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Summary 
The desire to develop non-invasive rapid measurements of essential quality 
parameters in foods is the motivation of this thesis. Due to the speed and non-
invasive properties of spectroscopic techniques, they have potential as on-line or at-
line methods and can be employed in the food industry in order to control the quality 
of the end product and to continuously monitor the production. In this thesis, the 
possibilities and limitations of the application of spectroscopy and chemometrics in 
rapid control of food quality are discussed and demonstrated by the examples in the 
eight included publications. Different aspects of food quality are covered, but the 
focus is mainly on the development of multivariate calibrations for predictions of 
rather complex attributes such as the water-holding capacity of meat, ethical quality 
of the slaughtering procedure, protein content of single wheat kernels and 
contamination of fish oil by toxic environmental substances.  

Fourier transform infrared (FT-IR) and Raman spectroscopy proved to be of 
potential utility for process line measurements of meat quality (water-holding 
capacity). Preliminary studies revealed a high correlation (r = 0.89) between water-
holding capacity and FT-IR spectra with prediction errors of 0.85-1.4 % drip loss 
using Partial Least Squares Regressions. A further development of vibrational 
spectroscopic methods can be of valuable use in the slaughtering industry, aiming at 
a better utilization of the raw material through early classification of the meat. 
Visual and near infrared (VIS/NIR) spectroscopy was evaluated for the ability to 
assess the depth of CO2 stunning of slaughter pigs. Near infrared transmittance 
(NIT) was applied for the assessment of the quality of single wheat kernels. The 
combination of fluorescence measurements of fish oil and multi-way chemometrics 
demonstrated the potential for screening of environmental contamination in complex 
food samples. Significant prediction models were established with correlation 
coefficients in the range from r = 0.69 to r = 0.97 for dioxin. Further development of 
the fluorescence measurements of dioxin in fish oil will, for the fish industry, be a 
valuable tool for monitoring the quality of their oil products, especially when the EU 
introduces a limit of 6 ng/kg dioxin later this year.  

In order to improve calibrations and model interpretation, methods of spectral pre-
transformations, including the recently developed Extended Invented Signal 
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Correction, and variable region selection were used during the data analysis 
throughout this study.  

The uncertainty of reference analyses and their influence on the subsequent 
multivariate spectroscopic calibration are discussed throughout the thesis. A general 
challenge during the development of multivariate calibrations in this study was the 
accuracy of the reference parameters of interest. It is emphasized that it is of utmost 
importance to incorporate knowledge of the chemical and biological nature of the 
samples and of the qualifications of the applied spectroscopic and reference methods 
during the validation of multivariate calibrations.  
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Resumé 
Motivationen for denne afhandling har været et ønske om at udvikle hurtige og ikke-
invasive målinger til vigtige kvalitetsparametre i levnedsmidler. På grund af deres 
hurtighed og ikke-invasive egenskaber er spektroskopiske teknikker potentielle som 
on-line eller at-line metoder og kan anvendes i levnedsmiddelindustrien til 
kvalitetskontrol af slutprodukter og løbende overvågning af produktionen. 
Forskellige aspekter af levnedsmiddelkvalitet bliver behandlet i denne afhandling, 
men fokus er hovedsageligt lagt på udviklingen af multivariate kalibreringer til 
prædiktion af ret komplekse egenskaber som vandbindingsevne af kød, etisk kvalitet 
under slagteproceduren, proteinindhold af enkelte hvedekerner og forurening med 
giftige miljøstoffer i fiskeolie.  

Fourier transform infrarød (FT-IR) og Raman spektroskopi har vist sig at være af 
potentiel interesse for proceslinie-målinger af kødkvalitet (vandbindingsevne). 
Foreløbige undersøgelser har vist en høj korrelation (r = 0,89) mellem 
vandbindingsevnen og FT-IR spektre med prædiktionsfejl på 0,85-1,4 % dryptab 
ved anvendelse af Partial Least Squares Regression. Yderligere undersøgelser af 
vibrationsspektroskopiske metoder er af stor værdi for slagteri-industrien for at opnå 
en bedre udnyttelse af råvarerne gennem tidlig klassifikation af kødet. Visuel og nær 
infrarød (VIS/NIR) spektroskopi er blevet evalueret med hensyn til bestemmelse af 
graden af CO2-bedøvelse af slagtesvin. Nær infrarød transmission (NIT) blev 
anvendt til bestemmelse af kvaliteten af enkelte hvedekerner. Kombinationen af 
fluorescens-målinger på fiskeolie og multivejs kemometri viste sig at have 
potentiale til screening af miljø-forurening af komplekse levnedsmiddelprøver. 
Signifikante prædiktionsmodeller viste korrelationskoefficienter til dioxin i området 
r = 0,69 til r = 0,97. For fiskeindustrien vil yderligere udvikling af fluorescens-
målinger af dioxin i fiskeolie blive et værdifuldt redskab til at overvåge kvaliteten af 
deres olieprodukter, især når EU introducerer en grænse på 6 ng/kg dioxin i løbet 
året. 

Med henblik på at forbedre kalibreringer og model-fortolkning blev metoder til 
spektral forbehandling, inklusive den nyligt udviklede Extended Invented Signal 
Correction,  og variabeludvælgelse anvendt ved dataanalysen i dette studie.  

Usikkerheden af referenceanalyser og indflydelsen på de efterfølgende multivariate 
spektroskopiske kalibreringer bliver diskuteret igennem hele afhandlingen. En 
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meget generel udfordring under udviklingen af multivariate kalibreringer i dette 
studie var nøjagtigheden af de pågældende referenceparametre. Det bliver 
understreget, at det er yderst vigtigt at indføje viden om prøvernes kemiske og 
biologiske natur og om begrænsningerne for de anvendte spektroskopiske og 
referencemetoder under valideringen af multivariate kalibreringer.  
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1. Introduction 
This thesis is motivated by the desire to develop non-invasive rapid measurements 
of essential quality parameters in foods. Such measurements can be employed in the 
food industry in order to control the quality of the end product and to continuously 
monitor the production. The methods and results in this study can be of practical use 
for the food industry as sampling techniques and spectroscopic instruments improve 
and become cheaper in the future, and the techniques will be more readily available, 
allowing simpler and less expensive on-line applications. The current trends in 
monitoring of food quality are to move the measurements of quality from the 
laboratories to the process lines, such as the Autofom (SFK Technology, Herlev, 
Denmark), which is a fully automatic grading system for pork quality using 
ultrasound, the application of on-line near infrared spectroscopy in the production of 
sugar (Danisco Sugar, Copenhagen, Denmark) or on-line control of ammonia 
concentration in pectin amidation liquid by near infrared spectroscopy (CP Kelco, 
Lille Skensved, Denmark). Such on-line quality controls are made possible due to 
the continuous development of spectroscopic on-line methods. The spectroscopic 
methods are fast, non-invasive and highly reproducible, which makes them 
excellently suited for the on-line challenge. Moreover the output from the 
spectroscopic methods provides multivariate physical and chemical fingerprinting, 
which contains a wealth of information concerning the object of measurement, and 
yields the possibility of simultaneous assessment of several quality parameters.  

The aim of this thesis is to discuss the possibilities and limitations for the 
application of spectroscopy and chemometrics in rapid control of food quality, 
demonstrated by the examples in the eight included publications. It was the aim to 
investigate why and how the methods work in order to obtain new or support known 
understanding of the food processes. The direct applications of the methods as 
screening methods are investigated, as well as the interpretation and understanding 
of the attained information from the measurements of the food samples. In Chapter 2 
rapid remote spectroscopic methods are presented. Chapter 3 and Paper II discuss 
the uncertainty of reference analyses and their influence on subsequent multivariate 
spectroscopic calibration. Chemometric pre-transformation of spectral data is 
discussed in Chapter 4 and Paper V. In Chapter 5 and Papers III, IV, VI, VII and 
VIII applications of spectroscopic measurements for investigation of food quality 



Introduction 

2 

are presented. Chapter 6 completes the thesis with conclusions and perspectives. The 
papers in full length are found at the end of the thesis. 

Quality of food covers many aspects, such as functional, technological, sensory, 
nutritional, toxicological, regulatory and ethical aspects. Functional and 
technological quality is related to the processing and storing of the food and is 
traditionally measured by physical and chemical methods, while sensory quality is 
the eating quality as experienced by the consumer. Contamination, environmental or 
bacterial, of foods or raw materials for food production affect the toxicological 
quality. A need for ethical quality exists in meat production, where handling of live 
animals is critical. Different aspects of food quality are treated in this thesis: the 
functional, technological and sensory quality of porcine meat regarding water-
holding capacity (Paper II, III and IV), the technological and nutritional quality as 
well as the protein content of wheat kernels (Paper V and VII), the toxicological and 
regulatory quality of dioxin contaminated fish oil (Paper VIII), and the ethical 
quality concerning the stunning of slaughter pigs (Paper VI). 

The major part of this thesis originates from the project ‘Early post mortem 
measurement of WHC (water-holding capacity) and drip loss in fresh pork’. The 
project was a collaboration between the Food Technology Section of the Department 
of Dairy and Food Science at KVL, the Danish Meat Research Institute (SF) and the 
Danish Institute of Agricultural Sciences (DJF). The objective of the project was to 
obtain knowledge of the meat quality of pig carcasses from physico-chemical 
measurements carried out early in the slaughter process, i.e. within one hour after 
sticking. Hence, it would be a remarkable breakthrough if it was possible to predict 
the meat quality as measured by the water-holding capacity, and thereby be able to 
classify according to meat quality before the carcasses reach the cooler rooms. The 
strategy for meeting the objective entailed the screening of model carcasses with 
different ‘engineered’ meat qualities by a number of predominantly spectroscopic 
techniques. On basis of this screening, techniques showing potential for estimating 
meat quality were selected to undergo further development and testing for the 
Danish pig slaughter industry. 
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1.1. Chemometrics in food production 
Exploratory multivariate data analysis is applied for investigation of the spectral 
data measured during this study. The aim of the exploratory approach is to describe 
the complex multivariate information in the data in simple graphic displays without 
interference of a priori knowledge and let the evaluation based on plots and graphs 
generate the hypotheses for further interpretation. The tool for exploratory 
multivariate data analysis is chemometrics, which provides practical problem 
solving by efficient utilization of experimental data. For complex samples such as 
food material, data from spectroscopic instruments are typically so complicated that 
direct interpretation is impossible; peaks overlap to the extent that none are 
recognizable. That is why chemometric methods need to be applied for the data to 
be analysed effectively. In addition, chemometrics makes it possible to obtain real-
time information from data, which is a clear advantage for the development of on-
line methods. The fast, precise and non-destructive spectroscopic methods in 
combination with chemometrics are suitable for process analysis and optimization 
leading to improved productivity, efficiency and product quality. 

The end quality of food reflects both the quality of the raw ingredients and the 
actions of the processing unit operations. Food quality is traditionally measured by 
chemical, physical and sensory methods. Some of these methods are quite time-
consuming and all the methods are destructive. Today, it is possible to replace most 
of these inconvenient methods by instrumental, rapid and non-destructive techniques 
like near infrared (NIR), Fourier transform infrared (FT-IR) or fluorescence 
spectroscopy. However, optimum utilization of these techniques requires 
chemometric data analysis. Multivariate methods such as PCA and PLSR have 
demonstrated their superior performance when analysing spectroscopic information 
in quality control measurements. Today, chemometrics is applied in many aspects of 
the food and feed production, for instance, in the production of cereals, dairy 
products, meat, fruit, vegetables, oils and alcoholic beverages. 

 

1.2. Complex food data 
Multivariate spectroscopic measurements of complex materials like foods are 
sampled directly from the multivariate and complex world, for example, from a food 
production chain like a slaughter line or a fish oil factory. The samples applied for 
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analysis are not constructed in any way, i.e. by mixing a few known components in 
a controlled laboratory system, and will rarely behave as ideal systems. Usually the 
samples are not even exposed to any kind of pre-treatment such as separation or 
dissolution of the constituents. Working with complex food data requires a great 
deal of emphasis on the nature of the samples and experience with the instrumental 
and reference methods. In order to decide whether developed models involving 
complex food data are of any use, it is crucial to apply both chemometric validation 
of models (described in Chapter 2.3.3.) as well as chemical and biological validation 
of the methods.  

 

1.3. Chemical and biological validation 
In chemometric models carried out on complex food data, chemometric validation is 
not sufficient for getting an absolute picture of the modelling performance. 
Chemical and biological validation is necessary in order to estimate if a 
chemometric model based on spectroscopic data is suitable for the practical purpose 
it was designed for, for example as a quality control tool in the food industry. 
Chemical and biological validation includes evaluation of the calibration samples 
concerning, for instance, important sample characteristics, process conditions and 
sampling methods. The applied analytical methods, both spectroscopic 
measurements and reference measurements, must be evaluated with respect to, for 
instance, detection limits, instrumental noise and influence from the surroundings. 
Traditional measurements of the quality of foods are often related to significant 
errors due to lack of homogeneity of complex food materials and to the many steps 
of analyses often used in the methods of reference analysis.  

It is normally considered progress to replace an uncertain and time-consuming 
chemical method with a more precise and faster spectroscopic method. However, the 
‘new’ spectroscopic method relies on the ‘old’ reference method through the 
calibration step. Hence, an estimation of the uncertainty of the chemical reference 
methods can be of great value in order to judge whether the ‘new’ method is suited 
as a practical replacement for the ‘old’ method. In other words, a comparison of the 
modelling error found by chemometric validation with the uncertainty estimate of 
the reference method can provide an approach to the ‘true’ error of measurement.  



Rapid remote spectroscopic measurements of food quality 

5 

2. Rapid remote spectroscopic measurements of 
food quality 
Spectroscopic techniques are very suitable for the analysis of food characteristics 
and chemical components. They are considered as sensitive, remote, multivariate 
sensors and they are non-destructive, rapid, environmentally friendly and non-
invasive, which makes the methods suitable for on-line or at-line process control. In 
the last two decades, rapid spectroscopic measurements have advanced in quality 
control in many areas of food production as outlined in Paper I. Spectroscopic 
methods for measurements of food quality include ultraviolet and visual absorption, 
fluorescence emission, near infrared and mid infrared absorption, Raman scattering, 
nuclear magnetic resonance, microwave absorption and (ultra)-sound transmission. 
The spectroscopic methods based on different regions of the electromagnetic 
spectrum and different physical principles have different sensing capabilities. The 
methods, however, share the ability to provide rapid multivariate information on the 
sample being monitored, which in turn makes it possible to simultaneously 
determine several quality parameters. In this chapter Fourier transform infrared (FT-
IR), Raman, near infrared (NIR and NIT) and fluorescence spectroscopy are 
described. 

 

2.1. Vibrational spectroscopy 
Molecules can vibrate only at specific frequencies that correspond to specific energy 
levels. The energy of most molecular vibrations corresponds to that of the mid 
infrared region of the electromagnetic spectrum, which is between 4000 cm-1 and 
400 cm-1. Infrared (IR) and Raman spectroscopy are complementary techniques and 
have different levels of sensitivity to different types of vibrations, also called 
‘selection rules’; thus, different molecules in different environments are measured 
more accurately with the more appropriate technique. Infrared light is absorbed 
when the oscillating dipole moment (due to a molecular vibration) interacts with the 
oscillating infrared beam. In the Raman effect a corresponding interaction occurs 
between the light and the polarizability of the molecule.  

A complex molecule has a large number of vibrational modes (3N-6, where N is the 
number of atoms). Some of these molecular vibrations can be associated to 
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vibrations of individual bonds or functional groups, while others are more 
delocalized and must be considered as vibrations of the whole molecule. The 
localized vibrations can be stretching, bending, rocking, twisting, or wagging. When 
the molecule is irradiated with infrared light, the vibrating bond will only absorb 
energy if the frequencies of the light and the vibration are the same. 

A group frequency is a vibrational frequency (usually wavenumber) that is 
characteristic for a particular chemical functional group. Some group frequencies 
fall within a restricted range, regardless of the compound in which the group is 
found, while other group frequencies are highly affected by the matrix, which the 
group is a part of. Functional groups of special interest in infrared spectroscopy are 
primarily C=O, O-H, N-H and C-H, mostly originating from the side groups of 
molecules, while the interesting groups in Raman, for example, are C-C, C=C, C≡N 
and aromatic groups, mostly originating from the skeleton of molecules. 

 
2.1.1. Infrared spectroscopy 
Infrared (IR) spectroscopic instruments are designed to measure the intensity of 
molecular vibrations as a function of wavelength or wavenumber. IR has been a 
common qualitative technique for the identification and verification of chemical 
compounds. The first infrared instruments were dispersive in which radiation is 
separated spatially into its component wavenumbers by a dispersive element such as 
a prism or a diffraction grating. But since the early 1970’s, Fourier transform 
infrared (FT-IR) spectroscopy has been available (Griffiths and de Haseth, 1986). 
FT-IR technology has substantial potential as a quantitative quality control tool for 
the food industry, because the technique is robust, convenient, rapid and 
automatable, and in conjunction with attenuated total reflectance (ATR) technology, 
provides easy sample handling for ‘difficult samples’ such as food.  

FT-IR spectroscopy is based on Michelson interferometry. A diagram of an 
interferometer is shown in Figure 2-1. A Michelson interferometer uses a 
beamsplitter to divide the radiation from the source into two parts, one reflected to a 
fixed mirror and one to a moving mirror. The two beams undergo constructive and 
destructive interference as they recombine at the beamsplitter due to the varying 
path difference between the two mirrors. The recorded interference pattern is called 
an interferogram. 
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Figure 2-1. Diagram of an interferometer 

 

An interferogram is recorded by measuring the detector signal as a function of the 
position of the moving mirror during the movement, and is thus a summation of all 
cosine functions produced by the various wavelengths. It is possible to calculate the 
contribution of each wavelength from this interferogram by a Fourier transformation 
from the time domain to the frequency domain. In this way all frequencies are 
measured simultaneously. This is a considerable advantage compared to the 
dispersive technique, where the frequencies are measured successively by rotating 
the grating. Due to the ability of the FT-IR to measure more data points at the same 
time, it is possible to improve the signal-to-noise ratio by averaging many spectra. 
Moreover, all the light reaches the detector in the FT-IR instrument, in contrast to a 
dispersive instrument where energy is lost by the use of slits. Another advantage of 
the FT-IR technique is that wavenumber calibration is very accurate and robust due 
to the laser control of the mirror position. All these advantages make FT-IR very 
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potential as a fast on-line solution for the food industry. One general disadvantage of 
IR spectroscopy is that IR radiation cannot be transmitted through glass or quartz 
due to absorption, which restricts the use of optical fibres and thereby on-line 
installation. Another disadvantage of IR spectrometers is that water absorbs heavily 
and can hide spectral information of interest, and thus limits the use of IR for foods 
with high water content.  

The most common principle for measurement of a sample by FT-IR is transmittance 
measurements using different sample cells dependent on the physical state and 
chemical properties of the sample material. The measurement of transmittance 
usually involves very small amounts of sample material (mg) and requires that the 
sample is measured as a liquid or is pressed into a pellet, often with KBr (potassium 
bromide). Successful FT-IR applications in food systems depend largely on the use 
of ATR (attenuated total reflectance) technology, as it provides a simple and 
reproducible means of handling products by being applicable to liquids, solutions, 
viscous materials and flexible solids. Figure 2-2 shows the principle of ATR.  

 

 

Figure 2-2. The principle of the attenuated total reflection technique showing the penetration 
of the radiation beam into the sample material pressed closely to the crystal 

 

To obtain a spectrum by using the ATR technique, the sample is brought into optical 
contact with a crystal. With a properly chosen radiation angle, the beam will strike 
the flat surfaces at less than the critical angle leading to ‘total’ internal reflection. In 
reality, the radiation beam penetrates slightly beyond the surface of the crystal 
during each reflection, and with sample material pressed closely to the crystal the 
beam will travel a small distance through the sample at each reflection, thus 
providing transmission spectra of the outer layers of the sample. The depth of 
penetration into the sample is a function of the refractive index of the crystal and 
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sample, the launch angle and the wavelength. Because the depth of penetration also 
varies with wavelength, ATR/FT-IR spectra exhibit baseline curvature, especially at 
the lower frequencies. The main advantage of ATR is very easy sampling. Some of 
the disadvantages are that the spectra are sensitive to the applied pressure, and the 
spectral intensity depends on contact between crystal and material.  

Among the characteristic absorption bands associated with the macrocomponents of 
foods which contribute to the IR spectrum are the carbonyl ester and CH signals 
associated with fat, the carbonyl and amide signals for protein, the hydroxyl bands 
for carbohydrate and the HOH bending absorption of water. Table 2-1 and Figure 
2-3 display the characteristic absorption bands of a food product. 

 

Table 2-1. The spectral bands observed in the FT-IR and Raman spectra of porcine meat 
30-40 min after slaughter (Paper IV) 
4000     3000     2000      1500      1000 Vibration IR Raman Meat component 

OH str. X  Water 

NH str. X X Protein 

CH str. X X Fat 

C=O X X Fat 

HOH bend 
Amide I 

X 
X 

 
X 

Water 
Protein 

C=C str. cis  X Fat 

Amide II X X Protein 

C-O str. X X Fat 

C-O str. X X Fat 

CH bend  X Protein 

Amide III X X Protein 

C-O str. X  Glycogen 

C-O-C str. X  Glycogen 

aromatic ring  X Protein 

 

α-helix  X Protein 
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Figure 2-3. FT-IR spectrum (4000-750 cm-1) of porcine meat (Paper IV) 

 

FT-IR has been used in several studies of different foods or food ingredients; e.g., 
milk (van de Voort et al., 1992; Nathier-Dufour et al., 1995; Hansen, 1998), sugars 
(Dupuy et al., 1993a,b; Mirouze et al., 1993; Bellon-Maurel et al., 1995a,b; 
Kameoka et al., 1998a,b), pectins (Engelsen and Nørgaard, 1996), corn starch 
(Dolmatova et al., 1998), meat (Murcia et al., 1994; Dion et al., 1994; Rannou and 
Downey, 1997; Al-Jowder et al., 1997, 1999; McElhinney et al., 1999; Iizuka and 
Aishima, 1999, 2000), edible oils (Ismail et al., 1993; van de Voort et al., 1993, 
1994, 1995; Liescheski, 1996; Dahlberg et al., 1997; Engelsen, 1997; Ripoche and 
Guillard, 2001) and fruit products (Bellon, 1993; Defernez and Wilson, 1995; 
Defernez et al., 1995, 1997; Ferreira et al., 2001). FT-IR with photoacoustic 
sampling has recently been applied to low-moisture food products (Irudayaraj et al., 
2000, 2001) and to meat (Yang and Irudayaraj, 2001). There have even been a few 
on-line applications used on sugar solutions and fruit concentrate (Kemsley et al., 
1992, 1993) and on olive oil by silver halide fibre probes (Küpper et al., 2001), 
which showed a great potential for FT-IR as a quality control technique for the food 
industry. One of the problems with FT-IR as an on-line method is the lack of 
suitable probes. IR probes are usually made by a toxic halogenide (Wilson and 
Tapp, 1999; Chatzi et al., 1997; Lowry et al., 1993, 1994), which is not permitted in 
food production. 
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2.1.2. Raman spectroscopy 
Raman scattering is based on the weak, inelastic scattered side bands which arise 
when illuminating a sample with a strong monochromatic light, a laser. Like mid-
infrared, Raman scatter measures the fundamental molecular vibrations, however, 
with different selection rules. The Raman effect was discovered in 1928 and 
described as follows: When radiation passes through a transparent medium, the 
species present scatter a fraction of the beam in all directions. The wavelength of a 
small fraction of the radiation scattered by certain molecules differs from that of the 
incident beam and the shifts in wavelength depend upon the chemical structure of 
the molecules responsible for the scattering (Raman and Krishnan, 1928). The 
phenomenon results from the same type of vibrational changes that are associated 
with infrared absorption. Thus, the difference in wavelength between the incident 
and scattered radiation corresponds to absorbed wavelengths in the mid infrared 
region.  

Raman spectra are obtained by irradiating a sample with a powerful laser source of 
visible (e.g. 532 nm, 633 nm or 785 nm) or near infrared (e.g. 1064 nm) 
monochromatic radiation. Most of the scattered light consists of the parent line, the 
Rayleigh line. Much weaker lines, which constitute the Raman spectrum, occur at 
lower and higher energies and are due to scatter of light coupled with vibrational 
excitation or decay, respectively. The difference in frequency between the Rayleigh 
line and the Raman line is the frequency of the corresponding vibration. At the very 
most, the intensities of Raman lines are 0.001% of the intensity of the light source 
(Skoog and Leary, 1992). As a consequence, their detection and measurement are 
difficult, as the Rayleigh line has to be efficiently filtered from the weak Raman 
bands. An important advantage of Raman spectra over infrared spectra lies in the 
fact that water does not cause interference. In addition, glass or quartz cells or 
optical fibres can be employed, which makes Raman spectroscopy an attractive 
alternative to the difficult on-line implementation of mid infrared sensors (Dao and 
Jouan, 1993; Keller et al., 1993; Schrader, 1996). A disadvantage of Raman 
spectroscopy is the interference by fluorescence of the sample or of impurities in the 
sample. This problem is largely overcome by the use of a near infrared (λ = 
1064 nm) laser source (Keller et al., 1993), which will rarely excite fluorescence. 
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The near infrared laser, though, provides weaker Raman bands, as the Raman 

efficiencies depend on the wavelength of the source by 4
1
λ

. 

Raman is a very powerful technique for food analysis purposes which has been used 
for studying edible oils (Góral and Zichy, 1990; Sadeghi-Jorabchi et al., 1991; 
Engelsen, 1997; Davies et al., 2000; Baeten et al., 2001), studying changes of food 
components (Góral and Zichy, 1990; Ozaki et al., 1992; Belton, 1993; Fontecha et 
al., 1993; Li-Chan, 1996; Engelsen and Nørgaard, 1996; Bouraoui et al., 1997; 
Ogawa et al., 1999), analysing dietary fibre in cereal foods (Archibald et al., 
1998a,b), identification and quantification of foodborne bacteria (Harhay and 
Siragusa, 1999), studying muscle fibres (Pezolet et al., 1978a,b, 1980) and 
predicting meat quality (Paper III). Raman spectroscopy has also been tested in 
connection to warmed-over flavour in porcine meat (Brøndum et al., 2000a), but 
without success. The rather few applications of Raman spectroscopy as an on-line 
method in food production may be owing to tradition or to the fact that the technique 
is considered quite advanced. 

 
2.1.3. Near infrared spectroscopy 
Over the last decade, near infrared (NIR) spectroscopy has been successfully 
implemented as a fast at-line and on-line quality control method in many areas of 
the food industry. The vibrational overtone and combination bands appearing in the 
near infrared spectral region contain an abundance of chemical information 
comparable to the mid infrared (IR) region, as seen in Figure 2-4. NIR spectroscopy 
is defined as the spectral area from 780 nm to 2500 nm and primarily involves C-H, 
O-H and N-H overtones and combinations of the fundamental vibrational transitions 
in the IR region. Usually, the first overtones are reduced by a factor of 10, and the 
second overtones are reduced by a factor of 100.  

It is common to divide the NIR area in two parts. Light in the range 1200 nm to 
2500 nm is absorbed heavily by water and is therefore used for reflection 
measurements, while the range 780 nm to 1200 nm is also suitable for transmission 
measurements (NIT), since the water absorption is significantly less. NIR 
spectroscopy is basically an indirect method, and the spectra are essentially non-
specific; hence, different constituents have broad overlapping peaks. For this reason 
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NIR measurements have to be calibrated against samples of known chemical 
composition, and the success of the NIR method is therefore closely linked to the 
use of multivariate regression methods. 

 

 

Figure 2-4. The principle of near infrared spectroscopy is demonstrated with a spectrum of 
ethanol. The motif from the fundamental stretching vibrations in the mid-infrared region 
(right) is repeated in the near infrared spectrum (first, second and third overtones) and 
overlaid with combinatorial information (combination tones) (Paper I) 

 

NIR spectroscopy is particularly well-suited for quantification of fats, proteins, 
carbohydrates and moisture (Osborne et al., 1993). In meat, NIR has also been 
tested for measuring sensory and functional properties such as warmed-over flavour 
(Brøndum et al., 2000a), meat tenderness (Mitsumoto et al., 1991; Hildrum et al., 
1994; Byrne et al., 1998; Rødbotten et al., 2000; Park et al., 2001) or water-holding 
capacity (Swatland and Barbut, 1995; Brøndum et al., 2000b; Forrest et al., 2000). 
Near infrared sensors have the additional advantage that instrumentation is relatively 
simple and that the radiation may be transmitted through quartz, making the use of 
optical fibres feasible. 
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2.2. Fluorescence spectroscopy  
In fluorescence spectroscopy, transitions between excited electronic states and the 
electronic ground state are measured. Excitation is brought about by absorption of 
photons in the UV and visible area (about 200-600 nm), which have energies 
sufficient to promote electronic transitions. Some of the excitation energy is 
instantly lost due to thermal vibrations (typically after 10-12 s). The return of an 
electron in an excited molecule from the excited to ground state (after 10-5 to 10-8 s) 
involves the release of a photon of radiation, which can be emitted as fluorescence. 
Since the light emitted has lower energy than the absorbed, the emission wavelength 
is longer than that of the excitation light.  

Any fluorescent molecule is characterized by the excitation spectrum and the 
emission spectrum. The maximum excitation-emission wavelength pair is the main 
feature used to describe a fluorophore. Measuring several emission spectra at 
different excitation wavelengths creates a landscape, as seen in Figure 2-5.  

 

 

Figure 2-5. Fluorescence excitation-emission landscape measured on fish oil (Paper VIII) 

 

The landscape structure has the advantage that analytes or interferences peaking in 
different areas are to a large extend discovered by visual inspection. With the use of 
chemometrics, it has become possible to extract relevant chemical information 
hidden in the spectral data. The data structure involving the excitation wavelength 
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and the emission wavelength allows for trilinear data analytical methods, giving the 
possibility of unique resolution of the underlying components, as discussed in 
sections 2.3.4. and 5.2.1. 

One of the most attractive features of the fluorescence method is its inherent 
sensitivity. Typical detection limits are in the parts-per-billion range. That is 100-
1000 times more sensitive than absorption spectroscopy. In addition, fluorescence is 
often measured against a dark background, as most substances do not fluoresce. 
Fluorescent compounds are sensitive to their environment, for example, temperature 
and pH. Increasing temperature leads to increased molecular movement and 
collisions, resulting in less fluorescence due to quenching (see below). Moreover, 
both the wavelength and the emission intensity can be affected by pH, since ionized 
and nonionized forms of a fluorophore lead to different excited states (Skoog and 
Leary, 1992). Radiation lower than 250 nm is sufficiently energetic to cause 
deactivation of the excited states by predissociation or dissociation (Skoog and 
Leary, 1992). As an example, UV radiation of 200 nm corresponds to about 
600 kJ/mol which is more than the dissociation energy for C-H bonds of 414 kJ/mol. 
Interactions between a fluorophore and other substances can cause quenching, which 
leads to the reduction of fluorescence. Collisional quenching occurs when an 
excited-state fluorophore is deactivated upon contact with another molecule in the 
system. Examples of collisional quenchers include oxygen, halogens and amines 
(Lakowicz, 1999). Other types of quenching are, for example, formation of 
nonfluorescent complexes of fluorophores with quenchers or attenuation of the 
incident light by the fluorophore itself or other absorbing species (Lakowicz, 1999). 
Quenching may happen in complex food systems usually consisting of many 
different substances with the possibility of interaction with a fluorophore.  

Fluorescence methods are relatively rapid, giving rise to fast collection of large 
amounts of information. Quartz cells or optical fibres can be employed, which 
makes fluorescence spectroscopy suitable for on-line implementation. Robust 
fluorescence sensors based on fibre optics already exist, but their on-line 
implementation in food processes has not yet been exploited.  

The most intense and the most useful fluorescence is found in compounds 
containing aromatic functional groups, but compounds containing aliphatic and 
alicyclic carbonyl structures may also exhibit fluorescence. Fluorescence 
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spectroscopy is widely used as an analytical technique in many fields of science 
including chemistry, biology, biochemistry, medicine, environmental science and 
food science (Munck, 1989a; Strasburg and Ludescher, 1995; Rettig et al., 1999). 
Fluorescence spectroscopy has been applied for several purposes in food science, 
including control of nutritional quality (Birlouez-Aragon et al., 1998, 2001), 
investigation of colour impurities of sugar (Baunsgaard et al., 2000), determination 
of the level of lipid oxidation in meat and fish (Aubourg, 1999; Wold and Mielnik, 
2000; Wold and Kvaal, 2000), investigations of fish and fish extracts (Andersen et 
al., 2002; Andersen and Wold, 2002), quantification of intramuscular fat (Wold et 
al., 1999a), quantification of connective tissue (Swatland et al., 1993; Swatland, 
1997; Swatland and Findlay, 1997; Wold et al., 1999b), replacing expensive 
digestibility tests for assessing the quality of fish meal (Dahl et al., 2000), 
determination of deterioration of frying oils (Engelsen, 1997) and detection of plant 
tissue components (pericarp, aleurone and endosperm) in wheat by using fluorescent 
indicator substances for monitoring the separation in milling (Munck, 1989b; 
Pedersen and Martens, 1989). 

 

2.3. Chemometric methods 
The spectroscopic methods used in this thesis, FT-IR, Raman, NIR or fluorescence, 
produce covariant multivariate data containing hundreds or thousands of variables 
for each sample. A chemometric approach allows qualitative and quantitative 
information to be obtained from these complex spectral data. Chemometric methods 
are mathematical and statistical methods which decomposes complex multivariate 
data into simple and easier interpretable structures that can improve the 
understanding of chemical and biological information. The bilinear chemometric 
methods, Principal Component Analysis (PCA) and Partial Least Squares 
Regression (PLSR) are used for multivariate data overview and multivariate 
calibrations. The spectroscopic methods provide a data vector (x) (FT-IR, Raman 
and NIR) or a data matrix (X) (fluorescence) for each sample.  

 
2.3.1. Exploratory data analysis 
In order to explore the multivariate data the most fundamental chemometric 
algorithm PCA (Pearson, 1901; Wold et al., 1987) was applied. PCA is a 
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mathematical procedure applied to spectral data to generate new latent variables 
which are orthogonal and thus uncorrelated to each other. The purpose of PCA is to 
express the main information contained in the initial variables in a lower number of 
variables, the so-called principal components (latent variables), which describe the 
main variations in the data. In PCA the data are projected from the original 
coordinate system into the new system of principal components, as depicted in 
Figure 2-6.  

 

 

Figure 2-6. Data points (x) in the original coordinate system (xyz) (A) and projected on to 
the two principal components (PC-1 and PC-2) (B) 

 

Each component (each new variable) is a linear combination of the original 
measurements. In the figure, the principal component lies along the direction of 
maximum variance in the data set. This projection of data is continued by 
composing additional, orthogonal principal components, until all latent structures of 
the data are described. In this way PCA provides an approximation of the data 
matrix (e.g., near infrared spectra of a number of samples) in terms of the product of 
two low-dimensional matrices T (scores) and P’ (loadings). These two matrices 
capture the systematic variation of the data matrix 

X = TP’ + E 

and leave the unsystematic variation in the residual matrix (E). Plots of the columns 
of T (score plots), (Figure 2-7A), provide a picture of the sample concentrations of 
the principal components, while plots of the rows of P’ (loading plots) depict the 
variable contribution to the principal components, (Figure 2-7B).  
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Figure 2-7. Score plot of PC1 versus PC2 (A) and loading plots of PC’s 1-4 (B) of near 
infrared transmittance (NIT) spectra (850-1050 nm) of single wheat kernels (Paper V and 
VII) 

 

PCA is a powerful and robust tool for obtaining an overview of complex data, such 
as covarying multivariate spectroscopic measurements of food samples, in order to 
discover groupings and trends in the data. In the work described in this thesis, PCA 
was used to form a general view of the data sets with the purpose of revealing 
deviant objects and to discover unknown trends, such as in Paper VI, in which PCA 
revealed changes during the day of measurement. 

 
2.3.2. Multivariate regression 

Using measured spectral data to predict important quality parameters (y) such as 
drip loss of meat (Paper III and IV), stunning quality of slaughter pigs (Paper VI), 
protein content in wheat kernels (Paper V and VII) and dioxin content in fish oils 
(Paper VIII) involves efficient multivariate regression techniques. The multivariate 
calibration task is to build a relationship between the spectra or landscapes (x/X) and 
the reference parameter (y) for all the samples in a given data set. The purpose of the 
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relationship is to predict the y’s from the x/X’s in the future and to interpret the 
relationships between x/X and y. The multivariate regressions in this thesis were 
performed by Partial Least Squares Regression (PLSR) (Martens and Næs, 1989), 
which is a predictive regression method based on estimated latent variables 
describing the relations between X (spectra or landscapes of a sample set) and y 
(corresponding reference measurements of the sample set). The strategy of PLSR is 
to reduce the dimension of the X and y space by creating linear combinations of the 
original variables. These new (latent) variables or components are statistically 
independent and ideally carry all relevant information. The reference variable, e.g. 
protein content, to be predicted is used actively in determining these components, 
and a linear regression model is defined as  

 y = Xb + E 

where b is the corresponding vector of regression coefficients, and E their residuals 
(model errors, noise etc.).  

Spectroscopic data consist of spectra within a given wavelength range, depending of 
the type of instrument used, and often the spectra are composed of broad and 
overlapping peaks. Such data are highly covariate. One of the important 
characteristics of PLSR is the ability to model covariate data, in contrast to Multiple 
Linear Regression (MLR). MLR is the classical and often used method for 
developing regressions involving several x-variables in linear combinations to the 
corresponding y-values. MLR is designed for ‘independent’ x-variables and does 
thus not cope well with covariate spectral data. 

PLSR has become an indispensable tool for the development of regressions between 
multivariate spectroscopic data and essential quality parameters in foods, since 
PLSR can provide simple and robust calibrations which are applicable for future 
predictions. In this thesis, PLSR was used to develop regressions between 
multivariate spectroscopic measurements such as FT-IR (Paper III and IV), Raman 
(Paper IV), NIR/NIT (Paper V, VI and VII) and fluorescence (Paper VIII) for the 
prediction of essential food quality attributes. 

Chemometric methods include much more than PCA and PLSR, for example, 
methods for curve resolution, calibration transfer and classification. However, in the 
work discussed in this thesis, PCA and PLSR are the key methods. Chemometric 
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pre-transformation of spectral data and variable selection will be described in 
Chapter 4. 

 
2.3.3. Chemometric validation 
By chemometric validation it is possible to obtain as realistic performance of the 
models as possible with the available data. There are conceptually two ways to 
validate chemometric models: test-set and cross-validation. Test-set validation 
requires two data sets which are similar with respect to their ability to cover future 
sample variations and sampling conditions. One of the data sets is used for 
calibration, while the other is used for validation. Test-set validation requires 
sufficient samples in order to span the existing variation in both sets. It may often 
occur that it is not possible to collect enough samples for producing usable 
calibration and test sets. In the absence of a test set, it is necessary to apply cross-
validation, where several sub-calibrations are made with single samples (full cross-
validation) or segments of samples (segmented cross-validation) kept out of the 
calibration alternately, until all samples have been kept out once. The samples kept 
out are then used for validation, and the average of the validation results is 
calculated. Such methods will at their best provide a robust consistent estimation of 
the prediction error. The measure of model performance is usually given by the 
correlation coefficient (r), which is the correlation between the measured reference 
(y) and the predicted reference (ŷ), and by the prediction error RMSECV (root mean 
square error of cross-validation) or RMSEP (root mean square error of prediction): 

RMSECV or RMSEP = 2

1
)ˆ(1 ∑

=

−
N

i
ii yy

N
 

where iŷ  is the predicted value for sample i, iy  is the corresponding reference 

value, and N is the total number of samples. The validation results of PLSR 
modelling are often displayed in predicted versus measured plots, as shown in 
Figure 2-8, where the y-values as predicted by the PLSR model are plotted against 
the originally measured y-values for the validation samples. 
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Figure 2-8. Predicted versus measured plot of a PLSR prediction of protein content of single 
wheat kernels by near infrared transmittance (NIT). Full cross-validation was applied, and 
the number of samples (Elements), the correlation coefficient (r) and the prediction error 
(RMSECV) are shown (Paper V and VII). 

 

The calibration models in this study are mainly validated by cross-validation (Paper 
II, III, IV, V, VI, VII and VIII) due to limited number of samples, but test-set 
validation is also applied (Paper V and VII).  

 
2.3.4. Multi-way methods 
In fluorescence spectroscopy, two-dimensional spectra (landscapes) are generated 
for each sample. As mentioned earlier, the landscape structure has the advantage 
that analytes or interferences emitting in different spectral areas are revealed, and 
unique resolvation of fluorophores is possible because of the trilinear data structure 
(Ho et al., 1978). With the PARAFAC (PARAllell FACtor analysis) algorithm 
(Harshman, 1970) it is possible to perform ‘mathematical chromatography’ and 
resolve the complex fluorescence landscapes into excitation and emission profiles of 
the underlying fluorophores (Bro, 1997) and thus obtain their relative 
concentrations. Unique resolution of the underlying components has been 
demonstrated by the application of PARAFAC to fluorescence landscapes in the 
sugar industry (Munck et al., 1998; Andersson, 2000; Baunsgaard, 2000).  
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Figure 2-9. Three-way PARAFAC model of fluorescence landscapes resulting in three sets 
of loadings (concentration in the samples, emission and excitation profiles)  

 

PARAFAC is a trilinear decomposition method which conceptually can be regarded 
as the multi-way analog to the bilinear PCA (Principal Component Analysis), but 
without the orthogonal constraints. The principle of PARAFAC is shown in Figure 
2-9. For a data matrix consisting of i samples, j emission wavelengths and k 
excitation wavelengths, three loading matrices with elements ain, bjn, and ckn give a 
PARAFAC model of a three-way array (xijk). The trilinear model is found to 
minimize the sum of squares of the residuals, eijk in the model, where n is the 
number of components: 

∑
=

+=
N

n
ijkknjninijk ecbax

1
 

The reason for using PARAFAC instead of PCA is rarely to obtain a better fit, but 
rather to obtain a more adequate and interpretable model due to its mathematically 
unique resolvation. If the data is indeed trilinear and provided that the right number 
of components is used, the underlying spectra of fluorescent analytes including their 
relative concentration will be found (Bro, 1997). Thus, the analyte concentration 
may be obtained directly after scaling, but without the need of a regression. 

