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ABSTRACT 

Metabolomics is the scientific discipline that identifies and quantifies endogenous and 

exogenous metabolites in different biological samples. Metabolites are crucial components 

of a biological system and they are highly informative about its functional state, due to their 

closeness to the organism’s phenotype. This approach finds an increasing number of 

applications in many areas including medical, pharmaceutical, food and environmental 

sciences. The combined use of NMR spectroscopy and chemometrics techniques, is able to 

provide the metabolic “fingerprint” of the various samples. 

This PhD project focused on the analysis of various samples covering a wide range of 

fields, namely, food and nutraceutical sciences, cell metabolomics and medicine using a 

metabolomics approach. Indeed, the first part of the thesis describes two exploratory studies 

performed on Algerian extra virgin olive oil and apple juice from ancient Danish apple 

cultivars. Both studies revealed variety-related peculiarities that would have been difficult 

to detect by means of traditional analysis. The second part of the project includes four 

metabolomics studies performed on samples of biological origin. In particular, the first 

study is related to a recent emerging field: cell metabolomics. Indeed, tumour cells 

(HTC116) were treated with novel anticancer drugs in order to understand their in vitro 

action. The aim of this study was also the development of a reliable experimental protocol 

for an efficient harvesting, quenching and extraction of cellular metabolites of human 

adherent cancer cell lines.  

The second and the third studies concern the evaluation of the effects of functional food 

ingredients, namely β-glucans and phytosterols, on in vivo animal models. In particular, the 

hypocholesterolemic action of β-glucans was investigated by analysing rat plasma and 

faecal samples. This study confirmed the role of barley β-glucans in increasing faecal bile 

acids excretion in hypercholesterolemic rats and showed, for the first time, a modulation of 

the primary and secondary bile acid excretion, depending on the molecular weight of the β-

glucan employed. In the other study, the effects of phytosterols on a murine colitis model, 

was investigated. NMR measurements on the liver metabolome revealed the role of these 
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plant sterols in restoring the homeostatic equilibrium of the living system. Thus, in both 

cases, the results suggest the appropriate use of these nutraceutical products. The last study 

explores the differences in the follicular fluid metabolome of hyper- and normoinsulinemic 

women affected with Polycystic Ovary Syndrome (PCOS). The study provides preliminary 

but interesting relationships between serum hormones and metabolites in follicular fluids.  

 



 IV 

 

LIST OF PUBLICATIONS 

Paper I 

“Development of an optimized protocol for NMR metabolomics studies of human colon 

cancer cell lines and first insight from testing of the protocol using DNA G-Quadruplex 

ligands as Novel Anti- Cancer Drugs”. I. Lauri, F. Savorani, N. Iaccarino, P. Zizza, L.M. 

Pavone, E. Novellino, S.B. Engelsen and A. Randazzo. Metabolites, 2016, 6 (1), pii: E4. 

doi: 10.3390/metabo6010004. 

 

Paper II 

“Characterization of monovarietal extra virgin olive oils from the province of Béjaïa 

(Algeria)”. F. Laincer, N. Iaccarino, J. Amato, B. Pagano, A. Pagano, G. Tenore, A. 

Tamendjari, P. Rovellini, S. Venturini, G. Bellan, A. Ritieni, L. Mannina, E. Novellino, and 

A. Randazzo. Food Research International, 2016, 89, 1123-33. 

 

 Paper III 

“Application of recursive partial least square regression for prediction of apple juice 

sensory attributes from NMR spectra”. N. Iaccarino, C. Varming, M.A. Petersen, F. 

Savorani, A. Randazzo, B. Schütz, T.B Toldam-Andersen and S.B. Engelsen. Proceedings 

of the XIII International Conference on the Applications of Magnetic Resonance in Food 

Science, 2016, 7-11. 

 

Paper IV 

“1H NMR-based metabolomics study on follicular fluid from patients with PolyCystic 

Ovarian Syndrome (PCOS)”. N. Iaccarino, J. Amato, B. Pagano, A. Pagano, L. D’Oriano, 

S. Pelliccia, M. Giustiniano, D. Brancaccio, F. Merlino, E. Novellino, C. Alviggi, A. 

Randazzo. Biochimica Clinica. Submitted. 

 



 V 

 

 

Paper V 

“Barley β-Glucan supplement can modulate the primary and secondary bile acid excretion 

in rats depending on the β-glucan fine structure”. N. Iaccarino, B. Khakimov, M. Skau 

Mikkelsen, T. Skau Nielsen, M.G. Jensen, A. Randazzo, and S.B. Engelsen. Manuscript 

draft ready for submission. 

 

Other publications 

1. “Identification of an acetal derivative of the piperonyl methyl ketone in tablets 

seized for suspected drug trafficking”. J. Amato, N. Iaccarino, B. Pagano, M. 

Maglieri, G. Persico, R. Russo, C. De Caro, A. Calignano, E. Novellino, and A. 

Randazzo. Forensic Toxicology, 2014, 32, 311-316. 

2. “Bis-indole derivatives with antitumor activity turn out to be specific ligands of 

human telomeric G-quadruplex”. J. Amato, N. Iaccarino, B. Pagano, R. Morigi, A. 

Locatelli, A. Leoni, M. Rambaldi, P. Zizza, Biroccio A, E. Novellino, and A. 

Randazzo. Frontiers in Chemistry, 2014, 2:54. doi: 10.3389/fchem.2014.00054. 

3.  “Noncanonical DNA secondary structures as drug targets: the prospect of the i-

motif”. J. Amato, N. Iaccarino, A. Randazzo, E. Novellino, and B. Pagano. 

ChemMedChem, 2014, 9, 9, 2026-2030. 

4. “Identification of novel interactors of human telomeric G-quadruplex DNA”. B. 

Pagano, L. Margarucci, P. Zizza, J. Amato, N. Iaccarino, C. Cassiano, E. Salvati, E. 

Novellino, A. Biroccio, A. Casapullo, and A. Randazzo. Chemical 

Communications, 2015, 51, 14, 2964-2967. 

5. “Looking for efficient G-quadruplex ligands: evidence for selective stabilizing 

properties and telomere damage by drug-like molecules”. B. Pagano, J. Amato, N. 

Iaccarino, C. Cingolani, P. Zizza, A. Biroccio, E. Novellino, and A. Randazzo. 

ChemMedChem, 2015, 10, 4, 640-649. 

6. “Discovery of the first dual G-triplex/G-quadruplex stabilizing compound: a new 

opportunity in the targeting of G-rich DNA structures?”. J. Amato, A. Pagano, S. 

Cosconati, G. Amendola, I. Fotticchia, N. Iaccarino, J. Marinello, A. De Magis, G. 

Capranico, E. Novellino, B. Pagano, and A. Randazzo. Biochimica et Biophysica 

Acta, 2017, in press. 



 VI 

 

LIST OF ABBREVIATIONS 

ADP Adenosine diphosphate 

AMP Adenosine monophosphate 
ATP Adenosine triphosphate 

BG Mixed-linkage (1→3),(1→4)-β-D-glucan 
CPMG Carr-Purcell-Meiboom-Gill (NMR pulse sequence) 
DNA Deoxyribonucleic acid 

DSS Sodium 2,2-dimethyl-2-silapentane-5-sulfonate 
EVOO Extra-virgin olive oil 

FID  Free induction decay 
GC-MS  Gas chromatography-mass spectrometry 

G4-DNA G-quadruplex DNA 
HMDB Human Metabolome Database 

NMR Nuclear Magnetic Resonance 
NOESY Nuclear Overhauser Spectroscopy 

PARAFAC Parallel Factor Analysis 
PC Principal Component 

PCA Principal Component Analysis 
PCOS Polycystic Ovary Syndrome 

PLS  Partial Least Squares regression 
rPLS  recursive weighted Partial Least Squares regression 

STOCSY  Statistical Total Correlation Spectroscopy 
 



  

TABLE OF CONTENTS 

PREFACE ...................................................................................................... I	
  

ABSTRACT .................................................................................................. II	
  

LIST OF PUBLICATIONS ............................................................................... IV	
  

LIST OF ABBREVIATIONS ............................................................................. VI	
  

CHAPTER 1 INTRODUCTION ........................................................................... 1	
  
1.1 Objectives of the project .................................................................................... 1	
  
1.2 Brief description of the outline of the thesis ...................................................... 1	
  

CHAPTER 2 METABOLOMICS ......................................................................... 3	
  
2.1 General remarks ................................................................................................. 3	
  

2.1.1 Targeted and Untargeted approach ............................................................ 4	
  
2.1.2 Metabolomics workflow ............................................................................ 5	
  
2.1.3 Analytical platforms ................................................................................... 6	
  

CHAPTER 3 NMR BASED METABOLOMICS ...................................................... 8	
  
3.1 Principles of Nuclear Magnetic Resonance Spectroscopy ................................ 8	
  

3.1.1 Nuclear spin and resonances ...................................................................... 9	
  
3.1.2 Chemical shift and couplings ................................................................... 11	
  
3.1.3 Detection and Fourier transform .............................................................. 13	
  
3.1.4 Processing tools ........................................................................................ 14	
  
3.1.5 One dimensional and two dimensional NMR experiments ...................... 15	
  

3.2 NMR data pre-processing for chemometric analysis ....................................... 18	
  
3.2.1 Binning ..................................................................................................... 19	
  
3.2.2 Alignment ................................................................................................. 19	
  
3.2.3 Normalization ........................................................................................... 21	
  
3.2.4 Scaling ...................................................................................................... 22	
  

CHAPTER 4 CHEMOMETRICS IN METABOLOMICS .......................................... 25	
  
4.1 Principal Component Analysis (PCA) ............................................................. 25	
  



  

4.2 Partial Lest Square regression (PLS) ............................................................... 28	
  
4.2.1 Recursive PLS (r-PLS) ............................................................................. 28	
  

4.3 Analysis of Variance-Simultaneous Component Analysis (ASCA) ................ 29	
  
4.4 Parallel Factor Analysis (PARAFAC) ............................................................. 30	
  
4.5 Correlation analysis and heat maps ................................................................. 32	
  

4.5.1 STOCSY .................................................................................................. 33	
  

CHAPTER 5 NMR-BASED METABOLOMICS IN FOOD SCIENCE .......................... 35	
  
5.1 Characterization of monovarietal extra virgin olive oils from the province of 

Béjaïa (Algeria) (Paper II) ................................................................................ 35	
  
5.1.1 Experimental design and results discussion ............................................. 36	
  

5.2 Characterization of juices from ancient Danish apple cultivars ...................... 38	
  
5.2.1 Experimental design and results discussion ............................................. 39	
  
5.2.2 Sensory study of apple juices (Paper III) ................................................ 41	
  

CHAPTER 6 METABOLOMICS ON BIOLOGICAL SAMPLES: FROM CELLS TO HUMAN 
FLUIDS .................................................................................................. 45	
  
6.1 Study on Human Colon Cancer cells treated with anti-cancer drugs. (Paper I)45	
  

6.1.1 Experimental design and results discussion ............................................. 46	
  
6.2 Study on plasma and faecal samples for the evaluation of effects of barley β-

glucans in hypercholesterolemic rats. (Paper V - Manuscript draft) ................ 50	
  
6.2.1 Experimental design ................................................................................. 52	
  
6.2.2 1H NMR study on rat plasma .................................................................... 53	
  
6.2.3 GC-MS study on faecal samples .............................................................. 54	
  

6.3 Study on liver extracts to evaluate the effect of Phytosterols in murine colitis 
model ................................................................................................................. 60	
  
6.3.1 Experimental design and results discussion ............................................. 61	
  

6.4 Study on follicular fluid from patients with Polycystic Ovarian Syndrome 
(PCOS) (Paper IV – Submitted) ........................................................................ 66	
  
6.4.1 Experimental design and results discussion ............................................. 68	
  

CHAPTER 7 CONCLUSIONS .......................................................................... 73	
  

REFERENCES .............................................................................................. 75	
  

APPENDIX ................................................................................................. 86	
  

 



 1 

 

Chapter 1 
INTRODUCTION 

 

1.1 Objectives of the project 

The overall goal of this PhD project was to explore the different fields of application of the 

NMR-based metabolomics, using both traditional and more recent developed chemometrics 

tools for the data analysis.  

Different studies, ranging from Food to the Pharmaceutical Sciences, have been carried out 

aiming to retrieve useful information employing the “omics” approach. Indeed, both food 

systems (olive oil and apple juice) as well as biological samples (cells extracts, tissue extracts, 

plasma, follicular fluids and faeces) have been analysed.  

1.2 Brief description of the outline of the thesis 

The thesis is subdivided as follow:  

Chapter 1 describes the project and its main objectives. 

Chapter 2 presents a general description of metabolomics science, focusing in particular on 

the different scientific approaches available, the metabolomic workflow and the main 

analytical platforms employed in metabolomics studies. 

Chapter 3 presents an overview of the principles of the nuclear magnetic resonance 

spectroscopy, the main analytical platform used during this PhD project, and the most 

common processing and pre-processing tools needed to perform the data analysis.  

Chapter 4 presents an overview of the main chemometrics techniques used in the studies 

presented in this thesis. The objective is to guide the reader into the understanding of the basic 

principles of the chemometrics and multivariate data analysis. 

Chapter 5 describes the importance of the NMR-based metabolomics in food science. Two 

studies are presented. The first concerns the characterization of Algerian extra virgin olive oil, 

while the second is about the NMR fingerprinting of Danish apple juices. 
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Chapter 6 presents four metabolomics studies performed on various biological samples, 

showing the wide range of applications that NMR and chemometrics allow to explore. 

Chapter 7 presents the main conclusions of the thesis work. 

Finally the Appendix reports the published publications (Papers I, II and III) and the 

submitted one (Paper IV) as cited throughout the thesis, while Paper V is not included since it 

has not been submitted at present time. 
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Chapter 2 
METABOLOMICS 

2.1 General remarks 

The term metabolomics was introduced for the first time by Oliver Fiehn (Fiehn 2002). It 

refers to the identification and quantification of the collective set of low molecular weight 

metabolites (<1.5 kDa), such as, fatty acids, nucleic acids, carbohydrates, amino acids organic 

acids, vitamins, polyphenols and small lipids (metabolome). However, in 1999, Jeremy 

Nicholson and coworkers had defined the term metabonomics as “the quantitative 

measurement of the dynamic multiparametric metabolic response of living systems to 

pathophysiological stimuli or genetic modification” (Nicholson et al. 1999). The distinction 

between terms metabolomics and metabonomics has been widely discussed (Ramsden 2009). 

Even if the concepts are slightly different, the two terms are often used interchangeably by 

scientists and organizations (Nicholson & Lindon 2008).  

‘-Omic’ sciences adopt a holistic view of the molecules contained in cells, tissue or 

organism. The suffix “-omic” has been added to denote studies performed on a very large-

scale data analysis (i.e. measuring/profiling a large number of variables simultaneously). 

Their primary aim is the detection of genes (genomics), mRNA (transcriptomics), proteins 

(proteomics) and metabolites (metabolomics) in a specific biological sample in a non-targeted 

and non-biased manner (Berry et al. 2011).  

The metabolome can be considered as a snapshot of the physiological state of an organism, 

being the downstream product of the “-omic” cascade, as well as the ultimate response to 

disease or environmental influences (Figure 2.1). Indeed, whereas genes and proteins are 

subjected to regulatory epigenetic processes and post-translational modifications, 

respectively, metabolites are the closest ones to the phenotype. Thus, it is easier to correlate 

metabolomic profiles with phenotype compared to genomic, transcriptomic and proteomic 

profiles. Applications of metabolomics include disease diagnosis, monitoring the effects of 

medical interventions including drugs, detection of adulteration of food, and analysis of 

biochemical pathways and their perturbations resulting from mutations, aging, diet, exercise, 

or life style (Markley et al. 2017). The size of the metabolome is large and it goes from 600 
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metabolites of S. cerevisiae (Förster et al. 2003) to up to more than 200 000 metabolites of the 

plant kingdom (Fiehn 2001). The number of important metabolites in humans is greater than 

these values and it surely bigger than the currently represented on metabolic charts. The 

complexity of the metabolome is raised by the swapping of metabolites between pathways 

increasing the network of relevant reactions by an astonishing amount. 

 

 

 
Figure 2.1. The central dogma of biology and the omic cascade. [Adapted from (Patti et al. 2012)] 

 

The Human Metabolome Database (HMDB) (Wishart et al. 2013) lists 42 000 metabolites 

and the number of lipid variants is on the order of 100 000; thus, a lower limit of expected 

endogenous and exogenous human metabolites is around 150 000, but the actual number of 

metabolites could be much higher. Among these metabolites, only 1500 may be identified 

from global profiling, 200 – 500 from targeted profiling, and far fewer are routinely subjected 

to quantitative analysis (Markley et al. 2017). These numbers indicate, on one hand, the 

extreme complexity that is behind the metabolomics approach, and on the other hand, its 

extraordinary potential. 

 

2.1.1 Targeted and Untargeted approach 

Two different approaches can be used in metabolomics. The most suitable one for the 

study purpose depends on the kind of information that is sought from the metabolomic 

analysis. 

A targeted approach is the proper choice when a defined set of metabolites has to be 

investigated. This method focuses on the absolute quantification of metabolites, that have 

been identified in advance, and which are highly related to a specific pathway or intersecting 

It#has#really#happened!#

!!!!!!!It!may!happen…!
It!will!probably!happen…!
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pathways, after an appropriate sample preparation. This kind of analysis, also known as 

targeted profiling or quantitative metabolomics, is characterized as being a hypothesis-driven 

approach rather than a hypothesis-generating approach. The targeted approach has been 

successfully used in the β-glucan study (Paper V), where a specific class of metabolites (bile 

acids and neutral sterols), assumed to be involved in the mechanism of action of the tested 

compound, has been first extracted and then analysed.  

On the other hand, an untargeted or global profiling approach provides an unbiased 

overview of the metabolome that characterizes the sample and can reveal novel and 

unanticipated perturbations. It represents an unbiased tool to examine the relationship 

between interconnected metabolites from multiple pathways (Johnson et al. 2016). Most of 

the studies presented in this thesis were conducted using the untargeted approach. 

2.1.2 Metabolomics workflow 

All kinds of metabolomic studies need to follow a specific workflow in order to achieve 

appropriate and reliable results. A summary of the crucial steps to be performed is presented 

in Figure 2.2.  

 

 
Figure 2.2. Workflow of a metabolomic study: hypothesis, experimental design, sample collection, sample 

preparation, data acquisition, multivariate data analysis, interpretation of the results (i.e. identification of 

the perturbed metabolic pathways) and eventually test the new hypothesis. 

 

The first step is the formulation of a hypothesis/idea followed by the set up of the 

experimental design. Usually, the main aim is to discover a set of metabolites (known or 

unknown) that allow to distinguish samples from two different groups or populations and 
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thus, identifying the so-called biomarkers. As in any kind of experiment, a proper 

experimental design, and, in particular, the sample size is critical if statistically reliable 

information has to be obtained. Sample collection, preparation and storage are crucial steps 

since only a correct sampling provides a real snapshot of the metabolome at a certain point in 

time, thus strict protocols both for the collection and the preparation of the samples have to be 

followed by the all the operators involved in the project. For the most common analysed 

biofluids, such as plasma and urine, several protocols are available in literature (Beckonert et 

al. 2007). However, there is an increasing need of a unique standardized protocol for sample 

selection, collection, storage and preparation in NMR-based metabolomic studies in order to 

avoid the identification of spurious biomarkers due to a general lack of reproducibility 

between laboratories (Emwas et al. 2015). In the case of cells or tissues, the adopted 

procedures for metabolite extraction highly influence the nature and levels of the extracted 

metabolites. Generally, the procedure includes the disruption of cell walls and subsequent 

distribution of metabolites into polar (methanol, water) and non-polar (chloroform, hexane, 

ethyl acetate) solvents followed by the removal of the cellular residue. 

 

2.1.3 Analytical platforms 

Nuclear Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS), are the 

most commonly used platforms in metabolomics (Dunn & Ellis 2005). Both present 

advantages and drawbacks, thus there is not a single analytical technique completely suitable 

for metabolomic studies. Indeed, NMR and MS have been demonstrated to be complementary 

and powerful analytical approaches for the complete characterization of the metabolome (Pan 

& Raftery 2007). 

Mass spectrometry measures the masses of molecules and their fragments to determine 

their identity. This information is gained by measuring the mass-to-charge ratio (m/z) of ions 

that are formed by inducing the loss or gain of a charge from a neutral species. The sample, 

comprising a complex mixture of metabolites, can be introduced into the mass spectrometer 

either directly or preceded by a separation approach, namely, liquid chromatography (LC) or 

gas chromatography (GC). In addition to m/z and retention time information, the identification 

of an ion is facilitated by fragmentation pattern information that is acquired by tandem mass 

spectrometry (Want et al. 2005). Usually LC is employed for the analysis of a wide range of 

non-polar compounds, while GC is applied for the analysis of low molecular weight volatile 
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compounds. Nevertheless, in GC-MS, the detection and quantification of many compounds 

requires a pre-analysis derivatization step and a pre-selection of the “expected” metabolites. 

This represents the main limitation of the methodology, since non-derivatized chemical 

classes are lost in the analysis. The main advantage of MS is the high sensitivity, and it allows 

to detect traces of a metabolite (pg level) in the sample (Johnson et al. 2016). 

NMR spectroscopy offers many advantages over MS (Fan & Lane 2016; Nagana Gowda & 

Raftery 2015). It allows identification and quantification of the more abundant bulk 

metabolites present in biofluids, cell extracts, and tissues without any sort of sample pre-

treatment or fractionation. Due to its non-selectivity, no prior knowledge of the samples is 

required. Moreover, it allows the identification of compounds having identical masses, 

including those with different isotopomer distributions. In spite of the high number of 

advantages, NMR spectroscopy has its main drawback in sensitivity, with limits of detection 

on the order of 10 µM or a few nmol at high fields using new cryoprobes (Pan & Raftery 

2007). 
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Chapter 3 
NMR BASED METABOLOMICS 

Nuclear Magnetic Resonance (NMR) spectroscopy is a valuable analytical technique in 

metabolomics since it allows the qualitative and quantitative analysis of chemical compounds 

from complex mixtures as well as the structural elucidation of unknown compounds. It 

provides a complete picture of the chemical composition of the analysed sample since is not 

selective for special groups of molecules. Furthermore, no sample pre treatment and no 

sample destruction is necessary during the NMR experiment, allowing the re-use of the same 

sample for subsequent analysis.  

The most important nuclei in biomolecular NMR studies are 1H, 13C, 15N, and 31P. Among 

these nuclei, 1H is the most sensitive followed by 31P; for both of them the natural abundance 

is near 100%. However, the majority of the observed compounds in metabolomics studies are 

not phosphorylated, thus the proton is the most used nucleus in this field. This chapter will 

provide an overview both of the principles of Nuclear Magnetic Resonance and of the 

processing steps needed for its application to metabolomics studies. 

3.1 Principles of Nuclear Magnetic Resonance Spectroscopy 

NMR was first described by Isidor Rabi in 1938 that was then awarded the Nobel Prize in 

physics for his work. Rabi and his team employed a modification of Otto Stern's apparatus to 

measure the magnetic properties of various isolated nuclei such as hydrogen, deuterium, and 

lithium. However, it was only in 1945 that Felix Bloch at Stanford and Edward Mills Purcell 

at the Massachusetts Institute of Technology simultaneously demonstrated NMR in 

condensed matter (water and paraffin, respectively) (Bloch et al. 1946; Purcell et al. 1946). 

Seven years later, Bloch and Purcell jointly received the Nobel Prize for physics.  

Being a spectroscopic method, NMR is based on the interaction between energy and matter 

(Weber and Thiele 2008), but differently from other spectroscopic techniques it needs a 

strong static magnetic field. 
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The usefulness of NMR in chemistry was not appreciated until 1950 when the importance 

of the so-called chemical shift was discovered (Proctor & Yu 1950). Indeed, it is in chemistry 

that NMR has attracted the greatest interest in the recent years. 

In the following sections, the main theoretical aspects of NMR are discussed. 

 

3.1.1 Nuclear spin and resonances 

Nuclear Magnetic Resonance is a property of the nucleus of an atom, which consists of 

protons and neutrons, related to what is known as nuclear spin (I). This is equivalent to the 

nucleus acting like a miniature bar magnet. The spin of a nucleus depends on the mass of the 

isotope and nuclei with even mass and even charge numbers have no spin angular momentum 

(I=0). These kinds of nuclei are called “NMR inactive” or “NMR silent” since the nuclear 

spin property is fundamental to enable NMR. Nuclei as hydrogen (1H), carbon (13C), fluorine 

(19F) and phosphorus (31P), have I=1/2, thus they can be analysed using NMR. 

As showed in Figure 3.1, when the nuclei are not affected by external magnetic field (B0), 

the spin are randomly oriented in all direction, while if nuclei with I≠0 are placed in a 

magnetic field, they will assume a possible number of different orientations that will 

correspond to specific energy levels; this number depends on the value of I, in particular it is 

equal to 2I+1.  

 

 
Figura 3.1. a) Randomly oriented spins in the absence of a magnetic field. b) Aligned spins in the presence 

of an applied magnetic field (B0) 

 

The proton (1H) is the most abundant NMR nucleus and it has I= ½ , therefore when B0 is 

applied, these nuclei can assume two possible orientations, α parallel (I = ½ ) or β antiparallel 

(I = - ½ ), each corresponding to an energy level.  

The difference in the energy levels is equal to: 
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∆𝐸 = 𝛾   · 𝐵!      (3.1) 

 

where 𝛾 is the gyromagnetic ratio that is constant for a given nucleus (γ = 2.6752 · 108/T/s 

for protons). 

This means that, given a nucleus, to stronger magnetic field will correspond higher gap in 

the energy levels, thus resulting in higher sensitivity in the NMR experiment. 

The protons are distributed between the two energy states according to the Boltzmann 

distribution: 
!!
!!
= exp ∆!

!  ∙!
     (3.2) 

 

Here 𝑁!   and 𝑁! represent the protons populations in the lower and upper energy levels, 

respectively, k is the Boltzmann constant and T is the temperature. 

The number of nuclei is not equal in the two states: a small excess of protons will occupy 

the lower energy state (α) since it is, indeed, the more favourable state from an energetic point 

of view. This gives rise to a net magnetization M0, aligned with the applied magnetic field B0. 

As showed in Figure 3.2, when a radio frequency pulse is applied, the nuclei will absorb 

energy and nuclear spins transitions from lower to higher energy levels will be induced, thus 

giving: 

 

∆𝐸 = ℎ   · 𝑣       (3.3) 

 

where h is the Planck constant and v is the frequency of the excitation pulse that induces 

the transitions between the levels. This frequence is referred to as Larmor frequency and 

depends both on the nucleus and the magnetic field as showed in the following equation: 

 

𝑣 =    !  ∙  !!
!  ∙  !

          (3.3) 

 

No NMR signal is observable when the sample is at equilibrium (in the static magnetic 

field), since the net magnetization vector has no component on the xy plane where the signal 

is detected by the detector coil. The duration of the pulse is usually measured in microseconds 
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(µs), and it is called 90° pulse when it brings the magnetization on the xy-plane, whereas a 

180° pulse flips the net magnetization on the negative z-axis.  

As illustrated in Figure 3.2, when the radiofrequency is switched off, the system will return 

to equilibrium. This return to equilibrium is referred to as relaxation and it causes the NMR 

signal to decay with time, producing the observed free induction decay (FID). The NMR 

signal is then Fourier transformed to be converted in the frequency domain.  

 

 
Figure 3.2. Schematization of the NMR experiment. 

 

3.1.2 Chemical shift and couplings 

Protons are situated in different positions in a molecule, thus they do not experience the 

same magnetic field for a phenomenon known as shielding. Indeed, the nucleus is surrounded 

by electrons that start a rotational motion when an external magnetic field (B0) is applied. 

This gives rise to a small local magnetic field Bloc , that may oppose the external field, and, as 

a consequence, the nucleus experiences a slightly reduced field, that can be called Beff. A 

specific parameter (σ, shielding constant) is used to indicate the density and the distribution of 

the electronic cloud that surrounds the nucleus. This constant ranges from 10-6, for the lighter 

nuclei, to 10-3 for the heavier ones. The changes in the σ value are given, for example, by the 

presence of functional groups in the vicinity of a nucleus. In particular, when an 

electronegative atom is present, it will withdraw electrons from the observed nucleus, 

reducing the density of the electronic cloud, thus causing a de-shielding effect. Thus, the 

nucleus will resonate at higher frequencies. Considering that Bloc is equal to B0 σ (Lenz rule), 

Beff is given by: 
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𝐵!"" =   𝐵! − 𝐵!"# = 𝐵! − 𝐵!𝜎 = 𝐵!(1− 𝜎)     (3.4) 

 

As a consequence the relationship between the degree of shielding and the resulting 

resonance frequency is: 

 

𝑣 =    !  ∙  !!
!  ∙  !

  ∗   (1− 𝜎)     (3.5) 

 

Therefore, protons situated in different chemical environments will experience different 

magnetic fields, thus meaning that they will resonate at different frequencies giving rise to the 

so-called chemical shift (δ). All the information retrievable from a NMR experiment is hidden 

in the chemical shift, thus it is crucial to only look at the frequencies of the different nuclei in 

a way that is independent from the magnetic field employed. For this reason a conventional 

way to calculate δ has been established: 

 

𝛿 =    !∙  !!"#
!!"#

∗ 10!      (3.6) 

 

where v is the frequency of the observed nucleus and vref is the frequency of a reference 

compound. The most widely used reference compounds are tetramethylsilane, Si(CH3)4 

(simply called TMS) for organic solvents and the sodium salt of trimethylsilyl proprionic acid 

(TSP) for aqueous solutions. Both compounds have maximum shielding, showing higher σ 

than the nuclei usually analysed via NMR. Therefore, the equation 3.6 converts the chemical 

shift frequencies into parts per million (ppm), allowing to display the NMR signals on a new 

axis on which a given spin always shows the same value independently of the magnetic field 

employed. In this new system the reference compound has δ=0 while the sample resonances 

have positive δ values. 
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Figure 3.3. Approximate proton chemical shift. [Adapted from Orgchemboulder.com] 

 

Chemical shift is not the only value to inspect to retrieve chemical information from the 

NMR experiment. Another valuable feature is the J coupling or scalar coupling. This 

phenomenon is due to the fact that the magnetic moments of the nuclei can influence each 

other in two possible ways: through space (dipolar coupling) or trough chemical bonds (scalar 

coupling). The effect of the dipolar coupling can be neglected since the interactions average to 

zero because of the rapid molecular tumbling while the scalar coupling is visible from the 

NMR spectrum. 

Indeed, when an atom is influenced by another, this results in the split of its resonance 

signal. This is valid in both directions, thus when the perturbing nucleus becomes the 

observed one, it also exhibits signal splitting. In order to observe the splitting of the signal, 

the interacting nuclei must be bonded in proximity (e.g. vicinal and geminal positions), or be 

oriented in certain optimal configurations. Usually the signal splitting in proton spectra ranges 

from fractions of Hz to around 18 Hz. 

 

3.1.3 Detection and Fourier transform 

After the nuclei excitation by means of a radiofrequency pulse, the net magnetization will 

flip on the xy plane (90° pulse). Here the spins start to precess (rotate) both clockwise and 

counter-clockwise, thus in order to distinguish the spin with a frequency –v and one with a 

frequency +v, a detection system with two simultaneous channels (reciprocally 90° out of 

phase), on each axis, is often employed. This is called quadrature detection. 



 14 

 

Therefore, after the pulsed excitation, the nuclei return to the equilibrium distribution 

between the two energy levels trough a process called relaxation with relaxation times that 

are specific for different nuclei. This process generates the free induction decay (FID). The 

FID is a time-domain representation of the superimposition of the frequencies of all the nuclei 

present in the analysed sample, thus it is not easy to interpret. Fourier transform is a 

mathematical operation that can be carried out on the final FID data to produce the familiar 

frequency spectrum (Figure 3.4). 

 

 
Figure 3.4. Illustration of the Fourier Transformation from the the Time Domain s(t) to the 

Frequency Domain S(ω). [Adapted from mriquestions.com] 

 

3.1.4 Processing tools 

In order to enhance the sensitivity and the resolution of the acquired data, a series of 

processing steps have to be performed before and after the Fourier transform of the FID. 

In this section, zero filling, apodization, phase correction, and baseline correction will be 

briefly discussed. 

Zero-filling allows to increase the digital resolution of the NMR spectra by adding zeros 

the end of the FID data points, just before performing the Fourier Transform. This will add 

data points to the FID without adding additional noise. It is important to note, however, that 

zero-filling does not improve true resolution; it only improves the apparent resolution. This 

can be very useful because fine coupling may not be visible due to low digital resolution. 

Furthermore, it has to be stressed that setting the acquisition time to a very short value, and 



 15 

 

then use zero-filling to increase the digital resolution is not a good choice. Indeed, the FID has 

to naturally fall to zero and only after that, the zeros point can be added, otherwise baseline 

artifacts, as sinc wiggles, will appear after the FT. 

Apodization consists in multiplying the FID with different window (weighting) functions 

(Lorentzian, Exponential, Gaussian, or Sine-bell function) which can be chosen either to 

enhance the sensitivity or resolution (or both if possible) in the final spectrum. For instance, 

exponential multiplication leads to line broadening and a reduction in noise, while other 

trigonometric functions produce narrowing of the spectral line while increasing the noise. 

Phase correction allows the correction of phase errors in the spectra, usually generated by 

two main phenomena (i) delays (in terms of microseconds) between the RF pulse and the 

opening of the receiver for the FID acquisition (ii) off-resonance effects due to pulse inability 

to equally excite all the nuclei. 

A spectrum that has not been phase-corrected has signal with a dispersive line shape as 

well as inverted signals. Therefore, a zero-order and first order phase corrections are usually 

employed to face this issue. Zero-order correction is chemical shift independent and thus, it is 

the same for all lines across the spectrum. Whereas the first-order correction is frequency 

dependent, therefore it applies a phase change that increases linearly with the distance to the 

reference signal.  

