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Abstract 

The concept of Process Analytical Technology (PAT) was introduced in pharmaceutical and 

biopharmaceutical manufacturing over 10 years ago. Yet, the conventional manufacturing 

paradigm focused on quality by testing (QbT) is still deep-rooted in the quality culture of 

pharmaceutical companies and, has considerably slowed down the introduction of new tech-

nologies in manufacturing. This thesis specifically concerns this issue by focusing on the 

development of PAT applications combined with chemometrics to design, analyse, control 

and optimize pharmaceutical processes. The challenges underpinning the lack of data-driven 

decision making in (bio)pharmaceutical manufacturing are discussed in three different per-

spectives: 

 

- Gathering data and extracting information from PAT to build process understanding, 

fasten product development or introduce improvements in existing processes; 

- Setting appropriate workflows for analytical method development and lifecycle manage-

ment of PAT procedures in drug manufacturing, including knowledge transfer and 

knowledge management in a global environment. 

- Establishing knowledge and data-driven approaches where all process unit operations 

are linked and the product lifecycle perspective is considered under an evolving regula-

tory framework. 

 

The emergence of a data-driven mind set and the advancements in data analytics and com-

puter science are an opportunity for pharmaceutical companies to gain novel insights to im-

prove drug development and manufacturing efficiency. PAPER I describes how PAT com-

bined with different chemometric approaches can be used to support the conversion of a 

conventional batch process for API manufacturing into a continuous one. The work describes 

a roadmap for PAT screening and details the scientific basis to develop monitoring and con-

trol strategies for continuous reactions based on PAT information. Poster I and Poster II 

further detail on the experimental work required to characterize the reaction system investi-

gated in the study (i.e., reactants and products). 

 

In a very competitive landscape for the launch of biopharmaceutical products, it is crucial to 

expedite development timelines while maximizing the efficiency of process characterization 

studies. PAPER II conveys how 2D fluorescence and advanced data analysis methods can 

shed some light into biologic drug process development. Due to limited sensor capabilities 

and/or first-principles understanding, 2D fluorescence is a promising technology for acceler-

ating bioprocesses development and evaluating control strategies. 
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When developing a new process or addressing a problem in an existing one, it is fundamental 

to adopt consistent procedures and practices, particularly in a globalized environment. Per-

haps one of the major constraints delaying the adoption of PAT in (bio)pharmaceutical man-

ufacturing is the inexistence of a systematic workflow for PAT method development and 

maintenance in routine use. BOOK CHAPTER I aims to address this gap by proposing a 

systematic procedure for PAT-based methods development and lifecycle management, 

aligned with current regulatory expectations, and applicable to the production of any 

(bio)pharmaceutical product. 

 

Many of the existing solutions to deal with multivariate data within PAT and more general 

within Quality by Design (QbD), tend to focus on local data analysis: data is generated and 

analysed in the context of a microsystem (viz., sample or unit operation). However, the true 

benefits of innovative process technologies or advanced data analysis methods can only be 

realized if the knowledge is properly transferred and maintained throughout the process flow-

sheet (i.e., linkage of steps) and over the product lifecycle, including development and com-

mercial manufacturing. BOOK CHAPTER II sets continued process verification (CPV) at the 

center of the process/product lifecycle approach. To fully accomplish the CPV concept, the 

process must perform at any point of its existence as well and as consistently as it did when 

filed and approved in the first place. A workflow to streamline the information hidden in com-

plex databases is provided to elevate legacy product validations to a higher level, in terms of 

compliance with current regulations/guidelines, robustness and operational performance. 

Under the framework of pharmaceutical quality systems (cf. ICH Q10, 2009), that incorporate 

quality risk management (QRM) and data-based justifications to develop a good grasp of all 

important variability sources, different stakeholders can challenge process owners to make 

evidence of product quality and consistency which is a true indicator of in-depth process 

understanding and efficient knowledge dissemination.  
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Resumé 

Process Analytical Technology (PAT) blev introduceret i den farmaceutiske og biofarmaceu-

tiske industri for mere end ti år siden. MDden traditionelle kvalitetstankegang: ”quality by 

testing” er dog stadig meget udbredt i de farmaceutiske firmaer, hvilket har dæmpet udbre-

delsen af PAT teknologier. Denne afhandling omhandler denne problematik ved at fokusere 

på udvikling af PAT applikationer kombineret med kemometri til design, analyse, kontrol og 

optimering i den farmaceutiske produktion. Udfordringen i at få større gavn af databaserede 

beslutninger i den (bio)farmaceutiske produktion vil blive diskuteret ud fra tre forskellige per-

spektiver: 

- Opsamling af data og ekstrahering af relevant information fra PAT teknologier til 

bedre procesforståelse, hurtigere produktudvikling eller forbedringer af eksisterende 

processer; 

- Opstilling af workflows til analytisk metodeudvikling af lifecycle management af PAT 

procedurer i den farmaceutiske produktion inklusiv vidensdeling og -management i 

et globalt miljø; 

- Etablering af en videns- og data-baseret tilgang hvor alle processens enhedsopera-

tioner er sammenkædet under hensyntagen til produktets lifecycle perspektiv i et 

dynamisk regulatorisk setup. 

 

Den øgede fokus på en data-baseret tankegang i kombination med den teknologiske udvik-

ling i dataanalyse og computer science giver nye muligheder for de farmaceutiske firmaer 

for at opnå indsigt til forbedring af produktudvikling og produktionseffektiviseringer. PAPER 

I beskriver hvordan PAT teknologier i kombination med forskellige kemometriske metoder 

kan anvendes til at understøtte transitionen af en proces fra batch til kontinuert produktion. 

Yderligere beskrives et roadmap til screening af PAT teknologier og nødvendig videnskabelig 

viden til udvikling af monitorerings- og kontrol-strategier i kontinuerte processer baseret på 

PAT teknologier. Poster I og II beskriver i yderligere detaljer det eksperimentelle arbejde, 

der er nødvendigt for at karakterisere det undersøgte kemiske system beskrevet i PAPER I 

(dvs. reaktanter og produkter). 

Det er vigtigt at optimere udviklingstiden samtidig med at effektiviteten i udviklingsstudierne 

maksimeres. PAPER II beskriver hvordan 2D fluorescens-spektroskopi og avancerede data 

analytiske metoder kan bidrage med nye viden i procesudvikling af biologiske farmaceutiske 

produkter. Fluorescens giver nogle unikke muligheder for at accelerere udviklingen og sty-

ringen af bioprocesser. 
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Under udvikling af nye processer, eller under troubleshooting af en eksisterende, er det vig-

tigt at efterleve konsistente procedurer og bedste praksis - specielt i et globalt miljø. En af 

grundene til den forsinkede udbredelse af PAT teknologier i den (bio)farmaceutiske industri 

er måske netop den manglende beskrivelse af systematiske arbejdsgange i forbindelse med 

metodeudvikling og vedligehold af PAT applikationer under rutinebrug. BOOK CHAPTER I 

beskriver en løsning på dette, ved at foreslå en systematik for udvikling og lifecycle mana-

gement af PAT applikationer som er tilpasset til de aktuelle regulatoriske forventninger, og 

som er anvendeligt under fremstilling af (bio)farmaceutiske produkter generelt. 

Mange eksisterende multivariate dataanalytiske løsninger inden for PAT, og mere generelt 

inden for Quality by Design (QbD) fokuserer på lokal dataanalyse, Det vil sige at data er 

genereret og analyseret inden for et mikrosystem (f.eks. prøve- eller enhedsoperation). Men 

for at få fuldt udbytte af fordelene ved innovative procesanalytiske teknologier eller avanceret 

dataanalyse, så bør sammenkædning af viden tilsikres, både mellem forskellige procestrin 

og mellem forskellige livs-cykler af produktet. BOOK CHAPTER II sætter ”continued process 

verification” (CPV) i centrum i en sådan proces/produkt livscyklus tilgang. CPV konceptet 

kan kun gennemføres hvis processen er valid til enhver tid og præcist som den var valid, da 

den blev registeret første gang. Her gives et workflow til at strømline den information, der er 

gemt i databaser på kommercielle produkter. Dette vil kunne løfte produktvalidering til et 

højere niveau – både når det gælder regulativ compliance, robusthed og operationel perfor-

mance. Inden for rammerne af de farmaceutiske kvalitetssystemer (ICH Q10, 2009) anven-

des ”quality risk management” (QRM) og databaserede redskaber til at forstå variationskil-

der. Og her kan forskellige interessenter udfordre procesejere til at demonstrere produktkva-

litet og robusthed - begge som gode indikatorer for dybdegående procesforståelse og effektiv 

vidensformidling. 
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PART I – Quality by Design, PAT and Chemometrics 

 

 

 

“Quality can be planned and most quality 

crises and problems relate to the way in 

which quality was planned in the first 

place.” 

 

Joseph Juran 
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1 Introduction 

1.1 Motivation 

The Process Analytical Technology (PAT) initiative launched by the Food and Drug Administra-

tion (FDA) and the guidelines issued by the International Conference on Harmonization (ICH) 

set a shift in the definition of quality applied to pharmaceutical products. A comprehensive ap-

proach to improve the understanding of drug product attributes and the corresponding relation-

ship with process unit operations has been recommended since. More specifically, ICH Q8(R2) 

states that “Product and process understanding in combination with quality risk management 

will support the control of the process such that the variability can be compensated for in an 

adaptable manner to deliver consistent product quality” (ICH, 2009). In order to became adapt-

able, process analytical technologies are envisioned as true enablers of innovation and contin-

uous improvement initiatives. 

The goal of this academic contribution is to demonstrate the value of PAT and multivariate data 

analysis to the (bio)pharmaceutical industry and its potential to improve the practical knowledge 

and general understanding of manufacturing processes. This study was driven by the expecta-

tion that these approaches can overcome specific challenges often encountered in (bio)phar-

maceutical production, such as poor first-principles model understanding, management of com-

plex data structures, high degree of correlation between process variables and unit operations 

interdependency. Furthermore, the aim of this project is to propose a structured workflow for 

effective lifecycle management of PAT-based procedures, particularly important when these 

methods take part of manufacturing control strategy. It is our expectation to provide additional 

guidance to companies on how to demonstrate the “fit-for-purpose” of PAT-based procedures 

throughout the manufacturing lifecycle.  

To date, very few companies have been successful in performing low-cost improvements to 

processes developed without a QbD rationale. Here, we demonstrate how data-driven methods 

can be used to improve the understanding of the existing relationships between process param-

eters and product quality attributes, supporting a Continuous Process Verification (CPV) strat-

egy towards continuous improvement of existing/legacy pharmaceutical products. 

 

“Data do not yield information except with the intervention of the mind. Information does not 

yield meaning except with the intervention of imagination.” 

Theodore Levitt 
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1.2 Scope 

This thesis aims to demonstrate the potential of PAT and multivariate data analysis to charac-

terize complex processes for chemical and biological drug substance production. The value of 

these approaches is demonstrated for a diverse set of analytical tools and measuring principles. 

Furthermore, the importance of chemometrics to uncover the relationships between spectral 

information, process dynamics and product quality are highlighted. In our perspective, extending 

the lifecycle management concept to analytical method development (particularly to PAT) is a 

key initiative to increase the prevalence of PAT as integrating elements of the process control 

strategy. Therefore, one of the most important outcomes of the present work is the development 

of a structured workflow to effectively manage and disseminate the information and knowledge 

generated during PAT development. With the same purpose, a workflow focused on knowledge 

assessments and data-driven approaches is presented with the aim to identify root-causes for 

process variations in already established (bio)processes and, consequently, improvement op-

portunities. 

1.3 Thesis outline 

The dissertation is organized in three parts. In the first part, the foundations and the evolving 

perspective of the quality concept are presented along with the building blocks (i.e., enablers) 

necessary to realize the Quality by Design vision. The second and the third parts detail the 

research work. First, the practical aspects of PAT applications are discussed, followed by a 

generalisation of such approaches into a conceptual workflow for effective knowledge manage-

ment and transfer. Each chapter is based either on a published/submitted paper to a peer re-

viewed journal or a poster presentation in a scientific conference. For consistency purposes, 

minor changes were made to the original documents, both in content and format. These 

changes are meant to guide the reader through the focal points of this dissertation but do not 

change the key messages disclosed in the original publications. In the case of Book Chapter 

II, the introductory section describing the regulatory landscape for pharmaceutical development 

and manufacturing was moved to Chapter 3. The emphasis was given to the practical applica-

tion of the concepts to improve a commercial biopharmaceutical product well established in the 

market. A graphical representation of the thesis structure is presented in Figure 1-1 and will be 

further used to draw the reader’s attention to the key subjects discussed within each chapter. 
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Figure 1–1: Thesis structure and contents. 
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2 The Quality by Design concept: an integrated 

approach to pharmaceutical manufacturing 

2.1 QbD foundations: overcoming the quality myopia  

The concept of quality has existed in different formats for many hundreds of years. Modern 

quality principles have evolved considerably since the beginning of the 20th century, making its 

first pivot away from “inspection-centered” when the theory of Scientific Management was intro-

duced by Frederick Taylor. His philosophy was centered on the standardization of working meth-

ods to improve productivity and less in the common problems of inefficiency and slow rate of 

work. Other major breakthrough occurred in 1924 when Shewhart and others (e.g., Deming) at 

Western Electric introduced the concept of statistical process control (SPC) setting the begin-

ning of the quality control era. During this period, important quality concepts were established, 

namely the demonstration that variations in the process lead to variations in product quality 

attributes. The foundations behind modern sampling plans and sampling guidelines are rooted 

in this period (Hyde, 1998). 

Later in 1950, Feigenbaum, Cosby, Juran, and Taguchi pioneered the quality assurance era. 

Their theories were based on the previous quality standards (i.e., inspection and control princi-

ples) but the focus considerably shifted from a product-oriented to a systems-oriented quality 

approach. The introduction of quality manuals, quality planning and documentation control in 

this period, illustrates the broader spectrum of quality within the organization (Mazumder et al., 

2011).  

The next level of development was brought by Total Quality Management (TQM) focused on 

improving all organizational processes through the people involved. TQM is part of a wider con-

cept, that addresses organizational performance and the importance of structured workflows to 

integrate quality into the total organisation which are the very primary foundations of the QbD 

concept. 

Over the past decades, the pharmaceutical industry developed a very complex system (i.e., the 

Pharmaceutical Quality System – PQS) to ensure that high-quality products are accessible to 

patients. Despite these efforts and considerable improvement in technology and production 

methods, the number of incidents and drug shortages has increased in recent years (Gonce et 

al., 2014). To understand the underlying factors in the chain of events leading to the increasing 

number of quality issues, it is important to understand the wave of competing challenges phar-

maceutical companies are currently facing. The increase in demand, and consequently in pro-

duction run rate, combined with the increasing complexity of the pharmaceutical supply chain, 

raises the risk of failure considerably. Moreover, new products (e.g., biopharmaceuticals) fea-

ture more complex production infrastructures, requiring improved process controls to achieve 
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high performance and consistency levels. A more fundamental challenge is the prevailing qual-

ity culture (the “quality myopia”), focused on compliance, rather than on truly understanding the 

root causes and impacts of process incidents and deviations. The difficulty in conducting proper 

root cause investigations and trace-back to process or system issues is easily surpassed by the 

difficulty to shift the mind-sets of the quality and operation groups (Gerstner & Rutten, 2014). 

Quality excellence relies on fully understanding the relationships between process settings and 

material attributes, from development up to routine manufacturing. This means that quality is-

sues can be anticipated in the first place or promptly mitigated, relieving the burden of compli-

ance bureaucracy created by the interplay of regulators and manufacturers. In this context, the 

QbD initiative has emerged as a science-based approach to product development and manu-

facturing, according to which, the manufacturing process should be developed to meet the de-

sired quality specifications and to increase the scientific understanding of product attributes. 

The two main aspects of QbD are: 

1. Identify and manage the critical quality attributes (CQAs) of the product; 

2. Establish the design space of the process and its boundaries defined as the appropri-

ate acceptable ranges for desired product quality. 

Although final product testing is an important element of quality control, “quality cannot be tested 

into products; quality should be built in by design” (ICH, 2009). To realize the full benefits of 

QbD it is necessary to enable a thorough understanding of the relationship underlying the supply 

chain, process parameters and final product attributes (Rathore, 2009). Successful QbD imple-

mentation for a (bio)pharmaceutical product involves the following steps: 1) identification of 

quality target product profile (QTPP) and critical quality attributes (CQAs) that are essential to 

product safety and efficacy; 2) design of the process in order to deliver product specifications – 

risk-based identification of critical process parameters (CPPs) and assessment of interacting 

effects; 3) implementation of an efficient quality control strategy to guarantee consistent process 

performance; 4) implementation of an ongoing process verification (OPV) program to ensure 

process reproducibility over the lifecycle of the product. 

Strategies for handling sources of variability, scientific understanding of the process based on 

PAT applications and, risk evaluation in order to establish appropriate operating ranges, provide 

a foundation for QbD implementation (Figure 2-I). 
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Figure 2–1: Quality by Design approach to (bio)pharmaceutical products development and manufacturing 

(adapted from Rathore, 2009). 

2.2 The critical path for pharmaceutical innovation:  

requirements and enablers 

High-quality products are the current standard of the pharmaceutical industry. Yet, high-quality 

requires much more than complying with a set of rules prescribed by regulators or having high-

tech production processes and quality systems in place. Despite the significant impact of risk 

events, most companies still not have in place a comprehensive quality risk management (QRM) 

program to proactively assess risk sources and mitigate them on a continual basis. 

QRM is not a one-time-only activity, but a mechanism that ensures that risks are continuously 

evaluated during the product lifecycle and remain within an acceptable level (Figure 2-2). The 

principles for designing a comprehensive approach to manage quality risks in pharmaceutical 

production are presented in ICH guidelines (ICH, 2006; ICH, 2009). Some of the tools recom-

mended to effectively rank, monitor and manage quality risks are (non-exhaustive) Ishikawa 

diagrams, 5 Whys method, Failure Mode Effects Analysis (FMEA) Fault Tree Analysis (FTA), 

risk ranking and filtering and supporting statistical tools. The applicability of each tool depends 

on the prior knowledge available, the risk assessment stage (i.e., Risk Assessment, Risk Con-

trol or Risk Review, according to Figure 2-2) and the complexity of the quality issue to be ad-

dressed. 
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Figure 2–2: Integration of the Quality Risk Management workflow (ICH, 2009) within the QbD framework for 

product/process development and manufacturing. 

Many production processes for pharmaceuticals were initially validated with limited knowledge 

from few production lots. Once processes are established, the flexibility for changes either to 

improve product quality or the efficiency of the process is significantly limited. In a very compet-

itive landscape such as the one (bio)pharmaceuticals currently face, time-to-market is one of 

the key drivers for success. Therefore, strategic planning of development efforts and a compre-

hensive evaluation of potential risks are key elements to maximize operational and business 

efficiency. A step-wise approach is recommended, starting with a clear understanding of the 

patient needs and market constraints that is translated into product and intermediate attributes, 

leading to the definition of unit operations and in-process controls. During these activities, col-

laboration across functions within the organization is essential to identify, address and manage 

all critical risks to guarantee high-quality product and process performance levels during com-

mercial manufacturing (De Boeck et al., 2014). 

QRM is the basis for the transfer of process knowledge and for continuous improvement of the 

process control strategy robustness allowing to reduce the likelihood and impact of quality is-

sues, to conduct faster and robust corrective-and-preventive-action (CAPA) investigations and 

to foster a preventive quality culture – i.e., a preventive-and-corrective-action (PACA) mind set 

– within the organization.  
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3 Bridging PAC and PAT domains in  

pharmaceutical manufacturing 

3.1 Understanding the “5 Why’s” 

The quest of mankind to defeat illness has made the pharmaceutical industry one of the most 

profitable and successful businesses in the world. The continuous growth of the sector is fuelled 

by the constant demand of the world’s population for longer and healthier lives. To fully under-

stand the foundations of the industry it is important to contextualize the business environment. 

Research and innovation are key drivers, therefore a deep understanding of the technical side 

is mandatory (Beynon & Porter, 2000). But is also essential to realize that once a medicine 

reaches the market (i.e., is accessible to patients) the strongly regulated environment slows 

down the pace of innovation. As such, the lack of innovation in commercial manufacturing is 

usually accepted as a consequence of the many rules and regulations enforced by health au-

thorities. The ingrained regimen of time-based quality inspections has discouraged companies 

to adopt innovative technologies in order to avoid post-approval changes and the associated 

costs, time and efforts required to obtain approval by regulatory agencies (Hinz, 2006). How-

ever, the large number of sequential steps and the many variability sources in pharmaceutical 

production result either in low performance or in quality events that jeopardize the final product 

quality and timely release. The situation was recognized by FDA and other regulatory bodies 

that initiated a collaboration with manufacturers to evaluate process analytical technologies 

(PAT) as suitable methods to gain a better control and understanding (the 5 why’s) of manufac-

turing processes. 

It is important to understand that the term analytical in PAT goes far beyond the process ana-

lyser domain (i.e., the PAC domain) combining chemical, physical, microbiological, mathemati-

cal, risk analysis and information technologies in an integrated and timely manner (US FDA, 

2004b). The emphasis is given to process understanding, predictability and to enhance the 

overall efficiency of manufacturing processes. The opportunity to perform “timely measure-

ments” in “whole process samples” is key under the PAT initiative to understand the process 

dynamics comprehensively. The industrial process is a sequence of unit operations with inputs, 

outputs and disturbances. Not only observability and state estimation is overlooked at the unit 

operation level, but also almost no use is made of the strong interconnected nature of pharma-

ceutical manufacturing. There is for example, a strong carry over of fingerprints (e.g., impurities 

present in raw-materials or abnormal process conditions during upstream production) that may 

have a strong effect later in the process or in the product. By linking unit operations in an overall 

description, it is possible to correlate cause and effect and act by anticipation to avoid or mitigate 

different events and disturbances impacting process performance and/or product quality (Feliz-

ardo et al., 2012). Only with this perception a true holistic process characterization can be ac-

complished. 
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3.2 Evolution of the regulatory framework  

for pharmaceutical products 

In 2004, FDA launched the 2-year initiative “Pharmaceutical cGMPs for the 21st Century – a 

Risk-Based Approach” which was to signal a shift in FDA’s regulatory practice (US FDA, 2004a). 

