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Preface 

The work performed during the three-year period of my PhD is part of a 
research project called “Centre for Critical Quality Attribute Determination in 
Muscle Foods”. My work has been centred on development of new low-field 
NMR as well as chemometric techniques with the aim to improving 
performance and applicability in food analysis. 
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mainly been performed at the Food Technology group, Department of Dairy 
and Food Science, The Royal Veterinary and Agricultural University. 
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valuable discussions over the years, in particular Rasmus Bro, Claus 
Andersson and Søren B. Engelsen from whom I received help with 
mathematical and algorithmic problems. I also want to thank Lars Nørgaard 
for filling some of the gaps in my knowledge about the science of 
chemometrics and professor Lars Munck for splendid enthusiasm. Last but 
not least, the other PhD students in the group should be mentioned. 

Steve Ablett from Unilever receives my gratitude for allowing me to come 
and work in his lab. 

Tim Benson and Thierry Guiheneuf from Resonance Instruments should also 
be mentioned for helping me off to a good start with the low-field NMR 
instrument as well as valuable support later, when problems or questions 
arose that I could not solve myself. 

In addition, the Danish Research Council (SJVF) is thanked for the financial 
support, which made this work possible. 
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Summary 

Since the introduction of low-field nuclear magnetic resonance (LF-NMR) 
instruments in food science a tremendous development has taken place 
regarding the capabilities of the hardware applied as well as the performance 
of data analytical techniques available. 

This thesis primarily deals with the progress of the analysis of LF-NMR data 
as well as the techniques that are commonly used, and some future 
possibilities for further improvements are suggested. 

Focus is on papers published combining the three cornerstones of the research 
performed in connection with this thesis: LF-NMR, food materials and 
chemometrics.  

It is clear from the work performed that LF-NMR has great potential within 
food science, since LF-NMR measurements are performed on a volume of 
sample rather than just on the surface. This can compensate for the 
inhomogeneity of most food samples. Furthermore, little or no sample 
preparation is generally required and no chemicals needed. The fact that all 
protons in a sample contributed to the LF-NMR signal, the state and 
distribution of water in samples can be probed, diffusion constants can be 
measured and it is possible to measure frozen samples or freeze or cook the 
sample inside the probe-head while continually measuring. 

The instrument allows application of a variety of different pulse experiments 
each probing different proton populations in the sample. It is therefore 
obvious that there is a large range of possibilities for enhancing the 
information content of the acquired data manipulating the sample for 
enhanced analysis. Many of these possibilities are not available in other 
spectroscopic techniques. 

The papers that constitute my own contribution to the research in this area can 
be divided into two areas: application and data analysis. The papers are 
concerned with the topic of combining LF-NMR on food materials and 
chemometrics [P1,P3,P4,P6,P8] as well as development of new methods both 
in LF-NMR and chemometrics [P2,P5,P6,P7]. 
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It is shown that in most cases the multivariate data analysis offers great 
potential for improving the traditional analysis of water and fat in fish flesh 
[P1], oil, water and protein content in rape and mustard seeds [P3], staling and 
baking of bread [P4] as well as water and fat content of meat [P6]. In addition 
new possibilities in data acquisition are proposed in terms of extending pulse 
experiments towards acquisition of data structures designed for multivariate 
rather than univariate data analysis [P6] and new designs of NMR hardware 
are tested for analysis of food-related materials [P8]. 

Existing multivariate methods are compared [P2] and algorithms proposed for 
different kinds of data are altered to handle LF-NMR relaxation data with the 
purpose of enhancing explorative as well as predictive data analysis [P5,P7]. 
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Sammendrag 

Siden indførelsen af lavfelts kærnemagnetisk resonans (LF-NMR) 
instrumenter i levnedsmiddelforskningen er der sket en voldsom udvikling, 
både hvad angår hardware egenskaber og dataanalysemuligheder. 

Denne afhandling handler om udviklingen af LF-NMR dataanalyse og LF-
NMR metoder, men traditionelle metoder, som hyppigt anvendes inden for 
begge områder, vil også blive gennemgået i denne sammenhæng. 

Fokus er på publicerede artikler der er centreret om de tre hjørnesten, som 
danner baggrund for forskningen rapporteret i denne afhandling: LF-NMR, 
levnedsmidler og kemometri. 

På baggrund af det arbejde som er foretaget synes det klart, at LF-NMR har et 
stort potentiale inden for levnedsmiddelforskningen, eftersom LF-NMR måler 
på et volumen i stedet for kun på prøveoverfladen. Dette er vigtigt for at 
kompensere for den kompleksitet og inhomogenitet, som karakteriserer de 
fleste levnedsmidler. Som en yderligere fordel kræver LF-NMR ingen 
prøveforberedelse og involverer ikke brug af kemikalier. 

Alle protoner i en prøve bidrager til det registrerede signal og man kan derfor 
måle tilstanden og fordelingen af vand i en prøve, man kan måle 
diffusionskonstanter, og det er muligt at måle på frosne prøver, samt at fryse 
eller koge prøver inde i målecellen samtidigt med at man måler. Yderligere 
tillader instrumentet, at man kan anvende forskellige pulseksperimenter, som 
hver især giver information om forskellige egenskaber. Det er således klart, at 
der findes en lang række muligheder for a manipulere protonerne i prøven for 
at forbedre analysen. Mange af disse muligheder findes ikke for andre 
spektroskopiske analysemetoder, og dette gør LF-NMR, i kombination med 
kemometri, til en meget alsidig metode med brede anvendelsesområder inden 
for levnedsmiddelforskningen såvel som andre områder. De artikler, som 
udgør mit eget bidrag til forskningen inden for disse områder, kan deles ind i 
to kategorier: applikationer og dataanalyse. Artiklerne omhandler primært LF-
NMR i kombination med kemometri anvendt på levnedsmidler 
[P1,P3,P4,P6,P8], men udvikling af nye metoder inden for både LF-NMR og 
kemometri er også behandlet [P2,P5,P6,P7]. 
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Det er blevet vist, at multivariate dataanalysemetoder i de fleste tilfælde 
tilbyder store muligheder for forbedringer af den traditionelle analyse af vand 
og fedt i fisk [P1], for vand, olie og protein i raps- og sennepsfrø [P3], for 
monitorering af staling og bagning af brød [P4] og for analyse af vand- og 
fedtindhold i kød [P6]. Nye muligheder er også blevet foreslået i form af 
omskrivning af eksisterende pulseksperimenter, således at multivariate data i 
stedet for univariate data bliver opsamplet med efterfølgende multivariat 
dataanalyse [P6], og nyt hardware layout er blevet testet til analyse af 
levnedsmiddelrelaterede prøver [P8]. 

Eksisterende multivariate metoder er blevet sammenlignet [P2], og algoritmer 
som oprindeligt er foreslået til lidt andre typer data, er blevet modificerede og 
optimerede til at håndtere LF-NMR data. Formålet har været at forbedre 
eksplorative såvel som prediktive multivariate dataanalyser [P5,P7]. 
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3D three dimensional – a cuboid 
ANOVA analysis of variance 
a.u. arbitrary unit 
CPMG Carr-Purcell-Meiboom-Gill 
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MLR multiple linear regression 
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1 INTRODUCTION 

1.1 PRESENTATION OF THE THESIS 
It is the aim of this doctoral thesis to give the reader insight into the work that 
has previously been performed using low-field nuclear magnetic resonance 
(LF-NMR) in food science in general and to present the work performed 
during my PhD study. 

The presentation will be divided into three main parts: Chapter 2 describing 
NMR history and theory, including pulse experiments; Chapter 3 dealing with 
data analysis starting with the traditional methods and procedures, followed 
by a description of the work published where LF-NMR and chemometrics 
have been combined; Chapter 4 in which some ongoing and possible future 
work on the application of LF-NMR in food science is described and 
suggested. 

1.2 DESCRIPTION OF PROJECT 
In 1998 a collaboration between Food Technology and Meat Science at The 
Royal Veterinary and Agricultural University (KVL), the Department of 
Product Quality at the Danish Institute of Agricultural Sciences (DJF), the 
Department of Seafood Research at Danish Institute for Fisheries Research 
(DFU) and the Magnetic Resonance Research Centre at Århus University 
(located at Skejby Hospital) was started on the basis of a grant from The 
Danish Research Council (SJVF). In the application to SJVF, the following 
summary was included to describe the purpose of the collaboration: 

“This project is designed to provide a high-powered research centre 
between leading agencies working on the properties of meat and 
fish. It will be a platform on which other initiatives are built and 
which will provide major insights into basic issues in muscle food 
production technology and quality attributes. 

Attributes such as the water-holding capacity (WHC) of muscle 
foods are of major concern for the meat and fish industry, as they 
affect critical technological traits (processing yield), important 
sensory characteristics (appearance, flavour, tenderness, juiciness), 
nutritional characteristics (water soluble vitamins, minerals) and 
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processing characteristics (stickiness, salt uptake). Low WHC is 
most undesirable, resulting in unacceptably high drip loss, which 
may occur at many stages during processing. The industry is 
therefore vitally interested in factors controlling this problem. 

The ability to use rapid, continuous, non-destructive and non-
invasive techniques to measure WHC would provide the industry 
with means of selection and control of product in a manner not 
possible at present with consequent better use of raw materials, 
improved yields, consistency of product characteristics and hence 
better financial returns. Current methods do not achieve these 
objectives. 

The investigations in this project will take a novel approach on 
well-described materials to find solutions to these pressing 
problems. The use, at the highest level, of sophisticated 
spectroscopic techniques, such as NMR (Nuclear Magnetic 
Resonance) and fluorescence, with the most recent instruments and 
with new probes to be developed, will be coupled with the ability to 
analyse the complex data obtained by application and development 
of the most advanced chemometric techniques in a manner not 
employed for this task previously. 

In addition, these results will be linked with pre-mortem and 
immediate post-mortem energy metabolism and with detailed 
structural, biochemical and physical measurements on the same, or 
comparable, materials to provide new insights into controlling the 
processes of change in muscle food quality attributes. 

To do this the project brings together considerable resources, 
expertise and knowledge of pork muscle, fish muscle, measurement 
techniques and chemometrics from leading university and sector 
research institutes in the food and medical fields.“ 

The work presented here has been carried out as part of this project and due to 
the different expertise and facilities at the institutions involved, emphasis in 
this work has been given to the exploration of new possibilities in LF-NMR 
and chemometrics in food science. The aim has been to test existing protocols 
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and if possible to develop new protocols to produce data with more 
information specific to the problem in question and further to develop and test 
new chemometric possibilities in combination with LF-NMR relaxation data 
to enhance performance of the data analysis. 
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2 NUCLEAR MAGNETIC RESONANCE 

2.1 HISTORY 
The theory of nuclear magnetic resonance (NMR) was put forth in the mid-
1930’s by the Dutch physicist Gorter [1], but it was not until 1945 that the 
American physicists Bloch and Purcell discovered NMR in the form that is 
known today [2,3]. The possibilities of NMR in chemistry were not 
appreciated until 1950, when Proctor and Yu discovered the chemical shift 
which enabled elucidation of molecular structures of organic compounds [4]. 
Although originating in physics, it is in chemistry that NMR has provided the 
greatest possibilities. 

