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1. Selection and Positioning: Introduction 

Theory of Process Analytical Chemistry 

 

 

1.1 Introduction - How do plant managers make decisions regarding 

which process analyzers to buy and install for monitoring and controlling 

their processes? Should it be on-line, at-line or off-line instruments? Slow 

but accurate process GC's or fast but relatively imprecise NIR 

spectrometers? Often such decisions are made ad-hoc and based on 

limited research, because extensive development and long 'try-out' 

periods are considered as too expensive. However, there exists theory 

that can guide this decision-making: the Theory of Process Analytical 

Chemistry. 

Process analytical chemistry is a rapidly growing field. For a large part this 

is due to the activities of the CPAC in Seattle (Washington, USA [1]), but 

other research groups have also focused their activities on performing 

process analytical measurements. The field is rapidly coming of age as 

indicated by special review articles devoted to process analytical 

chemistry. Moreover, at international analytical chemistry conferences, 

process analytical chemistry always deserves specialized sessions; there 

are even international conferences solely devoted to the subject. 

A considerable number of process analytical chemistry papers discuss 

issues like calibration and standardization of process analyzers; building 

interfaces and equipment for on-line, in-line and in-situ monitoring; or 

sensor development for performing process analytical measurements. The 

reported figures of merit in these papers are often limited to precision 

(e.g. the root-mean squared error of prediction, RMSEP) and analysis 

time. However, precision and analysis time do not tell the whole story. Is 

a method that is more robust but also less precise than an alternative 

method to be preferred? What is an acceptable degree of precision given a 

certain process? Where in the process should one extract the sample or 

place the analyzer interface?  

All the questions above are very important for the practical use of process 

analyzers. Answers to these questions can be found if process analytical 

measurements are formulated in one unifying theoretical framework. In 
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the chemical engineering literature the problem of optimal sensor location 

has attracted attention [2], but this work only takes into account some 

instrument specifications. In this thesis, a framework is presented which 

accounts for all instrument specifications. This framework is based on the 

measurability theory developed by Van der Grinten [3], [4]. The 

measurability theory has been expanded to include the problems 

mentioned above. In this introduction the theory will be explained using a 

case study. An in-depth explanation is given in earlier papers [5]-[7].    

 

1.2 Case Study - A simulated case study is used for illustrative purposes. 

In this case study, the goal is to monitor conversion at the end of a 

styrene polymerization reactor. This example closely resembles industrial 

practice, dealing with a highly relevant reaction of sufficient complexity. 

Hence, it is a good example for illustrating our method. All calculations 

were validated using real experiments, reported elsewhere [7], [Chap. 4].   

The example concerns the free radical polymerization of styrene. A 

simplified step-wise reaction scheme is given in Box 1.1. The reaction is 

performed in a tubular reactor (of one-meter length) as shown in Figure 

1.1. The figure also shows some details on experimental conditions. The 

reactor tube is fed with a mixture of styrene monomer and initiator. The 

initiator concentration in the reactor feed shows small, unknown 

fluctuations around its nominal value. These fluctuations are considered as 

process disturbances and their influence on degree of conversion at the 

end of the reactor - how much styrene monomer has reacted to 

polystyrene - has to be monitored.  

 

Initialization   I  �  2 I•  +  N2 

Chain initialization   I•  +  M  �  I-M• 

Propagation   I-M•  +  M  �  I-M-M 

Termination   I-M-…-M-I•  +  •M-…-I  �  I-M-…-M-I 

Box 1.1 

 

Four types of process analyzers are available for this monitoring task. 

Both a Size Exclusion Chromatograph (XSEC) [8] and a Near-Infrared 
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(NIR) spectrometer can be operated close to the reactor (at-line). The 

alternative is a Short-Wave Near-Infrared (SW-NIR) spectrometer, 

operated in on-line or in-line mode. 

 

 Figure 1.1 Schematic 

drawing of the styrene 

polymerization reactor. 

 

 

 

 

 

 

 

 

 

1.3 Post-Analysis Signal Reconstruction - The process analyzer 

measures the conversion (the 'process signal') at the end of the reactor. 

Due to the limitations of the process analyzer, continuous and perfect 

knowledge of this process signal is not possible: every analyzer has a 

limited precision and analysis time. Hence, we always have to do with a 

'reconstructed signal': the process signal we can reconstruct using the 

measurements of our process analyzer. 

The central theme of the Theory of Process Analytical Chemistry is signal 

reconstruction. Suppose that we would have a perfect instrument that 

would measure the conversion instantaneously without any error. The 

result is then the gray line in Figure 1.2. This represents the true process 

variation: the variation of degree of conversion in time that we are 

interested in.  

Unfortunately, we do not have perfect instruments. Our instrument has a 

limited precision (indicated by a standard deviation σi) and we expect our 

measurements to be spread around the true value, e.g. ±3σi. This 

confidence interval is shown in Figure 1.2a by the gray markers.  
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We can reconstruct the signal in the best possible way by connecting all 

these measurements. This 'connection line' is the black line and this is the 

best reconstruction we can get post-analysis, that is, after collecting the 

last measurement results. If there is no systematic error in the 

measurements, the value of σi is an indication of the error we make in 

sampling the true signal. Obviously, the poorer the precision of the 

process analyzer, the greater the error in our reconstructed signal. 

 

Figure 1.2 The effect 

of different instrument 

imperfections on signal 

reconstruction: a) 

precision σi, b) 

sampling frequency Tf, 

c) sampling time Tg, d) 

response correlation Ti, 

e) delay time Td. 

 

 

 

 

There are other contributions to the imperfection of process analyzers. 

Process measurements can only be performed at a limited frequency 

expressed as the sampling rate: the time in-between taking successive 

samples (indicated by Tf). Figure 1.2b shows the consequence of this 

limited sampling frequency. Likewise, the sampling itself is not 

instantaneous. It takes some time to collect ('grab') the sample from the 

process (indicated by Tg)  and during this time, process variation is 

averaged. This is shown in Figure 1.2c. There might also be response 

correlation. This is carry-over in the detector response from one 

measurement to another (indicated by Ti, the mean correlation time). The 

effect of this is shown in Figure 1.2d. Finally, the process analyzer can 

have a significant analysis time, Td. This causes a delay in the availability 

of the result and its effect is illustrated in Figure 1.2e. Of course, post-
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analysis this delay can be counteracted by shifting the whole 

reconstructed signal to the left with a shift equal to the analysis time Td. 

In reality, all these imperfections are present to some degree and affect 

the quality of the reconstructed signal. Moreover, we want to reconstruct 

the signal real-time, while the process runs. Hence, we cannot interpolate 

and shift the reconstructed signal anymore, because at time t the 

measurement at time t+Td is not yet available. The optimal process 

analyzer reconstructs the process signal real-time and minimizes the 

distortion of the true process signal. 

 

1.4 Real-time Signal Reconstruction - The problems of real-time signal 

reconstruction are visualized in Figure 1.3, where an off-line XSEC is used 

to measure the conversion. XSEC is an analytical technique based on Size 

Exclusion Chromatography where conversion (X) of a product is 

determined from the polymer and monomer peak areas in the exclusion 

chromatogram. Realistic values for this measurement are Ti=Tg=0, 

Td=Tf=20 minutes with a precision of 0.17% conversion [8].  

 

Figure 1.3 Real-time 

signal reconstructions 

of the degree of 

conversion: at-line 

XSEC. 

 

 

 

 

 

 

 

 

Suppose that a sample is taken at time t minutes. Again, in practice the 

gray line (real process variation) is not known, but for the sake of 

argument the line is drawn in the figure. The analysis result of this sample 

becomes available at time t+20 minutes and has the value A, indicated by 
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a gray dot at time point t. This value A is not exactly the process value at 

time t because of the limited precision of the XSEC measurement. At time 

point t+20 minutes another sample is taken from which the result 

becomes available at t+40 minutes. The best guess for the process value 

in-between time points t+20 and t+40 minutes is the measured value A. 

This is indicated in the figure by the black bar in-between time points 

t+20 and t+40 minutes. In this way a real-time reconstruction of the 

process values can be obtained and the black line indicates this.  

Clearly, the reconstruction of the signal in real-time analysis is poorer 

than a post-analysis reconstruction. This is the price we pay for 

monitoring in real-time. To compare the quality of signal reconstructions 

using different process analyzers, we need to have a measure of such a 

quality. 

 

1.5 Quality of Signal Reconstruction - We can express the quality of 

signal reconstruction in a simple number, the measurability. Suppose we 

know the true process value xtrue(n) at time point n (in reality this true 

value is never known, but conceptually xtrue(n) exists). Then the variation 

in xtrue(n) can be expressed as a variance 2
trueσ  around its target value µ, 

which is the nominal operating point of the process. When the 

measurements are performed at time points n=1,...,N,  this variance 2
trueσ  

can be calculated as: 

 

[ ]∑ =
−= N

n truetrue nx
N 1

22 )(1 µσ        (1.1) 

 

where xtrue(n) is the true process value (conversion in our example) at 

time point n. If the reconstructed signal value at a time point n is written 

as xrec(n), then the reconstruction error is xtrue(n)- xrec(n). The average 

squared error over time interval N is thus: 

 

[ ]∑ =
−= N

n rectrueerror nxnx
N 1

22 )()(1σ       (1.2) 
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and we want to minimize this 2
errorσ . In theoretical studies, integrals are 

used to calculate 2
errorσ  and 2

trueσ  instead of summations, but the principle 

remains the same.   

It is easier to work with relative errors because 2
errorσ  as such is a 

meaningless number. Hence, we define M as  

 

2

22

true

errortrueM
σ

σσ −
=         (1.3) 

 

and this value M, called measurability factor, is always smaller than one. A 

value of one means that 2
errorσ =0 and we are perfectly able to monitor the 

process signal. This will never happen in practice. A low value of M means 

that 2
errorσ  is relatively high and the measurements do not add much to the 

knowledge of the variation in the process variable. A value in-between 0.5 

and 1 is considered acceptable [3].  

 

1.6 Measurability of Conversion in the Example - Now we can apply 

the simple concept of measurability to determine objectively the 

performance of different process analyzers. In all cases the process 

analyzers are used to measure conversion in our polymerization example. 

The at-line XSEC, at-line NIR and on-line SW-NIR perform measurements 

at the outlet of the reactor, whereas the in-line SW-NIR performs its 

measurements somewhere along the reactor tube. The specifications and 

measurability factors of the different process analyzers are given in Table 

1.1.  

 

 Tf=Td σi M 

At-line XSEC*) 20 min 0.17% MXSEC    = 0.44 

At-line NIR 10 min 0.45% MNIR       = 0.72 

On-line SW-NIR 30 sec 0.63% MO-SWN = 0.95 

In-line SW-NIR 30 sec 0.63% MI-SWN  = 0.98 

         Table 1.1 

*) All process analyzers are assumed to work with Ti=Tg=0 and Tf=Td for 

simplicity. 
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From an instrumental performance point of view the four process 

analyzers in our example differ only in analysis time Td and precision σi. 

The XSEC - despite its high precision - is clearly to slow to monitor the 

degree of conversion of the present reaction in real-time (samples 

indicated by gray markers in Figure 1.3). The result is a poor signal 

reconstruction (black line). The measurability factor (MXSEC = 0.44) is too 

low for practical purposes and the main reason is that the analysis time 

(Td) and (thus) the sampling rate (Tg) are too long, causing serious delays 

in reconstruction.  

 

Figure 1.4 Real-time 

signal reconstructions 

of the degree of 

conversion: at-line 

NIR. 

 

 

 

 

 

 

 

 

At-line NIR gives a considerable improvement compared to the at-line 

XSEC. Figure 1.4 shows that the at-line NIR is faster than the at-line 

XSEC, but the precision of the at-line NIR is worse. This results in a 

measurability of 0.72 (MNIR = 0.72). The on-line SW-NIR gives a much 

reduced analysis time without compromising too much on precision (MO-

SWN = 0.95).  
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Figure 1.5 Real-time 

signal reconstructions 

of the degree of 

conversion: in-line 

SW-NIR. 

 

 

 

 

 

 

 

The in-line SW-NIR process analyzer is positioned near the end of the 

reactor tube, which turns out to be the optimal location. The 

measurement results of the SW-NIR at this position are used to predict 

the degree of conversion in the reactor product (Figure 1.5). This 

prediction is made with the use of a process model. Calculating the 

optimal location and predicting conversion at the end of the reactor will be 

explained later. In-line SW-NIR performs slightly better than on-line SW-

NIR, although the differences are small (MI-SWN=0.98). 

Eq. 1.3 uses the true process variation and reconstructed signal. In 

practice, we do not know this true process variation and have to calculate 

the M value in a different way.  

 

1.7 Calculating Measurability in the Design Phase - Fortunately, for 

calculating the measurability index we do not need to know the true 

process variation nor do we need to perform the actual measurements. All 

we need to have is a process model and knowledge about the behavior of 

realistic disturbances. Using this it is possible to calculate theoretical 

measurabilities. This is based an advanced method of error propagation. 

 

Suppose that for a two-step analytical method it is known that step one 

has a precision of 2
1σ  and step two has a precision of 2

2σ . Then error 

propagation shows that the total analysis has a precision of 2
2

2
1 σσ +  
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assuming that the two steps are independent. This assessment can be 

made without actually performing the experiments. The only requirements 

are that i) we have to know the individual contributions ( 2
1σ  and 2

2σ ) and 

ii) we have to know a model ( 2
2

2
1

2 σσσ +=tot ). Theoretical measurabilities 

are calculated by error propagation using a process model.  

The process model is based on the reaction mechanism shown in Box 1.1. 

The kinetics of these reactions are known and, hence, the whole 

polymerization process can be summarized as mass balances in the form 

of differential equations related to these reactions. 

 

Figure 1.6 Illustration 

of the way that 

fluctuations in initiator 

(feed) cause variation 

in monomer 

concentrations and 

degree of conversion. 

 

 

 

 

 

 

We want to monitor conversion at the outlet of the reactor. The 

disturbance in our example is uncertainty in the initiator concentration in 

the reactor feed. This external process uncertainty can be represented 

with variance 2
AIBNσ . We can propagate the variance of the initiator 

concentration through the reactor, as shown in Figure 1.6. Fluctuations in 

initiator concentration travel through the reactor as fluctuations in the 

monomer concentrations (governed by the reaction kinetics) and result in 

fluctuations in the monomer concentration and, hence, the conversion X 

at the end of the reactor. Assuming a certain 2
AIBNσ , the expected 

fluctuation of X can be calculated, which results in 2
,trueXσ . This 2

,trueXσ  is the 
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variation we can expect to be present at the outlet of the reactor. It is this 

variation that we want to monitor with our instrument(s). 

Similar to the situation for process uncertainty 2
AIBNσ , we can compute an 

expected performance of the process analyzer in measuring the 

conversion at the outlet by adding equations for the analyzer to the 

process model. Using appropriate values for the five instrument 

specifications Ti, Tg, Tf, Td and σi (see Figure 1.2 and Table 1.1), a 

theoretical performance of the process analyzer can be determined. It is 

the task of process analytical chemists and instrument vendors to supply 

realistic values of such specifications (e.g. a RMSEPi =σ of 0.63% for the 

SW-NIR). Thus, we have i) the individual contributions Ti, Tg, Tf, Td, σi and 

ii) a model relating these contributions to the error of estimating the 

conversion. Next, we can perform error propagation to obtain the 

expected variance 2
,errorXσ  of the estimation error of the conversion. The 

theoretical measurability is now: 

 

2
,

2
,

2
,

trueX

errorXtrueX
theorM

σ
σσ −

=        (1.4) 

 

which is a similar definition as 1.3.  

Figure 1.7 shows the theoretical measurability factors of equation 1.4 for 

in-line SW-NIR at different locations in the reactor tube ( 2
AIBNσ = 0.1x10-3 

mol2.L-2). The theoretical process analyzer characteristics are those for the 

in-line SW-NIR instrument: Ti = Tg, Tf = Td = 30sec and σi= 0.63%.  

Performing the in-line SW-NIR measurement close to the reactor entrance 

would reduce the time needed to observe the process disturbances 

(because these initiator disturbances enter at the inlet), but the change in 

monomer concentration due to the disturbance in the initiator 

concentration is not very strong at the inlet. Performing the SW-NIR 

measurement at the reactor exit would result in a much larger signal (the 

disturbance has traveled through the system and the change in monomer 

concentration is attenuated), but then the disturbance is detected late. 

From Figure 1.7 we learn that in-line SW-NIR measurements in the first 
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part of the reactor tube yield insufficient information to predict the 

conversion. In-line SW-NIR in the second half of the reactor tube is much 

better suited for estimating the conversion in the reactor product. The 

best compromise for predicting the conversion at the exit is found close to 

the exit. For this optimum location, the in-line SW-NIR results of Figure 

1.5 were calculated.  

The theory as explained above was tested with a real reactor. The results 

are reported elsewhere in this thesis and show a good agreement between 

the theoretical and practical measurabilities. 

 

Figure 1.7 The 

measurability factor for 

the SW-NIR analyzer 

as a function of the 

position along the 

reactor tube. 

 

 

 

 

 

 

1.8 Extensions of the method - The measurability index can be readily 

extended to include more than one process variable. Suppose that not 

only the conversion but also the molar mass distribution (e.g. Mn and Mw) 

of the polymer are important. Polymer chain growth has a direct relation 

with styrene monomer conversion. By estimating the conversion from 

process analytical measurements we can also infer the Mn and Mw of the 

polystyrene product using a process model of our reactor system.  Again, 

error propagation can be used, but now resulting in an uncertainty 

covariance matrix σerror of size 3x3 for conversion, Mn and Mw. For the 

external process disturbances, the variation of the three process variables 

in the product stream is expressed in a covariance matrix ΣΣΣΣtrue, also of size 
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3x3. The matrices Σtrue and Σerror are natural extensions of 2
zσ  and 2

,errorzσ , 

respectively. The measurability definition 1.4 can thus be generalized to 

 

)(
)()(

true

errortrue
theor tr

trtr
M

Σ
ΣΣ −

=        (1.5) 

 

where tr(.) means the trace of a matrix: the sum of its diagonal elements. 

This trace of Σtrue and Σerror comes down to summing all variances of true 

and estimated conversion, Mn and Mw, respectively. It is also possible to 

extent the approach to accommodate several measurements performed 

simultaneously, e.g., using an in-line SW-NIR along the reactor and a NIR 

at the end.  

The measurability index constructed can be used to calculate the 

performance of competing process analyzer configurations already in the 

design phase of a process. Naturally, it can also be used for an existing 

process. Hence, the answer to the question posed in the beginning: plant 

managers can make a selection regarding which process analyzers to use 

by calculating their measurabilities! 

 

1.9 Problems and Future Outlook - In this introduction we have 

presented a rudimentary overview of the theory of process analytical 

chemistry. For calculating the measurability index a fundamental model of 

the process has to be available. If a fundamental model is available, then 

this model contains estimated constants (e.g. kinetic constants). Such 

estimates carry some uncertainty and the consequences of this 

uncertainty on the calculated measurability have to be established. 

