtain the same mean value of each fea-
ture on each plate. When a large number of subjects are represented on a plate, the biological varia-
tion is assumed to be randomized across the plates and plate differences can therefore be corrected
with minimal influence on the biological variation.

In Figure 5, the effect of the different normalization steps is illustrated with data from MEAL (Pa-
per I). From the left plot in Figure 5A, it is clear that several systematic sources of variation are
present in the data. Subjects are clearly separated from each other and this is also true for the sub-
jects, whose samples have been run on the same plate (person 3 and 4). Within each sampling point,
there is a tendency for many subjects that TIC is decreasing with increased urine volume, demon-
strating the influence of different urine concentrations. The unwanted systematic variation on the
left plot in Figure 5A is removed, following normalization and person correction, as illustrated in
the plot to the right. In Figure 5B, it is exemplified how the different normalization steps affect an
individual feature that was found as a PEM. Feature intensities are becoming more similar when
comparing data before (on the top) and after normalization to TIC (middle). In addition, the differ-
ences between the meals are becoming more and more pronounced when moving from the top plot
to the bottom plot on the right side of Figure 5B.
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Figure 5 Effect of normalization to TIC and correction for inter-individual differences in MEAL. Data from five repre-
sentative subjects are shown for each time point (Urine 1-4 and 24 h urines). Within each time-point, data has been
sorted according to urine volume starting from the lowest on the left to the highest on the right. Person 3 and 4 were run
on the same plate. A. TIC for raw data (left) and for samples after normalization to TIC and inter-individual correction
(right). B. Example of raw data (top), data after normalization to TIC (middle) and normalization to TIC and correction
for inter-individual differences (bottom) from a feature that was found as a PEM in the study (m/z 263.054, RT 3.54).
The plots on the left side are colored according to person and on the right side according to meal.
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4.1.3 Data reduction

Metabolomics data is characterized by a low number of samples and a high number of variables of
which a large proportion is noise introduced particularly during the preprocessing steps for peak
detection and alignment. Preferably, the number of features should be reduced to include only the
ones that are related to the nutritional effects of interest before the statistical analysis (Kjeldahl et
al., 2010). One way to eliminate noisy features and features unrelated to the treatment is the 80 %
rule introduced by Bijlsma et al. (2006). According to this rule, data is divided into different treat-
ment groups, depending on the study design, and features not present in at least 80 % of the samples
in any of the groups are excluded. The rule was originally made for preprocessing methods without
a gap filling algorithm which generates a large number of zeros but the rule can easily be adapted, if
a threshold defining the noise level is used instead of zero. An iteration of thresholds was performed
with the INTER and MEAL studies to find the optimum cut-off value for defining the noise level
and afterwards this value was applied to exclude features that were noise or not related to the nutri-
tional effect of interest. In the compliance study, a feature only had to be present in 5 % of the sam-
ples within any group instead of the usual 80 % due to the expected diversity within a dietary pat-
tern (Paper III). For the other studies, 80 % were used. Between 29 % (the MEAL study) and 94 %
(analysis of PEMs for individual foods in the INTER study) of all detected features were excluded
after applying the 80 % rule, demonstrating the impact of this pretreatment step. The very high per-
centage of features excluded in the INTER study is partly caused by strict criteria for data analysis
of PEMs for individual foods, where 80 % was used as cut-off despite a sample size down to ten for
the food groups (Paper II). However, the main reason of the divergence is different preprocessing
parameter settings in the two studies as described in section 4.1.1.

4.2 Statistical analyses

4.2.1 Multivariate analysis (PCA and PLS-DA)

Multivariate analysis is commonly applied for metabolomics data because it, as opposed to univari-
ate approaches, can handle a large number of variables and does not require that variables are inde-
pendent (Wold et al., 2001). The features detected in LC-MS based metabolomics are often strongly
correlated due to adduct formation and fragmentation during analysis as well as biological associa-
tions such as shared metabolic pathways. Another advantage of a multivariate approach is that bio-
logical patterns can be explored which may include features that would not be significant in a uni-
variate statistical analysis.

In Paper I and III, two common multivariate methods were applied; PCA and partial least squares
discriminant analysis (PLS-DA). PCA is an unsupervised method that is useful to explore the main
sources of variation in a dataset. It decomposes a data matrix into a new orthogonal space consisting
of principal components (PCs) that describe the main variation in the data (Boccard et al., 2010).
For the work presented in this thesis, PCA has been applied continuously during data analysis to
explore how data is affected by different mathematical operations. It has also been used to explore
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the food patterns in the INTER study (Paper III). In situations where the main sources of variation
are not explained by the nutritional intervention, as is normally the case for metabolomics data,
PLS-DA is necessary to investigate the effect of interest (Barker & Rayens, 2003). PLS-DA is a
supervised classification method. A dummy class matrix with zeros and ones is made corresponding
to defined groups of samples in the data, for example different meals, protein sources or dietary
patterns (Figure 3 and 4). The PLS-DA model is built in such a way that the new orthogonal space
of latent variables (LVs) maximizes the correlation between the data matrix and the class matrix
(Wold et al., 2001). In this way, features that best predict the class vector can be discovered. Appli-
cation of PLS-DA is convenient for metabolomics data but two main issues need to be addressed in
order to obtain meaningful results: Validation of the model and feature selection (Westerhuis et al.,
2008; Rajalahti et al., 2009). With a large number of variables there is always something that corre-
lates to the class matrix and it is therefore crucial to validate the PLS-DA model to make sure that it
can actually predict which class a new sample belongs to. The other issue, feature selection, is chal-
lenging because it is difficult to know how many features should be included in a PLS-DA model to
not lose any relevant biological information. The same strategy for developing a PLS-DA model
applying double cross-validation and feature selection based on Variable importance in projection
(VIP) scores was applied in Paper I and III. In all multivariate models, data was mean-centered and
autoscaled prior to analysis. The purpose mean-centering is to move the between sample variation
to the lower PCs and LVs by subtracting the mean of each feature from all the individual measure-
ments of the feature (Boccard et al., 2010). Autoscaling gives all variables equal weight in the anal-
ysis, ensuring that metabolites with low abundance are also taken into account (Wold et al., 2001).
The drawback of autoscaling is a higher risk of chance findings when noise is given equal weight to
biological compounds measured in the samples. To reduce the extent of chance findings as much as
possible extra feature validation steps were applied for PEM discovery in Paper I-11, by taking ad-
vantage of other aspects of the study designs (see section 4.3).

4.2.2 Univariate analysis

The fact that metabolomics data contains correlating features, different variable distributions and a
large number of variables compared to samples violates the underlying assumptions in a univariate
statistical approach (Broadhurst et al., 2006). Despite this, univariate statistics can still be applied in
metabolomics as long as the limitations are kept in mind.

In Paper II, a paired t-test was performed. This univariate measure was preferable over multivariate
models for two reasons: 1) Food intake in the study was not controlled on individual days implying
that only few subjects consumed each food group of interest on the days with urine collection. 2)
Inter-individual differences could not be adjusted as explained in section 4.1.1. With few observa-
tions and large inter-individual differences, it is not possible to develop a valid multivariate model
without a high risk of over-fitting. With a paired t-test, the inter-individual variation was taken into
account which increases the chance of finding markers. In addition, iteration was performed with
the available control samples from the included subjects to take into account all observations from
the selected subjects and thereby strengthen the analysis. The higher rate of false positive results
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(type 1 errors), due to multiple testing was corrected by the positive false discovery rate as defined
in Storey (2002). A limitation of the applied method for univariate analysis is the assumption that
each feature follows a normal distribution which may not be fulfilled. There may be cases where a
discriminant feature would be significant only in a non-parametric test and such a feature would not
be considered in the data analysis applied. The paired t-test in Paper II was performed with differ-
ent, often small, subgroups of participants and different subsets of features. It would be a major task
to test each feature separately for normality and make a reasonable conclusion as to which test to
apply in each case with so many small datasets. It has been demonstrated in a clinical study that a t-
test was robust even for small sample sizes from a distorted distribution with a large proportion of
zeros (Sullivan & D'Agostino, 1992). However, it cannot be excluded that some discriminant fea-
tures are missed in the t-test. To ensure that the findings in the statistical analysis were valid for the
purpose of the study, emphasis was placed on feature validation to minimize false positive findings,
rather than possible false negatives.

4.3 Feature validation

The purpose of the feature validation step in the metabolomics analysis is to reduce the number of
artifacts and chance findings among the discriminant features in the statistical analysis to a mini-
mum, in order to focus on the features with the best potential as exposure markers. The term valida-
tion when applied as part of the metabolomics analysis therefore should not be confused the general
validation criteria for exposure markers listed in Table 1. A feature validation procedure was ap-
plied for all features remaining after performing the statistical analyses in Paper I and II by taking
advantage of other sources of information in the study designs. In the MEAL study, the different
time-points (Urine 1-4) were available and it was investigated if the most discriminant features in
the multivariate analysis had a meaningful time-course of excretion after intake of the test meals. In
addition, the sensitivity and specificity of the features as markers of one or more meals were inves-
tigated. In the INTER study, the sensitivity and specificity of the significant features from the
paired t-test were calculated for the full dataset, including all subjects who never reported intake of
the foods on the days of urine collection. By including more individuals, information from a larger
percentage of the study population was included in the analysis compared to the often small subsets
of consumers in the food group on which the statistical analysis was performed. It was also investi-
gated if other reported foods had higher sensitivity and specificity for the feature to take into ac-
count possible confounding foods.

The PEMs from the MEAL study were further validated in the FOOD and INTER studies. By in-
vestigating if the PEMs were present after intake of different individual foods, it was possible to
establish the likely food sources of the PEMs (Paper I). Data from the INTER study was used to
investigate if the MEAL PEMs were also related to individual foods in a study setting with a more
mixed dietary background and with another study population (Paper II). All feature validation steps
for PEMs are illustrated in Figure 3.
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By performing the feature validation steps in the MEAL study, the number of discriminant features
was reduced by 93 % from 775 to 57 (in this calculation, features present in the PLS-DA model for
meals and in the PLS-DA model for protein sources are only included once in the total number be-
fore and once in the total number after validation). For the INTER study, the number of features
was reduced by 94 % from 568 to 35 (features that came out as significant for more foods are only
included once in the calculation of the total number before and once in the total number after vali-
dation). When the PEMs from the MEAL study were validated in the INTER study, seven out of 30
unique PEMs were also PEMs in the INTER study, corresponding to a reduction of 77 %. These
numbers demonstrate clearly that feature validation procedures can be used to reduce the number of
PEMs considerably. Especially for identification, which is very time-consuming, it is of major im-
portance that time is spent well on the features with the best potential as future dietary exposure
markers, instead of trying to cover all 1343 features that are of potential interest based solely on the
statistical analyses.
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5. Application of untargeted metabolomics for discovery of
exposure markers

5.1 Summary and discussion of results from Paper I and II on exposure markers

The PEMs found in the INTER and MEAL studies can be divided into three categories: 1) Identi-
fied or tentatively identified PEMs in both studies, 2) identified or tentatively identified PEMs in
one study and 3) unidentified PEMs. If the results on exposure markers from this thesis were con-
sidered independently, the markers with the best potential are in category one, because PEMs in this
category have been found in one study and validated in a complementary study which consolidates
the findings. However, it was only possible to validate the PEMs from the MEAL study in the IN-
TER study and not the other way around and other markers from the INTER study may of course be
good PEMs as well. The same is true for markers in the MEAL study of foods that were very rarely
reported in the INTER study and therefore could not be validated.

To investigate the potential of the markers found as exposure markers, other studies should be taken
into account in order to evaluate the validation criteria listed in Table 1. In Table 2, all category one
and two PEMs from the MEAL and INTER studies are listed. In the same table, an overview of
other relevant research on the same markers is provided. Based on the summary in Table 2, the bio-
logical validation criteria in Table 1 will be discussed separately in section 5.1.1-5.1.6 with a focus
on how metabolomics studies can contribute to the validation of dietary exposure markers. Analyti-
cal validation of the markers will not be considered, as this is not something metabolomic finger-
printing can contribute to.
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5.1.1 Known relation to the exposure

For most of the PEMs in Table 2, the precursor or precursors of the compounds are known. This is a
prerequisite to establish a causal association between food consumption and urinary excretion of the
exposure marker. Only for a few tentatively identified PEMs (4-iminopentylisothiocyanate, 4-ethyl-
S-amino-pyrocatechol sulfate, 3-hydroxy-hippuric acid sulphate and N-acetyl-cysteine conjugate)
that were not reported in other studies, it was not possible to confirm the suggested precursor. It is
important to keep in mind that Table 2 only contains identified and tentatively identified com-
pounds found in the INTER and MEAL studies. The fact that the route of excretion for the majority
of PEMs is already known is therefore mainly because previously reported compounds are easier to
identify. For unidentified compounds, it is difficult to causally link the PEM to intake of any food,
which is crucial in the validation process.

Exposure markers with several precursors (3-hydroxyhippuric acid, 5-hydroxyindole-3-acetic acid,
TMAO and theobromine, in Table 2) are difficult to interpret, as the excretion of those depends on
exposure to all the precursors which may originate from various food sources. A classic example of
this is hippuric acid and 3- and 4-hydroxyhippuric acids. These compounds are microbial products
of various polyphenols (Rechner et al., 2002a) and therefore not suitable to discriminate between
intake of individual foods. For example 3-hydroxyhippuric acid has been found to increase after
intake of coffee (Rechner et al., 2001), blackcurrant products (Rechner et al., 2002b; Hollands et al.,
2008) and extracts of wine and grape juice (van Dorsten et al., 2010), while it was found as a mark-
er of red cabbage in the INTER study. For other compounds, such as 5-hydroxyindole-3-acetic acid
and theobromine, one precursor, in this case serotonin (Helander et al., 1992) and theobromine
(Rodopoulos & Norman, 1996), respectively, is by far the dominating one. Despite this, the content
of these precursors in other food sources must be known to investigate, if they can be neglected
when the markers reach certain concentrations. For TMAO, the compound itself and TMA are the
main precursors but the contribution from carnitine and choline-containing compounds which are
converted to TMAO in the gastrointestinal tract, may be considerable (Svensson et al., 1994; Zhang
et al.,, 1999). With the exception of ERN-NAC, which may be produced endogenously from sul-
foraphane (Vermeulen et al., 2006), the isothiocyanate mercapturic acids (N-acetyl-S-(N-3-
methylthiopropyl)-cysteine, AITC-NAC, IB-NAC, SFN-NAC, BITC-NAC and SFN-CYS) have
one precursor each.

Only proline betaine and theobromine of the PEMs in Table 2 are excreted unmetabolized. Un-
metabolized compounds are typically very good candidates as exposure markers because they are
less dependent on inter-individual variation in the metabolic pathway. While proline betaine is con-
sidered to be an inert metabolite (Heinzmann et al., 2010), a large proportion of the ingested theo-
bromine is metabolized to other products (Rodopoulos et al., 1996) and the recovery of theobromine
in urine may therefore exhibit considerable inter-individual variation (see section 6.3.4. for a further
discussion of this).
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5.1.2 Sensitivity and specificity

The sensitivity and specificity of a PEM is mainly determined by the distribution of the compound
or precursor(s) in different foods, the normal range of consumption of these foods and the metabo-
lism of the compound. Which foods the subjects are exposed to during a study depends on the die-
tary restrictions applied, the dietary habits of the subjects and the intervention diet. All these factors
vary between nutrition studies and a food exposure marker found in several untargeted metabolom-
ics studies obviously has a stronger potential than a marker found only in individual highly con-
trolled untargeted studies or in targeted studies. Presence of a marker in several untargeted metabo-
lomics studies, especially cohort studies, is per se an indication of a marker with a high sensitivity
and specificity. Despite this, it is not straightforward to compare marker findings between metabo-
lomics studies as the metabolite coverage of the analytical methods applied and the procedures for
data analysis are not uniform. How important methodological issues are for the results obtained
from different metabolomics studies is not easy to assess at this stage since there is still not a large
number of studies published dealing with exposure marker discovery. However, Table 2 clearly
demonstrates the potential of untargeted metabolomics to validate food exposure marker findings.

Proline betaine and hesperetin glucuronide

The best documented marker discovered by untargeted metabolomics is proline betaine. This com-
pound has been found consistently as a marker of citrus consumption in all the listed untargeted
meal-, intervention- and cohort studies in Table 2, except from one study by May et al. (2013),
where it was found as a marker of a fruit and vegetable diet including citrus, soya foods and crucif-
erous vegetables. However, the finding of proline betaine in this study is most likely solely caused
by citrus being part of the intervention diet. In two untargeted cohort studies, the sensitivity and
specificity of proline betaine as a marker of citrus consumption have been calculated and in both
studies, the sensitivity and specificity were above 80 % for classification of low/high citrus con-
sumers or non-consumers/consumers (Heinzmann et al., 2010; Lloyd et al., 2011a). A sensitivity
and specificity above 80 % was also obtained in the INTER study as this was one of the validation
criteria for PEMs (section 4.3). Hesperetin glucuronide is another marker that has been found to be
related to citrus consumption in untargeted meal, intervention and cohort studies (Table 2). Interest-
ingly, hesperetin has already been investigated in a targeted cohort study on pregnant women
(Brantsaeter et al., 2007). In this study, a significant correlation was found between reported intake
of citrus in WDR and FFQ, and hesperetin (with and without) glucuronide measured in 24 h urine,
confirming the findings by untargeted metabolomics. For hesperidin and proline betaine, the content
of the compounds in other commonly consumed foods is negligible (de Zwart et al., 2003; Harnly et
al., 2006). Orange is the citrus fruit with the highest content of both compounds.
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Theobromine, 7-methyluric acid, 6-AMMU and 5-hydroxyindole-3-acetic acid

Other promising PEMs in Table 2 that seem to be found consistently by untargeted metabolomics
studies are theobromine, 7-methyluric acid and 6-AMMU as markers of chocolate intake and 5-
hydroxyindole-3-acetic acid as a marker of nuts or walnuts (Llorach et al., 2009; Tulipani et al.,
2011; Llorach et al., 2013). In one study, however, only theobromine (Martin et al., 2009) was
found as a marker of chocolate and not 7-methyluric acid and 6-AMMU which may be caused by
this study being the only one applying NMR and not MS for the metabolomic fingerprinting.

Chocolate is the dominant food source of theobromine (Shively & Tarka, 1984) but theobromine
can also be produced endogenously as a metabolite of caffeine. Serotonin is found in a range of
commonly consumed foods (Feldman & Lee, 1985). Even though walnuts contain the highest
amounts of serotonin, it remains to be investigated, if consumption of other serotonin rich foods, for
example bananas (Feldman & Lee, 1985; Helander et al., 1992) in absence of walnuts may give rise
to 5-hydroxyindole-3-acetic acid as an exposure marker as well.

TMAO

TMAUO is a marker that is commonly found in untargeted metabolomics studies but for which there
is not complete consistency in the findings. One meal study confirm the findings in the MEAL and
INTER study of TMAO as a fish marker (Lloyd et al., 2011b), while TMAO has been found as a
marker of non-vegetarian diets, animal protein and diets high in protein in other studies (Stella et
al., 2006; Xu et al., 2010; Heinzmann et al., 2011; Rasmussen et al., 2012b). In the study by Ras-
mussen et al. (2012b), TMAO in 24 h urine was correlated to 24 h urinary nitrogen which supports
the finding of TMAO as a marker of protein intake. Unfortunately, only the macronutrient composi-
tion of the diet was monitored in this study and it is not possible to assess the fish intake, which
would have been interesting. In the study by Stella et al. (2006), fish intake was not part of the ex-
perimental diet, demonstrating that TMAO is also related to high meat consumption. This is ex-
plained by the other precursors of TMAO. Choline, phosphatidylcholine and especially carnitine are
mainly found in meat products (Zeisel et al., 2003; Seline & Johein, 2007), while TMAO is present
only in fish. The content of TMAO in fish varies considerably from ten to more than 1000 mg/kg
(Chung & Chan, 2009). TMAO is virtually absent from freshwater fish and may reach very high
levels in marine fish. This difference between fish species was also observed in the results from
Paper II. In a targeted meal study with 46 foods, the urinary excretion of TMAO (0-8 h after the
meal) was much higher following fish intake compared to meat intake (Zhang et al., 1999) and in a
targeted observational study, TMAQO levels in overnight urine correlated with the self-reported ha-
bitual weekly fish intake (Svensson et al., 1994). However, the concentration of TMAO in urine
was not significantly higher in moderate and high consumers compared to non-consumers of fish in
this study. Overall, TMAO is probably a good fish- or meat protein marker in some study settings
but because of the various dietary sources and precursors of TMAO, more studies are needed to
establish under which circumstances TMAO can be used as a marker.
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Isothiocyanate mercapturic acids

Few metabolomics studies have been conducted on cruciferous vegetables and none of them have
confirmed the finding of isothiocyanate mercapturic acids as PEMs (Edmands et al., 2011; May et
al., 2013). In Edmands et al. (2013), NMR was applied which may explain why the same markers
are not found and in May et al. (2013), identification was only performed by searches in the Human
Metabolome Database (Wishart et al., 2009), where isothiocyanate mercapturic acids are not in-
cluded yet. While isothiocyanate mercapturic acids have known and specific precursors, that are
almost only present in foods from the Brassica species, the distribution of the precursors vary be-
tween Brassica vegetables (Vermeulen et al., 2006). These markers are therefore probably not spe-
cific to individual Brassica species, which is also the case for the findings in the MEAL and INTER
study. In addition, it has been demonstrated that the excretion of isothiocyanate mercapturic acids
depends on the food matrix. A higher concentration of isothiocyanate mercapturic acids is found
following intake of raw compared to boiled cruciferous vegetables (Vermeulen et al., 2006).

5.1.3 Dose-response

Dose-response is rarely taken into account in metabolomics studies. Meal studies are generally per-
formed with one dose and for cohort studies, low or non-consumers are generally compared to high
consumers to obtain a high contrast in the model. In Lloyd et al. (2011a), a tendency for a dose-
response relationship between proline betaine in urine and citrus intake reported in FFQ was
demonstrated for three intake levels. It is questionable, however, if semi-quantitative measurements
are appropriate for investigating dose-response. As illustrated in Paper II, there may be large inter-
individual variation between subjects for the same reported food intakes and, unless a large dataset
is available, it is not a good criterion for evaluation of the potential of an exposure marker. For this
reason, dose-response was also not included in the validation of PEMs as markers in Paper II. Dose-
response should be investigated in a targeted approach and a controlled study setting. The only
PEM in Table 2 for which this has been done is hesperetin (with and without glucuronide), where a
dose-response relationship has been demonstrated in two studies, which together cover an intake
range of zero to one liter orange juice (Manach et al., 2003; Brevik et al., 2004). For discovery of
food exposure markers, it may be valuable to include different doses in the intervention diets of
controlled cross-over studies. For example a mixed meal could be prepared with varying contents of
each ingredient in turn. This would enable an investigation of dose-response as well as possible
confounding effects on a marker of other ingredients.

5.1.4 Inter-individual variation

Large inter-individual differences have been measured for several of the PEMs in Table 2. For ex-
ample, 3-hydroxyhippuric acid (Rechner et al., 2002a) and TMAO (Zhang et al., 1999) vary consid-
erably between individuals, probably due to the dependency of gut microbiota for production of
these compounds. For TMAO the conversion from TMA to TMAO in the liver is impaired in some
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persons, a condition known as trimethylaminuria or the fish odor syndrome, due the fishy odor of
TMA. Presence of trimethylurea in some subjects may therefore also influence the findings for this
exposure marker, even though the prevalence of the condition is low (Rehman, 1999). At present,
inter-individual differences are rarely considered in the analysis of dietary studies by metabolomic
fingerprinting even though there may be a great value of including person characteristics such as
sex, genotype or phenotype in the analysis, as some exposure markers may be valid only in well-
defined subpopulations. Heinzmann et al. (2011) demonstrated the potential of metabolomic finger-
printing for this purpose and found that inter-individual variation in the choline degradation path-
way affected the response to a dietary meal challenge. In another study, genetic and environmental
determinants linking dietary characteristics to metabolite concentrations in fasting serum samples
were separated by studying monozygotic twins (Menni et al., 2013). This approach revealed that
only about 25 % of the metabolites found to be associated to the diet were not genetically deter-
mined.

5.1.5 Time of exposure

The time-course of excretion has been investigated for most of the markers in Table 2 but, unfortu-
nately, the majority of the studies performed only cover up to 24 h after consumption, which is not
enough in all cases to return to baseline levels. Hesperetin glucuronide, proline betaine and 5-
hydroxyindole-3-acetic acid are almost completely excreted within 24 h (Helander et al., 1992; Er-
lund et al., 2001; Heinzmann et al., 2010). The same is true for isothiocyanate mercapturic acids,
even though the excretion patterns over 24 h for these compounds depends on the preparation
method with a later peak in excretion for cooked cabbage compared to raw cabbage (Rouzaud et al.,
2004). For TMAO, the peak in excretion is probably around 2-4 hours after consumption for fish, as
shown in Paper I, but the excretion may not be complete after 24 h and there may be differences in
the rate of excretion following fish and meat consumption. If that is true, it could explain why
TMAO is a marker of fish in acute studies (Lloyd et al., 2011b) and a marker of protein in other
intervention and cohort studies (Stella et al., 2006; Rasmussen et al., 2012b). In both Paper I and II,
acute markers are favored in the data analysis because urine was collected on the same day as the
food was consumed.

It is not possible to distinguish if PEMs are short- or long term markers, unless the time-course of
excretion is investigated. In cohort studies, slowly excreted markers may be favored because the
timing of sampling and food intake is not controlled. However, slowly excreted markers cannot be
distinguished from acute food markers of frequently consumed foods in an observational study. The
other way around, acute markers found in the INTER study may also be slowly excreted, if a food is
not eaten frequently. Even though I have not been able to find data on the time-course of excretion
for the chocolate markers in Table 2, a study of theobromine ingestion has demonstrated that theo-
bromine and the theobromine metabolites are not completely excreted within 24 h (Rodopoulos et
al., 1996). In a study with proline betaine, differences were found in the excretion pattern and the
amount of proline betaine excreted between orange juice and a comparable dose of proline betaine
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added to apple juice (Atkinson et al., 2007). The excretion of theobromine taken as the pure com-
pound and theobromine as a constituent of chocolate may therefore not be the same. If the excretion
of theobromine from chocolate also extends beyond 24 h, however, it indicates that studies favoring
acute markers like the INTER study, can also provide information on markers that are excreted
more slowly. The finding of proline betaine and hesperetin as markers in cohort studies (Heinzmann
et al., 2010; Pujos-Guillot et al., 2013), even though they are excreted fast in urine, is probably be-
cause citrus is consumed frequently in the populations studied. It would have been interesting to
carry out an analysis based on reported foods that represents dietary habits better than a single day
food record in the INTER study in order to explore if the PEMs found would then be supplemented
with more slowly excreted markers.

5.1.6 Population

The majority of the metabolomics studies referred to in Table 2 have been conducted on healthy
normal or overweight adult males and females. It is important that an exposure marker is only ap-
plied in a population where it has been validated but this is less relevant in the discovery phase even
though it should be taken into account when comparing results between metabolomics studies.

5.1.7 Summary of the validity of exposure marker findings in Paper I and I1

The short review on the knowledge regarding PEMs in Table 2 in relation to biological validation
criteria for food exposure markers presented in section 5.1.1-5.1.6 demonstrates that untargeted
metabolomics is a valuable tool for exposure marker discovery. Except from a few PEMs for cab-
bage and beetroot, that have not been reported previously, all PEMs in Table 2, are supported by
other studies of which a large part is untargeted metabolomics studies. This demonstrates consisten-
cy in findings by metabolomic fingerprinting despite applications of a range of analytical parame-
ters and strategies for data pretreatment and analysis. Several PEMs are found in various study de-
signs including cohort studies, indicating that a metabolomics approach can provide a shortcut to
markers with high sensitivity and specificity for individual foods. Based on the biological validation
criteria in Table 1, proline betaine and hesperetin-glucuronide are supported by most evidence as
exposure markers at present among the PEMs found in the INTER and MEAL studies. Both of
these are almost unique to citrus fruits and are found as markers in a large number of studies. Inter-
estingly, a lot of work had been done on hesperetin as an exposure marker of fruits and citrus in
targeted studies before introduction of metabolomic fingerprinting. The finding of hesperetin-
glucurinide by untargeted metabolomics therefore consolidates that the method works for exposure
marker discovery. On the other hand, proline betaine is an example of a marker, where the potential
of untargeted metabolomics has been fully utilized and where the marker has been put forward as an
exposure marker almost solely based on evidence from untargeted metabolomics studies. Targeted
studies on dose-response and inter-individual differences are needed as the last step before proline
betaine can be applied in nutrition studies. Theobromine and theobromine metabolites as markers of
chocolate and 5-hydroxy-indole-3-acetic acid as a marker of walnuts also seem promising but for
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those, the contribution of other food sources needs to be further elucidated. There may well be
markers that can only be found in high concentration after intake of one food because the intake
required to reach the same levels for other foods exceeds habitual intakes. TMAO is a controversial
marker for which much more work needs to be done in order to find out how and if it can be applied
as an exposure marker. The large inter-individual variation and the many precursors of this metabo-
lite complicate the validation procedure considerably.

It is important to keep in mind that the presented markers in Table 2, only represent the markers that
were identified or tentatively identified in the INTER and MEAL studies and that these markers
were found, following very strict criteria for marker validation within the dataset (section 4.3). The
findings therefore reflect very strong markers and such markers are of course more likely confirmed
in other studies. For several of the foods in Table 2, other metabolomics studies have found a much
higher number of markers and it would have been interesting to investigate how these markers per-
form in a study like the INTER study. Are they not found in the statistical analysis? Are they elimi-
nated during validation? Or are they simply not detected? This way of targeting the metabolomics
analysis based on previous findings could support a faster validation of previous findings as well as
guide the criteria for marker validation in a dataset. The border distinguishing markers from non-
markers in metabolomics is often fluent and markers may be lost that might have been acceptable if
the criteria for marker selection had been modified slightly. The fact that highly controlled studies
generate more markers in a metabolomics analysis than cohort studies is probably not only caused
by markers from intervention studies being less specific and dependent on a high dose but also the
fact that cohort studies rely on dietary records and semi-quantitative measurements which implies
large sources of errors in the data. Probably a higher number of markers would be valid in observa-
tional studies if a set of markers was investigated in a targeted way.

Overall, metabolomic fingerprinting offers a short cut to evaluating some of the most essential bio-
logical validation criteria defining a good exposure marker: Sensitivity and specificity, time-course
of excretion and validity across populations. Another very important criterion, where the potential
of untargeted metabolomics is enormous, is for investigation of inter-individual variation. However,
inter-individual variation is at present most often not considered and rather used as a limitation for
marker selection than a way to identify subgroups who respond differently. There may be a poten-
tial for exploring dose-response relationships by untargeted metabolomics, especially in controlled
dietary intervention studies but this is another area that is not studied yet.