In the first continuous wave NMR instruments spectral resolution was poor, 
but with the introduction of signal averaging, sensitivity improved 
significantly, and by introducing pulsed NMR instruments along with Fourier 
transformation of the acquired time-domain relaxation, signal resolution was 
even further improved. By introducing pulsed NMR the time of acquisition 
was reduced as an additional advantage. It was discovered that, particularly 
for solids, spinning of the sample inside the instrument while measuring could 
greatly improve the spectral resolution by averaging out sample and magnetic 
field inhomogeneities [5]. 

Since the magnetic resonance chemical shift resolution depends on the 
magnetic field strength, development of instrumentation has progressed 
towards stronger and stronger magnetic fields, and by the introduction of 
superconducting magnets in the mid-1970’s a leap in field strength was taken 
compared with the electromagnets previously used. This development 
increased the physical dimensions of the instruments, and with large magnetic 
stray fields the instruments required a lot of space and were not suited for 
work outside the laboratory. 

In the late 1980’s and the beginning of the 1990’s application of pulsed field 
gradients became routine. Besides enabling a large number of specialised 
pulse experiments in order to fulfil specific demands by researchers, magnetic 
resonance imaging (MRI) was also made possible both in the research lab and 
in hospitals where the technique is normally referred to as “MR scanning”. 
With the introduction of imaging NMR really moved into the field of non-



 LF-NMR, FOOD & CHEMOMETRICS  

6 

invasive analysis of large samples, offering totally new prospects for 
researchers in many fields, and it has become an indispensable diagnostic tool 
in medicine. 

By that time a modern superconducting NMR instrument had become very 
expensive and expert spectroscopists were required to operate the instruments. 
Approximately at the same time it was realised that in many research fields 
the high spectral resolution offered by these instruments was not always 
required and development of new small bench-top instruments based on the 
latest electronics and permanent magnets with a much lower magnetic field 
strength started to emerge. This kind of instruments typically have magnetic 
field strengths in the range of 0.23 to 0.70 Tesla (T) equal to 10 to 30 MHz 
for protons. These instruments have particularly found application in the oil 
industry for rock core analysis, medical diagnostics, food and feed research 
and bench-top imaging instruments have also found wide application in 
research. Low-field bench-top instruments have the advantage of being 
cheaper although still expensive, lighter although still quite heavy and much 
less sensitive to changes in environment and stray fields whereby a step has 
been taken in direction of moving NMR into the process line for on- or at-line 
measurements. 

In 1996 a new low-field magnet layout was suggested in a small hand held 
device called the NMR-MOUSE (MObile Universal Surface Explorer) [6]. 
Currently, a lot of research is being conducted towards the development of the 
MOUSE, and NMR has really taken a step towards process application, 
although this design poses some problems that need to be solved first. 

Over the years a number of names have been applied to describe the bench-
top NMR instruments such as “low-resolution”, “time-domain”, “wide-line” 
or “low-field”. Of these only the latter is clearly unambiguous, since a lot of 
work has been put into producing better magnets and better shimming, 
thereby producing bench-top instruments capable of showing chemical shift 
resolution (i.e. “high-resolution” and narrow line width). Furthermore, since 
high-resolution data may be presented and analysed in the “time domain”, this 
name is considered equally inappropriate. In this thesis, therefore, “low-field 
NMR”, or LF-NMR, will be the term used to describe this kind of instrument. 
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A great deal of development is still being carried out on the NMR hardware, 
continuously offering new possibilities which make both low-field and high-
field NMR indispensable tools in research and routine analysis. 

2.2 THEORY 
Many nuclei possess a spin angular momentum, which is dependent on the 
size of the angular momentum quantum number (I), which again is dependent 
on the nucleus in question. The angular momentum quantum number is 
commonly referred to simply as spin. 

The spin of a nucleus depends on the mass of the isotope, and nuclei with 
even mass and even charge numbers possess no spin angular momentum, i.e.  
I = 0. Such nuclei cannot be used for NMR, since it is the nuclear spin 
property that enables NMR. 

When a nucleus that possesses a spin different from zero is placed in a 
magnetic field, the nucleus will occupy one of a number of energy levels 
where the number of levels available depends on the value of I. The proton 
(1H) is the most abundant NMR nuclei and has a spin of I = ½. For such 
nuclei there are two different energy levels that the spins can occupy when 
placed in a magnetic field: I = -½ and I = ½. This corresponds to an 
orientation parallel (I = -½) or anti-parallel (I = ½) with the applied magnetic 
field. Figure 1 show the two possible energy levels for protons and the 
dependence of the applied magnetic field B0. In the rest of this presentation of 
the NMR theory protons will be used as a model. 

Mathematically, the difference in the energy levels shown in Figure 1 can be 
described as 

  00 ν⋅=∆ hE  Eq. 1  

where h is Plank’s constant and 0ν  is the frequency of the excitation pulse at 
which transition between the two energy levels is induced. 0ν  is referred to as 
the resonance frequency or the Larmor frequency and will depend on the type 
of nucleus and magnetic field strength, as described in Eq. 2:  

  
π

γ
ν

⋅
⋅

=
2

0
0

B
 Eq. 2  

Here γ is the gyromagnetic ratio, which is a constant for a given nucleus. 
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Figure 1  Representation of the two possible energy levels for nuclei 
with spin = ½ and the dependence of the strength of the applied magnetic 
field (B0) 

At equilibrium the protons are distributed between the two energy states 
according to Eq. 3, which is known as the Boltzmann distribution. 

  








⋅
∆

= Tk
E

e
N
N

β

α  Eq. 3 

In this equation α and β represent the spin-up and spin-down states 
respectively and k is the Boltzman constant. According to this distribution 
there will be an excess of protons in the spin-up state, since this is the 
energetically more favourable state, and a net magnetisation vector is formed 
on the basis of this excess. It is this small net magnetisation vector that is 
utilised in NMR and simple calculations show that at room temperature and a 
magnetic field strength of 0.47 T (equal to 0ν  = 20 MHz for protons) the 
excess in the spin-up state will be approximately three protons out of one 
million. It is therefore obvious why NMR is commonly described as 
insensitive compared with other spectroscopic methods, since a large number 
of protons are required in order to generate an appreciable signal. The low 
energy levels required for measuring NMR also makes it a non-invasive, low-
perturbation method. 

While the sample is at equilibrium and unaffected by an external magnetic 
field, the orientation of the protons will be randomly distributed in all 
directions. However, when the sample is placed in a magnetic field, the 
protons will align as described in Eq. 3. Under the influence of the external 
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magnetic field the protons will start to precess about the direction of the 
magnetic field, as shown in Figure 2A for a single proton, and the net 
magnetisation vector pictured in Figure 2B is formed. 

Figure 2  (A) Precession of a single proton around the external 
magnetic field and (B) resulting net magnetisation vector based on the 
surplus of protons in the spin-up state. 

Since the protons precess at different frequencies due to different local 
magnetic environment (shielding), they will precess at different rates and fan 
out, resulting in a net magnetisation vector positioned exactly on the axis 
parallel to the magnetic field. The bold arrow in Figure 2B represents this net 
magnetisation vector and is positioned on the direction of the magnetic field 
with no components on the other axes of the coordinate system. 

In order to facilitate description of the spin manipulation that gives rise to the 
NMR signal it is normal to ascribe axes to the NMR instrument. Thus the z-
axis is normally ascribed to the direction of the magnetic field (B0), the x-axis 
is the axis along which the excitation radio frequency (RF) pulse is applied 
and the y-axis is the axis where the signal is detected. Figure 3 shows a 
diagram of this representation along with the result following a perturbation 
of the equilibrium system by a RF-pulse. 

Strictly speaking, the previous description is not completely correct, as pulses 
can be given along both the x- and y-axes. Furthermore, the signal is detected 
along both the x- and y-axes and calculated as the resulting component of 
these two contributions. 

B0 B0A B
B0 B0A B
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Figure 3 Diagram of the 
coordinates normally 
ascribed to the NMR 
instrument including the 
RF-coil. The drawing also 
depicts a perturbation of 
the system at equilibrium. 

 

In Figure 3 only the net magnetisation vector parallel to the magnetic field is 
displayed, since as previously described it is only the small surplus of protons 
that gives rise to the NMR signal. Since the NMR signal is detected as the 
components along the x- and y-axes, it is clear that a pulse of a given power 
with a duration precisely long enough to flip the net magnetisation vector into 
the xy-plane will generate the largest possible signal. This pulse is referred to 
as a 90-degree pulse and a pulse with a duration long enough to flip the net 
magnetisation vector along the negative z-axis is referred to as a 180-degree 
pulse. 

After a perturbation by a 90-degree RF-pulse the spin system will lose 
coherence in the xy-plane, a process known as spin-spin or transverse 
relaxation, and the loss of coherence is described by a time constant called T2. 
This process is due to energy exchange between protons as well as 
inhomogeneities in the magnetic field, which will particularly influence 
molecules with mobile protons and high diffusion rates such as water. 
Simultaneously with the loss of coherence in the xy-plane the protons will 
seek to regain equilibrium orientation along the z-axis due to the influence of 
the magnetic field. The time it takes for the protons to regain equilibrium 
distribution between the two energy states depends on the probability of 
energy exchanges occurring between the spins and their environment (the 
lattice). This is characterised by a relaxation mechanism normally referred to 
as longitudinal or spin-lattice relaxation and is described by a time constant 
T1. The nature of T1 and T2 relaxation will be described in more detail in the 
following, along with the pulse experiments commonly used to estimate these 
time constants. 
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2.3 PULSE EXPERIMENTS 
2.3.1 Free Induction Decay (FID) 

One of the simplest pulse experiments possible is an experiment in which a 
90-degree RF-pulse is applied and the decreasing signal due to relaxation 
following the pulse is measured. The loss of coherence and the resulting 
decaying signal is almost exclusively due to spin-spin relaxation. The FID 
experiment is schematically described in Figure 4. Note that the timing 
diagram has not been produced to scale. The duration of a 90-degree pulse is 
typically in the order of a few microseconds, a 180-degree pulse about twice 
as long, and the data acquisition time may be as long as seconds. These points 
also cover the pulse experiments described in the following text. 

Figure 4 Diagram of the Free Induction Decay pulse experiment 

The decay of the signal following the 90-degree pulse depends not only on the 
relaxation properties of the sample, but also on the homogeneity of the 
magnetic field. The relaxation time constant measured by a FID experiment is 
therefore normally shorter than the real spin-spin relaxation time constant and 
is commonly referred to as T2

*. For most samples T2
* is assumed to be much 

smaller than the true T2 of the sample. 

Following the 90-degree pulse a short delay is required before data 
acquisition starts due to hardware limitations. However, in the simple FID 
experiment this delay is shorter than for most other pulse experiments and 
FID is commonly used for measuring T2 in samples with a very rapid decay 
such as most solids. For liquid samples the FID experiment is not commonly 
used due to the effect imposed on the relaxation decay by magnetic field 
inhomogeneities and diffusion. 
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2.3.2 Hahn spin echo 

In 1950 Hahn [7] discovered that if a short delay and a subsequent 180-degree 
pulse followed an initial 90-degree pulse, a spin echo was formed. The reason 
for the build-up in signal after it has apparently been lost is due to the fact that 
some of the coherence lost due to spin diffusion is refocused following the 
180-degree pulse and the signal is reclaimed. 