The general multi-way PLSR model (N-PLSR) is considered superior to the 
unfolded PLSR method for regression purposes, owing to stabilisation of the 
decomposition by respecting the original structure of the fluorescence data (Bro, 
1996). In the three-way version of PLSR, the three-way array of independent 
variables is decomposed into a trilinear model similar to the PARAFAC model. 

X

LOADINGS

LO
A

D
IN

G
S

Model

LO
A

D
IN

G
S

E

+
X

LOADINGS

LO
A

D
IN

G
S

Model

LO
A

D
IN

G
S

E

+



Rapid remote spectroscopic measurements of food quality 

23 

However, in N-PLSR, the model is not a least squares fit of the independent data, 
but seeks in accordance with the philosophy of PLSR to maximize the covariance of 
the spectral (X) and reference (y) variables. The advantage of using N-PLSR instead 
of unfolding methods is that N-PLSR is more parsimonious, i.e. simple, and hence 
easier to interpret. N-PLSR will also be less prone to noise, because the information 
across all modes is used for the decomposition (Bro, 1996). 
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3. Uncertainty of reference analyses for multivariate 
spectroscopic calibration 
In order to validate developed multivariate regression models based on 
spectroscopic measurements, as those developed during the project ‘Early post 
mortem measurement of WHC (water-holding capacity) and drip loss in fresh pork’, 
it is valuable to have experience with the instrumental and reference methods used 
for the regressions. In this project, the multivariate spectroscopic measurements of 
porcine meat were acquired early after slaughter with the purpose of development of 
regression models for prediction of the water-holding capacity (WHC) of the meat. 
Traditional chemical or physical measurements of the quality of foods are often 
prone to significant analytical errors due to inhomogeneity of complex samples and 
to the large number of analytical steps often required for the methods of analysis. 
Estimation of the uncertainty of the chemical reference methods can be of great 
value in order to judge whether the ‘new’ spectroscopic method is suited as a 
practical replacement for the ‘old’ chemical method.  

Spectroscopic measurements are usually quite accurate and highly reproducible, but 
one must still be aware of possible errors such as the inhomogeneity of the sample, 
which is of great importance with respect to the method of sampling. Other sources 
of error in spectroscopic measurements are scatter interferences and unstable 
process variables like humidity, pH and temperature (Wülfert et al., 1998). The 
uncertainty of spectroscopic methods can be estimated simply by making additional 
measurements without moving the sample (uncertainty of the spectroscopic 
measurement) or by replacing the sample by another representative sample and 
make additional measurements (uncertainty of the sampling method + the 
spectroscopic measurement). This is possible, because spectroscopic measurements 
are fast (a few seconds or minutes per measurement) and non-destructive (re-use of 
the sample is possible).  

With regard to most reference measurements, replicate measurements can be much 
more difficult to produce. The reference measurements are usually destructive, 
which makes the requirement of true, representative replicates very critical. Food 
samples are often inhomogeneous, for which reason the production of good 
replicates might be difficult.  
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The reference measurements for water-holding capacity of porcine meat as 
described in Papers III and IV are disadvantaged by the impossibility of producing 
true replicates. Water-holding capacity is traditionally measured as drip loss by 
several available methods. In the Honikel (1998) method a large sample (80-100 g) 
is cut out of, for instance, the loin and used as a whole for the measurement to 
represent the drip loss of the entire carcass. Due to the variation between samples 
taken from different parts of the carcass, a large sampling error will be introduced. 
In another method suggested by Rasmussen and Andersson (1996), several smaller 
samples (25 mm in diameter and 25 mm in length) across a slice of the loin are used. 
This is expected to give more detailed information about the drip loss from the 
muscle, but it is still not possible to produce true replicates, as it is not possible to 
homogenize the material, which would result in destruction of the structure and loss 
of information concerning the water-holding capacity. The sources of errors of these 
methods are related to the nature of the meat samples and the processing of the 
samples during the analysis. Orientation of the fibres with respect to cut is important 
when measuring the drip loss, as the expelled fluid accumulates between fibre 
bundles (Offer and Knight, 1988). Surface evaporation or squeezing of the samples 
during handling can cause unwanted loss of water during the measurement (usually 
24 or 48 hours). Different levels and distributions of fat and connective tissue, which 
influence the amount of drip, also cause inhomogeneity.  

The purpose of Paper II was to investigate alternative ways of approximation of the 
level of the error of the reference parameter ‘drip loss’ in order to assess the 
requirements for a multivariate calibration predicting drip loss in porcine meat by 
fast and non-destructive spectroscopic measurements. The level of the error of the 
reference parameter is required to evaluate the practical use for calibrations to more 
indirect methods such as those performed in several studies (Paper III and IV; 
Forrest et al., 2000; Brøndum et al., 2000b; Brown et al., 2000; Bertram et al., 2001, 
2002). The obtained prediction errors in these investigations were in the range of 
0.8-2.6 % drip loss, and the question whether this is satisfactory, or if there is room 
for improvement of the spectroscopic calibration. The estimates of uncertainty of the 
measurement of drip loss of porcine meat from Paper II are in the range of 0.6-0.9 % 
drip loss. These uncertainty estimates indicate the error arising from the reference 
methods of drip loss measurements of porcine meat and can be utilized in the 
chemical/biological validation of the methods. Whether or not the obtained 
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prediction errors are satisfactory concerning the individual purposes of the 
spectroscopic calibrations, has to be evaluated against the actual ranges of drip loss 
in the populations of future predictions. 

One way to use the uncertainty estimates of reference methods for evaluation of 
multivariate models based on spectroscopic data is demonstrated in Figure 3-1.  

 

 

Figure 3-1. The prediction error (RMSECV) of a PLSR model based on FT-IR spectra for 
prediction of drip loss for 41 pigs from a research slaughterhouse plotted versus the number 
of components (PC’s) used in the model. The uncertainty estimates calculated according to 
three approaches are plotted as horizontal lines (Paper II). 

 

In the figure, the prediction error (RMSECV) from one of the PLSR models applied 
in Paper III is plotted versus the number of components used for the modelling. The 
PLSR model is based on FT-IR spectra of porcine meat from 41 of the animals. The 
drip loss measured by the method described by Honikel (1998) is applied as the 
reference measurement. The uncertainty estimates for the reference method 
calculated as % drip loss according to three approaches presented in Paper II (Est. 1, 
Est. 2 and Est. 3) are displayed as horizontal lines in the figure. These estimates can 
be used to show the amount of the error associated with the PLSR model, which is 
caused by the method of measurement of the reference parameter. When using the 
optimal number of components (6) for the PLSR prediction of the drip loss 
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reference, the reference method accounts for 0.61-0.93 % drip loss of the total 
modelling error. 

Another situation, in which true replicates are impossible to produce, is the 
spectroscopic single seed quality control applied in Paper V and VII. Single seed 
quality analyses contribute to an increased understanding of the variation of the 
single seeds in order to evaluate sorting performance and thereby be able to optimize 
the choice of variety, grading conditions and end use. In order to get enough sample 
material for the reference method, the whole kernel was needed for determination of 
the protein content in single wheat kernels by the Kjeldahl method (Kjeldahl, 1883). 
Obviously, this approach leaves no possibility for making replicates, as the Kjeldahl 
method is destructive. Instead, 20 replicates of a wheat flour sample (i.e. excluding 
the grain structure) were used for an estimation of the uncertainty of the reference 
method (Paper V and VII). For the chemical/biological validation, the uncertainty 
estimate of these 20 replicates of 0.16 % protein could be compared to the prediction 
errors of the multivariate near infrared transmittance calibrations of the protein 
content of the single wheat kernels, which were in the area of 0.5-0.8 % protein. 

These examples of reference methods with no or poor possibilities of making 
replicates emphasize the need for rapid and non-destructive methods for 
measurements of complex, inhomogeneous food samples. 
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4. Chemometric pre-transformation of spectral data 
Spectral data usually contain non-relevant information, interferences and 
instrumental noise, in addition to the exact chemical, physical or biological 
information of interest. For example, the offsets between the near infrared (NIT) 
spectra of wheat kernels, displayed in Figure 4-1, are not associated to the 
information of interest in this case, the protein content of the wheat kernels, but 
instead express different scatter properties of the kernels, including kernel size, 
water content and texture. Scatter is a common phenomenon in spectral data. 
Among other sources of spectral interferences are instrumental artefacts, which 
might affect specific parts of the spectra. In order to reduce the impact of non-
relevant spectral information, pre-transformations of the spectra prior to modelling 
can be applied. Besides elimination of non-relevant information, the advantages of 
using pre-transformations of spectral data, include simplification of the multivariate 
model, better linear correlation between spectra (X) and the reference parameter (y), 
more interpretable and robust models, and reduction of the number of calibration 
samples leading to cheaper and easier modelling (Martens, 2001). However, the 
scatter information reflecting the physics of the sample such as kernel hardness, may 
also be a relevant quality parameter. 

 

 

Figure 4-1. Raw near infrared transmittance (NIT) spectra (850-1050 nm) of 415 single 
wheat kernels (Paper V) 
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Two categories of pre-transformations of spectral data are described in this chapter: 
1) physical and chemical pre-transformation of spectra and 2) variable region 
selection. Physical and chemical pre-transformation is used for correction of, for 
example, non-relevant scatter effects or non-relevant chemical interference. 
Multiplicative signal correction (MSC) (Geladi et al., 1985), inverted signal 
correction (ISC) (Helland et al., 1995; Martens et al., 2002) or derivatives are 
examples of methods applied for this type of corrections. The other category covers 
methods for variable region selection which are used in order to emphasize 
especially informative regions of the spectra or to completely eliminate non-relevant 
regions of the spectra.  

 

4.1. Physical and chemical pre-transformation of spectra 
Even though linear calibration methods such as PLSR have the ability to model non-
linear relationships by increasing the multivariate complexity, simpler and more 
robust models are desirable. Especially for industrial applications of multivariate 
calibration, the robustness of the models is of utmost importance (de Noord, 1994). 
Physical interference in reflectance spectroscopy could, as mentioned earlier, be 
light scatter and non-linearity of instrument response. The physical interference is 
often affected by the physical condition of the sample. Chemical interferences are 
caused by chemical components in the sample structure, other than those of direct 
interest, i.e. the analyte in question. Complex samples like food materials are 
composed of many different chemical and biological components, which all 
contribute to the spectra resulting from most instruments. An exception is 
fluorescence spectroscopy which only detects components with fluorescent 
characteristics. 

A commonly applied technique for scatter correction of spectral data is the 
calculation of second derivatives (Savitzky and Golay, 1964). The second derivative 
of NIT spectra, as shown in Figure 4-2, often leads to more simple and better 
predictive multivariate models, because simple offsets and linear trends are 
removed. In this case of prediction of protein in wheat kernels, equal prediction 
errors were yielded for an 11-component model based on raw spectra and a 5-
component model based on second derivatives of the spectra; see Table 4-1. The 
second derivative pre-transformation usually results in a reduction of the scatter-



Chemometric pre-transformation of spectral data 

30 

related offsets and reveals more spectral features compared to the raw spectra (Fig. 
4-1).  

 

 

Figure 4-2. Second derivative of near infrared transmittance (NIT) spectra (850-1050 nm) of 
415 single wheat kernels (Paper V) 

 

Table 4-1. Performance statistics of the PLSR models for single seed protein predictions 
using single seed NIT spectra from the calibration set (415 kernels) and the subsequent test 
set (108 kernels) (Paper V). 

Pre- # of PLSR Correlation Prediction error (% protein) 

transformation Components Cal.set  Test set Cal.set Test set 

Raw 11 0.93 0.96 0.55 0.70 

2nd 5 0.93 0.96 0.56 0.52 

MSC 9 0.93 0.95 0.57 0.78 

ISC 9 0.93 0.95 0.58 0.69 

EIMSC 7 0.95 0.98 0.49 0.49 

MSC 9 0.93 0.95 0.57 0.78 

2nd+MSC 5 0.95 0.98 0.47 0.48 

 

850 900 950 1000 1050

-0.01

0.00

0.01

Wavelength [nm]
850 900 950 1000 1050

-0.01

0.00

0.01

Wavelength [nm]



Chemometric pre-transformation of spectral data 

31 

Another well-tested concept is the multiplicative signal correction (MSC) (Geladi et 
al., 1985). The basis of the MSC is the fact that light scatter’s wavelength 
dependency is different from that of chemically based light absorption. By using 
data from many wavelengths, it is possible to distinguish between absorption and 
scatter (Geladi et al., 1985). The MSC involves correcting each input spectrum in a 
set of related samples towards an ideal spectrum, where the influence of physical 
scattering variations has been removed from the effects of chemical absorbance. 
Two coefficients, the additive offset ai and the multiplicative slope bi, which ideally 
contain all the physical information in the input spectra, are estimated by:  

zi = ai  + bim + εi       

where m is a common reference spectrum and εi are the residuals that ideally contain 
all the chemically relevant information in the input spectra (zi), plus other 
unmodelled effects and random noise. After parameters ai and bi have been 
estimated, reversing the equation from the estimates of ai and bi then generates the 
corrected spectrum zi:  

zi,corrected = (zi - ai ) / bi      

Corrected spectra, as exemplified by the MSC-corrected NIT spectra in Figure 4-3, 
can then be used in the subsequent multivariate modelling as applied in Papers V 
and VII. 

 

Figure 4-3. MSC-corrected near infrared transmittance (NIT) spectra (850-1050 nm) of 415 
single wheat kernels (Paper V) 
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To obtain maximal understanding and maximal predictive reliability it is important 
to combine a priori knowledge and empirical data in a balanced way (Martens, 
2001). In order to attain a more effective separation of chemical and physical effects 
the extended multiplicative signal correction (EMSC) was developed (Martens and 
Stark, 1991). The EMSC method employs a priori knowledge about the spectra of 
the non-relevant analytes by including information about the major analyte spectra 
in the estimation of ai and bi to avoid multiplicative correction of analyte 
information. 

Spectral pre-transformations include many techniques not described in this chapter. 
Examples are Standard Normal Variate (Barnes et al., 1989), path length correction 
with chemical modelling (Miller and Næs, 1990), piece-wise multiplicative scatter 
correction (Isaksson and Kowalski, 1993) and Orthogonal Signal Correction (Wold 
et al., 1998).  

 
4.1.1. Extended Inverted Signal Correction (EISC) 
A new extended method, named Extended Inverted Signal Correction (EISC), for 
separating scattering from absorbance in spectroscopic measurements is described 
theoretically by Martens et al. (2002) and applied on single seed NIT spectra in 
Paper V. EISC can be applied in a general form, including additive terms, 
multiplicative terms, wavelengths dependency of the scatter coefficient and simple 
polynomial terms. In the general form, the additive offset and the multiplicative 
slope is corrected (Helland et al., 1995). By application of polynomial terms, non-
linear behaviour can be corrected, and additive and multiplicative characteristics of 
chemical influence can be corrected in the extended version. 

The EISC method was originally developed with chemical analyte extensions 
(Martens et al., 2002), and has subsequently been applied with spectroscopic 
extensions (Paper V) to NIT spectra of single wheat kernels prior to multivariate 
calibration for protein content. The NIT spectra, displayed in Figure 4-4, are 
corrected by EISC including a quadratic term ci and wavelength dependent terms di 
and ei, in addition to the ‘usual’ additive offset ai and the multiplicative slope bi: 

zi,corrected = ai + bi zi + ci zi
2 + di λ + ei λ2   
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where zi,corrected is the corrected version of the input spectra (zi), and λ is the 
wavelength vector. The primary purpose of the extension terms zi

2, λ and λ2 is to 
improve the estimation of the basic interference effects, ai and bi. If the coefficient 
estimates ci, di and ei are found to pick up irrelevant information from the data, the 
subsequent calibration modelling may be simplified. 

 

 

Figure 4-4. EISC corrected near infrared transmittance (NIT) spectra (850-1050 nm) of 415 
single wheat kernels (Paper V) 

 

The EISC with the general (physical) extensions (Paper V) performed equally as 
well as the two-step ‘second derivatives followed by MSC, as earlier used by 
Delwiche (1995) and Paper VII, in the multivariate calibration for protein content of 
wheat kernels; see Table 4-1. In this data set, the two methods of pre-transformation 
can correct for spectra interferences that are not corrected by the more ‘classical’ 
pre-transformations MSC or second derivatives.  

 

4.2. Variable region selection 
It can often be advantageous to select significant variables during a multivariate 
regression in order to improve the predictive ability of the model. Spectral regions 
of specific interest, e.g. absorption of a well-defined component, can in some cases 
possess improved predictive ability compared to regressions using whole spectra as 
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defined by the instrument properties. Useless or unreliable variables, caused, for 
example, by non-relevant chemical information, noise or instrumental artefacts, can 
be eliminated, in order to simplify the final model and make it more robust. Several 
types of methods for variable selection exist; a few examples include principal 
variables (Höskuldsson, 1994), forward stepwise selection (Höskuldsson, 1996) and 
significance testing by jack-knife estimation of parameter uncertainty (Martens and 
Martens, 2000), while interval PLSR (Nørgaard et al., 2000) is a method for variable 
region selection. Principal variables is a method where the spectral variables that co-
vary the most with the reference variable are selected (Höskuldsson, 1994). Forward 
stepwise selection is a forward selection method, which is based on finding the 
spectral variable that gives the lowest prediction error, and then try all combinations 
with the other spectral variables in the selection of the next variable that gives the 
lowest prediction error, using multiple linear regression. Interval PLSR is suitable 
for spectral data and is based on dividing the spectrum into intervals of suitable size 
and selecting the interval with the best prediction ability (Nørgaard et al., 2000). In 
order to study synergy between different spectral intervals, a synergy interval PLSR 
algorithm was developed by Nørgaard (www.models.kvl.dk) and applied by Munck 
et al. (2001) and in Paper IV.  

Jack-knife estimates of the uncertainty of model parameters can automatically 
eliminate useless or unreliable variables in order to simplify the final model and 
make it more reliable (Martens and Martens, 2000; Westad and Martens, 2000).  

In paper IV variable selection by iPLSR was applied in order to find the best 
predictive regions of FT-IR and Raman spectra of porcine meat for the prediction of 
water-holding capacity. The chemometric selection of the best predictive spectral 
regions was evaluated by chemical interpretation of the spectra, as IR and Raman 
spectra, to some extent, are interpretable. A considerable improvement in prediction 
error was found by employing only informative regions of the spectra, which 
demonstrated the importance of selecting especially informative spectral regions 
prior to PLSR modelling. It was found to be especially important to avoid the 
regions in the spectra with very high absorption, as they are noisy and will disturb 
the regressions (Paper IV).  
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5. Applications of rapid remote spectroscopic 
measurements for investigation of food quality 
The aim of this thesis is to develop rapid measurements of essential quality 
parameters in foods. This will be exemplified in this chapter by several 
investigations of vibrational and fluorescence spectroscopic methods developed for 
the exploration and prediction of food quality. It remains to be seen if the developed 
methods are interesting enough for implementation in industry for monitoring of 
quality in the production of foods. 

 

5.1. Vibrational spectroscopic investigations of food quality 
Vibrational spectroscopy is suitable for the analysis of food quality, as food systems 
are mainly composed of fats, proteins, carbohydrates and moisture, which all 
contain characteristic functional groups with stable group frequencies. In addition, a 
very useful feature of the vibrational spectroscopic techniques is their potential as 
on-line or at-line methods in the food industry.  

 
5.1.1. Technological and eating quality of porcine meat 

The quality of porcine meat is very complex, and covers functional characteristics 
such as intramuscular fat, tenderness and water-holding capacity (WHC). WHC is 
probably the most important technological property of porcine meat. Approximately 
75 % of the weight of lean muscle tissue immediately after slaughter is water. If a 
muscle has a poor ability to retain water, exudates or drip will come from cut 
surfaces. The reduction of pH post mortem normally results in a reduction in water 
holding, so that exudates leak out of cut muscle surfaces during post-mortem 
storage. The water content of meat is important for two reasons. Firstly, meat is sold 
by weight, so the water loss is an important economic factor. In the Danish meat 
industry, a decrease by 1 % of the water of the meat in all pigs produced annually 
(23 million pigs per year) represents an economic loss to the industry in excess of 50 
million DKK. Secondly, the water content of meat determines to a large extent the 
juiciness of meat and thereby the eating quality. The WHC of the meat determines 
the use of the meat. For this reason, the slaughterhouses have a desire to be able to 
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classify the carcasses according to their level of water-holding capacity, preferably 
before the carcasses reach the cold storage room. 

As the WHC of meat is a complicated phenomenon, it is difficult to measure. To 
date, it has not been possible to assess the meat quality until the carcass has gone 
through rigor mortis and has fully temperature equilibrated to cold storage 
conditions, i.e. the day after slaughter. With regard to the possibility of early 
prediction of meat quality, a method suitable for on-line measurements is required. 
With an on-line method, the slaughter industry can gain knowledge regarding the 
meat quality early after sticking in order to facilitate sorting before further use.  

FT-IR in combination with chemometrics has proved to be a possibility for early 
post-mortem prediction of drip loss in porcine meat (Paper III and IV). The method 
is characterized by the fact that measurements are carried out while the carcass is 
still warm from slaughter, i.e. while the muscles undergo the transformation from 
living tissue in a recently slaughtered animal to chilled, edible meat, which makes it 
possible to measure the carcasses at the rate, at which they are advanced on a 
common slaughter line, typically 350-400 carcasses per hour. The inaccuracy of the 
FT-IR method is sufficiently small to make it realistic to sort the carcasses in quality 
classes already before the carcasses are chilled in the slaughterhouse. Then it is 
possible to use carcasses with a very low drip loss or a high drip loss for the 
manufacture of suitable types of products, whereas carcasses with a normal drip loss 
may be used for the production of fresh cuts (Paper III).  

Multivariate modelling based on FT-IR spectra of meat of pig carcasses from a 
research trial ranging from 0.7-8.0 % drip loss showed prediction errors (RMSECV) 
of 0.85-1.4 % drip loss, while the corresponding prediction error for commercial 
pigs (0.5-8.3 % drip loss) were 1.0-1.2 % drip (Paper IV). These results were found 
to be acceptable for the purpose of suggesting an on-line method for sorting out the 
carcasses with low and high drip loss. When comparing the prediction errors to the 
uncertainty estimate of the traditional reference measurement of drip loss, which 
was found to be 0.6-0.7 % drip loss (Paper II), the majority of the prediction errors 
can be explained by the uncertainty of the reference measurement. 

A major difficulty encountered with the FT-IR analysis of meat is the sample 
presentation. For analysis in the transmission mode, samples must be converted to a 
milk-like emulsion in which the globule sizes are smaller than the analytical 
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wavelengths (2-8 µm), in order to avoid scattering effects (Dion et al., 1994). A 
possibility for direct measurement of food by FT-IR is the attenuated total reflection 
(ATR) technology described in Chapter 2, which simplifies sample handling. The 
application of ATR for measurements on meat described in Papers III and IV is 
depicted in Figure 5-1.  

 

Figure 5-1. A piece of recently cut-out porcine meat placed on an ATR crystal 

 

Among the disadvantages of ATR are that the spectra are sensitive to applied 
pressure and that spectral intensity depends on the contact between crystal and 
material. Satisfactory contact between the crystal of the ATR and the meat was 
difficult to obtain due to the inhomogeneous nature of the meat, for which reason the 
spectroscopic method itself must be expected to contribute to the prediction errors 
associated with the multivariate models. In addition, the development of satisfactory 
optical fibres for FT-IR is at present not very promising, as IR radiation cannot be 
transmitted through materials like glass or quartz due to absorption. On the other 
hand, optical fibres are available for the Raman technique, as it uses visual or near 
infrared radiation, and moreover, water does not interfere the spectra, as is the case 
of FT-IR and NIR. This is a very important attribute, as meat contains mostly water. 
A PLSR model based on Raman spectra was employed in Paper IV, but included a 
limited number of samples. The resulting prediction error, though, was found to be 
encouragingly low. Such an extraordinary good PLSR model based on the Raman 
spectra is probably unrealistic, due to the low number of samples. Nevertheless, it 
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deserves further attention in future studies, especially because Raman measurements 
can be performed using insertion probes and fibres that provide good contact with 
the meat and having the spectrometer in a remote location far from the harsh 
environment at the slaughter line. 

Prediction of WHC by vibrational spectroscopic methods has earlier been 
investigated by application of near infrared spectroscopy (Swatland and Barbut, 
1995; Byrne et al., 1998; Forrest et al., 2000; Brøndum et al., 2000b). Apart from 
Forrest et al. (2000) these investigations have applied the spectroscopic 
measurements post rigor, which in the slaughtering process is too late for efficient 
classification of carcasses. Forrest et al. (2000) measured NIR (900-1800 nm) 
through a fibre optic probe 30-36 min after sticking. In combination with 
multivariate data analysis they predicted drip loss with a correlation of 
approximately 0.8 for a trial of 99 carcasses measured at a commercial 
slaughterhouse. The prediction error was estimated to be 1.8 % drip loss, which is 
considerably higher than the prediction error obtained in Paper IV, which also 
includes measurements made at a commercial slaughterhouse. 

In order to decide whether FT-IR should be recommended as a method for early 
classification of carcasses in the slaughterhouses according to WHC, measurement 
of many more samples is necessary, so that all kinds of biological variations in the 
meat material can be included in the model. It must also be taken into consideration, 
if the method is technically robust enough to be able to work in a rather rough 
environment at the slaughterhouses with changing temperatures and humidity.  

The information on food quality, which can be acquired by FT-IR and Raman 
spectroscopy has not yet been sufficiently investigated, and the potential in the meat 
industry deserves more attention. In particular, Raman spectroscopy possesses 
desirable characteristics for measurement of food quality due to its ability to 
measure samples having high water content and, the fact that it is fast and easy to 
use. The highly interpretable vibrational techniques in combination with exploratory 
multivariate data analysis can be valuable tools for scientists in the effort to 
understand functional properties of foods. 
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5.1.2. Ethical quality of the slaughtering procedure 
Animal welfare is a major concern in meat production due to the fact that meat 
consumers increasingly demand that animals are produced, transported and 
slaughtered in a humane way (Appleby and Huges, 1997). Pre-slaughter stunning is 
used to ensure that animals do not suffer needlessly and are unconscious and 
insensible to the slaughter procedure. According to proper animal welfare, it is 
important to expose pigs to CO2 for a long enough time to ensure they remain 
unconscious during post-stun handling until death intervenes by debleeding. It is 
possible to assess the depth of CO2 stunning of pigs under slaughterhouse conditions 
by using practical guidelines established by the Danish Meat Research Institute 
(Holst, 2001). The assessment is based on absence or presence of a number of 
reflexes characterizing the depth of stunning. 

Blood consists mainly of water, haemoglobin, cholesterol, urea, albumin and 
globulin, and CO2 is transported in the blood both in solution in plasma and in 
chemical combination (Robinson, 1997). NIR has been applied on blood for 
determination of haemoglobin content (Kuenstner et al., 1994), lactate content in 
plasma (Lafrance et al., 2000) and total protein, albumin, globulin, triglycerides, 
cholesterol, urea, glucose, and lactate in serum (Hazen et al., 1998).  

In Paper VI visual and near infrared (VIS/NIR) spectroscopy was evaluated for the 
ability to assess the depth of CO2 stunning of slaughter pigs. The study was based on 
observations made during the investigation of early post mortem quality prediction 
of porcine meat performed at a research slaughterhouse. In this investigation blood 
from pigs was measured with VIS/NIR spectroscopy (400-2500 nm) immediately 
after sticking. The spectra showed significant differences apparently related to the 
method of stunning and to the state of the animal in the CO2 chamber. In Figure 5-2 
three spectra are shown, one from a pig that was electrically stunned and two from 
pigs that were stunned in CO2. One of the CO2-stunned pigs was gasping during 
sticking, while the other one did not show gasping during sticking and was 
apparently very deeply stunned or may even have died during stunning. The 
spectrum of blood from the electrically stunned pig differs distinctively in shape 
from the spectra of the CO2 stunned pigs, while the difference between the two CO2 
stunned pigs is expressed as intensity differences in certain parts of the spectra. The 
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objective of the investigation in Paper VI was to evaluate the ability of VIS/NIR 
spectroscopy to assess the depth of CO2 stunning of slaughter pigs.  

 

 

Figure 5-2. VIS/NIR spectra (400-2500 nm) of blood from three pigs measured immediately 
after sticking: one from an electrically stunned pig (⋅⋅⋅⋅⋅⋅) and two from CO2 stunned pigs. 
One CO2 stunned pig was gasping during sticking (----), the other one was apparently 
completely stunned (____) (Paper VI). 

 

The investigation was carried out at three commercial slaughterhouses, chosen in the 
light of previous knowledge of the CO2 stunning ‘quality’. One slaughterhouse with 
a relatively high occurrence of corneal reflex, one with a medium occurrence and 
one with a very low to no occurrence were chosen. During debleeding, blood was 
collected from each animal for subsequent spectroscopic measurement by VIS/NIR 
spectroscopy, and depth of the CO2 stunning was assessed immediately before and 
after sticking, in accordance with guidelines established by the Danish Meat 
Research Institute (Holst, 2001). The reflexes assessed were corneal reflex, 
breathing and excitation, and the assessments were converted to a quantitative 
scoring system in order to be applied as reference measurements for the calibration 
of the depth of stunning (Paper VI).  

The acquired spectra contain features related to the water content of the samples and 
to the presence and level of oxygenated and deoxygenated haemoglobin. The spectra 
from the three slaughterhouses were quite similar in shape, but the spectra from the 
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one slaughterhouse with no occurrence of reflexes differed from the spectra from the 
other two slaughterhouses in regions of the spectra that pointed in the direction of a 
more powerful CO2 stunning. The spectral data revealed systematic variations 
according to different levels of the assessed reflexes. Besides the effect of stunning, 
the spectra also contain information on biological properties of the blood and 
probably environmental effects from the slaughterhouses. For this reason complete 
interpretation of the spectra was impossible and the relevant information concerning 
depth of stunning was difficult to separate, especially because the level of influence 
of the interfering effects (biology and environment) was not assessed.  

It was possible to roughly classify the spectra according to slaughterhouse, and 
PLSR predictions by the spectra indicated that the VIS/NIR method was able to 
distinguish blood from well-stunned and the less well stunned pigs. The method 
might not be reliable for an exact estimate of the depth of stunning; but the VIS/NIR 
spectroscopic method still deserves further investigation for its potential as a rapid 
and objective estimate of the depth of CO2 stunning in slaughter pigs. However, this 
requires that different slaughterhouses are involved in further investigations and that 
the environmental effects are controlled or measured in order to eliminate them from 
the regressions. 

 
5.1.3. Single kernel quality of wheat  
Until recently, nearly all grain quality analyses were performed on bulk samples 
consisting of hundreds or thousands of kernels, most often in ground form. In doing 
so, information was lost on the characteristics of the individual kernel. Analyses of 
homogeneity of wheat samples are allowed by using single kernel analyses. Single 
seed quality analyses thus contribute to an increased understanding of the variation 
of the single seeds in a seed lot in order to evaluate sorting performance and thereby 
be able to optimize the choice of variety, grading conditions and end use. Fast and 
non-destructive single kernel quality analyses would be valuable tools in plant 
breeding for quality selection in early generations and for single kernel quality 
evaluation within the spikes. 

Protein content largely determines the end use quality, and premiums are often 
offered on high protein wheat. Single kernel near infrared transmittance (NIT) 
spectroscopy has shown excellent ability to determine protein content (Papers V and 
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VII). The NIT spectra cover the spectral region from 850 nm to 1050 nm containing 
primarily the second overtones of O-H (carbohydrates and water) and N-H (protein) 
stretching vibrations and the third overtone of the C-H (fats) stretching vibration. 
The fundamental N-H, C-H and O-H stretchings and the corresponding theoretical 
second and third overtones expected in the 850-1050 nm region are listed in Table 
5-1, while NIT/NIR spectra of gluten, starch and water in the spectral region of 850-
1050 nm are shown in Figure 5-3. This relative narrow window underlines the 
holographic nature of NIR as all the relevant information is found but in new 
combinations from that of the fundamental vibrations in IR. Moreover, the 
absorbencies in this region are a factor 10-100 less as compared to the fundamental 
which facilitate transmission of samples 10-100 times thicker. NIT spectra were 
acquired for single wheat kernels from different varieties, and nitrogen content was 
determined directly for each single kernel by a modified Kjeldahl method (Kjeldahl, 
1883). A prediction model for protein content was developed on the basis of the NIT 
spectra of a calibration set and validated by an independent test set. The prediction 
error (RMSEP) of 0.5 % protein was comparable to results reported earlier using 
near infrared transmittance (850-1050 nm) (Delwiche, 1995) and near infrared 
reflectance (1100-2498 nm) (Delwiche, 1998). The development of non-destructive 
screening methods for other single seed characteristics, such as vitreousness, density 
and hardness, would be of great value for routine homogeneity analysis (Paper VII).  

 

Table 5-1. Group frequencies of fundamental N-H, C-H and O-H stretchings and 
wavelength values for the corresponding theoretical second and third overtones expected in 
the 850-1050 nm region. 
Group Compound Fundamental 

(IR) [cm-1] 
Second overtone 

(NIR) [nm] 
Third overtone 

(NIR) [nm] 

N-H Protein 3300 1010  

C-H Protein / Carbohydrate 3000-2800  900-930 

O-H Carbohydrate / Water 3400-3300 980-1010  
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Figure 5-3. Near infrared spectra of the main components of wheat: gluten (), starch (---) 
and water (⋅⋅⋅⋅⋅⋅). 

 

5.2. Fluorescence spectroscopic analysis of food quality 
Fluorescence spectroscopy is a very sensitive technique able to measure trace 
substances. However, the method naturally requires that the trace substance to be 
analysed contain one or more fluorescent chemical groups. Important fluorophores 
of relevance to foods include proteins (containing the amino acids tryptophane, 
tyrosine and phenylalanine), coenzymes (NADH, NADPH and FAD), vitamins (A, 
B1, B2, B6, B12, D2, E and folic acid), caffeine, chlorophyll, polyphenols, flavanoids, 
aflatoxins, and some nucleic acids (Lakowicz, 1999). In addition, fluorescence 
spectroscopy has the potential of direct or indirect measurement of contaminants 
present in very small concentrations in complex matrices like foods due to the 
sensitivity of the technique and the presence of background fluorescence in most 
food materials. Indirect measurement means that the fluorescence signal does not 
arise directly from the substance in question, but is due to, for example, quenching 
or fluorescent indicator substances. 

 
5.2.1. Screening for environmental contamination of fish oil 

Food and feed often contain trace amounts of environmental contaminants, and 
monitoring programmes are therefore required to analyse the presence of toxic 
substances. Dioxins (polychlorinated dibenzo-p-dioxins (PCDD’s) and 
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polychlorinated dibenzofurans (PCDF’s)) are widely encountered toxic substances. 
In general, the dioxin levels found in food and feed are very low (ppt-level), the 
detection of which requires sophisticated and hypersensitive (sub-ppb) 
physicochemical separation techniques such as GC-MS and HPLC-MS. In the case 
of complex organic molecules such methods are often laborious and very expensive; 
a typical dioxin analysis takes two weeks and costs approximately $1,000 (Belgian 
Government, 1999). For this reason, only limited environmental monitoring is 
performed.  

In a preliminary investigation of fish oils, the use of fluorescence excitation-
emission landscapes evaluated by 3-way chemometric methods (see section 2.3.4.) 
was demonstrated as a candidate for an inexpensive screening method to indicate the 
level of contamination by dioxin and PCB’s (PolyChlorinated Biphenyls) (Paper 
VIII). Fluorescence landscapes of fish oils were investigated and showed great 
variation due to species, season and treatment, depicting a variation in natural 
fluorescent components. The fluorescence landscapes were analysed by PARAFAC. 
Figure 5-4 shows the plot of PARAFAC score 1 versus PARAFAC score 2.  

 

Figure 5-4. Score plot of PARAFAC component 1 versus component 2 from a 3-component 
PARAFAC model of sample sets A (one batch from factory 1), B (different batches from 
factory 1) and C (different batches from factory 2). Selected fluorescence landscapes of two 
set A samples (a1 and a2), two set B samples (b1 and b2) and two set C samples (c1 and c2) 
are shown (Paper VIII). 
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The figure reveals different fluorescence properties related to the nature of the 
different fish oil samples and connected to the origin of the samples (Paper VIII).  

Application of PARAFAC/MLR (Multiple Linear Regression) and N-PLSR to the 
fluorescence landscapes resulted in local regression models for dioxin determination 
with prediction errors below 1 ng/kg, which is comparable to the error of the 
reference method. In the PARAFAC model, two of the modes gave the excitation 
and emission spectra of the pure underlying fluorophores and the third mode their 
individual concentrations. Excitation and emission optima for 3-4 PARAFAC 
components in each data set were identified, representing both positive and negative 
(quenching) correlation components (Paper VIII).  

The encouraging results in the paper should, however, be taken with precaution, 
since dioxins do not fluoresce, so the correlations must be related to complex 
chemical covariate objects in the fish oil matrix. However, a few hypotheses 
regarding the fluorescence screening method for dioxin to be further tested are 
presented in the paper, and further research could give profitable results based on 
the hypotheses generated in this exploratory investigation. This exploratory 
multivariate approach has great potential as a strategy for solving other 
environmental problems, for example, by using environmental indicator substances, 
which are accumulated in the biological chain. The environmental issue is indeed 
multivariate and complex, and therefore difficult to manage with traditional 
statistical methods (Vega et al., 1998).  

 
5.2.2. Oxidative quality of poultry meat 

Several authors have demonstrated that fluorescence is a good indicator of lipid 
oxidation in biological materials. Numerous fluorophores have been obtained 
following reactions between primary and secondary lipid peroxidation products and 
primary amines, and a majority of the unsaturated aldehydes formed by lipid 
peroxidation have been found to be precursors of fluorescent compounds (Melton, 
1983; Esterbauer et al., 1986). Through investigations on formation of fluorescent 
oxidation products, a variety of excitation and emission peaks have been reported 
(Chio and Tappel, 1969; Tappel, 1970; Dillard and Tappel, 1971; Kikugawa et al., 
1981; Kikugawa et al., 1985; Beppu et al., 1986; Kikugawa and Beppu, 1987; 
Hasegawa et al., 1992, 1993; Wold et al., 1999b; Wold and Mielnik, 2000). These 
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vary in types of matrices, extraction techniques and whether measurements are 
performed on solid state or on the organic or aqueous phase. The development of 
fast methods for determination of lipid oxidation based on fluorescence 
spectroscopy is currently in progress (Wold et al., 1999b; Wold and Mielnik, 2000). 

In order to further investigate the suitability of fluorescence spectroscopy as a 
method for fast determination of the oxidation level of meat, fluorescence 
landscapes and spectra have been collected on breasts and legs from chickens with 
varying oxidation levels affected by different storage periods of the meat (0, 4, 10 or 
16 weeks) and different feeds for the chickens (feed containing fish oils with varied 
levels of oxidation); see Figure 5-5. The oxidative rancidity was determined by the 
TBARS assay. This method is the most widespread procedure for estimating the 
oxidative changes of meat and meat products (Shahidi, 1994). The assay measures 
the quantity of 2-thiobarbituric acid reactive substances (TBARS), among them 
malondialdehyde which is an oxidative breakdown product formed mainly from 
oxidized polyunsaturated fatty acids. Dynamic headspace GC-MS measured volatile 
oxidation products of the meat samples, e.g. aldehydes, ketones, alcohols and acids.  
The composition of these compounds is related to the oxidative state of the sample. 

 

Figure 5-5. Fluorescence excitation-emission landscapes from an LS50B spectrofluorometer 
(Perkin-Elmer) and fluorescence spectra (excitation 350 nm and 382 nm) from an optical 
bench system using a 512*512 charge-coupled device (CCD) (Princeton) as detector. Breasts 
() and leg (------) 
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Early unpublished results of this study showed high correlations between the 
fluorescence spectra and the time of storage. The fluorescence spectra were acquired 
using the same method as described in Wold and Mielnik (2000). The MSC-
corrected fluorescence emission spectra produced by excitation at 382 nm were 
modelled in PLSR calibrations for prediction of the storage time (weeks of storage) 
of the meat samples. A total calibration model of 61 breast samples and 63 leg 
samples covering all storage times and feeds were tested on a validation set 
consisting of 32 breast samples and 30 leg samples. The predicted values (weeks) 
versus the actual values of the validation samples are shown in Figure 5-6.  

 

 

Figure 5-6. Predicted versus measured plot for the validated prediction of the time of storage 
(weeks) by fluorescence spectra (excitation 382 nm) of the validation set consisting of 32 
chicken breast samples and 30 leg samples based on a PLSR involving 61 chicken breast 
samples and 63 leg samples. The correlation coefficient (r) and the prediction error 
(RMSEP) are reported. 