Other biological validation criteria call for a targeted approach. Establishing a causal link between
exposure and a PEM relies on knowledge of metabolic pathways from targeted studies. Also, inves-
tigations of dose-response and possible matrix effects are more feasible to determine by performing
quantitative measurements. Targeted studies should be conducted for the final validation of the ex-
posure markers found by metabolomics as soon as the markers have a proven potential. So far, the
work of validating outcomes of untargeted metabolomics studies in targeted analyses is lacking
behind. I have not been able to find a single published study where this has been done.
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5.2 Unidentified PEMs

Category three (section 5.1) of unknown or unidentified PEMs consists the largest group of PEMs
found in the INTER and MEAL studies. In total, 67 % and 41 % of PEMs in the MEAL and INTER
studies, respectively, were unknowns. Unknown compounds are not necessarily artifacts or poor
markers but they are extremely difficult to validate. When a PEM is identified, it is often possible to
link it directly to intake of a food and this is a prerequisite for any exposure marker as discussed in
section 5.1.1. Knowing the identity of a compound also makes it easier to understand which other
foods may give rise to the same marker and a known marker can be validated further in a quantita-
tive analysis as opposed to unknown compounds. It is hard, though not impossible, to confirm if an
unknown compound has been found in other metabolomics studies. Only the m/z of an unknown
marker can be compared, unless the analytical method is the same and m/z is not unique for any
compound and therefore not sufficient to conclude from. Since the same analytical method was ap-
plied in the MEAL and INTER studies, findings of unidentified PEMs could also be validated by
comparing m/z and RT. In this way, one unknown PEM from the MEAL study was found to be a
marker also in the INTER study (Paper II). It was also possible to compare two unidentified mark-
ers of citrus in INTER to unknown citrus markers published in another metabolomics study (Paper
I1). This successful comparison of unknowns between studies demonstrates that there may be valu-
able information to share, even if the identity of a compound is not known yet. Unfortunately, un-
known compounds are not always reported in metabolomics studies and a large proportion of the
knowledge gained from these studies is therefore unavailable for other research groups at present.
Especially for urinary exposure markers, it is expected that hitherto undescribed compounds will be
found by untargeted metabolomics. The possible metabolites that can be produced from intake of
foods are vast and largely unknown because studies conducted before it was possible to use metabo-
lomic fingerprinting were targeted. Metabolomics can and should contribute with new findings but
as long as the process of identification is not given much more attention, a large proportion of per-
fectly qualified findings is lost. This is a major issue that I will return to in the perspectives, section
8.
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6. Application of untargeted metabolomics for development of
compliance measures

The aim of applying untargeted metabolomics data as a compliance measure is to investigate if it is
possible to identify non-compliant subjects to a dietary pattern by an explorative multivariate ap-
proach. There is a large potential in identifying non-compliant subjects as inclusion of those in the
data analysis may obscure the findings in a nutrition study. In a similar manner as for the discovery
of exposure markers of individual foods described in section 5, the idea behind the development of
a compliance measure is to find out which metabolites characterize a diet as a whole. A few metab-
olomics studies have been conducted to identify markers of habitual dietary patterns (Peré-Trepat et
al., 2010; Altmaier et al., 2011; O'Sullivan et al., 2011; Floegel et al., 2013; Menni et al., 2013) but
the studies are too diverse in design and analytical approach to compare if there is any consistency
in the dietary patterns found and the associated metabolites. Even though the results from the stud-
ies demonstrate that dietary habits are reflected in urine, serum and plasma, it is unknown how ro-
bust a dietary pattern as determined by metabolomic fingerprinting is over time for an individual
subject and how generalizable dietary patterns are across study populations. It may well be that a
compliance measure which reflects a complex interplay between characteristic foods in a diet over
time may not simply be the sum of exposure markers of individual foods. In support of this, the
markers identified in a study conducted by O’Sullivan et al. (2011) on urine, reflected general die-
tary traits such as diets high in meat and vegetables rather than individual foods. A compliance
measure based on urinary metabolic fingerprints may therefore be superior to use of individual food
exposure markers for identifying subjects that have been non-compliant to a complex diet or sub-
jects who respond differently to a dietary pattern.

6.1 Summary of the compliance model developed in Paper II1

In Paper 111, a PLS-DA model has been developed to distinguish the two dietary patterns NND and
ADD in 24 h urine samples. Urine samples from week 12 and 26 of one hundred and seven subjects
in the INTER study, for which dietary records were available, were used to develop the model. Af-
terwards, the model was validated with 139 other samples, representing all sample points (week 4,
12, 20 and 26) in INTER. The final PLS-DA model consisted of four latent variables and included
67 features from 52 metabolites. The cross validation error of the model was 0.10 and the misclassi-
fication error for the validation set was 0.19, which corresponds to 26 samples being misclassified.
Twenty-one of the metabolites used in the model were identified or tentatively identified. A higher
number of metabolites in the model were characteristic of an ADD compared to the NND and these
ADD metabolites were also ranked higher in the model based on VIP scores. Metabolites related to
intake of citrus, chocolate, heat treated foods and probably animal protein and foods containing me-
dium chain fatty acids characterized the ADD diet in urine. The metabolites in the model character-
izing the NND diet were related to intake of fish as well as high intake of fruit and vegetables. More
details on the PLS-DA model and the identified features can be found in Paper III.
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6.2 Limitations of the PLS-DA model for compliance

Paper 111 represents a first step in the development of a compliance measure to distinguish between
the NND and the ADD. In the paper, it was demonstrated that the identified metabolites characteriz-
ing consumption of the two diets mainly reflect food items and food groups that are either unique
for one diet or that are consumed more frequently in one diet compared to the other. This, together
with the low misclassification rate for the validation set, is a good indication that the model contains
relevant information to estimate compliance to the diets. However, there are still a large number of
unidentified metabolites in the model and therefore it is not fully transparent how the diets are re-
flected by the selected features. In addition, the samples used to develop the model do not necessari-
ly represent compliant subjects. The subjects whose samples were included in the model had pro-
vided urine samples as well as dietary records at three sampling points in the study. Even though
there may be some relation between dietary compliance and the likelihood of a subject providing all
requested samples and dietary records, it is not an optimal selection procedure. If samples from
non-compliant subjects are included in the model, it implies that information from samples that are
not representative of the correct dietary pattern will be taken into account during model develop-
ment and this is of course problematic. Ideally, compliant subjects to the dietary intervention should
be identified to select the best samples for model development. Some common tools for measuring
compliance were applied in the study. For example, 24 h nitrogen excretion and PABA recovery
were measured in all urine samples and energy intakes (EI) as estimated by the foods registered in
the supermarket at the department and by WDR, were also available. However, the recommended
number of urine collections needed to use nitrogen excretions as a compliance measure of protein
intake at an individual level is eight (Bingham, 2003), and only four were available in the study.
Also, calculations of EE are associated with uncertainty when the doubly-labeled water method is
not used, especially when applied at an individual level (Livingstone & Black, 2003; Hall et al.,
2011). Even though it may have been possible to exclude samples from some subjects before devel-
oping the model based on the ratio EI/EE and nitrogen measures, there would not be much evidence
that these subjects actually represent the least compliant subjects. For a study with a main interest
on the food composition of a diet, compliance measures of food intake would be more relevant than
macronutrient and energy based measures but, as already described, such exposure markers are still
lacking. It is therefore questionable if it would have been possible to make a better selection of
samples for model development.

A main problem with the compliance model is that it is not possible to distinguish if misclassified
samples in the model are from truly non-compliant subjects or simply represent other subject or
sample characteristics that are not directly related to dietary compliance. In order to better under-
stand what characterizes the misclassified samples in the model, an analysis of the misclassified
samples is carried out in section 6.3.
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6.3 Analysis of misclassified samples in the PLS-DA model

In Paper 111, 26 misclassified samples were identified in the validation set but as discussed in sec-
tion 6.2, there may as well be samples among the model samples from non-compliant subjects. To
include those, the model samples were used as test set in the final PLS-DA model and the misclassi-
fied samples among the model samples were combined with the misclassified samples from the
validation set. Even though the misclassified model samples represent an underestimation because
the model is already based on these data, it is better to include at least the most extreme samples
among the model samples than not to include any information on these samples.

The new selection of misclassified samples in the model is highlighted in Figure 6. In total, 30 sam-
ples were misclassified, 25 NND samples and five ADD samples. In order to investigate how mis-
classified samples deviate from correctly classified samples in the model, a comparable subset of
correctly classified samples was randomly selected from all correctly classified samples so that the
numbers of samples from the model and the validation set as well as the two dietary groups were
the same in the correctly classified subset as for the misclassified samples. Only subjects, for whom
all samples were correctly classified, were included in the correctly classified subsets.
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Figure 6 Score plot of the first two latent variables in the PLS-DA model for compliance. Misclassified samples, when
the model was applied on the full dataset, are highlighted.
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The selected correctly classified groups of samples from NND and ADD have been compared to the
respective misclassified groups for a range of parameters related to: a) Distribution and complete-
ness of urine samples (section 6.3.1), b) Person characteristics and registered foods collected from
the shop (section 6.3.2), c¢) Biological measures (section 6.3.3) and d) Exposure markers of individ-
ual foods (section 6.3.4). For categorical variables, a chi square test was used to test, if the misclas-
sified and correctly classified samples were from the same distribution. For continuous variables, an
unpaired t-test was used. A list of detailed information on the individual correctly classified and
misclassified samples is provided in Appendix A.

6.3.1 Distribution and completeness of urine samples

The PLS-DA model is based on 24 h urine samples and the nature of these samples can potentially
affect the likelihood of a sample being misclassified. The effect of sample completeness, as estimat-
ed by PABA recovery, was compared between correctly classified and misclassified samples. Since
NND is a seasonal diet, samples collected during some seasons may be easier to classify in the
model than samples from other seasons and this was also tested. Finally, it was investigated, if it
was important for the ability of the model to classify a sample correctly, if the sample was from a
subject from whom samples had been included to develop the model. An overview of the tests per-
formed is given in Table 3.

Table 3 Parameters related to the distribution and completeness of urine samples

NND ADD
Misclassified  Correctly  P-value Misclassified Correctly  P-value
classified classified
n 25 25 5 5
Season (Win- 15/7/1/2 14/7/1/3 0.97 4/1/0/0 5/0/0/0 0.29
ter/Spring/Summer/Autumn)
No of incomplete samples 14 7 0.045 1 2 0.49
(PABA recovery <85 %)
No of samples for which samples 8 12 0.25 4 4 1.00
from the subject was part of the
model samples

No differences were found for ADD in the distribution and completeness of urine samples, while
the number of incomplete samples was different between the NND groups. A cut-off of 85 % for
PABA was used for completeness as recommended in (Bingham & Cummings, 1983). This result
can be interpreted in two ways. Either the model is dependent on complete samples or the misclassi-
fied subjects are less careful with their urine collections.
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6.3.2 Person characteristics and registered foods collected from the shop

The number of subjects in the misclassified and correctly classified NND groups, respectively, was
18 and 21because the samples within each of the groups were in some cases from the same subject
(see Appendix A). In the ADD group, all misclassified and correctly classified samples were from
different subjects. Baseline characteristics of the subjects are given in Table 4.

Table 4 Person baseline characteristics

NND ADD
Misclassi- Correctly P-value Misclassified Correctly P-value
fied classified classified

n 18 21 5 5

Age 43.9 (13.5) 44.9(13.6) 0.84 41.9 (15.1) 44.2 (14.5) 0.81
No of women 11 15 0.50 4 4 1.00
Family 5 9 0.33 2 1 0.49
Waist circumference [cm] 106.4 (11.7)  98.9 (13.0) 0.069 110.1 (21.0) 104.1 (9.8) 0.57
Body weight (week 0) [kg] | 102.6 (14.5) 87.7(14.9)  0.0034 101.5 (25.4) 90.8 (8.6) 0.40
BMI (week 0) [kg/m’] 33.7.(4.7) 29.7 (4.9) 0.013 33.2(9.5) 30.5 (3.08) 0.56

Family: Number of subjects from households of two study participants

No differences were found for the two ADD groups. NND subjects with one or more misclassified
samples in the PLS-DA model weigh more and have higher BMIs at baseline compared to NND
subjects with correctly classified samples. The body weight at the end of the intervention was also
significantly higher for this group (p=0.0004, data not shown), while there was no significant dif-
ference in the change in body weight from the beginning until the end of the intervention (data not
shown).

The macronutrient distribution and intakes of food groups that define NND and ADD are given in
Table 5, based on all registered foods in the supermarket at the department. For subjects living in
households of two study participants, EI registered in the supermarket was divided between the sub-
jects based on their relative estimated EE per day during the intervention.
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Table 5 Food intake and macronutrient distribution of foods collected from the shop

NND ADD
Misclassified Correctly P-value | Misclassified Correctly P-value

classified classified
n 18 21 5 5
Main food groups
[g/10 MJ]
Nordic foods 80.0 (5.4) 80.5 (4.0) 0.59 30.0 (3.8) 30.9 (6.7) 0.80
Organic foods 53.9(4.9) 54.2 (3.4) 0.82 1.83 (1.0) 1.4 (1.3) 0.56
Fruit 418.5 (68.8) 396.7 (67.9) 0.33 196.4 (25.9)  215.6(27.1) 0.29
Berries 87.8 (21.3) 94.1 (27.7) 0.43 4.9 (2.6) 7.6 (2.6) 0.13
Vegetables 465.2 (89.9) 417.9 (66.9) 0.068 220.0 (17.1)  224.9 (40.6) 0.81
Cabbages 65.4 (21.8) 65.5(17.2) 0.99 5.3(1.8) 9.0 (8.6) 0.37
Root vegetables 223.1 (57.9) 183.5 (22.6) 0.006 14.1 (8.5) 26.3 (4.7) 0.02
Legumes 48.5 (12.2) 46.5 (18.5) 0.69 43 (2.8 4.9 (2.0) 0.72
Potatoes 133.4 (29.5) 128.1 (42.0) 0.65 70.7 (26) 68.9 (33.0) 0.93
Fresh herbs 8.6 (3.7) 7.6(3.2) 0.35 1.4 (1.0) 3.03.3) 0.32
Wild plants and mushrooms 4.6 (2.3) 5.7 (0.2) 0.16 0.13 (0.3) 0.3 (0.4) 0.47
Nuts 35.0(5.9) 34.0 (4.6) 0.55 7.9 (2.3) 10.1 (4.9) 0.39
Wholegrain 151.8 (23.0) 165.3 (32.5) 0.79 42.1 (11.7) 50.3 (23.6) 0.51
Meat 109.2 (19.3) 94.2 (17.4) 0.015 158.6 (18.6)  160.0 (11.7) 0.89
Game 31.7.(9.6) 23.3 (6.7) 0.0027 - - -
Fish and seafood 71.5(20.7) 73.2 (24.7) 0.81 17.0(3.3) 24.4 (94) 0.14
Seaweed 0.87 (1.0) 0.69 (0.8) 0.88 - - -
Milk and milk products 373.1(125.2)  360.4 (124.1) 0.75 344.0 (12.5)  382.7 (109.4) 0.45
Other food groups
[g/10 MJ]
Chocolate and sweets 5.3(6.2) 5.6 (7.7) 0.59 36.8 (9.7) 40.6 (14.1) 0.64
Macronutrients [E%]
Protein 18.4 (0.9) 17.5 (0.8) 0.0011 16.7 (0.9) 16.6 (0.6) 0.94
Fat 31.0 (1.6) 30.7 (2.5) 0.66 33.6(2.6) 34.8 (0.9) 0.38
SFA 8.2 (1.1) 8.2 (1.1) 0.94 12.7 (1.1) 13.6 (0.7) 0.15
CHO 54.1 (2.5) 54.4 (2.3) 0.62 50.2 (2.4) 51.0 (0.7) 0.53
Added sugar 5.2(1.5) 5.9(1.8) 0.21 11.1(2.8) 11.9(2.2) 0.62
Energy based calculations
Energy density [kJ/100 g] 454.0 (40.7) 481.0 (32.8) 0.027 559.9 (65.7)  535.3(77.4) 0.60
El(shop)/EE 0.73 (0.13) 0.88 (0.16) 0.0027 0.73 (0.06) 0.78 (0.11) 0.39
EI(WDR)/EE 0.60 (0.14) 0.80 (0.20) 0.0020 0.78 (0.20) 0.90 (0.094) 0.28

E%: Energy percent, SFA: Satuated fatty acids, CHO: Carbohydrates, EI/EE: Ratio of EI to EE using EI data from the
supermarket or from WDR. EI (shop) has been calculated based on the energy content of foods collected from the su-
permarket and the number of intervention days foods were collected for. EI (WDR) has been calculated as the average
EI across all days of WDR from week 12 and 26. EE has been calculated by using the online Body Weight Simulator
(Hall et al., 2011) including the following parameters: Sex, age, height, weight at the beginning and end of the interven-
tion (week 0 and 26), number of intervention days, %body fat at week 0, and self-reported physical activity based on
questionnaire data from week 0.

0




Assuming that the foods registered in the shop was also consumed by the participants, the subjects
in the misclassified NND group, have a significantly higher intake of meat, game and root vegeta-
bles, compared to the correctly classified NND group. The higher consumption of meat and game is
also reflected in the energy contribution from protein, which is higher for the misclassified NND
subjects. Despite the relatively higher meat consumption, there is still a large difference in meat
consumption between misclassified NND subjects and subjects in the ADD groups. It is therefore
not likely that the misclassification of NND samples is caused by markers of animal protein in
urine, even though these are known to be part of the PLS-DA model, unless the subjects have con-
sumed more meat without registering it. Within the category of root vegetables, there was no clear
trend that the difference between the NND groups was caused by intake of any individual food (data
not shown). In addition to the differences for food groups and macronutrients found for the misclas-
sified NND subjects, these subjects have collected foods from the supermarket with a significantly
lower energy density on average (Table 5). The ratio EI/EE is also significantly lower for the mis-
classified group regardless of EI being estimated from the shop data or from WDR. This indicates
that the misclassified NND subjects have consumed more foods than what they have collected and
reported in WDR. The calculation of the ratio EI/EE is uncertain. The participants were allowed to
take up to twenty-one free days from the intervention diet and in the calculation of EI/EE, it is ei-
ther assumed that the data from the supermarket, or from WDR, represents the average EI over the
whole intervention, which is probably an underestimation. This may explain why EI/EE is lower
than one in all groups. For EE, the parameters to estimate physical activity strongly influence the
result and because the questions on physical activity in the questionnaire did not correspond com-
pletely to the questions used in the Body Weight Simulator (Hall et al., 2011), some error may have
been introduced. However, there was still a significant difference between the NND groups when
the default score for physical activity of 1.5 was used for all subjects, regardless of EI being based
on supermarket data or WDR (p=0.0034, data not shown). It is well-known from other studies that
subjects with high BMI tend to underreport EI more than normal weight subjects (Weber et al.,
2001; Livingstone & Black, 2003). The finding that the misclassified NND subjects have higher
BMI, collect less energy dense foods and to a higher degree than correctly classified subjects do not
collect and report enough foods to cover their estimated EE therefore resemble the findings in other
studies based on self-reporting and indicates non-compliance to the dietary intervention. Other stud-
ies have also demonstrated that under-reporters of EI generally report higher intakes of healthy
foods, among those meat and vegetables, and lower intakes of unhealthy foods (Livingstone &
Black, 2003). Even though such a trend is only statistically significant for meat and root vegetables,
other food categories point in the same direction in Table 5. Misclassified NND subjects have col-
lected more fruits and vegetables from the supermarket and the percent energy from added sugar in
the foods collected is lower for this group.

The only food group that differed statistically between the ADD groups was root vegetables, which
was lower in the misclassified group. In general, there is a tendency in Table 5 that the subjects in
the misclassified ADD group have collected less food in the shop from the food groups that defines
the dietary patterns, except potatoes. This should in theory make them even more characteristic
ADD subjects and does not explain why they are classified as NND. As there are no statistically
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significant trends in the collected foods and the ratio EI/EE for the misclassified ADD subjects
compared to the correctly classified ADD subjects, it is not possible to explain from Table 5, why
some samples from these subjects are misclassified.

6.3.3 Biological measures

A range of biological measures were taken in the INTER study (Poulsen et al., 2014). In Table 6,
the measures in urine and whole blood related to dietary compliance are listed. The only difference
found was in the ADD group, where the increase in the percentage of monounsaturated fatty acids
(MUFA) in whole blood over the intervention was higher for the misclassified subjects. The fatty
acid composition of whole blood can be used as a measure of the composition of dietary fat (Baylin
et al. 2005). However, the difference in MUFA for the ADD groups was not reflected in the dietary
intake of MUFA calculated from the registered food intake in the shop (data not shown). Whole
blood MUFA and satuated fatty acids (SFA) did not correlate well with dietary intakes in a study
based on FFQ data (Baylin et al., 2005). It is known that other factors, such as exercise, total fat
intake and the metabolism of individual fatty acids affect the fatty acid composition in blood (Hod-
son et al., 2008). The finding in the present study may therefore also reflect other dietary differ-
ences or other subject characteristics than simply a change in dietary MUFA.

Table 6 Biological compliance measures

NND ADD
Misclassified Correctly ~ P-value Misclassified Correctly P-value
classified classified
n 16 20 5 5
Urine measures
Nitrogen [g/day] 154 (2.7) 14.7 (3.7) 0.55 15.2 (2.8) 14.6 (3.6) 0.78
Whole blood measures
ASFA (%) 0.17 (2.62) -1.46 0.16 -0.24 (3.66) 1.81 (3.04) 0.36
(3.86)
AMUFA (%) -0.44 (2.10) 0.071 0.47 2.60 (0.94) 0.14 (1.54) 0.016
(2.11)
APUFA (%) 1.34 (3.78) 2.44 (5.20) 0.49 -1.52 (3.76) -0.33 (4.52) 0.66
An-6 0.82 (2.91) 1.18 (3.93) 0.77 -0.60 (3.16) 0.40 (3.21) 0.63
An-3 0.52 (1.27) 1.26 (1.77) 0.17 -0.92 (0.83) -0.72 (1.46) 0.80
An-6/n-3 -0.21 (0.84) -0.65 0.18 0.85 (0.78) 0.56 (0.62) 0.54
(1.01)
ADHA+EPA (%) 0.43 (1.07) 1.10 (1.46) 0.14 -0.73 (0.71) -0.65 (1.25) 0.91
AWB-HUFA (%) 0.07 (3.36) 1.44 (4.14) 0.29 -1.85 (1.97) -0.10 (3.09) 0.32

Nitrogen: average nitrogen excretion for complete samples (PABA>85 %) in week 4, 12, 20 and 26 were used for each
individual. A: Change from week 0 to week 26, SFA: Saturated fatty acids, MUFA: Monunsaturated fatty acids, PUFA:
Polyunsaturated fatty acids, EPA: Eicosapentaenoic acids, DHA: Docosahexaenoic acids, HUFA: Highly unsaturated
fatty acids (>20 carbons and >3 double bonds)
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Urinary nitrogen can be used to estimate protein intake in the diet (Bingham, 2003). Due to the
higher percentage of energy from protein in the misclassified NND group (Table 5), a higher nitro-
gen excretion would be expected for this group compared to the correctly classified NND subjects.
However, such as difference was not found. One explanation for this apparent discrepancy between
the dietary registrations in the shop and the urinary nitrogen excretion is that the urinary nitrogen
excretion was not estimated well enough for the subjects. Only 2.6 complete urine samples out of
four possible were available for the misclassified NND subjects on average, while three samples
were available for the correctly classified subjects. As previously mentioned, eight complete urine
collections are required for an individual to obtain a reasonable estimate of protein intake (Bing-
ham, 2003). Even though group level comparisons are made in Table 6, the variation due to few
available urine samples may be too high compared to the actual difference in protein intake. Anoth-
er possible explanation would be if the protein source affects nitrogen excretion. However, that was
not the case in a study by Mikkelsen et al. (2000), for which no difference in 24 h urinary nitrogen
excretion was found between two diets based on soy and pork protein, respectively, but with similar
macronutrient distributions. Finally, a prerequisite for using nitrogen excretion is that the subjects
are in nitrogen balance, which may not be the case in a study where subjects are losing weight.
When estimating the change in fat free mass as determined by a DEXA scanning for the misclassi-
fied and correctly classified NND and ADD groups, no significant differences were found (data not
shown) and differences in fat free mass therefore probably do not explain the results on nitrogen
excretion. Reported percent energy from protein has been validated previously by 24 h urinary ni-
trogen excretion in another study applying the department supermarket to monitor dietary intakes
(Skov et al., 1997). It is therefore expected that the difference in energy from protein found for mis-
classified NND subjects can be trusted, even though no significant differences in nitrogen excre-
tions between the NND groups was found.

6.3.4 Exposure markers of individual foods

Use of known exposure markers to individual foods is another approach to investigate compliance
in the INTER study. The dietary registrations from the supermarket as well as WDR, can be used to
estimate exposure to certain foods and compared to the levels of known exposure markers in urine.
If a set of exposure markers that cover relevant foods for the dietary intervention is available, it is
possible to investigate if the reported diet of the subjects is supported by presence of these urinary
markers. There are too few exposure markers available at present, to reasonably cover NND and
ADD. However, the exposure markers of citrus and chocolate in Table 2 are supported by findings
in other studies and since these two foods are not part of NND, it is interesting to apply the expo-
sure markers for those as compliance markers in INTER. Due to the semi-quantitative analysis, pos-
sible errors during data preprocessing as well as inter-individual variation, it is expected that a com-
bined measure including several markers for chocolate and citrus in urine will perform better than
the available measures of each individual marker. For this reason, a combined PEM score was made
for citrus and chocolate markers, respectively. The PEMs used to estimate citrus and chocolate ex-
posure were all features of identified or tentatively identified PEMs found in Paper II of citrus and
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chocolate. These included, two features from proline betaine ((M+H" and 2M+H"]) and hesperetin-
glucuronide ([M-H']) for citrus and theobromine ([M+H]"), 7-methyluric acid ([2M-H]) and 6-
AMMU ([M+H]") for chocolate. To obtain a combined marker level for the PEMs of citrus and
chocolate, the percentage of the PEM peak area in a sample out of the sum of PEM peak areas for
all samples was first calculated for each PEM. Then, the average percentage of the three citrus
PEMSs and the three chocolate PEMs in a sample was calculated for each sample and this number
was applied to represent the marker level in urine.

Intake levels for citrus were calculated as the sum of reported orange juice, orange, mandarin, lem-
on, lemon juice, lime and grapefruit in WDR on the same day as the urine collection. Chocolate
intake was estimated based on cocoa content, which was calculated for all chocolate containing
products (13 in total).

WDR data only cover the day of urine collection and, as mentioned in section 5.1.5, chocolate mak-
ers are probably not excreted within 24 h. To investigate if the subjects had reported or collected
citrus or chocolate close to the date of urine collection, supermarket data was used. For each mis-
classified and correctly classified NND and ADD sample, the food consumption registered in the
supermarket for the visit leading up to the date of the urine collection was examined. Subjects were
asked to report foods that had not been consumed as well as foods bought outside the supermarket
between each visit and therefore the list of foods from the supermarket should represent all foods
consumed by a household between each collection of foods from the shop.

As chocolate and citrus were an important part of ADD and were to be limited as much as possible
in the NND, the reported intakes from the ADD diet are expected to be more correct than for the
NND diet. The cut-off values for PEM levels to estimate intake of chocolate and citrus was there-
fore calculated based on samples from the ADD diet for which a WDR was available. The percent-
age of PEM levels was plotted as a function of reported citrus and cocoa intake for the ADD sam-
ples (plots to the left in Figure 7) and a cut-off for intake of 0.5 % was established to estimate choc-
olate and citrus intake based on these plots. Assuming that the reported intakes in ADD are correct,
the probability of incorrectly classifying a subject as a chocolate and citrus consumer on the day of
sampling using this cut-off is 15 % and 14 %, respectively, which is reasonably low.

Compliance for misclassified and correctly classified NND and ADD samples was evaluated ac-
cording to the following criterion: If the PEM level in the sample for citrus or chocolate was above
0.5 and the subject had not reported the food in WDR or collected the food from the supermarket
during the days leading up to the urine sampling, the subject was considered non-compliant. The
distribution of chocolate and citrus markers in all NND samples and ADD samples are given in
Figure 7 (plots in the middle and to the right). Based on these plots and the reported chocolate and
citrus intakes, twelve and eight samples in the misclassified NND group were classified as being
from non-compliant subjects to chocolate and citrus, respectively (Appendix A). This was signifi-
cantly more samples than the corresponding number in the correctly classified NND group (p=7.1E-
5 for chocolate and p=0.034 for citrus).
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The probabilities of in-correctly classifying a subject as a non-consumer for citrus and chocolate
when applying a cut-off of 0.5 were high (47 % and 61 %, respectively). Most ADD subjects in the
correctly classified and misclassified groups had either collected chocolate and citrus from the su-
permarket or reported intake of chocolate and citrus and compliance therefore could not be evaluat-
ed for these subjects (Appendix A).
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Figure 7 Relative PEM levels in 24 h urine samples for citrus (top) and cocoa (bottom). Cut-off marker levels for intake
are estimated from ADD data (left) and highlighted on the figures in the middle for ADD and to the right for NND.
Subsets of misclassified and selected correctly classified samples are highlighted in red and green squares, respectively.

It is clear from the plots of dose-response for ADD samples in Figure 7 that there is a large inter-
individual variation in the PEM levels and no clear dose-response relationship for citrus and, in par-
ticular, for chocolate. The more pronounced differences between consumers and non-consumers
observed for citrus in Figure 7, compared to chocolate is probably because proline betaine and hes-
peretin-glucuronide are excreted fast (within 24 h), consumed in higher amounts and are com-
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pounds that are not present in many other sources than citrus fruits. In addition, the citrus dietary
sources in the study were mainly orange juice and orange which contain the highest levels of the
two compounds compared to other citrus fruits (de Zwart et al., 2003; Aturki et al., 2004). As op-
posed to the citrus PEMs, the chocolate PEMs are expected to be relatively slowly excreted, and the
calculation of intake of cocoa is subject to large errors due to the broad range of chocolate contain-
ing foods. Also, the chocolate PEMs are metabolites of caffeine as well and there is a large inter-
individual variation in the excretion of these markers. The metabolism of caffeine and theobromine
is largely dependent on the activity of the enzyme CYP1A2, which varies highly both due to genetic
polymorphism and several environmental factors (Ghotbi et al., 2007). When comparing WDR for
the NND subjects in the misclassified and correctly classified NND groups for which WDR were
available, no significant difference was found in the number of subjects consuming caffeinated
drinks. Even though it cannot be excluded that some of the suspected non-compliant subjects for
chocolate can be explained by caffeine exposure from other dietary sources than chocolate, this is
not expected to be the case.

Figure 7 is a good illustration of the challenge in applying exposure markers for evaluation of com-
pliance. In the present case, additional variation is introduced because the measurements of PEMs
are semi-quantitative. Proper examination of dose-response by controlled intakes of food and quan-
titative analysis would without doubt be better to estimate an appropriate cut-off value for compli-
ance. However, even with the data at hand, there is a clear trend in the marker levels for the mis-
classified NND group compared to the correctly classified NND group (Figure 7) that support the
finding that the misclassified NND subjects are likely non-compliant. The fact that non-compliance
for citrus and chocolate consumption is more prevalent in the misclassified NND group compared
to the correctly classified NND group is expected, since most of the citrus and chocolate exposure
markers used to calculate the PEM levels in Figure 7, were also part of the multivariate compliance
model. Furthermore, the result that more misclassified NND subjects seem to have consumed choc-
olate than citrus without reporting it is in accordance with the findings that the majority of misclas-
sified NND samples in Paper III primarily differed from correctly classified NND samples in the
level of chocolate related markers.

6.4 Validation of the compliance model by evaluation of misclassified samples

The results from the analysis of misclassified samples in the compliance model performed in sec-
tion 6.3 are summed up in Table 7. Together, the results provide some additional information on the
validity of the PLS-DA model. Most differences were found for the NND group, probably because
this group of subjects is larger. Only major differences will be statistically detectable with a sample
size of five in each group as was the case for the ADD groups. None of the statistical results were
adjusted for multiple comparisons and it is therefore likely that some findings are chance findings.
This is not very important, however, since the statistical tests in this case are used as a screening
tool to characterize the misclassified samples rather than to draw firm conclusions from.
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Table 7 Differences within a dietary pattern between correctly classified and misclassified subjects

Misclassified NND subjects Misclassified ADD subjects
- Weigh more and have higher BMI - Report less root vegetables
- Do not register enough food at the intervention - Have a higher increase in full blood MUFA %
supermarket and in WDR to cover their estimat- over the intervention
ed EE

- Have less complete urine samples

- Collect more meat and root vegetables from the
shop

- More energy from protein in foods collected
from the shop

- Have high levels of chocolate and citrus expo-
sure markers without reporting it

Within the misclassified NND subjects, a subgroup of seven subjects had more than one sample
misclassified in the model and another subgroup of five subjects had only one out of three or four
samples misclassified (Appendix A). If the compliance model should work properly, it is expected
that the first mentioned group would be less compliant than the last mentioned group. However, no
clear trends were found for the significant parameters in Table 7, when comparing means and
standard deviations of subjects from the two subgroups with the overall means and standard devia-
tions for all the misclassified NND subjects. This may be caused by low sample sizes or some of the
parameters being chance findings. A larger dataset with more frequent sampling would be necessary
to better understand how many samples from a subject should be misclassified in order to classify a
subject as non-compliant. Incomplete sampling may also explain why some NND samples are mis-
classified. Since most exposure markers are excreted within a relatively narrow time frame missing
urine collections, especially after intake of meals, may be important for the classification ability of
the model. However, this is not possible to evaluate with the current data.