The delay between the 90- and 180-degree pulses is commonly referred to as 
tau (τ) and Figure 5 shows a diagram of the Hahn spin echo pulse experiment. 

Figure 5 Diagram of the Hahn spin echo experiment 

The amplitude of the spin echo will depend not only on the nature of the 
sample, but also on the length of tau. By making a series of measurements 
with different values of tau and plotting the spin echo amplitude as a function 
of tau an exponentially decaying curve will be described. From this curve the 
T2 time constant may be found by fitting an exponential to these amplitudes. 
This T2 is the true spin-spin relaxation time constant of the sample. 

It is important to realise that the 180-degree pulse cannot refocus coherence 
lost due to magnet inhomogeneities and that the decrease in echo amplitudes 
is therefore mainly due to the influence of magnet inhomogeneities. 

2.3.3 Carr-Purcell-Meiboom-Gill (CPMG) 

In 1954 Carr and Purcell [8] suggested an extension of the Hahn spin echo 
experiment where the T2 time constant could be determined using only one 
tau value and the time of acquisition greatly reduced. Meiboom and Gill [9] 
modified this experiment in 1958, resulting in the pulse experiment 
commonly referred to as the CPMG pulse experiment.  
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The CPMG experiment is often preferred to the Hahn spin echo method for 
measuring the T2 relaxation time constant since the entire relaxation curve is 
acquired in “one shot”. Just as the Hahn spin echo experiment the CPMG 
experiment to a great extent compensates for diffusion effects. But more 
important, by using every second echo only (even echoes), inaccuracies in the 
180-degree pulse setting is also corrected for. 

. Figure 6 shows a diagram of the CPMG experiment where the first three 
echoes are shown. Typically, only the top-point of each echo is acquired and 
the T2 value of the sample can be obtained by fitting a sum of exponentials to 
this decaying curve. 

Figure 6 Diagram of the CPMG pulse experiment. Only the first three 
echoes are shown 

There are generally two different ways of depicting and explaining spin 
manipulation and relaxation. One is the classical approach in which fixed axes 
are ascribed to the NMR instrument (as seen in Figure 3) and the motions of 
the spins related to these axes. In the second approach the motions of the 
spins are related to a coordinate system rotating at the resonance frequency, 
which is commonly referred to as a rotating frame. In Figure 7 the evolution 
of the spin system in the CPMG experiment is described in more detail in a 
rotating frame showing only the effect of the first couple of 180-degree 
refocusing pulses. 

It is seen that the net magnetisation vector is split into two parts (dotted 
arrows and dashed arrows) rotating away from or against each other, 
depending on the location in the pulse experiment. These two parts represent 
spins moving more slowly (dots) or faster (dashed) than the resonance 
frequency due to local differences in the magnetic field strength of the lattice. 
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Figure 7  Diagram of the evolution of the spin ensample in the CPMG 
pulse experiment. The figure shows de-phasing and re-phasing following 
the 180-degree refocusing pulse. 

2.3.4 Inversion Recovery (INVREC) 

The inversion recovery pulse experiment [10] is typically performed in order 
to estimate the spin-lattice relaxation time constant (T1) which describes the 
time it takes for the protons to return to equilibrium distribution along the 
magnetic field following a perturbation. Due to the fact that signal can only be 
detected in the xy-plane and not along the z-axis, spin manipulation is 
required in order to facilitate measurement of T1. 

Although quite simple to perform the inversion recovery pulse experiment is 
somewhat more difficult to describe than the previous experiments. The 
experiment consists of an initial 180-degree pulse and a recovery delay (D1) 
followed by a 90-degree pulse in order to flip the net magnetisation vector 
from along the z-axis and into the xy-plane to measure the current size of the 
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net magnetisation vector. The experiment is repeated for a range of recovery 
delays and for each D1-value a point is generated on the final relaxation curve 
plotted as a function of D1. The resulting relaxation curve can be 
exponentially fitted and the relaxation time constant estimated. It can be seen 
that the procedure of data acquisition closely resembles the measurement of 
T2 by the Hahn spin echo experiment previously described. 

The experiment is quite time-consuming and is therefore mainly used for 
determination of T1 relaxation time constants and not so much for predictive 
purposes, although excellent predictive performance has been achieved using 
T1 data [P1,11,12]. In Figure 8 the evolution of the spin system is presented in 
the rotating frame for five different recovery delays (D1) prior to the 90-
degree pulse. 

Figure 8  Diagram of the evolution of the spin ensample in the rotating 
frame for the inversion recovery pulse experiment. The figure shows the 
situation for five different values of D1. 

The five situations correspond to increasing D1-values starting with a very 
short value to the left, a long D1-value to the right and in the middle the 
situation in which D1 is chosen to be equal to the value where the net 
magnetisation vector is equally distributed between the spin-up and spin-
down states (D1 = ln(2)·T1) and the signal therefore completely disappears. 
The second and fourth situations are simply D1-values in-between. 
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3 LF-NMR AND DATA ANALYSIS 

3.1 TRADITIONAL METHODS AND APPLICATIONS 
A range of pulse experiments in addition to those just described in Chapter 2 
may be applied. There are furthermore a number of different ways to analyse 
the acquired LF-NMR data. Some of these possibilities will be described in 
the following. 

The importance of LF-NMR in food science arises from the fact that food 
samples with complex structures can readily be analysed. Food samples are 
typically composed of many different components such as carbohydrates, 
proteins, water, fats and other minor components, and food samples are 
normally considered to be very inhomogeneous. Besides measuring chemical 
composition of a sample, the physical properties such as the states of water 
may be investigated, completing the range of information obtained to produce 
a clearer and better understanding of the samples analysed. This is of outmost 
importance since the states of water controls a great number of properties in 
food materials, such as rheology, sensory properties, stability to oxidation, 
microbiological activity and many more. 

The problem of sample inhomogeneity is readily handled by LF-NMR, 
measuring on a volume of sample rather than just the surface of the samples, 
and as an additional advantage LF-NMR is normally considered to be non-
invasive and non-destructive. 

Signal generated by the FID pulse experiment originates from all protons in 
the sample and the initial signal intensity of the relaxation decay is therefore 
proportional to the total number of protons in the sample. However, due to 
hardware limitations there is normally a delay following the 90-degree pulse 
before acquisition of data can commence. Because of this delay (commonly 
called “dead time”), it is not possible to acquire the true signal originating 
from all protons, as will already have relaxed at the time when signal 
acquisition starts. 

The relaxation pattern of the protons in a sample will depend on the nature of 
the protons, e.g. protons in water or in lipids, as well as the state of the 
protons, e.g. structured or free water is important. Solid materials typically 
have a very short T2, whereas liquid materials have longer T2 time constants. 
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It is these differences that are utilised when setting up an experiment as well 
as in the subsequent data analysis. 

One application that directly takes advantage of the different relaxation 
patterns of solid and liquid protons and which has been widely used in the 
industry is the determination of solid fat content (SFC) in fats and oils 
[13,14,15]. Determination of SFC has traditionally been achieved by 
assuming that the amplitude of the first measured point corresponds to the 
entire proton content in the sample (solid + liquid) and that a point acquired 
some time later is assumed to correspond to liquid component only. The 
assumption is that since the solid protons decay rapidly, waiting a certain 
length of time will leave only the liquid signal to be acquired. The first point 
is typically collected 11 µs after the 90-degree pulse (due to the “dead time”) 
and the second point has typically been acquired approximately 70 µs after 
the pulse, at which time it is assumed that only the liquid oil signal is left. 
Based on these two points it is now simple to calculate the solid fat content of 
the sample. A similar approach has been used in a number of different 
applications such as the determination of the oil content in oil seeds [16,17]. 

By using the Hahn spin echo pulse experiment and acquiring the initial point 
in the FID as well as the top point of the spin echo following the 180-degree 
refocusing pulse a tremendous improvement of the method just described can 
been achieved. Still, the initial point in the FID is related to the total proton 
content, and since the fast relaxing components will not be refocused if tau is 
chosen appropriately, the spin echo amplitude will correspond to the 
remaining slow relaxing components. With this set-up SFC could be 
determined with better precision. However, one of the main achievements of 
this approach was that now the fat content could be determined in meat 
samples where a small amount of water was present. It thus became possible 
to measure the fat content without drying the sample prior to the NMR 
measurement [18,19,20,21]. 

As already mentioned, data originating from CPMG, INVREC or even the 
Hahn spin echo experiment repeated for different tau values produce decay 
curves that can be described by sums of exponentials. This relationship can be 
seen in Eq. 4 and Eq. 5 for T1- and T2-relaxation respectively and has been 
widely used for qualitative as well as quantitative purposes. 
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Here I(t) describes the signal intensity as a sum of N mono-exponentials with 
M0,i and Tx,i expressing the initial signal amplitude and relaxation time 
constants respectively. By using a computer and an appropriate algorithm it is 
possible to calculate amplitudes and time constants for a given number of 
components and use these parameters to characterise the sample. The 
amplitudes of the resulting fit mainly provide quantitative information, as 
they describe the amount of the different components, while the 
corresponding time constants mainly give qualitative information, since they 
relate to the origin or state of the protons of the given component. To use this 
analysis properly, knowledge is required as to how many components can be 
expected in the sample and time constants for different pure components need 
to be known in order to infer the nature of the deconvoluted components. 

With the introduction of the computer it became possible to apply exponential 
fitting routinely and the procedure represents a cornerstone of traditional data 
analysis of LF-NMR data. Based on the amplitudes it now became possible to 
simultaneously determine oil and water content in a variety of more complex 
samples. 

Exponential fitting has been applied in a wide range of applications such as 
monitoring of alcoholic fermentation [22], different applications on grain 
[23,24], determination of sublimation endpoint in freeze-drying [25], 
examination of textural changes in frozen cod as well as stored or processed 
cod [26,27], measurement of mobility of lipids in bread [28], determination of 
glass transition temperature in food polymers [29], and determination of 
iodine number [30,31]. 

In the late 1970’s discussions started as to whether it was correct to interpret 
relaxation curves acquired on complex samples by simple exponential fitting, 
describing the sample by two or three underlying components. Clearly, 
exponential fitting gives useful information and it is an easy way of analysing 
samples, but even in a sample with only two components interactions at 
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boundaries between the two components, exchange effect and other effects 
will result not only in two time constants but in a distribution of time 
constants and thus in a large number of components. It was therefore argued 
that relaxation curves should be fitted by a distribution of exponentials, i.e. by 
a much larger number of “components” than the normal few. Some of the first 
work presenting distributed exponential fitting as an analytical tool was 
carried out by Provencher and Dovi [32] in which photodissociation of CO 
from heme proteins at low temperatures in simulated data is described, 
Lillford et al. [33] used distributed exponential fitting of LF-NMR data, to 
describe the distribution of water in meat, showing that improved 
interpretation results when distributed exponential fitting is used rather than 
discrete exponential fitting. 