 

Breast and leg samples were modelled and validated separately. The correlation 
coefficient (r) and prediction error (RMSEP) for each test of the validation sets are 
displayed in Table 5-2, along with the corresponding results for predictions based on 
the MSC-corrected fluorescence spectra produced by excitation at 350 nm. The 
modelling and predictions of the breast samples seem to perform considerably better 
than of the leg samples. This is possibly due to the more homogeneous appearance 
of the breast samples compared to the leg samples. The requirement of a relatively 
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large number of components (4-8) for the PLSR models may be due to the fact that 
the fluorescence spectra are quite complex, so that the noise correction is using 
some of the components. 

 

Table 5-2. PLSR predictions of storage time (weeks) and TBARS (mg/kg) of chicken 
samples by MSC-corrected fluorescence spectra. Three sample sets are employed: breast and 
leg samples (All), only breast samples (Breast) or only leg samples (Leg). The number of 
calibration and validation samples (cal / val) are displayed. The results are shown as 
correlation coefficient (r) and prediction error (RMSEP). 
Reference Sample 

set 
# of 

samples 
Excitation λ # of 

components
r RMSEP Range 

Weeks All 124 / 62 382 nm 8 0.93 2.3 0-16 

Weeks Breast 61 / 32 382 nm 8 0.98 1.3 0-16 

Weeks Leg 63 / 30 382 nm 7 0.89 2.6 0-16 

Weeks All 124 / 62 350 nm 6 0.92 2.4 0-16 

Weeks Breast 61 / 32 350 nm 5 0.97 1.6 0-16 

Weeks Leg 63 / 30 350 nm 4 0.88 2.8 0-16 

TBARS Breast 61 / 32 382 nm 6 0.71 0.12 0.12-0.82

TBARS Breast 61 / 32 350 nm 5 0.72 0.13 0.12-0.82

 

The MSC-corrected fluorescence spectra of the breast samples produced by 
excitation at 382 nm and at 350 nm, respectively, were modelled in PLSR 
calibrations for prediction of TBARS. A calibration model of 61 breast samples 
covering all storage times and feeds were tested by a validation set consisting of 32 
breast samples; see Table 5-2. The correlation coefficients around 0.7 found in this 
study were considerably lower than those found by Wold and Mielnik (2000) 
(correlations coefficients higher than 0.8), while the prediction errors (RMSEP = 
0.12-0.13) in this study were slightly higher than those in the Wold and Mielnik 
study (RMSECV = 0.15-0.22). The reason for the lower correlation coefficients in 
this study may be due to the lower range of TBARS (0.1-0.8) compared to the 
TBARS range (0.1-1.3) in the Wold and Mielnik study. Combination of the two 
spectra (excitation 350 nm and 382 nm) did not improve the predictions. The 
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prediction errors found in this study and in the Wold and Mielnik study seem to 
correspond, which implies that there is basis for further development of a 
fluorescence method for rapid assessment of lipid oxidation in poultry meat. A paper 
including these results is under preparation. 
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6. Conclusions and perspectives 
This project has employed vibrational spectroscopic techniques, FT-IR, Raman and 
NIR, as well as fluorescence spectroscopy in combination with chemometrics for the 
exploration of food quality during the production of food. The speed and non-
invasive properties of spectroscopic techniques make them potential on-line or at-
line methods and hence very useful for process monitoring and control in the food 
industry. NIR probes are already utilized for innumerable quality measurements in 
the food industry, while FT-IR and Raman are less widespread. In this project FT-IR 
and Raman spectroscopy demonstrated to be of potential interest for process line 
measurements of meat quality (water-holding capacity). PLSR models of meat 
samples from a research slaughterhouse and from a commercial slaughterhouse 
showed prediction errors acceptable for classification of the carcasses at an early 
stage after slaughter (45 min). A further development of vibrational spectroscopic 
methods for process line measurements can be of valuable use in the slaughtering 
industry with the purpose of better utilization of the raw materials through early 
classification of the meat. In order to facilitate the use of FT-IR as an on-line 
method in food production, the development of robust and efficient probes is 
needed, as IR radiation cannot be transmitted through standard materials like glass 
or quartz. In contrast, Raman signals can be transmitted through quartz, but here the 
main difficulties are the inherent poor signal-to-noise ratio and sample fluorescence. 

The role of chemometrics in future scientific data analysis is promoted by its ability 
to solve many different data analytical problems. A change in the approach to 
problem solving from univariate to multivariate thinking is one of the requirements 
for making chemometrics an indispensable tool for the food industry. In order to 
optimize a process with optimal utilization of chemometrics, it is first necessary to 
measure the process without restrictive hypotheses, then to analyse and model the 
data, test the model and finally reach an understanding of the process. In this way 
chemometrics has the potential to solve urgent problems by providing parsimonious 
solutions. One example is the efforts to monitor environmental problems, where a 
multivariate approach is absolutely necessary due to the multivariate nature of the 
environmental mechanisms. Even though it has not yet been confirmed exactly 
which compounds were detected during the fluorescence measurements of fish oil, 
the investigation demonstrated the potential of the combination of fast spectroscopic 
measurements and chemometric data analysis for screening of environmental 
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contamination in complex food samples. The measurement of dioxin in fish oil 
represents a great benefit for the fish industry, as EU has introduced a 6 ng/kg limit 
and because laboratory measurements cost approximately 10000 DKK per sample. 
Further study of the fish oil measurements will give profitable results based on the 
hypotheses generated during the explorative investigation. The fluorescence and 
multi-way approach has the potential to provide direct chemical fingerprinting of a 
range of natural and polluting molecules in a variety of biological matrices.  

Different aspects of food quality were covered in this thesis. The focus was mainly 
on the development of multivariate calibrations based on spectroscopic 
measurements for predictions of rather complex attributes such as the water-holding 
capacity of meat, ethical quality of the slaughtering procedure and contamination by 
toxic environmental substances. The investigations treat quality attributes that are 
traditionally difficult to measure due to requirement of labour-intensive and time-
consuming analytical methods. The depth of CO2 stunning assessed as the presence 
or absence of reflexes during sticking and debleeding of slaughter pigs is an 
example of an attribute that is difficult, if not impossible, to measure. Thus, the 
desire to develop new methods was also motivated by the possibility of finding more 
precise methods, in addition to the fast and non-invasive advantages of the 
spectroscopic methods.  

A general challenge during the development of multivariate calibrations in this study 
was the accuracy of the reference parameters of interest which are often established 
methods based on very pragmatic principles developed decades ago. The 
approximation of the uncertainty of the reference methods is important for the final 
validation of multivariate calibration methods in order to provide better 
understanding and interpretation of the methods. The estimation of the uncertainty 
can be difficult, as in the case of inhomogeneous samples which prevent the use of 
true representative subsamples or if the time perspective is crucial due to, for 
example, biological processes. It is therefore of utmost importance to incorporate 
knowledge of the chemical and biological nature of the samples and of the 
qualifications of the applied spectroscopic and reference methods during the 
validation of multivariate calibrations. 
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Paper I 
Monitoring Industrial Food Processes Using Spectroscopy & 
Chemometrics 

D.K. Pedersen and S.B. Engelsen 

___________________________________________________________________ 

In the last decade rapid spectroscopic measurements have revolutionized quality 
control in practically all areas of primary food and feed production. Near-infrared 
spectroscopy (NIR & NIT) has been implemented for monitoring quality of millions 
of samples of cereals, milk and meat with unprecedented precision and speed. The 
key to this success is the extraordinary synergy that lies in the merging of 
spectroscopy and the new data technology called chemometrics. A true paradigm 
shift has occurred in the food industry where engineers are now exploring their 
processes using soft models and spectroscopic sensors to complement traditional 
hard models and univariate measurements. The new exploratory, multivariate 
spectroscopic methods of observing nature and processes are non-destructive, rapid 
and environmentally friendly compared to the traditionally used univariate and 
slower physico-chemical methods (Fig. 1).  

 

 

 

Figure 1. Two ways of handling the “dragon” (nature). The advantages of explorative 
multivariate spectroscopic measurements compared to traditional deductive univariate 
measurements. © Munck & Newlin 
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However, the most significant advantage of the spectroscopic methods is their 
remote sensing capabilities. In contrast to most other methods spectroscopic sensors 
can be implemented directly in the process line for real-time quality monitoring of 
the continuous stream of raw products, semi-processed reaction products or final 
products. This revolution appears to transform the food industry from a traditionally 
low-technology industry into a high-technology industry alongside with the quality 
control in the pharmaceutical industry. 

 

Why chemometrics: 

One of the main advantages of chemometric data analysis is the possibility of 
projecting multivariate data into few dimensions in a graphical interface. 
Chemometrics is able to handle large data sets and deal efficiently with real-world 
multivariate data, taking advantage of the previously feared colinearity of spectral 
data. With chemometrics it is possible with advantage to analyse whole spectra in 
real time. The basis of most chemometric algorithms is Principal Component 
Analysis (PCA) which this year can celebrate its 100-year anniversary in splendid 
shape. PCA can be considered as the first amendment in exploratory analysis due to 
its extraordinarily robust data reduction and data-overviewing capabilities. In PCA 
the multivariate (spectral) data set is resolved into orthogonal components whose 
linear combinations approximate the original data set in a least squares sense. Partial 
Least Squares Regression (PLSR), built on PCA technology, is its counterpart for 
regression analysis. PLSR is a predictive two-block regression method based on 
estimated latent variables and applies to the simultaneous analysis of two data sets 
(e.g. spectra and physical/chemical tests) of the same objects [1]. The purpose of 
PLSR is to build a linear model that enables prediction of a desired characteristic 
from a measured spectrum. PLSR is used routinely to correlate spectroscopic data 
(rapid measurements) with related chemical/physical data (slow measurements). 
Both PCA and PLSR are bi-linear methods able to utilize the multivariate advantage 
when applied to co-linear first order data (Table 1); i.e., they facilitate inference 
compensation and outlier detection when abnormal or erroneous signals are 
measured. In addition, chemometrics covers methods for spectral variable or interval 
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selection [2] aimed at improving regression models and at developing dedicated fast 
spectroscopic instruments. 

 

Table 1. Data structures 

Data Advantage
Spectroscopic
data example

Graphical
example

0th order -
UV abs. at

330nm×

1st order

Outlier detection,
interference

compensation,
noise reduction

UV spectrum

Fluorescence
excitation-
emission
landscape

2nd order
All of the above

plus
 unique solution

 

 

Why spectroscopy: 

Increased demands by the consumers, legislators and competition have been the 
impetus for the development of new quality-monitoring tools in the food industry. 
On-line non-contact spectroscopic measurements are the only measuring techniques 
that can meet these demands. Spectroscopic measurements can be performed 
remotely and in combination with chemometrics analysed practically real time (in a 
matter of seconds), which gives a great potential for installment on-line/at-line for 
process control. When introducing a spectroscopic method in industry the key 
question “What would be the appropriate choice of spectroscopic sensor?” arises. 
The answer will not only depend on the quality parameter to be measured, but also 
on the possible sample presentation, the need for non-destructiveness, robustness 
and, last but not least, possible spin-off in terms of other relevant quality parameters 
to be measured (Fig. 1). In this context spectroscopic sensors are a handful of 
methods based on interactions between sample and electromagnetic radiation, 
including ultraviolet and visual absorption, fluorescence emission, near-infrared and 
infrared absorption, Raman scattering, nuclear magnetic resonance, microwave 
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absorption and (ultra)-sound transmission. The spectroscopic methods based on 
different regions of the electromagnetic spectrum and different physical principles 
have naturally different sensing capabilities, but share the ability to provide rapid 
multivariate information on the sample being monitored, which in turn makes it 
possible to simultaneously determine several quality parameters.  

 

Spectroscopic sensors 

One of the most fascinating spectroscopic methods is near-infrared spectroscopy, 
which over the last decade has been successfully implemented as a fast at-line/on-
line quality control in almost all parts of the food industry. It was recognized early 
that the almost holographic vibrational overtone and combination bands residing in 
the near-infrared spectral region (780-2500 nm) contain an abundance of chemical 
information comparable to the mid-infrared region (see Fig. 2).  

 

Figure 2. In this figure the holographic principle of near-infrared spectroscopy is 
demonstrated with a spectrum of ethanol. The motif from the fundamental stretching 
vibrations in the mid-infrared region (right) is repeated in the near-infrared spectrum (first, 
second and third overtones) and overlaid with combinatorial information (combination 
tones) 
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Moreover, near-infrared sensors have the additional advantage that instrumentation 
is relatively simple and that the radiation may be transmitted through quartz, making 
the use of optical fibres feasible. One instrument and an optical switch can thus 
monitor several measuring points hundred of meters apart. In the food industry near-
infrared spectroscopy is implemented to monitor traditional quality parameters such 
as moisture, protein and fat content as well as product-specific attributes. The trend 
in on-line near-infrared application goes in the direction of fingerprinting raw 
materials, end products and optimal reaction end-stage utilising the full holographic 
potential of near-infrared spectroscopy.  

Like sensors built on near-infrared technology, Fourier transform infrared (FT-IR) 
sensors have substantial potential as a quantitative quality control tool for the food 
industry, but this far has mainly found use in off-line liquid analyses of especially 
milk, edible oils and wine. The main objection to implementation of mid-infrared 
for industrial quality control has been the requirement of sophisticated optical 
materials prohibiting the use of practical fibres and the lack of optimal sampling 
methods. Liquids (and gasses), however, can be optimally measured with 
transmission or attenuated total reflectance (ATR) cells adapted for off-line 
measurements. Fig. 3 demonstrates the combined performance of mid-infrared 
spectroscopy and chemometrics.  

 

 

Figure 3. (left) Superimposed mid-infrared spectra of a ternary mixture in the confectionary 
industry and (right) PLSR score plot with almost perfect recovery of the mixture design 

 

A full-design ternary mixture of extracts in the confectionary industry was measured 
with the ATR principle and related to consumer sensory attributes. The design was 
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fully recovered in the PLSR score plot, promising excellent prediction performance 
for the spectroscopic at-line method. More recently, a small revolution in sampling 
techniques for infrared has occurred. The ATR principle has been extended to solids 
through the so-called diamond ATR by which infrared spectra of samples softer than 
diamond can be measured with high precision and reproducibility.  

Raman scattering, based on weak, inelastic scattered side bands arising when 
illuminating a sample with a strong monochromatic light, appears to be an attractive 
alternative to the in-practice impossible on-line implementation of mid-infrared 
sensors. Like mid-infrared, Raman scatter measures the fundamental molecular 
vibrations, albeit with different selection rules (relative selectivity), and like near-
infrared radiation, Raman scattering can be transmitted in optical quartz fibres. To 
date, a small number of customised on-line Raman applications have been 
developed in the petrochemical, polymer and harddisk industries. However, in 
contrast to mid-infrared and near-infrared, the high sensitivity of Raman to C=C, 
C≡C and C≡N bonds, low sensitivity to water and high selectivity to inorganic 
substances (salts) can be of potential interest for niche-applications in the food 
industry.  

The vibrational spectroscopies: near-infrared, mid-infrared and Raman have in 
common that practically all substances will give rise to substantial 
absorption/scattering effects for which reason information on trace substances 
and/or detailed conformational information is normally hidden in spectra of complex 
samples such as food. Trace substance sensitivity can be obtained by fluorescence 
emission sensors, as most substances do not fluoresce and emission spectra can 
therefore be measured against a black background. However, a trace substance 
sensitive measuring method naturally requires that the trace substance to be analysed 
contain one or more fluorophores. Important fluorophores of relevance to foods 
include proteins (containing the amino acids tryptophane, tyrosine and 
phenylalanine), coenzymes (NADH, NADPH and FAD), vitamins (A, B1, B2, B6, 
B12, D2, E and folic acid), caffeine, chlorophyll, polyphenols, flavanoids and 
aflatoxins. Robust fluorescence sensors based on fibre optics already exist, but their 
on-line implementation in the food processes have not yet been exploited. 
Fluorescence sensors have great potential for monitoring fermentation reactors, and 
fingerprinting with fluorescence spectroscopy is a powerful technique which is 
highly complementary to vibrational fingerprinting.  
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Fluorescence spectra has the attractive property (see later) that it is measured as a 
function of two variables, namely, the excitation wavelength and the emission 
wavelength, thus providing two-dimensional spectra (landscapes). As an example, 
Fig. 4 displays fluorescence landscapes of the frying oil from the beginning and end 
of a commercial spring roll frying process [3].  

 

 

 

Figure 4. Fluorescence excitation-emission landscapes measured on frying oil samples from 
a commercial frying operation. To the left the fluorescence landscape of the new unused 
frying oil and to the right the used oil to be discarded after four weeks of deep-frying spring 
rolls.  

 

In the beginning, clear evidences of plant pigment (emission 660 nm) which are still 
present in the (rapeseed/palm) oil have completely vanished in the used oil. 
Moreover, the complex broad peak has completely changed character and position. 
This demonstrates that a fluorescence sensor has great potential to follow the 
deterioration of frying oils during an industrial frying operation. By employing 
PLSR a number of classical fat- and oil-related quality attributes, such as anisidine 
value, oligomer content, iodine value and vitamin E content, can be 
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predicted/measured. With regard to fluorescence sensors the Food Technology 
group at The Royal Veterinary and Agricultural University has been pioneering the 
field of fluorescence analysis of sugar and sugar juices. It was discovered early that 
fluorescence measured from sugar samples dissolved in water could “fingerprint” 
different sugar factories and identify not-optimally run factories [4]. Although the 
sugar (sucrose) itself does not fluoresce, the sugar refining process “labels” the 
product with indicator-substance fluorescence distinct to the process conditions 
which in turn may be used to optimize the process. However, for the industry to 
realize the potential for such indirect methods based on trace amount of indicator 
substances a new paradigm shift is required.  

 

Mathematical chromatography 

Bi-linear chemometric methods ( ∑
=

+=
N

n
ijjninij ebax

1
) such as PCA and PLSR have 

amply demonstrated their superior performance when analysing spectroscopic 
information in quality control sensors. The advantages of such methods are that 
when analyzing 1st order multivariate data (Table 1) they can facilitate outlier 
detection, interference compensation and noise reduction, resulting in more efficient 
and robust calibration models. When second order data are available (e.g. 
fluorescence landscapes), tri-linear data analytical methods 

( ∑
=

+=
N

n
ijkknjninijk ecbax

1
) furthermore give the possibility of unique resolution of 

the underlying components. This has been beautifully demonstrated by the 
application of the multi-way PCA analog PARAFAC (PARAllell FACtor analysis) 
to fluorescence landscapes of 268 sugar samples [4]. In this application excitation 
and emission spectra of 4 fluorophores were directly identified by this 
deconvolution procedure, two of which could directly be found in the chemical 
literature as the spectra for the amino acids tryptophane and tyrosine. The other two 
could later be identified as complex high molecular melanoidines. Moreover, the tri-
linear method provides real analyte concentrations, rendering calibration models 
superfluous. This breakthrough in “mathematical chromatography” naturally has a 
great impact on application specialists and spectroscopists, creating a quest for 
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“upgrading” traditional spectroscopies with an extra (tri-linear) dimension (pressure, 
temperature etc.).  

 

Future trends 

The potential advantages of implementing spectroscopic sensors for quality control 
directly in the food process will create a continuous quest for still more informative 
and multivariate sensors to be developed. High resolution nuclear magnetic 
resonance is probably the most successful and versatile spectroscopic technique yet 
to be developed and although its implementation as an on-line monitoring tool is 
severely hampered by the requirement of a strong homogeneous magnetic field, we 
foresee this technique will also invade the more advanced segments of the food and 
medical industries for quality control. Among many other reasons nuclear magnetic 
resonance is such a versatile technique which absolutely non-invasively can monitor 
samples and process streams with spatial resolution or as a volume measure. Nuclear 
magnetic resonance is capable of measuring very detailed molecular information 
such as substitution patterns on triglycerides of prime importance to digestion and 
metabolism as well as and to measure types and amounts of, for example, 
polyunsaturated fatty acids, some of which have significant potential of being 
functional fatty acids for preventing myocardial infarction, psoriasis, bronchial 
asthma and other diseases. Last but not least, nuclear magnetic has the capability to 
provide complex multivariate and multiway information on food samples that allows 
application of tri-linear data analytical methods to recover pure analyte 
concentrations and to explore the covariances with food quality. To this end we have 
kick-started with low-field nuclear magnetic resonance relaxation decays normally 
used in the industry to analyse solid fat, total fat and moisture content. By a 
fascinating approach in which the data as a pre-transformation is upgraded to 
become pseudo second order data, we have demonstrated the utility of applying the 
tri-linear methods for analysing nuclear magnetic resonance relaxation decays [5]. 

Process chemometrics is worth little without high-quality data. Spectroscopic 
sensors are able to furnish the process engineers with such data. We therefore 
foresee a growing interest for advanced fingerprinting methods (with and without 
indicator substances) including spectroscopic sensors from microphones to high-
resolution nuclear magnetic resonance sensors. 
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Paper II 
Why high-speed methods never exceed a correlation of 0.9 
to drip loss. A chemometric investigation  

D.K. Pedersen, H. Martens, L.B. Christensen and S.B. Engelsen 

___________________________________________________________________ 

Abstract 

This study establishes that drip loss in porcine meat is measured by vague methods 
which at their best interrelate with a prediction error in the range 0.6-0.9 % drip loss 
and intercorrelations only slightly above 0.8. For this reason multivariate 
calibrations from indirect methods such as NIR, IR, Raman, NMR, ultrasound, pH 
and temperature gradients to classical drip loss measurements cannot be expected to 
exceed an apparent prediction error of less than approximately 0.6 % drip loss and a 
correlation higher than approximately 0.85.  

The purpose of this study is to calculate the approximate uncertainty of drip loss 
measurements and to suggest methods for uncertainty estimates for situations where 
it is not possible to produce true replicates. This study places special emphasis on 
estimation of the level of the error of the reference parameter ‘drip loss’ with respect 
to evaluation of the predictive ability of multivariate calibrations by fast 
spectroscopic measurements. The different approaches of uncertainty approximation 
in this study seem to yield similar results. The error of drip loss was found to be 
highly heteroscedastic, which hinders detailed statistical analysis. However, these 
uncertainty estimates do give an indication of the level of the error arising from the 
drip loss measurements. That reference error is similar to the obtained prediction 
errors of the multivariate calibrations from spectroscopic measurements.  

 

Introduction 

The water-holding capacity (WHC) of meat is important for two reasons. Firstly, 
meat is sold by weight, thus any water loss is economically undesirable. Secondly, 
the WHC influences the appearance of fresh meat during retail and might affect the 
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sensory properties of cooked meat, as high cooking loss has been reported to make 
meat be perceived less juicy (Martens, Stabursvik and Martens, 1982).  

In quality control of food production it is often of great practical value to replace an 
uncertain and time-consuming chemical method with a more precise and ultra-rapid 
method, such as near infrared (NIR), Fourier transform infrared (FT-IR), Raman 
spectroscopy, nuclear magnetic resonance (NMR), ultrasound, pH or temperature 
gradients. For this purpose appropriate multivariate calibrations are required. In 
multivariate calibration, a relationship between the spectra from the fast 
spectroscopic method and the reference parameter from the time-consuming 
chemical method, such as the drip loss measurements, is built for the samples of 
interest. Estimation of the uncertainty of the chemical reference methods can be of 
great value in order to estimate if the ‘new’ spectroscopic method based on 
chemometric regression is suited as a practical replacement for the ‘old’ chemical 
reference method and secondly to estimate if further refinement of the ‘new’ method 
is possible on the basis of the data provided by the ‘old’ reference method. In our 
recent work (Pedersen, Morel, Andersen and Engelsen, 2002) and in several other 
studies (Forrest, Morgan, Borggaard, Rasmussen, Jespersen and Andersen, 2000; 
Brøndum, Munck, Henckel, Karlsson, Tornberg and Engelsen, 2000; Brown, 
Capozzi, Vavani, Cremonini, Petracci and Placucci, 2000; Bertram, Andersen and 
Karlsson, 2001; Bertram, Dønstrup, Karlsson and Andersen, 2002) the reference 
parameter for water-holding capacity (WHC) or drip loss in meat is applied in 
multivariate calibrations based on spectroscopic measurements. The obtained 
prediction errors in all these fairly different investigations fall in the range of 0.8-2.6 
% drip loss, and the questions whether the spectroscopic calibration is satisfactory 
for replacing the reference method.  

All measurements, fast spectroscopic measurements as well as chemical or physical 
reference measurements, have errors. Spectroscopic measurements are usually quite 
accurate, but one must still be aware of possible errors such as the homogeneity of 
the sample, which is of great importance to the sampling method. Meat is usually 
very inhomogeneous, so in this case the sampling error is a great contributor. Other 
sources of error in spectroscopic measurements are scatter interferences and 
unstable process variables like humidity and temperature (Wülfert, Kok and Smilde, 
1998). The uncertainty of spectroscopic methods can be estimated simply by making 
additional measurements without moving the sample from the instrument 
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(uncertainty of the spectroscopic measurement) or by replacing the sample by 
another representative sample and make additional measurements (uncertainty of the 
sampling method + uncertainty of the spectroscopic measurement). This is possible, 
because spectroscopic measurements are fast and non-destructive (re-use of the 
sample is possible).  

The methods for determination of drip loss (Honikel, 1998; Rasmussen and 
Andersson, 1996) are associated with several sources of error related to the nature of 
the meat samples and the processing of the samples during the analysis. The 
reduction in water holding during conversion of muscle to meat is primarily due to 
pH-induced protein denaturation and the ongoing rigor development, which result in 
shrinkage of the myofilament lattice spacings and hereby becomes the driving force 
for transfer of water into potential drip channels (Offer et al., 1989). When a muscle 
is cut, the fluid will drain from the surface due to gravity, given that the viscosity of 
the fluid is sufficiently low and that capillary forces do not retain it (Offer and 
Knight, 1988). Therefore, orientation of the fibres with respect to cut is very 
important when measuring the drip loss. Surface evaporation or squeezing of the 
sample during handling are other ways of losing water which can occur during the 
time of measurement (usually 24 or 48 hours). Inhomogeneity is obviously a 
problem with these methods, as fat and connective tissue in different levels and 
different distribution across the samples can influence the amount of drip. Another 
major challenge is that accurate replicates of the reference method are impossible to 
perform. In the Honikel method a large sample (80-100 g) is cut out of, for example, 
the loin and used as a whole for the measurement. Due to the variation between 
samples taken from different parts of the carcass, a large sampling error will be 
introduced and true replicates are impossible to produce. In the method proposed by 
Rasmussen and Andersson (1996) several smaller samples (25 mm in diameter and 
25 mm in length) across the loin are used. This is expected to give more detailed 
information about the drip loss from the muscle, but it is still not possible to produce 
true replicates, as it is not possible to homogenize the material, which would result 
in destruction of the structure and loss of information about the water-holding 
capacity. 

The purpose of this study is to calculate the approximate uncertainty of drip loss 
measurements and to suggest methods for uncertainty estimates for situations where 
it is not possible to produce true replicates. This study places special emphasis on 
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estimation of the level of the error of the reference parameter ‘drip loss’ with respect 
to evaluation of the predictive ability of multivariate calibrations for drip loss in 
porcine meat by fast spectroscopic measurements. 

 

Materials and methods 

Research meat samples. 117 pigs were slaughtered at the research abattoir at The 
Danish Institute of Agricultural Sciences, Foulum, Denmark. In order to obtain a 
large variation in meat quality (water-holding capacity) the rates and extents of pH 
decrease post mortem were manipulated through pre-conditioning of the pigs. 
Adrenaline affects glycogenolysis and thereby represents a tool for manipulating of 
ultimate pH and probably also the rate of pH decrease, as described by Henckel, 
Karlsson, Oksbjerg and Petersen (2000). Another way of manipulating energy levels 
in the live muscle is treadmill exercise. In the present study the pigs were subjected 
to three different treatments prior to slaughtering: (1) 27 pigs were injected with 
0.3 mg adrenaline / kg live weight 16 hours prior to slaughter; (2) 51 pigs were 
subjected to 14-20 min treadmill exercise immediately prior to slaughter; (3) 39 pigs 
served as controls. Longissimus dorsi from the carcasses were subjected to 
measurements of WHC, measured as drip loss.  

Water-holding capacity according to Honikel (1998) was measured as drip loss, 
whereby the loss of water was registered from a 2.5 cm thick slice of muscle taken 
24 hours post mortem placed hanging in a net and suspended in a plastic bag for 
48 hours at +4°C (the bag method). The sample was cut out at the 6th lumbar 
vertebra of the left loin. In addition, water-holding capacity according to Rasmussen 
et al. (1996) was measured, whereby the loss of water was registered from two or 
three pieces of muscle taken 24 hours post mortem hanging for 24 hours in a plastic 
cup with a removable container at +4°C (the EZ (easy) method). The sample was cut 
out at the 5th lumbar vertebra of the left loin. For 95 of the 117 animals three 
cylindrical cuts were made for each measurement. The three cuts were named A, B 
and C (Figure 1). The position of the three cuts where maintained at all 
measurements. For the remaining 22 of the 117 animals only two cuts were made for 
each measurement, more or less covering the same area as the A, B and C cuts.  
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Loin samples. From two industrial slaughterhouses 34 pigs were selected by 
measurements with the MQM (Meat Quality Marbling)-probe (Borggaard, Andersen 
and Barton-Gade, 1989) in order to ensure a broad range of drip loss (Christensen, 
2002). This constitutes ‘the loin data set’. From the 34 pigs a piece of approximately 
40 cm from the left and the right longissimus dorsi muscles were excised, starting at 
the joint between third and fourth lumbar vertebra. After 4 hours of rest at 7°C, the 
longissimus dorsi from the right and the left side were cut into slices (11 to 15 slices 
for all 34 muscles), each with a thickness of 2.5 cm.  

 

Figure 1. A slice of the loin with definition of the three cylindrical cuts, A, B and C, applied 
for the measurement of drip loss by the EZ method  

 

The water-holding capacity was measured using the bag method for the slices from 
the right longissimus dorsi as for the research meat samples, except that the slices 
were hanging in a net and suspended in a plastic bag for only 24 hours at +4°C. 
From the slices from the left longissimus dorsi the water-holding capacity was 
measured using the EZ method employing three cylindrical cuts (A, B and C) per 
slice (Christensen, 2002).  

Statistical analysis. Chemical data are usually heteroscedastic in the way that high 
values are related to a larger error of measurement than low values. Since statistical 
methods assume that data are homoscedastic in the way that all values are related to 
an equal amount of error, the statistical calculations applied in this study will only 
be approximations. 

The difference (f) between values of measurements performed by the two methods 
(the EZ method (x) and the bag method (y)) is investigated: 
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 f = y-x    (1) 

The one method (y) can be simulated by the other (x) as ŷ  by the following 

equation: 

 ŷ  = b0 + b1x    (2) 

where b0 is the offset and b1 is the slope of the linear relationship between the values 

of the two methods. Then the difference ( f̂ ) is: 

 f̂ = y- ŷ     (3) 

Simple correlations between data sets were performed, and the root mean squared 
error was calculated as: 

RMSE = ( )∑ −
− =

N

i
ii yy

N 1

2ˆ
2

1
  (4) 

where iy  is a reference value for the sample i,  iŷ  is a corresponding reference value 

for the sample i and N is the total number of samples. 

The total variation ( 2
TotalS ) of a data set can, in simple situations, be calculated as the 

summation of the different independent sources of variation in the data set ( 2
aS ), 

( 2
bS ) and ( 2

cS ): 

2
TotalS  = 2

aS  + 2
bS  + 2

cS    (5) 

where a, b and c refer to the source of variation. This simple variance component 
model will be used for characterizing various sources. The variances were calculated 
by: 

 2S  = 
)1(

)(
22

−
∑ ∑−

nn
xxn

   (6) 

where x is the data values and n is the number of samples. 

Partial Least Squares Regression (PLSR) (Martens and Næs, 1989), which is a 
predictive method based on estimated latent variables, will be applied as a 
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multivariate approach to the simultaneous analysis of the two types of reference 
measurements on the same samples. The purpose of the PLSR is to build a linear 
model enabling prediction of a desired reference value (y), e.g., drip loss measured 
according to the bag method, from a number of data (x), e.g., the A-, B- and C-
values measured according to the EZ method. In matrix notation the linear model is 
y = Xb, where b contains the regression coefficients that are determined during the 
calibration step, and X is the matrix of collected data for the applied samples. The 
measure of model performance is usually given by r, which is the correlation 
between the measured reference (y) and the predicted reference (ŷ), and by the 
prediction error RMSECV (root mean square error of cross-validation): 

RMSECV = 2

1
, )ˆ(1

∑ −
=

−

N

i
iii yy

N
  (7) 

where iy  is the measured reference value of sample i, iiy −,ˆ  is its value predicted by 

a model obtained without sample i, and N is the total number of samples. 

 

Results and Discussion 

The two drip loss methods; the bag method and the EZ method, are compared for 
the two data sets; the research data set and the loin data set. The means and ranges 
of drip loss measured by the two methods are shown in Table 1.  

 

Table 1. Mean, standard deviation (S.D.), minimum (Min.) and maximum (Max.) values for 
the measurements of drip loss (%) by the two methods, the bag method (Bag) and the EZ 
method (EZ), for the two data sets, the research data set (Research) and the loin data set 
(Loin). 

Data set Method Mean S.D. Min. Max. 

Research Bag 5.63 3.48 0.71 13.77 

Research EZ 3.09 2.65 0.04 11.13 

Loin Bag 5.07 2.39 0.81 12.61 

Loin EZ 3.80 2.19 0.10 13.09 
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In Figure 2 the correlations between the drip loss values measured by the two 
methods for the research data set (1) and the loin data set (2) are shown. RMSE is 
the error in % drip loss between the two methods, and is found to be 2.82 % drip 
loss for the research data set and 1.40 % drip loss for the loin data set.  

 

Figure 2. Measured EZ drip loss versus measured bag drip loss for the research data set (1) 
and the loin data set (2). The regression lines and the target lines are added. 

 

The calculated difference between the two methods is twice as great for the research 
data set as for the loin data set. In principle, the two methods are expected to 
produce comparable results, so the rather poor correlations need to be investigated. 
It is known (Christensen, 2002) that there is an offset between the two methods. 
Judging from the mean values reported in Table 1, there appears to be a larger offset 
between the two methods in the research data set than in the loin data set. This might 
be partly due to the difference in ‘hanging time’ used in the bag method applied in 
the two data sets; 24 hours was used for the loin data set, while 48 hours was used 
for the research data set.  

The better correlation between the methods for the loin data set might be explained 
by the inclusion of several measurements (11-15) per animal, which reduces the 
contribution of variance concerning the animals in relation to the number of 
measurements. The research data set shows the poorest correlation between the two 
methods, even though the samples were taken from the 5th and the 6th lumbar 
vertebra on the same side of the loin, and it has been shown that the drip variation in 
that area is not significantly different (Christensen, 2002). For the measurements of 
the loin data set, all ‘bag method’ measurements were carried out on the right loin 
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and all ‘EZ method’ measurements were carried out on the left loin. That might 
influence the correlation between the two methods, as differences in meat quality 
between the two sides can be found (Lundström and Malmfors, 1985). A further 
difference between the two data sets is the treatments applied to the animals in the 
research data set. The artificial way of producing different stress levels may interact 
with the biological properties of the meat in ways that are unpredictable. This might 
be of particular concern with regard to the exercised pigs, as it involves a greater 
risk of ‘producing’ uneven and high drip losses along the loin than for the non-
exercised pigs. 

Uncertainty estimates can be produced in many ways. A very common method is to 
employ representative replicates and calculate the standard deviation between them. 
That is not possible when working with whole meat samples in which case there is 
no possibility of producing true, representative subsamples. Instead alternative ways 
of estimating the uncertainty are suggested in this study. 

The total variation ( 2
TotalS ) of the loin data set is calculated in accordance with 

equation 5 as the summation of the biological variation between the animals 

( 2
AnimalS ), the inhomogeneity variation along the loin ( 2

SliceS ), the inhomogeneity 

within slices ( 2
omogeneityhomInS ) and the variation due to the method of measurement 

( 2
MethodS ): 

2
TotalS  = 2

AnimalS  + 2
SliceS  + 2

ogeneityhomInS  + 2
MethodS  

Statistical estimates. In a variance component approach, the estimations of the 
defined variances were calculated by equation 6, applying the drip loss measured by 

the bag method and by the EZ method. 2
AnimalS  was calculated as the variance 

between the animals, where the average of all drip loss measurements for each 

animal was used as x. 2
SliceS  was calculated as the average of the variances between 

all slices within each animal of the data set, where the average of drip loss 

measurements within each slice were used as x. 2
ogeneityhomInS  was calculated as the 

average of the variance between the three measurement points A, B and C of within 
each slice (see Figure 1), where the individual drip loss measurements in the 
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measurement points A, B and C were used as x. As this is only possible for the EZ 
method, the calculated value for that method is applied for further calculation 

concerning both methods, as the 2
ogeneityhomInS  is assumed to be equal for both 

methods. In Table 2, the calculated variations are listed. The variation due to the 

method of measurement ( 2
MethodS ) is a part of the calculated variations: 

2
,realAmimalS  = 2

AnimalS  + 2
MethodS  

 

Table 2. The uncertainty estimates calculated by the ‘statistic’ method with the purpose of 
calculating the variance of the methods ( 2

MethodS ). The total variance ( 2
TotalS ), the biological 

variance of the animals ( 2
AnimalS ), the inhomogeneity variance along the loin ( 2

SliceS ), the 

inhomogeneity variance across the slices ( 2
omogeneityhomInS ). 

Estimate Bag method EZ method 

2
TotalS  5.69 4.81 

2
AnimalS  4.91 4.11 

2
SliceS  0.91 0.86 

2
omogeneityhomInS  1.59 1.59 

 

When 2
TotalS  was calculated as the variance of all measurements, where the 

individual drip loss measurements for each slice were used as x for the bag method 
and the average of the average of the A, B and C drip loss measurements for each 

slice were used as x for the EZ method, it was possible to calculate 2
MethodS  for the 

bag method and for the EZ method (see Table 3), by the following equation: 

2
TotalS  = ( 2

AnimalS - 2
MethodS ) + ( 2

SliceS - 2
MethodS ) + ( 2

ogeneityhomInS - 2
MethodS ) + 2

MethodS  
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Table 3. The type of uncertainty estimate (Estimate – see text) and the value of the 
uncertainty estimates for different the different approaches (see text) employing the two data 
sets, the research data set (Research) and the loin data set (Loin), and the two methods for 
measurement of drip loss, the bag method (Bag) and the EZ method (EZ). 

Study Data set Method Estimate Value [%] 

Statistical Loin Bag 
MethodS  0.93 

Statistical Loin EZ 
MethodS  0.94 

Neighbour Loin Bag RMSE 0.66 

Neighbour Loin EZ RMSE 0.49 

Slices 2-5 Loin Bag S.D. 0.61 

Slices 2-5 Loin EZ S.D. 0.50 

PLSR Research Bag by EZ RMSECV 2.11 

PLSR Loin Bag by EZ RMSECV 1.29 

 

It is an approximation to use the same 2
ogeneityhomInS  for both methods, since the bag 

method measures a larger area (the whole slice) than the EZ method (three sub 
samples). For this reason, it might be more correct to take the random variation 
within a slice into account. The larger area applied in the bag method corresponds to 
approximately 8 subsamples of the size of the A, B and C subsamples applied in the 
EZ method, so the volume factor is 8/3. If it is assumed that the drip loss property is 
randomly distributed within each slice, i.e. normally distributed, no additional 
restrictions between subsamples (such as diffusion barriers to the water, total 
pressure variations or partial water pressures towards evaporation) exist. Then 

2
ogeneityhomInS can be calculated to 4.24, and further calculations lead to MethodS  = 

1.48 % drip loss. But in practice, the drip loss is not randomly distributed within the 
slice, and additional restrictions between subsamples have to be reduced by an 
equivalence factor, compared to the simple volume factor. Diffusion barriers and 
edge effects are considered to reduce the volume factor by a factor between 0.5 and 
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0.8. Hence, 2
ogeneityhomInS can be calculated to be between 2.12 and 3.39, and further 

calculations lead to MethodS  = 1.06-1.33 % drip loss. 

 

 

Figure 3. Schematic presentation of the production of the simulated replicates made by 
averages of sample-slice-neighbours 

 

Neighbour measurements. In another approach neighbour measurements were 
applied from the loin data set, where measurements of drip loss were performed 
along the loin (11-15 points of measurement per loin) for each of the 34 animals. By 
using the average of the two sample neighbours of a certain sample, it was possible 
to produce a simulated replicate; see Figure 3. This was carried out for all the 
sample slices, except the first and the last, for each animal. The correlations between 
the original samples and the simulated replicates for the two drip loss methods, the 
bag method (1) and the EZ method (2), are shown in Figure 4. There is quite a high 
correlation for both methods, especially for the low values of drip loss. The 
uncertainty estimates, the drip loss errors (RMSED) in percent, are 0.66 for the bag 
method and 0.49 for the EZ method; see Table 3. This way of calculating 
uncertainty estimates might yield a quite realistic estimate concerning methods of 
drip loss measurements, since the whole loin was used and several samples (11-15) 
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from each animal were applied in the comparison. In this way, some of the sources 
of variation related to different sampling points are decreased. 

 

 

Figure 4. Drip loss values calculated as the average of the two neighbour values versus the 
drip loss value in question for the loin samples (417) for the bag method (1) and the EZ 
method (2). The regression lines and the target lines are added. 