For misclassified ADD subjects, the significant differences found are not easy to interpret. None of
the misclassified ADD subjects had more than one sample misclassified and more than one sample
was available for the majority of subjects. Due to few misclassified ADD samples and no clear in-
dication of non-compliance in the present dataset, a higher number of samples would probably be
required to understand why some samples are misclassified.

Overall, the findings in the PLS-DA model to estimate compliance to NND are supported by the
analyses of the misclassified subjects in comparison to correctly classified subjects. There is a clear
indication that subjects with misclassified NND samples consume ADD foods regularly, underre-
port EI and over-report intake of healthy foods.

49



50



7. Conclusions

7.1 Untargeted metabolomics applied for discovery of PEMs

Untargeted metabolomics can contribute to discovery of new food exposure markers as well as con-
solidate findings from previous targeted studies on food exposure. The method provides a fast way
to elucidate several important biological validation criteria such as sensitivity and specificity and
time-course of excretion. With PEMs found in the INTER and MEAL studies as examples, it has
been demonstrated that findings by metabolomic fingerprinting are often consistent at least for the
strongest markers. The main limitation of untargeted metabolomics is the large number of unknown
compounds that are often not reported and also not applied in other studies.

7.2 Untargeted metabolomics applied for estimating compliance

Untargeted metabolomics is a promising tool to develop multivariate compliance measures. Analy-
sis of subjects with misclassified samples as compared to subjects with correctly classified samples
in the compliance model for ADD and NND, support the validity of such a model to identify non-
compliant NND subjects. There were too few subjects with misclassified ADD samples to draw any
conclusions on compliance for this group. More studies are needed to determine how true non-
compliant subjects can best be identified among subjects with misclassified samples in the model.
The importance of complete urine samples for the classification ability of the model should also be
investigated further.
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8. Perspectives

8.1 Unresolved questions

The potential of untargeted nutrimetabolomics has been suggested to be almost without limits. This
is nicely exemplified by the following quote from a recent review of the field by Llorach et al.
(2012):

“Focusing on the nutrition sciences, metabolomics is an interesting tool for assessing the nutritional
status of an individual, the food consumption, the biological consequences of following a nutritional
intervention, or the study of metabolic mechanisms in response to a diet depending on a particular
phenotype.”

It is not surprising that metabolomics is forecasted to bring new insights in nutrition. The explorato-
ry work with hundreds of metabolites invites for innumerable ideas, the logic being that so much
data must contain an almost unlimited amount of biological information. The work in this thesis
concerning exposure and compliance markers in urine witnesses that it is indeed possible to make
new discoveries from urine metabolomics fingerprints.

At the same time, however, it is clear that the application of metabolomics for exposure and com-
pliance markers is still far from fully explored. For some identified or tentatively identified PEMs,
there are few or no studies to compare the results to. For the unidentified PEMs there is almost no
way to validate if they are artifacts or good candidates as future exposure markers. For the compli-
ance model, this study is the first of its kind and therefore serves merely as an example of another
promising application of nutrimetabolomics than as a consolidated tool to distinguish non-
compliant from compliant subjects.

In other words, while the exploratory work goes on, the findings are rarely followed up on and fully
applied and we still know very little about the actual value of markers discovered by metabolomics.
There are plenty of unresolved questions. In relation to the topics in this thesis, I think the most im-
portant ones to focus on in future studies are the following:

- How can we best identify the most promising dietary exposure markers across different
metabolomics studies?

- How strong are the markers found by untargeted metabolomics in a targeted approach?

- Can identification of phenotypes help to discover more and better exposure markers?

- How robust are markers of a dietary pattern or habit and how well do they cover the diet?

- How many individual foods will we be able to find strong exposure markers for?

I will elaborate on how these questions could be addressed in the future in the next section.
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8.2 The next step

In my opinion, one of the main keys to identify the most promising exposure markers by untargeted
metabolomics is to systematize and utilize the knowledge from existing studies better. While many
databases exist for known metabolites, it is not possible to search for masses and fragments of un-
known metabolites reported in previous studies (if they have been reported at all). It would be time-
saving to be able to separate unsupported findings from identified and unidentified markers that are
supported by evidence from other studies. Identification is tedious, especially for urinary exposure
markers, as these are often not present in existing databases. If a database of unknown markers was
available, it would help to discover the strongest marker candidates, also among unknown markers.
At present, a lot of useful knowledge is most likely lost because of difficulties with identifications
instead of focusing on making information of the large group of unknown markers available for
others in a useful form.

The findings across metabolomics studies are not always consistent and it is often not possible to
separate if the discovery of a marker is caused by the methodological approach or true biological
differences, especially if the marker is not identified. Many metabolomics studies do not apply addi-
tional validation steps to take advantage of the study design as has been done in the INTER and
MEAL studies. Even though the validation criteria might have been too strict in the INTER and
MEAL studies, they were very efficient to select the most promising PEMs. If other previously re-
ported markers for the food or diet of interest could be used to better understand and possibly opti-
mize the data analysis in a new study as well as to validate the previous markers in another study
setting, it would be an advantage. For example, some markers from MEAL were present in INTER
but did not meet the validation criteria of a sensitivity and specificity above 70 %, which could in-
dicate that the validation criteria in INTER were too strict. Of course, such a procedure would be
difficult to establish as it would require a lot of work to correctly match, especially unknown, mark-
ers in a new analytical system. However, it would be a way to generate more knowledge on previ-
ously reported markers faster.

While untargeted metabolomics is a great tool to screen for possible exposure markers and identify
new marker candidates, it can never stand alone. As soon as there is enough evidence in favor of a
new exposure marker, it should be investigated in a targeted approach. It is a pity that an excellent
exposure marker candidate like proline betaine still has not been explored in a targeted study. There
seems to be a large gap between the explorative metabolomics studies conducted and the applica-
tion of the markers to strengthen future nutrition studies. Targeted studies are needed to provide the
final validation as soon as a new marker is supported by enough evidence from existing metabolom-
ics studies.

Other interesting perspectives are to conduct more studies that take into account different pheno-
types. In relation to this, it could be interesting to find out if some inter-individual variation could
be adjusted for by having a sort of standard diet with known food doses from each subject to com-
pare with the levels in other urine samples. This data was available in the INTER study but it was
not used for this purpose. To illustrate how correction for inter-individual differences in INTER
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can, in some cases, strengthen the conclusions, when investigating compliance, an example for cit-
rus is given in Figure 8.
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Figure 8 Evaluation of compliance without (left) and with (right) correction for inter-individual differences in proline
betaine excretion. Proline betaine intake has been estimated from reported intakes of citrus fruits in WDR and the pro-
line betaine contents of foods reported in Heinzmann et al. (2010). Only subjects who reported citrus intake in week 12
and/or 26, and for whom a week 3 sample (where the diet was standardized) was available, are included. For proline
betaine excretion, peak areas of the ion [M+H]" were used. Relative proline betaine intake and peak areas have been
calculated by dividing peak areas and intakes of proline betaine from week 12 or 26 with week 3.

In Figure 8, there is a stronger trend for a dose-response relationship between the estimated proline
betaine intake and the excretion of proline betaine, after correcting for inter-individual differences
in proline betaine excretion. Three subjects can be identified as likely non-compliant in the plot
with corrected data to the right. These subjects excrete less than 20 % of the amount of proline beta-
ine measured on the standardized diet despite reporting more than 50 % of the reported intake for
the standardized diet. Even though the same subjects seem to be non-compliant in the left plot, it is
not as clear because they diverge less from the other subjects. It should be mentioned that no im-
provement in dose-response relationships were found, when similar calculations were done for the
three chocolate PEMs used previously as compliance measures in Figure 7. It is therefore not
straightforward to correct for inter-individual differences in all cases.

Recurrent urine sampling may be another way to obtain more information on the diet of an individ-
ual which can strengthen the evaluation of compliance and exposure. Multiple urine sampling on
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the same subject to evaluate compliance has to my knowledge not been investigated yet. Due to the
complex interplay of multiple dietary exposures, phenotypic characteristics, timing of urine sam-
pling and intake, it is probably limited how much information on the habitual diet a single urine
sample can reveal. Also, it is impossible to know how robust markers of habitual diets or dietary
patterns are. To use the example dealt with in this thesis, if a person could be classified to the NND
diet after consuming a lot of fruits, vegetables and fish on one day, such a measure would not really
be relevant to apply as a compliance measure in a study that runs over six months. Close monitoring
of the diet and continuous urine sampling over some time, can help to elucidate how dynamic the
urinary metabolome is and if it is possible to separate habitual markers from markers originating
from a single food load. Finally, single food studies can probably provide a fast way to screen for
exposure markers, to find and compare different food sources of a marker and to understand why
some food groups give rise to clear markers in cohort studies, while others do not.
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Abstract An untargeted metabolomics approach has
been applied to discover and identify exposure markers in
urine for nine Nordic meals. A cross-over meal study was
carried out in 17 subjects. The meals included a Pie, a Soup
and a Barleyotto (pearl barley based risotto), each prepared
with three protein sources; meat, fish or vegetarian. Urine
samples were collected in different time intervals before
and after intake of the test meals, covering a total of 24 h.
The samples were analyzed by UPLC-qTOF-MS. Dis-
criminating features for meals and protein sources were
selected by use of double cross-validated partial least
squares discriminant analysis and two additional validation
steps: (1) time-course of excretion and (2) analysis of
sensitivity and specificity. In addition, eight meal studies
with single foods were carried out to investigate the food
sources of the markers. In total 31 potential exposure
markers (PEMs) of foods were found for the meals and
protein sources. Fifteen of the 31 PEMs were also found in
studies with single foods. Ten PEMs were identified or
putatively annotated. Among the PEMs were a range of
conjugated isothiocyanates from the Brassica oleracea
species. Trimethylamine N-oxide was found as a fish
marker. Additional unknown PEMs were found for chicory
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salad, parsley and fava beans, while other PEMs were
dependent on the meal matrix rather than individual foods.
The study demonstrates that it is possible to find PEMs in
24 h urine samples even when foods are given as part of a
complex meal.

Keywords Food exposure markers - Meal study -
Metabolomics - UPLC-QTOF-MS - Urine - Multivariate
analysis

1 Introduction

Measurement of dietary exposure has been claimed to be
one of the most difficult and challenging tasks in nutrition
(Bingham 2002; Favé et al. 2009). Systematic and random
errors in dietary reporting can significantly influence the
outcome of a study and potentially mask or modify asso-
ciations between diet and disease risk (Bingham 2002). Use
of dietary exposure markers measured in biofluids has been
demonstrated to correlate well with weighed food records
and may therefore serve as an objective measurement to
estimate food and nutrient intake (Bingham 2002). How-
ever, there are only a limited number of validated dietary
markers currently available and the development of tools
for assessing dietary intake is lacking behind (Penn et al.
2010). Thus, there is a need to discover more exposure
biomarkers in order to better explore the associations
between dietary exposure, health and disease risk (Favé
et al. 2009; Jenab et al. 2009).

One way to search for new exposure biomarkers is an
untargeted metabolomics approach, where a global fin-
gerprint of metabolites in biofluids obtained from nutrition
studies is used to discover which metabolites represent
specific foods or dietary patterns (Walsh et al. 2007;
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Llorach et al. 2010; Lloyd et al. 2011; O’Sullivan et al.
2011). Metabolomics enables simultaneous detection of a
high number of low molecular weight metabolites in a
single sample. As the dietary metabolic pathways are not
always known, metabolomics can contribute to elucidating
how dietary components are metabolized. Furthermore,
metabolites unique to specific foods or food groups can be
explored in order to find the most likely biomarker candi-
dates (Koulman and Volmer 2008; Penn et al. 2010).

Application of metabolomics for biomarker discovery is
still a relatively new field and many different metabolomics
methods and strategies have been explored (Lodge 2010). The
metabolic profile depends on a vast number of factors: timing
of food intake and sampling, food preparation and origin, food
matrix, and intra- and inter-individual differences to mention a
few (Favé et al. 2011; Puiggros et al. 2011). A standardized
protocol has been suggested for fingerprinting of urinary
metabolites for specific foods (Lloyd et al. 2011). However,
the outcome of a metabolomics study will reflect the study
design used. Therefore, the potential exposure markers
(PEMs) found in one study can supplement or further con-
solidate findings from other metabolomics studies with dif-
ferent study designs and sampling procedures.

The current study is part of the large 5-year multidis-
ciplinary Danish research project, OPUS, which aims to
develop a New Nordic Diet (NND) that is healthy, sus-
tainable and tasty (Mithril et al. 2012a, b). NND is defined
by a number of food groups and amounts (g/10 MJ)
(Mithril et al. 2012b). It differs from an average Danish
diet (ADD) by the level of intake of several foods like: root
vegetables, cabbages, fish, nuts and edible plants from the
wild landscapes growing in the North. One of the objec-
tives in OPUS is to investigate if it is possible to discover a
range of exposure markers by metabolomics that can be
used to discriminate between subjects eating NND and
ADD. Such exposure markers would be useful for future
studies investigating the health potential of NND.

In this paper, we report on the findings from a controlled
cross-over meal study with nine Brassica-containing NND
meals (Reinbach et al., unpublished observation) designed
to investigate whether it is possible to identify exposure
markers for specific NND meals and foods in 24 h urine
samples by a metabolomics approach.

2 Materials and methods
2.1 Study designs
2.1.1 Meal study

A complete cross-over meal study with a total of nine test
meals—three meals each prepared with three different

protein sources—was performed, as outlined in Fig. 1. The
study has been approved by the Regional Ethics Committee
(H-1-2011-016) and the Danish Data Protection Agency
(2007-54-0269).

Subjects were recruited from the local area around
Frederiksberg campus at University of Copenhagen by
poster and website announcements. They were assessed for
suitability with the following criteria; healthy normal-
weight men and women, between 20 and 50 years of age
with no food allergies.

Four males and thirteen females completed the study.
They had an average age of 27.8 &+ 6.4 and body mass
index (BMI) of 22.4 + 2.1 kg/m>.

On each study day, the subjects had a standardized
breakfast at 9 am, an apple between 9 and 11 am and a test
meal between 12 and 1 pm. Four hours after the test meal
had been served, an ad libitum standardized dinner was
given between 4 and 5 pm. There were no dietary restric-
tions or standardizations before 9 am and after 5 pm on
each study day.

Urine was collected on each test day in four time spans
covering 24 h in total: (1) from 9 am (excluding first void)
until intake of the test meal. (2) From intake of test meal
until 2 h after intake of test meal. (3) From 2 h after intake
of test meal until dinner. (4) From dinner until 9 am the
next morning (including first void). The urine samples
collected were analyzed separately and also as a pooled
24 h urine sample. The pooled sample was made by mixing
urines 1-4 after removing 1.5 ml from each.

The study was carried out on three consecutive days in
three consecutive weeks. Each of the three meals (Soup,
Barleyotto and Pie) was served once per week in a ran-
domized order and the participants were randomized to one
of three protein types of the meal served on each study day
(meat, fish or vegetarian).

2.1.2 Meals

The standardized breakfast consisted of yoghurt with
muesli, a carrot bun, cheese, raspberry jam and a drink of
free choice that had to be the same on each test day (tee,
coffee, water, juice or milk). The ad libitum standardized
dinner consisted of 700 g pizza with ham and cheese cor-
responding to 7,000 kJ, which was served for each par-
ticipant. The participants were requested to drink 0.5 1
bottled water before and after the test meal. In addition
they were asked to consume 2.5 dl water with the test meal
and the dinner.

The test meals were a Soup, a Barleyotto and a Pie. The
Soup was based on chicken stock with kale, parsley roots
and carrots. The Pie was a wholemeal flour base filled with
broccoli, pointed cabbage and chicory salad and the Bar-
leyotto consisted of boiled pearl barley with cream cheese
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r T 9 am : Standardized breakfast

(2h) = —— 4-5 pm: Standardized dinner

Urine 4-‘

The 9 test meals:

rine 1 L .
Urine 1] 9-11 am: Apple Fillet of cod (f)

(3h) Soup served with < Smoked saddle of pork (m)

== 12-1 pm: Test meal ———| Split peas and a poached egg (v)

@ | Urine 21
= Monkfish cheeks (f)
S (2 h) = =2 : 4
=™ 2-3pm Barleyotto served with — Meat of pig jaws (m)
= Urine 3 1 Fava beans and brown beech mushrooms (v)

Pie served with Smoked haunch of venison (m)

Smoked mackerel (f)

Cottage cheese and chanterelles (v)

(17 h)
— - 4 9am

\ 4

Fig. 1 Outline of study design and test meals. A schedule of meals
and urine sampling for each study day is given on the timeline to the
left. The right part of the figure shows the nine test meals. A Soup,

and boullion. The Pie was served with chicory salad while
the Soup and the Barleyotto meals were served with a salad
of white cabbage, Brussels sprouts and apple. All meals
were served with bread. The meat, fish and vegetarian
protein sources used in the meals are given in Fig. 1.
Details on amounts and ingredients and preparation meth-
ods of all meals are given in the supplementary material
(Tables S1 and S2).

2.1.3 Single-food studies

To confirm the dietary origin of the PEMs found in the
meal study, a range of small single food studies (SFS) were
performed with 3—4 subjects in each. In these studies, the
subjects were not allowed to eat or drink anything between
9 am and 3 pm, except from water and a test meal, which
was served at 12—1 pm. The test meal was served ad libi-
tum and consisted of a single food prepared in accordance
with how it was served in the meal study. Urine was col-
lected in two time intervals. From 11 am until intake of the
test meal and from intake of the test meal until 3 pm. An
outline of the study design for SFS is given in the sup-
plemental material Fig. S1.

The subjects participating in SES were not the same as
the subjects in the meal study. The only inclusion criterion
for SFS was willingness to eat the served foods. In total
four males and seven females participated in SFS. The
subjects had an average age of 32.4 £+ 9.4 and BMI of
21.9 + 1.3 kg/m? and participated in one to six SFS each.

Foods tested in SFS were: Raw white cabbage (ingre-
dient in the Soup, and the Barleyotto meals) raw Brussels
sprouts (ingredient in the Soup, and the Barleyotto meals),
boiled carrots (ingredient in the Soup), boiled parsley roots
(ingredient in the Soup), boiled kale (ingredient in the
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Barleyotto and a Pie meal were each prepared with three different
protein sources, one with fish (f), one with meat (m) and one
vegetarian (V)

Soup), raw chicory salad (ingredient in the Pie meal),
brown beech mushrooms fried in butter (ingredient in the
vegetarian Barleyotto meal), boiled fresh and dried fava
beans (ingredient in the vegetarian Barleyotto meal).

2.2 Sample preparation
2.2.1 Urine samples

During sampling, urine was stored below 5 °C in cooler
bags and after completion, sample aliquots were kept at
—80 °C until the time of analysis. The samples were ana-
lyzed both separately (urine 1-4) and combined (pooled
samples representing 24 h) as shown in Fig. 1. After cen-
trifugation (4 °C, 4 min, 2,700 RCF), 150 pl of each urine
sample was added to a well in 96-well collection plates
(Waters, Milford, MA) together with 150 pl of solvent
(aqueous 5 % 30:70 (v/v) acetonitrile (ACN):methanol
(MeOH), Optima grade LC-MS, Fisher Scientific, US)
containing an internal standard mixture similar to that
described previously (Barri et al. 2012). For quality control
purposes, an external standards mixture and within-plate
urine pools were used. Samples from the same person were
randomized within one plate to minimize intra-individual
variation due to plate differences.

2.2.2 Food extracts

To aid the metabolite identification, two food extracts, one
with ethanol and one with water, were prepared for chicory
salad, fresh fava beans, parsley root, carrots, white cabbage
and Brussels sprouts. Approximately 1 g of prepared food
from SFS was crushed in a mortar and mixed with 3 ml
water or ethanol for a few minutes. The food samples were
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centrifuged and supernatants were removed, filtered
(0.2 pm filter, SMI Lab-Hut, UK) and evaporated. The
dried samples were redissolved in 200 pl water or ethanol
prior to analysis.

2.2.3 Glucuronidation of standards

For glucuronidation, the method described by Z. Liu was
applied (1984). In brief, diosmetin was added to an aque-
ous mixture of MgCl,, KP; buffered liver extract (pH 7.4)
and uridinediphosphoglucuronic acid (UDPGA). The
mixture was incubated for 1 h at 37 °C, after which
methanol was added to terminate the enzymatic reaction.
The supernatant was withdrawn, evaporated to dryness and
redissolved in aqueous 5 % 70:30 (v/v) MeOH:ACN. The
liver extract used was prepared according to the optimized
conditions in Nelson et al. (2001).

2.3 UPLC-qTOF-MS analysis

Urine samples and food extracts were analyzed by an ultra-
performance liquid chromatography quadruple time-of-
flight mass spectrometer (UPLC-qTOF-MS), Waters Cor-
poration, Manchester, UK, as described previously (Barri
et al. 2012). The UPLC was equipped with an HSS T3 Cg
column and pre-column (Waters, Milford, MA). The mobile
phase was 0.1 % formic acid in milli—Q® water, (Billerica,
MA, US) (A) and 0.1 % formic acid (Sigma-Aldrich, Ger-
many) in 30:70 (v/v) MeOH:ACN (B). A mobile phase
concentration gradient from (A) to (B) was applied in a total
run time of 7 min together with a flow gradient. Positive and
negative acquisition modes of electrospray ionization were
implemented at probe voltage of 3.2 and 2.8 kV, respec-
tively. The selected m/z range was from 50 to 1,000 Da. On-
line accurate mass calibration was performed by infusing
leucine encephalin as lock-mass solution.

2.4 Identification

Identification was mainly done by use of MS/MS data,
searches in the Human Metabolome Database (www.
hmdb.ca) and by matching of m/z and retention times to
results obtained from SFS and food extracts. In addition,
literature searches were carried out to find information on
known metabolites and characteristic compounds present
in the investigated single foods. MS/MS fragmentation of
markers was performed in product ion scan mode by
ramping collision energy from 10 to 40 eV and using cone
voltage of 25 V.

Levels of identification are reported in accordance with
(Sumner et al. 2007). Compounds identified by matching
masses and retention times with authentic standards both
alone and spiked into a sample are reported as level 1.

Compounds only identified by MS/MS spectra and mat-
ched to spectra from databases were annotated as Level II.
Compounds identified by spectral similarities to a similar
compound class and knowledge from previous literature
are reported as level III. Unknown compounds are reported
as level IV.

The following standards were run for level one identifica-
tions: Diosmetin and trimethylamine N-oxide dehydrate
(Sigma-Aldrich, Germany), b, L-Sulforaphane N-Acetyl-L-
cysteine and N-Acetyl-S-(N-benzylthiocarbamoyl)-L-cysteine
(AH diagnostics, Denmark). Diosmetin was glucuronated prior
to analysis.

2.5 Data processing and pre-treatment

All raw spectra were converted to netCDF files using
DataBridge (Waters) and imported into MZmine2 (Pluskal
et al. 2010) for data processing. Data from the meal study
and from the SFS were processed separately in MZmine.
The parameters used were optimized for positive and
negative mode individually, using a subset of data and the
external standards. Applied parameters and batch steps are
given in the supplementary material, Table S3.

After processing, the retention times (RT), m/z values
and peak areas from the generated peak lists in positive
and negative mode were imported into MATLAB® ver-
sion 7.12.0.635, R2011a (Mathworks Inc., Sherborn, MA,
US). The term ‘feature’ will be used to designate a peak
from the MZmine peak list throughout the rest of this
paper.

Before the statistical analysis, data from the meal study
was pre-treated in order to correct for unsystematic and
systematic variation caused by: (1) Presence of noisy fea-
tures. (2) Changes in overall spectra signal intensities
across sample runs. (3) Differences in urine concentrations.
(4) Individual differences. Pre-treatment of the data was
done in four steps as described below (paragraph 2.5.1-
2.5.4). The processed data from SFS was not pre-treated.
This data was used only to match m/z and retention times to
PEMs found in the meal study in order to investigate the
food source(s) of the markers.

2.5.1 80 % rule

First, the 80 % rule (Bijlsma et al. 2006) was applied. The
rule was slightly modified since it is not possible to use
zero as the threshold when using processing software with
a gap filling algorithm. Instead, an iteration procedure with
varying thresholds was used to find the optimal threshold.
Data was divided into 36 groups, where each group
consisted of samples from one urine sampling point (urine
1-4) and one of the nine meals. A threshold was applied
and if at least 80 % of the measurements for a feature was
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not above the threshold in at least one group, the feature
was removed.

2.5.2 Normalization

After applying the 80 % rule, the reduced matrix was
normalized to a total area of 1,000 for each sample across
the remaining features. This was done in order to correct
for differences in urine concentration and ionization levels
during sample runs.

2.5.3 Person correction

Individual differences in metabolite levels were corrected
by a feature-wise normalization across individuals. For
each individual, the measurement of a feature in a given
sample was divided by the sum of all sample measurements
for the same feature and person:

where x;; are the measurements of feature i on person
k for the j’th meal- and timepoint. Cy;; is the person cor-
rected value.

2.5.4 Average Euclidian distance

A new matrix was calculated from the normalized and
person corrected matrix by taking the mean of all samples
from each of the nine meals. This was done for each fea-
ture, resulting in a [meal type x number of features]
matrix. The Euclidian distance between all pairwise meals
was calculated and the average distance between two meals
was used to evaluate the optimum threshold for the 80 %
rule.

For both positive and negative mode data, all four steps
(paragraph 2.5.1-2.5.4) were iterated with thresholds from
0 to 5 and increases of 0.1 per iteration. The normalized
and person corrected matrix with the highest average
Euclidian distance was used for the statistical analysis.

2.6 Statistical analysis

The statistical analysis was in two parts. First, a multi-
variate partial least squares discriminant analysis (PLS-
DA) was performed on 24 h samples from the pre-treated
data matrices in negative and positive mode. Next, validity
of the discriminating features in PLS-DA as PEMs was
investigated by a validation procedure in two steps. The
complete statistical analysis was carried out in MATLAB®.
For the PLS-DA analyses, the PLS-toolbox (version 6.5.1,
Eigenvector Research, Inc., MA, US) for MATLAB® was
used.
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2.6.1 Multivariate analysis by PLS-DA

Two separate PLS-DA analyses were made. In one, the
three meals, Pie, Soup and Barleyotto were used as class
vectors and in the other, the three protein sources fish (f),
meat (m) and vegetarian (v) were used as class vectors
(Fig. 1). All data was autoscaled before applying PLS-DA.

For both class vectors, one optimized PLS-DA model
was developed and validated as described in points A-D:

A. Initially, seventeen PLS-DA models were made in
which two subjects were left out in each model, thus
leaving out each subject from a total of two models.
Each of the seventeen models were reduced according
to variable importance in projection (VIP) scores
(Wold et al. 1993; Chong and Jun 2005) as follows:
The PLS-DA model was cross-validated by leaving
out data from one person at a time. Features with a
VIP score below one for all classes in the model were
removed and a new model was developed with the
remaining features. This procedure was iterated until
all included features in the model had VIP scores
above one for at least one class. The number of latent
variables used in each iterated model was automati-
cally selected as the lowest number for which the
mean of the cross validated classification errors was
below 0.02 or, alternatively, the number with the
lowest cross validated classification error mean.

B. Features found from the models in A were ranked
according to how many of the 17 models included a
specific feature.

C. Seventeen new PLS-DA models including all subjects
were then made based on the features selected in the
initial models. For the first model, features present in
at least one of the initial models after feature selection
were included. The model was cross-validated with
the same segmentation as the one used for the initial
models. Then, a second model was build including
features present in at least two of the initial models.
This procedure was repeated until 17 new models had
been made, including features present in one to 17 of
the initial models.

D. The model in C with the lowest mean cross-validated
classification error was selected as the optimized
model and the included features in that model were
used for the second part of the statistical analysis.

2.6.2 Validation

For validation, raw data from the selected features in D was
used. First, the sensitivity and specificity (percentage of
correct classifications for each group) were investigated by
looking at the distribution of raw data from 24 h. Only
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features for which a specificity and sensitivity of at least
80 % could be obtained for a given threshold, when com-
paring measurements of the feature for one meal group,
protein group, or individual meal, to the rest of the meals,
were included for the second part of validation. In the
second validation part, raw data for each feature from all
urine sampling points were plotted to investigate if the
feature had a meaningful time-course. Only features ful-
filling both parts of the data validation were considered as
PEMs.

3 Results and discussion

Overall, 144 complete 24 h urine pools were collected.
Processing of the samples in MZmine gave 5,129 and
4,684 features in positive and negative mode, respectively.
After pre-treatment of the data, 3,955 and 2,978 features
remained for the statistical analysis. An optimal threshold
of 1.7 was found for the iteration procedure.

3.1 PLS-DA analysis

The results from the PLS-DA models are reported in
Table 1. For both positive and negative mode, where meal
was used as class vector, the initial PLS-DA models for
meals were very robust, while the initial PLS-DA models
for protein sources had high classification errors both for
cross-validation and for the test sets (14.2-39.1 %,
Table 1). The higher classification errors for the protein
PLS-DA models can be explained by the protein sources
being less comparable than the meals. Whereas each meal
class had most ingredients in common and only deviated in
the protein source (meat, fish or vegetarian), the grouping
of the three fish, meat, and vegetarian meals as class vector
is a grouping where each class does not have any ingre-
dients in common. The higher classification errors for
protein sources even after variable selection demonstrate

Table 1 Results from the PLS-DA models

that very few features distinguish the individual protein
sources well and it can be expected that a high proportion
of the features left in these models are not PEMs.

Use of class vectors based on protein sources and meals
has the advantage of including the full dataset, thereby
increasing the number of observations within each class.
However, combining data known to be from different
meals into one class will also add unwanted variation to the
model. Which approach is the best depends on how much
variation is caused by within class differences due to dif-
ferent meal compositions compared to the total variation
within a meal or protein class. In order to investigate the
within class variation we have performed a principal
component analysis (PCA) and a PLS-DA including only
data from the three protein sources of one meal at a time.
These models were not good (data not shown), suggesting
that the main variation in the dataset from the meals is from
the meals rather than the protein sources. For that reason,
the models including the full dataset were chosen for the
data analysis. If an individual meal gives rise to strong
PEM:s, these will most likely still be included after variable
selection in the optimized models, since such markers will
classify one third of the samples within a class.

When comparing the optimized PLS-DA models for
meals and protein, the protein models are characterized by
both a higher number of latent variables and a higher
number of features (Table 1). However, the cross-validated
classification errors for all the models are acceptable
(<4.5 %) and for that reason, all features selected in the
PLS-DA models were used for the validation step.

