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ABSTRACT

Vibrational spectroscopic techniques are widely used throughout all stages of food production.
The analysis of raw materials, real-time process control, and end-product quality evaluation are all
crucial steps in food production. In order to increase production throughput there is a need for
speed when collecting information from the different processing steps. Hence, conventional
methods from analytical chemistry (like Kjeldahl digestion for protein determination) are not com-
patible with modern production methods.

The aim of this thesis is to show how infrared spectroscopy may and may not be used by dairies
and related industries. The focus is specially on possibilities and limitations in applying Fourier
transform infrared spectroscopic measurements for detailed milk composition to be used in, for
example, breeding programs. Previous studies reported successful predictions of individual fatty
acids, protein fractions and coagulation properties from Fourier transform infrared measure-
ments. This thesis shows how such predictions are trapped in a cage of covariance with major milk
constituents like total fat and protein content. The prediction models for detailed milk composi-
tion are not based on causal relationships and this may seriously compromise calibration robust-
ness. It is not recommended to implement indirect models for detailed milk composition in milk
recording or breeding programs as such model are providing information on, for example, total
protein rather than the specific protein fractions.

If Fourier transform infrared based models on detailed milk composition are to be implemented
in, for example, breeding programs it is recommended to decompose, for example, the individual
fatty acids into functional groups, such as methyl, methylene, olefinic and carboxylic groups. The
average proportions of these groups may be reliable estimated from Fourier transform infrared
measurements in contrast to concentrations of individual fatty acids.

Vi
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INTRODUCTION

The food industry faces strong demands from consumers and regulatory bodies to produce safe
and consistently high quality products. The main objective for the food industry is to increase
productivity and at the same time meet consumer demands. Hence, a desired and consistent end-
product quality should be reached in a cost effective, safe, traceable, environmental and sustaina-
ble responsible way. This can be achieved by e.g. assuring that the raw materials meet certain
quality demands, controlling the process by real-time continuous measurements of core parame-
ters, rapid final product quality evaluation, and assuring key quality attributes during packaging.
Collecting the right information sufficiently fast using conventional analytical chemistry is a major
challenge in the food industry. For that reason, vibrational spectroscopic techniques are widely
used during all stages of food production (PAPER I).

At the dairy, bovine milk is processed into a number of dairy products like cheese, butter, cream,
consumer milk, yoghurt and ice cream. Furthermore, bovine milk plays an important part in the
production of ingredients to other food products or as nutritional supplements in, for example,
infant formula and protein powders for body building or hospitalized patients. Dairy products are
important components of western diets and therefore, bovine milk is an important raw material.
Bovine milk mainly consists of lipids, proteins, carbohydrates and the main constituent, water.

For decades, milk pricing has focused on fat and protein content. However, in recent years more
attention has been paid toward the important relations between detailed milk composition, nutri-
tional value and technological properties (Bovenhuis et al., 2013).

From a human health point of view, the fatty acid (FA) composition is important. While some un-
saturated FA in milk, for example, conjugated linoleic acids (CLA) and omega-3 FA are associated
with positive health effects, it is generally recommended to minimize the intake of saturated FA
(Simopoulos, 1991; German et al., 2009; Givens, 2010).

The FA composition is important for fat based dairy products like butter. Butter quality is defined
by characteristics such as spreadability, which in turn depends on the FA composition (Couvreur et
al., 2006). The melting point of FA decreases with reduced chain length and increased degree of
unsaturation (Pratt and Cornely, 2004a). Hence, the overall FA composition determines the soft-
ness of butter. Moreover, the FA composition also affects shelf life of dairy products, where in-
creased unsaturation reduces shelf life due to oxidation.
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Bovine milk protein composition is also highly important, for example, during cheese making. Here
the structure and behavior of the casein (CN) micelles and especially the presence of k-CN and the
level of glycosylated k-CN (k-CN G) is important for the milk coagulation process and thereby
cheese yield (Frederiksen et al., 2011; Jensen et al., 2012; Bonfatti et al., 2014).

Furthermore, the dairy industry is currently making huge profits on products related to nutritional
supplements. The composition of, for example, infant formula should ideally match the composi-
tion of human breast milk. However, the composition of bovine milk and human milk is not identi-
cal. For example, both the FA profile and the protein composition differ. Human milk fat contains
in general more unsaturated FA than bovine milk fat (Jensen et al., 1990). For proteins, the ratio of
whey proteins to CN proteins differs (60:40 in human milk and 20:80 in bovine milk). For this rea-
son, whey protein concentrate (WPC) is added to infant formula. Nevertheless, B-Lactoglobulin (B-
LG) is a major protein in bovine whey while absent in human milk. On the other hand, a-
Lactalbumin (a-LA) is a major protein in human milk, but not in bovine milk. This results in differ-
ences in the composition of essential amino acids in human milk and infant formula. Moreover, a-
LA is believed to, for example, facilitate infant absorption of essential minerals. Therefore, it is
recommended to increase the levels of a-LA and decrease the levels of B-LG when making bovine
milk based infant formula (Lien, 2003; Lonnerdal and Lien, 2003). But it is not necessarily easy to
achieve this and it would be desirable if the bovine milk, used to produce infant formula, already
from the cow contained higher levels of, for example, a-LA and lower levels of B-LG.

The suitability of milk for specific dairy products could be improved by changing milk fat and pro-
tein composition. Nevertheless, today milk from a large number of cows and multiple herds are
pooled together and mixed in storage tanks at the dairies. Variation in milk quality from individual
cows or herds is evened out and the dairy products are made from a uniform starting material
(exposed to some seasonal variation). However, milk with a specific composition suitable for a
particular product, could be collected separately if a simple and reliable analytical tool was availa-
ble for characterizing the FA composition and protein profile. This would open possibilities for
more efficient production at the dairy and possibly enhance product quality. For example, milk
with an ideal composition for cheese making could be identified and used for this purpose and
milk with an ideal composition for making infant formula could be used for that purpose.

Bovine milk protein composition and to some extent fat composition is affected by genetic factors
(Schopen et al., 2009; Krag et al., 2013). This suggests that detailed milk composition can be
changed by selective breeding. Therefore, efficient phenotyping tools are key elements in breed-
ing programs of livestock animals. Hence, there is a need for accurate, cheap, and high-throughput
predictive methods for detailed milk composition.

A high-throughput method for detailed milk composition would be valuable in breeding programs.
However, such a method could also be used in, for example, the payment system to the farmers.
Moreover, in a milk fit-for-purpose perspective, it is of course crucial for the dairies to document
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that the milk meets the specific requirements for a particular product. Hence, such a high-
throughput method could be used for screening milk upon arrival at the dairy.

Process Analytical Technology (PAT) is an important part of the Quality by Design paradigm (Food
and Drug Administration, 2004; van den Berg et al., 2013), and a high-throughput PAT method for
guantification of detailed milk composition could facilitate better product quality and economic
gains. The dairy industries are already using PAT-solutions to some extent. For example, high-
throughput Fourier Transform Infrared (FT-IR) based technologies are routinely applied in the
dairy industry during milk standardization (fat, protein and lactose). The Infrared spectrum is high-
ly specific and almost all chemical substances show characteristic patterns of absorption with in-
frared light (Coates, 2010).

Milk recording agencies and dairies routinely use FT-IR for milk analyses. The FT-IR measurements
are cheap, high-throughput and information on chemical substances can accurately be retrieved.
Therefore, FT-IR is attractive for providing information on detailed milk composition, including FA
profile and protein composition. Traditionally, detailed milk composition is only characterized by
time-consuming analytical methods such as gas chromatography or liquid chromatography.

A number of studies have already investigated the potential of using FT-IR measurements and
multivariate data analysis for predicting the FA profile and the protein composition of milk. In gen-
eral, FT-IR seems promising for measuring FA profile and protein composition in milk, as also out-
lined in the review on FT-IR spectroscopy as a phenotyping tool by De Marchi et al. (2014). Fur-
thermore, some, from a vibrational spectroscopy point of view, more or less unorthodox parame-
ters like cow body energy status (McParland et al., 2011), cow methane emission (Dehareng et al.,
2012) and milk coagulation properties have been predicted from FT-IR measurements of milk. It
would be surprising if these showed a direct absorption signal in IR measurements. However,
these attempts are based on, for example, relationships between milk FA profile and methane
emission (Chilliard et al., 2010) and milk protein composition and coagulation properties (Bonfatti
et al., 2014).

Nevertheless, different FA and different protein fractions are, respectively, composed of more or
less the same chemical groups. Hence, they are, respectively, likely to provide very similar signals
in IR measurements. If calibration models for a specific FA is using spectral features of other FA (or
more likely total fat content, i.e. the sum of all FA), then the predicted FA values of future samples
will depend on, for example, total fat content. An increase of total fat will lead to an increase of
the predicted FA concentration, even if the increase in total fat is caused by other FA than the one
of interest. Such an indirect model cannot detect a change in the fatty acid independent of the
total fat content. Detecting changes in the fatty acid profile independent of the total fat is what
breeders and the dairy industry will need if a high-throughput method should be used for breeding
programs and milk differentiation. Nevertheless, no previous studies paid much attention to this
problem.
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The aim of this thesis is to show how process analytical tools may and may not be used by dairies
and related industries. The focus will specially be on possibilities and limitations in applying FT-IR
for detailed milk composition.



PROCESS ANALYTICAL TECHNOLOGY

The US Food and Drug Administration (FDA) officially introduced PAT in a guidance to the industry
in September 2004 (Food and Drug Administration, 2004). The FDA defined PAT as,

“A system for designing, analyzing, and controlling manufacturing through timely measure-
ments (i.e. during processing) of critical quality and performance attributes of raw and in-
process materials and processes with the goal of ensuring final product quality.”

Thereby, FDA encouraged manufacturers to ensure product quality by process design instead of
post-production quality testing. Implementation of PAT in a manufacturing process aims at con-
trolling the manufacturing process and thereby reducing risks related to product quality and regu-
latory concerns and at the same time improving efficiency by, for example, reducing production
cycle times.

Process understanding is the key element when implementing PAT. In order to control the manu-
facturing process, critical sources of variability must be identified and explained. The aim is to
handle this variability by adapting the process and thereby ensuring high consistent product quali-
ty. The most important components in facilitating process understanding are experimental design,
process analyzers, multivariate data analysis and process control tools. Furthermore, theory of
sampling cannot be ignored during successful implementation of PAT at a production site.

A vital part of the PAT paradigm is moving the measurement technologies from the laboratory to
the production site. This serves the purpose of obtaining rapid in-line, on-line and at-line meas-
urements of the production operations (Food and Drug Administration, 2004; van den Berg et al.,
2013). Vibrational spectroscopic techniques are often used in PAT solutions, as they are fast,
cheap, informative and non-destructive measurement technologies. Coupling spectroscopic meas-
urements with multivariate data analysis (chemometrics) is highly powerfull in process under-
standing and control.

Even though the FDA guidance document clearly was intended the pharmaceutical industry, the
pharmaceutical industry seems hesitant (compared with the food industry) to introduce PAT in the
manufacturing. There may be several reasons for this. A pharmaceutical production is strictly regu-
lated. Hence, PAT implementation in an existing production may be an expensive task. Further-
more, drug development (from discovery to clinical trials) takes round 10 years and is highly ex-
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pensive. The total costs of a pharmaceutical products reflects only to a minor extend the costs of
raw materials and production. Therefore, the economic gain of implementing PAT in the produc-
tion is limited. Last, a pharmaceutical production may be less exposed to variations in raw materi-
als. Hence, consistent product quality can easier be achieved by recipe-driven production.

In the food industry, on the other hand, PAT-like solutions have existed years before the publica-
tion of the FDA guidance. Food products often consist of highly complex mixtures of fats, carbohy-
drates and proteins and raw materials face a high degree of natural variation. Therefore, con-
sistent end-product quality is difficult to archive by recipe-driven productions. Furthermore, the
price of food and foodstuffs reflects to a larger degree the costs of raw materials and production.
Therefore, it is more attractive for the food industry to optimize the production (including use of
raw materials). Moreover, implementation of PAT in the food industry may be easier compared
with the pharmaceutical industry as the food industry is less regulated by authorities (van den
Berg et al., 2013).

