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Inferred basal friction and mass flux affected
by crystal-orientation fabrics

Nicholas M. Rathmann and David A. Lilien

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

We investigate the errors caused by neglecting the crystal-orientation fabric when inferring the
basal friction coefficient field, and whether such errors can be alleviated by inferring an isotropic
enhancement factor field to compensate for missing fabric information. We calculate the steady
states that arise from ice flowing over a sticky spot and a bedrock bump using a vertical-slab
numerical ice-flow model, consisting of a Weertman sliding law and the anisotropic Johnson
flow law, coupled to a spectral fabric model of lattice rotation and dynamic recrystallisation.
Given the steady or transient states as input for a canonical adjoint-based inversion, we find
that Glen’s isotropic flow law cannot necessarily be used to infer the true basal drag or friction
coefficient field, which are obscured by the orientation fabric, thus potentially affecting vertically
integrated mass fluxes. By inverting for an equivalent isotropic enhancement factor, a more
accurate mass flux can be recovered, suggesting that joint inversions for basal friction and the
isotropic flow-rate factor may be able to compensate for mechanical anisotropies caused by
the fabric. Thus, in addition to other sources of rheological uncertainty, fabric might complicate
attempts to relate subglacial conditions to basal properties inferred from an inversion relying on
Glen’s law.

Introduction

Basal drag provides an important resistive component in the force budget of glaciers and ice
sheets, with implications for the accuracy of mass-loss projections and the dynamics of ice
streams (Echelmeyer and others, 1994; Gillet-Chaulet and others, 2012; Larour and others,
2012; Morlighem and others, 2013; Schoof and Mantelli, 2021). Basal drag is classically repre-
sented in the form of a sliding law following Weertman (1957), which relates the ice–bed slid-
ing velocity to the resulting basal drag (synonymous with basal shear stress or basal traction)
through a power law with an unknown friction coefficient and exponent. Using inverse meth-
ods that rely on surface-velocity and ice-thickness observations to infer the basal friction coef-
ficient, large spatio-temporal variations in the friction coefficient, or corresponding basal drag,
have previously been inferred over ice streams in Greenland and Antarctica (e.g. Joughin and
others, 2004; Sergienko and others, 2014; Ranganathan and others, 2020; Maier and others,
2021).

Although ice streams flow primarily by sliding, complex basal conditions near their onset
regions can lead to flow by a combination of sliding and internal deformation. Basal condi-
tions near the onset of the largest ice stream in Greenland, the Northeast Greenland Ice
Stream (NEGIS), have been extensively studied (Fahnestock and others, 2001; Christianson
and others, 2014; Keisling and others, 2014; Beyer and others, 2018; Franke and others,
2021). NEGIS is notoriously challenging to reproduce in ice-flow models (Greve and
Herzfeld, 2013; Rückamp and others, 2019), and its warm basal environment is likely central
to its existence (Fahnestock and others, 2001; Smith-Johnsen and others, 2020). In the
upstream part of NEGIS, active-source seismics and radio-echo sounding indicate the ice
rests on water-saturated till, with a strong connection to the subglacial water system of its
onset, and might be controlled by variations in basal friction further downstream
(Christianson and others, 2014; Keisling and others, 2014; Franke and others, 2021). In gen-
eral, the basal conditions of NEGIS are rather intricate, with areas of fast flow over a rough bed
downstream of smoother-bedded areas near the onset (Franke and others, 2021). Similarly, the
Ross ice streams of west Antarctic are the frequent subject of research attempting to under-
stand the balance between driving stresses, basal drag, and lateral (shear-margin) drag in
ice streams. It is believed that these ice streams are enabled by weak subglacial sediment,
and that the relatively small driving stresses experienced (small slopes) are balanced by signifi-
cant components of both lateral and basal drag (MacAyeal and others, 1995; Whillans and van
der Veen, 1997; Hermann and Barclay, 1998; Kamb, 2001). The relatively smooth bed and dir-
ect evidence of subglacial sediment suggest that the Ross ice streams are likely areas where fric-
tion, rather than bedrock topography, is the primary cause of sticky spots (localised increased
drag). Although early studies suggested that bedrock highs are the most likely cause of sticky
spots beneath these ice streams (e.g. Alley, 1993), more recent work has focused on the con-
nection to till strength and water availability (Anandakrishnan and Alley, 1997; Tulaczyk and
others, 2000).

Variations in basal drag are generally thought to be the result of variations in the subglacial
water pressure, temperature at the ice–bed interface, and composition and roughness of the
bed. Inversion procedures for basal properties are, however, sensitive to rheological
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uncertainties (e.g. Arthern and others, 2015); missing or approxi-
mated ice physics, as well as measurement error, can manifest
itself in the inferred basal friction coefficient field. Nevertheless,
inferring basal conditions by inversion is a prerequisite for mod-
elling the transient flow of ice masses (e.g. DeConto and Pollard,
2016), which cannot reproduce surface-velocity observations
without such calibration.

Strong anisotropic crystal orientation fabrics are common in
deep layers of ice sheets (see review in Faria and others, 2014a)
and are known to introduce mechanical anisotropies (Duval
and others, 1983; Shoji and Langway, 1985, 1988). Numerical ice-
flow modelling has shown that fabric anisotropies can affect the
deformation of ice masses at large scales (Thorsteinsson and
others, 2003; Gillet-Chaulet and others, 2006; Pettit and others,
2007; Martín and Gudmundsson, 2012; Hruby and others,
2020). Neglecting the orientation fabric by assuming isotropic
ice (Glen’s flow law) might therefore lead to an incorrect basal
friction field being inferred, even if the isotropic flow-rate factor,
A, is jointly inferred to compensate for rheological
uncertainties due to missing fabric information. If so, this has
two immediate implications. First, errors in the basal friction
field affect the sliding velocity and thus the vertically integrated
mass flux. Simulations of the kind undertaken for mass-loss pro-
jections use present conditions to infer the basal drag as calibra-
tion for transient simulations, and errors in the basal friction field
may therefore bias mass-loss projections (depending on flow
regime and flow approximations). Second, attempts to relate
inferred spatio-temporal variations in the friction coefficient or
basal drag fields to specific subglacial conditions and processes
might be obscured by the orientation fabric.

In this study, we investigate the effect of approximating ice as
isotropic when inferring the basal friction coefficient field over a
subglacial sticky spot and bedrock bump using the canonical
method of an adjoint-based inversion. Specifically, we consider
flow regimes where both basal sliding and internal deformation
are non-negligible, arguably relevant near ice-stream onsets and
less so for fast sliding systems (e.g. outlet regions). For this pur-
pose, we rely on a vertical slab anisotropic ice-flow model with
a Weertman sliding law and a spectral fabric model, paired
with an isotropic version of the same model, to isolate the effects
of fabric anisotropy on inferred subglacial conditions. We subse-
quently investigate whether the concerns raised over neglecting
the orientation fabric can be alleviated by accounting for an
equivalent isotropic enhancement factor field.

Notation

Throughout the paper, primes shall be used to denote monocrys-
tal rheological parameters and stresses/strain rates, as opposed to
non-primed variables used to denote bulk (polycrystalline) rheo-
logical parameters and stresses/strain rates. Boldface symbols
denote vectors or tensors, the order of the latter being implicit
by the context. Let a and b be vectors, and A and B be
second-order tensors. The following products are then used: a · b
= aibi, ab = aibj (the outer, dyadic product), A · a =Aijaj, A ·· ab =
Aijajbi, A · B =AijBjk, and A ·· B =AijBji= tr(A · B), where summa-
tion over repeated indices is implied. The identity matrix is denoted
by I, and the superscript T denotes the matrix transpose.

Anisotropic ice-flow modelling

We seek to separate the effect of fabric anisotropy from other
sources of rheological uncertainty when inverting for the basal
friction coefficient field using Glen’s isotropic flow law. For this
purpose, we perform a set of adjoint-based inversions (using
Glen’s law) of steady and transient states produced by an

anisotropic flow law, and compare the results to the true friction
coefficient field. As a frame of comparison (control) to weigh the
Glen’s law inversions against, we additionally carry out identical
inversions using the anisotropic flow law itself. Doing so requires
an anisotropic flow law that is simple enough for the inversion
procedure to be feasible, yet can adequately reproduce (most)
known effects that fabric anisotropy has on the directional viscos-
ity structure of glacier ice. We find that Johnson’s flow law fulfils
both needs; it represents the lowest-order anisotropic extension of
Glen’s law at the expense of additionally accounting for a
fabric-orientation vector field (m) and two directional
enhancement-factor fields (Emt and Emm). We therefore begin
by introducing Johnson’s law and the underlying fabric model
used to determine m, Emt, and Emm, which relies on a mixed
Taylor–Sachs grain rheology. For the reader who is not interested
in the technicalities of anisotropic ice-flow modelling, it is pos-
sible to skip to ‘Numerical experiments’, noting only the meaning
of m, Emt, and Emm.

Johnson’s flow law

The dominant effect of fabric anisotropy on ice flow can be mod-
elled using the transversely isotropic rheology of Johnson (1977),
which approximates material (ice) parcels as axisymmetric with
symmetry axis m (Fig. 1a). In the two-dimensional (2-D) case,
the rotational symmetry about m reduces to a reflectional sym-
metry about m, and the flow law becomes (Rathmann and others,
2021)

t = h
[
E−2/(n+1)
mt ė

+
(
E−2/(n+1)
mm − E−2/(n+1)

mt

)
(ė ··mm)(2mm− I)

]
,

(1)

h = A−1/n
[
E−2/(n+1)
mt ė ·· ė

+2
(
E−2/(n+1)
mm − E−2/(n+1)

mt

)
(ė ··mm)2

](1−n)/2n
.

(2)

Here, t and ė = (∇u+ (∇u)T )/2 are the bulk deviatoric stress
and strain rate tensors, A is the usual isotropic rate factor, and
n is the power-law exponent. The bulk directional enhancement
factors Emm and Emt are the strain rate enhancements for com-
pression/extension along m and shear parallel to the plane with
normal m (Fig. 1a), which follows from the forward rheology
(not shown):

ėmm = ė ··mm = E2/(n+1)
mm h−1tmm, (3)

ėmt = ė ··mt = E2/(n+1)
mt h−1tmt , (4)

where t denotes any direction transverse to m, and the indices m
and t indicate the tensorial components in the directions ofm and
t, respectively. In the limit of Emm = Emt = 1, Johnson’s flow law
reduces to Glen’s flow law, representing isotropic ice. The
enhancement-factor exponent 2/(n + 1) ensures that the compo-
nents ėmm and ėmt in Johnson’s law, relative to those in Glen’s iso-
tropic law, are by definition Emm and Emt , respectively.