 

Slices 2-5. From earlier investigations (Christensen, 2002) it is known that the area 
around the slices 2-5 is equal with regard to the drip loss of the meat. The 4 slices 
(2-5) from each of the 34 animals in the loin data set are then considered as 
replicates, the variation within each animal is calculated, and the standard deviation 
(S.D.) results are reported as 0.61 for the bag method and 0.50 for the EZ method 
(Table 3). These uncertainty estimates are rather close to the uncertainty estimates 
found by the correlations using all slices through whole loins. This approach is, of 
course, only possible for the loin data set and not for the research data set, where 
only one measurement per animal was carried out. 

PLSR. The three previous approaches for estimation of the uncertainty only employ 
the loin data set, which contains attempts of replicates. By constructing PLSR 
models (1 component) using the three drip loss results (A, B and C) from the EZ 
method (X) to predict the drip loss obtained from the bag method (y) for both data 
sets, the research data set (one measurement per animal) and the loin data set (one 
measurement per slice), can be applied. The predicted versus measured plots for 95 
of the research samples (1) and for the loin samples (2) are shown in Figure 5. The 
uncertainty estimates, the root mean squared error of cross validation (RMSECV), 
are 2.11 for the research data set and 1.29 for the loin data set (Table 3).  
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Figure 5. Predicted drip loss based on ABC measurements from the EZ method versus 
measured drip loss (the bag method) performed by PLSR modelling (1 component) for the 
research data set (1) and the loin data set (2). The regression lines and the target lines are 
added. 

 

The research data set again displayed the lowest correlation between the methods, 
and the resulting uncertainty estimates are considerably higher than the previous 
attempts at estimation of the samples from the loin data set. The regression 
coefficients for variable A, B and C, displayed in Figure 6, all have significant 
influence on the PLSR models for both data sets.  

 

 

Figure 6. Regression coefficients for the PLSR models (1 component) based on A, B and C 
measurements from the EZ method for prediction of the drip loss measured by the bag 
method for the research data set (1) and the loin data set (2). 

 

The extent of the influence of the three variables A, B and C seems to be different 
for the two models based on the two data sets, the research data set and the loin data 
set. All three measurements, A, B and C, almost equally influenced the model for 
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the research data set, while the B and C measurements influenced the model 
significantly more than the A measurement for the loin data set. No apparent 
explanation for the difference can be found. 

The uncertainty estimates of reference methods are needed for evaluation of 
multivariate models based on spectroscopic data for prediction of essential quality 
parameters of complex samples. Early prediction of water-holding capacity in meat 
by multivariate vibrational spectroscopy as described by Pedersen et al. (2002) is 
this type of a situation. In Figure 7, the prediction error (RMSECV) from one of the 
PLSR models applied in this study is plotted versus the number of components 
applied for the modelling.  

 

 

Figure 7. The prediction error (RMSECV) of a PLSR model based on FT-IR spectra for 
prediction of drip loss (the bag method) for 41 pigs from a research slaughterhouse plotted 
versus the number of components (PC’s) applied for the model. The uncertainty estimates 
calculated according to three approaches: the statistical, the neighbour and the slices 2-5, are 
plotted as horizontal lines. 

 

The PLSR model is based on FT-IR spectra of porcine meat from 41 of the animals 
applied in the research data set used in the current study. The drip loss measured by 
the bag method is applied as the reference measurement. The uncertainty estimates 
of the bag method calculated as % drip loss according to the three approaches the 
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statistical (0.93) without corrections, the neighbour (0.66) and the slices 2-5 (0.61) 
are plotted as horizontal lines in Figure 7. These estimates can be used to display the 
amount of the error connected to the PLSR model, which is caused by the method of 
measurement of the reference parameter. When using the optimal number of 
components (6) for the PLSR prediction of the drip loss reference, the reference 
method accounts for 0.61-0.93 % drip loss of the total modelling error. Moreover, 
there are instrumental errors from the spectroscopic measurement, sampling errors 
related to the attempt of measuring representative samples and modelling errors due 
to the lack of fit between the spectroscopic measurement and the reference 
measurement. 

 

Conclusion 

When looking at the approaches of estimation of the uncertainty by employing the 
loin data set, which contains attempts of replicate measurements, there seems to be a 
fair agreement about uncertainty estimates of the methods around 0.6-0.9 % drip 
loss (mean = 5.1 % drip loss) for the bag method and around 0.5-0.9 % drip loss 
(mean = 3.8 % drip loss) for the EZ method. These uncertainty estimates indicate 
the error arising from the reference methods of drip loss measurements of porcine 
meat. These uncertainty estimates can be compared to the obtained prediction errors 
in the previously reported investigations (Forrest et al., 2000; Brøndum et al., 2000; 
Brown et al., 2000; Bertram et al., 2001, 2002; Pedersen et al., 2002) in the range of 
0.8-2.6 % drip loss. In addition to the error from the reference measurements, errors 
from the spectroscopic methods and modelling errors will affect the final prediction 
error, when calibrations are performed. It might be concluded that the investigations 
which obtained the lowest prediction errors (around 0.8 %) have obtained nearly 
optimal calibrations concerning the drip loss measurement, while the investigations 
reporting the highest prediction errors (around 2.6 %) have room for improvement, 
as they are probably affected by other sources of interfering variations or suffering 
from low modelling fit. Whether the obtained prediction errors are satisfactory for 
the individual purposes of the spectroscopic calibrations has to be evaluated against 
the actual ranges of drip loss in the populations of future predictions, in addition to 
the quality of the reference parameter.  
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More precise reference methods than the drip loss methods described in this study 
might be desired for references for multivariate calibrations with the purpose of 
future predictions. One way to improve the reference methods could be to routinely 
introduce ‘replicates’ along the loin. Often only one slice of the loin is used for the 
measurement of drip loss. In situations of extensive inhomogeneity of the object of 
measurement, as the loin of a pig carcass, the introduction of ‘replicates’ will 
provide a truer estimate of the drip loss of the whole loin than just one single 
measurement can provide. Alternatively, it may be better to introduce more samples 
to improve the robustness of the calibration, as suggested by Sørensen (2002). A 
mathematical alternative to cope with heteroscedastic data could be to apply 
weighted least squares of objects in the PLSR. 
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Paper III 
Method and apparatus for prediction of the drip loss of a 
part of a carcass  

D.K. Pedersen, J.R. Andersen, L. B. Christensen and S.B. Engelsen 

___________________________________________________________________ 

The present invention relates to a method and an apparatus for prediction of the drip 
loss of a part of a carcass by measuring a muscle in the part of the carcass after 
slaughtering. 

DK 163.382 B (Slagteriernes Forskningsinstitut) discloses a method of determining 
the quality of individual meat pieces, in which method a reflection measuring probe 
is introduced into the meat piece and a number of measurements of the light reflec-
tivity along the scanning line of the probe is recorded. The data set of reflection 
values obtained is subjected to a statistical analysis computing how many times each 
reflection value appears, and the degree of frequency is inserted in a multivariable 
algorithm expressing a quality property. The reflection is measured in a wavelength 
band in the border range between the visible and the near-infrared range, for 
instance at 950 nm. 

One of the quality properties, which can be determined, is the juice holding 
capacity, which is the capability of the meat to retain water, for instance during 
storage. This capability may be determined with high accuracy in chilled meat (post 
rigor) by means of the method described. When measuring slaughter-warm meat 
(pre rigor), no correlation as to juice holding capacity has been found. 

It is, however, desirable to be able to determine the juice holding capacity early in 
the slaughter process, as the part carcass may then be subjected to treatments which 
are more optimally adapted to the actual quality properties of the individual carcass 
or meat. 

DK 172.774 B1 (Slagteriernes Forskningsinstitut) discloses a method of predicting 
the drip loss of a meat piece or determining its juice holding capacity. In the method 
two sets of light reflectivity measurements with timing difference are recorded on a 
slaughter-warm muscle in the carcass, for instance with a timing difference of 
1-20 minutes. The change of the reflection values are inserted in an algorithm 
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expressing the juice holding capacity of the meat. Measurements are made in the 
near-infrared area from 900 to 1800 nm. A drawback of the method is that it takes a 
long time, seen in relation to the advancing tempo of carcasses on a modern 
slaughter line. Moreover, a higher accuracy than the one found (1.8%) is desirable. 
It is the object of the invention to provide a method and an apparatus for prediction 
of the drip loss of a part of a carcass by measuring a muscle in the part carcass after 
slaughtering, said method and apparatus obviating the above drawbacks. 

The method according to the invention is characterized in that measurements are 
carried out while the part carcass is still warm from slaughter, that the light 
reflectivity of the muscle is measured in at least one wave range with a wave 
number below 1500 cm-1, that the resulting, possibly processed measurement data 
are inserted as a variable in an algorithm expressing a prediction of the drip loss as a 
function of the light reflectivity in one or more wave ranges with a wave number 
below 1500 cm-1, and that the prediction of the drip loss is automatically calculated 
in a calculation unit by means of the algorithm.  

The method according to the invention is based on the surprising observation that by 
carrying out a reflection measurement on a muscle in a carcass, while the carcass is 
still warm after the slaughtering, in at least one wave range with a wave number 
below 1500 cm-1, a quick measurement can be made predicting the drip loss, which 
makes it possible to measure the carcasses in the tempo, in which they are advanced 
on a common slaughter line, and it has moreover been found that the measurement is 
able to predict the drip loss with an accuracy which is substantially higher than the 
one obtained by the method using measurements with timing difference. 

The wave range in question with a wave number below 1500 cm-1 (corresponding to 
a wavelength band with a wavelength of more than 6,667 nm) lies preferably in 
which corresponds to the middle-infrared range, i.e. very far from the above 
wavelengths of 950 and 900 - 1800 nm used up till now. 

A preferred embodiment of the method according to the invention is characterized in 
that measurements are carried out in one or more wave ranges with a wave number 
in the interval 900-1500 cm-1. In this connection a very good correlation between the 
reflection ability and the prediction of the drip loss has been found. 

Preferably, measurements are carried out in one or more wave ranges with a wave 
number in the interval 900-1200 cm-1. 
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Preferably, measurements are carried out in more than one wave range, and the 
algorithm is preferably multivariable. Preferably, measurements are made in less 
than 100 wave ranges and/or an algorithm having less than 100 variables is used. In 
particular, measurements are carried out in less than 10 wave ranges and/or an 
algorithm having less than ten variables is used. 

It is preferred to use only one piece of measuring equipment per slaughter line. The 
piece of equipment may be a fully automatic device or a semi-automatic, operator 
controlled instrument. The piece of equipment may be adapted to measure each 
carcass passing the equipment, but may possibly only carry out random measure-
ments if conditions so require. The equipment may moreover be designed for 
measuring chilled meat. 

The time required for recording measurement data may vary in accordance with the 
specifications of the equipment and will thus typically lie from below one second 
and up to 10 seconds, thus making it possible for one single piece of equipment to 
measure in the tempo of the slaughter line. Preferably, measurement data are used 
which have been recorded within less than 1 minute, for instance less than 
10 seconds. 

In the method according to the invention, measurements are carried out while the 
part carcass is still in slaughter-warm condition, i.e. while the muscles undergo the 
transformation from living tissue in a recently slaughtered animal to chilled, edible 
meat. The measuring is therefore preferably carried out while the muscle is in pre 
rigor condition, in particular before the chilling of the part carcass. 

The measuring is preferably carried out within two hours from the slaughtering 
(drainage of blood), for instance 0.5 to 2 hours after slaughtering. 

The apparatus according to the invention is characterized in comprising 

- a light reflection meter adapted to measure the light reflectivity of a muscle in at 
least one wave range with a wave number below 1500 cm-1, 

- a calculation unit with a program and/or memory part adapted to automatically 
record measured, possibly processed light reflectivity data in an algorithm and to 
calculate the algorithm value, 
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- an algorithm contained in the program and/or memory part expressing a prediction 
of the drip loss as a function of the light reflectivity in one or more wave ranges with 
a wave number below 1500 cm-1, measured on a muscle in a part carcass after 
slaughtering, while the part carcass is still warm (pre rigor), and 

- a signal unit which after the insertion of light reflectivity data in the algorithm and 
calculation of the algorithm value emits a signal depending on the calculated 
prediction. 

The apparatus may be stationary or portable and may be adapted to measure directly 
on a visible meat surface or on a cut surface in the meat provided by insertion of a 
measurement probe with a pointed end. The measurement head of the apparatus is 
preferably in contact with the muscle during measurement. If desired, measurements 
may be performed in various different muscles. 

By a slaughter part carcass is in the present case preferably to be understood a whole 
carcass, in particular a carcass from which the bowels have been removed, a half 
carcass produced by backsplitting of a whole carcass, or a part carcass or a cut-out 
piece, for instance a fore-end, a middle piece or a ham of a pig carcass. 
Measurements are preferably carried out on a muscle in a whole or backsplit 
carcass. 

A carcass is in particular a pig carcass. 

By drip loss is in the present connection also to be understood the juice holding 
capacity. 

In a wave range with a wave number below 1500 cm-1 is in the present connection to 
be understood what corresponds to a wavelength band with a wavelength of more 
than 6667 nm.  

 

Example 

This example illustrates that the drip loss of slaughter carcasses can be predicted 
with high accuracy already on the slaughter line by measurement of the reflection of 
the meat at several wave ranges with a wave number below 1500 cm-1. The 
measuring is carried out within a so short period of time that no transformation of 
the meat takes place during the period of measurement. 
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In a test slaughterhouse 1/3 of a group of 46 pigs are exercised to provide a higher 
share than normal of carcasses having a high drip loss after chilling. Then all pigs 
are given an anaesthetic and slaughtered. 35 minutes after sticking, a hot meat 
sample (cutlet) is taken from the back muscle (longissimus dorsi). The temperature 
is 37 to 41°C. An ATR-IR spectrum is obtained with 64 scans in an interval from 
900 to 1500 cm-1 (ATR = Attenuated Total Reflectance). The definition is 4 cm-1. A 
spectrometer of the type Arid-Zone MB155S from Bomem, Canada, with an InAs 
detector, single-plate beamsplitter and SiC radiation source. 

The drip loss of the meat from the same 46 pigs is recorded in a laboratory by 
measuring of the weight of a meat sample by cutting out after 24 hours and again 
after 72 hours (K.O. Honikel 1987. How to measure the water-holding capacity of 
meat? Recommendation of standardized methods. Evaluation and Control of Meat 
Quality in Pigs. Edited by P.V. Tarrangt, G. Eikelenboom & G. Monin. Martinus 
Nijhoof Publishers, Holland: p. 129-142). The drip losses measured lie between 0.7 
and 8.0 %. 

PLS regressions (PLS = Partial Least Squares) between the IR measurement values 
and the drip loss measured in the laboratory are determined in respect of the 46 pigs, 
partly directly on the IR measurement values of the spectrum and partly on the first 
and second derivative of the spectrum. On basis of this a multivariable algorithm is 
developed of the type   

 Wdryp = k0 + k1 . a1 + k2 . a2 + kn . an 

in which 

 Wdryp is the predicted drip loss (in %) 

k0, k1, k2 ….. kn are constants, 

a1, a2 ….. an are reflection measurement values or the first or second derivative in a 
range with a given wave number, and 

n is an integer, for instance 100. 

 

Data from the four outliers do not form part of the development. 
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On basis of the algorithm and the two data sets the correlation R and the accuracy of 
the prediction RMSEP (% drip loss) can be calculated, which will appear from the 
table below. 

 
Spectral range (cm-1) Data pre-processing R RMSEP 
-----------------------------------------------------------------------------------------------------    
 900-1100    0.90 0.82 
1000-1200    0.91 0.78 
1000-1200  1st derived  0.94 0.64 
1000-1200  2nd derived  0.92 0.73 

----------------------------------------------------------------------------------------------------- 

 

It will be seen that the drip loss can be determined with an inaccuracy of less than 
1% by measuring of the reflection capability of the meat in several wave ranges in 
the interval from 900 to 1200 cm-1 and by insertion of the measurement values in a 
multivariable algorithm developed with a standard measuring method as reference. 
This inaccuracy is sufficiently small for making it realistic to sort the carcasses in 
quality classes already before the carcasses are chilled in the slaughterhouse, which 
makes it possible to use carcasses with a very low drip loss or a high drip loss for 
the manufacture of types of products suitable therefore, whereas carcasses with a 
normal drip loss for instance may be used for the production of fresh cut-outs. 

By the development of production equipment the reflection measurement and the 
calculation can be carried out in the same tempo as the advancing of the carcasses 
on a slaughter line, i.e. without any need to wait for transformation processes of the 
meat like in the method according to Danish Patent No. 172.774 B1. 

The correlation between the spectroscopically measured drip loss and the drip loss 
measured in the laboratory of the 42 samples is shown in Fig. 1. In the calculation of 
the drip loss by spectroscopy the 1st derived of the IR spectra is used. 
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Figure 1 

 

The IR spectra in the interval 900-1500 cm-1 for meat from all 46 pigs are shown in 
Fig. 2. In particular about 1000 cm-1, the spectra contain much information which is 
correlated to the drip loss. 

 

 

Figure 2 

 

Above 1500 cm-1 no correlation between drip loss and reflection in slaughter-warm 
meat has been found. 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Målt dryptab

Pr
æ

di
kt

er
et

dr
yp

ta
b

r = 0.935178
r2 = 0.874558
RMSEP = 0.681596
BIAS = 0.0301158

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Målt dryptab

Pr
æ

di
kt

er
et

dr
yp

ta
b

r = 0.935178
r2 = 0.874558
RMSEP = 0.681596
BIAS = 0.0301158

900 1000 1100 1200 1300 1400 1500

0 .6

0 .7

0 .8

0 .9

1

1 .1

1 .2

cm -1

A
bs

or
ba

ns

9 00 1000 1100 1200 1300 1400 1500

0 .6

0 .7

0 .8

0 .9

1

1 .1

1 .2

cm -1

A
bs

or
ba

ns

9 00 1000 1100 1200 1300 1400 1500

0 .6

0 .7

0 .8

0 .9

1

1 .1

1 .2

cm -1

A
bs

or
ba

ns

9 00 1000 1100 1200 1300 1400 1500

0 .6

0 .7

0 .8

0 .9

1

1 .1

1 .2

cm -1

A
bs

or
ba

ns



Paper III 
 

104 

Patent claims 

1. A method for prediction of the drip loss of a part of a carcass by measuring a 
muscle in the part of the carcass after slaughtering, characterized in that 
measurement is carried out while the part carcass is still warm from slaughter, that 
the light reflectivity of the muscle is measured in at least one wave range with a 
wave number below 1500 cm-1 that the resulting, possibly processed measuring data 
are inserted as variables in an algorithm expressing a prediction of the drip loss as a 
function of the light reflectivity in one or more wave ranges with a wave number 
below 1500 cm-1 and that the prediction of the drip loss is automatically calculated 
in a calculation unit by means of the algorithm. 

2. A method according to claim 1, characterized in that measurements are carried 
out in one or more wave ranges with a wave number in the interval 900-1500 cm-1. 

3. A method according to claim 2, characterized in that measurements are carried 
out in one or more wave ranges with a wave number in the interval 900-1200 cm-1. 

4. A method according to claim 1, characterized in that measurements are made in 
less than 100 wave ranges and/or an algorithm having less than 100 variables is 
used. 

5. A method according to claim 1, characterized in that measurements are made in 
less than 10 wavelength bands and/or an algorithm having less than 10 variables is 
used. 

6. A method according to claim 1, characterized in that measuring data are used 
which have been recorded within less than 1 minute, such as within less than 
10 seconds. 

7. A method according to claim 1, characterized in that the measuring is carried out 
while the muscle is in pre rigor condition. 

8. A method according to claim 1, characterized in that the measuring is carried out 
prior to the chilling of the part carcass. 

9. A method according to claim 1, characterized in that the measuring is carried out 
within two hours after the slaughtering (drainage of blood). 
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10. An apparatus for prediction of the drip loss of a part of a carcass by measuring a 
muscle in the part carcass after slaughtering, characterized in comprising: 

- a light reflection meter adapted to measure the light reflectivity of a muscle in at 
least one wave range with a wave number below 1500 cm-1, 

- a calculation unit with a program and/or memory part adapted to automatically 
record measured, possibly processed light reflectivity data in an algorithm and to 
calculate the algorithm value, 

- an algorithm contained in the program and/or memory part expressing a prediction 
of the drip loss as a function of the light reflectivity in one or more wave ranges with 
a wave number below 1500 cm-1, measured on a muscle in a part carcass after 
slaughtering, while the part carcass is still warm from slaughter, and 

- a signal unit which after the insertion of light reflectivity data in the algorithm and 
calculation of the algorithm value emits a signal depending on the calculated 
prediction. 
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Abstract 

To predict the drip loss of a part of a carcass a measuring is made on a muscle of a 
part of a carcass after slaughtering, while the part carcass is still warm from 
slaughter. The light reflectivity of the muscle is measured in at least one wave range 
with a wave number below 1500 cm-1, preferably in the interval 900-1500 cm-1. The 
measuring data obtained are inserted as variables in an algorithm expressing a 
prediction of the drip loss as a function of the light reflectivity in one or more wave 
ranges with a wave number below 1500 cm-1. The prediction in respect of the drip 
loss is automatically calculated in a calculation unit by means of the algorithm. 

The measurement may be carried through quickly, which means that carcasses may 
be measured by means of equipment concurrently with their advancing on a 
slaughter line. Through the measurement it becomes possible to predict the drip loss 
with high accuracy. 
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Paper IV 
Early prediction of water-holding capacity in meat by 
multivariate vibrational spectroscopy 

D.K. Pedersen, S. Morel, H.J. Andersen and S.B. Engelsen 

___________________________________________________________________ 

Abstract 

This study had the dual purpose of (a) investigating the feasibility of measuring 
fundamental vibrational information in fresh porcine meat using infrared (IR) 
absorption and Raman scattering, and (b) investigating if the vibrational spectra 
obtained within 1 hour after slaughter contained information about the water-
holding capacity (WHC) of the meat. Preliminary studies performed at a research 
slaughterhouse revealed a high correlation between WHC and both IR (r = 0.89) and 
Raman spectra using Partial Least Squares Regressions (PLSR). The good results 
were confirmed under industrial conditions using FT-IR at-line spectroscopy. 
However, the latter experiment yielded a somewhat lower correlation (r = 0.79). 
This result is, however, promising for the purpose of finding a method for 
classification of carcasses with regard to WHC at the slaughter line. The IR region 
1800-900 cm-1 contains the best predictive information according to WHC of the 
porcine meat. This region covers functional group frequencies of water, protein, fat 
and glycogen, including the carbonyl and amide groups.  

 

Keywords: Early prediction; Quality; Vibrational spectroscopy; FT-IR; Raman; 
Water-holding capacity; Porcine meat; Chemometrics; PLSR; PCA 

 

Introduction 

Vibrational spectroscopy has been widely adopted as an analytical technique for the 
identification and verification of chemical compounds. However, it’s full potential 
as a rapid method for quality control in the food industry remains largely to be 
elucidated. Recent successful applications of Fourier transform infrared (FT-IR) 
spectroscopy for milk and wine quality control (Andersen, Hansen & Andersen, 
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2002) points in the direction that FT-IR is most useful for liquid quality control. 
Moreover, near infrared (NIR) spectroscopy is thus far the most successful 
technique and has been applied for a variety of quality attribute determinations in 
food and feeds. NIR applications to meat quality include determination of fat, 
moisture, protein and sodium chloride (Osborne, Fearn & Hindle, 1993). The 
application of mid-IR spectroscopy to food systems has mainly been limited because 
of the strong absorption of water across most of the mid-IR spectrum.  

An extended use of FT-IR in the food industry could be through introduction of the 
attenuated total reflection (ATR) technology, which simplifies sample handling of 
very viscous or very strongly absorbing materials normally difficult to analyse by 
transmission spectroscopy. The disadvantage of ATR is that the spectra are sensitive 
to the contact between the ATR crystal and the sample, and that the IR radiation will 
only penetrate a few microns of the sample. More recently, the ATR principle has 
been further developed to solids through the diamond ATR by which infrared 
spectra of solid samples can be measured with high precision and reproducibility. A 
major obstacle to the implementation of mid-infrared spectroscopy for industrial 
quality control has been the need for sophisticated optical materials, which prohibits 
the use of practical fibres. A complement to FT-IR is Raman spectroscopy, which 
has not been appreciated in agricultural and food sciences, because it is not easily 
applicable to materials that exhibit fluorescence, especially when using visible 
excitation. Water, on the other hand, is only weakly polarizable and does not create 
disturbing interferences, as in mid-IR and NIR spectroscopy. Optical fibres are 
applicable in Raman spectroscopy, which together with the ongoing developments 
makes the technique interesting as a tool for industrial quality control in the food 
industry (Li-Chan, 1996). Its potential in meat context was already exposed in the 
late seventies, when Raman spectroscopy was applied for investigations of intact 
muscle fibres (Pezolet, Pigeon-Gosselin & Caille, 1978; Pezolet, Pigeon-Gosselin, 
Savoie & Caille, 1978; Pezolet, Pigeon-Gosselin, Nadeau & Caille, 1980). 

Meat is a complex biological system consisting mainly of water (~ 75 %), protein 
(~ 19 %) and fat (~ 2.5 %), but it also contains minor components such as glycogen, 
phosphorous compounds (e.g. creatine phosphate and ATP), metabolites (e.g. lactate 
and creatine) and trace amounts of vitamins (Figure 1). The rate and extent of the 
post mortem pH-fall trigger mechanisms that affect the water holding of meat (Bate-
Smith, 1948; Bendall, 1979). The WHC of meat is important for two reasons. 
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Firstly, meat is sold by weight, thus any water loss is economically undesirable. 
Secondly, the WHC influences the appearance of fresh meat during retail and might 
affect the sensory properties of cooked meat, as high cooking loss has been reported 
to make meat be perceived less juicy (Martens, Stabursvik & Martens, 1982).  

 

Figure 1. Chemical composition of meat. Protein consists of myofibrillar (e.g. myosin and 
actin) and sarcoplasmic proteins. Carbohydrates are mainly glycogen. Other substances 
include lactic acid, creatine, inorganics and vitamins (Lawrie, 1991). 

 

The reduction in water holding during conversion of muscle to meat is primarily due 
to both pH induced protein denaturation (Bendall & Wismer-Pedersen, 1962; Penny, 
1969) and the ongoing rigor development (Honikel, Kim & Hamm, 1986; Bertram, 
Purslow & Andersen, 2002) which result in shrinkage of the myofilament lattice 
spacings and hereby becomes the driving force for transfer of water into potential 
drip channels (Offer et al., 1989).  

As post mortem progress in pH affects WHC, many of the post mortem metabolism-
associated compounds, e.g. glycogen, lactate, creatine and ATP, are indirectly 
associated to the water-holding capacity of meat (Offer & Knight, 1988). However, 
they are all present in relatively low levels in the porcine meat 30-40 min after 
slaughter and difficult, if not impossible, to detect in vibrational spectra of meat. 
Glycogen and lactate, though, are expected in concentrations in the lower ranges of 
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the detection levels of the FT-IR or Raman techniques (0.1 %) for this type of 
difficult complex samples.  

Molecular absorption of mid-IR radiation (4000-400 cm-1) results in the excitation 
of the fundamental vibrational modes. Accordingly, the mid-IR spectrum of a 
compound contains a wealth of chemical and structural information such as the 
structure of meat associated to the water-holding capacity. In addition, the intensities 
of the bands in the absorption spectrum are proportional to concentration, obeying 
Lambert-Beer’s law, making mid-IR spectroscopy amenable to quantitative analysis 
applications. Raman spectroscopy, which is another technique for detection of the 
same molecular vibrations, but with different selectivity, can potentially be useful 
for detecting certain functional groups of foodstuffs. For example, vibrations 
involving C=C are weak in IR, but strong in Raman and proposed for measurement 
of iodine number in foods by e.g. Sadeghi-Jorabchi, Hendra, Wilson & Belton 
(1990). C≡N is another group (Micklander, Brimer & Engelsen, 2002) that is 
strongly Raman active, and in general Raman can be said to be more sensitive to 
backbone structure of macromolecules in contrast to the functional side groups that 
are usually more intense in IR. 

Prediction of WHC by vibrational spectroscopic methods has previously been 
investigated by application of near infrared spectroscopy (Swatland & Barbut, 1995; 
Byrne, Downey, Troy and Buckley, 1998; Forrest, Morgan, Borggaard, Rasmussen, 
Jespersen & Andersen, 2000; Brøndum, Munck, Henckel, Karlsson, Tornberg & 
Engelsen, 2000). Apart from Forrest et al. (2000) these investigations have applied 
the spectroscopic measurements post rigor, which according to modern slaughtering 
processes is too late for efficient classification of carcasses. Forrest et al. (2000) 
measured NIR (900-1800 nm) during a 6 min period 30 min after sticking by using a 
fibre optic probe. In combination with multivariate data analysis they predicted drip 
loss 24 h after slaughter with a prediction error of 1.8 % drip loss. 

The objective of this study was to investigate the fundamental vibrational 
information in meat within 1 hour after slaughter and simultaneously evaluate the 
applicability of FT-IR and Raman to meat and if possible build a predictive model 
for assessment of the quality parameter WHC of porcine meat through multivariate 
calibrations (Pedersen, Andersen, Christensen & Engelsen, 2000). FT-IR and Raman 
spectroscopy and subsequent analysis were carried out on selected pure meat 
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components, meat samples from a research slaughterhouse and meat samples from a 
commercial slaughterhouse, respectively. Interpretation of obtained spectra was 
attempted, despite major difficulties due to the complex and amorphous nature of 
whole meat causing many broad and overlapping peaks. This study was a part of a 
larger experimental setup in which the metabolic state of the post mortem meat, 
impedance and NIR was also measured, but it holds the most promising results. 

  

Materials and methods 

Pure meat components, including glycogen (BioChemika 50571), lactate (Chemika 
71720), hydroxyproline (BioChemika 56250), fat (4 days after slaughtering of the 
pig), myoglobin (Sigma M-0630), myofibrils (prepared as described by Møller, 
Vestergaard & Wismer-Pedersen (1973)), creatine (Aldrich Chem. Co. 29,119-6), 
creatine phosphate (BioChemika 27920) and ATP (Aldrich Chem. Co. A26209) 
were acquired for recording of FT-IR and Raman spectra.  

Research meat samples. Initially, 41 pigs were slaughtered at the research abattoir at 
The Danish Institute of Agricultural Sciences, Foulum, Denmark. In order to obtain 
a large variation in meat quality (water-holding capacity) the rates and extents of pH 
decrease post mortem were manipulated through pre-conditioning of the pigs. 
Adrenaline affects glycogenolysis and thereby represents a tool to manipulate 
ultimate pH and probably also the rate of pH decrease, as described by Henckel, 
Karlsson, Oksbjerg & Petersen (2000). Another way of manipulating energy levels 
in the live muscle is by treadmill exercise. In the present study the pigs were 
subjected to three different treatments prior to slaughtering: (1) 16 pigs were 
injected with 0.3 mg adrenaline / kg live weight 16 hours prior to slaughter; (2) 12 
pigs were subjected to 14-20 min treadmill exercise immediately prior to slaughter; 
(3) 13 pigs served as the control. All pigs were stunned by 85 % CO2 for three min, 
exsanguinated, scalded at 62°C for three min, cleaned and eviscerated within 
30 min. At 45 min post mortem the carcasses were placed in a chill room at 4°C. 
FT-IR and Raman spectra as well as WHC measured as drip loss were recorded on 
M. longissimus dorsi from the carcasses.  
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Commercial meat samples. An additional 66 pigs were slaughtered at a commercial 
Danish slaughterhouse. At-line FT-IR and WHC measured as drip loss were 
recorded on M. longissimus dorsi from these carcasses. 

Measurement of drip loss. For the ‘research meat samples’ water-holding capacity 
was measured as drip loss according to Honikel (1998), i.e. loss of water was 
registered from a 2.5 cm thick slice of muscle taken 24 hours post mortem and 
placed hanging in a net and suspended in a plastic bag for 48 hours at +4°C.  

For the ‘commercial meat samples’ water-holding capacity was measured as drip 
loss according to Rasmussen & Andersson (1996) whereby the loss of water was 
registered from two cylindrical cuts (25 mm in diameter and 25 mm in length) of 
muscle taken 24 hours post mortem and then hanging for 24 hours in a plastic cup 
with a removable container at +4°C. The average of the drip loss from the two 
pieces was used for subsequent data analysis. 

FT-IR spectroscopy. The Arid-Zone MB100 FT-IR (Bomem, Quebec, Canada) was 
used for measurement of IR spectra of the ‘pure meat components’ (4000-600 cm-1) 
of the ‘research meat samples’ (4000-750 cm-1) and the ‘commercial meat samples’ 
(4000-750 cm-1). Prior to FT-IR measurements the ‘research meat samples’ from 
longissimus dorsi were cut out 35 min after sticking from the right loin of the 5th 
vertebra, and 40 min after sticking from the right loin at the 8th vertebra, while the 
‘commercial meat samples’ from longissimus dorsi were cut out immediately after 
the classification centre, approximately 45 min after sticking, and measured by an 
instrument placed close to the slaughter line. The two spectral recordings of the 
‘research meat samples’ are treated as replicates; thus, the average of the two 
measurements for each sample was used for further exploration. 

Sampling of the ‘pure meat components’ was performed using an Attenuated Total 
Reflectance (ATR) device with a diamond crystal (Durascope, SensIR 
Technologies), while the meat samples were squeezed directly onto an ATR crystal 
(ZnSe, 45°, Tr-Plate, ARK 0055-603, Spectra-Tech Inc., CT, USA). The ‘pure meat 
component’ samples were squeezed against the ATR window with equal pressure 
(Force = 6 (a.u.)). A resolution of 4 cm-1 was employed, and 64 spectra were 
accumulated, averaged, and ratioed against a single-beam spectrum of the clean 
ATR crystal and converted into absorbance units.  
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Raman spectroscopy. A LabRam Infinity spectrograph (Jobin-Yvon, Lille, France) 
equipped with a 785-nm laser diode (30 mW reaching the sample) was used for the 
measurement of Raman spectra (3400-200 cm-1) of the ‘pure meat components’, 
while a LabRam spectrograph (Jobin-Yvon, Lille, France) with a HeNe laser 
(632 nm) (5 mW reaching the sample) was employed for the measurement of Raman 
spectra (3200-500 cm-1) of the ‘research meat samples’ 10-30 min after sticking. A 
microscope was used for sample presentation. A ‘long-working-distance’ objective 
was used for the measurement of the ‘pure meat components’, while a ‘short-
working-distance’ objective was used for the measurement of the ‘research meat 
samples’. The ‘long-working-distance’ objective is less sensitive to focus drifts, 
although it has a lower numerical aperture than the ‘short-working-distance’ 
objective. This can be an important feature when measuring meat samples at an 
early stage after slaughter, since the meat is still ‘alive’ and is ‘moving’ under laser 
illumination. A 600 (1/mm) grating and a confocal hole of 200 µm for the ‘pure 
meat components’ and 300 µm for the ‘research meat samples’ were employed. 
Four Raman scatter spectra were recorded and averaged for each sample, except for 
the research meat samples, where the average of Raman spectrum 1 and spectrum 2 
of the four recorded spectra for each sample were used for further investigation, due 
to the critical time perspective in measuring the samples at such an early stage after 
slaughtering. The individual spectra were acquired using 60 sec (glycogen, lactate, 
hydroxyproline, creatine, ATP and ‘research meat samples’), 45 sec (creatine 
phosphate) or 30 sec (fat and myofibrils) integration time on the CCD. Only meat 
samples from 14 of the 41 available research animals were measured. The reason for 
the limited number of samples is that the Raman equipment was only available at 
the research facilities for a part of the period of research slaughtering. 

Other measurements. Measurement of the ‘research meat samples’ was performed 
during an experiment in which near infrared reflectance (NIR), impedance, pH, 
temperature, colour, glycogen and other metabolites and enzymes were also 
measured. pH measurements were taken at fixed intervals post mortem: 1 min, 
15 min, 30 min, 1 h, 2 h, 3 h, 6 h, 9 h and 24 h. Temperature was measured at the 
same intervals up to 2 h and at 24 h. Colour measurements were made on loin 
samples excised at 24 h post mortem. Biopsies were used for analyses of glycogen, 
lactate and the phosphorous compounds creatinephosphate, ATP and ADP. 
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Chemometrics. Principal Component Analysis (PCA) (Wold, Esbensen & Geladi, 
1987) was applied to the spectral data to obtain an overview. Calibrations and 
predictions of drip loss in meat based on spectral information were performed with 
Partial Least Squares Regression (PLSR) (Martens & Næs, 1989) and by interval 
Partial Least Squares Regression (iPLSR) (Nørgaard, Saudland, Wagner, Nielsen, 
Munck & Engelsen, 2000). Full cross-validation (leave one out) was applied 
throughout this study and only validated results are presented. The multivariate data 
analysis was performed with the chemometric programs The Unscrambler 7.6 
(CAMO, Trondheim, Norway) and Matlab 6.1 (The Mathworks Inc., Natick, MA, 
USA). 

Principal Component Analysis (PCA) (Wold et al., 1987) is the most fundamental 
chemometric algorithm. In PCA the spectra are resolved into orthogonal principal 
components whose linear combinations approximate the original data set in a least 
squares sense. PCA provides an approximation of the data matrix (e.g., FT-IR 
spectra of porcine meat) in terms of the product of the two low dimensional matrices 
T (scores) and P’ (loadings). These two matrices capture the systematic variation of 
the data matrix. Plots of the columns of T (score plots) provide a picture of the 
sample concentrations of the latent variables, while plots of the rows of P’ (loading 
plots) depict the variable contribution to the latent variables (Wold et al., 1987). 

Partial Least Squares Regression (PLSR) (Martens et al., 1989) is a predictive 
regression method based on estimated latent variables and is applied to the 
simultaneous analysis of two data sets (e.g., spectra (X) and WHC measurements 
(y)) on the same samples. The purpose of the PLSR is to build a linear model 
enabling prediction of a desired characteristic (y) from a measured spectrum (x).  

Interval PLSR (iPLSR) (Nørgaard et al., 2000) is simply PLSR models developed on 
spectral subintervals, which together with the full-spectrum PLSR model gives a 
superb overview of spectral correlation and additionally reduces interference 
problems and thus simplifies models. The comparison between iPLSR and the full-
spectrum PLSR is mainly based on the validation parameter RMSECV (root mean 
squared error of cross-validation): 

RMSECV = 2
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where iŷ  is the predicted value for sample i, iy  is the corresponding reference 

value, and N is the total number of samples. The number of intervals in this study is 
varied using 10, 20, 30 or 40 subintervals. Synergy amongst iPLSR models as 
earlier applied by Munck et al. (2001) was subsequently investigated. 

 

Results and discussion 

Meat components. Figure 2 shows the vibrational spectra of pure meat components 
that are characterized in terms of characteristic group frequencies and specific 
(intense) bands in the fingerprint region (1500 cm-1 – 200 cm-1). Strong differences 
between IR and Raman selection rules are also indicated. Many bands of the 
different components may be shifted in both position and intensity as a result of 
matrix effects. Therefore, the spectra of meat may be considerably different from the 
simple summation spectrum of the individual compounds. Still, they can be 
explanatory for the aim of interpretation of the meat spectra.  

Glycogen is an α-glucan and the principal storage carbohydrate in muscles. The IR 
spectrum (Fig. 2A) displays stable group frequencies at 3300 cm-1 due to OH 
stretching from hydroxyl groups in the α-glucan skeleton and adsorbed water, and at 
2900 cm-1 caused by CH stretching from the α-glucan skeleton. The fingerprint 
region is dominated by very intense peaks in the region 1150-1020 cm-1 due to 
complex C-O-C ether stretchings found in glucopyranose rings and in the glycosidic 
linkages. The Raman spectrum includes a characteristic peak at 850 cm-1 exclusive 
to α anomeric glucans as opposed to the corresponding β-anomers. In addition, an 
intense and characteristic peak at 490 cm-1 is found, which is due to a low frequency 
skeleton mode in the primarily α-1,4 linked glucan and is common with the 
corresponding storage carbohydrate in plants, starch. The increasing baseline in the 
Raman spectrum is caused by fluorescence from trace components.  
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Figure 2. FT-IR (upper) (showed as transmittance spectra) and Raman (lower) spectra of 
meat components: glycogen (A), lactate (B), hydroxyproline (C), fat (D), myoglobin (E), 
myofibrils (F), creatine (G), creatine phosphate (H) and ATP (I) 

 

Lactate (Fig. 3) is the major end product of anaerobic glycolysis (of glycogen) that 
causes the pH decrease in the muscle post mortem. The IR spectrum (Fig. 2B) of 
lactate shows a sharp band at 3400 cm-1 and a broad band centred at 3200 cm-1 due 
to OH stretching. Aliphatic CH stretching shows as peaks in the IR and Raman 
spectra at 2980 cm-1, 2930 cm-1 and 2900 cm-1. The strong IR bands at 1580 cm-1 
and 1360 cm-1 are due to carbonyl stretching of the carboxylate group. In the 
fingerprint region the spectra of lactate exhibit a complex CH bending pattern 
between 1460 cm-1 and 1330 cm-1. The IR spectrum shows characteristic strong 
bands near 1100 cm-1 due to CO vibrations. In the Raman spectrum the strongest 
peak is located at 850 cm-1, which is IR active as well. 
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Figure 3. Structure images of some simple meat components: lactate, hydroxyproline, 
creatine, creatinephosphate and ATP 

 

Hydroxyproline (Fig. 3) is a chemical component of the connective tissue. The IR 
spectrum (Fig. 2C) shows characteristic group frequencies at 3270 cm-1 and 
3140 cm-1 due to OH and NH stretching, respectively. Aliphatic CH stretching is 
displayed in the Raman spectrum around 2950 cm-1 and as IR bands in the region 
3000-2400 cm-1. Strong carbonyl IR bands are located at 1580 cm-1 and at 1360 cm-1 
due to the carboxylic group. The intense IR peaks in the region 1300-1000 cm-1 are 
due to complex vibrations involving CO stretching and OH deformation. The, by 
far, most intense Raman band is found at 850 cm-1, probably due to a symmetric ring 
breathing in the pyrrolidine ring. 