PAPER | concerns how the food industry is using vibrational spectroscopy and chemometrics in
PAT like solutions. Figure 2.1 is a schematic representation of the different stages in a food pro-
duction. Sorting raw materials according to certain quality demands may be a cost effective way in
increasing productivity (Figure 2.1, Process inputs) and securing high and consistent end-product
quality. Sorting enables that the best raw materials are used for high-value products and it eases
control of down-stream processing steps.

?\
| Process inputs Process operatlon Process outputs Post process
At-line incoming lot In-line real-time Off-line rapid product Non-invasive 100%
sampling / process control and safety testing quality control

Figure 2.1. Schematic representation of the different stages and the analytical questions involved of a food production.
Adapted from PAPER |I.

Even though proper sorting is done at the gate, process monitoring and control (Figure 2.1, Pro-
cess operation) is often essential in increasing production throughput and reaching consistent
product quality. The dairy industry has really recognized the benefits of continuous process moni-
toring and control. Successful examples include FT-IR for on-line standardization of milk, which
optimizes the used of fat, protein and lactose (Ellen and Tudos, 2003). Another example is process
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monitoring, for optimized moisture content (increased yield), of butter production by in-line near-
infrared (NIR) spectroscopy (Funahashi and Horiuchi, 2008).

Safety and quality of end-products are obviously essential parameters (Figure 2.1, Process output).
Due to the limited shelf life of most food products, extensive product testing by classical analysis is
often not desirable. Vibrational spectroscopic methods can provide information for these im-
portant parameters, typically without any sample preparation or use of reagents. High speed spec-
troscopic measurement can be used in 100% quality assurance of, for example, every bottle com-
ing by on a high speed filling line (Figure 2.1, Post process).

The benefits of successfully implementing PAT in a production are many. In summary, PAT offers
optimized utilization of raw materials, reduced production time, cheap and swift measurements
instead of costly and time consuming laboratory testing and it leads to less variation in final prod-
uct quality (Food and Drug Administration, 2004; van den Berg et al., 2013).

2.1 Vibrational Spectroscopy

Vibrational spectroscopic techniques like infrared (IR), NIR and Raman spectroscopy are frequently
used for process analytical measurements. Whereas Raman and IR measurements provide infor-
mation on fundamental molecular vibrations, NIR measurements provides information on over-
tones and combination bands of the fundamental vibrations. There are pros and cons for each of
the three spectroscopic methods and the decision of the method to use is based on factors like
sample type, information required, costs and ease of implementation (Coates, 2010). This chapter
concerns IR and NIR spectroscopy.

mn Low Energy

I I L | | | | I I

y-rays X-rays uv Infrared Micro Radio
Waves Frequencies

, -~

Ansivler, Infrared

/ Light '\ ~-e
l] Near Mid Far

Figure 2.2. The electromagnetic spectrum. The infrared region is divided into three parts; the near-infreared (Near)

region, the mid-infrared (Mid) region, and the far-infrared (Far) region. Modified from Pavia et al. (2001).
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Electromagnetic radiation is characterized by wavelength or frequency and can be understood as
sinusoidal waves (or particles with sinusoidal wave-like behavior) travelling at the speed of light.
The infrared part of the electromagnetic spectrum may be divided into the NIR region, 12,500-
4,000 cm’?, the mid-infrared region, 4,000-400 cm™ and the far-infrared, 400-100 cm™ (Figure 2.2;
Dufour, 2009). The mid-infrared region will be referred to as the IR region and only the IR and the
NIR regions will be considered in this thesis. For convenience IR spectra are reported in wave-
numbers (units of cm™), and NIR spectra are reported in wavelengths (units of nm). Wavenumbers
and wavelengths are related by Equation 2.1 (Pavia et al., 2001; Bruice, 2007b; Dufour, 2009; Lar-
kin, 2011a).

107
A (nm)

U= Equation 2.1

Where v is the given wavenumber and A is the given wavelength.

Energy, frequency and wavelengths of electromagnetic radiation are related by Equation 2.2 (Pa-
via et al., 2001; Dufour, 2009; Larkin, 2011a).

E=hv=— Equation 2.2

Where E is energy, h is Planck’s constant, v is the given frequency and c is the speed of light. From
Equation 2.1 and Equation 2.2 it can be found that energy is directly proportional to frequency and
wavenumbers but inversely proportional to wavelength.

2.1.1 Molecular Vibrations

At temperatures above the absolute zero all molecules exhibit vibrations. A chemical bond, con-
necting two atoms, can be viewed as a mass-less spring connecting two vibrating masses. There
are two types of molecular vibrations, stretching and bending. The stretching and bending vibra-
tions of CH; are shown in Figure 2.3.

VN W
/ /N /N

Antisymmetrical stretching Symmetrical stretching Scissoring (bending in-plane)
2925cm™ 2850cm™ 1465cm™
A,

R
\ \
\ \
\ \
7/ V2N /
Twisting (bending out-of-plane) Rocking (bending in-plane) Wagging (bending out-of-plane)
1350-1150cm™ 720cm? 1350-1150 cm?

\

+ B

N V%

Figure 2.3. Stretching and bending vibrational modes for a CH, group. lllustration modified from Pavia et al., (2001).
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Molecular vibrations may absorb electromagnetic radiation. If the molecular vibrations express a
change in the electrical dipole and this dipole is changing with the same frequency as the incoming
radiation, then the molecular vibration will absorb the incoming radiation and the absorbed ener-
gy will increase the amplitude of the vibrational motions. Larger differences in electronegativity
between atoms involved, results in better coupling of the changing electrical dipole of the bond
and the sinusoidal changing electromagnetic field of the incoming radiation. Hence, larger differ-
ences in electronegativity between atoms will result in stronger absorption (Vidrine, 2000; Pavia et
al., 2001; Coates, 2010).

Different vibrational modes of the same bond vibrate with different frequencies (Figure 2.3).
Hence, similar information occurs in several regions throughout the absorption spectrum. The po-
sition of absorption bands can be estimated from the strength of the molecular bond and the
masses of the atoms involved. The approximate wavenumber of the fundamental absorption
band, 7, may be calculated from Equation 2.3 (derived from Hooke’s law).

Uy = 2—; % Equation 2.3
Where K is the force constant (stiffness) of chemical bond (spring) and u is the reduced mass of
the system given by Equation 2.4. Stronger molecular bonds will have larger K and stronger bonds

will therefore absorb electromagnetic radiation with higher wavenumbers.

mimpy

u= ey Equation 2.4
Where m,; and m, are the masses for the two bonded atoms. Hence, bonds involving lighter at-
oms will have smaller ¢ and will therefore absorb electromagnetic radiation with higher wave-

numbers. The position of overtones can be found from Equation 2.5,
v, = nvy(1 —ny) Equation 2.5

Where v, is the wavenumber of the overtone corresponding to the vibrational quantum number,
n and x is the anharmonicity constant. Hence, the position of an overtone (n > 1) is an approxi-
mate multiple of the fundamental vibration (n = 1). The vibrational mode, hybridization, electron
delocalization and hydrogen bonding all affect K (Equation 2.3) of a given molecular bond and
thereby the position of the absorption band in the spectra.

Vibrational bending modes have lower K than stretching modes. Therefore, bending motions are
found at lower wavenumbers like the scissoring (1,450 cm™), wagging (1,300 cm?), twisting (1,300
cm™) and rocking (720 cm™) modes of CH; groups.

The length and strength of, for example, C-H bonds are affected by hybridization of the carbon
orbitals. The s orbital is closer to the nucleus than the p orbital. Therefore, increased hybridization



CHAPTER 2 — PROCESS ANALYTICAL TECHNOLOGY

will decrease the strength (increase the length) of the C-H bond. The C-H stretching for sp carbon

1 1

occurs at ~3,300 cm™%, for sp? carbon at ~3,100 cm™! and for sp3 carbon at ~2,900 cm™

(Bruice, 2007a).

The strength of molecular bonds is also affected by electron delocalization. Consider the carbonyl
group in Figure 2.4. Nitrogen is not very electronegative. Hence, if nitrogen takes the position of Z
in Figure 2.4 (like an amide) the predominant effect will be electron donation. On the other hand,
oxygen is very electronegative and if oxygen takes the position of Z in Figure 2.4 (like an ester), the
predominant effect will be inductive electron withdrawal. Therefore, carbonyl groups in amides
show more single bond character than carbonyl groups in esters. This reduces K for carbonyl in
amides compared with carbonyl in esters and consequently the absorption band of the carbonyl
group in an amide is found at lower wavenumbers (Pavia et al., 2001; Bruice, 2007a; Bruice,
2007b).

0~ 0- o)
[ I
>
C_# C C W
/// \ \ /
R ~z) RN Rz
Resonance electron donation Inductive electron withdrawal

Figure 2.4. Electron delocalization. Illustration adapted from Bruice (2007b).

Figure 2.5 shows a hydrogen bond between two water molecules. Hydrogen bonds will decrease K
of the covalent O-H bond. Therefore, molecular bonds that are affected by hydrogen bonds are
found at lower wavenumbers. Hydrogen bonds vary in strength. This results in very broad absorp-
tion bands of hydrogen-bonded molecules (Bruice, 2007b).

Hydrogen bond

o H
H Heeeee- O/
\H

Figure 2.5. Hydrogen bond (---) between two water molecules. Illustration adapted from Bruice (2007b).

Different kind of information is found in specific parts of the absorption spectrum. Stretching vi-
brations involving hydrogen atoms (light atoms) occurs at higher wavenumbers (2,500-4,100 cm™?),

10
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for example anti-symmetric and symmetric sp? C-H stretching vibrations found at 2,960 + 10 cm™
and 2,870 + 10 cm’?, respectively. Stretching vibrations involving carbon, oxygen and nitrogen
(middle-weight atoms) characteristically occupies the 800-1,200 cm™ region like C-OH bonds of
lactose found at 1,080 cm™. Double bonds and triple bonds occur in the 1,600-2,300 cm™ region
like carbonyl stretching vibrations of triglycerides found at 1,750 cm™. (Pavia et al., 2001; Bruice,
2007b; Larkin, 2011b).

2.1.2 Quantitative Spectroscopy

There are in general two different measurement methods for vibrational spectroscopy; Transmis-
sion (Figure 2.6a) and reflectance (Figure 2.6b). When light is absorbed by molecular vibrations,
the irradiance of the beam of the light is decreased. The light with irradiance, Py, strikes the sam-
ple and the irradiance of the beam emerging from the sample is P (Figure 2.6). If light is absorbed
by the sample then P < Py.

a@f:’»

b,
2l

Figure 2.6. (a)Transmission of light through matter. (b) Reflection of light from matter. P, is irradiance of incoming

beam. P is irradiance of the beam emerging from the sample.

The absorbance, A, is defined as (Harris, 2010),
_ Po p
A =log (P) Equation 2.6

Beer’s law (Equation 2.7) relates the absorption of light to the properties of the material through
which the light is travelling (Harris, 2010).

A= ¢€lc Equation 2.7

Where A is absorbance, c is the concentration, € is the molar absorptivity and [ is the path length
of the light in the sample. Both € and [ are constants and A is therefore directly proportional to c.
This relationship is the heart of quantitative spectroscopy.

11
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2.1.3 Interferometer Instruments

In PAPER II, PAPER IV and PAPER V MilkoScan FT2 (FOSS Analytical A/S, Hillergd, Denmark) was
used for obtaining IR measurements. In PAPER Il InfraXact (FOSS Analytical A/S, Hillergd, Den-
mark) and DS2500 (FOSS Analytical A/S, Hillergd, Denmark) was used for obtaining NIR measure-
ments.

All the three instruments are based on the Fourier transform (FT) principle. The most important
part of any FT instrument is the interferometer (Figure 2.7).