The theory as presented in this thesis works for continuous processes. An 

extension of the theory of process analytical chemistry for batch processes 

is also pursued.  

If the fundamental model is incomplete, then experiments can be run and 

so-called gray models can be built. These are hybrid models containing 

fundamental and empirical parts. The use of such models for calculating 

measurability indexes is still under investigation. 
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1.10 Thesis Summary – This thesis deals with optimal process analyzer 

selection and positioning for plant-wide monitoring. This part of the text – 

chapter 1 – gives a more popular overview, while the remaining parts go 

into detail on different aspects of the subject. The first choice a process 

analytical chemist (with the help of chemical engineers) has to make is: 

which of the often-large number of process variables are we going to 

measure? What constituent, at what position in the system should be 

sampled to attain the maximum amount of information on the process 

state in ‘real time’? The answer to this question is found in the science of 

process dynamics, the subject of chapter 2. In this chapter simulations 

are used to define a number of deterministic selection criteria for optimal 

sensor selection and positioning. Besides the dynamics of a process, 

external disturbances and measurement characteristics are important in 

analyzer selection and positioning. In chapter 3 simulations are used to 

define a so-called stochastic selection criterion: the measurability factor.  

With this factor different instruments, at different positions, can be 

compared at a quantitative level. In defining the measurability factor the 

so-called process analyzer dynamics – formulating an abstract definition 

of sampling and analysis equipment – are introduced based on five 

criteria: precision, sampling frequency, sampling time, response 

correlation and delay time.  

To verify the theory on process analyzer selection and positioning a lab-

scale tubular reactor for bulk polymerization of styrene to polystyrene was 

constructed. On-line and in-line spectroscopic methods can be compared 

in the setup. The results of these experiments – presented in chapter 4 – 

confirm the link between theory and (laboratory) experiments.  The last 

part of this thesis – chapter 5 – deals with styrene batch processes. In 

these systems the question changes: at which point on the batch 

trajectory should we perform a measurement to get the best estimate of 

the process state. In this chapter it is shown how the measurability factor 

can be used to answer this question. The chapter also gives some 

practical implications on the use of state observers for batch processes, 

using data from lab-scale experiments.  
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2. Selection and Positioning: Deterministic Grounds 

Selection of Optimal Sensor Position in a Tubular Reactor using Robust 

Degree of Observability Criteria 

 

 

Abstract – Robust selection criteria for the optimal location for in-process 

concentration or temperature sensors along the length of a tubular reactor 

for the partial oxidation of benzene to maleic anhydride are developed. A 

model of the reactor is constructed by rewriting the Pde's describing the 

mass and heat balances into a set of Ode's through the method of lines on 

a grid defined over the reactor length. The linearized model is described 

as a continuous, time invariant state-space model where the state is 

formed by temperature and concentration profiles on the grid-points. The 

best sensor location for the reactor is found by specifying scalar measures 

on the observability Gramian integral from the linear least squares state 

estimation problem. New robust criteria for a degree of observability are 

specified. The scores on these criteria are determined by the amount of 

signal received by a sensor for a specific system configuration. These new 

selection criteria are compared with known measures for degree of 

observability for the optimal sensor location problem from the literature.  
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2.1 Introduction - The implementation and operation of in-process 

measurements – either compositional/analytical or physical in nature – 

can be quite expensive. The cost of purchasing and maintenance often 

form an obstacle for the number of sensors that can be implemented for 

monitoring and/or control purposes. These costs naturally lead to the 

following question: what is the best location to place the limited number 

of sensors available (typically one) in a process? Stated differently, what 

type of sensor on what position delivers the information best suited to 

monitor the system under observation? 

In this chapter we investigate the optimal sensor position for the purpose 

of state estimation of a unit operation. As an example we will use a 

computer simulation model of a fixed bed tubular reactor for the catalytic 

partial oxidation of benzene to produce maleic anhydride. The state of this 

system is formed by the concentration and temperature profiles over the 

reactor tube, which has to be determined from measuring one of these 

variables. We will examine both the position of the sensor along the 

reactor tube, as well as compare four different types of measurements. 

The measurements used are two process analyzers (for reactant and 

product) and two temperature measurements (fluid and solid phase). The 

present study will be limited to the hypothetical case of continuous, error 

free and immediate response signal transducers. Selection of the best 

configuration of in-process sensors with the purpose of monitoring a 

process by estimating the state of the system is done by defining a degree 

of observability. 

State observability is an established definition for systems represented in 

the well-known state-space notation. The state of a dynamic system at 

any time may be (loosely) defined as the collection of information which is 

both necessary and sufficient to determine the future behavior of the 

system, assuming that all future inputs are also known. The state-space 

consists of all those values, which the state may take on [9]. Observability 

defines whether the state can be observed given a certain output. In this 

work the outputs are the sensor responses acquired through 

measurements. 

The systems theoretical definition of observability is binary in nature: a 

system is either state observable or state unobservable. A consequence of 
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this definition is that unobservability is a 'singular' condition, in the sense 

that if a system is unobservable, any small perturbation of the systems 

elements might cause it to become observable. As a consequence, most 

simulation models with physical constants are completely observable [9]. 

This makes the yes/no definition impracticable when comparing different 

system configurations. If we want to study e.g. different sensor locations 

in one unit operation we need a degree of observability for comparison. 

Many authors have looked for possible expressions for a degree of state 

observability and its dual, the state controllability (see e.g. [10]-[15]). All 

these criteria are scalar functions of the observability Gramian integral 

(the unscaled Fisher information matrix), or the observability matrix in 

case of a discrete time system. The interpretation of these criteria for 

state controllability is straightforward. The energy required by the control 

action for disturbance reduction must be minimized, and the degree of 

controllability criterion should show a minimum for the configuration that 

optimizes this performance. For a degree of observability the explanation 

is less obvious. A possible interpretation is that the best sensor position is 

the one that gives maximum signal response on the sensor when changes 

due to input disturbances in the system – thus the state vector specifying 

the system – occur. The scalar degree of observability criteria must again 

indicate the best configuration by some minimum or maximum value.  

The most frequently encountered criteria for a degree of observability are 

those introduced by Müller and Weber [11]. They define measures that 

are dominated by those elements in the state vector that show only 

minimal changes for disturbances and thus are difficult to estimate from 

the measurements. For the tubular reactor in our study this leads to 

impractical solutions for the optimal sensor location problem. By utilizing 

the idea of maximal measurement response or maximal 'energy' collected 

by a particular choice of sensor we will derive alternative measures for 

degree of observability. With these supplementary criteria we hope to 

come to so-called 'robust' selection procedures for sensor placement. The 

central idea for optimal sensor location with these new criteria is to 

monitor only major changes in the state variables for the system under 

observation. This concept resembles the theory previously developed by 

others for complete state versus input-output controllability [16], [17].  
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The chapter is organized as follows. The next section gives a short 

description of the tubular reactor simulation model. The third section 

explains the theoretical meaning of observability as defined in systems 

theory and introduces the different scalar measures for a degree of 

observability. In the fourth section we present the result for the optimal 

sensor location problem for the tubular reactor, and the last section is 

used to discuss these results. 

 

2.2 Tubular Reactor Model - The theory developed in this chapter is 

illustrated in combination with a simulation model of a fixed bed tubular 

reactor for the production of maleic anhydride by partial oxidation of 

benzene. Most of the information used in this computer model can be 

found in the papers by Wohlfahrt and Emig [18] and Ramirez and 

Calderbank [19]. Some essential data not included in these two sources 

were assessed from general literature. 

Three exothermic, irreversible gas phase reactions take place on a solid 

V2O5-MoO3-P2O5 catalyst particles packed in a one-inch diameter tube 

 

C6H6     + 4 O2  →
k1

 C4H2O3 +     CO +    CO2 + 2 H2O  (2.1) 

C6H6     + 6 O2  →
k2

                 3 CO + 3 CO2 + 3 H2O  (2.2) 

C4H2O3 + 2 O2  →
k3

                 2 CO + 2 CO2 +    H2O  (2.3) 

 

Reaction (2.1) is the desired path for the formation of maleic anhydride – 

the product – from benzene. Reactions (2.2) and (2.3) represent the 

undesired oxidation (burning) of reactant and product, respectively. The 

feed stream to the reactor is air mixed with approximately 0.009 mol.s-1 

benzene. Because of the oxygen excess in the feed all reactions are 

assumed to be pseudo first order for the limiting reactant. The Arrhenius 

equation for the reaction rates in formula (2.1)-(2.3) is given by equation 

(2.4). The frequency factors, activation energies and the reaction heat 

used are shown in Table 2.1. 
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Reaction Ai (s
-1) Ei (J.mol-1) ∆Hi (J.mol-1) 

(1) 86760 71711.7 -1490x103 

(2) 37260 71711.7 -2322x103 

(3)     149.4 36026.3   -832x103 

Table 2.1 

 

The two mass balances used in the model are molar flow benzene FB 

(mol.s-1) and molar flow maleic anhydride FMA (mol.s-1) in the fluid phase 

stream. The partial differential equations are given by (2.5) and (2.6). The 

parameters for these two equations are shown in Table 2.2 (t (s) denotes 

time; z (m) indicates axial position in the reactor; total length is 3.2 m). 
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Two heat balances are included in the simulation, namely the temperature 

of the fluid phase Tf (K) (the gas flow) and the temperature of the 

stagnant solid phase catalyst Ts (K). The corresponding (partial) 

differential equations are shown in (2.7) and (2.8); the parameters are 

given in Table 2.2. 
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Parameter value (unit) 

linear gas velocity v 2.48 (m.s-1) 

Effective mass diffusion coefficient Deff  3.17x10-3 (m2.s-1) 

Effective heat diffusion coefficient keff 3.17x10-2 (m2.s-1) 

Effective heat transfer coefficient fluid 

phase-wall temp. Uf-w 

10.6 (s-1) 

wall temperature Tw 733 (K) 

Effective heat transfer coefficient  

solid-fluid phase Us-f 

84.0 (s-1) 

solid phase heat balance constant cs
 0.729 (s.K.J-1) 

Table 2.2 

 

We would like to emphasize that our aim was not to make a detailed study 

of the reactor setup used in the simulations. Many aspects (for example 

pressure drop, radial diffusion, etc.) are not included in the model. Their 

impact on the subject of our study – optimal sensor location – is assumed 

to be of less importance.  

Figure 2.1 shows the steady-state concentration and temperature profiles 

over the reactor tube for three different benzene feeds. The boundary 

conditions used in the calculations are FB(t,0) = [feed] mol.s-1, FMA(t,0) = 

0 mol.s-1 and Tf(t,0) = 733 K. Diffusion effects at the entrance and exit 

are neglected.  

 



 - 21 -  

Figure 2.1 a) molar flow benzene b) molar flow maleic anhydride c) fluid phase 

temperature d) solid phase temperature; benzene feed 0.00900 (-), 0.00873 (..) 

and 0.00927 mol.s-1 (--) 

 

The systems theoretical definitions for observability that are used in the 

remainder of this chapter require a linear, finite dimensional state-space 

reactor model. The first step is to divide the reactor length into m 

equidistant segments indicated by zi (where z0 is the reactor entrance 

which is not included in the dynamic simulation model). The distance 

between two successive grid points is ∆z meters. For every grid-point zi 

we define four (partial) differential equations from formula (2.5)-(2.8). In 

the next step the first and second order differential terms in partial the 

differential equations on every gird-point zi are approximated by second 

order upwind and central difference terms according (2.9) and (2.10), 

respectively (where f is FB, FMA or Tf).  
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After these modifications the original reactor model is transformed into a 

set of n = 4 x m ordinary differential equations, two mass and two heat 

balances on all m grid-point over the reactor length ('Method Of Lines' 

approximation). 

The last step is to linearize all non-linear terms in the reactor model (more 

precisely, the cross products of the Arrhenius equation and molar fractions 

in equations (2.5), (2.6) and (2.8)). This is done by a first order Taylor-

series approximation. 

After these two modifications we have transformed the original reactor 

model (2.5)-(2.8) into n linear time invariant ordinary differential 

equations. They can then be reorganized into state-space notation as 

shown in the next equation (see e.g. [9]) 

 

)()()( tt
dt

td BuAxx +=         (2.11a) 

 

In this formula state vector x (n x 1) contains four variables for all m grid 

points. The state vector is organized in an alternating fashion x = 

[FB(t,z1), FMA(t,z1), Tf(t,z1), Ts(t,z1), FB(t,z2), ... , Ts(t,zm)]'. The other 

components of (2.11a) are the band diagonal system or dynamic 

coefficients matrix A (n x n) with appropriate constants connecting the n 

linear differential equations for successive grid points, the input coupling 

coefficients or control matrix B (n x p) and the input vector u (p x 1). In 

our reactor model p is one because benzene concentration in the feed 

stream is the only variable to manipulate. Because we use derivative 

variables the boundary conditions for equation (2.11a) simplify to x(t0) = 

0.  

In Figure 2.2 the (complex) eigenvalues of the system matrix A are 

plotted for a grid size of m = 32 (∆z = 0.1 m). These eigenvalues are the 

poles of the system and the reciprocal values of their real parts are time 

constants of the natural frequencies of the process. In the plot we see 
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that all eigenvalues have negative real parts. This means that the system 

is asymptotically stable. 

 

Figure 2.2 eigenvalues 

system matrix A for 

grid-size m = 32 (n = 

128) 

 

 

 

 

 

 

 

 

 

The second conclusion we draw from Figure 2.2 is that four clusters of 

eigenvalues can be distinguished, corresponding with the four differential 

equations (2.5)-(2.8) of the original reactor model. Although there is a 

strong connection between these four equations and the four clusters 

there is no simple one-on-one relation because of the coupling between 

the equations. The cluster with the fastest dynamic response (left side of 

the plot) is closely connected to the solid phase temperature balance. The 

'slower system poles' (real part near zero) could suggest neglecting the 

former. However, all balances are fully connected and fixing one of the 

balances on a steady-state value would influence the overall dynamic 

behavior of the simulation model. For complete state estimation we keep 

all sources of dynamics in the model.  

The eigenvalues in Figure 2.2 also warn us that state estimation will be a 

difficult task. This situation is comparable with the one encountered in 

many control applications: some small disturbances of the system might 

be very hard to control. From a systems theoretical point of view a 

particular configuration might even be state uncontrollable, but by 

focusing the control action on the dominant effects in the system the 

overall controller performance can be very efficient [16]. Comparable 
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reasoning holds for the optimal sensor position problem for the reactor 

state determination in this study: focusing the selection criteria on the 

dominating effects instead of the minor phenomena that are hardest to 

observe leads to different results. 

 

To simulate measurements on the reactor the system in (2.11a) is 

expanded with a measurement equation 

 

)()( tt Cxy =          (2.11b) 

 

The output or measurement sensitivity matrix C (q x n) selects the 

elements of the state vectors that can be observed, and y (q x 1) contains 

the measurement results. Simulating for instance a fluid phase 

temperature sensor on the kth grid point along the reactor length can be 

done by placing an element one on the proper place (in this case position 

4 x (k-1) + 3) in a all-zero row vector C. Other measurements can be 

introduced by adding new rows to C. 

The sensor response y(t1) for time t1 can by found from the solution of the 

system in equation (2.11) 
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In this equation x(t0) is the known state at time t0 and u(t) is the known 

input signal on the time trajectory t0 ≤ t ≤ t1. On the right hand side of 

(2.12) we recognize the first term as the natural response of the system 

and the second term as the input part or forced response.  

 

2.3 Theory - Observability concerns the extent to which the state of a 

linear system influences the outputs [9]. In this chapter the state vector 

x(t) contains the concentration and temperature profiles on the grid-

points over the reactor tube, and the output is the signal received from 

measurements as formulated in equation (2.11). To determine whether a 

system is state observable on the time trajectory t0 to t1 (for any t1 > t0) 
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we define the positive (semi) definite observability Gramian Wo(t1,t0) (n x 

n) in equation (2.13). The role of the observability Gramian matrix in 

state determination is explained in Appendix 2.A.  
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A state x(t0) is unobservable if it belongs to the null space of this 

symmetric observability Gramian. Consequently, (2.11) is completely 

observable if and only if Wo(t1,t0) is of full rank n (nonsingular). This rank 

determination is the mathematical solution to the question of (binary) 

observability: a system is either observable (rank(Wo(t1,t0)) = n) or 

unobservable (rank(Wo(t1,t0)) < n).  

Closely related to state observability – determine x(t0) from 

measurements y(t), t0 ≤ t ≤ t1; estimating a state in the past – is state 

construction (also known as state reconstruction or determinability) which 

is the ability to estimate the state vector x(t1) based on measurements 

y(t), t0 ≤ t ≤ t1 (estimating the present state from past measurements). It 

can be shown that for linear, continuous time invariant systems state 

observation and construction are equivalent [16], [20]. 

An analytical solution for the Gramian matrix in equation (2.13) can be 

found by solving the corresponding Lyapunov equation (2.14) for the 

special case of a stable system on the time trajectory t0 = 0 and t1 = ∞ 

(see e.g. Ogata [21]). Since the definition of observability for continuous 

systems is valid for any t1 > t0, we will use equation (2.14) to compute 

the observability Gramian's in the remainder this study. 

 

0)0,()0,( =′++′≡′+∞+∞′ CCAWWACCAWWA oooo    (2.14) 

 

From the state observability test by establishing the rank of Wo, as 

formulated above, there can be no comparison between different 

configurations, meaning for our study different sensors on different 

positions. The only distinction possible by the original definition is between 

systems that are completely state observable and systems that are 
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unobservable. It is not possible to determine a ranking in the set of 

observable systems. What is needed is a degree or quality of 

observability, preferably some scalar function of the observability 

Gramian. 

Many authors have formulated measures to establish the degree of 

observability based on the matrix Wo. The approach most frequently used 

is the one formulated by Müller and Weber. They define a series of 

imbedded means on the symmetric Gramian (s ≤ 0) 
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In this equation Λ(Wo) is a n-dimensional diagonal matrix with the 

eigenvalues of the observability Gramian as its elements. Higher scores 

for the criteria formulated in equation (2.15) correspond with better 

degree of observability for the system under investigation. Three cases of 

the series in (2.15) are of special interest 
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As stated previously, the series (2.15) are imbedded – meaning µ1 ≤ µ2 ≤ 

µ3 – for one particular system (one particular sensor position). The 

interpretation when comparing degrees of observability for different 

configurations is less obvious. In terms of the observability Gramian the 

comparison of the costs can be formulated as 'WoA > WoB' when system A 

is better observable than system B. This matrix inequality is equivalent to 

n scalar conditions of which (2.16)-(2.18) are possible candidates. There 

is however no guarantee that all n criteria will select the same optimal 

sensor position, a situation encountered in e.g. [14]. An example in 
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Appendix 2.B illustrates the situation where the criteria (2.16)-(2.18) led 

to contradictory conclusions for the optimal sensor location problem. 

Another criterion for degree of observability is proposed by Dochain et. al. 