Bulk directional enhancement factors

Calculating Emm and Emt for a local ice parcel can be regarded as a
problem of forming a suitable average over the parcel
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(polycrystal). A popular approach is to regard polycrystals as an
ensemble of interactionless monocrystals (e.g. Castelnau and
Duval, 1994; Svendsen and Hutter, 1996; Gödert and Hutter,
1998; Thorsteinsson, 2001). In this case, Emm and Emt follow
from the monocrystal rheology by averaging over all grain orien-
tations. Recognising that monocrystals deform 100–1000 times
easier by basal plane shear (planes with normal c) than along
any other crystallographic plane (Weertman, 1973; Duval and
others, 1983), monocrystals have previously been approximated
as transversely isotropic too (e.g. Meyssonnier and Philip, 1996;
Svendsen and Hutter, 1996; Staroszczyk and Gagliardini, 1999).
Following previous work, we therefore model the monocrystal
rheology by a three-dimensional (3-D) but linear Johnson law:

ė′ = A′
(
t′ − E′

cc − 1
2

(t′·· cc)I

+ 3(E′
cc − 1) − 4(E′

ca − 1)
2

(t′·· cc)cc

+(E′
ca − 1)(t′· cc+ cc · t′)

)
,

(5)

where t′ and ė′ are the microscopic deviatoric stress and strain
rate tensors, A′ is an isotropic rate factor, and the enhancement
factors Ecc′ and Eca′ are the strain rate enhancements for compres-
sion/extension along c and shear parallel to basal planes (Fig. 1b),
i.e. ė′cc = A′E′

cct
′
cc and ė′ca = A′E′

cat
′
ca.

In the simplest case, the grain-averaged rheology, 〈ė′(t′)〉, may
be constructed by assuming a uniform stress field over the
polycrystal scale equal to the bulk stress (Sachs hypothesis), that
is t′ = t and hence 〈ė′(t′)〉 = 〈ė′(t)〉. The average is defined as

〈ė′(t)〉c(u,f) =
1
N

∫
S2
ė′(t)c(u, f)dV, (6)

where ψ(θ, f) is the grain number distribution in orientation
space S2, dΩ = sin(θ)dθdf is the infinitesimal solid angle, and
N = 	

S2 c(u, f)dV is the total number of grains. Unless stated
otherwise, 〈·〉 = 〈·〉c(u,f) is henceforth assumed implicit.
Inserting Eqn (5) into Eqn (6), gives

〈ė′(t)〉 = A′
(
t− E′

cc − 1
2

(t ·· 〈c2〉)I

+ 3(E′
cc − 1) − 4(E′

ca − 1)
2

t ·· 〈c4〉

+(E′
ca − 1)(t · 〈c2〉 + 〈c2〉 · t)

)
,

(7)

where 〈ck〉 = 1/N
	
S2 c

kc(u, f)dV is the k-th order structure
tensor. Provided with 〈ė′(t)〉, Thorsteinsson (2001) suggested
defining the bulk enhancement of the v–w component of ė as
(v and w being arbitrary vectors)

ESachs
vw (t) = 〈ė′(t)〉 ·· vw

〈ė′(t)〉const. ·· vw
, (8)

where 〈ė′(t)〉const. is the average strain rate tensor of an isotropic
polycrystal (ψ(θ, ϕ) = const.).

In contrast to the Sachs hypothesis, the Taylor hypothesis
assumes a constant strain rate over the polycrystal scale equal to
the bulk strain rate, that is ė′ = ė and hence 〈t′(ė′)〉 = 〈t′(ė)〉.
In order to determine Evw using Taylor’s hypothesis, 〈t′(ė)〉
must be posed in the inverse form ė(〈t′〉), given which

ETaylor
vw (〈t′〉) = ė(〈t′〉) ·· vw

ė(〈t′〉const.) ·· vw
. (9)

The reader is referred to Appendix A on how to determine
ė(〈t′〉).

The realised stress and strain rate fields inside polycrystals are
meanwhile between the two end-member cases of either field
being homogeneous, although some observations and experi-
ments (Azuma and Higashi, 1985; Azuma, 1995) suggest that
the Sachs assumption is the better approximation of the two. As
an alternative to more sophisticated homogenisation schemes,
such as the viscoplastic self-consistent compromise between the
Sachs and Taylor assumptions (Meyssonnier and Philip, 1996),
we model Evw as a simple linear combination of the Sachs and
Taylor behaviour:

Evw(t) = (1− a)ESachs
vw (t) + aETaylor

vw (t), (10)

where the weight α∈ [0; 1] is taken to be a free but constant
parameter. In summary, model (10) has three free parameters
(Ecc′ , Eca′ , and α) and depends on the fields ψ and t.

Constraining the free grain parameters
Emm and Emt are by definition the bulk enhancement factors of a
polycrystal when subject to bulk pure- and simple-shear stresses
with respect to m and t:

Emm = Emm(t0[I/3−mm]), (11)

Emt = Emt(t0[mt+ tm]), (12)

where t0 is an arbitrary stress magnitude that cancels by virtue of
the division in Eqns (8) and (9), as does A′. Deformation tests

Fig. 1. (a) Axisymmetric polycrystal with longitudinal (Emm), shear (Emt), and 45°-shear (Epq) bulk enhancement factors with respect to the symmetry axis m.
The transverse direction, t, lies in the plane of isotropy (t⊥m), while p is oriented at 45° to m and p⊥q. (b) Monocrystal lattice composed of hexagonal cells.
Three crystallographic planes are highlighted in grey, where the c-axis indicates the basal-plane normal direction. Monocrystals are modelled as a transversely
isotropic material with symmetry axis c and longitudinal (Ecc′ ) and shear (Eca′ ) enhancement factors with respect to c. The transverse direction, a, lies in the
plane of isotropy (a⊥c).
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conducted on ice samples with strong single-maximum fabrics
(aligned c-axes) suggest that Emt≃ 10 (Pimienta and others,
1987) and Emt/Epq≃ 103 to 104 (Shoji and Langway, 1985,
1988), where Epq = Epq(τ0[pq + qp]) and p = (m+ t)/ 



2
√

and
q = (m− t)/ 



2
√

(see Fig. 1a).
Figures 2a, b show the Sachs (α = 0) and Taylor (α = 1) bulk

enhancement factors Emt (coloured contours), Emm (dashed
black contours), and Emt/Epq (solid black contours) for a unidir-
ectional fabric (c =m) as a function of the grain parameters Ecc′

and Eca′ . In line with past studies, the Sachs model is limited in
how strong Emt can become, and the Taylor model in how strong
Emm can become (see Gillet-Chaulet and others (2005) and refer-
ences therein). Following Gillet-Chaulet and others (2005) by set-
ting Ecc′ = 1 (grains are equally hard to compress along c and a),
Fig. 2c shows the resulting bulk enhancements as a function
of Eca′ and α. On setting (Ecc′ , Eca′ , α) = (1, 103, 0.0125),
the model (10) is able to reproduce the experimentally deter-
mined bulk enhancements mentioned above, which implies
Emm = 10−2. Note that small values of α are consistent with the
Sachs hypothesis being approximately true (at least as far as
mechanical strength of polycrystals is concerned).

We mention in passing that the rheology of monocrystals has
experimentally been found to follow a power law with an
orientation-dependent non-linear viscosity (Kamb, 1961; Duval
and others, 1983). If the linear-viscous grain rheology (5) is
assumed, bulk enhancements can be up to an order of magnitude
weaker for intermediate-to-strong fabrics in the Sachs limit (8)
(Rathmann and others, 2021). By including the α-weighted Taylor
contribution, the linear-viscous model (10) reproduces the experi-
mentally derived bulk enhancements for strong fabrics (which nei-
ther the Sachs nor Taylor model can accomplish alone), and thus
is taken to suffice for our purpose although it might too deviate
from the non-linear values for intermediate-strength fabrics.

Fabric evolution

Simulating the flow of anisotropic ice requires solving a coupled
time-dependent problem involving the velocity and fabric fields,
u(x, t) and ψ(x, t, θ, f). Under cold and low-stress conditions,
the orientation fabric of an ice parcel is predominantly a function
of its strain history (Alley, 1988). That is, the strain-induced rota-
tion of c-axes, or lattice rotation, accounts for the tendency of
grain c-axes to rotate towards the compressive axis and away
from the extensional axis (Azuma and Higashi, 1985; van der
Veen and Whillans, 1994), consistent with ice cores drilled at
cold, low strain rate locations (Faria and others, 2014b). Under

warm (typically − 10 °C or above) and high-stress conditions,
however, the orientation fabric is, instead, predominantly a func-
tion of dynamic recrystallisation processes that depend on the in
situ stress state (Duval and Castelnau, 1995). In this case, grains
nucleate in regions of high-lattice distortion, which is a process
considered to work in conjunction with migration recrystallisation
for explaining the recovery of distorted lattices; that is, newly
formed strain-free nuclei grow at the expense of consuming
older, more strained grains (De La Chapelle and others, 1998).
Because grains nucleate with c-axis orientations favourable for
deformation by basal glide (Kamb, 1972), the resulting fabrics
can differ considerably from those produced by lattice rotation
alone (Alley, 1992), and hence possibly change the local direc-
tional viscosity structure resulting from lattice rotation.

In our ice-flow model, we consider non-negligible sliding at
the ice–bed interface, which is commonly associated with rela-
tively warm near-bed temperatures. For this reason, we investigate
both end-member cases where fabric evolution is dominated by
either lattice rotation or dynamic recrystallisation near the bed.
Polygonisation is neglected throughout; a recrystallisation process
which accounts for the division of grains along internal sub-grain
boundaries when exposed to bending stresses (Alley and others,
1995). In effect, polygonisation reduces the average grain size
upon grain division but does not necessarily change the orienta-
tion fabric much (Alley, 1992). Strictly speaking, we therefore
consider only discontinuous dynamic recrystallisation (DDRX),
understood as the combined effect of nucleation and migration
recrystallisation.