3.2 Validation

An example of feature validation for four characteristic
PEMs is given in Fig. 2a—d. Figure 2a is a PEM for the
Barleyotto and the Soup meals, Fig. 2b is a PEM for fish
meals, Fig. 2c is a PEM for Pie, and Fig. 2d is a PEM for
the Soup meal. All PEMs illustrated in Fig. 2 show a clear

PLS-DA models Positive mode

Negative mode

Meals Protein Meals Protein
Initial CV class error 0.007 £ 0.005 0.142 £ 0.038 0.059 + 0.066 0.286 £ 0.0515
TS class error 0.008 £+ 0.014 0.194 £ 0.056 0.057 £ 0.103 0.391 £ 0.077
Number of LVs 2.29 + 047 547 £ 2.15 4.76 £ 2.05 6.70 £ 2.44
Number of features 108 £5 32 £ 36 79 £ 18 333 £ 97
Optimised CV class error 0.007 0.040 0.045 0.045
Number of LVs 2 5 3 7
Number of features 148 180 156 370

For the initial models, the mean and the standard deviation of the results from all 17 models are reported

CV class error, cross validated classification error; TS class error, test set classification error; LVs, latent variables
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Fig. 2 Data examples for four characteristic PEMs. Average peak
area of each feature for each urine sampling point (1, 2, 3, 4 and 24) is
shown for each meal (Barleyotto, Pie and Soup) or protein (Meat,
Fish and Vegetarian) type. Error bars in the figure are 20 and 80 th

time-sequence for excretion and for the 24 h samples, the
20 th percentile of the meal(s) the PEM is a marker for, is
higher than the 80 th percentile of the other meals. In
general, highest variation is found for urine samples 2 and
3 probably reflecting individual differences in excretion
rates and in excretion half-lives.

In total, 45 and 12 PEMs were found in positive and
negative mode, respectively. These PEMs corresponded to
30 unique PEMs, as many were fragments or adducts of the
same metabolite. The distribution across meals for the
PEMs found is given in Table 2. Most PEMs were Bar-
leyotto and Soup markers following the same pattern as in
Fig. 2a. In addition, PEMs for fish intake regardless of
meal type, PEMs for the Soup meal, and PEMs for the
Barleyotto vegetarian and fish meals were found. Overall,
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percentiles. a PEM for Barleyotto and Soup, [m/z = 327.052,
RT = 2.76], b PEM for fish, [m/z = 76.076, RT = 0.49], ¢ PEM
for Pie, [m/z =398.129, RT =230], d PEM for Soup [m/
z =301.073, RT = 3.70]

Table 2 Meal sources of PEMs found in the study

Meal(s) Total PEMs Unique PEMs
Barleyotto and soup 22 6
Pie 15 7
Soup 9 8
Barleyotto vegetarian meal 8 7
Meals with fish as protein source 2 1
Barleyotto fish meal 1 1

The meals in the left column are meals containing higher levels of the
PEMs compared to the rest of the meals. Total PEMs is total number
of PEMs found for each meal including fragments and adducts. The
number of unique PEMs in column three is the corresponding number
of metabolites, excluding fragments and adducts
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Fig. 3 Peak area of two PEMs, for each subject before (urine sample 1)
and after (urine sample 2) intake of different single foods. a PEM found
after intake of white cabbage and Brussels sprouts [m/z = 327.052,

very few markers characterize protein sources compared to
meals, which is in accordance with the PLS-DA model on
protein classes being inferior to the PLS-DA model on
meal classes for predictive strength.

3.3 Identification

Fifteen of the unique PEMs in Table 2 were also found in
SES. Eight of the PEMs were found in SFS with both
Brussels sprouts and white cabbage while five PEMs were
found after intake of parsley root. Intake of chicory salad
and fresh fava beans gave rise to one unique PEM each.

In Fig. 3a and b, examples of data from two PEMs
found in SFS are given, one for Brussels sprouts and white
cabbage and one for chicory salad. The two PEMs are the
same as depicted in Fig. 2a and c.

Even though other subjects were used in SFS compared
to the meal study and not the same subjects were used in all

RT = 2.76], b PEM found after intake of chicory salad [m/z =
398.129, RT = 2.30]

SFS, there was a clear trend for the PEMs found in SFS. It
cannot be excluded that some PEMs found in SFS are
present in other food sources from the meals as well, since
only a limited number of ingredients were tested in SFS.
Furthermore, the short duration of urine collection in SFS
compared to the meal study may affect the result even
though peak time of excretion for almost all PEM was
within 4 h after intake of the meals (Table 3). The only
protein source for which a high number of markers were
found in the study was the Barleyotto vegetarian meal.
Only one out of seven markers of the Barleyotto vegetarian
meal was confirmed in SFS, even though all the foods
present in the vegetarian version of the meal were inves-
tigated (brown beech mushroom and fava beans). This
suggests that the rest of the PEMs found are matrix
dependent either in their formation or in their time-course
of excretion and it confirms the importance of testing the
presence of a marker also in individual foods.
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In Table 3, all PEMs that were identified at level I-III and/
or found in SFS are listed. The rest of the PEMs that were
neither identified nor found in SFS are provided as supple-
mentary material (Table S4). As we have not been able to
find a food source of the markers of the PEMs in the sup-
plemental material and we did not find any database matches,
they may originate from the meal matrix or other single
foods. Identification of these markers would therefore
require further experiments and more sensitive equipment.

Four PEMs present in SFS after intake of white cabbage
and Brussels sprouts were markers of the Soup and Bar-
leyotto meals (Table 3). This finding is not surprising since
these foods were served in the salad accompanying both
these meals. However, Brussels sprouts and white cabbage
also gave rise to PEMs characterizing the Pie meal even
though none of these ingredients were present in that meal.
Brussels sprouts and white cabbage are botanically related
as they both belong to the plant species, Brassica oleracea
(Clarke 2010). Kale (ingredient in the Soup), broccoli and
pointed cabbage (ingredients in the Pie) belong to this
species as well, which might explain why slightly higher
levels of these PEMs are found after consuming kale
containing Soup compared to Barleyotto in Fig. 2a. Also,
this explains why a time-sequence is seen even for the Pie
meal in the same figure.

All the PEMs found in white cabbage and Brussels
sprouts were identified at level I or III as acetyl-cysteine
derivatives of isothiocyanates from Brassica o. The
assignment of this group of compounds as acetyl-cysteine
derivatives was made based on shared fragments or mass
losses with the level I identified markers N-Acetyl-(N’-
benzylthiocarbamoyl)-cysteine and Sulforaphane N-acetyl-
cysteine. Compounds were annotated as acetyl-cysteine
derivatives if either the fragment with m/z = 164.038,
which corresponds to acetyl-cysteine or losses of 163.030
or 129.043, which corresponds to acetyl-cysteine loss with
and without sulfur, respectively, were present in the raw
LC-MS spectra and/or in MS/MS data. The isothiocyanate
moiety was annotated as well, if any of the fragments
found corresponded to known isothiocyanates from the
Brassica o. varieties used in the study.

Unfortunately, it was not possible to identify any of
the five PEMs for parsley root found. The feature with
[M — H]” = 475.097 is probably a glucuronide of a
diosmetin isomer. We have synthesized a mixture of
diosmetin (luteolin 4'-methyl ether) glucuronides and
obtained the same m/z but none of the retention times for
the glucuronidated products matched the retention time for
the PEM. However, luteolin could also be methylated in
another position, which may be the correct marker.

One PEM from Soup and Barleyotto were identified at
level III as 4-iminopentylisothiocyanate. This metabolite
has not been described in previous literature. In MS/MS,
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two fragments of this PEM were obtained, 141.049 and
114.040, and annotated as the parent ion (M + H]™) and
loss of hydrogen cyanide ((M — CNH]™), respectively.

Only the PEM from chicory salad was also present in a
food extract but despite this, it was not possible to identify
the compound. As many food components undergo chem-
ical modifications such as methylation, glucuronidation and
sulfation, we also searched the food extract chromatograms
for masses corresponding to loss of these chemical groups
where it was relevant.

The PEM from the fish was identified as TMAO, while
the PEM from fresh fava beans could not be identified.
Interestingly, the fava bean marker was not detected after
intake of dried fava beans.

3.4 Study design

The number of discriminating features found in the meal
study is relatively low compared to what was reported in
another meal metabolomics study aiming to find new food
exposure markers (Lloyd et al. 2011). There are several
explanations for this difference. Some of the differences
could be caused by the different metabolomics techniques
and instruments used for sample analysis. In addition, the
study design and data analysis applied in the present study
were very conservative, since very strict criteria have been
applied in order to define a feature as a PEM. For example,
24 h samples were applied for feature selection in this
study, whereas 3 h samples were used in the other meal
study. As excretion of the majority of compounds reached
maximum within 3—4 h after a meal, large contrasts can be
expected when 3 h samples are used. The meals in the
present study were also more complex, as they contained
more ingredients. In the other study, only one ingredient
was replaced at a time in the meal (Lloyd et al. 2011) and
the analysis was done in a longitudinal way and not across
meals for the same time point. The advantage of increasing
the complexity of the meals in the present study and using
24 h samples is that there is a higher chance that the PEMs
found are valid exposure markers also in studies with free-
living subjects. Using 24 h urine may aid in the detection
of both acute and habitual markers since they cover
exposure during a longer time-span which is independent
of the time since the last meal. There is also a high chance
of catching late eluting markers in 24 h samples. For
example, some of the markers found in the present study
reached a maximum of excretion later than 4 h after the
meal (Table S4). Another reason to investigate 24 h urine
samples is that such samples are already commonly col-
lected in nutrition studies.

An important limitation of the study is the limited
number of subjects. It is likely that not all important phe-
notypes are represented in such a small study size. In
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addition, the subjects were all healthy, normal weight and
within a relatively narrow age span. Despite the high
sensitivity and specificity obtained for the PEMs, they may
therefore not be valid for a larger study population.
Another factor contributing to this is the standardization of
two meals during 24 h which will reduce variation caused
by exposure to other foods than the test meals and increase
the possibility of finding meal markers. The gender dis-
tribution in the study was skewed with a majority of
women. We did not consider a potential effect of the
hormonal cycle for the women in the study and we also did
not test if there are markers that are only found in women,
since the purpose of the study was to discover exposure
markers that would potentially be applicable for the general
population. The cut-offs for sensitivity and specificity
applied in the study ensures that none of the PEMs found
are valid for women only.

From the present meal study, it is not possible to eval-
uate if there is a dose—response relationship between the
amount eaten and the amount present in 24 h urine, which
is an important criteria for evaluating food exposure
markers (Spencer et al. 2008). In the SFS, the levels of
excretion often did not exceed the maximum levels found
in the meal study even though a much higher dose of the
single foods were consumed in these studies. However, this
may be explained by the SFS samples representing a 3 h
postprandial excretion which is not directly comparable to
the sampling points in the meal study.

3.5 Knowledge on the PEMs found

For foods belonging to the Brassica o., we have identified
or putatively annotated nine PEMs. Most of these PEMs
are N-acetyl- or cysteine conjugates of isothiocyanates and
are endproducts of the mercapturic acid pathway (Janobi
et al. 2006). Isothiocyanates are formed from glucosino-
lates by an enzymatic hydrolysis with myrosinase which
takes place upon cell damage, such as chewing or in the
intestinal tract by microbial reactions (Zhang 2004).
Glucosinolates are almost unique to plants from the
Brassicales order of which most of the common food crops
are found within the family of Brassicaceae (Clarke 2010).

Allyl isothiocyanate which is excreted as N-acetyl-S-(N-
allylthiocarbamoyl)cysteine (AITC-NAC), is the major
isothiocyanate formed from most food crops in the Brass-
icaceae family, except broccoli, and has also been found in
high quantities in human urine after consumption of dif-
ferent Brassica o. cultivars (Hwang and Jeffery 2003;
Rouzaud et al. 2004; Vermeulen et al. 2006). We confirm
here that AITC-NAC is excreted in high quantities after
consumption of the Soup and Barleyotto where the intake
of Brassicaceae other than broccoli was highest. The major
isothiocyanates formed after intake of broccoli are

sulforaphane, iberin and erucin (Vermeulen et al. 2006). In
accordance with this, sulforaphane and erucin conjugates
were found as PEMs for the Pie meal, where broccoli was
the main ingredient within the Brassica o. species. How-
ever, an iberin-derived conjugate was also a PEM for Soup
and Barleyotto, probably due to the fact that Brussels
sprouts are also rich in iberin (Agudo et al. 2004). In
addition, the Pie was baked, whereas the Brussels sprouts
and white cabbage were served raw. It has previously been
demonstrated that the bioavailability of isothiocyanates is
lower, and the peak in excretion later, for heat treated
products compared to raw products (Vermeulen et al.
2006).

3-methylthiopropyl is common in glucosinolates from
cabbage (Clarke 2010) which explains why we find a
3-methylthiopropyl conjugate as a PEM for Soup and
Barleyotto. Benzyl conjugates have also been reported as
being present in cabbage (Clarke 2010). We observed that
benzyl conjugates were highest after the Pie meals sug-
gesting that pointed cabbage, even after heat treatment,
contains higher levels of benzyl isothiocyanate producing
glucosinolates compared to white cabbage. The last two
PEMs found, an N-acetyl-cysteine derivative and 4-imin-
opentylisothiocyanate, have to our knowledge not been
reported in the literature before. Even though 4-iminop-
entylisothiocyanate was not found in the processed data in
SFS, the compound was present in very small quantities
when inspecting the raw data rather than the processed
data.

As all the PEM isothiocyanate conjugates found in our
study were present in all meals, it is not likely that it is
possible to distinguish between intake of individual mem-
bers of the Brassica o. cultivars from measuring the iso-
thiocyanate conjugate composition in urine. Even though
the excretion of isothiocyanate conjugates has been dem-
onstrated to reflect the glucosinulate content of the cru-
ciferous vegetable eaten, a large variation in bioavailability
of isothiocyanates has also been shown depending on
preparation method and degree of chewing (Vermeulen
et al. 20006).

Trimethylamine N-oxide (TMAO), a marker for fish
intake in this study, is present in fish and can also be
produced in humans by the intestinal microflora from
carnitine, a dietary precursor found in meat (Zhang et al.
1999; Xu et al. 2010). Several other studies have found
TMAO as a marker in urine for fish consumption (Svens-
son et al. 1994; Zhang et al. 1999; Lloyd et al. 2011). In
addition, TMAO has been found as a marker of meat
containing diets compared to vegetarian diets (Xu et al.
2010; Stella et al. 2006) and as a marker which differ in
level across populations (Holmes et al. 2008; Zuppi et al.
1998). Increases in TMAO excretion has also been dem-
onstrated following an intervention with soy products in
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one study (Solanky et al. 2005). It is likely that the findings
in the population studies are mainly due to differences in
fish intake even though soy intake is also high in Japan
(Nagata et al. 2002) and may contribute to the high level
found in a Japanese population (Holmes et al., 2008). The
contrasts in TMAO found for diets high in meat in com-
parison to vegetarian diets are probably due to meat con-
sumption. However, in one of the intervention studies, no
difference in TMAO was observed between a low meat diet
and a vegetarian diet (Stella et al. 2006). This is in
accordance with our results, where no clear difference in
TMAO was seen between meals prepared with a vegetarian
or a meat source (Fig. 2b). Therefore TMAO probably
mainly reflects fish intake, even though the contribution to
TMAO levels from soy and from very high meat intakes
needs to be investigated further. It has been demonstrated
in a previous study that the majority of TMAO is excreted
within 24 h after intake (Zhang et al. 1999). To our
knowledge this is the first study to report a time-sequence
for excretion (Fig. 2b).

No exposure markers for parsley roots, fava beans and
chicory salad have been published previously. Except from
the chicory salad PEM, which was also present in the
aqueous extract and the hypothesis on methylated luteolin
as one of the parsley root markers, we do not know how the
PEMs found for fava bean and the rest of the parsley
markers are related to the foods. Further experiments
would be needed to investigate this.

4 Conclusion

The present study has demonstrated that it is possible to
find food exposure markers in 24 h urine samples with a
sensitivity and specificity >80 % for a specific meal or
protein source with an untargeted semi-quantitative meta-
bolomics approach. About half of the potential exposure
markers could also be found in SFS, indicating that some of
the PEMs originate from certain foods or food groups. The
formation of other PEMs that were not present in SFS is
probably dependent on the food matrix. The PEMs found in
the current meal study needs to be validated in a larger
population in order to investigate dose-response effects as
well as specificity and sensitivity in a setting where there is
no dietary standardization.
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Supplemental material

Table S1 Meal ingredients excluding protein sources

Barleyotto Soup Pie
Wholemeal bread 96.7 100.7 77.7
Rapeseed oil 5.8 25 8.8
Onion 15 15 15
Apple vinegar 2.5 2.5 2.5
Apple 40 40 -
Apple juice 50 62.5 -
White cabbage 25 25 -
Brussels sprouts 20 20 -
Garlic - 1.5 1
Pearl Barley 60 - -
Cream cheese 12,5 - -
Bouillon 150 - -
Kale - 125 -
Carrots - 62.5 -
Parsley roots - 62.5 -
Chicken stock - 125 -
Wheat/rye/oat flour - - 50
(2:1:1)
Baking powder - - 1
Yogurt naturel - - 25
Eggs - - 45
Skimmed milk - - 75
Broccoli - - 63
Pointed cabbage - - 38
Chicory salad - - 20

Ingredients (in grams per single serving) used in the test meals excluding the protein sources. Foods highlighted in bold
are food ingredients investigated in single food studies.




Table S2 Ingredients used as protein sources in the meals

Barleyotto Soup Pie

Monkfish cheeks 25 - -

< Fillet of cod - 58 -
ic Smoked mackerel - - 26

Pig jaws 25 - -

® Smoked saddle of pork - 54 -
é’ Smoked haunch of venison 25

Fava beans 20 - -

Brown beech mushroom 120 - -

c Poached egg - 75 -
2 Split peas - 15 -
‘é Cottage cheese - - 40
2 Chanterelles - - 20

Ingredients (in grams per serving) used as protein sources for the meat, fish and vegetarian versions of the test meals.
Foods highlighted in bold are food ingredients investigated in single food studies.



Cooking methods for meals:

Barleyotto

The onion was chopped and sautéed in rapeseed oil before adding pearl barley which was left to sizzle for one minute.
Then apple juice was added and one minute after also the bouillon. After simmering for 20 minutes, cream cheese was
added.

Vegetarian version: Fava beans were added to the pearl barley for the last 6-8 minutes of cooking. The brown beech
mushrooms were fried for 2-3 minutes and mixed with the pearl barley before serving.

Meat version: Pig jaws were fried in butter before adding apple juice and water. They were then left to simmer for 45
minutes and added to the pearl barley before serving.

Fish version: Monkfish cheeks were fried in butter for 2 minutes and added to the pearl barley before serving.

All Barleyotto meals were seasoned with salt and pepper and served with bread and a salad of Brussels sprouts, white
cabbage and apple with a mixture of rapeseed oil, apple vinegar, salt and pepper as dressing.

Pie

Flour and baking powder were mixed into a dough with water and yogurt. The dough was rolled, put in a pan and baked
for 15 minutes at 160°C. Onion and garlic were chopped and fried in rapeseed oil. Then, broccoli was cut and added to
the pan with the onion. After beating eggs and milk, the mixture was poured over the vegetables and the pie was baked
for 25 minutes at 150°C. Chicory salad was cut, mixed with the protein source and added on top of the pie before
serving.

Vegetable version: Cottage cheese was mixed with sliced chanterelles
Meat version: Smoked haunch of venison (no preparation)

Fish version: Smoked mackerel (no preparation)

All Pie meals were served with bread and seasoned with salt and pepper.

Soup

Onion and garlic were chopped and sautéed in rapeseed oil before adding peeled and chopped carrots and parsley roots.
Apple juice and chicken stock were added and the mixture was boiled until the vegetables were tender

Vegetarian version: Split peas were boiled until tender. The egg was added to boiling water and poached for 5-8
minutes.

Meat version: Smoked haunch of venison was served with chopped parsley.
Fish version: Fillet of cod was baked in the oven with rapeseed oil.

All Soup meals were seasoned with salt and pepper and served with bread and a salad of Brussels sprouts, white
cabbage and apple with a mixture of rapeseed oil, apple vinegar, salt and pepper as dressing.



- 9 am: Only water allowed

Single-food meals:
r— 11am
Urine 1] Raw white cabbage
(1h) Raw brussels sprouts
r =+ 12 noon: Single food meal —>{ Boiled carrots

Boiled parsley roots

Urine 2 Boiled kale
@h Raw chicory salad
Brown beech mushrooms fried in butter
L 4 3pm Boiled fresh

Boiled dried fava beans

v

Fig. S1 Outline of study design for Single-food studies (SFS). A schedule of meals and urine sampling for each study
day is given on the timeline to the left. The right part of the figure shows the nine SFS meals.



Table S3 Parameters and batch steps used for the processing of samples from the meal study and the single-food studies

(SFS).

Batch step

Parameters

Raw data import

Chromatogram builder

Noise level: 5.0E (15); Min time span: 0.01 (0.01);
Min height: 5.0E1 (4.0E1); m/z tolerance: 0.06 (0.055 or 30 ppm)

Chromatogram deconvolution

Chromatographic threshold: 98% (95%); Search minimum in RT range:
0:01 (0.01); Minimum relative height: 1% (10 %); Minimum absolute
height: 5.0E1 (4.0E1); Min ratio of peak/top edge: 1.2 (1.3); (Peak duration
range (min): 0.01-0.2)

Isotopic pattern

m/z tolerance: 0.06 (0.06 or 30 ppm); Retention time tolerance: 0:01 (0.01);
Monotonic shape; maximum charge: 1 (1)

Negative mode

Join aligner

m/z tolerance: 0.06 (0.06 or 30 ppm); Absolute retention time tolerance:
0:12 (0.15); Weight for both m/z tolerance and retention time tolerance: 10
10

Duplicate peak filter

m/z tolerance: 0.06 (0.5 or 600 ppm); RT tolerance: 0:12 (0.15)

Peak finder

Intensity tolerance: 20% (50%); m/z tolerance: 0.06 (0.06 or 30 ppm);
Absolute retention time tolerance: 0:12 (0.15)

Export to csv

Raw data import

Chromatogram builder

Noise level: 4.0E1 (15); Min time span: 0.01 (0.01);
Min height: 4.0E1 (4.0E1); m/z tolerance: 0.026 (0.055 mz or 30 ppm)

Chromatogram deconvolution

Chromatographic threshold: 98% (97%); Search minimum in RT range:
0:01 (0.01); Minimum relative height: 1% (10%); Minimum absolute
height: 4.0E1 (6.0E1); Min ratio of peak/top edge: 1.2 (1.5); (Peak duration
range (min): 0.01-0.2)

Isotopic pattern

m/z tolerance: 0.026 (0.06 or 30 ppm); Retention time tolerance: 0:01
(0.01); Monotonic shape; maximum charge: 1 (1)

Positive mode

Join aligner

m/z tolerance: 0.026 (0.06 or 30 ppm); Absolute retention time tolerance:
0:17 (0.15); Weight for both m/z tolerance and retention time tolerance: 10
10

Duplicate peak filter

m/z tolerance: 0.026 (0.5 or 600 ppm); RT tolerance: 0:17 (0.15)

Peak finder

Intensity tolerance: 50% (50%); m/z tolerance: 0.026 (0.06 or 30 ppm);
Absolute retention time tolerance: 0:17 (0.17)

Export to csv

Samples from the meal study were processed in MZmine2.2 and samples from the single-food studies were processed in
MZmine 2.7. The numbers used for SFS are given in brackets.




Table S4 List of unknown PEMs found in the meal study

Meal(s) m/z RT Adduct/fragment/parent ion Peak Present in other
(min) time meals
Barleyotto and 261.093 2.01 Pos mode 3 No
Soup
Pie 205.096 | 1.94 [M+H]" 3 No
255.048 0.93 Pos mode 3 No
Soup 403.229 4.05 [M+Na]" 3 No
345.188 3.83 [M+Na]" 3 No
191.143 3.58 Pos mode 4 Yes
Barleyotto 325.167 4.14 Pos mode 3 No
vegetarian meal 301.157 4.20 Neg mode
287.150 4.09 Neg mode 3 No
311.153 4.00 Pos mode 3 No
297.136 3.97 Pos mode 3 Yes
306.103 2.64 Pos mode 3-4 No
158.088 0.77 Pos mode 3 Yes
Barleyotto fish 179.011 0.49 Pos mode 3 No

meal

The meals with highest levels of the feature are listed in the first column. Peak time is the urine sampling point, where

the highest level of the feature was detected. None of the listed PEMs were confirmed in single food studies.
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Abstract While metabolomics is increasingly used to inves-
tigate the food metabolome and identify new markers of food
exposure, limited attention has been given to the validation of
such markers. The main objectives of the present study were
to (1) discover potential food exposure markers (PEMs) for a
range of plant foods in a study setting with a mixed dietary
background and (2) validate PEMs found in a previous meal
study. Three-day weighed dietary records and 24-h urine
samples were collected three times during a 6-month parallel
intervention study from 107 subjects randomized to two dis-
tinct dietary patterns. An untargeted UPLC-qTOF-MS meta-
bolomics analysis was performed on the urine samples, and all
features detected underwent strict data analyses, including an
iterative paired ¢ test and sensitivity and specificity analyses
for foods. A total of 22 unique PEMs were identified that
covered 7 out of 40 investigated food groups (strawberry,
cabbages, beetroot, walnut, citrus, green beans and chocolate).
The PEMs reflected foods with a distinct composition rather
than foods eaten more frequently or in larger amounts. We
found that 23 % of the PEMs found in a previous meal study
were also valid in the present intervention study. The study
demonstrates that it is possible to discover and validate PEMs
for several foods and food classes in an intervention study
with a mixed dietary background, despite the large variability
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in such a dataset. Final validation of PEMs for intake of foods
should be performed by quantitative analysis.

Keywords Untargeted metabolomics - UPLC-MS - Food
exposure markers - Urine - Dietary intervention study -
Humans

Introduction

Measurement of dietary exposure is a challenging topic in
nutrition research and of crucial importance for the discovery
of true associations between dietary intake and effects on
health [1]. By far, the most commonly applied tools for
estimating dietary exposure are based on self-reporting (food
frequency questionnaires, weighed dietary records (WDR),
etc.). A major drawback of this methodology, however, is that
presence of systematic and random errors can be con-
siderable. Objective dietary exposure markers, measured
in biological samples such as urine or plasma, are
promising supplements to self-reported food intakes,
but very few dietary exposure markers are known and
commonly applied in nutrition studies [2,3].

One approach to discover new food exposure markers,
which is being increasingly studied, is the possibility of map-
ping the metabolic fate of foods in plasma and urine. By
knowing how foods are metabolized, it may be possible to
find unique metabolites for foods or related food groups and
use these as food exposure markers [3-5]. In line with this
hypothesis, several metabolomics studies have been published
demonstrating clear metabolic responses to dietary interven-
tions [6,7]. The idea of developing new dietary exposure
markers by untargeted metabolomics is therefore promis-
ing even though there is still a long way from discovery
of a potential food exposure marker (PEM) to its appli-
cation in a dietary study.
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An important step that needs further investigation in meta-
bolomics studies of different foods and diets is the validation
of discriminating metabolites found in a study [4,8]. It is likely
that the most discriminating metabolites for a food or food group
depend on several factors such as timing of intake, amount, food
matrix and characteristics of the study population [9]. In order to
understand the strength of a discriminant metabolite as a food
exposure marker, it is therefore crucial to investigate the same
marker in different study settings that cover different population
groups and food exposures (long-term, short-term, different in-
take levels, dietary backgrounds, etc.).

In a recent paper, we reported on the findings from a
controlled meal study with Brassica-containing Nordic meals
and foods. We introduced sensitivity and specificity analyses
as a means to select the most promising PEMs among the
discriminant metabolites in 24-h urine samples [10]. As part of
the 5-year multidisciplinary research project, OPUS, a New
Nordic Diet (NND) has been developed, which differentiates
considerably in food composition and amounts of intake from
an Average Danish Diet (ADD) [11]. The NND is particularly
rich in cabbages, root vegetables, berries and legumes, since
these foods can be grown in Nordic countries, while the ADD
is characterized by a lower intake and a different selection of
fruit and vegetables, including tropical fruits. The present
study is a 6-month parallel dietary intervention study with
NND and ADD as the two study arms. The diverse food
composition of the diets gives a good opportunity to investi-
gate the metabolic response to individual foods and food
groups. In comparison to the previously published meal study,
the intervention study is less controlled and it represents a
wider selection of foods with varied amounts of intake and
different preparation methods. By combining LC-MS data
from 24 h urine samples and data from WDR in this study,
we have applied a metabolomics strategy to (1) discover
PEMs for individual plant foods and plant food groups and
(2) validate the PEMs found in the previously published meal
study [10]. An analysis of the metabolite patterns associated
with the NND and ADD based on untargeted metabolomics
will be reported elsewhere.

Materials and methods
Study design

A parallel, randomized, controlled 6-month intervention study
was performed comparing the dietary patterns, NND and
ADD. The dietary patterns were defined by intakes of 15 food
groups and by the energy distribution of macronutrients, as
reported elsewhere [12]. All foods in the study were collected
free of charge and ad libitum by the study participants from a
small supermarket that was set up at the University of Copen-
hagen. For each visit to the shop, the subjects could freely
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choose their own foods as long as the collected foods were in
accordance with the defined dietary pattern. Subjects recruited
for the study were adults aged 18-65 years with increased
waist circumference (>94 cm for men and >80 cm for women)
and preferably one or more additional risk factors of the
metabolic syndrome (increased plasma triglyceride level, re-
duced high-density-lipoprotein cholesterol, hypertension and/
or impaired fasting glucose). The study has been approved by
the Regional Ethics Committee of Greater Copenhagen and
Frederiksberg (H-3-2010-058) and the Danish Data Protection
Agency (2007-54-0269).

One hundred and eighty-one subjects (71 % women) were
randomized to the two diets. At three sampling points (week 0,
12 and 26), 3-day WDR were collected, and on one of the
days with dietary recording, one 24-h urine sample was col-
lected as well. The urine collection was from 8 am, excluding
the first void, until 8 am the following morning, including the
first void. For the WDR, the participants were requested to
report intake of all foods and beverages, except water, from
early morning until late evening.

During the first WDR, the diet was standardized and was
the same for all 3 days. Foods contained in the standardized
diet are listed in Table S1 in the Electronic supplementary
material. An outline of the study design is given in the Elec-
tronic supplementary material, Fig. S1. Urine was stored in
cooler bags during collection and otherwise at =80 °C. For the
purpose of the current study, data have only been included
from study completers who provided a urine collection (1 x
24 h) and a food dietary record (1x24 h) on the same day as
the urine collection at all sampling points (week 0, 12 and 26).
There were 107 participants (74 % women) who fulfilled these
criteria, of which 64 followed the NND and 43 followed the
ADD. Baseline characteristics of the study completers are
given in Table S2 in the Electronic supplementary material.

Sample preparation and mass spectrometry analyses
UPLC-qTOF-MS analysis

Urine samples were thawed on ice and centrifuged at 3,000xg
for 2 min at 4 °C; 150 uL of the resulting supernatants was
immediately distributed randomly into a 96-well auto-injector
tray, keeping samples from the same subject together within a
plate to minimize intra-individual variation. The urine was
diluted 1:1 with aqueous 5 % 30:70 (v/v) acetonitrile (ACN)—
methanol (MeOH) (Optima grade LC-MS, Fisher Scientific,
USA), and a 5-uL aliquot of each sample was injected into a
UPLC (Waters, Manchester, UK) equipped with an HSS T3
Cyg column (1.8 pum, 2.1x100 mm) and a HSS Cg pre-
column (1,8 um, 2.1x5 mm) (Waters, Milford, MA) held at
50 °C. The column was eluted using a 7.0 min gradient
gradually changing mobile phase composition and flow
(0.5-1.2 mL/min) as described previously [12]. The mobile
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phase was 0.1 % formic acid (A) and 0.1 % formic acid in
70 % ACN and 30 % MeOH (B). All samples were kept at
4 °C during the analysis. The eluate was analysed by a qTOF
Premier mass spectrometer (Waters, Manchester, UK)
equipped with an electrospray ion source operating in either
positive or negative ion mode and with a mass resolution of
around 8,000. Centroid data were collected from 50 to 1000
m/z with a scan time of 0.08 s and an interscan delay 0of 0.02 s.
Leucine encephalin (500 ng/mL) was infused intermittently
every 10 s and used as lock mass to calibrate mass accuracy. A
metabolomics standard sample containing 44 different physi-
ologically relevant compounds [13] and a pooled sample of all
urines within a plate were analysed two and five times, re-
spectively, in both ionization modes for each plate and served
as quality control of the analytical platform. For identification
purposes, MS/MS fragmentation of selected compounds was
performed in product ion scan mode with collision energies of
10, 20 and 30 eV.