Baseline correction is a crucial feature in metabolomics. Indeed, a flat baseline is 

fundamental for an accurate integration and therefore quantification of the chemical 

compounds. Furthermore small peaks could be hidden under a distorted baseline. This issue is 

usually caused by the corruption of the first few data points in FID that add low frequency 

modulations in the Fourier-transformed spectrum, thus forming the distorted baseline. The 

main reasons that cause this phenomenon are: too high signal amplification or a not complete 

recovery of the electronics from the RF. 

The most common correction method is, first, the fitting of the baseline with a polynomial 

function and then the subtraction of the baseline from the spectrum. 

3.1.5 One dimensional and two dimensional NMR experiments 

One dimensional (1D) 1H NMR has formed the bedrock of metabolomics studies to date, 

for (i) the rapidity in the spectral acquisition (ii) the possibility to directly measure the 

metabolite concentration by integrating the peak area using an internal standard. 
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1D experiments performed in this PhD project include two of the most used pulse 

sequences in the analysis of biofluids and aqueous extracts: Carr-Purcell-Meiboom-Gill 

(CPMG) and 1D Nuclear Overhauser Effect Spectroscopy (NOESY) pulse sequences. 

In particular, 1D NOESY-presat was employed for the analysis of the aqueous extracts of 

cancer cell (Paper I), apple juices samples (Paper III), and rat plasma (Paper V). 

1D NOESY-presat employs the first increment of a NOESY pulse sequence, with water 

irradiation during the relaxation delay and also during the mixing time (on a Bruker 

instrument, this is called noesypr1d). This has the form −RD-90°-t-90°-tm-90°-ACQ, where 

RD is the relaxation delay, t is a short delay typically of ~3 µs, 90° represents the RF pulse, tm 

is the mixing time and ACQ is the data acquisition period. Usually, gradients are also part of 

the pulse sequence to improve the solvent suppression quality (e.g., noesygppr1d)(Beckonert 

et al. 2007). 

CPMG experiment is based on the spin-echo pulse sequence and consists of −90°x-(tE-

180°- tE )n, where tE represents the so-called echo time and n is the number of repetition of the 

block in parenthesis (Carr & Purcell 1954). By carefully choosing these two parameters, the 

signals in the spectrum can be separated according to their spin-spin relaxation time (T2). This 

experiment helps to attenuate, or even eliminate, the broad signals from macromolecules or 

bound small molecules, allowing the visualization of the sharp peaks given by the mobile 

small molecules (Tang et al. 2004). Figure 3.5 shows the comparison between 1D-NOESY 

and CPMG NMR experiments performed on rat plasma samples during the study described in 

the section 6.2 of this thesis. The low-molecular-weight metabolites (aminoacids, sugars and 

acids) are more clearly visible in the CPMG spectrum than in the regular 1H NMR spectrum, 

since the latter is dominated by the broad signals of the plasma lipids. Furthermore, CPMG 

has the great advantage to improve the baseline, allowing a much better relative or absolute 

quantification of the metabolites. 
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Figure 3.5. Superimposition of the 1D-NOESY (red) and CPMG (blue) spectra of rat plasma (Paper V). 

Plasma lipids (L1-L5, LDL, VLDL) are the main responsible for the broad resonances. 

  

However, the main limitation of 1D NMR experiments is the overlap of the spectral 

resonances that seriously limits the clear identification of metabolites and their subsequent 

quantification. For this reason, two-dimensional (2D) NMR experiments are often performed 

after 1D 1H NMR measurement. 2D NMR methods allow the unambiguous identification of 

the metabolites in the mixture with the main drawback of being time-consuming. The most 

used experiments are 1H-1H COSY (COrrelation SpectroscopY), 1H–1H TOCSY (TOtal 

Correlation SpectroscopY), and 1H–13C HSQC (Heteronuclear Single-Quantum Correlation 

spectroscopy), and HMBC (Heteronuclear Multiple-Bond Correlation spectroscopy). These 

approaches have been employed in Paper I and Paper IV. Another 2D homonuclear 

experiment called J Resolved (JRES) also represents a valuable tool for metabolite 

identification (Ludwig & Viant 2010), thus it has been used also in this PhD project (Paper I, 

Paper III and Paper V). JRES keeps the advantages of a simple 1D NMR experiment, further 

providing, along the second dimension, the proton-proton coupling. In this way the 

overlapping resonances are dispersed, simplifying the assignment, especially in case of the 

presence of minor compounds that could be completely hidden by the overlapping of main 

signals. A real example of JRES spectrum is given in Figure 3.6 where an enlargement of the 

apple juice 1D NOESY and JRES spectra (Section 5.2) is showed. 
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Figure 3.6. Expanded areas of 1D NOESY (top-left) and JRES experiment on apple juices. Red 

labelled signals belong to chlorogenic acid while the green ones to the p-coumaric acid. The 

intensity of the signals is kept in the JRES. 

 

From the Figure 3.6, it is clear how a doublet in 1D spectrum becomes a singlet in JRES. 

Indeed, the projection along F2 can be considered as a decoupled proton spectrum that highly 

reduces the spectrum complexity. All the information about the multiplicity and the coupling 

constant is instead provided along the F1 dimension: in this case both signals are doublet (16 

Hz). 

 

3.2 NMR data pre-processing for chemometric analysis 

NMR data are not readily suitable for the analysis by chemometric methods. Two different 

approaches can be adopted to analyse NMR spectra: (i) considering each intensity point of the 

spectrum and/or (ii) performing the integration of isolated peaks. This latter approach takes 

into account only the NMR signals of specific metabolites, making this analysis more targeted 

than that computed considering the entire spectrum. 

However, it can happen that a peak belonging to the same analyte, and thus expected at the 

same chemical shift in all the samples, changes its position across the spectra. The most 

common reasons for this phenomenon are changes in experimental condition such as pH, 

temperature, ionic strength or background matrix as well as physicochemical interactions. In 

most cases, no useful information can be retrieved from these peak shifts thus it is preferable 

to perform an alignment that will allow a good chemometric modeling. Indeed, there is an 

important assumption that has to be fulfilled in techniques such as Principal Component 
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Analysis and Partial Least Square: the bilinearity. It requires that each column of the matrix to 

be analysed (if samples are stored in the rows) contains information about a signal originating 

from the same compound across all the samples. Thus, successful models are computed only 

when data are reproducible among the samples. For this reason peak shifts among different 

samples have to be avoided in different ways: keeping as homogeneous as possible the 

preparation protocol for all the samples, avoiding changing instrumental conditions and 

parameters or using a buffer solution in case of pH-based shifts. If variations in peak positions 

are still observed in the spectra, binning or alignment procedures should be computed. 

Furthermore normalization and scaling steps play a fundamental role in the chemometric 

analysis, thus they also will be discussed in this section. 

 

3.2.1 Binning 

Binning consists of dividing the spectra into small buckets (typically 0.04 ppm), which are 

ideally large enough to include peak shift variations. The area under the curve is then 

calculated for each bucket, thus providing the bin intensity. Traditional binning masks 

chemical shift misalignments and filter noise in the spectra but it can also hide potentially 

significant changes of low-intensity peaks nearby huge signals. After binning, the statistical 

analysis is carried out on the extracted bin intensities, and peaks are assigned to metabolites. 

The main drawback of binning is the drastic loss in resolution that can lead to poor metabolite 

quantitation. This approach was employed only in the olive oil study (Paper II), where a 

binning of 0.002 ppm was performed. 

 

3.2.2 Alignment 

When high resolution is required, other approaches are employed to solve the peak shift 

issue. Methods such as dynamic time warping (DTW) or correlation optimized warping 

(COW) (Tomasi et al. 2004; Bylund et al. 2002; Nielsen et al. 1998), have been demonstrated 

to be effective on chromatographic data and have also been employed for solving simple 

NMR alignments with satisfactory results (Flemming H. Larsen 2006). However, these 

methods are complex from a computational point of view and they align by stretching or 

compressing the signals and the baseline. This approach is optimal when a positive correlation 

between peak width and shift occur, thus it is not suitable for NMR signals. For NMR signals 
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various alignment algorithms have been proposed, among these, the interval-based icoshift 

algorithm (Savorani et al. 2010) has been employed in all the NMR studies performed during 

this PhD project. 

The icoshift algorithm is based on COrrelation SHIFTing of spectral Intervals and employs 

a Fast Fourier Transformation (FFT) correlation engine to boost the algorithmic speed. Three 

main steps are computed by icoshift: interval definition, maximization of the cross-correlation 

of each interval by the FFT engine and signal reconstruction. The definition of the intervals is 

optional, therefore, the user can both decide to align the whole spectra as it is (global 

alignment), or the whole spectrum divided in equal size intervals or just to align only few 

customised intervals leaving untouched the rest of the spectrum. Then, the target for the 

alignment has to be defined, it can be an actual signal or a synthetic one like the average, or 

the median calculated from all the spectra included in the dataset. 

 

 
Figure 3.7. icoshift alignment based on a reference signal of the apple juice NMR dataset. The chosen 

reference region (5.24–5.20 ppm) contains the anomeric doublet of α-D-glucopyranose which was chosen 

to drive the alignment according to a rigid shift of whole spectra. The average spectrum, used as the 

target, is highlighted in the top part of the figure which shows the raw data as well as the bottom shows 

the icoshift aligned data. Malic acid regions around 2.88 and 4.55 ppm have been aligned only after a 

further icoshift step that only included the interested regions. 

 

After target and interval definition, the algorithm works maximizing the cross-correlation 

between user-defined intervals and then it reconstructs the signal by adding missing values, in 

order to avoid spectral artifacts at the segment boundaries, or the first/last point in the 
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segment. An example of icoshift application is shown in Figure 3.7. Whole 1H NMR spectra 

of apple juice (Paper III) have been aligned according to a user defined reference signal (α-

glucose anomeric proton at 5.24 ppm). The glucose signals are usually good candidates for 

this purpose since they don’t show pH dependent peak shifting. The alignment was successful 

for almost all he signals, except for the pH sensitive malic acid peaks. To solve this issue, 

icoshift was performed a second time, only including the two malic acid regions, resulting in 

a perfect final alignment. 

The Matlab code for icoshift is free and can be downloaded from www.models.life.ku.dk.  

 

3.2.3 Normalization 

Metabolomic responses are reflected in differences in concentration of specific 

metabolites. Therefore, variations in signal intensity attributable to the amount of material 

analysed or dilution effects are not desirable since they can be misleading for the data the 

interpretation. 

Normalization methods compute a table row operation that aims to remove this effect to 

make spectra comparable with each other (Euceda et al. 2015). 

Among the most used approaches used to compute this operation, there are: 

 

1) Normalization to an internal standard 

2) Normalization to a particular reference peak 

3) Normalization to total intensity or total area 

4) Probabilistic Quotient Normalization (PQN) (Dieterle et al. 2006) 

5) Normalization to an artificial signal (Barantin et al. 1997) 

 

In the studies presented in this thesis methods 2) and 3) have been employed. In particular, 

in Paper III and V, the area under an artificial peak around 12 ppm, was used as reference for 

the normalization. This peak is generated by a software-based protocol called QUANTAS 

(QUANTification by Artificial Signal) that aims to provide absolute quantification by NMR 

(Farrant et al. 2010). 

The normalization to the total area was instead performed in the studies described in Paper 

I, II and IV. Generally, the normalization algorithm divides each data point (NMR variable) 

by a constant number that can be represented either by the integral of the reference peak or the 
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fintegral of the whole spectrum. In order to understand the beneffits provfided by the use of the 

normalfizatfion,  a hypothetfical  case  fin  whfich  three  dfifferent  sets  of  spectral  data  pofints  were 

acqufired from dfifferent amounts of the same tfissue sample fis shown fin Ffigure 3.8.  

 

 

Ffigure 3.8. Hypothetfical case of area normalfizatfion to elfimfinate varfiance related to the amount of sample 

analysed. In order to make each spectrum comparable, the fintensfity of each sfignal fis dfivfided by the sum of 

the fintensfity fin each set. 

 

The example showed fin Ffigure 3.8 clearly explafins how the unwanted varfiabfilfity related to 

the dfifferent wefight of the samples analysed fis elfimfinated by the normalfizatfion procedure. It 

fis  fimportant  to  underlfine  that  before  the  normalfizatfion  step,  the  removal  of  spectral  regfions 

contafinfing undesfired varfiabfilfity has to be performed. These regfions, usually, finclude sfignals 

from  resfidual  water,  solvents,  or contamfinants  that  only  provfide finformatfion  about  the 

goodness  of  the  experfimental  procedure,  whfile  hfidfing  or  finterferfing  wfith  the bfiologfical 

varfiabfilfity. 

 

3.2.4 Scalfing 

Scalfing  fis  a  mathematfical  operatfion  performed  on  the  dataset  to  balance  sfignal  fintensfity 

varfiances that orfigfinate from dfifference fin average abundance of metabolfites. 

Indeed, metabolfites that are naturally more abundant fin the sample analysed (fi.e. fructose, 

sucrose  and  malfic  acfid  fin  apple  jufice)  wfill  domfinate  durfing  the  data  analysfis,  maskfing  the 

varfiance  related  to  mfinor,  but  maybe  more  finterestfing,  metabolfites. Dfifferently  from  the 

normalfizatfion  methods, whfich  are  computed  findependently  on  each  sample  (row-wfise 

operatfion), scalfing fis a column-wfise operatfion that depends on all the samples fincluded fin the 

dataset (Hendrfiks et al. 2011). 

Prfior to scalfing, an operatfion called mean centerfing, transforms all values lettfing them vary 

around  zero  finstead  of  the  mean  value (Smolfinska  et  al.  2012). Basfically  fit  subtracts the 

column  mean  fintensfity  from  each  findfivfidual  fintensfity  value, allowfing the  correctfion for  the 

gap between metabolfites that have hfigh dfifferences fin concentratfion values.  

Varfiable(1 Varfiable(2 Varfiable(3

10 6.8 17.8 4.2 28.8

20 13.6 35.6 8.4 57.6

30 20.4 53.4 12.6 86.4

Sfignal(fintensfity
Sum

Sample(

wefight((mg) Varfiable(1 Varfiable(2 Varfiable(3

0.2 0.6 0.1

0.2 0.6 0.1

0.2 0.6 0.1

Normalfized(Sfignal(fintensfity

Dfivfide&by&
sum&
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Autoscaling, also referred as standardization or Unit Variance Scaling (UV), allows to all 

the variables to have unit variance, giving each variable equal chance to influence the model. 

Basically each spectral data point is divided by its standard deviation after mean centering: 

 

𝑈𝑉 = !!!
!"

      (3.7) 

 

where x is the variable, 𝑥 is the mean value of the variable x in all the samples of the 

dataset, and SD is the standard deviation. This approach blows up baseline noise, thus it is not 

the optimal choice for processing the NMR spectra that contain many baseline regions with 

random noise. On the other hand, it is very helpful in case of the analysis of variables with 

different units, as described in Paper IV. Indeed, in this study integrated NMR peak areas, 

corresponding to specific metabolites, have been analysed together with clinical parameters 

(i.e. hormones values). Moreover, autoscaling has been successfully used on the GC-MS data 

in Paper V. The whole autoscaling procedure is illustrated in Figure 3.9. The importance of 

such a mathematical approach is even clearer if we look at the data representation on a plane 

that has equal axis, as reported in the bottom part of the Figure 3.9. When the Principal 

Component analysis is computed (see Chapter 4), the main objective is to look how data vary, 

and this can only be achieved by looking at the variations around the axis origins (0,0). 

 

 
Figure 3.9. Schematization of the Autoscaling procedure (top) and its effect on the data representation 

(bottom). The vertical axis represents the strength of the signal detected for each variable or metabolite. 

Each variable corresponds to a bar, with the mean value presented as a short, horizontal, black line. 
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Pareto scaling is similar to autoscaling except that it employs the square root of the 

standard deviation as scaling factor, instead of the standard deviation alone (Smolinska et al. 

2012).  

𝑃𝑎𝑟 = !!!
!"

      (3.8) 

 

This approach is the most used for the preprocessing of NMR data. It can be considered as 

an intermediate between the extremes of no scaling (only mean cenetering), where medium 

features (low abundance metabolites) are overwhelmed by big ones (high abundance 

metabolites), and autoscaling that enlarges baseline noise. Basically, Pareto scaling up 

weights medium features without inflating baseline noise as schematized in Figure 4. 

 
Figure 4.0. Pareto scaling effect on NMR variables having different intensity. The influence of large 

biologically relevant variations is decreased (red arrows) while minor compounds variability is up 

weighted (blue arrows).  



 25 

 

Chapter 4 
CHEMOMETRICS IN METABOLOMICS 

Chemometrics is the application and development of mathematical and statistical methods 

to extract information from chemical data. The analytical techniques commonly used in 

Metabolomics are able to record thousands of variables for every sample analysed, thus 

providing very complex datasets. Chemometrics and, in particular, multivariate data analysis, 

provide valuable tools for the analysis and the recover of the maximum information from a 

complex data matrix.  

The basic categories of analysis techniques are: 

1) Exploratory analysis: unbiased overview of the data where patterns and outliers can be 

easily detected. 

2) Classification and discrimination: allow to discriminate between groups and to find 

biomarker candidates. 

3) Regression: compares blocks of data from a quantitative point of view. 

 

In the works presented in this thesis the first and last approaches have been mainly 

employed. A brief description of the chemometrics techniques included in the Papers is 

provided in the following sections. 

4.1 Principal Component Analysis (PCA) 

PCA is one of the most commonly used approaches in metabolomics. It was invented in 

1901 by Pearson (Pearson 1901) as an analogue of the principal axis theorem in mechanics. 

However, it was later developed and named by Harold Hotelling (Hotelling 1933). 

PCA is an unsupervised pattern recognition method that allows the reduction of the 

dimensionality of a dataset consisting of a large number of interrelated variables, providing a 

visual representation of the major variance in the data. Thus, the starting point for a PCA is a 

matrix of data with N rows (observations) and K columns (variables). 
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The observations can be analytical samples, biological samples from different individuals, 

process time points of a continuous process, batches from a batch process and so on. The 

columns can be spectral or chromatographic variables as well as measurements of various 

origin (e.g. patients clinical parameters or food sample characteristics). 

Basically, the original variables are transformed into a smaller set of new orthogonal 

(uncorrelated) variables, called principal components (PCs), which are ordered according to 

the explained variance that they are able to retain. Most of the relevant systematic information 

is usually calculated by the first few PCs, while the following ones are often computed 

considering chance variation and noise. The outcome of this analysis consists of two plots: a 

scores plot, where each point represents a single spectrum (sample), and a loadings plot that 

shows the variables (variables of the spectrum). These plots always need to be inspected 

together since the directions in the score plot correspond to direction in the loading plot. Thus, 

in order to understand the reason of a particular grouping observed in the score plot, it is just 

needed to look at the same direction in loadings. 

Furthermore, score and loading plots also provide information about how the samples and 

the variables are related to each other. Hence, the scores that are close to each other have 

similar profiles while close variables are correlated. On the contrary, objects that lie in the 

opposite part of the plot have very different characteristics. 

A more appropriate way to explain the PCA is possible using the mathematical 

interpretation of this method, as illustrated in Figure 4.1.  

 

 
Figure 4.1. Schematic illustration of a PCA model. T and P represent the scores and loading matrices, 

while E is the residual matrix. N and K are the number of samples and variables respectively. A is the 

number of Principal Components chosen to build the model. 
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The data matrix is decomposed into a structure part and a noise part: 

 

𝑋 = 𝑇𝑃! + 𝐸 = 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 + 𝑁𝑜𝑖𝑠𝑒     (4.1) 

 

where T is the scores matrix, P the transposed loadings matrix and E the residual matrix. 

Another way to clarify the scores definition is considering them as element of the T matrix, 

where each row is an observation while each column represents the value that the observation 

has along each Principal Component.  

The Loadings, also called weights, allow to understand the influence of the original 

variables on the scores T. The loading plot shows the loadings of a certain PC; also in this 

case it is possible to plot the loadings of a PC against the loading of another PC. 

The residuals are not part of the model, thus this part should be “small” in order to not 

remove too much information from the original dataset. More PCs are included in the model, 

higher will be the variance that it is able to explain, thus smaller will be the residuals, 

following this calculation: 

 

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 100%   (4.2) 

 

However, retaining too many components has the drawback to include not relevant 

information in the model, thus affecting its goodness. 

 

 
Figure 4.2. PCA score plot (left) and loading plot (right) of 1H NMR spectra of mice liver extracts. 

The separation between the healthy and sick mice is visible along the PC1. The corresponding loading plot 

shows that the metabolites in the red area are higher in the healthy group while those in the green area 

are higher in the sick mice liver extracts. 

 



 28 

 

4.2 Partial Lest Square regression (PLS) 

Partial Least Squares (PLS) regression is a supervised method that can be used when prior 

information about samples is available, such as class membership and quantitative 

information (Wold et al. 2001). It is a multivariate technique that assesses the relationship 

between two blocks of data: a descriptor matrix X (i.e. spectral data) and a response matrix Y 

(known sample information). The Y matrix can either contain quantitative (i.e. metabolite 

concentration) or qualitative information (i.e. class membership). 

The model is then built only using the Y-related variance in X. PLS can be either used for 

calibration purposes (when Y contains quantitative information) or for class discrimination 

(when Y contains qualitative information). In the latter case, the PLS method is called PLS 

Discriminant Analysis (PLS-DA) (Ståhle & Wold 1987). 

 

4.2.1 Recursive PLS (r-PLS) 

Recursive PLS, or just rPLS (Rinnan et al. 2014) , is a recently developed variable 

selection method where the regression coefficients are recursively used as weights on the 

original data matrix. This concept is schematized in Figure 4.3. 

 

 
Figure 4.3. Schematization of the recursive PLS procedure. Xi  represents the X data matrix; Xi+1 is the X 

data matrix weighed using the b vector; b is the regression vector. 

 

rPLS is similar to the method proposed by Forina (Forina et al. 1999) and jack-knifing 

(Martens et al. 2001), but instead of eliminating variables after each iteration, the rPLS 
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method iteratively uses the regression coefficients to magnify important variables and thus 

relatively down-weight less important ones. As showed in Figure 4.3 a normal PLS approach 

finds the Y-related variance in the X matrix by calculating the regression coefficients (b 

vector). Basically, rPLS is based on a process of repeated PLS models; for each repetition a 

different X matrix is employed and it is given by: 

 

X!!! = 𝑋!   ×  diag(𝐛) 

 

where 𝑋! is the previous updated weighted X, b is the regression coefficient from the last 

model and X!!! is the “new X” to be used in the subsequent PLS model. Reweighting each 

time the X matrix, will allow to converge to a very limited number of variables (good for 

interpretation), that will normally including covarying neighbour variables. This facilitates the 

interpretation and reducing the time consuming step of a thorough signal assignment 

The regression vector, which is represented as a diagonal matrix only for mathematical 

reasons, is fundamental in this approach. It is important to remember that the regression 

vector reflects the importance of the variables: weights around 0 indicate variables not 

correlated with y, and weights with large absolute values indicate important variables. An 

application of the rPLS approach is described in section 5.2.2 where it has been applied for 

the prediction of apple juice sensory attributes from NMR spectra. 

4.3 Analysis of Variance-Simultaneous Component Analysis (ASCA) 

Analysis of variance (ANOVA) provides information about the variance between and 

among groups of samples in an experimental design and its statistical significance. It works 

by partitioning the variance of a variable into components that originate from different 

sources, depending on the experimental design. This statistical tool is generally used for 

univariate data, when only one variable or metabolite is monitored in samples from an 

experimental design. A multivariate version of ANOVA (MANOVA) is available, however, it 

doesn’t work properly when a large number of variables is considered because of problems of 

singularity of covariance matrices and assumptions that are not fulfilled.  

A valuable multivariate generalization of ANOVA is represented by ASCA (Smilde et al. 

2005). This algorithm perfectly works on different types of data characterized by a balanced 

experimental design, or a temporal structure. Indeed, it separates the variance of the original 

dataset into different matrices from the design factors, allowing to separately investigate the 
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fimportance of each factor and to better finterpret the data. Thfis approach has been employed fin 

Paper  V, descrfibed  fin  sectfion  6.2, to  separate  the  dfiet-related  effects  from  other undesfired 

varfiabfilfity comfing from experfimental desfign. 

4.4 Parallel Factor Analysfis (PARAFAC) 

 

PARAFAC (Harshman  1970;  Bro  1997;  Bro  et  al.  2010) fis  a  generalfizatfion  of  PCA  to 

hfigher order arrays as fillustrated fin Ffigure 4.4. 

 

 

Ffigure 4.4. Schematfizatfion of the possfible ways to analyse a three-way array. PARAFAC bufilds a trfilfinear 

model, avofidfing the two-dfimensfional unfoldfing of the “cube”. 

  

Three-way arrays are the outcome of several types of measurements: 

Ø Sensory analysfis (Food sample, Judge, Attrfibute) 

Ø Process Analysfis (Batch, varfiable, Tfime) 

Ø Image analysfis (Sample, Image Pfixel, Varfiable) 

Ø Spectroscopy (Wavelength, Sample, Tfime) 

Ø Chromatography (Sample, Retentfion Tfime, Varfiable) 

 

PARAFAC  decomposes  the  three-way  array  finto  three  matrfices,  called  loadfing  matrfices, 

one for each mode. For the sample mode, the loadfing matrfix fis usually referred to as a score 

matrfix and holds the relatfive concentratfion of each chemfical compound fin the sample fif the 

model successfully separates the findfivfidual chemfical compounds finto findfivfidual PARAFAC 
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factors. The elutfion-mode loadfing matrfix correspondfingly holds the estfimated elutfion proffiles 

of each analyte and the last mode, the estfimated mass spectra of each factor.  

Lfike  PARAFAC,  PARAFAC2 (Harshman  1972;  Kfiers  et  al.  1999;  Bro  et  al.  1999) also 

decomposes  three-way  data  arrays  finto  loadfing  matrfices,  but  the  mafin  dfifference  fis  that 

PARAFAC2 does not fimpose strong restrfictfions on the data structure. It does not assume that 

the shape (or even length) of the elutfion proffile of an analyte fis the same fin each sample. Even 

though  PARAFAC2  allows  elutfion  proffiles  to  dfiffer  fin  shape  fin  dfifferent  samples,  fit  stfill 

possesses unfiqueness propertfies that are very sfimfilar to those of PARAFAC. Thfis means that 

a  successful PARAFAC2 model  can  separate  mfixture  data  finto  the  contrfibutfions 

(concentratfions,  elutfion  proffiles  and  mass  spectra)  of  the  underlyfing  analytes  dfirectly. 

PARAFAC2 represents an  fideal  technfique  for  modelfing  GC-MS  data,  as  the  model  allows 

one elutfion-tfime proffile to be obtafined for each factor of the sample, takfing finto consfideratfion 

that  each  analyte  has  a  mass  spectrum  that  fis  consfistent  across  all  samples (Amfigo  et  al. 

2008). Ffigure 4.5 fillustrates the steps carrfied out durfing the PARAFAC2 modelfing fin the β-

glucan study descrfibed fin Chapter 6. 

 

 

Ffigure 4.5 Schematfic representatfion of the PARAFAC2 modellfing steps performed fin Paper V.  

 

In  order  to reduce  the  complexfity  of  the GC-MS  dataset, the  chromatograms  were  then 

manually dfivfided finto fintervals fin the elutfion tfime dfimensfion, fin correspondence of the peaks, 

leavfing  some  baselfine  between  them.  Each  finterval  was  then  findfivfidually  submfitted  to 

PARAFAC2 modellfing, thus ensurfing a faster and more relfiable model valfidatfion. For each 
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interval, a model with one to ten components, was built and validated as previously described 

(Khakimov et al. 2012). After the model validation, the PARAFAC2 resolved peak areas were 

extracted and put into final metabolite matrix that was then submitted to Principal Component 

Analysis. 

4.5 Correlation analysis and heat maps 

The analysis of the correlations is an alternative and/or additional tool useful for retrieving 

information from the metabolomics data. It is commonly based on pairwise correlation 

between concentration levels of the metabolites in a sample (Steuer 2006). 

The most common correlation approach in metabolomics is Pearson’s correlation (linear 

correlation between variables), however other options are also available (e.g. the non-linear 

Spearman correlation) (Camacho et al. 2005). 

Even though calculating the correlations is quite straightforward, their link with biological 

functions or biochemical pathways is still poorly understood (Marcotte 2001). This is due to 

the complicated network of interactions among the different metabolic pathways that are often 

carried out simultaneously. However, the observed correlations can be considered as a global 

“fingerprint” of the observed system even though the full interpretation of the biological 

meaning is not immediate. 

In Paper IV metabolite-metabolite Pearson’s correlations have been calculated in order to 

better understand the metabolic pathways perturbed in the studied disease. 

A commonly used tool for the representation of the calculated correlations is the so-called 

Heat Map where values, contained in a matrix, are usually represented using a colour scale. 

As showed in Figure 4.6 this representation can also be enriched with the corresponding p-

value for each correlation, in order to distinguish among the significant and not significant 

data. 
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Figure 4.6. Metabolite–metabolite correlation matrix (heat map) calculated using 41 follicular fluid 

samples (Paper IV). The heat map is coloured according to Pearson's correlation coefficient (r) and the 

corresponding p-values (p). The red and blue colour of each cell depicts the Pearson's correlation 

coefficient value, with deeper colours indicating higher positive (red) or negative (blue) correlation 

coefficients. White cells stand for significant correlations (p < 0.05). 

 

4.5.1 STOCSY 

Statistical Correlation Spectroscopy (STOCSY) (Cloarec et al. 2005; Holmes et al. 2007) is 

a widely used method to recover information from complex 1D-NMR metabolomics spectra. 

Basically, it calculates all the possible correlations among the NMR spectral variables, in a 

pairwise way. Therefore, the signals that arise from the same molecules, will also experience 

the same fluctuations in concentration among the samples of the dataset, thus showing a very 

high r value. The graphical representation on the STOCSY is comparable to that of a 2D 

correlation NMR experiment performed on one sample, namely TOCSY. 

A real example of STOCSY is provided in Figure 4.7 from the study described in Paper I. 

The colour code has to be always present on the right of the plot since it explains the value, r, 

of the correlation. In this case red areas represent a correlation with r > 0.99 while blue 

regions are characterised by r < 0.95. 
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Figure 4.7. STOCSY plot coloured according to the correlation coefficient (see coloured bar on 

the right). 
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Chapter 5 
NMR-BASED METABOLOMICS IN FOOD SCIENCE 

The great potential of the NMR-based metabolomics has been widely recognized for 

qualitative and quantitative food analysis (Ramakrishnan & Luthria 2016). Minimum sample 

preparation, fast spectra acquisition, low cost per sample and good reproducibility are the 

main advantages of this technique. Indeed, NMR fingerprinting has been extensively 

exploited to obtain a ‘holistic view’ of the metabolome (foodome) of various kinds of 

beverages and foods, such as fruit juice (Belton et al. 1997; Sobolev et al. 2015), milk 

(Belloque 1999; Hu et al. 2007), wine (Godelmann et al. 2013) and olive oil (Mannina & 

Sobolev 2011). The possibility to differentiate cultivars, evaluate sensory properties, and 

investigate the influence of growing conditions and geographical origin of food crops, looking 

at a simple plot, has made NMR-based metabolomics one of the most used approaches in food 

science.  

In this Chapter the results obtained from the food-related metabolomics project, conducted 

during this PhD, are presented. 

5.1 Characterization of monovarietal extra virgin olive oils from the province of Béjaïa 
(Algeria) (Paper II) 

Algeria is one of the countries where the olive oil production is particularly increased in 

the last ten years, thanks to two agricultural renewal programs, over the 2006–2008 and 

2009–2014 periods, allowing producers to update their production tools. In these years, 

cultivation zones passed from 165,000 to 500,000 ha, and Algeria is nowadays considered as 

a new olive oil exporter. Despite the increased production, olive oils from this area are poorly 

studied compromising their exportation especially in the countries that are major producers of 

olive oils. Therefore, the aim of this work was to chemically characterize monovarietal 

Algerian EVOOs from different areas of the Béjaïa province, that is the area where the olive 

oil production is mostly increased, and, eventually, to suggest possible blends. The 

investigation was performed using traditional chemical analyses and 1H NMR spectroscopy, 
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as untargeted approach, to evaluate if geographical origin could influence the olive oil 

composition.  

 

5.1.1 Experimental design and results discussion 

Twenty-six monovarietal extra virgin olive oil (EVOO) samples from different areas of the 

province of Béjaïa (Algeria) (Figure 5.1) were analysed. The olive fruits coming from 19 

different cultivars were randomly and manually picked from all parts of the selected fully- 

grown olive trees.  

 

 
Figure 5.1. Areas of the province of Béjaïa (Algeria) where the olives fruits were harvested. The province 

of Béjaïa is bordered by black bold line. Regions 1 and 2 are bordered by green and blue lines, 

respectively. Sample code, cultivar and area of origin of the samples are also reported. 

 

Then 1H NMR experiments were run both on whole EVOOs samples and their phenolic 

extracts. The spectra of whole olive oil showed the typical pattern of signals of the 

triglycerides. Nevertheless, a number of other signals belonging to minor components of the 

EVOO were also detectable. In particular, β-sitosterol, squalene, terpens, diacylglycerols and 

aldehydes were unambiguously identified (Figure 5.2).  
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Figure 5.2. 1H NMR spectrum of a representative EVOO sample. The expanded regions contain minor 

components of EVOO. The magnification value is indicated on the top left of each square. NMR signals in 

the left top frame correspond to dialdehydic form of ligstroside and oleuropein (e and f respectively) and 

aldehydic form of ligstroside (a, b) and oleuropein (c, d). 