Lattice rotation
We model lattice rotation using our spectral fabric model
(Rathmann and others, 2021). The model is a kinematic model
in the sense that c-axes rotate in response to the bulk stretching,
ė, and spin, v = (∇u− (∇u)T )/2, thereby allowing the detailed
microscopic stress and strain rate fields to be neglected and
hence interactions between neighbouring grains to be disregarded.
By moreover requiring that basal planes preserve their orientation
when subject to simple shear (like a deck of cards), the rotation of
an arbitrary c-axis c = c(θ, f) = [sin(θ)cos(f), sin(θ)sin(f), cos
(θ)] is modelled as (Castelnau and others, 1996; Svendsen and
Hutter, 1996; Gödert and Hutter, 1998)

ċ = (v− ė · cc+ cc · ė) · c. (13)

The corresponding effect on the (continuous) number distribu-
tion, ψ, is modelled as a conservative advection process on S2

Fig. 2. Bulk enhancement factors Emt (coloured contours), Emm (dashed contours), and Emt/Epq (solid contours) for a unidirectional orientation fabric (c =m) as a function
of the grain enhancement factors Ecc′ and Eca′ in the case of (a) the Sachs model, (b) the Taylor model, and (c) a linear combination of the Sachs and Taylor models
depending on α (assuming grains are equally hard to compress along c and a, implying Ecc′ = 1). The cross in panel c indicates the grain parameters used to model
the bulk enhancement factors in our ice-flow simulations. Note the colourbar scale is linear in panel a, as opposed to in panel b and panel c, because Emt varies
less in the Sachs model (see main text).
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involving the c-axis velocity field ċ(u, f) (Gödert and Hutter, 1998):

Dc
Dt

+∇S2 · (cċ) = 0, (14)

where D/Dt is the material derivative, and the divergence operator
acts on S2.

Note that existing fabric models that focus on the time evolution
of 〈c2〉 (effectively a low-order representation of ψ) have previously
found a kinematic approach to be sufficient for reproducing
observed fabric eigenvalue trends in ice cores (Gillet-Chaulet and
others, 2006; Durand and others, 2007; Martín and others, 2009),
a result that our model reproduces for the GRIP ice-core fabric
(Thorsteinsson and others, 1997) (not shown).

Dynamic recrystallisation
We model DDRX (nucleation and migration recrystallisation) as a
single, spontaneous decay process on S2 following Placidi and
others (2010):

Dc
Dt

= Gc, (15)

where Γ = Γ(θ, ϕ) is the orientation decay rate. In this way, the
orientation density increases locally on S2 where Γ(θ, ϕ) > 0,
and decreases where Γ(θ, ϕ) < 0.

The c-axes of nucleated grains tend to align with the direction
that maximises the resolved basal plane shear stress, t · c−
(t ·· cc)c, thus favouring deformation by basal glide. Placidi and
others (2010) proposed that

G = G0(D− D〈 〉), (16)

where Γ0 is a DDRX rate factor that depends on the local tem-
perature, dislocation density, and stress state. The deformability,
D, is the normalised square of the resolved shear stress

D(c, t) = (t · t) ·· c2 − t ·· c4·· t
t ·· t , (17)

which is strictly positive. The average deformability, 〈D〉, provides
a threshold for the deformability, D, below which orientations
decay, and above which are produced. Formally speaking, 〈D〉 is
a Lagrange multiplier that ensures the total number of grains,
N = 	

S2 c dV, is conserved, which follows directly from calculat-
ing the material derivative

DN
Dt

= G0

∫
S2
Dc dV− G0N D〈 〉 = 0. (18)

In reality, however, it is the total mass that is conserved, not N.
Nonetheless, in the absence of more sophisticated models, Eqn
(16) provides a useful model to explore the major effect of
DDRX, here understood as the orientation-dependent nucleation
and consumption of grains as a function of t.

For reference, the decay rate Eqn (16) is plotted in Fig. 3 in the
case of unconfined uniaxial compression along ẑ (panel a), uni-
axial compression along x̂ with extension confined to ẑ (panel
b), and simple x̂–ẑ shear (panel c). Note that Γ depends on the
instantaneous value of ψ by virtue of 〈D〉, which was taken to
be isotropic in Fig. 3. Red and blue colours indicate the directions
for which orientations are produced (grain nucleates) and decay
(grains consumed), respectively. Although the case of unconfined
uniaxial compression (Fig. 3a) is relevant for the stress regimes
found near ice domes, the latter cases of confined compression

and vertical shear are relevant for the stress regimes realised in
our ice-flow simulations.

Representation
We represent the grain number distribution by a series expansion
in spherical harmonic functions, Ym

l (u, f):

c(x, t, u, f) =
∑L
l=0

∑l

m=−l

cm
l (x, t)Ym

l (u, f), (19)

where the expansion coefficients, cm
l , constitute the fabric model

unknowns (degrees of freedom), and L is the wave-mode trunca-
tion above which finer-scale structure in ψ is unresolved. We defer
the reader to the Appendix for further details on how lattice rota-
tion and DDRX affect the time-evolution of cm

l .
We end by noting that for expansion (19), the entries of the

structure tensors 〈c2〉 and 〈c4〉 – required to calculate Emm and
Emt – are given by linear combinations of cm

l for l≤ 4 (Advani
and Tucker, 1987; Rathmann and others, 2021).

Numerical experiments

We are interested in the extent to which the true basal drag or
friction coefficient field can be inferred by an inversion procedure
if ice is assumed isotropic when in fact it is not. For this purpose,
we consider two idealised vertical slab models that are 40 km long
and 2 km tall, placed on a 0.3° inclined plane (approximately the
surface slope over the Northeast Greenland Ice Stream) with peri-
odic left–right boundaries.

Both models are subject to a Weertman sliding law along the
basal boundary, Γb:

tb = −f 2 ub‖ ‖1/m−1ub, (20)

where tb = s · n̂− (s ·· n̂n̂)n̂ is the basal shear stress, ub is the
basal sliding velocity, f = f(x) is the square root of the friction-
coefficient field, m is the sliding-law exponent, and n̂ and r̂ are
the boundary normal and tangential directions, respectively. No
melting is assumed at the ice–bed boundary and therefore
ub ‖ r̂. We considered both linear sliding, m = 1, and non-linear
hard-bedded sliding, m = 3. However, because the resulting fabric
development is largely the same (not shown, discussed below), we
focus on the results for m = 1. Whether fabric evolves similarly in
the Coulomb-plastic limit, which recent work has shown to be
relevant for weak beds such as deformable till (Joughin and
others, 2019) and perhaps for hard beds (Zoet and Iverson,
2020), was not considered. On that note, we re-emphasise that
our study is concerned with flow regimes where both sliding
and internal deformation are non-negligible. In the case of e.g.
fast-sliding ice streams and marine outlets, the sliding is likely
affected by the effective pressure at the bed (e.g. Brondex and
others, 2019), and the possibility of reduced shear stresses/strains
(increased longitudinal stresses/strains) due to sliding may cause
fabric development different from that reported here.

The free-surface height, s(x, t), is allowed to evolve the usual
way according to the local mass convergence (no accumulation or
melting assumed)

ṡ = usz − usx
∂s
∂x

, (21)

where usx = ux(x, s(x, t)) and usz = uz(x, s(x, t)) are the surface
velocity components.

The first model (Fig. 4a) investigates the effect of a sticky spot,
defined as a local increase in the friction coefficient (strictly
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speaking a flow-transverse sticky line). Specifically, we consider a
sticky spot on a flat bed, given by the centred Gaussian profile

f 2(x) = f 20 − f 20 − f 21
( )

exp
−(x − 20 000m)2

2 000 000m2

[ ]
, (22)

where the peak value, f 21 , is taken to be 100 times that of the sur-
rounding constant background value of f 20 = 5× 1010 Pa sm−1.
The value of f 20 was selected to allow for moderate sliding on
the order of 20 % of the modelled surface velocities, although
a larger and smaller sliding ratios was also considered (see
‘Discussion’). The second model (Fig. 4b) investigates the effect
of a bed bump (strictly speaking a lateral ridge) with an amplitude
of b1 = 200 m (10% of the ice thickness), given by the centred
Gaussian bed profile

b(x) = b1 exp
−(x − 20 000m)2

2 000 000m2

[ ]
, (23)

but with a uniform friction coefficient of f 2(x) = f 20 . In both
models, wider asperities where also considered (see ‘Discussion’).

The rate of DDRX, Γ0, depends in principle on the local tem-
perature, dislocation density, and stress state. Although Richards
and others (2021) recently explored possible functional forms of
Γ0, we shall, for simplicity, consider the two cases where fabric
evolution is dominated near the bed by either lattice rotation
or DDRX. Specifically, one experiment assumes lattice rotation
without DDRX by setting Γ0 = 0, while the other assumes lattice
rotation with active DDRX by setting

G0(z) =
0 for z . HG

1− z/HG

( )
10−8 s−1 for z ≤ HG,

{
(24)

taken to represent gradually warming ice between z =HΓ and z = 0

(the bed). Indeed, within a temperature range of − 30 to − 5 °C,
Richards and others (2021) found that Γ0 depends approximately
linearly on temperature. Here, we set HΓ = 2000 m/3 to confine
DDRX to the lower third of the ice mass. Note that Γ0 simply
sets the DDRX timescale, representing the relative strength of
DDRX to lattice rotation in our model. With Eqn (24), the fabric
evolves and saturates ∼5 times faster in our simulations compared
to when lattice rotation acts alone, and DDRX is therefore regarded
to be the dominant process.

In summary, four forward experiments are considered, consist-
ing of two kinds of model geometries (Fig. 4) in which DDRX is
either negligible or dominant in the lower third of the ice mass.

