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Summary 
Multivariate data analysis (also known as chemometrics) has had significant 
influence on the increasing use of spectroscopic techniques in the Danish food 
research and production. Chemometric methods have the ability to extract 
important features (underlying chemical or physical phenomena) from complex 
data and once developed for a specific application perform rapid and stable 
analyses.  

High-field 1H NMR spectroscopy is an extremely versatile measurement 
technique. For complex biological samples like foodstuffs and biofluids, NMR has 
the important property of requiring minimal sample preparation thus avoiding 
changes in the biological matrix and yielding detailed analytical profiles from the 
whole biological sample. However, the practical use is limited by a number of 
factors including the complexity of data collection, handling and analysis. 
Therefore, methods to reduce the complexity and increase the information gained 
from NMR analyses are sought and for this purpose multivariate data analysis is a 
natural choice.  

In this Ph.D. project, various multivariate data analytical methods were applied to 
one- and two-dimensional NMR spectra as well as pseudo two-dimensional data in 
the form of NMR time series in order to further develop methodology for the 
analysis of complex NMR data. 

One of the simplest multivariate techniques, multivariate curve fitting, was applied 
to a selected region of the NMR spectra of commercial carrageenan products and 
the relative contents of five main carrageenan types were determined [Paper II]. 

Using Partial Least Squares (PLS) regression, main and subfractions of 
lipoproteins were quantified from the one-dimensional diffusion-edited NMR 
spectra of human blood plasma [Paper I]. Prediction errors were lower than those 
obtained in other studies, and the assessment of individual risk of coronary heart 
disease based on predicted concentrations was comparable to that based on 
reference concentrations. 

Two-dimensional diffusion-edited NMR spectra of human blood plasma samples 
were subjected to multi-way chemometric analysis using multi-way PLS (N-PLS) 
and PARAllel FACtor analysis (PARAFAC) [Paper III]. N-PLS calibrations 
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yielded prediction errors similar to the ones obtained with PLS, however using a 
much smaller sample set. The analysis using PARAFAC yielded four components 
representing lipoproteins of different sizes with spectral contributions as well as 
self-diffusion coefficients that were in accordance with known properties of 
lipoprotein main fractions. These results clearly suggest that PARAFAC has 
potential for the analysis of diffusion-edited as well as other two-dimensional 
NMR spectra. 

The multi-way Tucker model was applied to pseudo two-dimensional NMR data in 
the form of NMR time series [Paper IV]. The analysis of the metabolic response to 
three model toxins using Tucker analysis of the NMR spectra of rat urine was 
successful with respect to identifying major metabolites related to toxicity. Some 
conclusions were complementary to those reported from studies of the same 
substances using other data analytical techniques showing the advantage of 
applying and comparing different data analytical approaches. 

The work presented in this Ph.D. thesis shows examples of the successful analysis 
of complex one- and two-dimensional NMR spectra using two-way as well as 
multi-way multivariate data analytical methods. The project provides material for 
the further development within the field of combining multivariate data analysis 
and high-field NMR spectroscopy. 
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Sammenfatning 
Multivariat dataanalyse (også kaldet kemometri) har haft stor betydning for 
udbredelsen af spektroskopiske teknikker i den danske levnedsmiddelforskning og 
-industri. Kemometriske metoder har evnen til at udtrække vigtige karakteristika 
(underliggende kemiske eller fysiske fænomener) fra komplekse data, og når først 
en given applikation er udviklet, kan analyser udføres hurtigt og stabilt. 

Høj-felts 1H NMR spektroskopi er en bredt anvendelig og fleksibel målemetode. 
For komplekse biologiske prøver såsom mange fødevarer samt f.eks. blod og urin 
har NMR den specifikke fordel, at den kræver minimal prøveforberedelse. Herved 
undgås ændringer i den oprindelige biologiske matrix og en detaljeret analytisk 
profil kan opnås fra hele den biologiske prøve. I praksis er anvendeligheden 
begrænset af et antal faktorer, bla. af kompleksiteten af data indsamling, 
håndtering og analyse. Derfor er der stor interesse i udvikling af metoder, som kan 
reducere kompleksiteten og forøge graden af anvendelig information fra NMR 
analyser, og til dette formål er multivariat dataanalyse et naturligt valg.  

I dette Ph.D. projekt blev forskellige metoder indenfor multivariat dataanalyse 
anvendt på et- og to-dimensionelle NMR spektre samt på pseudo to-dimensionelle 
data i form af NMR tidsserier for at videreudvikle metodikker til data analyse of 
komplekse NMR data. 

En af de mest simple multivariate teknikker, multivariat kurve tilpasning, blev 
anvendt på et udvalgt område af NMR spektre af kommercielle carrageenan 
produkter og det relative indhold af fem hovedtyper af carrageenan blev bestemt 
[Paper II]. 

Hoved- og subfraktioner af lipoproteiner blev kvantificeret ved hjælp af Partial 
Least Squares (PLS) regression på et-dimensionelle diffusions-editerede NMR 
spektre af humant blodplasma [Paper I]. De opnåede prædiktionsfejl var lavere end 
i tidligere publicerede studier og den individuelle risiko for hjerte-kar sygdomme 
blev ikke vurderet væsentligt anderledes ved brug af prædikterede koncentrationer 
i forhold til brug af reference koncentrationer. 

To-dimensionelle diffusions-editerede NMR spektra af humant blodplasma blev 
analyseret med multi-vejs metoderne N-PLS og PARAllel FACtor analysis 
(PARAFAC) [Paper III]. N-PLS kalibreringer gav prædiktionsfejl i samme 
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størrelsesorden som blev opnået vha. PLS dog baserede på et meget mindre 
prøvesæt. PARAFAC analysen gav fire komponenter, som kunne vises at 
repræsentere lipoproteiner af forskellig størrelse med spektrale bidrag og 
diffusions-koefficienter, som stemte godt overens med kendte værdier for 
lipoprotein hovedfraktioner. Disse resultater viser, at PARAFAC har potentiale for 
at kunne bruges til analyse af diffusions-editerede samt andre typer to-
dimensionelle NMR spektre. 

Multi-vejs metoden Tucker blev anvendt på pseudo to-dimensionelle NMR data i 
form af NMR tidsserier [Paper IV]. Analysen af det metaboliske respons på tre 
toxiner vha. Tucker analyse af NMR spektre af rotte urin var succesfuld mht. at 
identificere de primære metabolitter involveret i det toxiske respons. Nogle 
resultater var komplementære til resultater opnået med andre data analytiske 
metoder på studier af de samme toxiner, hvilket viser fordelen i at anvende og 
sammenligne forskellige analytiske tilgange til data. 

I denne Ph.D. afhandling er præsenteret eksempler på succesfuld analyse af 
komplekse et-og to-dimensionelle NMR spektre vha. to-vejs såvel som multi-vejs 
multivariate dataanalyse metoder. Projektet lægger op til en videre udvikling 
indenfor kombinationen af områderne multivariat dataanalyse og høj-felts NMR 
spektroskopi. 
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Abbreviations 
1D one dimensional – a vector 

2D two dimensional – a matrix 

3D three dimensional – a cuboid 

NMR nuclear magnetic resonance 

PARAFAC parallel factor analysis 

PCA principal component analysis 

PLS partial least squares 

RF radio frequency 

RMSECV root mean square error of cross validation 

RMSEP root mean square error of prediction 

T1 longitudinal or spin-lattice relaxation time constant 

T2 transverse or spin-spin relaxation time constant 
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1. Introduction 

1.1 Background 
Various spectroscopic methods are widely used both in food research and in the 
food industry i Denmark. Combined with multivariate data analysis (also known as 
chemometrics) these are very useful analytical tools for monitoring the quality of 
food products [1]. Industrial applications include process control in the sugar, 
hydrocolloid, confectionary, meat and dairy production. Applications within food 
research are numerous and include studies on the structural changes during 
processing of foods, e.g. cooking of meat and baking of bread. Within medical 
science, the methods are not quite as widespread as in food science, but especially 
in pharmaceutical production multivariate data analysis in combination with 
spectroscopy is gaining increasing use [2]. Examples from this area include 
identification of raw materials, release of finished goods and process control. 

In the past, high-field Nuclear Magnetic Resonance (NMR) spectroscopy has 
mainly been concerned with the elucidation of chemical structure in solution, but 
today high-field NMR is emerging as a powerful exploratory tool for probing 
biochemical and physical processes. High-field NMR represents the most versatile 
and information rich spectroscopy for the analysis of foods and biological systems, 
yet its full potential remains to be exploited. In the following, the abbreviation 
NMR will refer to high-field NMR unless otherwise stated. 

One of the reasons for the limited use of multivariate data analysis on NMR data is 
the large amount of user-interaction needed to process the data before the 
application of multivariate data analysis. Within food science the combination of 
multivariate data analytical methods and NMR spectroscopy has mainly been 
limited to authentication and adulteration problems [3]. In medical research, one of 
the major areas of application is within “metabonomics”, where chemometric 
analysis of NMR data of biofluids has gained increasing attention and has 
contributed with detailed information on the effects of disease on the metabolism 
[4].  

The chemometrics research group at Food Technology, KVL is a major Danish 
centre for the theoretical and applied research in multivariate data analysis. The 
group has collaborations within many fields, i.e. within food science, sensory 
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science, human nutrition, pharmaceutical and medical science and thus is 
experienced in working with many different types of data. Apart from "traditional" 
two-way multivariate data analysis the group has pioneered the area of multi-way 
methods.  

1.2 Description of the project 
The aim of this research project was to improve the applicability and exploit the 
unique possibilities of modern high-field NMR spectroscopy to probe complex 
physico-chemical systems typical for foods and biological samples using 
chemometrics. 

State-of-the-art NMR equipment and advanced chemometric methods including 
multi-way methods were combined in an attempt to enhance the interpretation and 
quantitative information of these complex systems – a combination which has 
enormous potential for the extraction of new and relevant information. 
Furthermore, some work was done in the area of preparing NMR data for data 
analysis. 

1.3 Outline of the thesis 
It is the aim of this thesis to present the work performed in the area of application 
of multivariate data analysis to high-field NMR spectroscopy within food science 
and medical science during this Ph.D. study. 