Fat constitutes around 2.5 % of the meat (Fig. 1). The IR spectrum of fat (Fig. 2D) 
displays a strong and broad peak centred at 3300 cm-1 due to OH stretching from the 
glycerol backbone. Saturated aliphatic CH stretching is found at 2920 cm-1 and 
2850 cm-1, while olefinic CH stretching is found slightly above 3000 cm-1. The 
characteristic C=O peak due to the carbonyl group in the ester linkages of fat 
molecules at 1740 cm-1 is present in both the IR (medium) and the Raman (weak) 
spectra. Cis C=C shows as a characteristic band at 1660 cm-1 in the Raman 
spectrum, while the dual peak at 1630 cm-1 and 1550 cm-1 in the IR spectrum is due 
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to carbonyl stretching from secondary amides from connective tissue. Peaks due to 
CO stretching at 1300-1000 cm-1 dominate the fingerprint region of the IR spectrum. 
The strongest band in the Raman spectrum is the sharp 1440 cm-1 peak. 

Myoglobin is the main muscle pigment that stores oxygen and facilitates oxygen 
transport within the muscle. OH stretching due to absorbed water and NH stretching 
from secondary amides cause the broad band at 3300 cm-1 in the IR spectrum (Fig. 
2E). Aliphatic CH stretching appears as peaks in the spectrum at 2960 cm-1, 
2930 cm-1 and 2870 cm-1. The amide I band is located at 1650 cm-1, and the amide II 
band appears around 1540 cm-1. In the fingerprint region the amide III band is found 
at 1240 cm-1 (Bellamy, 1975) along with well-defined peaks at 1450 cm-1, 
1390 cm-1, 1300 cm-1, 1170 cm-1 and 1100 cm-1. It was not possible to measure a 
Raman spectrum of myoglobin due to its absorbance characteristics (high 
absorbance in the Raman region).  

Myofibrils consist mainly of the contractile proteins actin and myosin. The broad 
peak at 3300 cm-1 in the IR spectrum of myofibrils (Fig. 2F) is mostly due to the OH 
stretching of solvent water and NH stretching of the polypeptides. Aliphatic CH 
stretching appears in the IR spectrum at 2960 cm-1, 2930 cm-1 and 2880 cm-1. The 
most prominent bands of the spectra of the myofibrils are carbonyl absorption from 
the secondary amide bands at 1650 cm-1 (amide I overlapped with OH bending) and 
the mixture of CN and NH vibrations at 1540 cm-1 (amide II). In the Raman 
spectrum the bands at 1450 cm-1 (the symmetric methylene bending) and at 
1320 cm-1 (CH bending) are quite strong. In the Raman spectrum a characteristic 
sharp peak at 1000 cm-1 is caused by aromatic ring vibration from aromatic amino 
acids like phenylalanine, and the band at 940 cm-1 can be assigned to peptide α-helix 
conformation (Frushour & Koenig, 1974). 

Creatine, creatine phosphate and ATP (adenosine triphosphate) (Fig. 3) are involved 
in the energy metabolism of the muscle. ATP is gradually depleted in the muscle 
cells post mortem, even though some ATP is temporarily regenerated by the 
conversion of creatine phosphate to creatine and the transfer of its phosphate to ADP 
(adenosine diphosphate). The most pronounced bands in the spectra (Fig. 2GHI) of 
these compounds are the Raman peak at 840 cm-1 in creatine, 860 cm-1 in 
creatinephosphate and 820 cm-1 in ATP due to phosphate groups. 
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Table 1. The spectral bands observed in the FT-IR and Raman spectra of porcine meat 
30-40 min after slaughter 
4000       3000       2000      1500      1000 Vibration IR Raman Meat component 

OH str. X  Water 

NH str. X X Protein 

CH str. X X Fat 

C=O X X Fat 

HOH bend 
Amide I 

X 
X 

 
X 

Water 
Protein 

C=C str. cis  X Fat 

Amide II X X Protein 

C-O str. X X Fat 

C-O str. X X Fat 

C-H bend  X Protein 

Amide III X X Protein 

C-O str. X  Glycogen 

C-O-C str. X  Glycogen 

aromatic ring  X Protein 

 

α-helix  X Protein 

 

Research meat samples. Table 1 based on the above-mentioned spectra lists the 
most important vibrational bands observed in porcine meat between 4000 cm-1 and 
750 cm-1. The spectra are shown in Figure 4 and can roughly be described as 
myofibril/myoglobin spectra overlapped with a small amount of fat spectrum. They 
clearly stress the difficulty of performing thorough assignment of complex 
biological matrices due to the strong and complex background. The amide I band at 
1650 cm-1 is mixed with HOH bending (1640 cm-1) from water in the IR spectrum 
and with cis C=C stretching (1660 cm-1) of fat in the Raman spectrum. The amide II 
band appears around 1550 cm-1 in both spectra and the amide III band is found at 
1240 cm-1. These observed amide bands of meat spectra were also reported by Al-
Jowder, Kemsley & Wilson (1997) who studied ATR-FT-IR spectra of meat 
(chicken, turkey and pork) for solving authenticity problems, and by Yang & 
Irudayaraj (2001) who compared ATR-FT-IR and PAS (photoacoustic 
spectroscopy)-FT-IR spectra of whole and ground beef. Contribution from proteins 
is also found as NH stretching in the broad IR band centred at 3300 cm-1 
overlapping with OH stretching from the water content of the meat, which also 
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contributes to the IR band near 1640 cm-1 due to HOH bending. The band at 
1740 cm-1 due to the carbonyl stretching of the ester group is related to the 
intramuscular fat present in the meat samples. The bands at 1460 cm-1, 1400 cm-1 
and 1310 cm-1 are recognised from the protein spectra of myofibrils (Fig. 2F) and 
myoglobin (Fig. 2E), while the CO stretching bands at 1160 cm-1 and 1080 cm-1 can 
be recognised from the IR spectrum of glycogen (Fig. 2A). 

 

 

Figure 4. FT-IR spectra of the 41 research pig carcasses measured 35-40 min after slaughter 
(A) and Raman spectra of the 14 pig carcasses measured 10-30 min after slaughter (B) 

 

In order to get an overview of the multivariate spectral data, a PCA was performed 
on the FT-IR spectra of the 41 research meat samples. Score plots of the principal 
components (not shown) revealed no spectral differences according to the three 
types of treatment applied to the pigs prior to slaughter; injection with adrenaline, 
subjection to exercise and non-treated control pigs. In other words, no obvious 
information of the applied stress levels of the pigs is imbedded in the FT-IR spectra. 
In agreement with this observation, other investigations (Henckel et al., 2000) have 
not been able to find significant difference in ultimate pH and in the rate of pH 
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decrease post mortem for meat samples from exercised pigs contrary to control pigs. 
For the same reason it might not be reasonable to expect clear differences in WHC 
between the different types of treatment. 

In order to investigate possible spectral correlations to WHC, PLSR models were 
developed (Table 2). First, a PLSR model based on the FT-IR spectra 
(4000-750 cm-1) of the 41 research meat samples ranging from 0.7-8.0 % drip loss 
was developed. The PLSR model yielded a prediction error (RMSECV) of 1.35 % 
drip loss. Such prediction error is not considered sufficiently low for a method to 
perform early sorting of carcasses into groups with high and low drip losses. The 
prediction error was obtained by a 3-component PLSR model, which is considered 
to be too few components for solving a rather complex problem, but underlines the 
concealment of relevant information in vibrational spectra of complex biological 
samples. 

 

Table 2. Regression results for PLSR models based on FT-IR and Raman spectra of research 
samples and industrial samples for prediction of water-holding capacity (WHC). The number 
of PLSR components (PC’s), the correlation coefficients (r), the prediction errors 
(RMSECV) and the range of WHC are presented. 
Samples Instrument Spectra [cm-1] # of PC’s r RMSECV [%] WHC range [%] 

Research FT-IR 4000-750 3 0.68 1.35 0.7-8.0 

Research FT-IR 1072-993 5 0.84 1.00 0.7-8.0 

Research FT-IR 1396-1317+1072-993 5 0.89 0.85 0.7-8.0 

Research FT-IR 1800-900 5 0.89 0.86 0.7-8.0 

Research Raman 3200-500 3 0.98 0.27 0.7-8.0 

Research Raman 3128-3071 3 0.95 0.38 0.7-8.0 

Research Raman 3128-3071+951-876 3 0.98 0.23 0.7-8.0 

Industrial FT-IR 4000-750 4 0.73 1.17 0.5-8.3 

Industrial FT-IR 1800-900 7 0.79 1.06 0.5-8.3 

Industrial FT-IR 1396-1317 4 0.82 0.97 0.5-8.3 

Industrial FT-IR 1396-1317+1072-993 6 0.81 1.02 0.5-8.3 

 

When applying chemometric calibration techniques to complex spectra consisting of 
many variables, usually not all parts of the spectra are equally relevant for the 
calibration purpose. There are two obvious ways of finding relevant parts of the 
spectra for calibration purposes: 1) by using a priori knowledge about the spectra or 
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2) by using chemometric variable selection tools for finding the best predictive areas 
of the spectra. Interval PLSR (iPLSR) (Nørgaard et al., 2000) is an example of the 
latter, which develops local PLSR models on subintervals of the full-spectrum 
region. Figure 5 displays the result of iPLSR models based on the FT-IR spectra 
(4000-750 cm-1) of the 41 research meat samples. The number of intervals was 40, 
and the prediction errors (RMSECV) for each of the 40 subintervals are presented as 
bars for a 5-component-model superimposed with the average FT-IR spectrum and 
with the global prediction error presented as a horizontal line (1.35 % drip loss, see 
above). The subinterval reaching the lowest prediction error (Figure 5) was found to 
be subinterval 37 (1072-993 cm-1). A PLSR performed using that narrow spectral 
region alone provides a 5-component model with a correlation of 0.84 and a 
prediction error of 1.00 % drip loss. Usually, fewer components due to lesser 
complexity of the spectra are expected when applying iPLSR. However, in this case, 
the number of components in the full-spectrum model is suspiciously low, perhaps 
due to unresolved complexity. In Figure 5 the prediction errors (shown as bars) are 
quite high when applying the noisy parts of the spectra, subintervals 7-11 and 40, 
which imply PLSR modelling problems when using those parts of the spectra. 
Consequently, the application of more components in the iPLSR models with low 
prediction errors, such as subinterval 37, facilitates improved modelling, when the 
noisy parts of the spectra are kept out. 

 

Figure 5. iPLSR plot of a 5-component model based on 40 subintervals of the full FT-IR 
spectra (4000-750 cm-1) of the 41 research pig carcasses. The prediction errors (RMSECV) 
for each subinterval are presented as bars. The global prediction error presented as a 
horizontal lines is based on a 3 component model. 
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Instead of using one single subinterval at a time, it might be advantageous to use 
two subintervals in the PLSR modelling. By combining all possible iPLSR pairs, 
synergy models were identified. By combining subintervals 33 (1396-1317 cm-1) 
and 37 (1072-993 cm-1), represented as the two dark bars in Figure 5, a prediction 
error of 0.85 % drip loss was obtained, which is a significant improvement 
compared to the global prediction error of 1.35 % drip. It is also interesting to notice 
that subinterval 33 in synergy with subinterval 37 provides better regression, 
irrespective of the relatively poor prediction ability of subinterval 33 alone 
(RMSECV = 1.6). In order to obtain a robust model, it is preferable to work with 
continuous spectra compared to discrete subintervals of spectra. Figure 5 shows that 
the lowest iPLSR prediction errors are found in the fingerprint region, especially 
subintervals 32-37 covering the region 1477-993 cm-1. A PLSR model based on a 
part of the FT-IR spectra (1800-900 cm-1) covering the fingerprint region as well as 
the important amide bands (1650 cm-1 and 1550 cm-1) of the 41 research meat 
spectra was performed and yielded a prediction error of 0.86 % (Figure 6A), only 
slightly inferior to the ‘optimised’ synergy model. This underlines the importance in 
the PLSR modelling of applying only the parts of the spectra, which contain 
systematic information free from excessive noise. 

 

Figure 6. Predicted drip loss versus measured drip loss for PLSR models based on the FT-IR 
spectra (1800-900 cm-1) (A) employing 5 components for the 41 research pig carcasses and 
on Raman spectra (3200-500 cm-1) (B) employing 3 components for 14 research pig 
carcasses. The prediction errors, root mean square error of cross-validation (RMSECV), are 
reported. 
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A PLSR model based on Raman spectra (3200-500 cm-1) of the 14 research meat 
samples (ranging from 0.7-8.0 % drip loss) covering all treatments (injection with 
adrenaline, subjection to exercise and non-treated control pigs) was also performed. 
The resulting prediction error (RMSECV) for a 3-component model was found to be 
0.27 % drip (correlation = 0.98), as shown in Figure 6B. Such an extraordinary good 
PLSR model based on the Raman spectra is perhaps unrealistic, due to the low 
number of samples (14), but it certainly deserves further attention in future studies. 
When working with only 14 samples in a 3-component model, there is a serious risk 
of over fitting.  

iPLSR models based on the Raman spectra (not shown) showed that subinterval 3 
(3128-3071 cm-1) gave the lowest prediction error. PLSR performed using that 
interval alone provides a 3-component-model with a correlation of 0.95 and a 
prediction error of 0.38 % drip loss. This is still very good, but considerably higher 
than the full-spectrum model, and it shows that more than just a small part of the 
spectra is necessary for the modelling in order to obtain the best prediction of the 
drip loss. For synergy iPLSR, a 3-component model of the subintervals 3 
(3128-3071 cm-1) and 35 (951-876 cm-1) yielded a prediction error of 0.23 % drip 
loss, which is a small improvement compared to the global prediction error of 
0.27 % drip loss. This result shows that the combination of those two subintervals of 
the spectra contains sufficient information for prediction of the drip loss in this data 
set. 

Commercial meat samples. The FT-IR spectra of the ‘commercial meat samples’ 
measured 45 min after sticking have the same spectral characteristics as the FT-IR 
spectra of the ‘research meat samples’ measured 35 and 40 min after sticking. 
However, the spectra of the ‘commercial meat samples’ seem to contain more 
variation compared to the spectra of the ‘research meat samples’, especially the parts 
of the spectra containing the fat information vary considerably. The ‘commercial 
meat spectra’ appear to contain less noise in the regions of high absorption 
compared to the ‘research meat spectra’. The reason for the difference might be that 
the instrument employed for the commercial experiment was another, however the 
same type, Arid-Zone MB100, than the instrument used for the initial experiment. 

PLSR models based on the full FT-IR spectra (4000-750 cm-1) and on a reduced part 
of the spectra (1800-900 cm-1) of the 66 ‘commercial meat samples’ ranging from 
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0.5-8.3 % drip loss were developed. The prediction error (RMSECV) of the PLSR 
model (4 PC) based on the full FT-IR spectra was calculated to 1.17 % drip loss 
(r = 0.73), while the prediction error of the PLSR model (7 PC) based on 
1800-900 cm-1 was 1.06 % (r = 0.79), as listed in Table 2. The full-spectrum PLSR 
model of the ‘commercial meat samples’ yielded a slightly lower prediction error 
than the full-spectrum model of the ‘research meat samples’. The reason might be 
that the commercial model requires an extra PLSR component, which contributes to 
the explanation of the coherence between the spectra and the drip loss. On the other 
hand, the reduced-spectrum model of the ‘commercial samples’ has a slightly higher 
prediction error than the reduced-spectrum model of the ‘research samples’, even 
though more components (7) are applied. This could perhaps be explained by the 
larger biological variation present in the ‘commercial meat samples’.  

Not all the measured samples from the ‘commercial experiment’ were included in 
the PLSR models. More samples were measured during the experiment, but had to 
be removed prior to PLSR modelling due to (a) missing reference values, (b) 
unrealistically high reference values, (c) FT-IR spectra low on information resulting 
from poor contact to the ATR crystal, (d) strong interference information in the 
spectra caused by high fat content or (e) simple PLSR modelling outliers such as 
lack of coherence between spectra and reference values. Basically, the large number 
of outliers reflects the difficulties connected to measurements using laboratory 
equipment in the harsh process environment. For example, due to the speed of the 
measurements close to the slaughter line it was not possible to re-measure samples 
with poor spectra. For that reason the majority of the outlier measurements were 
lost. 

The synergy PLSR on subintervals 33 (1396-1317 cm-1) and 37 (1072-993 cm-1) 
found by the iPLSR of the research samples yielded a prediction error of 1.02 % 
drip loss (r = 0.81) on the industry samples (Table 2). The improvement of the 
synergy PLSR is again significant when compared to the full-spectrum model. By 
using subinterval 33 (1396-1317 cm-1) alone a 4-component-model with a 
correlation of 0.82 and a prediction error of 0.97 % was obtained. In the 
‘commercial example’ the subinterval 37 alone provided a rather poor prediction 
ability (RMSECV = 1.5 %).  
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Interpretation. The vibrational spectral regions of interest to WHC according to 
iPLSR are the IR regions 1396-1317 cm-1 and 1072-993 cm-1 and the Raman regions 
3128-3071 cm-1 and 951-876 cm-1. The IR regions cover spectral information about 
carbonyl vibrations of the deprotonated carboxylic group (1360 cm-1), which would 
be expected to be correlated to the pH of the sample, CO stretching of glycogens 
(1020 cm-1) connected to the level of glycogen at the time of measurement, and the 
presence of an ‘internal standard’ represented by the sharp aromatic ring vibration at 
1000 cm-1. The Raman regions contain NH stretching of primary amides in proteins 
(3140 cm-1), which might indicate protein denaturation. Secondary structure 
information of proteins is represented by the α–helical 940 cm-1 band and again the 
presence of an ‘internal standard’ represented by the sharp aromatic ring vibration at 
1000 cm-1, which is very strong in Raman spectroscopy. These observations suggest 
coherence between water-holding capacity and pH, glycogen level and protein 
conformations, which supports earlier developed theories in this area, as 
investigated by among others, Offer et al. (1989), Warner, Kauffman & Greaser 
(1997), den Hertog Meischke, van Laack & Smulders (1997), Kristensen & Purslow 
(2001), Bertram et al. (2002) and Schäfer, Rosenvold, Purslow, Andersen & 
Henckel (2002).  

 

Conclusion 

PLSR models based on FT-IR spectra of meat samples from a research 
slaughterhouse ranging from 0.7-8.0 % drip loss showed prediction errors 
(RMSECV) of 0.85-1.4 % drip loss, while the corresponding prediction error for 
industry pigs (0.5-8.3 % drip loss) were 1.0-1.2 % drip loss. These results are 
acceptable for the purpose of finding a method for sorting out the carcasses with 
very low and very high drip losses at an early stage after slaughter (45 min).  

In this study an exploratory strategy for finding important regions of spectra, which 
best predict the reference quality parameter (without using a priori knowledge), 
namely iPLSR has been used. The considerable improvement in prediction error 
employing only informative regions of the spectra demonstrates the importance of 
selecting spectral regions prior to PLSR modelling. It is especially important to 
avoid the regions in the FT-IR spectra with very high absorption (in this case water 
absorptions in the region between 3500-3100 cm-1 and the region 800-750 cm-1, 
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where the instrumental setup loses sensitivity), as they are noisy and will disturb the 
regressions. The predictive importance of the intervals was validated by the 
‘commercial samples’, which demonstrated a low prediction error (1.0 % drip) by 
employment of one of the two intervals (1396-1317 cm-1) for PLSR calibration 
using four components. 

Vibrational spectroscopic methods for early prediction of WHC have also been 
investigated by Forrest et al. (2000) who predicted drip loss early after slaughter by 
NIR with a correlation of approximately 0.8 for a trial of 99 carcasses measured at a 
commercial slaughterhouse. The prediction error was estimated to be 1.8 % drip 
loss, which they compared with the repeatability of the laboratory reference method 
of approximately 0.7 %. The prediction error for commercial slaughter pigs in this 
study of 1.0 % drip loss (0.5-8.3 % range) is considerably lower and more promising 
for the purpose of finding a method for early classification of pig carcasses based on 
the WHC of the meat.  

In order to assess possible applications of these spectroscopic methods in the 
slaughterhouses with the purpose of early classification of the carcasses according to 
WHC, measurement of many more samples is necessary to include all kinds of 
biological variations in the meat material. It must also be taken into consideration 
whether the methods are technically robust enough to be able to work in a rough 
environment at the slaughterhouses with changing temperatures and humidity. In 
particular, FT-IR instruments are vulnerable to those conditions, and the 
development of satisfactory optical fibres is at present not very promising. Optical 
fibres are available for the Raman technique, as it uses visual or near infrared 
radiation. Moreover, water does not interfere with the spectra, as is the case with 
FT-IR and NIR. This is a very important attribute, as meat contains mostly water. 
The main difficulties with the Raman technique are the inherent poor signal-to-noise 
ratio and sample fluorescence; however, technological solutions to these might be 
under way for example in form of time-resolved Raman scattering. 

Part of the strategy of this investigation was to, if possible, interpret important 
regions of FT-IR and Raman spectra according to the quality parameter WHC of 
porcine meat. The strategy included an attempt to assign the characteristic bands in 
the meat spectra and estimate the importance of the observed functional groups 
according to the WHC of porcine meat. The IR region 1800-900 cm-1 contains the 
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best predictive information according to WHC of the porcine meat. The spectral 
region covers the carbonyl group frequencies from esters and amides and the 
fingerprint region including information from the functional groups of water 
(1640 cm-1), protein (1650, 1550 and 1240 cm-1), fat (1740, 1660, 1630, 1455, 1310 
and 940 cm-1) and glycogen (1160 and 1080 cm-1).  

 

Acknowledgements 

The authors wish to thank Danske Slagterier and the Ministry of Food, Agriculture 
and Fisheries for financial support through the project “Early post mortem 
measurement of WHC and drip loss in fresh pork“. The Centre for Advanced Food 
Studies is acknowledged for co-financing the Raman spectrometer. Gilda 
Kischinovsky is acknowledged for assistance with the manuscript. 

 

References 

Al-Jowder, O., Kemsley, E.K. & Wilson, R.H. (1997). Mid-infrared spectroscopy 
and authenticity problems in selected meats: a feasibility study. Food Chemistry, 59, 
195-201. 

Andersen, S.K., Hansen, P.W. & Andersen, H.V. (2002). Vibrational spectroscopy 
in the analysis of dairy products and wine. In J.M. Chalmers, & P.R. Griffiths, 
Handbook of Vibrational Spectroscopy (Vol. 5) (pp. 3672-3681). Chichester: John 
Wiley & Sons Ltd. 

Bate-Smith, E.C. (1948). Observations on the pH and the related properties of meat. 
Journal of the Society of Chemical Industry-London, 67, 83-90. 

Bellamy, L.J. (1975). The Infra-red Spectra of Complex Molecules. Third edition. 
London: Chapman and Hall LTD. 

Bendall, J.R. (1979). Relations between muscle pH and important biochemical 
parameters during the post-mortem changes in mammalian muscles. Meat Science, 
3, 143-157. 

Bendall, J.R. & Wismer-Pedersen J. (1962). Some properties of the fibrillar proteins 
of normal and watery pork muscle. Journal of Food Science, 27, 144-159. 



Paper IV 

129 

Bertram, H.C., Purslow, P.P. & Andersen, H.J. (2002). Relationship between meat 
structure, water mobility, and distribution: A low-field nuclear magnetic resonance 
study. Journal of Agriculture and Food Chemistry, 50, 824-829. 

Brøndum, J., Munck, L., Henckel, P., Karlsson, A., Tornberg, E. & Engelsen, S.B. 
(2000). Prediction of water-holding capacity and composition of porcine meat by 
comparative spectroscopy. Meat Science, 55, 177-185. 

Byrne, C.E., Downey, G., Troy, D.J. & Buckley, D.J. (1998). Non-destructive 
prediction of selected quality attributes of beef by near-infrared reflectance 
spectroscopy between 750 and 1098 nm. Meat Science, 49, 399-409. 

den Hertog Meischke, M.J.A., van Laack, R.J.L.M. & Smulders, F.J.M. (1997). The 
water-holding capacity of fresh meat. Veterinary Quarterly, 19, 175-181. 

Forrest, J.C., Morgan, M.T., Borggaard, C., Rasmussen, A.J., Jespersen, B.L. & 
Andersen, J.R. (2000). Development of technology for the early post mortem 
prediction of water holding capacity and drip loss in fresh pork. Meat Science, 55, 
115-122. 

Frushour, B.G. & Koenig, J.L. (1974). Raman Spectroscopic study of tropomyosin 
denaturation. Biopolymers, 13, 1809-1819. 

Henckel, P., Karlsson, A., Oksbjerg, N. & Petersen, J.S. (2000). Control of post 
mortem pH decrease in pig muscles: experimental design and testing of animal 
models. Meat Science, 55, 131-138. 

Honikel, K.O. (1998). Reference methods for the assessment of physical 
characteristics of meat. Meat Science, 49, 447-457. 

Honikel, K.O., Kim, C.J., Hamm, R. (1986). Sarcomere shortening of prerigor 
muscles and its influence on drip loss. Meat Science, 16, 267-282. 

Kristensen, L. & Purslow, P.P. (2001). The effect of ageing on the water-holding 
capacity of pork: role of cytoskeletal proteins. Meat Science, 58, 17-23. 

Lawrie, R.A. (1991). Meat Science. Fifth edition. Oxford: Pergamon Press. 

Li-Chan, E.C.Y. (1996). The applications of Raman spectroscopy in food science. 
Trends in Food Science and Technology, 7, 361-370. 

Martens, H. & Næs, T. (1989). Multivariate Calibration. Chichester: Wiley. 



Paper IV 

130 

Martens, H., Stabursvik, E. & Martens M. (1982). Texture and colour changes in 
meat during cooking related to thermal denaturation of muscle proteins. Journal of 
Texture Studies, 13, 291-309. 

Micklander, E., Brimer, L. & Engelsen, S.B. (2002). Non-invasive assay for 
cyanogenic constituents in plants by Raman spectroscopy: Content and distribution 
of amygdalin in bitter almond (Prunus amygdalus). Applied Spectroscopy, 
Accepted.  

Munck, L., Pram Nielsen, J., Møller, B., Jacobsen, S., Søndergaard, I., Engelsen, 
S.B., Nørgaard, L. & Bro, R. (2001). Exploring the phenotypic expression of a 
regulatory proteome-altering gene by spectroscopy and chemometrics. Analytica 
Chimica Acta, 446, 171-186. 

Møller, A.J., Vestergaard, T. & Wismer-Pedersen, J. (1973). Myofibril 
fragmentation in bovine Longissimus dorsi as an index of tenderness. Journal of 
Food Science, 38, 824-825. 

Nørgaard, L., Saudland, A., Wagner, J., Nielsen, J.P., Munck, L. & Engelsen, S.B. 
(2000). Interval partial least-squares regression (iPLS): A comparative chemometric 
study with an example from near-infrared spectroscopy. Applied Spectroscopy, 54, 
413-419. 

Offer, G., Knight, P., Jeacocke, R., Almond, R., Cousins, T., Elsey, J., Parsons, N., 
Starr, R. & Purslow, P. (1989). The structural basis of the water-holding, appearance 
and toughness of meat and meat products. Food Microstructure, 8, 151-170. 

Offer, G. & Knight, P. (1988). The structural basis of water-holding in meat. Part 2: 
Drip losses. In R.A. Lawrie, Developments in Meat Science (Vol. 4) (pp. 173-243). 
London: Elsevier.  

Osborne, B.G., Fearn, T. & Hindle, P.H. (1993). Practical NIR spectroscopy with 
applications in food and beverage analysis. Second edition. Essex: Longman 
Scientific & Technical. 

Pedersen, D.K., Andersen, J.R., Christensen, L.B. & Engelsen, S.B. (2000). Method 
and apparatus for prediction of the drip loss of a part of a carcass. Patent no. DK 
173748 B1. 



Paper IV 

131 

Penny, I.F. (1969). Protein denaturation and water-holding capacity in pork muscle. 
Journal of Food Technology, 4, 269-273. 

Pezolet, M., Pigeon-Gosselin, M. & Caille, J.P. (1978). Laser Raman investigation 
of intact single muscle fibers protein conformations. Biochimica et Biophysica Acta, 
533, 263-269. 

Pezolet, M., Pigeon-Gosselin, M., Savoie, R. & Caille, J.P. (1978). Laser Raman 
investigation of intact single muscle fibers on the state of water in muscle tissue. 
Biochimica et Biophysica Acta, 544, 394-406. 

Pezolet, M., Pigeon-Gosselin, M., Nadeau, J. & Caille, J.P. (1980). Laser Raman 
scattering – A molecular probe of the contractile state of intact single muscle fibers. 
Biophysical Journal, 31, 1-8. 

Rasmussen, A.J. & Andersson, M. (1996). New method for determination of drip 
loss in pork muscles. In Proceedings 42nd International Congress of Meat Science 
and Technology (286-287), 1-6 September 1996, Lillehammer, Norway. 

Sadeghi-Jorabchi, H., Hendra, P.J., Wilson, R.H. & Belton, P.S. (1990). 
Determination of the total unsaturation in oils and margarines by Fourier transform 
Raman spectroscopy. Journal of the American Oil Chemists Society, 67, 481-486. 

Schäfer, A., Rosenvold, K., Purslow, P.P., Andersen, H.J. & Henckel, P. (2002). 
Physiological and structural events post mortem of importance for drip loss in pork. 
Meat Science, Accepted. 

Swatland, H.J. & Barbut, S. (1995). Optical prediction of processing characteristics 
of turkey meat using UV fluorescence and NIR birefringence. Food Research 
International, 28, 227-232. 

Warner, R.D., Kauffman, R.G. & Greaser, M.L. (1997). Muscle protein changes 
post mortem in relation to pork quality traits. Meat Science, 45, 339-352. 

Wold, S., Esbensen, K. & Geladi, P. (1987). Principal Component Analysis. 
Chemometrics and Intelligent Laboratory Systems, 2, 37-52. 

 Yang, H. & Irudayaraj, J. (2001). Characterization of beef and pork using Fourier-
transform infrared photoacoustic spectroscopy. Lebensmittel-Wissenschaft und 
Technologie, 34, 402-409. 





Paper V 

133 

Paper V 
Near infrared absorption and scattering separated by 
Extended Inverted Signal Correction (EISC).  

Analysis of NIT spectra of single wheat seeds 

D.K. Pedersen, H. Martens, J.P. Nielsen and S.B. Engelsen 
___________________________________________________________________ 

Abstract 

A new extended method for separating e.g. scattering from absorbance in 
spectroscopic measurements, Extended Inverted Signal Correction (EISC) is 
presented and compared to the Multiplicative Signal Correction (MSC) and existing 
modifications of this. EISC pre-processing is applied to Near Infrared Transmittance 
(NIT) spectra of single wheat kernels with the aim of improving the multivariate 
calibration for protein content by Partial Least Squares Regression (PLSR). The 
primary justification of the EISC method is to facilitate removal of spectral artifacts 
and interferences that are uncorrelated to target analyte concentration. In this study 
EISC is applied in a general form, including additive terms, multiplicative terms, 
wavelengths dependency of the light scatter coefficient and simple polynomial 
terms. It is compared to conventional MSC and derivative methods for spectral pre-
processing. Performance of the EISC was found to be comparable to a more 
complex dual-transformation model obtained by first calculating the second 
derivative NIT spectra followed by MSC. The calibration model based on EISC pre-
processing performed better than models based on the raw data, second derivatives, 
MSC, and MSC followed by second derivatives. 

 

INDEX HEADINGS: additive, multiplicative, interference, inverted scatter 
correction, ISC, EISC, multiplicative signal correction, MSC, near infrared, NIT, 
PLSR, protein, single seed, light scattering 
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Introduction 

The Extended Inverted Signal Correction (EISC) method, originally developed with 
chemical analyte extensions1, is here presented with spectroscopic extensions. This 
new method is then applied to Near-Infrared Transmission (NIT) spectra of single 
wheat kernels prior to multivariate calibration2 for protein content, with the 
calibration model estimated by cross-validated Partial Least Squares Regression 
(PLSR)3,4. The most basic version of EISC, ISC, was originally called “Inverted 
Scatter Correction” (ISC)5. Martens et al.1 explains the rationale behind the EISC 
method and its chemically based extensions, in relation to its heritage, the 
Multiplicative Signal Correction (MSC)67 and the Extended MSC (EMSC)8. In the 
present study, the EISC method is extended with some general physical 
approximation parameters (wavelength dependency and curvatures), and compared 
to derivative-based pre-processing. 

Today, near infrared (NIR) spectroscopy in combination with multivariate 
calibration has become the established method for protein determination in cereal 
breeding as well as for quality determination in the cereal industry, relieving the 
more than 100-year old, slow, chemical analysis invented at the Carlsberg 
Laboratories by the Danish chemist Johan G. Kjeldahl in 18839. The advantages of 
using NIR spectroscopic methods for cereal quality are mainly the speed of the 
analysis and their non-invasive character, which is essential if seed fertility is the 
aim in breeding programmes. As an important spin-off, NIR methods provide 
possibilities for simultaneous determination of additional quality parameters such as 
moisture, starch and fibre content.  

In low-cost / high-speed analysis of complex systems such as whole-wheat grain, the 
pattern of optical paths is very complex, and several physical phenomena may 
contribute to the apparent pattern of “light scatter”. The information in NIR spectra 
usually result from both diffuse light scatter and chemically (vibrationally) absorbed 
light by the sample, and the NIT spectra of single seeds can be considered a worst 
case with large additive and multiplicative scatter effects due to differences in kernel 
size, structure and presentation angle. It is not uncommon to see more than 95% of 
the variance in NIR log(1/T) or log(1/R) data caused by uncontrolled light scattering 
variations, which usually will dominate the first latent variable in PCA (Principal 
Component Analysis) or PLSR modelling. In some cases this is desirable, when the 
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quality to be calibrated for is physical and related to light scattering, e.g. hardness 
variation of wheat kernels, or particle size variation in powders. However, in most 
cases light scattering creates selectivity and linearity problems for simple quality 
attributes related to chemical concentrations. In such cases it is imperative that 
scatter is isolated from the NIT spectra prior to calibration in order to provide a 
robust and accurate quantitative method.  

The single seed protein system has been studied in depth by Delwiche10 who found 
that an optimal data transformation prior to PLSR calibration was obtained by first 
calculating the second derivative spectra and then correcting them by MSC. The 
performance of this double transformation model is confirmed by this study11, but 
such a complex pre-transformation naturally calls for the development of more 
general and powerful pre-transformations. In the present study it is demonstrated 
that a general form of EISC is able to provide a quantitative protein model with a 
precision equal to Delwiche’s doubly pre-transformed model. 

 

Theory 

In its most basic “ISC” form, the EISC data transformation can correct a 
combination of additive and multiplicative interference effects in measured spectra, 
analogous to the original MSC method6,7. Both the MSC and the ISC/EISC adjust 
the input spectrum of each sample, zi in a set of samples, i=1,2,..., towards a common 
reference spectrum, m, in order to separate possible physical effects from possible 
chemical absorption effects. The difference between the methods is that the ISC 
simply reverses regressor and regressand in each sample’s regression model 
between zi and m. Like the conventional MSC, the ISC (“basic EISC”) pre-
processing method estimates and isolates two presumably physical effects for each 
sample: an additive baseline offset effect and a multiplicative scaling effect. If the 
input information zi represents absorbance (A = log(Io/I) = log(1/T)) values, the 
additive baseline offset is intended to model an unknown, fixed amount of 
absorbance lost at every wavelength, e.g. due to light failing to reach the detector 
because of dispersion of light in the sample. Multiplicative scaling is intended to 
model an unknown amplification of the absorbance at every wavelength, e.g. due to 
a change in the effective optical path length because of light scattering effects in the 
sample.  
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In the original EISC paper1 the basic version of EISC was extended with chemical 
information known a priori to represent absorbance spectra from interfering 
constituents. In the present paper the EISC is instead extended with physical 
information representing wavelength and polynomial extensions when compared to 
MSC. 

 

Multiplicative Signal Correction 

The multiplicative signal correction, originally named Multiplicative Scatter 
Correction, MSC, involves correcting each input spectrum zi =[zi1, zi2,..., zik,..., ziK] 
in a set of related samples i=1,2... towards an ideal spectrum m where the influence 
of physical scattering variations has been removed from the effects of chemical 
absorbance (K is the number of variables in the spectrum). The basic MSC consists 
of estimating two coefficients, ai and bi that ideally contain all the physical 
information in zi, based on the linear regression model  

zi = ai  + bim + εi      (1) 

where εi =[ε1, ε2,..., εk,..., εK] are the residuals that ideally contain all the chemically 
relevant information in zi, plus other unmodelled effects and random noise. Vector 
m =[m1, m2,..., mk,..., mK]  is a common reference spectrum. After parameters ai and 
bi have been estimated, the corrected spectrum zi,corrected  for this sample is then 
generated by reversing equation 1, from the estimates of ai and bi, in an analogy to 
the univariate “reverse”2 calibration: 

zi,corrected = (zi - ai ) / bi     (2) 

These corrected spectra may be used as regressors in the subsequent mulivariate 
calibration modelling of the analyte yi from xi = zi,corrected over a set of samples,  
yi,=f(xi), i=1,2,... . 

The common reference spectrum m in equation 1 may, for example, be defined as 
the mean of a set of N spectra of calibration samples: 

N

N

i
i∑

== 1
z

m      (3) 
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This reference spectrum m from the spectra of the N calibration samples zi, 
i=1,2,...,N may also be applied to MSC of new spectra zi, i=1,2,3,... e.g. from future 
prediction samples; equations 1 and 2 are the same for both kinds of samples.  

In each calibration or prediction sample i, the unknown additive and multiplicative 
MSC coefficients ai and bi in equation 1 may be estimated by ordinary least squares 
regression of zi on m, minimising the sum of squared residuals in εi.  

[ai  bi ]= ([1 m´]´ [1 m´])-1[1 m´]´zi´   (4) 

However, the process for estimating and correcting for scattering parameters ai and 
bi is only safe, if the effects of chemical variation between zi and m can be ignored; 
otherwise, the coefficients ai and bi may be contaminated with information about, 
e.g., the analyte, which will then be partially lost in zi,corrected (equation 2). If applied 
to pure baseline separated absorbance bands, MSC (and basic EISC) will remove all 
relevant chemical information, as concentration will have a simple multiplicative 
effect on the spectral band. For this reason it is good practice to test the scatter 
coefficients ai and bi for information about the analyte or quality to be calibrated for. 
If ai and bi are found to be informative, they may even be included as additional 
regressor variables in the subsequent multivariate calibration models.  

The problem of mixing chemical and physical information in the MSC may 
alternatively be reduced by down-weighting wavelength regions that carry chemical 
information. However, in some applications, like NIT of single wheat grains in the 
850-1050 nm range, it is difficult to find wavelength regions that are sufficiently 
informative about the light scattering, but which do not carry chemical information. 
A more elegant approach would be an MSC model which includes information 
about the spectra of the chemical constituents1,2,8. However, in some applications 
like the present one, the in situ constituent spectra are not known and difficult to 
measure. 

 

Basic Extended Inverted Signal Correction 

The basic form of the EISC, ISC, is similar to MSC, but it may be more flexible and 
easier to understand for spectroscopists using multivariate calibration modelling by, 
for instance, PLSR. MSC, like its extensions, is based on a “reverse”8 correction in 
equation 2, compared to the model in equation 1. In contrast, the basic EISC, like its 



Paper V 

138 

extensions, uses a “forward”8 model: The same direction of the relationship between 
spectrum zi and reference spectrum m is kept, both in the model specification  

m = ai  + bizi + εi     (5)
  

and in the final correction of the spectra 

zi,corrected = ai  + bi zi     (6) 

Hence, instead of regressing zi on m in the model (equation 1) and then reversing 
this model in the signal correction step (equation 2), the inversed MSC (ISC/EISC) 
regresses m on zi and uses this “forward” model directly in the signal correction step 
6.  

The estimation of the parameters ai and bi may be done by ordinary least squares 
regression 

[ai  bi ]= ([1 zi]´ [1 zi])-1[1 zi]´ m   (7) 

Like in MSC, weighted least squares regression may be used instead, if certain 
wavelengths are to be eliminated because of too strong overlap between constituent 
spectra and light scattering effects. 

The rationale behind this model is explained by Martens et al.1. The statistical 
difference between EISC and MSC in their basic form, discussed more theoretically 
by Helland et al.5 is illustrated in Figure 1. In the plot of reference spectrum m vs. a 
sample’s input spectrum zi the residuals εik are minimised horizontally in MSC 
(noise modelled on the individual spectra) and vertically in ISC/EISC (noise 
modelled on the average/reference spectrum). 

 

General spectroscopic extensions of EISC 

Just as the MSC can be extended into Extended Multiplicative Signal Correction  
(EMSC)8, the basic EISC can be extended to accommodate various types of physical 
or chemical a priori knowledge.  