Forward simulations

The full Stokes momentum balance was solved for all four for-
ward models using Johnson’s flow law with n = 3 and A = 3.5 ×
10−25 s−1 Pa−3 (corresponding to isothermal ice at ∼− 10 °C)
until a steady fabric state was reached, taking approximately
100 a and 500 a with and without DDRX, respectively. Although
real temperature distributions in glaciers and ice sheets are not
isothermal, our aim is to investigate (in isolation) the effect of
mechanical anisotropies induced by fabric, whereas temperature
heterogeneities affect the viscosity isotropically through the flow-
rate factor A = A(T ). Insofar as the temperature is high enough to
affect the rate of DDRX, temperature can indirectly induce mech-
anical anisotropies, which Eqn (24) attempts to represent (albeit
rather simplistically without a thermal coupling).

The fabric fields were initialised uniformly to match the GRIP
surface state (not shown), corresponding to a weak vertical single
maximum. In the upper 30 % of the model domains, the (initial)
fabric field was held fixed throughout time. In addition to ensur-
ing that ice is approximately isotropic at the surface, this fabric
slab boundary condition allows for the fabric to reach steady
state much faster than without; weak shear strain rates in the

Fig. 3. Orientation decay rate functions for DDRX in the
case of unconfined uniaxial compression along ẑ (a),
uniaxial compression along x̂ with extension confined
to ẑ (b), and simple x̂–ẑ shear (c). Positive (red) and
negative (blue) areas indicate the directions for which
orientations are produced (grain nucleates) and decay
(grains consumed), respectively.

Fig. 4. Ice-flow model configuration and boundary conditions used in the (a) sticky spot and (b) bed bump numerical experiments.
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near-surface cause fabric to develop much slower than below.
Note, however, that this choice does not affect the steady-state
fabric solution below, nor does it affect our conclusions.

The momentum balance, surface evolution, and fabric evolution
were solved using a backward Euler (implicit) time-stepping
scheme with a step size of Δt = 0.5 a, a Taylor–Hood finite-element
discretisation of position space on a structured triangular mesh
with a grid size of (Δx, Δz) = (600 m, 120 m) refined to (Δx,
Δz) = (200 m, 60 m) within 15 km≤ x≤ 25 km and 0 km≤ y≤
1 km, and a spectral discretisation of orientation space truncated
at L = 10. For L = 10, the regularisation selected in orientation-space
(see Appendix C) is 30 times stronger for modes cm

l with l = 10
compared to l = 4, thereby significantly reducing the effect of regu-
larisation on the modes that Emt and Emm depend upon (l≤ 4). The
truncation implies a 66-dimensional linear advection–reaction–dif-
fusion problem must be solved per computational node in order to
evolve the fabric field. In terms of traditional structure-tensor-
based fabric models, L = 10 corresponds to simulating all
even-ordered structure tensors through order ten. The entire sys-
tem was solved using FEniCS (Logg and others, 2012), relying on
Newton’s method to solve the non-linear momentum balance.
The Jacobian of the residual form (required for Newton iterations)
was calculated using the unified form language (UFL) (Alnæs and
others, 2014), used by FEniCS to specify weak forms, which sup-
ports automatic symbolic differentiation. The weak forms are pre-
sented in Appendix C.

Inversions

Basal friction
Selecting the four Johnson steady states as the ‘true’ states, we
attempt to invert for f(x) using Glen’s flow law and compare the
results to the true friction fields, and to results obtained from inver-
sions using Johnson’s flow law (the ‘true’ rheology). All remaining
parts of the problem are assumed perfectly known (bedrock height,
surface height, surface velocities, and the fabric field).

We emphasise that inverting for f using Johnson’s flow law is
only feasible for synthetic experiments, and not in practice, since
the true fabric state is generally unknown for real glaciers where
inversions are performed. Our aim is, however, to assess the
type of error introduced by assuming fabric isotropy by virtue
of Glen’s flow law, which the comparison allows. In this way,
re-inferring f with Johnson’s law serves as a best-case scenario
with which to compare the Glen-based inversions (elaborated
on below). If Johnson’s flow law is to be used for inversions
over real glaciers, a more formal investigation is needed to clarify
the effects that imperfect knowledge of fabric, bed and surface
profiles, and surface velocities have.

We invert for f(x) using the canonical method by MacAyeal
(1993) and Joughin and others (2004) of reducing the surface-
velocity misfit by minimising an appropriate cost functional.
Following ice-flow models such as Úa (Gudmundsson and others,
2012; Ranganathan and others, 2020), we adopt the cost functional

J
(
u(f ), f ) = ∫

Gs

b ·(u(f ) − utrue
)∥∥ ∥∥2dl + gf

∫
Gb

df 2

dx

( )2

dl, (25)

which penalises both the surface-velocity misfit and large gradients
in f2, the former depending on the surface velocity uncertainties as
prescribed by diagonal matrix β, the latter depending on the mag-
nitude of the regularisation parameter γf. Note that the ‘true’ vel-
ocity field is well-defined only for our synthetic experiments
(taken to be the Johnson states), whereas for real inversions it is
to be replaced by the observed velocity field. Since the true surface
velocities are in fact known in synthetic experiments, β = diag(1, 1)

is arguably an appropriate choice. In the interest of being as gener-
ous as possible to Glen’s flow law, we find, however, that
signal-to-noise ratios in inferred f2 are improved if vertical velocity
errors are not penalised, i.e. β = diag(1, 0). This choice is standard
for inversions conducted over real glaciers and ice sheets (e.g.
Morlighem and others, 2013), since often only horizontal velocities
are available from satellite observations (e.g. Joughin and others,
2018). The conclusions drawn from the inferred f fields are effect-
ively unchanged by this choice.

The problem of determining f such that J(u( f ), f ) is (locally)
minimised was solved following a Newton conjugate gradient des-
cent with a strong Wolfe line search. The cost functional gradient
was evaluated with the adjoint-state method using dolfin-adjoint
(Mitusch and others, 2019), a library which allows the adjoint
equation to be derived and solved automatically for each gradient
evaluation given a forward model in FEniCS.

All inversions were carried out with an initial guess of
f 2(x) = f 20 /10. As a stopping criterion we selected a relative
change in the cost functional between two consecutive Newton
steps of <10−3 (beyond which further iterations provided negli-
gible improvement), requiring up to 23 iterations depending on
regularisation.

Isotropic enhancement factor
In addition to fabric anisotropy, the viscosity of glacier ice can
locally be affected by e.g. ice temperature anomalies and impurities.
Recognising this, some state-of-the-art parameter inversion in glaci-
ology is concerned with jointly inferring both f2 (or the equivalent
thereof) and the flow-rate factor A (see e.g. Arthern, 2015; Isaac and
others, 2015; Ranganathan and others, 2020). Without doing so,
errors in the prescribed rate-factor field will manifest themselves
in the inferred friction coefficient field (e.g. Arthern and others,
2015). However, since both f and A affect the surface velocity, with-
out additional constraints this problem is generally underdeter-
mined even for depth-averaged models where only one viscosity
needs to be determined at each point in horizontal space.

Inferring A is clearly appropriate to account for isotropic flow-
rate enhancements, such as those caused by temperature and
impurity heterogeneities. The enhancements due to fabric are
however inherently anisotropic, and the ability to represent
these by inferring a (single) scalar field is less clear. For this rea-
son, we additionally consider the possibility of isotropically com-
pensating for fabric anisotropy by including an enhancement
factor, E(x, y), inspired by Gagliardini and others (2013) and
the CAFFE model (Placidi and others, 2010). That is, by setting

A 	 E(x, y)A, (26)

can E(x, y) be inferred such that Glen’s law reproduces the true
(observed) surface velocities given the true basal friction, f2? If
so, it would indicate that it is possible to isotropically infer the
effect of fabric (e.g. when inferring the rate factor of ice shelves),
and suggest that that jointly inferring f and A could recover
(some) fabric effects, given that the underdeterminedness can
be overcome.

Unless carefully posed, inferring E is an underdetermined
problem for our non-depth-averaged model even when f is
known: the field E(x, y) is to be constrained given only the result-
ing surface velocities, but surface velocities may increase if any
horizontal layer within is enhanced (E > 1). We therefore propose
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inferring E by minimising the cost functional

J
(
u(E), E) = ∫

Gs

b ·(u(E) − utrue
)∥∥ ∥∥2dl

+gE

∫
w(z)(E − 1)2dx + gu

∫
Gs

dux(E)
dx

( )2

dl,

(27)

where the first term penalises the surface-velocity misfit (identi-
cally to Eqn (25)), the second term is a depth-dependent penalisa-
tion of deviations from isotropy (E≠ 1), where the total
(integrated) penalty is weighted by γE, and the third term pena-
lises large gradients in ux along the surface depending on the
regularisation parameter γu. In this way, the purpose of the weight
w(z) is to constrain deviations from isotropy to occur primarily at
depth where fabric anisotropy is presumably strongest. For our
purpose, we set

w(z) = 1+ 10
tanh 5× 10−3 (z − 1000m)( )+ 1

2
, (28)

which monotonically penalises anisotropy towards the surface ten
times more than at the bed. A linearly increasing weight was also
found to suffice, although convergence proved slower. The regu-
larisation term (last term) in Eqn (27) leads to smoother and
less noisy solutions for E. Although directly penalising gradients
in E would have the same effect, the proposed regularisation
was found to produce a faster and more reliable convergence.

The cost functional (27) was minimised using the same
method as described above for Eqn (25). Inversions were carried
out with an uniform initial guess of E = 1 (isotropy), and the free
parameters were set to γE = 5 × 10−18 and γu = 5 × 106 . The par-
ameter values were chosen such that the surface-velocity misfit
was reasonable without over-fitting E: by further decreasing γu,
E becomes noisy, and by increasing γE the cost of introducing
anisotropy (E≠ 1) becomes too large to reduce the surface-
velocity misfit. Although other parameter combinations are pos-
sible, the present values suffice for demonstrating that inverting
for E is feasible, at least under fairly strong assumptions about
the depths at which fabric affects the flow.