The presentation is divided into three main parts: Chapter 2 gives an introduction 
to multivariate data analytical techniques; Chapter 3 summarises NMR basic 
theory including selected pulse experiments; and Chapter 4 deals with the 
application of multivariate data analysis to NMR data. Chapters 2 and 3 are 
provided as background for the work presented in this thesis, and do not cover all 
aspects of multivariate data analysis and NMR, respectively. 
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2. Multivariate data analysis 

2.1 The multivariate advantage 
When using spectroscopic techniques for chemical analysis, traditionally univariate 
data analytical methods have been used, where a single response variable is 
measured or selected from the whole spectrum and only this variable is analysed. 
Statistical methods are then applied for classification or linear regression is 
performed and the calculated regression line gives an indication of how well the 
measured variables describe the dependent variable in question. 

There are a few problems that should be considered when using univariate 
methods. One is that out of a large number of measured variables only one or a few 
variables are selected for the analysis. Especially for complex samples there is a 
huge loss of information in using only a few variables out of a whole spectrum. 
Furthermore, this approach requires extensive a priori knowledge about the 
spectrum of this type of sample in order to choose the right variable and thus 
requires a hypothesis about the results to be found, which in turn will reduce 
chances for innovation. 

 

Figure 1 Examples of problems that arise when 
univariate analysis is applied to spectral data. 

Another problem occurs if different components in the sample give signals in the 
same region as the analyte or a variable baseline offset is present in the data. In 
cases of overlapping signals these will be inseparable when only a single variable 
is measured and the content will be estimated too high due to the several 
components adding to the signal intensity. A simplified example of some of the 
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problems that can occur with univariate analysis is given in Figure 1. From the 
figure it is obvious that if only the variable marked with a dot is recorded, 
spectrum A will be estimated to have a higher content of the compound in question 
than spectrum C, even though the two responses have equal amplitude relative to 
the signal baseline. If the whole spectrum is recorded, the baseline offset of 
spectrum A is easily detected and the necessary action can be taken to correct for 
this offset. For this reason univariate analysis of data including interacting or 
coinciding signals cannot always be expected to produce useful and trustworthy 
results.  

Furthermore, when dealing with complex samples like foods or biological samples, 
univariate analysis of spectral data is often impossible. The signals are so complex, 
that the signal of a single chemical component cannot be identified, or the property 
of interest is something that cannot be described by a single peak. For this type of 
samples it is important to look at the sample as a whole and to analyse the spectral 
data taking the matrix of the sample into consideration. 

An important aspect of multivariate data analysis is the possibility to detect 
outliers. Outliers are samples that do not conform with the majority of samples in a 
data set and will therefore have a detrimental effect on the calculated model. An 
example of this is shown in Figure 1 where one sample has a different spectral 
signal (spectrum D) than the others. In univariate analysis there is no way to 
determine that something is wrong with the sample, while in multivariate analysis, 
the sample will easily be detected as an outlier. The reason for a sample being an 
outlier can be one of many, such as wrong sample preparation or erroneous 
handling of the sample, but it can also be due to instrumental artefacts or just that 
the sample does not follow the expected sample variation. It is important to make 
an effort to find out why a sample is an outlier before removing it from the data 
set. Once a sample has been shown to be an outlier, it should be removed from the 
data set and the calibration model must be recalculated. 

2.2 Properties of data 
Several properties of data are essential for the successful application of 
multivariate analysis. These properties will only be briefly discussed here, whereas 
the practical considerations needed when applying multivariate data analysis to 
NMR data will be discussed in Section 4.1. 
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Multivariate data analysis is based on the extraction of latent components or 
underlying common structures in the data. For the analysis to make sense, the data 
must have common underlying structures! In the example in Figure 1, the 
structure, i.e. the peak, which is common for the three samples (A, B and C), is not 
present in the outlier (spectrum D). This could have two explanations: either this 
sample is different and contains another chemical compound than the rest, or due 
to some error in the spectral measurement, the spectral axis is different for this 
sample, i.e. the different position of the signal is due to an instrumental shift.  

For quantitative spectral analysis, the intensity axis must be the same for all 
samples, since a basic assumption is the obedience of the law of Lambert-Beer. 
This is trivial for most other spectroscopic techniques, but in NMR the spectra are 
often scaled in the spectrometer, and this scaling must be removed before 
multivariate analysis. In calibration, the absence of a common linear intensity axis 
leads to erroneous predictions and in exploratory analysis to erroneous 
interpretation. 

Another prerequisite for successful multivariate data analysis is that the data 
conform with the selected model. An assumption that applies to almost all of the 
methods described in the following is that the data are low-rank bilinear or 
trilinear. A practical explanation of the concept of bi-/trilinearity is that a given 
chemical compound gives one and only one spectral signal, and that a given 
spectral signal can come from one and only one chemical compound. Regarding 
the low-rank, in many cases the purpose of multivariate data analysis is to reduce 
the dimensionality in order to increase interpretability, so if the data are high-rank 
the gain in using multivariate data analysis is marginal. 

2.3 Two-way methods 
When analysing simple chemical mixtures or complex biological samples using 
spectroscopy, the data will typically consist of the spectra of a number of similar 
samples, which contain varying amounts of a number of chemical components 
each of which has a unique spectral signal. Thus the data will optimally be bilinear 
and two-way bilinear models can be applied. 
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2.3.1 Principal Component Analysis 
Principal Component Analysis (PCA) [5,6] is a decomposition method where a set 
of corresponding scores (T) and loadings (P) are calculated for a data set (X), 
leaving only a residual (E): 

 EPTX +⋅=  T  Equation 1 

A schematic representation of the model is shown in Figure 2. The scores (T) 
correspond to the concentrations and the loadings (P) to the spectral signals of the 
common underlying structures. The outer product of a score vector and the 
corresponding loading vector is called a dyad, a bilinear component or in the PCA 
model a principal component. 

 

Figure 2 A two-component Principal Component Analysis (PCA) model. 

The idea of PCA is to extract principal components expressing orthogonal 
variation present in the data set until only random noise is left in the residual. The 
variation is extracted in decreasing order with the largest variation first called the 
first principal component and so forth. PCA is a powerful tool used to explore the 
variation present in the data set and often the origin of the extracted variances can 
be interpreted directly through plots of the scores and loadings by utilising known 
information about the samples. 

In PCA, as in all bilinear models, there is the well-known problem of rotational 
freedom [7]. Thus the spectral loadings in PCA can be interpreted to yield 
information about the pure spectra of the analytes measured, but the loadings will 
not directly represent the pure spectra because of the rotation problem and the 
orthogonality constraint. 
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2.3.2 Two-way calibration 
Spectral measurements can be used for multivariate predictive purposes, in a 
similar way as for exploratory purposes as shown for PCA. The common principle 
for calibration methods is that the sample spectra and the so-called dependent 
variable (e.g. the concentration of a specific substance) are known for a series of 
samples. The parameters in a mathematical model are estimated based on these 
samples so that the model can be used to predict the dependent variable from the 
spectra of samples for which this value is unknown.  

A number of different possibilities exist for the calculation of multivariate 
prediction models [8], where the simplest approach is Classical Least Squares 
(CLS), the model of which is: 

 EKYX +⋅=   Equation 2 

The principle behind CLS is to view the recorded spectra as linear combinations of 
the pure spectra of the chemical constituents. If X (the spectra) and Y (the 
concentrations) are known for all constituents, including interferences, impurities 
etc., the pure spectra (K) can be estimated from the calibration, given that the 
number of samples is larger than the number of chemical components. If the pure 
spectra of all analytes are known, Y can be calculated directly from X and K, and 
the method involves no calibration. The main drawback of CLS is the need to 
know the concentrations or pure spectra of all chemical components, which is 
practically impossible for complex samples. Furthermore, non-linearities cannot be 
accounted for.  

Another approach is the multivariate extension of univariate linear regression, 
Multiple Linear Regression (MLR). MLR is based on the assumption that the 
dependent variable can be calculated as a weighted sum of the spectral variables. 
The relationship between the spectral variables and the dependent variable is: 

 ebXy +⋅=   Equation 3 

where the vector b represents the direct correlation between each spectral variable 
(X) and the dependent variable (y). As for CLS, direct and indirect interferences 
must be included in the calibration samples, but in MLR the concentrations need 
not be known. Drawbacks of MLR are that the number of variables used must be 
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smaller than the number of samples. Furthermore,  for optimal results the spectral 
variables must be selective for either analyte or interference (i.e. spectra must have 
limited overlap between analyte and interferences) and the single spectral variables 
cannot be collinear with other variables.  

Rather than using selected spectral variables (X) it is possible to use scores (T) for 
a given number of components calculated by PCA as the regression variables in 
MLR. This approach is called Principal Component Regression (PCR) [9,10]. The 
advantage of this approach compared to MLR is that the entire variation in the data 
set is compressed by PCA into a few new variables (represented by the scores) and 
the entire variation in the data set is thus used in the prediction model. PCA can 
easily handle spectral data sets with correlated variables, and interaction effects are 
taken into account in the resulting models. 

Another possibility is to use Partial Least Squares (PLS) regression [11,12] where 
the variation in the spectra directly co-varying with the variation in the dependent 
variable is extracted. The variation structure calculated by PLS is not necessarily 
identical to that used in PCR (i.e. T is different). This is due to the fact that in PCA 
the spectral data matrix is decomposed independently of the dependent variable, 
whereas in PLS the data matrix is decomposed to obtain maximum covariance 
between the scores and the dependent variable.  

2.4 Multi-way methods 
Some data of chemical analytical problems are naturally arranged in a three-way 
matrix, i.e. a data cube, or even higher order data matrices. Examples of three-way 
data include 2D or pseudo-2D spectra measured for a series of samples, e.g. 2D 
diffusion-edited NMR spectra or NMR spectra measured with regular time 
intervals on a series of samples. It is possible to analyse these problems with two-
way methods using unfolding of the three-way data matrix to a two-way matrix, 
where two dimensions are mixed [13]. However, ignoring the multi-way structure 
of the data and treating it as an ordinary two-way data set can lead to models that 
are less robust, less interpretable, less predictive and non-parsimonious. 
Furthermore, the more noisy the data, the more beneficial the use of multi-way 
methods will be [13]. For the analysis of multi-way data, several dedicated 
methods have been developed, which are described in the following. 
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2.4.1 The Tucker model 
The Tucker3 model (henceforth referred to simply as Tucker), or multi-mode PCA, 
is one of the most basic multi-way models in chemometrics although originating in 
psychometrics [14,15,16]. In the case of three-way data the Tucker model is shown 
schematically in Figure 3.  