Soon after, a document defining “Process Analytical Technology – A Framework for Innovative 

Pharmaceutical Development, Manufacturing, and Quality Assurance” (US FDA, 2014b) – was 

issued that addressed how the shift from quality by testing to the new paradigm of quality-built-

into the processes producing the products –Quality by Design – should occur. That new FDA 

thinking was adopted by the European Medicines Agency (EMA) and culminated in the Interna-

tional Council for Harmonisation for Technical Requirements for Pharmaceuticals for Human 

Use (ICH) issuing over a period of less than five years three guidelines, Q8, Q9 and Q10 (ICH, 

2009; ICH, 2005, ICH, 2008) and more recently ICH Q11 (ICH, 2012) that make up the founda-

tion of modern pharmaceutical quality systems (PQS) based on QbD (ICH, 2009a; ICH, 2005; 

ICH, 2009b; ICH, 2012).  

In 2011, FDA updated its nearly 25-year-old process validation guidance (US FDA, 1987) and 

proposed the alignment of process validation activities with the lifecycle concept, integrating all 

process design phases through commercial and routine manufacturing (US FDA, 2011). QbD 

is at the core of the guidance, endorsing a science-based approach to product development 

and manufacturing supported by prior knowledge and enhanced process understanding. Under 

the QbD framework, Process Analytical Technologies (PAT) are true enablers of the QbD vision, 

bridging process understanding, state estimation and control goals. 

An organization’s capabilities in establishing a comprehensive science-based process design 

effort – focused on understanding all potential sources of variability and supported by knowledge 

gained during product commercialization fed-back in a continuous improvement effort – is the 

key element to a successful implementation of the validation lifecycle concept. For those organ-

izations that have been embedding quality by design and risk management principles as part of 

their drug and process development strategies, the integration will be nothing but logical.  For 

those who have relied on the agencies to prescribe the necessary requirements, the revision of 

the validation procedures against the new recommendations that in time will be mandatory may 

seem unachievable. The new guidance introduces a new mind set regarding the foundations of 

quality and its definition, challenging manufacturers to stand for what is appropriate to provide 

“scientific evidence” of process performance and robustness. The adoption of this approach will 

among other benefits, improve process capability and reduce cost of goods (COGs), facilitate 

and standardize post-approval changes and reduce regulatory burden while ensuring that prod-

ucts are of the highest quality, safety and effectiveness.  An organization’s proficiency in imple-

menting these approaches may dictate in the future who will remain competitive and in the long-

term sustainable. 
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PART II - PAT in Pharmaceutical and  

Biopharmaceutical Production 
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4 Using PAT to Accelerate the Transition to 

Continuous Manufacturing 

 

Significant improvements can be realized by converting conventional batch processes into 

continuous ones. The main drivers include reduction of cost and waste, increased safety, 

and simpler scale-up and tech transfer activities. Re-designing the process layout offers the 

opportunity to incorporate a set of process analytical technologies (PAT) embraced in the 

Quality-by-Design (QbD) framework. These tools are used for process state estimation, 

providing enhanced understanding of the underlying variability in the process impacting qual-

ity and yield. 

This work describes a roadmap for identifying the best technology to speed-up the develop-

ment of continuous processes while providing the basis for developing analytical methods 

for monitoring and controlling the continuous full-scale reaction. The suitability of in-line Ra-

man, FT-infrared (FT-IR) and near-infrared (NIR) spectroscopy for real-time process moni-

toring was investigated in the production of 1-bromo-2-iodobenzene. The synthesis consists 

of three consecutive reaction steps including the formation of an unstable diazonium salt 

intermediate, which is critical to secure high yield and avoid formation of byproducts. 

All spectroscopic methods were able to capture critical information related to the accumula-

tion of the intermediate with very similar accuracy. NIR spectroscopy proved to be satisfac-

tory in terms of performance, ease of installation, full-scale transferability and stability to very 

adverse process conditions. As such, inline NIR was selected to monitor the continuous full-

scale production. The quantitative method was developed against theoretical concentration 

values of the intermediate since representative sampling for off-line reference analysis can-

not be achieved. The rapid and reliable analytical system allowed: speeding up the design 

of the continuous process and a better understanding of the manufacturing requirements to 

ensure optimal yield and avoid unreacted raw materials and byproducts in the continuous 

reactor effluent. 

 
Key-words: continuous processes, in-line monitoring, spectroscopies, process development. 
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4.1 Introduction 

The pharmaceutical industry is now facing unprecedented challenges in their business environ-

ment. This dictates the need to change or modify strategies to mitigate the loss in revenue 

caused by patent expiration and lack of blockbuster medicines to replace them. To address 

these issues, pharmaceutical companies are reinventing themselves in the way research and 

development activities are conducted as well as optimization of new and already established 

processes (Baines, 2010). Continuous manufacturing is often seen as one potential approach 

towards operational excellence via production-on-demand and consequently many companies 

are shifting from traditional batch to continuous processes (CPs). Particularly, in active pharma-

ceutical ingredient (API) manufacturing, implementation of CPs holds several advantages. 

Among them, the possibility to operate in conditions that would not be viable under normal batch 

settings, improved yields and minimum by-product formation, achievements that are particularly 

relevant for reactions in which toxic and hazardous by-products can be generated (Xiang et al., 

2012). Additional drivers, to move from batch-wise to continuous production, rely on the need 

to reduce time-to-market, simplify scale-up and technology transfer activities, while promoting 

innovation and continuous improvement. This is aligned with regulatory expectations advocating 

the need for more efficient and flexible manufacturing processes (US FDA, 2004a). Adopting 

CPs requires however a truly multidisciplinary effort as companies have to consolidate in-house 

deep knowledge of the chemical pathways, reaction kinetics and a thorough understanding of 

process systems engineering (PSE) principles to establish performance requirements for the 

continuous production set-up. Further hurdles include technical difficulties with available equip-

ment and technologies, particularly when developing the control strategy for routine production 

(Poechlauer, 2012). Analytical technologies such as chromatographic methods have historically 

been used to support API synthesis, process development and commercial manufacturing. Alt-

hough accurate and extremely reliable, on/in-line analysis and real time feedback are more 

difficult to accomplish with these techniques (Chen, 2011). Spectroscopic-based methods (viz., 

PAT tools) on the other hand, offer the opportunity to monitor real-time CPs, providing infor-

mation of both reaction media composition and kinetics (Sellick et al., 2010, Cervera-Padrell et 

al., 2012; Roberto et al., 2013). Easy-to-use instrumentation is well developed in the mid-infra-

red (IR), near-IR (NIR), and visible regions of the spectrum. Both instrumentation and interfaces 

(e.g., fiber optics) have been optimized contributing to its increasing implementation in indus-

trial-scale production (Vieira et al., 2003; Schaefer et al., 2013; Knop et al., 2013; Saerens et 

al., 2014). Deciding which technique to select will depend on sample format, measurement en-

vironment and understanding which tool provides the most relevant and accurate information to 

address the required purpose. In early development, the main interest relies in building up pro-

cess understanding to speed scale-up activities, while in routine manufacturing, robustness 

(e.g., to production environment) as well as the ability to monitor and control the process is 

essential. Systems that benefit the most from PAT-based approaches are the ones dealing with 

transient/unstable intermediates, critical endpoints and sampling constraints due to high-energy 

reactants, extreme temperature and/or pressure conditions. In such cases, even combining sev-

eral PAT tools (e.g., Raman, FT-IR, NIR) in the same reaction system can be a strategy towards 
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fast process and PAT-based system development. While Raman is a scattering measurement, 

NIR and FT-IR are absorption based. Such vibrational techniques are sensitive to dipole vibra-

tions as in O-H, C-H and N-H bonds whereas Raman is sensitive to polarizable vibrations like 

those from the molecular backbone (e.g., C=C, C=N, aromatics). In general, strong bands in 

NIR and FT-IR spectrum of a compound correspond to weak bands in the Raman spectrum and 

vice-versa (De Beer et al., 2009; De Beer et al., 2011). These distinct spectral characteristics 

present a unique opportunity to investigate all information gathered, opening a window into the 

reaction chemistry and kinetics. In fact, using such complementary information can provide a 

better understanding and control of the underlying variability sources affecting the manufactur-

ing process (i.e., disturbances]) and selection of the best in-process control (IPC) method to 

implement in industrial scale.  

There are challenges, however, in adopting PAT tools to pharmaceutical real-time process mon-

itoring and control ranging from equipment handling, calibration development, and lifecycle 

management of the PAT-based method. In addition, large and complex datasets are generated 

as a result of PAT tools implementation. Hence, multivariate techniques are required for infor-

mation extraction and interpretation, enabling the formulation of mathematical models that can 

be used for process optimization and supervision of routine production (Chen et al., 2011; Ra-

jalahti & Kvalheim, 2011) Such models can also be used for predicting process behavior, which 

is a clear evidence of increased process knowledge and understanding – a key objective of PAT 

approaches (US FDA, 2004b). In the present work, we present a technology screening roadmap 

to evaluate and develop a PAT approach from the earliest stage of development until transfer 

to a continuous full- scale unit. The major focus is given to build up process understanding and 

set the requirements for the control of the continuous setup.  

4.2 Materials and Methods 

4.2.1 Chemistry 

A brief description of the reaction process in study is outlined in Figure 4-1, where 2-bromoan-

iline (1, Figure 4-1) reacts with 3M hydrochloric acid to form a suspension of fine 2-bromoben-

zeneammonium chloride (2, Figure 4-1) crystals. A nitration of primary aromatic amines with 

nitrous acid (generated in situ from sodium nitrite and hydrochloric acid) leads to 2-bromoben-

zenediazonium chloride (3, Figure 4-1), a diazonium salt that can be isolated upon subsequent 

displacement with a nucleophile (viz., I-). The product of the reaction is 1-bromo-2-iodobenzene 

(4, Figure 4-1), a key starting material in the synthesis of an API commercialized by H. Lundbeck 

A/S. In this contribution the focus will be put on the diazotization reaction, which has been found 

to be the most critical step in order to optimize 1-bromo-2-iodobenzene yield and quality. 
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Figure 4–1: Synthesis of 1-bromo-2-iodobenzene: precipitation, diazotization and iodination reactions. 

 

4.2.2 Technology screening roadmap 

The true benefits of continuous processes can only be realized when a high level of control is 

achievable, i.e., when implemented technologies result in tight control of the process outputs, 

through a combination of equipment and control strategies. Spectroscopic measurements 

based on Raman, FT-IR and NIR technologies can be acquired in a very fast and non-destruc-

tive way, making all three tools eligible for control purposes. Each spectroscopic method holds 

advantages and limitations and the choice will depend upon the specific application. 

Considering the highly diluted nature of the applied 1-bromo-2-iodobenzene synthesis, NIR 

spectroscopy could tentatively have been excluded from the technology assessment, as it is a 

relatively insensitive technique. The detection limits for specific compounds may be in the range 

of g/L. However, the sensitivity can be considerably enhanced using appropriate instrument 

configuration (e.g., detector type and source intensity) and settings (measurement principle, 

optical pathlength) while combining different wavelengths that contribute useful information for 

the prediction of a certain property (e.g., viscosity, density, concentration). Such calibrations 

can be very accurate (i.e., as typical reference analytical methods) and therefore useful as long 

as ‘good modeling practices’ are employed. This means proper use of spectral preprocessing 

and wavenumber selection, a parsimonious model structure not over-fitting the available data 

and appropriate statistical figures of merit used throughout (Menezes, 2009; Felizardo et al., 

2012). In addition, NIR holds several advantages from a process implementation point of view, 

in terms of available interfaces (i.e., depending on the physical properties of the given sam-

ple/flow), simplicity and low cost of maintenance procedures, and long-term stability to very 

adverse conditions such as elevated temperature, pressure, and corrosive environments 

(Reich, 2005). FT-IR and Raman spectroscopies, on the other hand, potentially provide better-

resolved and chemical-rich information from the reaction system (i.e., typically sharp and well 

defined peaks). There are some challenges, however, in terms of FT-IR and Raman implemen-

tation in process streams. The development of fiber optics in the mid-infrared region has im-

proved significantly in later years, yet working distances are still constrained to relatively short 

lengths. Fiber-optics’ bending sensitivity can introduce unwanted variation and affect measure-

ment reproducibility. Oppositely, Raman process analyzers can be very easily coupled with fiber 

optics and maintenance of fiber integrity is straightforward. However, from a practical stand-

point, Raman implementation in industrial environments can be challenging due to fluorescence 
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effects derived from impurities or from the sample itself, that can interfere with the Raman signal 

and, most important, the cost of instrumentation which is significantly high (Smith & Dent, 2005). 

In order to assess the performance of all available tools and interfaces, a technology screening 

strategy was put in place (Figure 4-2) to select the best method to introduce to the continuous 

full-scale setup. Firstly, process requirements were established by the development team, con-

sidering the inputs fed into the reaction system (flow-rates, preset ratios of reactants, energy) 

and the expected outputs (products, by-products, energy). This step is extremely important in 

order to select candidate tools to (1) enhance process understanding and later, (2) define the 

control system. Another key aspect of technology selection is the risk assessment component, 

which can be envisioned as the probability of failing to translate into a robust, reliable and ef-

fective control system element over the process lifecycle. Having a broad understanding of the 

inherent risks is extremely important to establish an optimal business case for the PAT tool, 

since all the following steps will require the involvement of a multidisciplinary team (develop-

ment, manufacturing), resource allocation and experimental planning. 

The use of the PAT tools as process-fingerprinting techniques was first explored to better de-

scribe the stoichiometry of reactants and products (PAT method selection - Screening Phase). 

Instead of developing quantitative calibrations, the spectral data was analyzed through multi-

variate projection methods (such as Principal Component Analysis) to obtain process trajecto-

ries and investigate the impact of chemical and physical variations in the spectra. This step is 

particularly valuable to enhance process understanding and also to evaluate the potential of 

each spectroscopy to be used for process controlling purposes. The most promising PAT meth-

ods were then selected for calibration development to investigate their suitability for setting the 

necessary control of the critical intermediate (Method development phase). Several probing de-

signs (immersion vs. flow-cell)) and experimental setups (step-wise and continuous addition of 

reactants) were tested at this stage in light of the continuous process requirements. Moving the 

method to the full-scale setup will depend not only on method performance, but also on technical 

aspects (implementation in the manufacturing plant, equipment stability during routine produc-

tion) and economic considerations. As an output from the Development Phase, an initial version 

of a semi-quantitative data-driven model (i.e., Partial Least Squares Regression method) was 

developed and used to establish appropriate control of a critical quality attribute control to the 

continuous reaction (Method Suitability evaluation). Depending on results the method can be 

later implemented in production or it might be necessary to further investigate additional meth-

ods in order to address control requirements. 
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Figure 4–2: Technology screening and development of the PAT-based control system to  

implement in the full-scale facility. 

4.2.3 Instrumentation 

A NIR FTPA 2000-260 spectrometer (ABB Bomem Inc., USA) equipped with a transmission 

immersion probe (Q-Interline A/S, Denmark) with a 2 mm optical path length was used in Ex-

periment #01. In Experiment #02, the probing system was switched to a NIR transmission flow-

cell (Ocean Optics Inc., USA) with an optical path length of 1 mm, which was later implemented 

in the continuous full-scale reactor. Each recorded spectrum was obtained by averaging 128 

scans with 16 cm-1 resolution over the range from 4500 to 15700 cm-1.  

The FT-IR process analyzer used in both experiments was a ReactIR 45m (Mettler Toledo Inc., 

USA) spectrometer equipped with a 9,5 mm DiComp Fiber connected Gold sealed ATR probe. 

Spectra were acquired over the range from 4000 to 650 cm-1, averaging 64 scans with 8 cm-1 

resolution.  

Raman spectra acquisition was performed in Experiment #01 with a Kaiser RXN1 spectrometer, 

equipped with fiber optic connected immersion MR probe (1/4” - short focal point) (Kaiser Optical 

Systems Inc., USA). The excitation wavelength was 785 nm with a laser power of 400mW. 

Spectra were collected with 5 cm-1 resolution 5 seconds exposure time and averaging across 

5 consecutive spectra. In the case of NIR and FT-IR a background spectrum was taken in air 

before each experiment.  

4.2.4 Experimental procedure and setup 

4.2.4.1 Laboratory scale: batch reactions 

Experiment #01 (Figure 4-3a) consisted of a proof of concept sequence to evaluate the potential 

of each PAT tool to fulfil the established requirements, namely, a clear description of the reaction 
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stoichiometry, selectivity and capability of detecting a key-intermediate in the continuous pro-

duction of 1-bromo-2-iodobenzene. Thus, NIR, FT-IR and Raman immersion probes were in-

serted in a magnetically stirred 250 mL glass reactor as illustrated in Figure 4-3a. The setup 

was cooled in an ice bath (5±2ºC) and the temperature monitored with an in situ probe through-

out the experiment.  

Experiment #02 (Figure 4-3b) was redesigned integrating the insights gained during the first 

feasibility run. As such, a NIR flow cell was implemented in a “by-pass loop” configuration to 

continuously recirculate the reaction media through the flow cell. The FT-IR immersion probe 

was directly inserted in the 500 mL jacketed glass reactor with temperature controlled through 

a thermo-stated oil bath (Julabo Inc., USA). All reagents were commercial products (Sigma-

Aldrich, St. Louis, MO, USA) from the highest purity available (>98%) and used without further 

purification. Due to the multi-phase nature of the reaction system, the agitation rate was opti-

mized in both setups to improve conversion efficiency and minimize the impact in the PAT 

measurements. 

2-bromoaniline was suspended in water followed by step-wise addition of 3M hydrochloric acid 

(precipitation step). A solution of sodium nitrite was then added following two different proce-

dures: i) in experiment #01 it was added stepwise via syringe until 50% stoichiometric excess 

was reached; ii) in experiment #02 the set up was redesigned in order to maintain a continuous 

feed (1 mL/min) of sodium nitrite, as in the first experiment, until 50% stoichiometric excess 

(diazotization step). In both feasibility studies, the initial reaction mixture consisted of thick 

slurry, turning into a clear solution as the reaction progressed (Figure 4-3c-e). Thus, the system 

was initially monitored with FT-IR and/or Raman only, as these techniques are reflectance 

based. In experiment #01, initial NIR spectra were removed from the dataset due to a very low 

signal-to-noise ratio, whereas in experiment #02, when the turbidity of the suspension was con-

sidered small enough to cope with the flow system design, sodium nitrite addition was inter-

rupted and the mixture recirculated across the NIR flow cell. Some particles were still observed 

in the reactor and in the tubing, however, without interfering with the flow. Due to this constraint, 

the NIR dataset available is less comprehensive, compared to FT-IR and Raman, both in terms 

of spectral and chemical information. 
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Figure 4–3: Laboratory setup for batch reactions: a) Experiment #01 (step-wise sodium nitrite addition); b) 

Experiment #02 (constant sodium nitrite addition); c) precipitation, d) early diazotization; e) late diazotization 

reaction. 

4.2.4.2 Full-scale: continuous mode 

The full-scale continuous reactor was customized in-house and implemented at H. Lundbeck’s 

API production facility in Lumsås, Denmark. As part of the continuous manufacturing strategy, 

preliminary laboratory work on the synthesis of 1-bromo-2-iodobenzene was conducted and the 

continuous reactor designed and implemented in order to meet experimental criteria. First, ac-

curate dosing and temperature control of the reactants leading to the formation of the first inter-

mediate was found essential to limit precipitation and avoid clogging the system. Second, it is 

important to control the reaction in order to secure a high yield and avoid unreacted raw mate-

rials and by-products in the reactor effluent. Adding for instance too little sodium nitrite leads to 

unreacted 2-bromoaniline in the reactor output, which reduces yield and complicates the follow-

ing work-up procedures. On the other hand, adding an excess of sodium nitrite both reduces 

iodide to iodine and produces NOX-gasses, which in turn demands an increased addition of 

potassium iodide and complicates work-up procedures. As illustrated in Figure 4- 4a, the con-

tinuous reactor is divided in two continuous sections. 2-bromoaniline is continuously pumped 

into a mixing tee, where it is protonated with a flow of 40°C 3 M hydrochloric acid to form 2-

bromoammonium chloride. The formed 2-bromoammonium chloride flows into Loop A, where it 

is diazotized with a continuous feed of a 2 M aqueous sodium nitrite solution. The reacting 

medium is recirculated through a static mixer consisting of helical shaped PTFE elements to 

ensure fast mixing and a plate heat exchanger to remove the heat of the reaction mixture. The 

reaction loop provides enough residence time for the reaction to finish before entering Loop B. 

The NIR flow cell was integrated in-between the two loops in order to determine the concentra-

tion of 2-bromobenzenediazonium chloride, providing a basis for optimization and control of the 

process. The second loop (Loop B) was designed in a similar way as to Loop A, to convert the 

intermediate into 1-bromo-2-iodobenzene through a continuous addition of potassium iodide 
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solution. Sodium bisulfite (NaHSO3) was added in the stream to improve the iodination reaction 

(Urbach, 1977). Finally, the effluent from Loop B was led into a reactor containing an aqueous 

sodium hydroxide solution for further batch work-up. An illustration of the full-scale prototype is 

shown in Figure 4-4b. 

 

 

Figure 4–4: a) Diagram and b) reactor prototype used for continuous synthesis of 1-bromo-2-iodobenzene. 

Loop A: precipitation and diazotization steps; loop B: iodination step. The insertion of the NIR flow-cell in the 

process stream (i.e., in-between loops) is highlighted. 

4.2.5 Multivariate data analysis 

Data analysis including preprocessing and multivariate calibrations was performed using 

PLS_Toolbox® version 7.5.2 (Eigenvector Research, Inc., USA) for Matlab version 8.1 for Mac 

(Mathworks, U.S.A.). Different mathematical pretreatments were applied and tested to eliminate 

baseline effects caused by light scattering and/or instrument noise (Igne & Hurburgh, 2010; 

Xiaobo et al., 2010). Visual inspection of spectra over time and spectra-compound relation in-

formation was used to guide the preliminary selection of wavenumber intervals for the chemo-

metric model development. Principal component analysis (PCA) was applied to identify major 

sources of variability in the datasets and to obtain process trajectories and reaction fingerprints 

directly from spectral data (Montague et al., 2008; Sandor et al., 2013). Partial least squares 

(PLS) regression with venetian blinds cross validation was adopted for all quantitative regres-

sion models. A combination of spectral range and variable selection methods such as Interval 

Partial Least Squares (iPLS) and Variable Importance Projection (VIP), were used to select 

spectral regions that are most informative with respect to the parameters under consideration. 