Results

Forward steady states

The forward steady states are shown in Figs 5, 6 in the case of lat-
tice rotation without and with DDRX, respectively. Panels a1–c1
(left-hand column) and a2–c2 (right-hand column) show the
results for the sticky spot (sticky line) and bed bump (lateral
ridge) model, respectively. Panels a1 and a2 show the resulting
steady-state flow speed (true friction field given) of the Johnson
flow law, relative to that produced by Glen’s law interpolated
onto the same grid. Panels b1 and b2 show the ratio of x–z
shear enhancement to x–x longitudinal (compressional/exten-
sional) enhancement caused by the fabric. Panels c1 and c2
show the symmetry-axis vector field m (black arrows) and the
associated eigenvalues am (contours). Because the fabric field con-
sists everywhere of a single-maximum in all four simulations,m is
identical to the largest eigenvalue direction, which approximately
coincides with the vertical direction. Hence, m ≃ ẑ and therefore
Emt≃ Exz and Emm≃ Exx. For reference, panels d1–e1 and d2–e2
show the corresponding orientation distribution functions,
ψ(θ, f)/N, at the near-bed locations marked in panels c1 and c2
(note the subtle differences on close inspection).

The results without DDRX show that the orientation fabric
develops over the sticky spot in such a way as to locally enhance

deformation by shear and oppose longitudinal deformation (large
Exz/Exx ratio in Fig. 5b1), resulting in significant horizontal gradi-
ents in the flow speed modelled by Johnson’s law compared to
(divided by) Glen’s law (Fig. 5a1). Although the ratio Exz/Exx is
weakened over the sticky spot when DDRX is active (Fig. 6b1),
the resulting relative flow speed pattern over the asperity is
unchanged (Fig. 6a1). That is, ice flows much faster over the sticky
spot if fabric anisotropy is accounted for, both with and without
DDRX. The Exz/Exx ratio is similarly large over the bed bump
peak (Figs 5b2, 6b2), but the resulting relative speed (Figs 5a2,
6a2) does not indicate a large speed-up due to fabric, suggesting
that any speed-up experienced as ice passes over the bump is to
first-order well-captured by Glen’s law. This is, however, not to
say that fabric anisotropy is unimportant: fabric anisotropy still
causes gradients in the (relative) surface speed, to which an inver-
sion is sensitive.

Note that with the regularisation selected in orientation space,
steady-state eigenvalues saturate ∼0.9–0.95 (panels c1 and c2),
and the magnitude of Emt and Emm (and hence Exz/Exx) that
can be achieved is therefore limited.

Inversions

Basal friction
Figures 7a1, a2 show the inferred profiles of f2(x) using Glen’s
(blue lines) and Johnson’s (red lines) flow law compared to the
true profile (black line) for the sticky spot and bed bump
model, respectively. Without affecting conclusions, Fig. 7 shows
only the results from inverting the DDRX-active simulations. To
estimate the sensitivity of our results to the choice of γf, each inver-
sion was carried out for a small ensemble of γf (see Fig. 7 legends).
The corresponding basal drag (tb) and horizontal surface velocity
component (usx) are shown in panels b1, b2 and c1, c2, respectively.
Panels d1 and d2 show the corresponding vertically integrated mass
fluxes and are treated later in the ‘Discussion’.

The results show that f2 is underestimated if inverted for with
Glen’s law (blue lines compared to black in Figs 7a1, a2), whereas
the true f2 can be recovered if the (true) Johnson flow law is used,
depending on the amount of regularisation. Of course, the
Glen-based inversions can, without further ado, be evaluated by
comparing with the true value of f2. The purpose of including
the Johnson-based inversions is simply to characterise the degree
of regularisation (smoothing) that the Glen-based inversions are
subject to; the Johnson-based inversions represent best-case scen-
arios for the Glen-based inversions. Note that in both models, the
background value of f2 (the equivalent of f 20 ) is not constant when
inferred using Glen’s law. This carries over to the resulting basal
drag, too (Figs 7b1, b2).

Given the small surface-velocity misfit (Figs 7c1, c2), the dis-
crepancies between the Johnson- and Glen-based inversions may
be attributed to the effect of fabric anisotropy and are treated in
the ‘Discussion’.

Isotropic enhancement factor
Figures 8a, b show the inferred isotropic enhancement factor field,
E , for the sticky spot and bed bump experiments with DDRX,
respectively. Similar results are found for the lattice-rotation-only
experiments. The inferred patterns conform with the softening
suggested by the anisotropic enhancement factors and the relative
flow speeds in Fig. 6. By dividing the shear ėxz(t = t0(x̂ẑ+ ẑx̂))
and the longitudinal ėxx(t = t0(I/2− x̂x̂)) strain rates resulting
from Glen’s law (E given) with those produced by Johnson’s
law (true fabric state given), we find that E to first-order captures
the effective shear-strain rate enhancement (Figs 8c, d) at the
expense of producing too soft ice when subject to longitudinal
stresses (Figs 8e, f).
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Figures 8g, h show the resulting horizontal surface-velocity
profiles and vertically integrated mass fluxes, respectively.
Although the surface velocity peaks are less well-captured (due
to regularisation) compared to when inferring f alone, the result-
ing mass-flux errors are comparatively reduced.

Discussion

Our results suggest that the orientation fabric may evolve locally
over a sticky spot to enhance ice for shear deformation to such
an extent that the sticky spot may be difficult to infer by inverting
for f using Glen’s flow law (Fig. 7a1). Although not completely
hidden, the peak-to-bottom value of f2 is much reduced com-
pared to the reference inversions based on Johnson’s law. In prac-
tice, however, we speculate that real inversions for f in the
presence of noisy input fields might make it difficult to discern
whether a sticky spot exists at all using Glen’s law. This is not
to say that Johnson’s law is a preferable choice for real inversions
(let alone practical), or that other uncertainties are of less con-
cern, such as temperature uncertainties or the limited obtainable
resolution by self-adjoint methods in the presence of noise
(Martin and Monnier, 2014), but rather that fabric might add-
itionally obscure interpretations. The resulting basal drag over
the asperity is, however, comparable to that inferred using
Johnson’s law (Fig. 7b1), although noise and the non-constant

background drag inferred using Glen’s law might in practice
also obscure interpretations.

In the case of the bed bump model (Fig. 7a2), inferring f using
Glen’s law results in a slippery spot at the bump peak where there
is none (with a magnitude sensitive to the amount of regularisa-
tion chosen, as indicated by the lighter blue lines), and relative
sticky flanks. The corresponding basal drag (Fig. 7b2) leads to
the same conclusion.

Given these results, we conjecture that a sticky spot might gen-
erally cause the orientation fabric to evolve in such a way as to
oppose the effect of the sticky spot, and that a bed bump might
cause the orientation fabric to evolve in such a way as to make
it incorrectly appear slippery on top and sticky on the flanks,
thus dampening the effect of the bump. Indeed, when inferring
the corresponding isotropic enhancement factor fields (Figs 8a, b),
an isotropic softening is found in the aforementioned areas.
Note that the inferred isotropic enhancements are locally >5,
corresponding in magnitude to temperature anomalies of
∼5–10 °C depending on activation energy.

Mass-flux estimates

The difference in background values of f2 between the Johnson
and Glen inversions are expected given the fabric field: from
the point of view of the surface velocity field, a uniformly shear-

Fig. 5. Steady states of the sticky spot model (a1–e1) and the bed bump model (a2–e2) without DDRX. Panels a1 and a2 show the steady-state flow speed of the
(forward) Johnson flow law, relative to that produced by Glen’s law, given the true friction field, f. Panels b1 and b2 show the ratio of x–z shear enhancement to x–x
compressional/extensional enhancement caused by the fabric. Panels c1 and c2 show the symmetry-axis vector field m (arrows) and associated eigenvalues am
(contours). Panels d1, e1 and d2, e2 show the orientation distribution functions ψ(θ, ϕ)/N at the locations marked in panels c1 and c2, respectively.
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enhanced layer (due to fabric) will have the same effect as uni-
formly decreasing f2. If one is interested in inferring anomalies
in f2 compared to a background value (given the above caveat),
this is possibly of little concern. On the contrary, care must be
exercised when calculating vertically integrated mass fluxes
because assuming Glen’s law might lead to more sliding being
inferred than is actually the case (too small f2). The vertically inte-
grated horizontal mass flux is by definition

F(x) = r

∫s(x)
b(x)

ux(x, y)dy. (29)

If f is inferred with A given, Figs 7d1, d2 show that assuming iso-
tropic ice (Glen’s law) in our 2-D models leads to Φ being overes-
timated by ∼10% (compared to the true flux). If, on the other hand,
E (or A) is inferred with f given, the corresponding mass-flux error
is reduced to ∼2–3% (Fig. 8h). Note that the non-constant fluxes in
the Glen-based inversions suggested non-zero emergence velocities
(recall we constrain only the horizontal surface-velocity compo-
nent). Although surface relaxation is often resorted to get rid of
the incompatible kinematic free-surface boundary condition (e.g.
Zhao and others, 2018), here it is sufficiently clear that the average
fluxes are larger than the true fluxes.

Unless flow approximations are adopted for real ice masses
that alleviate the mass-flux errors due to neglecting fabric, our
results support jointly inferring f and A as a way to reduce mass-

flux errors caused by missing fabric information, if inversion pro-
cedures can be constructed to overcome the increased underdeter-
minedness of joint inversions. Further research is needed to
determine how exactly this affects mass-loss projections; while
our results suggest that the present-day mass flux might be over-
estimated if only f is inferred (depending on flow approximation),
the change in response to a climatic perturbation is not clear. Nor
is it clear how these mass-flux errors translate to more realistic
3-D models where asperities are compactly defined, or to what
extent it is possible to isotropically compensate for fabric in the
popular vertically integrated ‘block flow’ or shallow shelf approxi-
mation (ideal limit of no internal deformation, a popular approxi-
mation for ice streams and fast-flowing outlet glaciers).

It is important to emphasise that the stress balance does not
change by accounting for fabric anisotropy. Rather, the
rate-of-deformation is (directionally) enhanced for given stress.
In the block-flow approximation, vertical shear is taken to be
negligible even when favoured by the orientation fabric. If, how-
ever, shear-enhanced layers due to fabric are in fact common,
internal deformation may be more relevant in ice streams than
isotropic models indicate, perhaps calling into question the
assumption of block flow in some parts of ice streams.
Observations of orientation fabrics in ice streams have found
horizontal (or partially horizontal) girdle patterns, thought to
be a signature of significant extensional flow (Smith and others,
2017) in agreement with Alley (1992). This should, in principle,
harden the ice for further extension. Although our model setup

Fig. 6. Steady states of the sticky spot model (a1–e1) and the bed bump model (a2–e2) with DDRX. See Fig. 5 for shared descriptions.
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cannot produce that kind of extensional/compressional flow
regime, it is (arguably) not settled to what extent ice streams
and fast-flowing outlet glaciers can be approximated as ideal
block flows throughout.