The data cube X is decomposed into a number of components, but as opposed to 
PCA the number of components can be different for the three modes (i.e. the 
dimensions or directions). If X has dimensions I x J x K, A will have dimensions I 
x P, B dimensions J x Q, C dimensions K x R, and the core array G has dimension 
P x Q x R, where P, Q and R are the number of components extracted in each of 
the three modes. 
 

Figure 3 The Tucker model is a weighted sum of outer products between the components 
stored as columns in A, B and C. 

The extracted components are characterised by a set of scores (A), and two sets of 
loadings (B and C). The loadings B and C can both be spectral loadings as would 
be the case for 2D NMR data, or can be e.g. spectral loadings and time loading as 
is the case for NMR time series. The model of the original data is the weighted 
sum of outer products between the components in A, B and C. The matrix G is 
called the core array and represents the values with which the single component 
products are weighed.  

The interpretation of Tucker models is complicated by the presence of the core 
array allowing for interaction between different components. For example, in two-
way PCA score one interacts with loading one only, but in Tucker it has 
interactions with all loadings in the other modes. The value and sign of each core 

E X G= +

A

B

C
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element must be taken into account and Tucker models are thus more difficult to 
interpret than classical PCA. Furthermore, the Tucker model has rotational 
freedom like PCA, and thus the interpretation of loadings is not always straight-
forward. 

The force of the Tucker model is as a generalized PCA on multi-way data with the 
same capabilities as PCA to compress variation, extract features, explore data, 
generate parsimonious models etc. There are few examples on the use of Tucker 
models for data that can be assumed to be generated by a process according to the 
Tucker model as opposed to the PARAFAC model (Section 2.4.2), which 
coincides with several physical models [13]. 

2.4.2 The PARAFAC model 
The PARAllel FACtor analysis (PARAFAC) model also originates in 
psychometrics [17,18]. The PARAFAC model is a special case of the Tucker 
model, where the Tucker model is more general due to the possibility of an 
unequal number of loading vectors in each mode and because of a more general 
core array. In the PARAFAC model the number of extracted components in each 
dimension must be the same (P) and the core array, corresponding to the Tucker 
model, is a cube (P x P x P) with ones on the superdiagonal and zeros in all other 
positions. Therefore, the first score-vector interacts only with the first loading 
vector in each dimension and so forth, and the PARAFAC model can be 
represented as a simple three-way extension of PCA as shown in Figure 4. As for 
the Tucker model, PARAFAC is not limited to three-way data but can handle data 
sets of higher dimensionality. 
 

Figure 4 A two-component PARAFAC model. 

The PARAFAC model is based on the decomposition of the original data into 
trilinear components (triads) in a similar way to the bilinear components (dyads) 

   +

b1

= +

c1

a1 
E X 

c2
b2

a2
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extracted in PCA. An obvious advantage of the PARAFAC model is the 
uniqueness of the solution. If the data are approximately trilinear, the components 
are intrinsically unique up to permutations and scaling. This means that the true 
underlying structures, e.g. the pure analyte spectra, will be found directly if the 
right number of components is used and the signal-to-noise ratio is appropriate 
[17]. Furthermore, the scores (or concentrations) determined by PARAFAC need 
not be calibrated to an external standard but only scaled according to a single 
reference sample in order to represent estimates of the actual concentrations of the 
analytes [19]. 

2.4.3 Multi-way calibration 
For calibration on multi-way data sets, an analogue to the two-way method PCR is 
a possibility, using a Tucker or a PARAFAC model to decompose the data and 
then regressing (scaling) the scores from this model unto the dependent variable 
using MLR. 

Furthermore, a general multi-way extension of the PLS regression model exists, 
that can handle multi-way data. This model is called N-PLS [8] and similar to two-
way PLS, components are extracted in X such that the scores have maximal 
covariance with the dependent variable in y. 

The N-PLS model is unique in the sense that it consists of successively estimated 
one-component models, each of which is unique. However, the uniqueness in this 
case will seldom imply that true underlying structures will be recovered, because 
the model does not reflect a physical or theoretical model [13].  

2.5 Validation 
Validation is an important aspect of all data analysis. In multivariate data analysis, 
the purpose of validation is to ensure that a suitable model is obtained, i.e. that the 
model is valid for future samples and is not an expression of trends in the present 
samples only. In practice, validation is used to determine whether the right type of 
model is applied, to determine the correct number of components to use, to detect 
outliers and for evaluation of the estimated model parameters. 

Decomposition methods, such as PCA, Tucker and PARAFAC, should be 
validated to ensure that the interpretation is correct and based on a reasonable 
number of components. For calibration models, such as PLS and N-PLS, the 
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emphasis will be more on ensuring that the estimated error of predictions is as 
close as possible to the true value. 

Apart from validation using e.g. one of the methods listed in the following 
sections, all models should be chemically validated looking at how well the model 
reflects the physical or chemical phenomena under investigation, i.e. the 
appropriateness of the model. Chemical validation can include external knowledge 
about the shape of spectral signals, which should be reflected in the spectral 
loadings, or about groups within the samples, which should be reflected in the 
scores. 

2.5.1 Test set validation 
Test set validation employs the use of a set of samples that were not used in the 
initial model development, called an independent test set, preferably sampled at a 
different point in time but spanning the same variation. The validity of the model is 
tested applying the model to these new samples and evaluating the explained 
variation, spectral residuals, scores, and for calibrations the prediction error 
expressed as the Root Mean Squared Error of Prediction (RMSEP): 

 




∑ −=

=

n

1i

2
ii )yŷ(

n
1   RMSEP  Equation 4 

where n is the number of samples, iy  is the reference value and iŷ  is the predicted 
value. The problem with test set validation is merely the need for a large number of 
samples with the same variation as in the first set of samples, a demand that is 
often not practically feasible. For calibrations, the need for more reference analyses 
to determine the values of the dependent variable is costly and often time-
consuming. If the number of original samples allows, it is possible to split these 
samples into two subsets – a calibration set and a test set, which is used as 
described above. 

2.5.2 Cross validation 
Cross validation can be used when sampling a new set is not practically possible 
and the number of original samples does not allow for splitting them into two 
subsets spanning the same variation. 
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For calibration, the simplest type is leave-one-out or full cross validation. This 
employs leaving one sample out at a time and calculating a model on the remaining 
samples. The sample left out is then predicted using the model and these 
predictions are used for estimating the prediction error expressed as the Root Mean 
Squared Error of Cross Validation (RMSECV) defined equal to RMSEP.  

Several other schemes than full cross validation can be used, e.g. dividing the 
samples into segments and leaving out one segment at a time. Which type of cross 
validation is optimal for a given data set depends on the number of samples, the 
variation in the samples etc., and must be assessed for each data set. However, full 
cross validation has been found optimal (with a trend towards overfit) for data sets 
with few samples [20]. 

For decomposition methods, i.e. PCA, PARAFAC and Tucker, leaving out single 
or several entire sample spectra is not advisable, and a different approach is used 
leaving out single spectral data points across samples instead [21].  

2.5.3 Split-half analysis 
Split-half analysis is primarily used for PARAFAC models and consists of 
analysing different subsets of the data independently. Due to the uniqueness of the 
PARAFAC model, the same loadings will be obtained in the non-splitted modes 
from models of any suitable subset of the data. If too many or too few components 
are chosen the model parameters will differ when the model is fitted to different 
data sets [13].  

Split-half analysis can be applied to other types of models, but then the loadings 
will not be identical for different subsets, and instead the space spanned by the 
loadings must be compared, making the application less straight-forward. 
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3. High-Field NMR spectroscopy 
The theory of Nuclear Magnetic Resonance (NMR) spectroscopy was put forth in 
the mid-1930’s by the Dutch physicist Gorter [22], but it was not until 1945 that 
the American physicists Bloch and Purcell discovered NMR in the form that is 
known today [23,24]. The possibilities of using NMR in chemistry were not 
appreciated until 1950, when Proctor and Yu discovered the chemical shift which 
enabled elucidation of molecular structures of organic compounds [25]. Although 
originating in physics, it is in chemistry that NMR has provided the greatest 
results. The main field of use is within structure elucidation of complex molecules 
and especially for protein analysis in solution NMR is an indispensable tool. The 
use of NMR as a general analytical tool has developed especially during the last 15 
years.  

3.1 Basic theory 

Spin and energy levels  

About 2/3 of all isotopes possess a spin angular momentum, the magnitude of 
which is dependent on the size of the angular momentum quantum number (I), 
which is commonly referred to simply as spin. The spin of a nucleus depends on 
the mass of the isotope, and nuclei with even mass and even charge numbers 
possess no spin angular momentum, i.e.  I = 0. Such nuclei cannot be used for 
NMR, since it is the nuclear spin property that enables NMR. 

When a nucleus that possesses a spin different from zero is placed in a magnetic 
field, the nucleus will occupy one of a number of energy levels where the number 
of levels available depends on the value of I. The proton (1H) is the most abundant 
NMR nucleus and has spin I = ½. For such nuclei there are two different energy 
levels that the spins can occupy when placed in a magnetic field: I = -½ and I = ½. 
This corresponds to an orientation parallel (I = -½) or anti-parallel (I = ½) with the 
applied magnetic field. Figure 5 shows the two possible energy levels for protons 
and the dependence of the applied magnetic field B0. In the rest of this presentation 
of the NMR theory protons will be used as a model. 

The difference in the energy levels shown in Figure 5 is equal to 

 00 hE ν⋅=∆  Equation 5 
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where h is Planks constant and ν 0 is the frequency of the excitation pulse at which 
transition between the two energy levels is induced. The frequency ν  0 is referred to 
as the resonance frequency or the Larmor frequency and will depend on the type of 
nucleus and the magnetic field strength following the equation 

 
π⋅

⋅γ
=ν

2
B 0

0  Equation 6 

Here γ is the gyromagnetic ratio, which is a constant for a given nucleus; for 
protons γ  = 2.6752⋅108 T -1⋅s-1.  