The number of PLS factors was chosen as the prime factor for which no significant variation in 

the root-mean square error of cross-validation (RMSECV) value was observed, while minimizing 

the number of significant latent variables to avoid model over-fitting. More details about the 

algorithms can be found in specialty literature (Bro, 2003; Rajalahti & Kvalheim, 2011). NIR 

models used to monitor full-scale reactions were implemented in FTSW100 (version 2.71) pro-

cess software, integrated in the NIR FTPA 2000-260 spectrometer installation. 
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4.3 Results and Discussion 

4.3.1 Qualitative analysis 

Reaction spectra for Raman, IR and NIR are shown in Figure 4-5. Both Raman and IR charac-

teristic peaks can be linked to specific functional groups in the sample. The most important 

changes in Raman spectra take place in the region at 650-485 cm-1 and are assigned to C-Br 

stretching vibrations, while C-H in-plane and out-of-plane bending vibrations are usually ob-

served around 1300-1000 cm-1. The diazonium salt shows clear absorption bands at 1110, 

1030 and 480 cm-1, while 2-bromobenzeneammonium chloride disappearance can be followed 

at 540 cm-1 (Wiss & Zilian, 2003; Neal et al., 2013). Both FT-IR and NIR spectra are strongly 

influenced by the water signal, which absorbs broadly over the full spectrum. The diazonium 

formation manifests in the IR spectrum at 1462 cm-1, assigned to the stretching of the azo link-

age (N=N). At 1641cm-1 the carbonyl stretch can be identified (both in 2-bromobenzeneammo-

nium and diazonium salt). The peak near 1466 cm-1 and 1566 cm-1 most likely matches the 

aromatic C-C stretching, whereas the peak arising at 1111 cm-1 can be assigned to C-N vibra-

tions. Finally, the strong band at 965 cm-1 might be indicative of a di-substituted mode (Li et al., 

2013). NIR peaks on the other hand, are broader and weaker resulting from combinations and 

overtones of those functional groups, and therefore peak assignment is not straightforward. In 

the present study, N-H overtone band (~ 5900 cm-1) can be identified and change depending 

on substituents on the benzene ring.  

Finally, disturbing features such as particle size, varying system turbidity and overlapping ab-

sorbing bands from different compounds may jeopardize qualitative and quantitative analysis. 

The compounds involved in the diazotization reaction resemble in a significant part of their 

chemical structure, thus several overlapping bands can be identified in all the applied spectro-

scopic techniques. Nonetheless, the formation of the diazonium salt manifests in specific bands 

in mid-, near-IR and visible (Raman) regions of the spectrum, as illustrated in Figure 4-5. 
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Figure 4–5: Raw (left) and preprocessed (right) Raman, IR and NIR reaction spectra. Colour scheme indicates 

2-bromobenzenediazonium chloride theoretical concentration (M) over reaction time (specific bands selected 

for illustration purposes – left side plots). 
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Three major questions were addressed in this work: 1) How much information can each spec-

troscopic method capture from the reaction? 2) How accurate are the predictions? and 3) Which 

technology should be moved to the full-scale plant in order to monitor and establish appropriate 

control of a critical to quality attribute for the continuous reaction? 

As to the first, Figure 4-6 illustrates process changes observed in the stepwise batch experiment 

captured by the different spectroscopic methods (Screening Phase). The same general conclu-

sions can be retrieved by analyzing the different datasets although the amount of variation re-

tained by the first two principle components decreases in the order Raman>FT-IR>NIR. Useful 

information content from the molecular structure also decreases in this order while the influence 

of physical properties (interferences) is ranked inversely. 

The diazotization reaction can be split into two distinct phases, i.e., before and after the stoichi-

ometric equivalence point (EQ). In the first phase, PCA component one captures the conversion 

of 2-bromobenzeneammonium chloride into the diazonium salt until maximum conversion. In 

the case of NIR, the spread in the scores indicates that PCA component one is affected by 

particle size effects. All spectroscopic techniques identify the same inflection point, in agree-

ment with the equivalence point determined from the stoichiometric model. In the second phase, 

changes in PCA component one are no longer significant, except for a slight inversion in the 

score values due to dilution effect and perhaps, some instability of diazonium salts in aqueous 

solutions. At this point, PCA component two assumes a more dynamic role, shifting considera-

bly towards negative (Raman) or positive (FT-IR and NIR) values. In PCA models, there is so-

called rotational and scaling freedom which means that components may change sign, order or 

even be mixed when comparing different datasets. This explains the inverse evolution in PCA 

component 2 between Raman and FT-IR/NIR. The interpretation, though is kept unchanged. As 

such, the second PCA component is possibly capturing information related to accumulation of 

unreacted sodium nitrate (added in excess to the mixture) and changes in particle size during 

the reaction (i.e., slurry to a thin particle size mixture) that could not be completely eliminated 

by spectral preprocessing, particularly in the case of FT-IR and NIR.  

 

Figure 4–6: PCA component one vs. PCA component two (PCA model) of stepwise batch reaction of 1-bromo-

2-iodobenzene (diazotization). Reaction start, equivalence (EQ) and end points are highlighted. 
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4.3.2 Predictive models  

Conventional off-line HPLC analysis is not applicable for monitoring the reaction because the 

diazonium salt is not stable under HPLC conditions and representative sampling for off-line 

reference analysis cannot be achieved. Thus, theoretical concentration values based on reac-

tion stoichiometry (1:1) were used to develop quantitative models with the different spectro-

scopic methods and address the second fundamental question arising in this study. Although 

far from ideal, it is expected that the absorbing species present in the calibration set are to be 

representative of those in future data sets assuming an acceptable lot-to-lot reagent variation. 

Nevertheless, in order to keep or even improve the model attributes over time a model mainte-

nance plan should be implemented to accommodate for changing conditions (e.g., in raw ma-

terials or/and process settings) while preserving predictive capability (Wise & Roginski, 2015). 

Under these conditions, the current developed model might present an offset from true concen-

tration values of the reaction intermediate. Even so, its utility is of great value since it is not 

possible to withdraw stable samples from the process stream. Furthermore, the calibration al-

lows quantifying the intermediate in the concentration ranges planned for the continuous setup 

and overcomes two of the greatest challenges of this study, which are the lack of a reference 

method for developing the models and a rather difficult sampling procedure. 

All the present spectroscopic techniques have the potential to characterize the diazotization 

reaction, however obtaining accurate and robust composition estimations of the intermediate 

proved to be challenging. Changes both in chemical and physical properties over the reaction 

had a very pronounced effect on the quality of spectra. 

Hence, different preprocessing methods were tested in order to remove interferences under-

mining the linear relationship between the spectral data and the target chemical component. 

The accuracy and long-term reliability of multivariate calibration models for processes subjected 

to variations in physical properties (such as particle size and shape) highly depends on the 

ability to remove such undesired spectral variations, e.g., by preprocessing. Table 4-1 summa-

rizes the best PLS models developed for the quantification of 2-bromobenzenediazonium chlo-

ride (stoichiometric) for each spectroscopic method. A comparative analysis demonstrates that 

all technologies are eligible to setup the monitoring system for the continuous process (Figure 

4-7). 
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Table 4–1: Summary of Raman, FT-IR and NIR comparative performance (Screening Phase). 

Parameter Raman FT-IR NIR 

Range (M) 0.00-0.62 0.00-0.62 0.45-0.62 

Preprocessing Baseline weighted least 

squares correction + 1st 

derivative, 2nd polyno-

mial, 50 points window 

Baseline weighted 

least squares correc-

tion 

1st derivative, 2nd order 

polynomial, 9 points 

window 

Variable selection 511-458 cm-1 

1389-1475 cm-1 

 

1570-1518 cm-1 

1458-1406 cm-1 

1234-1182 cm-1 

1011-996 cm-1 

5978-6164 cm-1 

8231-8671 cm-1 

Latent variables 2 2 2 

Cumulative X variance (%) 85.3 97.9 93.4 

Cumulative Y variance (%) 99.6 99.7 96.1 

RMSEC (mol/L) 0.010 0.009 0.009 

RMSECV (mol/L) 0.014 0.018 0.015 

 

 

Figure 4–7: Theoretical (red line) versus predicted 2-bromobenzenodiazonium chloride concentration by 

Raman (x), FTIR (o) and NIR (∆) in Experiment #01. Equivalence point derived from stoichiometric model 

highlighted. 

 

The choice of the method will therefore rely upon considerations related with technical require-

ments and economic considerations. Raman holds several advantages considering the diluted 

environment in which the reaction takes place. Water is a weak Raman scatterer and therefore 

the technique has minimal sensitivity towards its interference. However, as the reaction pro-

gresses a strong background arises affecting the spectral signal (Figure 4-5). This might be 

linked to the laser source, as shorter laser wavelengths are prone to increased background 

signals, particularly when fluorescent compounds derived from impurities or from the media 



 

30 

 

build up over time (Strachan et al., 2007). This evidence combined to the higher cost of Raman 

instrumentation in comparison to the other two spectroscopic techniques supported the decision 

of ruling Raman out of the control system development.  

FT-IR and NIR methods proved capable of monitoring the second experiment (Method Devel-

opment Phase) where the system was redesigned to integrate the NIR flow-cell implemented in 

the recirculation loop (Figure 4-3B). The change in the NIR interface aimed to achieve improved 

sensitivity (i.e., the NIR flow cell probe has a longer path length) and cope with the highly diluted 

reaction stream. Optical path length is a key parameter of the NIR instrument and its choice 

depends upon the physical properties of the sampling material, such as viscosity and optical 

density. Turbid liquids normally require short path lengths for sufficient light penetration, 

whereas measurements in clear solutions can be performed with longer ones. In order to detect 

low absorption species, shorter path lengths may be required, however this will lead to higher 

noise levels. A compromise between the two effects must therefore be achieved (Jensen & Bak, 

2002). Results show that both NIR equipped with the transmission flow-cell and FT-IR switched 

to the ATR probe are able to monitor the reaction and estimate the intermediate formation with 

good accuracy as shown in Figure 4-8. 

 

 

Figure 4–8: Theoretical (red line) versus predicted 2-bromobenzenodiazonium chloride concentration by FTIR 

(o) and NIR (∆) in Experiment #02. Equivalence point derived from stoichiometric model highlighted. 

The NIR calibration dataset comprehends a narrow range of samples as data was only collected 

for the second part of the reaction (i.e., when the particle size was small enough to pass through 

the probe path length). Nevertheless, in terms of accuracy, results are similar to the ones ob-

tained with FT-IR (Table 4-2). In the case of FT-IR, a subset of wavelengths that produced the 

smallest RMSECV was identified by iPLS and the model was improved accordingly. 
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It is important to highlight that NIR spectra from Experiment #01 (used as a validation) was 

collected with a different probing system and extrapolates the current calibration range, which 

explains the higher relative error. However, within the acceptable range for the continuous re-

action (ca. 0.49-0.61M), the accuracy of both methods is very similar. 

NIR is very stable to adverse process conditions such as the highly corrosive environment of 

the reaction system, relatively inexpensive and there is a consolidated in-house knowledge 

about its industrial implementation. As such, NIR technology was chosen to integrate the con-

tinuous reaction and establish appropriate control of the key intermediate, addressing the third 

fundamental question arising in the present study. 

Table 4–2: Summary of FT-IR and NIR comparative performance (Method Development Phase). 

Parameter FT-IR NIR 

Range (M) 0.00-0.62 0.52-0.62 

Preprocessing Baseline weighted 

least squares correc-

tion 

1st derivative, 2nd order 

polynomial, 9 points 

window 

Variable selection 1200-1163 cm-1 

1118-1040 cm-1 

5978-6164 cm-1 

8231-8671 cm-1 

Latent variables 1 2 

Cumulative X variance (%) 90.2 97.9 

Cumulative Y variance (%) 95.3 95.8 

Calibration set Experiment #02 

(N=150) 

Experiment #02 

(N=82) 

Validation set Experiment #01 

(N=12) 

Experiment #01 

(N=9) 

RMSEC (M) 0.032 0.006 

RMSECV (M) 0.032 0.008 

RMSEP (M) 0.054 0.014 

RMSEP/Range (%) 8.7 14.0 

 

4.3.3 NIR implementation in full-scale continuous processing 

In addition to monitoring intensification and obtaining a broad understanding of all input param-

eters, in a [continuous] pharmaceutical facility it is also important to maintain the in-process 

material in a state that will ensure meeting the specifications of the end-product. The steady 

state is often defined as the operational setting in which none of the individual parameters varies 

as a function of time, encompassing process variables, measured and manipulated variables. 

From a process engineering standpoint, steady-state is a slightly overrated definition in the 

sense that an industrial system seldom operates at perfect steady-state because of fluctuations 
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in instrumentation (pumps, flow-meters), lot-to-lot variability of input materials and environmen-

tal conditions. Most important from a control perspective, is to allow some flexibility in specific 

parameters (input parameters) to improve process efficiency (yields or to minimize impurities 

formation) and guarantee that specific critical quality attributes (CQAs) stay within specification. 

The ultimate goal is to ensure that the process is running in a “state-of-control” rather than 

achieving “steady-state” (Myerson et al., 2015). 

An important aspect in the optimization of the full-scale setup is optimization of residence time 

distribution, a probability function describing the time the fluid element (in this study, a mixture 

between fluid and particles) spends in the reactor. Having the in-line NIR application and real-

time detection of the intermediate conversion, give the production engineers the opportunity to 

better understand the process dynamics and a better description of residence time distribution 

for the two reaction steps [precipitation and diazotization]. The combined flow rate of 2-bro-

moaniline, hydrochloric acid and sodium nitrite was set between 46.4 and 50.1 L/h with a ratio 

of 2-bromoaniline/sodium nitrate of 1.1-1.5. At these settings, the concentration of 2-bromoben-

zenediazonium chloride is expected to be between 0.49 and 0.61 M, seen from 275-307 and 

345-425 minutes, and within the acceptable performance range (Figure 4-9). In the period in-

between, the concentration decreased below the acceptable range, however the conversion 

rate was constant and the turbidity was moving to lower levels. By this time (ca. 341 min) an 

adjustment was made in the reactant flows to maximize the conversion rate. The change is 

promptly detected by the NIR application, within 4 to 5 minutes. 

Initial tests demonstrated that the turbidity of the reaction mixture varied considerably, depend-

ing on hydrochloric acid and 2-bromoaniline individual flow-rates and temperature. The ability 

of NIR to detect physical changes over reaction time was used as an early-warning indicator for 

mixing and ultimately, clogging issues. As such, a very simple model based on the baseline 

level of absorption over time (measured at 9500 cm-1) was implemented in the plant software 

as an indicator of turbidity issues. This application was extremely useful from a control point of 

view as it gave the operator the opportunity to adjust the reactant flows, preventing tube clogging 

and driving the process within the acceptable concentration window (>80% intermediate yield). 

Batches produced during the full-scale campaign were not run at completely “steady-state”. And 

since no reference method is established for the diazonium intermediate measured by this ap-

plication, a direct verification of the NIR predictions was not possible. However, the predictions 

made sense both in terms of the intermediate diazonium concentration (compared with the cal-

culated concentrations based on flow rates of the reactants) and in terms of turbidity. The real-

time display of process measurements was crucial to understand the individual reaction phases 

and their interactions, the actions required to suppress the disturbances and a faster develop-

ment of the continuous process. 
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Figure 4–9: NIR online prediction of 2-bromobenzenediazonium in the continuous full-scale prototype (black) 

and spectra baseline absorption level over time (orange) as a surrogate measure of turbidity. Green area 

represents the acceptance concentration range of the intermediate; arrows indicate adjustments to 2-

bromoaniline and/or hydrochloric acid flow rates. 

4.4 Conclusions 

In this work, feasibility studies for development of an in-line monitoring tool based on spectro-

scopic methods for the control of a diazotization reaction are described. The reaction is the 

second synthesis step towards formation of 1-bromo-2-iodobenzene, a starting-material in the 

production of an API developed by H. Lundbeck A/S. An accurate dosing of reactants on ade-

quate stoichiometry was found essential to guarantee yield, quality and success of subsequent 

unit operations. First the potential of Raman, FT-IR and NIR spectroscopies was critically eval-

uated under batch reaction conditions. Second, a monitoring strategy with NIR was proposed 

for the continuous industrial-scale reaction, which is able to monitor the trend of intermediate 

production and identify abnormal situations such as tube clogging and disrupts in the flow. This 

approach presents a clear advantage over an otherwise difficult sampling procedure due to the 

system thermodynamics and characteristics (e.g., non-ideal multiphasic system, unstable inter-

mediates, highly corrosive media stream). The results achieved are encouraging in that the 

spectroscopic method can support the process engineering goal to define more reliable pro-

cesses able to deliver consistently high quality product. In order to select which technology 

should be employed in a particular environment it is fundamental to have a holistic understand-

ing of the process. As such, the establishment of a cross-functional team encompassing several 

knowledge areas such as chemometrics, spectroscopy, reactor and process design as well as 

information technologies is highly recommended.  
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5 In-Depth Understanding of an API Synthesis:  

A Combined PAT and Chemometric Approach 

 

 

A comprehensive regulatory framework endorsing the use of Quality by Design in pharmaceu-

tical manufacturing is now in place. These documents promote a science-based approach sup-

ported by prior knowledge and enhanced process understanding obtained through Process An-

alytical Technologies (PAT). To fully realize the QbD vision, PAT tools need to be used in-situ, 

enabling process state estimation and enhanced understanding of the manufacturing require-

ments (Menezes et al., 2014). In the present study, in-line IR spectra collected from a complex, 

multi-phase reaction system were combined with chemometrics to enhance the understanding 

of the reaction mechanism. Different modeling strategies were applied such as, multivariate 

projection methods, partial least squares regression and multivariate curve resolution to (1) de-

scribe the stoichiometries between reactants and products, (2) develop a real-time monitoring 

system able to detect variations derived from process inputs manipulation and (3) identify im-

provement opportunities in the current manufacturing process. 

A systematic procedure for exploiting the information provided by IR spectroscopy is highlighted, 

demonstrating how these [PAT] tools can support continuous improvement and innovation of 

commercial processes. 

 

 

Key-words: batch to continuous, PAT, FT-IR, chemometrics; process development 
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5.1 Purpose 

Process Analytical Technologies have been widely adopted by the pharmaceutical industry and 

have been transforming the development and manufacture of drug substances (APIs) and drug 

products. The methodologies are mainly based on spectroscopy in combination with data-driven 

approaches (Liu et.al., 2006). In the present study, in-line IR spectra collected from a complex, 

multi-phase reaction system were combined with chemometrics to enhance the knowledge 

about the reaction mechanism. The aim of the study serves a twofold purpose: first, to improve 

the batch process currently in place and, second to establish the business case for setting the 

continuous process layout. 

Development of an in-line monitoring system was found essential to fulfil the above-mentioned 

requirements. Different modeling strategies were applied to enhance information extraction, 

such as principal component analysis (PCA), partial least squares regression (PLS) and multi-

variate curve resolution (MCR). 

5.2 Material and Methods  

A graphical representation of the experimental protocol is depicted in Figure 5-1. The FT-IR 

process analyzer used in all six experiments was a ReactIR 45m (Mettler Toledo Inc., USA) 

spectrometer equipped with 9.5-mm DiComp Fiber connected Gold sealed ATR probes. The 

system integrates a multiplex optical interface module to monitor two different reactions simul-

taneously. Spectra were acquired over the range from 4000 to 650 cm−1, averaging 64 scans 

with 8 cm−1 resolution, throughout the reaction time. 

Each experiment was conducted in an air-tight jacketed glass reactor equipped with an oil cir-

culator unit connected to an in-situ thermocouple for temperature control, overhead stirrer, con-

denser, gas bubbler and the FT-IR probe. 

250 ml of toluene were first added to the reactor followed by the catalytic system, reactant A 

and reactant C. The catalytic system was previously mixed for 5 min at room temperature for 

activation purposes. Addition and sampling operations were performed through a side arm. Re-

actant mixture B was added stepwise to the reactor with a glass pipette. Temperature increased 

by 35º-55ºC and the control set point readjusted to 85ºC, 95ºC and 105ºC, according to the 

experimental protocol in Figure 5-1. The viscosity increased significantly therefore, stirrer inten-

sity was increased from 300 to 400 rpm to improve homogeneity. The system was continuously 

stirred at temperature set-point for approximately 24h. 

2ml samples were acquired with a plastic pipette at timely intervals, from beginning until end of 

the reaction (in average, 28 samples per experiment). To stop the reaction, samples were im-

mediately quenched with water. From the organic phase, 100 μL of each sample was transferred 

to a volumetric flask and diluted to 10 mL with acetonitrile (CH3CN) of HPLC grade. Finally, 50 
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μL were transferred to a vial and diluted to 1 mL with a 20 %v/v aqueous solution of acetonitrile 

of HPLC grade. HPLC results were determined using in-house methods. 

 

 

Figure 5–1: Graphical representation of the experimental procedure. 

5.3 Results and Discussion  

The purpose of the present work was to maximize information extraction from spectral datasets 

using different chemometric methods. 

Principal Component Analysis (PCA) was used to examine the dominant patterns in spectral 

data (e.g., data integrity and batch-to-batch variability, temperature effects). It was possible to 

identify batch-to-batch variations but they were not related with temperature effects. The pre-

dominant changes in the collected spectra were baseline shifts resulting from light scattering 

due to different particle sizes (data not shown). An important outcome of the analysis is that the 

three main reaction species can be seen to be spectrally different as they show up in different 

locations in the main score plot (Figure 5-2). Hence, FTIR spectra include information from all 

reaction species and the analytical method can potentially be used to monitor all reaction 

phases. 
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Figure 5–2: PCA scores of IR spectra showing ExP#04 reaction dynamics (A - reactant, IP - intermediate 

product, P – product) – colour scheme corresponding to component concentration [M] along reaction time 

measured by HPLC. 

 

Partial Least Squares (PLS) models for real-time process monitoring and supervision of batch 

runs are important tools to characterize the reaction system and fasten process development 

(Wiss, 2015). In the present study, it was possible to develop accurate models for all chemical 

species. The model for product monitoring will be further detailed for illustration purposes (Fig-

ure 5-3a). After variable selection (Figure 5-3b), venetian blinds cross-validation was used to 

establish the number of latent variables (LVs) to be retained in the model. Calibration perfor-

mance was determined relatively to the reference method by computing RMSECV. The external 

validation of the model comprised ExP#05 samples not considered in the calibration phase. 

Additional benefits of the presented study include the possibility to determine the reaction end-

point based on spectral information instead of reaction time (Figure 5-3c). This additional 

knowledge can be translated into enhanced operational flexibility, allowing cycle time reduction 

and improved operational planning. 