Caveats

At this point, several caveats are in order. For simplicity, a 2-D ice
mass was considered, but it is not clear whether our results carry
over to a more realistic 3-D model. It is possible that the identified
effects are much more localised and less important in 3-D models.
On the other hand, the 2-D scenarios considered here allow for
the greatest chance of inferring the true basal friction field,
since introducing greater complexity with a 3-D model should
only make inferring f more difficult (not to mention A).

Related to the model realism, it is not clear how the DDRX rate
factor, Γ0, functionally depends on temperature, stress, strain rate,
and dislocation density, although Richards and others (2021) has
taken first steps to address this. Fabrics generally evolve differently
in recrystallisation-dominated regimes compared to regimes
where lattice rotation acts alone, not least if temperature is allowed
to evolve (setting up a thermal–fabric feedback). However, as long

as vertical shear stresses are dominant, such as in our model
simulations, the corresponding orientation decay rate (Fig. 3c)
indicates that any strain-induced vertical single-maximum fabric
should be reinforced by DDRX regardless of Γ0. Put differently,
unless compressional (extensional) stresses before (after) the
sticky spot or bed bump are sufficiently large, the contribution
to the decay rate from compressional (extensional) stress regimes
(Fig. 3b) is subordinate. This could explain why our results are
similar both with and without DDRX. Moreover, if vertical
shear is dominant, this might partly explain why only minor fab-
ric changes are found for non-linear sliding (m = 3). On that note,
we also find similar steady-state fabric patterns upon multiplying
the background friction coefficient, f 20 , by a factor of 2 and 0.5,
corresponding to steady-state sliding ratios of ∼10 and 30% of
the modelled surface speed.

We restricted ourselves to the case of a significant sticky spot
(100 times the background value) and bed bump (10% of the ice
thickness). For less strong perturbations, it is possible that inver-
sions based on Glen’s flow law give acceptable estimates of f (up
to a constant). We mention that a higher bed slope (5°) and colder
ice (− 40 °C) were additionally considered, both leading to conclu-
sions similar to those presented here. Likewise, similar steady-state

Fig. 7. Inverted sliding-law friction coefficients (a1 and a2), resulting basal drag (b1 and b2), resulting horizontal surface velocity component (c1 and c2), and
resulting vertically integrated horizontal mass fluxes (d1 and d2). Left- and right-hand panels show the results for the sticky spot and bed bump model, respect-
ively. Red and blue lines denote inversions using Johnson’s and Glen’s flow law, respectively, carried out for different strengths of regularisation (lighter/darker
lines).
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fabric patterns were also found upon increasing the Gaussian vari-
ance of the asperities by a factor of 2 and 4, corresponding to
increasing the width of the asperities from ∼2 to 3 and 5 ice thick-
nesses, respectively. The resulting inversions leave our conclusions
unchanged, although fabric’s effect on inversions is found to
weaken with increasing wavelength of the basal asperities. Martin
and Monnier (2014) considered adding 1% Gaussian noise to the
horizontal surface velocities provided as input for an adjoint-based
inversion, finding a lower bound of identifiable wavelengths in the
friction coefficient on the order of several ice thicknesses. The fab-
ric effect reported here might therefore be relevant over the length
scales possible to infer in the presence of noise using adjoint-based
inverse methods.

Given the bed slope and flow-rate factor (A) used in the pre-
sented simulations, the characteristic time taken for an ice parcel
near the bed to pass over the asperities is ∼50 a, depending on
the state considered (transient or steady). This raises the question
of whether the fabric of ice parcels, with trajectories over basal asper-
ities, can in fact develop fast enough for our inversion results to be
relevant for transient states of real ice masses, too. Our forward
simulations without DDRX take ∼50 a and 200 a before the orienta-
tion fabric develops enough to considerably affect inversions in the
sticky spot and bed bump model, respectively. In a sense, this esti-
mate represents an upper bound on the fabric adjustment timescale:
the fabrics of real ice parcels approaching basal asperities are unlikely

to be isotropic, and hence the fabric adjustment time is likely less. If,
however, DDRX is non-negligible, we underline that Γ0 represents a
separate characteristic timescale for DDRX. Indeed, given the right
conditions, e.g. temperatures above − 10 °C and near the bedrock,
fabric evolution due to DDRX can be fast (Alley, 1992; De La
Chapelle and others, 1998; Faria and others, 2014b). Although a
more thorough investigation is needed, the modelled timescales
characterising lattice rotation and DDRX suggests that our results
are not necessarily restricted to steady state flows; that is, orientation
fabrics might generally develop fast enough to affect inversions tar-
geting transient states of real ice masses, too.

We leave the above caveats and questions for future research
instead of exhausting a search through model space to determine
the exact conditions under which fabric can have an effect. The
point is here, rather, to demonstrate that it is possible for the
orientation fabric to obscure the basal conditions and affect mass-
flux estimates in addition to other rheological uncertainties.

Inferring basal conditions

In this study, we distinguished between a local increase in the fric-
tion coefficient and a bedrock bump, the former defined as a
‘sticky spot’. The latter is sometimes also referred to as a sticky
spot due to the resulting local increase in basal drag it can intro-
duce (Alley, 1993; Stokes and others, 2007). Generally, there are

Fig. 8. Inferred equivalent isotropic enhancement factor, E(x, y), for the sticky spot (a) and bed bump (b) model with DDRX. The shear and longitudinal strain rates
resulting from Glen’s law (E given) divided by those produced by Johnson’s law (true fabric state given) are shown in panels c, d and e, f, respectively, for diagnostic
shear and longitudinal stress states (see main text). Panel g shows the resulting horizontal surface velocity components (solid lines) compared to the true profiles
(dashed lines). Panel h shows the corresponding vertically integrated mass flux profiles relative to the true profiles.
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four possible mechanisms for locally increased drag (Stokes and
others, 2007): (1) till-free areas, (2) areas of relatively strong till,
(3) areas of freeze-on, and (4) bedrock bumps. In our parlance,
the first three cases alter the friction coefficient field and are
therefore indistinguishable from the point-of-view of the ice
above, while the fourth (bed bump) is a distinctly different mech-
anism of increased drag. Given our results, the need for such a
distinction is made clear; when using Glen’s flow law, the inferred
basal drag is much more accurate for a sticky spot than a bedrock
bump (at least when inferring f in isolation). Because bedrock
bumps can be small or simply located between sparse measure-
ments, these two sources of ‘effective’ sticky spots can, however,
not always be separated in practice. Both sources must therefore
be considered when inferring basal conditions from inversions.

Unless jointly inferring f and A alleviates the problem, the dis-
tinct effect of sticky spots and bedrock bumps suggests that the
accuracy of an inversion may vary within a single-drainage
basin since roughness often changes along flow (Franke and
others, 2021; Holschuh and others, 2020). Although our study
focuses on flow regimes where both sliding and internal deform-
ation are non-negligible (arguably relevant near ice-stream
onsets), we end by noting that more research is needed to deter-
mine the relevance for flow regimes dominated by longitudinal
and lateral (transverse) stresses, such as near fast-flowing outlet
glaciers.

Conclusions

We investigated the isolated effect of neglecting the crystal-
orientation fabric (mechanical anisotropies) when inferring the
basal friction coefficient of a Weertman sliding law. Specifically,
we considered two idealised cases of ice flowing over a sticky
spot (increased friction coefficient) and a bedrock bump by
using a vertical cross-section model, consisting of the anisotropic
Johnson flow law, a mixed Taylor–Sachs grain rheology, and a
spectral fabric model of lattice rotation and dynamic recrystallisa-
tion. Given the resulting anisotropic steady or transient states as
input for an adjoint-based inversion procedure under the assump-
tion of isotropic ice (Glen’s flow law), we find that bedrock bumps
can be misinterpreted as sticky on the flanks and slippery on top
when in fact the slipperiness is uniform. When inferring the basal
drag over a sticky spot, we find that assuming isotropic ice might
be sufficient to identify the sticky spot, but in practice it may be
obscured by regularisation and uncertainties in input fields, the
latter known to limit the obtainable resolution of basal friction
fields (Martin and Monnier, 2014). For both the sticky spot and
bed bump models, fabric was allowed to evolve with and without
discontinuous dynamic recrystallisation (nucleation and migra-
tion recrystallisation) near the bed. Due to the strong vertical
shear regimes simulated, however, the resulting fabric patterns
are close enough to produce similar results.

If instead the basal friction coefficient field is assumed to be
known, we find that an isotropic enhancement factor field may
be inferred to compensate for missing fabric information. Not
only does this allow for surface velocities and vertically integrated
mass fluxes be satisfactorily reproduced, but the resulting spatially
distributed (isotropic) softening conforms with the softening sug-
gested by the proper anisotropic enhancement factors and the
flow speed ratios as modelled by Johnson’s law compared to
Glen’s law. The price paid is, however, to render the material
too soft when subject to longitudinal stresses. Our results there-
fore suggest that jointly inferring basal friction and the flow-rate
factor in Glen’s law might be a reasonable approach to reduce
mass-flux errors by compensating for missing fabric information.

We emphasise that more research is needed to address the
caveats raised (see ‘Discussion’), and hence better determine the

physical conditions under which the identified fabric effect
might exist. Specifically, our conclusions apply to 2-D flowline
modelling where both sliding and internal deformation are non-
negligible. The relevance for fast-sliding flow regimes (e.g. outlet
systems) is not clear, and we cannot identify whether the equiva-
lent isotropic enhancement factor could be depth-averaged for use
in simple flow approximations. Nonetheless, the fact that the
orientation fabric can hide (or at least obscure) the true basal
boundary conditions from inversions suggests that care should
be exercised when integrating mass fluxes under the assumption
of isotropic ice, unless the flow-rate factor is jointly inferred or
flow approximations otherwise alleviate the error caused by
neglecting fabric. Similarly, care should be exercised when
attempting relate subglacial conditions and processes to basal
properties inferred from an inversion relying on Glen’s flow law.