 

In order to determine if the observable signals were able to give information related to the 

area of collection of the olives, a principal component analysis (PCA) was performed. The 

PCA showed that the spectra of whole olive oils are distributed according to their fatty acids 

compositions, however this information was not related to the geographical origin. On the 

other hand, the spectra of the phenolic extracts turned out to be very different among each 

other, and therefore particularly informative. In this case the PCA showed that the samples 

distribution was, in some ways, also correlated to the geographical origin of the samples. In 

particular, the oils produced from olives collected in the region closer to the Mediterranean 

Sea were richer in polyphenols than the samples collected in the inland region (Figure 5.3). 

As far as the loading plot of PC2 is concerned, it is interesting to note that the variables with 

the higher loading values (higher discriminating power) belong to the dialdehydic and 

monoaldehydic forms of ligstroside and oleuropein, indicating that the samples that lie in the 

bottom of the plot are richer in monoaldehydes, while the ones on the top have an higher 

content of dialdehydes. Interestingly, the dialdehydic form of decarboxymethyl ligstroside 

(indicated with letter e in Figure 5.1), also known as oleocanthal, has been investigated for its 

ibuprofen-like cyclooxygenase inhibiting activity (Beauchamp et al. 2005). 
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Figure 5.3. A) PCA score plot coloured according to the content of polyphenols (yellow 50–160 mg 

kg−1, orange 161–470 mg kg−1 and red 471–1000 mg kg−1). B) PCA score plot coloured according 

to the region of origin: region 1 (green); region 2 (blue). PC1 and PC2 loading plots are reported 

in panels C and D, respectively. Letters on the loading plots refer to aldehydic form of ligstroside 

(a, b) and oleuropein (c, d). 

 

This could suggest that these olive oils can be considered promising nutraceutical foods to 

be used for the treatment of inflammatory diseases (Iacono et al. 2010). 

Generally, the results obtained in this study revealed that each olive oil seems to have 

strength and weakness points suggesting the potentiality of these cultivars to produce high 

quality blends that may compete with other Mediterranean products. 

5.2 Characterization of juices from ancient Danish apple cultivars 

This study was carried out at the University of Copenhagen under the supervision of Prof. 

Søren Balling Engelsen. 

In this work a NMR-based metabolomics approach was applied, for the first time, to 

chemically characterize apple juices of about one hundred ancient Danish cultivars. The study 

was the result of collaboration with ‘Pometet’ (Figure 5.4), an experimental orchard and gene 

bank of the University of Copenhagen that hosts the national and international collection of 
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fruit genotypes. It is part of a project that aims at promoting the utilisation of ancient Danish 

apple cultivars for niche products since they may have unique flavour qualities that can be 

attractive in juices. 

5.2.1 Experimental design and results discussion 

A total of ninety-two cultivars from a local orchard (Taastrup, Denmark) were collected in 

2010 during a period ranging from late August to middle October (Figure 5.4).  

 

 
Figure 5.4. The orchard “Pometet” is located in Taastrup, outskirts of Copenhagen (map on the left). A 

picture of the orchard, taken in September 2015, is showed on the right. 

 

High-field proton NMR spectroscopy was applied for samples characterization. 1D 1H 

NMR spectra were acquired to determine the metabolic fingerprint of the juices, while 2D 

homonuclear experiments were acquired for assignments purposes. A total of 15 metabolites 

were clearly identified from the spectrum (Figure 5.5) following the references available in 

literature (Vandendriessche et al. 2013; Belton et al. 1997). In this study, the recently 

developed Bruker Spin Generated Fingerprint (SGF) Profiling – Juice Screener, was 

employed. It is a NMR-based screening method for the quality control of fruit juices that 

provides absolute quantification of around twenty compounds present in the apple juice, using 

a large reference database of more than 6000 samples of more than 50 different types of fruit 

juices from more than 50 countries (Spraul et al. 2009). A total of 26 metabolites were 

quantified in this study by the Bruker Profiling approach. 
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Figure 5.5. a) 1H NMR spectrum of a representative apple juice sample (2.5 – 5.5 ppm). b) Aromatic 

region (5.8 – 7.9 ppm). c) Aliphatic region (0.9 – 2.7 ppm). 

 

A PCA was then performed in order to retrieve hidden information from the NMR spectra. 

The results have shown no particular clustering among the different cultivars, suggesting that 

each one allows the production of juices with peculiar chemical composition. 

Since the spectra were dominated by sugars and malic acid signals, we decided to perform 

a PCA including only the aromatic region of each NMR spectrum (6.0 -8.0 ppm) (Figure 5.6). 

This last analysis showed that the cultivars Bodil Neergaard, Barrittskoz Madæble and 

Gadeskovæblet have an interesting polyphenolic composition.  

The health related effects and bioavailability of polyphenols in human nutrition have been 

widely investigated (Dunlap et al. 2014; Visioli et al. 2011). The main health claims related to 

these compounds are based on their properties as scavengers of free radicals and reactive 

oxygen species (ROS). Phenolic compound characterization in whole apple fruit is well 

established, while their fate during transformation in juice has to be improved in order to 

better understand how to avoid the loss these precious compounds (Francini & Sebastiani 

2013). In this frame, our results suggest the suitability of the identified cultivars for the 

production of juices with health benefits.  
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Figure 5.6.  PCA score plot (left) colored according to the content of chlorogenic acid. On the right side of 

the figure, PC1 (top) and PC2 (bottom) loading plots are showed. The metabolites responsible for the 

separation on the PC1 are indicated with coloured circles; the condensed polyphenols signals are 

responsible for the separation along the PC2. 

 

5.2.2 Sensory study of apple juices (Paper III) 

Each apple juice sample of the study presented in 5.2.1 had also been submitted to a 

sensory evaluation prior the NMR analysis. Six different descriptors were evaluated: colour, 

overall odour, apple flavour, overall flavour, sweet taste and sour taste.  

The sensory panellists were trained with a reference juice as well as with sucrose (11%) 

and malic acid (0.5%) water solutions for being able to properly recognize all the descriptors. 

The samples were evaluated using a continuous 0 (none) - 14 (very much) intensity scale and 

the scores of each sample were averaged over 5 assessors. 

NMR and sensory data were employed to test a novel variable selection method (rPLS 

described in 4.2.1) in finding the spectral variables correlated with sweetness and sourness of 

the juices. Thus, the NMR dataset was used as X block while the sensory evaluation data 

represented the y vector. 

In both cases (sweet and sour taste), the rPLS was able to develop a good regression model 

providing just a very limited set of variables that correlate with the y vector. In particular, 
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sucrose signals showed to be positively correlated with the sweet taste while malic acid 

signals with the acidity of the apple juice (Figure 5.7). 

 

 
Figure 5.7. The rPLS result for the prediction of sensory evaluated acidity. The model uses two latent 

variables. In each row the development of weights according to iterations is shown. The coloured scale on 

the right represents the RMSECV values, the white box indicates the row where the best model was built 

and its relative RMSECV value; the bar on the left shows the value of the weights. The value 1 means that 

the variable has a large weight and thus importance; 1e-35 means that it has not. The red dashed line 

shows the optimal rPLS model and the green circles indicate the variables selected by the algorithm. The 

thick red spectrum superimposed to the figure is the average of all the spectra in the dataset. 

 

The best iterative performance was obtained after eight iterations, as indicated also in 

(Figure 5.8 A). The global PLS model shows a predictive performance of RMSECV=1.70 

while the rPLS global minimum shows a predictive performance of RMSECV=0.96. This 

result has two main advantages, (i) it performs clearly better than the global PLS model and 

(ii) it is three orders of magnitude more simple, as it contains only 25 variables instead of the 

29149 spectral variables included in the global one, allowing the careful inspection of the 

single variables. Figure 5.8 B shows the regression vector of the global PLS model as well as 

the variables, counting for the NMR signals at 2.85 ppm (counting for twenty variables), 4.53 

ppm (counting for only one variable), 3.69 ppm (counting for four variables), that have been 

identified by the rPLS as mainly responsible for the sour taste. The peaks can easily be 
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identified as the malic acid methylene (2.85 ppm) and methine (4.53 ppm) protons, while the 

peak at 3.69 ppm pertains to the glucose pyranose ring protons. These observations are in 

perfect agreement with the fact that the malic acid is the main acid in apple juice and therefore 

the main responsible for the sour taste of the samples. Moreover, the fact that glucose is also 

taken into account by the model, albeit with a numerically lower and negative regression 

coefficient, indicates an inverse correlation between malic acid content and glucose 

concentration. It is also interesting to notice that in the aromatic region, where polyphenols 

signals arise, the chlorogenic acid shows positive regression coefficients (Figure 5.8 B).  

 

 
Figure 5.8. A) The development in sourness prediction performance (RMSECV) during the rPLS 

iterations. B) The rPLS result for the prediction of sensory evaluated acidity. The regression 

coefficients for the full range PLS model (in blue) and for the rPLS reduced model (red circles). 

 

It is known that polyphenols can give bitterness and astringency to the apple juice (Berregi 

et al. 2003), however here the main polyphenol found in apple juice seems to have also a 

positive correlation with the sour taste. As far as the sweetness is concerned, the best rPLS 

result occurs after seven iterations. Also in this case the recursive approach brings a clear 

improvement when compared to the global PLS model, not only in terms of RMSECV, but 

also in terms of the number of variables to be inspected. Only five peaks have been selected 

by the rPLS. The signals around 3.81 and 3.67 ppm belong to sucrose and they are positively 

correlated to the sweetness, while the three glucose peaks (3.99, 3.79 and 3.68 ppm) are 

negatively correlated to this attribute. The inverse relation between sucrose and glucose 

content is already known from literature and it is likely due to their interconversion 

(Vermathen et al. 2011). Surprisingly, the sucrose turned out to be the main responsible for 
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the sweet taste even though the fructose is known to be the main sugar and thus sweetener in 

apple juice (Karadeniz & Ekşi 2002). This confirms the complexity in assigning the sweet 

taste to a specific chemical compound (Harker et al. 2002), since it should better be 

considered as the global result of the combination of several components. One of the 

advantages of the rPLS approach is that it does not only reduce the variable space and 

simplify the interpretation of the result, but it also includes the relevant covariation around the 

selected peaks. The latter information can be extremely useful for assignment purposes.  

The results presented suggest a profitable use of the rPLS for the prediction of even more 

complex sensory features from different types of spectroscopic data. 
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Chapter 6 
METABOLOMICS ON BIOLOGICAL SAMPLES: 

FROM CELLS TO HUMAN FLUIDS 
 

Biological samples are by far the most commonly studied sample type in metabolic 

profiling studies. For instance, the analysis of the metabolome in body fluids has become an 

important tool to monitor the state of biological organisms as well as a diagnostic tool for 

disease (Zhang et al. 2012). Biological samples can include plasma, serum, urine, saliva, 

cerebrospinal fluid, synovial fluid, semen, tissue homogenates and cell extracts. Some of 

these fluids can be easily obtained with minimal invasion, thus allowing highly sampling 

frequency and, as a consequence, permitting a detailed characterisation of dynamic metabolic 

events. The absence of a specific sample pre-treatment in NMR-based metabolomics allow to 

obtain an unbiased “picture” of the sample chemical composition, thus reflecting the in vivo 

situation. NMR often needs specific settings to overcome potential issues caused by the high 

presence of proteins, lipids as well as the presence of water in aqueous samples (Keun & 

Athersuch 2011). 

In this Chapter an overview of all the metabolomics studies conducted on biological samples 

is given. 

 

6.1 Study on Human Colon Cancer cells treated with anti-cancer drugs. (Paper I) 

Colon carcinoma is the third most commonly diagnosed cancer in the world and the second 

most common cause of death from cancer (Jemal et al. 2011). The analysis of metabolic 

profiles of this cell line provides a comprehensive assessment of the alterations in the 

metabolite levels in cells and can produce important information on in vitro actions of drugs 

towards their incorporation into novel therapeutic settings. 

The aim of this study was to set up an optimized protocol for NMR metabolomics of 

adherent mammalian cell lines and perform a preliminary validation to drug-treated cancer 
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cells. Both  tradfitfional  and  more  recent  developed  antfi-cancer compounds were  employed 

(Ffigure 6.1).  

Ø Compound 1: one of the most promfisfing G-quadruplex (G4) lfigands dfiscovered by 

vfirtual screenfing calculatfions (Dfi Leva et al. 2013) 

Ø Compound 2: the pentacyclfic acrfidfine RHPS4 whfich fis one of the most studfied G4 

lfigands (Leonettfi et al. 2004). 

Ø Compound  3: the  approved  chemotherapeutfic  agent  Adrfiamycfin,  also  known  as 

Doxorubficfin (Young et al. 1981). 

 

 

Ffigure  6.1.  The structure  of  compound  (1),  RHPS4  (2),  and  the  structure  of  the  tradfitfional  antfitumor 

agent Adrfiamycfin (3). 

6.1.1 Experfimental desfign and results dfiscussfion 

In order to reduce bfias fin the finterpretatfion of the experfiments, three bfiologfical replficates 

for each treatment were produced. Furthermore, three control samples (untreated cells) were 

also  collected.  Thus,  a  total  of  12  samples  were  produced  and  studfied  by 1H  NMR 

spectroscopy. The whole desfign of experfiment fis summarfized fin Ffigure 6.2. 

The  dose  and  drug  exposure  duratfion  tfime  of  cell  culture  for  compounds  1  and  2  were 

establfished accordfing to the lfiterature (IC50) (Salvatfi et al. 2007), whfile the optfimal condfitfions 

for compound 3 were chosen on the basfis of fin-house unpublfished results.  

After cell treatment and washfing, a quenchfing step wfith lfiqufid N2 was performed fin order 

to  stop  the  metabolfism,  hfinderfing  the  metabolfite  degradatfion.  Afterwards,  a dual  phase 

extractfion (Blfigh  &  Dyer  1959) was  performed  for  the extractfion  of  the fintracellular 

metabolfites. Only  the  aqueous  upper  phase  contafins  water-soluble  fintracellular  metabolfites, 

was then analysed vfia NMR.  
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Ffigure  6.2.  A)  General  scheme  descrfibfing  the whole  sample  preparatfion  protocol.  B)  Overvfiew  of  the 

experfimental  desfign.  Each  compound  has  been  tested  fin  trfiplficate  and  three  control  samples  (untreated 

ones) were also collected. 

 

1D NOESY-presat  NMR  experfiments  were  carrfied  out  on  the  extracts,  and  the  peak 

assfignment was carrfied out (Ffigure 6.3). 

 

 

 

Ffigure 6.3. 1H-NMR spectrum of a representatfive control sample along wfith the assfignment of the sfignals. 

 

The 1D 1H NMR spectra were then processed and studfied usfing a completely untargeted 

and  unbfiased  multfivarfiate  data  analytfical  approach.  The  afim  was  to  fidentfify  the 

commonalfitfies  fin  the  metabolfic  sfignatures  assocfiated  wfith  response  to  treatment  for  each 
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tested  compound.  For  thfis  reason,  a prfincfipal  component  analysfis  (PCA)  was  performed  on 

the NMR spectra (Ffigure 6.4).  

 

 

Ffigure 6.4.  A)  PCA  score  plot. Control  samples  are  coloured  fin  red (CTL). Compound  1,  2  and  3 are 

coloured fin  blue,  dark  yellow  and  green,  respectfively  B) PC-1 loadfing  plot.   C)  PC-2  loadfing  plot. 

Numbers on the loadfing plots refer to the NMR assfignment reported fin Ffigure 6.3. 

 

The PCA scores plot dfisplayfing the two mafin prfincfipal components (PCs) accountfing for 

86.3% of the varfiance (PC-1 70.3%, PC-2 16.0%) fis shown fin Ffigure 6.4A. The PCA scores 

plot shows that the samples of the cells treated wfith RHPS4 (2) are posfitfioned on the extreme 

rfight sfide of the prfincfipal dfirectfion of varfiance PC1 and the samples of the cells treated wfith 

1, 3 and controls are placed to the left. Along PC2 the treatments wfith 1 and 3, posfitfioned fin 

the  up-left  quadrant  of  the  plot,  dfiffer  from  the  control  samples,  whfich  are  found  fin  the 

bottom-left  quadrant. If  we  look at  the  PC1  loadfing  plot  (Ffigure  6.4B) fit  shows  that  the 
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samples treated with 2 are characterized by a higher content of lactate, creatine, acetate, 

succinate and NAD+ /NADP+ with 2 are characterized by a higher content of lactate, creatine, 

acetate, succinate and NAD+/NADP+, whereas the concentrations of threonine, glycine, 

alanine, tyrosine, phenylalanine, leucine, isoleucine, whereas the concentrations of threonine, 

glycine, alanine, tyrosine, phenylalanine, leucine, isoleucine, valine, histidine, creatine 

phosphate, glycerophosphocholine, O-phosphocholine, glutathione, NAAD valine, histidine, 

creatine phosphate, glycerophosphocholine, O-phosphocholine, glutathione, NAAD and AMP 

are lower with the respect of the samples that lie on the left of the plot. The loadings plot of 

the second principal component (Figure 6.4C) is much noisier than that observed for PC-1, 

thus it’s difficult to draw reliable conclusions about the metabolome changes. In order to 

overcome this issue, a direct comparison of the average 1H NMR spectra of the three 

replicates for each treatment and controls was performed. The detailed results of this approach 

are reported in Paper I. 

In summary, the three tested compounds significantly altered the metabolism of the cells. 

The NMR data demonstrate that the treatments generally affect amino acid turnover or protein 

biosynthesis, tricarboxylic acid (TCA) cycle and mitochondrial activity (succinate, NAAD, 

NAD, ATP), urea cycle, anaerobic metabolism and protein and DNA biosynthesis and DNA 

repair. Furthermore, the specific alterations in the choline metabolism by compounds 1 and 2 

indicate that cell death in HCT116 lines is induced interfering with DNA synthesis and DNA 

damaged repair and by inhibition of protein synthesis. The NMR data thus strongly suggest 

that treatments with compounds 1 and 2 slow down cellular metabolism, aggravate oxidative 

stress and reduces DNA synthesis and repair leading to cellular death and apoptosis in 

accordance with their anti-cancer activity. Compound 3 also drives cell death and apoptosis 

due to a general cytotoxicity in accordance with anti-cancer activity of Adriamycin (Cao et al. 

2013).  

In this study the preliminary insight into the biological behaviour of the three tested anti-

cancer compounds was accomplished together with the implementation of a reliable NMR 

metabolomics analytical protocol for adherent mammalian cell lines. 
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6.2 Study on plasma and faecal samples for the evaluation of effects of barley β-glucans 
in hypercholesterolemic rats. (Paper V - Manuscript draft) 

This study was carried out at the University of Copenhagen under the supervision of Prof. 

Søren Balling Engelsen. 

In the last decade, barley (Hordeum vulgare L.), the world’s fourth most produced cereal, 

normally employed for animal feed and beer production, has received increased nutritional 

attention due to its high content in soluble dietary fibre and its positive effects on lipid 

metabolism (Ho et al. 2016). 

In 2006 the consumption of barley products has been, indeed, associated by the Food and 

Drug Administration to the reduction of the Risk of Coronary Heart Disease for its 

cholesterol-lowering property (Food and Drug Administration 2006). Several studies have 

been conducted to prove the benefits of barley intake on plasma cholesterol on animal models 

such as rats (Yang et al. 2003; Kalra & Jood 2000) and hamsters (Tong et al. 2015; Wilson et 

al. 2004; Delaney et al. 2003), as well as humans (Behall et al. 2004a; Behall et al. 2004b; 

Keenan et al. 2007; Li et al. 2003; Rondanelli et al. 2011; Shimizu et al. 2008; Mikkelsen, 

Savorani, et al. 2014; Ibrugger et al. 2013). The component responsible for this healthy effect 

is called β-glucan (BG), a viscous soluble dietary fibre that can be found in cereals, mostly oat 

and barley, as well as yeast, bacteria, algae, and mushrooms (Theuwissen & Mensink 2008). 

It is a cell wall polysaccharide composed of glucose molecules that in oat and barley are 

joined by β-(1→4)- and β-(1→3)-glycosidic bonds (Figure 6.5). 

 

 
Figure 6.5. Representative structure for β-glucans. [Adapted from www1.lsbu.ac.uk] 

 

The presence of this mixed linkage, which breaks up the regularity of the (cellulose) 

polymer, makes the molecule soluble and flexible (Lazaridou et al. 2004). The long chains of 

BG are characterized by repeating blocks of three (cellotriosyl, DP3) or four (cellotetraosyl, 

DP4) glucose units connected by β-D-(1,3) linkages. The so-called DP3/DP4 ratio as well as 

the numbers of β-(1→3)/ β-(1→4) linkages, are important functional parameters for β-glucan 

solubility which in turn is positively correlated with viscosity, a key feature for this fibre.  
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Interestingly, the mechanism of action of the BGs is based on the prevention of the 

intestinal reabsorption of bile acids and cholesterol (Figure 6.6). In particular, the hypotheses 

reported in literature that rationalize this mechanism include (i) the formation of a viscous 

barrier layer upon the enterocytes; (ii) the trapping of bile salts (BS) micelles containing 

cholesterol in a net made of fibres (Gunness & Gidley 2010; Wolever et al. 2010); and (iii) a 

direct hydrophobic interaction between the soluble fibre and the bile salts (Gunness et al. 

2016). 

 

 
Figure 6.6. Postulated hypocholesterolemic mechanism of water-soluble fibres. [Adapted from (Theuwissen 

& Mensink 2008)]  

 

As a consequence, faecal bile salts excretion increases dramatically and, in order to 

compensate for this loss, the endogenous cholesterol and de novo bile acid synthesis are 

promoted respectively via HMG-CoA and 7α-hydroxylase activation (CYP7A1) in the liver. 

Meanwhile, the receptors responsible for the uptake of the LDL cholesterol (LDL-R), also 

known as “bad cholesterol”, are upregulated in order to provide the substrate for the bile acid 

synthesis cited before (Theuwissen & Mensink 2008). This leads to a further reduction of 

LDL cholesterol concentration in the blood. Therefore, the decrease in plasma cholesterol 

concentration is the indirect result of the BG intestinal action.  

β-glucan preparations can vary in block structure, in MW, in purity and in MW 

distribution. So far, very few in vivo studies have compared the effect of BGs having different 

MW on plasma cholesterol. Immerstrand et al. have tested an entire MW range going from 10 
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to 2348 kDa, finding similar cholesterol-lowering effect in mice plasma (Immerstrand et al. 

2010), whereas Wilson et al. have compared a reduced MW β-glucan (175 kDa) to a high 

MW one (1000 kDa), showing a slightly better effect of the latter in lowering the total and 

non-HDL cholesterol in hamsters (Wilson et al. 2004).  

In this frame, Mikkelsen et al. decided to investigate a smaller range of molecular weight 

(from 150 to 530 kDa) BG concentrates on the plasma of hypercholesterolemic rats. In 

particular, an in vivo rat study was used to compare rat groups fed with medium (530 kDa) 

and low (150 kDa) MW β-glucan to the rats fed with commercially available Glucagel (100 

kDa) (Mikkelsen et al. 2017). After four weeks of treatment, the authors observed a 

decreasing in total and LDL plasma cholesterol for all the studied groups. However, no 

significant difference among the groups fed with the three BG concentrates was found, 

suggesting that the BG molecular weight does not have any effect on the plasma lipids. Since 

such a targeted approach, that only takes into account the plasma lipids, might have hidden 

any other perturbation caused to the plasma by the ingestion of BGs, we decided, in 

collaboration with Mikkelsen and coworkers, to use an untargeted metabolomics approach to 

study the same plasma samples. Furthermore, in order to have a more complete picture of the 

function of BG, we decided also to study faecal samples of the treated rats by using GC-MS 

targeted towards bile acids. 

 

6.2.1 Experimental design 

A total of forty-eight male Wistar rats were used for the trial, conducted in triplicate (three 

blocks of sixteen rats per block), in order to increase the statistical power of the study. In each 

block, all rats were fed the control diet (CON) ad libitum for three weeks, in order to become 

hypercholesterolemic. After week 3, the rats were divided in four groups: control (CON) fed 

with the same diet of the first weeks, rats fed with the commercial glucan (GLU), rats fed 

with low molecular weight BG (LBG) and rats fed with medium molecular weight BG 

(MBG). 

Four rats were housed in each cage, then, after 5.5 weeks, they were transferred to 

individual housing in metabolic cages for separate collection of faeces every second day 

during the last four days of week 7. Faecal samples were freeze-dried and stored at -20°C 

until analysis. Plasma was collected at the end of the study (week 7) and was kept at -80 °C 

until analysis (Mikkelsen et al. 2017). The experimental design is showed in Figure 6.7. 
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Ffigure  6.7.  Schematfizatfion  of  the rat  study experfimental  desfign.  From  week  3,  the  rats  were  dfivfided  fin 

four groups fed wfith dfifferent dfiets. 

 

6.2.2 1H NMR study on rat plasma 

Proton nuclear magnetfic resonance spectroscopy was employed for the analysfis of the rat 

plasma metabolome. Both CPMG and 1D NOESY NMR experfiments were carrfied out, usfing 

a  standardfized  protocol  (Bruker  GmbH,  Rhefinstetten,  Germany)  for  the  analysfis  of  plasma. 

Spectra were alfigned, normalfized and pareto-scaled prfior the multfivarfiate data analysfis. 

A  Prfincfipal  Component  Analysfis  was  performed  usfing both 1H CPMG  and  1D-NOESY 

spectra.  However,  fin  both  cases, no  dfiet-related dfiscrfimfinatfion  could  be  observed.  The 

expected  result  for  thfis  analysfis  was  the reductfion  of  plasma  lfipfids  fin  BG  treated  groups 

compared to the CON group. Interestfingly, our result was fin agreement wfith Mfikkelsen at al. 

(Mfikkelsen  et  al.  2017) that  measured,  usfing  a  specfiffic enzymatfic kfit,  the concentratfion  of 

plasma  trfiglycerfides,  total  cholesterol,  low-densfity  lfipoprotefin  (LDL)  and  hfigh-densfity 

lfipoprotefin (HDL) cholesterol fin the four rat groups. No sfignfifficant dfifferences were observed 

fin  the  lfipfids  concentratfion  between  the  CON  and  the  BG  treated  groups,  fin  lfine  wfith  a 

prevfious study conducted on humans (Ibrugger et al. 2013).  
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6.2.3 GC-MS study on faecal samples 

Subsequently  the  faecal  samples  were finvestfigated  by  GC-MS  usfing  a  targeted  method 

towards bfile acfids. Bfile acfids (BAs) and neutral sterols (NS) were extracted from the faecal 

samples usfing the protocol showed fin Ffigure 6.8. 

 

 

Ffigure 6.8. Bfile acfid extractfion protocol for GC-MS analysfis. 

 

A total of 48 real samples wfith thefir replficate (96 samples fin total) and 6 pooled samples 

(produced mfixfing the same amount of each real sample fin the same tube), were submfitted to 

GC-MS analysfis. 

The raw chromatograms were then manually dfivfided finto 33 fintervals that were modelled 

by PARAFAC2 algorfithm, usfing from one to seven component for each one, as descrfibed fin 

sectfion 4.2.  After  finspectfion  of  all  the  deconvoluted  components (varfiables),  some  of  them 

turned out to represent only baselfine nofise, reagent derfived peaks or column bleed, and thus 

they were removed. Therefore, a ffinal set of 54 varfiables was chosen, each havfing a specfiffic 

EI  mass  values  and  Retentfion  Index. Sfix  out  of  54  varfiables  were safely fidentfiffied  as 

unconjugated  bfile  acfids,  sfince  authentfic  standards  were  used,  namely:  cholfic  acfid  (CA, 

varfiable  34  and  35),  deoxycholfic  acfid  (DCA,  varfiable  32  and  38),  lfithocholfic  acfid  (LCA, 

varfiable  29)  and  chenodeoxycholfic  acfid  (CDCA,  varfiable  36). The  fact  that  the  same 

compound  fis  represented  by  more  than  one  varfiable  fis  due  to  (fi)  the  splfit  of  the  peak 

belongfing  to  the  same  molecule finto  two  subsequent PARAFAC2 fintervals  (fifi)  dfifferent 

~50 mg lyophfilfized stool powder 

1 mL NaOH 0.1 M fin EtOH 

Thermomfixer (1400 rpm, 85 °C,  1h) 

Centrfifugatfion (13000 rpm, 10mfin) 

0.5 mL clear supernatant finto new Eppendorf 

1 mL n-hexane, vortex for 1mfin 

Take 25 uL from the ethanolfic phase 

Evaporate to dryness, TMSCN derfivatfizatfion  

GC-MS 
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trimethylsilyl derivatives having distinct retention times. Conjugated bile acids standards 

were also employed in the analysis, however, no corresponding peak was detected in the 

samples, in according with the results obtained by Dongowski and coworkers (Dongowski et 

al. 2002). The remaining metabolites were, as expected, neutral sterols, as well as fatty acids, 

fatty alcohols and disaccharides. 

The final matrix (101x54) was then submitted to the Principal Component Analysis. The 

PCA, performed on the original dataset, lead to a fine discrimination between CON and BG 

groups, and also showed that the pooled samples were grouped all together as expected, thus 

indicating the soundness of the GC-MS analysis. After this evaluation, the pooled samples 

were removed from the data analysis, in order to just focus on the treatment-related 

variability. Furthermore, to be sure to exclude any interference from another potential source 

of variability, namely the block effect from the experimental design, an ANOVA-

simultaneous component analysis (ASCA) was performed on the dataset.  

Therefore, a new PCA was performed after ASCA. The PCA scores plot is reported in 

Figure 6.9. Inspection of PC1 versus PC3 produced an excellent sample separation. PC1 

explained 20.08% of the total variance and separated the control group from the BG treated 

samples (LBG, MBG and GLU). The loadings for PC1 showed that all the identified bile 

acids are situated in the positive part of the plot, suggesting that the presence of 5% of BG in 

the test diets resulted in a higher BA excretion in the faeces. This is in agreement with 

previous studies that have reported an intestinal entrapment of bile salt micelles in a viscous 

network formed by the BGs, leading to an increased BA faecal excretion (Dongowski et al. 

2002; Ellegård & Andersson 2007). Ellegard et al. showed an increased BS ileal content and 

hepatic BA synthesis after a BG-containing diet in ileostomic individuals, attributing this 

effect to the intestinal entrapment of BA caused by the fibre. In particular, they suggested that 

high viscosity oat-bran BG allows to entrap the entire BS-cholesterol mixed micelles in the 

intestinal lumen (Ellegård & Andersson 2007). Conversely, another study suggested that 

soluble dietary fibres form a barrier that increases the unstirred water layer lining the 

intestinal mucosal surface and hinder the formation of BA micelles (Theuwissen & Mensink 

2008). Unfortunately, in this study, we were not able to study the effect of BGs on the 

cholesterol faecal excretion. This is due to the fact that the cholesterol signal in the GC-MS 

experiments turned out to be overloaded, and therefore not suitable for quantification 

purposes.  
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Ffigure  6.9. PCA  scores  (left)  and  correspondfing  loadfings  plot  (rfight)  derfived  from  the of  PCA  model 

performed on ASCA analysfis of the GC-MS data of all the groups fincluded fin the experfimental desfign (A= 

Control, B = Glucagel, C= Low MW BG, D = Medfium MW BG). Varfiables shown on the loadfings plot are 

numbered fin the same order as fin Table 2. 

 

Thereafter, fin order to focus on the dfifferences among the three BG treatments, the CON 

group was removed from the analysfis, and a new PCA was computed (Ffigure 6.10). The new 

scores plot allows to better apprecfiate the separatfion among the LBG, MBG and GLU. The 

commercfial β-glucan  lfies  fin  the  mfiddle  of  the  LBG  and  MBG  groups,  thus  suggestfing  that 

low  and  medfium  molecular  wefight  BG  had  a  dfifferent  finfluence  on  the  faecal  composfitfion 

compared  to  Glucagel. In  partficular,  the  loadfings  plot  reveals  that  the  MBG  group  fis 

characterfized  by  hfigher  levels  of  cholfic  acfid  whfile  the  LBG  related  samples  show  a  hfigher 

amount of DCA and LCA. Even though a dfiscrete number of unknown compounds fis present 

fin the loadfings plot along the dfiagonal dfirectfion of separatfion of the three BG groups, the bfile 

acfids  varfiables  have  the  hfighest  loadfings  values  fin  the  dfirectfion  under  consfideratfion.  Thus, 

they  represent  the  mafin  responsfible  for  the  observed  separatfion  findficatfing  that  the  prevfious 

evaluatfions can be consfidered relfiable. Cholfic acfid and chenodeoxycholfic acfid are deffined as 

prfimary  bfile  acfids.  They  are  derfived  from  cholesterol  by  a  sequence  of  enzymatfic reactfions 

occurrfing  mafinly  fin  the  lfiver.  After  the  synthesfis,  they  are  ffirst  conjugated  wfith  glycfine  or 

taurfine, and then excreted and stored fin the gallbladder where they aggregate above a crfitfical 

mficellar concentratfion to form bfile salts mficelles. 

 

 

 

Secondary*bfile*acfids*
(DCA,*LCA)*

Prfimary*bfile*acfids*
(CA,*CDCA)*
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Ffigure  6.10.  PCA  scores  (left)  and  correspondfing  loadfings  plot  (rfight)  derfived  from  the   plots  of  PCA 

model performed on ASCA analysfis of the GC-MS data of the BG-treated groups (B = Glucagel, C= Low 

MW BG, D = Medfium MW BG). Varfiables shown on the loadfings plot are numbered fin the same order as 

fin Table 2. 

 

These are then secreted finto the duodenal lumen after meals fin order to act as tensfioactfives 

and  facfilfitate  fat  dfigestfion.  Once  thfis  actfion  has  been  accomplfished,  BAs  are  largely 

reabsorbed (95%) fin the termfinal fileum by an actfive transport mechanfism, fin order to be sent 

back to the lfiver vfia portal blood thus takfing part fin the enterohepatfic cfirculatfion (Hofmann et 

al. 1999). However, before gofing back to the lfiver, bfile acfids structure fis altered on the sfide 

chafin and on the nucleus by bacterfial enzymes fin the dfistal fintestfine. On the sfide chafin, bfile 

acfids are deconjugated to form an unconjugated bfile acfid and glycfine or taurfine. Then, some 

of  these  unconjugated  bfile  acfids  are  absorbed,  takfing  part  to  the  enterohepatfic  cycle,  and 

reconjugated fin the hepatocytes. However, a small percentage (less than 5%) of unconjugated 

BAs  remafins fin  the  fintestfine  and  enters  fin  the  colon (Nagengast  1995).  Here, the  sterofidfic 

nucleus undergoes to a 7α-dehydroxylatfion by anaerobfic bacterfia formfing 7-deoxy bfile acfids. 