 

Figure 5–3 a) PLS model for product (P) concentration prediction; b) FTIR spectra where variable selection is 

highlighted; c) real-time monitoring for end-point determination. 

 

Multiple Curve Resolution (MCR) was applied to the experimental dataset to investigate the 

process dynamics and the behavior of the different species over time. In the studied system, 
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the concentration of each individual compound is a function of both time and temperature. The 

main advantage of MCR applied to spectroscopy data is the recovery of the concentration pro-

files and the pure spectra of the compounds, even in the presence of unknown interferences 

(i.e., physical and chemical). First, the sequential structure of the reaction was determined by 

evolving factor analysis (EFA) to estimate the number of species spectrally active and the ap-

pearance-decay profiles throughout reaction time. Second, based on prior knowledge equality 

and non-negativity constraints were used to obtain a quantitative description of each experi-

mental trial (Figure 5-4a). More details about the method can be found elsewhere (Juan et. al., 

2000). 

Prediction of experimental runs (ExP#03) with reference runs deconvoluted by MCR-ALS 

showed very similar results to HPLC-derived profiles (Figure 5-4b). With such approach, it was 

possible to significantly reduce sampling and lab testing during kinetic studies and most im-

portant, to identify at an early phase deviations from the desired kinetic pathway. 

 

Figure 5–4 a) MCR_ALS model based on FTIR spectra (ExP#01-#02-ExP#04-#06) to investigate ExP#03 

synthesis; a) number of components estimated by Evolving Factor Analysis; b) kinetic profiles MCR-ALS 

resolved; c) “pure spectra” exhibiting absorbance peaks in the same spectral regions as spectra acquired from 

pure solutions of reactant A, intermediate (IP) and product (P). 

 

 

 

 

 

5.4 Concluding remarks  

The extent of information existing in complex data structures such as the ones provided by 

spectroscopy methods may not be apparent from a cursory evaluation. Chemometric tech-

niques such as PCA, PLS and MCR have the power to unveil minor differences in complex and 

limited sample sets. The in-depth knowledge gained through the application of such techniques 
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is of great value to overcome time and resource-related challenges often encountered in phar-

maceutical applications. In the current study, FT-IR in combination with chemometrics was very 

effective to guide the experimentation leading to a better understanding of the batch reaction 

and technical information about the synthetic pathway to establish the business case for con-

tinuous manufacturing of the API. 
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6 Fluorescence Spectroscopy as a Process 

Analytical Technology (PAT) Tool to Support CHO 

Cultivation Process Monitoring, Optimization & 

Troubleshooting Activities 

 

 

The last decade has witnessed an unprecedented use of advanced process analytical 

technologies (PAT) to efficiently perform (near) real-time monitoring and control of 

bioprocesses. 

Here we report on the use of 2D-fluorescence spectroscopy and chemometrics (viz., 

PARAFAC, PCA, and PLS methods) for rapid, reliable and effective (near) real-time 

monitoring of CHO cell cultivations. Inline 2D-fluorescence data was acquired throughout the 

fermentation and analyzed with two different purposes. First, to investigate the underlying 

chemical structure of the multivariate fluorescence spectra, extract process information and 

find optimization potentials (i.e., characterization of the physiological state of cultivations, 

identification of variability sources affecting batch reproducibility and evaluation of 2D 

fluorescence fault diagnosis potential). Second, the same spectral dataset was used for 

indirect in-line monitoring of relevant cell culture variables, such as product, lactate and 

glucose, viable cell density (VCD) and lactate dehydrogenase (LDH) activity. Preliminary 

work establishes 2D-fluorescence combined with multivariate methods as a robust method 

delivering high frequency real-time process state information thereby supporting process 

optimization and troubleshooting. The opportunities for using 2D-fluorescence spectroscopy 

as an element of the control system in commercial biomanufacturing are considerable and 

are highlighted in the present study. 

 

 

Keywords: 2D-fluorescence, CHO cultivations, process optimization, chemometrics, moni-

toring & supervision 
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6.1 INTRODUCTION 

Over the last ten years, a significant increase in approved biopharmaceutical products for use 

in an extensive range of diagnostic and therapeutic applications has been observed. These 

include proteins, peptides, nucleic acids, whole cells and viruses whose typical manufacturing 

process consists of cell cultivation, product recovery, purification and drug product formulation 

(Hakemeyer et al., 2013). Indeed, commercial production of biopharmaceuticals presents sev-

eral unique challenges related to the high complexity of biological systems, especially if mam-

malian cells are used in multicomponent media mixtures, and the target product represents a 

small fraction of the bulk culture fluid. Furthermore, worrisome impurities are difficult to detect, 

raw materials are complex and subject to variability, and the functional/clinical significance of 

product variants are often incompletely characterized or understood (Read et al., 2010). The 

ability to improve and optimize bioprocesses under conventional development and manufactur-

ing practices can be, in general, limited by the lack of reliable real-time process state information 

of all process stages. The Process Analytical Technology (PAT) initiative launched by FDA in 

2004 has emerged as a science-based approach to product development, according to which 

the manufacturing process should be designed and implemented with the goal of ensuring final 

product quality and consistency (US FDA, 2004b). More comprehensively, the Quality by De-

sign (QbD) framework embraces the creation of a manufacturing knowledge base established 

on risk-management principles, process design spaces, and scientific understanding of product 

attributes. PAT can be viewed as a QbD enabler, offering the opportunity to increase process 

knowledge and transfer it consistently, beginning from R&D up to production (Rathore, 2014).  

With such a broad scope of applications, it is expected the role of PAT during product and 

process lifecycle to be very comprehensive. Generally, during process development, PAT ap-

plications are focused on establishing a measurement system for monitoring potentially critical 

quality attributes and key parameters, identify what is critical through process optimization stud-

ies, fill in knowledge gaps as to process parameters and dynamics, and test control strategies 

to ensure process robustness. In contrast, during routine manufacturing, the realization of PAT 

approaches is more focused on control and supervision of the process, which implies that a 

significant part of process understanding was already established during the development 

phase. Nevertheless, inherent and non-intended variability (e.g. in raw materials) will be ob-

served over the process lifecycle. As such, the use of PAT tools should be extended during 

routine manufacturing to support ongoing process verification, improvement initiatives, and root 

cause analysis of deviations. 

NIR, MIR and Raman spectroscopies have been used for process fingerprinting or monitoring 

of several process variables, media components and end product, whereas dielectric spectros-

copy has been used to determine biomass volume/concentration throughout the entire cultiva-

tion time (Carvell & Dowd, 2006; Holm-Nielsen et al., 2008; Read et al., 2010; Triadaphillou et 

al., 2007; Ulber et al., 2001; Veale et al., 2007, Cole et al., 2015). 
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Particularly, 2D-Fluorescence spectroscopy has received considerable attention for high-

throughput analysis of bioprocesses since it is a noninvasive technique with relatively high sen-

sitivity and selectivity (Teixeira et al., 2011). Using a multi-wavelength excitation (λex) / emission 

(λem) spectrofluorometer, it is possible to simultaneously measure fluorescent signals derived 

from cells (e.g., cofactors) and medium components such as amino acids and vitamins (Rossi 

et al., 2012). However, the interpretation of a fluorescence map is not always straightforward as 

it is influenced by the cellular metabolic state, by overlapping signals from other components 

(medium and cell produced/derived) that might fluoresce in the same wavelengths, and by a 

comprehensive set of interferences, such as cell debris accumulation (particularly in death 

phase), gas bubbles, stirring, and high cell densities and viscosities. Moreover, the sensitivity 

of the measurements can decrease due to inner filter effects i.e., when fluorescent compounds 

absorb the exciting radiation or the one emitted by other fluorophores, or cascade effects ob-

served when emission from one fluorophore excites a second one. However, using appropriate 

spectral handling and data processing methods, valuable information and robust multivariate 

prediction models can be retrieved for process monitoring and optimization purposes (Teixeira 

et al., 2009a). 

The benefits of combining 2D-fluorescence spectroscopy with chemometric tools have been 

demonstrated in several studies (Hitzmann & Faassen, 2015). The use of such tools for bacterial 

and yeast culture monitoring was demonstrated with the development of a 96-well plate fermen-

tation system with in-line monitoring of scattered light and fluorescence at specific wavelengths 

(Kensy et al., 2009). This strategy allowed selecting the best producer clone by directly corre-

lating biomass growth with scattered light intensity for standard bacterial and yeast expression 

systems. Furthermore, PARAFAC modeling was successfully used to monitor profiles for en-

zyme and tryptophan concentrations in bacterial (Bacillus) cultures, and multivariate prediction 

models were developed for biomass, ethanol, and glucose of batch cultures of Saccharomyces 

cerevisiae (Mortensen & Bro, 2006; Ödman et al., 2009). 

Even though the use of 2D-fluorescence spectroscopy to monitor mammalian cell fermentation 

is less covered in the literature, several applications have proven to be extremely valuable to 

reduce variability and enhance process understanding. Successful prediction models have been 

established for Green Fluorescent Protein (GFP) quantification of a mouse myeloma cell line 

(NS0), to effectively monitor viable cell density and recombinant glycoprotein concentration in 

recombinant BHK (Baby Hamster Kidney) cell cultures, and for monitoring cellular growth in 

CHO (Chinese Hamster Ovary) cell cultures based on changes in tryptophan, coenzymes and 

vitamins profiles (Hisiger & Jolicoeur, 2005; Teixeira et al., 2009b). 

Lot-to-lot variability in raw materials can lead to significant large variations in the yield and qual-

ity of recombinant proteins. 2D-fluorescence spectroscopy coupled with multivariate data anal-

ysis tools can be used to complement existing media analytics with additional information about 

the quality of cell culture media in terms of compositional changes due to prolonged storage 

(Ryan et al., 2010). Other study demonstrated that it is possible to establish predictive models 
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for protein yield by fusing 2D-fluorescence with NIRS and MIRS data from different media com-

ponents (Jose et al., 2011). Moreover, it was shown that 2D-fluorescence spectroscopy allowed 

to detect media composition changes upon storage that resulted in a decrease of the integral 

of viable cells (IVC) in CHO cultures, whereas product titer was not significantly affected (Hake-

meyer et al., 2013). 

2D-fluorescence spectroscopy combined with chemometrics has proven to be a robust and re-

liable method for handling different variation sources impacting bioprocesses. Monitoring of fer-

mentation processes using inline 2D-fluorescence spectroscopy can potentially be complemen-

tary or even reduce the sampling workload for at-line analytical methods. The information can 

be correlated with the physiological state of the cells for the investigation of critical process 

steps or identification of process phases with specific requirements (e.g., feeding), supporting 

process understanding, troubleshooting, and optimization activities. For that reason, 2D-fluo-

rescence encompasses a broad range of opportunities in terms of end-to-end optimization and 

continuous improvement over the process and product lifecycle.  

6.2 MATERIAL AND METHODS 

6.2.1 Cell culture 

One recombinant CHO clone (Chinese Hamster Ovary cells, suspension culture) constitutively 

expressing an antibody (herein, designated as product) was cultivated in suitable chemically 

defined cell culture media. All cell cultivations (herein, CC#01 to CC#06) took place in a 14 L 

stirred tank bioreactor (Biospectra AG, Schlieren, Switzerland) employing state of the art pro-

cess monitoring and control technologies, for approximately 14 days cultivation time. The work-

ing volume at inoculation was 10.0 L for CC#01-03 and 10.5 L for CC#04-06. The temperature 

of the biosuspension was kept constant at 36.5°C, and the pO2 was controlled at 35% air satu-

ration. The process strategy consisted of an initial batch process followed by a fed batch phase 

to achieve higher cell density. The feeding strategy differed for the fermentation runs considered 

in this study. It comprised several separate feeding solutions starting at different times of the 

fermentation process. Bolus feeding of glucose and other nutrients was used for CC#01 and 

continuous feeding for CC#02-06.  

6.2.2 Reference analysis 

Samples were drawn from the bioreactor once or twice a day and either analyzed directly or 

centrifuged to remove cells and debris. Supernatants were collected and frozen until analysis, 

whenever necessary. Standard reference analytics included Cedex Bio HT Analyzer (Roche 

Diagnostics GmbH, Custom Biotech, Penzberg, Germany) for the concentrations of product 

(mg/L), glucose (mg/L), lactate (mg/L), and lactate dehydrogenase (U/L), while a Cedex Auto-

mated Cell Counter (Roche Diagnostics GmbH, Custom Biotech, Penzberg, Germany) was 

used for analysis of viable cell density (105 cells/mL).  
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For proprietary reasons, all analytical results were normalized by its maximum value according 

to Equation 6-1. 

Normalized Property (NP) = pi / pmax  Equation 6-1 

where pi is the ith row of the original dataset and pmax is the maximum value for each property 

considering cell cultivation experiments C#01 to C#06. 

6.2.3 Fluorescence spectroscopy 

Fluorescence spectroscopy analyzes the emission of light after absorption of ultraviolet or visi-

ble light by a fluorescence molecule called fluorophore. The fluorophore absorbs energy at a 

given wavelength and emits at a higher wavelength. During the first step, excitation, light is 

absorbed by the fluorophore, which is transferred to an electronically excited state. This is fol-

lowed by a vibrational relaxation, where the molecule undergoes a transition from an upper 

electronically excited state to a lower one. When the electron returns to its ground state, it emits 

light at a specific wavelength according to the difference in energy between the two electronic 

states. Since emission and excitation spectra can be obtained from 2D fluorescence, qualitative 

and quantitative information about fluorophores present in complex media can be retrieved com-

prehensively. In other words, the technique can provide information about fluorescent molecules 

in a wide variety of biological samples with very high sensitivity (100 up to 1000 times more than 

other spectroscopic methods) (Haack et al., 2004; Jain et al., 2011; Lindemann et al., 1998). 

In this study, on-line measurements were performed with the BioView® sensor (DELTA, Light 

& Optics, Denmark) for simultaneous detection of fluorescence at different wavelengths. The 

system employs two independent filter wheels with 15 different filters in the wavelength range 

from 270 to 550 nm for excitation and 310 to 590 nm for emission with a step width of 20 nm, 

and a photomultiplier for detection of the emission light. The fluorescence spectrometer is inter-

faced to the bioprocess via optical light guides and a probe inserted into a standard 25 mm port 

with an optical well containing a bottom surface sapphire window. A whole 2D-fluorescence 

spectrum is acquired after a complete cycle of both excitation and emission filter wheels. During 

the cultivation, the instrument was set to collect a full spectrum every 2 minutes with high sen-

sitivity. 

6.2.4 Data analysis 

Multiwavelength fluorescence produces excitation (λex) and emission (λem) spectra, gathered in 

a two-dimensional matrix per sample. When these variables are monitored over the culture time, 

a three-dimensional data array is produced requiring the use of specific data analysis tech-

niques. Parallel Factor Analysis (PARAFAC) was used to explore the chemical structure of the 

dataset and to identify underlying phenomena over culture time (Figure 6-1). Several publica-

tions describe the theory and PARAFAC applications in bioprocesses (Bro, 1997; Mortensen & 
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Bro, 2006; Surribas et al., 2006). In the present study, visual inspection of emission and excita-

tion loadings, split-half analysis and core consistency test were used for validation purposes 

(Andersen & Bro, 2003; Bro and Kiers, 2003). 

 

 

Figure 6–1: Graphical representation of a three-component PARAFAC model of 2D-fluorescence data from 

CHO cell cultivations. 

 

To further investigate the properties of the fermentation process, three-dimensional fluores-

cence maps were unfolded into a matrix (sample vs. excitation/emission pair) and analyzed by 

Principal Component Analysis (PCA). The PCA method decomposes the array into sets of 

scores and loadings that can be used to interpret the dynamics of the fermentation process and 

describe the fluorescence “fingerprints” of the system under study (e.g., batch-to-batch variabil-

ity) (Rhee et al., 2006, Ödman et al., 2009). 

To verify the dependency between biogenic fluorophores and cell culture parameters in CHO 

batch cultures, two-way unfold-PLS models on centered data were developed and discussed in 

terms of accuracy and prediction performance considering Root Mean Square Error of Cross-

Validation (RMSECV) and Root Mean Square Error of Prediction (RMSEP). For all models de-

veloped two cell cultivations (CC#03 and CC#06) where used as an external dataset (i.e., not 

used in calibration) to fully challenge model performance and predictability. All calculations were 

performed using MATLAB® R2014a (8.3.0.532) (The MathWorks, MA, USA) and PLS_Toolbox 

ver. 7.9.4 (Eigenvector Research, Inc., WA), supported by in-house written codes. 

6.3 RESULTS AND DISCUSSION 

6.3.1 Fluorometric properties of CHO cell cultivations 

Mammalian cell-based fermentation processes are very complex systems, requiring detailed 

monitoring of both chemical and physiological properties. Hence, fluorescence measurements 
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performed in a wide spectral range hold the potential to characterize the most biologically rele-

vant fluorophores and provide important information about the cell metabolic state over cultiva-

tion time. The culture media (i.e., prior inoculation) was first analyzed regarding its fluorometric 

properties. Three main regions with significantly distinct fluorescence intensities could be dis-

tinguished and assigned to flavins, NAD(P)H and amino acids, i.e., phenylalanine, tyrosine and 

tryptophan, the last two being more dominant in the collected 2D spectral range (Teixeira et al., 

2009b, Faassen & Hitzmann, 2015) (Figure 6-2). 

 

 

Figure 6–2: Biogenic fluorophores in 2D fluorescence map of CC#01: (A) prior inoculation; (B) end of 

fermentation; (C) difference spectrum between end and prior inoculation fluorescence maps. 1 – flavins 

(riboflavin, FAD, FMN); 2 – NAD(P)H; 3 – amino acids (tyrosine and tryptophan). 

The fluorescence intensity in the amino acid region (𝜆௘௫~ 290𝑛𝑚; 𝜆௘௠ ~370𝑛𝑚), exhibited the 

strongest signal prior to cell inoculation (Figure 6-2A). Over cultivation time, a significant de-

crease in the intensity of the amino acids signal was observed due to cell uptake and integration 

into proteins (potentially both recombinant and cellular proteins, the last reflecting the increase 

in biomass). 
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Concerning the region where vitamins such as pyridoxine (vitamin B6 derivative) exhibit fluo-

rescence (𝜆௘௫~ 310𝑛𝑚; 𝜆௘௠ ~410𝑛𝑚), a decrease in signal intensity, particularly during expo-

nential cell growth was recorded (data not shown). The signal increases once again, remaining 

stable until the end of the cultivation. The shift to higher intensity was not expected since pyri-

doxine is not in the composition of the feed media recipes. Therefore, other unknown fluorescent 

compounds are most likely contributing to the signal intensity. 

In opposition to amino acids, the fluorescence signal in the region of NAD(P)H 

(𝜆௘௫~ 350𝑛𝑚; 𝜆௘௠ ~450𝑛𝑚), was negligible prior inoculation and increased over time due to the 

metabolic activity of cells (Figure 6-2A and 6-2B). Some variations related to feed additions 

were observed over cell cultivation time. These might also reflect changes in environmental 

conditions to which fluorophores are exposed, namely in pH and ionic strength (Svendsen, 

Skov, & van den Berg, 2016). 

As previously reported by Teixeira et. al. 2011, the fluorescence signal in the region of flavins 

(𝜆௘௫~ 450𝑛𝑚; 𝜆௘௠ ~530𝑛𝑚), correlates well with cellular growth. Notably, during exponential 

growth, it decreases steadily until end of this phase (data not shown) and then increases until 

the end of cultivation, presumably accumulating in the media. Fig. 6-2C depicts the difference 

spectrum between the end of CC#01 and the corresponding media preparation (i.e., before 

inoculation) highlighting the substantial decrease in the amino acids fluorescence intensity while 

NAD(P)H and flavins regions evidence the opposite pattern. 

Although very informative, the interpretation of fluorescence spectra can be hindered by over-

lapping signals and process-related interferences. Therefore, exploring the multivariate proper-

ties of fluorescence maps in combination with chemometric modeling can contribute to en-

hanced data quality and promote the use of 2D fluorescence for qualitative and quantitative 

monitoring of fermentation performance. 

6.3.2 Batch-to-batch variability based on fluorescence profiles: investigation of 

optimization and fault diagnostics potential 

For all six CHO cultivations, the fluorescence signal was recorded continuously and process 

samples characterized by off-line analytical methods for product, LDH, VCD, glucose, ammonia 

and lactate quantification. In the context of bioprocess optimization, the aim of this work was to 

extract information from fluorescence landscapes correlated to metabolically related com-

pounds to characterize changes occurring during CHO cell fed-batch cultivations. PARAFAC 

was employed for the purpose as it can provide chemically interpretable information from pro-

cess variations (i.e., each PARAFAC component represents the concentration of intrinsic cul-

ture fluorophores) potentially affecting growth and cell metabolism. A three-component model 

was selected based on residual inspection, core consistency testing and split-half analysis, in-

dicating that the scores and loadings from the resulting models are very similar, and confirming 

an appropriate description of the data (Table 6-I). The underlying chemical structures identified 

by the PARAFAC model can be assigned to pure solutions of biogenic fluorophores (Figure 6-



 

48 

 

3) such as tryptophan (component 1), flavins (component 2) and NAD(P)H (component 3)(Faas-

sen & Hitzmann, 2015). 

Table 6–1: PARAFAC model diagnostics based on split-half quality assessment and core consistency test. 

Cell cultiva-

tions 

Components 

Overview Ex/Em (nm) 

Explained 

Variance (%) 
Core consistency 

All (CC#01 – 

CC#06) 

1 - 290/370 

2 - 450/530 

3 – 370/450 

96.5 99.0 

Odd (CC# 01, 

#03 and #05) 

1 - 290/370 

2 - 450/530 

3 – 370/450 

96.6 99.0 

Even (CC# 02, 

#04 and #06) 

1 - 290/370 

2 - 450/530 

3 – 370/450 

96.4 100.0 

 

 

Figure 6–3: Overview of PARAFAC scores (A, B and C), emission (D) and excitation (E) loadings 

characterizing CC#01 to CC#06. 
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Component 1 (Figure 6-3D and 6-3E) captures the emitted fluorescence in the amino acids 

region where tryptophan exhibits its fluorescence signal (𝜆௘௫~ 290𝑛𝑚; 𝜆௘௠ ~370𝑛𝑚). As ex-

pected, a more pronounced consumption during exponential growth phase takes place, as cells 

require amino acids to incorporate in cellular and/or production proteins. Following, a stabiliza-

tion phase is observed in which the feed stream adjusts amino acids concentrations levels, 

particularly in the case of cell cultivations CC#01 to CC#03. In CC#04 to CC#06 the decreasing 

trend is observed until the end of cultivation time (Figure 6-3A). 