Code availability. The spectral fabric model is available at https://github.
com/nicholasmr/specfab.
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Appendix A. Taylor enhancement factor

The Taylor-averaged linear Johnson grain rheology is given by (Rathmann and
others, 2021)

〈t′〉 = A′
(
ė− E′−1

cc − 1
2

(ė ·· 〈c2〉)I

+ 3(E′−1
cc − 1) − 4(E′−1

ca − 1)
2

ė ·· 〈c4〉

+(E′−1
ca − 1)(ė · 〈c2〉 + 〈c2〉 · ė)

)
.

(A1)

Vectorising 〈t′〉 and ė according to

V(Xij) =
[
X11, X21, X31, X12, . . . , X33

]T
,

Eqn (A1) may be written as the 9 × 9 linear problem

P · V(ė) = V(〈t′〉), (A2)

where

P = I9 − E′−1
cc − 1
2

I⊗ 〈c2〉

+ 3(E′−1
cc − 1) − 4(E′−1

ca − 1)
2

F(〈c4〉)

+ (E′−1
ca − 1)(I⊗ 〈c2〉 + 〈c2〉 ⊗ I)

(A3)

is a 9 × 9 matrix that depends on the second- and forth-order structure ten-
sors, ⊗ is the generalised outer product (Kronecker product), and

F(Xijlm) =

X1111 X1121 X1131 X1112 · · · X1133

X2111 X2121 X2131 X2112 · · · X2133

..

. ..
. ..

. ..
. ..

.

X3311 X3321 X3331 X3312 · · · X3333

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦.

The forward form of the Taylor-averaged grain rheology (A2) is therefore

ė(〈t′〉) = V−1 P−1· V(〈t′〉)( )
, (A4)

where V−1 reverts the vectorisation.
Note that for small and large values of Ecc′ and Eca′ , respectively, Eqn (A2)

may be ill-conditioned. In that case, solving the Tikhonov regularised problem

PT ·P+ lI9
( ) · V(ė) = PT · V(〈t′〉), (A5)

was found to provide good estimates of V(ė) for l = 10−6.
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Appendix B. Dynamic recrystallisation

In order to calculate the time-evolution of the fabric expansion coefficients due
to DDRX, it is helpful to adopt the bra-ket notation for characterising the fab-
ric state:

|c(x, t, u, f)〉 = cm
l (x, t)|Ym

l (u, f)〉, (B1)

where summation over repeated l and m is implied. Given Eqn (B1), the
expansion coefficients, cm

l , follow directly from calculating the overlap
between Ym

l and ψ:

〈Ym
l |c〉 = 〈Ym

l |Ym′
l′ 〉cm′

l′ = cm
l , (B2)

where the overlap between any two arbitrary functions X and Y on S2 is given
by

〈X|Y〉 =
∫
S2
X∗YdV, (B3)

and 〈Ym
l |Ym′

l′ 〉 = dl,l′dm,m′ by definition since Ym
l are mutually orthogonal. The

Eulerian rate-of-change of the expansion coefficients,

ċm
l = 〈Ym

l |ċ〉, (B4)

due to recrystallisation is therefore

ċm
l = G0〈Ym

l |D|Ym′
l′ 〉cm′

l′ − G0〈D〉cm
l . (B5)

If D is expanded in terms of Ym
l , the matrix elements 〈Ym

l |D|Ym′
l′ 〉 in Eqn

(B5) reduce to a linear combination of Gaunt coefficients (overlap integrals
involving triple products in Ym

l ). Following Rathmann and others (2021), con-
siderable notational simplicity may be achieved by writing t in terms of the
expansion coefficients of the quadric surface t ·· cc, defined as

tml = 〈Ym
l |t ·· cc〉, (B6)

which evaluate exactly to (i.e. higher wave-number coefficients vanish)

t00 =
2
3




p

√
tr(t) t02 = − 2

3




p

5

√
txx + tyy − 2tzz
( )

,

t−1
2 = 2






2p
15

√
txz + ityz
( )

t12 = − t−1
2

( )∗
,

t−2
2 =






2p
15

√
txx − tyy + 2itxy
( )

t22 = t−2
2

( )∗
,

and t is therefore exactly

t = 1
4






15
2p

√ t−2
2 + t22 −



2
3

√
t02 −i t−2

2 − t22
( )

t−1
2 − t12

−t−2
2 − t22 −



2
3

√
t02 −i t−1

2 + t12
( )

sym. 2


2
3

√
t02

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦. (B7)

Expressing c2 and c4 in terms of Ym
l , D can be written as (verified in

Mathematica)

D = 3
28




5
p

√
g0Y

0
0 + g2·Y2 + g4·Y4

( )
, (B8)

where

Y2 =
[
Y−2
2 , Y−1

2 , Y0
2 , Y

1
2 , Y

2
2

]T
, (B9)

Y4 =
[
Y−4
4 , Y−3

4 , Y−2
4 , Y−1

4 , Y0
4 , Y

1
4 , Y

2
4 , Y

3
4 , Y

4
4

]T
, (B10)

and the stress-dependent coupling weights are

g0(t) = 7


5

√ t02
( )2−2t−1

2 t12 + 2t−2
2 t22

( )
, (B11)

g2(t) =






3/2
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2
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2
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6
√

t12t
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, (B12)
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. (B13)

Although 〈D〉 can be calculated directly from the definition

D〈 〉 = (t · t) ·· 〈c2〉 − t ·· 〈c4〉 ·· t
t ·· t , (B14)

given the second- and fourth-order structure tensors, we note that the conser-
vation constraint

0 = Ṅ =
∫
S2
ċdV = 





4p
√

ċ0
0 (B15)

implies that 〈D〉 is, by virtue of Eqn (B5), nothing but the inner product

〈D〉 = 〈Y0
0 |D|Ym′

l′ 〉cm′
l′

c0
0

. (B16)

Hence, the term containing 〈D〉 in Eqn (B5) is nonlinear.
In summary, the effect of recrystallisation is represented by a linear trans-

formation of cm
l and a common nonlinear scaling transformation of cm

l (for
all l and m), both depending on t.

Appendix C. Weak forms

Stokes problem

Forming the inner product between the stress balance, −∇ · t+ ∇p = rg, and
a vector weight function v, and adding the incompressibility condition,
∇ · u = 0, multiplied by the weight function q, the weak Stokes problem fol-
lows from integrating the result over the model domain:∫ [

t ·· ∇v + q∇ · u− p∇ · v]dx − ∫
Gb

v · tbdl

+
∫
Gb

[
wu · n̂− lv · n̂]dl = ∫

rg · vdx,
(C1)

where second-order derivatives were integrated by parts, the surface Γs is
assumed stress free (s · n̂ = 0), ρ = 917 kg m−3 is the density of ice, g is the
gravitational acceleration, t b is the basal traction given by the sliding law,
and t(ė) is the flow law. The mixed variational problem (C1) was discretised
using Taylor–Hood elements for both the unknowns and weight functions
(Galerkin method), i.e. linear elements for p and q, and quadratic elements
for u and v. The term additionally added to Eqn (C1) weakly imposes
u · n̂ = 0 on Γb through a Lagrange multiplier field, l, and its weight function,
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w (both linear elements). Note that the Cauchy stress-vector component nor-
mal to the basal boundary is absorbed into l.

Free-surface evolution

The free-surface equation was discretised in time using a backward Euler
scheme. Upon multiplying by a weight function, w, and integration over the
domain length, its weak form is given by

1
Dt

∫
[s(tk+1) − s(tk)]wdx =

∫
usz − usx

ds(tk+1)
dx

[ ]
wdx

−ns

∫
ds(tk+1)

dx
dw
dx

dx,

(C2)

where k is the time-step index. The term additionally added to the right-hand
is a Laplacian term (having been integrated by parts) for numerical stability.
The weak form (C2) was discretised in space using linear elements for both
s and w (Galerkin method), and ns = 1 × 10−3 m2 s−1 was found to suffice.

Fabric evolution

Adding the models for lattice rotation and recrystallisation from the main text,
the number distribution evolves according to

ċ+ (u ·∇)c+∇S2 · (cċ) = Gc+ n†c∇2
S2c+ nc∇2c. (C3)

The two terms additionally added to the right-hand side provide Laplacian
regularisation in orientation space and real space depending on the diffusion
coefficients n†c and nψ, respectively; the former required for any spectral trun-
cation of ψ (Rathmann and others, 2021), the latter needed to stabilise fabric
evolution for the finite-element discretisation used (more sophisticated stabil-
isation techniques were not attempted).

Calculating the rate-of-change of cm
l using Eqn (B4) with (C3), it follows

that

ċm
l + (u ·∇)cm

l + 〈Ym
l |R|Ym′

l′ 〉cm′
l′ = G0(〈Ym

l |D|Ym′
l′ 〉cm′

l′ − 〈D〉cm
l )

−n†cl(l + 1)cm
l + nc∇2cm

l ,
(C4)

where R = R(ė, v) is a linear operator representing the effect of c-axis rota-
tion (see Rathmann and others (2021) for details), and the identity
∇2Ym

l = −l(l + 1)Ym
l was used.