Source

Moving mirror M Sample
— >
—_— e > I — ¥
] 4
Beam |
splitter ¥ Detector
Fixed mirror

Figure 2.7. Schematic diagram of a Michelson interferometer. Illlustration adopted from Subramanian & Rodriquez-
Saona (2009).

In a Michelson interferometer, a beam splitter divides the radiation into two equal beams. One
beam is reflected towards a moving mirror and one beam is reflected towards a fixed mirror. Both
beams are reflected back towards the beam splitter where they are recombined. However, the
motion of the moving mirror introduces a continuous change in the optical path length between
the two beams. When recombined the path length differences of the two beams causes (a chang-
ing) interference of the beams where some wavelength show constructive interference and other
wavelength show destructive interference. Since the optical path difference is constantly chang-
ing, the various frequencies present in the beam are modulated at different rates. The combined
beam is called the interferogram and is found in the time domain of Figure 2.8 (Pavia et al., 2001;
Subramanian and Rodriguez-Saona, 2009). The generated interferogram is passed through the
sample where wavelength specific parts are absorbed (Pavia et al., 2001). As mentioned, the inter-
fereogram is found in the time domain. In order to obtain the frequency-domain spectrum from
the interferogram, a Fourier transform (FT) is applied. The FT separates the individual frequencies
from the interferogram (time domain) by fitting sinusoidal functions to the interferogram. Hence,

12
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FT basically reverses the construction of the interferogram (Pavia et al., 2001). The individual fre-
guencies are then recombined to the spectrum in the frequency domain (Figure 2.8).

Frequency

Time

Time domaine
requency domaine

Figure 2.8. Fourier transformations. The interferogram is found in the time domain. The interferogram is split into
single frequency spectra and recombined in the frequency domain.

The benefit of FT-IR instruments, compared to a dispersion instruments, is greater speed. Thereby
more spectra can be collected and greater signal-to-noise ratio can be reached (Pavia et al., 2001).
Speed and good signal-to-noise ratio are essential for applications within PAT.

2.2 Chemometrics

Spectroscopic measurements are very useful in PAT as absorption and concentration are linearly
related through Beer’s law (Equation 2.7). However, the absorption signal is not only affected by
the chemical properties of the samples. Also the physical properties may affect the signal and this
may corrupt Beer’s law. Physical properties are often found as offset and slope differences. If the
chemical properties are of interest, it may be necessary to remove offset and slope differences by
preprocessing the spectroscopic measurements prior data analysis. A walkthrough of the most
common preprocessing methods is done by Rinnan et al. (2009).

The matrix rank can be determined once the preprocessed spectroscopic measurements, X(n X
m) containing n samples and m measured variables (e.g. wavenumbers), are arranged into a data
matrix. The number of linearly independent rows is equal to the number of linearly independent
columns of X and this number determines the matrix rank.

r(X) < min(n, m) Equation 2.8

Where r(X) is the rank of X. The matrix is defined as full-rank if (Vandeginste et al., 1998),

13
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r(X) = min(n, m) Equation 2.9

Theoretically, spectroscopic measurements of multicomponent samples, X(n X m) can be viewed
as the outer product of the analyte concentration profiles, C(n X q) containing n samples and g
analytes, and the pure analyte signals, S(im X q) containing m variables (Equation 2.10). Note that
background and error terms are not taken into account.

X=csT Equation 2.10

This is also illustrated in Figure 2.9. In the case where all analytes give rise to unique spectral fea-
tures, then r(X) is determined by g (given that ¢ < nand g < m).

Pure Analyte signals

Wavenumber
wl
]
+—
=
Analytes © Wavenumber Sample spectra
1 g <4 1 m
4 R
- Q.
Q. =
c €
P ©
R n

k Concentration profiles

Figure 2.9. Multicomponent sample spectra. A function of the outer product of analyte concentration profiles and pure
analyte signals. n = number of samples, q = number of analytes, m = number of variables (wavenumbers).

If the concentration profiles are perfectly correlated or the pure analyte spectra are completely
overlapping (correlated), then r(X) < q. However, due to the presence of measurement noise in
the spectra, the mathematical rank of spectroscopic measurements is often (close to) full and
much higher than the chemical rank. Obviously, the chemical rank is the one of interest and in the
following the term rank, r(X) will denote the chemical rank. In quantitative analysis it is important
to consider r(X) as it determines the number of independent parameters (information) that can
be extracted from X (Smilde et al., 2004).

2.2.1 Principal Component Analysis

Spectral measurements, X(n X m) are fully described in a m-dimensional space. However, X con-
sists of a systematic part and a noise part. The systematic part spans a R-dimensional (correspond-
ing to (X)) subspace of X and X can be explained in this low(er) dimensional subspace without
loss of information. The R-dimensional subspace can be further decomposed into R rank one sys-

14
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tems (Figure 2.10). This kind of matrix decomposition is the principle of Principal Component Anal-
ysis (PCA) and allows for easier interpretation and reduced influence of noise (Smilde et al., 2004).

m m m
- Systematic
X - Variation + Noise
n n n
Rank 3
m m m
V1 V1 AV}
+ +
Rank1 Rank1 Rank1
n n n

Figure 2.10. Decomposition of a matrix into a systematic and a noise part. The systematic part is further decomposed
into rank one matrices. lllustration modified from Smilde et al., (2004).

In PCA, X is decomposed into scores vectors, T(n X R), loading vectors, P(n X R) and a residuals
matrix, E(n X m), as shown in Equation 2.11.

X =TP"+E Equation 2.11

In PCA, X is projected onto the low(er) R-dimensional subspace spanned by orthogonal latent var-
iables (LV). Each LV represent a rank one approximation of X. The first LV is found to be the best
rank one approximation of X. The second LV is the best rank one approximation of X with the con-
straint of being orthogonal to the first LV. The third LV is the best rank one approximation of X
with the constraint of being orthogonal to the first two LV, and so forth. The loading vectors are
unit vectors describing the direction of each the LV in the m-dimensional space and the scores are
the projections of the original data points onto the loading vectors.

Here, PCA is used for initial exploratory data analysis and most importantly estimation of r(X).
The Non-linear Iterative Partial Least Squares (NIPALS) algorithm for PCA is found in Box 1 (Wold
et al., 1987; Smilde et al., 2004).
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Box 1

NIPALS Algorithm for PCA

X(n X m) is preprocessed and centered.

The algorithm is repeated for the number of latent variablesr = 1,2, ..., R.
1) Choose a starting guess for t,.(n X 1) (e.g. first column of X)

2) Solve X = t,.p,Twith regards to p,.(m x 1) and normalize p,

xTt,
pr = [T
3) Solve X = t,.p,.Twith regards to t,.
t, = Xp,
5) Repeat 2) and 3) until convergence
6) Deflate X and start again from 1)
X=X-tpT

2.2.2 Multivariate Calibration

The task of multivariate calibration is to find a predictive model that relates two vectorial spaces;
the instrument response space and the concentration space. Here, the purpose of calibration is to
model analyte concentrations, y(n X 1) as linear combinations of absorption spectra X(n X m),
so analyte concentrations in future samples can be estimated based on the absorption spectra
only.

The absorption spectrum of a given sample, x(m X 1) is a vector represented in a m-dimensional
space. Figure 2.11 shows this in a two-dimensional space, where the components of x in the base
(u;(2 x1),u,(2 x 1)) arec;(1 x 1) and c,(1 X 1), respectively.

3% x

2

1iu,
Uq 1
1 2 3 4

Figure 2.11. Absorption spectrum, x with the orthonormal base vectors, u,and u,. The components of x in the base
are ¢, c,. Modified from Sanchez and Kowalski (1988).
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The absorption spectrum, x is modelled by Equation 2.12
X = U ¢y +Uyc, Equation 2.12

If u; and u, are pure unitary concentration signals of two analytes, then the projection of x onto
either u; or u, will, in the special case where u; and u, are orthonormal, directly give the con-
centration of the analytes as also shown in Figure 2.11 (note that background and error terms are
not taken into account). The analyte concentrations are given by the inner product as show in
Equation 2.13 and Equation 2.14. It should be noted that only the spectrum of the analyte of in-
terest must be known to compute the concentration.

¢ =xTu, Equation 2.13
¢, = xTu, Equation 2.14

Unfortunately, spectra of pure analytes are (most often) not orthogonal, i.e. the signals are inter-
fering. In the following, the analyte of interest (or just analyte) is a compound, having an absorp-
tion signal, for which quantification is needed. The interferent is a compound, having an absorp-
tion signal, for which quantification is not needed.

Figure 2.12 illustrates an absorption spectrum, x(m X 1) where the base vectors are the pure ana-
lyte signal, a(m X 1) and the pure interferent signal, k(m X 1). Both a and k are at unitary con-
centration and non-orthogonal.

Figure 2.12. Absorption spectrum, x with covariant base vectors (a, k) at unitary concentrations. Modified from
Sanchez and Kowalski (1988).

The vectorial components of x in the base, a and k, are simply the concentrations, ¢, (1 X 1) and
¢k (1 X 1). The sample spectrum, x is modelled by Equation 2.15 (background and error terms are
not taken into account)

x = ac, + kcy, Equation 2.15
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However, the concentration of a can no longer be estimated by the inner product of x and a, as
the signal from k will interfere. Hence, the concentration of a should be estimated by the inner
product of x and a specific base vector, b. The new base vector, b gives the direction of a being
orthogonal to k (Sanchez and Kowalski, 1988). This is shown in Figure 2.13. The base vector, b is
also called the contravariant spectrum of a.

Figure 2.13. Absorption spectrum, x with covariant base vectors (a, k) at unitary concentrations. The contravariant
spectrum of a is denoted b. Modified from (Sanchez and Kowalski, 1988)

The contravariant spectrum of an analyte depends on the pure spectra of all other interferents
present in the sample because the contravariant spectrum is orthogonal to all of them (Sanchez
and Kowalski, 1988). If a is at unitary concentration and b is scaled according to Equation 2.16
then it implies that b is the translation from the sample spectrum to the concentration of the ana-
lyte, a. Hence, b is identified as the regression vector. It is important to notice that the regression
vector for a given analyte must point in the direction of the pure analyte signal orthogonal to the
signals of all interferences (Sanchez and Kowalski, 1988).

a’b =1 Equation 2.16

In order to estimate the regression vector a calibration set, X(n X m) is needed for which the
concentrations of the analyte, y(n X 1) is known in advance. The form of any linear regression is
given in Equation 2.17

y=Xb Equation 2.17

The concentration vector, y is known in advance and the spectra are measured. Therefore, the
regression vector, b can be estimated by obtaining a pseudoinverse of X, i.e. X*(Equation 2.18).

b=Xx*y Equation 2.18
Combining the equations 2.17 and Equation 2.18 one get the general first-order calibration equa-

tion (Equation 2.19),
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y=XX"y Equation 2.19

This is the solution to a general linear calibration model. The differences between linear calibra-
tion methods lies in the estimation of the pseudoinverse of X.

2.2.3 Partial Least Squares Regression

The r(X) of spectroscopic measurements (approximated by the number of analytes and inter-
ferents) is often much lower than the number of rows (samples) and columns (variables) of the
spectra. This forces high degree of correlation within the variables of X and the spectroscopic
measurements are said to be ill-conditioned. Solving Equation 2.17 directly (as would be the case
using Multiple Linear Regression) for spectroscopic measurements would involve an underdeter-
mined system of equations with infinitely many solutions.

Partial Least Squares (PLS) regression deals with the problem of regressing y on an ill-conditioned
X. In PLS, X is approximated by linear combinations like in PCA. Whereas, PCA only models X, PLS
compromises between modeling X(n X m) and modeling y(n X 1) using the same R specifically
constructed LV, which are a subspace of X, as shown in Equation 2.20 and Equation 2.21. A PLS
model can be constructed with both univariate reference values, y(n X 1) and multivariate refer-
ence values, ¥Y(n X j) as shown by Wold et al., (2001). In this thesis PLS models with univariate
reference values will be considered only.