Although not used in as many applications as discrete exponential fitting, the 
distributed exponential fitting has still been applied for a number of different 
purposes such as the study of changes in sub-cellular water 
compartmentalisation in apple tissue during drying and freezing [34], 
quantitative determination of bound water in wheat starch [35], and the study 
of the state of water and oil in frozen emulsion [36]. In a recent paper by 
Bertram et al. [37] the analysis is also used to describe the distribution of 
water in meat as a function of different treatments in a comparison of two 
traditional methods for determining WHC as well as estimated by LF-NMR. 

By comparing the results of discrete and distributed exponential fitting 
performed on the same samples it is found that time constants calculated in 
the discrete analysis often coincide with the peaks resulting from distributed 
exponential analysis. This clearly shows that the distributed exponential 
analysis, although a simplification, does in fact describe information relevant 
to the underlying features of the samples. 

Mathematically speaking, the problem of fitting a distribution of mono-
exponentials to a relaxation decay is said to be ill-posed, meaning that there 
exist no simple solution to the problem and additional knowledge and 
constraints are required to find a solution. The mathematical term for 
transforming an ill-posed problem into a problem that can be solved is called 
regularisation, which is a research field of its own [38]. A number of 
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publications have been made using existing algorithms or suggesting new 
algorithms to improve the distributed exponential analysis [39,40,41,42]. 

It is important to realise that although distributed exponential fitting offers a 
nice way for interpreting LF-NMR data in relation to changes in the 
distribution of water or fat or some other constituent, some problems need to 
be taken into account before applying the method. These relate in particular to 
the fact that different sample characteristics and noise levels may severely 
distort the obtained results. Caution should therefore be taken when 
distributed exponential analysis is applied to a set of different samples with 
the purpose of comparison. Application to a data set based on repeated 
acquisitions from a single sample, where the different acquisitions result 
from, for example a change over time, seems to be more appropriate. 
Distributed exponential fitting will be further described in a later section. 

In 1992 Davenel and Marchal [43] described an improvement of a study 
reported by Tollner and Hung in 1990 [44]. Davenel and Marchal described a 
problem from the feed industry where a number of different raw materials 
with different moisture content are mixed to produce a feed product. 

In this paper Davenel and Marchal applied canonical factor analysis to the 
entire data set in an attempt to classify the different raw materials. This is 
probably one of the first applications of multivariate data analysis within LF-
NMR on food materials. In the rest of this chapter and the next a more 
detailed description of some of the most common chemometric methods 
applied and the results obtained will be discussed. 

3.2 EXPLORATIVE METHODS 
3.2.1 Univariate 

Analysis of variance (ANOVA) is a tool used to investigate whether or not 
acquired data contain information relevant to expected groupings in data. In a 
data set containing one relaxation profile for each sample the analysis is 
applied to the individual variables one after the other and in the end the 
calculated variances are plotted as a function of the position in the signal. This 
“variation-curve” will contain the same number of elements as the acquired 
data and by comparing the two plots the variables containing the most 
information regarding the problem in question can be selected. If additional 
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univariate tools are applied in the further analysis the best variables for the 
specific problem can be selected on the basis of the result of the ANOVA. 

The analysis consists of calculating two different variance measures, one 
describing the difference between the groups examined (VG) and one 
describing the residual variance (VR). The equations can be written as: 
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where g is the number of groups, jn  is the number of samples in group j, jix  is 
the value for sample i in group j, jx  is the mean value for group j and x  is the 
grand mean value. 

ANOVA has been applied in a series of publications using LF-NMR for the 
analysis of different problems such as characterisation of cocoa masses [45], 
for examination of spreads and gelatines with different composition, for 
mixtures of cation (Cu2+) and a ligand (tetraphenylporphin), and for glycine 
solutions at different pH values [46,47,48] as well as for technological meat 
quality parameters [49]. 

In the mentioned studies ANOVA is applied to INVREC data, to CPMG data 
and to data comprised of the two, either by acquiring true T1-weighted CPMG 
data or by calculation of the outer product (see section 3.2.2 below). The data 
acquired by T1-weighted CPMG [47,48] or calculated by the outer product in 
reality describe a two-dimensional (2D) landscape for each sample which has 
to be unfolded (vectorised) before ANOVA is performed. Once information 
in data relevant to the problem in question has been confirmed by the 
ANOVA further predictive analysis is performed in which the entire 
relaxation profiles can possibly be used in a multivariate way. 

A drawback of ANOVA is that due to the univariate nature of the method 
interactions between the different variables are not taken into account, even 
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though it is known that LF-NMR data are highly correlated and that 
interactions between variables can be expected. 

3.2.2 Multivariate 

In spectroscopic signals it is normally expected that the variables within the 
spectrum are strongly correlated, and LF-NMR data is no exception, as 
demonstrated by Bechmann et al. [P2]. Here it is shown that more than 99 % 
of the variables have an intercorrelation larger than 0.9. Due to these high 
intercorrelations multivariate techniques must be preferred for analysis of this 
kind of data, since these methods can handle large data sets with correlated 
variables, and interaction effects are taken into account in the resulting 
models. 

One multivariate method is Principal Component Analysis (PCA) [50,51] 
which is a decomposition method where a set of corresponding scores (T) and 
loadings (P) is calculated for a data set (X), leaving only a residual (E): 

  EPTX +⋅=  T  Eq. 8 

Scores correspond to concentrations of the common latent variables 
(loadings) as displayed in Figure 9, where the decomposition of three samples 
chosen at random from a PCA analysis of a LF-NMR data set is shown. 

Figure 9 Plot of three samples decomposed by PCA into a common 
mean spectrum and two sets of corresponding scores and loadings as 
well as a residual.  
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The idea of PCA is to find orthogonal variations present in the data set on a 
model-free basis until only noise is left in the residual. The variations are 
extracted in decreasing order with the largest variation first called the first 
principal component and so forth. PCA is a very strong tool used to explore 
the variation present in the data set and often the origin of the extracted 
variances can be interpreted directly through plots of the calculated scores by 
utilising known information about the samples. 

Another valuable tool offered by PCA is outlier detection. Outliers are 
samples that do not conform to the majority of samples in a data set and will 
therefore have a detrimental effect on the calculated model. The reason for a 
sample being an outlier can be one of many, such as wrong sample 
preparation or erroneous handling of the sample, but it can also be due to 
instrumental artefacts. It is important to make an effort to find out why a 
sample is an outlier before removing it from the data set. Once a sample has 
been shown to be an outlier, it should be removed from the data set and the 
model must be recalculated. 

One of the first applications of PCA to LF-NMR on food materials is by 
Hernandez and Rutledge [45] where the influence of supplier and roasting of 
cocoa beans is evaluated. Another good example of the explorative ability of 
PCA is shown in Jepsen et al. [P1] where it is seen that the first principal 
component describes water content in a data set consisting of measurements 
of cod and salmon and it is also seen that cod and salmon samples can clearly 
be separated. In Pedersen et al. [P3] two different varieties of seeds as well as 
different water content within each variety of seeds can be visualised. Thybo 
et al. [52] applied PCA to evaluate the relationship between sensory 
evaluation of different potato samples treated differently and Engelsen et al. 
[P4] visualise the changes in proton mobility taking place during baking of a 
small bread directly inside the NMR probe with data continually being 
acquired during the time of baking. 

Another approach for enhancing the information content of spectral data was 
suggested by Rutledge et al. [46,48,53] based on the calculation of the outer 
product of two acquired signals of different nature. The idea is not only to 
enhance interpretation through ANOVA, but also to enhance the predictive 
ability by combining and thus simultaneously treating the two different 
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signals. In the papers it is concluded that enhanced interpretation results from 
the procedure when compared to analysis of the data sets for the individual 
signals, and in one of the studies it is concluded that although it is clear that 
outer product data generated with INVREC and CPMG data do not contain 
the same information as the true T1-weighted CPMG data, the data structure 
generated by forming the outer product represents a good approximation [48]. 

The outer product is calculated and understood as displayed in Figure 10 in an 
example in which constructed INVREC and CPMG data are used. The 
subplots (A) and (B) show the pure relaxation profiles for INVREC and 
CPMG respectively, and (C) shows the calculated 2D landscape resulting 
from calculating the outer product of the pure signals. In (D) this landscape is 
unfolded to produce a vector that is used in the following analysis. 

Figure 10 Illustration of the outer product (C) calculated from INVREC 
data (A) and CPMG data (B) as well as subsequent unfolding for further 
data analysis (D) 
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At first sight the idea is quite interesting and the conclusions presented in the 
papers convincing. From a mathematical point of view there is, however, a 
problem with the approach, which is described in the following: 

Assume that a sample X contains a true 2D T1-weighted CPMG 
data matrix originating from one sample. If INVREC and CPMG 
data both are sums of F underlying exponential components, then X 
can be described as: 

  TNCSX ⋅⋅=  Eq. 9 

where S represents the pure underlying profiles in INVREC data 
and has dimension I×F (I data points acquired), N represents the 
pure underlying profiles in CPMG data with dimension J×F (J data 
points acquired) and C is an F×F diagonal matrix of concentrations. 
The matrices S, C and N all have rank equal to F, and X will 
therefore have rank F meaning that F independent phenomena are 
reflected in the measured data. 

Now assume that a pure CPMG profile has been acquired for the 
same sample without T1-weighting, the acquired signal can be 
represented by n with dimension I×1 and similarly for INVREC the 
pure profile is given by s with dimension J×1. The outer product of 
s and n is equal to s·nT, which will have rank one. 

Due to the fact that X have rank F, proving that X is different from 
s·nT, it is possible to derive the information in s·nT from X (by 
simply taking the appropriate row and column and multiply these). 
However, it is not possible to obtain the information in X from s·nT 
and hence more information is obtained from X than from s·nT. 
Thus, the outer product data cannot increase the information content 
and replace true 2D data. 

Enhanced interpretation by forming the outer product is also 
unlikely, as the outer product is simply a linear combination of the 
original profiles and no physical interaction between the two signals 
will thus be expressed. 

On this basis it is concluded that outer product cannot enhance the 
information content either through ANOVA analysis or through PLS 
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prediction models. However, the true 2D data, for example acquired by a T1-
weighted CPMG pulse experiment may contain more information than the 
two separated data sets together, since in this case the influence of the T1-
weighting on the individual components in the CPMG relaxation signal may 
be different and interaction effects will thus be present. 

It should be stressed, that in the example given above it is assumed that both 
INVREC and CPMG data consist of the same number of components, but that 
this is unimportant, since the basic content of the argument is equally valid if 
the two LF-NMR data contain different numbers of components. 

3.3 CALIBRATION 
3.3.1 Univariate 

Typically, a single response variable is measured or a ratio calculated between 
two measured or calculated responses.  Based on this single variable (ratio) 
for each sample linear regression is performed and from the calculated 
regression line a correlation, a prediction error and a bias (a measure of the 
average difference between measured and predicted values) can be calculated, 
giving indication of how well the measured variables describe the reference 
variable in question. 