Equation (C4) implies a nonlinear system must be solved per computa-
tional node in order to evolve the fabric field (a 66-dimensional system in
the case of L = 10 used in this study). In our numerical implementation, how-
ever, we linearised the problem by using a backward Euler time-discretisation
scheme for all terms but 〈D〉. Upon multiplying by a weight function, z, and
integration over the model domain, the corresponding weak form of (C4) is
given by

1
Dt

∫ [
cm
l (tk+1) − cm

l (tk)
]
zdx +

∫ [(u ·∇)cm
l (tk+1)

]
zdx

+
∫
〈Ym

l |R|Ym′
l′ 〉cm′

l′ (tk+1)zdx

=
∫
G0

[
〈Ym

l |D|Ym′
l′ 〉cm′

l′ (tk+1) −
(
〈Y0

0 |D|Ym′
l′ 〉cm′

l′ (tk)
c0
0(tk)

)
cm
l (tk+1)

]
zdx

−n†cl(l + 1)
∫
cm
l (tk+1)zdx − nc

∫
∇cm

l (tk+1) · ∇zdx,

(C5)

where k is the time-step index, and the last term in (C4) was integrated by
parts assuming ∇c · n̂ = 0 on the bedrock boundary. The form (C5) was dis-
cretised in space using linear elements for both cm

l and z (Galerkin method).
We end by noting that in all forward simulations presented here, hyper dif-

fusion on S2 was used by setting l(l + 1)→ [l(l + 1)]2, thereby further reducing
the influence that regularisation has on the lowest wavenumber modes (l≤ 4)
which Emm and Emt depend on. With this choice, regularisation is [10(10 + 1)/
4(4 + 1)]2≃ 30 times stronger for modes with l = 10 compared to l = 4. In all
forward simulations, regularisation corresponding to nψ = 5 × 10−5 and
n†c = 1× 10−4 ė‖ ‖ was used, the strain rate dependence of the latter following
the fabric model of the numerical ice-flow model Elmer Ice (Gillet-Chaulet
and others, 2005).
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	Dynamic recrystallisation
	In order to calculate the time-evolution of the fabric expansion coefficients due to DDRX, it is helpful to adopt the bra-ket notation for characterising the fabric state:B1$$\vert{\psi( {\bf x}\comma\; t\comma\; \theta\comma\; \phi) }\rangle = \psi^{m}_{l}( {\bf x}\comma\; t) \vert{Y_{l}^{m}( \theta\comma\; \phi) }\rangle \comma\; $$where summation over repeated l and m is implied. Given Eqn (B1), the expansion coefficients, $\psi ^{m}_{l}$, follow directly from calculating the overlap between $Y_{l}^{m}$ and &psi;:B2$$ \langle{Y_{l}^{m}}\vert {\psi} \rangle = \langle{Y_{l}^{m}}\vert {Y_{l'}^{m'}} \rangle \psi^{m'}_{l'} = \psi^{m}_{l} \comma\; $$where the overlap between any two arbitrary functions X and Y on S2 is given byB3$$ \langle{X}\vert {Y} \rangle = \int_{S^2} X^\ast Y {\rm d}{\Omega} \comma\; $$and $\langle {Y_{l}^{m}}\vert {Y_{l'}^{m'}} \rangle = \delta _{l\comma l'}\delta _{m\comma m'}$ by definition since $Y_{l}^{m}$ are mutually orthogonal. The Eulerian rate-of-change of the expansion coefficients,B4$$\dot{\psi}{}^{m}_{l} = \langle{Y_{l}^{m}}\vert {\dot{\psi}} \rangle \comma\; $$due to recrystallisation is thereforeB5$$\dot{\psi}{}^{m}_{l} = \Gamma_0 \langle{Y_{l}^{m}}\vert{D}\vert{Y_{l'}^{m'}} \rangle \psi^{m'}_{l'} - \Gamma_0\langle{D}\rangle \psi^{m}_{l} .$$If D is expanded in terms of $Y_{l}^{m}$, the matrix elements $\langle {Y_{l}^{m}}\vert {D}\vert {Y_{l'}^{m'}} \rangle$ in Eqn (B5) reduce to a linear combination of Gaunt coefficients (overlap integrals involving triple products in $Y_{l}^{m}$). Following Rathmann and others (2021), considerable notational simplicity may be achieved by writing &tau; in terms of the expansion coefficients of the quadric surface &tau;&emsp14;&middot;&middot;&emsp14;cc, defined asB6$$\tau_{l}^{m} = \langle{Y_{l}^{m}}\vert {{\bi \tau} \, {\bi \cdot} {\bi \cdot} \, {\bf c}{\bf c}} \rangle\comma\; $$which evaluate exactly to (i.e. higher wave-number coefficients vanish)$$\eqalign{\tau_{0}^{0} = {2\over 3}\sqrt{\pi} \, {\rm tr}( {\bi \tau}) \quad \tau_{2}^{0} = -{2\over 3}\sqrt{{\pi\over 5}}\left(\tau_{xx} + \tau_{yy} - 2\tau_{zz}\right)\comma\; \cr \tau_{2}^{-1} = 2\sqrt{{2\pi\over 15}} \left(\tau_{xz} + i\tau_{yz} \right)\quad \tau_{2}^{ 1} = -\left(\tau_{2}^{-1}\right)^\ast \comma\; \cr \tau_{2}^{-2} = \sqrt{{2\pi\over 15}}\left(\tau_{xx}-\tau_{yy} + 2i\tau_{xy}\right)\quad \tau_{2}^{ 2} = \left(\tau_{2}^{-2}\right)^\ast \comma\; }$$and &tau; is therefore exactlyB7$${\bi \tau} = {1\over 4}\sqrt{{15\over 2\pi}} \left[ \matrix{\tau_{2}^{-2} + \tau_{2}^{2} - \sqrt{{2\over 3}}\tau_{2}^{0} &#38; -i\left(\tau_{2}^{-2}-\tau_{2}^{2}\right) &#38; \tau_{2}^{-1}-\tau_{2}^{1} \cr &#38;-\tau_{2}^{-2} - \tau_{2}^{2} - \sqrt{{2\over 3}}\tau_{2}^{0} &#38; -i\left(\tau_{2}^{-1} + \tau_{2}^{1}\right) \cr {\rm sym.} &#38; &#38; 2\sqrt{{2\over 3}}\tau_{2}^{0} } \right].$$Expressing c2 and c4 in terms of $Y_{l}^{m}$, D can be written as (verified in Mathematica)B8$$D = {3\over 28}\sqrt{{5\over \pi}} \, \left(g_0 Y_{0}^{0} + {\bf g}_2 {\bi \cdot} {\bf Y}_2 + {\bf g}_4 {\bi \cdot} {\bf Y}_4 \right)\comma\; $$whereB9$${\bf Y}_2 = \big[Y_{2}^{-2}\comma\; Y_{2}^{-1}\comma\; Y_{2}^{0}\comma\; Y_{2}^{1}\comma\; Y_{2}^{2}\big]^{\mkern-1.5mu{\sf T}}\comma\; $$B10$${\bf Y}_4 = \big[Y_{4}^{-4}\comma\; Y_{4}^{-3}\comma\; Y_{4}^{-2}\comma\; Y_{4}^{-1}\comma\; Y_{4}^{0}\comma\; Y_{4}^{1}\comma\; Y_{4}^{2}\comma\; Y_{4}^{3}\comma\; Y_{4}^{4}\big]^{\mkern-1.5mu{\sf T}}\comma\; $$and the stress-dependent coupling weights areB11$$g_0( {\bi \tau}) = {7\over \sqrt{5}} \left(\left(\tau_{2}^{0}\right)^2 -2\tau_{2}^{-1}\tau_{2}^{1} + 2\tau_{2}^{-2}\tau_{2}^{2} \right)\comma\; $$B12$${\bf g}_2( {\bi \tau}) = \left[\matrix{\sqrt{3/2}\left(\tau_{2}^{-1}\right)^2 - 2\tau_{2}^{0}\tau_{2}^{-2} \cr \tau_{2}^{0}\tau_{2}^{-1} - \sqrt{6}\tau_{2}^{1}\tau_{2}^{-2} \cr \left(\tau_{2}^{0}\right)^2 - \tau_{2}^{-1}\tau_{2}^{1} - 2\tau_{2}^{-2}\tau_{2}^{2} \cr \tau_{2}^{0}\tau_{2}^{1} - \sqrt{6}\tau_{2}^{-1}\tau_{2}^{2} \cr \sqrt{3/2}\left(\tau_{2}^{1}\right)^2 - 2\tau_{2}^{0}\tau_{2}^{2} }\right]\comma\; $$B13$${\bf g}_4( {\bi \tau}) = {-4\over 3}\left[\matrix{\sqrt{14}/2\left(\tau_{2}^{-2}\right)^2 \cr \sqrt{7}\tau_{2}^{-1}\tau_{2}^{-2} \cr \sqrt{2}\left(\tau_{2}^{-1}\right)^2 + \sqrt{3}\tau_{2}^{0}\tau_{2}^{-2} \cr \sqrt{6}\tau_{2}^{0}\tau_{2}^{-1} + \tau_{2}^{1}\tau_{2}^{-2} \cr \sqrt{1/5}\left(3\left(\tau_{2}^{0}\right)^2 + 4\tau_{2}^{-1}\tau_{2}^{1} + \tau_{2}^{-2}\tau_{2}^{2}\right)\cr \sqrt{6}\tau_{2}^{0}\tau_{2}^{1} + \tau_{2}^{-1}\tau_{2}^{2} \cr \sqrt{2}\left(\tau_{2}^{1}\right)^2 + \sqrt{3}\tau_{2}^{0}\tau_{2}^{2} \cr \sqrt{7}\tau_{2}^{1}\tau_{2}^{2} \cr \sqrt{14}/2\left(\tau_{2}^{2}\right)^2 }\right].$$ Although &lang;D&rang; can be calculated directly from the definitionB14$$\left\langle{D}\right\rangle = {( {\bi \tau}\,{\bi \cdot}\,{\bi \tau}) \, {\bi \cdot} {\bi \cdot} \, \langle{{\bf c}^2} \rangle - {\bi \tau} \, {\bi \cdot} {\bi \cdot} \, \langle{{\bf c}^4} \rangle \, {\bi \cdot} {\bi \cdot} \, {\bi \tau}\over {\bi \tau} \, {\bi \cdot} {\bi \cdot} \, {\bi \tau}} \comma\; $$given the second- and fourth-order structure tensors, we note that the conservation constraintB15$$0 = \dot{N} = \int_{S^2} \dot{\psi} {\rm d}{\Omega} = \sqrt{4\pi}\dot{\psi}{}^{0}_{0}$$implies that &lang;D&rang; is, by virtue of Eqn (B5), nothing but the inner productB16$$\langle{D}\rangle = { \langle{Y_{0}^{0}}\vert{D}\vert{Y_{l'}^{m'}} \rangle \psi^{m'}_{l'}\over \psi^{0}_{0}} .$$Hence, the term containing &lang;D&rang; in Eqn (B5) is nonlinear.In summary, the effect of recrystallisation is represented by a linear transformation of $\psi ^{m}_{l}$ and a common nonlinear scaling transformation of $\psi ^{m}_{l}$ (for all l and m), both depending on &tau;.Appendix C.Weak forms
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