X =TP" + Ex Equation 2.20
y=Tq+e, Equation 2.21

Where T(n X R) is a matrix of scores, (m X R ) is a matrix of X-loadings, q(R X 1) is y-loadings
and Ex(n X m) and e, (n X 1) are residuals.

The NIPALS algorithm is used for PLS in this thesis and is presented in Box 2. Please note, that the
algorithm in Box 2 is non-iterative for univariate reference values. For multivariate reference val-
ues the algorithm becomes iterative (Wold et al., 2001).
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Box 2

NIPALS Algorithm for PLS

X(n xm) and y(n X 1) are preprocessed and centered.

The algorithm is repeated for the number of latent variablesr = 1,2, ..., R.

1) Estimate and normalize the weights, w(m X 1)

XTy
W, = ——
T IXTyll
2) Estimate t,.(n X 1)
t. = Xw,

3) Solve X = t,.p,."with regards to p,.(m X 1)

_XTt,
pr= tTrtr
4) Deflate X and start again from 1)
X=X-tp",

Step one of the PLS NIPALS algorithm projects the spectra onto the concentration vector. By re-
peatedly doing so each time with the new deflated X, the model is forced to first span the region
around the concentration vector. That in turn will span the region that is in the neighborhood of
the contravariant spectrum for that analyte. The regression vector in PLS regression is estimated
by Equation 2.22 (Wold et al., 2001; Andersson, 2009)

b=w(P™w) lq Equation 2.22
From Equation 2.21 it follows that,
q=(TTT) Ty Equation 2.23

2.2.4 Model Validation

When applying a calibration model to samples with unknown reference values, it is important to
have an estimate of the uncertainty of the model predictions. In order to estimate this uncertainty
the root mean squared error (RMSE) is often used. The RMSE is calculated between the measured
reference values and the model estimated values for the calibration samples. The RMSE is given
by Equation 2.24.

N (5.2
RMSE = ’Z‘“(+yl) Equation 2.24
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Where ¥; is the model estimated value of sample i, y; is the reference value of sample i and n is
the number of samples. Notice that the value of RMSE is in the same units and scale as the refer-
ence values. Good calibration models have small RMSE.

In order to get a reliable estimate of the RMSE a cross-validation could be performed. A cross-
validation is essentially a loop, where predefined data set segments subsequently are left out from
the modeling phase. A model is established on the remaining data and this model is then applied
to the excluded data segment. All segments are in turn left out from the modeling stage. In each
cross-validation loop predictions of the excluded samples are collected. These predictions are used
(against the measured reference values) to estimate the error term. In this way the contribution
from individual segments to the total error originates from models not impacted by the individual
segments. For the final model all samples are used, but the root mean squared error of cross-
validation (RMSECV) is reported. Different types of cross-validation exist and the main difference
between methods is the way the segments are defined (Naes et al., 2002).

Even though a cross-validation is performed to give at good estimate of how good a calibration
model is in predicting new samples with unknown reference values, the RMSECV may still be over-
optimistic. All samples originate from the same data set, which means that they most often are
collected under the same conditions. New samples may not be collected under the same condi-
tions and this could introduce additional errors. In order to include this in the uncertainty estimate
of a calibration model, an independent test set could be collected. It is of course important that
the test set reflects the calibration set in terms of what the calibration model is aiming at. The cal-
ibration model is established on the calibration set while being tested with the independent test
set. The root mean squared error of prediction (RMSEP) of the test set should then reflect the abil-
ity of the calibration model to predict new samples. While obtaining a more realistic estimate of
the model uncertainty, the obvious drawback of test set validation is that several samples are used
for testing only. These samples could potentially contribute with valuable variation to the calibra-
tion set empowering more precise estimates of the regression coefficients (Naes et al., 2002).

2.2.5 Orthogonalization

Orthogonality is an important concept in chemometrics. In, for example, multi block methods like
Multi Block Variance Partitioning (Skov et al., 2008) and Sequential and Orthogonalized Partial
Least Squares Regression (Naes et al., 2011) orthogonalization is an vital step. Orthogonalization is
essentially a decomposition of a vector into two orthogonal subspaces. In Figure 2.14 two vectors,
a and k are found in a three dimensional space. The vector a is split into a part describing the di-
rection of k, a;, and a part describing the part orthogonal to k, a_j. The vector a_j is said to be in
the null space of k, N(k). It follows that a = a; + a_. Every vector in N (k) will be orthogonal to
any vector in the direction of k (Strang, 2006). Hence, the information described in N(k) is unre-
lated to the information described by k.
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Figure 2.14. The vector, a, is the projection of the vector, a onto the vector, k. The vector a_, is the part of a orthog-
onal to k. lllustration modified from Strang (2006).

The projection of a(n X 1) onto k(n X 1) is carried out by a projection matrix, P(n X n) given in
Equation 2.25 (Strang, 2006).

kKT

= Th Equation 2.25

Multiplying P with any vector, a would return the projection of a onto k. Hence, a;(n X 1) is giv-
en by Equation 2.26,

_ kKT

= Pa=—
a; a=.—a

Equation 2.26

Which can also be shown from Figure 2.14. The part of a orthogonal to k is obtained by subtract-
ing a; from a as shown in Equation 2.27,

a_,=U—-P)a Equation 2.27

Where a_,(n X 1) is the part of a orthogonal to k, and I(n X n) is the identity matrix.

Projecting and/or orthogonalizing a matrix, X(n X m) on a vector, k(n X 1) (or matrix, K(n X j))
is simply a column wise operation. Hence, Equation 2.26 and Equation 2.27 can easily be extended
to include matrices.
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2.3 Real-time Monitoring of Whey Protein Hydrolysis

The market is increasing for whey protein solutions, including whey protein isolates (WPI), whey
protein concentrates (WPC) and whey protein hydrolysates (WPH). This is mainly due to the high
nutritional value of whey proteins and derived peptides as well as functional properties as foaming
and emulsifying agents. Hydrolysis changes the physicochemical and technological properties of
whey proteins (Chobert et al., 1988; de Castro, Ruann Janser Soares et al., 2015). Increased degree
of hydrolysis (DH%) increases the solubility of whey proteins (Svenning et al., 2000), and thus facil-
itates improved bioavailability of products based on WPH. This is of importance, for example, in
nutrition of hospitalized patients or in sports nutrition (Madureira et al., 2007). Furthermore, WPH
exhibit reduced immunological reactivities. Hence, WPH can be used in infant formulas for allergic
infants (Halken and Hgst, 1997). Obtaining knowledge related to DH% is therefore important for
all whey products either during processing of WPC or WPI, where hydrolysis is unwanted, or as a
tool for on-line process monitoring or final quality control of WPC hydrolysis.

In PAPER Il WPC was used as substrate for FT-IR monitoring of enzymatic protein hydrolysis. The
WPC consists primarily of whey protein (80-85%) and smaller amounts of lactose and fat. Figure
2.15 shows the hydrolysis of protein, where a secondary amide is hydrolysed into an acid and a
primary amine.
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Figure 2.15. Hydrolysis of peptide bond.

Hydrolysis was determined over time as the level of primary amino groups reflecting the level of
free amino-terminals as Leucine equivalents. A fluorescamine assay was used as reference method
(Pearce, 1979; Rollema et al., 1989). Three sample sets were prepared from the same batch of
WPC. Samples consisted of aqueous WPC solutions and hydrolysis was performed using trypsin.
The sample sets are presented in Figure 2.16 showing Leucine equivalents as a function of time.
The first sample set (Figure 2.16a) had 5% WPC (w/w) and a trypsin:WPC ratio of 1:200. The
second data set (Figure 2.16b) had also 5% WPC (w/w) but a trypsin:WPC ratio of 1:100. The third
sample set (Figure 2.16c) had 8% WPC (w/w) and a trypsin:WPC ratio of 1:100. Duplicate samples
were made and samples were meausered during hydrolysis at time 0, 0.5, 1, 2, 3,4, 5,6, 7and 8
hrs for each sample set. Trypsin was inactivated by addition of trypsin inhibitor, as described in
PAPER Il. For one of the replicates in sample set three (Figure 2.16c) measurements ath =6 and h
=7 were not collected resulting in a total of 58 measurements.
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Figure 2.16. Fluorescamine reference method showing level of free amino terminals as leucine equivalents in whey
protein concentrate solution with protein concentrations of 5 g/100 g (WPC5) at two different enzyme-to-substrate
ratios (1:100, 1:200) and 8 g/100 g (WPC8) at enzyme-to-substrate ratio 1:100. Rep1 and rep2 indicate the two
replicates.

Immediately after trypsin inactivation the samples were analysed by IR spectroscopy (Milkoscan
FT2). Hydrolysis of the peptide bond will introduce changes in how the molecular groups are
vibrating. In the primary amine the nitrogen will donate eletrons to the carbonyl group whereas
the carbonyl group in the formed acid will be exposed to the electron withdrawing O-H group.
Therefore, the carbonyl bond is more constricted in the acid and this will increase vibrational
frequency. The carbonyl group in a peptide will absorb at ~1,550 cm™ (and thereby be hidden
behind O-H bend). However, in an acid the carbonyl group will absorp just above 1,700 cm™.
Furthermore, N-H absorption of a secondary amide is found ~1,540 cm™, where in a primary
amine the N-H vibrations are expected ~1,600 cm™ (Engelsen, 1997; Barth, 2007).

Figure 2.17a shows the FT-IR spectra shaded by leucine equivalents. The region from 5,008 to
2,980 cm™ and 979 to 925 cm™ was considered noise and removed from the data set. The region
from 2,822 to 1,769 cm contained no valuable information and was also removed. Furthermore,
the saturated water signal (O-H bend; ~1,700 cm™ to ~1,600 cm™) was removed. For spectral in-
terpretation a narrow band from 1,704 to 1,588 cm™ around the O-H bend was removed. Howev-
er, for modeling a wider band from 1,715 to 1560 cm™ around the O-H bend was removed. It was
decided to remove a wider region around the O-H bend for modeling in order to avoid instabilities
related to water absorption. Full FT-IR spectra were recorded in triplicates, and for each sample,
the average spectrum was calculated and used for further analysis.
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Figure 2.17. Fourier transform infrared (FT-IR) spectra of aqueous whey protein concentrate solution with protein
concentrations of 5% (w/w) at two different enzyme-to-substrate ratios (1:100, 1:200) and protein concentrations of
8% (w/w) at enzyme-to-substrate ratio 1:100. (a) Raw spectra. (b) Zoom-in at 1550 cm™; Amide Il band. (c) Zoom-in at
1400 cm’,

It was expected that the carbonyl group from the formed acid (Figure 2.15) would show just above
1,700 cm™. However, this cannot be identified in the spectra (probably due to lack of sensitivity).
From Figure 2.17b it is found that the band at ~1,540 cm™, originating primarily from the N-H
bend) shifts towards higher wavenumbers, as expected. Interestingly, a peak increased remarkably
at ~1,400 cm® (Figure 2.17c). More extensive analysis needs to be carried out before this peak can
be assigned. However, speculations go towards changes in the amide Ill band or a carboxylate
stretching vibration.

Figure 2.18 shows the PCA score plots of the spectra. One LV PCA models were built subsequently
using the measurements consisting of 5% protein concentration and 1:200 enzyme-to-substrate
ratio (Figure 2.18a), 5% protein concentration and 1:100 enzyme-to-substrate ratio (Figure 2.18b),
and 8% protein concentration and 1:100 enzyme-to-substrate ratio (Figure 2.18c).

From Figure 2.18 it is observed that scores from the three different sample set look fairly much
alike in the relationship with time. And compared with Figure 2.16 they seem to describe the en-
zymatic reaction very well. For enzymatic reactions, the reaction velocity varies with the substrate
concentration (when the enzyme concentration is held constant). Over time the substrate will be
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tuned into product and the reaction velocity will decrease. Hence, the transformation from sub-
strate into product will go towards a plateau. This is very likely the phenomena seen in all three
subplots of Figure 2.18 (Pratt and Cornely, 2004b).
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Figure 2.18. Score plot from Principal Component Analysis (PCA) of Fourier transform infrared (FT-IR) absorption
spectra. Scores for the first latent variable (LV1) as a function of time. The PCA scores are offset corrected. The PCA
model is based on FT-IR spectra of whey protein concentrate solution with protein concentrations of 5 g/100 g (WPC5)
at two different enzyme-to-substrate ratios (1:100, 1:200) and 8 g/100 g (WPC8) at enzyme-to-substrate ratio 1:100.
The spectra were collected over time while hydrolysis was ongoing.