LTQ Orbitrap Velos™ MS analysis

To aid identification, a subset of samples was profiled using an
LTQ Orbitrap Velos™ MS (Thermo Scientific) operating in
full scan mode and with a mass resolution of 30,000. Chro-
matographic separation was achieved with a Dionex RSLC
Ultimate 3000 liquid chromatography module (Dionex). Sam-
ples (10 pL) were injected onto a BEH Shield RP18 column
(1.7 pm*2.1 mmx100 mm). Mobile phase A was Milli-Q
purified water containing 0.1 % formic acid and mobile phase
B was acetonitrile containing 0.1 % formic acid. Mobile
phases were pumped through the system at a flow rate of
400 pL/min. A 22-min gradient was used, starting at
0 % B, increasing to 10 % between 2 and 7 min and
then to 95 % at 22 min, prior to a 4-min post-run at 100 % A to
re-equilibrate the column.

Preprocessing and pretreatment of data

Preprocessing of raw data from UPLC-qTOF-MS was done in
MZmine2.7 [14] to obtain a list of peak areas, retention times
(RT) and mass to charge ratios (m/z) in negative and positive
ionization modes. Batch steps and parameters applied for
preprocessing can be found in Table S3 in the Electronic
supplementary material.

Throughout this paper, the term feature will be used to
designate an ion in the peak list, while the term potential
exposure marker (PEM) will be used for features remain-
ing after performing the statistical analysis that are
associated with specific foods.

All features from positive and negative ionization modes
were imported into MATLAB® version 7.12.0.635, R2011a
(Mathworks Inc., Sherborn, MA, USA), which was used for
the subsequent data pre-treatment and statistical analysis.

First, samples were normalized to the same mean total
intensity to correct for batch drift and differences in urine
concentration. Next, plate differences were corrected by nor-
malising all samples that had been run on the same plate to the
same mean value for each feature. The two normalisation
steps were done separately for negative and positive mode
data, and afterwards, the two datasets were combined into one
data matrix (data matrix A).

Data analysis for PEMs

For each subject, a list of foods eaten on the days where urine
had been collected was extracted from WDR. If the same food
had been eaten twice on the same day, the amounts were
added up. The food list extracted from WDR contained 412
different entries. From these, 40 plant based food groups were
selected which had been reported to be ingested by volunteers
at least ten times. A food group could consist of a single food
prepared in different ways (e.g. beetroot and pickled beetroot),
different plant foods from the same family (e.g. cranberries,
blueberries and lingonberries from the Ericaceae family),
foods that were nutritionally related (e.g. walnut and hazelnut)
or single foods (e.g. avocado). For each food group, a list of
related foods was also made that were taken into account in
the data analysis to increase the contrast between exposed and
non-exposed groups. These could be nutritionally or botani-
cally related foods (e.g. celeriac for parsley), or food products
containing small amounts of a food in the food group (e.g.
muesli for nuts). Detailed information on the food groups and
related foods can be found in Table 1.

The data analysis to find PEMs for the selected food groups
was in four steps. We took advantage of the samples collected
from the same person on days where the person had and had
not consumed a food. This created exposure and control
samples for each food group, which were explored for PEMs.
An overview of the data analysis is given in Fig. 1.

For each food group, a data matrix B was generated from
data matrix A. Samples from subjects who had eaten at least
one food in the food group were included in data matrix B
(food group) together with samples from the same subjects on
days where they had not eaten foods from the food group or
from the related foods (control samples for food group).

80 % rule

The number of features in data matrix B was reduced by
applying the 80 % rule [15] to non-normalized data. To find
the optimum threshold defining the noise level for peak areas,
an iterative procedure was performed with peak area thresh-
olds from one to hundred. The number of remaining features
was plotted against the noise level thresholds and the
threshold for which the curve reached a flattening point
was chosen as optimum.
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Table 1 Food groups analysed

Food group Amount (g) Related foods
Berries
Blackcurrant (37) 44449 Blackcurrant jam (15), Blackcurrant squash (1),
Gooseberry (12), Redcurrant (5)
Grossulariaceae (Blackcurrant (37), 90+112 Blackcurrant jam (15), Blackcurrant squash (1)
Gooseberry (12), Redcurrant (5))
Blueberry (17) 32+48 Cranberry (16), Lingonberry (13)
Cranberry (16) 19+18 Blueberry (17), Lingonberry (13)
Lingonberry (13) 28+19 Blueberry (17), Cranberry (16),
Ericaceae (Cranberry (16), Blueberry (17), Lingonberry (13)) 32+37 -
Gooseberry (12) 190108 Blackcurrant (37), Lingonberry (13), Redcurrant (5)
Sea buckthorn (16) 41+49 -
Strawberry (118%) 115+42 Raspberry jam (9), Strawberry icecream (1), Strawberry
jam (109%), Strawberry yogurt (5)
Fruits
Apple (Apple (110), Apple juice (69)) 243+194 Apple cake (2)
Pear (140 %) 121+52 Yogurt with pear (1)
Pome fruit (Apple (110), Apple juice (69), Pear (140%)) 206180 Apple cake (2), Yogurt with pear (1)
Banana (14) 143+£78 Banana yogurt (1)
Rutaceae (Grapeftuit (3), Lime (2), Lemon (6), Mandarin (8), 251494 Lemon juice (1), Orange jam (1),
Orange (5), Orange juice (112%) Yogurt with orange juice (4)
Orange (Orange (5), Orange juice (112%) 263+70 Grapeftuit (3), Lemon (6), Lemon juice (1),
Lime (2), Mandarin (8), Orange jam (1), Yogurt
with orange juice (4)
Rhubarb (14) 72+37 -
Vegetables and herbs
Asparagus (Green asparagus (12), White asparagus (1)) 88+43 -
Avocado (13) 91+68 -
Beetroot (Beetroot (24), Pickled beetroot (20)) 102+107 Spinach (16)
Spinach (16) 79+53 Beetroot (24), Pickled beetroot (20)
Pointed cabbage (18) 103£101 Broccoli (4), Brussels sprouts (9), Cauliflower
(6), Red cabbage
(12), Savoy cabbage (5), White cabbage (7)
Red cabbage (12) 69+39 Broccoli (4), Brussels sprouts (9),
Cauliflower (6), Pointed cabbage (18),
Savoy cabbage (5), White cabbage (7)
Brassica oleracea (Brocceoli (4), Brussels sprouts (9), 107+90 -
Cauliflower (6), Pointed cabbage (18), Red cabbage
(12), Savoy cabbage (5), White cabbage (7))
Celeriac (Celeriac (23), Celeriac leaves (5)) 75+45 Dill (5), Parsley (17), Parsley root (13), Parsnip (8)
Chives (10) 8+3 -
Cucumber (Cucumber (119?), Pickled cucumber (15)) 43+19 -
Carrot (188%) 63+£65 Celeriac (23), Celeriac leaves (5), Dill (5),
Fennel (2), Parsley
(17), Parsley root (13), Parsnip (8)
Parsley (Parsley (17), Parsley root (13)) 44452 Carrot (188), Celeriac (23), Celeriac leaves
(5), Dill (5), Fennel (2), Parsnip (8)
Apiaceae (Carrot (188), Celeriac (23), Celeriac leaves 70+76 -
(5), Dill (5), Fennel (2), Parsley (17), Parsley root (13), Parsnip (8))
Green beans (14) 146+92 Green peas (18), Split peas (11)
Green peas (18) 101£67 Green beans (14), Split peas (11)
Split peas (11) 41421 Green beans (14), Green peas (18)
Fabaceae
(Green beans (14), Green peas (18), Split peas (11)) 108481 -
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Table 1 (continued)

Food group Amount (g) Related foods
Tomato (Canned tomatoes (9), Tomato (33)) 109+103 Tomato soup (2), Tomato salad (2), Ketchup (11)
Oils
Olive oil (111%) 18+10 Olives (2)
Rapeseed oil (58) 12£10 Cress (8), Radish (8), Swede (4), Turnip (2)
Nuts
Hazelnuts (67) 29+32 Almonds (6), Muesli (9), Nut based spreads
(6), Peanuts (1),
Pine nuts (5), Walnuts (32)
Walnuts (32) 28+19 Almonds (6), Hazelnuts (67), Muesli (9),
Nut based spreads (6),
Peanuts (1), Pine nuts (5)
Nuts (Almonds (6), Hazelnuts (67), Walnuts (32)) 32+£32 Muesli (9), Nut based spreads (6),
Peanuts (1), Pine nuts (5)
Chocolate
Chocolate (cocoa intake®>5 g) (Chocolate (dark (1167), 15+7 Chocolate mousse (2), Chocolate cake (2)

milk (11), filled (29) and with marzipan (5)), Cocoa
containing nut spread (6), Chocolate covered
marshmallows (2), Chocolate milk (14), Cocoa powder (3))

Cocoa intake®<5 g

Related foods listed in the right column are foods that were botanically or nutritionally related to the food group or foods that contain low amounts of foods in
the food group. The number of times the foods were reported in WDR is given in brackets. Amounts are given as average intake (+ the standard deviation)

?Foods that were part of the standardized diet

°Due to the diverse composition of chocolate containing products, the cocoa content of the products was calculated. Samples where subjects had
reported intakes of chocolate corresponding to > 5 g cocoa were included in the food group

Paired t test food group. A paired ¢ test was used to take into account inter-
individual variation. Subjects who had reported intake of a food
in the food group or the group of related foods at all sampling

points were excluded from the analysis due to lack of control

The purpose of the univariate analysis was to find exposure
marker candidates among the features in data matrix B for each

Fig. 1 Schematic representation Urine sample groups
of the data analysis for PEMs

1. Food grou
group Data matrix B

2. Control samples for food group Data matrix C

Data matrix A
3. Other control samples

4. Related foods group

Statistical analyses for PEMs

a) 80 % rule

Data matrix B: One sample in group 2
from each person in group 1 was
randomly selected. Features for which
> 80 % of the peak areas in group 1 or
2 were above the noise level in the
data were kept for step b).

c) Initial validation

Data matrix C: Features for which the
20 percentile of peak areas in group 1
was higher than the 80" percentile of
peak areas in group 2 and 3 combined
were kept for step d).

b) Paired t-test

Data matrix B: One sample in group 2 from
each person in group 1 was randomly
selected and a paired t-test comparing each
feature in the two groups was performed. This
was iterated 30 times and features with
q<0.05 in > 90 % of the t-tests were kept for
step c).

d) Sensitivity and specificity
analyses for foods

Data matrix A (excl. week 0): Sensitivity and
specificity were calculated for all individual
foods reported > 5 times in WDR. Features
with a sensitivity and specificity > 70 % for
the analyzed food group were kept as PEMs.
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samples for these subjects. The paired # test was iterated 30 times,
and in each test, the control group was changed by randomly
selecting a control sample from the one or two available samples
from each subject in the food group. To take into account
multiple testing, positive-false discovery rates were applied [16].

Initial validation

In the initial validation step, the sensitivity and specificity of
the features in a larger dataset (data matrix C) were evaluated,
as described previously [10].

Sensitivity and specificity analyses for foods

The sensitivity and specificity analyses for foods were includ-
ed to ensure that intake of no other foods correlated to the food
group analysed, as this would bias the analysis. Data from
week zero were excluded in the sensitivity and specificity
analysis because of the dietary standardization at this sam-
pling point. Peak area thresholds to define consumption were
determined from the distribution of peak areas for the inves-
tigated feature. Peak areas were included in the analysis in an
iterative fashion, starting from the peak area of the 5th lowest
sample and increasing by two samples (7th lowest sample, 9th
lowest sample, etc.) until 102 samples were included. This
number corresponds to the maximum number of samples for
which it is possible to reach a sensitivity above 70 % for the
largest food group size (excluding data from week 0).

For each threshold, the sensitivity and specificity were
calculated as follows for each food and food group:

Nood>1n

) Sensitivity = ——————
) y Nood>1h + N food< 70

samples —N, other>Th -N food>Th -N food< Th

1) Specificity —
peCIICItY =
Nsamples_Nfuod< Th_Nfoud>Th

Number of samples above and below the
threshold, respectively, where the food had
been eaten according to the WDR.
Number of samples above the threshold,
where the food had not been eaten
according to the WDR.

Total number of samples, excluding week 0
(214).

Ntood>Th and
Nood<Th

N other>Th

N, samples

Four levels of strengths for a feature as a food exposure
marker was defined according to sensitivity and specificity
thresholds: sensitivity>80 % and specificity>80 % (grade 1),
sensitivity >70 % and specificity >80 % (grade 2),
sensitivity >80 % and specificity >70 % (grade 3),
sensitivity>70 % and specificity>70 % (grade 4)

@ Springer

If a feature had strength of at least 4, for the food group as a
whole or for at least two individual foods in the food group,
and for any threshold, it was considered a PEM. A feature was
not considered a PEM for a food group if the marker strength
was higher for a food outside the food group, unless the food
with a higher strength was a related food. The dose—response
relationship for the food group was investigated for each PEM
by visual inspection of a plot of peak areas as a function of the
amounts of food reported in WDR.

Validation of PEMs from a previously published meal study

Several PEMs were identified in a previous crossover-meal
study including 17 subjects and nine lunch test meals (a
‘barleyotto’, a soup and a pie, each prepared in three versions,
one with each of the three protein sources: meat, fish and
vegetarian). An untargeted metabolomics analysis revealed 30
unique PEMs that differed between the test meals. To identify
the food sources of the markers, a range of small meal studies
with single foods and three to four volunteers were addition-
ally carried out, including meals with white cabbage, Brussels
sprouts, carrots, parsley root, kale, chicory salad, brown beech
mushroom and fava beans. Fifteen of the PEMs were found to
be present after intake of one or more single foods [10].

To validate the PEMs from the previous cross-over meal
study as markers of individual foods, each of the 30 PEMs were
searched for in the data from the current intervention study. The
analytical conditions were the same in the two studies, and it
was therefore possible to simply match the m/z values (abso-
lute tolerance of 0.05) and the retention times (absolute toler-
ance of 0.2 min). To avoid picking noisy features as matches in
the intervention study, processed data were investigated for any
match to a feature in the meal study. At least four samples with
peaks areas above 15 were required to regard the feature as a
correct match. For each matching feature in the intervention
study, the sensitivity and specificity analyses for foods were
carried out. Foods with marker strengths of 1-4 were used as
the basis for performing the initial validation and investigating
if there was a dose—response relationship to food intake.

Identification of PEMs

The parent ion was identified by inspecting full-scan raw MS
data for dimers, common adducts and fragments. Then, the
PEMs were compared to an in-house standards database by
matching retention times and m/z ratios. A subset of samples
was run on an LTQ Orbitrap Velos™ (‘LTQ Orbitrap Velos™
MS analysis’) to obtain more accurate m/z of the PEMs,
which were used to determine the most probable molecular
formula. An MS/MS fragmentation analysis was performed
(‘UPLC-qTOF-MS analysis’) to get more structural informa-
tion on the markers and identify glucuronide, sulphate, gly-
cine and acetyl-cysteine conjugates. All PEMs were correlated



Discovery and validation of urinary exposure markers

using Pearson's correlation coefficient and highly correlated
PEMs (r>0.7) were grouped as they may belong to the same
metabolic pathway.

The parent m/z and m/z of the most intense fragments were
searched for in the Human Metabolome Database [17], the
METLIN database [18] and in MetFusion [19]. Possible pre-
cursor ions of the PEMs were found by searching the CRC
Dictionary of Food compounds, Phenol-explorer [20] and
KNApSAcK [21] for compounds present in the foods. In
addition to the food databases, literature was searched for
known metabolites of the foods.

A strawberry extract in water and ethanol was prepared
from frozen strawberries according to the procedure described
previously [10]. The strawberry extracts, filtered orange juice
and a beetroot extract (B-50-WS, Chr. Hansen, Denmark) were
run on UPLC-qTOF-MS to investigate if the PEMs or any of
their characteristic fragment ions were present in the foods.

The level of identification has been categorized according to
Sumner et al. [22]. For level I, m/z pattern and RT have been
compared to an authentic standard under identical conditions. For
level 11, the fragmentation pattern of the PEM corresponds to MS/
MS fragments reported in databases or literature. Level 111 is used
for identification of compounds based on similarities to known
compound classes and level IV designates unknown compounds
and compounds that could not fit into the other categories.

The following standards were analysed: 5-acetylamino-6-
amino-3-methyluracil, hydrate (Stratech, UK), 3,4-
dihydroxyhydrocinnamic acid (Sigma-Aldrich, Germany),
3-(2,4-dihydroxyphenyl)propionic acid (Sigma-Aldrich,
Germany), dopamine hydrochloride (Sigma-Aldrich,
Germany), hesperetin (BioNordika, Denmark), 4-hydroxy-
hippuric acid (Bachem, Germany), 5-hydroxyindole-3-acetic
acid (Santa Cruz, USA.), 4-hydroxy-phenyllactic acid
(Sigma-Aldrich, Germany), 4-methylpyridine-2-carboxylic
acid (Sigma-Aldrich, Germany), 7-methyluric acid (Santa
Cruz, USA), stachydrine hydrochloride (Santa Cruz, USA),
sulphoraphane N-acetyl-cysteine (AHdiagnostics, Denmark),
theobromine (Sigma-Aldrich, Germany) and N-methyl-cis-4-
hydroxy-L -proline (Sigma-Aldrich, Germany).

Glucuronidation, sulphation and glycination of standards

Sulphation was performed as described previously [23]. In brief,
90 uL 500 uM TRIS (PH 7.5), 5 pL substrate (beetroot extract,
1,000 ppm dopamine in aqueous 5 % 30:70 (v/v) ACN-MeOH),
850 pL milli-Q water and 45 pL. 2 mM adenosine 3'-phosphate
S"-phosphosulphate lithium salt hydrate was mixed and after
5 min at 37 °C, 10 pL rat liver extract prepared according to
the optimized condition described in Nelson et al. [24] was
added. The mixture was left for 1 h at 37 °C before adding
1 mL MeOH. Then, the solution was centrifuged and the super-
natant evaporated to dryness before redissolving the sample in
200 puL aqueous 5 % 30:70 (v/v) ACN-MeOH. For

glucuronidation of hesperetin, 100 pL 100 mM MgCl,,
260 puL 8 mM uridinediphosphoglucuronic acid, 580 pL milli-
Q-water and 5 L 100 mM hesperetin were mixed before adding
55 uL liver extract. The rest of the procedure was similar to the
procedure for sulphation. Glycination of 4-methylpyridine-2-car-
boxylic acid was performed by adding NaOH (2.1 mg,
0.054 mmol) and acetic anhydride (4.9 mg, 0.048 mmol) to a
solution of 4-methylpyridine-2-carboxylic acid (23.95 mg,
0.17 mmol) in water (100 pL). After stirring the mixture at
35 °C for 1 h, 4.6 mg (0.061 mmol) glycine was added and the
mixture was stirred at 35 °C for further 18 h. The crude mixture
was diluted 500 times before UPLC-MS analysis.

Results
Discovery and identification of PEMs for individual foods

After preprocessing, 6,044 and 7,283 features were detected in
urine in negative and positive mode, respectively. Details on
the number of remaining features after steps a—d of the statis-
tical analysis for all foods and food groups are given in Table 2.

The number of subjects in the food groups in the paired ¢ test
varied from 10 to 136, and depending on the food group, between
0 and 373 features were significant in at least 90 % of the paired ¢
tests. Sixty-two features remained after the initial validation step.
However, many of the remaining features were not unique for one
food group. The food groups consumed as part of the standard-
ized diet had several features in common, and only after calcu-
lating sensitivity and specificity, it was possible distinguish to
which food groups these features were related. After removing
features that did not have a sensitivity and specificity of at least
70 %, 44 PEMs remained which covered seven different foods.
The PEMs had large variation in peak areas for the same reported
dose and only a weak tendency for a dose—response relationship
was found for some of the PEMs. Four typical examples of dose—
response relationships are given in Fig. 2.

The 44 PEMs corresponded to 22 unique metabolites of
which 13 were identified at levels I-1II. Another four were
tentatively identified by their fragmentation patterns, but because
no commercial standards were available for those and it was not
feasible to synthesize them, they have been marked as level IV
identifications. Details on the PEMs are given in Table 3. For all
compounds where the identification could not be confirmed with
a standard, more detailed information on fragmentation pattern is
given in the Electronic supplementary material, Tables S4-S8.

PEMs for berries, fruits, nuts and chocolate
One PEM was found for strawberry for which the parent ion
could not be identified. The fragment, m/z 79.957 was found

as the most intense, suggesting that the compound is a sulphate
metabolite. From the molecular formula and other less intense
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Table 2 Number of features re-

maining for each food group after Food group n (a) 80 % rule (b) Paired ¢ test (c) Initial validation (d) PEMs
steps a—d of the statistical analysis
Berries
Blackcurrant 37 794 114 0 0
Grossulariaceae 50 868 159 0 0
Blueberry 17 796 0 0 0
Cranberry 16 798 0 0 0
Lingonberry 13 916 2 0 0
Ericeae 38 790 53 0 0
Gooseberry 12 929 0 0 0
Sea buckthorn 16 902 0 0 0
Strawberry® 105 816 257 8 1
Fruits
Apple 136 856 373 0 0
Pear® 119 831 239 0 0
Pome fruit* 91 806 91 0 0
Banana 14 884 0 0 0
Rutaceae® 121 802 250 6 6
Orange® 116 854 282 9 7
Rhubarb 12 869 0 0 0
Vegetables and herbs
Asparagus 13 886 0 0 0
Avocado 13 913 0 0 0
Beetroot 38 865 47 3 3
Spinach 16 832 0 0 0
Pointed cabbage 18 911 108 2 2
Red cabbage 11 989 180 22 19
Brassica oleracea 48 843 176 0 0
Celeriac 27 819 43 0 0
Chives 10 784 0 0 0
Cucumber® 119 834 251 1 0
Carrot® 103 811 157 0 0
Parsley 11 808 0 0 0
Apiaceae® 107 778 140 0 0
Green beans 14 838 14 1 1
Green peas 18 846 0 0 0
Split peas 11 906 0 0 0
Fabaceae 40 776 40 0 0
Tomato 37 801 41 0 0
Oils
Olive oil 94 823 217 4 0
Rapeseed oil 57 823 206 0 0
n number of samples in the food Nuts
group after removing samples Hazelnuts 67 914 207 1 0
where the same subject had
reported intake of the food or Walnuts 32 817 63 2 2
related foods at all sampling Nuts 107 894 288 0 0
points Chocolate
“Foods that were part of the Chocolate® 98 846 221 4 3

standardized diet

fragments found, we tentatively identified the strawberry PEM as  (Table S4, Electronic supplementary material), a known aroma
a sulphate ester of 2,5-dimethyl-4-methoxy-3(2H)-furanone ~ compound in strawberry [25]. A small peak with m/z 141.056,
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Fig. 2 Plots of peak areas as a function of reported food intakes for four
PEMs. Samples where subjects have eaten related foods have been
excluded from the data. Control and food samples below and above the
80th and 20th percentiles, respectively, are highlighted in black circles

which corresponds to loss of sulphate, was detected in the
strawberry water extract at RT 1.27. However, it could not be
confirmed whether this peak corresponds to 2,5-Dimethyl-4-
methoxy-3(2H)-furanone.

Four compounds were PEMs for the orange and citrus food
groups. Three of the four PEMs (m/z 146.083, 144.101 and
142.049) were strongly correlated (»~0.9), of which one
(m/z 144.101) was identified as proline betaine. It was not
possible to make a tentative identification from MS/MS data
of the two other PEMs. For the PEM with m/z 146.083,
N-methyl-cis-4-hydroxy-L -proline was ruled out by
analysing the standard. The last common PEM for citrus
and orange was identified as hesperetin glucuronide, while the
PEM for orange could not be identified from the fragmenta-
tion pattern. Of all citrus and orange markers, only proline
betaine was found in orange juice.

Two PEMs, originating from the same compound, was
found for walnuts and the parent compound identified at level
I as 5-hydroxyindole-3-acetic acid.

Theobromine and 7-methyluric acid from chocolate were
identified by standards. The last PEM for chocolate was

Peak area

Peak area
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and squares, since these percentiles were used as cut-off for the initial
marker validation. (a) PEM for cabbage (m/z 327.054, RT 2.72), (b)
PEM for beetroot (m/z 246.038, RT 1.11), (¢) PEM for strawberry (m/z
221.024, RT 3.43), (d) PEM for walnuts (m/z 146.061, RT 2.80)

identified at level II as 6-amino-5-[N-methylformylamino]-
1-methyluracil (6-AMMU) based on the common fragment
m/z 171.087 reported in Llorach et al. [6]. A standard of the
isomer 5-acetylamino-6-amino-3-methyluracil (AAMU) was
run to rule out that possibility.

PEMSs for vegetables

Three unique compounds were found as PEMs for beetroot.
Neither of the compounds was present in a beetroot water extract
and the molecular formulas did not match any known beetroot
compounds or metabolites from the literature. One of the beetroot
PEMs was identified at level I as a glycine conjugate of 4-
methylpyridine-2-carboxylic acid. The precursor of this com-
pound is most likely betanin, the colouring agent in beetroot, as
it contains a tetrahydropyridine moiety. The beetroot PEM with
m/z 234.045 was a sulphate metabolite. All fragments of this
compound that did not contain sulphate were also present in the
dopamine standard. However, RTs of dopamine and dopamine
sulphate were lower than RT of the compound. Betanin is also a
likely precursor of dopamine-like compounds due to presence of
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- ggz . B2 248 é) i Z Z g g é Seven out of 30 PEMs from the previously published meal study
HE 2 é §S8 88| = 2 22 223 were also markers in the present intervention study (Table 4).
gl & ZE ©6 56|l &8es L F Five of the PEMs were markers of various cruciferous vegetables
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Table 4 PEMs found in a previous meal study that were also markers in the intervention study

PEM

Foods (meal study)

Foods (intervention study)

N-acetyl-S-(N-3-methylthiopropyl)cysteine

N-acetyl-S-(N-allylthiocarbamoyl)cysteine
(AITC-NAC)
Iberin N-acetyl-cysteine (IB-NAC)

Sulphoraphane N-acetyl-cysteine (SFN-NAC)
4-Iminopentylisothiocyanate
Trimethylamine N-oxide (TMAO)

Uknown RT 2.01 (2.07%), m/z 261.093 (261.103°),
pos mode

None

None

‘White cabbage, Brussels sprouts
White cabbage, Brussels sprouts
White cabbage, Brussels sprouts

White cabbage, Brussels sprouts

Fish (cod, smoked mackerel, monkfish)

Red cabbage, Brussels sprouts,
pointed cabbage (1), y

Red cabbage, Brussels sprouts,
horseradish (1-2), y

Red cabbage, Brussels sprouts,
pointed cabbage (1), y

Red cabbage, Brussels sprouts (1), n
Brussels sprouts (2),
Cod, Pollock, Halibut (1-2) y*

Brussels sprouts, (2), n

Foods (meal study): Foods from the meal study for which the PEM was a marker [10]. Foods (intervention study): Foods for which the marker strength of
the PEM was 1-4 in the intervention study. The marker strength as defined in the sensitivity and specificity analysis for foods is given in brackets and y/n
indicates whether there was a dose-response relationship between amount of intake and marker intensity

#Cod roe and smoked cod were excluded in the initial validation analysis as similar foods

® Data from intervention study

from the species Brassica olecearea in the meal study. Accord-
ingly, a high sensitivity (> 70 %) and specificity (> 80 %) for red
cabbage, Brussels sprouts, pointed cabbage and horseradish were
found for these markers in the intervention study. Three other
markers of B. olecearea from the meal study (an unknown N-
acetyl-cysteine conjugate, N-Acetyl-(N'-benzylthiocarbamoyl)-
cysteine and sulphoraphane-N-cysteine) were found in the inter-
vention study but were not strong enough to be considered
markers. Another B. olecearea marker from the meal study,
Erucin N-acetyl-cysteine, did not match any feature in the inter-
vention study. Two markers in the meal study were markers of
Brussels sprouts in the intervention study even though they were
not found in our previous single food studies with Brussels
sprouts [10], Finally, TMAO was a marker of fish intake in the
intervention study with marker strengths of 1-2 for cod, pollock
and halibut. When all fish and shellfish were included in the
analysis for TMAO, the marker strength was 4. The lower
marker strength when including all fish is probably mainly
reflecting a varied TMAO content for different types of fish
and shellfish. When investigating each type of fish separately,
high TMAO response was found following intake of cod, pol-
lock and Greenland halibut, and low TMAO response was found
following intake of cod roe and tuna, while the remaining types
of fish and shellfish were in between. In accordance with this,
fish belonging to the Gadidae family, i.e. cod and pollock are
known to be particularly high in TMAO, while tuna contains low
amounts [27].

The rest of the PEMs from the meal study were either not
found (10 unknown markers, 2 parsley root markers, 1 chicory
salad marker and 1 fresh fava bean marker) in the data from
the intervention study or were not strong enough to be
markers in the intervention study (2 unknown markers
and 3 parsley root markers).
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Discussion
Discovery and identification of PEMs for foods

The fact that it was only possible to find PEMs for 7 out of 40
food groups is probably mainly because of the strict criteria
for sensitivity and specificity applied in the statistical analysis
for this study setting. Only the dietary pattern, not the con-
sumption of individual foods, was controlled in the study and
the amounts and selections of foods reported in WDR are
therefore diverse. Even though WDR perform best in com-
parison to other dietary assessment methods [28], some recall
bias and underreporting are still expected. When considering
all the sources of variability in the data together, i.e. errors
caused by use of WDR, large variation in the amount of food
reported, the low number of consumers for many food groups,
inter-individual variability and the semi-quantitative nature of
the analytical method, it is not surprising that only very few
PEMs were found in the study and that the majority of these
PEMs have weak dose-response relationships (Table 3,
Fig. 2). If lower thresholds for sensitivity and specificity in
the initial validation were applied instead, it may have been
possible to find more markers. An analysis of five represen-
tative food groups in which sensitivity and specificity thresh-
olds of 60-80 % were applied demonstrated, as expected, that
a higher number of features remained for the lower thresholds
in the initial validation (Fig. S2, Electronic supplementary
material). However, these features did not have the highest
sensitivity and specificity for the investigated foods in the last
validation step and further studies would therefore be required
to investigate the food origin of such features.

Another reason why PEMs are only found for a few foods
might be that not all foods give rise to characteristic markers or
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that the markers cannot be captured by the analytical method
applied. Citrus, chocolate, pear, carrot, cucumber, strawberry
and olive oil were all part of the standardized diet and thus
consumed by all subjects at one time point or more. This
should increase the possibility of finding markers for these
food groups but only strawberry, chocolate and, in particular,
citrus gave rise to PEMs, suggesting that the composition of
the foods is an important determinant for the possibility of
finding strong markers. The reason why consumption of citrus
resulted in the highest number of PEMs is probably its content
of a very diverse group of bioactive compounds, in particular
flavonoids, of which several are specific to citrus [29]. Simi-
larly, vegetables belonging to the Brassica olecearea species,
especially red cabbage, also gave rise to a high number of
markers compared to other vegetable species probably due to
their content of glucosinolates, which is almost unique to this
species [30]. Another factor supporting the notion that the food
composition is important for the chance of finding markers is
the fact that PEMs were found for some foods consumed in
very low amounts. For example, intake of walnuts was report-
ed less frequently and in lower amounts than intake of apples
and tomatoes, and despite this, a PEM was found for walnuts
and not for the other foods. In a study by Lloyd et al. [31],
untargeted metabolomics was also applied to investigate food
exposure markers in urine of habitual dietary intake. In accor-
dance with the results from the present study, discriminant
features were found for citrus fruit, Brassica species and
chocolate, and in that study, they also succeeded in finding
markers of bananas and tomatoes, for which no PEMs were
found in the present study. Unfortunately, only a few of the
markers found by Lloyd et al. were reported, among those the
markers of tomato, and these were either not specific or related
to co-consumed foods which may explain why the same
markers are not found in the present study. More studies need
to be conducted to understand how many foods give rise to
unique markers in urine within habitual consumption levels.