There are a few problems that should be considered when using univariate 
predictions based on linear regression. One is that out of a large number of 
measured variables only one variable is selected for the linear regression. It is 
thus crucial to select the measured variable that best correlates with the 
reference variable, and it is here that tools such as ANOVA or another kind of 
variable selection comes into question. Besides ANOVA, different schemes 
for variable selection may be applied, such as forward selection [P2]. 

Another problem occurs if different components in the sample give signals in 
the same region or a variable baseline offset is possible in data. In cases of 
coinciding signals these will be inseparable when only a single variable is 
measured and the content will be estimated too high due to the several 
components adding to the signal intensity. Regarding the changing baseline 
offset an example is given in Figure 11 that clearly explains the nature of this 
problem. The data described in Figure 11 are not directly related to a problem 
seen in LF-NMR, since normally no offset is present. What might be seen in 
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LF-NMR is, for example, that since in the spin echo resulting from a Hahn 
spin echo experiment most protons contribute to the acquired signal, the 
desired component may be masked. Or in CPMG relaxation data the problem 
becomes apparent if the time constants of the different components are too 
similar to be resolved by the applied algorithm. In this case it will not be 
possible for the exponential fitting algorithms to separate the components. 

Figure 11  Example of the problem with variable offset if univariate 
linear regression is applied 

On the plot it is obvious that if only the centre point of the peaks is acquired 
the curve marked with “◊” will clearly be estimated to have the highest 
content of whatever compound is in question, even though this is clearly the 
response with the smallest amplitude relative to the signal baseline. For this 
reason univariate linear regression based on interacting or coinciding signals 
cannot be expected to produce useful and trustworthy results. 

3.3.2 Multivariate 

Measurement of more than one response variable may be used for 
multivariate predictive purposes, in a similar was as it has previously been 
shown for PCA. A number of different possibilities exist for calculation of 
multivariate prediction models where the simplest approach is a multivariate 
extension of the univariate linear regression, which has been given the 
obvious name of Multiple Linear Regression (MLR). MLR calculates the 
direct correlation to the reference variable and it is required that the number 
of variables used is smaller than the number of samples present in the data set. 
Rather than using a few measured or calculated variables it is possible to use 
scores for a given number of components calculated by PCA as the regression 
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variables in a MLR. This approach is called Principal Component Regression 
(PCR). The advantage of this approach compared to MLR is that the entire 
variation in the data set is compressed by PCA into a few variables (scores) 
and the entire variation in the data set is thus used in the prediction model. 

Another possibility is to use Partial Least Squares (PLS) regression [54,55,56] 
where the variation between the data matrix and the reference variable is 
maximised through an iterative procedure. In this way the variation in the 
measured data matrix directly correlating with the variation in the reference 
variable is extracted. The variation structure calculated by PLS is not 
necessarily identical to that of PCA. This is due to the fact that in PCA the 
data matrix is decomposed independently of the reference value, whereas in 
PLS the data matrix is decomposed to optimally describe the reference value. 
Just as for PCA, detection of outliers is a very important feature in PLS. 

If, for instance, in the example given in Figure 11 the entire response curve is 
acquired and used in a multivariate prediction model, for example, by PLS, 
the algorithm should be able to extract the relevant information and eliminate 
the irrelevant baseline offset information. This means that the amplitude 
relative to the baseline rather than the absolute signal intensity is modelled 
and the correct order of the profiles will be obtained. 

A large number of successful applications of especially PLS on LF-NMR data 
have been reported in the literature with the first work published in 1996 by 
Thygesen [57] in an application where the moisture content and basic density 
of softwood was determined. The following year, the first application of LF-
NMR to food materials was presented by Gerbanowski et al. [58] for the 
determination of moisture in meat products. Over and over again it has been 
shown that multivariate regression by PLS on the entire relaxation decays is 
superior to simple univariate prediction models or models based on MLR on, 
for example, concentrations and/or time constants calculated by exponential 
fitting [P1,P6]. 

3.4 CURVE FITTING 
In LF-NMR two fundamentally different approaches for curve fitting are 
applied. The simplest is discrete exponential fitting where data are 
approximated by a sum of a few mono-exponential components. The other is 
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distributed exponential fitting where data are approximated by a distribution 
of mono-exponential components rather than just a few components. Both 
procedures take advantage of the fact that data acquired by INVREC and 
CPMG pulse experiments can be described by sums of exponentials, as 
indicated in Eq. 4 and Eq. 5 respectively on page 19. 

Traditionally, exponential fitting has been used for two purposes: one for 
qualitative and the other for quantitative interpretation. The qualitative 
character relates to the fact that the time constants to some extent reflect the 
nature or state of the protons in the sample. Thus, changes in time constants 
from one sample to another can be used to draw conclusions with respect to 
changes concerning the state of the protons. The quantitative nature of the 
exponential fit comes from the fact that the calculated amplitudes reflect the 
amounts of the different components in the sample, and again changes in 
amplitudes provide information on the nature of the changes taking place. In 
addition the amplitudes are often used either to calculate a ratio for prediction 
by linear regression or all amplitudes (and possibly also the time constants) 
are used simultaneously for prediction purposes using MLR. A large number 
of references to such application can be listed, but only a few will be given 
here [P1,52,58,59,60]. 

Since the first treatment of exponential curve fitting in 1795 [61] a great 
number of different algorithms to perform this task have been proposed 
[40,62,63,64,65]. In a paper by Bechmann et al. [P2] an algorithm is 
described where the fact that the parameters to fit – N sets of amplitudes and 
time constants – are separable is utilised. This means that estimation of the 
non-linear time constants and the linear amplitudes can be treated as two 
individual problems, and in the described algorithm the time constants are 
found by a Simplex minimisation followed by a least squares fit of the 
amplitudes inside the function evaluation call. This procedure may not be the 
fastest possible; however, it has turned out to be very robust. 

One of the problems with discrete exponential fitting is the fact that the time 
constants will shift as a function of interaction effects. Moreover, the time 
constants will also shift depending on the concentrations of the different 
components. This is problematic, as interpretation will be wrong if the change 
in time constant is ascribed to a shift in properties when it is only a 
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consequence of changes in concentrations. One way to overcome this problem 
is to fit all samples in a data set simultaneously, thus calculating common 
exponential components. This will produce a decomposition similar to that, 
which is seen for PCA, where common latent variables are calculated and all 
the variation between samples is moved into the concentrations. In this 
approach, however, loadings will be strictly exponential and not orthogonal – 
both factors making the procedure conceptually different from PCA. 

This approach has previously been described by Wijnaendts van Resandt et 
al. [66], and in the paper by Bechmann et al. [P2] non-negativity constrained 
alternating least squares regression (NN-ALSR) on the entire matrix is also 
applied to solve this problem. Unfortunately, NN-ALSR being iterative is 
very slow and stability problems occur if too many components are extracted. 
It has later been shown that the algorithm for discrete exponential fitting 
proposed in the paper by Bechmann et al. [P2] can easily be extended to also 
calculate the fit to the entire data matrix, giving a robust algorithm for this 
purpose [P7]. 

In order for this approach of exponentially fitting all samples in the data set 
simultaneously to be valid, identical time constants must be assumed for all 
samples. This means that data sets with samples containing different time 
constants, such as data resulting from heating of a sample during continuous 
measurement, will most likely not be valid. 

It is expected that this approach will greatly enhance both interpretation and 
prediction of future data sets by stabilising the obtained fit and by removing 
drifting time constants due to algorithmic instabilities. 

As previously described, most food materials are considered rather complex 
and inhomogeneous on a macroscopic level and it has been argued that it is a 
crude approximation of reality to describe these samples by a sum of only a 
few discrete exponential components. It has therefore been proposed to use 
distributed exponential fitting for better interpretation. It can, however, be 
shown mathematically that the problem solved by distributed exponential 
fitting is ill conditioned and a simple solution cannot be found without 
applying constraints, i.e. regularising the problem. This means that there are a 
multitude of solutions given as distribution curves that will all produce the 
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same or very similar fit to the data, however resulting in totally different 
interpretations. It is quite simple to visualise this problem mathematically, but 
this is also an easy task graphically, as shown in Figure 12 for a simple 
example using constructed data. 

  

Figure 12 Display of the nature of the ill conditioning of the problem to 
be solved by distributed exponential fitting. (A) shows the original and 
two calculated distributions, while (B) shows the corresponding three 
relaxation profiles. The profile marked with “à” is the original generated 
profile, “�” represents an unconstrained fit with the correct peak centre 
values entered as start guesses and “◊” represents an unconstrained fit 
with wrong peak centre value as start guesses for one of the two 
parameters. 

Now the relaxation curves corresponding to distributions for “�” and “◊” are 
calculated (B) and the error of the fit calculated by comparing the obtained 
fits with the original true relaxation profile. The squared sum of error (SSE) 
of the fit corresponding to “�” is 0.83 and SSE for the second fit 
corresponding to “◊” is equal to 18.76. 

From the SSE one would think that the two calculated distributions should 
result in very different relaxation curves with such a difference in residual 
error. However, when the three relaxation curves are compared they appear to 
be extremely similar (B). The distributions, on the other hand, are very 
dissimilar. It is thus obvious that no simple solution can be found. 

From this example of an unconstrained algorithm it is obvious that constraints 
must be applied in order to stabilise the solution, and the problem is to figure 
out what constraints to apply, since no knowledge really exists concerning the 
shape of the underlying profiles. Furthermore, it has just been demonstrated 
that appropriate start guesses for the parameters involved are very important. 
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Unpublished work using a commercially available program has shown that 
several parameters, such as noise level as well as whether or not a sufficient 
number of data points have been acquired in order to include a region of 
baseline, will significantly influence the calculated distributions.   

In an attempt to suggest a new algorithm (unpublished work) it was proposed 
to use the regression vector from a PLS model for a given number of 
components. In this model pure T2-profiles corresponding to a selected 
distribution range make up the X matrix and the acquired relaxation profile of 
the sample to be fitted make up the Y vector. The idea is that PLS maximises 
the variation in X corresponding to the variation in Y and therefore the 
regression vector might be a good start guess for the distribution. Since the 
regression vector in PLS is not constrained to non-negativity, a subsequent 
non-negative least squares smoothing was applied to the regression vector, in 
the hope that this would produce a correct and stable distribution. It turned out 
that the convergence of the smoothing step would require additional 
constraints in order to be consistent and also the distribution did not converge 
to the a priori known solution in generated data. For this reason this work has 
been discontinued for the time being. 

Contrary to discrete exponential fitting, distributed exponential fitting has 
only been used for interpretation purposes. Prediction has been left to 
univariate techniques and multivariate techniques based on calculated 
parameters or directly on the acquired relaxation spectra [46,48,49,67]. 

3.5 VALIDATION OF MODELS 
Validation of the calculated models is an important aspect both for 
exploratory and predictive data analysis. For explorative methods such as 
PCA, validation is important in order to make sure that the interpretation is 
not based on a wrong assumption regarding the number of components 
present in the data set. For multivariate predictive methods the aim of 
validation is again to make certain that the model is based on the correct 
number of components so that noise is not included in the prediction, but it is 
also important to make sure the resulting estimate of the prediction error is as 
close to the true value as possible. 
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Based on the number of samples in a data set as well as the nature of the 
samples present, a range of different validation schemes exists, of which only 
two good and often used methods will briefly be mentioned: cross validation 
and test set validation which are both used in predictive modelling. It should 
be mentioned that there is much controversy as to which method is best, and 
the current presentation is not intended to be an active part of this discussion. 