In order to explore whether the scores in Figure 2.19 contain predictive information related to the
hydrolysis, the PCA scores are correlated with the measured leucine equivalents (Figure 2.16). It is
found that the PCA scores obtained from the spectra are very correlated with the leucine
equivalents. Hence, predictive information related to hydrolysis can be found in the spectra.
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Figure 2.19. Correlation between leucine equivalents and Principal Component Analysis (PCA) scores of the first latent
variable (LV1). The PCA model is based on FT-IR spectra of whey protein concentrate solution with protein
concentrations of 5 g/100 g (WPC5) at two different enzyme-to-substrate ratios (1:100, 1:200) and 8 g/100 g (WPC8)
at enzyme-to-substarte ratio 1:100.
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Knowing the enzyme-catalyzed reaction mechanism is potentially very useful for a PAT application.
Obtaining spectra and calculating scores real-time enables fitting the parameters of the mechanis-
tic model. This potentially gives predictive power to estimate information related to hydrolysis in
future time points and thereby enable optimized process control and scheduling for the modern
dairy. A similar approach has been proposed for monitoring milk coagulation during cheese mak-
ing (Lyndgaard et al., 2012).

From Figure 2.19 it is observed that the relationship between the PCA scores and the leucine
equivalents is not the same for the three sample sets. However, the relationship appears to be the
same for the replicate samples. The enzyme and substrate concentrations are important for en-
zymatic reactions. Hence, it is strictly important to control these if PCA scores from spectra are to
be used for estimating information related to hydrolysis in a production.

2.4 Standardization of Spectroscopic Instruments

In a PAT setting, spectroscopic measurements are often used to determine analyte concentrations.
Unfortunately, the spectroscopic signal does not directly return concentrations. However, absorp-
tion spectra are, through Beer’s law, linearly related with concentrations, as stated in Chapter 2.1.
The translation, from absorption spectra into analyte concantrations, is contained in the regres-
sion vector by the calibration model (Chapter 2.2). As also highlighted in Chapter 2.2, the power of
first order instruments (like multivariate spectroscopic instruments) is that they can deal with in-
terferents, as long as such interferents are in the calibration set. The first order instrument can be
calibrated for an analyte in the presence of interferents by estimating the analyte regression vec-
tor in the direction of the analyte contravariant spectrum, i.e. the regression vector has to be or-
thogonal to the signals of all interferents (Chapter 2.2). However, if a calibration model is estab-
lished for a given analyte and a new interferent is introduced in a future sample, it is not given
that the regression vector of the analyte is orthogonal to the signal of the new interferent. The
consequences may be that the calibration model returns erroneous predictions of the analyte.
Therefore, the quality of the calibration set is highly important when constructing high quality cal-
ibration models. It is important that all possible sources of interference are introduced in the cali-
bration set. This may require up to hundreds or thousands of samples collected over a broad time
period and all with reference values. Consequently, constructing high quality calibration models is
expensive and time-consuming.

Therefore, in an industrial setting where multiple spectroscopic instruments are used for the same
measurements, it could be convenient to develop the calibration model on a single instrument
only but apply this calibration model to the spectroscopic measurements of all the instruments. In
order to apply this successfully the translation from the instrument response space to the analyte
concentration space must obviously be the same for all instruments. Hence, the instruments must
provide similar output. Otherwise, the results (predictions) from the calibration model will be in-
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correct. However, it is not given that two identical spectroscopic instruments are providing similar
output. Therefore, a large number of methods have already been developed with the purpose of
transforming instrument output, so the spectra from multiple instruments will be similar.

A calibration model transfer is often evaluated in a master/slave setting. The calibration model is
developed on one instrument (the master) and tested on other instruments (slaves). The RMSEP
obtained for the slave instruments is then used for evaluating the model transfer (Swierenga et al.,
1998a; Swierenga et al., 1998b; Barboza and Poppi, 2003; Bergman et al., 2006; Alamar et al.,
2007; Fan et al., 2008). This RMSEP value is used to verify how successful the model transfer was.
The RMSEP value includes uncertainties introduced by inadequacies in the modeling steps, which
can be related to differences in the instrument response space of the master and slave instru-
ments. Nevertheless, the RMSEP value also includes uncertainties originating from the reference
method. A fact, which is often forgotten. Hence, large uncertainties in the reference measure-
ments would make the RMSEP value larger and thereby make the model transfer appear poor
even in the ideal/perfect case, where the predictions of the master and the salve instrument are
identical. PAPER Il deals with how to evaluate a calibration model transfer.

Figure 2.20 illustrates how uncertainties introduced by modeling and reference method, respec-
tively, affect the prediction error. Uncertainties in the reference method will contribute to impre-
cision along the horizontal direction, whereas those from the model (in the predictions) will cause
the data points to be uncertain in the vertical direction. Hence, if the reference method is impre-
cise, the modeling will appear poor (DiFoggio, 1995; Faber and Kowalski, 1997).
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Figure 2.20. Influence of uncertainties originating from the reference method and near infrared predictions, respective-
ly, on calibration model evaluation.
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In PAPER Ill, a method was proposed for evaluating model transfer between a population of spec-
troscopic instruments. The aim of a model transfer is to obtain the same results (i.e. predictions)
on different instruments with the same samples by applying only one model. If the same predic-
tions are obtained from different instruments for the same samples, then the instrument response
space related with the analyte of interest must be the same for the instruments.

For PAPER lll, a total number 75 flour samples were measured on ten different NIR instruments.
Five NIR instruments were DS2500 instruments and five NIR instruments were InfraXact instru-
ments. The spectra from the five InfraXact and the five DS2500 are shown in Figure 2.21a and Fig-
ure 2.21b, respectively. Protein content was quantified by Kjeldahl digestion for all 75 samples and
used as reference variable during PLS modeling.
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Figure 2.21. Raw near infrared spectra of flour samples. (a) InfraXact. (b) DS2500.

The PLS models were validated by Leave-One-Instrument-Out cross-validation (PAPER Ill). Predic-
tions obtained from cross-validation were collected and the medians across samples were found.
The RMSE between these medians and the cross-validated predictions (for each instrument) was
calculated. This RMSE relates to the similarities between the predicted values from the instru-
ments and can thereby be used for evaluating model transfer. The median is used as “the true
prediction value” as it is (almost) insensitive to outlying predictions, which would have affected,
for example, the mean of predictions. It is important to note that the RMSE is not a measure of
how well the “true” protein content can be modeled by the spectroscopic measurements. This
RMSE is only a measure of how similar protein content is modeled from the measurements ob-
tained from different instruments (i.e. the model transfer performance). In this way, the impact of
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uncertainties related to the reference method will be minimized. The assumption is of course that
the developed model performs at an acceptable level when benchmarked against real reference
value.

In order to investigate how the methods responded to uncertainties in the spectral and the refer-
ence measurements, respectively, simulated deterioration of the data belonging to the fifth In-
fraXact instrument (IX5) was performed. Model performance was evaluated by traditional meas-
ured vs. predicted approach and the proposed method where predictions are compared with the
median of cross-validated predictions.

First, deterioration of data was done by adding random noise to the spectroscopic measurements
(i.e. changing the instrument response space) of instrument IX5, as shown in PAPER Illl. Now the
original translation from instrument response space to analyte concertation space is not valid for
IX5 (i.e. the model transfer is not valid). This will show up both when evaluating the model transfer
by the traditional method and the new method. Errors will show up in the traditional method be-
cause the predictions of IX5 are wrong and therefore not comparable with the reference values. In
the new method, errors will show up because the predictions of IX5 will be different from the pre-
dictions of the other instrument. Figure 2.22 shows the results where the spectra of IX5 are dete-
riorated. Instrument IX5 has a high RMSE when evaluated by both the traditional approach (Figure
2.22a) and the new approach (Figure 2.22b).
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Figure 2.22. Results obtained with simulated deterioration of spectra from instrument IX5. (a) Traditional approach. (b)
New approach.

Secondly, the reference data belonging to IX5 were deteriorated by random noise, as shown in
PAPER Ill. The model calibrated on the remaining InfraXact instruments will still be valid for IX5.
The translation from the instrument response space to the analyte concentration space will be the
same for all instruments. And if the instrument response space for the instruments is similar, then
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the same predictions will be yielded from all instruments. Nevertheless, evaluating the model
transfer by the traditional method, the predictions of IX5 will be compared with the erroneous
reference values belonging to IX5. Therefore, IX5 will appear to have a large RMSE. Using the new
method for model transfer evaluation, the predictions obtained from IX5 will be compared with
the predictions obtained from the remaining instruments. Figure 2.23 shows the results where the
reference values belonging to IX5 have been deteriorated. Figure 2.23a shows the errors obtained
using the traditional approach. Here it is found that IX5 has a high RMSE. Figure 2.23b shows the
errors obtained using the new method. Here the predictions are compared and it is found that the
predictions obtained from the measurements of IX5 are very similar to the predictions obtained
from the measurements of the remaining InfraXact instruments. Hence, Figure 2.23a indicates that
the model transfer is not successful, whereas Figure 2.23b indicates that the model transfer in-
deed is successful.
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Figure 2.23. Results obtained with simulated deterioration of reference values belonging to instrument IX5. (a) Tradi-
tional approach. (a) New approach.

In model transfer, a model is developed on one instrument and then applied to other instruments.
The spectroscopic measurements are model input and the predictions are model output. In an
industrial setting where one model is applied to the measurements of multiple instruments it is
important that the predictions are identical for identical samples. Therefore, the right way of eval-
uating model transfer is by comparing predictions. Hence, Figure 2.23b (the new method) is giving
a more direct and accurate picture of the model transfer than Figure 2.23a (the traditional meth-
od).

When using multiple instruments for the same measurements it can be convenient to do a model
transfer. It is believed that the task of doing model transfer is easier to successfully overcome, if
the original spectra from the multiple instruments are already providing similar results. Therefore,
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it is believe that this new method can be used in a quality criterion for instruments. Figure 2.24
shows the comparison of InfraXact and DS2500 using the new method. The results for the five In-
fraXact instruments are shown in Figure 2.24a. The results for the five DS2500 instruments are
shown in Figure 2.24b. It is found that the DS2500 instruments are providing very similar results
compared with the InfraXact instruments, which are showing a minor bias. Such evaluation would
not have been possible with the traditional method as the bias variation in InfraXact would be
masked by the errors in the reference values.

a b

20 20
RMSE
E = 1.0 r 10— MSE
g % 0.5 p 05
S§g | E=85EE sl 283283
(237
2 5 ‘
5 % 7 < IX1 - DS1
& ¥ - IX2 - DS2
x 2 4 IX3 DS3
= a 10 . IX4 10 . DS4
IX5 DS5
10 15 20 10 15 20
NIR — Median of Cross-Validated NIR — Median of Cross-Validated
Predictions (Protein) Predictions (Protein)

Figure 2.24. Evaluated by new approach. Comparison of InfraXact instruments (a) and DS2500 instruments (b).