Another factor in the analysis that may influence the marker
findings is the selection of related foods. When botanically
related foods are excluded from the data, the markers found
may characterize a family of plants rather than the individual
food which may give a stronger contrast between the food and
control group. On the other hand, frequently reported related
foods will lower the size of the control group and thereby the
power of the statistical analysis. It is not possible in the present
study to evaluate how the choice of foods in the food group and
the related foods group has influenced marker discovery and
more markers may have been found if all analyses had been
performed with and without related foods.

Use of food WDR from the same day as the urine collec-
tions in the present study limits the exposure markers found to
acute markers that are mainly excreted within 24 h and foods
giving rise to markers that peak in excretion much later than
24 h, such as urolithins [32], will therefore be missed. The

reason for choosing only foods reported in WDR on the day of
urine collection was that the day of urine collection varied
between the volunteers and was not on the same of the three
WDR days in all cases. In addition, the majority of markers in
urine are excreted fast and acute markers of frequently con-
sumed foods will also be good candidates as markers of
habitual intakes. For example, excretion of proline betaine is
known to peak within a few hours after intake and be almost
completely excreted within 24 h [33]. Despite this, it has been
found as a marker of habitual consumption in several studies
[33-35]. Since this study is close to a free-living setting, the
markers are most likely valid in observational studies as well,
at least as discriminants for recent intake of the foods. Our
study therefore provides several PEM candidates for final
validation in targeted studies. It should be noted that is not
possible to assess if the two overall dietary patterns influence
the findings since many foods were mainly consumed within
one of'the dietary patterns. However, this is not expected since
many of the PEMs found have been reported previously in
other studies, as evident from the discussion below.

PEMs from berries, fruits, nuts and chocolate

All PEMs of citrus were also reported in a previous untargeted
metabolomics study in which citrus markers from a short and
medium term intervention study and a cohort study were
compared [36]. Interestingly, the four citrus markers found
in the present study resembled the previous findings for the
cohort study best. This confirms that even though the present
study was an intervention study, the exposure markers found
are likely valid in a free-living setting. The orange marker with
m/z 211.060 has not been reported previously. Proline betaine
and hesperetin-glucuronide have been found as acute and
habitual citrus markers in more studies [33-35], while the
unknown markers with m/z 146.083 and 142.049 have only
been reported once before. The fact that they are not present in
orange juice and that they correlate very strongly to proline
betaine suggests that these markers are metabolites of proline
betaine even though this disagrees with the notion that proline
betaine is an inert metabolite [33].

For walnut consumption, an increase in 5-hydroxyindole-
3-acetic acid has been reported previously [7,37]. 5-
Hydroxyindole-3-acetic acid is a metabolite of serotonin and
comes out as a PEM of walnuts because of their high serotonin
content compared to other foods [37].

The finding of theobromine as a marker of cocoa consump-
tion is in accordance with the fact that cocoa or chocolate
containing products are the main dietary sources of theobro-
mine [38]. The other PEMs of chocolate, 6-AMMU and 7-
methyluric acid, are endogenous metabolites of theobromine
[39]. In an untargeted metabolomics study by Llorach et al.
[6], more theobromine metabolites were found as markers of
cocoa, and methylxanthines were better discriminants in 24-h
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urine samples than methyluric acids. When humans are given
theobromine orally, 7-methylxanthine has also been demon-
strated to be excreted in higher quantities than 7-methyluric
acid [39,40]. It is therefore surprising that 7-methylxanthine
was not a marker in the present study. As the metabolic
pathway for theobromine is shared with caffeine, intake of
coffee and tea may confound the findings for chocolate. This
could explain why some theobromine metabolites come out as
PEMs and others not, even though the main metabolites of
theobromine and caffeine differ [40]. Another possible expla-
nation is differences in excretion patterns. In the study by
Rodopoulos et al. [39], it was demonstrated that the excretion
of theobromine and its metabolites extended beyond 24 h and
was not complete within 48 h. It may therefore be that 7-
methyluric acid is a better marker of acute intake. Interestingly
7-methyluric acid was also the only chocolate PEM with some
dose—response relationship (Table 3).

The strawberry marker found has not been reported previ-
ously and the tentative identification could not be verified.

PEMs of vegetables

The PEMs found for red cabbage were mainly acetyl-cysteine
conjugates of isothiocyanates and microbial metabolites of
polyphenols. Isothiocyanates are formed from glucosinolates
upon cell damage. Even though some cabbage varieties are
known to be particularly rich in certain glucosinolates, indi-
vidual glucusinolates are widely distributed in several cabbage
varieties and the amount of intake and the preparation method
are important for the resulting isothiocyanate composition in
urine [30]. An example underlining this is that of
sulphoraphane, which is found in high quantities in broccoli
but is a PEM of red cabbage and Brussels sprouts in the
present study even though these cabbage varieties contain
much lower levels of sulphoraphane [41]. In general, only
the most frequently consumed cabbages (Table 2) resulted in
isothiocynate conjugates with marker strengths of 1-2 (Ta-
ble 3). All isothiocyanate conjugates found in the intervention
study were also found in the previous meal study (Table 4).
However, they were not reported in another untargeted meta-
bolomics study comparing diets high and low in cruciferous
vegetables, probably because data from NMR was applied in
that study [42]. NMR has a lower metabolite coverage than
LC-MS due to a lower sensitivity.

The microbial metabolite 3-hydroxy-hippuric acid
(sulphated or not) can be formed from various polyphenols
[43] and is not specific to red cabbage, even though no other
foods in the study had a high marker strength for this metab-
olite. In comparison to other cabbage varieties, red cabbage
contains high levels of polyphenols [44], in particular antho-
cyanins, which are also metabolized in the colon to phenolic
acids [32]. This probably explains why red cabbage gives rise
to high levels of microbial products. It is assumed that the
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PEM with m/z 363.112 may also be of microbial origin due to
the strong correlation to 3-hydroxy-hippuric acid. The tenta-
tively identified compound, 3-hydroxy-3-(methyl-sulphinyl)-
propanoic acid, has not been reported before, and no likely
precursor of such a metabolite was found in cabbage. Even
though the marker did not have high marker strength for other
cabbage varieties in the intervention study, the fact that it was
found also in the previous meal study suggests that the marker
is generally cabbage related and not specific to red cabbage.

Betanin is a likely precursor of the PEMs found for beet-
root since it is contained in very few vegetables of which only
beetroot was consumed as part of the intervention study. Little
is known about the metabolism of betanin. It has been dem-
onstrated that less than one percent of ingested betanin is
excreted unmetabolized in urine [45] while four betanin me-
tabolites in the same study were not identified. We report here
for the first time a glycine conjugate of 4-methylpyridine-2-
carboxylic acid as a beetroot PEM and a likely betanin me-
tabolite. Further experiments would be needed to verify the
proposed structures of the other two beetroot PEMs. To our
knowledge, urinary markers of green beans have not been
reported before. No likely precursor of the compound was
found in the food databases.

Validation of PEMs from meal study

Only 23 % of the PEMs from the meal study were also found
to be markers in the intervention study. This is probably
because the meal study was a very controlled study setting
in which the diet was standardized, as dietary standardization
is known to have a strong impact on the urinary metabolome
[46,47]. Unspecific PEMs in particular, would not be valid in
studies with a more varied dietary background. Some PEMs in
the meal study may also reflect the particular meal matrix
rather than intake of individual foods [10]. A few PEMs from
the meal study for fresh fava beans and chicory salad could not
be validated in the intervention study since almost no subjects
reported intake of these foods. Differences in the urine collec-
tion times in the previous studies with single foods and the
meal study may explain why some PEMs in the meal study
were markers of Brussels sprouts in the intervention study
even though they were not found in the single foods study
with Brussels sprouts.

There is a general agreement that a targeted approach is
necessary to validate biomarkers found by untargeted meta-
bolomics studies [4,48], since quantification is important for
determining biomarker strength as well as possible effects of
other factors such as sex, age and BMI. While the lack of
quantitation in the validation procedure of the present study is
a limitation, untargeted metabolomics is a fast way to get an
indication of the performance of a marker in another study
setting. The comparison performed here clearly demonstrates
the importance of validating PEMs in different subjects and
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study settings. A high sensitivity and specificity are crucial in
exposure assessments for a PEM to be useful. The fact that
some PEMs were common to both studies suggests that it is
possible, at least for some foods or food groups, to find valid
and strong urinary exposure markers, while other markers
may be valid under certain study conditions only.

Conclusions

The present study demonstrates that it is possible to find strong
acute urinary exposure markers of some individual foods and
food groups in an intervention study with a self-selected diet
similar to free-living conditions, even though food intake relied
on self-reporting and PEM validation was based on very strict
criteria. PEMs were found for foods giving rise to characteris-
tic metabolites rather than for frequently consumed foods or
foods consumed in large amounts. Validation of markers found
in a previous controlled meal study indicated that only a few
PEMSs were also valid with the present more varied diets. These
results highlight the importance of the study setting in the
search for urinary food exposure markers and the large vari-
ability inherent in data from less controlled study settings
analysed with a semi-quantitative method. A targeted analysis
is necessary to further validate the PEMs found. The strategy
outlined for finding PEMs found in the present study may also
be used for optimizing and targeting food exposure marker
discovery in observational studies.

Acknowledgments The intervention study was conducted as part of the
OPUS project. OPUS is an acronym of the Danish title of the project
'Optimal well-being, development and health for Danish children through
a healthy New Nordic Diet' and is supported by a grant from the Nordea
Foundation, Denmark. The authors would like thank Majbritt Hybholt for
providing the food intake data and Daniela Rago, Ummiihan Celik and
Bernard Lyan for their contribution to the laboratory work.

References

. Favé G, Beckmann ME, Draper JH, Mathers JC (2009) Measurement
of dietary exposure: a challenging problem which may be overcome
thanks to metabolomics? Genes Nutr 4:135-141

2. Bingham SA (2002) Biomarkers in nutritional epidemiology. Public
Health Nutr 5:821-827

. Primrose S, Draper J, Elsom R, Kirkpatrick V, Mathers JC, Seal C,
Beckmann M, Haldar S, Beattie JH, Lodge JK, Jenab M, Keun H,
Scalbert A (2011) Metabolomics and human nutrition. Br J Nutr 105:
1277-1283

4. Llorach R, Garcia-Aloy M, Tulipani S, Vazquez-Fresno R, Andres-

Lacueva C (2012) Nutrimetabolomic strategies to develop new bio-
markers of intake and health effects. J Agric Food Chem 60:8797-8808

5. Penn L, Boeing H, Boushey CJ, Dragsted LO, Kaput J, Scalbert A,
Welch A, Mathers J (2010) Assessment of dietary intake: NuGO
symposium report. Genes Nutr 5:205-213

. Llorach R, Urpi-Sarda M, Jauregui O, Monagas M, Andres-Lacueva
C (2009) An LC-MS- based metabolomics approach for exploring

w

(=}

~

oo

el

20.

2

—

22.

urinary metabolome modifications after cocoa consumption. J
Proteome Res 8:5060-5068

. Tulipani S, Llorach R, Jauregui O, Lopez-Uriarte P, Garcia-Aloy M,

Bullo M, Salas-Salvado J, Andrés-Lacueva C (2011) Metabolomics
unveils urinary changes in subjects with metabolic syndrome follow-
ing 12-week nut consumption. J Proteome Res 10:5047-5058

. Lodge JK (2010) Symposium 2: Modern approaches to nutritional

research challenges: targeted and non-targeted approaches for metab-
olite profiling in nutritional research. Proc Nutr Soc 69:95-102

. Spencer JPE, Abd El Mohsen MM, Minihane A, Mathers JC

(2008) Biomarkers of the intake of dietary polyphenols:
strengths, limitations and application in nutrition research. Br J
Nutr 99:12-22

. Andersen MS, Reinbach HC, Rinnan A, Barri T, Mithril C, Dragsted

LO (2013) Discovery of exposure markers in urine for Brassica-
containing meals served with different protein sources by UPLC-
qTOF-MS untargeted metabolomics. Metabolomics 9:984-997

. Mithril C, Dragsted LO, Meyer C, Tetens I, Biltoft-Jensen A, Astrup

A (2013) Dietary composition and nutrient content of the New
Nordic Diet. Public Health Nutr 16:777-785

. Poulsen SP, Due A, Jordy AB, Stark KD, Stender S, Holst C, Astrup

A, Larsen TM (2013) Health effect of the New Nordic Diet in adults
with increased waist circumference: a 6-mo randomized controlled
trial. Am J Clin Nutr. doi:10.3945/ajen.113.069393

. Barri T, Holmer-Jensen J, Hermansen K, Dragsted LO (2012)

Metabolic fingerprinting of high-fat plasma samples processed by
centrifugation- and filtration-based protein precipitation delineates
significant differences in metabolite information coverage. Anal
Chim Acta 718:47-57

. Pluskal T, Castillo S, Villar-Briones A, Ore§i¢ M (2010) MZmine 2:

modular framework for processing, visualizing, and analyzing mass
spectrometry-based molecular profile data. BMC Bioinforma 11:
395-404

. Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S,

Macdonald TA, van Ommen B, Smilde AK (2006) Large-scale
human metabolomics studies: a strategy for data (pre-) processing
and validation. Anal Chem 78:567-574

. Storey JD (2002) A direct approach to false discovery rates. J R Stat

Soc B 64:479-498

. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau

DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia
J,JiaL, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P,
Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A,
De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R,
Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009)
HMDB: a knowledgebase for the human metabolome. Nucleic Acids
Res 37:D603-D610

. Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR,

Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite
mass spectral database. Ther Drug Monit 27:747-751

. Gerlich M, Neumann S (2013) MetFusion: integration of compound

identification strategies. J Mass Spectrom 48:291-298

Neveu V, Perez-Jiménez J, Vos F, Crespy V, du Chaffaut L, Mennen
L, Knox C, Eisner R, Cruz J, Wishart D, Scalbert A (2010) Phenol-
Explorer: an online comprehensive database on polyphenol contents
in foods. Database (Oxford). doi:10.1093/database/bap024

. Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y,

Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman
LK, Saito K, Kanaya S (2012) KNApSAcK family databases: inte-
grated metabolite—plant species databases for multifaceted plant re-
search. Plant Cell Physiol 53:el-¢12

Sumner L, Amberg A, Barrett D, Beale M, Beger R, Daykin C, Fan T,
Fiehn O, Goodacre R, Griffin J, Hankemeier T, Hardy N, Harnly J,
Higashi R, Kopka J, Lane A, Lindon J, Marriott P, Nicholls A, Reily
M, Thaden J, Viant M (2007) Proposed minimum reporting standards
for chemical analysis. Metabolomics 3:211-221

@ Springer



M.-B.S. Andersen et al.

23.

24.

25.

26.

27.

28.

29.

30.

3

—_

32.

33.

34,

35.

36.

Rago D, Mette K, Giirdeniz G, Marini F, Poulsen M, Dragsted LO
(2013) A LC-MS metabolomics approach to investigate the effect of
raw apple intake in the rat plasma metabolome. Metabolomics. doi:
10.1007/s11306-013-0534-9

Nelson AC, Huang W, Moody DE (2001) Variables in human liver
microsome preparation: impact on the kinetics of l-alpha-
acetylmethadol (LAAM) n-demethylation and dextromethorphan
O-demethylation. Drug Metab Dispos 29:319-325

Wein M, Lavid N, Lunkenbein S, Lewinsohn E, Schwab W,
Kaldenhoff R (2002) Isolation, cloning and expression of a multi-
functional O-methyltransferase capable of forming 2,5-dimethyl-4-
methoxy-3(2H)-furanone, one of the key aroma compounds in straw-
berry fruits. Plant J 31:755-765

Gonthier M, Cheynier V, Donovan JL, Manach C, Morand C, Mila I,
Lapierre C, Rémésy C, Scalbert A (2003) Microbial aromatic acid
metabolites formed in the gut account for a major fraction of the
polyphenols excreted in urine of rats fed red wine polyphenols. J Nutr
133:461-467

Bianchi F, Careri M, Musci M, Mangia A (2007) Fish and food
safety: determination of formaldehyde in 12 fish species by SPME
extraction and GC-MS analysis. Food Chem 100:1049-1053
Bingham SA, Cassidy A, Cole TJ, Welch A, Runswick SA, Black
AE, Thurnham D, Bates C, Khaw KT, Key TJA (1995) Validation of
weighed records and other methods of dietary assessment using the
24 h urine nitrogen technique and other biological markers. Br J Nutr
73:531-550

Gonzalez-Molina E, Dominguez-Perles R, Moreno DA, Garcia-
Viguera C (2010) Natural bioactive compounds of Citrus limon for
food and health. J Pharm Biomed Anal 51:327-345

Vermeulen M, Van Den Berg R, Freidig AP, Van Bladeren PJ, Vaes
‘WHI (2006) Association between consumption of cruciferous vege-
tables and condiments and excretion in urine of isothiocyanate
mercapturic acids. J Agric Food Chem 54:5350-5358

. Lloyd AJ, Beckmann M, Haldar S, Seal C, Brandt K, Draper J (2013)

Data-driven strategy for the discovery of potential urinary biomarkers
of habitual dietary exposure. Am J Clin Nutr 97:377-389
Gonzalez-Barrio R, Edwards CA, Crozier A (2011) Colonic catabo-
lism of ellagitannins, ellagic acid, and raspberry anthocyanins:
in vivo and in vitro studies. Drug Metab Dispos 39:1680-1688
Heinzmann SS, Brown 1J, Chan Q, Bictash M, Dumas M, Kochhar S,
Stamler J, Holmes E, Elliott P, Nicholson JK (2010) Metabolic
profiling strategy for discovery of nutritional biomarkers: pro-
line betaine as a marker of citrus consumption. Am J Clin
Nutr 92:436-443

Favé G, Beckmann M, Lloyd A, Zhou S, Harold G, Lin W, Tailliart
K, Xie L, Draper J, Mathers J (2011) Development and validation of a
standardized protocol to monitor human dietary exposure by metab-
olite fingerprinting of urine samples. Metabolomics 7:469-484
Lloyd AJ, Beckmann M, Favé G, Mathers JC, Draper J (2011)
Proline betaine and its biotransformation products in fasting urine
samples are potential biomarkers of habitual citrus fruit consumption.
Br J Nutr 106:812-824

Pujos-Guillot E, Hubert J, Martin J, Lyan B, Quintana M, Claude S,
Chabanas B, Rothwell JA, Bennetau-Pelissero C, Scalbert A, Comte
B, Hercberg S, Morand C, Galan P, Manach C (2013) Mass
spectrometry-based metabolomics for the discovery of biomarkers

@ Springer

37.

38.

39.

40.

4

juy

42.

43.

44,

45.

46.

47.

48.

of fruit and vegetable intake: citrus fruit as a case study. J Proteome
Res 12:1645-1659

Feldman JM, Lee EM (1985) Serotonin content of foods: effect on
urinary excretion of 5-hydroxyindoleacetic acid. Am J Clin Nutr 42:
639-643

Shively CA, Tarka SM Jr (1984) Methylxanthine composition and
consumption patterns of cocoa and chocolate products. Prog Clin
Biol Res 158:149-178

Rodopoulos N, Hojvall L, Norman A (1996) Elimination of theobro-
mine metabolites in healthy adults. Scand J Clin Lab Invest 56:
373-383

Cornish HH, Christman AA (1957) A study of the metabolism of
theobromine, theophylline, and caffeine in man. J Biol Chem 228:
315-323

. Farag MA, Motaal AA (2010) Sulforaphane composition, cytotoxic

and antioxidant activity of crucifer vegetables. J Adv Res 1:65-70
Edmands WMB, Beckonert OP, Stella C, Campbell A, Lake BG,
Lindon JC, Holmes E, Gooderham NJ (2011) Identification of human
urinary biomarkers of cruciferous vegetable consumption by
metabonomic profiling. J Proteome Res 10:4513-4521

Rechner AR, Smith MA, Kuhnle G, Gibson GR, Debnam ES, Srai
SKS, Moore KP, Rice-Evans CA (2004) Colonic metabolism of
dietary polyphenols: influence of structure on microbial fermentation
products. Free Radic Biol Med 36:212-225

Podsgdek A, Sosnowska D, Redzynia M, Anders B (2006)
Antioxidant capacity and content of Brassica oleracea dietary anti-
oxidants. Int J Food Sci Technol 41:49-58

Frank T, Stintzing FC, Carle R, Bitsch I, Quaas D, Stra G, Bitsch R,
Netzel M (2005) Urinary pharmacokinetics of betalains following
consumption of red beet juice in healthy humans. Pharmacol Res 52:
290-297

Walsh MC, Brennan L, Malthouse JPG, Roche HM, Gibney MJ
(20006) Effect of acute dietary standardization on the urinary, plasma,
and salivary metabolomic profiles of healthy humans. Am J Clin Nutr
84:531-539

Rasmussen LG, Savorani F, Larsen TM, Dragsted LO, Astrup A,
Engelsen SB (2011) Standardization of factors that influence human
urine metabolomics. Metabolomics 2011(7):71-83

Koulman A, Volmer DA (2008) Perspectives for metabolomics in
human nutrition: an overview. Nutr Bull 33:324-330

Maj-Britt Schmidt Andersen is
about to finalize her PhD stud-
ies at Department of Nutrition,
Exercise and Sports at the Univer-
sity of Copenhagen. Her work is
focused on the discovery of new
exposure and compliance markers
in urine for intake of foods and
dietary patterns by application of
untargeted LC-MS based metabo-
lomics.



Electronic supplementary material

Analytical and Bioanalytical Chemistry

Discovery and validation of urinary exposure markers for different plant foods by untargeted
metabolomics

Maj-Britt Schmidt Andersen', Mette Kristensen', Claudine Manach?, Estelle Pujos-Guillot®, Sanne
Kellebjerg Poulsen', Thomas Meinert Larsen', Arne Astrup', Lars Dragsted'

'Department of Nutrition Exercise and Sports, Faculty of Science, University of Copenhagen.
2INRA, UMR1019, Human Nutrition Unit, University of Auvergne, Clermont-Ferrand-Theix, France

Corresponding author:

Maj-Britt Schmidt Andersen

Department of Nutrition, Exercise and Sports,
Faculty of Science, University of Copenhagen
Rolighedsvej 30

DK-1958 Frederiksberg C

Email: mbsa@life.ku.dk

Telephone: +45353 31086

Fax: 3533 2483

Caption ESM 1: The supplementary material contains an outline of the study design, the baseline characteristics for the
included subjects, the parameters applied for preprocessing of data, and further structural information on six tentatively
identified metabolites.



Table S1 List of foods in the standardized diet

The amounts given are guidelines for participants with a daily energy intake of 9-11 MJ.

Food Amount
Oatmeal 60 g
Skimmed milk (0.5 % fat) 160 g
Sugar 165¢g
Orange juice 250 ml
Crispbread 2 slices
Pear 1 (=100 g)
Rye bread 2 slices
Cold chicken meat 20g
Tinned tuna 20g
Mayonnaise 4g
Cheese spread (25 % fat) 15¢g
Cucumber 45¢
Salad leaves 4 leaves
Wholemeal bun 1

Butter 30g
Hard cheese (25 % fat) 1 slice
Strawberry jam 15¢g
Dark chocolate 25¢g
Chicken filet (fried) 120 g
Olive oil 2 spoons
Potatoes 100 g
Courgette 40 g
Onion 50g
Carrot 30g
Greek yogurt (10 % fat) or 50g
créme-fraice (9 % fat)

Wholemeal French loaf 1.5 pieces
Strawberries 100 g
Natural yogurt 150 ml




Run-in

WDR
24 urine

Intervention
Week 12 Week 26
WDR
24 urine

Fig. S1 Outline of study design. After one week run-in where the subjects had a standardized diet (SD) for 3 days,
participants were randomized to follow either a New Nordic Diet (NND) or an Average Danish Diet (ADD) for 26
weeks. At three sampling points during the study, 3-day weighed dietary records (WDR) were made and one 24 h urine
sample was collected. The first dietary record was for the standardized diet and the other two were for either NND or

ADD.

Table S2 Baseline characteristics of the 107 included subjects

NND (n=64) ADD (n=43)
Age 44.0 (13.3) 41.2 (13.2)
Sex 16 M, 48 F 12M, 31 F
BMI (week 0) 29.9 (4.5) 29.4 (4.6)
Waist circumference (week 0) 99.2 (11.6) 99.0 (13.3)




Table S3 Batch steps and parameters used for preprocessing of raw data in MZmine2.7

Batch step

Parameters

Negative mode

Raw data import

Mass detection

Noise level: 15

Chromatogram builder

Min time span (min): 0.01;
Min height: 4.0E1; m/z tolerance: 0.055 mz or 30 ppm

Chromatogram deconvolution

Chromatographic threshold: 95%; Search minimum in RT
range (min): 0.01; Minimum relative height: 10%;
Minimum absolute height: 4.0E1; Min ratio of peak/top
edge: 1.3; Peak duration range (min): 0.01-0.2

Isotopic pattern

m/z tolerance: 0.06 or 30 ppm; Retention time tolerance:
0.01; Monotonic shape; maximum charge: 1

Join aligner

m/z tolerance: 0.06 or 30 ppm; Absolute retention time
tolerance: 0.15; Weight for both m/z tolerance and
retention time tolerance: 10

Duplicate peak filter

m/z tolerance: 0.5 or 600 ppm; RT tolerance: 0.15

Peak list rows filter

Min peaks in a row: 5
Minimum peaks in an isotope pattern: 1; m/z range: 50-
1000; RT range: 0-7; peak duration range: 0.01-0.2

Peak finder

Intensity tolerance: 50%; m/z tolerance: 0.06 or 30 ppm;
Absolute retention time tolerance: 0.15

Export to csv

None required

Positive mode

Raw data import

Mass detection

Noise level: 15

Chromatogram builder

Min time span (min): 0.01;
Min height: 4.0E1; m/z tolerance: 0.055 mz or 30 ppm

Chromatogram deconvolution

Chromatographic threshold: 97%; Search minimum in RT
range (min): 0.01; Minimum relative height: 10%;
Minimum absolute height: 6.0E1; Min ratio of peak/top
edge: 1.5; Peak duration range (min): 0.01-0.2

Isotopic pattern

m/z tolerance: 0.06 or 30 ppm; Retention time tolerance:
0.01; Monotonic shape; maximum charge: 1

Join aligner

m/z tolerance: 0.06 or 30 ppm; Absolute retention time
tolerance: 0.15; Weight for both m/z tolerance and
retention time tolerance: 10

Duplicate peak filter

m/z tolerance: 0.5 or 600 ppm; RT tolerance: 0.15

Peak list rows filter

Min peaks in a row: 5
Minimum peaks in an isotope pattern: 1; m/z range: 50-
1000; RT range: 0-7; peak duration range: 0.01-0.2

Peak finder

Intensity tolerance: 50%; m/z tolerance: 0.06 or 30 ppm;
Absolute retention time tolerance: 0.17

Export to csv

None required




Table S4 PEM for strawberry with RT 3.43 and m/z 221.024, neg mode

Proposed structure of the molecule (molecular formula C7TH1006S):

o)

Ne—°
S\ _—
(/)/ OH )
A
\O
Fragments from MS/MS Annotation (ESI-) Loss
221.024 C7H906S
205.989 C6H606S -CH3
141.056 C7H903 -S0O3
126.031 C6H603 -CH3, -SO3
79.957 SO3

Table S5 PEM for beetroot with RT 0.95 and m/z 234.045, pos mode

Proposed structure of the molecule (molecular formula C8H11NOSS):

HO NH,
(0]
HO
N/
J o

o}
Fragments from MS/MS Annotation (ESI+) | Loss
234.045 C8H12NOS5S
217.017 C8H905S -NH3
154.087 C8H12NO2 -SO3
(same m/z as dopamine)
*137.059 C8H902 -NH3, -SO3
*119.049 C8H70 -NH3, -S03, -H20
*91.054 C7H7 -NH3, -S03, -H20, -CO

*The m/z was also found as a fragment of dopamine




Table S6 PEM for beetroot with RT 1.11 and m/z 246.038, neg mode

Proposed structure of the molecule (molecular formula COH13NOSS):

H
HO N
ﬁ b
2PN
O | O
OH
Fragments from MS/MS Annotation (ESI-) Loss
246.038 C9H12NOS5S
203.007 C7H705S -CH2, -CH3-N (with rearrangements)
166.087 C9H12NO2 -SO3
151.063 C8HINO2 -S0O3, -CH3
121.028 C7H502 -S0O3, -CH3, -CH3-NH
79.958 SO3

Table S7 PEM for red cabbage with RT 0.53 and m/z 151.009, neg mode

Proposed structure of the molecule (molecular formula C4H8S0O4):

\

S
O/
OH
OH
(6]
Fragments from MS/MS Annotation (ESI-) Loss
151.009 C4H7048
135.986 C3H404S -CH3
132.996 C4H5038 -H20
111.021 C2H703S -C20 (with rearrangements)
87.008 C3H303 -CH3, -SOH
62.989 CH3SO - CHOH-CH2-CO2




Table S8 PEM for green beans with RT 3.47 and m/z 189.083, neg mode

Fragments from MS/MS Annotation (ESI-) Loss

189.083 C8H1305

145.085 C7H1303 -CO2

129.056 C6H903 -COOH-CH3
127.075 C7H1102 -CO2-H20
99.081 C6H110 -CO2-HCOOH




Figure S2 Number of remaining features after initial validation for different levels of sensitivity and specificity
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The number of remaining features after initial validation is given for five representative food groups and five cut-off
levels for sensitivity and specificity. The food groups chosen all had a high number of significantly different features in
the paired t-test (43-373) of which none remained following initial validation and sensitivity and specificity analysis for
foods.
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ABSTRACT

There is a growing interest in studying the nutritional effects of complex diets. For such studies
measurement of dietary compliance is a challenge since the currently available compliance markers
only cover limited aspects of a diet. In the present study, an untargeted metabolomics approach was
used to develop a compliance measure in urine to distinguish between two dietary patterns. A
parallel intervention study was carried out in which 181 participants were randomized to follow
either a New Nordic Diet (NND) or an Average Danish Diet (ADD) for six months. Dietary intakes
were closely monitored over the whole study period and 24 h urine samples as well as weighed
dietary records were collected several times during the study. The urine samples were analysed by
UPLC-qTOF-MS and a partial least squares discriminant analysis with feature selection was applied
to develop a compliance model based on data from 214 urine samples. The optimised model
included fifty-two metabolites and had a misclassification rate of 19 % in a validation set containing
139 samples. The metabolites identified in the model were markers of individual foods such as
citrus, cocoa containing products and fish as well as more general dietary traits such as high fruit
and vegetable intake or high intake of heat-treated foods. It was easier to classify the ADD diet than
the NND diet probably due to seasonal variation in the food composition of NND and indications of
lower compliance among the NND subjects. Untargeted metabolomics is a promising approach to
develop compliance measures that cover the most important discriminant metabolites of complex
diets.