[15]. They use the condition number of the observability Gramian to 

select the best observable system 

 

)(
)()(

min

max
0

o

o

W
WW

σ
σγ =         (2.19) 

 

where the σ's are the singular values of a matrix. Smaller condition 

numbers indicate better observable systems leading to improved state 

estimations. 

 

All the preceding criteria for degree of observability place strong emphasis 

on smallest eigenvalues (or singular values) of the Gramian Wo. The 

reason for selecting these measures is that if a system is near singular, 

inversion of the Gramian (see Appendix 2.A) or errors introduced by this 

inversion are dominated by the smallest eigenvalues. This effect is 

illustrated by the example in Appendix 2.B, where it is shown that using 

the definitions (2.16)-(2.19) the selection for optimal sensor location is 

dominated by the smallest eigenvalue of the original system. This 

corresponds with dynamic phenomena related to those state vector 

elements that are the most difficult to determine. When monitoring a 

process we are primarily interested in detecting principal changes in the 

system (observed by changes in the state vector elements). For the 

reactor under study this means that we are interested in the significant 

changes taking place in the hot-spot region z = 0.4-0.7 m (see Figure 2.1) 

and not in trivial alterations in the last part of the reactor tube. For this 

purpose we would like to introduce two 'robust' selection criteria for 

optimal sensor location. They are based on the idea of maximizing the 

signal received by a sensor for a system disrupted from steady state. We 

also formulate an alternative interpretation of criterion (2.16) and use this 

for comparison with the new robust selection criteria. 
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The first measure is the spectral 'norm' defined as (since Gramian's are by 

definition symmetric positive (semi) definite, eigenvalues and singular 

values are equivalent) 

 

)()( max0 oWW σρ =         (2.20) 

 

The set of eigenvalues of Wo are called the spectrum of the matrix, and 

the largest one the spectral radius. It is not a norm for general matrices 

because the triangular inequality does not generally hold. However, for 

the special case of symmetric positive definite matrices the spectral radius 

is a matrix norm (the induced 2-norm; see e.g. [17]). It can be 

interpreted as an indicator of the geometric size of a matrix. Taking into 

consideration the position of the observability Gramian in state 

determination, as explained in Appendix 2.A, this means that larger values 

for spectral norm (2.20) correspond with a better ('larger') Wo. 

The second criterion we propose is the trace of the observability Gramian 
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Trace can be interpreted as a (weighted) size criterion of the singular 

values for the matrix under investigation. A larger value for (2.21) means 

that a certain configuration of the state-space model (2.11) is better 

equipped for state estimation. Maximization of equation (2.21) bears close 

resemblance to the A-optimality criterion in experimental design theory 

[22]. 

The third criterion – near singularity (2.22) – is a alternative 

interpretation of equation (2.16). It is used to illustrate the difference 

between the robust sensor selection measures presented above and the 

criteria proposed in literature.  

 

)()( min0 oNS WW σ=         (2.22) 
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Equation (2.A3) in Appendix 2.A tells us that if the observability matrix Wo 

is singular the system under investigation is unobservable. However, as 

mentioned in the introduction most physical systems are always 

observable. Let us assume that the Gramian Wo is nonsingular and the 

sum Wo + E is singular. One particular choice of E that satisfies this 

assumption is E = -uminσmin(Wo)u'min, where Wo = UΣU' is the singular 

value decomposition of Wo. Thus, the smallest singular value tells us how 

near a matrix is to being rank deficient [17]. The configuration with the 

highest value for this near singularity criterion is furthest from being 

unobservable. The near singularity measure (2.22), as well as the criteria 

(2.16)-(2.18), are closely related to D- and E-optimal experimental design 

methods [22]. 

 

2.4 Results - In this paragraph the three criteria (2.20)-(2.22) for 

optimal sensor location are computed for the tubular reactor model 

described earlier. A state-space model of the form (2.11a) is constructed 

with a maze size of m = 32 equidistant grid points (∆z = 0.1 m). This 

results in an intrinsically stable system since all eigenvalues of the A-

matrix have negative real parts (see Figure 2.2). In this model one sensor 

on one grid point is selected through equation (2.11b). For this system Wo 

from equation (2.14) is computed [23]. From this matrix the different 

norms (2.20)-(2.22) for optimal sensor location are calculated. This 

procedure is repeated for every element in the state vector (n times), 

selecting the corresponding measurements (benzene, maleic anhydride, 

fluid phase and solid phase temperature) through equation (2.11b). The 

results are shown in Figure 2.3. 
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Figure 2.3 a) ρ(Wo), c) trace(Wo) and e) NS(Wo) : benzene (-) and maleic 

anhydride (--) measurements; b) ρ(Wo), d) trace(Wo) and f) NS(Wo) : fluid (-) 

and solid (--) temperature sensors 

 

Interpreting the results for spectral radius (2.20) (Figures 2.3a-b) we see 

that the best sensor position for maleic anhydride concentration (the 

product of interest), fluid or solid phase temperature is on the hot-spot in 

the reactor tube (see Figures 2.1c-d). For benzene (the reactant) the 

optimal sensor position is after the hot-spot. This observation agrees with 

the 'negative feed-back' as observed in Figure 2.1 and the reaction rate 

parameters in Table 2.1. The increase (or decrease) of benzene 

concentration in the feed stream has little or no effect on the benzene 

concentration profile over the reactor range z = 0.4-0.7 m. These findings 

are also in good agreement with the results presented by other authors 

studying the subject of optimal sensor location in tubular reactors [2], 

[24], [26].  

The results also indicate that for the case of continuous error free 

measurements temperature sensors are preferred over concentration 

sensors for state estimation. Looking at Figure 2.1 these results also 
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corresponds with engineering intuition. Small variations in the benzene 

feed show noticeable effects in the temperature curves in the region z = 

0.4-0.9 m. 

 

Using equation (2.21) – the trace of the observability Gramian (Figure 

2.3c-d) – as selection criterion the best sensor position for concentration 

measurements is found down stream at the reactor outlet. For 

temperature the optimal position is still at the hot-spot of the reactor 

tube. From the results in Figure 2.3 and the definition for trace in (2.21) 

we concluded that the spectrum of the Gramian for temperature 

measurements is dominated by the spectral radius. For concentration 

measurements trace as optimal sensor position selection criterion forms 

an intermediate between spectral (2.20) norm and near singularity (2.22) 

(see below). 

 

For the near singularity criterion (2.22) the results indicate two things 

(Figure 2.3e-f; notice the logarithmic y-scale; equations (2.17)-(2.19) for 

degree of observability give similar results). First of all, the size of the 

smallest singular values tells us that all the observability Gramian's are 

very close to being singular. The algorithms used in these calculations 

have great difficulty computing these small numbers. This causes the 

noisy appearance of the curves, but the overall trend is clear. The second 

conclusion from these last results is that for measurements placed at the 

beginning of the reactor the observability Gramian is much closer to being 

singular than for sensors at the end of the reactor. To interpret this result 

we have to go back to the original reactor model. Looking at the 

differential equations (2.5)-(2.8) and the parameters of the simulation 

model in Table 2.2 we see that the fluid phase travels down stream (from 

reactor entrance to exit) with a velocity v = 2.48 m.s-1. The only possible 

method of transporting information upstream (from exit to entrance) is by 

the small mass and thermal diffusion coefficients opposing the down 

stream flow. If we look again at Figure 2.1c-d, we observe that the last 

part of the temperature profiles (beyond z = 2 m) hardly change when 

manipulating the benzene feed. If complete state observability is required 

from for instance a maleic anhydride measurement on the first grid point 
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it is very hard to detect minuscule changes in the reactor temperature 

down stream, and very hard in this context means a near singular 

observability matrix. This confirms that calculating the degree of 

observability by near singularity (2.22) – aimed at complete state 

observability – is dominated by those state vector elements that are the 

most difficult to estimate, which clearly leads to undesirable solutions for 

the optimal sensor location problem for our reactor model. The same 

conclusion holds for the degree of observability criteria (2.16)-(2.19) 

retrieved from literature. 

 

2. 5 Conclusions - In this chapter we introduce new and robust selection 

criteria for optimal sensor location for state estimation of a tubular reactor 

model. The two criteria we propose are scalar measures calculated from 

the observability Gramian for the system configuration under 

investigation. The spectral norm (2.20) focuses on maximizing the energy 

received by the sensor. The trace (2.21) is an average measure of the 

estimation performance. For comparison we use the near singularity 

criterion (2.22), a measure indicating how far a system is from being 

unobservable. This criterion focuses on complete state observability. For 

the tubular reactor simulation used as an example in this chapter the last 

criterion was of little use. Its outcome for the optimal sensor location 

problem is dominated by the minuscule changes in components and 

temperature profiles in the last part of the reactor tube for disturbances in 

the benzene feed. The same conclusion holds for measures for degree of 

observability (2.17)-(2.19) proposed in literature. 

When one is interested in monitoring major changes in the state variables 

through state estimation (e.g. alterations in the temperature profile near 

the hot-spot to avoid possible damage) the robust spectral norm is a more 

suitable selection criterion than near singularity (or the criteria proposed 

in literature) for optimal sensor positioning. This distinction between 

complete state versus important disturbances for degree observability 

criteria resembles the differentiation made by e.g. Rosenbrock [16] and 

Skogestadt and Postlethwaite [17] between (complete) state and 

input/output controllability. 
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In this study we assumed the hypothetical case of continuous, error free 

and immediate sensor responses, while disregarding uncertainty in the 

process model. Although these are deviations from real in-process 

measurements, the methods developed in this chapter can serve as early 

screening tools for the possibilities of in-process measurements 

implementation, avoiding the necessity of specifying the performance 

characteristics of real sensors. This aspect distinguishes our approach 

from other solutions to the optimal sensor location popular in literature 

[24]-[32]. In these publications the error covariance matrix from a state 

estimation Kalman filter is minimized by varying the sensor position. 

Implementing a Kalman filter however, requires knowledge (or at least 

assumptions) about the measurement dynamics and process uncertainty, 

which again directly influence the sensor location problem. Research on 

including sensor performance in the optimal location selection criteria is 

presented in later chapters of this thesis. 

 

2.A Appendix - In this appendix we illustrate the role of the observability 

Gramian – also known as the unscaled Fisher information matrix – in state 

vector determination. In the formal statistical definition the information 

matrix represents the information obtained from a sample of values from 

a known probability distribution. It is a scaled version of the Gramian 

matrix when the measurement errors in y(t) have a joint Gaussian 

distribution. The information matrix is a quantitative statistical 

characterization of the 'information' that is in the data y(t) used for 

estimating x(t). The Gramian primarily serves as a qualitative algebraic 

characterization of the uniqueness of a solution [32], [33]. 

 

Consider the following problem: we want to determine a state vector x(t0) 

from the observations y(t), t0 ≤ t ≤ t1, through equation (2.A1) 

 

)()( 0
)( 0 tet tt xCy A −=         (2.A1) 
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In (2.A1) we recognize the natural response of a system as given by 

equation (2.12). If we wish to determine x(t0), the solution can be found 

through the normal equations for (2.A1) 

 

)()( 0
)()()( 000 teete tttttt xCCyC AAA −−′−′ ′=′      (2.A2) 

 

Integrating over the entire measured time trajectory y(t) we find the 

following solution for x(t0) 
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We recognize the term in brackets as the observability Gramian of the 

system, equation (2.13). From equation (2.A3) we notice that the solution 

is only possible if the inverse of Wo(t1,t0) exists. This is the same as 

stating that the Gramian has to be full rank, which immediately leads to 

the original (binary) definition of observability. 

For classical parameter estimation the inverse of the scaled information 

matrix (scaled by a function of the known distribution of the errors 

assumed to be present in the sensor responses y(t)) is equal to the 

estimation covariance matrix of x(t0). This covariance or 'estimation error' 

matrix obviously should be minimized to optimize the estimation 

procedure. This corresponds to maximizing a scaled observability 

Gramian. For classical estimation, using a proper experimental design will 

guarantee an optimal information matrix in the corresponding regression 

models [22].  

The objective of this study is optimal sensor location. The only parameter 

to investigate is the sensor type and position as specified by the output or 

measurement matrix C. From (2.A3) we concluded that the 'size' or 'norm' 

of the observability Gramian Wo(t1,t0) be can used to judge the 

performance of experiments for different configurations.  

From a theoretically point of view, by assuming continuous, error free and 

immediate response measurement we have to assume finite arithmetic 
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precision. If we would assume infinite precise computations all systems in 

(2.A3) would give equal outcomes. 

 

2.B Appendix - The system in (2.B1) serves as an example to study the 

different criteria for degree of observability 
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The eigenvalues A are λ1 = -0.06, λ2 = -2.56 and λ3 = -3.38, thus (2.B1) 

is stable. Three different models are formed from three different 

measurement vectors 

 

)()( tty ii xc=          (2.B1b) 

[ ] [ ] [ ]100010001 321 === ccc     (2.B1c) 

 

The squared responses calculated from equation (2.12) for a unit impulse 

disturbance at t = 0 for these three systems are shown in Figure 2.B1. 

The maximum signal response ('energy') for these three observable 

configurations is clearly number one, measuring the first element in the 

state vector. 

 

Figure 2.B1 squared 

impulse response for 

system (2.B1): y1 (-), 

y2 (..) and y3 (--) 
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The Gramian's from equation (2.14) plus the corresponding eigenvalues 

for these three systems are 
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The matrices (2.B2) all have positive distinct eigenvalues, thus the 

observability Gramian's are positive definite. None of the differences 

between the Gramian's in (2.B2) are however positive definite, e.g. the 

difference between the first and the third system is 
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The criteria for degree of observability for the three configurations of 

(2.B1) from equations (2.16)-(2.22) of the theoretical section are shown 

in Table 2.B1. From these results we observe that for this (synthetic) 

example there is no clear overall winner. Even for the criteria µ1-µ3 

proposed by Müller and Weber there is no agreement (despite the 

imbedding for every individual system). The two robust selection criteria – 

ρ and trace – indicate measuring state one as the optimal position for 

state determination. 
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criterion*) Equation Wo1 Wo2 Wo3 

µ1 (16) 0.0008 0.0001 0.0026 

µ2 (17) 0.0024 0.0002 0.0076 

µ3 (18) 0.0871 0.0280 0.0444 

γ (19) 8851 36510 157 

ρ (20) 7.00 2.82 0.41 

Trace (21) 7.12 2.92 0.50 

NS (= µ1) (22) 0.0008 0.0001 0.0026 

Table 2.B1 
*) Underlined result is the 'winning' configuration for this particular criterion based 

on the explanation from the theoretical section. 
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3. Selection and Positioning: Stochastic Grounds 

Process analyzer location and performance assessment for optimal 

process monitoring in a tubular reactor 

 

 

Abstract – The influence of process analyzer location and performance on 

plant-wide process monitoring is investigated. Process analyzer 

performance is evaluated using five uncertainty contributions to the 

estimation error: measurement error/uncertainty, analysis frequency, 

sample size/grab error, analyzer memory effect/response correlation and 

delay time. Both the choice of location and the performance 

characteristics of different process analyzers can be evaluated using a 

measurability factor M, ranging from zero to one, where one indicates 

perfect monitoring capabilities. Due to the unifying nature of the 

measurability factor, this factor can be used to make a rational decision 

between very different process analyzers. This allows for finding optimal 

process analyzer configurations for existing processes or for processes in 

the design phase. We use a tubular reactor simulation model for the 

partial oxidation of benzene to maleic anhydride to demonstrate the use of 

the measurability factor. 
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3.1 Introduction - An ever-increasing number of process analyzers is 

implemented in chemical industry. At the same time the diversity in 

techniques suitable for harsh process conditions – e.g. Chromatography, 

(Near)Infrared-, Raman- or (low field) nuclear magnetic resonance 

spectroscopy, mass spectrometry, flow injection analysis, ultrasonic 

analysis, to name just a few - grows steadily [34]. The implementation 

and operation of analytical in-process1 measurements is, however, still 

relatively expensive. The cost of purchase and maintenance often limits 

the number of analyzers that can be implemented for monitoring and/or 

control purposes. This naturally leads to the following three questions: 

what is the best location to place the limited amount of analytical 

instruments available, what is the best choice among the wide selection of 

process analyzers to monitor the process under observation and what is 

the added value of process analyzers as compared to more conventional, 

interferential measuring devices like temperature-, pressure-, flow-

sensors? 

In order to assess the performance of a process analyzer we identify five 

contributions to characterize the process analyzer, the analyzer dynamics. 

The first contribution is the uncertainty or error encountered in every real 

world measurement. The second contribution is the analysis frequency of 

the instrument, which determines the signal reconstruction capabilities. 

The third contribution is the uncertainty build-up introduced by collection 

a sample of sufficient size, the so-called grab error. The fourth 

contribution is memory effect or correlation between successive 

measurements. This phenomenon is often observed in ‘physical’ 

measurements like ion-selective electrodes, pH or conductivity, where 

responses are correlated over time. The fifth contribution is the delay 

time: the time passed between taking a sample and retrieving the 

analysis result. Separation based composition analyzers, e.g. require 

some time to analyze the sample before the result becomes available. 

These five contributions are used to characterize a process analyzer; 

describing the way an in-process measurement observes process variables 

                                                
1 The expression ‘in-process’ is an idiom for all off-line, at-line, on-line, in-line 
and non-invasive measurement techniques suited for ‘real-time’ monitoring 
and/or controlling of a process.  
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and presents them to e.g. the controllers. Additional instrumental 

characteristics could be considered, but the five mentioned above form a 

good representation of most analyzers. 

In this chapter we model non-ideal measurements for estimating the 

entire state of a fixed bed tubular reactor simulation model for the 

catalytic partial oxidation of benzene to maleic anhydride. The state of this 

system is formed by the concentration and temperature profiles over the 

reactor tube. These state elements have to be determined from measuring 

one of the variables at one particular position. The optimal analyzer type 

and position are selected by minimizing the theoretical state estimation 

error in a Kalman filter. Using state estimation error as a criterion for 

optimization requires knowledge of the uncertainty in both the system and 

measurements. Many authors discussed the optimal sensor location 

problem using this same optimization criterion [24]-[32]. These authors 

however all work with relative simple sensors (typically temperatures), at 

the most dealing with measurement uncertainty and sample frequency in 

the optimization.  