PAPER Ill deals with the important aspect that a calibration model in fact is a relation between
two vectorial spaces. In order for a calibration model to be valid, the relationship between the two
spaces must be constant. If the relation between the two spaces changes, then the model is not
valid anymore. Changes may be introduced by a number of factors, for example the path length of
the infrared light through the sample. This may change from one instrument to another, and this
will change the relationship between the instrument response space and the analyte concentra-
tion space. Furthermore, models based on indirect relationships risk to be subjected to changes in
the relation between the two vectorial spaces. This is exactly what was highlighted in Chapter 2.2.
If the regression vector for a given analyte is not orthogonal to the signals of all interferents, then
the translation from the instrument response space to the analyte concentration space will change
with one or more interferents. The interferents will impact the part of the spectra used for pre-
dicting the analyte. Hence, the estimated concentrations of analytes will depend on the inter-
ferents.
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The expression of specific bovine milk traits, for example, specific FA and protein fractions are de-
termined by the cow’s phenotypic characteristics. The milk phenotype is influenced by both the
cow’s genotype and environmental factors the cow has been exposed to throughout life (including
stage of lactation and number of parities).

The most interesting phenotypic traits, for the dairy industry, relate to both oligosaccharides and
protein composition but also FA composition has previous received considerable focus. This thesis
will however focus on protein and FA composition. Detailed information on protein composition
and FA profile can be used, by the dairy industry, to ensure a good quality of milk and to differen-
tiate milk for specific purposes. In this way, for example, milk with a protein composition maximiz-
ing the cheese yield, can be used for cheese production.

Both genetic and environmental factors, for example, lactation stage, feeding and health affect the
FA and protein composition of cow milk (Palmquist et al., 1993; Bobe et al., 1999; Bauman and
Griinari, 2003; Lock and Bauman, 2004; Vlaeminck et al., 2006a; Vlaeminck et al., 2006b; Craninx
et al., 2008; Heck et al., 2009; Poulsen et al., 2012). The FA are either biosynthesized in the mam-
mary gland or blood derived (Bauman and Griinari, 2003). In general, short and medium chain sat-
urated FA (C4:0-C14:0 and a part of C16:0) are synthesized in the mammary gland, whereas long
chain fatty acids (including the other part of C16:0) are blood derived (Bauman and Griinari, 2003).
The blood derived fatty acids mainly originate from the cow feed. However, these FA are exten-
sively changed by hydrogenation and desaturation in the rumen and the mammary gland, respec-
tively (Barber et al., 1997; Pereira et al., 2003; Craninx et al., 2008). The proteins are synthesized in
the mammary gland too. Free amino acids, primarily extracted from the blood, are precursors for
the protein synthesis. The amino acid profile taken up by the mammary gland may be quite differ-
ent from the amino acid profile of the milk, which suggests that extensive transamination and oxi-
dation of amino acids occurs in the mammary gland (Maas et al., 1997). Therefore, it is believed
that both milk fat and protein composition is determined, to a large extent, by genetic factors and
less by feeding. Hence, efficient breeding programs may be able to change the detailed milk com-
position so, for example, the FA composition is enhanced for human health, protein composition is
improved for better milk coagulation or traits meeting the requirement for nutritional supple-
ments are increased.
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Figure 3.1 shows two PCA models on bovine milk FA composition and bovine milk protein compo-
sition, respectively. The phenotypic traits are expressed as grams/100 grams of milk and were
scaled to unit variance and centered (i.e. auto scaled) prior to PCA. Samples originate from a sam-
ple set consisting of a total of 892 morning milk samples from individual cows (456 Holsteins and
436 Jersey). Milk Samples originated from the Danish-Swedish Milk Genomics Initiative
(www.milkgenomics.dk). The Holstein samples were collected from 20 Danish dairy herds from
October to December 2009. The Jersey samples were collected from 22 Danish dairy herds from
February to April 2010. All samples were from conventional herds and taken while cows were
housed. The sampling strategy aimed at minimizing environmental variation but maximizing the
genetic variation of the sample population (Poulsen et al., 2012). Quantification of FA was done
using gas chromatrography as described by Poulsen et al. (2012). Protein fractions were quantified
using liquid chromatrography as described by Jensen et al. (2012).
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Figure 3.1. Principal component of detailed milk composition. (a) score plot of fatty acid composition. (b) score plot of
protein composition. (c) loading plot of fatty acid composition. (d) loading plot of protein composition. Traits are ex-
pressed as grams/100 grams of milk. In the score plots the two breeds (Jersey and Holstein) are highlighted together
with Jersey samples from a specific herd.
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The PCA model on FA composition is based on a subset of 890 samples (455 Holstein and 435 Jer-
sey; two samples were excluded due to lack of reference values). This sample subset was also used
in PAPER IV. The PCA model on protein composition is based on a subset of 832 samples (426 Hol-
stein and 406 Jersey; 60 samples were excluded due to lack of reference values). This sample sub-
set was also used in PAPER V.

The score plots are shown in Figure 3.1a and Figure 3.1b for FA and protein composition, respec-
tively. The loading plots are shown in Figure 3.1c and Figure 3.1d for FA and protein composition,
respectively. From the PCA models (Figure 3.1) it follows that the Jersey samples in general have
higher content of all FA and protein fractions than Holstein samples. In the score plots, Jersey
samples originating from a selected herd are highlighted. Samples from the selected herd group in
the score plots. In general, samples from the same herds grouped in the score plots (data not
shown). This indicates that samples from the same herds have more or less the same phenotypic
characteristics.

Examining Figure 3.1b and 3.1d it appears that cows from the selected Jersey herd produce milk
with higher content of the whey fractions (a-LA and B-LG) as well as B-CN. Such information could
potentially be relevant in, for example, milk differentiation.

Traditionally, detailed milk composition is measured through time-consuming chromatography
based analyses and this is also the case for the data presented in Figure 3.1. In order to make it
feasible for animal breeders and the dairy industry to include detailed milk composition as routine
quality parameters a high-throughput method is needed. As FT-IR is currently being used it is an
attractive method for providing high-throughput information on detailed milk composition. Such
high-throughput information is useful in relation to breeding, documentation and process control.

Phenotyping milk from individual cows for breeding purposes may not be a classical PAT example.
However, as outlined in the beginning of Chapter 2, the key element in PAT is generally to identify
and explain all critical sources of variability. In the end, this must also be the purpose of breeding
programs.
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THE CAGE OF COVARIANCE
— INFRARED MEASUREMENTS FOR
DETAILED MILK COMPOSITION

4.1 Absorption of Infrared Radiation in Milk

Bovine milk contains in general around 4% fat, 3% protein and 5% carbohydrate. For decades IR
has globally been successfully applied in quantifying these parameters in bovine milk. Bovine milk
fat is mainly found as triglycerides, which are composed of three FA esterified to a glycerol back-
bone. More than 400 different FA have been found in milk (Jensen, 2002). Most of these FA are
however found in trace amounts and only about 12 of them are present in concentrations higher
than 1 % of the milk fat. Approximately 75 % of the FA are saturated and 25 % are unsaturated.
The protein fractions k-CN, B-CN, as1-CN, as1-CN, a-LA and B-LG account for about 90 % of the total
protein in bovine milk. The remaining 10 % consist of minor proteins like lactoferrin. The most
abundant carbohydrate in milk is lactose, which is a disaccharide consisting of galactose and glu-
cose linked by a B1-4 glycosidic bond. Large differences in the milk composition may however exist
between individual cows (Fox and McSweeney, 1998; Walstra, 1999; Bovenhuis et al., 2013).

Water molecules are very polar and therefore, water shows intense absorption in the IR spectrum.
Water gives rise to absorption at approx. 3,500 cm™ to 3,000 cm™ (O-H stretch) and approx. 1,700
cm™ to 1,600 cm™ (O-H bend) (Bruice, 2007b). The hydrogen bonds between water molecules will
cause the water absorption bands to be very broad. Figure 4.1 shows FT-IR absorption spectra of
milk samples with intense and broad water signals.
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Figure 4.1. Infrared spectra of milk samples.
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Nevertheless, in order to suppress the water signals, a milk spectrum can be ratioed against a wa-
ter spectrum (as background). This is, for example, the case when measuring milk samples using
MilkoScan FT2. Figure 4.2 shows a FT-IR spectrum of a milk sample measured with water as back-
ground.

CH
stretch c-0

c=0
stretch

stretch

A Absorbance (AU)

o

3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000
Wavenumber (cm?)

Figure 4.2. FT-IR milk spectrum ratioed against water as background. Modified from (Luinge et al., 1993).

The aliphatic fat groups in milk will give rise to IR absorption as antisymmetrical and symmetrical
C-H stretching vibrations at ~2,925 cm™ and ~2,850 cm™, respectively, and methylene in-plane
bending (scissoring) at ~1,465 cm™. Furthermore, methylene out-of-plane bending modes (twist-
ing and wagging) and methyl umbrella deformation absorb in the wavenumber range from 1,380
cm?to 1,150 cm™. A methylene in-plane bending mode (rocking) absorb at ~720 cm™ and the ole-
finic, =C-H stretching will occur just above 3,000 cm™. However, the latter two are not accessible in
spectra obtained from MilkoScan FT2 due to lack in measurement range and poor signal to noise
ratio, respectively. The carbonyl stretching of FA in triglycerides are found at ~1,745 cm™ in the
spectra (Engelsen, 1997). The two bonds in the O-C-O part of the ester group will absorb in the
range from 1,250 cm™ to 1,050 cm™. Where the C-O bond next to the carbonyl bond will show
absorption in the higher end of the range, the other C-O bond will absorb at the lower end of the
range. The intensity of the carbonyl signal provides approx. evidence for the molarity of the fat
and the methylene signals provides approx. evidence for the weight percentage of the fat.

Proteins in milk give rise to five IR absorption signals, all related to the polypeptide backbone. The
amide A band originates from the N-H stretching and is located at ~3,300 cm™. The exact frequen-
cy depends on the strength of the hydrogen bond. The amide A band can be part of a Fermi reso-
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nance doublet, which occurs between the amide A and most likely an overtone of, for example, a
N-H bending mode giving rise to weak absorption ~3,050 cm™ (amide B). Nevertheless, the region
above 3,000 cm™ (and thereby the amide A and amide B bands) is rarely considered due to poor
signal to noise ratio, when measurements are obtained from MilkoScan FT2. The amide | band
originates primarily from the stretching vibration of the carbonyl groups in the polypeptide back-
bone. Due to electron donation by the nitrogen atoms, the carbonyl groups in the peptide back-
bone (amide | band) absorb at ~1,650 cm™. Hence, the amide | band is hidden behind the O-H
bend from water, when measurements are obtained on milk. The amide Il band absorb at ~1,550
cm™™. This band is being used for quantification of protein in milk. The amide Il band originates
from the out-of-phase combination of the N-H in-plane bend and the C-N stretching vibration with
smaller contributions from the carbonyl in plane bending and the C-C stretching. The amide Il is
hardly affected by side chain vibrations. The amide Ill mode of polypeptides is more complex. It
originates from the in-phase bending of N-H and C-N and also depends on the side chain structure.
The amide Ill band absorb between 1,400 cm™ and 1,200 cm™ (Luinge et al., 1993; Barth, 2007).

Lactose is the most abundant carbohydrate in milk. For IR quantification of lactose in milk, the
bonds between the carbon atoms and the hydroxyl groups are used. This bond is characteristic for
carbohydrates and absorbs energy at 1,080 cm™. Hence, lactose determination is not specific, but
will include all carbohydrates (Luinge et al., 1993).