Introduction

Untargeted metabolomics is a well-established screening tool to explore changes and patterns for
a large number of metabolites in biofluids'. A common application of untargeted metabolomics
within nutrition research is for biomarker discovery of dietary exposure, where the method has
proved successful in finding new biomarker candidates for a range of foods and food groups, such
as citrus?, coffee’, cocoa®, cabbage’ and nuts®. The advantage of an explorative approach for gaining
insight in dietary exposure is that it opens up for studying the food metabolome under various
conditions. For example the effect of dietary standardization” ®, the timing of sampling’, and the
influence of the food matrix* can be studied in a holistic fashion.

In nutrition research, the health effects of complex diets are gaining increasing interest. One
reason for this is the fact that the common approach, in which effects of individual nutrients and
foods are investigated separately, has limited capability to explain associations between diet and
disease'”. It is likely that different foods in a dietary pattern can exhibit synergistic and antagonistic
effects which should be considered to understand which dietary components may be preventive for
disease development'"'2. In addition, habitual diets are per definition complex and health effects of
complex diets are therefore possibly easier to translate into health messages. Performing
measurements of dietary intakes and compliance for complex diets is challenging. Few compliance
markers of individual foods are available'® and even the ones that are may not be the best choice for
studying whole diets.

Untargeted metabolomics could likely contribute to understanding how humans respond to a
complex diet'*. By performing simultaneous measures of a high number of metabolites in urine it
may be possible to develop a compliance measure for different dietary patterns that could be used to
identify non-compliant subjects or groups of individuals with certain dietary responses. While some
metabolomics studies have tried to identify urinary markers associated with habitual consumption
of individual foods™ ' '° or characteristic dietary traits in habitual diets such metabolites associated
with diets high or low in meat'” '8 fruit and Vegetableslg, energy percentage from protein20 or
glycemic index’!, few studies have investigated complex dietary patterns. To our knowledge
complex dietary patterns based on habitual dietary data have been investigated in five metabolomics
studies'"” % % %23 of which urine samples were only included in one. Even though these studies
are diverse in the choice of analytical approach a common characteristic is that habitual dietary
patterns seem to be linked to levels of certain metabolites in serum and urine. In the present
study,two well-defined complex dietary patterns, a New Nordic Diet (NND) and an Average Danish
Diet (ADD)*®, have been compared in a six-month parallel intervention study”’. Due to a marked
difference in food composition between the dietary patterns, it is expected that they will be clearly
distinguishable in the urinary metabolome of the subjects. The study therefore provides an excellent
opportunity to study the urinary metabolic response to well-defined dietary patterns consumed as
habitual diets.

In the present work, we have applied untargeted metabolomics to develop a multivariate model,
including the most discriminative urinary metabolites of NND and ADD. This was done in order to
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investigate the value of the model as a compliance measure and to identify how the metabolites in
such a model are related to the dietary patterns.

Materials and methods

Study design

A six months parallel intervention study was conducted with two dietary patterns, an Average
Danish Diet (ADD) and a New Nordic Diet (NND). The diets were defined by macronutrient
composition and intake of fifteen food groups. Target ranges and actual intakes for foods and
macronutrients in the study are given in Table 1. During the study, the participants selected all their
foods free of charge from a small supermarket based at the department of Nutrition, Exercise and
Sports, University of Copenhagen. Dietary intakes were monitored continuously throughout the
study by registering all foods collected by each household. A household consisted of one subject or
a couple who both participated in the study. For each visit to the supermarket, it was ensured that
the participants in a household only brought home foods that were in accordance with the target
ranges for their dietary pattern. Any food bought in other supermarkets or not consumed by
participants also had to be reported in order to achieve a good estimation of dietary intakes during
the whole study period. In addition, 3-day weighed dietary records (WDR) were made at week 0, 12
and 26. For the WDR, participants were requested to report all intakes of food and beverages,
except water, from early morning until late evening. More details on the study can be found in
Poulsen et al. (2013)*".



Table 1. Target ranges and intake data from the supermarket of food groups and macronutrients in the NND and ADD

NND ADD

Target Model set Validation set | Target Model set Validation set
No with household size 40 30 32 26
of one
Macronutrients
[Energy %]
Total protein 15-23 18 (16-21) 18 (17-20) 10-20 17 (15-20) 17 (15-20)
Total carbohydrate (incl. | 48-56 54 (48-58) 55 (50-58) 45-55 51 (47-55) 51 (45-55)
fibre)
Added sugar <10 5(1-10) 5(1-9) >12 12 (8-17) 12 (8-17)
Total fat 25-35 31 (28-35) 30 (28-35) 33-37 35 (31-38) 34 (31-39)
SFA <10 8 (6-11) 8 (6-10) 10-20 14 (11-16) 14 (11-16)
Food groups [g/10MJ]
Total fruit (incl. berries) | 250-350 | 411 (300-554) | 425 (294-567) | 150-250 | 198 (149-297) | 200 (154-263)
Berries 50-100 90 (34-151) 97 (50-191) 2-6 6 (1-13) 7 (2-15)
Total vegetables (incl. | 350-450 | 438 (269-704) | 463 (330-704) | 150-210 | 201 (125-298) | 210 (147-293)
cabbages, root
vegetables and legumes)
Cabbages 25-35 66 (31-127) 68 (36-127) <10 8 (1-24) 7 (1-24)
Root vegetables >150 195 (113-399) | 212 (153-399) | 25-35 18 (4-39) 21 (7-41)
Legumes >30 48 (21-122) 48 (27-108) <1 5(0-10) 6(2-19)
Potatoes 140-160 | 117 (45-260) 123 (67-260) 90-110 76 (30-235) 75 (21-235)
Fresh herbs As much | 11 (3-23) 9(3-19) <1 2 (0-9) 2 (0-9)

as

possible
Wild plants and | 3-7 6 (0-12) 6(1-12) 0 0(0-3) 0(0-1)
mushrooms
Nuts >30 36 (24-46) 35 (24-43) <1 8 (1-18) 9 (1-18)
Wholegrain >75 155 (103-220) | 160 (107-248) | 25-45 44 (26-92) 47 (30-92)
Total meat (incl. game | 90-110 98 (66-179) 101 (66-137) 130-150 | 155(118-207) | 156 (123-247)
meat)
Game meat >4 26 (3-49) 29 (13-49) 0 0 (0-1) 0 (0-1)
Fish and shellfish >43 75 (40-130) 75 (42-152) 15-25 20 (12-41) 21 (12-41)
Seaweed 3-7 1(0-3) 1(0-3) 0 0 (0-0) 0 (0-0)

Mean intakes for food groups (in grams per 10 megajoule) and macronutrients (in energy %) for subjects with a
household size of one, who completed the study and whose samples were used as model and/or validation samples in
the partial least squares discriminant analysis (PLS-DA). Intakes are calculated for the whole study period based on
supermarket data. Minimum and maximum observations are given in brackets. Target intakes in the study are given in
the first columns within NND and ADD.




Twenty-four hour urine samples were collected five times (week 0, 4, 12, 20 and 26). Each urine
collection was from 8 am until 8 am, excluding and including the first void, respectively. Urine was
stored in cooler bags during collection and an aliquot was transferred to -80°C after delivery to the
study unit. An outline of the study is given in Figure 1. The study has been approved by the
Regional Ethics Committee of Greater Copenhagen and Frederiksberg (H-3-2010-058) and the
Danish Data Protection Agency (2007-54-0269).

Intervention
. n Model 0 43 0 43 |
Run-in n Validation 21 10 21 5

Week0  ADD_~"\eek4 Week12  Week20  Week 26

ADD
WDR WDR
WDR 24 urine 24 urine 24 urine 24 urine
24 urine NND
n Model 0 64 0 64

n Validation 21 19 21 21

Figure 1. Outline of the study design with sampling points for 24 h urine samples (24 urine) and 3-day weighed dietary
records (WDR). The numbers of samples used to develop and validate the compliance model (designated Model and
Validation) are given for each sampling point. Boxes at the top and bottom are for the Average Danish Diet (ADD) and
the New Nordic diet (NND), respectively.

Subjects

Subjects recruited were males and females aged 18-65 years with increased waist circumference
(>94 cm for men and >80 cm for women). Participants with additional risk factors of the metabolic
syndrome were preferred but it was not an inclusion criterion in itself. In total, 181 subjects (71 %
women) were randomized in a ratio 3:2 to follow NND or ADD. For the purpose of this study, a
subgroup of 107 subjects (74 % women, 60 % NND) was selected, who had provided a urine
sample and a WDR on the same day at week 0, 12 and 26. The samples from this subgroup (214
urine samples) were used to develop a compliance model. From the rest of the urine samples, 139
samples (63 % women, 59 % NND) were selected at random to validate the model. Forty-five
percent of the validation samples were from the same subjects whose samples had been included to
develop the model but from other time points. The rest of the validation samples were from other
subjects. A WDR was available for 55 samples in the validation set (Figure 1). Baseline
characteristics for the participants are provided in the supporting information Table S1. The
distribution of model and validation samples across the sampling points is given in Figure 1.



UPLC-qTOF analysis

Urine samples were centrifuged, diluted 1:1 with aqueous 5 % 30:70 (v/v) acetonitrile
(ACN):methanol (MeOH) (Optima grade LC-MS, Fisher Scientific, US) and distributed randomly
into 96-well auto-injector trays, keeping all samples from the same subject immediately after each
other within a plate to minimize intra-individual variation. The samples were analysed using an
UPLC-qTOF-MS (Waters, Manchester, UK) fitted with an electrospray ion source and an HSS T3
C18 (Waters, Milford, MA) column and pre-column. Samples were run in positive and negative
ionization mode. The run time per sample was 7 minutes and centroid data was collected from 50 to
1000 m/z. A metabolomics standard solution including 44 different physiologically relevant
compounds™ and a pooled urine sample including all samples on a plate were run four and ten
times, respectively, per plate for quality control purposes. For more experimental details see method
11 in Barri et al. (2012)%.

Data preprocessing and pre-treatment

Raw spectra from the UPLC-qTOF-MS were preprocessed in MZmine2” to obtain a list of
detected features in urine, characterised by a mass to charge ratio (m/z), a retention time (RT) and
an ionisation mode (negative or positive). The batch steps and parameters applied for preprocessing
are listed in the supporting information Table S2. After preprocessing, integrated peak areas for the
detected features were imported to MATLAB® version 7.12.0.635, R2011a (Mathworks Inc.,
Sherborn, MA, US) which was used for the following pre-treatment and statistical analysis of the
data. The obtained features in positive and negative mode, respectively, were normalized across
samples to the same mean sum to correct for urine concentration differences and batch drift. Then,
plate correction was performed to remove analytical variation due to plates. All samples run on the
same plate were adjusted across each feature to obtain the same mean value on each plate. After
normalisation and plate correction, data from negative and positive mode were merged into one data
matrix and baseline data (week 0, Figure 1) were excluded. Features with peak areas above a noise
level of seven which were present in less than five percent of the samples from the dietary groups
NND and ADD were removed as these features are either noise or unrelated to the dietary patterns
of interest. Before the statistical analysis, data was visually explored for outliers in PCA..

Statistical analysis

Development of a PLS-DA compliance model for ADD and NDD based on urine samples.

Partial least squares discriminant analysis (PLS-DA) with feature selection was applied to
develop a compliance measure for ADD and NND based on the most discriminative features
detected in urine. For the development of the model, the pre-treated data matrix from the 214 model
samples were used (Figure 1) and the two dietary patterns were given as class information. Data
was autoscaled and feature selection was made based on variable importance in projection (VIP)
scores’”*! in an iterative procedure as described previously’>. First, 16 initial PLS-DA models were
developed with different subsets of the model samples. For each of the initial models, eight
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randomly chosen subjects (four NND and four ADD) were excluded as test set and the rest of the
samples were used as training set. Cross-validation was applied to determine the number of latent
variables (LVs) in the initial models and the most discriminant features were selected by excluding
features with VIP < 0.8 for both dictary classes.To evaluate the performance of the models after
feature selection, the test set was used . An optimised final PLS-DA compliance model was
developed based on the features selected in all initial models by making 16 new PLS-DA models
which included features present in from one to 16 of the initial models, respectively. Among the
new models, the one with the lowest CV error was chosen as the final model. The relative
importance of the features in the final model was evaluated from the VIP scores and the prediction
strength for dietary pattern of the final model was evaluated by applying the validation samples
(Figure 1). More detailed information on how the PLS-DA model was developed can be found in
the supporting information in the statistical analysis section.

PCA on urine for individual dietary patterns.

To explore how misclassified urine samples among the validation samples in PLS-DA differed
from correctly classified samples within a dietary pattern, two principal component analyses (PCA)
models were made including all NND and ADD urine samples, respectively. The features selected
in the final PLS-DA model were used as variables in the PCA model and data was autoscaled prior
to analysis.

PCA on food intake.

PCA was also applied to investigate the dominant food patterns in NND and ADD. Data from
WDR and from the supermarket were used. However, as supermarket data was recorded per
household, a subgroup of 72 participants with a household size of one was selected for these data
out of the 107 subjects included for development of the PLS-DAcompliance model. From the
WDR, only foods reported on the same days as the subjects collected urine were used. This was
done to have a food recording consistent with the timing of urine sampling, as the participants had
not collected urine on the same day within the three days of WDR in all cases. Foods reported in
WDR and the supermarket data were grouped into comparable categories and for each dataset,
foods recorded less than five times were excluded. Three PCA models were made: One for WDR,
one for the supermarket data (including the 72 participants with a household size of one), and an
additional one for WDR (including the same subset of participants as in the supermarket data). For
all models, data was first normalised row-wise to unit length to exclude variation caused by
differences in amount of food reported between subjects. Then data was autoscaled to give all food
categories equal weight in the analysis. The most explanatory foods for each diet were selected in
each model. For the PCA based on WDR, 55 WDR from the validation set (Figure 1) were
available and these were used to explore if any of the WDR in the validation set had a diverging
food pattern from the WDR of the model samples. More details on the PCA of food intake is
provided in the supporting information.



Identification of features in the PLS-DA compliance model

Identification of the features in urine remaining in the final PLS-DA model is crucial to
understand which urinary metabolites are characteristic of the dietary pattern and how they are
related to the diets. In order to obtain as much information as possible on the features to generate
hypotheses for identification, several steps were performed. The dietary pattern with highest levels
of each feature was determined from the distribution of peak areas of the feature across all samples
to understand which diet the feature characterised. All features were correlated using Pearson’s
correlation coefficient (r = 0.6 was used as cut-off) to identify clusters of features that were likely
related. For example highly correlated features could be from the same compound (in-source
fragments and adducts)or related by other means, such as a shared metabolic pathway. Potential
food sources for the features were investigated by calculating the specificity and sensitivity of each
feature for all self-reported foods on the day of urine sampling extracted from WDR which were
reported more than five times (207 food items). The calculation of sensitivity and specificity is
described in the supporting information and has also been applied previously for another study on
the same dataset™. All food items that reached a sensitivity and specificity above 0.7 for a feature
were taken into account as possible dietary origin of the feature but are only reported here if the
relation to the food source was supported by identification of one or more features.

A few samples that were representative for the features in the model were analysed in full scan
mode on an LTQ Orbitrap Velos™ MS equipped with a BEH Shield RP18 column. The m/z of
each feature was searched for in the resulting chromatograms to obtain a better mass accuracy of the
features which was used to determine the most probable molecular formulas. The parent ion was
identified from in-source fragments and adducts, and additional structural information on the
features was obtained by performing MS/MS fragmentation on relevant ions using LC-qTOF-MS in
product ion scan mode with collision energies of 10, 20 and 30 eV.

All information on the features was used to search a number of chemical and metabolite
databases: The Human Metabolome Database®!, METLIN, MetFusion™. For features with a high
sensitivity and specificity for a food, food databases (The CRC Dictionary of Food compounds®’,
Phenol-explorer’® and KNApSAcK™) and literature were searched for possible precursor
compounds in the foods.

When standards were available, these were analysed to confirm tentative identifications. Four
levels of identification for metabolites are reported®’. For level I, the identification has been
confirmed by an authentic standard, level II identifications are based on a comparison of MS/MS
fragmentation patterns to previously published data. Level III is used when it was possible to
identify the compound class based on similarities to published fragmentation patterns, while level
IV is used for unknown compounds.

Standards analysed: 3,7-dimethyluric acid, indole-3-carboxylic acid, theobromine and
trimethylamine N-oxide, N-methyl-cis-4-hydroxy-L-proline (purchased from Sigma-Aldrich,
Germany), (2-oxo0-2,3-dihydro-1H-indol-3-yl)acetic acid, 7-methyluric acid, 7-methylxanthine,
stachydrine hydrochloride (purchased from Santa cruz, USA), 5-acetylamino-6-amino-3-
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methyluracil, hydrate (purchased from Stratech, UK), Hippuric acid (purchased from Buchem BV,
the Netherlands), Cyclo(-Pro-Val) (purchased from Bachem, Germany), Pyrraline (purchased from
PolyPeptide Group, France).

Synthesized standards analysed: Hydroquinone, 3-indoleacetic acid, limonene-1,2-diol, octanoic
acid, perillic acid and pyrocatechol, all purchased from Sigma-Aldrich, Germany, underwent
enzymatic glucuronidation, as described previously®?, prior to analysis. Pyroglutamyl proline was
synthesized by solid-phase peptide synthesis following the procedure described by Stanstrup et al.
(2013)*.

Results

Development of a PLS-DA compliance model for ADD and NDD based on urine samples

After data preprocessing and pre-treatment a total of 4369 features (2104 and 2265 in positive and
negative mode, respectively) remained and from these the most discriminant features were selected
by PLS-DA analysis. No samples were removed as outliers prior to analysis. The initial 16 PLS-DA
models had an average classification error for cross-validation of 0.04, and an average classification
error for the test sets of 0.13. Nine LVs and 52 features were included on average in the models
(data for the individual models are provided in Table S3). The lowest cross-validated classification
error in the models, obtained from the selected features in the initial models, was 0.033 (Figure S1).
In this final PLS-DA compliance model, 67 features and four LVs were included (Figure S2). In
Figure 2A and B, a score- and a loading plot, respectively, for the first two LVs in the final PLS-DA
model are shown. In the score plot (Figure 2A) the two dietary patterns are separated mainly along
LV 1. When the predictive performance of the final PLS-DA compliance model was tested with the
validation samples, a total of 26 samples corresponding to 19 % were misclassified (23 NND
samples and three ADD samples). The proportion of misclassified samples from subjects whose
samples had been included to develop the model was 35 %. The misclassified NND samples were
from 18 different subjects. Five of the subjects had more than one misclassified sample in the
validation set. Four other NND subjects with more than one sample in the validation set only had
one sample misclassified each. The misclassified ADD samples were from three different subjects.

Identification of features in the PLS-DA compliance model

Six clusters of correlating features were found in WDR of which five had high sensitivities and
specificities to certain foods (chocolate, citrus, limonene, various heat treated foods and fish) . The
feature clusters are highlighted in the loading plot of Figure 2B. Four of the feature clusters
(chocolate, citrus, limonene and the heat treated foods cluster) were related to the ADD diet while
two clusters were related to NND (a fish cluster and an NND cluster which did not have high
sensitivity and specificity for any particular foods in WDR).
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Figure 2. (A) Score plot of latent variable (LV) 1 and 2 for the final PLS-DA model. Urine samples used to develop the
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validation set (‘validation misclass”) are highlighted for both dietary patterns. (B) Loading plot of LV 1 and 2 for the
final PLS-DA model. The features in the loading plot are numbered according their rank in the model based on VIP
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clusters.
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The 67 features in the loading plot corresponded to 52 unique metabolites. Fifteen metabolites
were identified at level I and six metabolites were tentatively identified at level II-III. Detailed
information on the identified and tentatively identified metabolites is given in Table 2, which also
includes all unknown features that were part of the correlated clusters in Figure 2B. Supporting
information on tentatively identified features is provided in Table S4-S14. A list of all remaining
unknown compounds in the PLS-DA is given in Table S15.
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PCA on urine for individual dietary patterns

When the NND samples were investigated in a PCA including the features in the PLS-DA model
as variables, 12 of the 23 misclassified samples were clearly separated from the majority of the
other NND samples along the first principal component (PC) (four samples), and PC 2 (eight
samples) in the score plot. Features in the citrus and, in particular, the limonene cluster had highest
loadings for PC 1, while the chocolate cluster had highest loadings in PC 2 (Figure 3). The
misclassified ADD samples did not diverge from the rest of the ADD samples in PCA (data not
shown).
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Figure 3. (A) Score plot and (B) loading plot for PC 1 and 2 in a PCA including all New Nordic Diet (NND) samples
(model and validation) and the selected features from partial least squares discriminant analysis (PLS-DA).
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PCA on food intake

All dietary registrations including both supermarket data and WDR were grouped into 250 food
categories. This number was reduced to 119 for WDR and 237 for the supermarket data after
removing food categories registered less than five times in each dataset. PCA models of data from
WDR, including the validation set, and for the supermarket data are presented in Figure 4 A and B,
respectively. For both PCA models, the two diets are clearly separated along PC 1 but with a much
more pronounced separation for the supermarket data. For the 55 samples in the validation set
where WDR were available (Figure 1), all WDR were classified to the correct dietary pattern
regardless of the samples being misclassified in the PLS-DA model of urine samples or not. The
WDR from misclassified samples in PLS-DA are highlighted in Figure 4A. There was no trend that
these WDR were generally closer to the ADD pattern than the WDR from other correctly classified
validation samples.

A A ADDmodel @ ADD validation
v NNDmodel @ NND validation
NND validation misclass

150
Sample
B A ADD model
v NND model

Figure 4. (A) Principal component (PC) 1 scores of data from the PCA model of foods reported in WDR. (B) PC 1
scores from the PCA model of reported foods in supermarket data.

The foods in the loading plots that mainly explain the separation between the diets in Figure 4 are
listed in Figure 5. All the explanatory foods were consumed in larger amounts and/or by a higher
percentage of the subjects in the dietary pattern they characterised. The percentage of consumers
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and average amounts reported for the foods are given in the supporting information Table S17-18.
When comparing the most explanatory foods between the models based on WDR and supermarket
data, eleven foods were in common for the ADD diet while only six foods were in common for

NND (Figure 5).

WDR Supermarket data

Chocolate milk
Pepper Avocado

Chocolate

Creme fraiche
Biscuits and cakes

Cheese Tomato
Remoulade Olive oil Rice

Grapes Muesli

Coconut
Liquorice

Beef Cucumber
Tuna

Banana AD D Pasta
Carrot N N D

Wine gum

Orange juice

Pollack

Kale

Rapeseed oil
Swede

Apple Walnut Barley
Gooseberries Apple juice Pointed cabbage
Mustard Sugar Celeriac Game
Hazelnut

Green peas Parsley root Greenland haliby

Vinegar
Beetroot

Honey

Lingonberriy
Parsley

Savoy cabbage

Figure 5. Most explanatory foods for the ADD and NND dietary patterns in PCA (Figure 4). Left circle: Data from
WDR (the results from the model including all samples and the model including samples from subjects represented in
the supermarket data only are merged). Right circle: Data from the supermarket. Foods listed in the overlapping areas of

the circles were explanatory foods in both WDR and supermarket data.

Discussion

Discrimination of ADD and NND dietary patterns in urine

The separation between the diets in the final PLS-DA model demonstrates that the two dietary
patterns are clearly reflected in the urinary metabolome (Figure 2A). The misclassification rate for
the validation samples of 19 % is low, especially when it is considered that it is not possible with
the present study design to distinguish between true lack of compliance, which would be a correct
misclassification, and limitations of the model to capture individual variations within a dietary
pattern. It is an advantage for the evaluation of model performance that a high proportion of the
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total number of samples was used as validation samples and that these samples represent new
subjects and time points. However, inclusion of repeated measures in the validation set from the
same subjects whose samples were used to develop the model has also affected the misclassification
rate. The proportion of samples from subjects whose samples had been included as model samples
was 10 % lower among the misclassified samples compared to the validation set as a whole,
indicating that the model classifies samples from subjects whose samples were included for model
development slightly better. The misclassification rate found is therefore probably underestimated
compared to what would be expected for an independent study population.In another study on urine
fingerprints of habitual diets, the misclassification rate was 32 % for two dietary patterns with
contrasting intakes of nine food groups''. The higher misclassification rate in that study was
probably caused by less well defined diets, use of spot urine samples and lack of variable selection
in the PLS-DA model. In a targeted study applying a similar approach to investigate compliance to
self-reported analgesic use, the rate of underreporting was estimated to be 15-17 % in a cohort of
496 participants from two Western populations*”. It is therefore not unrealistic to have a non-
compliance rate around 19 % even though compliance to a dietary pattern is of course not
necessarily comparable to underreporting of analgesic use.

From the misclassification rates, NND is much more difficult to classify from the urine
fingerprints. The fact that the misclassification error for NND is almost eight times higher than for
ADD is not surprising. It is clear from the loading plot (Figure 2B) that a higher number of features
characterize ADD. Also, the features related to ADD have higher ranks in the model. Since the
available WDR from subjects with misclassified NND samples were all within the correct dietary
pattern (Figure 4A), the metabolites characterising NND in the PLS-DA model, are not completely
representative of the NND related foods in the PCA. However, the metabolites characterising the
misclassified NND subjects in the PCA model of the NND urine samples (Figure 3) also suggest
that these subjects may not have been fully compliant to NND. Citrus, soft drinks and wine gums,
the main food sources related to limonene metabolites, as well as chocolate were not part of NND
and should be limited as much as possible in this diet. When inspecting WDR separately, for
subjects with misclassified NND samples, only one of the seven NND subjects with high loadings
for chocolate related markers in PCA and WDR available had reported intake of chocolate on the
day of urine sampling. For the four misclassified NND samples with high loadings for citrus and
limonene, none of the three subjects for which WDR were available, reported intake of soft drinks,
wine gums or citrus fruits on the day of urine sampling. This observation indicates that the dietary
reporting from the misclassified NND subjects is not completely reliable, which would be expected
since the NND diet is more demanding to follow than the ADD. However, theobromine and
limonene metabolites are not fully excreted within 24 h*>* and the subjects could therefore have
consumed large amounts of chocolate or limonene containing products on the day before the urine
collection and still have considerable levels of these metabolites in urine the following day. In
addition, chocolate metabolites can be produced from caffeine and consumption of other products
that do not contain cocoa, such as coffee and tea®, may therefore also contribute to the high levels
of theobromine metabolites found in urine of some subjects. Since the model is based on patterns of
urinary metabolites, the misclassified validation samples cannot be explained fully from individual
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metabolites. There are also examples of NND subjects reporting soft drink and chocolate
consumption without having their samples misclassified in the PLS-DA model. More frequent
sampling could be a solution to better distinguish the true non-compliant NND subjects and
understand why they are misclassified. It is more likely that the subjects who had all their samples
misclassified have been non-compliant than subjects with both correctly classified and misclassified
samples. However, they may also have individual metabotypes that were not integrated into the
model because these individuals had no samples included in the model samples.

Metabolites in the PLS-DA model characterising the ADD diet

The identified features characterising the ADD diet were mainly from four clusters of correlating
features (heat treated foods, chocolate, citrus and limonene, Figure 2B). In addition, four
metabolites that did not have high sensitivity or specificity for any individual foods were identified:
3-indoleacetyl-glucuronide, octanoyl-glucuronide, pGlu-Pro and cyclo-Pro-Val. The first three of
these metabolites were generally found in higher levels for ADD, while cyclo-Pro-Val did not have
a clear trend for any diet and therefore probably is part of a multivariate pattern together with other
ADD features. The finding of two modified dipeptides as markers of ADD may reflect the protein
sources in the diet which were primarily of animal origin (Table 1). The amino acids proline, valine
and glutamic acid are all found in high levels in animal protein compared to proteins from fruits and
vegetables*® and a high concentration of pyroglutamyl (bound and unbound) have been found in
cheese”’. Cyclic dipeptides are typically formed during heat treatment and cyclo-Pro-Val have been
identified in various food products such as coffee and cacao™® *. Neither cyclo-Pro-Val nor pGlu-
Pro has to our knowledge been found as dietary markers in urine before. 3-indoleacetyl-glucuronide
is a microbial tryptophan metabolite which has previously been reported to be present in urine of
healthy subjects™. The tryptophan content is high in animal protein*® and the finding of 3-
indoleacetyl-glucuronide may therefore also reflect differences in the protein sources between the
diets. Octanoyl-glucuronide has previously been reported in urine from children on a diet high in
medium chain fatty acid triglycerides’'. Main dietary sources of medium chain fatty acids are dairy
products, coconut and palm kernel oil, which is accordant with coconut and cheese being among the
common explanatory foods for ADD in Figure 5.

The heat treated foods cluster. Five features from four different metabolites, of which one was
identified as pyrraline, were moderately correlated (r = 0.6-0.75) and had high sensitivity and
specificity for a diverse group of heat treated foods, mainly digestive biscuits, cornflakes and roast
beef. Pyrraline belongs to the group of advanced glycation end-products (AGEs) which are formed
as end products following heat treatment in a series of reactions between amino acid moieties and
reducing sugars, commonly known as Maillard reactions or non-enzymatic browning™>. It has been
demonstrated in two studies that pyrraline excretion in urine decreases when subjects are put on a
pyrraline restricted diet™ **. In the same studies, it was concluded that urinary pyrraline is mainly of
dietary origin and that the excretion of dietary pyrraline is almost complete. Since the ADD diet
contains more heat-treated processed foods, this may explain why pyrraline is a marker of ADD.
Two of the other compounds in the cluster are probably isomers of a pyrraline derivative, as they
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shared several m/z fragments with pyrraline in both negative and positive ionization modes (Table
S9-10). Another compound from the cluster was a glucuronide conjugated product. This compound
may be generated from deoxyglucosulose, an intermediate in the Maillard reaction, by dehydration.
Three candidate structures formed from 1-deoxyglucosulose have been identified in model systems
that would match the molecular formula: 2,4-dihydroxy-2,5-dimethylfuran-3(2H )-one, 4-hydroxy-
2-(hydroxymethyl)-5-methylfuran-3(2H )-one and 3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-
4-one™ °®. Unfortunately, standards were not available to further elucidate if any of these were
correct. The last compound in the cluster could not be identified.

The chocolate cluster. Chocolate was only allowed in ADD and in line with this, six correlating
features (r>0.7) with high sensitivity and specificity for chocolate in WDR were markers of the
ADD diet. The metabolites identified in the chocolate cluster: theobromine, 7-methyluric acid, 3,7-
dimethyluric acid, 7-methylxanthine and 6-amino-5-[ N-methylformylamino]-1- methyluracil, have
all been reported in a previous metabolomics study on cocoa powder”.

The citrus and limonene clusters. The limonene cluster consisted of seventeen correlated features
(r>0.7) from seven unique metabolites. When carrying out the sensitivity and specificity analysis
for foods, the cluster was related to intake of orange juice, wine gums and soft drinks in WDR.
Accordant with this, limonene is naturally present in citrus oils and is also used widely in the food
industry as an additive to various foods such as sweets and beverages’’. The three features in the
citrus cluster only had high sensitivity and specificity for citrus. They were highly correlated (r ~
0.9) and have all been found as markers of habitual citrus intake previously”.

Intake of citrus was only allowed in ADD and the consumption of sweets and soft drinks was
higher in ADD. It therefore makes sense that both limonene and citrus metabolites characterize the
ADD diet. One of the citrus metabolites was identified with a standard as proline betaine. The other
two citrus metabolites may be metabolites of proline betaine due to the strong correlation. It has
been demonstrated that they, as opposed to proline betaine, are not present in orange juice™. The
likely identity of the compound with m/z 146.083 as N-methyl-cis-4-hydroxy-L-proline, was ruled
out by analysing the standard.