Amino acids play a central role in cellular metabolism for compound synthesis or degradation 

in a variety of pathways. Tryptophan is an essential amino acid formulated in chemically defined 

media used in CHO cultivations, i.e., it cannot be synthesized by mammalian cells. Differences 

in the amino acids fluorescence signal are due to the use of different supplementation of media 

within the current study. The influence of media components in cell culture performance has 

been reported in several publications. Specifically, unbalanced amino acid formulations (con-

cerning tryptophan and other amino acids) can promote accumulation of toxic by-products such 

as lactate and ammonia affecting cell growth and product yield (Xing et al., 2011). The present 

technique has the potential to rapidly assess variations in the culture media, particularly regard-

ing aromatic amino acids, providing added value from a quality control point of view (Calvet et 

al., 2012). 

Growing cells use riboflavin mainly for FAD biosynthesis, which denotes a fluorescent quantum 

yield approximately ten times lower than the one exhibited by riboflavin (Eitenmiller et al., 2007). 

Hence, the fluorescence intensity in the region of flavins (Figure 6-3B, component 2 Figures 6-

3D and 6-3E) shows an almost linear decrease from inoculation (acceleration phase) until the 

end of exponential growth phase. Thereafter, variations can be likely explained by the fact that 

the feed-batch phase is initiated and riboflavin formulated in the feed media composition accu-

mulates in the fermentation media, as cells require less substrate than in the later growth phase. 

It is thus possible to distinguish two different cell culture profiles starting at 50% total fermenta-

tion time, characterized by faster (CC#01 and CC#03) and slower accumulation of flavins 

(CC#02, CC#04 - CC#06). The root cause for this observation is not entirely clear, but it might 

be related to a slowdown in cell growth and protein synthesis capacity observed for CC#03. In 

the case of CC#01, the faster accumulation of flavins is most likely related to the bolus feeding 

strategy. Also, an accidental overfeed due to a fault in the feed pump control system was 

promptly detected in the fluoresce signal of CC#01 at 0.85 total fermentation time, characterized 

by a sharp and unexpected increase in component 2 score values. As such, a control strategy 

based on 2-D fluorescence signal can be used for fault-detection of similar events.  

The third PARAFAC component (Figure 6-3C and 6-3D) describes NAD(P)H variations over 

culture time (Figure 6-3C). The signal increases progressively over time until the end of cultiva-

tion. NAD(P)H fluorescence can provide qualitative and quantitative information about cell 

growth and metabolic state. Indeed, the differences observed in NAD(P)H time profiles correlate 
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with two different metabolic signatures. Typically, lactate is preferentially produced in exponen-

tial growth phase, but the metabolism of cells can shift to lactate consumption, an event that 

can correlate with optimal process performance (Le, et al., 2012). Alternatively, cells can con-

tinue to produce lactate until glucose is fully depleted. Time profiles presented in Fig. 4 show 

that higher lactate concentration (Figure 6-4E) correlates in general with lower growth (Figure 

6-4A) and protein yield (Figure 6- 4B) at harvest. Since 2D-fluorescence spectroscopy can pro-

vide insights from media/broth composition and cell metabolic state, it holds huge potential to 

increase overall understanding of desirable growth and metabolic phenotypes. Besides, 2D-

fluorescence carries indirect information about the physiologic state pointing to process im-

provement in terms of product yield and quality. This information can be used to encircle the 

onset of metabolic events and to identify early-warnings for events/shifts in the process, very 

useful for process optimization and troubleshooting.  
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Figure 6–4: Time profiles of (A) VCD, (B) product, (C) glucose, (D) LDH activity, (E) lactate and (F) ammonia 

for six CHO cell cultivations (normalized units so that the maximum across all runs is one). 

To better understand the dynamics of the process under study, a two-component PCA model 

of 2D-fluorescence unfolded spectra enabled the identification of three main phases over culti-

vation (Figure 6-5C). Phase I (growth phase – batch mode) is characterized by intensive cell 

division and high flux of glycolysis from glucose to lactate. During Phase I, fermentations 

CC#01, CC#02 and CC#03 showed larger variation in PC2 score values relatively to fermenta-

tions CC#04, CC#05 and CC#06 (Figure 6-5C – red dots) which may be an early indication for 

differences in the cultures metabolic state. The decrease in the second PC is mainly capturing 

the amino acids and vitamins consumption (Figure 6-5D)  
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Phase II (stationary phase – feed-batch mode) starts around 0.2 fermentation when the feed 

stream is initiated, which is clearly captured in the score plot by the sharp inflection of the scores 

trajectory, making PC1 score variation predominant over PC2 (Figure 6-5C – green samples). 

PC1 which is most influenced by flavins and NAD(P)H signals increases during this phase, while 

PC2 score slightly decreases over time, reaching its minimum value when the maximum viable 

cell density is reached for each cell cultivation. In CC#01, CC#02 and CC#03 the extension of 

this phase was significantly shorter and a sharp inflection in PC2 scores could be captured 

around 0.5 total fermentation time (Figure 6-5A and Figure 6-5C) (transition to Phase III – death 

phase, blue dots), while for fermentations CC#04, CC#05 and CC#06 this event happened 

much later, around 0.8 fermentation time (Figure 6-5B and Figure 6-5C). This change in the 

slope of the process signature, captured by 2DFS, most likely reflects a significant change in 

cell physiology due to accumulation of lactate and ammonia, which are known for inhibiting 

growth and promoting cell death. Once reaching critical inhibitory levels, these factors lead to 

earlier cell death and consequently lower product concentration at harvest for those fermenta-

tions (Figure 6-4 – CC#01, CC#02 and CC#03). 

As showed by PARAFAC and PCA models, the most significant events captured by 2DFS are 

either related to cell physiology or process changes including variations in media composition 

(e.g., overfeeds) and feeding strategy, demonstrating its potential for process optimization pur-

poses and to design more efficient control strategies for the manufacturing process. 

 

Figure 6–5: VCD profiles of CC#03 (A) and CC#06 (B), and PCA model of unfolded 2DFS spectra for all six 

CHO cell cultivations: PC1 vs. PC2 (C) and loadings (D) plot – Tryptophan (ex290/em370), NAD(P)H 

(ex370/em450) and flavins (ex450/em530) excitation/emission maxima. Phase I, II and III colored red, green 

and blue, respectively. 
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6.3.3 Inline monitoring of CHO cell cultivations 

Several inline process variables (e.g., temperature, pH, dissolved oxygen) and at-line variables 

reflecting more directly the quality status of the process (e.g., product concentration, viable cell 

density) are routinely measured during cell cultivations. There is a considerable time-lag be-

tween the availability of inline measured process variables and variables reflecting the physio-

logical state of the cell, pointing to the quality status of the process. Information about the quality 

of the product is only available after process completion, and usually, it takes several days or 

even weeks to become available. Thus, relating input and output parameters is often done ret-

rospectively and statistically relevant only when several production batches are available. Of 

particular interest in this work is to evaluate the potential of 2D-fluorescence to quantify real-

time several cell culture variables able to describe the physiological state of the culture. These, 

in turn, indicate far better whether production requirements will be met at the end of the process 

compared to relying only on the classical inline process variables. 

For quantitative modeling, fluorescence measurements from all cell cultivations corresponding 

to offline reference analytics were included in the analysis. It is worth mentioning that these 

models rely on correlations with culture fluorophores which are in turn involved in cell growth 

and productivity (Ödman et al., 2009; Rowland-Jones, van den Berg, Racher, Martin, & Jaques, 

2017). 

6.3.3.1 Product concentration (PRO) 

Product concentration was predicted based on positive correlations with several excita-

tion/emission pairs in NAD(P)H fluorescence region (Figures 6-6A and 6-6B). Negative correla-

tions with emission/excitation pairs in the region of tryptophan were identified when developing 

the model. However, the inclusion of these variables did not improve prediction performance. 

Figure 6-6 depicts the optimal PLS model built with 4 latent variables (Table 6-II) presenting 

very accurate predictions throughout the calibration range. For higher product concentration, 

the so called inner-filter effects likely contribute to the deviation between measured and pre-

dicted values (Figure 6-6C). 
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Figure 6–6: (A) Measured vs. PLS model predictions for PRO monitoring (normalized units); (B) regression 

coefficients indicating the contribution of emission/excitation pairs in the model; (C) Online predictions and PRO 

measurements by reference analytics (CC#06). 

6.3.3.2 Lactate dehydrogenase (LDH) 

Lactate dehydrogenase (LDH) is an oxidoreductase enzyme involved in growth, product bio-

synthesis and cell maintenance, that is present in a wide variety of organisms. LDH catalyzes 

the interconversion of pyruvate and lactate accompanied by the interconversion of NAD(P)H 

and NAD(P)+ (i.e., NAD or NADP as an acceptor). In agreement with the metabolic cell function 

of LDH, the spectral regions that most correlate with LDH profile are in the NAD(P)H and flavins 

region (Figure 6-7B). Even though LDH activity was indirectly predicted based on its stoichio-

metric relation with these biogenic fluorophores, for higher enzyme activities (> 0.8 cultivation 

time), the absorption phenomena could have been disturbed by chemical and/or physical inter-

ferences such as higher concentrations and cell densities (Figure 6-7C). A similar effect is seen 

for all other models. 

Four latent variables were selected as the optimal rank for the PLS model (Table II), with a 

relative prediction error of 4.7% (Figure 6-7A). It is important to highlight that the model is valid 

only for the last 70% of total cultivation time since the sensitivity of the reference method in the 

lower concentration range is considerably low. 
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Figure 6–7: (A) Measured vs. PLS model predictions for LDH monitoring (normalized units); (B) regression 

coefficients indicating the contribution of emission/excitation pairs in the model; (C) online predictions and LDH 

measurements by reference analytics (CC#06). 

6.3.3.3 Viable Cell Density (VCD) 

Important parameters in biomanufacturing processes include specific growth rate and viable cell 

density, whose control is hampered by the difficulties in measuring accurately the concentration 

of biomass online (Dabros, Schuler, & Marison, 2010). The prediction of viable cell density 

(VCD) through 2D fluorescence was established on correlations with several fluorophores: i) 

tryptophan which is inversely correlated with VCD (i.e., cells consume amino acids for growth; 

ii) a positive correlation with NAD(P)H which increases continuously along culture time and ); 

iii) flavins exhibiting a negative correlation most likely explained by the decrease in the flavins 

signal during cell exponential growth compensated afterwards by the feed media (which in-

cludes riboflavin in the formulation) and culture metabolic slowdown (Figure 6-8B). A model with 

three latent variables showed acceptable predictions throughout the calibration range (Figure 

8-8A), enabling inline monitoring of viable cell density throughout cell cultivation time (Figure 6-

8C). 

 

Figure 6–8: Fig. 8. (A) Measured vs. PLS model predictions for VCD monitoring (normalized units); (B) 

regression coefficients indicating the contribution of emission/excitation pairs in the model; (C) online 

predictions and VCD measurements by reference analytics (CC#06). 
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The ability to measure viable cell density inline offers the opportunity to monitor the cell growth 

in a timely manner, control the fermentation process by adjusting glucose feed rate towards 

optimal performance, and to benchmark process conditions of ‘good’ performing batches, such 

as feed media composition and feeding strategy (e.g., starting of feed media). 

6.3.3.4 Lactate concentration (LAC) 

Lactate production is a critical parameter in mammalian cells cultivations. Accumulation during 

initial cell growth is generally observed in CHO cultivations. In the present study, after glutamine 

depletion, lactate can follow one of two possible pathways: cells may switch to net lactate con-

sumption or continue to produce lactate until glucose depletion. High lactate production can be 

related to a reduced oxidative metabolism or/and with media composition/feeding. A PLS model 

with five latent variables (Table II) enabled to predict lactate concentration with very good accu-

racy until the end of the exponential growth phase (i.e., until 0.25 total fermentation time) (Figure 

6-9A). From this phase onwards, the degree of correlation between the fluorescent signal and 

lactate net concentration decreased considerably. Nevertheless, based on the fluorescence sig-

nal (Figure 6-9B) it was possible to distinguish different lactate profiles at an early process phase 

(Figure 6-9C), which is a very important outcome of the present study. The use of such model 

in early development can be very useful for feeding optimization purposes, accounting the met-

abolic behavior of cells.  

 

 

Figure 6–9: (A) Measured vs. PLS model predictions for LAC monitoring (normalized units); (B) regression 

coefficients indicating the contribution of emission/excitation pairs in the model; (C) Online predictions and LAC 

measurements by reference analytics (CC #03 (▲) and CC #06 ()). 

6.3.3.5 Glucose concentration (GLU) 

Glucose does not exhibit intrinsic fluorescence, however, glucose consumption is related to the 

production of fluorescence molecules which enables to monitor glucose based on signals re-

lated to cell growth (Ödman et al., 2009; Jain et al., 2011). The emission/excitation pairs that 

are more relevant for glucose prediction in the current fermentation process are in NAD(P)H 

and flavins regions (Figure 6-10B). The model (Figure 6-10A and Table II) captured the process 
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trend until 0.25 total fermentation time (i.e., during exponential growth), presenting, however, a 

significant offset from this phase onwards and until the end of the cultivation (Figure 6-10 C). 

This offset can be explained by the start of the glucose feed which disrupted the correlation 

between analytical measurements and the fluorescence signal in the region of NAD(P)H and 

flavins. It is important to highlight that the later are included in the composition of the feed media. 

 

 

Figure 6–10: A) Measured vs PLS model predictions for GLU monitoring (normalized units); (B) regression 

coefficients indicating the contribution of emission/excitation pairs in the model; (C) Online predictions and GLU 

measurements by reference analytics (CC #03 (▲) and CC #06 ()). 

Table 6-2: Unfold-PLS correlations (R2) between fluorescence and reference analytics measured in CHO cell 

cultivations. LV latent variables in the model, RMSECV, root mean square error of cross validation, RMSEP, 

root mean square error of prediction. 

Process Parameter 
Calibration 

Range 
LV 

RMSECV 
(n.u) 

RMSEP  
(n.u.) 

R2 

Product concentration  0.04 - 0.96 4 0.05 0.03 0.97 

LDH activity  0.06-1.00 4 0.04 0.06 0.97 

Viable Cell Density  0.09 – 0.96 3 0.07 0.09 0.92 

Lactate concentration 0.03 – 1.00 5 0.06 0.08 0.91 

Glucose concentration 0.00 – 1.00 5 0.08 0.11 0.89 

 

6.3.4 Improvement Opportunities Based on 2D-fluorescence spectroscopy 

In fed-batch processes, basal media composition supports the initial cell growth and production, 

while the feed stream accommodates metabolic requirements across different production 

phases (Le, 2012). Along with the feeding strategy (i.e., feed start, glucose plateau, fixed ratio 

vs. adaptive feeding) the above are the cornerstone for cell culture optimization during devel-

opment and for establishing the control strategy to be implemented in routine manufacturing.  
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In the present study, 2D-fluorescence spectra combined with PARAFAC enabled a deeper char-

acterization of media composition variation (i.e., prior to cell inoculation), and its potential impact 

on metabolic behavior and productivity. During routine production, PARAFAC scores for com-

ponent 1 and 2 (tryptophan and flavins, respectively) could be used to supervise media compo-

sition and to target feed recipes to the ones used in better performing batches (CC#04 to 

CC#06). Additional experiments are however necessary to establish a thorough understanding 

about the “golden” media recipes. Nevertheless, implementing such approach would decrease 

batch-to-batch variations and enhance process understanding to support continuous improve-

ment initiatives over the process lifecycle. 

Additionally, it is important to maintain appropriate levels of nutrients and metabolites in the 

biosuspension over cultivation time. In the present study, monitoring PARAFAC scores for com-

ponent 2 (flavins) allowed to immediately detect the overfeed, providing operators with a fault 

detection system to correct the feed stream for optimal performance. 

The combination of 2D-fluorescence signal with PCA is another effective strategy to identify 

differences in cell culture metabolic state throughout the fermentation. Variations in the PCA 

scores trajectories can be used for fingerprint recognition (e.g., phase transition) and related to 

performance. Establishing a trigger for initiating the glucose feed based on the physiological 

state of the cultivation instead of a time-based approach, could be an option for an improved 

control strategy, integrating 2D-fluorescence spectroscopy.  

Another key element for process optimization is to ensure a proper design of the feed medium, 

for optimal cell concentration and product titer at harvest. As opposed to the predefined feeding 

strategy used in this study, lactate production can be controlled through adaptive feeding by 

limiting the amount of carbon source (glucose or any other substrate) available (Konakovsky et 

al., 2016). 2D-fluorescence combined with PLS regression can take part of such control system, 

to supervise cell concentration real-time and adjust the glucose feed rate accordingly.  

In addition to the elements presented above, the PLS models can be used for monitoring inten-

sification of key performance indicators (such as lactate profiles) to enhance process under-

standing and identify what is critical and needs to be controlled in routine manufacturing. 
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6.3.5 Conclusions 

This work highlights the suitability of 2D - fluorescence as a true PAT tool in the context of 

bioprocess monitoring and optimization, enabling enhanced process understanding intertwined 

with supervisory and control goals. The present study demonstrated the capabilities of 2D-fluo-

rescence spectroscopy combined with different chemometric methods to monitor real-time mul-

tiple parameters and to support science-based control strategies, as advocated in the QbD ini-

tiative. In addition, 2D-fluorescence can be used in bioprocess end-to-end assessments in the 

sense that the variations in starting materials can be identified and linked with further operations 

(e.g., feeding strategies, metabolic fingerprints) during the time course of bioprocesses, ena-

bling mitigation actions to be implemented as feed-forward control initiatives.  

Due to its unique features, 2D-fluorescence is a powerful tool for process monitoring and opti-

mization, during development and potentially routine manufacturing of biotechnology products. 
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PART III - Scaling-up Knowledge Management in  

the Pharmaceutical Industry 
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7 Lifecycle management of PAT procedures:  

batch and continuous process applications  

 

 

 

In 2011, FDA updated the existing guideline on manufacturing process validation to align mod-

ern quality concepts (i.e., Quality by Design) with the product lifecycle approach. Several au-

thors have highlighted that many of the concepts and principles used to demonstrate continued 

product quality could be applied to guarantee ongoing quality of data produced by analytical 

procedures (Pohl et al., 2010; Nethercote & Ermer, 2012).  

The QbD initiative applied to analytical method development is expected to foster Chemistry, 

Manufacturing, and Control (CMC) innovation while enabling the concept of “right analytics at 

right time” to support all stages of the manufacturing process lifecycle. Extending the lifecycle 

concept to analytical methods is essential to ensure its suitability during routine production. This 

is even more critical to process analytical technology (PAT) procedures that may also be part 

of the control strategy or used for real-time release testing (RTRT). In this chapter, a framework 

for PAT procedures lifecycle management will be discussed and illustrated with examples from 

industrial batch and continuous applications. 

 

 

 

Keywords: PAT, method development & validation, lifecycle management, ongoing performance ver-

ification. 
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7.1 Introduction 

The change in the process validation paradigm (US FDA, 2011) made pharmaceutical compa-

nies rethink analytical testing as to method development, validation, transfer and continued per-

formance verification, to support all aspects of the product and process lifecycle (Nethercote & 

Ermer, 2014). Analytical testing and the manufacturing process are interdepending elements as 

changes in product profile may require modifications to existing analytical procedures. On the 

other hand, changes in analytical methods performance due to aging of components or replace-

ment of parts during routine production may entail additional validation activities. Extending the 

lifecycle concept to analytical methods (particularly, to PAT procedures1) is imperative to holis-

tically align analytical procedure variability with product requirements over lifecycle (Figure 7-

1). This will broaden the scope for technological innovation and enhance the understanding of 

the sources of variability impacting product quality attributes, encompassing the ones arising 

from the manufacturing process as well as the analytical procedure (Martin et al., 2013).  

 

 

Figure 7–1: A common approach to manufacturing processes and analytical procedures lifecycle management. 

1 In this Chapter PAT Procedure is used in accordance with EMA Guideline on the use of near 

infrared spectroscopy by the pharmaceutical industry and the data requirements for new sub-

missions and variations (EMA, 2014), i.e., it describes how the PAT infrastructure (defined as 

method in the same document) and model are used for the intended purpose, within the defined 

scope. The definition of procedure is also referenced in FDA Guidance for Development and 

submission of Near Infrared Analytical Procedures (US FDA, 2015). 

As the pharmaceutical industry continues to overcome new manufacturing strategies with prom-

ising technical and economic benefits, such as single-use disposable technologies and adoption 
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of continuous processes, the challenges facing process control are permanently evolving. The 

ability to improve and optimize manufacturing processes is, in general, limited by the lack of 

reliable real-time information from all process stages. The adoption of new technologies and 

dynamic approaches able to handle process variations by means of changing the control offsets 

is therefore, necessary. Spectroscopy-based PAT have become widely used analytics so given 

its capabilities to measure both physical and chemical properties directly at the process streams, 

either by probing systems (in-line) or via sampling devices (on-line), enabling to reach the aims 

of process understanding, process control and manufacturing flexibility to consistently generate 

products of predetermined quality (Read et al., 2010). 

There are challenges, however in adopting PAT in pharmaceutical environments relatively to 

conventional lab-based analytical methods, due to the twofold nature of PAT procedures: the 

PAT infrastructure integrating the equipment, the sampling interface and the software for data 

acquisition and modeling as well as connectivities to the control system, and the PAT model 

usually requiring a chemometric approach for representative sample selection, model calibra-

tion and validation of the entire setup as “fit for its intended purpose”.  