Commercial milk recording agencies and dairies have for decades been using FT-IR measurements
for estimating fat, protein and lactose content in bovine milk and these parameters have been
important in milk recording systems, breeding programs and pricing. However, routinely and accu-
rately predictions of detailed milk characteristics is growing in importance, both for quality charac-
terization of livestock products and for genetic purposes. Infrared spectroscopy is a rapid and cost
effective tool and it is suggested in numerous peer-reviewed papers (Table 4.1) that information
on detailed milk composition can be obtained from IR measurements. Prediction of the FA profile,
protein composition and coagulation properties have by far received most attention.
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Table 4.1. Overview of studies predicting detailed milk composition from infrared measurements

Reference Traits Citations*
Soyeurt et al. (2006) Fatty Acids 123
Soyeurt et al. (2008) Fatty Acids 57
Rutten et al. (2009) Fatty Acids 53
Afseth et al. (2010) Fatty Acids 16
De Marchi et al. (2011) Fatty Acids 32
Soyeurt et al. (2011) Fatty Acids 77
Ferrand et al. (2011) Fatty Acids 35
Maurice-Van Eijndhoven et al. (2013)  Fatty Acids 17
Lopez-Villalobos et al. (2014) Fatty Acids 1
Ferrand-Calmels et al. (2014) Fatty Acids 9
Soyeurt et al. (2007) Protein Fractions 39
De Marchi et al. (2009b) Protein Fractions 19
Bonfatti et al. (2011) Protein Fractions 19
Rutten et al. (2011) Protein Fractions 28
Soyeurt et al. (2012) Protein Fractions 15
McDermott et al.(2016) Protein Fractions 0
Dal Zotto et al. (2008) Coagulation Properties 60
De Marchi et al. (2009a) Coagulation Properties 84
De Marchi et al. (2013) Coagulation Properties 19

*Source: Google Scholar, January, 2016

4.2 Estimation of Detailed Milk Composition from Infrared Measurements

In general, studies investigating the potential of retrieving phenotypic characteristics from IR
measurements of bovine milk (Table 4.1) find that milk FA present in high concentrations are pre-
dicted with good accuracy, R?CV around 0.9 (between measured and predicted values) and, par-
ticularly, C14:0 and C16:0 have been highlighted as FA, which could be quantified routinely from
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FT-IR measurements (Soyeurt et al., 2006; Rutten et al., 2009). The prediction ability of protein
fractions and coagulations properties is more moderate with R?CV around 0.6 to 0.7 (between
measured and predicted values) for the best models. Nevertheless, casein fraction appears to be
better predicted than whey fractions (De Marchi et al., 2014).

For this PhD a total of 892 morning milk samples from individual cows (456 Holsteins and 436 Jer-
sey) were measured with FT-IR using MilkoScan FT2 (the same sample set was dealt with in Chap-
ter 3). The spectra of these samples are shown in Figure 4.3. Figure 4.3a shows the absorption
spectra from MilkoScan FT2 in full spectral range. Figure 4.3b shows the parts of the absorption

spectra used for modeling. The spectra are shaded by total fat content.
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Figure 4.3. Fourier transform infrared absorption spectra obtained from MilkoScan FT2. (a) full spectral range. (b)
spectral regions included for modeling. Spectra are shaded by total fat content.

Figure 4.4 shows a principal component analysis of the absorption spectra. The spectra were pre-
processed by Standard Normal Variate followed by mean centering. Figure 4.4a shows the score
plot and Figure 4.4b shows the loading plot. The first LV explains 90.9% of the total variation in the
spectra (Figure 4.4a). The first LV relates primarily to variation associated with total fat content
(Figure 4.4b). The second LV explains 7.5% of the total variation (Figure 4.4b) and relates primarily
to variation associated with total protein content (Figure 4.4b). From Figure 4.4 it is found that the
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Jersey samples, in general, have higher content of fat and protein than the Holstein samples. This
is in agreement with the information shown earlier in Figure 3.1 (Chapter 3).
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Figure 4.4. Principal Component analysis of Fourier transform infrared measurements. (a) score plot. (b) loading plot.
LV = latent variable.

PAPER IV concerns the prediction of FA profile from FT-IR measurements using PLS as regression
method. As already mentioned in Chapter 3, a subset of 890 samples (455 Holstein and 435 Jer-
sey) was included in the study and quantification of FA was done using gas chromatography as
described by Poulsen et al. (2012). The results of PLS models for individual FA are shown in Table
4.2. The results are, to a large extent, in agreement with already existing literature.
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Table 4.2. Individual fatty acids. Results from partial least squares regression models based on raw milk samples*

Fatty acid Range Mean SD Lv R2CV RMSECV
C6:0 0.03-0.25 013 004 5 0.88 0.01
C8:0 0.02-0.16 0.07 0.02 5 0.89 0.01
C10:0 0.04-0.36 0.16 005 9 0.91 0.02
C12:0 0.05-0.45 0.18 0.06 9 0.91 0.02
C13:0 0.00-0.03 001 001 2 0.60 0.01
C14:0 0.16 -0.90 0.51 0.12 9 0.90 0.04
C14:1 0.01-0.09 004 001 1 0.37 0.01
C15:0 0.01-0.13 0.05 0.02 2 0.74 0.01
C16:0 0.41-3.07 141 044 7 0.91 0.14
Cil6:1 0.01-0.34 0.07 0.03 8 0.63 0.02
C17:0 0.00-0.09 002 001 1 0.54 0.01
C18:0 0.14-1.55 0.53 0.19 7 0.82 0.08
C18:1 trans-11 0.01-0.21 007 003 1 0.30 0.02
C18:1 cis-9 0.32-2.94 0.85 0.21 8 0.82 0.09
C18:2 cis,cis-9,12 0.02-0.25 007 002 7 0.65 0.01
C18:3 0.01-0.04 0.02 0.01 1 0.39 0.01

C18:2 cis,trans-9,11 (CLA) ~ 0.01-0.06 0.02 0.01 7 0.37 0.01

1SD = Standard deviation; LV = number of latent variables; R*CV = cross-validated coefficient of determination;
RMSECV = root mean square error of cross-validation. Range, mean, SD and RMSECV are in units of g of FA/100 g of
milk.

PAPER V concerns prediction of protein fractions and coagulation properties from FT-IR measure-
ments using PLS as regression method. As already mentioned in Chapter 3 a subset of 832 samples
(426 Holstein and 406 Jersey) was included in the study and protein fractions were quantified us-
ing liquid chromatography. Milk coagulation properties, curd firming rate (CFR) and rennet coagu-
lation time (RCT), were determined using RoeRox4 rheometer (MediRox AB, Nykoping, Sweden) as
described by Jensen et al. (2012). The results of PLS models for individual protein fractions and
coagulation properties are shown in Table 4.3. Also here the results are, to a large extent, in
agreement with existing literature.
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Table 4.3. Protein fractions and coagulation properties. Results from partial least squares regression models based on
raw milk samples?

Protein fraction or

Range Mean  SD LV RV RMSECV

coagulation trait

k-CN 0.11-0.40 0.25 0.06 2 0.71 0.03
k-CN G 0.01-0.15 0.05 0.02 4 0.20 0.02
as1-CN 0.50-1.64 1.05 0.18 2 0.66 0.11
as1-CN 8P 0.29-1.40 0.80 0.16 2 0.71 0.09
as-CN 0.09-0.47 0.20 0.06 2 0.36 0.05
as2-CN 11P 0.05-0.32 0.13 0.04 2 0.47 0.03
B-CN 0.57-1.81 1.25 0.16 7 0.25 0.14
a-LA 0.02-0.20 0.11 0.02 4 0.06 0.02
B-LG 0.09-0.51 0.27 0.06 9 0.34 0.05
CFR 0-44.85 1480 8.42 2 0.66 4.90
RCT 5.53-30.35 13.29 233 4 0.12 2.19

1SD = Standard deviation; LV = number of latent variables; R’CV = cross-validated coefficient of determination;
RMSECV = root mean square error of cross-validation; CFR = curd firming rate; RCT = rennet coagulation time. Range,
mean, SD and RMSECV are in units of grams/100 grams of milk for protein fractions, units of Pa/min for CFR and units
of min for RCT.

4.3 The Cage of Covariance

Infrared radiation is absorbed by exciting fundamental vibrations of molecular bonds expressing a
change in the dipole moment. Therefore, in traditional spectroscopy FA would be divided into
functional groups such as methane, methylene, methyl, ester, ether, olefinic, aliphatic and carbox-
ylic groups with their own characteristic group frequencies. In the same way protein absorption
would be viewed as amide A, amide B, amide |, amide Il and amide Ill bands. Where the average
proportions of these functional groups may be measured by FT-IR, it is not to be expected that
individual FA nor protein fractions will show distinct absorption patterns in FT-IR measurements of
a complex aqueous mixture like milk.

Even though Chapman (1965) investigated infrared absorption of pure lipids and found that differ-
ences in chain length of solid FA gave rise to minimal differences in the fingerprint region of the
infrared spectra, these minimal differences are expected to disappear when FA are present in a
complex liquid mixture like milk. Consider, for example, the vibrations of methylene groups in a
given FA. The vibrations may be slightly affected by the distances to the carbonyl group (at least in
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theory). Hence, individual methylene groups may vibrate with a slightly altered frequency depend-
ing on the position down the FA carbon chain. However, it is unlikely that these small differences
can be assigned to a single given FA. Milk contains multiple different FA, all with a very similar
structure. Therefore, it is very likely that the small vibrational differences between the methylene
groups in, for example, C14:0 will be overlapped by the methylene groups in, for example, C12:0,
C16:0 and C18:0. Hence, the signal from a given fatty acid will be covered by overlapping Gaussian
shaped signals originating from multiple FA. Specific milk protein fractions are differentiated by
the composition of their amino acid residues. The different amino acids are present in more or less
all the protein fractions, though in varying relative contents (Table 4.4).

Table 4.4. Amino acid composition of major bovine milk proteins (mol/kg protein; Walstra et al., 2006)

Casein  ;-Casein  ¢,-Casein  B-Casein  k-Casein  o-lactalbumin  B-Lactoglobulin

Component MwW

N 14.007 11.30 11.22 11.37 11.17 11.67 11.42 11.27
P 30.974 0.26 0.34 044 0.21 0.05 0.00 0.00
S 32.06 0.23 0.21 0.24 0.25 0.22 0.63 0.49
Glycine (Gly) 75.1 0.25 0.38 0.08 0.21 0.11 0.42 0.22
Alanine (Ala) 89.1 0.36 0.38 0.32 0.21 0.79 0.21 0.82
Valine (Val) 117.2 0.62 047 0.55 0.79 0.58 0.42 0.49
Leucine (Leu) 131.2 0.74 0.72 0.52 0.92 0.42 0.92 1.20
Isoleucine (Ile) 131.2 0.47 0.47 0.44 042 0.68 0.56 0.55
Proline (Pro) 115.1 1.02 0.72 0.40 1.46 1.05 0.14 0.44
Phenylalanine (Phe) 165.2 0.33 0.34 0.24 0.38 0.21 0.28 0.22
Tyrosine (Tyr) 181.2 0.34 0.42 0.48 0.17 0.47 0.28 0.22
Tryptophan (Trp) 204.2 0.06 0.08 0.08 0.04 0.05 0.28 0.11

Serine (Ser) 105.1 0.68 0.68 0.67 0.67 0.68 0.49 0.38
Threonine (Thr) 119.1 0.38 0.21 0.59 0.38 0.74 0.49 0.44
Cysteine (Cys) 121.2 0.02 0.00 0.08 0.00 0.11 0.56 0.27
Methionine (Met) 149.2 0.21 0.21 0.16 0.25 0.11 0.07 0.22
Arginine (Arg) 174.2 0.22 0.25 0.24 0.17 0.26 0.07 0.16
Histidine (His) 155.2 0.19 0.21 0.12 0.21 0.16 0.21 0.11
Lysine (Lys) 146.2 0.56 0.59 0.95 0.46 047 0.85 0.82

c 132.1 0.31 0.34 0.55 0.21 0.42 0.56 0.27
As 133.1 0.22 0.30 0.16 0.17 0.16 0.92 0.55
Glutamine (Gln) 146.1 0.74 0.59 0.63 0.83 0.74 0.42 0.49
Glutamic acid (Glu) 147.1 0.87 1.06 0.95 0.79 0.68 0.49 0.88
g protein per gram of N* 6.32 6.36 6.28 6.39 6.12 6.25 6.34
MW protein® 23192 23618 25231 23986 19026 14181 18282

* Calculated from the amino acid sequence of each protein, including (organic) phosphate but not carbohydrate groups.