Thfis  process  fis  responsfible  for  the  conversfion  of  the  prfimary  finto  secondary  bfile  acfids.  In 

partficular,  cholfic  acfid  fis  converted  to  deoxycholfic  acfid, whfile  chenodeoxycholfic  acfid 

generates the lfithocholfic acfid. Thus, DCA and LCA are called “secondary bfile acfids” because 

they  are  formed  from  prfimary  bfile  acfids.  Generally, DCA  fis  almost  totally  reabsorbed  and 

enters the enterohepatfic cfirculatfion, where fit fis conjugated fin the lfiver and then secreted fin the 

bfile,  whereas,  LCA  fis  almost  finsoluble  and  lfittle  of  fit  fis  reabsorbed (Molfino et  al.  1986). 

However,  the  type  and  amount  of  BAs  reabsorbed  and  excreted,  are  not  constant  but  they 

depend  on  varfiatfions  fin  dfiet,  transfit  tfime,  drugs,  dfisease,  etc. (Martínez-Augustfin  &  de 

Medfina 2008). 

Secondary*bfile*
acfids*(DCA,*LCA)*

Prfimary*bfile*acfids*
(CA)*

Prfimary*bfile*acfids*
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In this frame, our results confirmed that a diet containing BG increases the BAs excretion 

for the known viscous properties of this soluble fibre to entrap the bile acids/bile salts 

micelles. However, the most relevant outcome is that LBG and MBG seem to selectively 

increase the excretion of primary and secondary bile acids, respectively. To the best of our 

knowledge, this is the first time that such a modulation of faecal BAs excretion, depending on 

the molecular weight of the β-glucan, is reported, leading to the formulation of several 

hypotheses.  

The direct interaction between β-glucans and bile salts micelles or monomers is one of the 

three hypothesis for the mechanism of action of the fibres (Gunness & Gidley 2010). 

Mikkelsen et al. (Mikkelsen et al. 2014) investigated the interaction between β‑glucan and 

bile salts by Nuclear Magnetic Resonance assays, suggesting that the bile salts micelles are 

stabilized through transient, multivalent interactions with β-glucans, excluding, however, 

highly specific bindings. In this frame, we tend to exclude that the observed modulation may 

be due to a selective molecular interaction of LBG and MBG with primary and secondary 

BAs, respectively.  

Another hypothesis includes the possibility that the conversion of primary into secondary 

BAs may be partially hindered in the LBG group. As described above, this conversion is 

performed by a group of anaerobic bacteria, thus it varies when colonic flora population, 

responsible for this biotransformation, changes (Ridlon et al. 2006). Mikkelsen et al. found 

significant alterations in the cecal microbiota of the BG groups compared to the CON group 

during their in vivo study. However, the three BG groups didn’t show significant cecum 

microbiota alterations among them. Thus, suggesting that our result should not be ascribable 

to changes in the intestinal flora. 

Furthermore, a crucial point in the BAs conversion is also represented by the colonic pH. 

Indeed, the 7α-deyhydroxylase, responsible for the BA transformation, is inhibited when the 

pH decreases (Van Munster 1993), thus reducing the amount of secondary bile acids 

produced. In this frame, the production of SCFA after the BGs fermentation process plays a 

key role, since it highly contributes to the pH lowering (Dongowski et al. 2002). In this study, 

the total amount of SCFA in the cecum was measured by Mikkelsen et al. resulting in higher 

levels of total organic acid pool in the MBG group. This would suggest that the pH is lower in 

the cecum of rats fed with MBG, as a consequence, the action of the enzyme would be 

prevented. Thus, we should expect to see less secondary bile acids in the faecal samples from 

this group compared to the GLU and LBG groups. In our case, the MGB samples showed, 
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instead, higher levels of secondary BAs. These considerations suggest that, probably, the 

main event that allows such a differentiation in the bile acid excretion has not to be found in 

an impaired BAs conversion, that however we cannot exclude, but in a “selective” entrapment 

of the BAs in the colon. 

In this frame, viscosity could represent the key feature to explain the obtained results. The 

medium molecular weight BG has, indeed, 6-fold higher level of viscosity compared to the 

low molecular weight BG and Glucagel. Thus, a more viscous barrier may be able to prevent 

the reabsorption of more hydrophobic molecules as the secondary bile acids. 

Indeed, when dietary fibres, as BG, are ingested, and partially fermented in the intestine, 

this leads to the formation of a layer of low density water that covers the thick layer of 

hydrophilic mucus (Chaplin 2003). The mucus and the fibre aqueous compartments can 

combine to produce a denser layer that delays or hinders the reabsorption of hydrophobic 

molecules that are potentially harmful.  

Among the most common hydrophobic compounds that tend to accumulate in the distal 

colon, increasing the risk of cancer onset, there are polycyclic aromatic hydrocarbons from 

smoked foods, tryptophan metabolites from cooked red meat, fecapentaene-12 from anaerobic 

organisms, N-nitrosodimethylamine from protein and nitrates and secondary bile acids. 

Secondary BAs have been widely investigated for their role in cancer onset (Ajouz et al. 

2014; Bernstein et al. 2011). In particular, lithocholic acid is considered a rare example of 

toxic endobiotics (Hofmann 2004) while deoxycholic acid was found to produce tumours in 

mice in 1939 (Cook 1940). The prolonged exposure of tissues to high physiological levels of 

BAs can lead to cause oxidative/nitrosative stress, DNA damage, mutation and cancer (Payne 

et al. 2008). Therefore, levels of secondary BA should be suppressed and the transit time of 

the gut contents should be decreased in order to reduce the risk of onset of carcinogenic 

process. In this frame the medium molecular weight BG could have a potential health benefit 

for the colonic mucosa.  

All things considered, since secondary bile acids are more hydrophobic molecules than the 

primary BAs (Payne et al. 2008), this could suggest that they tend to be included in the high 

viscous barrier generated by the MBG more than in the layer generated from the LBG. 

In summary, our findings demonstrate that medium (530 kDa) and low (150 kDa) MW BG 

as well as the commercially available Glucagel (100 kDa) concentrates from barley increase 

bile acids excretion in hypercholesterolemic rats. Interestingly, a modulation of the primary 

and secondary bile acid excretion occur, depending on the molecular weight (and thus the 
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vfiscosfity)  of  the  BGs  employed,  was  observed.  In  partficular,  the  vfiscosfity  of  the  BG  fis 

assocfiated wfith greater excretfion of the secondary bfile acfids. Despfite the extensfive lfiterature 

on  BGs,  to  the  best  of  our  knowledge, thfis  fis  the  ffirst  tfime  that  the  MW  of  the β-glucan fis 

reported to selectfively finfluence the prfimary/secondary bfile acfids excretfion.  

Consfiderfing  the  growfing  finterest  fin  developfing  new  nutraceutfical  barley-based  products, 

the here reported results are extremely finterestfing demonstratfing the consfiderable physfiologfic 

beneffits of barley BG-enrfiched dfiet, wfith a partficular focus on the molecular wefight feature. 

Further studfies are on gofing fin our laboratory to further finvestfigate the characterfistfics of the 

hydrophobfic finteractfions between the bfile acfids and the tested BGs. 

 

6.3 Study on lfiver extracts to evaluate the effect of Phytosterols fin murfine colfitfis model 

Phytosterols  are plant-derfived sterols,  structurally  related  to  cholesterol.  They  have  been 

classfiffied finto (fi) Sterols, whfich have a double bond fin the sterol rfing (fifi) Stanols, whfich lack 

a  double  bond  fin  the  sterol  rfing,  so  are  saturated  molecules (Ffigure  6.11). Phytosterols  are 

known  for  thefir  hypocholesterolemfic  effect,  however  they  also  present  antfi-finflammatory 

propertfies.  Aldfinfi  and  coworkers (Aldfinfi  et  al. 2014),  evaluated  the  effect  of  a  mfixture  of 

phytosterols  on  preventfion/finductfion/remfissfion  fin  a  murfine  experfimental  model  of  colfitfis. 

Phytosterols were admfinfistered per os before, durfing and after colfitfis finductfion wfith Dextran 

Sodfium Sulfate (DSS) fin mfice. 

 

 

Ffigure 6.11. Examples of phytosterols structures.  
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The authors found that pre-treatment wfith phytosterols reduces the clfinfical symptoms and 

exerts  a  protectfive  effect  on  DSS  finduced  colonfic  finflammatfion  decreasfing  finffiltratfion  of 

finflammatory  cells  and  acceleratfing  mucosal  healfing.  These  effects  can  be  related  to  thefir 

antfioxfidant  effects  and  to  a  regulatfion  of  the  fintestfinal  mficroflora.  Phytosterols  play  also  a 

role fin the restoratfion of the fintestfinal motor pattern. These ffindfings pave the way towards the 

role of phytosterols as potentfial nutraceutfical tools fin the management of Inflammatory Bowel 

Dfisease (IBD) and other fintestfinal finflammatory dfiseases.  

Thfis study has been developed fin collaboratfion wfith the Unfiversfity of Bologna. The afim 

was to understand the metabolfic pathways perturbed by the phytosterols fin the lfiver as well as 

understand thefir role both on healthy and sfick mfice. 

 

6.3.1 Experfimental desfign and results dfiscussfion 

A total of forty mfice were dfivfided fin four groups fin the ffirst day of the study. Half of the 

anfimals  (twenty  mfice)  recefived  the usual  commercfial  control  dfiet whfile  the  other  half  were 

fed the same dfiet enrfiched wfith a phytosterols (PH) preparatfion. For detafils about composfitfion 

of the nutraceutfical see (Aldfinfi et al. 2014). After 14 days, the group fed the control dfiet was 

splfit  fin  two  more  groups:  controls  (CT)  that  contfinued  to  recefive  the  same  dfiet  and  DSS 

treated  group  (DS)  that recefived water  contafinfing  DSS ad  lfibfitum  fin  order  to  finduce  the 

colfitfis. In the same tfime, also the group fed the phytosterol-contafinfing dfiet was splfit fin two 

subgroups,  exactly  followfing  the  same  procedure  descrfibed  above. Thus,  the  phytosterols 

treated  group  (PH)  and  the  sfick  phytosterol  treated  group  (PD)  were  generated. A 

schematfizatfion of the experfimental desfign fis gfiven fin Ffigure 6.12. 

 

 

Ffigure 6.12. Schematfizatfion of the experfimental desfign for the phytosterols mfice study. 
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A dual phase extraction procedure was performed on the liver samples. Basically, a 

mixture of water, methanol and chloroform in the volume ratio of 1.8:2:2 was added to the 

lyophilised samples (Bligh & Dyer 1959; Wu et al. 2008). 

About 40 mg of tissue were collected from each liver sample and mixed with about 960 µL 

of the extracting mixture. Then a homogenizing step was needed in order to break up the 

tissues and let the partition of the metabolites in the extracting solvents. A tissue homogenizer 

(FastPrep-24) with specialized Lysing Matrix beads was employed for this purpose. After this 

step, the supernatant was separated from the pellet. The latter was discarded. The supernatant 

was then centrifuged at 15000 rpm at 4 °C for 15 min at. This procedure generated a two-

phase extract: the aqueous upper phase containing hydrophilic metabolites, while apolar 

metabolites as lipid molecules moved in the organic lower phase. Proteins and 

macromolecules are trapped, instead, in the thin skin-like layer between the two phases. The 

upper and lower phase were separated and transferred into different eppendorf tubes. Finally, 

solvents were completely removed from both fractions using a vacuum concentrator. Only the 

hydrophilic phase was taken into account in this study. All dried polar extracts were 

suspended in 540 µl of D2O together with 60 µl of a sodium phosphate buffer (1M, pH 7.2) to 

give a final buffer concentration of 0.1M. Samples were vortexed briefly and transferred into 

5-mm NMR tubes for analysis. All 1D 1H-NMR spectra were acquired at 37 °C. 

The assignment of the main hydrophilic metabolites was done according to the references 

available from literature (Feng et al. 2013; Shin et al. 2011). Chenomx NMR suite software 

and the Human Metabolome Database (HMDB) helped the metabolite identification.  

A representative NMR spectrum of the liver extracts is showed in Figure 6.13. 
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Figure 6.13. 1H-NMR spectrum of a representative control sample along with the assignment of the 

signals. Keys: GPC, glycerophosphocholine; PC, phosphocholine; GSH, reduced glutathione. 

 

The NMR spectra were processed using iNMR software and then imported in Matlab. The 

NMR regions above 9.5 ppm and below 0 ppm were removed because contained only noise. 

Furthermore, regions between 7.67 and 7.72 ppm and between 3.35 and 3.38 ppm were 

discarded because of the residual signals of chloroform and methanol respectively. Finally, 

the region between 4.56 and 5.06 was discarded because of the residual signal of water. A 

global alignment step was carried out using icoshift: the acetate singlet at 1.92 ppm was 

chosen as reference signal. The NMR data matrix was then normalized to total area and 

pareto-scaled prior to multivariate data analysis. A unsupervised approach was chosen to 

explore the dataset, thus a PCA was computed (Figure 6.14). The PCA scores plot displaying 

the two main principal components (PCs) explained 46.2% of the variance (PC-1 31.4%, PC-

2 14.8%). The score plot shows a nice separation among the samples belonging to the four 

different groups. Interestingly, a sort of trend that goes from the sick mice group to the 

healthy one is visible along the PC1. In particular, the livers extracted from the sick mice but 

treated with the phytosterols (PD, blue) are situated exactly in the middle of the controls (red) 

and the sick mice (green). This, at a glance, can suggest that the phytosterols do play an 

important role in bringing back the hepatic metabolome to the healthy condition. 

 

 



 64 

 

 
Figure 6.14. PCA score plot (left) and loading plot (right) of the 1H NMR spectra of mice liver extracts. 

Keys: Controls (CT, red), Sick (DS, green), Sick with Phytosterols (PD, blue) and Healthy with 

Phytosterols (PH, turquoise). 

 

In order to understand the metabolic pathways perturbed by the presence of the intestinal 

disease caused by the DSS administration, it is just needed to look at the metabolite with 

higher loading values (both negative and positive values) in the loading plot (Figure 6.14).  

Controls and sick mice are, indeed, at the very extreme of the PC1 in the score plot, thus 

meaning that loading plot of the corresponding component perfectly explains the difference 

between these two groups. However, two additional PCA were computed to allow a pairwise 

comparison of the studied groups. In particular, a PCA only with CT and DS was computed 

and it was compared to the PCA calculated including only PD (sick mice treated with 

phytosterols) and DS (sick mice). The idea was to evaluate if the administration of 

phytosterols before and after the disease, is able to bring the metabolome of a “sick” liver 

back to a healthy condition (Figure 6.15). 
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Figure 6.15. A) PCA based on the pairwise comparison between controls (CT, red) and sick group (DS, 

green). B) PCA based on the pairwise comparison between sick mice fed the phytosterols (PD, blue) and 

sick group (DS, green). C) Superimposition of the PC1 loading plots of the PCA showed in A (red line) 

and in B (blue line). 

 

The superimposition of the two PC1 loadings plots showed that the phytosterols actually 

tend to bring the liver back to the healthy condition, since the loadings are very similar except 

for the acetate (1.92 ppm) and formate (8.34 ppm).  

Interestingly, livers extracts from sick mice showed some dysfunctions in the nucleic acid 

synthesis/degradation pathways since UMP, UDP, UTP, CTP levels increase in this group. 

Moreover, it is well known that the intestinal damage caused by DSS reduces the absorption 

of nutrients. This could be a reason for the organism to move the glycolysis/ gluconeogenesis 

equilibrium towards the latter. Indeed, a reduction of alanine and lactate concentrations, major 

hepatic substrates for gluconeogenesis, is clearly visible in the sick mice livers. The negative 

loading value of the 3-hydroxybutyrate goes in the same direction of this hypothesis. 3-HB 

belongs to the ketonic bodies groups; an accumulation of these metabolites occurs when the 

lipids, and not the glucose, become the main source of energy for the organism. 

Another typical colitis symptom is the dysregulation of lipid metabolism (Dong et al. 

2013). Lipidic and phospholipidic metabolism are highly connected, thus the liver of the DS 

group shows an increase of glycerophosphocholine and phosphocholine. 

 



 66 

 

These preliminary results show the strength of an NMR-based metabolomic study for the 

comprehension of the metabolic pathways perturbed in a living system, by the presence of a 

disease or a drug.  

 

6.4 Study on follicular fluid from patients with Polycystic Ovarian Syndrome (PCOS) 
(Paper IV – Submitted) 

Follicular fluid (FF) and cumulus cells (CC) have shown to play a key role in the oocyte 

health during its maturation. A highly coordinated network of interactions between the oocyte 

and the somatic cells influences the intrafollicular microenvironment allowing the 

folliculogenesis (Dumesic et al. 2015) (Figure 6.16). 

 

 
Figure 6.16 Schematic representation of an ovarian antral follicle. Follicular fluid accumulates into the 

centre of the follicle and provides the micro-environment for growth, maturation and differentiation of 

follicular cells. [Adapted from (Fahiminiya et al. 2011)] 

 

 

Follicular fluid, also known as liquor folliculi, has been described for the first time in 1974 

as an exudate from plasma enriched with secretions from the follicles (Edwards 1974). Thus, 

its composition varies when the plasma is altered by the presence of pathologies, and/or 

changes in the secretory processes of the granulosa and theca cells occur, reflecting the 

physiological state of the follicle. The variations in FF composition are strictly connected with 

both the maturation (Spitzer et al. 1996) and quality of the oocyte (Revelli et al. 2009). 

Indeed, Spitzer et al. observed that FF from immature follicles is characterized by a different 

protein pattern compared to the fluid collected from mature follicles, suggesting the potential 
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use of selected proteins as biomarkers for follicular maturity (Spitzer et al. 1996). The 

importance of finding biochemical predictors for the oocyte quality was investigated by 

Revelli et al. (Revelli et al. 2009). They analysed all the correlations reported in the literature 

between the embryo characteristics and several molecular markers in FF as hormones, growth 

factors, reactive oxygen species, anti-apoptotic factors, proteins, sugars and prostanoids. 

However, they were not able to identify substances as reliable markers for assessing the 

oocyte quality, most probably due to “univariate” scientific approach used. In fact, the same 

authors suggested to employ a metabolomic approach (based on a multivariate data analysis) 

that is more suitable to analyse complex biological mixture such as FF. 

Metabolomics has been widely employed to analyse almost every kind of biological fluid 

using both nuclear magnetic resonance (NMR) and mass spectrometry. Compared to the 

latter, NMR has the advantage of being highly reproducible, requiring minimal sample 

handling and allowing the identification of a wide range of low-molecular-weight compounds. 

Pinero-Sagredo and coworkers were the first to perform a NMR study on FF, identifying the 

presence of at least 42 metabolites (Pinero-Sagredo et al. 2010). Significant correlations 

among glucose, β-hydroxybutyrate (3-HB), lactate, pyruvate, acetoacetate and acetate were 

found, thus suggesting the presence of an important anaerobic metabolism in overstimulated 

follicles. In addition, a statistically significant correlation was also observed between the 

glycolytic pathway and fatty acid metabolism in both young donors and the group with the 

higher fertilization rate. This study paved the way to the use of NMR-based metabolomics on 

FF for the discovery of biomarkers for the oocyte developmental competence (O’Gorman et 

al. 2013; Wallace et al. 2012).  

Polycystic Ovary Syndrome (PCOS) represents the most commonly occurring metabolic 

and endocrinological disorder affecting 5–20% of women in their reproductive age worldwide 

(Goodarzi et al. 2011; Azziz et al. 2009). It is characterized by hyperandrogenism, ovulatory 

dysfunction and polycystic ovarian morphologic features. Being a syndrome, PCOS, is 

heterogeneous and also associated with other alterations such as repeated and quick 

gonadotropin-releasing hormone pulses, an excess of luteinizing hormone (LH), and 

insufficient follicle-stimulating hormone (FSH) secretion, which contributes to an excessive 

ovarian androgen production and ovulatory dysfunction. Furthermore, evidences of insulin 

resistance are common among women with PCOS, as a consequence of this, a compensatory 

hyperinsulinemia promotes adrenal and ovarian androgen production, thus contributing to the 

hyperandrogenism (McCartney & Marshall 2016). 
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One of the main features of PCOS is the increased number of antral follicles. In this frame, 

the growing interest in Anti-Müllerian Hormone (AMH) as follicular reserve marker has 

prompted many researchers to investigate the expression of this molecule in women with 

PCOS, in order to obtain information about the pathogenesis and the ability to calibrate the 

treatments in the case of ovulation induction or multiple follicular growth for medically 

assisted procreation cycles. 

In order to understand the correlations among the FF composition, the hormones values 

and the hyper- and normoinsulemic conditions of PCOS women, we performed an 

exploratory NMR-based metabolomic study on 41 samples of FF provided from women that 

were undergoing an in vitro fertilization (IVF) therapy. 

 

6.4.1 Experimental design and results discussion 

FF samples from 41 women were provided by the “Centre for the Study and Treatment of 

Couple Sterility and Infertility” of Federico II University Hospital in Naples. Samples were 

collected by means of transvaginal ultrasound-guided puncture. 

CPMG NMR experiments were performed in this study in order to reduce the broad 

resonances from high-molecular-weight compounds, allowing the observation of low-

molecular-weight metabolites. A representative spectrum of FF sample is shown in Figure 

6.17.  

 

 
Figure 6.17. 1H CPMG NMR spectrum of a representative follicular fluid sample measured at 700 MHz 

and 25 °C. Keys: Val = valine; 3-HB = 3-hydroxybutyrate; Lac = lactate; Ala = alanine; Ace = acetate; 

AcAce = acetoacetate; Pyr = pyruvate; Cit = citrate; Gly = glycine; Glc = glucose; Tyr = tyrosine; His = 

histidine; Phe = phenylalanine; For = formate. 
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The FFs were characterized by low-molecular-weight metabolites including amino acids 

(valine, alanine, glycine, phenylalanine and tyrosine), organic acids (lactate, acetate, 

acetoacetate, pyruvate and formate) and glucose. 

NMR spectra were then imported into MATLAB (R2012b; Mathworks, Natick, MA) 

where the spectral regions above 9 ppm and below 0 ppm were removed because containing 

only noise. Furthermore, the region between 4.16 and 5.20 ppm was discarded because it was 

dominated by the residual water signal. In order to correct for spectral misalignment, the 

entire dataset was globally aligned with respect to the acetate signal (1.91 ppm) using the 

icoshift algorithm (Savorani et al. 2010).  

The data matrix was then submitted to the PLS toolbox version 8.1.1 (Eigenvector 

Research, Manson, USA) where the total area normalisation (1-norm) was performed prior to 

the pareto-scaling and mean-centering in order to compute the Principal Components 

Analysis (PCA). 

An exploratory PCA was first performed on the data set consisting of the complete NMR 

spectra. The PCA scores plot (PC1/PC2, 48.8% of total variance explained) showed a slight 

separation of the samples according to the hyper-/normo-insulinemic condition of the PCOS 

patients along the diagonal direction of the plot. Unfortunately, the loading plot of PC1 

(26.9% of the explained variance) is actually dominated by signals that cannot be assigned to 

traditional metabolites (except glycine), suggesting that they may be attributed to 

contaminant(s) that could affect the interpretation of the PCA. In order to analyse a PCA built 

by most reliable variables, all the peaks of the proton NMR spectrum that could be 

unambiguously assigned to known metabolites have been taken into consideration, and 

therefore integrated. Thus, 14 integral values were used to build a new data matrix that has 

been augmented by additional 12 clinical variables coming from the clinical measurements. 

This approach has the advantage to compare altogether a larger range of information, thus 

providing a more complete picture of the physiological condition of the studied population. 

So, a new PCA has been computed and it is reported in Figure 6.18.  
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Figure 6.18. PCA scores (left) and corresponding loadings plot (right) derived from the data analysis of 

the integrated peaks of the 1H NMR spectra of follicular fluids together with the clinical parameters 

measured among the PCOS women.  

 

As shown in the score plot, a better separation occurs between the hyperinsulinemic and 

normoinsulinemic PCOS women. The variables that better explain this separation are those 

having larger loading values along the direction of the sample separation (see the loadings 

plot in Figure 6.18). Therefore, the normoinsulinemic group is characterized by high value 

concentrations of glucose and AMH, while hyperinsulinemic women present higher 

concentration of lactate, alanine and pyruvate. From a metabolic point of view, glucose, 

lactate and pyruvate are strictly correlated to each other, being all metabolites of the 

glycolytic pathway. Interestingly, in normal physiological conditions, the follicles grow in an 

anaerobic environment since the avascular granulosa layer (that surround them) increases its 

thickness preventing the oxygen supply in the follicle (Gull et al. 1999). In particular, 

granulosa cells (GC) and cumulus cells (CC) are required to provide products of glycolysis 

for the development of the oocyte, which is unable to carry out this pathway (Sugiura et al. 

2005). In these conditions, the pyruvate transformation into lactate is obtained due to the 

limited amounts of oxygen available. Pyruvate is the final key 3-carbon (3-C) intermediate 

transferred to the oocyte, however it is interchangeable with lactate which is the main 3-C 

compound produced by the GC. Likewise, alanine is linked to glycolysis pathway. In fact, 

alanine can be also produced by reductive amination of pyruvate. The increase of alanine 

concentration in the insulin-resistant PCOS women (compared to non insulin resistant 

patients) is in perfect agreement with a previous study reported by Zhang et al. (Zhang et al. 

2014).  
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As mentioned above, among the variables that mostly contributed to the separation of the 

normoinsulinemic and hyperinsulinemic women there is also the anti-müllerian hormone 

(AMH). This hormone is a member of the transforming growth factor-β (TGF-β) superfamily 

and it is considered an important marker of ovarian reserve (van Rooij 2002). AMH values 

are important markers for PCOS, in fact, women affected with syndrome, have 2- to 3-fold 

higher levels of AMH than healthy women (Pigny et al. 2003). Interestingly, Takahashi et al. 

found that oocytes are more likely to be fertilized when follicles are able to make high 

concentrations of AMH in the follicular fluid. Thus, they speculated that AMH could be 

considered a prediction marker for fertilization (Takahashi et al. 2007). Lin et al. found also a 

negative correlation between AMH and BMI. This could be in line with our result, as 

normoinsulinemic women have a lower BMI than the insulin-resistant group. However, the 

authors didn’t find any correlation between the hormone values and the insulin resistance 

parameters (Lin et al. 2011).  

The study of the correlations among all the metabolites has been demonstrated to be a 

valuable analytical tool in systems biology (Steuer 2006). For this reason, the Pearson's 

correlation analysis of the metabolites was performed. At a threshold of r ≥ │0.5│, 16 

positive and 7 negative significant correlations were found, and the metabolites characterized 

by the highest correlation values turned out to be glucose, lactate, pyruvate, acetoacetate and 

3-HB. We have found significant (p < 0.05) negative correlations between glucose and lactate 

(-0.78), and between glucose and pyruvate (-0.70). On the contrary, we found significant 

positive correlations between pyruvate and lactate (0.70), and between acetoacetate and 3-HB 

(0.95). Interestingly, these data are in agreement with the metabolite correlations found in FF 

of women not presenting the PCOS (Pinero-Sagredo et al. 2010). These correlations 

strengthens the hypothesis of an important anaerobic metabolism occurring in the 

hyperstimulated follicles (Gull et al. 1999), and the strong correlations among glucose, 

pyruvate and lactate confirm that FF provides lactate and pyruvate to the developing oocyte as 

a source of energy. Acetoacetate and 3-HB are synthesised from acetyl-CoA by fatty acid 

oxidation and their correlation can be explained by the fact that they are interconvertible by 

means of the β-hydroxybutyrate deidrogenase. 

In summary, FF represents a suitable source of information since it is superfluous, 

abundant and easily available material during the IVF treatment. Metabolomics studies on this 

fluid can provide useful information about changes in the physiological state of patients, 

alterations of metabolic pathways, as well as biomarkers for oocyte quality and IVF success 



 72 

 

rate. In the case reported here, the hyperinsulinemia in PCOS patients is responsible for a 

different FF metabolic profile. In particular, hyperinsulinemia seems to be also associated 

with impaired carbohydrate/glucose and lipid metabolism. Interestingly, AMH turned out to 

be positively correlated with glucose and negatively correlated with lactate, pyruvate and 

alanine. Although the data reported here are preliminary, this study paves the way to a better 

comprehension of the relationships among hormones and metabolites. To the best of our 

knowledge, this is the first study that attempts to correlate AMH values with the FF 

metabolites.  
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Chapter 7 
CONCLUSIONS 

The work presented in this Ph.D. thesis shows six examples of NMR-based metabolomics 

applications in the field of food, pharmaceutical, nutraceutical and medical sciences. In 

particular, the metabolomics approach was used to identify key metabolites as indicators of 

geographical origin and cultivar peculiarities (in food-related applications), as well as to 

identify, in all the other projects, candidate biomarkers of (i) in vitro anticancer activity, (ii) in 

vivo effects of nutraceuticals and (iii) disease related patterns.  

NMR-based metabolomics has been widely used in recent years to obtain a ‘holistic view’ 

of the metabolome (foodome) of various kinds of beverages and foods. In Chapter 5, 

explorative studies on extra virgin olive oil and apple juice have been performed to retrieve 

information about chemical composition, cultivar-related variability, and influence of the 

growing condition. Algerian extra virgin olive oil composition turned out to be very variety-

dependant. Each variety showed strength and weakness points in the chemical composition 

suggesting the potentiality of these cultivars to produce high quality blends that could be able 

to compete with other Mediterranean products. The metabolomics approach also allowed to 

correlate the chemical fingerprint of the cultivars to the geographical area of collection. In 

particular, the oils produced from olives collected in the region closer to the Mediterranean 

Sea were richer in polyphenols than the samples collected in the inland region. In the second 

study, a NMR-based metabolomics approach was applied, for the first time, to chemically 

characterize apple juices of about 100 ancient Danish cultivars. As in the case of the olive oil, 

also the apple juice chemical composition turned out to be very variety-dependant. In 

particular, the analysis of the aromatic region of the NMR spectrum showed that some juices 

have an interesting composition in polyphenolic content, suggesting the formulation of 

precisely characterized niche products. Moreover, this project also offered the possibility to 

demonstrate the application of a novel variable selection method (rPLS) for the prediction of 

sweet and sour taste of apple juice from Nuclear Magnetic Resonance (NMR) spectra.  

In Chapter 6 the results obtained from four different metabolomics studies on samples of 

biological origin is provided. The first study, related to cell metabolomics, allowed to develop 
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a reliable experimental protocol for an efficient harvesting, quenching and extraction of 

cellular metabolites of human adherent cancer cell lines, while providing also a preliminary 

insight to the in vitro action of the three anticancer drugs tested. The second and the third 

studies concerned the evaluation of functional food ingredients, namely, β-glucans and 

phytosterols, using in vivo animal models. The β-glucans study demonstrated that medium 

and low molecular weight β-glucans, as well as the commercially available Glucagel 

concentrates from barley, increase bile acids excretion in hypercholesterolemic rats. 

Interestingly, a modulation of the primary and secondary bile acid excretion occurs, 

depending on the molecular weight (and thus the viscosity) of the BGs employed. Despite the 

extensive literature on BGs, this is the first time that the MW of the β-glucan is reported to 

selectively influence the primary/secondary bile acids excretion. Considering the growing 

interest in developing new nutraceutical barley-based products, the results reported here are 

extremely interesting, since demonstrate the considerable physiologic benefits of barley BG-

enriched diet. Similar study has been performed to evaluate effect of phytosterols on the 

intestinal inflammation. The results of this explorative study showed the perturbation caused 

in the liver metabolome after the colitis induction, as well as the role of phytosterols in 

restoring the homeostatic equilibrium. The last study concerned the metabolomics study of 

follicular fluid from women affected with the Polycystic Ovary Syndrome. Although reported 

results are preliminary, they pave the way to a better comprehension of the relationships 

among serum hormones and follicular fluids metabolites.  

 

The outcome of these studies further encourages the use of metabolomics to obtain a 

‘holistic view’ of food and biological matrices. In particular, this thesis reports examples of 

the application of this approach and demonstrates, once again, how to unravel comprehensive 

biological questions and how to potentially improve products and quality of life. 
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Abstract: The study of cell lines by nuclear magnetic resonance (NMR) spectroscopy metabolomics
represents a powerful tool to understand how the local metabolism and biochemical pathways
are influenced by external or internal stimuli. In particular, the use of adherent mammalian
cells is emerging in the metabolomics field in order to understand the molecular mechanism of
disease progression or, for example, the cellular response to drug treatments. Hereto metabolomics
investigations for this kind of cells have generally been limited to mass spectrometry studies. This
study proposes an optimized protocol for the analysis of the endo-metabolome of human colon cancer
cells (HCT116) by NMR. The protocol includes experimental conditions such as washing, quenching
and extraction. In order to test the proposed protocol, it was applied to an exploratory study of cancer
cells with and without treatment by anti-cancer drugs, such as DNA G-quadruplex binders and
Adriamycin (a traditional anti-cancer drug). The exploratory NMR metabolomics analysis resulted in
NMR assignment of all endo-metabolites that could be detected and provided preliminary insights
about the biological behavior of the drugs tested.