 

 

Figure 5 Representation of the two possible energy levels for 
nuclei with spin = ½ and the influence of the strength of the applied 
magnetic field (B0) on the energy difference ∆E. 

When at equilibrium in a magnetic field, the protons will be distributed between 
the two energy states according to the equation known as the Boltzmann 
distribution. 
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Eexp
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 Equation 7 

In this equation Nα and Nβ represent the populations in the parallel and anti-
parallel states, respectively, k is the Boltzman constant and T the absolute 
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B0

temperature. According to this distribution there will be a small excess of protons 
in the parallel state, since this is the energetically more favourable state. It is this 
excess that is measured in NMR and simple calculations show that at room 
temperature and a magnetic field strength of 14.1 T (equal to ν 0 = 600 MHz for 
protons) the excess in the parallel state will be approximately 50 protons out of one 
million. Since it is these 50 protons that give rise to the NMR signal, a large total 
number of protons are required in order to generate an appreciable signal, and it 
should be obvious why NMR is commonly described as insensitive compared with 
other spectroscopic methods. 

Precession and net magnetisation vector  
When the sample is unaffected by an external magnetic field, the orientation of the 
spins will be randomly distributed in all directions. However, when the sample is 
placed in a magnetic field, the spins will align as described in the above equation. 
Under the influence of the external magnetic field the spins will start to precess 
about the direction of the magnetic field, as shown in Figure 6 for four spins in the 
parallel state and two in the anti-parallel state. 

 

Figure 6 Precession of individual spins around the external 
magnetic field and the resulting net magnetisation vector. 

The net magnetisation is the sum of all single spins, and since the spins are 
randomly distributed about B0, the net magnetisation vector is positioned exactly 
on the axis of the external magnetic field. The bold arrow in Figure 6 represents 
this net magnetisation vector, which is characterised by a small positive component 
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on the axis of the external magnetic field corresponding to the small excess of 
protons in the parallel state and no components on the other axes of the coordinate 
system.  

In order to facilitate the description of the spin manipulation that gives rise to the 
NMR signal it is normal to ascribe axes to the NMR instrument as shown in Figure 
7. Thus the z-axis is normally ascribed to the direction of the magnetic field (B0) 
and the net magnetisation vector at equilibrium, while in modern NMR 
instruments, both the x- and the y-axis are equipped with coils for applying RF 
pulses and for detection. 

 

Figure 7 Diagram of the coordinates normally ascribed to the NMR 
instrument. The drawing also depicts the RF- and detection coils and a 
perturbation of the equilibrium system by a RF pulse denoted a 90° pulse. 

RF pulse 
When the sample is at equilibrium in the magnetic field there is no observable 
signal since the net magnetisation vector, M,  has no component in the xy-plane 
where the signal is to be detected (Mx = My = 0). The purpose of a RF pulse is to 
perturb the system to obtain an observable NMR signal, converting magnetisation 
on the z-axis to magnetisation in the xy-plane. A RF pulse of a duration precisely 
long enough to flip the net magnetisation vector into the xy-plane will generate the 
largest possible signal (the horizontal bold arrow in Figure 7). This pulse is 
referred to as a 90° pulse and a pulse with a duration long enough to flip the net 
magnetisation vector along the negative z-axis is referred to as a 180° pulse. Once 
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in the xy-plane the magnetisation vector will continue to precess about B0 thus 
inducing an oscillating signal in the detectors along the x- and y-axes. 

Relaxation 
After a perturbation by a 90° RF-pulse the spin system will lose coherence in the 
xy-plane, a process known as spin-spin or transverse relaxation. The loss of 
coherence is exponential and is described by a time constant called T2. This 
process is due to energy exchange between spins as well as inhomogeneities in the 
magnetic field, which will particularly influence molecules with mobile protons 
and high diffusion rates such as water. Simultaneously with the loss of coherence 
in the xy-plane the protons will seek to regain equilibrium orientation along the z-
axis due to the influence of the magnetic field. The time it takes for the protons to 
regain equilibrium distribution between the two energy states depends on the 
probability of energy exchanges occurring between the spins and their environment 
(the lattice). This is characterised by a relaxation mechanism referred to as 
longitudinal or spin-lattice relaxation described by a time constant T1. 

Shielding and chemical shift 

Protons in different positions of a molecule do not experience exactly the same 
magnetic field due to the effect known as shielding. When brought into a magnetic 
field, the motion of the electrons orbiting around an atom are perturbed in such a 
way that a magnetic field is induced in the sample that opposes the external field. 
Hence the sample becomes magnetized and modifies the field. In a molecule 
electrons are hindered in their rotation around a particular atom by the presence of 
other atoms, and are therefore not capable of exerting their maximum shielding 
effect. Thus, differences in shielding reflect local differences in geometry and 
electron density in a molecule. Therefore, protons in different chemical 
environments experience different effective magnetic fields and thus resonate at 
slightly different frequencies, a phenomenon known as chemical shift. The 
relationship between the degree of shielding and the resulting resonance frequency 
is  

 )1(*
2

B 0 σ−
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=ν  Equation 8 
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The term σ is known as the shielding constant and is a small dimensionless number 
usually expressed in parts per million (ppm). The existence of chemical shift is 
what enables the NMR spectroscopist to distinguish between nuclei in different 
chemical environments and makes NMR spectroscopy a powerful tool for the 
determination of the structure of molecules and as a general chemical analytical 
tool. 

Subtracting the carrier frequency 
The net magnetisation vector thus consists of a number of spins that, once in the 
xy-plane, will precess with slightly different frequencies close to the Larmor 
frequency. The signal detected in NMR is the current induced in the coils by the 
precessing magnetization. Since we are not interested in the Larmor frequency but 
in the difference in shielding and thus chemical shift, in the receiver the Larmor 
frequency (some MHz) is "subtracted" from the detected frequency for each spin, 
resulting in what is called the audio signal (chemical shift frequencies, some kHz). 
In practice, a frequency called the carrier frequency positioned in the middle of the 
range of frequencies of interest is subtracted instead of the Larmor frequency, so 
that we get both positive and negative frequencies of the different spins in the 
sample. 

 

Figure 8 Example of the evolution of two spins 
relative to the carrier frequency. One has a frequency 
lower and one higher than the carrier frequency. 

Quadrature detection 
This is illustrated in Figure 8, where one spin has a frequency of –ν and one a 
frequency of +ν with respect to the carrier frequency. To the receiver, this 
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corresponds to having spins moving both clock-wise and counter-clock-wise in the 
xy-plane, and this is the reason for using a detection system with two simultaneous 
channels, which are mutually 90° out of phase.  

This system is called quadrature detection and enables the discrimination between 
a spin with a frequency –ν and one with frequency +ν, something which is not 
possible when detection is only done on one axis. This is illustrated in Figure 9 
where the signals from the two spins with frequency –ν and +ν in each of the 
detectors is depicted. For simplicity, the signals are shown as if no relaxation 
occurred. As can be seen, the signals from the detector situated on the y-axis are 
identical for the two spins while the signals on the x-axis are different and thus 
enables the differentiation of the two frequencies. 

 

Figure 9 The signals of spins with frequencies –ν and +ν using quadrature detection. 

Fourier Transformation 
During a modern NMR experiment, the signal is measured in the time domain, i.e. 
as a function of time. This signal, being a superposition of sinusoids damped due to 
relaxation, is Fourier transformed to obtain the spectrum in the frequency domain. 
The signals from the two detectors are handled as the real and imaginary parts of a 
complex signal, enabling the use of complex Fourier transformation. Prior to, and 
after, Fourier transformation several cosmetic operations are performed that 
influence the signal-to-noise ratio of the spectrum, the resolution between peaks, 
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and the correction of artefacts such as deviations from a flat horizontal baseline. 
These include zero filling, application of window function and baseline 
corrections, topics that will not be discussed further here. 

Phase correction 
The result of a complex Fourier transformation is also complex and thus consists of 
two parts, the real and imaginary part, S(ν) = R(ν) +i⋅I(ν). Optimally, R(ν) is equal 
to the absorption spectrum, A(ν), and I(ν) is equal to the dispersion spectrum, 
D(ν), the shapes of which are shown in Figure 10.  

 

Figure 10 The absorption- and dispersion-mode of a single resonance. 

However, due to a difference in phase between the receiver and the carrier 
frequency, this is not exactly the case, and in practice R(ν) and I(ν) are linear 
combinations of A(ν) and D(ν):  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )φν−φν=ν

φν−φν=ν

cosDsinAI 

sinDcosAR
 Equation 9 

where the term φ is called the phase error. The pure absorption and dispersion 
spectra, which are preferred for analysis, can be obtained though a linear 
combination of R(ν) and I(ν), a process known as phase correction:  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )φν+φν−=ν
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cosIsinRD
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 Equation 10 

Since the phase error is not constant over the entire spectrum the correction is 
made frequency dependent: 

 ( ) 10 φ⋅ν+φ=νφ  Equation 11 
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where φ0 and φ1 are called the 0th and 1st order phase correction values. In practice, 
phase correction is done using the instrument software where the operator tries to 
make the real spectrum look as ‘absorption-like’ as possible by adjusting the 
values of φ0 and φ1. 

Referencing 
The frequencies in the Fourier transformed spectrum are dependent on the size of 
the applied field, and thus an alternative axis is defined relative to a reference 
compound, resulting in the chemical shift axis (in units ppm) on which a given 
spin always has the same value independent of the size of the applied magnetic 
field. The most widely used reference substance is tetramethyl silane, Si(CH3)4 
(abbreviated TMS) or in aqueous solutions the water-soluble sodium salt of 
trimethylsilyl proprionic acid (abbreviated TSP). TMS/TSP is a suitable reference 
compound because it exhibits almost maximum shielding so that most sample 
NMR peaks have a smaller shielding constant (σ) and thus a positive value on the 
axis compared with the reference compound (per definition 0 ppm). The chemical 
shift of a sample spin can be calculated as 

 ppm106

reference

referencesample ⋅
ν

νν
δ

−
=  Equation 12 

In cases where the addition of TMS/TSP to the sample for some reason is not an 
option, other reference compounds can be used given that the chemical shift value 
is well-known. 