3.5.1 Cross validation 

Cross validation is often used in the case where a limited number of samples 
exist. In general terms the data matrix is divided into N segments with M 
samples in each segment and one by one a segment is excluded, a full 
prediction model calculated on the remaining N-1 segments, the excluded 
segment is predicted in the calculated model and the error calculated by 
comparing the predicted values to the known reference values. In the end the 
error for all the different segments is average and the total error for the given 
number of components is obtained. Quite often M is equal to 1, meaning that 
there is only one sample in each segment, which in turn means that N is equal 
to the number of samples in the data set. This situation is commonly referred 
to as full cross validation. 

The method is somewhat time-consuming, since a full model needs to be 
calculated for each segment, but the method is good and has been applied in 
numerous papers where multivariate predictive analysis is applied 
[P3,P6,12,52]. 

3.5.2 Test set validation 

Test set validation is often used for data sets in which the number of samples 
is large enough to divide the samples into two subsets – one for calculating 
the prediction model, and the other for estimating the prediction error. One 
may refer to a dependent test set, which is taken from the original set of 
samples, or an independent test set where a new series of samples is analysed 
and used as test set. 

When test set validation is performed it is important to make certain that the 
two subsets span the same range of variations in order to ensure that the 
calibration model corresponds to and spans the variation in the prediction set. 
This way the most correct estimate of the prediction error is obtained. 
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Quite often, when test set validation is applied for estimation of the prediction 
error, cross validation is applied initially when the number of components to 
be used in the model is estimated, and subsequently the prediction error is 
calculated using the test set. Several papers have been published using test set 
validation, a few of which are mentioned [P1,11,58]. 

3.5.3 Durbin-Watson 

A different statistical approach for estimating the number of components to be 
used in a multivariate prediction model has been used and described by 
Rutledge and co-workers [47,48,53]. In this test the structure or “non-
randomness” in the residuals, for instance, after a PLS prediction model, is 
calculated. The method is called the Durbin-Watson test and is calculated as 
described in Eq. 10. 
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where ixδ  and 1−ixδ  are the residuals for n successive points in a series. It 
can be calculated that for n > 100 the distribution will be random with a 95% 
confidence interval when the Durbin-Watson D-value lies in the range from 
1.7 to 2.3 [48]. 

3.5.4 JackKnife 

Estimation of the number of components to fit when applying multi-
exponential fitting also poses a problem. This is due to the fact that addition 
of new components in the calculated model constantly results in a reduction 
of the residual error. In a paper by Pedersen et al. [P3] a JackKnife [68] 
procedure is presented in order to enhance the selection of the correct number 
of components to fit. Figure 13 shows a diagram of the proposed JackKnife 
procedure. 
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Figure 13 Diagram of the proposed JackKnife procedure in the situation 
where three segments are used. The three models calculated are 
displayed. 

Thus by excluding the initial part of the relaxation signal the rank of the 
remaining relaxation profile is decreased. Therefore, the remaining signal is 
exponentially fitted and the amplitudes and time constants used to model the 
excluded part, the residual will significantly increase as a consequence and it 
can be concluded that too few components have been used. It has been found 
that the procedure stabilises the selection of components in the exponential fit 
procedure. 
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4 CURRENT AND FUTURE TRENDS 

4.1 DATA ACQUISITION 
4.1.1 From univariate to multivariate 

A look at food science literature reveals that a lot of work has been published 
on the use of LF-NMR for determining different quality parameters in meat 
[69,70,71,72,73,74]. In particular, fat and water content have been widely 
studied [49,58,71,75]. 

Traditionally, fat content has been determined in meat samples by drying the 
samples overnight at 105°C and subsequently using a Hahn spin echo. Then 
the echo amplitude is related directly to the fat content of the sample. 

Pedersen et al. [P6] suggest a way to enhance the performance of an existing 
method for measuring fat in meat in raw samples without drying the samples 
prior to measuring. The idea is based on the fact that the existing method can 
be extended from a univariate to a multivariate approach and takes advantage 
of the multivariate data analytical tools available. 

A variety of pulse experiments may be suggested for measuring the fat 
content in meat. Some of the most obvious are the Hahn spin echo and the 
CPMG pulse experiment, but methods based on pulsed field gradients (PFG) 
for suppression of the water signal can also be used. The most common PFG 
experiments are the gradient stimulated echo and gradient spin echo 
experiments [76,77]. 

Pulsed field gradients are commonly used for suppression of water in food 
samples for enhancing the signal of some other component, but traditional 
application includes determination of diffusion constants of the different 
components in a sample [78,79,80] for determination of droplet size 
distribution or pore distribution in various samples [81]. Furthermore, it is 
field gradients that enables imaging by controlling the spatial acquisition 
which is required in order to produce an image [82,83,84,85]. 

Just as the CPMG experiment can be considered an extension of the Hahn 
spin echo experiment, enabling acquisition of entire relaxation curves, the 
PFG stimulated or spin echo experiment can also be extended by appending a 
180-degree pulse train (as seen in CPMG) following the gradient echo. The 
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result is that a univariate pulse experiment has been converted into a 
multivariate pulse experiment and the range of data analytical tools has been 
greatly expanded. 

The intention of the study by Pedersen et al. [P6] was to investigate univariate 
versus multivariate as well as no gradients versus application of gradients. 
Therefore, a Hahn spin echo, a CPMG, a PFG stimulated echo and a PFG 
stimulated echo extended as describe above were measured for a series of 
minced meat samples before and after drying. The following table shows the 
performance of the different pulse experiments for prediction of the fat 
content in the samples. 

Tabel 1 Models for prediction of fat content in meat by LF-NMR 
calculated for the different pulse experiments for untreated and dried 
samples. r is the correlation, RMSECV is the root mean square error of 
cross validation and #PC indicates the number of components used in the 
different models. 

Treatment Pulse experiment r RMSECV # PC 
SPIN-ECHO 0.61 2.93 - 

CPMG 0.98 0.76 5 
PFG-ECHO 0.91 (0.92) 1.50 (1.38) - 

Untreated 

PFG-CPMG 0.99 0.49 2 
SPIN-ECHO 1.00 0.25 - 

CPMG 1.00 (1.00) 0.26 (0.21) 1 
PFG-ECHO 1.00 0.24 - Dry 

PFG-CPMG 1.00 0.28 2 
Table adapted from paper. The models in brackets correspond to removal 
of two samples appearing to be outliers. 

The first result that catches to the eye is the tremendous improvement in the 
prediction error for untreated samples simply by moving from the univariate 
spin echo to the multivariate CPMG experiment. Comparing the untreated 
samples and univariate models (SPIN-ECHO and PFG-ECHO) it is seen that 
application of a gradient for water suppression also significantly reduces the 
prediction error. The best performance on untreated samples is seen when the 
multivariate gradient pulse experiment is used (PFG-CPMG). 

The results obtained for the dried samples clearly show that there is nothing 
gained by introducing either gradients or multivariate data modelling. In the 
case of dried samples only one factor varies in the samples and only minor 
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interfering signals may be present. Thus, the situation is simple enough for the 
univariate linear regression to handle. 

Comparison of the traditional approach (spin echo on dry samples) with the 
best performing method for untreated samples shows, that for optimal 
predictive performance the traditional method on dried samples is still 
substantially better. However, comparing the result of the different models 
calculated for untreated samples an impressing improvement has been 
achieved using the multivariate pulsed field gradient pulse experiment and the 
prediction error is approaching that of the traditional method. Therefore, if the 
parameters for the PFG-CPMG method were optimised, it would be expected 
that the prediction error for untreated samples could be even further reduced. 
Secondly, in some applications a prediction error of 0.49 % fat may be 
acceptable taking into account the fact that the lengthy procedure of drying 
the samples has been eliminated. 

In discussions following the publication of this work it has been suggested 
that it might have been a better choice to use a PFG spin echo experiment 
rather than a PFG stimulated echo experiment for the extension into a 
multivariate experiment. This is due to the fact that it is mathematically 
difficult to predict the resulting signal when stimulated echoes and spin 
echoes are mixed as seen in the applied set-up. However, at the time the work 
was carried out at the Swedish Meats R&D Institute a PFG stimulated echo 
experiment was routinely used for fat determination in meat. It was therefore 
decided to base the multivariate extension of a gradient experiment on this 
method, since appropriate experimental parameters were known and could be 
used directly (only tau and the number of echoes needed to be chosen). 

It has clearly been demonstrated in this work that there are a number of new 
possibilities for improving existing methods as well as developing new 
methods for enhancing the performance of LF-NMR. Apparently, one such 
method is simply to rewrite pulse experiments in a way that enables 
acquisition of multivariate data and analyse these new data with multivariate 
data analytical techniques. 
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4.1.2 From multivariate to multi-way 

It has previously been described that it is possible to acquire T1-weighted 
CPMG data in an experiment where a CPMG pulse experiment is applied 
within the INVREC experiment following the recovery delay. The obtained 
data structure can be plotted as a 2D landscape, and if a number of such 
landscapes were stacked to generate a cuboid, it would be obvious to attempt 
application of three-way data analysis for optimal handling of such data. 

One of the previous treatments of this kind of data was performed by 
Rutledge and Barros [47] where they examined true T1-weighted CPMG data 
by means of ANOVA on the unfolded data and subsequently performed PLS 
on the unfolded data. Although they did not apply multi-way data analytical 
methods, they did observe irregularities in the refolded 2D variance 
landscapes resulting from the ANOVA that could not be accounted for. These 
irregularities appeared to occur for inversion values close to the inversion 
point where the sign of the signal changed from negative to positive. Closer 
examination of data acquired in this region has shown apparent non-
exponential decay behaviour, which might simply originate from summing 
positive and negative exponentials or relate to a problem in data due to the 
significantly decreased signal-to-noise ratio. 

Unpublished work performed in our own lab with the same kind of data 
applying three-way methods revealed that apparently data are not trilinear and 
a Parallel Factor (PARAFAC) model (see section 4.2 below) could not be 
successfully calculated on the basis of these data. This result is somewhat 
surprising, but one possible explanation might be that the PARAFAC model 
requires as equal number of components in the second and third mode and 
there is no guarantee that this requirement is actually fulfilled. If there are 
different numbers of T1 and T2 components present in the samples, a 
PARAFAC2 model should be used instead, since in this model different 
numbers of components may be specified for the T1 and T2 modes. 
Application of PARAFAC2 to this kind of data still remains to be tested. 

Since T1-weighted CPMG data might not be trilinear, different additional 
possibilities for generating trilinear data have been considered and to some 
degree tested. Completely new pulse experiments have been considered since 
it is not only through T1-weighting that 2D data can be obtained. A 
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modification of the CPMG pulse experiment where tau remains constant 
while – through some initial steps – the signal is manipulated to produce a T2-
weighting of the acquired decay profiles is possible. Furthermore, it is 
possible to achieve T1- and T2-weighting through application of different 
values of the relaxation delay shorter than the appropriate value of the sample 
or different values of tau. This method is used for contrast purposes in 
magnetic resonance imaging (MRI). 