For process analyzers this is insufficient. The time delay introduced when 

performing an accurate Gas Chromatographic concentration 

measurement, e.g. might be competing with a fast but less accurate 

spectroscopic determination. These measurement - accuracy, sample 

frequency, delay time, etc. - characteristics must be incorporated to fairly 

assess the performance of different in-process applications. We do this by 

incorporating all dynamics (both plant and analyzer) in one system model, 

creating a so-called standard plant [36]. We explicitly model uncertainty 

caused by stochastic process disturbances and analyzer characteristics, 

showing their impact on optimal measurement type and location from a 

set of realizable configurations2. An alternative can be found in a 

deterministic analyzer selection criterion (focusing on the system 

dynamics, not using the stochastic process uncertainty) of optimal 

analyzer location based on the idea of degree of observability from system 

theory [5], [Chap. 1]. 
                                                
2 If we use the word the ‘optimal’ in this chapter we mean the best choice from 
the set of all possible process analyzers. The true ‘optimal analyzer’ would be 
infinitely fast and infinitely precise which are impossible specifications for practical 
and real measurements.   
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In the 1960’s P.M.E.M. van der Grinten developed ideas to quantify the 

performance of measurements and control actions by approximate first 

order dynamics and uncertainties [3], [37]. A short explanation of the 

theory developed by van der Grinten is given in Appendix 3.A. He 

introduced two scalar values called ‘meetbaarheidsfactor’ (measurability 

factor) and ‘regelbaarheidsfactor’ (controllability factor) that quantify how 

well a signal can be measured and how well a disturbance can be 

suppressed. The ideas only found limited application outside of the Dutch 

engineering community, possibly due to the language barrier ([38]; 

p.445). Only a few sources on this theory in the English language are 

available [3], [4], [39], [40].  

The original theory of van der Grinten focuses on univariate, (simplified) 

first order descriptions of a process and a measurement and a fixed 

location. In this chapter we extend the five key ideas on measurement 

uncertainty and dynamics of van der Grinten to state estimation problems 

and define a measurability factor M for the multivariate case, that is for 

the whole system. Moreover, we also consider the location of the analyzer 

in the optimization of the system’s measurability. 

Process analyzer location and performance assessment as presented in 

this chapter can be seen as related to other research areas such as sensor 

failure and data reconciliation (see e.g. [41]). In this chapter we will 

however not address these important issues. Although an ever-increasing 

number of in-process analytical measurements is being installed, the 

implementation cost involved still not allows them to be treated like more 

regular sensors. In nearly all situations analyzers are used for key-

information on process variables, and information ‘redundancy’ from these 

measurements is not really an issue yet. This justifies our focus on the 

specific instrument characteristics for process analyzers selection and 

positioning. 

The remainder of the chapter is organized as follows. In the next section 

we develop the theory on different sources of analyzer dynamics and show 

their implementation in the Kalman filter. The third section contains a 

short description of the reactor simulation model used as an example. In 

the fourth section we present the result for the optimal process analyzer 

configuration problem (both instrument characteristics and location) for 
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the tubular reactor, and the last section is used to formulate conclusion 

based on the results. 

 

3.2 Theory - Process model - In this chapter we model non-ideal 

measurements of a dynamic process and subsequently estimate the entire 

state of this system. The position of an analyzer for process monitoring or 

control in this chapter is shown in Figure 3.1. The process is influenced by 

a deterministic input (possibly modified by a regulator) and stochastic 

disturbances. This results in a certain process output. The analyzer 

measures one of the variables in the process and together with a filter 

tries to find the best estimate of the present state of the process. The 

estimated value is then used to adjust the regulator to achieve a desired 

process output. 

  

Figure 3.1 The 

position of the 

analyzers in process 

monitoring and control. 

 

 

 

 

 

 

 

 

 

The system and measurement dynamics and uncertainties can be 

captured in the well-known linear, time invariant state space format as 

follows [32], [33], [42] 

 

)()()()( 21 twtutt c bbxAx ++=�       (3.1a) 

)()()( tvtty +′= xc         (3.1b) 
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Where x(t) (n x 1) is the state of the system at time t, Ac (n x n) is the 

continuous time system matrix, bi (n x 1) are input distribution vectors, 

u(t) is the deterministic input, and w(t) is the stochastic disturbance with 

distribution N(0,q(t)), where q(t) is the spectral density of w(t), y(t) is the 

measurement result, c (n x 1) is the output coupling vector, and v(t) is 

the stochastic measurement disturbance with distribution N(0,r(t)), where 

r(t) is the spectral density of v(t). For notational convenience we will only 

treat the theory for single channel inputs and measurements (SISO), the 

extension to the multiple inputs/outputs (MIMO) is however 

straightforward. 

 

The discrete time solution for Eq. 3.1a – under zero order hold assumption 

for the inputs – is (t = k.∆t; t+∆t = (k+1).∆t) 
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where integral B (n x n) is implicitly defined and wk is the variance 

corresponding to the spectral density w(t) [32], [33], [42]. We further 

assume that measurements yk are discrete observations (with sampling 

time ∆t) from a system through the following equation 

 

kkk vy +′= xc          (3.2b) 

 

where vk is the stochastic measurement disturbance with distribution 

N(0,rk) and discrete time measurement variance rk. 

 

In this chapter we adopt the concept of the standard plant [36].  The idea 

of this concept is to incorporate all dynamics (both plant and analyzer) in 

one system matrix Ac in Eq. 3.1. Augmenting the original plant system 

matrix with the dynamics representing the behavior of the analyzers 

creates the standard plant. The augmented states transform the true 

process variable selected for measurement to a new, modified variable 
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filtered by the process analyzer dynamics. This ‘virtual’ variable gives the 

signal retrieved from the analyzer. This procedure has the advantage that 

all dynamics present in system Eq. 3.1 (plant, measurement and possibly 

control) are captured in one model, merging all operations in one system 

matrix Ac. 

 

Figure 3.2 Sampling 

of one process variable 

in the process. The 

sample is ‘processed’ 

by the analyzer, and 

the result is used to 

estimate the entire 

system state x(t) via a 

filter. The goal of the 

in-process 

measurement is to 

minimize the 

estimation error e(t) 

over all time t. 

 

Process analyzer model - Figure 3.2 zooms in on the process analyzer in a 

monitoring or control design. One of the state variables in the process is 

selected for measurement. This variable can e.g. be a concentration of 

one of the components. The variable under observation is in Figure 3.2 

symbolized by element xs(t) (x-signal or sampled variable) from the state 

vector x(t).  The variable xs(t) possesses certain dynamic behavior 

(symbolized by Ts) and variance/amplitude (σs
2) due to the process 

disturbances. These dynamics and variances are intrinsic properties of the 

process. In the remainder of the chapter we focus on the stochastic 

disturbance input to the process in Eq. 3.1a, assuming that the 

deterministic input component u(t) is completely known. 

The analyzer ‘processes’ the selected process variable and yields an 

estimated value on discrete time points as measurement outcome yk. This 

estimate is then fed to a filter that has two functions: invert the undesired 

signal processing by the analyzer, and estimate from this signal the 
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present state kx̂  of the system under observation. This leads to an 

estimation error kkk xxe −= ˆ , and the objective is to select the 

measurement and filter that minimize this estimation error. A small 

example in Appendix 3.B will help to illustrate the theory developed in this 

chapter [5]. 

 

To find the optimal in-process measurement configuration for estimating 

the state of a process we take six different aspects into consideration.  

The first one is the selection of the process/state variable and location to 

be sampled. This selection is guided by the amount of information a 

variable contains on the dynamics of the process under investigation, the 

availability of a suitable in-process instrument for monitoring in ‘real-time’ 

that variable at that location, and the matching of the process dynamics 

and analyzer dynamics. The variable selection is achieved by defining the 

appropriate measurement vector c in Eq. 3.2b. 

 

The second aspect is measurement uncertainty σi
2 (Fig. 3.2), present in all 

physical and analytical measurements. Uncertainty in the analyzer 

outcome is approximated by the true quantity yk(t) = c’xk plus additive 

white noise vk with known distribution, typically determined during the 

calibration procedure or supplied by the instrument vendor 

 

),0(~ˆ 2
ikkkk Nvvyy σ+=       (3.3) 

 

which is similar in form as the system measurement Eq. 3.2b.  

 

The second source of error is the sampling frequency of the instrument, 

the error introduced by making discrete observations on the continuous 

time process with continuous time disturbances. This analyzer 

characteristic is symbolized by the time interval between successive 

sample Tf (where the sample frequency is 1/Tf, Fig. 3.2), and its impact on 

signal reconstruction is again illustrated in Figure 3.3. We assume 

equidistant samples where the basis for switching from continuous time in 

Eq. 3.1 to discrete time in Eq. 3.2 is the period ∆t between two successive 
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measurements. This parameter thus determines the time-period over 

which stochastic disturbance w(t) in Eq. 3.1 is free to alter the system 

state before a new observation is done. The uncertainty about the state 

can only be reduced when this new measurement becomes available and 

a new state estimate is made.  

For many instruments (e.g. spectrophotometers) there is a trade-off 

possible between the sample frequency and the measurement uncertainty 

in Eq. 3.2. If more time is taken per analysis, thereby increasing the 

signal-to-noise ratio, the measurement error can be reduced, at the cost 

of less frequent measurement outcomes. 

 

Figure 3.3 The effect 

of different process 

analyzer dynamics 

contributions on the 

observation of a 

variable for the outer 

world: Tf sampling 

frequency, Tg grab or 

sample, Ti sensor 

response correlation 

and Td response delay. 

Markers indicate 

measurement points, 

(..) is the true signal and (-) is the sensor response. 

 

The fourth phenomenon is introduced by sample size or grab size. This 

component to the analyzer dynamics is named Tg (Fig. 3.2). As an 

example one can think of a spectrophotometer averaging several spectra 

in a certain period of time to reduce the noise contribution in Eq. 3.2b. 

The mean spectrum with better signal-to-noise ratio can then e.g. be used 

to compute a concentration.  

The expected value of a measurement taken over a short period of time is 

the average value over that time period. This expected value becomes 

available once the entire sample period has passed. Under the assumption 

that sampling or grab time is short compared to the dominant time 
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constants of the system we associate the measurement response with the 

mean time on this sampling time interval. Therefore we penalize the 

integration or sample time with a time delay of Tg/2 seconds. The effect of 

sample time or grab-size on signal reconstruction is illustrated in Figure 

3.3. It is impossible to represent pure delays in the state space time 

domain notation in Eq. 3.1. A good approximation of pure delay for the 

problems presented in this chapter turns out to be a third order Padé 

approximation, shown here in the Laplace domain notation [38] 
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The concrete implementation of time delay in the state space time domain 

for the standard plant concept is illustrated by the example in Appendix 

3.B.  

 

The fifth component in process analyzer performance is the correlation 

between successive measurements. In many instruments there is 

significant carry over in the detector/signal response from one 

measurement to the next (e.g. pH Ion Selective Electrodes or 

Temperature Dependant Resistors), and this ‘memory effect’ can be 

modeled explicitly. In this chapter we assume exponentially first order 

correlation of the auto regressive form  
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where Ti is the correlation time between successive measurements (Fig. 

3.2) and the uncertainty vk is scaled to have equal magnitude as the 

uncertainty contribution in Eq. 3.3. The effect of sensor response 

correlation on signal reconstruction is illustrated in Figure 3.3. As can be 

seen it is effectively a convolution between the instrument dynamics and 
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the true underlying variable. The practical implementation is again shown 

in the example in Appendix 3.B.  

 

The last component describing the performance of an in-process 

instrument is the delay time between sampling and the release of the 

result (Td in Fig. 3.2). A frequently encountered example of an analyzer 

with a significant time delay is a gas chromatograph for concentration 

measurements, where the different components in a sample first have to 

be physically separated before the analysis results can be determined. We 

again use a Padé approximation - similar to the one for sample size in Eq. 

3.4 - to approach pure time delay 

 

)()(1206012

1206012

)()()(ˆ
32

23

32
23

svsy

T
s

T
s

T
s

T
s

T
s

T
s

svsyesy

ddd

dddsTd +
+++

+−+−
≈+= −   (3.6) 

 

To stress the importance of the dynamics of in-process analyzers Figure 

3.4 shows the ‘time-profile’ of a measurement. Only after a period equal 

to the delay time Td plus half the sample period Tg the results become 

available, while the sample frequency Tf determines how often a 

measurement outcome is retrieved. Optimal selection of instrument type 

and location must guarantee that sufficient information is left in the 

measurements to make a good ‘real-time’ estimate of the state of the 

system.  

 

Figure 3.4 Time 

schedule for an in-

process measurement. 

(↔) indicate the 

different time spans, 

(..) designate the time 

point a measurement 

result is connected 

with. 
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State estimation with a Kalman filter - The filter used for state estimation 

of the standard plant model – as depicted in Figure 3.1 and 3.2 - in this 

chapter is the well-known Kalman filter [32], [33], [42]. It consists of two 

parts: 

i) the state estimation time update (known as a priori estimate −
kx̂ ) 

between two successive measurements k and k+1, separated ∆t seconds 
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ii) the state estimate measurement update/correction (known as a 

posteriori estimate +
kx̂ ) using the measurement result at point k+1 
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where kk+1 is the Kalman filter gain, Pk+1
+ is the theoretical a posteriori 

estimation error covariance matrix, and Qk is the positive semi-definite 

uncertainty distribution covariance matrix 

 

∫
∆+

−∆+′−∆+ ′=
tt

t

tttt
k deqe cc ττ ττ )(

22
)( )( AA bbQ      (3.9) 

 

The matrix Qk represents the contribution of the system disturbance w(t) 

in Eq. 3.1 on the overall state estimation error in Eq. 3.7. Uncertainty w(t) 

- with a spectral density of q(t) - is ‘injected’ in the process with a system 

matrix Ac. Uncertainty in Eq. 3.2a continuously builds up over the time 

period t to t+∆t, the time between two discrete measurements in Eq. 

3.2b. At these discrete measurement time-points all uncertainty can – for 

the hypothetical case of perfect measurements - be removed, but not 

before these points. 
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The Kalman filter as presented in Equations 3.7 and 3.8 is an unbiased, 

minimum variance and consistent estimator for the linear (or linearized) 

system in Eq. 3.1. If the system is observable and controllable, and if Qk, 

rk and A are bounded, the filter is asymptotically stable, meaning that all 

the eigenvalues of the matrix A-kkc’ fall within the unit circle.  

Notice that in the approach taken in this chapter the role of Qk - the 

constant term in the difference equation for the theoretical estimation 

error Pk in Eq. 3.7b - is somewhat different than the one encountered in 

many other studies [2], [24], [26], [28]-[30], [35], [Chap. 4]. Here, we 

give Qk the role of describing the uncertainty propagation in the system 

for a period ∆t between two measurements, since this is of importance for 

the optimal process analyzer location problem addressed in this research. 

Known uncertainties for the system parameters in A can also be 

accounted for by placing the appropriate values in the system uncertainty 

covariance matrix Qk. In many applications this is done by (post-run) 

analysis, ‘tuning’ the diagonal elements in Qk to create a better fit 

between some reference values and the Kalman-predictions. In this 

chapter however we give guidelines for analyzer type and location 

selection in an early design stage of a process, which obviously excludes 

the use of post-run information. Known uncertainty in the system 

parameters can however be included in the system error matrix Qk if 

available.  

Instrument selection and location are optimized by minimizing a sensible 

norm of the expected estimation error Pk given by the algorithm in 

Equations 3.7 and 3.8. For linear time invariant systems this theoretical 

estimation error can be calculated a priori by implementing Equations 

3.7b, 3.8a and 3.8c. This means that the optimal analyzer type and 

location can be determined without any form of process simulations. 

 

Measurability factor - From Eq. 3.9 we notice that - for a stable system 

matrix Ac - there is an upper bound on the system uncertainty covariance 

matrix by Qk for ∆t � ∞ (the covariance matrix of uncertainty propagation 

through the system). This value for Qk corresponds with the maximum 

uncertainty in knowledge about the state of the process, corresponding to 
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the situation where no measurements what so ever are performed. When 

a analyzer/filter-combination is used to do an estimate, some of the 

uncertainty about the process state will be removed. The remaining 

uncertainty contribution after a measurement update is represented by 

the estimation error covariance matrix Pk in Eq. 3.8c. The performance of 

a analyzer/filter pair can be judge by the size of this uncertainty residual. 

Using this upper bound we can define a performance index for a particular 

in-process measurement configuration (Appendix 3.A) 
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We will call the square root of this quantity the measurability factor. M can 

vary between 0 and 1, where 1 means perfect knowledge about the state 

of the system after a measurement is taken (all uncertainty has been 

removed by the measurement and state estimate), while 0 indicates that 

a particular measurement configuration supplies no information about the 

state of the process3. The best analyzer type and location is taken as the 

one maximizing the measurability factor M. If the system is unstable there 

is no upper bound on the error covariance matrix.  

The criterion to judge the performance of the analyzer/filter combination 

is the trace of the estimation error covariance matrix Pk and the system 

uncertainty Qk. This norm corresponds to the sum of estimation error 

variances, thereby giving variances for all variables equal weight.  

In this chapter we will estimate all process variables from one 

measurement, and place equal weight on all errors through the trace 

criterion in Eq. 3.10. If installing more analyzers is feasible or if 

appropriate information is available alternative (weighted) selection 

criteria can be introduced placing heavier penalties on mismatch for 

certain process variables. There is no problem in introducing these 

alternative criteria in the proposed procedure of optimal instrument 

selection and positioning. 

                                                
3 For an extremely poor choice of analyzer the trace of Pk could theoretically 
exceed the trace of Qk, giving a negative result for Eq. 3.10 and a negative value 
for the measurability factor M. 
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3.3 Tubular Reactor Model - The theory on analyzer selection 

developed in this chapter is illustrated with a simulation model of a fixed 

bed tubular reactor for the production of maleic anhydride by partial 

oxidation of benzene [5], [18], [19], [Chap. 2]. 

Three exothermic, irreversible gas phase reactions take place on a solid 

V2O5-MoO3-P2O5 catalyst particles packed in a one-inch diameter tube 

 

C6H6     + 4 O2  →
k1

 C4H2O3 +    CO +    CO2 + 2 H2O  (3.11a) 

C6H6     + 6 O2  →
k2

                 3 CO + 3 CO2 + 3 H2O  (3.11b) 

C4H2O3 + 2 O2  →
k3

                 2 CO + 2 CO2 +    H2O  (3.11c) 

 

Reaction 3.11a is the desired path for the formation of maleic anhydride – 

the product – from benzene. Reactions 3.11b and 3.11c represent the 

undesired burning of reactant and product, respectively. The feed stream 

to the reactor is air mixed with approximately 0.9%(v/v) benzene. 

Because of the oxygen excess in the feed all reactions are assumed to be 

pseudo first order in the limiting reactant. 

The two mass balances used in the model are molar flow benzene FB 

(mol.s-1) and molar flow maleic anhydride FMA (mol.s-1) in the fluid phase 

stream. The partial differential equations are given by Equations 3.12a 

and 3.12b  (t denotes time; z indicates axial position in the reactor; v is 

linear gas velocity of 2.48m.s-1; Deff is effective mass diffusion coefficient) 
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Two heat balances are included in the simulation, namely the temperature 

of the fluid phase Tf (K) and the temperature of the stagnant solid phase 

catalyst Ts (K). The corresponding (partial) differential equations are 

shown in Equations 3.12c and 3.12d (keff is effective heat diffusion 
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coefficient; Uf-w is the fluid phase-wall heat transfer coefficient; Us-f is the 

solid phase-fluid phase heat transfer coefficient; Tw is the reactor wall 

temperature; cs∆Hx is a reaction enthalpy coefficient) 
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Figure 3.5 shows the steady-state concentration and temperature profiles 

over the reactor tube for three different benzene feeds. The boundary 

conditions used in the calculations are FB(t,0) = [feed] mol.s-1, FMA(t,0) = 

0 mol.s-1 and Tf(t,0) = 733 K. Diffusion effects at the entrance and exit 

are neglected.  