3.2 Pulse experiments 
The possibility to design pulse experiments for the selection of specific signals is 
the basis for the enormous diversity of NMR applications. Here only two types of 
pulse experiments will be presented, the most simple unselective pulse experiment 
and a group of pulse experiments designed to measure self-diffusion of molecules 
in solution. Finally, a short review of solvent suppression techniques will be given, 
which can be implemented in both the simple and the more complex pulse 
experiments described. 
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90x 

3.2.1 Single pulse experiment 
This pulse experiment is used when the purpose of the experiment is to view all 
nuclei of a given type in the sample and is schematically described in Figure 11. It 
employs the application of a 90-degree RF-pulse followed by the measurement of 
the signal, which is exponentially decreasing due to relaxation. The decreasing 
signal is generally known as the Free Induction Decay (FID), a name also 
commonly used as a name for the experiment. The notation 90x implies that the RF 
pulse is applied on the x-axis. Note that the timing diagram is not produced to 
scale, which applies to the pulse experiments described in the following text as 
well. The duration of a 90-degree pulse is typically in the order of a few 
microseconds, a 180-degree pulse twice as long, and the data acquisition time may 
be as long as seconds. 

 

Figure 11 The single pulse experiment 

3.2.2 Diffusion-editing 
The purpose of diffusion-edited NMR experiments (also known as Diffusion 
Ordered SpectroscopY, DOSY) can be many including to determine self-diffusion 
coefficients of molecules in solution, to monitor intermolecular binding, to 
separate signals from molecules with similar or overlapping NMR signals but 
different size or to edit the NMR spectrum to represent molecules of a specific size 
only. Diffusion-editing is usually acquired as a 2D spectrum consisting of a series 
of 1D spectra, through which the intensity of signals decrease exponentially due to 
diffusion. The relationship between signal intensity, diffusion coefficient and 
gradient strength is: 

 [ ]R 'gDexpMqI 222
0 −∆⋅⋅δ⋅γ⋅−⋅⋅=  Equation 13 
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where I is the measured signal intensity, M 0 is the equilibrium magnetisation, D is 
the diffusion coefficient (m2⋅s-1), γ is the gyromagnetic ratio (s-1⋅Tesla-1), δ is the 
time duration of the applied gradient pulse (s) and g is the applied gradient strength 
(Tesla⋅m-1). The term ∆' is equal to ∆ – δ⋅k, where ∆ is the diffusion time (the time 
between the two gradient pulses) and k a correction factor, which depends on the 
shape of the gradient pulses. The term R is a constant that accounts for relaxation 
and the constant q is a correction factor accounting for the loss of signal when 
using pulse experiments based on the stimulated echo sequence (see below). 

Since small molecules have large self-diffusion coefficients, the signals of these 
will decrease more in intensity than those of large molecules at a given gradient 
strength. This is exploited when acquiring a 1D diffusion-edited spectrum, which is 
especially used for blood plasma, where the signals from small metabolites, e.g. 
sugars and acids, are fully attenuated so that only the signals from 
macromolecules, e.g. lipoproteins and other proteins, are seen. 

The gradient spin echo 
The gradient spin echo pulse experiment shown in Figure 12 is a modification of 
the original Hahn echo [26] and is the simplest pulse experiment for measuring 
diffusion.  

 

Figure 12 The gradient spin echo. 

After excitation by the 90° RF pulse, the spins are labelled with a position-
dependent phase angle using a gradient pulse, thus sensitising the sample to 
diffusion and flow. A gradient pulse is a pulse which results in different magnetic 
fields in different parts of the sample. Because the spins are always undergoing 
random translational motion in solution, some will change position along the z-
direction during the successive evolution period or diffusion time. Then the spin 
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magnetization is rotated 180° by a RF pulse, and another gradient pulse identical to 
the first refocuses the spins that have not changed position during evolution thus 
forming an echo. In the gradient spin echo experiment the magnetization is 
transverse, i.e. in the xy-plane, during the entire evolution period. Here it is subject 
to transverse relaxation (governed by T2) and signals from especially 
macromolecules, which generally have small T2, will lose intensity due to 
relaxation during the pulse experiment, leading to low signal-to-noise rations when 
using the gradient spin echo experiment. 

The stimulated echo 
To reduce the loss of signal from especially macromolecules due to relaxation, the 
Stimulated Echo (STE) pulse experiment shown in Figure 13 can be used. The 
STE sequence essentially replaces the 180° pulse of the gradient spin echo with 
two 90° pulses, the first of which is placed just after the first gradient pulse thus 
keeping the time spent as transverse magnetisation (the time period 2τ) short. This 
pulse flips the magnetization back on the z-axis, where the relaxation is governed 
by T1, and hence minimizes the time the magnetization spends in the xy-plane, 
where it is governed by T2. This is generally more favourable because the ratio 
T1/T2 is greater than or equal to one for 1H nuclei [27]. 

 

Figure 13 The stimulated echo (STE) pulse sequence. 

The main drawback of this sequence is that half of the total signal intensity is lost, 
since only y-magnetisation is flipped onto the z-axis by the second 90° pulse and 
the x-magnetisation is destroyed. Because the T1/T2 ratio is usually greater than 
one, in most cases the benefits of the STE sequence in terms of less attenuation of 
the signal due to relaxation generally outweigh the halving of the signal [27].  
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The Longitudinal Eddy current Delay 
In the STE experiment, the time τ will usually be kept as short as possible to 
minimise loss of signal due to transverse relaxation. The reduction of τ to a value 
only slightly larger than the gradient pulse duration means that the echo and hence 
detection comes almost immediately after the second gradient pulse, which can 
result in gradient pulse induced eddy current effects that will distort the signal. 

Eddy currents are electrical currents caused by the gradient pulses. Whenever the 
magnetic field is changed, eddy currents are induced within the metal structures of 
the probe and the magnet. The result is slowly decaying magnetic fields opposing 
the applied gradient, which can be experienced by the sample and therefore lead to 
distortions resulting from time dependent phase changes. Moreover, the extent of 
the distortion is dependent upon the strength, and rate of change, of the applied 
gradient pulse and thus will produce a systematic change in the spectra. The 
presence of eddy currents during acquisition can be seen as lineshape and baseline 
errors in the spectra, as well as a too fast decay in signal intensity with increasing 
gradient strength. 

There are several ways to avoid, or at least reduce, eddy currents [28,27], including 
actively shielded gradients, shaped gradient pulses, and bipolar pulses, which have 
been included in most modern analysis. Furthermore, if these measures are not 
sufficient, a delay called the Longitudinal Eddy current Delay (LED) can be added 
in the pulse sequence before acquisition to allow the eddy currents to decay before 
acquisition is started [29].  

The Double Stimulated Echo 
When measurements are done at temperatures above or below room temperature, 
uneven heating or cooling of the sample can result in the development of 
convection currents inside the sample due to temperature gradients. Most modern 
NMR systems introduce air of variable temperature through the base of the sample 
region and this can easily create a situation where the bottom of the sample tube 
experiences warmer (or colder when cooling) gas than the top. Especially in non-
viscous samples, this results in a temperature gradient along the tube and hence in 
the formation of convection currents. 
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Even small temperature gradients can lead to significant loss of magnetization in 
diffusion experiments and sometimes to its complete extinction or partial 
inversion. The reason for this is that the different velocities in the sample result in 
phase distortions and superimposes an oscillating behaviour in the signal decay, 
which can even create negative signals. The relative effects of convection and 
diffusion depend in a complex way on a number of parameters, such as sample 
viscosity, temperature, molecular shape and size, sample geometry, probe design, 
and filling height, which makes the occurrence of convection seemingly random 
[30]. 

An example of the effect of convection currents is shown in Figure 14, in which 
the attenuation of a specific peak in the spectra of several samples of human blood 
plasma is shown. The spectra were acquired at 40 °C using the STE sequence with 
LED. If the attenuation were due to diffusion only, the curves should be linear (cf. 
Equation 13). For one sample (black line) this is clearly the case, while the 
decaying oscillatory effect of convection currents is seen on the curves of the other 
three samples.  

 

Figure 14 Illustration of the detrimental effect of convection 
currents using a LED sequence. See text for details. 

There are several ways to reduce convection currents [27,28]: Using a well 
designed temperature control system, using a high flow rate of the heating/cooling 
air, using sample tubes with smaller diameters, reducing the sample height, and 
spinning the sample tube [31]. In some cases many of these measures might not be 
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feasible or even when using them the problem might persist. In that case, a 
convection current compensated experiment [32] may be the final option, and the 
most commonly used sequence is shown in Figure 15.  

 

Figure 15 The double stimulated echo with LED. All RF-pulses are 90-degree pulses. 

This pulse sequence is based on a double stimulated echo (DSTE) configuration, 
where the gradient direction is reversed in the second echo sequence with respect 
to the flow, thereby cancelling its effect. The sequence shown incorporates a LED, 
characterised by the time Te. Using the double stimulated echo, the signal is again 
halved compared to the single STE and furthermore the longer pulse sequence 
makes the effect of relaxation due to T1 and T2 more severe. Hence the sensitivity 
is seriously impaired, but for some samples the effect of convection currents is so 
strong that there is no choice.  

To get a deeper understanding of how convection compensation works, it is 
necessary to look into the effect of molecular motion in spin echo experiments, 
which has been extensively described by Callaghan [33]. It can be shown that the 
motion of spins during a gradient spin echo experiment causes an average phase 
distortion of 
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 Equation 14 

where r 0 is the average spin position in the sample, v is the average velocity, a the 
average acceleration, and g*(t) is the effective gradient defined as g*(t) = p(t)⋅g(t), 
where p(t) is the coherence order and g(t) the applied gradient at time t. An 
explanation of coherence and coherence order can be found in standard NMR text 



Multivariate Analysis of High-Field NMR Data in Food and Medicine 

30  

a) b) 

g*(t)
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books [34,35] and will not be covered here. The three integral terms are equal to 
the 0th, the 1st and the 2nd moment of the effective gradient in time, mk = ∫t k⋅ )t(g∗ dt.  

From this equation it can be concluded that if the 0th moment is zero, the signal 
will be insensitive to the mean position of the spins, which is the condition for 
echo formation and is obeyed in all pulse experiments designed to measure motion 
and not position. If the 1st moment is zero, the experiment will be insensitive to 
constant velocity. Nulling the 2nd moment as well will make the experiment 
insensitive to acceleration.  