Keywords: cell metabolomics; colon cancer; NMR spectroscopy; Multivariate statistical analysis;
G-quadruplex ligands

1. Introduction

In the last decades, metabolomics studies have been performed on different biofluids (e.g., plasma,
serum, urine, saliva, lymph and cerebrospinal fluid) with successful results, showing applications in
many areas, such as biomarker discovery, clinical studies, nutritional studies, drug efficacy and toxicity
evaluations and disease diagnosis [1–4]. However, recent developments in the use of metabolomics
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involve the characterization and interpretation of the cell metabolome, starting from prokaryotes
(especially Escherichia coli) to eukaryotes cell lines (yeast or mammalian cells) [5,6]. Complementary to
the classic biofluid analyses, the metabolomic profiles of cells represent a powerful tool to understand
how the local metabolism and biochemical pathways are influenced by pathologies and by external
or internal stimuli. In particular, the metabolome analysis of cells grown in vitro provides important
information for the development of models of biological pathways and networks. In vitro cell
metabolomics analysis offers several advantages: experimental variables are easier to control, higher
reproducibility, less expensive and easier to interpret than analysis of animal models and human
subjects [7]. The use of mammalian cells is emerging in the metabolomics field in order to understand
the molecular mechanism of disease progression, the cellular response to drug treatments [8] and
the cell culture monitoring [9]. In particular, the identification and characterization of cancer cell
metabolomic signature may play an important role in the early diagnosis as well as in the following
therapeutic response, making it possible to map the drug action into metabolic pathways [10].

Colon carcinoma is the third most commonly diagnosed cancer in the world and the second most
common cause of death from cancer [11]. Surprisingly, few metabolomic studies dealing with colon
carcinoma cell lines are reported in the literature [12–16]. The analysis of metabolic profiles of this
cell line provides a comprehensive assessment of the alterations in the metabolite levels in cells and
can produce important information on in vitro actions of drugs towards their incorporation into novel
therapeutic settings.

Recently, targeting of DNA secondary structures, for example G-quadruplexes, has been
considered as an appealing opportunity for drug intervention in anti-cancer therapy [17]. G-quadruplex
DNA (G4-DNA) structures are four-stranded helical DNA (or RNA) structures, comprising stacks
of G-tetrads, which are the outcome of planar association of four guanines in a cyclic Hoogsteen
hydrogen-bonding arrangement. From the biological point of view, G4-DNAs are widespread in the
genome and they are present in the promoters of a wide range of genes, important in cell signaling,
and recognized as hallmarks of cancer: c-Myc, c-Kit and K-Ras (self-sufficiency); pRb (insensitivity);
Bcl-2 (evasion of apoptosis); VEGF-A (angiogenesis); hTERT (limitless replication); and PDGFA
(metastasis) [18]. The G4-DNAs are also found in telomeric regions of the chromosome [19]. Telomeric
DNA consists of tandem repeats of a simple short sequence, rich in guanine residues (TTGGGA).
Telomeres protect the ends of the chromosome from damage and recombination, and their shortening
is implicated in cellular senescence. The elongation of telomeric DNA, operated by the enzyme
telomerase, leads cancer cells towards an infinite lifetime. The inhibition of telomerase, which is
over-expressed in about 85% of tumors, represents the forefront of research for new effective anti-cancer
drugs. Since this enzyme requires a single stranded telomeric primer, the formation of G-quadruplex
complexes by telomeric DNA inhibits the telomerase activity. In this respect, it has been found that
small molecules that stabilize G-quadruplex structures are effective telomerase inhibitors and can be
considered as novel drugs candidates for anti-cancer therapy [20]. Recently, it has been discovered
that a number of G-quadruplex ligands are exerting interesting antitumor activity in vitro [21,22].

Since the G-quadruplex ligands may be important for the development of new anti-cancer agents,
this study is aimed to verify the feasibility of a NMR metabolomics study of HCT116 cells when treated
with these agents. In particular, the treatment with compound 1, which is one of the most promising
ligands discovered by virtual screening calculations [23] (Figure 1), was compared to the treatment
with pentacyclic acridine RHPS4 (2) (Figure 1), which is one of the most studied G4 ligands [24],
and to treatment using the well-known antitumor agent Adriamycin (3) (Figure 1). Adriamycin is
an approved chemotherapeutic agent with strong activity against a wide range of human malignant
neoplasms including acute leukemia, non-Hodgkin lymphomas, breast cancer, Hodgkin’s disease and
sarcomas [25]. Thus, this study describes an optimized protocol for NMR metabolomics of adherent
mammalian cell lines and the preliminary application and validation to treated cancer cells.
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2. MaterfialsandMethods

2.1.Materfials

HCT116cellswerepurchasedfromAmerficanTypeCultureCollectfion(ATCC–Manassas,VA,

USA).HfighglucoseDulbecco’sModfifiedEagle’smedfium(DMEM/HIGHGlucose)wfithL-Glutamfine

waspurchasedfromEuroclone(MI,Italy),penficfillfin–streptomycfinsolutfionforcellculturewas

purchasedfromGfibco(NY,USA).Fetalbovfineserum(FBS)waspurchasedfromThermoScfientfific

(HyCloneTM).Crystalphosphatebuffersalfine(PBS)(0.01MPhosphatebuffer,0.0027MKCle0.14M

NaCl,pH7.4at25 C)waspurchasedfromBfiolfine(TR,Italy).

Deuterfiumoxfide(D2O,99.8%D)wasobtafinedfromSfigma-Aldrfich(St. Loufis, MO,USA).

Allotherreagentswereofanalytficalgrade.

2.2.CellCulture

TheHTC116cellsweregrownfinhfighglucose(4.5g/L)Dulbecco’sModfifiedEagle’sMedfium

(DMEM/HIGHGlucose,Euroclone)supplementedwfith10%FBS,L-Glutamfine(2mM),penficfillfin

(100U/mL)andstreptomycfin(1mg/mL),at37Cfinahumfidfifiedatmosphereof5%CO2.In

ordertoobtafinthefinaldesfirednumberofcells(1.5 106)foreachtreatment,thecellgrowthwas

carrfiedoutfinparallelfinmultfiple(3)150mmtfissueculturedfishes(Cornfing).Uponachfievement

of90%cellularconfluency,theculturemedfium(15mL)wasremovedandthecellswereprocessed

fortheendo-metabolomficanalysfis.Inbrfief,thecellswereextensfivelywashed(4tfimes)wfithfice-cold

phosphate-bufferedsalfine(PBS1X)finordertocompletelyremoveanyresfidueofculturemedfium.

Afterwards,5.4mLofPBSwereaddedtoeachculturedfishandcellswerecollectedbyscrapfingwfitha

rubberpolficeman.Ffinally,thecellswerecounted,placedfinFalcontubesandthefinalPBSvolumes

wereadjustedtoobtafin15 106cellsfinto5.4mLPBS(pH7.4).Ontheothersfide,theculturemedfium

ofeachcellgrowthwascollectedandfimmedfiatelystoredat 80Ctobeused,fintheclosefuture,for

theexo-metabolomeanalyses.

2.3.Antfi-CancerDrugTreatments

Thedoseanddrugexposureduratfiontfimeofcellcultureforcompounds1and2wereestablfished

accordfingtothelfiterature(IC50)[26],whfiletheoptfimalcondfitfionsforcompound3werechosenon

thebasfisoffin-houseunpublfishedresults.Inordertohaveaunfiquegroupofuntreatedcontrolcells

valfidforallthreetreatments,compounds1and2wereaddedtocellcultures24hafterseedfing.Cells

wereexposedtothedrugtreatmentfor72hwfith1µMfinalconcentratfion;compound3wasaddedto

cellcultures80hafterseedfing.Inthfiscase,thedrugexposureofcellcultureswasfor16hwfith0.1µM

finalconcentratfion.Thus,allthecells(fincludfingcontrols)weredetachedfromtheplatesafter96h.

2.4.CellMetabolomeQuenchfing

TheFalcontubescontafinfingthedetachedcellswerefimmersedfintolfiqufidnfitrogenuponcomplete

freezfingofthesamplesandthenslowlythawedfinanficebath.Ffinally,todestroythecellmembrane
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favorfingthereleaseofthefintracellularmetabolfites,thequenchedcellswerelysedbysonficatfion

(3short-pulsecyclesof30seach,atmaxfimumpower).

2.5.MetabolfitesExtractfionforNMRAnalysfis

Intracellularmetabolfiteswereextractedusfingadualphaseextractfionprocedurefintroducedby

BlfighandDyerfin1959[27]wfithslfightmodfificatfions.Addfing6mLofcoldmethanol(20C)and

6mLofchloroformtotheorfigfinalsolutfion(5.4mL)contafinfingquenchedcells,brfieflyamfixtureof

water,methanolandchloroformfinthevolumeratfioof0.9:1:1wasobtafined,correspondfingtoatotal

volumeof17.4mL.Afterwards,thfismfixturecontafinfingquenchedandlysedcellswasfincubatedfor

20mfinonficeandvortexedfrequentlytofacfilfitatetheextractfion.Thecellextractswerecentrfifuged

at4000gat4Cfor20mfin.Thfisextractfionproceduregeneratedatwo-phaseextractthatcanbe

descrfibedasfollow:theaqueousupperphasecontafinswater-solublefintracellularmetabolfites,whfile

apolarmetabolfitesaslfipfidmoleculesarefintheorganficlowerphase.Protefinsandmacromoleculesare

trappedfinthethfinskfin-lfikelayerbetweenthetwophases.Theupperandlowerphasewereseparated

andcarefullytransferredfintodfifferentfalcontubes.Eventually,solventswerecompletelyremoved

frombothfractfionusfingavacuumconcentrator(hydrophylficphase)andunderagentleflowofN2
gas(organficphase).Onlythehydrophfilficphasehasbeentakenfintoaccountfinthfisstudywhfilethe

organficphasehasbeenstoredat 80Cforfutureanalysfis.

2.6.SamplePreparatfionforNMRAnalysfis

Eachaqueouscellextractwasdfissolvedfin540µLofD2Otogetherwfith60µLofaD2Osolutfion

contafinfingthesodfiumsaltof(trfimethylsfilyl)propanofic-2,2,3,3-d4acfid(TSP)(0.1%w/v),usedas

finternalchemficalshfiftreference(δH0.00ppm),togfiveafinalconcentratfionof0.6mM.Sampleswere

vortexedbrfieflyandtransferredfinto5-mmNMRtubes.

2.7.NMRSpectroscopyofCellExtracts

Allone-dfimensfional1H-NMRspectrawereacqufiredat300KonaBrukerAvanceIII600MHz

ultrashfieldedspectrometer(BrukerBfiospfinGmbh,Rhefinstetten,Germany)operatfingat600.13MHz

forprotons(14.09Tesla)equfippedwfithadoubletunedcryo-probe(TCI)setfor5mmsampletubes.
1HNMRspectraofhydrophfilficcellextractswereacqufiredusfingaone-dfimensfionalNOESY-presat

pulsesequence(RD-90-t-90-tm-90-ACQ).Alltheexperfimentswereacqufiredwfithanacqufisfitfion

tfimeof2.73s,arelaxatfiondelayof4s,mfixfingtfimeof10ms,recefivergafinof181,128scans,128K

datapofintsandaspectralwfidthof18,029Hz(30.041ppm).Allsampleswereautomatficallytuned,

matchedandshfimmed.

Representatfivesamplesoftreatedcellextractswereexamfinedbytwo-dfimensfionalspectroscopy

(JRES,COSY,TOCSY,HSQCandHMBC)toensuretheunambfiguousassfignmentofthemetabolfites.

A700MHzVarfianUnfityInovaspectrometerequfippedwfitha5mm1H{13C/15N}trfipleresonance

probewasusedfortheacqufisfitfionoftwo-dfimensfionalNMRexperfiments.

2.8.NMRDataReductfionandProcessfing

PrfiortoFourfiertransformatfion,eachfreefinductfiondecay(FID)waszero-filledto128Kpofints

andmultfiplfiedbyanexponentfialfunctfionequfivalenttoa1.0Hzlfinebroadenfing.Theresultfingspectra

werephaseandbaselfinecorrectedautomatficallyusfingTOPSPINTM(BrukerBfiospfin)andtheppm

scalewasreferencedaccordfingtotheTSPpeakat0.00ppm.

TheNMRregfionsabove9.43ppmandbelow0.8ppmwereremovedbecausetheyonlycontafin

nofise.Furthermore,theregfionbetween4.75and4.62ppmwasalsoremovedbecausecontafinfing

theresfidualwatersfignal. SfinceNMRspectrashowed mfisalfignmentsfinchemficalshfiftdueto

pH-sensfitfivepeaks,thespectrawerealfignedusfingthefintervalcorrelatfionoptfimfizedshfiftfingalgorfithm

(ficoshfift)[28].Anormalfizatfionpreprocessfingstepwascarrfiedouttocorrectvarfiatfionsoftheoverall

concentratfionsofthesamples.Sfincenoquantfitatfivefinternalstandardwasused,eachspectrumof
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thealfignedNMRdatamatrfixwasnormalfizedtounfitarea,obtafineddfivfidfingeveryvarfiableofeach

spectrumbythesumoftheabsolutevalueofallfitsvarfiables.Allpreprocessfingstepswereperformed

usfingMatlab(2012b,TheMathworksInc.,Natfick,MA,USA).

2.9.MultfivarfiateDataAnalysfis

ThenormalfizeddatamatrfixwasfimportedfintoSfimca-P13.0(Umetrfics,Umeå,Sweden)and

Pareto-scaled[29].Thenumberofprfincfipalcomponents(PCs)ofthePrfincfipalComponentAnalyses

(PCA)[30]wasdetermfinedbyleaveoneoutcross-valfidatfion[31]. Thequalfityofthe models

wasdescrfibedbythesquaredPearsoncorrelatfioncoefficfientR2andQ2values.R2fisdefinedas

theproportfionofvarfiancefinthedataexplafinedbythemodelsandfindficatesthegoodnessoffit.

Q2fisdefinedastheproportfionofvarfiancefinthedatapredfictablebythemodelandfindficates

predfictabfilfity[29].BothR2andQ2varybetween0and1:agoodpredfictfionmodelfisfindficated

byQ2>0.5,whereasaQ2>0.9meansanexcellentpredfictfiveabfilfityofthemodel.Inthfisstudy,all

PCAmodelsperformedshowedaR2 0.9andaQ2 0.8,whfichmeansgoodnessoffitandgoodness

ofpredfictfionofthemodels.

2.10.MetabolfiteIdentfificatfion

Identfificatfionofhydrophfilficmetabolfiteswasachfievedby(fi)comparfisonwfiththechemfical

shfiftsofthemetabolfitesfintheHumanMetabolomeDatabase(HMDB)[32];(fifi)peakfittfingroutfine

wfithfinthespectraldatabasefinChenomxNMRSufite5.0softwarepackage(Chenomx,AB,Canada);

(fififi)analysfisoflfiteraturedata[33–35];(fiv)thefinterpretatfionofthebfi-dfimensfionalNMRspectra;and

(v)theanalysfisoftheStatfistficalTotalCorrelatfionSpectroscopy(STOCSY)[36].

2.11.StatfistficalTotalCorrelatfionSpectroscopyAnalysfis

StatfistficalTotalCorrelatfionSpectroscopy(STOCSY)analysfis(FfigureS1)wasperformedonthe

bfinned(0.02ppm)NMR(1D-NOESY)datasetcontafinfingallsamples,toobtafinthecorrelatfionsamong

themetabolfitesfignals.TheresultswereplottedusfingathresholdvalueofR>0.95.

2.12.MetabolficPathwaysIdentfificatfion

ThefimpactofdrugtreatmentofHCT116colorectalcarcfinomacelllfineonmetabolficpathways

wasevaluatedusfingatoolformetabolomficdataanalysfis,whfichfisavafilableonlfine[37].ThePathway

Analysfismodulecombfinesresultsfrompowerfulpathwayenrfichmentanalysfiswfiththepathway

topologyanalysfistohelpresearchersfidentfifythemostrelevantpathwaysfinvolvedfinthecondfitfions

understudy.Byuploadfingthedfiscrfimfinatorycompoundsthatweresfignfificantlyfinfluencedbydrug

treatment,thebufilt-finHomosapfiens(human)pathwaylfibraryforpathwayanalysfisandhypergeometrfic

testforover-representatfionanalysfiswereemployed.Resultswerethenpresentedgraphficallyaswell

asfinadetafiledtable(FfigureS2).

2.13.Statfistfics

Valuesarepresentedasthemean SD.Dfifferencesbetweendatasetswereanalyzedbyaone-way

ANOVA,andp<0.05wasconsfideredtobestatfistficallysfignfificant.

3. ResultsandDfiscussfion

3.1.OptfimfizatfionoftheQuenchfingandExtractfionProcedures

Thfisfinvestfigatfionwasafimedtoverfifythefeasfibfilfityofthestudyofthemetabolomeofhuman

coloncancercelllfine(HCT116)byNMRwhentreatedwfithantfi-cancerdrugs. Mammalfiancell

metabolomficsfisanemergfingresearchfield,howeverthenumberofstudfiesconcernfingquenchfing

andextractfionmethodsforHCT116cellsfisstfilllfimfitedandgenerallyreferredtostudfiesperformedby

GC-MSandLC-MS.
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Inthfisstudy,severalpublfishedprotocolsforNMR-basedmetabolomficanalysfistorecoverthe

cellmetabolomeweretestedandthebestresultswereachfievedbyselectfingandcombfinfingdfifferent

stepsdescrfibedfinthedfiverseprocedures[38](Ffigure2A).Byanalyzfingandfinvestfigatfingthedfifferent

extractfionprotocols,anumberofcrfitficalpassagesthatrequfiredanextensfiveoptfimfizatfionwere

fidentfified.Forexample,theeffectsofcellquenchfingfinlfiqufidnfitrogenwerethoroughlyfinvestfigated.

Thfiscommonlyrepresentsthefirststepfinseveralextractfionprotocols(fimmedfiatelyafterthegrowth

medfiumremoval)justbeforecellwashfingtoremovethemedfiumresfidues.However,finthfisstudy

fitwasobservedthatwashfingtheHCT116cellsafterthequenchfingstepturnedfintoasfignfificant

lossofthecellmetabolfites,presumablybecausethefreezfingstepfinducesthecellwallbreakagewfith

consequentmetabolfiteleakage.Toovercomethfisproblem,theorderofquenchfingandwashfingwas

finverted.Moreover,astheHCT116cellsgrowasasub-confluentmonolayer,fitwasfoundpartficularly

dfifficulttocompletelyremovethecellgrowthmedfiumdurfingthewashfingstep.Inpartficular,one

ofthemostabundantcomponentsofthemedfium,glucose,challengedthespectralfinterpretatfionof

theextractedmetabolomeduetofitsresfidualsfignalsspreadalloverthecentralregfionoftheNMR

spectrum.Inordertoavofidthfis,thenumberofwashfingstepswasfincreasedtofour. Afterthfis

fintensewashfingprocedure,thecellscouldbedetachedfromthedfishesbymechanficalscrapfingand

themetabolficactfivfityofthecellsfimmedfiatelyquenchedbylfiqufidnfitrogen.Theoptfimfizedprotocolfis

summarfizedfinFfigure2A,andcanberecapfitulatedfinthefollowfingmafinsteps:(fi)growthofthecell

culture;(fifi)abundantwashfing;(fififi)cellscrapfing;(fiv)quenchfingfinlfiqufidnfitrogen;(v)celllysfisby

sonficatfion;and(vfi)dualphaseextractfionprocedureofthemetabolfites.Experfimentaldescrfiptfionof

thesestepsfisreportedfinMaterfialandMethodsSectfion.

3.2.ExperfimentalDesfign

Inordertoreducebfiasfinthefinterpretatfionoftheexperfiments,fitwasdecfidedtoproducethree

bfiologficalreplficatesforeachtreatment(namelywfithcompounds1–3).Furthermore,threecontrol

samples(untreatedones)werealsocollected(CTLa c).Thus,atotalof12sampleswereproducedand

studfiedbyhfigh-resolutfion1HNMR.ThewholedesfignofexperfimentfissummarfizedfinFfigure2B.The
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mostefficfientdoseanddrugexposureduratfiontfimeofcellculturewereusedforeachcompound.

Ffigure2.(A)Generalschemedescrfibfingthewholesamplepreparatfionprotocol.(B)Overvfiewofthe
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Table1.NMRassfignmentofthefidentfifiedmetabolfites.Thevaluesfindficatethepercentageoffincrement

ordecrementfinsfignalfintensfityofanygfivenmetabolfiteupontreatmentwfithrespectofthecontrol.The

valuesreportedfintalficsarenotstatfistficallysfignfificanttobetakenfintoaccountsfincethepercentageof

varfiatfionfislessthanthreetfimesthestandarddevfiatfion(arbfitrarythreshold).

Identfificatfion
Number

Metabolfites
ChemficalShfifts

(ppm)
Compound1 Compound2 Compound3

1 Lactate
1.33(d)

+19% 4% +165% 18% +18 10%
4.13(q)

2 Threonfine
1.34(d)

+14% 4% 46% 2% +17 8%
4.27(m)

3 Tyrosfine
6.91(m)

+28% 3% 36% 3% +17 5%
7.21(m)

4 Phenylalanfine
7.34(d)

+23% 1% 34% 2% +13% 3%7.39(m)
7.44(m)

5 Creatfine
3.04(s)

+23% 2% +49% 10% +19% 5%
3.95(s)

6 Creatfinephosphate
3.05(s)

13% 5% 55% 2% 0 9%
3.96(s)

7 Glycfine 3.58(s) 8% 4% 43% 4% +6 9%

8 Alanfine
1.49(d)

+2% 3% 29 5% +15 9%
3.81(q)

9 Acetate 1.92(s) 0 20% +14% 1% 0% 50%

10 Succfinate 2.39(s) +7% 1% +122% 122% +13% 1%

11 AMP

4.02(dd)

+5 4% 36 5% +16% 8%
4.36(dd)
4.51(dd)
8.28(s)
8.59(s)

12
Isoleucfine,Leucfine,

Valfine

0.94(t)

+29% 4% 11% 5% +15% 9%
1.02(d)
0.97(d)
0.99(d)
1.05(d)

13 O-Phosphocholfine
3.23(s)

68% 1% 61% 1% +21% 7%
4.17(m)

14 Glycerophosphocholfine 3.24(s) 20% 2% 33% 4% 1% 6%

15

Nficotfinficacfid
adenfine

dfinucleotfide
(NAAD)

8.06(t)

12% 2% 48% 3% +15% 2%

8.15(s)
8.42(s)
8.75(d)
8.95(d)
9.13(s)

16 NAD+/NADP+

6.10(d)

8% 2% +62% 11% +6% 6%
8.18(m)
8.84(d)
9.12(d)
9.32(s)

17 Hfistfidfine
7.10(d)

+24% 1% 52% 3% +14% 2%
7.86(d)

18 Glutathfione

2.97(dd)
+9% 2% 43% 9% +13% 4%4.57(q)

2.58(m)

19 ATP 8.52(s) 24% 7% 8% 4% 26% 6%

Thelfimfitednumberoffindependentsamples(12)usedfinthfisstudyfisnotsufficfienttodraw

generalconclusfions,However,thfisrepresentsasfignfificantandnecessaryfeasfibfilfitystudybefore
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setting up a much larger project. Indeed, the whole procedure described in Sections 2.2–5 from cell
seeding to metabolites extraction, represents by far the most labor, cost and time intensive part of
the whole study. In order to achieve a satisfactory and reliable result in terms of reproducibility and
growth yield many trials were conducted to perfection the presented protocol. The purpose was to
demonstrate the feasibility of the NMR metabolomics approach by developing a reliable protocol for
cancer cell line metabolomics using a limited number of reliable sample results.

3.3. Metabolic Profile

The 1D 1H NMR spectra were acquired to determine the metabolic fingerprints of the treated and
untreated cancer cells, while 2D homo- and hetero-nuclear NMR experiments were acquired for the
assignment of the metabolites. The metabolite assignment was accomplished by comparing data from
literature, by peak fitting routine within the spectral database in Chenomx NMR software package, by
the analysis of available chemical shifts databases (i.e., HMDB) and by STOCSY correlation analysis
(Figure S1). The results of the assignment are reported in the Table 1 and in Figure 3.
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Figure 3. (A) Full 1H-NMR spectrum of a representative control sample along with the assignment of
the most intense signals. (B) Expanded region of the spectrum reported in (A) with the assignment of
the less intense metabolites.

The 1D 1H NMR spectra were processed and studied using a completely untargeted and unbiased
multivariate data analytical approach. The aim was to identify the commonalities in the metabolic
signatures associated with response to treatment for each tested compound. For this reason, a principal
component analysis (PCA) was performed on the NMR spectra. The PCA scores plot displaying the
two main principal components (PCs) accounting for 86.3% of the variance (PC-1 70.3%, PC-2 16.0%)
is shown in Figure 4A. The PCA scores plot shows that the samples of the cells treated with RHPS4 (2)
are positioned on the extreme right side of the principal direction of variance PC-1 and the samples of
the cells treated with 1, 3 and controls are placed to the left. Along with PC-2, the treatments with 1
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and 3, positioned in the up-left quadrant of the plot, differ from the control samples, which are found
in the bottom-left quadrant.
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to the NMR assignment reported in Figure 3.

The loadings plot for the first principal component (Figure 4B) shows that the samples treated
with 2 are characterized by a higher content of lactate, creatine, acetate, succinate and NAD+/NADP+,
whereas the concentrations of threonine, glycine, alanine, tyrosine, phenylalanine, leucine, isoleucine,
valine, histidine, creatine phosphate, glycerophosphocholine, O-phosphocholine, glutathione, NAAD
and AMP are lower with the respect of the samples that lie on the left of the plot. The loadings
plot of the second principal component (Figure 4C) is much noisier than that observed for PC-1.
However, it appears that the samples treated with 1 and 3 differ from the control samples by having
a higher content of leucine, isoleucine, valine, tyrosine, phenylalanine and a lower content of ATP.
However, in order to better understand the effect of 1 and 3 on the metabolism of the cancer cells
and to confirm the effect of 2, a direct comparison of the average 1H NMR spectra of the three
replicates for each treatment and controls was performed. The most interesting regions are reported
in Figure 5. This comparison further corroborated the observation done for 2 and revealed that the
treatments with 1 and 3 also caused variation in the content of lactate, threonine, glycine, creatine
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phosphate, glycerophosphocholine, O-phosphocholine, histidine, NAD+/NADP+ and its precursor
NAAD (Figure 5). Specifically, the concentration of lactate, threonine and creatine increases both in
treatments with 1 and 3. Glycine and creatine phosphate both decrease by treatment with 1, whereas
the treatment with 3 shows only a slight increment of creatine phosphate. O-phosphocholine and
glycerophosphocholine were observed to decrease upon treatment with 1, while samples treated with
3 showed only a slight increment of O-phosphocholine. The behavior of NAAD closely resembles that
of creatine phosphate and glycerophosphocholine for all three treatments. On the other hand, histidine
increased in the cell extracts by treatment with compounds 1 and 3. On the contrary, the concentration
of NAD+/NADP+ increased when the cell were treated with compound 3 and decreased by treatment
with 1. Furthermore, the content of acetate and succinate does not vary, while, concentration of ATP
decreases in all three treatments. The behavior of all the cell metabolites is summarized in Table 1.
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3.4. Metabolic Pathways Analysis

As mentioned in the previous paragraph, many metabolites were affected by the treatment with
compounds 1, 2 and 3 (Table 1). In order to identify which metabolic pathways are involved, the
MetaboAnalyst [37] web server was used. This tool suggests the most relevant pathways by uploading
the discriminatory compounds that were significantly influenced by drug treatment. Results are
provided in a so called “metabolic pathway analysis” and a “metabolite set enrichment overview”
(Figure S2).

In particular, compound 2 significantly perturbs the levels of the metabolites that are involved
in mitochondrial activities, compared to the untreated control cells. In fact, among the detected
metabolites, the increased levels of succinate indicate inhibition of Complex I of respiratory chain
of mitochondria useful to convert succinate in fumarate. This event thus impairs TCA cycle and
production of ATP. Furthermore mitochondrion dysfunctions are shown by impaired conversion
of creatine to creatine phosphate that results in further impairment of urea cycle and amino acid
synthesis. Finally, decreased level of ATP and increased level of lactate and acetate are clear signs of
apoptosis [39] and cell death in accordance with the down-regulated glutathione biosynthesis that
suggest an increased reactive oxygen species (ROS) generation and a weakened ability to balance ROS.
The cell death process was further supported by the reduction of choline metabolism that inhibits
protein and DNA synthesis. Compound 1 behaves similarly to compound 2 because of the increase of
lactate, creatine and decrease of creatine phosphate, ATP and glycine, as well as decrement of choline
metabolism (glycerophosphocholine and O-phosphocholine). However, compounds 1 and 3 do not
seem to interfere with TCA cycle, since succinate did not change. Compound 3, similarly to 1 and 2,
drives cell death and apoptosis because of the increased lactate and creatine and decreased ATP.

In summary, the three tested compounds significantly altered the metabolism of the cells. The
NMR data demonstrate that the treatments generally affect amino acid turnover or protein biosynthesis
(alanine, glycine, isoleucine, leucine, valine, tyrosine, phenylalanine, threonine, histidine), tricarboxylic
acid (TCA) cycle and mitochondrial activity (succinate, NAAD, NAD, ATP), urea cycle (creatine,
creatine phosphate), anaerobic metabolism (lactate) and protein and DNA biosynthesis and DNA
repair (choline and phosphocholine). Furthermore, the specific alterations in the choline metabolism by
compounds 1 and 2 indicate that cell death in HCT116 lines is induced interfering with DNA synthesis
and DNA damaged repair and by inhibition of protein synthesis. The NMR data thus strongly suggest
that treatment with compounds 1 and 2 slow down cellular metabolism, aggravate oxidative stress
and reduces DNA synthesis and repair leading to cellular death and apoptosis in accordance with their
anti-cancer activity. Compound 3 also drives cell death and apoptosis due to a general cytotoxicity in
accordance with anti-cancer activity of Adriamycin [40].

4. Conclusions

The implementation of a reliable NMR metabolomics analytical protocol has been quite
challenging, owing to the number of critical steps along the way from cell culture to NMR tubes.
This investigation was aimed at establishing a reliable protocol that describes how to handle the
metabolome of the HCT116 human colon cancer cell line in order to perform a trustworthy metabolomic
NMR analysis. This was pursued by simulating potential drug treatments using a limited number of
“reliable” samples.

The best protocol was selected by combining different analytical procedures reported in
the literature.

The optimized protocol can be summarized in the following main steps: (i) growth of the cell
culture; (ii) abundant washing; (iii) cell scraping; (iv) quenching in liquid nitrogen; (v) cell lysis by
sonication; and (vi) dual phase extraction procedure of the metabolites. It was demonstrated that the
yield of the extraction and the quality of the extracted metabolome is of sufficiently high quality that the
NMR assignment of detectable [41] metabolites could also be accomplished. Furthermore, preliminary
insight into the biological behavior of the three tested anti-cancer compounds were accomplished.
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Olive fruits from 19 varieties and different areas of Béjaïa province (Algeria) were used to producemonovarietal
olive oils in laboratory. The olive oilswere analyzedusing both traditional chemical analyses and nuclearmagnet-
ic resonance (NMR) methodology. The investigation involved pigment content determination, tocopherol
analysis, fatty acid composition, and chromatographic determination of phenolic compounds. Chlorophyll, carot-
enoids, tocopherols and the content of oleic acid turned out to be variety dependent. The extra-virgin olive oils
(EVOOs) were analyzed as a whole and as phenolic extract by NMR. The study gave general indication on olive
oil quality and information about geographical origin of the samples. Overall, the results obtained in the present
work reveal that Algerian monovarietal olive oils produced in Béjaïa province have the potential to produce
blends that may compete with other Mediterranean products.
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1. Introduction

Each olive oil has a peculiar fatty acid composition and also contains
several micronutrients (Escrich, Moral, Grau, Costa, & Solanas, 2007)
and a variety ofminor components responsible for its particular sensory
and nutritional characteristics (Boskou, 2006). Fatty acids (counting for
about 98% of an olive oil weight) are mainly incorporated in triglycer-
ides and diglycerides. Instead, minor components principally include
pigments, tocopherols and phenolic compounds (Arslan & Schreiner,
2012; Manai-Djebali et al., 2012; Rigane, Boukhris, Bouaaziz, Sayadi, &
Ben Salem, 2013; Vichi, Lazzez, Grati-Kamoun, & Caixach, 2012).
Among all these compounds, monounsaturated fatty acids, pigments
and antioxidants play an important role in extra-virgin olive oils
(EVOOs) stability, as well as in the prevention of some diseases
(Rotondi et al., 2004; Servili et al., 2009).

The absolute concentrations and relative proportions of olive oil's
minor components are characteristic of each batch of olive oil, allowing
for identification of the production area and possible adulterations
(Angerosa, Campestre, & Giansante, 2006). The fine composition of an
olive oil, besides being strongly dependent on the cultivar used for its
zo).
production, is influenced by several other factors like climate, soil condi-
tions and agricultural practices. More than 75% of the world olive oil
production is concentrated in the Mediterranean area (Kavallari, Maas,
& Schmitz, 2011) and it is constantly increasing. An in-depth chemical
characterization of all Mediterranean olive oils is a key factor to increase
the value for this specific production in order to preserve the unique
landscape offered by the olive groves of the Mediterranean regions.

Algeria is one of the countries where the olive oil production is par-
ticularly increased in the last ten years, thanks to two agricultural
renewal programs, over the 2006–2008 and 2009–2014 periods,
allowing producers to update their production tools. In these years, cul-
tivation zones passed from 165,000 to 500,000 ha, and Algeria is nowa-
days considered as a new olive oil exporter. Despite the increased
production, olive oils from this area are poorly studied compromising
their exportation especially in the countries that are major producers
of olive oils.