To fulfil the regulatory gap as to PAT procedures development and validation requirements, and 

to foster the adoption of PAT by the pharmaceutical industry, several publications by regulatory 

authorities and scientific groups have been recently issued. In 2011, the American Society for 

Testing and Materials (ASTM) International published a “Standard guide for verification of PAT 

enabled control systems” establishing the principles and verification activities necessary to en-

sure that PAT-enabled control systems are fit for purpose, properly implemented and perform 

as expected in routine use (ASTM, 2011). The document details on the use of process models 

based on first principles understanding or empirical models derived from experimental investi-

gations applied to batch and continuous processing. In the same year, ICH released the Guide 

for ICH Q8/Q9/Q10 (US FDA, 2011) implementation describing the role of mathematical mod-

eling in the QbD framework including models for process design (e.g. formulation optimization, 

design space determination and scale-up), analytical characterization (e.g., PAT-based mod-

els), process monitoring and process control (e.g., MSPC). The implementation working group 

recommends to perform model categorization according to the impact of the reported result to 

product quality. The extent of verification, validation and proper documentation of model-related 

information is dependent on such categorization. Later, the 2014 EMA “Guideline on the use of 

Near Infrared Spectroscopy (NIRS) by the pharmaceutical industry and the data requirements 

for new submissions and variations” described the requirements for the development, calibra-

tion and validation of NIRS-based methods, both for qualitative and quantitative PAT applica-

tions (EMA, 2014a). Few months after, an addendum to the guideline (EMA, 2014b) was pub-

lished to clarify the scope of application and to provide guidance on change management over 

NIRS-based applications lifecycle use. The principles and concepts illustrated in the guideline 

can be extrapolated to other spectroscopy based methods, such as FT-IR and Raman, widely 

used in PAT applications. Recently, the European Directorate for the Quality of Medicines and 



 

65 

 

Healthcare (EDQM) issued a new chapter in the European Pharmacopeia entitled “Chemomet-

ric methods applied to analytical data (5.21)” (EP, 2016). For the first time, the use of chemo-

metrics is referenced in a Pharmacopeia, providing guidance on good chemometric practices 

and encouraging the use of multivariate data analysis methods for evaluating data generated 

by spectroscopy and chromatography-mass spectrometry methods (e.g., LC-MS) as integral 

components of PAT applications. The use of quality risk management (QRM) tools and princi-

ples to select critical parameters and attributes to be measured, design of experiments (DoE), 

multivariate data analysis (MVDA), modeling approaches and statistical process control (SPC), 

are all recommended to be used in combination so that “scientific evidence” of analytical proce-

dures consistency and performance is obtained throughout its lifecycle use.  

In this context, this contribution encompasses a systematic workflow for lifecycle management 

of PAT procedures, fully aligned with the QbD initiative as well as with validation requirements 

established in ICH Q2 (ICH, 2005), EMA NIRS guideline (EMA, 2014a; EMA, 2014b), European 

and United States Pharmacopoeias (EP, 2016; USP 38, n.d.). The approach comprises a series 

of activities taking place over the lifecycle of the PAT procedure to guarantee ongoing assurance 

that reportable results are in a state of control over its life use, even if there are changes in 

materials, equipment, modeling approach, production environment or personnel. Special focus 

will be given to ongoing performance verification strategies of PAT procedures, used in batch 

and continuous processes applications.  

7.2 A Three Stage Approach to PAT Procedures Development and 

Lifecycle Management 

The domain of PAT is the manufacturing process itself (Felizardo et al., 2012). Performance 

requirements of PAT applications should be defined within the context of the control strategy for 

the product. As such, it is not possible to rely on the quality of reportable results of PAT proce-

dures if its conception is not fully understood or if its lifecycle is not properly managed. 

The three-stage approach depicted in Figure 7-2 enables the necessary alignment between 

PAT procedures and manufacturing requirements to assure that quality commitments are met 

over the entire product lifecycle. The required activities that are inherent to procedure design 

(Stage 1), performance qualification (Stage 2) ongoing performance verification (Stage 3), in-

cluding change control, monitoring programs and re-validation initiatives will be further detailed 

in the next sections.  
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Figure 7–2: General workflow for lifecycle management of PAT procedures. 

7.2.1 Stage 1 – PAT Procedure Design  

The main goal of this stage is to concentrate efforts in defining the PAT procedure in enough 

detail to consistently control critical parameters and sources of variability in the manufacturing 

scale which may undermine the quality of the reportable data. 

In agreement with the QbD construction described in ICH Q8, defining the quality target product 

profile (QTPP) is the starting point for process development. Analogously, establishing perfor-

mance requirements (viz., Analytical Target profile – ATP) for the PAT procedure is the first step 

for an integrated lifecycle approach (Weitzel, 2014). Such requirements (Figure 7-2 – 2.1) relate 

to the specifications for a given product quality attribute and their expected variation during the 

manufacturing process lifecycle (viz., acceptance criteria that are stage-specific and can be 

revised over time). The ATP defines the objective of the test and quality requirements, specifi-

cally the expected level of confidence of the reportable result which is the driver for the selection 

of the PAT procedure (i.e., PAT infrastructure and PAT model). 

Feasibility studies (Figure 7-2 – 2.2) are important in the development process for technology 

screening (i.e., each spectroscopy method holds advantages and limitations, and the choice 

depends upon the specific application), selection of the chemometric approach (i.e., model-free, 
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qualitative or quantitative) and reference analytical method, when applicable. Having a broad 

understanding at an early stage of the suitability of the PAT procedure is extremely important to 

establish an optimal PAT business case, since the following steps will require considerable re-

source allocation and experimental planning (Gouveia et al., 2016) 

Another key aspect is the risk assessment component (Figure 7-2 – 2.3) which consists in the 

identification, assessment and ranking of parameters that may adversely impact the suitability 

of the PAT procedure to fit the intended purpose (Figure 7-3). Risk assessments are iterative 

throughout the lifecycle of the method, they should take into consideration all steps from devel-

opment and validation to method transfer and on-going performance verification during routine 

use. The critical re-appraisal and re-evaluation of the PAT procedure on a regular basis will 

support continuous improvement and appropriate change control when necessary. In addition, 

the risk assessment can guide experimentation to de-risk the method and identify critical pa-

rameters having the greatest effect on performance (Figure 7-2 – 2.4). The use of testing and 

design of experiments (DoE) can be leveraged to yield important method understanding that 

ultimately leads to a robust control strategy and reduced variability. Simultaneously, appropriate 

DoE approaches are recommended to efficiently build a robust calibration ensuring that ex-

pected variation involving the parameters identified during the risk assessment will be covered 

in the PAT calibration model (Figure 7-2 – 2.5) (Schaefer et al., 2014). 
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Figure 7–3: Risk assessment exercise for a PAT procedure development (Stage 1) based on Failure Mode and 

Effect Analysis (FMEA). An example of a specific failure mode is presented for each 6M category (man, 

machine, material, method, mother-nature and measurement). Risk evaluation based on CNX methodology 

(control, noise, experimental) (Martin et al., 2013). 

 

As an outcome of Stage 1, the comprehensive description of the PAT procedure should contain 

the following elements (EMA, 2014a): 

- Purpose of the PAT procedure within the context of the control strategy including the 

location in the process flow, matrix composition, the intended use (e.g., material iden-

tification, in-process control, end-point release testing) and the mode of measurement 

(e.g., in-line, on-line, at-line, off-line); 

- Full description of the PAT infrastructure, referring to the equipment, sampling inter-

face, probe setup, sampling protocol and connectivities to the control system; 

- Step description of the PAT data acquisition process including details about e.g., 

background acquisition conditions, frequency and storage, sample presentation and 

conditioning (when required); 
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- Detailed description of the PAT model including the software package and the 

chemometric algorithm used. Specific parameters such as pre-processing, number of 

latent variables in the model, cross-validation method and, the required justifications 

for choosing such criteria (e.g. rationale for preprocessing, and wavelength selection) 

should be detailed and justified; 

- Description of the reference method (when applicable); 

- An initial plan for ongoing process verification, including quality checks during routine 

operation (e.g. equipment performance verification and spectral quality tests). 

The above-mentioned information must be gathered during the PAT procedure design stage, 

documented in standard operating procedures (SOPs) or equivalent documents, and managed 

under the company’s pharmaceutical quality system (PQS). For illustration purposes, a sum-

mary of relevant information is depicted in Table 7-1. 

 

Table 7–1: Comprehensive characterization of the PAT procedure, including requirements, description of the 

PAT infrastructure and PAT model. 

PAT Procedure Requirements 

The purpose of the in-line near NIR procedure is to quantify A in the presence of B and C over a range of 75 to 125% of the 

nominal concentration for determination of the reaction end-point (in-process-control) in the process flow step XXX. The 

decision criterion is based on five consecutive measurements at target concentration of X %(m/m) for A, max. Y % residual 

concentration of B and max. Z % (m/m) for C. The reportable result must fall within ± 10 % of the true value with at least 90% 

probability determined with 95% confidence. 

PAT Infrastructure 

Parameter Description 

Instrument ABB FTPA2000-260 

Software ABB FTSW100 (CFR-P11 compliant) 

Communication link to Control System OPC XML DA 

Light dispersion principle of the optical sys-
tem 

FT-NIR 

Detector type InGaAs detector 

Mode Transmission 

Wavelength range 3800 cm-1 to 14 000 cm-1 

Resolution and scans 8 cm-1 resolution; 64 scans 

Sample preparation/ presentation/ sam-
pling device 

On-line measurements 

Insertion probe (fiber optics) 

Sample population 

-Calibration set: lab scale (according to DoE plan) + 2 pilot batches 

-Calibration test set (pre-validation): 1 pilot batch 

-Validation set: 5 manufacturing batches 
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PAT Model 

Parameter Description 

Software 
Matlab Version 8.1 (MathWorks, Natick, MA) 

PLS Toolbox Version 7.8 (Eigenvector Research Inc., USA) 

Spectral pre-processing 

Standard Normal Variate (SNV) 

Savitsky-Golay smoothing (15 points) + 1st Derivative (2nd order polyno-
mial, 15 points window) 

Mean center 

Spectral quality check statistics  Q-residuals and Hotellings T2 

Spectral quality check statistics threshold Confidence limits: 95 % (μ ± 2σ) 

Chemometric algorithm PLS 

PLS model parameters 

PLS spectral range: 5978-6164 cm-1; 8231-8671cm-1 

Number of latent variables: 3 

Cross-validation method: Venetian blinds (15 data splits) 

Statistical attributes 

Standard Error of Calibration (SEC) 

Standard Error of Cross-Validation (SECV) 

Standard Error of Prediction (SEP) 

Bias, Slope, Intercept 

SEP/Standard Error of Laboratory (SEL) 

Reference method 
HPLC method with UV detection (description of the analytical procedure 
according to Module 3.2.P.5.2) 

Method validation protocol 
Specificity, Linearity, Range, Accuracy, Precision, Robustness 

Detection and Quantification limits (for impurities, only) 

 

7.2.2 Stage 2 – PAT Performance Qualification 

The demonstration that PAT procedures are fit for their intended purpose before use, involves 

a considerable amount of effort, time and resource allocation. The sources of changes that 

occur during the lifecycle of the PAT procedure can be classified as sample-related or equip-

ment related. The first category refers to physical or chemical variations of the sample presented 

to the measurement system due to changes in the manufacturing process or sampling system 

(e.g. changes in viscosity, particle size distribution, chemical composition, drift of the manufac-

turing process to a new steady state, sampling location/ frequency). The second case is verified 

when the measurement system response function has changed because of (non-exhaustive) 

instrument ageing (e.g. light source, probing system, detector), repairs and maintenance activ-

ities, equipment changes or shifts in environmental conditions (e.g., temperature, humidity). 

When such changes are expected (e.g., instrument, probe type or path length, scale of the 

manufacturing process), strategies for model standardization must be used before validation of 

the PAT procedure according to ICH Q2 requirements. In many situations, standardization is-

sues can be significantly minimized through proper method design or simple mathematical cor-

rection. PAT model robustness can be enhanced by including in the PAT calibration, samples 
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acquired with different instruments, probing systems or other sources of variability with potential 

impact in the quality of the data produced by the PAT procedure, e.g., probe position and bend-

ing, temperature – designated ruggedness factors. Another strategy consists in selecting spec-

tral variables and preprocessing methods that minimize the impact of sample or equipment-

related changes in the PAT procedure performance. 

In several occasions, the transfer process is straightforward and the performance of the trans-

ferred PAT model is found to be satisfactory. The evidences should be gathered under a com-

parability protocol where the acceptance criteria for the model transfer are clearly indicated 

(e.g., chemometric parameters as statistical performance indicators) (Figure 7-2-2.7). Although 

similar to the validation exercise, this step does not need to fit entirely with the method validation 

requirements found in ICH Q2 document.  

Under certain circumstances, mathematical correction is not enough to effectively transfer the 

PAT model (Figure 7-2-2.8), and more complex standardization or calibration transfer methods 

must be applied to guarantee the necessary performance of the PAT procedure. Most of these 

methodologies aim to reproduce the response of the measurement system during the PAT cal-

ibration phase in the PAT infrastructure to be used in the manufacturing process. The first step 

consists in measuring a set of representative samples in both PAT infrastructures referred to as 

“standardization samples” and then computing standardization parameters to correct for instru-

mental differences. The most common standardization methods can be included in three differ-

ent categories: i) standardization of the predicted values (DiFoggio, 1995) consisting in post-

processing the predictions with a slope and bias adjustment; ii) standardization of spectral re-

sponses, establishing a transfer function between the two instruments. The three most common 

methods for spectral correction are the direct standardization (DS), the piecewise direct stand-

ardization (PDS), and the Shenk and Westerhaus method (SW) (Wang et al., 1991; Wang et 

al., 1992); iii) standardization of the model coefficients involving transferring a regression equa-

tion between different instruments by means of a two-step PLS approach (Galvão et al., 2015; 

Setarehdan et al., 2002). 

When the measurement of standardization samples on both PAT infrastructures is not an option 

(e.g. calibration samples are no longer available, sampling is not feasible) the use of dedicated 

pre-processing methods can compensate for spectral differences between equipment while pre-

serving the common features (Wise & Roginski, 2015). The list of available preprocessing meth-

ods is extensive, and typically includes Orthogonal Signal Correction (OSC) and Generalized 

Least Squares (GLS). To guarantee successful transfer of the PAT procedure, it is recom-

mended to perform a pre-validation test using an external set of samples, consisting in a collec-

tion of data not previously included in the calibration model (Figure 7-2-2.7). The performance 

requirements are similar to the ones considered in the PAT model development phase (Figure 

7-2-2.5) to demonstrate the quality of the data provided by the transferred PAT procedure. 
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Whenever the standardization approach requires expanding the calibration set with new sam-

ples, the PAT procedure calibration phase must be initiated and all documentation re-evaluated, 

including risk-assessments, SOPs and development reports. 

Finally, to assess the validity of the PAT procedure as part of the control system of the manu-

facturing process, a formal validation protocol (Figure 7-2-2.9) following regulatory requirements 

must be in place. Traditional chemometric performance measures may not be sufficient to evi-

dence that the reportable results provided by the PAT procedure are of adequate quality and 

reliability during routine use of the method (De Bleye et al., 2012). Several approaches for vali-

dation of PAT procedures can be found in the literature (Schaefer et al., 2014; Feng & Hu, 2006; 

Bodson et al., 2007). Depending on the pharmaceutical application (e.g., qualitative vs. quanti-

tative), the validation of the PAT procedure may include all or part of the criteria found in ICH 

Q2. If the reportable results are considered reliable and provide confidence that the product has 

the required quality, the method can be used in routine (Figure 7-2-2.10). An ongoing perfor-

mance verification plan should be established at this point (Figure 7-2-2.11). Otherwise, a root-

cause investigation must be performed to identify the causes for failing the validation exercise 

and ultimately, a full re-development of the PAT procedure must be undertaken (Figure 7-2-

2.12). 

7.2.3 Stage 3 – PAT Ongoing Performance Verification (OPV) 

PAT procedures used in routine production of pharmaceuticals are critical elements of the over-

all quality system. To guarantee that the data generated by the PAT procedure is fit for purpose 

during its lifecycle use, it is essential to have systems in place to monitor the performance and 

for detecting and addressing unplanned departures from the designed procedure (US FDA, 

2011). Ongoing performance verification (OPV) of a PAT procedure consists in collecting and 

analyzing data that is related to procedure performance during routine use. The OPV strategy 

is a science and risk based approach, used to evaluate if the PAT infrastructure (equipment, 

sampling device and data acquisition software) and, when applicable, the PAT model continues 

to operate according to the specified requirements for the intended use. This strategy includes 

the following steps: 

- Performance Qualification (PQ) tests, or performance checks as commonly desig-

nated by equipment vendors; 

- Spectral Quality Tests (SQTs); 

- Investigation and handling of outlier measurements and out-of-specification (OOS) 

results during routine use;  

- PAT procedure performance monitoring by parallel testing (periodic review). 

 

An optimal PAT procedure design and development should anticipate significant sources of 

variability and establish appropriate detection, control and mitigation actions. Whenever the per-

formance of the method is considered unacceptable, an investigation to determine the possible 
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root causes must be carried out which can lead to model-update and re-validation of the PAT 

procedure, if necessary. 

Performance Qualification (PQ) tests 

The first requisite for ongoing monitoring of procedure performance is the routine conduction of 

the PAT infrastructure performance qualification/verification tests, to demonstrate that the 

equipment is performing within specifications during routine use. 

Equipment qualification (Stage 2) is the output of several activities that can be grouped into four 

phases: design qualification (DQ), installation qualification (IQ), operational qualification (OQ), 

and performance qualification (PQ). The purpose of equipment qualification is to demonstrate, 

through documented evidence, that the equipment is suitable for its intended use, and all re-

quirements are applicable to the PAT infrastructure. The use of a qualified instrument in anal-

yses contributes to maximize the confidence in the validity of the generated data. A comprehen-

sive description of PAT equipment qualification is out of the scope of the present contribution 

but can be found elsewhere (USP 1119, n.d; Harrington, 2010).  

Periodic tests for both routine performance verification and after preventive maintenance and 

repairs (e.g., replacement due to aging of instrument components, deterioration of equipment 

parts, trends or drifts in PQ tests) are key elements of an OPV strategy (Figure 7-4). A suite of 

procedures to ensure that the equipment is performing adequately before and during ongoing 

production should be established. Wavelength accuracy and repeatability checks, response re-

peatability, photometric linearity, signal-to-noise ratio and baseline stability are examples of 

most common PQ tests (Harrington, 2010). Statistical analysis techniques are a useful toolkit to 

trend equipment performance over time so that any change in performance can be monitored. 

In addition, changes to the PAT infrastructure (e.g., detector, lamp) can be assessed against 

historical data which is a key element of the PAT procedure lifecycle management strategy. Any 

changes to the system hardware (i.e. spectrometer and computer system) arising from either 

maintenance or modifications should be reviewed against the original IQ/OQ/PQ criteria. Ap-

propriate action and testing should be completed to ensure that the instrumentation operates in 

an equivalent or improved manner. The frequency and protocol to be followed for equipment 

qualification should be documented and justified in specific SOPs, as well as specifications and 

acceptance criteria. All applicable documentation obtained during instrument qualification 

should be adequately managed, e.g., through PQS. 
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Figure 7–4: Workflow for ongoing performance verification of the PAT infrastructure performance  

in routine use. 

 

Spectral Quality Test (SQT) 

Analogously to the PAT procedure ongoing performance monitoring, the PAT model is expected 

to undergo the same kind of OPV strategy. Spectral quality tests aim to determine whether the 

characteristics of the samples presented to the PAT procedure fall within the range of variation 

for which the model was calibrated and validated. A very comprehensive roadmap for multivar-

iate model maintenance is proposed by Wise & Roginski, 2015. Model diagnostic measures 

such as residuals (measurement of the orthogonal difference between a sample and the mod-

eled data) and leverages (measurement of how far a sample is from the center of the data set, 

frequently in a type of weighted form) are valuable model performance indicators. These statis-

tics are implemented in common chemometric software packages and may be named differ-

ently, e.g., Q residuals or DModX and T2 or Hotelling’s T2, respectively. Samples with high 

residuals usually indicate new sources of variation not present during the calibration and vali-

dation phases, while high leverages signal that the concentration ranges are being extrapolated 

or there is an unusual concentration ratio of components in the sample. 

The definition of the criteria depends upon the nature and intended purpose of the PAT proce-

dure, and should be established based of knowledge and data-driven principles. Setting hard 

statistical limits a priori may lead to a significant number of false alarms and, consequently, 

unnecessary shutdowns for investigation of potential process OOT/OOS or analytical outliers. 

A timeframe should be established for assessment of the spectral uncertainty during initial use 

of the PAT procedure for definition of appropriate SQT criteria. The criteria should also include 

the number of consecutive SQT failures allowed before triggering an outlier investigation (de-

pending on system dynamics, e.g., three consecutive samples failing SQT). An automatic outlier 

alert system can be defined and implemented to generate alarms and/or warning signals when 



 

75 

 

a pre-defined number of new spectral samples do not satisfy the acceptance criteria defined for 

the SQT. As with PQ tests, SPC rules can be applied to monitor model residuals and leverages 

variability during the PAT procedure routine use. 

Investigation and handling of spectral outliers and  

out-of-specification (OOS) results during routine use 

The terms out-of-specification (OOS) and out-of-trend (OOT) are classical designations related 

to deviating analytical measurements. An OOS result is generated when a reportable result, 

collected at a single point in time exceeds a predetermined specification. The OOT result on the 

other hand, can assume several entities such as a drift resulting from a gradual upward or 

downward in the data or a sudden change in the average value (Harrington, 2010). In general, 

OOT results account for historical data and have a very relevant practical significance from a 

regulatory and business standpoint. The concept of OOS and OOT results can be applied during 

routine use of the PAT procedure but must be handled differently because the root-cause may 

or may be not related to the PAT procedure performance (e.g., an OOS result due to a manu-

facturing process deviation) (Figure 7-5). 

Spectral outliers designate PAT procedure results that do not encompass the experimental var-

iability observed during development and validation phases, which does not necessarily indicate 

an OOS result. These samples may be representative of acceptable material but new sources 

of variability arising from changes in the process or materials are not satisfactorily described by 

the PAT model. In such cases, reportable results are not reliable and additional investigations 

are required to identify the root cause. Whenever the root cause is not identified in the initial 

assessment, the sample should be tested using the analytical reference method or any appro-

priate alternative procedure. After confirmation of authenticity, the sample may be included in 

the spectral database and the model should be re-calibrated and re-validated to include this 

source of variation. The possibility of including additional similar samples should be considered, 

if needed. Alternatively, it can be concluded that the SQT criteria should be reviewed, to reduce 

the number of false alarms. This means the PAT procedure is fit for purpose, reliable and further 

updates to the PAT model are not necessary. 

In case the collection of samples for authentication is not feasible, rejection or acceptance of 

the PAT procedure results should be evaluated based on risk assessment and prior knowledge 

gained during method development and validation, as well as based on evidences gathered 

during the investigation. While the spectral outlier is under investigation, the protocol to change 

to an alternative procedure (reference method or non-PAT method) should be clearly defined, 

documented and justified, as part of the control system.  