A simple example of nulling of the 0th and 1st moments is shown in Figure 16. The 
practical meaning of nulling the 0th moment is simply that the area of the effective 
gradient taken over the entire pulse sequence must be zero. Nulling of the 1st 
moment can be described as the effective gradient having to be symmetric in time. 
In these simple experiments, the effective gradient, g*(t), is equal to the applied 
gradient, g(t), since the coherence order is one during the entire experiment. In 
Figure 16, the 0th moment is clearly zero in both (a) and (b), since the positive and 
negative parts of the effective gradient, g*(t), have equal area, and hence an echo 
will form in both experiments. However, in (a) the 1st moment is not zero, since the 
positive and negative parts of the effective gradient weighed by the time, t⋅g*(t), do 
not have equal area, while this is the case in (b). 

 

Figure 16 Simple gradient spin echo experiments, which are (a) velocity sensitive 
and (b) velocity insensitive. Both RF-pulses are 90-degree pulses. 
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For more complicated pulse sequences as the double stimulated echo, nulling of 
the 1st moment is done by appropriate selection of coherence-transfer pathways by 
phase cycling. In the pulse experiment shown in Figure 15 the 0th and 1st moment 
are zero and hence the position and velocity terms are nulled but not the 
acceleration term, which is supposedly negligible for most experiments [32]. 

3.2.3 Water suppression 
Many biological samples contain large amounts of water, which gives a very 
strong signal in NMR being 110 molar in protons. The purpose of water 
suppression is to obtain agreement between, on one side, the dynamic range of the 
interesting NMR signals and on the other side the dynamic range of the analogue-
to-digital converter and of the receiver. In some cases, it can also be a purpose to 
avoid the disappearance of small signals on the huge water peak. Various means of 
suppressing the water signal exist, here only two methods will be discussed, 
presaturation and WATERGATE. 

 

Figure 17 The general pulse sequence for presaturation.  

One of the simplest, most robust and widely used methods is presaturation, where 
the water signal is dephased through a long weak RF pulse, a pulse which affects 
only the water peak. The presaturation pulse is applied in the beginning of a pulse 
sequence (shown in Figure 17 for a single pulse experiment) and can thus be 
implemented into practically any pulse experiment. The method is simple and 
reasonably effective, but has the disadvantage of also partly suppressing other 
signals close to the water peak. The effectiveness is impaired in long pulse 
sequences where the water may regain some phase coherence and thus detectable 
signal. A special presaturation scheme is the NOESY-presat sequence, which 
consists of a non-selective 1D NOESY with zero mixing time, or in other words, 
the first increment of a 2D NOESY experiment [35]. 

90x
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Figure 18 The pulse sequence for WATERGATE solvent suppression.  

A more complex – but also very effective – water suppression technique is the 
WATERGATE (WATER suppression by GrAdient Tailored Excitation) sequence 
[36], which is usually implemented as the last part of a pulse sequence. It employs 
two gradient pulses of equal strength and polarity around a binomial-type hard 
pulse sequence consisting of three pairs of symmetric pulses. The hard pulse 
sequence has no effect on the water resonance but the effect of a 180° pulse for all 
other resonances. Thus the water signal is further dephased by the second gradient 
pulse, while all other resonances are refocused. The conventional WATERGATE 
sequence shown in Figure 18 is also known as W3, while a further development is 
the W5 sequence [37], where the hard pulse consists of five pairs of short pulses. 

 

180°
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4. Applications of multivariate analysis to NMR data 

4.1 Preparing NMR data for multivariate analysis 
Most types of spectroscopic data, e.g. IR, NIR, Raman can be subjected to 
multivariate analysis almost directly from the spectrometer. Usually, only spectral 
preprocessing with one of many methods is applied in order to correct for path 
differences, scatter effects due to different particle sizes etc. 

NMR data on the other hand need to be processed in several ways in order to 
conform with the prerequisites for multivariate data analysis (cf. Section 2.2). The 
first problem one encounters is the existence of phase errors (cf. Section 3.1). 
Manual phase correction is usually implemented in the instrument software, but 
this process is very time-consuming, especially for the large data sets that are often 
analysed using chemometrics. Furthermore, manually phase correcting a series of 
spectra using the instrument software may yield sub-optimal results due to the 
subjective evaluation of the correction necessary for individual spectra. During this 
project, an in-house routine (written in Matlab, The Mathworks, Inc., Natick, MA) 
was developed, where individual spectra are phase corrected to resemble a 
reference spectrum, thereby reducing the errors due to subjective evaluation of the 
spectra.  

Several attempts have been made to develop automatic procedures for phase 
correction, eliminating the need for extensive user-interactions in the processing of 
NMR spectra. The first automatic phase correction method was suggested in 1969 
[38], and since then numerous other methods have been presented based on various 
principles [39,40,41,42].  In a series of papers, PCA is introduced for simultaneous 
phase correction of single resonances in a series of high-field NMR spectra 
[43,44,45,46,47], an approach which all has shown to perform very well. However 
as the correction requires a single isolated peak, the approach is not directly suited 
for complex spectra like 1H NMR spectra of biological matrices. Recently, a 
method called Principal Phase Correction (PPC) based on PCA was shown to 
perform perfectly on low-field NMR spectra correcting one spectrum at a time 
[48]. Based on the success of this simple method, we have worked on developing 
an automatic phase correction method that will enable phase correction of single 
complex high-field NMR spectra using the same principle. Our work so far has 
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dealt with developing an automatic phase correction method for single spectra 
based on baseline optimisation (as suggested in [49]) using PCA to improve 
starting values for the optimisation procedure, but presently work is being 
conducted in the field of modifying the previously mentioned methods based on 
PCA to enable handling of single entire NMR spectra of complex matrices (work 
not yet published). 

All NMR spectra are referenced to a standard in order to correct for small 
differences between samples in effective magnetic field, which result in a global 
shift of the spectrum. When referencing the spectra, an internal standard is most 
often used, however in 1D diffusion-edited experiments, typical internal standards 
cannot be used, due to their small size and hence high degree of attenuation in the 
diffusion-edited spectrum. If EDTA is used as anticoagulant in blood plasma, the 
Ca-EDTA peak at 2.56 ppm can be used as reference compound, since it is not 
fully attenuated in a typical 1D diffusion-edited experiment of blood plasma. In 2D 
diffusion-edited NMR spectra, the Ca-EDTA peak in the first (weak gradient) 
spectrum is used as reference for the entire 2D spectrum. 

Yet another type of correction can be necessary due to variance in pH between 
samples, which results in local shifts, i.e. shifts that are different from peak to peak 
and from sample to sample. This can represent a major problem when analysing 
urine samples, since urine from different subjects and at different times can have 
very different pH values. Several methods exist for the general problem of shifts in 
spectra. For NMR spectra the methods Partial Linear Fit [50] and genetic algorithm 
peak alignment [51] have been suggested among others. A method for shifting a 
single resonance peak across a series of in vivo 31P NMR spectra has been 
presented, but this type of method is of little use when dealing with 1H NMR 
spectra of biofluids with hundreds of resonances [45,46]. Dynamic Time Warping 
(DTW) and Correlation Optimised Warping (COW) have previously been used for 
the correction of peak shifts on chromatographic data with good results [52,53] and 
the application to NMR data should be fairly straight-forward. However, initial 
attempts to correct the data analysed in Paper IV using the methods of genetic 
algorithm peak alignment and COW were not successful due to the complexity of 
the spectra and the large range of shifts for some resonances (results not 
published). Instead a simple but effective method was used, which employs 
integration over small chemical shift ranges (usually 0.01 – 0.04 ppm) resulting in 
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a number of NMR regions, which are analysed instead of the original spectra. 
Typically, a given peak will fall into the same NMR region for all samples thus 
eliminating the pH dependence of the peak positions. The disadvantage of this 
method is that resonances from different compounds may end up in the same NMR 
region, thus complicating the interpretation of models built on spectra reduced in 
this manner.   

Finally, NMR spectra acquired with the Bruker XWIN–NMR software have been 
scaled to a common maximum peak height, a scaling that must be removed before 
multivariate analysis. The scaling factor is specified in the acquisition parameter 
file accompanying the spectrum and is thus relatively easily corrected for. If this 
scaling is removed, other types of scaling should generally not be necessary. 
However, sometimes in NMR spectra of biofluids a few very large peaks dominate 
the spectra making it harder for the multivariate model to extract the variation in 
smaller peaks. In cases like this, VAriable STability (VAST) scaling [54] or pareto 
scaling [55] can be of use. 

4.2 Hard models 
Hard models are based on the main principles of chemical physics. For every new 
system under investigation, a specific model must be chosen based on assumptions 
or known properties of the system. The analysis results in estimates of the 
parameters of the model, e.g. the concentrations or decay rates. In the following, 
three examples of hard modelling of NMR spectra are given using curve fitting 
applied to 1D and 2D spectra.  

Manual curve fitting 
A simple way of analysing 1D NMR spectra in a multivariate manner is to apply 
curve fitting to selected peaks. This approach can only be used if the NMR signal 
of the substance of interest is known, and if the overlap with peaks from other 
substances is limited. In Paper II five carrageenan types are quantified in 
commercial carrageenan products from the NMR spectra of carrageenan solutions 
using this approach. Manual curve fitting is used, since the five carrageenans give 
unique 1H NMR signals in the anomeric proton range, 5.0 – 5.6 ppm, and using 
more sophisticated data analysis in this case was not necessary. An introduction to 
carrageenans is found in Box 1. 
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Box 1. Carrageenans are sulfated polygalactans extracted from algae. There are 

several types of carrageenans, the major ones being iota (ι), kappa (κ) and lambda 

(λ). Minor types are mu (µ) and nu (ν), which are kappa- and iota-precursors, 

respectively, and are never found pure but always in coexistence with kappa and iota. 

In the food industry, carrageenans are widely used as stabilizing, thickening and 

gelling agents. The different carrageenan types have different functional properties, 

and therefore it is of great importance for the carrageenan industry to obtain detailed 

knowledge about the composition of their products in order to be able to design the 

functionality of the final product. 

At the field strength used, 600 MHz for 1H, the NMR peaks were slightly 
overlapping, and the five carrageenans as well as Floridean starch and four 
unknown substances were therefore quantified using simultaneous manual fitting 
with Lorentzian functions to specific NMR peaks. 