The metabolism of limonene has been investigated in humans in several studies and the limonene
metabolites identified at level I and II in the present study (glucuronides of limonene-1,2-diol,
limonene-8,9-diol and perillic acid) are well-known™" ** *_ The rest of the limonene metabolites
were tentatively identified as glucuronides of perillic acid-8,9-diol, dihydroperillic acid and p-
menth-1-ene-6,8,9-triol which have all been reported previously* ** . In general, the
fragmentation in negative mode, where the limonene metabolites were most intense, revealed no
characteristic structural features, except from the glucuronide moiety. In positive mode, only
perillic acid-8,9-glucuronide and limonene-8,9-diol-glucuronide were intense enough for MS/MS
fragmentation and the obtained fragments supported the identification for these compounds. A
complete list of MS/MS fragments for the tentatively identified limonene metabolites is given in the
Table S4-S8. Limonene-8,9-diol has been found as a marker of citrus consumption in a previous
metabolomics study’. However, the clustering of the limonene metabolites away from the citrus

20



metabolites in Figure 2B, suggests that use of limonene metabolites as markers of citrus
consumption are biased by other limonene containing foods, possibly citrus-flavoured sweets and
soft drinks.

Metabolites in the PLS-DA model characterising the NND diet

Markers identified at level I-III of the NND diet were: Trimethylamine N-oxide, hippuric acid,
hydroquinone-glucuronide, (2-0x0-2,3-dihydro-1H-indol-3-yl)acetic acid 3,4,5,6-
tetrahydrohippurate (Table S12). Trimethylamine N-oxide is present in fish and has been
demonstrated to be a urinary marker of fish intake in several studies’” . In the present study,
trimethylamine N-oxide reflects the high fish intake in NND compared to ADD (Table S1). Several
fish species were among the foods characteristic for NND (Figure 5) and the sensitivity and
specificity of this NND marker for fish intake reported in WDR was high. Hippuric acid is a well-
known microbial metabolite of various polyphenols in the diet' . The finding of hippuric acid as a
marker of NND therefore reflects a diet high in plant foods rather than intake of any individual
foods. Another microbial metabolite, 3,4,5,6-tetrahydrohippurate, has been found in rats following
intraperitoneal injection of shikimate®. Shikimate is ubiquitously present in plants® and may also
be a general marker of fruit and vegetable intake even though it, to our knowledge, has not been
reported in human studies before. Arbutin, a hydroquinone glycoside, is present in various foods,
particularly wheat and pear®’. A previous study has demonstrated that urinary excretion of
hydroquinone-glucuronide increases following a meal high in arbutin®. In the present study, intake
of whole wheat was higher in NND. However, since the arbutin content of foods is not well studied,
there may be other dietary sources as well, explaining why hydroquinone-glucuronide is a marker
of NND. The last identified NND marker, (2-0x0-2,3-dihydro-1H-indol-3-yl)acetic acid was not
related to intake of any particular foods and to our knowledge this is the first time the compound is
reported as a urinary metabolite. According to the CRC dictionary of food compounds, it has been
isolated from redcurrants, sunflower and Brassica spp. which would be in line with the NND. Three
other correlated unidentified NND markers (the NND cluster in Figure 2B) were not related to
intake of any individual food. Two of the compounds in this cluster may be a sulphate and a
glucuronide conjugate of the same compound since the molecular formula was the same for the
unconjugated form (m/z 242.011 and m/z 340.103 in Table 2). Indole-3-carboxylic acid was
analysed as a possible match for the marker with m/z 336.072 but was not correct.

The dietary fingerprint in urine

Based on the identified urinary metabolites, it seems that the ADD diet is better reflected in urine.
A higher number of metabolites from ADD are found and the ADD metabolites are both specific to
individual foods, that are only allowed in the ADD diet, and representing more general features of
the diet such as higher intakes of animal protein and heat-treated foods. For the NND diet, the
metabolites found are mainly reflecting a high intake of fish, fruit and vegetables. The reason why
fewer markers are found for NND is probably that NND is a seasonal diet®. This also explains why
much fewer foods are in common for NND in PCA when comparing WDR and supermarket data in
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Figure 5. The subjects initiated the study during autumn and winter and the sampling points were
mainly placed in winter and spring. Since the sampling points included in the model therefore
represent two seasons for the NND, the chance of finding markers of seasonal foods is lower than
for foods available all year round. It might have been advantageous to subdivide the NND samples
according to season to investigate if markers of more NND foods would then have been found. For
example, a separate analysison short-term exposure markers in the same dataset revealed markers of
cabbage and beetroot (autumn and winter foods in NND) that are not present in the PLS-DA
model®. Low meat or vegetarian diets in comparison to diets high in meat have been investigated in
several other metabolomics studies. For these studies, some features are commonly found as
markers such as hippuric acid, creatine and trimethylamine N-oxide'" ' ' '8 1% 32 while other
metabolites seem to be more specific markers for certain diets. This suggests that it is possible to
identify urinary metabolites of very general dietary traits as well as metabolites that are specific for
more strictly defined dietary patterns like ADD and NND. It remains to be investigated how
specific a compliance measure is, like the one developed in the present study. It would be
interesting to see how a selection of samples from outside the study population would have been
situated in the PLS-DA model and if a removal of samples from suspected non-compliant subjects
in the dietary intervention can actually strengthen the study outcome. For the present study, more
frequent sampling would have been required to obtain clearer indications of which NND subjects
have been non-compliant or have an unusual metabolic phenotype. Even though some of the
subjects with misclassified NND samples responded less to the dietary intervention, it could not be
justified to remove any subjects based solely on the observations of compliance in PLS-DA.

There is no doubt that untargeted metabolomics can be used to strengthen the available range of
compliance measures. At the same time, however, identification remains a major obstacle in
untargeted metabolomics®. For the present PLS-DA model, only a few features seemed to be
chance findings but due to the difficulties in identification, many potentially interesting features
remain unknown and the impact of those cannot be assessed. The compliance model is therefore not
fully transparent. Despite this, the low misclassification rate of the model and the clear association
between the identified metabolites and the dietary patterns demonstrate the high potential in
applying multivariate measures to estimate compliance in nutrition studies. The findings need to be
followed up with a targeted analysis of the metabolites in the model. The accuracy of the
measurements in the untargeted analysis is low and an even stronger compliance measure, possibly
including fewer metabolites, could probably be obtained if the metabolites in the model were
quantitated and the model further developed. It is also possible to apply a quantitative model in a
broader context for validation, whereas this cannot be done easily in untargeted metabolomics due
to the dependency on preprocessing and pretreatment in a new set of samples for detection and
quantification of features.

Conclusion

This study is, to our knowledge, the first to explore the potential of using a metabolomics
approach to estimate compliance to a dietary pattern. From 4369 features detected in urine, a PLS-
DA model was developed and optimised for which a misclassification rate for two dietary patterns
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in a validation set with 139 samples was only 19 % based on 67 selected features in urine. The
metabolites in the PLS-DA model cover both general dietary traits such as animal compared to
vegetable protein and more specific traits of a dietary pattern such as intake of fish, citrus fruits or
cocoa containing products. The study demonstrates that untargeted metabolomics can be used to
discover which metabolites are the strongest predictors of compliance to complex diets. Discovery
of such metabolites should be followed up by quantitative measurements to further optimise and
validate the model. Eventually, development of multivariate compliance measures may lead to a
better understanding of the outcomes of dietary intervention studies.
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Table S1. Baseline characteristics for subjects

NND ADD

Model Validation Model Validation
No. of subjects 64 55 43 39
Age 44.0 (13.3) 43.7 (12.8) 41.2(13.2) 40.2 (14.1)
Sex 16 M, 48 F 21 M, 34F 12M,31F 11M,29F
BMI [kg/m?’] 29.9 (4.5) 31.1(5.2) 29.4 (4.6) 31.0 (6.0)
Waist circumference [cm] 99.2 (11.6) 101.8 (13.1) 98.9 (13.3) 101.5 (14.5)
No. with household size of one 40 33 32 27

(30 completers) (26 completers)

NND: New Nordic Diet; ADD: Average Danish Diet. Model and Validation are groups of subjects whose samples were

used for the model and validation set, respectively, in the compliance model.
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Table S2. Batch steps and parameters used for preprocessing of raw data in MZmine2.7.

Batch step

Parameters

Negative mode

Raw data import

Mass detection

Noise level: 15

Chromatogram builder

Min time span (min): 0.01;
Min height: 4.0E1; m/z tolerance: 0.055 mz or 30 ppm

Chromatogram deconvolution

Chromatographic threshold: 95%; Search minimum in RT
range (min): 0.01; Minimum relative height: 10%;
Minimum absolute height: 4.0E1; Min ratio of peak/top
edge: 1.3; Peak duration range (min): 0.01-0.2

Isotopic pattern

m/z tolerance: 0.06 or 30 ppm; Retention time tolerance:
0.01; Monotonic shape; maximum charge: 1

Join aligner

m/z tolerance: 0.06 or 30 ppm; Absolute retention time
tolerance: 0.15; Weight for both m/z tolerance and
retention time tolerance: 10

Duplicate peak filter

m/z tolerance: 0.5 or 600 ppm; RT tolerance: 0.15

Peak list rows filter

Min peaks in a row: 5
Minimum peaks in an isotope pattern: 1; m/z range: 50-
1000; RT range: 0-7; peak duration range: 0.01-0.2

Peak finder

Intensity tolerance: 50%; m/z tolerance: 0.06 or 30 ppm;
Absolute retention time tolerance: 0.15

Export to csv

Positive mode

Raw data import

Mass detection

Noise level: 15

Chromatogram builder

Min time span (min): 0.01;
Min height: 4.0E1; m/z tolerance: 0.055 mz or 30 ppm

Chromatogram deconvolution

Chromatographic threshold: 97%; Search minimum in RT
range (min): 0.01; Minimum relative height: 10%;
Minimum absolute height: 6.0E1l; Min ratio of peak/top
edge: 1.5; Peak duration range (min): 0.01-0.2

Isotopic pattern

m/z tolerance: 0.06 or 30 ppm; Retention time tolerance:
0.01; Monotonic shape; maximum charge: 1

Join aligner

m/z tolerance: 0.06 or 30 ppm; Absolute retention time
tolerance: 0.15; Weight for both m/z tolerance and
retention time tolerance: 10

Duplicate peak filter

m/z tolerance: 0.5 or 600 ppm; RT tolerance: 0.15

Peak list rows filter

Min peaks in a row: 5
Minimum peaks in an isotope pattern: 1; m/z range: 50-
1000; RT range: 0-7; peak duration range: 0.01-0.2

Peak finder

Intensity tolerance: 50%; m/z tolerance: 0.06 or 30 ppm;
Absolute retention time tolerance: 0.17

Export to csv
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Statistical analyses
Development of the PLS-DA model
Each of the sixteen initial models was made as follows:

1) Samples from eight randomly chosen subjects, four from NND and four from ADD, were
excluded as test set. The subjects were chosen in a way where each subject would be
removed as test set in at least two of the sixteen models.

2) A model was built and cross-validated by leaving out data from one person at a time.

All features in the model with variable importance in projection (VIP) scores*>?® below 0.8
for both groups were removed.

3) A new model was build and cross-validated based on the remaining features. Again, features
with VIP scores below 0.8 were removed and this step was repeated until all remaining
features had VIP scores above 0.8.

4) The reduced model was validated by applying the test set of excluded samples from 1).

In order to select the most discriminative features across the sixteen initial PLS-DA models, sixteen
new PLS-DA models were made including features that were present in from one to 16 of the initial
PLS-DA models, respectively. The new models were cross-validated and the model with the lowest
cross-validated error was chosen. From this model, the number of LVs to include in the final PLS-
DA model was decided on as a trade-off between low CV error and a low number of LVs.

PCA on food intake

The most discriminant foods were selected in PCA as follows for the three datasets (WDR,
Supermarket data and WDR with the same subset of samples as used for the supermarket data):

1) 20 % of the samples (or subjects for the supermarket data) from each diet were selected at
random and excluded from the dataset.

2) A PCA was performed with the rest of the data, applying cross-validation (nine iterations,
from which random subsets of 10 % of the samples were excluded from each).

3) The twenty most extreme loadings in each direction of PC 1 were selected (PC 1 was
completely separating the diets in all models)

4) Step 1-3 was repeated five times until all samples (or subjects) had been excluded once.

Foods selected in at least four out of five PCA models for a dataset were considered the strongest
discriminants.

Identification

The calculation of sensitivity and specificity was done in an iterative fashion. First, the obtained
peak areas of a feature for all 214 samples were sorted from the highest to the lowest value. Then
the sensitivity and specificity for each food item, as reported in WDR, was calculated (see equation
I and II below) applying the peak area from the 5™ lowest sample as threshold for positive detection
in urine. The threshold for positive detection in urine was then changed to include two more
samples (7" lowest peak area) and the sensitivity and specificity for each food item was calculated
again. This was continued, including two more urine samples per time, until 157 samples were
included, which corresponds to the maximum number of samples for which it is possible to reach a
sensitivity of 0.7. All food items that reached a sensitivity and specificity above 0.7 for a feature
were taken into account as possible dietary origin of the feature.
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NFood>Th

NEood>ThtNFood<Th
Nsamples "NOther>Th ~NFood>Th " NFood<Th

I) Sensitivity =

H) SpeCIﬁClty - Nsamples ~NFood<Th ~NFood>Th
NFeod>Th aNd Npeed<th: Number of samples above and below the threshold, respectively, where the
food had been reported on the day of urine sampling according to WDR.
Nother>Th: Number of samples above the threshold, where the food had not been reported on the day
of urine sampling according to WDR.
Ngamples: T0tal number of samples, excluding week 0 (214).
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Table S3. Model parameters for the 16 initial PLD-DA models

Model no. No. of LVs CV error Test set error Number of features
1 9 0.06 0.13 43
2 7 0.05 0.06 52
3 10 0.07 0.31 46
4 10 0.05 0.19 41
5 8 0.05 0.19 41
6 10 0.03 0.19 64
7 10 0.03 0.31 45
8 7 0.03 0 60
9 10 0.04 0.06 49
10 10 0.03 0.13 63
11 10 0.04 0 54
12 9 0.05 0.06 57
13 10 0.05 0.13 63
14 10 0.04 0 43
15 5 0.04 0.25 48
16 7 0.05 0.13 65
Average 9 0.04 0.13 52

LV: Latent variables; CV error: Classification error for cross-validation; Test set error: Classification error for test set.
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Number of initial models including the feature

Figure S1. Cross-validation classification errors (CV error) for all partial least squares discriminant analysis (PLS-DA)
models including features present in 1-16 of the initial models. The PLS-DA model with the lowest value (0.033) was
used as the final model to predict New Nordic Diet (NND) and Average Danish Diet (ADD) dietary patterns.
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Figure S2 CV error as a function of the number of LVs for the PLS-DA model with the lowest CV error in Figure S2.
Four LVs were chosen for this model.
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Table S4. Tentative identification: Limonene-8,9-diol-glucuronide (C16H2608)

HO O—\ :
HO O HO

RT 3.62, [M-H] = 345.154, [M+H]" =347.179

The fragments included in the table are all clear fragments found regardless of the fragmentation energy (10 eV, 20 eV

Fragment Annotation (ESI+) Loss

347.170" C16H2708

329.156" C16H2507 -H20

311.1487 C16H2306 -2H20

293.136" C16H2105 -3H20

283.157 C15H2305 -2H20, -CO
275.126 C16H1904 -4H20

265.145 C15H2104 -3H20, -CO
247.136 C15H1903 -4H20, -CO
231.139 C15H1902 -4H20,-CO2
199.075 C13H1102

177.040° C6H906

171.137 C10H1902 -C6HBO6
165.129 C11H170

159.029™ C6H705

153.128" C10H170 -C6HBO6, -H20
141.018 C6H504

135.117" C10H15 -C6HB806, -2H20
113.021 C5H503

107.086 C8HI11 -C6HBO6, -2H20, -C2H4
95.085 C7HI11 -C6HB8O06, -2H20, -C3H4
93.069 C7H9 -C6HBO06, -2H20, -C3H6
Fragment Annotation (ESI-) Loss

345.155 C16H2508

327.143 C16H2307 -H20

285.133 C14H2106 -C2H402
269.142 C14H2105 -C2H403
175.024* C6H706

169.128 C10H1702 -C6HBO6
157.012*% C6H505

129.020* C5H504

131.034* C5H704

or 30 eV). Masses marked with (**) corresponds to MSMS fragments reported in Poon et al.' for [M+Na]".
m/z fragments marked with (*) are from the glucuronide moiety

1) Poon, G.K., Vigushin, D., Griggs, L.J., Rowlands, M.G., Coombers, R.C. and Jarman, M., 1996. Identification

and characterization of limonene metabolites in patients with advanced cancer by liquid chromatography/mass
spectrometry. Drug metabolism and disposition: the biological fate of chemicals, 24, 565.
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Table S5. Tentative identification: Perillic acid-8,9-diol-glucuronide (C16H24010)
RT 2.89, [M-H] = 375.128, [M+NH4]'=394.171 0

OH

0. 0.
[¢]
OH
HO OH
OH
Fragment Annotation (ESI+) Loss
394.170 C16H28010N
359.136 C16H2309 -NH3, -H20
341.121 C16H2108 -NH3, -2H20
323.113 C16H1907 -NH3, -3H20
183.100 CI0H1503 -NH3,- C6H806,-H20
165.091 CI0H1302 -NH3,- C6H806,-2H20
159.029* C6H705
141.018* C6H504
137.095 C9H130 -NH3,- C6H806, -2H20,-CO
113.021* C5H503
109.100 C8H13 -NH3,- C6H806, -2H20,-2CO
107.049 C7H70 -NH3,- C6H806, -H20, -C3H802
85.027* C4H502
79.053 C6H7 -NH3,- C6H806, -H20, -C3H802,-CO
Fragment Annotation (ESI-) Loss
375.129 C16H23010
357.118 C16H2109 -H20
331.140 C15H2308 -CO2
315.109 C14H1908 -C2H402
199.096 CI0H1504 -C6H806
181.089 CI10H1303 -C6H806, -H20
175.022* C6H706
157.011* C6H505
129.018* C5H504
125.060 C7H902 -C6H806, -C3H602
113.024* C5H503
99.008* C4H303
95.015* C5H302
87.009* C3H303
85.029* C4H502
75.008* C2H303
73.029* C3H502
71.013* C3H302
59.015* C2H302

The fragments included in the table are all clear fragments found regardless of the fragmentation energy (10 eV, 20 eV
or 30 eV). m/z fragments marked with (*) are from the glucuronide moiety
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Table S6. Tentative identification: Dihydroperillic acid-glucuronide (C16H2408)

RT 3.83, [M-H] = 343.135

HO

OH

OH

Fragment Annotation (ESI-) Loss
343.139 C16H2308

325.123 C16H2107 -H20
263.128 CI5H1904 -2H20, -CO2
193.038* C6H907

181.121 CI11H1702 -H20,-CO,-2C2H202
175.025* C6H706

167.105 CI0H1502 -C6HB806
157.014* C6H505

133.014* C4H505

113.023* C5H503

103.007* C3H304

99.008* C4H303

95.013* C5H302

89.024* C3H503

85.029* C4H502

75.009* C2H303

72.993* C3H502

71.014* C3H302

59.014 C2H302

The fragments included in the table are all clear fragments found regardless of the fragmentation energy (10 eV, 20 eV
or 30 eV). m/z fragments marked with (*) are from the glucuronide moiety
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Table S7. Tentative identification: p-menth-1-ene-6,8,9-triol-glucuronide (C16H2609)

RT 2.91, [M-H] = 361.147

OH OH
o HO
o
HO
HO OH
Fragment Annotation (ESI-) Loss
361.149 C16H2509
301.135 C14H2107 -C2H402
113.026* C5H503
99.009* C4H303
87.009* C3H303
85.029* C4H502
75.009* C2H303
71.014* C3H302

The fragments included in the table are all clear fragments found regardless of the fragmentation energy (10 eV, 20 eV
or 30 eV). m/z fragments marked with (*) are from the glucuronide moiety

Table S8. Unknown-glucuronide (C16H26010)

RT 2.41, [M-H] =377.143

Fragment Annotation (ESI-) Loss
377.144 C16H25010

201.112 CI0H1704 -C6H806
193.034* C6H907

183.104 CI0H1503 -C6HB06, -H20
175.024* C6H706

113.024* C5H503

103.004* C3H304

99.008* C4H303

95.014* C5H302

85.028* C4H502

75.010* C2H303

73.012* C3H502

71.014* C3H302

The fragments included in the table are all clear fragments found regardless of the fragmentation energy (10 eV, 20 eV
or 30 eV). m/z fragments marked with (*) are from the glucuronide moiety
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Table S9. Unknown pyrraline derivative (C14H20N205)
RT 3.39, [M-H] =295.128

Fragment Annotation (ESI-) Loss

295.128 C14H19N205

253.119* CI12H17N204 -C2H20

223.109%* C11H15N203 -C2H20, -CH20

124.039* C6H6NO2 -C2H20,-C6H11NO2

94.029* C5H4NO -C2H20,-C6H11NO2,-CH20

Fragment Annotation (ESI+) Loss

297.146 CI14H21N205

279.134 CI14H19N204 -H20

237.135% C12H17N203 -H20, -C2H20

219.112%* CI2H15N202 -2H20, -C2H20

175.125* CI1HI5N2 -H20, -C2H20, -CO2

148.111* CI10H14N -H20, -C2H20, -CO2,-CHN

122.057 C7H8NO

84.081* C5H10N -H20, -CH20,-2CO, -C2H20,-NH3,
-C4H2

82.063* C5H8N -H20, -CH20,-2CO, -C2H20,-NH3,
-C4H2

The fragments included in the table are all clear fragments found regardless of the fragmentation energy (10 eV, 20 eV
or 30 eV). Fragments marked with a (*) were also found for the pyrraline standard

Table S10. Unknown pyrraline derivative (C14H20N205)
RT 3.46, [M-H]" =297.145

Fragment Annotation (ESI+) Loss

297.144 C14H21N205

279.133 CI14H19N204 -H20

255.139%* CI12H19N204 -C2H20

251.142 CI13H19N203 -H20, -CO

239.139 CI2H19N203 -CO, -CH20

209.130 CI11H17N202 -H20, -CO, -C2H20

197.126 C10H17N202 -CO, -CH20, -C2H20

192.102 C11H14NO2 -H20, -CO, -C2H20,-NH3

146.097* CI10H12N -2H20, -2C0O, -C2H20,-NH3

134.096* C9H12N -H20, -CH20,-2CO, -
C2H20,-NH3

84.080* C5HI10N -H20, -CH20,-2CO, -
C2H20,-NH3, -C4H2

Fragment Annotation (ESI-) Loss

295.129 CI14H19N205

253.124* C12H17N204 -C2H20

124.039* C6H6NO2 -C2H20,-C6H11NO2

66.034* C4H4AN -C2H20,-C6H11NO2,-2CHO

The fragments included in the table are all clear fragments found regardless of the fragmentation energy (10 eV, 20 eV
or 30 eV). Fragments marked with a (*) were also found for the pyrraline standard
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Table S11. Unknown glucuronide (C12H16010)
RT 1.03, [M-H] = 319.066

Fragment Annotation (ESI-) Loss
319.067 CI2H15010

301.055 C12H1309 -H20
277.061 C10H1309

193.035* C6H907

175.024* C6H706

143.033 C6H704 -C6H806
113.024* C5H503

103.001* C3H304

101.024 C4H503 -C6H806, -C2H20
99.009%* C4H303

95.012* C5H302

Fragment Annotation (ESI+) Loss
321.082 C12H17010

145.051 C6H904 -C6H806
132.100 C6H1203

The fragments included in the table are all clear fragments found regardless of the fragmentation energy (10 eV, 20 eV
or 30 eV). m/z fragments marked with (*) are from the glucuronide moiety
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Table S12. Tentative identification: 3,4,5,6-tetrahydrohippurate (COH14NO3)

RT 4.46, [M-H]" =184.098

(0]

(0]
N H/Y

OH

Fragment Annotation (ESI+) Loss

184.098 C9H14NO3

109.063* C7H90 -glycine (C2H5NO2)
81.070* C6H9 -glycine, -CO
79.054* C6H7 -glycine, -HCO
Fragment Annotation (ESI-) Loss

182.082 CY9H12NO3

138.089 C8H12NO -CO2

136.077 C8H10NO -HCOOH

74.023 C2H4NO2

The fragments included in the table are all clear fragments found regardless of the fragmentation energy (10 eV, 20 eV

or 30 eV). m/z with (*) were also reported in Brewster et al.!

1) Brewster, D., Jones, R.S. and Parke, D.V., 1977. The metabolism of cyclohexanecarboxylate in the rat. The

Biochemical journal, 164, 595.
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Table S13. Unknown glucuronide
RT 2.65, [M-H]" =340.103

Fragment Annotation (ESI+) Loss

340.102 C15H18NO8

229.067 C10H1306 -C5H5NO2
206.081 C11H12NO3 -C4H605
188.072 C11HI0NO2 - C4H605, -H20
164.070 C9H10NO2 -C6H806
146.059 C9H8NO -C6H806, -H20
141.018 C6H504*

122.059 C7H8NO -C6H806,-C2H20
113.023 C5H503*

110.059 C6H8NO -C6H806,-C3H20
101.026 C4H503*

95.008 C5H302

85.028 C4H502*

73.030 C3H502

Fragment Annotation (ESI-) Loss

338.089 C15H16NO8

320.079 C15H14NO7 -H20

175.023 C6H706*

162.055 CI9HENO2 -C6H806
157.015 C6H505*

129.020 C5H504*

120.046 C7H6NO -C6H806,-C2H20
117.018 C4H504*

113.024 C5H503*

103.004 C3H304*

99.009 C4H303*

95.014 CS5H302*

89.022 C3H503*

87.009 C3H303*

85.029 C4H502*

75.009 C2H303*

71.014 C3H302*

59.015 C2H302*

The fragments included in the table are all clear fragments found regardless of the fragmentation energy (10 eV, 20 eV
or 30 eV). m/z fragments marked with (*) are from the glucuronide moiety
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Table S14. Unknown glucuronide
RT 2.41, [M-H] = 336.072

Fragment Annotation (ESI-) Loss

336.073 C15H14NO8

175.025 C6H706*

160.039 CI9H6NO2 -C6H806

113.024 C5H503*

99.008 C4H303*

95.013 C5H302*

85.028 C4H502*

Fragment Annotation (ESI+) Loss

338.087 C15H16NO8

162.054 C9HENO2 -C6H806

144.045 CI9H6NO -C6H806,-H20
120.042 C7H6NO -C6H806,-C2H20
116.055 C8HON -C6H806, -H20,-CO

The fragments included in the table are all clear fragments found regardless of the fragmentation energy (10 eV, 20 eV
or 30 eV). m/z fragments marked with (*) are from the glucuronide moiety
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Table S17. Percentage of consumers and average amount of consumption for the most discriminant

foods for ADD (Fig. 4)

Supermarket data

Dietary records

No ADD No NND No ADD No NND
ADD | amount | NND | amount ADD amount | NND | amount
(%l | fgl | (%l | gl | 1%l | lgl | (%l | g
Common ADD
Avocado 91 2616 23 121 15 91 0
Pepper 100 4072 30 53 20 58 0
Chocolate 100 2933 85 500 58 43 7 67
Tomato 100 10964 58 252 52 124 3 34
Olive oil 97 1203 10 47 28 14 0 0
Muesli 97 1990 3 1562 33 34 4 69
Tuna 100 908 25 102 7 94 0 0
Pasta 100 2688 25 298 19 125 2 115
Cucumber 100 2516 83 571 28 41 6 28
Beef 100 9332 100 1390 40 139 13 74
Banana 97 6882 23 244 15 146 1 100
Dietary records ADD
Chocolate milk 94 4529 28 4212 16 265 0 0
Creme fraiche 94 1964 90 516 13 50 4 36
Cheese 100 7053 100 3698 74 40 48 26
Remoulade 72 415 25 56 10 16 2 5
Grapes 94 2535 25 207 10 87 0 0
Wine gum 94 616 25 185 19 39 0
Orange juice 88 4552 35 1599 12 259 1 400
Supermarket data ADD
Pork 100 11273 100 3983 51 106 31 123
Biscuits and cakes 97 3735 100 556 22 64 9 68
Rice 97 2444 28 208 13 95 120
Coconut (milk and flour) 88 732 10 106 - - - -
Liquorice 97 1579 85 410 16 24 4 31

ADD: Average Danish Diet; NND: New Nordic Diet; No: Percentage of times the food was reported within a dietary
group. Amounts for supermarket data are given as the average consumption over 6 months for all consumers within a
dietary group who reported the food at least once. Amounts for dietary records are given as the average consumption
reported per day for the dietary records where the food was reported within a dietary group. Common ADD foods were
discriminant foods in supermarket data and in the dietary records. Dietary records ADD and supermarket data ADD,
where only among the most discriminant in the dietary records and the supermarket data, respectively (Figure 5).
Numbers in bold are the diet and data source where the foods were found to be discriminant.
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Table S18. Percentage of consumers and average amount of consumption of the most discriminant
foods for NND

Supermarket data Dietary records

No ADD No NND No ADD No NND

ADD | amount | NND | amount ADD amount | NND | amount

2T T U O N S A 2 0 A 4
Common NND
Carrot 97 2348 100 17376 12 89 60 134
Apple juice 84 2953 100 18502 12 268 46 220
Barley 0 0 100 1303 0 0 13 58
Celeriac 19 254 100 5882 1 170 16 68
Hazelnut 66 229 100 3701 1 25 52 28
Parsley root 3 130 100 1310 0 0 10 81
Dietary records NND
Rapeseed oil 50 517 100 1446 1 10 44 12
Apple 100 6695 100 20680 27 105 67 168
Walnut 56 192 98 1335 6 17 21 30
Gooseberries 3 68 98 1412 0 0 9 190
Mustard 84 260 95 769 3 20 11
Sugar 100 1373 100 2022 31 17 45 20
Green peas 63 354 100 3841 2 116 21 97
Vinegar 75 775 100 2201 3 8 35 22
Honey 84 155 100 714 7 20 22 13
Lingonberriy 0 0 98 1049 0 0 10 27
Parsley 88 115 100 488 2 14 12 12
Supermarket data NND
Pollack 31 294 100 2463 0 0 9 100
Swede 3 250 98 2149 - - - -
Kale 3 100 98 561 - - - -
Pointed cabbage 31 339 100 2603 0 0 14 103
Game 6 113 100 3837 - - - -
Greenland halibut 0 0 98 722 0 8 60
Cod 19 230 100 1934 0 0 11 106
Beetroot 69 638 98 5216 5 75 27 104
Savoy cabbage 0 0 100 1430 - - - -

ADD: Average Danish Diet; NND: New Nordic Diet; No: Percentage of times the food was reported within a dietary
group. Amounts for supermarket data are given as the average consumption over 6 months for all consumers within a
dietary group who reported the food at least once. Amounts for dietary records are given as the average consumption
reported per day for the dietary records where the food was reported within a dietary group. Common NND foods were
discriminant foods in supermarket data and in the dietary records. Dietary records NND and supermarket data NND,
where only among the most discriminant in the dietary records and the supermarket data, respectively (Figure 5).
Numbers in bold are the diet and data source where the foods were found to be discriminant.
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Discovery of food exposure markers in urine and evaluation
of dietary compliance by untargeted LC-MS metabolomics

Accurate measurement of dietary intake in nutrition studies is crucial to investigate relation-
ships between diet and health. The common tools used for assessment of dietary exposure
in humans rely almost solely on self-reporting, which is associated with a range of random
and systematic errors. Biomarkers measured in biological samples, such as urine or plasma,
provide a promising supplement to self-reporting, as they are objective measures. However,
the few currently available biomarkers cover the diet poorly and more markers, in particular
for intake of individual foods, are needed.

In this thesis, untargeted metabolomics, a relatively new method within nutrition research,
has been applied to find new potential food exposure markers in urine for intake of a range
of foods. In addition, it has been investigated if it is possible to distinguish two dietary pat-
terns, a New Nordic Diet (NND) and an Average Danish Diet (ADD), in urine samples from a
controlled intervention study.
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