 

Figure 3.5 a) molar flow benzene   b) molar flow maleic anhydride   c) fluid 

phase temperature d) solid phase temperature; benzene feed 0.900 (-), 0.873 

(..) and 0.927 %(v/v) (--). 
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The non-linear partial differential equation system in Eq. 3.12 is rewritten 

in a linear, finite dimensional state space reactor model [5]. The first step 

is to divide the reactor length into m equidistant segments indicated by zi, 

where z0 is the reactor entrance. For every grid-point zi we define four 

(partial) differential equations from Eq. 3.12. In the next step, the first 

and second order differential terms in the partial differential equations on 

every grid-point are approximated by second order upwind and central 

difference terms. After this step, the original reactor model is transformed 

into a set of n = 4 x m ordinary differential equations, two mass and two 

heat balances on all m grid-point over the reactor length ('Method Of 

Lines' approximation). 

The last step is to linearize all non-linear terms in the reactor model. This 

is done by a first order Taylor-series approximation.  

 

After these modifications we have transformed the original reactor model 

into n linear time invariant ordinary differential equations. They can then 

be organized in a state space model as shown in Eq. 3.1a. The state 

vector is organized in an alternating fashion x(t) = [FB(t,z1), FMA(t,z1), 

Tf(t,z1), Ts(t,z1), FB(t,z2), ... , Ts(t,zm)]'. The band diagonal dynamic 

coefficients matrix Ac has appropriate constants connecting the n linear 

differential equations for successive grid points. In our reactor model both 

the deterministic input u(t) and the stochastic input w(t) is benzene 

concentration in the feed stream. This system for our reactor model is 

asymptotically stable. 

To simulate analyzers in the reactor the system measurement equation 

3.1b is used. All the components of the analyzer dynamics are included in 

the augmented system matrix Ac in accordance with the standard plant 

concept. 
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3.4 Results - To study the effect of process analyzer uncertainty and 

dynamics we introduce three kinds of measurements in our reactor 

simulation model presented in the previous paragraph [43], [44]. The first 

instrument is a fast but relatively inaccurate spectroscopic measurement 

of the benzene (B) or maleic anhydride (MA). The second analyzer is a 

fast gas chromatographic (GC) measurement of benzene or maleic 

anhydride. For this analyzer accuracy is increased at the cost of 

introducing delay time necessary to physical separate the different 

components in instrument. The third measurement is a thermal resistor 

sensor for the solid or fluid phase temperature in the reactor tube. This is 

an example of an instrument having significant correlation in the 

response. The specification of each instrument is specified in Table 3.1. 

 

Analyzer σI Tg
*) Ti

*) Tf
 Td

*) 

(a) Spectrometer B  : 0.045%(v/v) 

MA: 0.030%(v/v) 

- - 0.05s - 

(b) GC B  : 0.014%(v/v) 

MA: 0.009%(v/v) 

- - 5.00s 5.00s 

(c) Thermal resistor 1.5 K - 3.0s 0.05s - 

Table 3.1 

*) ‘-‘ means no significant contribution for the overall performance of this type of 

analyzer. 

 

The disturbance on the system is a ten percent fluctuation of the nominal 

benzene feed flow of 0.9%(v/v). Using Equations 3.7, 3.8 and 3.9 the 

theoretical estimation errors for the different instruments are computed. 

The task of the Kalman filter is to estimate from the measurement 

outcome all state variables x(t) in the reactor tube in Eq. 3.13. The 

measurability factors for the three process analysers specified in Table 3.1 

placed at different location in the reactor tube are shown in Figure 3.6. 
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Figure 3.6 Measurability factor M for different analyzer configurations at different 

locations in reactor tube a) spectrometer for B (-) and MA (..); b) GC B (-) and 

MA (..); c) temperature fluid (-) and solid (..) phase. 

 

From Figure 3.6 and Table 3.1 we learn that the best performance for 

monitoring the benzene/maleic anhydride reactor is achieved by analyzer 

(a) – the fast but less accurate spectroscopic analyzer - measuring maleic 

anhydride at z = 0.6-0.7m. Instrument (a) also gives a good performance 

for benzene concentration analysis near the entrance, which is close to the 

source of disturbance for the reactor model, namely fluctuation in the 

benzene feed. The second observation is that estimation of the reactor 

state using analyzer (b) performs poor for both benzene and maleic 

anhydride analysis. The delay time Td of five seconds for this GC-analysis 

is simply to long for this process and the measurement thus contains 

hardly any information for real-time monitoring the system state. The 

third sensor (c) in the location z = 0.4-0.7 - sampling temperature of fluid 

or solid phase in the reactor tube - is a reasonable alternative for the use 

reactor state estimation, although not as good as the concentration 

measurement with analyzer (a). 
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If we look at Figure 3.6, together with the nominal reactor profiles plotted 

in Figure 3.5, we can draw some additional conclusions. The first one is 

that none of the instruments perform well in the last part of the reactor 

tube. Not much information on the dynamic behavior of the reactor 

system is available in the last half of the system, as is to be expected. A 

second observation is that the rather extreme ‘hot-spot’ plays a crucial 

role in the location. Temperature measurements are clearly dominated by 

its location, while the concentrations are indirectly influenced by the 

‘negative feedback’ for the exothermic oxidation of benzene as can be 

observed in Figure 3.5a. Another observation is that all optimal positions 

have slightly moved towards the reactor entrance, as compared to 

deterministic selection criteria for optimal measurement location [5], 

[Chap. 2]. Two reasons can be identified: the interaction of analyzer and 

reactor dynamics, and the fact that the only disturbance for this particular 

example system was selected to be the uncertainty in the benzene feed at 

the reactor entrance. If alternative disturbances, possibly taking place at 

different positions in the reactor tube, where to be included in the process 

model the optimal measurement location might be altered. 

 

3.5 Conclusions - In this chapter we have shown that the dynamic 

behavior of a process analyzer plays an important role in selection of the 

optimal in-process measurement type and location. Six contributions that 

are needed to specify the in-process analyzer performance have been 

identified: analyzer location, uncertainty σi
2, sample frequency Tf, 

sample/grab size Tg, response correlation Ti and delay time Td. Other 

important components in the success or failure of the process state 

estimation problem are the dynamics Ts and amplitude σs
2 of the process 

variable selected for measurement.  

In our case study – partial oxidation of benzene to maleic anhydride in a 

tubular reactor – the best analyzer is a fast spectroscopic measurement of 

the product and, to a lesser extent, the reactant.  Gas chromatographic 

measurement of neither reactant nor product performed well, due to the 

relative large delay time associated with this instrument. Temperature 

measurement of fluid and solid phase also performed well in the ‘hot-spot’ 

region of the reactor tube.  
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The approach as formulated in this chapter – including all process 

analyzer relevant dynamics in the so called standard plant, and using the 

theoretical estimation error to compute the measurability factor – can 

serve to optimize new in-process measurement implementations. This 

optimization for analyzer type and position can be done in an early 

(‘drawing board’) stage of the process design cycle. By using analyzer 

specifications, retrieved e.g. from instrument vendors, analytical 

chemistry departments or earlier experiences, and a model of the process 

the theory developed in this chapter makes it possible to determine the 

feasibility of process state estimation and monitoring/control tasks. The 

measurability factor M is a convenient scalar number to compare different 

in-process measurement configurations. The tools formulated in this 

chapter can be used to investigate the potential of in-process 

measurements. 

 

3.A Appendix - In this Appendix we will give an introduction to the ideas 

as presented by P.M.E.M van der Grinten on optimization of 

measurements and control schemes [3], [37]. We have changed some of 

the notation used in the original work in order to create a closer parallel 

with the work presented here. 

Controlling is intervening in a situation on the basis of measurements [3]. 

Three possible sources for lack controller performance can be identified in 

this definition. I) The measurement may be in error due to sensor 

inaccuracies and sluggishness. II) The intervention may lose its 

effectiveness through over-determinacy or dynamically unfavorable 

regulator behavior. III) The static and dynamic characteristics of the 

system under control are insufficiently known. If a measurement is used 

for control, the accuracy and speed with which the result becomes 

available are of equal importance. If time is lost in the measurement, or 

sampling intervals are long, the systems status may have changed 

without this appearing in the sensor response. Intervention made on such 

a basis can never be fully correct.  

Three dynamic operations are identified for the measured signal (denoted 

w(t)): the sample time or frequency Tf, the averaging or grab-size time 
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Tg, and the delay time Td, needed to condition and process the sample 

(Fig. 3.4). A measurement error v(t) is superimposed on the result. 

In many practical applications a reconstruction filter is used to minimize 

error e(t) between the sensor outcome and the true value. In evaluating 

the efficiency of the estimator only variations in the measured quantity 

w(t) and the measuring error v(t) are considered (systematic errors are 

not included). The definition 3.A1 is used to determine optimum efficiency 
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σσ −=          (3.A1) 

 

where m denotes the measurability factor (‘meetbaarheidsfactor’), 

indicating what part of the signal is actually measured under optimal 

conditions (m = 1 is perfect reconstruction; m = 0 means no information 

at all). 

Completely analogous we can define an efficiency factor for the control 

structure, again focusing on the changes of the variable about their 

nominal value. Variable w(t) now represents the equivalent disturbance 

(summed effect of all disturbances on the process) in the point 

immediately before the measurement location. The goal of stabilizing 

control is to minimize the resulting error output e(t). The controller 

efficiency is now derived as 
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where controllability factor (‘regelbaarheidsfactor’) r indicates the extent 

to which disturbances can be suppressed. Notice that r can never exceed 

m. This means that besides e.g. sluggishness of the controller itself, the 

sensor performance can dominate the overall control performance. 

 

Dynamics of stationary signal or time series w(t) can be characterized by 

their auto-correlation function, which for many physical systems can be 

approximated by Markov processes 
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Equation 3.A3 can be seen as a prediction curve, characterized by the 

variance/amplitude σw
2 and the correlation time Tw. The latter can be 

estimated already during the design stage by computing the largest time 

constant of the expected disturbances.  

 

Figure 3A.1 The role 

of delay time on the 

controller performance. 

 

 

 

 

 

 

 

 

 

 

To achieve good control the overall delay time (sum of sensor and 

controller delay) must be smaller than the disturbance time constant: Td < 

Tw. This is illustrated in Figure 3.A1 for the case of optimal control. A 

disturbance w(t) will emerge as output error e(t) until time equals t = Td, 

after which the error is compensated for by the controller. From this 

observation and Eq. 3.A2 a controllability factor due to delay time is 

deduced 

 

wd TT
d er /−=          (3.A4a) 

 

For all other contributions to the overall measurement and control 

uncertainty similar equations can be derived. These are often 

simplifications of more complicated, statistically more thorough 
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descriptions. Here we present only the final results. For details on 

derivations, more complicated auto-correlation functions and process 

disturbances we refer to van der Grinten [3]. 

The contribution of sampling frequency is given by 

 

wf TT
f em 2/−=          (3.A4b) 

 

The factor ½Tf stems from the notion that information at the moment of 

sampling is complete, but immediately before the next sample the 

information is obsolete by a time equal to Tf. Similar reasoning leads to an 

equation for the sample size error 

 

wg TT
g em 2/−=          (3.A4c) 

 

Formulas can be derived for the measurement error with sensor error 

correlation Tv and the inverse controller response with inversion time Tin 
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The overall controllability factor can now be determined from the different 

contributions by the following equation 

 

inddnfgtot rrmmmmmrr ==        (3.A4f) 

 

Equation 3.A4f serves two purposes. The value of the overall 

controllability factor rtot must be close to 1. As a rule of thumb values 

larger than 0.8 indicate good measurement/controller couples, while 

values below 0.5 indicate that control schemes are of little use. Equation 

3.A4f gives us a quantity to directly compare various sensor/controller 

set-ups. The second advantage is that the overall uncertainty can be split 
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up in separate contributions that can be optimized individually, with the 

aim of identifying (and ultimately removing) the bottleneck from a control 

structure or sensor implementation.  

We would like to emphasize again that a more complete (English) 

treatment on the material as presented in this Appendix can be found in 

van der Grinten [3]. 

 

3.B Appendix - The autonomous system in Eq. 3.B1 serves as an 

example to study some of the influence of analyzer location and dynamics 

defined in the main text [5] 
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As can be seen from Eq. 3.B1 disturbances w(t) are ‘injected’ on the first 

state and are distributed over the other two states through the system 

dynamics in Ac. The autonomous solution for the system plus the auto-

correlation’s φ(xixi) and cross-correlation’s φ(wixi) for a white noise feed 

pattern with distribution N(0,0.1) is shown in Figure 3.B1. The dynamics 

of state x1(t) and x2(t) show a clear system delay time for input 

uncertainty w(t). 
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Figure 3B.1 (a) 

Autonomous response,  

(b) auto- (c) and 

cross-correlation’s for 

the three states in 

system (B.1): x1 (-), x2 

(..) and x3 (--) (σx1 = 

0.17, σx2 = 0.10 and 

σx3 = 0.03). 

 

 

 

 

On this system we define three ‘instruments’ with the specifications as 

shown in Table 3.B1. 

 

Analyzer σi
2 Tg

*) Ti
*) Tf

*) Td
*) 

Ba 1.0  - - 0.1s - 

Bb 0.1 - - 5.0s 5.0s 

Bc 0.5 - 2.0s 0.1s - 

Table 3.B1 
*)  ‘-‘ means no significant contribution on the overall performance of this 

analyzer. 

 

The specifications of the instruments imply the following characteristic 

features: Ba is a moderately accurate instrument with a high sampling 

frequency, Bb is a very accurate analyzer, but suffering from a large delay 

time (typically equal to the analysis time), and Bc is a representative of 

many physical measurements with a moderate accuracy and a significant 

memory effect.  

Implementation of Ba is straightforward using the appropriate values in 

equations as presented in the theory section: sampling time Tf forms the 

basis for going from the continuous system in Eq. 3.B1 to discrete 

observation, while σi
2 specifies the uncertainty in the measurement 

responses. 
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To implement the time delay of Bb, measuring e.g. the first state, the 

original system Ac has to be augmented with three virtual states x4(t)-

x6(t) in accordance with Eq. 3.6 creating the standard plant 
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In Eq. 3.B2 the parameters for the augmented part of the system form a 

companion canonical state space representation of the Padé 

approximation for time delay in Eq. 3.6.  

 

To model the signal correlation in Bc, sampling e.g. state number two, 

system B1 has to be augmented by one state x4(t) in accordance with Eq. 

3.5 
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For these three analyzer types the uncertainty propagation from Eq. 3.9 is 

determined and the expected estimation error Pk is computed from 

Equations 3.7 and 3.8. The measurability factor Eq. 3.10 for these the 

three analyzers in Table 3.B1 for the system 3.B1 are given in Table 3.B2 
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Analyzer x1 x2 X3 

Ba 0.8 0.7 0.3 

Bb 0.4 0.3 0.1 

Bc 0.7 0.6 0.4 

Table 3.B2 

 

The table shows that measuring the first state is favorable for every 

instrument [5]. It also shows that the best overall match between system 

and analyzer dynamics for state estimation is between Ba and the first 

state. The last conclusion from this example is that if only state x3 is 

available, Bc is to be preferred. 
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4. Selection and Positioning: a Case Study 

 Selection of Optimal Process Analyzers for Plant-Wide Monitoring 

 

 

Abstract - In this chapter the effect of process analyzer location and 

performance on plant-wide process monitoring is investigated. A 

fundamental problem in process analytical chemistry is the incomparability 

of different instrument characteristics. A fast but imprecise instrument is 

incomparable to a slow but precise instrument. Theory is developed to 

overcome this problem by using an abstract definition of a process 

analyzer. This definition allows us to put all instrument characteristics for 

a particular monitoring task on an equal footing. This results in a 

measurability factor M that expresses monitoring performance of any 

process measurement by combining instrument characteristics like 

precision, sampling rate, grab-size, response correlation and delay time. 

Both the choice of location and the performance characteristics of different 

process analyzers can be evaluated using the measurability factor. The 

unifying nature of the measurability factor allows for a rational decision 

between completely different process analyzers and locations [45]. 

The theory is illustrated and validated with an experiment. A tubular 

reactor for free radical bulk polymerization of styrene is monitored by in-

line short-wave near-infrared spectroscopy at different positions. 

Alternatively, product samples are collected for at-line near-infrared 

analysis. Both analyzers measure styrene monomer concentration. The 

analysis results are used to predict conversion as well as number and 

weight average molecular mass of the polystyrene reactor product. The 

theoretical measurability factors for this case study correspond well with 

the experimental findings.  
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4.1 Introduction - An ever-increasing number of process analyzers are 

implemented in the chemical industry. At the same time the diversity in 

techniques suitable for harsh process conditions - e.g. Chromatography, 

(Near)Infrared-, Raman- or (low field) nuclear magnetic resonance 

spectroscopy, mass spectrometry, flow injection analysis, ultrasonic 

analysis, to name just a few - grows steadily [34]. The implementation 

and operation of analytical in-process4 measurements is, however, still 

relatively expensive. The cost of purchase and maintenance often limits 

the number of analyzers that can be implemented for monitoring and/or 

control purposes to one or a few key-components. This naturally leads to 

the following questions: what is the added value of process analyzers as 

compared to more conventional, interferential measuring devices like 

temperature-, pressure- or flow-sensors, what is the better choice from 

the wide selection of process analyzers, and what is the best location to 

place this limited number of instruments? All these questions are related 

and can only be answered adequately by looking at the process under 

observation [2]-[6], [45]. 

The ‘information content’ of measured process variables is a function of 

the underlying process dynamics, the external process disturbances and of 

the process analyzer measuring these variables. The dynamic behavior of 

various important process variables e.g. reactant versus product can be 

quite distinct. An important objective is thus to sample the process 

variable with the most information in its measured signal, at the most 

informative position in the process (e.g. reactor inlet versus outlet). The 

characteristics of a process analyzer - e.g. slow but precise GC-analysis 

versus fast but relative imprecise spectroscopic-measurements - 

determine which technique is best suited for the analysis task at hand. 

To assess the performance of process analyzers we identify six 

characteristics, the so-called process analyzer dynamics [6], [Chap. 3]. 

The first characteristic is the process variable selected for measurement 

and the location at which it is sampled. The second contribution is 

instrument precision: the uncertainty or error encountered in every 

                                                
4 The expression ‘in-process’ is an idiom for all at-line, on-line, in-line and non-
invasive measurement techniques suited for ‘real-time’ monitoring and/or control 
of a process.  
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measurement. The third contribution is the sampling rate, the effect of 

making discrete measurements on a continuous process. The fourth 

contribution is ‘grab-size’ error: the information loss introduced by 

collecting a sample of sufficient size. The fifth contribution is response 

correlation. This phenomenon is often observed in ‘physical’ 

measurements like ion-selective electrodes, pH or conductivity, where 

instrument responses are correlated over time (a ‘memory’ effect of 

preceding measurement responses). The sixth contribution is analysis or 

delay time: the time passed between collecting the sample and getting 

the analysis result. Obvious examples are separation based composition 

analyzers that require some time to handle a sample before the result 

becomes available. These six characteristics must be taken into account 

when assessing the performance of different in-process implementations. 