 

Figure 19 Simultaneous fitting of the peaks from five carrageenan types and five other 
peaks yielding the relative composition of the sample. 
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The graphical user interface of the in-house built program for the simultaneous 
fitting of the carrageenan peaks is show in Figure 19. With this tool, it is far easier 
to accurately determine the areas of slightly overlapping peaks compared to using 
standard integration. 

While the quantification of carrageenans from NMR spectra is not new, the use of 
simultaneous fitting of the carrageenan peaks in 1H NMR spectra has not been 
published before, since normally a combination of 1H and 13C NMR spectra are 
used to compensate for the overlap between specific peaks [56]. 

Automatic curve fitting 
If the peaks of interest are heavily overlapping, the simple approach cannot be used 
but Classical Least Squares (CLS) can be applied (cf. Section 2.3.2). CLS is also a 
type of hard modelling, as it requires that the concentrations or spectra of all 
chemical constituents in the analysed spectral region to be known. As opposed to 
the manual fitting described above, in CLS the fitting is done in an automated way, 
optimising the fit in a least-squares sense. This approach is used in several 
publications and in a patented method for the quantification of lipoproteins in 
human blood plasma using 1H NMR spectra [57,58,59,60,61]. Box 2 gives an 
introduction to lipoproteins and their importance.  

The patented method by Dr. J.D. Otvos is described in the patent [60] and details 
can also be found on the website of the company performing the analysis, 
www.liposcience.com. It is based on CLS with non-negativity constraints on a 
selected region of the 1H NMR spectra using known spectra of the lipoprotein 
subfractions. The method quantifies six subfractions of VLDL, IDL, three 
subfractions of LDL, and five subfractions of HDL. In reality, the 15 reference 
spectra have not been measured for all these subfractions, as only one VLDL, two 
LDL and two HDL subfractions were measured. The other subfraction reference 
spectra were constructed mathematically by simply shifting the spectra one or two 
variables to the left or right, hence producing the desired number of subfractions. 
Although empirical, this approach has shown in several studies to yield reasonable 
concentrations for the lipoprotein subfractions compared to reference methods such 
as ultracentrifugation. Furthermore, the method gives a measure of the risk of 
CHD, which has been shown to be highly correlated to the actual occurrence of 
CHD [62,63]. 



Multivariate Analysis of High-Field NMR Data in Food and Medicine 

38  

Box 2. People with high concentrations of plasma cholesterol and triglyceride 

have an increased risk of coronary heart disease (CHD). To assess the risk of CHD it 

is of great importance to be able to measure the content of lipoproteins – the lipid-

transporters – in blood plasma. Lipoproteins can be divided into subgroups based on 

their density. The main fractions are very low density lipoproteins (VLDL), 

intermediate density lipoproteins (IDL), low density lipoproteins (LDL) and high 

density lipoproteins (HDL). The definition of the main fractions is partly empirical, as 

they do not represent four strictly distinct types of particles but rather particles with 

densities within certain ranges. Each of these main fractions can be further divided 

into a number of subfractions simply by dividing the density range of the main 

fraction into smaller ranges. 

For the assessment of individual risk of CHD, the US National Cholesterol Education 

Program (NCEP) guidelines can be used. These guidelines present a set of lipoprotein 

main and subfraction contents that are known to be associated with low or high risk 

of CHD. Thus, measuring the concentrations of lipoprotein subfractions in blood 

plasma of a subject, the individual risk can be assessed. 

The established standard reference method for the separation and analysis of 

lipoproteins is ultracentrifugation (UC). The disadvantage of lipoprotein 

quantification using ultracentrifugation is that the method is time and labour 

consuming and requires a large amount of plasma. Furthermore, the method 

quantifies the lipoprotein fractions on their cholesterol and triglyceride content, 

measures that are not always linearly correlated to the number of particles.  

Exponential curve fitting 
Certain types of 2D NMR data are characterised by exponentiality in the second 
dimension. This is valid for 2D relaxation-edited NMR spectra using the Inversion 
Recovery (INVREC) pulse experiment for T1 edition [64] or the Carr-Purcell-
Meiboum-Gill (CPMG) pulse experiment for T2 edition [65] as well as for 2D 
diffusion-edited NMR (cf. Section 3.2.2).  

This type of data is traditionally analysed using exponential fitting on each single 
resonance peak, resulting in an second dimension representing the relaxation time 
constants T1 or T2 or the self-diffusion coefficient, D. However, the robustness of 
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exponential fitting is limited especially in the case of spectral overlap, due to the 
high number of parameters to be estimated in the model.  

For complex samples like blood plasma, exponential fitting of 2D diffusion-edited 
NMR spectra give reasonable estimates of the self-diffusion coefficients for small 
molecules with peaks separated from the peaks of other substances, while the 
determination of diffusion coefficients for lipoproteins is not possible using 
exponential fitting due to broad peaks and extensive overlap [28]. In a recent study, 
the lipoprotein region of a 2D diffusion-edited NMR spectrum was first 
deconvoluted in the spectral dimension using curve fitting with six Lorentzian 
functions [66]. Subsequently, the areas of the standard curves in the diffusion 
dimension were calculated and the diffusion coefficients were calculated from the 
areas using exponential fitting. However, the analysis did not yield the diffusion 
coefficients of any pure lipoprotein fractions, since the Lorentzian functions were 
found to represent mixtures of the main lipoprotein fractions. 

4.3 Soft models 
Soft models are characterised by general mathematical models, which are not 
specific for the particular system and thus do not require knowledge about the 
chemical or physical properties of the system. In this context, the only assumptions 
of most of the models are that the data are bi- or trilinear. 

4.3.1 PCA on 1D NMR data 
PCA has been applied to NMR data for many different purposes in the last decade. 
The applications include investigation of differences in lipoprotein subfraction 
NMR spectra between healthy and CHD patients [67], metabolic response to 
flavonoids from tea [68], characterisation of beer [69], investigation of structural 
changes during a pulping process [70], and compositional analysis of cellulose 
types [71]. Furthermore, PCA has been used for the classification of neural cell 
types [72], Slovenian wines [73], olive oils [74,75], apple juices [76], instant 
coffee [77], organic unsaturated compounds [78], and of naphtalene isomers [79]. 
Another area where PCA is commonly used on NMR data is in metabonomics, 
which is discussed in Section 4.3.4. 

The uses of PLS for quantitative analysis is described in the following section. 
However, PLS can also be used for classification purposes as an alternative to 
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PCA. The application of PLS discriminant analysis (PLS-DA) to NMR data has 
been limited in the last decade, but a few references exist. PLS-DA has been used 
for metabolic phenotyping [80], classification of saponin structures [81], and 
classification of olive oils [74]. 

4.3.2 PLS on 1D NMR data 
In the last decade, PLS has been applied to NMR data within biological, 
pharmaceutical, and chemical research. Examples include the quantification or 
prediction of the active substances in tablets [82], biological activity of 
progestagens [83], composition of heparin type mixtures [84,85], crystallinity of 
lactose and cellulose [86,87], composition of cellulose samples [88], and kappa-
number and processability for softwood and viscose pulps [89,90]. 

In Paper I, PLS is used for the quantification of lipoprotein main and subfractions 
from the 1D diffusion-edited 1H NMR spectra of human blood plasma. These 
spectra are free from signals from small molecules, which disturb the extraction of 
lipoprotein information from the NMR spectra. The relative RMSECV 
(RMSECV/mean reference value) for main fractions were between 10 and 19 % 
with correlations 0.87 – 0.98, and for subfractions between 17 and 39 % with 
correlations 0.54 – 0.97. Plots of PLS predicted concentrations against reference 
values are shown in Figure 20 for the four main lipoprotein fractions. Despite the 
large relative error in some prediction models, it was shown that the placement in 
risk categories according to the NCEP guidelines was successful. The agreement in 
individual risk based on NMR derived values and on values determined by 
ultracentrifugation was between 76 and 100 %. This result emphasizes the ability 
to assess individual CHD risk from NMR data.  

The only other reference for the quantification of lipoproteins using PLS is Bathen 
et al. [91]. However, this reference only attempted the quantification of lipoprotein 
main fractions and obtained relative prediction errors of 19 – 46 % with 
correlations of 0.74 – 0.97. Some attempts to use other methods for quantification 
of lipoprotein main fractions from NMR spectra have also been made, e.g. using an 
Artificial Neural Network approach [92] yielding correlations of 0.74 – 0.99 and 
Wavelet transform [93] yielding correlations of 0.79 – 0.92. In the case of 
quantification of lipoprotein main fractions, the results presented in Paper I are 
better than these references. 
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Figure 20 Predicted versus reference values for the four main lipoproteins fractions [Paper I]. 

4.3.3 N-PLS and PARAFAC on 2D NMR data 
Many types of 2D NMR data exist – e.g. COSY, NOESY, TOCSY, HMQC, as 
well as relaxation- and diffusion-edited spectra. Of these, only the last two are 
optimally bilinear, and the one most suited for the application of chemometric 
methods is 2D diffusion-edited NMR since the individual resonance peaks are 
edited according to the self-diffusion coefficient of the entire molecule, while in 
2D relaxation-edited NMR the resonance peaks are edited according the T1 or T2 of 
the single atoms. While relaxation-editing leads to data that are usually high-rank 
bilinear, diffusion-editing generally leads to low-rank data, where the rank is equal 
to the number of chemical constituents in the sample. If bilinear 2D NMR spectra 
are measured for a series of samples, the resulting 3D data set will optimally be tri-
linear and thus multi-way methods assuming trilinearity can be applied. The 
trilinear character of this type of NMR data sets have not previously been 
exploited. 
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Quantification of lipoproteins using N-PLS and PARAFAC 
Due to the different sizes of lipoprotein subfractions they have different diffusion 
properties, i.e. self-diffusion coefficients. An additional "axis of separation" is 
therefore present in 2D diffusion-edited NMR spectra compared to regular 1D 
spectra and the application of multi-way methods for the quantification of 
lipoproteins is possible. This is done in Paper III, where 2D diffusion-edited NMR 
spectra of 17 plasma samples are analysed using N-PLS and PARAFAC.  