In the present case, it is impossible to find wavelength ranges that distinguish the 
physical light scattering information from the chemical absorbance information. 
That must be expected to create problems for the MSC or basic EISC methods, but 
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EMSC as well as EISC extended with chemical constituent spectra might solve the 
problems. However, contrary to the case in Martens et al.1, the present in situ 
chemical constituent spectra are not known. In the grain, water is probably bound to 
a greater or lesser extent to the protein, starch and cellulosis biopolymers, and the 
NIR in situ spectral contributions from the constituents may therefore be rather 
different from those of isolated constituents in a pure state.   

 

 

Figure 1. Plot of a wheat kernel sample’s input spectrum zi versus the mean (m) spectrum of 
the NIT wavelength range (850-1050 nm). While the MSC models the error horizontally on 
the individual spectra the EISC models the error vertically on the average spectrum. 

 

On the other hand, the heterogeneity of the intact wheat grains may cause rather 
complex optical phenomena that are difficult to model explicitly, but which may be 
approximated in more detail by polynomial extension of equation 5, e.g.  

m = ai  + bizi + cizi
2 + εi    (8)

  

Moreover, we expect the light scattering coefficient to have some dependency on the 
wave number. The exponent of this dependency depends on particle size, which is 
unknown. A first order approximation of this is to include the wavelength vector λ, 
with polynomial terms, e.g. : 

m = ai + bi zi + ci zi
2 + di λ + ei λ2 + εi  (9) 
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The parameters ai, bi, ci, di, ei may be estimated by some sort of linear regression 
that makes the residual elements in εi small, with one separate model for each 
sample i=1,2,... .  To ensure statistical and numerical stability, regression on 
standardised regressors was used, with a small ridge parameter1.  

The primary purpose of the EISC extension terms zi
2, λ and λ2 in equation 9 is to 

improve the estimation of the basic interference effects, the Additive offset ai 
(reflecting “baseline differences”) and the Multiplicative slope bi (reflecting 
“relative scatter coefficient differences”). But the extensions may also be used 
explicitly in the subsequent correction. Depending on whether or not one expects the 
corresponding coefficient estimates ci, di and ei to carry information about the 
analyte, one may choose whether or not to use them in the subsequent correction. If 
they are thought (or found) to pick up irrelevant complexity from the data, the 
subsequent calibration modelling may be simplified after the EISC correction 

zi,corrected = ai + bi zi + ci zi
2 + di λ + ei λ2  (10) 

This is the EISC correction used in the present paper. Alternatively, if the extension 
coefficients di and ei for the wavelength are expected to have picked up variation in 
the analyte that one does not want to lose, the effects di λ and ei λ2 may be retained 
in the spectra by reducing the correction to  

zi,corrected = ai + bi zi + ci zi
2   (11) 

Note that equation 8 is still a simple, linear (additive) model, but equation 9 works 
as a mixed additive/multiplicative pre-processing, in the sense that bi is a multiplier 
that may reflect the relative scatter coefficient, while ai may represent its additive 
baseline offset.  In that sense the EISC correction (eq. 10 or 11) is analogous to the 
correction by MSC (eq. 2) and its extension1. 

 

Material and Methods 

Samples: Wheat kernels (415) representing 43 different varieties or variety mixtures 
from two different locations in Denmark made up the calibration set, while wheat 
kernels (108) representing 11 different varieties from one location made up the test 
set11. All kernels were randomly chosen from bulk samples. The test samples were 
acquired with the calibration samples, but stored for about 2 additional months 
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before measurement in order to provide a check for temporal drift in the samples 
and instrumentation. The NIT single seed data set is made available on WWW 
(Pedersen, Pram Nielsen, Munck & Engelsen, NITSingleSeed, www.models.kvl.dk) 

Spectra recordings: The single kernel transmittance spectra were collected on an 
Infratec 1255 Food and Feed Analyzer (Tecator AB, Höganäs, Sweden). Each 
kernel was placed in a single seed sample cassette, and transmittance spectra in the 
range 850-1050 nm were recorded. A tungsten lamp (50 W) and a diffraction 
grading were used to create monochromatic light. The light passed through the 
kernel reaching the silicon detector in a diffuse pattern. Spectra were recorded three 
times for each kernel and the average of the three spectra was used for the 
calibrations. The time required for scanning (single scan) 23 single kernels in the 
cassette was about 90 Sec. 

Protein determination in single kernels: After the spectral recording of the intact 
wheat kernels each kernel was crushed in the Single Kernel Characterization System 
(SKCS 4100, Perten Instruments Inc., Reno, NV, USA) and the moisture content 
necessary for calculation of protein content in dry matter determined. Subsequently, 
single kernel nitrogen content was determined directly by a modified Kjeldahl 
method12. Nitrogen in single kernel grits was transformed into ammonium sulphate 
by digestion (410oC for 1 hour) with 6 ml sulphuric acid (98%). The solution was 
then alkalised (25 ml 35% NaOH and 75 ml H2O) and distilled into 25 ml boric acid 
(0.2%) with methyl red and bromcresol green indicator. The amount of resulting 
ammonia produced was determined by titration (0,0050 M HCl). The method is 
based on the assumptions that proteins contain 16 percent nitrogen and that non-
protein nitrogen content can be neglected. The protein content is reported as 
5.7 times the total nitrogen content for wheat kernels. This unusual calculation 
factor is due to the high nitrogen content of glutamine. Based on previous 
experience with samples of 30-40 mg wheat flour, the analytical error of the analyte 
was expected to have an absolute standard uncertainty of 0.16 % (percent protein 
content in dry matter). 

Data analysis: Multivariate data analysis was carried out using The Unscrambler 
version 7.6 (www.camo.com), except for EISC calculations, which were 
programmed and carried out using MatLab version 6.1 (The Matworks, Inc., Natick, 
MA, USA). Conventional multivariate calibration models were developed from the 
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415 calibration samples using PLSR for protein content (y) from NIT spectra (X), 
after different types of spectral pre-transformation (MSC, basic EISC (eq. 6), EISC 
with physically extensions (eq. 10), second derivatives, and combinations of MSC 
and second derivatives). Optimal numbers of PLSR components (PCs), AOpt, as well 
as apparent root mean square error of Y-prediction, RMSECV, were estimated by 
cross-validation within the calibration set. To ensure robust and representative 
segmentation in the cross-validation, the 415 calibration samples were sorted for 
increasing value of protein content (y), and then split systematically into 10 cross-
validation segments. Performance of calibration models was validated by predicting 
the protein content in the 108 samples (validation set), yielding the root mean square 
error of Y-prediction, RMSEP.  

 

Results and Discussion 

Protein content: The statistics of the Kjeldahl protein determination of the two 
sample sets are listed in Table I.  
 

Table I. Means and standard deviations (SD) of single kernel protein data in the calibration 
and test sets 

Sample set # of kernels Mean Protein [%] SD [%] Min. [%] Max. [%] 

Calibration 415 10.0 1.56 6.8 15.2 

Test 108 9.8 1.75 7.0 17.0 
 

The protein concentration in the calibration set ranges from 6.8% to 15.2%, while 
the concentration in the test set ranges from 7.0% to 17.0%. As indicated by the 
standard deviations in Table I, relatively few kernels have extreme protein content; 
however, a certain degree of extrapolation is required for the PLSR calibration 
model to cover the protein range of the test set. The higher protein content in the test 
samples is probably the result of a certain loss of moisture during the additional 
storage period. 

NIT spectra: The NIT spectra of the single wheat kernels presented in this study 
cover the spectral region from 850 nm to 1050 nm in 2 nm steps containing 
primarily the second overtones of O-H (carbohydrates and water) and N-H (protein) 
stretching vibrations and the third overtone of the C-H (fats) stretching vibration. 
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The fundamental O-H stretch for hydrogen-bonded systems is typically found 
between 3400 and 3300 cm-1 (IR), corresponding to 2940-3030 nm, which will 
ideally give second overtones in the NIR region 980-1010 nm. Secondary amides 
(proteins) give rise to a fundamental N-H stretching vibration located near 3300 cm-1 
(IR), corresponding to an ideal second NIR overtone near 1010 nm. Aliphatic C-H 
stretching vibrations are located between 3000 and 2840 cm-1, corresponding to 
3333-3521 nm, which will ideally give rise to third overtones in the VIS/NIR region 
between 833 and 880 nm. This spectral region is thus of outmost importance to 
food-related samples, as most important functional components are represented. The 
electromagnetic radiation is relatively high in energy, yet still absolutely non-
destructive. Moreover, the absorption of the second and third overtones is much 
lower than the fundamental and first overtone vibrations, enabling larger sample 
volumes to be measured, which is very important when measuring heterogeneous 
systems.  

 

Figure 2. Raw NIT spectra (850-1050 nm) of the 415 wheat kernels from the calibration set 

 

Figure 2 displays raw NIT absorbance spectra of the 415 samples in the calibration 
set. From the figure, large additive offset and multiplicative scaling effects are 
readily observed. These are probably due to dispersive loss of light and changes in 
optical path length, caused by variations in kernel size and texture as well as kernel 
orientation in the sample cassette. These observed differences in light lost due to 
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physical effects probably overshadow the absorbance changes due to concentration 
variations in the chemical constituent like starch, water and protein.  

 

Figure 3. NIT spectra (850-1050 nm) of the 415 wheat kernels from the calibration set; (A) 
EISC transformed (eq. 10), (B) MSC transformed (eq. 2), (C) Second derivatives followed 
by MSC and (D) MSC followed by second derivatives. 

 

Figure 3A displays the same NIT spectra after EISC pre-transformation according to 
equation 10. In comparison, Figure 3B shows MSC pre-transformed spectra 
(equation 6), Figure 3C shows second derivatives of the spectra followed by MSC 
and Figure 3D shows MSC-transformed spectra followed by second derivatives. 
Compared to the raw spectra in Figure 2, all the calibration samples appear almost 
identical after the EISC.  

However, Figure 4A shows that after mean centring to remove average spectral 
pattern in the NIT data, the EISC pre-transformed spectra are quite different. 
Likewise, the mean-centred MSC pre-transformed spectra (4B), mean-centred 
second derivatives of the spectra followed by MSC (4C) and mean-centred MSC-
transformed spectra followed by second derivatives (4D) show clear differences 
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between the samples. The question is whether these differences relate to variations 
in the protein content. 

 

Figure 4. Mean-centred NIT spectra (850-1050 nm) of the kernels from the calibration set; 
(A) EISC transformed, (B) MSC transformed, (C) Second derivatives followed by MSC and 
(D) MSC followed by second derivatives. 

 

Figure 5 compares the calibration models from the raw (dotted) spectra (Figure 2) 
and the EISC-transformed (solid) spectra (Figure 3A), both after mean centring. It 
shows the regression coefficient summary for the two models obtained at a 
conservative model rank (i.e. 9 and 6 PCs, 5A) and at the number of PCs that 
appeared to be near optimal (11 and 7 PCs, 5B), judging from the cross-validation. 
In general, the EISC has reduced the number of PCs required. Particularly in 
Figure 5B, the two predictors are relatively similar, although some differences can 
be observed. At the slightly lower rank in Figure 5A the models are even more 
distinct. 
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Figure 5. The regression coefficients for the calibration of raw input spectra (-----) for 9 PCs 
(A) and the optimal 11 PCs (B), and for the calibration of EISC-transformed spectra (_____) 
for 6 PCs (A) and the optimal 7 PCs (B) 

 

Figure 6 compares the apparent performance of the raw NIT-data and the EISC pre-
transformation to various other pre-transformations for the single seed protein 
calibration models. The prediction errors (RMSECV) are plotted against the number 
of PLSR components. The figure reveals a significant reduction in the number of 
PLSR components needed, from the raw spectra to the pre-transformed spectra. 
Secondly and most interestingly, the plot reveals that only the EISC pre-
transformation (solid) and the second derivative followed by MSC pre-
transformation (densely dotted) are able to provide an optimal model according to 
the level of the prediction error in the calibration set.  
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Figure 6. RMSECV versus PLSR components (PCs) for models based on different pre-
transformed NIT spectra; Raw spectra, ISC-corrected spectra, EISC-corrected spectra, MSC 
corrected spectra, spectra transformed to the second derivative followed by MSC correction 
(2nd+MSC) and MSC correction followed by second derivative (MSC+2nd)  

 

The prediction error in the calibration set for the PLSR model based on EISC-
transformed spectra was estimated by cross-validation to 0.49% protein (7 PC’s). 
The corresponding prediction error for the PLSR model based on the second 
derivatives followed by MSC-transformed spectra was also estimated to 0.47% 
protein (5 PC’s), while PLSR models based on raw, differentiated, basic EISC or 
MSC-treated spectra never reached a prediction error less than 0.55% protein, 
regardless of the number of PLSR components applied. The improved prediction 
performance agrees with the findings of Delwiche10 who showed that the two-step 
procedure of using second derivatives followed by MSC gave a better single seed 
NIT model for prediction of protein content. The most significant result of this 
comparison is that the single-step EISC performs equally as well as the double 
transformation, but it is perhaps also noteworthy that basic EISC performs just as 
the sister algorithm MSC on the calibration set, but with a significantly better result 
on the test set. 

The two-step method based on second derivatives followed by MSC corrected 
spectra performs considerably better than the opposite two-step method - MSC 
followed by second derivatives (Figure 6). This emphasises that the order of the 
applied pre-transformations is important and that conventional MSC is a poor model 
when the scatter is not linear13. In the MSC it is assumed that the scatter is linear 
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throughout the spectral range, since the whole spectrum is linearly adjusted by one 
slope and one offset. However, if the loss of light due to light scattering and other 
effects is not this simple, the MSC correction is not suitable and, consequently, a 
model based on MSC followed by the second derivatives will not be optimal. On the 
contrary, by using the second derivatives, it appears that the spectra are successfully 
corrected for local offsets and linear trend variations. 

 

 

Figure 7. The estimated EISC parameters (eq. 9) plotted against sample # i for the 415 
calibration samples (black) as well as for the 108 test samples (grey), sorted according to 
increasing protein content in the two data sets; EISC parameter # 1: ai (additive/offset) (A), 
EISC parameter # 2: bi (Multiplicative/relative scatter scaling of input spectrum) (B), EISC 
parameter # 3: ci (effect of squared spectrum) (C), EISC parameter # 4: di (effect of 
wavelength) (D) and ei (effect of squared wavelength) (E). The increasing protein content yi 
within each of the two sample sets is shown in subplot F. 

 

Validation: The test set (108 single wheat kernels representing 11 of the varieties 
included in the calibration, but stored for an additional 2 months) was measured on 
the same NIT instrument, analysed for protein content by the same method and used 
for testing the (long-term) stability of various calibration models. Figure 7 shows the 
EISC parameter estimates, the coefficients ai (additive offset), bi (multiplicative 
scaling), ci (for squared spectrum), di (for wavelength) and ei (for squared 
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wavelength). See equation 10, for the 415 calibration samples as well as for the 108 
test samples. Figure 7F illustrates that the samples have been sorted for increasing 
protein content (y) within each of the two sample sets, for simpler cross-validation 
in the calibration set and simpler visual interpretation of the EISC parameters in 
both sets. The EISC parameters (7A-7E) show highly erratic variations, especially bi 
(multiplicative scaling) and di (wavelength). But some systematic changes with the 
protein content may be observed in both sets, particularly at the highest protein 
levels (>11%). This is an indication that the EISC may have picked up and removed 
some variation related to the analyte. The cause and nature of this lost analyte 
information is unclear, but needs to be studied in more detail. 

 

Figure 8. The mean-centred NIT spectra for (A) the calibration samples and(B) the test 
samples, and the EISC transformed mean-centred NIT spectra for (D) the calibration samples 
and (E) the test samples. Prediction error versus the number of PCs for the calibration 
samples (____) and the test samples (- - -) before EISC transformation (C) and after EISC 
transformation (F). The two short curves in subplot F shows the prediction errors calibrating 
only with the 5 EISC parameters (eq. 9), X= [ai, bi, ci, di, ei ]: the calibration samples (____) 
and the test samples (- - -).  

 

Figure 8 compares the calibration set and the test set, before and after the EISC. 
Spectroscopically, the mean-centred spectra of the test samples appear normal in the 
raw data (Figure 8B), compared to the calibration set (Figure 8A), while they show a 
very distinct pattern after the EISC (Figure 8E vs. Figure 8D). This is an indication 
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that all test samples deviate in the same systematic way from the calibration mean 
spectrum m. If this type of deviation is also present among the calibration samples, 
it may be modelled and corrected for in the calibration model; if not, the systematic 
deviations will cause grave errors in the predicted % protein in the test set. The 
peaks just below 950 nm in Figure 7D indicate that some of the calibration samples 
indeed display the same general pattern, but this needs to be verified in the 
prediction of protein. 

Figures 8C and 8F compare the predictive performance before and after EISC. The 
long curves show the estimated error for protein content y predicted from the 100 
NIT wavelength channels X for PLSR calibration models using between 0 and 15 
PCs, for the cross-validated calibration set (RMSECV, solid) and the test set 
(RMSEP, dashed). When using the raw spectra in Figure 8C as X, the cross-
validation shows that several of the first PCs (2,3,4,5) have little or no predictive 
relevance for the protein content; hence, they must reflect very strong covariance 
structures in the NIT spectra. More importantly, the predictive ability in the test set 
changes erratically with the increasing number of PCs; obviously, a wrong choice in 
the number of PCs to be used for prediction may cause very high prediction errors in 
the test set.  

In contrast, when using the spectra after EISC in Figure 8F as X, the cross validation 
curve falls smoothly, as desired. The model is shown to require at least 4 PCs. The 
test set curve is very similar to the cross-validation curve after 4 PCs. 

The two short curves in Figure 8F show the estimated prediction errors using instead 
the 5 EISC parameters  [ai, bi, ci, di, ei] (eq. 10) from the different samples as X, 
instead of the 100 wavelengths channels. Some predictive ability for the protein 
content (y) is evident in the cross-validation curve (squares). Hence, the EISC may 
have removed Y-relevant information. However, in the test set (diamonds) the 
predictive ability for y is not as good. Attempts (not shown here) at joining the NIT 
data with the EISC parameters as extra variables, X= [zi,corrected, ai, bi, ci, di, ei], using 
weighted least squares PLSR, gave a slight, but insignificant improvement in 
RMSECV (calibration set), but no improvement in RMSEP (test set). So it appears 
that the “physical” information apparently removed by the EISC in these data was 
not important or reliable for the prediction of chemical protein content: The errors 
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that they contribute to the calibration model is greater than the otherwise un-
modelled Y-variation that they can remove. 

The calibration and the test set results for all the tested pre-transformation methods 
are summarized in Table II in terms of the RMSECV (calibration set) and RMSEP 
(test set) read at the optimal number of PCs, and of the correlation coefficients based 
thereon. Compared to the untransformed raw data, the basic EISC/ISC did not affect 
the results very much. However, there is an improved correlation, both for the 
calibration set (from 0.93 to 0.95) and for the test set (0.96 to 0.98), after applying 
the EISC to the NIT spectra. The protein calibration model predicts the test kernels 
well throughout the protein range: The prediction error (RMSECV and RMSEP) 
ends as low as 0.49 % protein in a protein range of 7 to 17 %. This RMSE level 
approaches the sampling- and measurement error on the single seed protein 
determination (0.16 % determined for samples of 30-40mg flour), and the results 
demonstrate a very good and robust protein calibration on single wheat kernels.  
 

Table II. Performance statistics of the PLSR models for single seed protein predictions 
using single seed NIT spectra from the calibration set (415 kernels) and the subsequent test 
set (108 kernels). CV is cross validation. RMSECV is the root mean square error of cross 
validation and RMSEP is the root mean error of prediction. 

Pre- # of PLS Correlation Prediction error (% protein) 

transformation Components Cal. set 
(CV) 

Test set Cal. Set 
RMSECV 

Test set 
RMSEP 

Raw 11 0.93 0.96 0.55 0.70 

ISC 9 0.93 0.95 0.58 0.69 

EISC 7 0.95 0.98 0.49 0.49 

MSC 9 0.93 0.95 0.57 0.78 

2nd+MSC 5 0.95 0.98 0.47 0.48 

MSC+2nd 7 0.92 0.93 0.60 0.66 

 

The conclusion is that the new, extended ISC performs equally as well as the 
traditional MSC, perhaps even slightly less aggressive on the calibration set, 
resulting in an improved test set prediction. Both the EISC with general (physical) 
extensions and the two-step “second derivatives followed by MSC” in this data set 
can correct for spectra interferences that are not corrected by the more “classical” 
pre-transformations MSC or second derivatives. The EISC is particularly promising, 
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because it is more flexible and easier to understand than the “classical” MSC and 
two-step methods. In this study we have emphasized a general applicable version of 
the EISC, but its flexible approach allows simple implementation of system specific 
interferences such as known analytes1. In a future implementation we work on a 
version where the correction coefficients are constrained to be orthogonal to the 
reference value y, with the aim of optimising subsequent regression models with 
even less loss of analyte information.  
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Paper VI 
Assessment of the depth of CO2 stunning of slaughter pigs 
by visual and near infrared spectroscopy on blood 

D.K. Pedersen, S. Holst and S.B. Engelsen 

___________________________________________________________________ 

Abstract 

The ability of VIS/NIR (visual/near infrared) spectroscopy to assess the depth of 
CO2 stunning of slaughter pigs was evaluated. In this study VIS/NIR spectra of 
blood were acquired and the depth of CO2 stunning assessed during sticking and 
debleeding of 145 slaughter pigs from three Danish slaughterhouses. Partial Least 
Squares Regression (PLSR) based on VIS/NIR spectra (700-1300 nm) to the 
assessed depth of stunning indicated that it is possible to predict the well stunned 
and the less well stunned slaughter pigs with an error around 1.4 for the total range 
of 0-7 (quantitative score of the depth of stunning assessments). Multivariate 
analysis of the VIS/NIR spectra further revealed a systematic pattern amongst the 
three slaughterhouses investigated related to the general quality of CO2 stunning. 

 

Keywords: NIR, near infrared, VIS, blood, preslaughter CO2 stunning, 
chemometrics, PCA, PLSR 

 

Introduction 

Preslaughter stunning is used to ensure that animals do not suffer needlessly and that 
they are unconscious and insensible to the slaughter procedure. The stunning 
method should provide a duration of unconsciousness and insensibility which 
ensures that death from subsequent slaughter intervenes before recovery of 
sensibility. Today, concern for animal welfare is a major concern in meat 
production. Scientific interest in farm animal welfare has rapidly grown in recent 
years. This has largely been due to meat consumers’ increasing demand that animals 
are produced, transported and slaughtered in a humane way (Appleby and Huges, 
1997). In the European Union as well as in other countries, all animals destined for 
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meat consumption must be rendered insensible instantaneously and remain 
insensitive to pain until there is a complete loss of brain responsiveness due to 
exsanguinations (Council Directive 93/119/EC of 22 December 1993).  

At all Danish slaughterhouses preslaughter CO2 stunning of slaughter pigs is applied 
to induce a state of unconsciousness which prevents the ability to perceive pain. 
According to acceptable animal welfare it is important to expose slaughter pigs to 
CO2 for long enough to ensure they remain unconscious during post-stun handling 
until death intervenes by debleeding.  

Evaluation of insensibility from an effective CO2 stunning of slaughter pigs can be 
done by a skilled veterinarian using the methods normally employed to judge the 
effect of a chemical anaesthetic used for surgical procedures (Blackmore and 
Newhook, 1983). Brain stem reflexes such as absence of rhythmic breathing and 
absence of corneal reflex have been used to assess the effectiveness of CO2 stunning 
of slaughter pigs (Gregory, Moss and Leeson, 1987; Raj, 1999). These brain stem 
reflexes may, if positive, indicate that the animal is beginning to regain 
consciousness after the stun, but there is no indication of the speed at which the 
animal is recovering. One method to assess the depth of CO2 stunning of slaughter 
pigs under slaughterhouse conditions is by using practical guidelines established by 
the Danish Meat Research Institute (Holst, 2001). The assessment is based on 
absence or presence of a number of reflexes characterizing the depth of stunning. To 
ensure that no slaughter pigs regain consciousness during post-stun handling and 
debleeding, the safe depth of anaesthesia at the time of sticking can be evaluated by 
the following criteria (Holst, 2001): 

-   No pig shows deep or regular respiration except for irregular abdominal gasping 

-   No pig shows excitation or kicking except for slow movements of legs 

-   No pig shows natural blinking of the eye 

-   Maximum 5% of the pigs have a corneal reflex 

Using these criteria just before sticking not only takes into consideration animal 
welfare concerns, but also the safety of slaughterhouse workers during post-stun 
handling of pigs. Presence of corneal reflex at a high frequency, deep rhythmic 
breathing and excitation at the time of sticking may be indicative of an inadequate 
stunning. In order to comply with legislation on animal welfare and marked 
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requirements it may be necessary in the future to document adequate anaesthesia of 
pigs prior to slaughter. An objective on-line measurement technique for assessment 
of the depth of stunning would meet this requirement.  

Inhalation of high-concentration CO2 rapidly leads to dramatic changes in the partial 
pressure of CO2 and O2 and of pH in the blood (Martoft et al., 2002). In that way, 
the depth of CO2 stunning can thus be revealed by measurement of the blood. 

The visual (VIS, 400-780 nm) and Near InfraRed (NIR, 780-2500 nm) regions of 
the electromagnetic spectrum contain absorption bands corresponding to overtones 
and combinations of fundamental vibrations mainly of the bonds C-H, O-H and 
N-H. NIR spectra of aqueous systems such as blood show strong, broad and 
overlapping bands. The position and intensity of the signals are dominated by the 
water vibrations but may vary according to secondary chemical composition. By the 
ability to rapidly and non-destructively analyse a wide range of chemical and 
physical properties of various samples, the NIR technique appears well suited for 
process control, particularly for on-line and at-line applications. NIR has been 
applied for a variety of quality attribute determinations in meat including 
determination of fat, moisture, protein and sodium chloride (Osborne, Fearn and 
Hindle, 1993). In blood, NIR has been applied for determination of haemoglobin 
content (Kuenstner, Norris and McCarthy, 1994; Vályi-Nagy, Kaffka, Jákó, Gönczöl 
and Domján, 1997), hematocrit level (Zhang, Soller, Kaur, Perras and van der Salm, 
2000), lactate content in plasma (Lafrance, Lands, Hornby anf Burns, 2000), 
cholesterol in serum (Peuchant, Salles and Jensen, 1987), total protein in serum (van 
Toorenenbergen, Blijenberg and Leijnse, 1988) and total protein, albumin, globulin, 
triglycerides, cholesterol, urea, glucose, and lactate in serum (Hazen, Arnold and 
Small, 1998). 

This study was based on observations made during an exploratory spectral 
investigation of early post mortem quality of porcine meat performed at a research 
slaughterhouse. Blood from slaughter pigs was measured with VIS/NIR 
spectroscopy (400-2500 nm) immediately after sticking. The spectra showed 
significant differences apparently related to the method of stunning. In Figure 1 
three spectra are shown, one from a pig that was electrically stunned and two from 
pigs that were stunned by CO2. By a process we call ‘interview validation’, in which 
spectral variation are sought explained by consulting the journal of the responsible 
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stunning expert, it was revealed that the two CO2 stunned animals had behaved 
differently during inhalation of the CO2 high atmosphere. One of the CO2 stunned 
pigs was excited during stunning, while the other one just fell into sleep in the CO2 
chamber, the result being that the excited pig was heavily stunned and probably 
dead at the time of slaughter, while the sleepy pig was only mildly stunned. By 
simple inspection, the differences in the spectra appear between 400 nm and 
1300 nm. The notch at 1100 nm is due to instrumental shift of detector. The 
spectrum of blood from the electrically stunned pig differs distinctively in shape 
from the spectra of the CO2 stunned pigs, while the difference between the two CO2 
stunned pigs is expressed as intensity differences in certain parts of the spectra 
apparently related to deoxygenated haemoglobin peaking around 760 nm (Wray, 
Cope, Delpy, Wyatt and Reynolds, 1988; Baykut et al., 2001). 

 

 

 

Figure 1. VIS/NIR spectra (400-2500 nm) of blood from three slaughter pigs measured 
immediately after sticking. One from an electrically stunned pig (⋅⋅⋅⋅⋅⋅) and two from CO2 
stunned pigs. One CO2 stunned pig was excited during stunning (----), the other one just fell 
into sleep in the CO2 chamber, the result being that the excited pig was heavily stunned and 
probably dead at the time of slaughter (____). 

 

The objective of this investigation was to evaluate the ability of VIS/NIR 
spectroscopy to assess the depth of CO2 stunning of slaughter pigs. The 
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spectroscopic data is evaluated by multivariate chemometric methods in an attempt 
to build a predictive model of the depth of CO2 stunning. 

 

Methods 

The investigation was carried out at three commercial slaughterhouses (labelled S1, 
S2 and S3). They were chosen in the light of previous knowledge on the CO2 
stunning ‘quality’. One slaughterhouse with a relatively high occurrence of corneal 
reflex (S1), one with a medium occurrence (S2) and one with a very low to no 
occurrence (S3) were chosen. During debleeding, blood was collected from each 
animal for subsequent spectroscopic measurement. The measurements were carried 
out over three consecutive days, with the same instrument and the same operator. 

 

Physiological assessment of the depth of stunning 

Depth of the CO2 stunning was assessed immediately before and after sticking (time 
= 0 and 15 sec) in accordance with guidelines established by the Danish Meat 
Research Institute (Holst, 2001). In order to judge the depth of stunning, the absence 
or presence of the following reflexes was measured: corneal reflex, breathing and 
excitation. If breathing was present, it was assessed whether it was superficial 
gasping or deep and rhythmic. If excitation was present, it was assessed whether it 
was weak or strong. The assessments are shown in Table 1. 

In order to obtain a quantitative graduation, a scoring system was developed. 
Absence of corneal reflex yields score 0, while presence of corneal reflex yields 
score 2. Absence of gasping yields score 0, while presence of superficial gasping 
yields score 1, and deep regular breathing yields score 2. Absence of excitation 
yields score 0, while presence of weak excitation yields score 2, and strong 
excitation yields score 4.  The reason for the higher score is that presence of 
excitation is regarded as a stronger indication of insufficient stunning than corneal 
reflex and gasping breathing.  

Besides the parameters of the actual assessed reflexes, three combined parameters 
were constructed. These combined parameters express the depth of CO2 stunning at 
0 sec and 15 sec and both times in one parameter. The constructed parameters are 
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called Respons0, Respons15 and ResponsTotal. The constructed parameters are 
produced by summing up the scores of the assessments of the three reflexes (corneal 
reflex, breathing and excitation) at 0 sec (Respons0), 15 sec (Respons15) and at 
0 sec and 15 sec in combination (ResponsTotal) for each pig.  

 

Table 1. The reflexes appearing during debleeding and the time of assessment for each 
parameter. The mean (Mean) and the standard deviation (SD) for each parameter assessed 
for the 145 pigs from the three slaughterhouses; S1 (45), S2 (49) and S3 (51).  

Reflex Time (sec) Mean SD 

  S1 S2 S3 All S1 S2 S3 All 

Corneal 0 1.64 0.90 0 0.81 0.77 1.01 0 0.99 

Corneal 15 1.47 0.65 0 0.68 0.89 0.95 0 0.95 

Breath 0 0.98 0.76 0 0.56 0.26 0.43 0 0.51 

Breath 15 0.42 0.41 0 0.27 0.50 0.50 0 0.45 

Excitation 0 1.56 0.53 0 0.66 1.03 0.89 0 1.00 

Excitation 15 0.84 0.37 0 0.39 1.24 0.97 0 0.95 

Cor 0 + Bre 0 + Exc 0 0 2.67 1.65 0 1.39 0.83 1.25 0 1.48 

Cor 15 + Bre 15 + Exc 15 15 1.93 1.06 0 0.96 1.07 1.16 0 1.20 

Cor 0 + Bre 0 + Exc 0 + 
Cor 15 + Bre 15 + Exc 15 

0 + 15 4.60 2.71 0 2.34 1.62 1.96 0 2.38 

 

VIS/NIR measurements 

Blood. During debleeding 1-2 litres of blood from each animal was collected in a 
container. Immediately thereafter, a wash bottle (½ litre) containing 5 ml EDTA 
(10 %) anticoagulation was filled with the blood. A cuvette (thickness = 3 mm) for 
NIR-Systems 6500 spectrophotometer (FOSS NIRSystems, Inc., Silver Spring, 
Maryland, USA) with a Transport Module (NR-6511) was filled with the blood 
sample, and the reflectance spectra from 400 nm to 2500 nm were recorded. The 
average of 32 scans was used. 

Single components. VIS/NIR spectra (400-2500 nm) of haemoglobin (Sigma 
H-4131), in the methaemoglobin form, was recorded on another NIR-Systems 6500 
spectrophotometer (FOSS NIRSystems, Inc., Silver Spring, Maryland, USA) using a 
small ring cup and a Spinning Module (NR-6506). Water (distilled) was recorded by 
using a cuvette (thickness = 10 mm) and a Transport Module (NR-6511). 
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Chemometrics 

A chemometric approach allows qualitative and especially quantitative information 
to be revealed from complex VIS/NIR spectra. Principal Components Analysis 
(PCA) (Wold, Esbensen,  and Geladi, 1987) is a mathematical procedure applied to 
spectral data to generate eigenvectors, which are orthogonal and thus uncorrelated. 
The purpose of PCA is to express the main information contained in the initial 
variables (the spectra) in a lower number of variables, the so-called principal 
components, which describe the main variations in the data. The regression 
approach Partial Least Squares Regression (PLSR) (Martens and Næs, 1989) defines 
factors, which are linear combinations of the original spectral data. PLSR extracts a 
small number of factors carrying most of the variable information, and the reference 
variable to be predicted is used actively in determining these factors. 

One of the main advantages of chemometric data analysis is the possibility of 
projecting multivariate data into few dimensions and visualizing the results through 
a graphic interface. Principal Component Analysis (PCA) (Wold et al., 1987) and 
interval Principal Component Analysis (iPCA) (Nørgaard, 2002) were applied for 
gaining an overview of the spectroscopic VIS/NIR data. Predictions of the depth of 
stunning of slaughter pigs based on spectral information were performed be means 
of Partial Least Squares Regression (PLSR) (Martens et al., 1989) and interval 
Partial Least Squares Regression (iPLSR) (Nørgaard, Saudland, Wagner, Nielsen, 
Munck and Engelsen, 2000). Full cross-validation (leave one out) was applied 
throughout this study and only validated results are presented. The multivariate data 
analysis was performed with the chemometric program The Unscrambler 7.6 
(CAMO, Trondheim, Norway) and Matlab 6.1 (The Mathworks Inc., Natick, MA, 
USA). 

 

Results and discussion 

VIS/NIR spectra and assessments of the depth of stunning on 45 slaughter pigs from 
slaughterhouse S1 with assumed ‘relatively low’ stunning quality, on 49 slaughter 
pigs from slaughterhouse S2 with assumed ‘medium’ stunning quality and on 51 
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slaughter pigs from slaughterhouse S3 with assumed ‘relatively high’ stunning 
quality (in total 145 animals) were analysed using chemometric tools. 

 

Assessments of the depth of stunning 

The scores of the physiological assessment of the depth of CO2 stunning are 
overviewed in Table 1. All the means of the assessed reflex parameters are relatively 
low (< 30 % of maximum). This is due to the complete lack of reflexes for the pigs 
from slaughterhouse S3 (51 pigs). The range of the score of the combined parameter 
ResponsTotal is 0-7. This parameter will be applied as the overall level of the 
stunning quality. 

 

VIS/NIR spectra 

The recorded spectra of pig blood were applied for development of prediction 
models of the depth of CO2 stunning. The spectra (400-2500 nm) are shown in 
Figure 2.  

 

Figure 2. VIS/NIR spectra (400-2500 nm) of blood (145 slaughter pigs from three 
slaughterhouses) measured immediately after sticking. 

 

Peaks were observed at 440 and 550 nm in the visual part of the spectra. These 
peaks are caused by the oxygenated form of haemoglobin (Kim, Kim, Kim and 
Yoon, 2001), as also seen in Figure 3A. The peak at 760 nm is related to 

500 1000 1500 2000
0.6

1.0

1.4

1.8

2.2

2.6

Wavelength [nm]

1 
/ l

og
 R

Hemoglobin
Water

500 1000 1500 2000
0.6

1.0

1.4

1.8

2.2

2.6

Wavelength [nm]

1 
/ l

og
 R

Hemoglobin
Water



Paper VI 

163 

deoxygenated haemoglobin (Wray et al., 1988; Baykut et al., 2001). When the O2 
concentration in the blood is low, the 760 nm peak is more intense (Baykut et al., 
2001). The O-H stretching and bending from water causes the broad peaks at 970 
nm (O-H stretch, second overtone), 1190 nm (O-H stretch and bend, combination 
tone), 1450 nm (O-H stretch, first overtone) and 1940 nm (O-H stretch and bend, 
combination tone), as seen in Figure 3B.  

 

 

Figure 3. VIS/NIR spectra (400-2500 nm) of pure haemoglobin (methaemoglobin) (A) and 
water (B). 

 

In Figure 4A the averages of the spectra of all samples from each of the three 
slaughterhouse S1 (⋅⋅⋅⋅⋅⋅), S2 (----) and S3 (____) are displayed. By simple inspection 
the average spectra from slaughterhouse S1 and S2 appear very similar, while the 
average spectrum from slaughterhouse S3 is markedly different. Even in the 
supposed CO2 indicative peak at 760 nm (inserted enlargement in Fig. 4A), the 
average spectrum from S3 differs from that of S1 and S2. Slaughterhouse S1 was 
expected to show a relatively high occurrence of reflexes, while slaughterhouse S2 
was expected to show a medium occurrence and slaughterhouse S3 was expected to 
show very low to no occurrence of reflexes. If the peak at 760 nm can be regarded 
as an indication of the CO2 stunning, then slaughterhouse S3 appears to perform a 
more powerful CO2 stunning than slaughterhouses S1 and S2. In addition to 
information on the effect of stunning, the spectra contain information on biological 
properties of the blood and environmental effects from the slaughterhouses. 
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However, it is beyond the scope of this study to investigate the influence of these 
factors, including the influence of breed upon the assessment of stunning. 

 

 

Figure 4. VIS/NIR spectra (400-2500 nm) of blood (145 slaughter pigs from three 
slaughterhouses) measured immediately after sticking. A) Averages of all samples from 
slaughterhouse S1 (⋅⋅⋅⋅⋅⋅), S2 (----) and S3 (____). B) Averages of all samples with 
ResponsTotal 0-1 (⋅⋅⋅⋅⋅⋅), 2-3(----), 4-5 (____) and 6-7 (-⋅-⋅-⋅). 

 

In Figure 4B the averages of the spectra of all samples with ResponsTotal 0-1 (⋅⋅⋅⋅⋅⋅), 
2-3 (----), 4-5  (____) and 6-7 (-⋅-⋅-⋅) are displayed. The average spectrum of samples 
with ResponsTotal 0-1 seems to differ most from the other average spectra, and 
indeed very much in the same way as the average spectrum from slaughterhouse S3 
(Fig. 4A). The average spectrum of ResponsTotal 0-1 is dominated by samples from 
slaughterhouse S3, where all the assessed pigs lacked reflexes (ResponsTotal = 0). 
In the supposed CO2 indicative peak at 760 nm (inserted enlargement), the average 
spectra are decreasing according to the assessed depth of stunning. The average 
spectrum of ResponsTotal 0-1 shows the highest intensity, while the average 
spectrum of ResponsTotal 6-7 shows the lowest intensity. This is in agreement with 
the expected relationship between the effect of stunning and the presence of 
reflexes. The variations seen in the spectra of different levels of reflexes in this 
investigation is considerably smaller than the extreme variations shown in Figure 1 
between the different types of stunning of slaughter pigs.  
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Data overview 

Principal Component Analysis (PCA) was applied to obtain an overview of the data 
to find possible trends and clusters. The spectral area between 400 nm and 2200 nm 
was applied in the analysis. The spectral area above 2200 nm was judged too noisy 
(see Fig. 2), for which reason it was kept out of the analysis. Score plots of the 
principal components showed weak trends tending to group the three 
slaughterhouses (plots not shown). In order to find parts of the spectra, which were 
especially good at separating the samples from each of the three slaughterhouses, 
iPCA was performed using subintervals of 200 nm of the spectra, 9 intervals in total. 
The score plot of principal component 2 versus principal component 3 of the PCA of 
a subinterval covering the spectral region 1200-1400 nm is shown in Figure 5A. The 
plot displays good separation of the samples from the slaughterhouses S1 (∇), S3 
(Ο) and most of the samples from S2 (◊), while 16 samples from S2 (♦) are located 
with the samples from S1. Information from the experimental notes revealed that the 
S2 samples located with the S1 samples were all measured before a break in the 
measurements during the day, while all the separated S2 samples were measured 
after the break. There were no significant differences in the scorings of the 
evaluation of the depth of stunning for the animals assessed before the break and the 
animals assessed after the break. This indicates that environmental factors like 
temperature and humidity, which probably change during a day of slaughter, have 
considerable influence on the spectra. 

By moving the spectral interval in question only 10 nm to apply the region 
1190-1390 nm in a new PCA model, a new score plot of principal component 2 
versus principal component 3 was produced (Fig. 5B). The plot displays reasonable 
groupings in the spectra from the three slaughterhouses, including the 16 samples 
from S2 measured before the break. This shows that the spectra contain information 
on stunning quality as well as on environmental effects of the surroundings. The 
environmental effects were not accurately monitored through this investigation, but 
it is a well-known fact that humidity and especially the temperature of the samples 
and surroundings influence spectroscopic measurements (Thygesen and Lundqvist, 
2000; Wülfert, Kok and Smilde, 1998). 
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Figure 5. PCA on intervals of the NIR spectra, 1200-1400 nm (A) and 1190-1390 nm (B), of 
blood (145 slaughter pigs from three slaughterhouses; S1(∇), S2(◊) and S3(Ο)) measured 
immediately after sticking; Principal Component 2 (PC2) versus Principal Component 3 
(PC3). 