Additional characteristics could be considered, but these six are sufficient 

to model most present-day process analyzers. 

In this chapter we make use of a so-called Kalman state vector observer 

to estimate process variables from in-process measurements. The process 

state vector is a collection of all the important process variables such as 

concentrations of the different components or moments of the polymer 

product mass distribution. The process state vector’s time trajectory thus 

shows the behavior of the process in time by showing the trajectory of all 

important process variables in it. Many of the process state vector 

elements, e.g. the mass distribution, cannot be measured directly. The 

input to the Kalman state observer is the measurement result from the 

process analyzer, measuring e.g. the monomer concentration. The output 

of the state observer is an estimate of the complete state vector. It 

contains both filtered results of the measured process variables (the 

monomer concentration) and estimated values for the unmeasured 

process variables (the mass distribution). To make an estimate of 

unmeasured process variables the state observer uses a fundamental 

process model based on e.g. mass balances of the different reacting 

species.  

The Kalman observer also provides an expected estimation error in the 

form of a theoretical covariance uncertainty matrix of the estimated state 

vector. The optimal analyzer type and location for a process is selected by 
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minimizing this state vector estimation error. More details on the Kalman 

state observer can be found in Appendix 4.A. To quantify the performance 

of a process analyzer implementation and state vector observer we define 

the measurability factor M, ranging from zero to one, where one indicates 

perfect process state vector reconstruction. Perfect reconstruction in this 

context means that the process variables in the estimated state vector 

coincide with the true process variables for every point in time.  

The theory on process analyzer selection and positioning is tested on 

experiments with a bench-scale continuous tubular reactor for free-radical 

bulk polymerization of styrene to polystyrene [46], [47]. At different 

locations along the reactor tube in-line short-wave near-infrared (SW-NIR) 

spectroscopic styrene concentration measurements can be performed. At 

the same time samples are collected at the reactor outlet for at-line near-

infrared (NIR) spectroscopic styrene concentration analysis. In 

combination with a Kalman state observer, the different spectroscopic 

measurements can be used to predict molar mass distribution of the 

polystyrene product (Mn and Mw) at the reactor exit. The molar mass 

average predictions will be verified by off-line size exclusion 

chromatography (SEC).  

 

Figure 4.1 Overview of 

the bench scale 

polystyrene tubular 

reactor setup. The 

characters (a)-(d) mark 

different process 

analyzer locations used 

in the experimental 

section. 
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4.2 Theory - The theory will be explained using the styrene 

polymerization case study as a leading example. A schematic drawing of 

the tubular polymerization reactor is shown in Figure 4.1. Two types of 

spectroscopic in-process analyzers are available: in-line SW-NIR at one of 

seven locations along the reactor tube, and at-line NIR on product 

samples. Styrene concentration is the measured process variable for both 

techniques. From this measurement, the process state vector containing 

all relevant process variables - initiator concentration Ci(t), monomer 

concentration Cm(t) and molecular mass distribution moments Mn(t) and 

Mw(t) - is determined by a state vector observer. Details of the 

measurement scheme are illustrated in Figure 4.2. Process variable Cm(t) 

is measured in-line somewhere along the reactor tube or at-line on 

product samples. At every sample location the Cm(t)-signal shows a 

distinct dynamic behavior (symbolized by Tm) and variance/amplitude 

(σ2
m) as a function of the process dynamics and the external process 

disturbances. The analyzer with its distinct analyzer characteristics 

‘processes’ the sampled variable Cm(t) and gives an estimated (t)Cm
ˆ  as 

measurement outcome. This analysis result is then fed to a process state 

observer that has the following task: invert the undesired signal 

processing by the analyzer and estimate the state vector (containing both 

measured and unmeasured process variables) for the reactor system.  

 

Figure 4.2 A detailed 

look on monitoring 

with a process 

analyzer. 
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To find the optimal in-process measurement configuration we take six 

different aspects into consideration, loosely called the process analyzer 

dynamics [6]. The first aspect is the process variable selected for 

measurement and the location at which this process variable is sampled. 

This selection is guided by the amount of information a variable contains 

on the overall dynamics of the process and the availability of a suitable in-

process instrument for monitoring in ‘real-time’ this variable at that 

particular location. Process engineers and analytical chemists should make 

a first selection of potential candidate analyzers and locations for a 

specific monitoring task. The methods we propose can then make a 

rational selection from this set. In our case study the choice is limited to 

in-line SW-NIR or at-line NIR, measuring monomer concentration Cm(t). 

Alternative measurement schemes could be developed for spectroscopic 

initiator measurements or on-line Size Exclusion Chromatography. 

However, the low initiator concentrations in free radical polymerization 

and the relative long analysis times required for SEC, a requirement 

incompatible with the relative fast dynamics in our reactor system, 

immediately classify them as unattractive alternatives for this system.  

The second contribution of instrument characteristic is process analyzer 

precision σi
2. Uncertainty in the instrument outcome will be approximated 

by the true concentration C(t) plus additive white noise v(t) with known 

distribution, typically determined during the calibration procedure or 

supplied by an instrument vendor: 

 

),0(~)()()()(ˆ 2
iNtvtvtCtC σ+=      (4.1) 

 

The third source of error is the sampling rate of the instrument, specified 

by the time interval between successive samples Tf (where the sample 

frequency is 1/Tf). In-process analyzers typically make discrete 

observations on continuous process. The state of the process - altered by 

external disturbances - can only be determined when a new analysis 

result comes in. Hence, the uncertainty can only be reduced when a new 

measurement becomes available and a new state vector estimate is 
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performed. For many instruments (e.g. spectrophotometers) there is a 

trade-off possible between the sampling frequency 1/Tf and precision σi
2. 

Spending more time per analysis to increase the signal-to-noise ratio will 

automatically lead to a lower sampling rate (further details are given in 

Appendix 4.A).  

The fourth analyzer characteristic is grab-size Tg. If a sample is collected 

over a short period of time, e.g. to gather enough material for physical 

experiments or to get sufficient detector signal for spectroscopy, the 

expected value of the measurement will be the average value over that 

same time period. Hence, variability during that period goes undetected. 

This average value becomes available once the entire grab has passed. If 

this grab-size is relatively short we can associate the analysis result with 

the true value at time equal to half the grab time interval. Therefore, in 

our process analyzer dynamics we penalize grab-size with a time delay of 

half the grab time Tg: 

 

)5.0()5.0()(ˆ
gg TtvTtCtC −+−=       (4.2) 

 

In words equation (4.2) would read: the estimate of process variable C we 

retrieve at time t is really an estimate of this variable 0.5Tg time units 

ago. As a consequence, information on the continuously changing C-signal 

is already 0.5Tg time units ‘old’ before we get it. The same reasoning 

holds for precision v(t). 

The fifth contribution to process analyzer performance is response 

correlation Ti. In many instruments there is significant carry-over in the 

detector response from one measurement to the next (e.g. pH ion 

selective electrodes or some temperature dependent resistors). This carry 

over can be approximated by an exponentially first order correlation of the 

auto regressive form. 

 

)()()()1()(ˆ /1/1 tvTtCetCetC f
TT ii ′+−+−= −−      (4.3) 

 

The noise v’(t) is scaled to have equal magnitude as the uncertainty in 

equation (4.1). The final estimate is written as an exponentially weighted 
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sum of present and previous values of the sampled variables; where the 

weights are determined by the response correlation time constant Ti 

between successive measurements. When Ti is very small, say zero, then 

the term containing Tf vanishes and the effect of the correlation time is 

cancelled. 

The last component describing the performance of in-process 

instrumentation is the analysis or delay time Td between taking the 

sample and obtaining the analysis result. 

 

)()()(ˆ
dd TtvTtCtC −+−=        (4.4) 

 

In words, information on the continuously changing C-signal is already Td 

time units ‘old’ before we get it. An example of an analyzer with a 

significant time delay is in-process chromatography where the 

components first have to be physically separated before the final analysis 

results becomes available.  

The six contributions to process analyzer dynamics - the process variable 

and location selected for measurement plus the five instrument 

characteristics - as formulated above give us a more abstract definition of 

in-process analyzers. It enables us to compare completely different 

measurement techniques – e.g. GC versus NIR-spectroscopy - on a 

theoretical level, comparing their individual merits on conceptual grounds. 

The goal of all analyzer/observer combinations is the same: to estimate 

the process state vector, which holds the process variables as considered 

important. Optimal selection of instrument type and location must 

guarantee that sufficient information is obtained from a measurement to 

make a good ‘real-time’ estimate of the state vector.  

In this chapter we use the Kalman observer to estimate the process state. 

This observer is an unbiased, minimum variance and consistent estimator 

for the process state of a linearized system [32], [33], [42]. Further 

details on reactor dynamics and the observer are given in Appendix 4.A. 

To assess the performance of different process analyzers we have 

developed the measurability factor M [3], [6]. For a stable process such as 

the tubular polymerization reactor in our case study, M will be a scalar 
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between zero and one, where one indicates perfect process state vector 

estimation. A stable process perturbed from normal operation conditions 

by external process disturbances – e.g. variations in initiator 

concentration of the feed stream in our example - will operate within a 

limited range surrounding these normal operating conditions. We can 

express this variation in the form of a process covariance matrix Q. In our 

reactor tube Q thus gives the range or boundaries of the composition of 

the reactor product stream over time due to expected disturbances in the 

reactor feed. Task of the process analyzer and observer is to estimate the 

exact position of the process state vector - with all the important process 

variables - within this operating range surrounding the normal trajectory. 

Moreover, this estimate should be available for every point in time. 

Because of the process analyzer dynamics this state estimate will, 

however, never be perfect. We can express the estimation error or 

uncertainty due to analyzer characteristics in the form of a covariance 

matrix P. From the covariance matrices Q and P we can compute the 

measurability factor M. 

 

)(
)()(

Q
PQ

trace
tracetraceM −=        (4.5) 

 

The ‘trace’ is the sum of diagonal elements of the covariance matrices and 

serves as a norm for the matrix involved. In our case study this is equal to 

summing (expected) variances for all the relevant process variables in the 

reactor state vector. Trace(Q) is the unknown process variance caused by 

external process disturbances, and trace(P) is the prediction error after 

measurement and state vector estimation. The numerator part of equation 

(4.5), trace(Q) - trace(P), is thus the removed unknown process variance. 

The measurability factor M in equation (4.5) thus approaches one when 

the trace(P) approaches zero. For an extremely poor choice of a process 

analyzer, the covariance matrix P after state vector estimation could be 

larger than the initial process uncertainty in Q. In this (hypothetical) case 

the measurability factor will get a negative value, which means that the 

in-process measurements serve no purpose, and our ‘best guess’ for the 

process state vector is: somewhere in the operating range surrounding 
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the normal trajectory. The measurability factor in equation (4.5) thus 

shows how much of our initial uncertainty in knowledge of the process 

state vector is removed by the process analyzer and observer. The theory 

in this chapter can be generalized to evaluating different combinations of 

multiple process analyzers for one estimation task. 

 

4.3 Experimental Section - A bench scale tubular reactor is constructed 

for the operation of a free radical bulk polymerization of styrene in 

continuous mode. A drawing of the instrumentation is shown in Figure 4.1. 

The heart of the setup is a vertically placed stainless steel tube (1.1m 

length; 10mm i.d.) with seven gageable tube fitting union crosses. Teflon 

connectors can assemble different sensors in these crosses. Three 

thermocouples and two pressure sensors are inserted at different 

locations. Quarts windows for the in-line SW-NIR spectrometer are 

mounted in similar Teflon parts. By positioning windows on opposite sites 

in one cross piece an in-line ‘cuvette’ is created that can be sampled by 

the spectrometer (effective path length ±8mm).  

The temperature inside the reactor tube is regulated by a circulator water 

bath and six cross-wise connected aluminum pipes placed along the inner 

reactor tube. The system is isolated to minimize heat loss. The 

temperature of the circulator bath is logged. A feed vessel and HPLC-

pump supply a continuous stream of styrene and AIBN initiator to the 

reactor entrance (flux = 2 mL.min-1; average residence time 42min). The 

temperature of the premix is logged. 

Product samples are collected from the reactor outlet in grabs of three 

minutes every ten minutes. The styrene concentration is determined by 

at-line NIR spectroscopy. Mn and Mw for the polymer molar mass 

distribution in the product stream are determined off-line by SEC [48]. 

Multivariable calibration was used for both spectroscopic techniques. The 

preprocessing and calibration results are shown in Table 4.1. Using the 

theory of process analyzer dynamics the performance of the two 

instruments can be characterized as shown in Table 4.2.  
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 NIR Visual/SW-NIR 

Integration 90 seconds (30 scans) 

3499-10000cm-1 

2cm-1 (resolution) 

15 seconds (± 150 scans)

400-1000nm  

1nm interval (resolution) 

Savitzky-Golay filter [49] 37-points second 

derivative 

second order polynomial  

31-points fourth 

derivative 

fourth order polynomial 

Spectral range used in 

PLS1 

5618-6390cm-1  860-890nm  

PLS1-model [51] 

(Partial Least Squares) 

Data mean centered 

3 Latent Variables 

Data mean centered 

4 Latent Variables 

Conversion uncertainty 0.2%(m/m) (RMSEPcv) 0.4%(m/m) (RMSEPcv) 

Table 4.1 

 

The process disturbance is a ±25% uncertainty from the normal 

0.04mol.L-1 initiator concentration of the reactor feed. The range of this 

process disturbance is used to compute the measurability factor M for 

different process analyzers and state observers. During the experiments 

this process disturbance was realized by switching between three premix 

vessels with different (known) initiator concentrations. 

 

 NIR SW-NIR 

σi 0.2% 0.4% 

Tf 600s 35s 

Tg 180s 15s 

Ti --- --- 

Td 420s 20s 

Table 4.2 

 

4.4 Results and Discussion - The objective of in-process measurements 

in our case study is to estimate the styrene conversion and polystyrene 

molar mass distribution of the reactor polymer product. The best position 

for the in-line SW-NIR and the performance of the at-line NIR can be 

determined from the measurability factor M. This factor can be computed 

using the dynamic reactor model and expected process disturbances as 

formulated in Appendix 4.A, together with the process analyzer 
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characteristics as specified in Table 4.2. The result is shown as the solid 

curve in Figure 4.3. From this figure we observe that the better location 

for in-line SW-NIR analysis is in the second half of the reactor tube (z ≈ 

0.6-1.0m). In-line SW-NIR measurements for the first part of the reactor 

tube (z < 0.40m) are incapable of picking up process disturbances and 

estimating the reactor product composition, resulting in a low score for 

the measurability factor M in this segment. The slower but more precise 

at-line NIR measurement on product samples is slightly better than the 

optimal in-line SW-NIR implementation. 

 

Figure 4.3 Theoretical 

measurability factor M 

as a function of in-line 

SW-NIR on position z in 

the reactor tube. 

Optimized for reactor 

product composition 

(‘ ’) or entire tube 

contents (‘..’). The bar 

after z = 1.12m gives 

the theoretical 

measurability factor for 

at-line NIR on reactor 

outlet samples. Triangles mark the practical measurability factors for three 

different experiments. 

 

To verify our theoretical measurability we have conducted three 

experiments for different SW-NIR positions: z = 0.88, 0.72 and 0.40m. In 

Figure 4.4 the estimated styrene conversion in collected product samples 

are plotted as a function of time. Also shown are reference values for 

product samples and the target value for normal operation conditions. 

From this figure we can calculate a ‘practical’ measurability factor. The 

variance between the normal and the reference values represent the 

range of process variance in the product caused by the disturbances, in 

our case initiator concentration changes in the feed stream. The difference 

between references and observer estimates quantify the residual 
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uncertainty after making a reactor state vector estimate. From these two 

variances a practical measurability factor, similar to the one given in 

equation (4.5), can be computed. It shows how well we can estimate 

styrene conversion in the reactor product using a particular measurement. 

The practical measurability factors are shown as triangles in Figure 4.3. 

Although there is some variation in the outcomes, as evident from the 

triplicates for at-line NIR-analysis, the results for the theoretical and the 

practical measurability factor correspond well. The two computed 

moments of the polymer product molar mass distributions (Mn and Mw) are 

shown in Figure 4.5, together with the SEC reference values and normal 

values. Due to the ‘stiffness’ of the styrene polymerization dynamics the 

relative small changes in feed initiator concentration have only minor 

effects on the MMD [46], [47], [49].   

 

Figure 4.4 Estimated 

degree of styrene 

monomer conversion X 

(%) in reactor product. 

Bars are the reference 

values; horizontal line 

corresponds to normal 

operation. Predictions 

from (a) at-line NIR 

(‘o’; results shown for 

one experiment) and 

in-line SW-NIR (‘ ‘) 

on position (b) z = 

0.88m, (c) z = 0.72m and (d) z = 0.40m. 
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Figure 4.5 Estimated 

Mn and Mw (x104 g.mol-

1) for reactor polymer 

product. Bars are the 

reference values; 

horizontal line 

corresponds to normal 

operation. Predictions 

from (a) at-line NIR 

(‘o’; results shown for 

one experiment) and 

in-line SW-NIR (‘ ‘) 

on position (b) z = 

0.88m, (c) z = 0.72m and (d) z = 0.40m. 

 

4.5 Extensions - So far our objective was defined as estimating the 

composition of the reactor product. To illustrate the versatility of the 

theory we will briefly describe a different monitoring task. Suppose that 

the objective for this process analyzer and state vector observer 

combination is to estimate all relevant process variables for the entire 

reactor tube length. The purpose could e.g. be model predictive control, 

anticipating process regulation on the (estimated) reactor state vector 

[50]. The broken line in Figure 4.3 shows the measurability factor M for 

this analyzer/observer objective. The outcome illustrates that different 

monitoring objectives can lead to completely different results: the 

theoretical measurability factor is overall lower (the estimator task is more 

complex), the best location for in-line SW-NIR shifts towards the reactor 

inlet and the at-line NIR is ineffective for this job. 

The optimization method of process analyzer selection and positioning 

presented in this chapter can be utilized already in an early process design 

stage. From a dynamic process or unit operation model, an expected 

(range of) process disturbance(s) and process analyzer characteristics, the 

theoretical measurability factors M can be computed without actually 

collecting any experimental data. To elucidate this point we refer back to 

the theory section where it was stated that concentration of the monomer, 

as target for in-process analysis is preferred over initiator concentration or 
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molecular mass distribution moments. To reach an acceptable M-value of 

e.g. 0.8 for our monitoring objective on the reactor output stream one 

needs either a very precise method for initiator concentration or an 

exceptionally fast (less than 20 minutes analysis time) technique for 

determining polymer mass distribution. Both requirements are difficult to 

fulfill. Hence, without investigating specific instrument a priori the 

required process analyzer dynamics tell us that monomer concentration is 

the best or most affordable candidate for monitoring in this process.  