The application of N-PLS to 2D diffusion-edited NMR data is straight-forward. 
Different spectral ranges are tested for prediction abilities regarding the 
concentrations of lipoprotein main and subfractions as determined by 
ultracentrifugation. N-PLS calibration models with three to nine components 
yielded relative prediction errors of 12 – 18 % and correlations between 0.82 and 
0.96 for main fractions, and relative errors of 12 – 36 % and correlations 0.58 – 
0.97 for subfractions. The relative prediction errors obtained here are slightly 
higher than the ones obtained in Paper I, but using only 17 samples. This result 
shows the potential of using 2D diffusion-edited NMR in order to get a further 
separation of the different lipoprotein signals. 

The application of PARAFAC to 2D diffusion-edited NMR data is more subtle. 
Due to the uniqueness of the PARAFAC model, the analysis optimally results in 
the pure components, represented by the 1D spectra and the diffusion curves of the 
pure components, as well as the concentrations of each pure component. In the 
case of lipoproteins the number of pure components is really infinite, since all 
lipoprotein fractions are distributions in density and size. The data are theoretically 
trilinear, since each specific size of lipoprotein has a specific self-diffusion 
coefficient and thus diffusion curve, but the data are not low-rank trilinear! 
However, since PLS on 1D NMR spectra and N-PLS on 2D NMR spectra give 
reasonable results, it is expected that the data nevertheless can be approximated by 
a low-rank trilinear model. In order to be able to quantify the lipoprotein 
subfractions using PARAFAC, the analysis should optimally result in 12 
components, corresponding to the contents determined by ultracentrifugation, 
VLDL 1-2, IDL, LDL 1-6 and HDL 1-3. The main fractions, VLDL, LDL and 
HDL could then be quantified as the sum of the subfractions. Given the low 
number of samples in the study, the extraction of 12 components is not realistic, 
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therefore the analysis is conducted only to examine the potential for analysing 2D 
NMR data using PARAFAC. Also due to the low number of samples, the analysis 
is conducted on the CH2 peak only, as any signal from other constituents of the 
blood would require the extraction of PARAFAC components for these 
constituents also. 

 

 

Figure 21 The 2D diffusion-edited NMR spectrum (only the CH2 peak is shown) of a 
single sample (a) and the result of the PARAFAC analysis of 17 such spectra (b and c). 
Plot (b) shows the spectral loadings and plot (c) the diffusion loadings [Paper III]. 

 

The analysis resulted in a PARAFAC model with four components (an example of 
the original data as well as the model are shown in Figure 21). Validation using 
split-half analysis was not possible due to the low number of samples and the large 
variation between them, so the result was validated chemically. The four spectral 
loadings have similar shape only shifted on the chemical shift axis. The diffusion 
loadings are seemingly exponential and the order of the decay rates correspond to 
the order of shift in the spectral loadings. 

(a)
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The calculation of self-diffusion coefficients from the diffusion loadings using 
exponential fitting yielded spherical hydrodynamic radii of 29, 18, 12 and 6 nm, 
which is within the reference values for the sizes of VLDL, IDL, LDL and HDL. 
However, the corresponding concentrations did not correlate well with the 
concentrations determined by ultracentrifugation, and the analysis using 
PARAFAC was therefore not successful with respect to the quantification of the 
lipoproteins. This is easily explained by the fact that the PARAFAC model did not 
explain all important variance in the data (i.e. the residual spectra contained 
structured information) and by the fact that the true number of components is much 
higher than the four that were resolved in this study. Nevertheless, the analysis 
shows the potential of using PARAFAC for analysing this type of data, and the 
possibilities of interpretation that the method offers. 

4.3.4 Tucker on pseudo-2D NMR data 
Pseudo-2D data in the form of NMR time series data could be trilinear but cannot a 
priori be guaranteed to be so, since the same spectral component can have different 
time evolution for different samples. Thus the application of the Tucker model is a 
possibility since this model does not require trilinearity in the sense that 
PARAFAC does. Tucker has never before been applied to NMR data. 

In Paper IV, Tucker is applied to NMR time series data to evaluate the potential of 
using multi-way methods for the analysis of this type of data. The purpose of the 
present analysis is the investigation of the metabolic response to model toxins (see 
Box 3 for background).  

Box 3. Metabonomics is defined as ‘‘the quantitative measurement of the 

multiparametric metabolic response of living systems to pathophysiological stimuli or 

genetic modification’’ [94]. Metabonomics is most often based on NMR 

measurements analysed using chemometrics and can e.g. be used to study the 

metabolite profile in humans with a particular disease or the metabolic response to a 

toxin administered to animals. 

In the toxicological studies subjected to multi-way analysis in Paper IV, three model 

toxins were administered orally to rats, and urine samples were collected over time 

from 24 hours pre-dose to 168 hours post-dose. Each study comprised 30 animals of 

which ten received a high dose of the toxin, ten a lower dose and ten were controls. 
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Numerous toxic substances have been investigated in the past using NMR and 
chemometrics, a review of which can be found in [95]. The analysis of the urinary 
metabolic response to the model toxins hydrazine dihydrochloride,                 
α-naphthylisothiocyanate (ANIT) and butylated hydroxytoluene (BHT) has 
previously been made using PCA on the unfolded data matrix [96,97,98,99,100]. 
The unfolding was made such that the sample and time modes were mixed into one 
common mode while the spectral mode remained unchanged. The disadvantage of 
this data analytical approach is that using the highly flexible PCA, all metabolic 
perturbations are modelled including minor ones pertaining to only a few samples 
at specific times. Furthermore, information about the time evolution of important 
perturbations must be extracted from the score plots, since the sample and time 
modes are mixed. Another method, batch analysis (based on PCA and PLS), has 
been applied to the study of hydrazine and ANIT toxicity [101,102]. Batch analysis 
has the disadvantage of forcing the time evolutions to be linear and with a 
quantitative difference between each time point, due to the use of PLS against a 
constructed Y consisting of the numbers from one to ten, thus ruling out reversible 
metabolic effects.  

The advantage of Tucker analysis over the analysis using PCA and PLS is that the 
three-way structure of the data is retained and used in the analysis. Therefore, only 
the metabolic perturbations that have common time profiles will be modelled and 
random or less general changes in metabolite levels, which do not have common 
time profiles, will be considered as noise. No constraints are put on time profiles, 
and thus the models can handle effects with any kind of time evolution. 

In Paper IV, data from the toxicological studies of these three model toxins were 
analysed using Tucker models. The models were fitted to the three-way data sets 
with dimensions 30 (rats) × 10 (time points) × 202 (reduced NMR spectra). The 
datasets were centered across the rats mode using the mean of control rats only, 
thus facilitating the interpretation as all perturbations are viewed as changes with 
respect to the control rats. The Tucker analysis showed the same major trends in 
terms of metabolic response to the toxins as were found in the previous studies 
although minor differences were seen in individual metabolites. 

As an example, Figure 22 shows the Tucker model of the hydrazine dataset. A 
Tucker model with two components in each of the three modes, i.e. the 
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rats/treatment mode, the time mode and the spectral mode, was found to provide 
good interpretation of the data explaining 79 % of the total variance. Detailed 
interpretation of the score and loading plots can be found in Paper IV, and will not 
be given here. An interesting feature that was extracted by the Tucker analysis and 
was not reported in the papers using unfold PCA or batch analysis [97,99,101], is 
that the low-dose rats experience a metabolic perturbation, which is less severe and 
with an earlier onset and a faster recovery than the high-dose rats, but otherwise 
similar to that of the high-dose rats and described by the same spectral loading. 

  

 

Figure 22 Overview of the hydrazine Tucker (2 2 2) model. Plot (a) shows scores, plot (b) 
time loadings and plot (c) spectral loadings. Symbols and metabolite abbreviations can be seen 
in Paper IV. 
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5. Conclusions 
 

Multivariate data analysis was applied to different types of high-field 1H NMR 
data ranging from simple 1D spectra to complex 2D diffusion-edited spectra and 
NMR time series. Several new approaches to data analysis of NMR data have been 
studied and compared. 

Multivariate curve fitting applied to a selected region of the NMR spectra of 
carrageenan mixtures gave reliable relative concentrations for the five major 
carrageenan types and yielded excellent PLS models on Raman, IR and NIR 
spectra using the NMR determined carrageenan concentrations as the dependent 
variable. 

Lipoprotein main and subfractions were quantified from their 1D and 2D diffusion-
edited NMR spectra using PLS and N-PLS. The correlations as well as relative 
errors were improved compared to previous attempts to use chemometrics and 
NMR to quantify lipoprotein fractions. An intrinsic problem of these data, which 
limits the application of both PLS and N-PLS, is the fact that lipoprotein 
subfractions are distributions in density and thus the data are basically not low-
rank bi- or tri-linear, but high-rank. The high-rank bi- or tri-linearity of the NMR 
data limits the appropriateness of fitting low-rank models and thus sets a limit for 
the performance of calibration models of lipoprotein main and subfraction 
contents. Further work is being done on improving the calibrations using more 
samples. 

Extraction of spectral and diffusion profiles of lipoprotein fractions from 2D 
diffusion-edited spectra were achieved using PARAFAC. The attempt to use the 
extracted components to determine concentrations of lipoprotein main and 
subfractions was not successful. However, the results are promising with regard to 
analysing 2D diffusion-edited NMR spectra of other data where the requirement 
for low-rank trilinearity is met. 

It was furthermore shown that Tucker analysis of NMR time series is feasible and 
yields interpretable models. Tucker models were applied to the data from three 
toxicological studies consisting of NMR spectra of rat urine collected over time, 
and the analysis gave results that were complementary to results obtained using 
unfold PCA and batch analysis on the same toxicological substances. 



Multivariate Analysis of High-Field NMR Data in Food and Medicine 

48  

 

The work presented in this thesis shows that application of two-way as well as 
multi-way multivariate data analysis to complex high-field NMR data is feasible 
and may yield models that are informative and with good predictive power. Many 
problems are still to be solved regarding the preprocessing of 1D NMR spectra, 
e.g. phase correction and shift alignment, as NMR spectra thus better suited for 
multivariate data analysis may give more accurate and detailed multivariate 
models. The possibility of analysing 2D NMR spectra measured on series of 
samples with PARAFAC yielding the pure spectra and concentrations of all 
analytes is very promising. However, the analysis of a relatively simple system 
needs to be performed to investigate the possibilities and limitations of this 
application.  
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