Therefore, the aim of this work is to chemically characterize
monovarietal Algerian EVOOs from different areas of the Béjaïa prov-
ince, that is the area where the olive oil production is mostly increased,
and, eventually, to suggest possible blends. The investigation was per-
formedusing traditional chemical analyses aimed to determine the con-
tent of fatty acids, pigments, tocopherols and phenolic compounds.
These analyses were further supported by the use of NMR spectroscopy.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.foodres.2016.04.024&domain=pdf
http://dx.doi.org/10.1016/j.foodres.2016.04.024
mailto:antonio.randazzo@unina.it
http://dx.doi.org/10.1016/j.foodres.2016.04.024
http://www.sciencedirect.com/science/journal/09639969
www.elsevier.com/locate/foodres
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Noteworthy, although NMR is nowadays recognized as an important
tool for food characterization (Mannina, Sobolev, & Viel, 2012), this is
the first NMR investigation of Algerian olive oils. In particular, NMR
was used to characterize olive oils in terms of geographical origin, culti-
var, and genuineness (Mannina et al., 2009; D'Imperio et al., 2007;
Mannina, Marini, Gobbino, Sobolev, & Capitani, 2010; Mannina &
Sobolev, 2011).

2. Materials and methods

2.1. Extra virgin olive oil sampling

Twenty-six monovarietal extra virgin olive oil (EVOO) samples from
different areas of the province of Béjaïa (Algeria) (Fig. 1) were analyzed.
The olive fruits coming from 19 different cultivars (Table S1) were
randomly and manually picked from all parts of the selected fully-
grown olive trees. In order to eliminate the influence of the maturation
state on olive oil quality, the ripening degree was the same for all stud-
ied olive samples. After the harvest, olive fruits were immediately
transported to the laboratory. The olives were washed and deleafed,
and only healthy fruits, without any kind of infection or physical dam-
age, were selected. Olive oil samples were obtained using a laboratory
oil mill (Levi-Deleo-Lerogsame), consisting of three basic elements: a
hammer crusher, a thermo-beater (mixer) and a pulp centrifuge. The
olive fruits were milled in the hammer crusher, and then the olive
paste was kneaded for 30 min with the addition of warm water
(50 mL of water was added to 920 g of paste). After the vertical centri-
fugation, the olive oil was collected and left to stand. The olive oil sam-
ples were stored in amber-glass bottles, labeled with the laboratory
code, without headspace and kept at 4 °C in the dark until analysis.

2.2. Pigment content determination

Chlorophyll and carotenoid pigments were determined by UV spec-
troscopy at 670 and 470 nm, respectively, in cyclohexane, using the
specific extinction coefficients, according to the method proposed by
Fig. 1.Areas of the province of Béjaïa (Algeria) where the olives fruits were harvested. The provi
lines, respectively. Sample code, cultivar and area of origin of the samples are also reported.
Minguez-Mosquera, Rejano, Gandul, Sanchez, and Garrido (1991). The
values of the specific extinction coefficients used were ε0 = 613 for
pheophytin, as a major component in the chlorophyll fraction, and
ε0 = 2000 for lutein as a major component in the carotenoid fraction.
Thus, pigment content was calculated as follows:

Chlorophyll mg kg−1
� �

¼ A670 � 106
� �

= 613� 100� dð Þ

Carotenoid mg kg−1
� �

¼ A470 � 106
� �

= 2000� 100� dð Þ

where A is the absorbance and d is the spectrophotometer cell thickness
(1 cm).

Chlorophyll and carotenoid contents were expressed as mg of
pheophytin “a” and lutein per kg of oil, respectively.

2.3. Tocopherol analysis

Tocopherols were evaluated following the method developed by
Rovellini, Azzolini, and Cortesi (1997). A solution of olive oil in acetone
was analyzed by high performance liquid chromatography (HPLC) on a
reversed phase silica column (Allsphere ODS2 Alltech 5 μm,
250 mm × 4.6 mm) and was eluted with acetonitrile/methanol (1:1)
at a flow rate of 1.3 mL/min. An UV detector was used at 292 nm.

2.4. Fatty acid composition analysis

The fatty acid composition was determined as methyl ester deriva-
tives by gas chromatography (GC) according to methods described in
EC Regulation 796/, 2002. Fatty acid methyl esters were prepared by
vigorous shaking of a solution of each olive oil sample in n-hexane
(0.5 g in 5 mL) with 0.5 mL of 2 N methanolic potassium hydroxide so-
lution. Chromatographic analysis was performed on a CHROMPACK C
9002 gas chromatograph equippedwith a FID detector, using a capillary
column DB 23 (30m× 0.32mm i.d. ×0.25 μm film thicknesses). The in-
jector and detector temperatures were maintained at 250 °C; the oven
nce of Béjaïa is bordered by black bold line. Regions 1 and 2 are bordered by green and blue
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temperature was set at 200 °C. Nitrogen was employed as a carrier gas
with a flow rate of 1 mL/min.

2.5. Chromatographic determination of phenolic compounds

A solution of internal standard (1 mL of 0.015 mg mL−1 of syringic
acid in water/MeOH 20:80 v/v) was added to a sample of virgin olive
oil (2 g). The mixture was shaken (30 s) and 5 mL of the extraction so-
lution containingwater andMeOH (20:80 v/v)was added. The obtained
mixturewas shaken for 1min, extracted for 15min in an ultrasonic bath
and then centrifuged at 5000 rpm (2500 g) for 25 min at T = 20 °C
(Norme Grassi e Derivati, NGD, 2010; IOC, 2010). The upper phase
wasfiltered using a 0.45 μmPVDF syringe filter, and then 20 μL of thefil-
tered solution was analyzed by HPLC with a UV detector at 280 nm
(Fig. S1). The HPLC system consisted of a C18 Spherisorb ODS-2 reverse
column (5 μm, 250mm×4.6mm). Elutionwas performed at a flow rate
of 1mLmin−1 following a gradient composed of amixture of water and
orthophosphoric acid (99.8:0.2 v/v) (solvent A), MeOH (solvent B) and
acetonitrile (solvent C): from 96% (A)–2% (B)–2% (C) to 0% (A)–50%
(B)–50% (C) in 60 min. The last gradient was kept for 10 min. The suc-
cessive gradient was: from 0% (A)–50% (B)–50% (C) to 96% (A)–2%
(B)–2% (C) in 2 min and then kept for 10 min. The identification of
phenolic compounds was performed by HPLC–MS. The main phenolic
compounds were identified by comparison with relative retention
times and UV spectra of pure standards.

2.6. Statistics

The chemical analysis data reported in the tables were subjected to
analysis of variance using the Statistica 5.5 package (StatSoft 97
edition). Where statistical differences were noted, differences among
packages were determined using the ANOVA/MANOVA following the
Newman–Keuls test. Significance was defined at p b 0.05.

2.7. Phenolic compounds extraction for NMR experiments

Phenolic compounds were extracted from EVOOs according to
Montedoro, Servilli, Baldioli, and Miniati (1992) and Christophoridou
and Dais (2009) method with minor modifications: 8 mL of MeOH/
water (80:20, v/v) solution was added to 8 g of EVOO; the mixture
was vortexed for 30 s and the two phases were separated by centrifuga-
tion at 1400 g for 10 min. The extraction was repeated twice. Alcoholic
extracts were then combined and concentrated under vacuum at
T b 35 °C until a syrupy consistency was reached. Then 8 mL of acetoni-
trile was added to the extract, and it was partitioned with 8 mL of n-
hexane. The two phases were then separated by centrifugation at
1400 g for 10min and the acetonitrile phaseswere dried under a stream
of nitrogen.

2.8. NMR experiments

The experiments were performed both on the EVOOs and the rela-
tive phenolic extracts. NMR samples were prepared by mixing 20 μL of
the EVOO sample with 560 μL of deuterated chloroform and 20 μL of
deuterated DMSO (DMSO-d6). The addition of DMSO-d6 has been
proved to be useful for the dissolution of oil and fat minor components
(Sacchi et al., 1996). The phenolic fractions were dissolved in DMSO-d6
in order to get a final concentration of 10mgmL−1, finally 600 μL of this
clear solution was transferred into the NMR tube. NMR experiments
were conducted in 5 mm NMR tubes at 25 °C with a 700 MHz Varian
Unity Inova spectrometer equipped with a 5 mm 1H{13C/15N} triple
resonance probe. 1H NMR spectra of EVOOs and phenolic extracts
were acquired using the same parameters: spectral width 11,193.507,
acquisition time 2.92 s and relaxation delay 3 s. 90° pulses were used
in both cases.
2.8.1. NMR data reduction and preprocessing

2.8.1.1. Olive oil. The spectra were processed using iNMR software
(www.inmr.net). 1H NMR spectra were obtained by the Fourier Trans-
formation (FT) of the free induction decay (FID), applying an exponen-
tial multiplication with a line-broadening factor of 0.5 Hz. The NMR
regions above 11.7 ppm and below 0 ppm were removed because
they contain only noise. Furthermore, regions between 7.1 and
7.5 ppm and between 2.49 and 2.58 ppm were discarded because of
the residual signals of chloroform and DMSO respectively. Data reduc-
tion was obtained by dividing the spectra in evenly spaced windows
of 0.002 ppm width. Then the normalization step was needed as in
the case of extracts. Therefore each spectrum of the NMR data matrix
was normalized referring to the area under the signal of themethyl pro-
tons at 0.821 ppm. After this preprocessing step of the spectra, a matrix
of 26 rows (samples) and 5865 columns (ppm) was obtained and di-
rectly submitted to the multivariate statistic analysis.

2.8.1.2. Phenolic extracts. 1H NMR spectra were segmented in buckets
of fixed 0.002 ppm width and integrated. The NMR regions above
10.25 ppm and below 0 ppm were removed because of the absence of
signals. The regions between 2.50 and 2.57 ppm and between 3.30
and 3.62 ppm were discarded because of the residual signals of DMSO
andwater, respectively. Furthermore, the regions of residual signals be-
longing to triglyceride esters still present in the extracted samples were
also removed. Since NMR spectra showed slight misalignments in
chemical shift due to pH-sensitive peaks, the spectra were aligned
using the interval correlation optimized shifting algorithm (icoshift)
(Savorani, Tomasi, & Engelsen, 2010). A normalization preprocessing
step was carried out to correct variations of the overall concentrations
of the samples. Since no quantitative internal standard was used, each
spectrum of the aligned NMR data matrix was normalized to unit area,
obtained by dividing every variable of each spectrum by the sum of
the absolute value of all its variables. In the end, a total of 5115 variables
were analyzed for each spectrum.

All preprocessing steps were performed using Matlab (The
Mathworks Inc., Natick, MA).

2.8.2. Statistical analysis
NMR data matrixes were imported into Simca-P 13.0 (Umetrics,

Umeå, Sweden) and pareto-scaled (Eriksson, Johansson, Kettaneh-
Wold, & Wold, 1999). A principal component analysis (PCA) was per-
formed on the datasets. PCA is an unsupervised statistical approach
that allows to identify patterns in a dataset highlighting hidden similar-
ities and/or differences.

The goodness of the model is given by the degree of fit and by the
predictive ability. The degree of fit tells how much of the variance
from the dataset can be explained by the model; a quantitative mea-
surement of the fit is given by the parameter R2. The predictive power
of the model is tested through the cross-validation (CV) procedure.
The idea is to develop different models, keeping out, each time, some
samples from the dataset. The model on the reduced dataset is then
used to predict the omitted samples. Q2 is the parameter that indicates
the goodness of prediction of the model (Eriksson et al., 1999). In this
case leave-one-out CV was employed given the limited number of sam-
ples, thus only one sample was removed each time in the CV process.
Both R2 and Q2 can vary from 0 to 1, where 0 means no fitting and no
prediction model. The PCA models performed in this study showed a
R2 ≥ 0.7 and a Q2 ≥ 0.5, which indicate goodness both of fit and predic-
tion. The optimal number of component was established looking at
both R2 and Q2.

Statistical Total Correlation Spectroscopy (STOCSY) analysis was
performed on the binned NMR data matrix of the phenolic extracts in
order to obtain the correlations among the signals belonging to the
same compounds. The results were plotted using a threshold value of
R ≥ 0.9 (Fig. S2).

http://www.inmr.net


1126 F. Laincer et al. / Food Research International 89 (2016) 1123–1133
2.8.3. Metabolites identification

2.8.3.1. Olive oil. The assignment of the major and minor components of
olive oil was carried out according to the references Sacchi et al. (1996);
Sacchi, Addeo, and Paolillo (1997); Segre and Mannina (1997) and
Mannina, Patumi, Fiordiponti, Emanuele, and Segre (1999). The identi-
fied signals are shown in Fig. 2 and reported in Table S2.

2.8.3.2. Phenolic extract. Identification of phenolic compounds was
obtained following the references in the literature (Christophoridou,
Dais, Tseng, & Spraul, 2005; Christophoridou &Dais, 2009) and the anal-
ysis of the Statistical Total Correlation Spectroscopy (STOCSY) (Fig. S2).
The complete assignment is reported in Table 1 and Fig. 3.

3. Results and discussion

3.1. Chlorophyll and carotenoids

Chlorophylls and carotenoids are the main pigments in vegetable
oils. Their total content in olive oils is an important quality parameter,
since it correlates with color, which is one of the first characteristics
evaluated by consumers. These pigments act as pro-oxidants in the
presence of light and as antioxidants in the darkness (Psomiadou &
Tsimidou, 2002). Furthermore, they have biological and health proper-
ties (Ranalli & Modesti, 1999).

In the investigated EVOOs, chlorophyllic and carotenoid pigments
were found to be at concentrations between 0.1 and 3.1 mg kg−1 and
between 0.1 and 1.6mg kg−1, respectively (Table 2). The data indicated
a significant influence of the variety on the amount of chlorophylls and
carotenoids (p b 0.05). For example, Azeradj (sample 26) and Bouchret
(sample 1) olive oils contained the lowest level of chlorophyll
(0.1 mg kg−1) and carotenoids (0.1 mg kg−1), respectively, whereas
olive oil extracted from Takesrit (sample 7) contained the highest level
Fig. 2. 1HNMR spectrumof a representative EVOO sample. Some expanded regions containingm
is indicated on the top left of each square. Letters on the NMR signals in the left top frame corr
of chlorophylls and carotenoid pigments (3.1 and 1.6 mg kg−1,
respectively).

3.2. Tocopherol composition

Four tocopherol isomers were detected and quantified in the ana-
lyzed samples: α-tocopherol (the most abundant), β-tocopherol, γ-
tocopherol and δ-tocopherol (Fig. S3). As shown in Table 3, the amount
of α-tocopherol showed significant differences between cultivars
(p b 0.05), varying from 204.8 to 573.0 mg kg−1. On the other hand,
β-tocopherol and γ-tocopherol ranged from 1.3 to 9.2 mg kg−1 and
from 0.6 to 59.1 mg kg−1, respectively. Concerning δ-tocopherol, the
highest value was determined in the Rougette de Mitidja oil (sample
25) (1.6 mg kg−1). Total tocopherols' content showed the same trend
of α-tocopherol, since it was the most representative isomer in the to-
copherol composition. The minimum and maximum contents (209.6
and 581.8 mg kg−1) were observed in Bouichret (sample 1) and Souidi
(sample 24) varieties, respectively. These results are in agreement
with the literature, and indicated that tocopherol content is highly vari-
ety dependent (Deiana et al., 2002;Manai-Djebali et al., 2012; Dağdelen,
Tümen, Ozcan, & Dündar, 2012). Interestingly, α-tocopherol, the active
form of vitamin E, exerts, along with the polyphenols, an important an-
tioxidant action that prevents the oxidation of low density lipoproteins
(LDLs). All the analyzed samples were found to contain more than
200 mg kg−1 of α-tocopherol, with an average content of total tocoph-
erol of 300 mg kg−1, with the exception of Souidi variety (sample 24),
which is characterized by a 2-fold higher concentration. Thus, assuming
a daily intake of only 10 g of olive oil from Souidi variety, it is possible to
supply about 50% of daily vitamin E requirements.

3.3. Fatty acid composition

Differences among the cultivars were remarkable considering the
relative concentration of saturated (SFA), monounsaturated (MUFA)
inor components of EVOO are reported in the squared expansions. Themagnification value
espond to the compounds reported in Table 1.



Table 1
Chemical shifts, multiplicity of phenolic compounds identified in EVOO extracts by high-
resolution 1H NMR spectroscopy (700 MHz, DMSO-d6).

Compound Chemical shift δ (ppm) (multiplicity, J in Hz,
assignment)

a Aldehydic form of ligstroside
(5S, 8R, 9S)

1.34 (d, 6.6, H10), 2.81 (t, 6.8, H2′), 3.65 (s,
OCH3), 4.15–4.25 (H1a′, H1b′), 6.72 (d, 8.4,
H5′, H7′), 7.06 (d, 8.4, H4′, H8′), 7.55 (s, H3),
9.52 (d, 1.5, H1)

b Aldehydic form of ligstroside
(5S, 8S, 9S)

1.55 (d, 6.6, H10), 2.81 (t, 6.8, H2′), 3.23 (dd,
2.9, 11.0, H5), 3.66 (s, OCH3), 4.15–4.25
(H1a, H1b, H8), 6.72 (d, 8.4, H5′, H7′), 7.06
(d, 8.4, H4′, H8′), 7.59 (s, H3), 9.67 (H1)

c Aldehydic form of oleuropein
(5S, 8R, 9S)

1.34 (d, 6.6, H10), 3.65 (s, OCH3), 4.15–4.25
(H1a, H1b, H8), 6.48 (dd, 1.8, 8.1, H8′), 6.69
(d, 1.8, H4′), 6.72 (d, 8.1, H7′), 9.50 (H1, d, 1.5)

d Aldehydic form of oleuropein
(5S, 8S, 9S)

1.55 (d, 6.6, H10), 2.60 (H4b, H6a), 3.23 (dd,
2.9, 11.0, H5), 3.66 (s, OCH3), 4.15–4.25
(H1a′, H1b′, H8), 6.70 (d, 1.8, H4′), 6.48 (dd,
1.8, 8.1, H8′), 6.72 (d, 8.4, H7′), 7.59 (s, H3),
9.67 (H1)

e Dialdehydic form of ligstroside
lacking a carboxymethyl group

1.97 (d, 7.0, H10), 2.60 (H4b, H6a), 2.74
(ddd, 1.7, 8.5, 17.8, H4a), 4.00–4.20 (H1′a,
H1′b), 6.77 (d, 8.4, H5′, H7′), 7.03 (H4′,
H8′), 9.24 (d, 1.8, H1), 9.54 (s, br, H3)

f Dialdehydic form of oleuropein
lacking a carboxymethyl group

1.97 (d, 7.0, H10), 2.74 (ddd, 1.3, 8.2, 17.8,
H4a), 4.00–4.20 (H1′a, H1′b), 6.77 (d, 8.1,
H7′), 9.24 (d, 1.8, H1), 9.54 (s, br, H3)

g (+) 1-Acetoxypinoresinol 1.69 (s, COOCH3), 3.77 (s, 3′-OCH3), 3.79 (s,
3″-OCH3), 4.73 (d, 4.8, H6), 4.29 (d, 10.6,
H8a), 4.92 (s, br, H2), 6.72 (d, 8.1, H5′), 6.81
(d, 8.1, H5″), 6.84 (dd, 1.8, 8.1 H6′), 6.89 (d,
1.8, H2′), 6.98 (d, 1.8, H2″)

h (+) Pinoresinol 3.78 (s, OCH3), 4.61 (d, 4.0, H2, H6), 6.91 (d,
1.8, H2, H2)

i Vanillin 9.80 (s, H7)
l Luteolin 6.19 (d, 1.8, H6), 6.92 (d, 8.8, H5′), 7.40 (d,

H2′), 7.42 (dd, 2.2, 8.8, H6′)
m Apigenin 6.22 (d, 1.8, H6), 7.94 (d, 8.8, H2′, H6′)
n Free hydroxytyrosol 6.46 (dd, 1.8, 8.1, H8′), 6.59 (d, H4′)

Table 2
Chlorophyll and carotenoids content (mg kg−1) of Algerian extra-virgin olive oils.

Sample Cultivar (cv.) Chlorophyll Carotenoids

1 Bouichret 0.2a,b ± 0.1 0.1a ± 0.0
2 Agrarez 0.5f ± 0.0 0.5g,h,i ± 0.0
3 Limli 0.3b,c,d ± 0.1 0.2a,b,c ± 0.0
4 Blanquette de Guelma 0.8g ± 0.2 0.4f ± 0.1
5 Limli 0.4b,c,d,e ± 0.1 0.2c,d ± 0.0
6 Tabelout 0.2a,b ± 0.0 0.1a,b ± 0.0
7 Takesrit 3.1k ± 0.1 1.6l ± 0.0
8 Bouchouk Guergour 1.1i ± 0.1 0.6i ± 0.2
9 Bouchouk 0.6e,f ± 0.0 0.3e ± 0.0
10 Chemlal 0.8g,h ± 0.0 0.5g,h ± 0.0
11 Chemlal 0.4c,d,e,f ± 0.1 0.2c,d ± 0.0
12 Zeletni 0.8g,h ± 0.0 0.5g,h,i ± 0.0
13 Almzeir 0.5f ± 0.0 0.3d,e ± 0.0
14 Azeradj 1.0h ± 0.0 0.6h,i ± 0.0
15 Takesrit 0.9g,h ± 0.0 0.5f,g ± 0.0
16 Bouchouk Sidi Aich 0.5e,f ± 0.1 0.7j ± 0.1
17 Azeradj 0.3a,b,c ± 0.0 0.1a,b,c ± 0.0
18 Tabelout 0.5d,e,f ± 0.0 0.2b,c,d ± 0.0
19 Sigoise 0.3b,c ± 0.0 0.2c,d ± 0.0
20 Chemlal 0.5e,f ± 0.0 0.3e ± 0.0
21 Aberkane 0.3b,c ± 0.1 0.1a ± 0.0
22 Variety X 0.7g ± 0.0 0.5g,h,i ± 0.0
23 Aimel 0.3b,c,d ± 0.0 0.2d,e ± 0.0
24 Souidi 0.9g,h ± 0.0 0.7j ± 0.0
25 Rougette de Mitidja 1.6j ± 0.1 0.9k ± 0.0
26 Azeradj 0.1a ± 0.0 0.2a,b,c ± 0.0

Means ± standard deviation (n = 3).
a–kMeans the column followed by different letters are significantly different (p N 0.05).
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and polyunsaturated fatty acids (PUFA). Concerning theMUFA, Rougette
de Mitidja olive oil (sample 25) was characterized by the highest per-
centage (79.2%), due to its high content in oleic acid. Bouchouk (sample
9) olive oil was rich in PUFA (18.8%), mainly due to the content in
linoleic acid. Taksreit (sample 7) olive oil was rich in total saturated
Fig. 3. 1H NMR spectrum of a representative phenolic extract of an EVOO sample.
fatty acids (SFA) (21.8%), essentially due to its high content in palmitic
acid.

More in detail, oleic acid (C18:1), the most abundant monounsatu-
rated fatty acid, was dependent by the varieties (see Table 4). It reached
a high percentage in Limli (sample 5) olive oil (78.2%), while it had
lower levels in Bouchouk (sample 9) and Souidi (sample 24) oils
(58.6% and 59.2% respectively). The remaining olive oil samples showed
intermediate levels of oleic acid content.

As for linoleic acid (C18:2), sample 9 (Bouchouk) showed the highest
mean value (18.0%), whereas the lowest one was found in Rougette de
Mitidja (sample 25) (3.5%). The concentrations of palmitoleic (C16:1),
stearic (C18:0) and linolenic (C18:3) acidswere very low in all analyzed
samples and changed from one olive oil to another. In any case, the
Letters on the NMR signals correspond to the compounds reported in Table 1.



Table 3
Tocopherol contents (mg kg−1) of Algerian extra-virgin olive oils.

Sample Cultivar (cv.) Tocopherol-δ Tocopherol-γ Tocopherol-β Tocopherol-α Tocopherol total

1 Bouichret 0.2a,b ± 0.0 0.7a ± 0.2 1.3a ± 0.1 207.5a ± 5.9 209.6a ± 5.7
2 Agrarez 0.1a,b ± 0.1 2.2a,b ± 0.0 1.8b,c ± 0.0 220.4a,b ± 2.2 224.5a,b ± 2.2
3 Limli 1.1g ± 0.1 47.3k ± 0.1 2.3d,e,f ± 0.2 300.0g ± 0.8 350.8f,g ± 0.8
4 Blanquette de Guelma 0.3a,b,c ± 0.0 9.7g ± 0.0 3.9k ± 0.1 486.9j ± 7.5 500.7j ± 7.6
5 Limli 0.1a ± 0.0 1.6a,b ± 0.1 1.6b ± 0.1 279.1c,d,e ± 4.7 282.4d,e,f ± 4.7
6 Tabelout 0.1a ± 0.0 0.9a ± 0.0 2.1d,e ± 0.0 300.9d,e,f ± 4.1 304.1f,g ± 4.1
7 Takesrit 1.3h ± 0.2 59.1l ± 0.1 3.4j ± 0.4 501.1k ± 3.3 564.9j ± 3.6
8 Bouchouk Guergour 0.4b,c,d ± 0.0 13.3h ± 0.2 2.5f,g ± 0.1 233.9b,c ± 4.9 249.9a,b,c ± 5.2
9 Bouchouk 0.2a,b,c ± 0.1 4.2c,d ± 0.1 2.9h ± 0.0 263.4c,d ± 4.4 270.6c,d,e,f ± 4.5
10 Chemlal 0.2 a,b,c ± 0.0 6.7e,f,g ± 0.3 3.3i,j ± 0.1 263.9d,e,f ± 4.8 274.1e,f,g ± 5.0
11 Chemlal 0.2a,b,c ± 0.1 4.9d ± 0.0 2.4e,f,g ± 0.0 204.8a ± 0.2 212.4a ± 0.1
12 Zeletni 0.1a ± 0.0 2.5a,b,c ± 0.1 1.6b ± 0.0 278.9c,d,e ± 4.1 283.7d,e,f ± 4.1
13 Almzeir 1.1g ± 0.0 46.9k ± 0.1 1.6b ± 0.2 250.2d,e,f ± 2.6 299.8b,c,d ± 2.9
14 Azeradj 0.2a,b ± 0.0 1.2 ab ± 0.0 1.9c,d ± 0.0 322.8fg ± 6.7 326.7g ± 6.7
15 Takesrit 0.7f ± 0.1 42.2j ± 1.6 2.1d ± 0.2 271.9e,f,g ± 8.4 316.8c,d,e,f ± 10.4
16 Bouchouk Sidi Aich 0.1a,b ± 0.0 1.8a,b ± 0.2 3.4j ± 0.2 377.9h ± 3.6 383.2h ± 3.2
17 Azeradj 0.4c,d ± 0.1 7.3e,f ± 0.0 3.4j ± 0.0 257.7c,d ± 0.2 268.7b,c,d,e ± 0.2
18 Tabelout 0.4c,d ± 0.0 7.9e,f,g ± 0.3 4.1k ± 0.1 262.3c,d,e ± 3.3 274.7c,d,e,f ± 3.6
19 Sigoise 0.5e ± 0.0 13.8h ± 0.1 3.0h,i ± 0.0 384.9h ± 3.7 402.2h ± 3.9
20 Chemlal 0.2a,b,c ± 0.0 8.9f,g ± 0.4 3.5j ± 0.1 317.4f,g ± 6.2 330.1g ± 6.7
21 Aberkane 0.5d,e ± 0.0 7.2e,f ± 0.2 2.3d,e,f ± 0.1 220.2a,b ± 4.2 230.2a,b ± 4.5
22 Variety X 0.3a,b,c ± 0.1 9.6g ± 0.2 3.3j ± 0.1 416.8i ± 0.1 430.1i ± 0.4
23 Aimel 1.0g ± 0.1 46.9k ± 0.1 2.1d,e ± 0.2 252.2d,e,f ± 3.2 302.3b,c,d ± 3.5
24 Souidi 0.1a ± 0.0 3.2b,c,d ± 0.1 5.5l ± 0.1 573.1k ± 16.8 581.8l ± 17.0
25 Rougette de Mitidja 1.6i ± 0.0 18.5i ± 0.3 9.2m ± 0.1 540.6k ± 4.0 569.8k ± 4.4
26 Azeradj 0.2a,b ± 0.1 6.7e ± 0.0 2.6g ± 0.1 259.6c,d ± 3.6 269.0c,d,e ± 3.7

Means ± standard deviation (n = 3).
a–mMeans the column followed by different letters are significantly different (p b 0.05).
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compositions of the fatty acid were in the expected range of EVOOs
(Manai-Djebali et al., 2012; Ramos-Escudero, Teresa Morales, & Asuero,
2015).

Palmitic acid (C16:0) was the most abundant saturated fatty acid in
the investigated olive oils. Its content ranged between 10.6% and 18.5%,
according to cultivars. The highest percentage was observed in Chemlal
olive oil (sample 20) (18.5%), whereas the lowest levels were observed
Table 4
Fatty acid compositions (%) of Algerian extra-virgin olive oils.

Sample Cultivar (cv.) C16:0 C16:1 C18:0 C18:1 C

1 Bouichret 13.6g ± 0.1 0.9e ± 0.0 3.1n ± 0.0 68.7l ± 0.1 1
2 Agrarez 12.7d ± 0.0 1.2h ± 0.0 3.1n ± 0.0 73.4o ± 0.1 8
3 Limli 17.5l ± 0.1 2.0o ± 0.0 2.9i ± 0.0 65.4f ± 0.1 1
4 Blanquette de Guelma 12.7d ± 0.1 0.5a ± 0.0 3.0j,k ± 0.0 66.4g ± 0.1 1
5 Limli 10.8b ± 0.1 0.7b ± 0.0 3.3p ± 0.0 78.2s ± 0.1 6
6 Tabelout 11.3c ± 0.1 0.8c ± 0.0 3.2o ± 0.0 71.1m ± 0.0 1
7 Takesrit 18.3n ± 0.0 1.8l ± 0.0 3.5r ± 0.0 63.5d ± 0.0 1
8 Bouchouk Guergour 14.4h ± 0.1 0.9d ± 0.0 2.6g ± 0.0 66.9h ± 0.2 1
9 Bouchouk 17.9m ± 0.1 2.5r ± 0.0 2.2e ± 0.0 58.6a ± 0.1 1
10 Chemlal 17.0k ± 0.1 2.5r ± 0.0 2.0d ± 0.0 64.1e ± 0.1 1
11 Chemlal 15.3j ± 0.1 1.7k ± 0.0 1.8a ± 0.0 66.9h ± 0.0 1
12 Zeletni 17.1k ± 0.1 1.6j ± 0.0 2.9i ± 0.0 69.3j ± 0.1 8
13 Almzeir 17.5l ± 0.0 1.9n ± 0.0 3.0l,m ± 0.0 63.6d ± 0.0 1
14 Azeradj 13.3f ± 0.1 0.8c ± 0.0 3.7s ± 0.0 71.7n ± 0.1 9
15 Takesrit 17.9m ± 0.1 1.9m ± 0.0 3.0k,l ± 0.0 66.4g ± 0.1 1
16 Bouchouk Sidi Aich 15.0i ± 0.1 1.3i ± 0.0 3.0j ± 0.0 70.6l ± 0.2 9
17 Azeradj 13.0e ± 0.1 1.1g ± 0.0 2.7h ± 0.0 70.1k ± 0.1 1
18 Tabelout 17.8m ± 0.1 2.1p ± 0.0 2.5f ± 0.0 68.6i ± 0.1 8
19 Sigoise 15.2j ± 0.1 2.7s ± 0.0 1.9b ± 0.0 62.0c ± 0.1 1
20 Chemlal 18.5o ± 0.1 2.2q ± 0.0 1.9c ± 0.0 61.8c ± 0.1 1
21 Aberkane 11.2c ± 0.0 0.8d ± 0.0 2.9i ± 0.0 77.3q ± 0.0 7
22 Variety X 17.4l ± 0.1 2.0n ± 0.0 3.0m ± 0.0 63.7d ± 0.1 1
23 Aimel 17.5l ± 0.1 1.7k ± 0.0 3.5q ± 0.0 66.3g ± 0.0 1
24 Souidi 17.8m ± 0.1 2.0n ± 0.1 2.9i ± 0.0 59.2b ± 0.2 1
25 Rougette de Mitidja 13.5f,g ± 0.0 1.6j ± 0.0 3.0k ± 0.0 77.6r ± 0.0 3
26 Azeradj 10.6a ± 0.1 1.0f ± 0.0 2.2e ± 0.0 74.0p ± 0.2 1

EVOO(EEC.2003) 7.5–20.0 0.3–3.5 0.5–5.0 55.0–83.0 3

Means ± standard deviation (n = 3).
Fatty acid nomenclature: 16:0 (palmitic acid); 16:1 (palmitoleic acid); 18:0 (stearic acid); 18:
SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty a
a–xMeans the column followed by different letters are significantly different (p b 0.05).
in Azeradj (sample 26) and Limli (sample 5) olive oils (10.6 and 10.8%,
respectively).