Work is currently in progress to test these different possibilities for 
acquisition of true trilinear data with LF-NMR. 

4.2 DATA ANALYSIS – MULTI-WAY 
For a number of years multi-way analysis has been applied in a variety of 
research areas, and a large number of algorithms are available for this kind of 
analysis. One of the original formulations of a solution to this kind of problem 
is the Parallel Factor (PARAFAC) model proposed by Harshman in 1970 [86] 
and later elaborated upon [87,88]. 

Trilinear data follow the model: 

 
1

, 1,.., ; 1,.., ; 1,..,
N

ijk in jn kn ijk
n

x a b c e i I j J k K
=

= + = = =∑  Eq. 11 

The data are held in the elements xijk, the parameter ain holds the scores 
pertaining to the first mode typically gathered in A (I×N), bjn holds the 
loadings pertaining to the second mode held in B (J×N), cjn holds the loadings 
pertaining to the third mode held in C (K×N) and eijk holds residual 
unexplained variation. The elements xijk are held in a three-way array of 
dimension I×J×K and are triply subscripted, meaning that the data can be 
arranged in a three-way box of data as opposed to ordinary doubly subscripted 
data corresponding to a matrix. 

In bilinear modelling of matrices (e.g. PCA) the parameters are only 
identified up to rotation unless constraints such as non-negativity are applied. 
Thus, even though a set of several LF-NMR profiles follow the bilinear 
model, it is not possible to actually find the exponential profiles and their 
corresponding amplitudes, because an infinity of solutions provide the same 
fit. For the PARAFAC model, however, the parameters are uniquely 
identified up to trivial scaling and permutation. Hence, if the data follow the 
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model, the individual components can be identified directly [88]. Until 
recently, application of multi-way methods to LF-NMR data has not be 
possible since apparently true trilinear data has not yet been generated, as 
discussed in the previous section. 

In 1997, however, an idea was conceived by Windig & Antalek [89] whereby 
2D data can be created from 1D data containing underlying exponential 
components. This is achieved by using the fact that in an exponential curve 
the time constant is present in all points, however in smaller and smaller 
quantities, as displayed in Figure 14. 

Figure 14 Illustration of the nature of multi-component exponential 
profiles, where all components theoretically contribute throughout the 
acquisition. 

Here a two-component constructed relaxation curve has been generated and 
plotted (A). The curve can be split into two segments of equal size, and since 
the points in the curve are acquired on an equidistant time axis, the two 
segments can be plotted on a common axis (B). By normalising the signal 
intensity it becomes obvious that the two segments are not overlapping and 
the two segments make a bilinear matrix (C). This is supported by the fact 
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that bi-exponential fit of the two segments gives the same time constants, but 
that the amplitudes of the two components differ in the two segments. 

This rearrangement of exponential data was proposed as a fast alternative to 
the trilinear least squares solution and was called Direct Exponential Curve 
Resolution Algorithm (DECRA). Similar ideas have also been applied in 
telecommunication under the generic name ESPRIT [90,91,92]. In their first 
application, Windig and Antalek applied DECRA to perform exponential 
curve resolution of first-order reaction kinetics (C=C0·e-k·t) monitored by high-
resolution NMR. Since the first publication of DECRA, several authors have 
applied the algorithm or modifications of it in a series of applications such as 
multivariate image analysis based on magnetic resonance images 
[93,94,95,96] short-wavelength near infrared analysis [97], UV-VIS [98,99] 
and solid state NMR and mid-infrared [100]. Common to these applications is 
the step of generating the three-way data array based on a measured two-way 
matrix, whereas different trilinear algorithms are used to perform the 
deconvolution. 

None of the previously performed work has been performed on LF-NMR. 
However, Pedersen et al. [P5] have shown that the general concept of the 
approach can also be applied to LF-NMR, and in a later paper by Pedersen et 
al. [P7] an algorithm is presented to take care of the additional problems that 
must be taken into consideration when applying this method to LF-NMR data. 
This algorithm designed for handling LF-NMR data has been named SLICING, 
in acknowledgement of the fact that the 2D data are “sliced” in order to 
generate the 3D data, as will be described in the following. 

If transverse LF-NMR data from two or more samples measured on an 
equidistant time axis can be approximated by: 

  T
expPTX ⋅=  Eq. 12 

where expP  contain N underlying profiles of length J (J×N) which are distinct 
mono-exponentials, then it can be shown that the data can be rearranged into a 
three-way array Y of size I×M×K as depicted in Figure 15. 

If X has elements xij, (i=1,..,I; j=1,..,J), then the three-way array Y can consist 
of two sub-matrices of dimension I×J-1, where the first sub-matrix contains 
the first J-1 columns of X and the second sub-matrix contains the last J-1 
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columns of X. Hence, the major part of the two matrices will be identical, but 
shifted “horizontally” by a fixed number of variables. The sub-matrices in the 
resulting three-way array will be referred to as slabs and the number of 
columns to shift between the two slabs (in this case one) will be referred to as 
lag. 

Figure 15 Illustration of the concept of rearranging a two-way data 
matrix into sub-matrices and placing them behind each other to create the 
three-way data structure. The figure shows the case where data have been 
lagged lag variables and two slabs are created. 

In the original formulation of the DECRA algorithm, two slabs were 
generated using a lag of one variable and the trilinear deconvolution was 
based on the Generalised Rank Annihilation Methods (GRAM). In practice, 
there is nothing to hinder lagging the data more than one variable, still 
maintaining two slabs [98] or leading to possible generation of three or more 
slabs in the third mode [99]. When the dimension of the third mode increases, 
the three-way array Y, with elements yimk, will now have the dimension 
i=1,..,I; m=1,..,J-L·(K-1); k=1,..,K with 2 ≤ K ≤ L+1 where L is the selected 
lag and K is the specified number of slabs. With the introduction of more than 
two slabs, there are now three meta-parameters to optimise, i.e., the number 
of variables to lag, the number of slabs to generate and the number of factors 
to resolve, N. When the dimension of the third mode increases, GRAM can no 
longer be used and Direct Trilinear Decomposition (DTLD) is applied 
instead. In the situation where lag is one and slabs are two, GRAM and 
DTLD return the same solution. 

In the work by Pedersen et al. [P7] the influence of a number of different 
parameters is tested on simulated data, comparing different standard set-ups 
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for values of lag and slab. Besides the proposed SLICING algorithm, a 
different approach for generating the three-way structure utilising the large 
number of variables typically seen in LF-NMR relaxation data was also 
tested. If in this alternative method it is still assumed that K describes the 
number of slabs to generate, then every K’th variable starting with the first 
variable describes the first slab, every K’th variable starting with the second 
variable will describe the second slab and so forth. The advantage of this 
approach should be that there is no redundancy in data and the structure in the 
residual commonly seen in noise in the normal SLICING approach is therefore 
eliminated. 

In a series of initial studies however, somewhat surprisingly it has turned out 
that ordinary discrete exponential fitting performed on the entire data matrix 
appears to perform better than any of the SLICING set-ups tested. The iterative 
nature of the algorithm used for exponential fitting as well as the sensitivity to 
appropriate start values was expected to be a weakness, but this turns out not 
to be the case as long as good start guesses are used. Work is being continued 
with the SLICING approach in order to get at better understanding of the 
effects that influence the performance of the algorithm and currently the 
influence of a number of different parameters are being tested in an 
experimental design. SLICING may possibly see its best application as a means 
of estimating start guesses for the exponential matrix fit, thus speeding up this 
algorithm. 

In elaborating on the SLICING algorithm Pedersen et al. [P7] suggest a new 
algorithm for performing fast and easy phase rotation of time domain LF-
NMR quadrature data. Phase rotation is an important topic when performing 
curve fitting on the acquired LF-NMR relaxation data, since magnitude 
correction of quadrature data will enforce a non-exponential bend in data 
when the signal intensity approaches zero. 

The development of phase rotation algorithms has previously focused mainly 
on high-field NMR data where a great deal of attention and effort has been 
dedicated to solving this problem [101]. 

The fundamental idea of the proposed algorithm, which is called Principal 
Phase Correction (PPC), is similar to that of PCA, where the variability in the 
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data set is maximised in an orthogonal subspace. Thus, calculating a two 
component PCA model using the raw quadrature data as input will result in 
the phase rotated data residing as the scores of the first principal component. 
This may at first glance seem somewhat confusing, but the purpose of the 
phase rotation algorithm is to maximise the signal in one channel. The 
computation is quite simple and can easily be performed using singular value 
decomposition (SVD). 

4.3 HARDWARE – ONE-SIDED MAGNET LAYOUT 
Despite various advantages, such as being non-invasive and non-destructive, 
low-field bench-top NMR instruments still have a number of drawbacks. And 
in a lot of applications the non-invasive and non-destructive description does 
not hold, since most instruments have small-bore probe-heads and small 
magnet gaps, and sub sampling is often necessary. Furthermore, the 
instruments require stable ambient temperature and vibrations as well as 
extraneous magnetic fields should be eliminated. Finally, due to the weight of 
the permanent magnets used, the instruments cannot be moved around easily. 
All these factors result in LF-NMR being a method that is mainly used in a 
laboratory environment and on- and at-line applications consequently still 
await a breakthrough. 

Some applications of portable NMR devices have previously been shown, for 
instance in well logging in the oil industry where an NMR device is lowered 
into the bore hole to assist in estimating the potential for profitable utilisation 
of the current well [102]. A device carried on the back of a tractor for 
measuring the moisture content of the soil on a field has also been developed. 
Although portable, these instruments can hardly be considered handy or 
suitable for implementation in a production line, but they do set an example 
for inspiration. 

In an attempt to build an instrument that would not be limited by sample 
geometry and at the same time be light and portable, a new hardware layout 
was developed, resulting in a hand-size NMR probe called MObile Universal 
Surface Explorer (MOUSE). The MOUSE is a small LF-NMR device that 
was first proposed in 1996 by Eidmann et al. [6] and further theoretically 
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described by Blümich et al. [103] and Bãlibanu et al. [104]. A drawing of its 
one-sided magnet layout is shown in Figure 16. 

Figure 16 Drawing of the NMR-MOUSE both as side and top view. 
Magnetic filed lines are pictured.  

While sample geometry is unrestricted with the one-sided magnet layout of 
the MOUSE, there is still a price to be paid for this improvement by severely 
reduced magnetic field homogeneity introduced by a large B0-gradient. Since 
the field strength rapidly decreases as a function of distance from the surface 
of the MOUSE, measurements are only possible close to the surface of the 
probe and consequently restricted to the surface of the sample. The strong 
gradient in the magnetic field (in the order of 10 T/m) reduces the sample 
volume measured by the MOUSE into a surface area through the sample 
rather than a volume of sample, which is normally the case for standard 
magnet layout. The increased inhomogeneity results in a significant reduction 
of the signal to noise ratio in the acquired data when compared to a normal 
LF-NMR instrument. 