 

Regressions 

The results of the physiological assessments of the depth of CO2 stunning were used 
for the development of models for prediction of the depth of stunning by VIS/NIR 
spectra. The full spectral region between 400 nm and 2500 nm was applied for a 
preliminary modelling of ResponsTotal covering all the assessed reflexes. The 
correlation (r) for an 8-component model was 0.8 and the prediction error RMSECV 
was 1.5. This is a fairly good regression result, but the complex model applying 
many components might indicate that the model will be unstable for future 
predictions. A look at the regression coefficient (not shown) reveals noise problems 
in the spectral region 400-700 nm and to some degree in the region above 1300 nm. 
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Due to these noise problems and in the light of the information in Figure 1, which 
showed that the region up till 1300 nm displayed most information reflecting the 
differences in stunning quality, only the spectral region between 700 nm and 
1300 nm was applied for further analysis.  

PLSR models were performed on the VIS/NIR spectra (700-1300 nm) versus each 
of the 9 reflex parameters; Corneal reflex (time = 0 and 15 sec), Breathing (time = 0 
and 15 sec), Excitation (0 and 15 sec) and Respons0, Respons15 and ResponsTotal. 
The data set applied for PLSR consisted of 145 samples. All PLSR models were 
validated by full cross validation, and the validated results are shown in Table 2. 
The PLSR results show relatively large prediction errors when predicting the 
individual reflex references, Corneal, Breath and Excitation, and in some cases 
proved impossible (Breath 15 and Excitation 15). Regressions based on individual 
slaughterhouses (S1 and S2) were especially difficult to fit. These difficulties are 
partly due to the low ranges of the scores of the individual reflexes. The summation 
of the reflex scores in the ResponsTotal is the most interesting parameter covering 
all the assessed responses. It shows a good correlation (r = 0.80) to the VIS/NIR 
spectra and the prediction error, root mean square error of cross validation, is 1.42 
for the total range of scores of 0-7. This indicates that the objective VIS/NIR method 
is able to distinguish between the well stunned and the less well stunned pigs, while 
the method cannot be said to be reliable for an exact estimate of the depth of 
stunning. But further investigation using more pigs at different slaughterhouses is 
required in order to confirm whether the VIS/NIR spectroscopic method is a 
solution for a rapid and objective estimate of the depth of CO2 stunning in slaughter 
pigs.  

Spectral pre-transformations like second derivative or Multiplicative Signal 
Correction (MSC) often help to eliminate interferences and to simplify the 
multivariate model to yield a simpler and more robust model (Geladi, MacDougall 
and Martens, 1985). Several pre-transformations were tested on the present data set, 
but none seemed to improve the modelling performance significantly compared to 
application of the raw mean-centred spectra. In Table 2, the results of PLSR based 
on second derivative of the spectra and on MSC-corrected spectra are shown. The 
MSC was applied piecewise (600-800 nm and 800-1400 nm) in an attempt to 
compensate for the shift in the spectra around 800 nm, which is most easily seen in 
Figure 1.  



Paper VI 

168 

 

Table 2. The reflexes appearing during debleeding and the range of score for each 
parameter. Number of components (PC), correlation coefficient (r) and prediction error 
(RMSECV) of PLSR models based on raw VIS/NIR spectra (700-1300 nm) of pig blood 
versus reflex references, and of PLSR models based on second derivative (2nd) and 
piecewise MSC (MSC)-corrected VIS/NIR spectra (700-1300 nm) of pig blood versus 
ResponsTotal for the 145 pigs from the three slaughterhouses; S1 (45), S2 (49) and S3 (51).  

Parameter Possible score All 

  PC r RMSECV 

Corneal 0 0-2 6 0.64 0.76 

Corneal 15 0-2 1 0.61 0.75 

Breath 0 0-2 6 0.75 0.34 

Breath 15 0-2 - - - 

Excitation 0 0-4 8 0.67 0.74 

Excitation 15 0-4 - - - 

Respons0 0-8 6 0.74 0.94 

Respons15 0-8 1 0.67 0.88 

ResponsTotal 0-16 7 0.80 1.42 

2nd 0-16 4 0.83 1.32 

MSC 0-16 6 0.78 1.50 

 

The plot of the predicted ResponsTotal from the PLSR of NIR spectra 
(700-1300 nm) versus the measured ResponsTotal is displayed in Figure 6, where 
the samples are labelled according to slaughterhouse, demonstrating the 
heterogeneous distribution of samples from well-stunned pigs and less well stunned 
pigs in relation to slaughterhouse. According to the regression coefficient from this 
PLSR model (Fig. 7), especially the haemoglobin peak at 760 nm and the water 
peak at 1190 nm show relationships to the ResponsTotal parameter. The sharp 
feature at 1100 nm is an artefact due to instrumental detector shift. Predictions of the 
depth of stunning inside each individual slaughterhouse was not possible, which 
underlines the strong confounding effect in VIS/NIR between stunning quality and 
the environment of the slaughterhouses. For this reason, conclusions about the 
applicability of the VIS/NIR method applied on this data set should be taken with 
precaution. 
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Figure 6. Predicted ResponsTotal of a PLSR based on VIS/NIR spectra (700-1300 nm) of 
blood (145 slaughter pigs from three slaughterhouses; S1(∇), S2(◊) and S3(Ο)) versus the 
assessed depth of CO2 stunning (ResponsTotal).  

 

 

Figure 7. Regression coefficient for a 7 component PLSR of VIS/NIR spectra 
(700-1300 nm) of blood (145 slaughter pigs) versus the assessed depth of CO2 stunning 
(ResponsTotal) 

 

In order to find the most relevant parts of the spectra (700-1300 nm) interval PLSR 
(iPLSR) was applied. With the iPLSR algorithm PLSR is applied on subintervals of 
the spectra. The iPLSR predicting the ResponsTotal was validated by full cross 
validation and performed on 6 equally sized spectra intervals covering 100 nm each. 
The prediction errors (RMSECV) for the PLSR (5 components) of the 6 intervals are 
shown as bars in Figure 8. All intervals seem more or less to be able to predict the 
ResponsTotal with prediction errors between 1.4 and 1.5, almost as good but never 
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better than when full spectra are applied (RMSECV = 1.4). This holds for the 
individual slaughterhouses (S1 and S2) as well. This points out that the spectral 
information needed for prediction of the depth of stunning seems to be distributed 
over the whole region (700-1300 nm).  

 

 

Figure 8. Prediction error (RMSECV), bars, for iPLSR models (5 components) of 6 
subintervals of VIS/NIR spectra (700-1300 nm) of blood (145 slaughter pigs from three 
slaughterhouses; S1, S2 and S3) versus ResponsTotal (the depth of CO2 stunning). The 
prediction error for the full spectrum PLSR model (6 components) is displayed as the 
horizontal line. 

 

Another approach was to utilize information from the qualitative investigation of the 
blood spectra and use the assigned haemoglobin peak at 760 nm or the water bands 
at 940 nm or 1190 nm for predictions of the depth of stunning. PLSR of the spectral 
regions 725-800 nm (haemoglobin), 825-1100 nm (water) or 1100-1300 nm (water) 
yielded 5 or 6 component models with prediction errors of 1.4-1.5 and correlation 
coefficients of 0.8. These models equal the model using the full region of 
700-1300 nm and the iPLSR models described above.  

The applied reference measurements of this investigation must be considered to 
involve a certain amount of error. First, the quantitative graduation in the form of 
the scoring system was based on the estimated significance of the observed reflexes. 
Since these reference parameters were not natural characteristics of the samples, but 
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constructed and somewhat theoretical characteristics, this is considered to be a 
source of error. Even though the presence of the reflexes was assessed by a 
competent veterinarian, it was still based on subjective observations and for this 
reason provided a source of error. However, this systematic way of observation of 
reflexes in conjunction with stunning of slaughter pigs was developed as a 
monitoring tool for characterizing slaughterhouses and not meant for assessment of 
single animals. Nevertheless, this method was for the present considered the most 
promising method for rapid objective assessment of the depth of stunning. 

 

Conclusions 

In this study VIS/NIR spectra of blood were applied for multivariate predictions of 
the depth of CO2 stunning assessed as presence or absence of reflexes during 
sticking and debleeding of 145 slaughter pigs from three slaughterhouses. Pigs from 
two of the slaughterhouses varied greatly according to presence of the assessed 
reflexes, while pigs from the third slaughterhouse all showed a total lack of reflexes 
because they were very deeply stunned or possibly dead during stunning.  

The spectra contained gross features related to the water content of the samples and 
to the presence and level of oxygenated and deoxygenated haemoglobin. The spectra 
from the three slaughterhouses were quite similar in shape, but the spectra from the 
one slaughterhouse with no occurrence of reflexes differed from the spectra from the 
other two slaughterhouses in regions of the spectra that pointed in the direction of a 
more powerful CO2 stunning. The spectra varied systematically according to 
different levels of the assessed reflexes and according to the CO2 indicative peak at 
760 nm. Besides the effect of stunning, the spectra also contain information on 
biological properties of the blood and environmental effects from the 
slaughterhouses. A more complete interpretation of the spectra in this study was 
regarded impossible as the relevant information concerning depth of stunning will 
be difficult to separate, especially because the level of influence of the interfering 
effects (biology and environment) was not assessed.  

This study demonstrated that the spectra could be roughly classified according to 
slaughterhouse, and the spectral region of 1190-1390 nm was particularly capable of 
providing a good classification.  
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PLSR predictions by VIS/NIR spectra (700-1300 nm) of the assessed reflexes 
indicated that the objective instrumental method has the potential to detect the well 
stunned and the less well stunned pigs with prediction errors around 1.4 for the total 
range of 0-7 (quantitative scoring of the reflex assessments). The method might not 
be reliable for an exact estimate of the depth of stunning; but the VIS/NIR 
spectroscopic method still deserves further investigation for its potential as a rapid 
and objective estimate of the depth of CO2 stunning in slaughter pigs. However, to 
establish a general useable method requires further investigations involving different 
slaughterhouses and control or measure of environmental and biological effects in 
order to compensate for them in the regressions. 
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Paper VII 
Development of non-destructive screening methods for 
single kernel characterisation of wheat  

J.P. Nielsen, D.K. Pedersen and L. Munck 

___________________________________________________________________ 

Abstract 

The development of non-destructive screening methods for single seed protein, 
vitreousness, density and hardness index has been studied for single kernels of 
European wheat. A single kernel procedure was applied involving, image analysis, 
Near Infrared Transmittance (NIT) spectroscopy, laboratory density determination, 
Single Kernel Characterization System (SKCS) and finally Kjeldahl protein 
determination on the crushed single kernels.  

Single kernel NIT spectroscopy showed excellent ability to determine protein 
content, and some ability for determination of single kernel vitreousness. Non-
destructive determination of single kernel density, either based on NIT spectroscopy 
or based on image analysis and kernel weight, needs to be further improved for 
practical use. 

The use of SKCS hardness index as a true single kernel hardness reference in a NIT 
prediction model resulted in a poor predictability. However, by applying an 
averaging approach, in which single seed replicate measurements are 
mathematically simulated, a very good NIT prediction model was achieved. This 
suggests that the single seed NIT spectra contain hardness information, but that a 
single seed hardness method with higher accuracy is needed, in order to achieve a 
good NIT prediction model for single kernel hardness. 

 

Key word index: Screening methods, single wheat kernels, protein content, 
vitreousness, hardness, density, non-destructive, multivariate data analysis 
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Introduction 

The purpose of this paper is to apply a combinatory single seed approach involving 
several types of single seed measurements on the same individual seeds for an 
improved wheat characterisation, with special emphasis on single kernel protein, 
vitreousness, density and hardness.  

Protein content, kernel density in terms of test weight, and kernel vitreousness by 
visual inspection are normally used in the miller’s quality evaluation of wheat for 
milling. Protein content largely determines the end use quality, and premiums are 
often offered on high protein wheat. Test weight reflects kernel size and density, and 
should be above a certain level in order to secure a good flour yield. The 
vitreousness is used for evaluation of millability, even though the relationship 
between vitreousness and hardness is not straightforward. Vitreousness and/or 
hardness affects the milling processing of wheat, including tempering of the grains, 
flour yield and the end-use properties such as particle size distributions and the 
amount of damaged starch. Grain hardness is mainly determined by the degree of 
adhesion between the starch granules and the protein matrix, with a tight adhesion of 
the starch granules in the hard wheat and a weaker adhesion in soft wheat. To a 
certain extent this starch-protein matrix adhesion is genetically controlled involving 
the protein friabilin (Greenwell and Schofield, 1986) and is used for classification of 
wheat in hard and soft varieties. Even though wheat can be divided into genetically 
soft and hard, a substantial variation in texture is seen within the two classes, and the 
apparent vitreousness of the wheat is therefore used by the millers in their evaluation 
of millability. The genetically hard wheats are also generally high in protein content 
and flour from these wheats is usually used for bread making. The genetically soft 
wheats are generally low in protein and are usually used for cakes and biscuits. 

Wheat quality evaluation has traditionally been performed on bulk samples, which 
implies that the characteristics of the individual kernels within the sample is lost, 
and thereby the opportunity to evaluate sample homogeneity. In seed sorting and 
grading by size, form and density for better and more uniform quality, the single 
seed is the functional unit to be investigated. Single seed quality analyses thus 
contribute to an increased understanding of the variation of the single seeds in a seed 
lot in order to evaluate sorting performance and thereby be able to optimise the 
choice of variety, grading conditions and end use.  
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New developments in instrumentation have made single kernel characterisation 
possible, and for some quality parameters rapid enough, to become a valuable tool 
for homogeneity evaluation in the cereal industry. The Single Kernel 
Characterization System (SKCS) 4100 (Perten Instruments Inc., Reno, NV, USA) is 
an example of such an instrument for rapid, albeit destructive, measurement of 
single kernel hardness, weight, diameter and moisture content (Martin et al., 1993). 
The single kernel measurements are normally conducted on 300 single kernels in a 
bulk sample in order to classify the sample into soft, hard or mixed wheat.  

One of the limitations of destructive single seed analysis is that several readings on 
the same kernels are impossible. It therefore becomes difficult to differentiate 
between instrument variability and kernel-to-kernel variability. By using of non-
destructive single seed analyses these problems could be circumvented. 
Additionally, fast and non-destructive single kernel quality analyses would be 
valuable tools in plant breeding for quality selection in early generations and for 
single kernel quality evaluation within the heads.  

Near infrared spectroscopy on single kernels fulfils these requirements and the 
technique has been used for several single kernel applications. Near Infrared 
Transmittance (NIT) spectroscopy has been reported for determination of oil in 
maize (Orman and Schumann, 1992) and meadowfoam (Patrick and Jolliff, 1997), 
protein in wheat (Delwiche, 1995) and soybeans (Abe et al., 2000) and for wheat 
hardness (Delwiche, 1993). Near infrared reflectance spectroscopy has similarly 
been applied for wheat classification (Delwiche and Massie, 1996), for 
determination of single seed protein (Delwiche, 1998;Delwiche and Hruschka, 
2000), for differentiation between vitreous and non-vitreous durum wheat kernels 
(Dowell, 2000) and for assessment of heat-damaged wheat kernels (Wang et al., 
2001).  

Image analysis is another method for fast non-destructive characterisation of 
kernels. Image analysis has been used for discrimination between kernels of 
different species (Chtioui et al., 1996), discrimination between wheat classes and 
varieties (Zayas et al., 1986) and, used in combination with physical measurements, 
for variety identification (Zayas et al., 1996). Berman et al. (1996) used the method 
for screening of flour milling yield in wheat breeding.  



Paper VII 

178 

This investigation involves a combination of image analysis; NIT spectroscopy, 
hardness analysis (SKCS), protein analysis as well as a simple laboratory density 
analysis applied on single kernels of European wheats. The paper includes a survey 
of the use of non-destructive screening methods for prediction of single kernel 
protein, vitreousness, density and hardness. 

 

Material and Methods 

Samples:  

Bulk samples of 43 different wheat cultivars or mixtures of cultivars from two 
different locations in Denmark (Jutland and Funen) were collected. These samples 
were screened on a 2.2 mm screen and the fractions above 2.2 mm were stored 
separately in plastic bags.  Five kernels were randomly chosen from each of the 86 
bulk samples to make up the calibration set (430 kernels in total). Another ten 
kernels from each of 11 of the 86 bulk samples (11 cultivars from Funen) were 
selected as the test set (110 kernels in total). 

 

Single kernel measurements: 

The single kernels were put through the following sequence of measuring steps. The 
kernels were analysed one by one with their identity retained during the whole 
measurement procedure. 

GrainCheck: 

Grain morphology was measured by digital image analysis using a GrainCheckTM 
310 instrument (FossTecator, Höganäs, Sweden). The instrument is specifically 
designed for automated purity analysis of grain samples based on the calculated 
morphological and color data. The instrument was used for single kernel 
characterisation by manually placing each kernel under the RGB camera from which 
the kernels were automatically imaged and from which several morphological and 
color characteristics were automatically assessed. In this investigation the following 
nine kernel characteristics were registered from the instrument and used in the data 
analysis: kernel width, kernel length, roundness, area, volume, red reflectance, green 
reflectance, blue reflectance, and total light reflectance.  
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NIT Spectra: 

After the GrainCheck analysis, the single kernels were moved to an Infratec 1255 
Food and Feed Analyzer (FossTecator, Höganäs, Sweden). Each kernel was placed 
in a single seed sample cassette with slots for 23 single kernels, and near infrared 
transmittance (NIT) spectra in the range 850-1050 nm were automatically recorded. 
A tungsten lamp (50 W) and a diffraction grating were used to create 
monochromatic light that passes through each of the kernels and reaches the silicon 
detector. Spectra were recorded three times on each kernel and the average of the 
three spectra was used. The position of the kernels in the sample cassette was 
manually changed between each of the three measurements. The time required for 
scanning (single scan) 23 single kernels in the cassette was about 90 s. 

Single kernel density: 

A laboratory single kernel density measurement was developed and applied to the 
110 test set kernels prior to the SKCS analysis. The kernels were individually 
weighed to the nearest 0.1 mg using a Mettler/Toledo scale (Type AB204). The 
method for volume determination of the kernels is based on the principle of 
Archimedes. When immersing a wheat kernel in water, the weight of the displaced 
water divided by the density of the water equals the kernel volume. This 
measurement was carried out by using the equipment shown in Figure 1, which was 
specially designed for the purpose.  

 

 

Figure 1. Illustration of the method for determination of single kernel volume 

000.0  mg 000.0  mg 
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A beaker containing water at 20oC was placed on the Mettler/Toledo scale. A single 
kernel holder (modified sample spoon) was mounted on a rack outside the scale 
chamber (without touching the scale) with the kernel holder end immersed in the 
water. The scale was tared and the kernel (one at the time) was placed in the holder 
using a needle. The weight of the water displaced by the volume of the kernel was 
recorded immediately after, in order to avoid too much water uptake by the kernel. 
After the analysis, the kernels were dried for 16 hours at 30oC, and checked to have 
returned to the same weight as prior to the volume measurements.  

Having determined the kernel volume from the weight of the displaced water, the 
single kernel density (in g/cm3) is subsequently calculated by dividing the kernel 
weight (g) by the volume (cm3). Prior to the single seed analyses the volume method 
was tested on 10 glass beads differing slightly in volume. The average deviation 
between the “real” volume and the volume determined using the method shown here 
was 0.0004 cm3 for an average of 0.0142 cm3, i.e. an error of 2.8 %. 

Perten SKCS analysis: 

The kernels were subsequently analysed using a Single Kernel Characterization 
System (SKCS) 4100 (Perten Instruments Inc., Reno, NV, USA). The SKCS 
measures a single kernel hardness index (HI), single kernel moisture content (%), 
single kernel diameter (mm) and single kernel weight (mg). A rotating vacuum 
wheel picks up the individual kernels and deposits them one at a time into a 
weighing boat. After the weighing, the kernel passes down an inclined crescent 
where the diameter is measured and the kernel is then crushed between the crescent 
and a toothed rotor. A load cell measures and records the crush force-time profile for 
each kernel and its hardness index is calculated. The hardness index values are 
based on algorithms that attempt to segregate wheats on a numeric scale on which 
hard wheats are forced toward an average value of 75, and soft wheats toward an 
average value of 25. The scale is similar to that used by the Near Infrared 
spectroscopy method (AACC 39-70A) for assessment of texture of bulk wheat 
samples. Normally, the SKCS analysis is carried out on a small bulk sample (300 
kernels), but in this experiment the single kernels were fed one by one into the 
vacuum wheel in order to retain their identity. Thus, for each of the analysed kernels 
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we obtained four measurements, namely single kernel weight, moisture content, 
diameter and a hardness index.  

The normal container for collecting the crushed kernels was removed, and the single 
kernel grist from the individual kernels was collected in a small container and used 
without further grinding for determination of single seed protein according to 
Kjeldahl. 

Protein determination on single kernels: 

Single kernel nitrogen content was finally determined directly by a modified 
Kjeldahl (1883) method according to the AACC Method 46-12. The nitrogen in 
single kernels was transformed into ammonium sulphate by digestion (410oC for 
1 hour) with 6 ml sulphuric acid (98%). The solution was then alkalized (25 ml 35% 
NaOH and 75 ml H2O) and distilled into 25 ml boric acid (0.2%) with methyl red 
and bromcresol green indicator. The amount of ammonia produced was determined 
by titration (0,0050 M HCl). The protein content is reported as percent in dry matter 
calculated using the moisture content measured by the SKCS instrument. 

Prior to the single kernel analysis, the method was tested on samples of 30-40 mg 
wheat flour. The analytical error in terms of standard deviation of 20 replications 
amounted to 0.16 % (percent protein content in dry matter). 

GrainCheck data, NIT spectra, SKCS data and protein content were then recorded 
for each kernel, and single kernel density was determined on each of the kernels in 
the test set. One disadvantage of destructive single seed analysis is that if a 
measurement goes wrong, there is no sample left for a second analysis. Here, a few 
of the SKCS, protein and volume analyses went wrong and the following results and 
discussion are therefore based on a slightly reduced number of kernels. The 
calibration set consists of 415 out of the original 430 kernels, while the test set of 
110 kernels gave valid data for 108 kernels, except for the density measurements 
where valid results were obtained for only 99 kernels.  

The mean and range of all the 14 non-spectral single kernel characteristics for the 
calibration set kernels and the test set kernels are given in Table I.  
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Table I: Mean and range of the recorded single kernel characteristics. 

a: Values in the range of 0-1. A perfect circle has roundness=1, while a very narrow 
elongated object has roundness close to 0. 

 

Data analysis:  

Partial Least Squares Regressions (PLSR) (Martens H and Næs T, 1993) were 
performed using Unscrambler version 7.6 (CAMO A/S, Norway) in order to predict 
a given quality parameter (y) from fast acquirable X data. The multivariate 
prediction results are presented and discussed as correlation coefficients (r) between 
predicted and measured values, and prediction error in terms of Root Mean Square 
Error of Prediction (RMSEP) for true test set predictions, and Root Mean Square 
Error of Cross Validation (RMSECV) for cross-validated results. Relative 
predictions errors (RE) reported in percent are calculated by dividing the prediction 
errors (RMSECV or RMSEP) by the range (max. - min. value) of the given 
parameter. 

 

Results and discussion 

Single kernel protein: 

The statistics of the Kjeldahl protein determination are listed in Table I. The single 
seed protein content ranges from 6.8% to 17.0% for all the analysed kernels, and 
thus in principle covers the whole range of end-use requirements from low-protein 

Method Parameter
GrainCheck Mean Min Max Mean Min Max Mean Min Max

Width (mm)        3,7 2,3 5,0 3,8 2,5 4,7 3,7 2,3 5,0
Length (mm)         6,2 5,0 7,5 6,1 5,0 7,2 6,2 5,0 7,5
Roundness (AU)a    0,50 0,25 0,83 0,54 0,31 0,82 0,51 0,25 0,83
Area (mm2)   16,9 9,4 25,8 17,1 10,2 24,8 17,0 9,4 25,8
Volumen (mm3)    40,8 14,6 82,8 42,6 16,6 76,0 41,2 14,6 82,8
Red             46,4 31,9 62,4 44,0 25,9 60,5 45,9 25,9 62,4
Green           33,6 22,7 46,5 31,8 17,6 43,9 33,3 17,6 46,5
Blue            24,4 17,4 34,0 23,2 14,8 31,1 24,1 14,8 34,0
Intensity       34,8 24,2 47,4 33,0 19,5 44,9 34,4 19,5 47,4

SKCS
Weight (mg)        45,1 24,5 68,0 45,1 24,1 69,3 45,1 24,1 69,3
Diameter (mm)  2,9 1,7 4,6 3,0 1,7 4,3 2,9 1,7 4,6
Moisture (%)      11,9 10,4 13,3 11,0 10,0 11,6 11,7 10,0 13,3
Hardness (HI)  44,0 -21,4 101,5 32,3 -28,8 82,2 41,6 -28,8 101,5

Reference
Protein (% DM)      10,0 6,8 15,2 9,8 7,0 17,0 10,0 6,8 17,0
Density (g/cm3) 1,16 0,99 1,25

Calibration set (n=415) Test set (n=108) Total (n=523)
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wheat for crackers to high-protein wheat for bread making. In order to evaluate and 
utilise this single seed protein variation, a spectroscopic method would be 
appreciated. For this purpose, we use single seed NIT spectra recorded on each of 
the 523 wheat kernels in the spectral region 850-1050 nm. This region covers 
primarily the second overtones of O-H (carbohydrates and water), N-H (protein) 
stretching vibrations and the third overtone of the C-H (fat) stretching vibration. For 
most food related samples this spectral region is of importance as the most 
significant functional components are represented here.  

The NIT spectra of the 523 single wheat kernels are shown in Figure 2 as both raw 
spectra (a) and scatter-corrected spectra (b), applying a combination of second 
derivative followed by Multiplicative Scatter Correction (MSC) (Geladi et al., 
1985). This combined scatter correction has been discussed by de Noord (1994) and 
applied to single seed NIT spectra by Delwiche (1995). The raw spectra show large 
intensity offsets, as well as less clear multiplicative effects. These scatter effects are 
probably due to differences in kernel size and texture together with kernel 
orientation in the single seed cassette. With respect to the scatter-corrected spectra 
(Figure 2b), it is evident that the spectral scatter has been corrected for and thereby 
more spectral emphasis could be focused to represent chemical composition, e.g. the 
level of water, starch and protein content in the kernels.  

Multivariate calibration techniques such as PLSR can to a certain extent compensate 
for different types of scatter effects by introducing more regression components. By 
doing this, however, a more complex and less robust model is built which 
furthermore can be difficult to interpret. When predicting chemical composition it is 
normally feasibly to eliminate the spectral scatter prior to the calibration. As 
discussed earlier, Delwiche (1995) has shown that the combination of second 
derivative of the single seed NIT spectra followed by MSC gave the best 
predictions. Our results are in agreement with this finding because raw spectra, first 
derivative spectra, second derivative, MSC or MSC followed by second derivative 
corrected spectra (data not shown) were less efficient in a prediction model. The 
issue of scatter in single seed NIT spectra, including suggestions for more general 
and powerful pre-transformations, is further investigated by Pedersen et al. (2002).  
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Figure 2. Single seed NIT spectra of 523 wheat kernels shown as (a) raw spectra and (b) 
corrected spectra using second derivative followed by MSC 

 

A prediction model for protein content was developed based on single seed NIT 
spectra corrected by the second derivative followed by MSC. The cross-validated 
calibration model using 5 PLSR components including 415 single kernel spectra is 
shown in Figure 3a. This calibration model is used for independent prediction of the 
108 test set kernels (Figure 3b).  

 

 

Figure 3. Predicted versus measured plot of a 5 PLSR component regression model for 
single seed protein using scatter-corrected NIT spectra for (a) the calibration set and (b) the 
subsequent prediction of the test set kernels   

 

The relatively low number of PLSR components (5) as compared to other PLSR 
models in the near infrared range implies a simple and thus robust model. The 
prediction error (RMSEP) of 0.48 % protein when tested independently on 108 new 
kernels also indicates a good and robust calibration model. Our results for single 
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seed protein determination are comparable to results reported earlier using near 
infrared transmittance (850-1050 nm) (Delwiche, 1995) and near infrared 
reflectance (1100-2498 nm) (Delwiche, 1998). 

 

Single kernel vitreousness: 

Kernel vitreousness is normally determined by visual inspection, where vitreous 
kernels appear glassy and translucent whereas non-vitreous kernels appear starchy 
and opaque. Vitreouness is mainly controlled by nitrogen availability in the field as 
well as temperature during grain filling (Pomeranz and Williams, 1990). Vitreous 
kernels are often harder and have higher protein content. In this investigation we 
apply RGB image analysis by the GrainCheck instrument in order to provide a fast 
and objective analysis of vitreousness. As a pre-test to the current investigation we 
analysed vitreous and non-vitreous kernels (selected by visual inspection) on the 
image analyser (GrainCheck). Among the registered color data it was found that 
especially the red color reflectance differentiated well between vitreous and non-
vitreous kernels. The red reflectance from GrainCheck was therefore selected as a 
quantitative measurement of vitreousness and denoted “GrainCheck vitreousness”. 
The more vitreous the kernel, the lower the red reflectance and vice versa, i.e. the 
higher the number, the more non-vitreous the kernel appears. A single seed 
correlation coefficient of -0.63 (Table II) between protein content and GrainCheck 
vitreousness shows that the kernels with high protein kernels tend to be more 
vitreous. 

A PLSR model was computed using the raw NIT spectra for the prediction of 
GrainCheck vitreousness in order to see if the NIT spectra contained information 
regarding the GrainCheck vitreousness. A calibration model based on the 415 
calibration kernels was developed using 6 PLSR components (not shown). The 
correlation coefficient between measured and predicted GrainCheck vitreousness 
was 0.76 with a prediction error of 4.5 AU. A subsequent test of this model on the 
108 test kernels confirmed the calibration results (r=0.76, RMSEP=4.6 AU). Even 
though the NIT model is based on 6 PLSR components, most of the spectral NIT 
information is simply based on the level of absorbance. This can be concluded, since 
the first score from a Principal Component Analysis (not shown) on the raw NIT 
spectra (Figure 2), mainly representing differences in optical densities (offset) 
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correlates well (r=0.71) with GrainCheck vitreousness. The raw NIT spectra thus 
contain information regarding the GrainCheck vitreousness. 

 

Table II. Correlations coefficients (r) between protein content, density, GrainCheck 
vitreousness and SKCS hardness 

 Correlation coefficient (r) 

Protein content vs. GrainCheck vitreousnessa (-) 0.63 

Protein content vs. densityb 0.65 

Protein content vs. SKCS hardnessa 0.38 

SKCS hardness vs. GrainCheck vitreousnessa (-) 0.55 

SKCS hardness vs. densityb 0.34 

Vitreousness vs. densityb (-) 0.53 
a: N = 523 kernels 
b: N = 99 kernels 

 

Single kernel density: 

Kernel density is an important parameter in the milling industry, which is normally 
determined on bulk samples as test weight. The test weight measurement is greatly 
influenced by kernel packing, kernel size and kernel density, without differentiation 
between those factors. Utilising differences in kernel density by grading for a better 
and more uniform quality on for example gravity tables, the link between single 
kernel density and other single kernel quality parameters is essential, in order to 
predict if a given sample is worthwhile sorting for density. For instance, there 
should be a link between single kernel density and single kernel protein in order to 
be able to sort for higher protein content by indirectly sorting for density. 

The single kernel density in the test set of 99 kernels ranges from 0.99 g/cm3 to 
1.25 g/cm3. In this material of European wheats, a correlation coefficient of 0.65 
(Table II) between protein content and density and a correlation coefficient of -0.53 
between GrainCheck vitreousness and density was seen (Table II). A single seed 
correlation coefficient of 0.65 between protein and density would probably be too 
low to be able to sort for protein by use of density grading on a gravity table. 
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The “Archimedes” procedure developed and used for single seed volume analysis in 
this investigation is rather tedious and it was of interest to investigate whether the 
much more rapidly acquirable NIT or GrainCheck data could be used for good 
volume and density determinations. The GrainCheck provides a calculated value on 
kernel volume based on a 2D-image. Densities derived from these calculated 
volumes gave, however, a poor correlation (r=0.07) to the real densities based on 
“Archimedes”. This low correlation is most likely due to the approximation of a 3D-
volume based on a 2D-image, which even if it gives a correlation coefficient of 0.9 
to the “real” volume (Archimedes) is not sufficiently accurate to provide the basis 
for an accurate measurement of single kernel density. 

A second approach, in which the nine GrainCheck variables (see Table I) plus the 
kernel weight were used as X in a PLSR model, gave a good prediction of the single 
kernel volume (Figure 4a).  

 

Figure 4. a) Predicted versus measured plot of a PLSR model for kernel volume using the 
nine GrainCheck variables plus single kernel weight. b) Predicted versus measured plot of a 
PLSR model for kernel density using the nine GrainCheck variables plus single kernel 
weight 

 

This combination of image analysis data with kernel weight gives an excellent, 
rapidly acquirable estimate of the single kernel volume (r=0.99, 
RMSECV=0.001cm3) using full cross-validation (N=99). The subsequent 
calculation of the single kernel density based on this predicted volume provides a 
considerably better estimate of kernel density, but still only a correlation coefficient 
of 0.68, as compared to the 0.07 above, with a prediction error of 0.04 g/cm3 (plot 
not shown).  
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Thirdly, by directly using the nine GrainCheck variables plus the kernel weight for 
PLSR prediction of density, the results can be improved slightly, giving r=0.70 and 
a lower prediction error (RMSECV=0.03 g/cm3) (Figure 4b).  

In a final approach, it was investigated whether the NIT spectra contained 
information, which could be used for prediction of single kernel density. For a PLSR 
model using the raw NIT spectra for the prediction of the kernel density, the 
correlation between measured and predicted density gave 0.63 with a cross-validated 
prediction error of 0.035 g/cm3. An attempt to combine GrainCheck and NIT data 
for an improved prediction of kernel density was not successful. 

 

Single kernel hardness: 

We have now provided data on the single kernel basis for protein content, kernel 
density and apparent vitreousness, the tools normally used by the miller for wheat 
quality evaluation. Hardness is also used for classification of wheats and its quality 
in relation to different end uses. It was of interest to investigate to what extent 
hardness added any further information to the structural characterisation of wheat in 
addition to kernel vitreousness and density. Hardness determination of wheat is 
normally conducted on a bulk sample by several different methods such as grinding-
sieving (Particle Size Index), energy required for milling, or NIR (scattering) 
determination on ground material. None of these methods are easily applicable to 
single kernels. SKCS, however, offers a possibility to measure single kernel 
hardness index (HI).  

In this investigation each kernel was fed separately into the SKCS in order to retain 
its identity and thereby explore the link between SKCS HI and other single kernel 
quality parameters. The range in SKCS HI for the analysed kernels is shown in 
Table I. The 108 test set kernels are considerably softer (mean HI=32.3) than the 
calibration kernels (mean HI=44.0). Figure 5 shows a scatter plot of single seed 
SKCS HI versus a) the protein content and b) the GrainCheck vitreousness. A low 
correlation (r=0.38) between protein content and SKCS HI indicates that the SKCS 
HI is nearly independent of the kernel protein content in this wheat material. This is 
surprising, as it is often assumed that high protein wheat kernels tend to be harder. 
The low correlation between single kernel Kjeldahl protein content and SKCS 
hardness might be explained by the fact that the kernels originate from a range of 
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genotypes, and that the link between seed protein and seed hardness is seen in some 
genotypes but not in others. The low number of kernels (10) within each variety in 
this experiment, however, does not allow for investigation of the correlations within 
each of the varieties. 

 

 

Figure 5. Scatter plots of (a) single seed (N=523) SKCS hardness versus protein content and 
(b) single seed SKCS hardness versus GrainCheck vitreousness   

 

A higher, yet still low, correlation (r=-0.55) is seen between the GrainCheck 
vitreousness and the SKCS HI (Figure 5b). Table II summarises the correlations 
between protein content, density, GrainCheck vitreousness and SKCS HI. Only a 
small portion of the SKCS HI information seems to be explained in protein content, 
vitreousness or density as seen by the relatively low correlations. This suggests that 
the SKCS single kernel HI provides additional information not included in the 
traditional wheat evaluation tools. 

In bulk, NIT has been successfully applied for prediction of texture in wheat. 
Williams (1991) concluded that a bulk NIT measurement was capable of predicting 
whole-wheat kernel texture with precision equal to that of the Particle Size Index 
(PSI) method and slightly better than the NIR method. Delwiche (1993) reported on 
the use of single kernel NIT measurements for hardness determination. When 
calibrating single seed NIT spectra against bulk hardness data, he found that NIT 
spectra of single seeds had some ability to determine wheat hardness. 

Here we attempt to develop a PLSR model between single seed NIT spectra and true 
single seed hardness data, namely the SKCS hardness index. In general, we achieve 
better prediction models for kernel hardness using the raw NIT spectra compared to 
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scatter corrected spectra, which agrees with the findings of Delwiche (1993). 
Therefore, when attempting to predict the SKCS hardness it is important to utilise 
the scatter of the NIT spectra. This is thus an example of a case, where scatter 
correction should not be applied, unlike the protein models discussed earlier. A 
prediction model (6 PLSR components) for SKCS HI based on the raw single seed 
NIT spectra using segmented cross validation was performed on the calibration 
kernels. A reasonable calibration is achieved (r=0.74, RMSECV=17.6 HI) as shown 
in Figure 6a. This calibration was subsequently used for HI prediction of 107 of the 
original 108 test set kernels (Figure 6b). A low correlation coefficient of 0.59 and a 
high prediction error of 20.2 HI was achieved. This prediction error corresponds to 
20% of the hardness range and thus limits the practical use. In Figure 6a and 6b the 
samples are labelled according to the hardness groups, where "A" is soft (HI<33), 
"B" is semi-soft (33<HI<46), "C" is semi-hard (46<HI<59) and "D" is hard (HI>59). 
It is apparent that the soft kernels (denoted “A”) give a more scattered picture in the 
plots, which means that the hardness index of these kernels are more difficult to 
predict. However, an exclusion of the soft “A” kernels did not improve the results.  

 

 

Figure 6. Predicted versus measured plot of a 6 PLSR component regression model for 
single seed SKCS hardness using (a) the raw NIT spectra for the calibration set and (b) the 
subsequent prediction of the test set kernels   

 

Various aspects have been considered when interpreting the reason for the relatively 
poor NIT prediction of SKCS HI we achieve in this investigation. First, there might 
not be a link between single seed NIT spectra and single seed kernel hardness, but, 
as mentioned above, earlier reports have demonstrated the use of NIT spectroscopy 
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on whole-wheat kernels for hardness determination. Secondly, irrelevant noise in the 
NIT spectra (X) and the SKCS hardness data (y) might impair the model. Our single 
seed NIT spectra are averages of three spectra recorded on each kernel. As shown 
earlier, these spectra correlate very well with kernel protein, so the quality of the 
NIT spectra seems to be satisfactory. On the other hand, the single seed HI, as 
determined by the SKCS, might be too inaccurate and thereby problematic as y-
values in a NIT prediction model. Since the SKCS HI measurement is destructive, 
multiple HI readings on the same kernel are not possible and an average of replicate 
readings is thereby impossible to obtain. This essential condition also makes it 
difficult to quantify the uncertainty of the instrument measurement.  

One possible way to investigate this problem of uncertainty is to mathematically 
simulate replicate measurements by averaging across single kernels that are nearly 
identical.  

First, we have applied such an averaging approach for the NIT model to protein 
content where we are certain of both the NIT spectra and the Kjeldahl protein 
content determinations. Since this method requires a great number of samples, we 
use all the 523 analysed kernels. The NIT spectra and corresponding protein content 
values are sorted according to protein content. As a start, a PLSR model is 
developed on the basis of all the 523 calibration kernels. Then, the sorted data are 
averaged across two kernels. Since the kernel data are sorted according to protein 
content, the two-kernel average is an average, which might be taken as an average of 
two duplicated analyses on one kernel. A subsequent PLSR model is then developed 
for the 262 averaged data objects (averaged kernels). This procedure is repeated 
another 4 times in which PLSR models are developed averaging across 1 (N=523), 
2 (N=262), 4 (N=131), 8 (N=66), 16 (N=33) and 32 (N=17) kernels, respectively. 
For each model the percent of non-explained variation of the total variation is 
calculated. The trend of non-explained variation of the protein data for the different 
PLSR models can then be evaluated (Figure 7, dotted line). In an ideal situation i.e. 
with no noise in the NIT spectra and with determinations of Kjeldahl protein content 
without any errors, together with a perfect description of the protein content by the 
NIT spectra, a horizontal line at an ordinate value of 0 would have appeared. In a 
situation in which we only have model error, i.e. not perfect description of the 
protein content by the NIT spectra, but still with no noise in the NIT spectra and 
Kjeldahl protein content measurements, we would expect a horizontal line at a 
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certain level above an ordinate value of 0. The decrease in non-explained variation 
when averaging (moving from left to right in the plot) represents the noise and 
errors in the NIT spectra and in the Kjeldahl protein content determinations, 
reaching a horizontal level representing only model error as mentioned above. As 
seen from the dotted line, approximately 13% of the protein data variation is not 
explained by the NIT PLSR model using all kernel data (original single kernel data), 
but already after averaging over 4 kernels (22), a nearly horizontal line is appearing 
at approximately 4% non-explained variation. This means that after 4 simulated 
replicates, nearly all data noise and errors have been eliminated.  