 

4.6 Conclusions - In this chapter we have developed and applied the 

theory of optimal process analyzer selection and positioning on 

spectroscopic concentration measurements in a bench scale tubular 

reactor for free radical bulk polymerization of styrene to polystyrene. The 

performance of different in-process instruments and state vector 

observers is evaluated as a function of the process analyzer dynamics. 

Both the choice of location and the performance characteristics of different 

instruments can be assessed using the measurability factor M. The 

theoretical performance for predicting product composition by both in-line 

SW-NIR and at-line NIR analysis is shown to correspond well with the 

experimental results. It is shown that in selecting an analyzer and sample 

position the dynamics of the measured process variable and its 

information content regarding other (unmeasured) process variables is 

important. It is also shown to be a function of the dynamics of the 

instruments and the monitoring objective. 

Through the measurability decision criterion we hope to formulate a 

guideline to counteract the more or less ad-hoc practice for present 

process analyzer selection and positioning. It is the task of the (process) 

analytical chemist (together with system and control engineers) to provide 

sensible input for this optimization procedure.  

 

4.A Appendix - In this study we estimate the process state vector of a 

tubular reactor for the initiator driven, free-radical bulk polymerization of 

styrene [46], [47] using a Kalman state observer [32], [33], [42]. To 

implement the observer, mass balances in the form of partial differential 

equations are required for initiator concentration Ci, styrene monomer Cm, 
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the first three moments for chain length distribution of growing (λ) and 

terminated polymer (µ). Equation (4.A1) is a mathematical model of the 

tubular reactor in our case study (t is time; z is axial position in the 

reactor tube) [48]. 
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From (4.A1) the number Mn and weight average molar masses Mw can be 

computed (Mm = 104.15 g.mol-1). 

 

1
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0
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µ
µ

µ
µ

mwmn MMMM ≈≈        (4.A2) 

 

To implement the Kalman observer, the model in (4.A1) is rewritten in a 

discrete time, linear, time invariant state space format of the following 

form (uk are the deterministic reactor feed streams, Ci and Cm; wk ~ 

N(0,q) is the stochastic component or uncertainty in the feed stream Ci; yk 

is the conversion measurement at discrete time point k, where 

measurements are preformed every ∆t seconds (the time between 

successive discrete observations); vk ~ N(0,r) is the analysis error) [5], 

[6].  
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kkkkkkk vyw +′=++= −−− xcbuBAxx 12111     (4.A3) 

 

In (4.A3) the system matrix A contains all the dynamics and kinetics from 

model (4.A1), and the input distribution B1 and b2 are the connection 

between deterministic and stochastic process input and the system, 

respectively. Measurement vector c selects the sampled process variable 

yk from state vector xk.  

The mass balances for Ci, Cm and λ0 can be separated from the last five 

equations in (4.A1). This separation is possible because there is no 

backwards coupling between the last five equations and the first three. 

State vector xk holds values for these first three process variables on 

equidistant grid-points over the reactor tube length. The values for the 

five remaining mass balances on every grid-point are determined 

numerically using the estimated state vectors as boundary conditions. The 

process analyzer dynamics as formulated in the theory section can be 

incorporated in the system by appropriately augmenting matrix A and 

state vector xk [6].  

The implementation of the Kalman state observer consists of two parts: 

i) the state estimation time update (known as a priori estimate or ‘-’, the 

state transition between two discrete measurements)  
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ii) the state estimate measurement update (known as a posteriori 

estimate or ‘+’, correcting the state estimate when measurement yk 

becomes available)  
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Where kk is the observer gain, Pk is the theoretical estimation error 

covariance matrix, and Q∆t is the uncertainty distribution covariance 

matrix. The matrix Q∆t holds the contribution of the process disturbance 

wk on the overall state estimation error, build up over the time period ∆t 
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between two process measurements. For a stable system matrix A there 

is an upper bound on the system uncertainty covariance matrix by Q∆t for 

∆t � ∞. This Q∞ corresponds to the maximum uncertainty in knowledge 

about the state of the process for the situation where no in-process 

measurements are implemented. 

For linear time invariant systems the theoretical estimation error Pk can 

be calculated a priori by solving the associated equations in (4.A4) and 

(4.A5). When an analyzer/observer-combination is used to make an 

estimate, part of the uncertainty about the process state will be removed. 

Estimation error covariance matrix Pk then gives the process state 

uncertainty that remains. A suitable norm of the estimation covariance 

matrix Pk can thus guide the selection of optimal process analyzer and 

type and position. The matrix trace-norm – sum of all variances on the 

diagonal – is an appropriate choice here. 

 

4.B Appendix - In this appendix we will briefly study the influence of the 

last component in the optimal process analyzer location problem: system 

parameter uncertainty. The first influence in location optimization was a 

purely deterministic one [5]: the dynamics of the system determine where 

in the process the analyzer will pick up the best/most information to 

estimate the system states. The next step was to define a particular 

process input disturbance and specify the measurement uncertainty in the 

form of process analyzer dynamics [6]. The outcome of this theory has 

been confirmed by experimental work in the main body of this chapter. In 

this appendix some theory is presented for the situation of uncertainty in 

the system parameters of the tubular reactor model for the polymerization 

of styrene. Three different types of parameter uncertainties and/or errors 

in process settings are introduced to illustrate their influence on process 

analyzer location: reactor contents temperature, reactor contents flux and 

initiator efficiency (see Table 4.B1). The motivations for selecting these 

three specific disturbances are as follows. In the main part of this chapter 

it is shown that the kinetic parameters for the polymerization reaction are 

estimated by so-called gain scheduling [52], using three thermo-couples 

in the reactor tube as inputs. The first disturbance - temperature - can 

thus be seen as a bias in these (primary) measurements and/or in our 
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knowledge of the reaction kinetics model. The second uncertainty - flux - 

symbolizes malfunctioning of the process instrumentation, which would be 

the pump in this case. Uncertainty in initiator efficiency is a representative 

of chemical change symbolizing e.g. pollution of the feed stream or a 

change in the feedstock. All system parameter uncertainties are assumed 

additive effects to the feed premix input disturbance used in the main text 

(first row in Table 4.B1). 

 

Process Variable Nominal Value Uncertainty (σ) Subplot 

Initiator feed concentration 0.040mol.L-1 0.010mol.L-1 (a) 

Reactor temperature 343.15K 0.10K (b) 

Material flux 2.04mL.min-1 0.03mL.min-1 (c) 

Initiator efficiency*) 0.35-3.0X 0.01 (d) 
*) X is degree of conversion      Table 4.B1 

 

The decision to cover the last component in optimal process analyzer 

positioning (system parameter uncertainty) in this appendix instead of the 

main body of this chapter is motivated by theory for linear(ized) systems. 

From Ito stochastic calculus we can make the following observation (in a 

rather informal notation; deterministic input neglected for convenience; 

see e.g. Jazwinski [33] for a detailed treatment): 
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    (4.B1) 

 

In (4.B1) the uncertainty in the system parameters is symbolized by 

matrix ∆A (see (4.A3)). The equation shows that uncertainty in the 

parameters can be expressed by a modified input uncertainty 

)~,0(~)(~
pNtw Σb . Using the new state equation, all the theory used in the 

main text on e.g. (extended) Kalman state observers and the 

measurability factor remains valid. The new process covariance matrices 

pΣ~  in (4.B1) are found through error propagation.  

The uncertainties as specified in Table 4.B1 and the reactor model in 

(4.A1) are used to generate a hundred new tubular profiles. From these 
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profiles a reactor profile covariance matrix is computed. This new profile is 

added to the covariance structure due to feed premix uncertainty. This 

new covariance matrix is used in equations (4.A4), (4.A5) and (4.5) to 

compute the measurability factors for the new situation. In this appendix 

we will limit the selection of process analyzers to in-line SW-NIR at 

different positions along the tube. 

It must be pointed out that the uncertainty in state estimation due to 

parameter uncertainty as used in this appendix is rather conservative 

(almost a ‘worst-case-scenario’). In real implementations the theoretical 

covariance matrix found by the error propagation method can be 

significantly reduced, still leading to good state estimations. E.g. process 

uncertainty in reactor temperature, and hence in the kinetic parameters, 

due to a day-night rhythm would in our case be modeled as random noise 

over a long time period. In more advanced applications an adaptive 

scheme can be used to eliminate the systematic errors over shorter 

periods (e.g. day- versus nighttime), very likely improving the tracking 

performance of the observer by working with a more realistic error 

covariance by a ‘adaptive’ scheme [32], [53]. 

Figure 4.B1 shows the results for in-line SW-NIR product and state 

estimation under influence of the different parameter uncertainties. The 

result for only initiator feed uncertainty as used in the main text is 

repeated in plot (a). From the results in the figure we observe two things. 

The first one is that the overall measurability profiles are lower when 

additional uncertainty is introduced. This is to be expected since the 

estimation task becomes considerably more difficult. Besides the 

estimation error as a function of the process analyzer dynamics an 

additional error propagates through the state estimation procedure, 

increasing the expected estimation error in (4.A5).  
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Fig. 4.B1 Measurability 

factor M as a function of 

in-line SW-NIR on 

position z in the reactor 

tube. Optimized for 

product composition 

(‘ ’) or entire tube 

contents (‘..’); see Table 

4.B1 and text for details 

on subplots (a)-(d). 

 

 

 

The second observation is that system parameter uncertainty can also 

change the shape of the measurability profile. In the case of estimation 

reactor product composition (solid lines) the optimum tends to shift 

downstream towards the reactor outlet. The additional parameter 

uncertainty makes in-process measurement at e.g. halfway the reactor 

tube inadequate for the product state estimation task. Keeping in mind 

the two contributions in the state observer – ‘measurement update’ and 

‘time update’ (4.A4)-(4.A5) – we come to the following conclusion. The 

parameter uncertainties in this appendix mainly affect the latter: the use 

of the dynamic process model to propagate the system state through 

time. Estimating e.g. the product composition at the reactor outlet (solid 

lines) from a measurement halfway in the tube is not feasible. The error 

that results using these measurements in combination with the relative 

poor dynamic model to extrapolate the state estimate to the 

product/reactor outlet is too large. For process analyzers close to the 

reactor exit we do not have this problem, and the figure shows that the 

measurability factor stays nearly the same for this position.  

When estimating the entire tube contents (broken lines) we find a similar 

shape for all disturbances with a change in absolute value of the 

measurability factor curve. In this situation the measurement results have 

to be extrapolated towards reactor entrance and exit. For this reason the 

estimation error due to parameter uncertainty now acts as a ‘offset’, 
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leading to systematic worst state observer performance as a function of 

the error in dynamic system model.  
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5. Selection and Positioning: Batch Processes 

Some observations on NIR Process Analyzer in combination with a State 

Observer in a Batch Styrene Polymerization Reactor 

 

 

5.1 Introduction - In this chapter we will focus our attention on a batch 

process for the polymerization of styrene to polystyrene. One question we 

will answer is that of optimal process analyzer implementation/operation. 

The difference with previous chapters is that a batch processes has no 

spatial dimension (we assume a batch to be a well stirred vessel). 

Therefore, the question of optimal analyzer operation is redefined for 

temporal problems: what point in the process is the best time to collect a 

sample/perform a measurement.  

In this chapter we will also illustrate some ideas on the process analyzer 

and state observer combination for predictive process monitoring using 

data from a bench scale styrene/polystyrene reactor. The conclusion from 

this part of the chapter is that the combination of a good process model 

and a high quality in-process measurement (side-loop NIR for styrene 

conversion, in this case study) can have enormous potential for process 

monitoring and control*).  

We will use simulations on a batch process to answer the question of 

sampling optimization. In this chapter we will also explain some of the 

underlying theory on systems and observers used in previous chapters. 

The reason for withholding this part until now is the considerable 

reduction of the model complexity for batch process compared to 

distributed parameter systems (DPS) as e.g. a tubular reactor. The first 

can be modeled with eight variables (or even as little as two in the 

reducing assumptions used in this chapter), while in the latter systems the 

large number of process variables required can easily obscure the 

understanding of the system and state observer. The ‘price to pay’ is the 

non-linearity of batch operations. Where the DPS’s in the previous 

chapters were well approximated by a linear system, leading to good state 

estimations and simple computations for e.g. uncertainties, the batch 
                                                
*) Batch polymerization data used in this chapter was kindly supplied by Henk 
Lousberg, University of Amsterdam. 
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system used in this chapter require extensive simulations to determine 

error propagation of external disturbances and process analyzer dynamics. 

 

5.2 Styrene Polymerization System - In this chapter we use a batch 

system model for initiator driven, free-radical bulk polymerization of 

styrene [46]. Mass balances in the form of differential equations are 

required for initiator concentration Ci, styrene monomer Cm, the first three 

moments for chain length distribution of growing (λ) and terminated 

polymer chains (µ). Equation (5.1) shows the mathematical model of the 

batch reactor [48]. 
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From (5.1) the number Mn and weight average molar masses Mw can be 

computed (Mm = 104.15 g.mol-1). 
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The nominal operation conditions for this system will be set as follows: 

batch temperature T = 75°C (all temperature dependent constants are 

determined via gain scheduling [52]), initiator concentration at time zero 

Ci = 0.015mol.l-1 and batch termination at 180 minutes. The external 

disturbance to the process is an uncertainty in initiator charge of σCi = 

0.001mol.l-1. Figure 5.1 shows the time profiles for initiator, degree of 

conversion and polymer molar mass distribution (MMD) for the normal 

batch operation and disturbances of ±3σCi. 

Figure 5.1 Simulated 

batch time profiles for 

nominal operation 

(solid line) and ±3σCi 

disturbances (thin 

lines); 1) initiator 

concentration; 2) 

styrene degree of 

conversion; 3) log10 Mn 

and Mw moments of 

polystyrene MMD. 

 

 

Based on chemical and physical inside of the reaction mechanisms, the 

so-called Quasi Steady State- (QSSA) and Long Chain Assumption (LCA) 

[48], the system can be split up into three parts. Equations (5.1a-b) – the 

two mass balances of most importance for the monitoring objective 

presented below – can be separated from the moments for growing and 

terminated polymer chains. A way to determine batch time trajectories is 

to solve (5.1c-e) analytically, while the later three (5.1f-h) can be 

determined using the outcomes of (5.1a-e) as inputs. An alternative way 

to interpret this observation is to say that the system is ‘stiff’ or ‘singular 

perturbed’: the three different parts of the system operate in a different 

time modes. The Ci-Cm balances operate on a time scale of seconds, while 

growing polymer chains for this system exist no longer than milliseconds 
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(and in the alternative formulation in (5.1) are defined to change 

instantaneously) [46]. The MMD terms have an accumulative nature, and 

are thus expected to be effective on a much longer time scale for this 

process with a nominal runtime of 180 minutes. To illustrate this 

observation the non-linear system in (5.1) has been linearised around 

different, equidistant points on the nominal batch run time-axis. The 

eigenvalues of this linearised system are plotted in Figure 5.2. The three 

eigenvalues associated with (5.1c-e) are zero for every time point and not 

shown in the figure. Although they are connected through the system, and 

can as such not be assigned individually, the three ‘fast’ eigenvalues are 

more closely related to the MMD in (5.1f-h), while the two intermediate 

ones are associated with (5.1a-b).  

In the remainder of this work we will always assume the reduced system 

(5.1a-b) to be the dynamic (‘real-time’) part of the model, while the other 

variables can be determined at convenience. 

Figure 5.2 

Eigenvalues for 

linearized styrene 

polymerization process 

model on equidistant 

time point in a batch 

run. 

 

 

 

 

 

 

 

5.3 Extended Kalman State Observer - In this chapter we use the 

well-established extended Kalman observer to estimate the state for every 

point in time of the polystyrene batch reactor from NIR measurements on 

styrene concentration [32], [33], [42]. In this paragraph we will give a 

short description of state observers, the (extended) Kalman observer and 

the way we implemented and used the observer to monitor the 

polymerization process. To simplify notation we first introduce the state-



 - 92 -  

vector x = [Ci(t) Cm(t)]’ for our batch reactor containing the two variables 

- initiator and monomer concentration - of interest in our estimation 

problem. Combining the state-vector concept with equations (5.1) we can 

construct the state-space equation for our reactor system. 
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Equation (5.3) is the non-linear system for describing the transitional 

behavior of our batch reactor. The term w(t) ~ N(0,Q(t)) in (5.3) is the 

(stochastic) uncertainty for the state elements, assumed to be zero mean, 

normally distributed with process noise covariance Q(t). The latter 

uncertainty is a summation of both external disturbance acting upon the 

reactor system and ‘internal’ disturbances (e.g. errors in our knowledge of 

the reactor kinetic, errors introduced by numerical approximations in the 

state observer, etc.). The reaction rate constants in (5.3) are computed 

from temperature measurements inside the reactor vessel, a gain 

scheduling approach to linearization of the Arrhenius equations in (5.1) 

[52]. 

NIR-measurements on monomer concentration are determined every 

minute. To use these measurements in the state observer we rewrite the 

system (5.3) into equation (5.4) on a discrete time-scale tk - tk+1 of 60 

seconds. 

 

),0(~')(),0(~)(1 kkkkmkkkkdk rNvvkCNa +=+=+ xcQwwxx  (5.4) 

 

In equation (5.4) the measurement vector c = [0 1]’ samples the 

measured variable - concentration monomer in our case - from the state-

vector. We assume that the estimated concentration is corrupted by a 

zero mean, normally distributed noise with variance rk. 

The non-linear system in equation (5.4) can be linearized around a known 

state xk by computing a first order Taylor approximation for the function 

ad [49]. 
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From this local approximation we can determine a linear state-space 

model applicable around state-vector xk.   

 

kkmkkkk vkC +=+=+ xcwxAx ')(1      (5.6) 

 

The observer as implemented in this chapter has no knowledge of the 

true, underlying system. The only direct information about our process 

state is the measurement of Cm(k). Our best estimate of the true system 

state xk will have a form equal to (5.6). 

 

kmkkk kC xcxAx ˆ')(ˆˆˆ 1 ==+        (5.7) 

 

Subtracting (5.7) from (5.6), using the assumption E(wk) = E(vk) = 0 and 

specifying the state estimation error kkk xxe ˆ−= . 

 

kmmkkk kCkC eceAe ')(ˆ)(1 =−=+      (5.8) 

 

The state observer is based on (5.8) correcting the state estimation error 

by the weighted difference between estimated and measured monomer 

concentration [54], [55]. 
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From (5.9) we conclude that the estimation error ek will vanish if the 

observer equation is stable. This stability is realized if all eigenvalues or 

observer poles of the matrix (Ak - kc’) are positioned inside the unit circle 

[54]. If the system is observable, which is the case for our reduced 

reactor model (5.3), any desired transient behavior of the observer can be 

achieved by selecting the appropriate gains k (so-called observer pole-
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placement). If the system is detectable only the observable part of the 

observer can be ‘tuned’ in this way.  