Most experiments performed to date using the MOUSE have focused on 
polymer materials like rubber [105,106,106] looking at different properties 
such as weathering [107] and cross-link density [108], but a study of 
anisotropy in tendon has also been performed [109]. In a more general paper 
application of the MOUSE to soft matters is discussed [110]. 
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There are a number of reasons why polymers have been an obvious choice of 
material to investigate using the MOUSE. Among others, these relate to the 
fact that T1 is fairly short for most polymers, allowing application of multiple 
scans in order to enhance signal-to-noise, while T2 are of appreciable length, 
allowing the signal to be detected. Furthermore, most polymers are quite 
homogeneous and due to the restricted mobility relaxation is hardly affected 
by the strong magnetic field gradient. Diffusion of mobile components, 
however, is a significant problem to consider when applying the MOUSE to 
materials with high water content such as foodstuffs, since the strong 
magnetic field gradient of the MOUSE will strongly influence the relaxation 
rate of the mobile protons. In the case of water, the resulting effect is that the 
water signal rapidly decays to zero and the transverse relaxation time constant 
is significantly decreased. This effect is clearly visible from Figure 17 where 
signals from water and oil acquired using a normal LF-NMR instrument as 
well as the MOUSE are plotted. 

Figure 17 Relaxation profiles and corresponding time constants for 
pure water and oil acquired by the normal LF-NMR instrument 
(“traditional”) and the NMR-MOUSE 

It is interesting to observe that the position of the relaxation profile for water 
in relation to oil shifts when comparing the acquisitions from the two 
instruments. Furthermore, examination of the time constants reported in the 
two plots also indicates the strong influence on the water relaxation exerted 
by the magnetic gradient field. 
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Pedersen et al. [P8] applied the NMR-MOUSE to a series of oil-in-water 
emulsions with different relative contents and the predictive performance was 
evaluated and compared to that of a normal LF-NMR instrument which is 
known to be able to predict the oil content in emulsions [19,36,102,111]. 

In Figure 18 the data acquired by the normal LF-NMR instrument and the 
NMR-MOUSE can be seen. Two things are apparent when comparing the two 
plots: the signal to noise level (S/N) is significantly lower for the MOUSE 
and, as expected, the order of the profiles in the two plots is reversed due to 
the strong magnetic field gradient of the MOUSE. 

  

Figure 18 Plot of the acquired relaxation profiles from seven oil-in-
water emulsions measured on the normal LF-NMR instrument (A) and 
the MOUSE (B) 

Data analysis on the normal LF-NMR data is performed by means of 
traditional bi-exponential fitting followed by linear regression of the ratio 
calculated between the amplitudes as well as PLS performed on the full 
relaxation decays. Data acquired by the MOUSE is also analysed by these two 
methods, and, in addition, MLR is performed on the two amplitudes and two 
time constants from the bi-exponential fit. The resulting models can be seen 
in the Tabel 2. 

For the normal LF-NMR data quite good performance is seen for both the 
linear regression and PLS models. The prediction error, however, is 
significantly smaller for the PLS model, which is also the case with bias, a 
measure of the average difference between measured and predicted values. 
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Tabel 2 Results of the different models applied for the acquired data 
both for the MOUSE and the traditional LF-NMR instrument. r is the 
correlation, RMSECV is the root mean square error of cross validation 
and bias is a measure of the average difference between measured and 
predicted values. 

 Data analysis applied r RMSECV bias 
Linear regression 1.00 2.21 -1.14 LF-NMR PLS 1.00 1.37 0.29 
Linear regression 0.99 5.55 4.09 

MLR 0.98 3.79 -0.29 MOUSE 
PLS 0.97 4.44 0.24 

Table adapted from paper. The models in brackets correspond 
to removal of two samples appearing to be outliers. 

For the MOUSE data it is observed that the correlation is very good for the 
linear regression, but that both the prediction error and bias are rather high. 
Here the advantage of multivariate modelling is even more pronounced with 
the surprise that the MLR model based on the amplitudes and time constants 
from a bi-exponential fit produces the best model in terms of prediction error. 
The reason for this is not known, but might be due to the fact that the data set 
contains a rather small number of samples. The high noise level might also 
present a problem, although PLS is normally considered to be very robust to 
noisy data. 

It is concluded from the study that with application of multivariate data 
analysis the NMR-MOUSE can in fact be used to analyse food samples with 
high water content, despite the influence of the strong field gradient. Further 
work is required in order to properly characterise the performance of the 
MOUSE on other samples with high water content, but the obtained result is 
very interesting and promising and opens doors to many applications of small 
portable NMR instruments. New applications and improved MOUSE designs 
are being tested, such as a sweep MOUSE for 1D profiling, which can also 
simply be used for increasing the depth of acquisition for normal relaxation 
measurements. Furthermore an imaging MOUSE is being developed for 
surface imaging. The improved depth sensitivity means that the MOUSE can 
be used for applications other than those just surface measurements. From the 
performed work it seems clear that chemometrics will have to be a natural 
part of these applications in order for the device to produce acceptable results. 
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4.4 DYNAMICS 
One of the great advantages of LF-NMR compared to most other 
spectroscopic methods is the ability to accurately control sample temperature 
while continuously measuring. This enables a wide range of possibilities for 
manipulating the sample to make dynamic studies of processes occurring in 
food samples. This kind of analysis has become increasingly popular in recent 
years and has, for instance, been used to study the changes taking place 
during the process of baking bread with respect to the hydration of starch 
[P4]. Viscoelastic properties of food materials have been studied by rheology 
using MRI looking at shear-rate dependent viscosity such as shear thinning, 
shear thickening, apparent slip and yield stress [112,113]. MRI has also been 
used to study liquid triglyceride migration in chocolate at different 
temperatures as well as in interface layers between dark chocolate and 
hazelnut [114]. Furthermore, the digestion process in the human stomach 
followed by emptying to the duodenum has been studied using MRI. In this 
study, the movements of the stomach, the separation of the food in the 
stomach as well as the rate of emptying was examined. The list of possible 
applications and applications already tested is long. 

It is expected that dynamic studies will play a more and more dominant role 
in studies of processes taking place in food samples and thereby allow 
researchers to take a leap forward in understanding the mechanisms 
controlling food process and quality. This will eventually lead to higher 
quality products, for example, products with more uniform quality or products 
with better shelf life due to increased understanding of the properties of water 
in food, all of which is hoped to benefit the consumers. 
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5 CONCLUSIONS AND PERSPECTIVES 

From the previous chapters it should be apparent that feasibility of application 
of LF-NMR in food science, and even more so in process control and 
analysis, has been greatly improved over the years. This advancement is 
partly due to improvements in hardware, but from the literature studied it 
seems that the largest improvement has come from the introduction of 
multivariate data analysis. 

There exists a large range of possibilities for implementing LF-NMR in food 
analysis, which cover a number of different research areas such as the 
analysis of fish, oil seeds, bread, meat, emulsions and meat. It is believed that 
revision of existing methods in most applications will result in greatly 
improved performance, and possibly facilitate new applications. Such 
applications could be the analysis of components present in small amounts, in 
data with a high noise level or in data with closely spaced components. 

By rewriting the normal pulsed field gradient stimulated echo experiment into 
a pulsed field gradient CPMG pulse experiment in order to acquire 
multivariate rather than univariate data a significant improvement in the 
prediction of fat in meat has been achieved. The changed pulse experiment 
enables multivariate data analysis, which offers the advantage of outlier 
detection as well as handling of extremely collinear data. The prediction error 
has been reduced from 1.50 % fat to 0.49 % fat (range from 1.2 % to 15 % 
fat) for measurement on raw minced meat samples. This should be compared 
to the result obtained by the traditional method where the samples are dried 
prior to the measurement, resulting in a prediction error of 0.25 % fat. This 
error is still much better, however, the fact that the fat content can be quite 
accurately measured without drying means a tremendous reduction in the time 
of the analysis. This is very important, since the time of analysis is crucial in 
many applications such as process or quality control. It appears that such an 
approach to improve the prediction error has never been applied before. 

As a consequence of the problem of drifting time constants between samples 
when exponentially fitting is performed, a new algorithmic approach has been 
elaborated upon and tested in an attempt to establish a better way of 
calculating the underlying time constants in a series of samples. The method 
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tested has been called SLICING and utilises the fact that a pseudo three-way 
structure can be generated for data with underlying exponential components. 
The method applies three-way analysis for unique deconvolution of the latent 
factors. It seems, however, that a much simpler approach based on 
simultaneous exponential fitting of a collection of samples, rather than fitting 
one sample at the time, results in a more robust and even better 
deconvolution. A combination of the two different approaches is under 
consideration for optimal speed and performance. 

No doubt, there are a number of additional possibilities in data analysis that 
have not yet been exploited. It appears necessary to think more in terms of a 
complete solution where data analysis and data acquisition go hand in hand. 
The idea is that data acquisition may be revised in order to produce the 
specific kind of data required by a given algorithm, or the other way around, 
that more work is put into development of better algorithms designed for 
utilising new techniques and ideas. This concept will require new thinking 
and, more so, it will require acceptance of the fact that new methods based on 
soft models do in fact provide trustworthy results. 

The presented work performed on the NMR-MOUSE is the first of its kind 
where this small portable LF-NMR instrument has been applied to food-like 
samples with highly mobile components. The advantage of the MOUSE 
compare to conventional LF-NMR instruments is that the one-sided layout 
allows measurement on large samples, being completely non-invasive and 
non-destructive. Furthermore, the MOUSE is a small handheld device, 
making it more appropriate for a number of applications. The readily 
diffusing mobile components cause problems in the inhomogeneous magnetic 
field of the MOUSE, since the signal rapidly decays. This, however, is nicely 
handled by the chemometric techniques applied, reducing the prediction error 
from 5.55 % oil with the traditional data handling procedures to 3.79 % oil 
with a multiple linear regression on a series of oil in water emulsions (from 10 
to 70 % oil). 

Other applications of portable NMR devices have previously been shown, for 
instance, in well logging in the oil industry and a device carried on the back of 
a tractor for measuring the moisture content of the soil on a field has also 
been developed. 
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New applications and improved MOUSE designs are being tested, such as a 
sweep MOUSE for 1D profiling or simply improving the depth of acquisition, 
and an imaging MOUSE is being developed. The improved depth sensitivity 
means that the MOUSE can be used for applications other than those just 
surface measurements. From the performed work it seems clear that 
chemometrics will have to be a natural part of these applications in order for 
the device to produce acceptable results. 

New designs either focused on general applications or devices designed for 
specific purposes clearly have great possibilities for boosting the number of 
industrial applications currently seen. 

Despite the obvious advantages of multivariate data analysis that have been 
shown in this work, only a limited number of researchers in the LF-NMR area 
appear to have “seen the light”. It is hoped, though, that a broader range of 
researchers and industrial people will start applying chemometrics, resulting 
in “better value for money” and a wider range of applications. This has been 
seen in recent years, particularly in the food industry where the interest for 
using chemometrics in combination with other spectroscopic methods has 
increased, leading to better control and understanding of processes and faster 
analysis of a variety of food materials. 
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