 

Figure 7. Plot of non-explained variation in percent of total variation versus levels of 
averaging for the NIT prediction model for hardness (solid line) and protein content (dotted 
line 

 

The exact same strategy was applied to the NIT model for SKCS HI (only 522 out 
of the original 523 kernels had valid data and were used), but now the data were 
sorted according to SKCS HI values. The results are shown in Figure 7 (solid line).  
It is evident that the non-explained variation in the HI model is considerably higher 
than for the protein model. As much as 50% of the HI data variation is not explained 
by the NIT PLSR model using all kernel data, and even after averaging 32 kernels 
(25) the curve is still declining slightly, reaching a level around 15% non-explained 
variation. When comparing the two models which are based on the exact same NIT 
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spectra, it is apparent that the decrease in non-explained variation when averaging is 
much smaller for the protein model compared to the HI model, thus indicating 
considerably higher measurement errors in the HI measurement. Table III 
summarises the averaging approach in terms of correlation coefficients (r) and 
RMSECV for the protein content and SKCS HI prediction models. For the protein 
content model, a constant prediction error around 0.31% protein is reached after 4 
averaging operations. For the SKCS HI model on the other hand, the prediction error 
never becomes constant. It is seen that by averaging 32 times a very good prediction 
model for HI is developed reaching a correlation coefficient of 0.93 and a prediction 
error of 10.4 HI, which corresponds to 10% of the range. This good model suggests 
that the raw NIT spectra can be used for single seed prediction of SKCS HI. 
However, the results also show that the single SKCS HI values are not sufficiently 
accurate to be used as reference values in a NIT-based prediction model. 

 

Table III. Correlation coefficients (r) and prediction errors (RMSECV) of the replicate 
simulation by averaging kernels for the NIT prediction models for Kjeldahl protein content 
and SKCS hardness 

Number of kernels 
averaged 

Protein model SKCS HI model 

 r RMSECV r RMSECV 

1 0.93 0.58 0.70 18.6 

2 0.96 0.44 0.80 15.8 

4 0.98 0.32 0.85 13.7 

8 0.98 0.31 0.90 11.9 

16 0.98 0.31 0.91 11.0 

32 0.99 0.31 0.93 10.4 

 

Conclusions 

By applying a single kernel procedure in which the non-destructive analyses are 
conducted prior to the destructive ones, several single kernel characteristics can be 
linked directly to the same functional unit, the single seed, to be used in cereal 
processing and breeding. In this investigation, the development of non-destructive 
screening methods for single seed protein content, vitreousness, density and SKCS 
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hardness index for the same set of kernels has been studied by applying this type of 
procedure.  

The results of the non-destructive prediction models for single kernel protein, 
vitreousness, hardness, volume and density are summarised in Table IV. NIT 
spectroscopy, in combination with multivariate analysis, shows excellent ability to 
determine protein content, and only shows some ability for determination of single 
kernel vitreousness. It is concluded that the non-destructive determination of kernel 
density, on the other hand, either based on NIT spectroscopy or a combination of 
kernel weight and image analysis, needs further improvement for practical use. 

 

Table IV. Summary of the non-destructive screening methods on single kernels 
Data (X) Parameter (y) ra RMSEPb REc 

NIT 850-1050 nm  (scatter corrected) Protein 0.98 0.48 4.7% 

NIT 850-1050 nm  (raw) Vitreousnessd 0.76 4.6 12.6% 

NIT 850-1050 nm  (raw) Density 0.63 0.035 e 13,4% 

GrainCheck data plus kernel weight Volume 0.99 0.001e 2.9% 

GrainCheck data plus kernel weight Density 0.70 0.030 e 11.5% 

NIT 850-1050 nm  (raw) Hardness 0.59 20.2 15.5% 
a: r is the correlation coefficient between measured and predicted 
b: RMSEP is the average prediction error 

c: Relative error (RE); RMSECV or RMSECV divided by the range (max-min values); 
reported in percent 
d: Determined using GrainCheck 
e: Models are validated using cross-validation and RMSEP should be RMSECV 

 

The use of a true single seed hardness determination, in terms of SKCS HI, as 
reference values in a NIT prediction model resulted in poor predictability. However, 
the results shown in Figure 7 and Table III suggest that raw NIT spectra actually 
contain more information about kernel texture than the poor prediction model in 
Figure 6 suggests. It seems that a single seed reference method for hardness 
determination with greater accuracy is needed in order to achieve a good and useful 
NIT prediction model. If this is possible, there seems to be a potential for the 
development of a model, which would allow the use of raw NIT spectra for a non-
destructive single seed hardness analysis.  
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For practical use of single seed near infrared spectroscopy as an homogeneity tool, it 
is important that the measurements are automated, as in the new combined SKCS-
NIR instrument (Delwiche and Hruschka, 2000;Dowell et al., 1999). The Infratec 
1255 single seed measurements provides excellent single seed protein data that are 
much easier to obtained than the traditional Kjeldahl method, but the single seed 
handling is still not automated and the measurements are quite time consuming 
when analysing high number of kernels. When applied automatically, near infrared 
spectroscopy on single seeds, alone or in combination with other automated non-
destructive techniques, has a great potential as routine homogeneity analysis. This 
might not only be limited to protein and hardness, but also for other quality 
parameters in cereals, as the method is used today on bulk samples.  
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Paper VIII 
Screening for dioxin contamination in fish oil by PARAFAC 
and N-PLSR analysis of fluorescence landscapes 

D.K. Pedersen, L. Munck and S.B. Engelsen 

___________________________________________________________________ 

Abstract 

A preliminary investigation of fish oils demonstrates that fluorescence excitation-
emission landscapes evaluated by 3-way chemometric methods may be a candidate 
for an inexpensive screening method to indicate the level of contamination by 
dioxins and PCB’s which are normally analysed with expensive and time-
consuming physicochemical separation techniques such as GC-MS. Fluorescence 
landscapes of 88 fish oils have been investigated and showed great variation due to 
species, season and treatment, depicting a variation in natural fluorescent 
components. The fluorescence landscapes were analysed by PARAFAC. Samples 
with similar fluorescence fingerprints were selected from a PARAFAC score plot 
and local significant prediction models with PARAFAC/MLR, N-PLSR and PLSR 
were established with correlation coefficients in the range from r=0.69 (n=10) to 
r=0.97 (n=75) for dioxin and r=0.92 (n=12) for PCB. Application of 
PARAFAC/MLR and N-PLSR to fluorescence landscapes of fish oils resulted in 
local regression models for dioxin determination with prediction errors below 
1 ng/kg, which is comparable to the reference method. In the PARAFAC model, two 
of the modes give the excitation and emission spectra of the pure underlying 
fluorophores and the third mode their individual concentrations. Excitation and 
emission optima for 3-4 PARAFAC components in each data set were identified, 
representing both positive and negative (quenching) correlation components. It is 
hypothesized that the quenching correlation may be effected by the joint 
contribution of chlorinated organic compounds in the fish oil, including dioxins and 
PCB’s. Other explanations for the results are discussed. 

 

Key Words: Dioxin, PCB, fluorescence, multi-way, PARAFAC, N-PLSR 
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1. Introduction 

To an increasing extent food and feed contain residues of environmental 
contaminants. Monitoring programmes are required to analyse food and feed for the 
presence of trace amounts of toxic substances such as heavy metals, pesticides, 
polyaromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), dioxins, flame 
retardants as polybrominated diphenylethers (PBDE), and estrogenic compounds 
such as nonyl phenols and phathalates. Dioxins are widely encountered toxic 
substances. Dioxins is a short expression for polychlorinated dibenzo-p-dioxins 
(PCDD’s) and polychlorinated dibenzofurans (PCDF’s). Both are tricyclic, chlorine-
substituted, aromatic organic compounds. Polychlorinated biphenyls (PCB’s) is 
another class of environmental contaminants. In practice, dioxins appear as mixtures 
of various congeners with different concentrations and with extreme variations in 
toxicity. Dioxins are persistent and lipophilic compounds which bioaccumulate and 
bioconcentrate in the food chain. Dioxins are very toxic, acutely as well as 
chronically, and some dioxins might be carcinogens, immunotoxics, endocrine 
disruptors or teratogens. The number of chlorine substituents may range from one to 
eight, which means 75 possible PCDD congeners and 135 possible PCDF congeners 
[1]. Congeners with chlorine substitution in the 2,3,7,8-positions (TCDD) (Fig. 1) 
are very persistent, bioaccumulative and toxic [1]. 

 

 

Figure 1. Structure formula of 2,3,7,8-tetrachlorodibenzo-p-dioxin: an example of a 
compound in the dioxin family 

 

Dioxin is formed involuntarily as a by-product of many industrial processes 
involving chlorine, for example, in producing inflammable transformer oil. It is also 
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produced when chlorinated substances are burned in the presence of carbon and 
oxygen and thus released into the environment through air pollution, chemical waste 
and soil contamination [2]. However, a significant contribution to the dioxin level in 
the environment originates from natural sources such as forest fires and volcanic 
eruptions. PCDD and PCDF contamination of food is primarily caused by the 
deposit of emissions from various sources (e.g. waste incineration, production of 
chemicals) on farmland and water bodies followed by bioaccumulation in terrestrial 
and aquatic food chains [2]. 

Well-known examples of accidental extreme exposure of the local human 
population to PCDD’s, PCDF’s and PCB’s include the incident at Seveso (Italy), 
and fires in PCB-filled electrical equipment. At the Seveso accident in 1976 in 
Northern Italy, a few kilograms of 2,3,7,8-tetrachloro-p-dioxin (TCDD) were spread 
to the surrounding areas by a blast from a chemical factory [1]. High exposure may 
also be caused by food items accidentally contaminated [2]. In the beginning of 
1999 a case involving contamination of feed by transformer oil occurred in Belgium. 
The contamination caused an epidemic of intoxication of farm animals and resulted 
in high levels of PCB and dioxin in meat and food [3], which constituted a threat to 
human health. 

In general, the dioxin levels found are very low (ppt-level), the detection of which 
requires sophisticated and hypersensitive (sub-ppb) physicochemical separation 
techniques such as high resolution GC-MS. In the case of complex organic 
molecules such methods are often laborious and very expensive; a typical dioxin 
analysis takes 2 weeks and costs approximately $1,000 [3]. For this reason, only 
limited environmental monitoring can be performed. For dioxin analysis the samples 
are extracted by organic solvents and spiked with isotopically labelled (13C) internal 
standards before the chemical analysis with sample clean-up and determination with 
high-resolution gas chromatography/mass spectrometry (HRGC/MS) [1]. Clean-up 
procedures of complex samples for the subsequent analysis of compounds like 
PCDD’s, PCDF’s and PCB’s are in most cases time-consuming and associated with 
problems concerning recovery of the compounds. Unwanted contaminants are 
usually present in much higher concentrations than the analytes and, in some cases, 
these are capable of completely hiding the signal from the dioxin analytes or giving 
false positive results on the analytical equipment used. The problems are in most 
cases associated with the removal of the unwanted contaminants without affecting 
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the recovery of the analytes [4]. An international intercalibration study with the 
participation of nine experienced laboratories measured dioxin in fly ash extracts. 
Results reported as ng I-TEQ/sample varied 20-23 % [1]. TEQ (Toxic Equivalents) 
is the total amount of dioxins converted into the most toxic 2,3,7,8 tetrachloro-p-
dioxins (TCDDs). In this study the international WHO-TEQ standard is used. 

Multivariate spectroscopic methods in combination with chemometric data analysis 
are applied widely for quality control of composition in the food and feed industries 
[5].  Fluorescence spectroscopy is a useful technique for analysing biological 
samples and food products due to its selectivity and high sensitivity [6-8]. 
Fluorescence spectroscopy measures transitions between electronic states, and the 
light emitted following excitation by monochromatic light is detected. Fluorescence 
spectroscopy has the potential to rapidly measure sub-ppm levels of complex 
organic molecules due to the normally low background fluorescence signal (few 
molecules exhibit fluorescence). Fluorescence spectra are measured as a function of 
two variables, the excitation and the emission wavelength. For each excitation 
wavelength a whole emission spectrum is recorded. Two-dimensional spectra 
(landscapes) are thereby generated for each sample. The landscape structure has the 
advantage that analytes or interferences emitting in different spectral areas are 
revealed, and unique resolvation of analytes is possible because of the trilinear data 
structure [9]. With the PARAFAC algorithm [10] it is possible to perform 
“mathematical chromatography” and resolve the complex fluorescence landscapes 
into excitation and emission profiles of the underlying fluorophores [11] and thus 
obtain their relative concentrations. 

This paper outlines an attempt to develop a rapid approximate fluorescence 
spectroscopic determination of the dioxin content in fish oil. The fluorescence data 
are primarily investigated by the application of multi-way chemometric methods 
such as PARAFAC [10, 11] and N-PLSR [12, 13]. 

 

2. Materials and methods  

2.1. Samples 

Fish oils vary considerably with regard to species, fishing territory and season. For 
calibration purposes it is therefore very important to span the relative variance. As 
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mentioned previously, traditional dioxin analyses are very expensive, for which 
reason only a limited material was available for this investigation. The Danish fish 
industry delivered all fish oil samples, which represented different treatments and 
deliveries during the production season. The main sample set (set A) consisted of 65 
samples that originated from one batch of primarily sand eel fish oil which was 
treated by different types (poresize) activated charcoal filters and using varying 
temperature and filter times in order to examine and optimise their potential to 
remove dioxin and dioxin-related contaminants. Additionally, 10 (set B) and 
13 (set C) different untreated (non-filtered) fish oil samples were collected from the 
different companies in the fish industry. Sample sets A and B originated from the 
same company, while sample set C originated from another company with different 
extraction and sample processing. Sample sets A and B (75 samples) were employed 
for development of dioxin models, whereas set C was not included in these models 
due to large differences in spectral characteristics. Twelve of the samples from 
sample set A (APCB) were employed for PCB models.  

 

2.2. Reference measurements - Dioxin 

The dioxin concentration was measured for each of the fish oil samples. The 
analyses were performed by ERGO Forschungsgesellschaft mbH (Hamburg, 
Germany). In short, the samples were spiked with 13C-UL-labeled internal standards 
(Underwriters Laboratories Inc.). The samples were extracted with appropriate 
solvents. Clean-up was done on multicolumn systems. The measurement was done 
by means of high-resolution gas chromatography and high-resolution mass 
spectrometry (HRGS/HRMS). 17 different PCDD’s and PCDF’s are reported, and 
the total dioxin content is calculated as WHO-TEQ. The uncertainty of the results is 
approximately 5 %. 

 

2.3. Reference measurements - PCB 

For 12 of the fish oils from sample set A, the PCB concentration was additionally 
measured. The analyses were performed by ERGO Forschungsgesellschaft mbH 
(Hamburg, Germany). The samples were spiked with 13C-UL-labeled internal 
standards, then extracted with appropriate solvents and the clean-up was done on 
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multicolumn systems. The measurement was done by means of high-resolution gas 
chromatography and mass spectrometry (HRGS/MS). Twelve different “dioxin 
alike” coplanar non-ortho and mono-ortho PCB’s are reported, and the total PCB 
content is calculated as WHO-TEQ. 

 

2.4. Spectroscopic measurements 

All spectroscopic measurements of the fish oils were performed without sample pre-
treatment, and the measurements were made at room temperature. 

Fluorescence landscapes were collected on an LS50B spectrofluorometer (Perkin-
Elmer, Palo Alto, CA, USA). The excitation-emission landscapes were acquired on 
the spectrofluorometer using a quartz cuvette in a 90° excitation-emission 
arrangement. The excitation wavelengths 300, 330, 360, 390, 400, 410, 420, 430, 
440 and 450 nm were employed. Emission spectra were recorded from the excitation 
wavelength plus 20 nm, to avoid Rayleigh scattering, and up to 700 nm in 1.0 nm 
steps. Excitation and emission slit widths were set to 10 nm [14]. A scan rate of 
500 nm/min provided a spectral resolution of approximately 1 nm. 

 

2.5. Chemometrics 

Chemometric calculations were performed with Matlab ver. 5.3 (The MathWorks 
Inc., Natick, MA) installed with PLS Toolbox ver. 2.0.0b (Wise & Gallagher; 
Eigenvector Technologies, Manson, WA), N-way toolbox (www.models.kvl.dk) and 
The Unscrambler ver. 7.6 (CAMO ASA, Trondheim, Norway). 

 

2.6. PLSR 

Standard bilinear regression employing PLSR (Partial Least Squares Regression) 
[15] was performed relating fluorescence emission spectra to dioxin content. PLSR 
is a two-dimensional model (samples x emission wavelength) and the trilinear 
fluorescence landscape (samples x emission x excitation) cannot be used directly. 
Instead, the landscapes are unfolded into a two-dimensional sample set in which the 
emission spectra are arranged as one vector in ascending order with the excitation 
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wavelength. Full cross-validation was applied throughout this study and only 
validated results are presented. 

 

2.7. PARAFAC 

PARAFAC (PARAllel FACtor analysis) [10] is a multi-way method that facilitates 
the unique resolution of the underlying components. PARAFAC is a trilinear 
decomposition method, which conceptually can be regarded as the multi-way analog 
to the bilinear PCA (Principal Component Analysis) or, more precisely, to 
alternating least squares (ALS). Three loading matrices with elements ain, bjn, and ckn 
give a PARAFAC model of a three-way array (xijk). The trilinear model is found to 
minimize the sum of squares of the residuals, eijk in the model, where n is the 
number of components: 

∑
=

+=
N

n
ijkknjninijk ecbax

1

 

The reason for using PARAFAC instead of PCA was not to obtain a better fit, but 
rather to obtain a more adequate, robust and interpretable model due to its 
mathematically unique resolvation. If the data is indeed trilinear and providing the 
right number of components is used, the underlying spectra of fluorescent analytes 
including their relative concentration will be found [11]. Thus, the analyte 
concentration may be obtained directly after scaling, but without need for 
regression. 

 

2.8. Multiple Linear Regression (MLR) 

Multiple Linear Regression (MLR) is a method that combines a set of several 
independent variables in linear combinations which correlate as closely as possible 
to the corresponding single reference variable. MLR was applied for regression 
between PARAFAC fluorescence scores and dioxin reference values. As mentioned 
above, this regression procedure is not strictly required, if the analyte is directly 
measured. However, when screening for indirect correlation, we found it safer to use 
MLR. 
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2.9. Multi-way calibration 

The general multi-way PLSR model (N-PLSR) is considered superior to the 
unfolded PLSR method owing to stabilisation of the decomposition respecting the 
original structure of the fluorescence data [13]. In the three-way version of PLSR, 
the three-way array of independent variables is decomposed into a trilinear model 
similar to the PARAFAC model. However, for N-PLSR the model is not a least 
squares fit of the independent data, but seeks in accordance with the philosophy of 
PLSR to maximise the covariance of the dependent and independent variables. The 
advantage of using N-PLSR instead of unfolding methods is that N-PLSR is more 
parsimonious, i.e. simple, and hence easier to interpret. N-PLSR will also be less 
prone to noise, because the information across all modes is used for the 
decomposition [13]. 

 

3. Results  

3.1. Dioxin levels 

Distribution of the dioxin concentration in the fish oils in the sample sets A, B and C 
is shown in Figure 2a.  

 

 

Figure 2. Distribution of dioxin concentration in the fish oils in the three sample sets; 
sample set A (white), sample set B (pattern) and sample set C (dark) (a) and of PCB 
concentration in the 12 fish oils in sample set APCB (b). 
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The original non-filtered dioxin content of the tobis fish oil used as a basis for set A 
was 9 ng/kg. Approximately 80 % of the samples from sample set A have a dioxin 
content less than 6 ng/kg (the total range is 0.7-8.9 ng/kg), while the samples from 
sets B and C have a mean dioxin content around 11-12 ng/kg (total range 
7.4-17.5 ng/kg for set B and 1.0-29.5 ng/kg for set C). 

 

3.2. PCB levels 

Distribution of the PCB concentration in the fish oils is shown in Figure 2b. The 12 
fish oil samples originate from sample set A. The concentration varies between 8.5 
and 12.5 ng/kg. In the untreated sample the original PCB content was 12 ng/kg. The 
correlation (r) between dioxin concentration and PCB concentration for the 12 fish 
oil samples from set APCB is 0.94. 

 

3.3. PARAFAC models for data overview 

A 3-component PARAFAC model was generated from fluorescence landscapes of 
88 fish oil samples (sample sets A, B and C). In order to get an overview of the data, 
PARAFAC scores were plotted in two-dimensional scatter plots. Figure 3 shows the 
plot of PARAFAC score 1 versus PARAFAC score 2. The figure reveals that the 
fluorescence data of the A samples are all closely related due to the fact that they 
originate from the same batch. In addition, the fluorescence data of the B samples 
appear to be related to the A samples, while the fluorescence data obtained from the 
C samples clearly are more scattered and less related to the A samples. A 
comparison of the A, B and C samples demonstrates that fish oils vary considerably 
with regard to, for example, species, fishing territories, season and treatment. 
Despite this variation, it is noteworthy that all samples from one fish oil company 
(A + B) fit into one simple PARAFAC model, whereas the samples from the second 
fish oil company introduce multiple new PARAFAC components. Possible 
explanations for the new variation found in the C-samples are: 

- different sample processing 

- addition of antioxidant (C6, C9, C10, C11) and 

- oil made of deviant fish species, e.g. caprin (C5, C7, C8) 
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Figure 3. Score plot of PARAFAC component 1 versus component 2 from a 3-component 
PARAFAC model of sample sets A, B and C. Landscapes of two set A samples (a1 and a2), 
two set B samples (b1 and b2) and two set C samples (c1 and c2) are shown. 

 

3.4. Comparison of fluorescence landscapes of fish oils 

A fluorescence landscape of a fish oil with low dioxin content (a1) and a fish oil 
with higher dioxin content (a2), the original non-filtered fish oil, from sample set A 
are shown in Figure 3. The two landscapes express very marked differences in 
intensity. The high-dioxin oil shows two strong and distinct emission maxima at 
approximately 545 nm (excitation 435 nm) and 675 nm (excitation 420 nm). In the 
low-dioxin oil the broad emission maximum at approximately 545 nm (excitation 
435 nm) has a higher intensity than the corresponding maximum for the high-dioxin 
oil, whereas the maximum at 675 nm (ex 420 nm) has almost vanished. This pattern 
dominates for all the 65 samples in set A. The landscape profiles for the set B 
samples (b1 and b2) are almost similar to the A set, except that the broad emission 
maxima vary between 445 nm and 450 nm and the corresponding excitation maxima 
vary between 430 nm and 440 nm, whereas the sharper emission maximum at 
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675 nm appears to have a more constant position. Examination of the landscapes 
(Fig. 3) of the C samples (c1 and c2) originating from other types of fish oil reveals 
that their profiles are profoundly different from the A and B samples. The 
fluorescence emission band at 675 nm has the characteristic position of chlorophyll 
and is most intense for fish oils made from fish at the lowest trophic level, namely 
tobis, which feed mainly on algae.  

 

3.5. PARAFAC resolvation 

PARAFAC models with 1 to 4 components were generated from the fluorescence 
landscapes of sample set A and from sample set B fish oils, and additional 1- to 
4-component PARAFAC models were generated from a combination of sets A and 
B. The PARAFAC modelling estimates excitation (mode 3) and emission profiles 
(mode 2) of the measured fluorophores as well as a sample profile assumed to be the 
concentration of each fluorophore in the samples measured (mode 1). Figure 4 
presents the emission profiles (left) and the excitation profiles (right) of the 
modelled components of a 4-component PARAFAC model of the fish oils from sets 
A and B.  

 

Figure 4. Loadings for the emission mode (left) and the excitation mode (right) of the 
4-component PARAFAC model for the combination of sample sets A and B. The percentage 
of the explanation of the dioxin concentration (Y(exp)) is reported. 
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The components are displayed in the same order as they are modelled, depending on 
their contribution to the sample profiles. The found excitation/emission maxima are 
approximately 450 nm (or higher)/525 nm (component 1), 400 nm/510 nm 
(component 2), 450 nm (or higher)/505 nm (component 3) and 415 nm/675 nm 
(component 4). The 675 nm emission maximum is easily identified in the raw data 
(Fig. 3), while the 525 nm, 510 nm and 505 nm emission maxima are a part of the 
broad emission maximum measured in the raw data (Fig. 3). The emission maxima 
found for the PARAFAC loadings for the models of sample set A, sample set B, 
sample set A + B and sample set APCB are quite similar in the area of 510-555 nm 
and at 675 nm. 

Multiple Linear Regression (MLR) was applied to the obtained PARAFAC score 
vectors (mode 1) in order to predict dioxin concentrations in the fish oils. Results are 
shown in Table 1. The 4-component PARAFAC model (Table 1) generated from set 
A fish oils provides a good prediction with a prediction error (RMSECV) of 
0.7 ng dioxin/kg oil. PARAFAC components ideally reflect pure components and 
investigation of the single PARAFAC components is therefore of prime importance. 
Regression models employing one of the four components at a time (Table 2) show 
that PARAFAC component 4 contributes most to the prediction ability of dioxin for 
the set A fish oils. PARAFAC components 1 and 3 are negatively correlated to the 
dioxin concentration, while components 2 and 4 are positively correlated to the 
dioxin concentration.  

The 3-component PARAFAC model (Table 1) generated from set B fish oils 
provides a poorer prediction with a RMSECV of 2.3 ng dioxin/kg. Data set B 
consists of only 10 samples and covers the dioxin concentration area from 7.4 to 
17.5 ng/kg. For this reason the regression is expected to be less reliable than a 
regression including many samples. Regression models employing one of the three 
components at a time (Table 2) show that the individual PARAFAC components are 
less successful in explaining the dioxin content of the sample set B. PARAFAC 
components 1 and 3 are negatively correlated to the dioxin concentration, while 
component 2 has a weak positive correlation to the dioxin concentration. The 
intensity of the 675 nm maximum (component 3) does not seem to correlate as well 
with the dioxin concentration as for the A samples (Table 2).  
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Table 1. Correlation coefficients (r) and prediction errors (RMSECV) for regressions (MLR 
of PARAFAC scores, PLSR and N-PLSR) of dioxin and PCB concentrations in sample set A 
(dioxin), sample set B (dioxin), sample set A + B (dioxin) and sample set APCB (PCB).  

Data 
set 

Method # of 
PC’s 

r RMSECV 
[ng/kg] 

Y-mean 
[ng/kg] 

Y-range 
[ng/kg] 

A PARAFAC 1 0.69 1.7 3.6 0.7 - 8.9 

 PARAFAC 2 0.71 1.6   

N=65 PARAFAC 3 0.92 0.9   

Dioxin PARAFAC 4 0.95 0.7   

 PLSR 4 0.95 0.7   

 N-PLSR 4 0.95 0.7   

B PARAFAC 1 0.12 2.9 11.7 7.4 – 17.5 

 PARAFAC 2 0.19 3.1   

N=10 PARAFAC 3 0.62 2.3   

Dioxin PARAFAC 4 0.53 2.5   

 PLSR 2 0.69 2.0   

 N-PLSR 3 0.63 2.2   

A+B PARAFAC 1 0.86 1.8 4.7 0.7 – 17.5 

 PARAFAC 2 0.85 1.9   

N=75 PARAFAC 3 0.88 1.7   

Dioxin PARAFAC 4 0.93 1.3   

 PLSR 4 0.97 0.9   

 N-PLSR 4 0.96 1.0   

APCB PARAFAC 1 0.69 1.0 10.6 8.5 – 12.5 

 PARAFAC 2 0.77 0.9   

N=12 PARAFAC 3 0.93 0.5   

PCB PARAFAC 4 0.88 0.7   

 PLSR 2 0.92 0.5   

 N-PLSR 2 0.92 0.5   

 

The 4-component PARAFAC model (Table 1) generated from the A and B samples 
also provides a good prediction with a RMSECV of 1.3 ng dioxin/kg. This 
regression covers the dioxin concentration area from 0.7 to 17.5 ng/kg with 
75 samples, which is a large enough sample set to be regarded as reliable. 
Regressions employing one of the four components at a time (Table 2) show that 
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PARAFAC components 1 and 2 contribute most to the prediction ability for the 
combination of sets A and B. The combination of all 4 components in MLR provide 
the best model. PARAFAC components 1 and 2 are negatively correlated to the 
dioxin concentration, while components 3 and 4 have a weak positive correlation to 
the dioxin concentration. 

 

Table 2. Excitation (Ex) and emission (Em) maxima for the PARAFAC profiles for sample 
set A, sample set B, sample set A + B and sample set APCB. Regression coefficients (r), 
quotation of negative or positive correlation to dioxin and PCB concentration respectively, 
explained dioxin or PCB concentration (Y(exp)) and prediction errors (RMSECV) for MLR 
regressions of PARAFAC scores 1, 2, 3 and 4 in sample set A (dioxin), sample set B 
(dioxin), sample set A + B (dioxin) and sample set APCB (PCB).  

Data 
set 

PARAFAC 
component 

Ex Max. 
[nm] 

Em Max. 
[nm] 

R Correlation Y(exp) 
[%] 

RMSECV 
[ng/kg] 

A 1 435 550 0.69 Negative 48 1.7 

 2 430 555 0.71 Positive 51 1.6 

Dioxin 3 395 510+540 0.75 Negative 57 1.5 

 4 415 675 0.89 Positive 78 1.1 

B 1 >450 550 0.58 Negative 33 2.3 

 2 395 510 0.02 Positive 0 3.0 

Dioxin 3 410 675 0.51 Negative 26 2.5 

A+B 1 >450 525 0.84 Negative 70 2.0 

 2 400 510 0.83 Negative 69 2.0 

Dioxin 3 >450 505 -0.52 Positive 27 3.8 

 4 415 675 0.13 Positive 2 3.6 

APCB 1 410 555+675 0.85 Positive 72 0.7 

 2 410 555+675 0.80 Negative 64 0.8 

PCB 3 430 525 0.85 Negative 72 0.7 

 

PARAFAC models with 1 to 4 components were separately generated from the 
12 PCB samples from sample set APCB fish oils. The obtained PARAFAC score 
vectors (mode 1) were applied in MLR in order to predict PCB concentrations in the 
fish oils. Results are shown in Table 1. The 3-component PARAFAC model (Table 
1) provides a good prediction with a RMSECV of 0.5 ng PCB/kg. Regressions 
employing one of the three components at a time (Table 2) show that all the 
PARAFAC components contribute to the prediction ability. PARAFAC components 
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2 and 3 are negatively correlated to the PCB concentration, while component 1 is 
positively correlated to the PCB concentration. 

 

3.6. PLSR results 

Bilinear PLSR models were made for the dioxin and PCB references. The results, 
listed in Table 1, show that PLSR models based on the unfolded fluorescence 
spectra provide good correlations to the fish oil dioxin content when employing 
4 components, especially for set A (r=0.95) and for the combination of set A and 
set B (r=0.97). Compared to the regression model of fish oil samples from set A 
(RMSECV=0.7 ng/kg), the added variation in set B leads to a higher prediction error 
(RMSECV=0.9 ng/kg), but the correlation remains good. Compared to the results 
reported from an international intercalibration study [1] with participation of nine 
experienced laboratories measuring dioxin in fly ash extracts as ng I-TEQ/sample 
with variations around 20-23 % corresponding on average to approximately 
± 1 ng/kg in the collected samples, much better prediction errors should not be 
expected due to the reproducibility of the reference method and due to the fact that 
the reference value is a compound toxicity number and not a concentration value of 
a single analyte following beer’s law of proportionality. The relatively poor results 
for set B modelling can be explained by the few (10) samples involved. The PCB 
results (Table 1) show that PLSR models of unfolded fluorescence spectra also 
provide good correlations to the fish oil PCB content when employing 
2 components.  

 

3.7. N-way regressions 

N-PLSR modelling was applied to both sets (A and B) and to the combination of set 
A and set B. In the three-way version of N-PLSR the three-way array of 
spectroscopic measurements is decomposed into a trilinear model. The three modes 
are: 1) the sample mode, 2) the emission wavelengths and 3) the excitation 
wavelengths. In order to avoid too many missing data points in the three-way array, 
two emission (mode 3) spectra were left out: the emission spectra for excitation at 
300 nm and at 330 nm. For the eight remaining excitation wavelengths only the 
emission area from 430-700 nm was used.  
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The correlation coefficient (r=0.95) and the prediction error (RMSECV=0.7 ng/kg) 
for data set A equal the results for the two-way PLSR of unfolded data (r=0.95 and 
RMSECV=0.7 ng/kg). The regression results are shown in Table 1. The results for 
data set B show a slightly higher prediction error in the three-way approach 
(RMSECV=2.2 ng/kg) than in the unfolded approach (RMSECV=2.0 ng/kg). 
Predicted dioxin concentration versus measured dioxin concentration for the 
N-PLSR model of data set A + data set B is shown in Figure 5. Even though 
N-PLSR models are supposed to be more parsimonious and easier to interpret, the 
predictive ability is rarely improved over the unfolded PLSR [13]. The reason for 
this is probably that fluorescence is correlated to chemical parameters with few 
emission wavelengths and that the potential added stability to the noise component 
is insignificant. The N-PLSR loadings for dioxin regression in data set A show 
expected maxima at 510 nm (loading 1), 675 nm (loading 2), 540 nm (loading 3) 
and 555 nm (loading 4). The emission maxima found for the N-PLSR loadings for 
the models of data set B and data set A + B are in the area of 510-555 nm and at 
675 nm as well as found by the PARAFAC model. 

 

 

Figure 5. Predicted dioxin concentration versus measured dioxin concentration for the N-
PLSR model (4 PC’s) for sample set A (A) and sample set B (B) fish oil samples (75). The 
correlation coefficient (r) and the prediction error (RMSECV) are reported. 

 

N-PLSR modelling was applied to the 12 PCB samples from data set APCB. The 
correlation coefficient (r=0.92) and the prediction error (RMSECV=0.5 ng/kg) equal 
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the results for the two-way PLSR of unfolded data (r=0.92 and 
RMSECV=0.5 ng/kg). The regression results are shown in Table 1.  

 

4. Discussion 

Fluorescence is a highly sensitive and chemically specific spectroscopic tool for 
screening, which yields unique spectra [7, 8]. One would think that matrices of 
biological origin with many different fluorophores and quenching substances might 
produce fluorescence landscapes which are too complex to be resolved. However, 
trilinear chemometric models such as PARAFAC are well suited for interpreting 
fluorescence landscapes, because the loadings give the excitation and emission 
spectra of the underlying fluorophores [11]. In an earlier example, when monitoring 
production streams and products from the sugar beet industry [6], it was 
demonstrated that PARAFAC is able to resolve four fluorophores from white sugar: 
two amino acids - tryptophane and tyrosine and two high molecular coloured 
reaction products between amino acids/phenoles and reducing sugars. The four 
fluorophores were confirmed by HPLC analysis [17]. It was concluded from that 
investigation that fluorescence spectroscopy and the PARAFAC algorithm are able 
to automatically select a covariate model in the form of four indicator substances 
which were able to predict colour as well as related process and quality parameters. 

In the present study we attempt to trace fluorescence patterns in fish oil by three-
way chemometric analysis and relate them to dioxin and PCB contamination. This is 
conceptually parallel to the sugar process example [6], although much less 
controlled. They are both examples of exploratory data analysis based on induction, 
where one measures first in a preliminary approach with a minimum of hard 
assumptions. This hypothesis-generating method has only become possible thanks to 
new instruments, the computer and chemometric software [6, 18].  

The high price of the dioxin and PCB analyses limits this preliminary fish oil study. 
Information about species prevalence, catch site, fish storage conditions and time as 
well as raw material analyses and process parameters in the fish oil/meals company 
would have been helpful in interpreting the results. Different fish species are 
prevalent at different times of the year in the industry. Feeding conditions for the 
fish are also seasonal and dependent on fishing territory. When studying 
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fluorescence fingerprints in fish meals we have previously been able to pick up such 
seasonal fluctuations through principal component analysis of the spectra [19].  

The heterogeneity of the origin of the present fish oil collection of the 88 samples is 
illustrated in the PARAFAC fluorescence score plot and indicated by the 
fluorescence landscapes in Figure 3. The different correlation analyses in Table 2 
indicate that sample set consistency is of prime importance, for which reason local 
modelling is needed. The local model with sample set A (n=65) is based on an 
experiment which with various degrees of success was able to remove dioxins and 
PCB’s with chemical and physical filters, yielding correlation models up to r=0.95 
(RMSECV=0.7 ng dioxin/kg). Sample set B with different unfiltered fish oils 
(n=10) with similar fluorescence landscapes shows a less satisfying, but significant 
correlation (up to r=0.69 RMSECV=2.0 ng dioxin/kg). A combination of these 
samples (A+B) in an N-PLSR analysis (Figure 5) gives a linear correlation of r=0.96 
and RMSECV=1.0 ng dioxin/kg. If the outlier sample set C originating from another 
factory is included, the N-PLSR correlation is reduced to r=0.42. The importance of 
local models is in accordance with the experience of chemometric modelling in the 
agricultural industry [5] where Near InfraRed (NIR) and InfraRed (IR) spectroscopy 
is widely employed based on inductive PLSR models. Global models need time and 
great effort to catch and include all possible extreme samples which at first are 
treated as outliers and include them in the calibration model. They should be able to 
cover the whole problem space evenly in the calibration mode. The different 
fluorescence landscapes from the 88 fish oil samples, which in this investigation are 
represented in a PARAFAC score plot, are too diverse and scattered in order to form 
a viable global model for dioxin. Prediction models should, of course, be based on 
data sets without significant outliers. 

The multivariate approach, which in fluorescence – 3-way analysis, allows for very 
precise automatic identification of outliers with unique patterns, which is the 
essence of a scientific basis for inductive analysis [6]. However, the fluorescence 
and PARAFAC resolution has its limits. As seen in Figure 4, two of the excitation 
spectra proposed by the model do not have discernable optima, as do all emission 
spectra. This is because the resolution of the excitation dimension in the 
fluorescence landscape, due to time restrictions, has been selected to be roughly 
30 nm, while it is 1 nm on the emission side. The resolved emission spectra in 
Figure 4 are therefore more reliable than the excitation spectra. 
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In the present investigation it is found that the group of fluorophores that are causing 
the broad emission maxima in the area of 510-555 nm are negatively correlated to 
the dioxin concentration. This suggests that the fluorescence in this area is quenched 
as the dioxin concentration rises, or rather when the total amount of chlorinated 
aromatic compounds rises. The sharper emission maximum at 675 nm was found to 
be positively correlated with the dioxin concentration for the set A samples. This 
implies that the fluorophore causing the 675 nm maximum (probably chlorophyll – 
it has the typical dual peak behaviour with excitation maxima at approximately 
420 nm and 510 nm) follows the dioxin through the filtering treatments. The results 
demonstrate that fluorescence spectroscopy could serve as a guide in exploring how 
fluorophores covariate in fish oil, which could be indicative of the level of lipophilic 
pollutants. The composition of fish oils directly mimics the diet of the fish, 
containing several natural fluorophores like vitamin E and xanthines. Non-
fluorescencent compounds can also be detected due to their ability to quench 
fluorescence [7, 8]. It is clear from this investigation that PARAFAC components of 
the fluorescence analysis contain positive as well as negative elements (Table 2), the 
latter being indicative of quenchers. Chlorinated lipophilic pollutants like dioxins 
and PCB’s are not likely to fluoresce, because the chlorine atom is a strong quencher 
[7, 8]. Nor is it likely that dioxins could be directly detected in the ecological 
production chains due to very low sub-ppb levels.  

The present results should be taken with precaution. Dioxins do not fluoresce, so the 
correlations must be related to complex chemical covariate objects in the fish oil 
matrix. However, from our experience in fluorescence spectroscopy we take the 
liberty to generate a few fresh hypotheses regarding the fluorescence screening 
method for dioxin to be further tested. Hypothesis 1) The combined total of 
chlorinated hydrocarbons may be causing the negative correlation with dioxin due to 
quenching. A positive correlation (r=0.94) was found between dioxin and coplanar 
PCBs in the fish oil material. Against this hypothesis may be the fact that inter-
molecular quenching is magnitudes less than intra-molecular quenching. 
Hypothesis 2) Natural lipophilic fluorescent chemical compounds generated, for 
example, by plankton may be accumulated in fish oil and could be used as indicators 
for establishing the level of a fish oil sample in the ecological feeding pyramid 
indirectly correlated to dioxin. They could both have the potential to indicate the 
trophic level of the fish catch in the ecological feeding pyramid. Hypothesis 3) By 
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removing dioxins with chemical filters, fluorescent indicator substances are 
proportionally absorbed. Thus, fluorescence analysis could be a candidate for 
monitoring the efficiency of the cleaning procedure. Hypothesis 4) Man-made 
fluorescent chemical compounds could also serve as similar indicators for dioxin, 
preferably if they are produced together with the dioxin and PCB. 

Further research could give profitable results based on the hypotheses generated in 
this explorative investigation. It is concluded that a holistic exploratory approach to 
environmental chemistry is needed coupled with sensitive, specific and economical 
screening methods evaluated by chemometrics in a dialogue with classical analytical 
methods. Thus, screening methods could be developed that are operational under 
field conditions and in industry. The scientific basis of this inductive approach is the 
high precision of the fluorescence/multi-way approach [6] in characterising the 
uniqueness of and the relationships between the fish oil samples. Such methods 
would allow direct chemical fingerprinting of a range of natural and polluting 
molecules which are concomitant in the ecological production chains and which can 
be introduced as markers. Fluorescence spectroscopy combined with three-way 
chemometric analysis is such a candidate screening method with a great potential 
because of its sensitivity and specificity. 
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