Whenever the PAT procedure is found to perform adequately for its intended purpose, the OOS 

reportable result should be managed according to the PQS of the company. Rejection/ac-

ceptance of the product should be based on the outcome of the failure investigation (which is 
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not related with the PAT procedure performance), and may or may not include analysis by the 

analytical reference method. 

 

Figure 7–5: Decision tree to manage Spectral Quality Tests deviations and implementation mitigation actions. 

 

PAT procedure performance monitoring by parallel testing 

Parallel testing consists in comparing the PAT model predictions (e.g., from ongoing production) 

with the correspondent measured values by the reference analytical method (when available), 

and is a critical stage in the PAT procedure ongoing process verification strategy. The integra-

tion of parallel testing (Figure 7-6) in the ongoing process verification strategy proposed in the 

current approach provides higher assurance as to the PAT procedure lifecycle validity as is 

considered best practice. The criteria and methods used to monitor the prediction accuracy of 

the model should be documented and justified (e.g. Student t-test). Statistical Process Control 

(SPC) charts combined with a set of rules (e.g., Western Electric 8) can be implemented to 

monitor reportable results (e.g. RMSEP) throughout the lifecycle. The testing frequency should 

be defined based on number of lots or at regular time intervals, depending of the existing 

knowledge baseline. The recurrence of the testing should be reviewed as part of the lifecycle 

management plan and must account for changes in the manufacturing process and changes in 

the PAT procedure, both infrastructure and model-related. 
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Figure 7–6: Integration of parallel testing within the PAT procedure ongoing process verification workflow. 

7.3 Ongoing process verification (OPV) of PAT procedures:  

examples from batch and continuous processes 

The underlying goal of PAT is to raise process understanding up to a level that the final product 

consistently conforms to initially planned quality standards. The benefits of PAT can be fully 

realized both in batch and continuous processing. Systems that benefit the most from PAT-

based approaches are the ones dealing with transient/unstable intermediates, critical endpoints, 

sampling constraints or those where first-order understanding is not fully elucidated (e.g., sev-

eral biopharmaceutical processes) (Myerson et al., 2015).  

PAT procedures are valuable tools in bioprocessing monitoring and control, since they can be 

a critical element in the control strategy of quality and performance parameters through manip-

ulation of input variables (e.g., air flow, agitation rate, temperature, and subtract, acid and base 

feeds) based on the current state of the process (e.g., pH, pO2, temperature, biomass, product, 

substrates and key metabolites concentrations). The use of PAT-based procedures as key ele-

ments of the process control strategy demand robust and reliable design of the control system, 

demonstration that the system is fit for its intended purpose and that this state is kept over the 

lifecycle of the manufacturing process.  
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In the current example, the control approach for a fed-batch cell cultivation process consisted 

in measuring real-time the viable cell density (VCD) to adjust the substrate feed rate towards 

an optimal growth profile. The development of the current control strategy was investigated in 

the same experimental setup described in PAPER II. The control system integrates the PAT 

infrastructure (Incyte DN12-220, Hamilton Co., Switzerland) for spectral acquisition, the PAT 

model that transforms the measured spectra into cell concentration values, the controller which 

compares the measured signal with a pre-determined control set point and finally, the actuator 

controlling the amount of feed media to be supplied to the fermentation unit (Figure 7-7). As the 

PAT procedure is a critical part of the control system, the spectra signal quality is checked 

routinely prior sending the predictions to the controller, through implementation of spectral qual-

ity tests (Q-residuals and Hotelling T2). Warning and action alarms are displayed whenever a 

predefined threshold value is surpassed, or when trends over time are identified. Data from 

these deviations is automatically recorded in a database for review of the control system per-

formance and root-cause investigation. Finally, whenever the criteria for quality checks is not 

fulfilled, the control shifts to and alternative method based on manual adjustment of the feed 

stream. The calculations are, in this case, based on samples measured by reference analytics. 

 

 

Figure 7–7: Control strategy of the feed-batch cell cultivation process using dielectric spectroscopy  

and a multivariate quantitative model. 

 

Since a quantitative model is used in the PAT procedure, the model prediction accuracy is timely 

verified against offline analytics. As such, parallel testing comprising a set of fermentation runs 

was used during the initial implementation phase to confirm the model performs acceptably 

during its routine use. The number of parallel test runs to be performed has been progressively 

reduced over time, after successful model performance reviews. 
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In addition, a software platform for model lifecycle management is currently in place, allowing 

the visualization, in customized dashboards, of key indicators representative of the PAT proce-

dure performance (i.e., equipment PQ tests, quality spectral tests and parallel testing results 

over time). This way, the need for model re-development or infrastructure maintenance in veri-

fied on a continual basis. The platform enables operators and process experts to report devia-

tions, register corrective actions, and is used as a knowledge repository for reconciling evi-

dences from both process and procedure performance.  

While in batch processing, local control of each piece of equipment is in many occasions con-

sidered sufficient, in continuous manufacturing not only is local control mandatory, but also the 

entire process flow must be aligned and kept in a control state (Santos et al., 2015). 

Continuous manufacturing has been implemented in many industries to overcome limitations 

related to batch processing (e.g., safety, scale-up constraints), to improve product quality and 

reduce costs. Particularly, in active pharmaceutical ingredient (API) manufacturing, adoption of 

continuous processes can hold huge potential for quality improvements and significant reduc-

tion of the manufacturing facility footprint (Xiang et al., 2012).  

An example from a specific API production will be given here (Gouveia et al., 2016b – PAPER 

I). To overcome the real-time feedback limitations of lab-based analytical procedures, NIR spec-

troscopy (NIRS) was selected to integrate the control strategy of an API synthesis operated in 

continuous mode. The continuous reactor setup comprised two continuous reaction loops were 

a 3-step reaction takes place (Figure 7-8). A NIRS flow cell was implemented in-between the 

loops to determine: i) the concentration of the unstable intermediate resulting from the reaction 

of intermediate AB with raw material (RM) C ii) the homogeneity of the reaction mixture (re-

flected in particle size distribution), providing operators the means to adjust the flow rates to 

achieve desired intermediate concentrations. The measurement system comprised a NIR FTPA 

2000-260 equipped with a transmission flow cell (Ocean Optics Inc, USA). Each recorded spec-

trum is communicated through an OPC protocol to the analyzer controller (ABB FTSW100) 

where the NIR model and the SQT control sequence are implemented. Predictions and key 

indicators of the quality of such predictions (Figure 7-9) are made available to the operator real-

time, providing the opportunity to manually adjust the reactant flow rates, when necessary, to 

drive the process within acceptable concentration window. The data collected is stored in a 

dedicated station, the PAT data manager, ensuring data security, easy access to historians and 

connectivities with other data bases, when required.  

 



 

80 

 

 

Figure 7–8: Integration of the NIR-based procedure within the continuous process flow architecture. 

 

In continuous mode operation, it is essential to guarantee that all disturbances are controlled 

and unable to force the output parameters outside the targeted ranges. In the current applica-

tion, SQT tests were very important to control the continuous reaction within the desired con-

centration window, and to access routinely the quality of reportable results from the PAT proce-

dure. Having the in-line NIR-based application allowed to enhance the understanding of the 

process dynamics and a better description of residence time distribution for the continuous re-

action (e.g., start-up and shutdown operations) (Figure 7-9A).  Setting limits on SQT diagnostics 

was a critical step considered the NIR model calibration phase. The control charts were devel-

oped based on T2 and Q residual variability (Figure 7-9B and 7-9C, respectively) observed in 

calibration samples representative of desired concentration ranges (> 80% intermediate yield). 

Trending T2 values enabled operators to drive the process within such conditions and adjust 

the reactant flow rates to promptly surpass disturbances. The Q residuals control chart, on the 

other hand, is used in routine operation to identify if a new variation has been introduced in the 

system. In this example, when the disturbance occurred, the Q-residuals slightly increased for 

the respective samples, but within the variation ranges observed during calibration develop-

ment, indicating that the PAT procedure is fit for purpose, reliable and further updates to the 

NIR model are not necessary. 
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Figure 7–9: Ongoing performance verification of a NIR-based procedure. Statistical control of NIR online 

predictions (A), model Hoteling’s T2 (B) and Q residuals (C). Warning and action limits established based on 

maximum Hotelling’s T2 and Q residuals registered for calibration samples representative of acceptable 

concentration values, ±2σ and ±3σ, respectively. 

7.4 Conclusions 

Manufacturers are moving away from the Quality-by-Testing (QbT) mindset and attempting dif-

ferent approaches to implement PAT procedures into production and quality processes. The 

path is not a straight line. Different disciplines must be in place to implement PAT in its full 

potential, including spectroscopy (or equivalent), chemometrics, process design, data manage-

ment systems and information technologies. As challenging as it might seem, specially taken 

into consideration the initial capital and resource investment, successful development validation 

and implementation of PAT procedures in pharmaceutical manufacturing is expected to be a 

major trend in the next years, with companies aiming at (not extensive): 

- Reducing R&D costs and product time-to-market; 

- Improving the efficiency of tech transfers and scale-up activities; 
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- Increasing product throughput, improving yields and reducing process variability; 

 

Many [companies], have already initiated their journey in the implementation of PAT programs 

and are starting to realize the benefits. These include, cycle time reduction, optimization of sam-

pling protocols and analytical testing and, enhanced process understanding resulting in a sig-

nificant decrease of incidents and process deviations (Schaefer et al. 2014; BioPhorum Opera-

tions Group, 2017). 

From a practical standpoint, successful implementation of PAT procedures depends upon risk 

mitigation, detailed planning, team commitment and a structured approach for development, 

validation and ongoing procedure verification for effective lifecycle management. The current 

regulatory framework clearly indicates how companies should demonstrate the fitness of the 

analytical procedure on a regular basis, throughout the procedure lifecycle. The workflow pre-

sented in the current contribution is an interpretation of such recommendations, combined with 

the experience implementing PAT procedures in industrial environments.  
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8 Knowledge-based Product and Process Lifecycle 

Management for Legacy Products 

 

 

 

 

Legacy biological/biotechnology products have a wealth of historical data on process parame-

ters, quality attributes and manufacturing information of various types that from a knowledge 

management perspective are largely unused over the lifecycle. The Subject Matter Experts 

(SME) involved in the development, launch and in the commercial life of those products have 

in-depth knowledge (viz., at all 5M levels of an Ishikawa diagram - machines, methods, materi-

als, manpower, measurements) that could be used in a formal knowledge driven risk identifica-

tion exercise. The ability to challenge and integrate the experience generated during commer-

cial life is a fundamental requirement to ensure continued stability and capability of the manu-

facturing process. 

Here we outline general principles and approaches necessary to align process validation activ-

ities with the product and process lifecycle concept for biological/biotechnology legacy products 

which include scientific, data-driven and risk-based approaches to continuously improve control 

strategies and the assurance of final product consistency and quality. 

 

 

Keywords: legacy products, continuous process validation, knowledge and data-driven assessments. 
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8.1 Introduction 

The practical concept of process validation in drug manufacturing has been widely adopted 

since its origin in the 1970s. For many years, the emphasis in process validation was on full 

compliance with initially established operating procedures, leading to a perception that process 

validation was essentially a documentation exercise of quality assurance (QbT, quality by test-

ing). Good Manufacturing Practices (GMPs) as defined by the US Food and Drug Administration 

in 1987 and in ICH Q7 enforced the notion of an one-off type of activity (US FDA, 1987; ICH, 

2000). According to the last, “Process Validation as part of GMP is the documented evidence 

that the process (…) can perform effectively and reproducibly (...) meeting specifications and 

quality attributes (…)”. However, since “cGMPs for the 21st Century – a Risk-Based Approach” 

was launched by FDA in 2002, a debate was started about QbT and specially, regarding a 

systematic approach to confirm the effectiveness of all process steps and conditions that was 

needed to ensure production of drug products with necessary quality, safety and efficacy levels 

(US FDA, 2002). 

In January 2011, FDA published a revised Process Validation Guidance (US FDA, 2011) that 

evolved from its earlier 2002 initiative. That document sets a shift from a documentation focused 

to a science and risk-based end-to-end approach – not only across process flowsheet but also 

across product lifecycle - integrating process/product development, scale-up activities and con-

tinued process verification (CPV) during routine manufacturing. In other words, the impact of 

process input parameters (alone or in combination) on product quality and process performance 

(the outputs) should be established from end to end of the production process and, throughout 

its lifecycle use. In 2012, ICH adopted this concept in its Q11 (ICH, 2012) guideline and EU 

changed Vol.4 of GMPs to include in Annex 15 (EU, 2015), all aspects of a risk-based and over 

lifecycle validation procedure as new GMP requirements (ICH, 2011; EMA, 2014). 

Before that paradigm shift, process validation for commercial products was performed following 

a conservative approach. After identification of an appropriate process outline, repeated execu-

tions of a process would be performed to demonstrate the ability to produce product of intended 

quality in three non-consecutive batches. Such one-off validation approach is still accepted by 

health authorities. However, for those three consecutive batches only sparse data is generated 

as the validation exercise is performed once before commercial production. That created signif-

icant challenges as to capturing small process variations over longer periods of time and/or 

unexperienced during development. The lack of risk-based elements and the limitations 

(amount and type) of data generated in the classical approach, had a significant impact on: 

• understanding of process input and output correlations, and thus subsequent CPP 

definition depending on the criticality of their impact on CQA, as required for definition 

of process robustness indexes,  

• ability to evaluate batch-to-batch consistency at each process step, 

• ability to evaluate the existing control strategy based on data generated during rou-

tine production, 
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• identification of in-process variability (as indicated by CQAs and key performance in-

dicators - KPIs) that could in turn indicate the need for additional or improved in-pro-

cess controls (i.e., related to current levels of process observability and controllabil-

ity), 

• definition of meaningful acceptable ranges for IPCs, 

• definition of key performance indicators based on statistical data, 

• maintaining process consistency (robustness and reproducibility) during process 

monitoring as an integral element of the third process validation stage, and 

• evaluation of changes and deviations. 

 

With these limitations, the content of a dossier for a legacy product was assembled based on 

general expert knowledge but with limited anticipation of problems to be experienced over the 

lifecycle. In addition, data generated in the validation exercise followed a conservative ‘one-

factor-at-a-time’ development approach to establish Proven Acceptable Ranges (PAR) for each 

process parameter. Such data does not map the knowledge space well as process parameters 

(PPs) interactions are not considered. The resulting PAR typically contain the Nominal Operat-

ing Ranges (NOR), but may not entirely overlap with rigorous derived and formally defined de-

sign- and operating-spaces (cf. QbD), respectively. There are instances in which simultaneous 

changes inside PAR of several interacting critical PPs – a situation not considered in classical 

development – may lead to undesirable events (i.e., out-of-trend (OOT) or even out-of-specifi-

cations (OOS) results). 

However, legacy products have two advantages over new ones. First, they hold massive 

amounts of highly informative data on final product quality attributes available that can be related 

to existing chemical and manufacturing controls in the CMC filing (i.e., IPCs and PPs). Second, 

there is a wealth of process and product knowledge accumulated in SMEs, throughout manu-

facturing history. 

The current document describes an integrated approach for legacy products, developed without 

any QbD elements (viz., typically filed before 2005 or ICH Q8 and Q9) that aggregates the data- 

and knowledge-based aspects above. The goal is to apply concepts of risk- and knowledge- 

based process validation, well-established over the past decade in regulatory documents, to 

elevate legacy product validations to the next level, in terms of compliance with current regula-

tions, robustness and operational performance. Under the framework of PQS (cf. ICH Q10, 

2009), that incorporates Quality Risk Management (QRM) and science-based justifications – cf. 

ICH Q11, 2012, the main elements of this approach are supported by an initial risk assessment 

to identify: 

 - gaps within existing validation studies and in process controls; 

 - gaps in the dossier; 

 - identification of meaningful in process control acceptable ranges, 
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through: 

 - process input and output correlations; 

 - criticality assessment of PPs; 

 - a comprehensive description of known root-causes for variations in PPs and QAs. 

 

When using quality risk management (QRM) principles as described in ICH Q9 (ICH, 2006), the 

identified gaps and associated activities can be prioritized according to the risk level, ensuring 

transparency to senior management within the context of their responsibility for aligning the 

business strategy with such perceived risks (cf. ICH Q10, 2009). The current framework inte-

grates the principles covered by the International Conference on Harmonization (ICH) quality 

guidelines for industry, EU Guide to GMP Annex 15 (EU, 2015), ASTM E55 committee standard 

guides (namely, E2500-07, E2281-03 E2537-08 and E2709-09) (ASTM, 2007; ASTM, 2008a, 

ASTM, 2008b, ASTM, 2014), FDA and EMA guidelines on CPV (US FDA, 2011, EMA, 2014), 

and can be summarized under the concept of risk-based process validation applied to legacy 

products, a general framework providing the basis for QbD realization (US FDA, 2015, ICH, 

2014). 

Many companies find it easier to postpone improvements to facilities, processes and analytics 

or simply refrain from planning for improvements at all in order to avoid the intricate nature of 

implementing such changes, especially for product registered in multiple countries (Seymour et 

al., 2015). However, a knowledge and risk-based approach to process validation can signifi-

cantly support the value-adding focus and contribute to enhanced control and understanding of 

the manufacturing process. A discussion on how to align process validation activities with the 

process and product lifecycle concept is provided herein. 

8.2 Evaluation of the validation status of a legacy pharmaceutical 

product 

In the current contribution, a stepwise approach (Figure 8-1) is used to improve the understand-

ing of the manufacturing process of a legacy/commercial product. The approach includes the 

following elements/steps: 

- identification of relevant outputs (i.e., critical quality attributes – CQAs - and key per-

formance indicators - KPIs) for each process step influenced by that specific unit op-

eration; 

- knowledge-based identification and data collection of all process parameters and ma-

terial attributes for each unit operation, that might influence relevant outputs; 

- determining the functional relationship through data-driven approaches (e.g., correla-

tion analysis, multivariate methods) between material attributes and process parame-

ters to process relevant outputs; 
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- CPP definition based on the joint assessment of their variability and of their criticality 

through a functional relationship with all relevant outputs then, 

-  identification of gaps and/or improvement opportunities and validation requirements 

to enhance the robustness of the control strategy (i.e., quality controls, manufacturing 

controls and/or validation report). 

 

 

Figure 8–1: Approach for continuous evaluation of the validation status of commercial/legacy products (as 

presented at QRM Summit, 10-11 May, 2017 Lisbon, Portugal). 

 

A short overview of existing published alternatives to the presented approach is provided below 

for this very recent area. A discussion on parameter and attribute selection based on prior 

knowledge and data to support CPV programs was done by Boyer et al., 2016. The authors 

detail how to use process capability indexes (Cpk) and process performance indexes (Ppk) 

based on parameters and attributes, and they provide a discussion about when these indexes 

should be included in the CPV plan. In addition, a comprehensive roadmap on how to implement 

and update a CPV plan is presented both for new and commercial products. Gouveia et al., 

2016a discussed a general approach to include QbD elements into legacy filings following 

FDA’s regulatory initiative on ‘established conditions’ as enabler, according to which improve-

ment opportunities are not restricted to the available CMC history and to the current knowledge 

available from SMEs. The authors propose that scaled-down experiments in qualified process 

models should also be used with the existing lifecycle aspect. Agarwal & Hayduk, 2016 describe 

a comparable approach. 
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Assessing CQAs for a legacy product is relatively straightforward, but assessing the criticality 

of PPs can be much more challenging. Identification of cause-effect relationships is essential to 

identify CPPs and rank critical relationships between input and output parameters to prioritize 

improvement actions. Bozzone, 2016 described the use of the Z score - viz., a measure of 

distance from the limit of specification - and its use over lifecycle. It is perhaps a better metrics 

that could also be used to evaluate input parameters when the size or the distribution of the 

data raise concerns. De Long et al., 2016 defined an Rp index defined as the proportion of the 

allowable range used by the process (Rp is between 0 and 1, where Rp close to 0 indicates 

high process performance). The same authors also point out that Cpk and Ppk can be mislead-

ing when the data are not normal. 

The main objective of the proposed approaches is to understand what is already known about 

critical interactions between input and output parameters and which elements should be further 

included in the validation plan to be able to consistently meet the established goals under the 

defined operating conditions. 

8.2.1 Criticality analysis of the manufacturing process 

Output parameters reflect the performance of a given unit operation and indicate whether the 

process gave the desired outcome for each intermediate critical quality attribute (CQA). As such, 

output parameters reflect the step contribution in terms of performance (e.g., yield, impurity 

removal factor) or influence in the properties of the final-product (e.g., purity, isoform distribu-

tion). 

Under the current framework, an output filtering exercise is performed by SMEs to identify rele-

vant parameters for each unit operation (UO) according to the following criteria: 

- Existing knowledge (SMEs or corporate technology/platform knowledge); 

- Introduced/not introduced by the UO; 

- Data availability (e.g., validation studies); 

- Detection limit before the UO; 

- Covered [correlated] by other output parameter. 

 

The UO relevant outputs and the final process outputs are used to provide evidence of process 

robustness and consistency. 

8.2.2 Risk assessment and filtering 

The knowledge and risk assessment methodology takes part of the five-stage roadmap that 

makes up the approach. As general requirements for each UO: 
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- All available inputs from the different data sources (i.e., online data, trend and offline 

process data, analytical measurements, experimental data) are collected and listed 

for a number of production batches considered to be representative of process per-

formance over time (e.g., 30 end-product lots, lots manufactured within three produc-

tion years); 

- The necessary descriptors to estimate the observability [Certainty] and controllability 

[Occurrence] scores are available and provided in an appropriate template document. 

 

In the risk analysis stage, the team should discuss and rank the likely impact [Severity] that 

deviations in process inputs might have in process relevant outputs for each UO according to 

predetermined criteria (Table 8-1). The observability component [Certainty] should be evaluated 

based on the scientific demonstration of a given relationship between the input and output pa-

rameter. Whenever possible, a quantitative threshold should be established for score ranking 

(e.g., degree of correlation, parameter importance in a multivariate model). The controllability 

component [Occurrence] is intended to demonstrate the process capability to operate within 

specified limits to control the input, providing evidence if additional control measures on input 

are required. In all situations where PAR/NOR are not specified in the batch record or in the 

dossier, the team should evaluate if those limits could be specified based on existing knowledge 

or derived from historical data. 

Table 8–1: Established criteria for Severity (S), Certainty (C) and Occurrence (O) ranking. 