Based on equations (5.3)-(5.6) we construct an extended Kalman 

observer, comparable to the state estimator in equation (5.9), consisting 

of the following two steps: 

i) the state estimation time update (a priori)  
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ii) the state estimate measurement update/correction (a posteriori)  
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where kk+1 is the Kalman filter gain, Pk+1
+ is the theoretical estimation 

error covariance matrix and Cm(k+1) is the NIR-measurement outcome 

for time k+1. From the state estimates - under LCA and QSSA - we can 

determine the moments of living polymer analytically via equation (5.1c-

e) and moments of the death polymer by solving equation (5.1f-h) 

numerically. 

For a detectable system the observer poles in equation (5.9) for the 

Kalman are assured to be stable. Furthermore, the Kalman observer 

implemented in (5.10)-(5.11) is an unbiased, minimum variance and 

consistent estimator for the process state of the linearised system [32], 

[33], [42]. From the equations the performance of the state observer can 

be seen as governed by the (relative ratio of) covariance matrices rk and 

Qk for measurement and system uncertainty, respectively. The first can 

easily be obtained from the calibration stage of the NIR-spectrometer 

measurements: rk = [0.026mol.L-1]2. System uncertainty Qk however is 

often considered a tuning parameter, establishing a desirable performance 

of the state observer. The experiments presented in this chapter consist of 

eight styrene polymerization batches: six ‘on-spec’ batches run at 
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different temperatures and initiator concentrations, and two ‘off-spec’ 

batches with deliberately induced disturbances (see result section). We 

have used the first six batches to ‘calibrate’ the Kalman observer to a 

desirable response, resulting in the following system uncertainty matrix. 
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The Results section of this chapter will demonstrate that the speed and 

accuracy of the in-line NIR-analysis allows us to place great confidence in 

the measurement part of the observer equation. Note that the Kalman 

observer is just one choice for observer pole placement. For other 

monitoring or control tasks different choices might be better suited [52], 

[56]. 

In the remainder chapter we will use the Kalman observer both as filter, 

where we improve the current state estimate by using the measurements 

up to that point, and as predictor. In the latter we propagate both the 

state and the estimation error in (5.10) towards the batch termination 

time. For prediction we obviously not correct our estimates through a 

measurement update (5.11) since no future measurements are available. 

This prediction will turn out to be a powerful monitoring mechanism to 

detect e.g. unexpected batch behavior due to external disturbances or 

small deviations from expected initial conditions in the batch charge.   

 

5.4 Optimal Sampling Time-point in a Batch Run - In this paragraph 

we will develop a method to determine the best time to sample the 

polymerization process described in the first part of this chapter. We limit 

the theory to one specific example: the only process analyzer considered 

is on-line NIR-spectroscopy for degree of conversion. We assume 

measurement uncertainty σi = 0.3% to be the only ‘process analyzer 

dynamics’ contribution of importance, neglecting e.g. delay time. This 

corresponds to the analyzer performance for the real batch data used in 

this chapter. The disturbance to the process is an uncertainty in initiator 

charge as explained before. The motivation for selecting initiator charge 
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as external disturbance stems from the experiments with the real batch 

data, as will become clear later on. We are interested in estimating degree 

conversion during the batch run, determined by a state observer and the 

NIR-measurement result. Two analyzer/observer objectives will be 

investigated: how well can we determine initiator concentration and 

degree of conversion over the entire batch run (180min) using one (or 

two) NIR measurements, and how well can we estimate initiator 

concentration and degree of conversion at batch termination (at time = 

180min) from one (or two) measurements. Note that this ‘single shot’ is 

an extreme form of the extended Kalman filter. At one point during a 

batch run we perform a measurement, the system is linearized around 

that point, and our estimate of the batch trajectory is improved from that 

single measurement. 

The first step is to determine total process uncertainty for initiator and 

monomer. A total of 2000 batches where simulated using the nominal 

operating conditions and a normally distributed initiator concentration 

N(0.015,0.001). From these results the uncertainty in knowledge can be 

determined and expressed as an average squared error deviation between 

nominal and simulated batch run (Qtrue; the ±3σCi uncertainty lines Figure 

5.1 give a good impression of this simulated system uncertainty). This 

error interval would form our best guess if no measurements were 

performed. The next step is to determine gains for the state observer 

(5.9). Again 2000 simulations with measurement errors were used for this 

purpose, where the average Kalman gain over batch time – shown in 

Figure 5.3 – is determined. The last step is to simulate in-process 

measurements in a batch run and compute the remaining uncertainty, this 

time expressed as the average squared error between estimated and 

simulated batch run (Qerror). From these two uncertainties we compute the 

measurability factor: 
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Figure 5.3 System 

(thin line) and 

observer poles (solid 

line) for the nominal 

styrene polymerization 

batch. 

 

 

 

 

 

 

The results of these simulations for one single measurement are shown in 

Figure 5.4. In the upper left plot of this figure we see that the best time-

point when estimating over the entire batch run is slightly past half the 

termination time. If we are only interested in the process state at batch 

termination we can expect reliable results (M > 0.8) after approximately 

120min. To illustrate the sensitivity in relation with process conditions the 

same computations are performed for initiator concentration Ci = 

0.010mol.L-1 and temperature T = 70°C; see Figure 5.4. From this figure 

we see that the measurability for T = 70°C is slightly lower. This is due to 

the lower degree of conversion for these process conditions in relation to 

the estimation error for NIR-analysis.  

Figure 5.4 

Measurability factor for 

entire batch run (thin 

line) and batch 

termination (solid 

line). 1) Ci = 

0.015mol.L-1, T = 

75°C; 2) Ci = 

0.010mol.L-1, T = 

75°C; 3) Ci = 

0.015mol.L-1, T = 

70°C; 4) Ci = 

0.010mol.L-1, T = 70°C 
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Figure 5.5 and 5.6 show similar results when allowing two measurements 

during a batch run. The two figures are obviously symmetric on the 

‘forbidden line’ where time on the x- and y-axis is the same. The overall 

performance of the measurability improves considerably.  The optimal 

time sample time-points when allowing for two measurements when 

estimating the entire batch are found in the area 90-130 minutes (half-

batch time). When estimating process values for batch termination the 

best results remain those based on measurements performed after 

approximately 120 minutes. Notice however that reliable results (M > 0.8) 

can already be retrieved from two measurements within 90 minutes 

batch-time. 

Figure 5.5 Two 

measurements 

measurability 

landscape for entire 

batch run. 

 

 

 

 

 

 

 

Figure 5.6 Two 

measurements 

measurability 

landscape for batch 

termination. 
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The experimental data available from the polystyrene batch system is 

unfortunately not collected to conform the theory as presented in this 

paragraph. It turns out that the very limited amount of data is not suitable 

to establish a direct link with concepts explained in this paragraph. 

Instead we will present some potential applications for ‘hard models’ in 

combination with in-process analyzers in the remainder of this chapter. 

 

5.5 Results for ‘Predictive Batch Monitoring’ - The data presented in 

this chapter is taken from of eight styrene polymerization batches 

experiments. Six on-spec runs we performed with different reactor 

temperatures between 70-80°C and initiator concentrations between 

0.005-0.030mol.L-1. The results on two of these on-specs A and B will be 

presented in this section. Two more batch-experiments - C and D - where 

performed introducing (deliberate) process disturbances. The 

experimental settings of the four runs are given in Table 5.1. The 

measured temperature profiles of the four batch runs are shown in Figure 

5.7.  

 

Batch temp. 

(°C) 

CI 

(mol.L-1) 

run length 

(min.) 

Disturbance 

At t = 60min.  

A 75 0.0150 180 --- 

B 80 0.0300 60 --- 

C 70 0.0050 180 temp. step 

70 � 80°C  

D 70 0.0009 180 init. impulse of 

0.0400mol.L-1 

Table 5.1 

 

Figure 5.7 Temperature records of the 

four batch-runs A-D. 
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The results for on-spec batch A are shown in Figure 5.8. In the upper left 

plot shows estimated styrene conversion using equations (5.10)-(5.11) as 

a function of time together with the conversion determined by the XSEC 

reference method on fifteen samples [8]. The upper right plot shows the 

computed MMD-parameters log10 Mn and Mw together with the reference 

values determined by SEC-analysis. The lower-left plot in Figure 5.8 

shows the predicted conversion for batch termination plus the one 

standard deviation uncertainty boundaries of the estimation error 

determined by equation (5.10). Conversion at batch termination is 

predicted every time a NIR-measurement is done (once a minute). The 

target value for conversion on batch termination is also plotted, which in 

our case is just the conversion after 180 minutes determined from the 

reference method. The lower right plot shows the predicted log10 Mn and 

Mw for batch termination together with the target values, again selected to 

be the last reference measurements of the reactor contents. Although the 

gain in (5.11) for the extended Kalman observers is computed anew for 

every measurement update, it remains almost constant at k = [-0.004 

0.6]’ for the entire 180 minutes. Using this gain vector the observer poles 

in (5.9) stay well within the stable region, as is to be expected from 

Kalman observer theory.  

Figure 5.8 Results for 

batch A; 1) estimated 

conversion (‘-’) and 

reference values (‘• ’); 

2) estimated log10 Mn 

and Mw (‘-’) and 

reference values (‘• ’); 

3) predicted 

conversion for batch 

termination plus ±1σ 

boundaries (‘-’) and 

target value (‘- -’); 4) 

predicted log10 Mn and 

Mw for batch termination (‘-’) and target value (‘- -’). 
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Figure 5.9 shows the comparable plots for on-spec batch B, the main 

difference being that this batch is terminated after 60 minutes. The 

observer gain for this batch remains almost constant for the entire 60 run 

time at k = [-0.002 0.6]’. 

Figure 5.9 Results for 

batch B; see Figure 

5.8. 

 

 

 

 

 

 

 

 

 

The results for off-spec batch C are plotted in Figure 5.10. One clearly 

recognizes the (sluggish) change in batch operation induced at 60 minutes 

in the batch run. The observer gain before the disturbance has an average 

size of k = [-0.002 0.6]’. When the new operating regime has settled the 

observer gain has converged to k = [-0.005 0.6]’. 

Figure 5.10 Results 

for batch C; see Figure 

5.8. 

 

 

 

 

 

 

 

 

 

The results for off-spec batch D are plotted in Figure 5.11 (beware of the 

different y-axis scaling). To handle the severe initiator disturbance for this 
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batch run the initiator uncertainty in equation (5.12) is increased to σ2
Ci = 

200x10-7 mol2.L-2, keeping the monomer uncertainty constant at rk. This 

way we reduce our confidence in the system model, thereby favoring the 

measurement update part in the in the Kalman filter equations (5.10) and 

(5.11). The first 60 minutes of the results are rather noisy. This is a 

consequence of the high observer gains (k = [-0.085 0.7]’) and the low 

signal for conversion measurements (only a 2.5% conversion after 60 

minutes).  After the disturbance the observer estimates converge towards 

the correct process state, but a considerate bias remains present. 

 

Figure 5.11 Results for 

batch D; see Figure 5.8. 

 

 

 

 

 

 

 

 

 

The results in Figure 5.11 treat the initiator change in batch D as a 

disturbance. This enormous system upset seems rather unrealistic in 

actual production processes. We therefore show some additional results 

where the initiator pulse is considered a control action. The state observer 

is fed with information of the approximate magnitude of the regulator 

action. This estimation task is comparable with the batch charge error for 

on-spec batches, and the original system uncertainty matrix Qk from 

(5.12) can be used. The results are shown in Figure 5.12. The control 

action at 60 minutes is clearly visible in both the estimations and 

predictions. The observer gain before the initiator pulse is on average k = 

[-0.005 0.6]’. After settling the new observer gain is approximately k = [-

0.002 0.6]’. Under the more realistic assumptions the estimations for 

batch D improve notably.  
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Figure 5.12 Results for 

batch D; see Figure 5.8.  

 

 

 

 

 

 

 

 

 

 

The information as presented in Figure 5.8-5.12 is of course not available 

during a process run. To illustrate the potential of state observers Figure 

5.13 gives three ‘snap-shots’ of an on-line monitoring chart for batch run 

D. Estimated and predicted conversion for time points 55, 65 and 120 

minutes are plotted together with the one standard deviation boundaries 

for the prediction part and the reference value at batch termination. From 

these plots we see that shortly after the new process conditions are 

introduced (at time = 60 minutes) we get a good impression of the rest of 

our run and the expected process state at batch termination. 

 

Figure 5.13 Monitoring 

chart for batch D; 

estimated conversion 

and predicted ±1σ 

boundaries for 

conversion at 

termination (‘-’) and 

reference values (‘- -’) 

for (1) 55, (2) 65 and 

(3) 120 minutes. 
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5.6 Conclusions - In this chapter we present the application of an 

extended Kalman observer for monitoring the state of a styrene to 

polystyrene batch reactor [32], [33], [42]. Through both the Long Chain- 

and Quasi Steady State Assumption we are able to significantly reduce the 

original dynamic reactor model in (5.1) into a dynamic model for the 

initiator and monomer concentration and analytical and numerical 

solutions for the moments of living and death polymer moments. The fast 

and accurate in-process Near Infrared spectroscopic measurements for 

degree of conversion, together with temperature readings on the reactor 

contents, form a reliable measurement scheme to implement the dynamic 

state observer. Using six on-spec batches - of which two examples are 

included in the results - the system uncertainty is estimated.  

We briefly show how simulations can function to find the optimal sampling 

time(s) in a batch process. The results do illustrate the possibility of 

optimizing in-process measurement schemes for a batch processes. This 

optimization strategy forms an alternative for the tactics presented in 

previous chapters. In the earlier work we used statistical error 

propagation in the optimization procedures, while in this chapter 

exhaustive simulation of the nonlinear system are used to find optima.  

First focusing our attention on the on-spec batches A and B in Figures 5.8-

5.9, we observe that both state estimation and prediction perform really 

well. Estimated trajectories show good correspondence with the reference 

XSEC and SEC values. From the prediction we see that there is a small 

deviation in the beginning of each batch. This is due to a small uncertainty 

in the batch initiator charge. The expected values (the batch recipe) are 

used as initial conditions to start up the dynamic state observer. In the 

measurement update part of the observer a mismatch between expected 

and measured process state is detected, and a combination of fast and 

accurate in-process measurements assures a rapid convergence towards 

the true process state. Combining this with a reliable process model 

guarantees a good prediction of the MMD moments. 

Similar conclusions can be drawn for the off-spec batches C and D 

presented in Figure 5.10-5.12. Conversion can be estimated fairly 

accurate, and the computed moments Mn and Mw are in good agreement 

with the reference values. The small deviation in the beginning of batch D 
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is due to disagreement between the process conditions at that stage 

(extremely low initiator concentration) and the polymerization model used 

in this chapter. The monitoring charts in Figure 5.13 illustrate the 

potential use of state estimator and predictor for process monitoring.  
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Samenvatting 

 

Dit proefschrift handelt over de optimalisatie van selectie en positionering 

van zogenaamde procesanalysatoren. Onder procesanalysatoren verstaan 

we instrumenten, voor de uitvoering van analytisch chemische metingen, 

die binnen of dichtbij een productieproces zijn gesitueerd. In dit aspect 

onderscheiden procesmetingen zich van andere metingen in een productie 

omgeving, b.v. metingen voor kwaliteitgarantie, welke vaak (met 

aanzienlijke vertraging) in een centraal laboratorium worden uitgevoerd. 

Vanwegen hun grote regelmaat en snelle beschikbaarheid kunnen de 

analytisch chemische procesmetingen gebruikt worden voor het monitoren 

en eventueel regelen van het procesverloop. Ze vormen hierin een 

belangrijke aanvulling op meer conventionele signalen in de meet- en 

regeltechniek (temperatuur, druk, stroming, enz.). Een aanzienlijk nadeel 

met betrekking tot procesanalysatoren is de relatief hoge kosten voor 

aanschaf en onderhoud. Dit laatste aspect maakt het noodzakelijk om de 

maximale hoeveelheid informatie uit een meetsignaal te halen. Het 

onderzoek gepresenteerd in dit proefschrift geeft aanwijzingen hoe deze 

optimalisatie bereikt kan worden. 

Figuur 1 

 

 

 

De eerste keuze waar 

een procesanalytisch 

chemicus (met 

ondersteuning van 

een chemisch 

technicus) voor staat 

is: welke variabele uit de overweldigende hoeveelheid variabelen gaan we 

meten (zie Figuur 1)?  Welke component, op welke plaats in de fabriek 

moeten we meten om zoveel mogelijk en zo snel mogelijk informatie over 

de toestand van het proces te verkrijgen? Het antwoord op deze vragen 

kan worden gevonden in de procesdynamica, en dit is het onderwerp van 

hoofdstuk 2. In dit hoofdstuk worden aan de hand van een 
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rekenvoorbeeld een aantal deterministische selectiecriteria voor het beste 

meetsignaal en bemonsterlocatie onderzocht.  

Naast de procesdynamica zijn ook het type procesverstoring en de 

karakteristieken van het meetinstrument belangrijk voor selectie van 

procesanalysatoren en meetlocaties. In hoofdstuk 3 wordt, wederom aan 

de hand van een rekenvoorbeeld, een stochastisch selectiecriterium 

ingevoerd: de meetbaarheidfactor. Met behulp van deze factor kunnen de 

prestaties van verschillende instrumenten, op verschillende locaties 

binnen een proces, kwantitatief worden vergeleken. Voor het berekenen 

van de meetbaarheidfactor wordt er een abstracte definitie van het 

meetinstrument geïntroduceerd, de zogenaamde procesanalysator 

dynamica, gebaseerd op vijf contributies: meetnauwkeurigheid, 

meetfrequentie, bemonsteringstijd, meetsignaal correlatie en analysetijd. 

De meetbaarheidfactor biedt bijvoorbeeld de mogelijkheid tot bestuderen 

en vergelijken van verschillende meetconfiguraties in rekenmodellen en 

computersimulaties voor een nieuw proces, zonder dat metingen  

daadwerkelijk worden uitgevoerd of een (proef)fabriek is gebouwd. 

Om de theorie over procesanalysator selectie en positionering te kunnen 

verifiëren is een proefopstelling gebouwd. In een laboratoriumschaal 

buisreactor werd Polystyreen gemaakt uit Styreen, waarbij verschillende 

spectroscopische meetinstrumenten in en om de reactorbuis konden 

worden geplaatst. De resultaten voor deze experimenten – beschreven in 

hoofdstuk 4 – bevestigen het verband tussen theorie en 

(laboratorium)praktijk. 

Al het werk zoals hiervoor beschreven is toegespitst op continue 

processen. In het laatste deel – hoofdstuk 5 – wordt een batchproces 

bestudeerd, wederom polymerisatie van Styreen. In deze nieuwe situatie  

luidt de vraag op welk tijdstip in het batchtraject geeft een meeting de 

meeste informatie. Getoond wordt hoe de theorie omtrent  

meetbaarheidfactor kan worden benut op zoek naar het antwoord. Verder 

worden in dit hoofdstuk een aantal aspecten rondom het praktisch gebruik 

van zogenaamde toestandschatters in batchprocessen besproken.  
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