3.4. Phenolic composition

Quantitative data for the phenolic content of the twenty-six samples
are reported in Tables 5 and 6. Five main phenolic groups were
18:2 C18:3 SFA PUFA MUFA C18:1/C18:2

2.9o ± 0.0 0.8l ± 0.0 16.7f ± 0.1 13.7o ± 0.0 69.7m ± 0.1 5,3h ± 0,0
.9f ± 0.1 0.7e ± 0.0 15.8d ± 0.0 9.6e ± 0.1 74.7s ± 0.2 8,2o ± 0,1
1.4k ± 0.0 0.7h ± 0.0 20.4l ± 0.1 12.1j ± 0.4 67.5h ± 0.1 5,8j ± 0,0
6.7u ± 0.0 0.8i ± 0.0 15.6d ± 0.1 17.5u ± 0.0 66.9g ± 0.1 4,0 d ± 0,0
.4b ± 0.0 0.6d ± 0.0 14.1b ± 0.1 7.1b ± 0.0 78.9v ± 0.1 12,2q ± 0,1
2.8n ± 0.0 0.8j ± 0.0 14.5c ± 0.1 13.6n ± 0.0 71.9q ± 0.1 5,6i ± 0,0
2.0l ± 0.0 0.9o ± 0.0 21.8o ± 0.0 12.9l ± 0.0 65.3d ± 0.0 5,3h ± 0,0
4.3s ± 0.0 0.9l ± 0.0 17.0g ± 0.1 15.2s ± 0.0 67.8i ± 0.2 4,7f ± 0,0
8.0x ± 0.0 0.7g ± 0.0 20.1k ± 0.1 18.8x ± 0.0 61.1a ± 0.1 3,3a ± 0,0
3.8r ± 0.0 0.6a ± 0.0 19.0i ± 0.2 14.4r ± 0.1 66.6f ± 0.1 4,7f ± 0,0
3.7q ± 0.1 0.6a ± 0.0 17.2g ± 0.1 14.3q ± 0.1 68.6l ± 0.0 4,9g ± 0,0
.4e ± 0.0 0.7g ± 0.0 20.0j ± 0.1 9.1e ± 0.0 71.0o ± 0.1 8,3o ± 0,0
3.3p ± 0.0 0.7f,g ± 0.0 20.5l ± 0.1 14.0p ± 0.0 65.5e ± 0.0 4,8g ± 0,1
.8h ± 0.0 0.8h ± 0.0 17.0g ± 0.1 10.5g ± 0.0 72.5r ± 0.1 7,4m ± 0,0
0.3i ± 0.0 0.6b ± 0.0 20.8m,n ± 0.1 10.9h ± 0.0 68.2k ± 0.2 6,4k ± 0,0
.1g ± 0.0 1.1p ± 0.0 17.9h ± 0.2 10.2f ± 0.0 71.9q ± 0.2 7,8n ± 0,0
2.2m ± 0.0 0.9n ± 0.0 15.7d ± 0.1 13.1m ± 0.0 71.2p ± 0.1 5,8j ± 0,0
.3d ± 0.0 0.7g ± 0.0 20.3k,l ± 0.1 9.0d ± 0.0 70.8n ± 0.1 8,3o ± 0,0
7.3w ± 0.0 0.9m ± 0.0 17.1g ± 0.1 18.2w ± 0.0 64.7c ± 0.1 3,6c ± 0,0
4.7t ± 0.0 0.9l ± 0.0 20.4l ± 0.12 15.6t ± 0.1 64.0b ± 0.1 4,2e ± 0,0
.1c ± 0.0 0.7f ± 0.0 14.1b ± 0.0 7.7c ± 0.1 78.2u ± 0.0 11,0p ± 0,1
3.3p ± 0.0 0.7g ± 0.0 20.5l ± 0.1 14.0o ± 0.0 65.6e ± 0.1 4,9g ± 0,0
0.4i ± 0.08 0.6c ± 0.0 21.0n ± 0.1 11.0i ± 0.1 68.0j ± 0.1 6,4k ± 0,1
7.2v ± 0.03 0.9o ± 0.0 20.7m ± 0.2 18.2v ± 0.0 61.1a ± 0.3 3,4b ± 0,0
.5a ± 0.04 0.9k ± 0.0 16.4e ± 0.04 4.4a ± 0.0 79.2w ± 0.0 22,2r ± 0,2
1.0j ± 0.01 1.2q ± 0.0 12.8a ± 0.2 12.2k ± 0.0 75.0t ± 0.2 6,7l ± 0,0
.5–21.0 ≤1.0

1 (oleic acid); 18:2 (linoleic acid); 18:3 (linolenic acid).
cids.



Table 5
Phenolic compound composition (mg kg−1) of Algerian extra-virgin olive oils.

Sample Cultivar
(cv.)

Total phenolic
compounds

Oleuropein Oleuropein
derivatives

Ligstroside
derivatives

Secoiridoid
acids

Decarboxymethylelenolic
acid

Elenolic acid Oleocanthal Lignans

1 Bouichret 236.9g ± 1.5 0.0a ± 0.0 76.7h ± 0.4 55.9e ± 1.8 80.6i ± 2.5 9.7h ± 0.1 71.0j ± 2.6 22.6g ± 0.8 56.4o ± 0.2
2 Agrarez 169.9d ± 1.2 0.0a ± 0.0 41.9d ± 0.3 83.9i ± 0.4 131.8n ± 1.4 29.0n ± 0.2 102.9o ± 1.2 45.6n ± 0.2 28.8g ± 0.4
3 Limli 273.0l ± 0.2 0.0a ± 0.0 117.7m ± 0.4 72.7g ± 0.1 90.4k ± 0.5 7.0e,f ± 0.0 83.3m ± 0.6 22.1g ± 0.0 36.8i ± 0.1
4 Blanquette de

Guelma
1006.7t ± 3.0 0.0a ± 0.0 732.4v ± 1.3 195.2o ± 1.2 344.6t ± 0.5 92.0p ± 0.0 252.6u ± 0.66 40.3l ± 0.3 26.2f ± 0.2

5 Limli 264.3k ± 1.5 0.0a ± 0.0 104.0k ± 0.8 83.0i ± 0.9 146.6p ± 0.7 39.5o ± 0.5 107.1p ± 1.2 46.9o ± 0.6 40.7k ± 0.3
6 Tabelout 181.0e ± 0.6 0.0a ± 0.0 75.9h ± 04 66.8f ± 0.0 23.8a ± 0.1 0.7a ± 0.0 23.1b ± 0.1 16.3e ± 0.0 26.9f ± 0.1
7 Takesrit 259.8j ± 0.2 0.0a ± 0.0 83.8i ± 0.3 115.4j ± 0.1 172.4r ± 0.7 7.5f,g ± 0.1 164.9s ± 0.8 44.5m ± 0.1 32.7h ± 0.1
8 Bouchouk

Guergour
338.2m ± 1.8 0.3b ± 0.0 78.0h ± 0.7 158.5m ± 0.9 71.6g ± 0.5 17.9l ± 0.2 53.7e ± 0.4 135.6u ± 0.7 38.9j ± 0.1

9 Bouchouk 491.1o ± 1.3 0.0a ± 0.0 253.4q ± 0.9 131.5k ± 0.2 72.9g ± 0.4 0.9a,b ± 0.0 72.0j ± 0.4 48.5p ± 0.4 56.2o ± 0.1
10 Chemlal 537.2p ± 2.6 0.0a ± 0.0 211.2p ± 0.6 204.8p ± 0.4 178.2s ± 1.5 12.0j ± 0.1 166.2t ± 1.4 71.3q ± 0.4 70.7p ± 0.5
11 Chemlal 223.3f ± 2.2 0.2b ± 0.0 73.2g ± 0.3 65.5f ± 3.3 61.4e ± 0.4 4.0c ± 0.0 57.4f ± 0.3 22.1g ± 0.0 36.4i ± 0.3
12 Zeletni 224.1f ± 0.1 0.0a ± 0.0 110.4l ± 0.2 61.8f ± 0.3 137.4o ± 0.2 5.2d ± 0.0 132.2q ± 0.2 33.4j ± 0.1 20.2e ± 0.0
13 Almzeir 251.1i ± 0.9 0.0a ± 0.0 100.5j ± 0.2 77.7g,h ± 0.5 66.3f ± 0.4 3.8c ± 0.0 62.4h ± 0.4 32.1i ± 0.3 32.2h ± 0.0
14 Azeradj 337.6m ± 0.1 0.0a ± 0.0 142.7n ± 0.3 113.5j ± 0.1 100.7m ± 0.3 12.5j ± 0.0 88.3n ± 0.3 71.0q ± 0.0 43.5l ± 0.3
15 Takesrit 598.0q ± 2.6 0.0a ± 0.0 343.3s ± 1.7 150.6l ± 1.0 154.3q ± 0.4 1.1a,b ± 0.0 153.2r ± 0.4 39.3k ± 0.2 52.3n ± 0.3
16 Bouchouk Sidi Aich 169.0d ± 2.3 1.2e ± 0.1 65.1f ± 0.6 44.5d ± 0.7 33.4b ± 0.2 3.4c ± 0.0 30.0c ± 0.2 26.6h ± 0.2 16.6d ± 0.2
17 Azeradj 172.0d ± 1.1 0.0a ± 0.0 83.9i ± 0.2 34.9c ± 0.6 38.5c ± 0.2 16.1k ± 0.1 22.4b ± 0.1 19.5f ± 0.1 15.6c ± 0.1
18 Tabelout 782.3r ± 5.5 0.6c ± 0.3 458.9t ± 3.5 239.8q ± 15.3 80.5i ± 0.9 1.8b ± 0.0 78.7l ± 0.9 144.3v ± 0.8 46.6m ± 1.2
19 Sigoise 55.0a ± 0.1 0.0a ± 0.0 12.3a ± 0.1 16.7a ± 0.1 59.1d ± 0.3 7.6f,g ± 0.0 51.5d ± 0.2 2.8a ± 0.0 9.6a ± 0.0
20 Chemlal 172.1d ± 0.4 0.3b ± 0.1 39.6c ± 0.7 37.4c ± 0.4 76.1h ± 0.1 10.5j ± 0.1 65.6i ± 0.1 14.1d ± 0.4 36.4i ± 0.0
21 Aberkane 337.9m ± 3.4 0.0a ± 0.0 198.4o ± 2.1 41.0c,d ± 0.2 85.7j ± 0.5 8.3g ± 0.0 77.5k,l ± 0.5 16.9e ± 0.8 21.0e ± 0.7
22 Variety X 803.4s ± 1.5 0.0a ± 0.0 583.4u ± 1.4 185.4n ± 0.7 94.9l ± 0.4 18.6m ± 0.0 76.3k ± 0.3 117.9t ± 0.3 20.6e ± 0.4
23 Aimel 141.9c ± 0.5 1.0d ± 0.2 60.9e ± 0.3 50.7e ± 2.9 79.9i ± 0.2 9.1h ± 0.0 70.8j ± 0.2 10.4c ± 0.1 10.7b ± 2.5
24 Souidi 468.9n ± 1.6 0.0a ± 0.0 265.6r ± 1.3 134.0k ± 0.0 65.0f ± 0.6 1.4a,b ± 0.0 63.6h ± 0.6 91.4r ± 0.2 43.2l ± 0.2
25 Rougette de Mitidja 244.7h ± 0.3 0.0a ± 0.0 12.8a ± 0.8 136.8k ± 0.3 177.3s ± 3.0 116.8q ± 2.2 60.5g ± 0.8 99.0s ± 0.5 51.3n ± 0.0
26 Azeradj 76.9b ± 0.4 0.0a ± 0.0 18.0b ± 0.4 23.7b ± 0.3 23.9a ± 0.1 6.6e ± 0.1 17.3a ± 0.0 4.1b ± 0.1 8.8a ± 0.1

Means ± standard deviation (n = 3).
a–vMeans the column followed by different letters are significantly different (p b 0.05).
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detected: phenolic alcohols (hydroxytyrosol and tyrosol), secoiridoids
(mainly derivatives of oleuropein and ligstroside and elenolic acid),
lignans, flavonoids (luteolin and apigenin), and phenolic acids. The
total phenolic content (oleuropein derivatives, ligstroside derivatives,
flavonoids, phenolic acids and biophenols oxidized) showed large
variation, ranging from 55.0 mg kg−1 for Sigoise variety (sample 19)
to 1006.7 mg kg−1 for Blanquette de Guelma (sample 4). Significant
Table 6
Phenolic compound composition (mg kg−1) of Algerian extra-virgin olive oils.

Sample Cultivar (cv.) Phenolic alcohols Hydroxytyrosol Tyrosol

1 Bouichret 4.9c,d ± 0.2 1.7c ± 0.1 3.2c ± 0.1
2 Agrarez 5.2d ± 0.0 0.7a,b ± 0.0 4.4f ± 0.0
3 Limli 20.8m ± 0.6 4.0ef ± 0.6 16.9p ± 0.0
4 Blanquette de Guelma 300.6q ± 1.5 252.4n ± 1.7 48.3r ± 0.2
5 Limli 6.6f ± 0.2 3.5e ± 0.2 3.1c ± 0.0
6 Tabelout 8.3g ± 0.2 3.9e,f ± 0.2 4.4f ± 0.0
7 Takesrit 11.4i ± 0.0 1.0a,b,c ± 0.0 10.4n ± 0.0
8 Bouchouk Guergour 6.0e ± 0.1 1.5b,c ± 0.1 4.5f,g ± 0.0
9 Bouchouk 13.4k ± 0.1 8.8j ± 0.1 4.6f,g ± 0.0
10 Chemlal 13.0j,k ± 0.0 5.1g,h ± 0.0 7.9j ± 0.0
11 Chemlal 7.1f ± 0.1 2.9d ± 0.0 4.2e ± 0.0
12 Zeletni 9.6h ± 0.2 4.9g,h ± 0.2 4.6f,g ± 0.0
13 Almzeir 12.9j,k ± 0.0 4.4f,g ± 0.0 8.5l ± 0.0
14 Azeradj 8.9g ± 0.0 5.3h ± 0.0 3.6d ± 0.0
15 Takesrit 29.5p ± 0.4 13.8l ± 0.2 15.8o ± 0.1
16 Bouchouk Sidi Aich 4.4c ± 0.1 0.8a,b ± 0.0 3.6d ± 0.0
17 Azeradj 14.2l ± 0.0 10.1k ± 0.1 4.1e ± 0.0
18 Tabelout 23.2n ± 0.1 13.6l ± 0.1 9.6m ± 0.0
19 Sigoise 1.7 a ± 0.0 0.5a ± 0.0 1.2a ± 0.0
20 Chemlal 7.1f ± 0.1 2.3d ± 0.1 4.8h ± 0.1
21 Aberkane 12.8j,k ± 0.3 9.7k ± 0.2 3.2c ± 0.0
22 Variety X 22.8n ± 0.0 17.5m ± 0.0 5.3i ± 0.0
23 Aimel 12.5j ± 0.2 4.4f,g ± 0.2 8.1k ± 0.1
24 Souidi 10.8i ± 0.1 6.2i ± 0.1 4.7g ± 0.0
25 Rougette de Mitidja 26.6o ± 0.3 1.4b,c ± 0.1 25.2q ± 0.2
26 Azeradj 3.3b ± 0.2 0.4a ± 0.1 2.9b ± 0.1

Means ± standard deviation (n = 3).
a–vMeans the column followed by different letters are significantly different (p b 0.05).
differences (p b 0.05) among the different varieties were observed.
Our data are in agreement with the values reported in the literature,
where the total phenolic content of olive oils varies from 50 to
1000 mg kg−1 (Montedoro et al., 1992).

Phenolic alcohols amount varied between 1.7 mg kg−1 (Sigoise)
and 300.6mg kg−1 (Blanquette de Guelma). In this class, hydroxytyrosol
and tyrosol were among the most representative compounds, and, in
Flavonoids Luteolin Apigenin Phenolic acids Biophenols oxidized

21.8k ± 1.2 16.6n ± 0.5 5.2j ± 0.7 14.7p ± 0.2 11.4e ± 0.4
6.4e ± 0.2 4.6d ± 0.1 1.8d ± 0.1 3.5f ± 0.0 5.5a ± 0.0
22.9l ± 0.1 17.1n ± 0.1 5.8k ± 0.0 5.5i ± 0.0 17.5i ± 0.1
22.6l ± 0.5 15.5m ± 0.4 7.1m ± 0.1 15.3q ± 0.0 15.0g ± 0.2
14.8i ± 0.2 10.2i ± 0.1 4.6i ± 0.1 12.5n ± 0.0 9.3c ± 0.1
0.5a ± 0.0 0.4a ± 0.0 0.1a ± 0.0 1.5a ± 0.0 9.3c ± 0.1
5.4d ± 0.0 4.2d ± 0.1 1.2c ± 0.0 4.4g ± 0.1 18.0j ± 0.2
15.4i ± 0.1 12.7j ± 0.1 2.8e ± 0.0 32.5s ± 0.2 14.9g ± 0.2
13.5h ± 0.1 8.0f ± 0.0 5.5j,k ± 0.0 2.0b,c ± 0.1 34.6o ± 0.2
19.1j ± 0.8 12.5j ± 0.4 6.6l ± 0.4 2.5e ± 0.2 29.0m ± 0.0
14.7i ± 0.1 9.9h,I ± 0.1 4.7i ± 0.1 3.4f ± 0.0 30.2n ± 0.4
12.2g ± 0.1 8.7g ± 0.1 3.5f ± 0.0 4.9h ± 0.1 14.5g ± 0.1
18.5j ± 0.1 14.4l ± 0.0 4.2h ± 0.1 2.6e ± 0.0 19.6k ± 0.1
13.0h ± 0.0 10.2i ± 0.0 2.8e ± 0.0 14.5o ± 0.0 10.4d ± 0.0
26.4o ± 0.3 16.9n ± 0.3 9.5n ± 0.0 3.5f ± 0.1 21.6l ± 0.4
13.5h ± 0.3 9.6h ± 0.3 4.0g,h ± 0.1 17.4r ± 0.1 11.9e ± 0.5
23.8m ± 0.0 18.4o ± 0.3 5.4j,k ± 0.3 7.2k ± 0.0 6.7b ± 0.1
25.1n ± 0.0 13.5k ± 0.1 11.6p ± 0.1 8.7m ± 0.0 18.3j ± 0.6
7.6f ± 0.1 5.6e ± 0.1 2.0d ± 0.0 2.3d ± 0.1 6.6b ± 0.0

18.4j ± 0.0 12.8j ± 0.1 5.6k ± 0.1 2.1c,d ± 0.0 37.8p ± 0.2
51.5p ± 1.1 41.4p ± 1.0 10.1o ± 0.1 7.8l ± 0.1 18.1j ± 0.4
2.0b ± 0.0 1.8b ± 0.1 0.2a ± 0.0 1.9b ± 0.1 10.0d ± 0.2
4.2c ± 0.1 3.0c ± 0.1 1.2b,c ± 0.0 2.6e ± 0.1 12.8f ± 0.2

11.7g ± 0.5 8.0f ± 0.5 3.7f,g ± 0.0 4.3g ± 0.0 10.1d ± 0.1
7.8f ± 0.2 4.4d ± 0.3 3.5f ± 0.2 17.5r ± 0.2 18.5j ± 0.7
5.1d ± 0.3 4.2d ± 0.2 0.9b ± 0.1 5.8j ± 0.2 15.6h ± 0.8
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agreement with the literature (Cerretani et al., 2006; Romero, Saavedra,
Tapia, Sepúlveda, & Aparicio, 2015), they were found at levels below
17.5 and 25.2 mg kg−1, respectively. However, only the variety Blan-
quette de Guelma provided higher levels of these phenols (252.4 and
48.3 mg kg−1 for hydroxytyrosol and tyrosol, respectively). Such high
values are not unique for olive oils, in fact Gilbert-López et al. (2014)
found values of hydroxytyrosol concentration above 50 mg kg−1 in 78
samples of extra virgin olive oil collected from ten different countries,
and detected higher levels of both phenols in AraucoVOO. Interestingly,
it should be noted that no Algerian olive oils have showed such high
values before.

Secoiridoid derivatives, mainly represented by oleuropein and
ligstroside derivatives, were by far themost abundant group of phenolic
compounds in all the analyzed samples regardless of geographic origin
and variety. As reported by different authors, these compounds are
widely associated with the sensory properties of EVOO as they are the
main contributors to its bitterness and pungency (Bendini et al., 2007;
Lauri et al., 2013). In our case, the highest concentrations of oleuropein
derivatives were observed in the olive oil from Blanquette de Guelma
(sample 4) (732.4 mg kg−1), whereas the lowest concentrations were
detected in Sigoise (sample 19) and Rougette de Mitidja (sample 25)
olive oils (12.3 and 12.8 mg kg−1 respectively). As for the ligstroside
derivatives, extra-virgin olive oil from Sigoise (sample 19) showed the
lowest value (16.7 mg kg−1), while the highest value was observed in
Tabelout (sample 18) (239.8 mg kg−1). As far as the oleuropein is con-
cerned, it was detected only in olive oil from Takesrit (sample 7),
Bouchouk Guergour (sample 8), Chemlal (sample 11), Bouchouk Sidi
Aich (sample 16), Tabelout (sample 18), Chemlal (sample 20) and
Aimel (sample 23). In any case, oleuropein's content, as expected, did
not exceed 1.2 mg kg−1 (Krichene et al., 2009; Ballus et al., 2014).

Similarly, the content of elenolic acid (a secoiridoid acid) ranged
from 17.3 (Azeradj — sample 26) to 252.6 mg kg−1 (Blanquette de
Guelma — sample 4). Moreover, another secoiridoid acid, namely
decarboxymethylelenolic acid, ranged from 0.8 (Tabelout — sample
6) to 116.8 mg kg−1 (Rougette de Mitidja — sample 25). These data are
in agreement with those reported in literature (Pinelli, Galardi,
Mulinacci, & Romani, 2003).

Newly pressed EVOOs contain also (−)-decarboxymethyl
ligstroside aglycone, also known as oleocanthal. Oleocanthal has been
shown to mimic the pharmacology of ibuprofen (Cicerale, Lucas, &
Keast, 2012). Oleocanthal concentration in EVOO is highly variable,
ranging from 0.2 mg kg−1 to 498 mg kg−1 (Gómez-Rico, Salvador, La
Greca, & Fregapane, 2006). Beauchamp et al. (2005) demonstrated
that EVOOs produced in different countries had variable oleocanthal
concentrations. For instance, EVOO produced in the U.S.A. contained a
low concentration of oleocanthal (22.6 ± 0.6 mg kg−1), while EVOOs
produced in Italy contained very high quantities of this compound (up
to 191.8 ± 2.7 mg kg−1). All the twenty-six studied EVOOs contained
oleocanthal, whichwas found in considerable amount in Tabelout (sam-
ple 18), Bouchouk Guergour (sample 8) and Variety X (sample 22) oils
(144.3, 135.6 and 117.9 mg kg−1, respectively). Sigoise (sample 19)
variety was characterized by the lowest value (2.8 mg kg−1).

Lignans represent an important group of phenolic compounds that
characterize EVOOs. In our case, they varied between 70.7 mg kg−1 in
Chemlal (sample 10) and 8.8 mg kg−1 in Azeradj (sample 26) variety.
However, these compounds are not indicative of the variety of the
cultivar, but rather of the process used to obtain the olive oil. In fact,
as observed by Owen et al. (2000), these compounds are themain com-
ponents of the phenolic fraction of the olive seed and are practically ab-
sent from the pulp, leaves, and limbs, and therefore their presence in the
oil must be due to the breaking of the pits when the olives are crushed.
These could be used as an index of the crushing conditions and of the
fruit pulp/seed ratio during olive production.

Regarding the flavonoids, they were found within the range of 0.5–
51.5mgkg−1 detected in Tabelout (sample 6) andAberkane (sample 21)
samples, respectively. Luteolin and apigenin were the most relevant
compounds within this group. Luteolin, the most abundant flavonoid
occurring in the analyzed samples, ranged from 0.4mg kg−1 in Tabelout
(sample 6) to 41.4 mg kg−1 in Aberkane (sample 21), while apigenin
concentration ranged between 0.1 and 11.6 mg kg−1 in two different
samples of Tabelout (samples 6 and 18, cultivated in Amizour and
Boukhlifa, respectively). These data suggest the importance of environ-
mental factors on the content of these compounds. Interestingly, the
levels of luteolin were higher than in all the others Mediterranean
cultivars analyzed so far (Pinelli et al., 2003; Abaza et al., 2005;
García-Villalba et al., 2010), therefore this could be potentially consid-
ered as a discriminative characteristic of Algerian EVOOs produced in
the Béjaïa province.

Phenolic acids. Phenolic acids have already been associated with
color and sensory qualities, as well as with the health-related antioxi-
dant properties of foods (Cartoni, Coccioli, Jasionowska, & Ramires,
2000). All the twenty-six Algerian EVOOs showed low concentration
of this class of compounds, as the content ranged from 1.5 to
17.5 mg kg−1, with the only exception of the sample 8 (Bouchouk
Guergour), that had almost 2-fold levels of phenolic acids
(32.5 mg kg−1). Interestingly, as for the oxidized biophenols, they
were detected in all the twenty-six samples. Recently, the interest in ox-
idized form of olive oil phenols has significantly increased, especially in
relation to determination of freshness/aging status (Rovellini et al.,
1997; Tovar, Motilva, & Paz Romero, 2001; Owen et al., 2000). In this
context, it is interesting to note that the highest amount of oxidized
biophenols was found in Chemlal variety (sample 20) (37.8 mg kg−1).

3.5. NMR spectroscopy

The twenty-six EVOO samples were also investigated by 1H NMR. In
particular, the experiments were performed both on the intact EVOOs
(Fig. 2) and the phenolic extracts (Fig. 3).

The assignment of the major and minor components of the whole
olive oil was carried out according to the literature (Sacchi et al., 1996,
1997; Segre & Mannina, 1997 and Mannina et al., 1999). The identified
signals are shown in Fig. 2 and reported in Table S2. The spectra of
whole olive oil showed the typical pattern of signals of the triglycerides.
Nevertheless, a number of other signals belonging tominor components
of the EVOOwere also detectable. In particular, β-sitosterol (0.62 ppm),
squalene (1.62 ppm), terpens (4.53, 4.60, 4.66 ppm), diacylglycerols
(3.66, 3.99 ppm) and aldehydes were unambiguously identified (see
below).

In order to determine if the observable signals were able to give in-
formation on the analyzed olive oils, a principal component analysis
(PCA) was performed. Particularly, the PCA (Fig. S4) performed on the
data of the spectra of whole olive oils showed that the samples are dis-
tributed according to their fatty acid compositions. Olive oils with high
content of oleic acid and low content of linoleic acid and saturated
fatty acids are in the left part of PCA plot. Among these samples, Limli,
Aberkane, and Rougette de Mitidja, (samples 25, 21, and 5) turned out
to be particularly interesting for their composition (Table 4), that is sim-
ilar to the fatty acid composition of some prestigious varieties grown in
other Mediterranean areas.

On the other hand, the spectra of the phenolic extracts turned out to
be particularly informative. Fig. 3 shows the 1H NMR spectrum
(700 MHz) of a representative phenolic extract; three main regions
could be easily distinguished: aldehydic (9.0–9.8), aromatic (8.0–6.2)
and aliphatic (5.0–1.0) regions. Identification of phenolic compounds
was made following the references in the literature (Christophoridou
et al., 2005; Christophoridou &Dais, 2009) and the analysis of the Statis-
tical Total Correlation Spectroscopy (STOCSY) (Fig. S2). The assignment
is reported in Table 1 and Fig. 3. In particular, the more intense aldehy-
dic signals between 9.20 and9.75 ppm(Fig. 3)were assigned to the pro-
tons of the hydrolysis products (a–f, Table 1) of themonoaldehydic and
dialdehydic forms of ligstroside and oleuropein. Furthermore, the signal
at 9.80 ppm was assigned to vanillin (i). The aromatic region, instead,
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was characterized by the presence of the signals of the free
hydroxytyrosol (n) (6.4–6.6 ppm). The presence of (+)-1-
acetoxypinoresinol (g) and (+)-pinoresinol (h) was detected by the
assignment of the signals at 6.91 and 6.89 ppm, respectively, while
the signal at 7.94 and the set of signals at around 7.42 could be attribut-
ed to apigenin (m) and luteolin (l), respectively.

PCAwas also performed on the dataset obtained by theNMR spectra
of the phenolic extract. Three principal components (PCs) accounting
for 61.5% (PC1 33.8%, PC2 17.8%, PC3 9.9%) of the variation were identi-
fied. The plots of PC1 and PC2 scores (Fig. 4A and B) showed the posi-
tioning of the samples according to their chemical characteristics and
allowed the identification of themost importantNMRsignals for sample
differentiation (loading plot in Fig. 4C and D). The PCA shows that the
samples 19, 23 and 26 (that are those containing the lowest amount
of polyphenols) are placed in the very left side of the score plot, opposite
to the samples 4, 9, 10, 15, 18 and 22 (having the highest values of poly-
phenols) that lie on the very right side of the plot. The loading plot of
PC1 (Fig. 4C) closely resembles the NMR spectra of the polyphenolic ex-
tract, thus indicating that this distribution is due to the overall content
of polyphenols. In order to determine if this distribution is, in some
ways, also correlated to the geographical origin of the samples, they
were labeled according to two geographical areas of Béjaïa province
(Fig. 1): region 1, closer to the Mediterranean Sea, and region 2, much
more in-land. Surprisingly, in spite of the two geographical areas that
are not so different between each other, they turned out to be well sep-
arated in the score plot. Only four samples, namely 9, 10, 17 and 22,
were not properly grouped, suggesting that other factors certainly
influence this separation. Therefore, overall these data suggest that the
content in polyphenols is influenced also by the origin of the samples.
Fig. 4. (A) PCA score plot colored according to the content of polyphenols (yellow 50–160 mg
according to the region of origin: region 1 (green); region 2 (blue). PC1 and PC2 loading plo
NMR assignment reported in Table 1.
As far as the loading plot of PC2 is concerned (Fig. 4D), it is interesting
to note that the variables with the higher loading values (higher dis-
criminating power) belong to the dialdehydic and monoaldehydic
forms of ligstroside and oleuropein, indicating that the samples that
lie in the bottom of the plot are richer in monoaldehydes, while the
ones on the top have an higher content of dialdehydes. Unfortunately,
the limited number of samples and the lack of replicates prevented us
to ascribe with certainty this peculiar separation to a defined cause.
For the time being, it can be highlighted that the varieties Rougette de
Mitidja (sample 26) and Bouchouk Guergour (sample 8), cultivated in
the Sidi Aich region, offer a very high content of oleocanthal, known
for its ibuprofen-like cyclooxygenase inhibiting activity (Beauchamp
et al., 2005), suggesting that these olive oils can be considered promis-
ing nutraceutical foods to be used for the treatment of inflammatory
diseases (Iacono et al., 2010).

This NMR study gave us also the opportunity to confirm the assign-
ment of the signal of some minor compounds in the NMR spectra of
whole oils. Particularly, the signals at 9.70 and 9.45 ppm were con-
firmed to belong to hexanal and (E)-2-hexenal, respectively. As far as
the peaks at 9.62 and 9.57 ppm are concerned, they are generally
assigned, respectively, to generic branched alkanal and alkenal
(Mannina et al., 1999). Recently, thanks to the use of separation tech-
niques, these peaks were tentatively assigned to monoaldehydes and
dialdehydes forms of ligstroside and oleuropein (Mannina et al.,
1999). Moreover, in another investigation, the signal at 9.18 ppm was
tentatively attributed to dialdehydic derivatives of ligstroside and
oleuropein (Dugo et al., 2015). In order to confirm those assignments,
a comparison between the NMR spectra of the phenolic extracts
(where the signals were unambiguously assigned) and of the whole
kg−1, orange 161–470 mg kg−1 and red 471–1000 mg kg−1). (B) PCA score plot colored
ts are reported in panels C and D, respectively. Letters on the loading plots refer to the
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oils was performed. The basic idea is that if the molecules generating
those signals in the spectra of whole oils are also present in the NMR
spectra of the phenolic extracts, the intensities of their signals should
be correlated. Thuswe computed amatrix of correlation coefficients cal-
culated between the intensities of the signals in the aldehydic region of
the spectra ofwhole olive oils and the signals present in the same region
of the spectra of the phenolic extracts. Very interestingly, a correlation
coefficient higher than 0.9 was found between the peaks unambiguous-
ly assigned to the dialdehydic forms of ligstroside and oleuropein in the
phenolic extracts spectra (e–f) and the signals at 9.57 and 9.18 ppm in
the spectra of whole oils. Similarly, a correlation coefficient higher
than 0.8 was found between the peaks attributed to the aldehydic
compounds in the phenolic extracts (a–d) and the signal at 9.62 ppm
in the intact oil spectra. Therefore, the signals at 9.57 and 9.18 ppm
can be unambiguously assigned to the dialdehydic forms of ligstroside
and oleuropein, respectively, while the signal at 9.62 ppm can be unam-
biguously assigned to the their monoaldehydes derivatives.

4. Conclusions

Since consumers are more and more oriented toward consumption
of food products with certified authenticity and geographical origin,
the quality control and authentication of olive oil are of primary impor-
tance. For this reason, here we reported an in-depth characterization of
twenty-six monovarietal olive oils produced in the Béjaïa province,
which is the Algerian area where the olive oil production is mostly in-
creased in the last years. The investigation was first performed using
traditional chemical analysis. Each olive oil turned out to have strength
and weakness points. For instance, Souidi and Sigoise varieties had high
levels of tocopherols, important for their antioxidant activity, but also a
low amount of oleic acid and high amount of palmitic acid. Blanquette de
Guelma variety was characterized by high contents of phenolic com-
pounds and tocopherols, and by not high amounts of oleic acid. Sample
5 (Limli variety of Tazmalt area) had a high value of oleic acid and a low
level of saturated fatty acid, even if the tocopherol and phenolic
compounds contents were lower with respect to the other olive oils.
Rougette de Mitidja variety had a high value of oleic acid, a low level of
saturated fatty acid, a high level of tocopherols, but a low, although ac-
ceptable, level of phenolic compounds. Overall, the results of this study
suggest that the analyzed olive oils could be blended in order to obtain
oils of better quality. For instance, the blend of Blanquette de Guelma and
Rougette de Mitidja varieties in the suitable proportion could lead to an
olive oil with interesting properties.

Furthermore, a NMR study was also performed on the intact olive
oils and on the phenolic extracts of the twenty-six samples. This, to
the best of our knowledge, represents the first NMR study of Algerian
EVOOs. While the spectra of whole olive oils were useful to have an
idea of the quality of monovarietal olive oils, the NMR spectra of pheno-
lic extract provided very interesting information about geographical or-
igin of the samples. Of course, these findings need further validation,
based on substantially larger sets of olive oil samples, in order to inves-
tigate the possibility to extend thismethod to discrimination of different
cultivars, year of harvest, age of oil sample, etc. The data acquired in this
investigation could be used, alongwith those coming fromother studies,
to establish a bank of original data concerning the chemical composition
of Algerian monovarietal olive oils and providing information that can
be used by Algerian olive growers for large-scale plantation.
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Thfis study demonstrates the applficatfion of a novel varfiable selectfion method here employed for the predfictfion of sweet and sour taste 

of apple jufice from Nuclear Magnetfic Resonance (NMR) spectra. The method fis called recursfive wefighted Partfial Least Square (rPLS). 