Score Severity Score Certainty Score Occurrence 

2 

Variation in process input across 

the acceptable range (PAR/filed) 

alone, or if affected by an interac-

tion, causes no measurable/detect-

able variation in process output 

2 

Supported by data (correlation or 

variation over history/ without 

correlation) 

2 CpK>= 1,2 * 

6 

Variation in process input across 

the acceptable range (PAR/filed) 

alone, or if affected by an interac-

tion, causes variation in process 

output 

6 
Based on experience/common 

knowledge 
6 CpK 1,2<x>=0,8 * 

10 

Variation in process input across 

the normal operating range (NOR) 

alone, or if affected by an interac-

tion, causes variation in process 

output 

10 

Nothing is known (no validation 

or no parameter variability during 

correlation analysis) 

10 

CpK <0,8 * 

or 

CpK could not be 

calculated    low 

detectability) 

* or another appropriate metric. Calculated based on historical data and compared to PAR (depending on what is provided in the dossier). 

CPP identification should be determined by multiplying the Severity (S) score by the Certainty 

(C) score in order to evaluate if the input parameter is non-critical, critical or potentially critical 

from a process control perspective, as depicted in Table 8-2. The filtering exercise will provide 

a first indication of the current validation status as well as an indication of potential misalign-

ments between the Knowledge and Evidence components – specifically, the observability score 
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- characterizing the actual manufacturing process. It should be highlighted that a CERTAINTY 

score of 10 will immediately classify an input parameter as potentially critical (pCPP) since the 

implementation of a revised control strategy cannot be based on uncertainty. This directly trig-

gers additional experiments and investigations to close this gap in knowledge. 

Table 8–2: SC score matrix for CPP identification. 

  

Input parameter classification 

(non-CPP/pCPP/CPP) 

S
e

v
e

ri
ty

 (
S

) 

10 CPP CPP pCPP 

6 CPP CPP pCPP 

2 Non-CPP Non-CPP pCPP 

  2 6 10 

  
Certainty (C) 

 

 

The control strategy can be evaluated by combining the SC score with the controllability com-

ponent [Occurrence] (Table 8-3), providing a reliable indication of the current status and a pro-

cedure to prioritize necessary follow-up actions (i.e., SCO score) in agreement with: 

 

- Low SCO score [8-40]: well controlled parameter; the impact in output parameter is 

expected to be negligible; 

- Medium SCO score [72-120]: process is capable to control CPP within PAR; activities 

to improve process control might be required if there are at-scale evidences of an op-

timal operating window within PAR/NOR: (1) studies to improve knowledge-based 

component; (2) at-scale verification if improvements have high likelihood. 

- High SCO score [200-1000]: process capability to control CPP is questionable; activi-

ties to improve the control system are required: (1) process design studies to revise 

NOR/PAR followed by at-scale verification studies; (2) in-process controls (IPCs) up-

date (e.g., redundant measurements) due to high variability. 
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Table 8–3: SCO score matrix to evaluate the current validation status and control strategy. 

  SCO score 

S
C

 s
co

re
 

100 200 600 1000 

60 120 360 600 

36 72 216 360 

20 40 120 200 

12 24 72 120 

4 8 24 40 

  2 6 10 
  

Occurrence (O) 

 

8.2.3 Gap analysis of the current control strategy 

Once the initial CPP identification has been completed, there remains the critical part of follow-

up actions. The formal knowledge and risk assessment results in (1) a documented characteri-

zation of the product/process by a multidisciplinary team and (2) a prioritization of parameters 

or critical areas/UOs that need to be addressed. Based on the SCO score, the team should 

agree on a cut-off value (e.g., Pareto analysis) for prioritizing action items depending on time 

and resource availability. The criteria to establish the cut-off value should be recorded in the 

assessment report. All follow-up actions are to be addressed by the responsible person and 

should be documented in separate technical or validation reports (according to the PQS struc-

ture). 

8.2.4 Revised control strategy: opportunities for improvement 

According to ICH Q11 (ICH, 2012) a control strategy consists in a planned set of controls derived 

from current product and process understanding that assures process performance and product 

quality. Change control programs are considered essential elements of PQSs as stated in EU 

GMP Annex 15 (EU, 2015): “A formal system by which qualified representatives of appropriate 

disciplines review proposed or actual changes that might affect the validated status of facilities, 

systems, equipment or processes. The intent is to determine the need for action that would 

ensure and document that the system is maintained in a validated state.” 

As part of the control system revision, the global criticality assessment can potentially trigger:  

- inclusion of additional output parameters (e.g., UO relevant outputs); 

- revision of output parameter criticality; 

- inclusion of additional input parameters (e.g. derived from existing measurements); 
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- resetting operating ranges for existing input parameters or defining PAR/NOR for new 

ones; 

- revised performance indicators target ranges; 

- changes in starting materials specifications. 

 

All these elements should be considered in the Validation Master Plan (VMP) or in the Control 

Strategy Document in agreement with the company’s internal procedures. 

8.2.5 Continued process verification and lifecycle management 

After considering all relevant scientific and technical aspects involved at each critical unit oper-

ation, a systems engineering perspective is used to integrate the different components. A whole 

process analysis connecting raw-materials, unit operations and end-product properties is 

adopted comprehensively, in parallel to a time-wise integration of data, information and 

knowledge acquired throughout process development, industrialization and commercialization. 

Continuous improvement can only happen if these two perspectives are present and combined 

under proper data-, information- and knowledge- management systems.  

Under the current framework, it is expected to (1) comply with the requirement that all manufac-

tured product lots (batches) should be as good as any of the batches previously required for 

validation, even after manufacturing changes have been introduced; and (2) manage any devi-

ation backed by deep process understanding and scientific knowledge. In this context, the re-

sulting quality risk management report, a living document, will become the knowledge base 

enabling continuous improvement. 

Results of the herein described assessments for each UO should be described in a comprehen-

sive report that should include: 

- scope and date; 

- list of team members (name and functional role); 

- raw data used in the assessment (input and output parameters); 

- references to documentation used to support the Knowledge-based component (e.g., 

reference to validation studies, literature, internal data sources); 

- calculations to estimate the Evidence-based component (observability and controlla-

bility scores); 

- formal CPP assessment exercise (reference to template) and its outputs (i.e., SC 

scores for CPP identification and SCO scores for assessing the validation status); 

- cut-off SCO value and criteria to prioritize follow up actions; 

- report-out and action list (with indication of the responsible to further investigate the 

items assigned and write subsequent technical reports). 
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8.3 Conclusions  

The current proposal aims to address a regulatory expectation, relevant to establishing a pro-

cess validation lifecycle concept for legacy products, fully aligned with the Pharmaceutical Qual-

ity System (PQS, cf. ICH Q10) within each company and following fundamental science-based 

and knowledge management principles. 

It enables a comprehensive post-approval lifecycle management approach that is both compre-

hensive, supported by a formal criticality assessment of potential risks and evidence-based 

backing – i.e., contains strong science- and knowledge-based components. The example pro-

vided in the Annex section demonstrates how the approach can be applied to evaluate and 

improve the control system of a legacy biologic product.  
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8.4 Annex: A streamlined-workflow for lifecycle management of 

biopharmaceutical legacy products  

The current framework has been created with the purpose of conducting end-to-end criticality 

assessments of existing commercial processes influenced by a complex matrix of input/output 

parameters across several unit operations (UOs). Upstream (USP) and downstream (DSP) pro-

cessing of biopharmaceutical products involves multiple steps and each step introduces poten-

tial critical relationships between input and output parameters that must be evaluated and con-

trolled to ensure successful production. 

A general flow of a Chinese hamster ovary-based (CHO) cell culture process for production of 

a recombinant protein will be further used for demonstration purposes and to illustrate the prin-

ciples and tools deployed in the current document. (Figure 8-2).  

 

 

Figure 8–2: General representation of the manufacturing flowsheet for a biological/biotechnology drug product. 

 

A vial from the working cell bank (WCB) is thawed in culture media. The cell culture is then 

generated and expanded through successive transfers in shake flasks. When the cell density 

reaches the target value, the culture is used to inoculate intermediate bioreactors to generate 

enough cell mass to inoculate the production bioreactor (i.e., main fermentation bioreactor). 

Both intermediate and main production bioreactors are monitored and controlled in a similar 

way to ensure production requirements. At the end of the production process, cells are har-

vested and clarified using centrifugation and depth-filtration. As indicated by the process layout, 

considerable variations can be propagated over the flowsheet including among others, variabil-

ity in media components and in the feeding strategy, temperature and pH shifts, variability of 

gas exchange parameters and shear stresses (Gronemeyer et al., 2014). Downstream pro-

cessing combines a sequence of operations to purify the harvested material. Purification steps 

are in general chromatography based and require sensitive and sophisticated equipment which 

can be object of considerable variations over the lifecycle of commercial processes. As such, 

performance of each chromatographic step should be evaluated in a timely manner against 

process outputs to mitigate variations. 
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A primary goal of process validation is to demonstrate that each step or unit operation is in a 

state of control and that all variation sources are identified, monitored as regards relevant pro-

cess outputs and in a state of control. The following example is provided for illustrative purposes 

and exemplifies how the current approach should be applied to a purification step (Purification 

#01) of a legacy recombinant protein (Figure 8-2). 

Stage 1 – Identification of process relevant outputs 

By utilizing extensive SME and platform knowledge a complete assessment was conducted 

in order to identify process step relevant outputs influenced by Purification#01 operations. 

The assessment was conducted taking into consideration the likely impact that deviations in 

process inputs within the PAR/NOR ranges might have in overall process outputs. 

 

Product specific impurities and CQAs 

The product specific impurities and CQAs indicated in Table 8-4 were considered in Purification 

#01 assessment, to be potentially affected by input parameters variability. 

Table 8–4: Identification of Product Specific CQAs potentially affected by Purification #01. 

Category CQA description 
Relevant for process step CPP identifi-

cation? 

Product var-

iants 

 

Size-related variants Yes 

Charge-related vari-

ants (Isoforms) 

Yes 

Glycosylated variants Yes 

Structural variants Yes 

Adventitious 

agents 

 

Viral Purity No 

Bioburden No 

Endotoxins No 

DS composi-

tion 

 

Appearance No 

pH No 

Protein content Yes 

Sialic acid Yes 

Purity Yes 

DS Strength 
Potency No 

Bioassay No 
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Process specific impurities 

Typically, process specific impurities are introduced by cell disruption and raw materials used 

throughout the production flow. The purification steps must assure that all critical process or 

product-related impurities are controlled/reduced to be within acceptable levels in final bulk. If a 

criticality assessment based on available data is not possible, further studies to demonstrate 

removal of identified critical impurities would be required. For those impurities already identified 

(Table 8-5) the validation status is assessed following the knowledge and risk assessment meth-

odology previously described. 

Table 8–5: Identification of process related impurities potentially affected by Purification #01. 

Impurity Point of Introduction 
Relevant for process 

step CPP identification? 

DNS (DNA) (pg/IU) USP/Cell Culture Yes 

CHO Protein (ppm) USP/Cell Culture Yes 

Antifoam (μg/mL) USP/Fermentation No 

Methotrexate (μg/mL) USP/Fermentation No 

Solvent A (ppm) DSP/Purification #01 Yes 

Solvent B (ppm) DSP/Purification #02 No 

 

 

Key performance indicators (KPIs) 

Performance outputs are defined as indicators of how well the unit operation performed but are 

not directly linked with product quality. An assessment of KPIs based on historical data, process 

validation data and SME knowledge is performed to derive a complete list, relevant to monitor 

the performance and consistency of each unit operation (Table 8-6). 
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Table 8–6: Identification of performance Indicators potentially affected by Purification #01. 

Performance indicator Process step 
Relevant for process step 

CPP identification? 

Viability at transfer (%) USP/Seed Train No 

Doubling Time (h) USP/Seed Train No 

IVC (cells/mLday) USP/Fermentation No 

Viability (%) USP/Fermentation No 

Yield at harvest (g/L) USP/Fermentation No 

Max VCD (cells/mL) USP/Fermentation No 

Culture duration (days) USP/Fermentation No 

Specific productivity 

(pg/cellday) 
USP/Fermentation 

No 

Specific oxygen uptake rate 

(mmol/cell h) 
USP/Fermentation 

No 

Max pCO2 (mmHg) USP/Fermentation No 

Step Yield (%) DSP/Purification #01 Yes 

Step Yield (%) DSP/Purification #02 Yes 

Step Yield (%) DSP/Purification #03 Yes 

 

 

Stage 2 – Risk impact assessment and prioritization 

 

Identification of process parameters and material attributes 

For each unit operation, all available process and material parameters are listed and collected 

for a number of production batches considered to be representative of process performance 

over time (Table 8-7). Subsequently, the data are analyzed by uni- and multivariate statistical 

methods to investigate if meaningful correlations with outputs parameters can be established. 

In the current assessment production data spanning three production years were considered 

(90 production batches).  
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Table 8–7: Collection of input parameters for Purification #01(not extensive). Initial scientific evaluation 

supported by SME knowledge and validation studies. 

Input category 
Process Parame-

ters 

PAR/NOR 

(dossier) 
Scientific Rationale 

Equipment 

Temperature 5 ± 4 (ºC) 
Evaluation of temperature effect in 

specific outputs not fully documented 

Column Volume 30-40 L 
Description and harmonization of col-

umn packing available 
Column Diameter 42-46 cm 

Compression Factor ND 

-//-   

Materials 

Resin lot-to-lot variabil-

ity 
ND Assessed by functional testing to en-

sure proper performance within load 

density limits Resin capacity 1g protein/L resin 

Buffer stock solution 

Molarity 
5 mM 

Potentially critical effect on product 

quality/process performance 

-//-   

Process 

Flow rate 15-31 cm/h 
Potentially critical effect on product 

quality/process performance 

pH Equilibration buffer 6.9 ± 0.2 
Potentially critical effect on product 

quality/process performance 

Volume Wash buffer 1.5-3.0 CV 
Potentially critical effect on product 

quality/process performance 

pH Wash buffer 6.9 ± 0.2 
Potentially critical effect on product 

quality/process performance 

pH Elution buffer 6.9 ± 0.2 
Potentially critical effect on product 

quality/process performance 

Protein pooling (Start 

UV Signal) 
ND Evaluation of pooling criteria effect in 

specific outputs not evaluated. Mod-

erate impact in step yield expected  
Protein pooling (End 

UV Signal) 
ND 

-//-   

ND – Not determined 

 

 

Knowledge and data-driven components estimation 

To illustrate the risk impact assessment for a input parameter in particular, the protein pooling 

procedure will be further detailed. While analysing potential risks the team should discuss and 

rank the likely impact of the Start/End protein collection triggers in process relevant outputs – 

Severity score. The data-driven component (Certainty and Occurrence) are simultaneously 

evaluated and used to demonstrate a given relationship between pooling parameters and each 

process step relevant output. This way, the data-driven component leverages the extensive 
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SMEs knowledge supported by process-specific data to provide insights if additional control 

measurements are required to enhance the overall control system. 

Figure 8-6 describes the approach used to rank the Certainty component in this case. From the 

online UV elution profiles the absorbance values at which the protein collection was initiated 

and ended were retrieved for all production batches considered in the assessment (Figure 8-6a 

and 6b). 

A correlation analysis was performed against all relevant process outputs according to the for-

mula: 

𝑪𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏 (𝑿, 𝒀) =
𝚺(𝒙ି𝒙ഥ)(𝒚ି𝒚ഥ)

ඥ𝚺(𝒙ି𝒙)തതത𝟐 𝚺(𝒚ି𝒚ഥ)𝟐
 (Equation 2) 

where 𝑋ത and 𝑌ത are input and output sample means, respectively. The correlation coefficient 

(Figure 6c) was used to rank the relationship between the pooling criteria and all relevant pro-

cess outputs together with multivariate data analysis (Figure 8-6d) to identify potential interac-

tion effects within input parameters potentially critical to specific outputs. The consistency of the 

protein pooling procedure was evaluated through process capability index (cpK) calculation (Fig-

ure 8-7). Since no PAR/NOR are defined in the dossier, LCL and UCL were estimated as: 

LCL = 𝑿ഥ-𝒌𝝈; UCL = 𝑿ഥ+𝒌𝝈 (Equation 3) 

where: 

 

Xഥ= the mean of individual measurements; 

k = number of standard deviations 

σ= process standard deviation; 

 

With all elements in place it is thus possible to rank Severity, Certainty and Occurrence scores 

towards CPP identification, perform a gap analysis of the validation status and then prioritize 

follow-up actions, if required (Table 8-8). 
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Figure 8–3: Estimation of the observability component for protein pooling. a) Online elution UV-based profiles 

from Purification #01 step; b) Protein collection Start / End absorbance units retrieved from online 

measurements; c) Correlation analysis with relevant output parameters; d) Principal Component Analysis 

(PCA) of Purification #01 input parameters (score plot colour scheme refers to step yield% over production 

history). 

 

 

Figure 8–4: Estimation of the controllability component score value for protein pooling  

(Fractionation Start/End).
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Table 8–8: CPP identification for process relevant outputs based on SC scores. Risk ranking and filtering of SCO scores for gap analysis of the current control system 

and prioritization of follow-up actions. 
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Stage 3 – Gap analysis and follow up actions for Purification #01  

The knowledge and risk assessment should be documented and used to support a designated 

revision of the control system while investigations and further studies are taking place. Results 

of the studies should be summarized in follow-up reports, including a brief outline on the risk 

evaluation and mitigation actions implemented (Table 8-9). 

 

Table 8–9: Risk evaluation and follow-up actions for protein pooling criteria optimization (Purification #01). 

 

 

 

Stage 4 – Revised control system – opportunities for improvement  

A specific mitigation action derived from a high priority SCO score on Table 8-9, with indication 

of CPP to be manipulated, associated ranges, means of control, expected impacted CQAs and 

respective action plan, aligned with the company PQS. The current approach contributes to 

efficient risk management by targeting process robustness while providing the tools for contin-

uous monitoring and ongoing risk assessment. 

 

Stage 5 – Continued process verification and lifecycle management 

The capabilities to: collect all CPPs, CQAs and control actions taken according to the revised 

control strategy; aggregating all that information, monitoring the correlations found during the 
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legacy criticality assessment, for each new lot produced; revisiting and updating the risk man-

agement and ranking; computing performance statistics (e.g., Cpk) and deciding on improve-

ment opportunities within the current revised control strategy and company PQS. 

Bridging scientific knowledge and process-derived information will increase the effectiveness of 

the validation program, providing the necessary evidence that the process is fully understood, 

well-controlled and performing in a consistent manner. The resulting documents should repre-

sent a body of work to support non-conformance investigations, post-approval changes and to 

address questions arising during inspections or regulatory reviews. 
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9 Conclusions and Perspectives 

An effective development and manufacturing strategy for pharmaceutical products should be 

built on a solid foundation of knowledge and requirements. Just as important as the creation 

and implementation of high-throughput applications for the quality control of pharmaceuticals is 

the maintenance and improvement of such strategies. As described in Chapters 4 to 6, product 

knowledge and process understanding are essential to design the manufacturing process from 

a QbD perspective. The use of PAT and advanced data analysis strategies in very different 

production settings was a key element to: i) speed the development of a continuous process for 

an API manufacturing (PAPER I); ii) improve the knowledge about starting materials and pro-

cess parameters influencing  fed-batch bioprocess performance for production of a monoclonal 

antibody (PAPER II) and, iii) create a flexible program to respond to variability sources based 

on product and process understanding (BOOK CHAPTER II). In order to establish a flexible 

program, enablers of the overall control strategy (such as PAT and other analytical methods) 

must be integrated and evaluated throughout the product and process lifecycle (BOOK CHAP-

TER I).  

ICH Q10 defines enablers as “a tool or process which provides the means to achieve an objec-

tive” and generally identifies the pharmaceutical quality system, facilities and equipment, the 

supply chain and the analytical control system as key elements. If continuous improvement is 

not built into each of these components, the overall manufacturing process will not be sustain-

able in the long-term. Information technology (IT) tools are essential elements to foster 

knowledge transfer and management over the product lifecycle phases, including development, 

transfer and commercialization. 

As a primary goal, the research presented in this thesis aims to encourage the adoption of PAT 

approaches by pharmaceutical manufacturers and to demonstrate how chemometrics and ad-

vanced data analysis techniques can increase the understanding of the relationships between 

process parameters and product quality attributes to enhance process performance and drug 

product quality and consistency throughout the product lifecycle. A comprehensive demonstra-

tion of the value of PAT and multivariate data analysis in (bio)pharmaceutical development and 

manufacturing was presented together with a general framework for lifecycle management of 

PAT procedures in highly regulated production environments. It is our expectation that the de-

tailed description of the lifecycle management of PAT models can be a valuable information 

source for practitioners in the field to implement the approaches described. 

 

The work developed in this thesis opens perspectives for future work and challenges in the use 

of PAT methods and multivariate data analysis in pharmaceutical manufacturing. The benefits 

of QbD implementation depend upon considering all relevant scientific and technical aspects 
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involved at each phase and unit operation – a cross-functional team and a system engineering 

perspective must be in place to integrate the different components. In more detail, a whole 

process analysis connecting raw-materials to processing to end-product properties must be 

adopted comprehensively, in parallel to a time-wise integration of data, information and 

knowledge acquired throughout process development, industrialization and commercialization. 

Continuous improvement can only happen if these two perspectives are present and combined 

under proper data, information and knowledge management systems. Retrieving, visualizing 

and managing data sources of very different complexity – from simple univariate data (e.g., 

process parameters) to complex multivariate data (PAT data on quality attributes requiring fur-

ther processing), both acquired with different sampling frequencies is a current challenge that 

has not yet been fully addressed. The range of information technologies (IT) and SME compe-

tences will demand a significant change in the structure of pharmaceutical companies. Embed-

ding experts from outside the organization and recognizing the importance of mind-sets and 

behaviours to a successful transformation of the quality culture from compliance-driven to pro-

cess understanding oriented, are key to realize the QbD/PAT vision. 

The new process validation guidance from FDA clearly shows that companies will have to ad-

dress the above challenges to be able to (1) comply with the requirement that all manufactured 

product lots (batches) should be as good as any of the “three golden-batches” previously re-

quired for validation; and (2) to be able to control any deviation and explain it in scientific terms 

backed by deep process understanding. The success of the PV approach will depend upon the 

efficiency of organizations to manage the very different knowledge sources. To embed a strong 

knowledge culture within the organization, top managers must encourage sharing and collabo-

ration across functions while investing in a solid IT infrastructure, leveraging multiple knowledge 

sources to deploy a comprehensive PQS-KM platform. 
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