It operates by fiteratfively re-wefightfing the spectral varfiables usfing the regressfion coefficfients calculated by PLS. The only parameter 

to be estfimated by the operator fis the number of latent factors to be used fin the model. Thfis approach provfides an easfier model 

finterpretatfion than a regular PLS model, sfince fit converges towards a very lfimfited number of varfiables and therefore the assfignment 

effort fis drastfically reduced. These propertfies suggest a profitable use of the rPLS for the predfictfion of even more complex sensory 

features from dfifferent types of spectroscopfic data.

Introductfion

N
uclear  Magnetfic  Resonance  (NMR)  spectroscopy  has 

been wfidely applfied to food systems fin order to obtafin 

a  ‘holfistfic  vfiew’  of  the  metabolome  (foodome)  of  varfi-

ous kfinds of beverages and foods, such as frufit jufice1,2 

mfilk3,4,  wfine5  and  olfive  ofil6.  In  recent  years,  some  studfies  have 

focused on the correlatfion between the NMR metabolomfic finger-

prfint of the food samples and the sensory features evaluated by a 

panel test. These studfies finclude sour cherry jufice7, tomatoes8, olfive 

ofil9 and coffee beans extracts10 and some even suggest that NMR 

spectroscopy can be consfidered as a ‘‘magnetfic tongue’’ for a bet-

ter characterfisatfion as well as predfictfion of the taste of food prod-

ucts. In thfis context Multfivarfiate Data Analysfis plays a fundamental 

role  fin  the  understandfing  of  the  correlatfion  between  the  spectral 

dataset (X) and the response parameters from the sensory evalu-

atfion (y). For thfis purpose the Partfial Least Square regressfion11 fis 

the most wfidely used algorfithm. It first calculates a set of loadfing 

wefights, W, whfich finds the combfinatfion between X and y and then 

calculates the regressfion coefficfients, b, that provfide an estfimatfion 

of y when fit fis multfiplfied by the X matrfix. In thfis study an advanced 

versfion  of  PLS  fis  performed  for  the  predfictfion  of  sweet  and  sour 

taste  of  apple  jufice  from  NMR  spectra  (Ffigure  1).  These  attrfib-

utes are consfidered fimportant drfivers of the market preferences12, 

therefore thefir evaluatfion fis crucfial and trafined sensory panels are 

employed for thfis purpose. Ffindfing a method that fis able to predfict 

these  features  avofidfing  the  employment  of  the  panellfists  and/or 

reducfing chemfical analysfis to the mfinfimum would help both com-

panfies and researchers fin selectfing only the best cultfivars. As far as 

apples are concerned, tfitratable acfidfity and °Brfix values were found 

to  be  qufite  good  descrfiptors  respectfively  for  the  acfid  and  sweet 

taste13. In thfis study we propose an approach that could be useful 

when only spectroscopfic data are avafilable and a predfictfion of sen-

sory attrfibutes fis needed. Thfis approach fis based on the so-called 

recursfive PLS, or just rPLS14, whfich fis a recently developed varfiable 

selectfion method where the regressfion coefficfients are recursfively 

used as wefights on the orfigfinal data matrfix. Thfis concept fis based 

on the fact that the regressfion vector reflects the fimportance of the 

varfiables:  wefights  around  0  findficate  varfiables  not  correlated  wfith 

y, and wefights wfith large absolute values findficate fimportant varfi-

ables. Repeatfing the wefightfing, the rPLS model has the property 

to converge to a lfimfited number of varfiables (equal to the number 

Ffigure 1. The average NMR spectrum of apple jufice.
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of Latent Varfiables/PLS components), facfilfitatfing the finterpretatfion 

and reducfing the tfime consumfing step of a thorough sfignal assfign-

ment.

Materfials and methods
Samples
The  dataset  consfists  of  nfinety-two  apple  jufice  samples  obtafined 

from  ancfient  Danfish  apple  cultfivars.  Each  apple  jufice  was  then 

submfitted both to NMR analysfis and sensory evaluatfion. Sfix dfiffer-

ent descrfiptors were evaluated: colour, overall odour, apple flavour, 

overall flavour, sweet taste and sour taste. In order to test the effi-

cacy of the rPLS algorfithm, sweetness and acfidfity, consfidered eas-

fier to finterpret, were taken finto account fin thfis prelfimfinary study. The 

sensory panelfists were trafined wfith a reference jufice as well as wfith 

sucrose (11%) and malfic acfid (0.5%) water solutfions for befing able 

to properly recognfize all the descrfiptors. The samples were evalu-

ated usfing a contfinuous 0 (none) - 14 (very much) fintensfity scale 

and the scores of each sample were averaged over 5 assessors. 

Nuclear magnetfic resonance data and processfing
Bruker Spfin Generated Ffingerprfint (SGF) profilfing15 was employed 

for  the  NMR  analysfis.  Each  sample  requfired  mfinfimal  preparatfion 

effort  consfistfing  of  90%  jufice  wfith  10%  buffer  contafinfing  0.1% 

of  TSP  (sodfium  salt  of  3-trfimethylsfilyl-propfionate  acfid-d4)  and 

0.013% of sodfium azfide to suppress mficroorganfism actfivfity. Thfis 

NMR-based  screenfing  method  fis  based  on  an  Avance  400  NMR 

spectrometer  wfith  a  9.4-T  Ultrashfield™  Plus  magnet  and  utfilfizes 

flow-finjectfion  NMR  (BEST™  NMR)  wfith  a  4-mm  flow-cell  probe 

wfith  Z-gradfient  and  a  Gfilson  lfiqufids  handler  for  sample  storage, 

preparatfion and transfer. Samples are provfided fin bar-coded cryo-

vfials placed fin a Gfilson coolfing rack that keeps the temperature low 

(about 4 °C) prfior to finjectfion. Then a heated transfer lfine from the 

Gfilson unfit to the probe allows the pre-equfilfibratfion of the sample 

to the desfired temperature (300 K) durfing the transfer. The overall 

experfimental procedure fis fully controlled by Bruker’s SampleTrack 

software  fincludfing  temperature  adjustment,  tunfing  and  matchfing, 

lockfing, shfimmfing and the optfimfizatfion of the pulses and presatura-

tfion power for each sample. The resultfing spectra do not need any 

manual processfing step, as they are automatfically phase corrected 

and referenced by the Bruker procedure. Thus, they are ready to be 

fimported  fin  MATLAB  (The  Mathworks  Inc.,  Massachusetts,  USA) 

where they are at first alfigned fin the horfizontal dfirectfion usfing the 

ficoshfift tool developed by Savoranfi et al.16 and subsequently mean 

centered prfior to any further chemometrfics calculatfion. 

Chemometrfics
The rPLS procedure starts by performfing a classfical PLS regressfion 

model between X and y, whfile fin the followfing steps, fit recursfively re-

wefights the X by multfiplyfing fit by the regressfion vector b calculated 

durfing the prevfious fiteratfion. Thfis re-wefightfing fis fiteratfively repeated 

untfil no further progress fin the regressfion coefficfients occurs. The 

fidea  of  usfing  the  regressfion  vector  varfiables  as  wefights  fis  based 

on the fact that they reflect the fimportance of the orfigfinal spectral 

varfiables. Regressfion vector wefights near 0 findficate varfiables not 

finvolved fin the correlatfion wfith y, and wefights wfith large absolute 

values  findficate  fimportant  varfiables.  The  Root  Mean  Square  Error 

of Cross Valfidatfion (RMSECV) fis calculated by usfing venetfian blfind 

cross valfidatfion (5 groups). The rPLS algorfithm fis fimplemented fin 

MATLAB (The MathWorks, Inc.) and made freely avafilable for non-

commercfial use at www.models.lfife.ku.dk.

Results and dfiscussfion
Thfis apple jufice NMR dataset was selected to show the abfilfity of 

the rPLS algorfithm to find the useful finformatfion, correlated wfith the 

sourness and sweetness fin thfis case, among thousands of spectral 

varfiables.  The  result  for  the  predfictfion  of  the  sour  taste  fis  shown 

fin Ffigure  2.  Thfis  plot  contafins  most  of  the  finformatfion  calculated 

by  the  algorfithm  and  fit  fis  a  dfirect  output  of  the  rPLS  scrfipt.  As 

observed, the number of varfiables consfidered “fimportant” become 

lower and lower when the fiteratfions fincrease, untfil they converge to 

Ffigure 2. The rPLS result for the predfictfion of sensory evaluated acfidfity. The model uses two latent varfiables. In each row the development of wefights 
accordfing to fiteratfions fis shown. The coloured scale on the rfight represents the RMSECV values, the whfite box findficates the row where the best model 
was bufilt and fits relatfive RMSECV value; the bar on the left shows the value of the wefights. The value 1 means that the varfiable has a large wefight and 
thus fimportance; 1e-35 means that fit has not. The red dashed lfine shows the optfimal rPLS model and the green cfircles findficate the varfiables selected by 
the algorfithm. The thfick red spectrum superfimposed to the ffigure fis the average of all the spectra fin the dataset.
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the same number of Latent Varfiables chosen for the optfimal model 

of the very first step (two fin thfis case). On the left part of the figure, 

a coloured bar represents the wefights used for the varfiables. The 

dark  blue  colour  means  that  the  varfiable  has  wefight  equals  to  1 

and thus fit fis very fimportant for the regressfion model. In contrast, 

the varfiables sfituated fin the grey regfion can be consfidered useless 

fin terms of predfictfivfity sfince thefir wefight fis very close to 0. On the 

rfight hand sfide of the rPLS plot, the RMSECV of each fiteratfion step 

fis shown. The best fiteratfive performance was obtafined after efight 

fiteratfions, as findficated also fin Ffigure 3. 

The  global  PLS  model  shows  a  predfictfive  performance  of 

RMSECV=1.70 whfile the rPLS global mfinfimum shows a predfictfive 

performance  of  RMSECV=0.96.  Thfis  result  has  two  mafin  advan-

tages, (fi) fit performs clearly better than the global PLS model and 

(fifi) fit fis three orders of magnfitude more sfimple, as fit contafins only 

25 varfiables finstead of the 29149 spectral varfiables fincluded fin the 

global  one,  allowfing  the  careful  finspectfion  of  the  sfingle  varfiables. 

Ffigure 4 shows the regressfion vector of the global PLS model as 

well  as  the  varfiables,  countfing  for  the  NMR  sfignals  at  2.85 ppm 

(countfing for twenty varfiables), 4.53 ppm (countfing for only one varfi-

able), 3.69 ppm (countfing for four varfiables), that have been fidentfi-

fied by the rPLS as mafinly responsfible for the sour taste. The peaks 

can easfily be fidentfified as the malfic acfid methylene (2.85 ppm) and 

methfine  (4.53 ppm)  protons,  whfile  the  peak  at  3.69 ppm  pertafins 

to  the  glucose  pyranose  rfing  protons.  These  observatfions  are  fin 

perfect agreement wfith the fact that the malfic acfid fis the mafin acfid 

fin apple jufice and therefore the mafin responsfible for the sour taste 

of the samples. Moreover, the fact that glucose fis also taken finto 

account  by  the  model,  albefit  wfith  a  numerfically  lower  and  nega-

tfive regressfion coefficfient, findficates an finverse correlatfion between 

malfic acfid content and glucose concentratfion.

It’s  also  finterestfing  to  notfice  that  fin  the  aromatfic  regfion,  where 

polyphenols  sfignals  arfise,  the  chlorogenfic  acfid  shows  posfitfive 

regressfion coefficfients (Ffigure 4). It fis known that polyphenols can 

gfive bfitterness and astrfingency to the apple jufice17, however here 

the mafin polyphenol found fin apple jufice seems to have also a posfi-

tfive correlatfion wfith the sour taste.

As far as the sweetness fis concerned, the best rPLS result occurs 

after  seven  fiteratfions  (Ffigure  5).  Also  fin  thfis  case  the  recursfive 

approach brfings a clear fimprovement when compared to the global 

PLS model, not only fin terms of RMSECV, but also fin terms of the 

number  of  varfiables  to  be  finspected.  Only  five  peaks  have  been 

selected by the rPLS. The sfignals around 3.81 and 3.67 ppm belong 

to sucrose and they are posfitfively correlated to the sweetness, whfile 

the three glucose peaks (3.99, 3.79 and 3.68 ppm) are negatfively 

correlated  to  thfis  attrfibute.  The  finverse  relatfion  between  sucrose 

and glucose content fis already known from lfiterature and fit fis lfikely 

due to thefir finterconversfion18. Surprfisfingly, the sucrose turned out 

to  be  the  mafin  responsfible  for  the  sweet  taste  even  though  the 

fructose fis known to be the mafin sugar and thus sweetener fin apple 

jufice19.  Thfis  confirms  the  complexfity  fin  assfignfing  the  sweet  taste 

to a specfific chemfical compound
13
, sfince fit should better  be con-

sfidered as the global result of the combfinatfion of several compo-

nents. One of the advantages of the rPLS approach fis that fit does 

not only reduce the varfiable space and sfimplfify the finterpretatfion of 

the  result,  but  fit  also  fincludes  the  relevant  covarfiatfion  around  the 

selected peaks. The latter finformatfion can be extremely useful for 

assfignment purposes. 

Conclusfion
In thfis work, we have shown the utfilfity of the rPLS method for the 

predfictfion of sensory attrfibutes from Nuclear Magnetfic Resonance 

data  of  apple  jufices.  Two  of  the  sfix  sensory  descrfiptors  avafilable 

were used for thfis purpose, namely sweet and sour taste. 

In both cases the rPLS was able to develop a good regressfion 

model provfidfing just a very lfimfited set of varfiables that correlate wfith 

the y vector. The advantage of thfis technfique fis that no parameter 

must be set by the operator, apart from the optfimal number of latent 

varfiables  requfired  for  the  finfitfial  PLS  model.  Indeed,  the  strength 

of thfis approach lfies fin the strong varfiable selectfion fiteratfively per-

formed  by  the  algorfithm  whfich  not  only  fimproves  the  predfictfion 

performance, but fit also makes the finterpretatfion of the result tre-

mendously easfier for the operator. Thus the afim of thfis work fis to 

demonstrate the valfidfity of the rPLS method for predfictfing sfimple 

sensory parameters and suggest that fit can be a useful tool for the 

predfictfion of even more complex sensory features from NMR data 

avofidfing  the  need  of  any  further  chemfical  analysfis.  However,  fit  fis 

fimportant to note that when a correlatfion fis obtafined from the data, 

Ffigure 3. The development fin sourness predfictfion performance 
(RMSECV) durfing the rPLS fiteratfions.

Ffigure 4. The rPLS result for the predfictfion of sensory evaluated acfidfity. 
The regressfion coeffficfients for the full range PLS model (fin blue) and for 
the rPLS reduced model (red cfircles).
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thfis  does  not  necessarfily  mean  that  there  fis  a  dfirect  cause-effect 

between the correlated parts. An findfirect causalfity fis often present 

fin any kfind of dataset and thfis can potentfially be mfisleadfing for the 

finterpretatfion.  Thus,  the  results  of  the  model  always  need  to  be 

carefully verfified. 

The  use  of  the  rPLS  fis  also  promfisfing  for  applficatfions  to  the 

metabolomfics field, as showed by Rfinnan et al.14 sfince fit fis able to 

extract only the useful finformatfion from a hfighly complex metabo-

lomfics dataset. Ffinally, fit should be emphasfised that fin thfis prelfimfi-

nary research we have been usfing rPLS to augment the finterpre-

tatfion  of  the  data.  If  fimproved  predfictfion  models  finstead  are  the 

target, then model valfidatfion wfith an findependent test set fis oblfiga-

tory when regressfion and varfiable selectfion fis mfixed as fit fis fin the 

rPLS model.
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Abstract 

Among reproductive-age women, polycystic ovary syndrome (PCOS) is a common endocrine 

disorder often associated with infertility and insulin resistance. Metabolomics studies on follicular 

fluid (FF) have shown to provide information about changes in the physiological state of patients as 

well as biomarkers for oocyte quality. In this context, we performed an exploratory NMR-based 

metabolomic study on FF samples provided from PCOS women that were undergoing an In Vitro 

Fertilization (IVF) therapy. We found that the hyperinsulinemia in PCOS patients is responsible for 

a different FF metabolic profile. In particular, hyperinsulinemia seems to be also associated with 

impaired carbohydrate/glucose and lipid metabolism. Interestingly, anti-müllerian hormone (AMH) 

turned out to be positively correlated with glucose and negatively correlated with lactate, pyruvate 

and alanine. To the best of our knowledge, this is the first study that attempts to correlate AMH 

values with the FF metabolites. Although the data reported here are preliminary, this study paves 

the way to a better comprehension of the relationships among hormones and metabolites.  
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Introduction 

Follicular fluid (FF) and cumulus cells (CC) have shown to play a key role in the oocyte health 

during its maturation. A highly coordinated network of interactions between the oocyte and the 

somatic cells influences the intrafollicular microenvironment allowing the folliculogenesis (1). 

Follicular fluid, also known as liquor folliculi, has been described for the first time in 1974 as an 

exudate from plasma enriched with secretions from the follicles (2). Thus, its composition varies 

when the plasma is altered by the presence of pathologies, and/or changes in the secretory processes 

of the granulosa and theca cells occur, reflecting the physiological state of the follicle. The 

variations in FF composition are strictly connected with both the maturation (3) and quality of the 

oocyte (4). Indeed, Spitzer et al. observed that FF from immature follicles is characterized by a 

different protein pattern compared to the fluid collected from mature follicles, suggesting the 

potential use of selected proteins as biomarkers for follicular maturity (3). The importance of 

finding biochemical predictors for the oocyte quality was investigated by Revelli et al. (4). They 

analysed all the correlations reported in the literature between the embryo characteristics and 

several molecular markers in FF as hormones, growth factors, reactive oxygen species, anti-

apoptotic factors, proteins, sugars and prostanoids. However, they were not able to identify 

substances as reliable markers for assessing the oocyte quality, most probably due to “univariate” 

scientific approach used. In fact, the same authors suggested to employ a metabolomic approach 

(based on a multivariate data analysis) that is more suitable to analyse complex biological mixture 

such as FF. 

Metabolomics has been widely employed to analyse almost every kind of biological fluid using 

both Nuclear Magnetic Resonance (NMR) and mass spectrometry. Compared to the latter, NMR 

has the advantage of being highly reproducible, requiring minimal sample handling and allowing 

the identification of a wide range of low-molecular-weight compounds. Pinero-Sagredo and 

coworkers were the first to perform a NMR study on FF, identifying the presence of at least 42 

metabolites (5). Significant correlations among glucose, β-hydroxybutyrate (3-HB), lactate, 

pyruvate, acetoacetate and acetate were found, thus suggesting the presence of an important 

anaerobic metabolism in overstimulated follicles. In addition, a statistically significant correlation 

was also observed between the glycolytic pathway and fatty acid metabolism in both young donors 

and the group with the higher fertilization rate. This study paved the way to the use of NMR-based 

metabolomics on FF for the discovery of biomarkers for the oocyte developmental competence 

(6,7).  

Polycystic Ovary Syndrome (PCOS) represents the most commonly occurring metabolic and 

endocrinological disorder affecting 5–20% of women in their reproductive age worldwide (8,9). It 
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is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphologic 

features. Being a syndrome, PCOS, is heterogeneous and also associated with other alterations such 

as repeated and quick gonadotropin-releasing hormone pulses, an excess of luteinizing hormone 

(LH), and insufficient follicle-stimulating hormone (FSH) secretion, which contributes to an 

excessive ovarian androgen production and ovulatory dysfunction. Furthermore, evidences of 

insulin resistance are common among women with PCOS, as a consequence of this, a compensatory 

hyperinsulinemia promotes adrenal and ovarian androgen production, thus contributing to the 

hyperandrogenism (10). 

One of the main features of PCOS is the increased number of antral follicles. In this frame, the 

growing interest in Anti-Müllerian Hormone (AMH) as follicular reserve marker has prompted 

many researchers to investigate the expression of this molecule in women with PCOS, in order to 

obtain information about the pathogenesis and the ability to calibrate the treatments in the case of 

ovulation induction or multiple follicular growth for medically assisted procreation cycles. 

In order to understand the correlations among the FF composition, the hormones values and the 

hyper- and normoinsulemic conditions of PCOS women, we performed an exploratory NMR-based 

metabolomic study on 41 samples of FF provided from women that were undergoing an IVF 

therapy. 

 

Materials and methods 

Experimental design 

The women included in the study, ranging from 23 to 38 years old, were diagnosed with PCOS (in 

both ovaries) according to Rotterdam criteria (11,12). All women were characterized by the 

following parameters: number of follicles (n > 12), diameter of follicles (2 - 9 mm) and/or ovarian 

volume (V > 0.10 cm3). The selected donors showed no genetic anomalies, and no chronic or 

inflammation diseases. Moreover, they never had ovarian surgery and were not under hormonal 

therapy during the 6 months prior to the study. 

The patients were divided in two subgroups according to specific features that were considered 

valid to determine a hyper- or normoinsulinemic condition. In particular, three parameters were 

taken into account to assess the hyperinsulinemic state: the body mass index (BMI > 27 kg/m2), the 

waist to hip ratio (WHR > 0.85) and the homeostatic model assessment for insulin resistance 

(HOMA-IR > 2.5). Only patients with positivity to all three parameters where considered belonging 

to the group of hyperinsulinemic. Conversely, the patients showing a HOMA-IR < 2.5, WHR < 

0.85 and BMI < 27 kg/m2 were assigned to the group of normoinsulinemic. For each patient, a 

pelvic ultrasound with vaginal probe (6.5 MHz) was then performed. 
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All the individuals involved in the study were undergoing to a GnRH antagonist type therapy for 

the induction of multiple follicular growth as well as stimulation with recombinant FSH (rFSH). In 

addition, a folic acid-based treatment and inositol therapy were employed for 5 months. For the 

final oocyte maturation, 10,000 IU of human chorionic gonadotropin (hCG) were administered, in 

order to stimulate the ovulation. 

 

Sample collection 

FF samples from 41 women were provided by the “IVF Center, Department of Neuroscience, 

Reproductive Science and Odontostomatology”, Federico II University Hospital in Naples. Samples 

were collected by means of transvaginal ultrasound-guided puncture. The fluid was then separated 

from the oocytes, and stored at -80 °C until analysis, as detailed in previous study (13). 

 

Serum analysis 

In order to assess the insulin resistance (IR) among the patients, an Homeostatic Model Assessment 

was performed as described by Matthews et al. (14). Furthermore, the serum concentration of AMH 

was also measured, being a key factor in the PCOS pathology. The complete serum analysis and the 

characteristics of the studied population are reported in Table 1. 

 

NMR spectroscopy 

FF samples were thawed at room temperature and then centrifuged at 10,000 rpm for 5 min. NMR 

samples were prepared mixing 175 µL of the supernatant with 35 µL of deuterium oxide (D2O) and 

140 µL of phosphate buffer in order to obtain a pH value of 7.4. The samples were then transferred 

to 3 mm NMR tubes for the analysis. The spectra were recorded at 25 °C with a 700 MHz Varian 

Unity Inova spectrometer equipped with a 5 mm 1H{13C/15N} triple resonance probe. 

A Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was employed in this study in order to 

reduce the broad resonances from high-molecular-weight compounds, allowing the observation of 

low-molecular-weight metabolites. A total of 128 scans and 16K data points were used to perform 

each measurement. The spectra were then processed using iNMR (www.inmr.net). An exponential 

line broadening of 0.5 Hz was applied to the free-induction decay prior to Fourier transformation. 

All acquired NMR spectra were phase- and baseline-corrected, then referenced to the singlet at 1.91 

ppm (acetate). Spectral 1H assignments were made based on both the literature values (5) and the 

library provided by the Chenomx database (Chenomx NMR Suite 8.1, Chenomx Inc., Canada). 
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Data processing and Multivariate data analysis 

NMR spectra were then imported into MATLAB (R2012b; Mathworks, Natick, MA) where the 

spectral regions above 9 ppm and below 0 ppm were removed because containing only noise. 

Furthermore, the region between 4.16 and 5.20 ppm was discarded because it was dominated by the 

residual water signal. In order to correct for spectral misalignment, the entire dataset was globally 

aligned with respect to the acetate signal (1.91 ppm) using the icoshift algorithm (15).  

The data matrix was then submitted to the PLS toolbox version 8.1.1 (Eigenvector Research, 

Manson, USA) where the total area normalisation (1-norm) was performed prior to the pareto-

scaling and mean-centering in order to compute the Principal Components Analysis (PCA). 

PCA is an unsupervised pattern recognition method that allows the reduction of the dimensionality 

of a data set consisting of a large number of interrelated variables, providing a visual representation 

of the major variance in the data (16). Thus, the original variables are transformed into a smaller set 

of new uncorrelated variables, called principal components (PCs), which are ordered according to 

the explained variance that they are able to retain. Most of the relevant systematic information is 

usually calculated by the first few PCs, while the following ones are often computed considering 

chance variation and noise. The outcome of this analysis consists of two plots: a scores plot, where 

the samples are displayed as scores, and a loadings plot that shows the variables.  

The scores are the projection of the data onto the new coordinate system defined by the PCs, 

whereas the loadings define the size of the contribution of each original variable to the component. 

Thus, samples having similar scores will cluster together as well as variables with comparable 

loadings will be close, meaning that they are highly correlated.  

The multivariate analysis described above have been used to study the NMR spectra of the sampled 

FFs. The NMR dataset was taken into consideration using both the entire set of variables and, in 

order to reduce model complexity, using only the NMR relative quantification of 14 selected 

metabolites. In particular, the peak areas of the well-separated resonances were manually integrated 

and submitted to the data analysis. 

Finally, a metabolite-metabolite correlation analysis was conducted on all sampled FFs using the 

selected integrated NMR peaks. The Pearson correlation analysis generates a coefficient indicated 

as r, which value can range from −1 for a perfect negative linear relationship to +1 for a perfect 

positive linear relationship. A value around 0 (zero) indicates no relationship between two 

variables. Furthermore, to assess the statistical significance of a correlation, the p-value calculation 

was also performed.  
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Results and discussions 

A total of 41 FF samples were analysed by 1H NMR spectroscopy. A representative spectrum of FF 

sample is shown in Figure 1. The FFs were characterized by low-molecular-weight metabolites 

including amino acids (valine, alanine, glycine, phenylalanine and tyrosine), organic acids (lactate, 

acetate, acetoacetate, pyruvate and formate) and glucose. 

 

 
Figure 1. 1H CPMG NMR spectrum of a representative follicular fluid sample measured at 700 MHz and 25 °C. Keys: 
Val = valine; 3-HB = 3-hydroxybutyrate; Lac = lactate; Ala = alanine; Ace = acetate; AcAce = acetoacetate; Pyr = 
pyruvate; Cit = citrate; Gly = glycine; Glc = glucose; Tyr = tyrosine; His = histidine; Phe = phenylalanine; For = 
formate. 
 

An exploratory PCA was first performed on the data set consisting of the complete NMR spectra. 

The PCA scores plot (PC1/PC2, 48.8% of total variance explained) showed a slight separation of 

the samples according to the hyper-/normo-insulinemic condition of the PCOS patients along the 

diagonal direction of the plot (data not shown). Unfortunately, the loading plot of PC1 (26.9% of 

the explained variance) is actually dominated by signals that cannot be assigned to traditional 

metabolites (except glycine), suggesting that they may be attributed to contaminant(s) that could 

affect the interpretation of the PCA. In order to analyze a PCA built by most reliable variables, all 

the peaks of the proton NMR spectrum that could be unambiguously assigned to known metabolites 

have been taken into consideration, and therefore integrated. Thus, 14 integral values were used to 

build a new data matrix that has been augmented by additional 12 clinical variables coming from 

the clinical measurements (see paragraph Serum analysis in Materials and methods section). This 

approach has the advantage to compare altogether a larger range of information, thus providing a 

more complete picture of the physiological condition of the studied population. So, a new PCA has 
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been computed and it is reported in Figure 2. As shown in the score plot, a better separation occurs 

between the hyperinsulinemic and normoinsulinemic PCOS women. The variables that better 

explain this separation are those having larger loading values along the direction of the sample 

separation (see the loadings plot in Fig. 2). Therefore, the normoinsulinemic group is characterized 

by high value concentrations of glucose and AMH, while hyperinsulinemic women present higher 

concentration of lactate, alanine and pyruvate. From a metabolic point of view, glucose, lactate and 

pyruvate are strictly correlated to each other, being all metabolites of the glycolytic pathway. 

Interestingly, in normal physiological conditions, the follicles grow in an anaerobic environment 

since the avascular granulosa layer (that surround them) increases its thickness preventing the 

oxygen supply in the follicle (17). In particular, granulosa cells (GC) and cumulus cells (CC) are 

required to provide products of glycolysis for the development of the oocyte, which is unable to 

carry out this pathway (18). In these conditions, the pyruvate transformation into lactate is obtained 

due to the limited amounts of oxygen available. Pyruvate is the final key 3-carbon (3-C) 

intermediate transferred to the oocyte, however it is interchangeable with lactate which is the main 

3-C compound produced by the GC.  

Likewise, alanine is linked to glycolysis pathway. In fact, alanine can be also produced by reductive 

amination of pyruvate. The increase of alanine concentration in the insulin-resistant PCOS women 

(compared to non-insulin resistant patients) is in perfect agreement with a previous study reported 

by Zhang et al. (19).  

As mentioned above, among the variables that mostly contributed to the separation of the 

normoinsulinemic and hyperinsulinemic women there is also the anti-müllerian hormone (AMH). 

This hormone is a member of the transforming growth factor-β (TGF-β) superfamily and it is 

considered an important marker of ovarian reserve (20). AMH values are important markers for 

PCOS, in fact, women affected with syndrome, have 2- to 3-fold higher levels of AMH than healthy 

women (21). Interestingly, Takahashi et al. found that oocytes are more likely to be fertilized when 

follicles are able to make high concentrations of AMH in the follicular fluid. Thus, they speculated 

that AMH could be considered a prediction marker for fertilization (22). Lin et al. found also a 

negative correlation between AMH and BMI. This could be in line with our result, as 

normoinsulinemic women have a lower BMI than the insulin-resistant group. However, the authors 

didn’t find any correlation between the hormone values and the insulin resistance parameters (23).  

The study of the correlations among all the metabolites has been demonstrated to be a valuable 

analytical tool in systems biology (24). For this reason, the Pearson's correlation analysis of the 

metabolites was performed. At a threshold of r ≥ │0.5│, 16 positive and 7 negative significant 

correlations were found, and the metabolites characterized by the highest correlation values turned 
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out to be glucose, lactate, pyruvate, acetoacetate and 3-HB. We have found significant (p < 0.05) 

negative correlations between glucose and lactate (-0.78), and between glucose and pyruvate (-

0.70). On the contrary, we found significant positive correlations between pyruvate and lactate 

(0.70), and between acetoacetate and 3-HB (0.95). Interestingly, these data are in agreement with 

the metabolite correlations found in FF of women not presenting the PCOS (5). These correlations 

strengthens the hypothesis of an important anaerobic metabolism occurring in the hyperstimulated 

follicles (17), and the strong correlations among glucose, pyruvate and lactate confirm that FF 

provides lactate and pyruvate to the developing oocyte as a source of energy. Acetoacetate and 3-

HB are synthesised from acetyl-CoA by fatty acid oxidation and their correlation can be explained 

by the fact that they are interconvertible by means of the β-hydroxybutyrate deidrogenase. 

 

 
Figure 2. PCA scores (left) and corresponding loadings plot (right) derived from the data analysis of the integrated 
peaks of the 1H NMR spectra of follicular fluids together with the clinical parameters measured among the PCOS 
women.  

 

In summary, FF represents a suitable source of information since it is superfluous, abundant and 

easily available material during the IVF treatment. Metabolomics studies on this fluid can provide 

useful information about changes in the physiological state of patients, alterations of metabolic 

pathways, as well as biomarkers for oocyte quality and IVF success rate. In the case reported here, 

the hyperinsulinemia in PCOS patients is responsible for a different FF metabolic profile. In 

particular, hyperinsulinemia seems to be also associated with impaired carbohydrate/glucose and 

lipid metabolism. Interestingly, AMH turned out to be positively correlated with glucose and 

negatively correlated with lactate, pyruvate and alanine. Although the data reported here are 

preliminary, this study paves the way to a better comprehension of the relationships among 

hormones and metabolites. To the best of our knowledge, this is the first study that attempts to 

correlate AMH values with the FF metabolites.  
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Table 1. Baseline characteristics of the studied population. 

  Normoinsulinemic Hyperinsulinemic 

Patient characteristics n = 29 samples n = 12 samples 

Age (years) 31.3 ± 2.6 31.4 ± 3 

BMI (Kg/m2) 22.6 ± 2.3 31.4 ± 2.7 

HOMA 1.4 ± 0.6 3.4 ± 0.7 

FSH (IU/L) 5.6 ± 2.0 5.7 ± 1.4 

LH (IU/L) 6.4 ± 3.9 5.9 ± 2.6 

AMH (IU/L) 5.7 ± 4.1 2.9 ± 1.3 

E2 on day 5 (pmol/L) 432.0 ± 310.4 173.4 ± 179.1 

E2 peak (pmol/L) 1111.5 ± 682.6  1363.7 ± 657.8 

No. of follicles 10.7 ± 4.7 8.4 ± 3.6 

No. of MII oocytes 8.8 ± 4.1 7.4 ± 3.8 

Total dose of Gn (IU/L) 1100.6 ± 471.6 1657.5 ± 707.1 

Days of Gn stimulation 9.8 ± 3.3 11.2 ± 2.4 
Data are reported as mean ± standard deviation.  

BMI: body max index; HOMA: homeostasis model assessment; FSH: follicle stimulating hormone; LH: luteinizing 

hormone; AMH: antimullerian hormone; E2: Estradiol. 
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