Moreover, the FT-IR active groups in the amino acids are more or less the same (Figure 4.5).
Therefore, it might also be very difficult to obtain unique FT-IR signals for specific protein fractions
in milk.
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Figure 4.5. Overview of amino acids. Modified from (Walstra et al., 2006)

If a given FA is to be estimated independently of other FA, then the regression vector for the FA of
interest has to be orthogonal to the signals of all interferents (including all other FA), as outlined in
Chapter 2.2. If the pure FA signals are completely overlapping in the space spanned by FT-IR
measurements, unique regressions vectors cannot be obtained for individual FA and the estima-
tions of individual FA will depend on other FA. The same issues occur for the overlapping signals of
specific protein fractions.

If no unique signals for individual FA or protein fractions exist, unique models cannot be built and
the prediction of the detailed milk parameters need to rely on indirect covariance structures in the
calibration set. Total fat content in the milk is made up by the sum of all FA. In the same way, total
protein content is made up by the sum of all protein fractions. Hence, total fat content and total
protein content can (by IR measurements) be estimated from the summed signals of all FA and all
protein fractions, respectively. For natural reasons, the concentrations of FA will correlate with the
concentration of total fat and the concentrations of protein fractions will correlate with the con-
centration of total protein. Figure 4.6 shows a heat map of the concentration profile correlations
(R2). Figure 4.6a shows how FA correlate in the concentration profiles (reference values) and Fig-
ure 4.6b shows how protein fractions correlate in the concentration profiles (reference values).
From Figure 4.6a it is found that a fairly large part of the FA correlates very well with total fat con-
tent in the concentration profiles. The protein fractions and coagulation properties show less cor-

46



CHAPTER 4 — THE CAGE OF COVARIANCE

relation with total protein content. However, the casein fractions correlate in general better with
total protein than the whey fractions (Figure 4.6b).
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RZ.values

Figure 4.6. Heat maps showing correlations expressed as R?-values. (a) reference values (concentrations) of fatty acids.
(b) reference values (concentrations) of protein fractions. TF = total fat content; TP = total protein content.

For obvious reasons, the major FA (like C16:0) tend to correlate better with total fat content. In
the same way, the major protein fractions (casein fractions) tend to correlate better with total
protein content. From this it follows that the major FA and the major protein fractions in general
are “estimated” best, in a cage of covariance, from IR measurements. This is also what is reported
in existing literature (De Marchi et al., 2014) and found in PAPER IV where, for example, C16:0
appears to be accurately estimated (Table 4.2) and in PAPER V where the casein fractions appear
to be better estimated than the whey fractions (Table 4.3).

Moreover, other factors like breed, which may give specific absorption patterns in the IR spectra
may also be used in predicting phenotypes. Figure 4.8 shows the prediction of CFR from IR meas-
urements. If the CFR predictions are considered for the individual breeds separately, then the pre-
dictions are very poor. However, it appears that the Jersey samples in general are having higher
CFR than the Holstein samples. Hence, when the CFR predictions are considered for the two
breeds together, then the model appears to perform moderate. Nevertheless, the model is clearly
providing information related to the two breeds rather than information related to CFR (Figure
4.7).

47



CHAPTER 4 — THE CAGE OF COVARIANCE

| R?=066 4
40 /

w
o

Pred. CFR
N
o

Jersey
Holstein
——y=x

L 1 L L

0 10 20 30 40
Meas. CFR

Figure 4.7. Prediction of curd firming rate (CFR) from infrared measurements.

The direct (independent of major milk constituents and other factors) and the indirect (dependent
of major milk constituents and other factors) prediction of a given phenotype is shown schemati-
cally in Figure 4.8.
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Figure 4.8. Prediction of a given phenotypic trait, Y from infrared measurements, X; ¥y pr is partly described by varia-
tion dependent and independent on major milk constituents, ¥y and other factors, y (like breed) giving rise to
specific absorption patterns in X. MMC = major milk constituents; F = other factors (like breed) impacting the spectra.

If predictions of a given phenotypic trait are indirect, then predictions of future samples are
trapped in a cage of covariance, where initial covariance structures between the major milk con-
stituents, factors like breed and the phenotypic trait determine the variation in the predicted val-
ues of the phenotypic trait.
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The problem of detailed milk composition being modeled in an indirect fashion relates back to
what was touched upon on Chapter 2.2 and Chapter 2.4. The aim of establishing a calibration
model is to use the model for predicting, for example, an individual FA based on the IR spectrum
obtained on milk. As already discussed, calibration models use specific relationships between the
analyte (i.e. FA) concentration and the measured spectrum in order to quantify the analyte (i.e.
FA). Hence, if, for example, the relationship between individual FA and total fat content is used for
calibration of a model, then this model will not be valid for samples with an altered FA profile. This
is shown in Figure 4.9, where a model for predicting C14:0 is calibrated on the Jersey samples and
tested on the Holstein samples. Figure 4.9a shows that the relationship between C14:0 and total
fat content is different for the two breeds. As the calibration model is based on the relationship
between C14:0 and total fat content for the Jersey samples (the cage of covariance), this model
will not be valid for the Holstein samples, as the Holstein samples express another covariance
structure. Figure 4.9b shows that the Jersey samples (the calibration set) are well predicted and
that the Holstein samples (the test set) shows a bias. Hence, the model is not valid for the Holstein

samples.
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Figure 4.9. (a) Relationship between measured C14:0 and total fat content (TF) in raw milk samples from Jersey and

Holstein cows. (b) measured versus predicted values of C14:0; C14:0 was predicted by partial least squares (PLS) re-

gression applied to Fourier transform infrared measurements. The PLS model was calibrated on Jersey samples and
tested with Holstein samples. LV = latent variables.

Indirect relationships for calibrating e.g. PLS regression models is not a problem in itself, but may
be problematic in terms of prediction accuracy and calibration robustness. If indirect relationships
are used to calibrate a regression model, the model will not be valid for future samples unless the
indirect relationships are conserved in the new samples. If such indirect relationships are not con-
served, the model will provide incorrect predictions as shown in both PAPER IV and PAPER V. The
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indirect relationships may change with factors like breed, lactation stage, feed, etc. Therefore, it is
not given that indirect covariance structures are conserved in a future sample set.

4.3.1 Diagnostics — The Cage of Covariance

It is difficult to determine whether PLS models are based on direct or indirect relationships and it
will be convenient to have some diagnostics indicating this. As highlighted in Figure 2.9 from Chap-
ter 2.2, the multicomponent sample spectra are composed of the outer product of the analyte
concentration profiles and the pure analyte signals. A cage of covariance may be established when
the pure analyte signals are completely overlapping and the concentration profiles are well corre-
lated. Hence, overlapping signals force indirect models and covariance between analyte concen-
trations enables good predictions from these indirect models.

As also presented in PAPER IV and PAPER V a heat map of R2-values between the reference values
and the (preprocessed) spectra will give an immediate and very intuitive feeling whether the phe-
notypes are predicted independently or not. These heat maps are shown in Figure 4.10. Figure
4.10a is the heat map for protein fraction and coagulation properties. The spectra used for Figure
4.10a are preprocessed by first derivative. Figure 4.10b is the heat map for individual FA. Here
preprocessing of the spectra did not have any impact on model performance and therefore, the
spectra used in Figure 4.10b are the raw spectra.

From Figure 4.10a it is found that total protein and all the protein fractions (including coagulation
properties) are having a similar correlation pattern with the spectral profile. This could indicate
that the protein fractions are modeled by the same wavenumbers as total protein and in turn this
could give problems with indirect models. From Figure 4.10b a similar trend is found. Here the
correlation pattern for individual FA is very similar to the pattern observed for total fat content.
Again this could give an indication that the FA models are not independent. Note the difference in
correlation pattern between Figure 4.10a and 4.10b. In Figure 4.10a, relatively high correlations
are observed between 1,600 cm™ and 1,500 cm™ (amide Il region). Where in Figure 4.10b, this
region are having poor correlations.
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FIGURE 4.10. heat map of R?-values between the reference values and the (preprocessed) IR spectra of milk. (a) protein
fractions and coagulation properties. (b) fatty acids. The IR spectra are preprocessed by first derivative in (a) and raw
in (b). TP = total protein; CFR = curd firming rate; RCT = rennet coagulation time; TF = total fat content

As mentioned in Chapter 2.2, it is important to consider the chemical rank of the spectra before
modeling a high number of different phenotypes from IR measurements. Here, PCA is used to give
an indication of the chemical rank. A PCA using nine LV describes 99.9 % of the total variation in
the spectra (Figure 4.11). Hence, around nine independent components (or parameters) can be
extracted from the IR measurements. A total of 17 individual FA (Table 4.2) and nine protein frac-
tions (Table 4.3) were available in PAPER IV and PAPER V. Based on Figure 4.11, it seems unlikely
that all these phenotypes can be predicted independently by the IR spectra. The chemical rank of
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the spectra is simply too small. Therefore, some models are most likely based on indirect relation-
ships.

Explained variation (%)

04 L L L I I I

Figure 4.11. Output from principal component analysis on Fourier transform infrared measurements. Explained varia-
tion as a function of number of latent variables (LV)

When building PLS calibration models proper validation is important, as outlined in Chapter 2.2. A
simple cross-validation would in this case not be sufficient. The problem of cross-validation is that
the data most often originates from one original data set. Hence, the same covariance structures
are likely to be present in all samples and the cage of covariance will thereby not show up in the
cross-validation output. However, a real test set validation, where the model is calibrated on one
set and tested with another (truly) independent set consisting of samples from other breeds, lac-
tation stage, feeding systems, etc., would most likely contain different covariance structures and
thereby highlight model inadequacies. In Figure 4.9 the PLS model was calibrated with the Jersey
samples and tested with the Holstein samples. The covariance structures used for calibration are
valid for the Jersey samples but not the Holstein samples, which show biased predictions. In this
way a test set validation was used to make the cage of covariance visual.

Observing how the covariance structures among the dependent variables (i.e. phenotypes) change
when going from measured (i.e. reference) values to predicted values may be very powerful in
visualizing the cage of covariance. Here this is first shown by a small simulated data set (no back-
ground or error terms are included) and later with the data set of PAPER IV and PAPER V.

The simulated data set consists of 50 samples and three analytes of interest, a,, a, and a;. All
analytes are mean centered. The three analytes (the reference data) are plotted against each oth-
er in Figure 4.12. The R? between a,; and a, is 0.70 (Figure 4.12a), R? between a; and a; is 0.60
(Figure 4.12b) and R? between a, and a; is 0.40 (Figure 4.12c).
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Figure 4.12. Reference variables. (a) correlation between a, and a,. (b) correlation between a, and as. (c) correlation
between a, and as. Simulated data

The predictor data (i.e. the spectra) are plotted in Figure 4.13a. The predictor data consist of 100
mean centered variables. While a; and a, are having a direct (and noiseless) relationship be-
tween the reference data and the predictor data, information related to a; is not directly found in
the predictor data. Hence, predictions of a; rely on covariance with a; and a,. It is expected that
that the predictions of az primarily rely on covariance with a,, as the correlation here is better
(Figure 4.12).

Individual PLS models were built between predictor data and each of the three analytes. All PLS
models were based on two LV (the rank of the predictor data). The regression vectors obtained for
the three analytes are presented in Figure 4.13b. The regression vectors suggest that a, and a,
are predicted independently of each other, whereas a; to a large extent is predicted by a linear
combination of the a,-signal. Hence, the predicted values of a; will be trapped in a cage of covar-
iance with a, and the predicted values of a; and a5 will have a similar variation (i.e. they will be
correlated).
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Figure 4.13. (a) predictor data. Information related to the two analytes, a, and a, is found, whereas information
related to analyte a; is not present. (b) Regression vectors for the three analytes. Simulated data.

By examining the model performance (Figure 4.14) it is found that a, (Figure 4.14a) and a, (Fig-
ure 4.14b) are perfectly predicted. However, this is not very interesting. What is interesting (but
not surprising) is that the model performance for a; (Figure 4.14c) corresponds to the correlation
between a; and a3 in the raw data (Figure 4.12b).
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Figure 4.14. Partial least squares regression model performance. (a) measured vs. predicted a,. (b) measured vs. pre-
dicted a,. (c) measured vs. predicted a5. Simulated data.

If two analytes are predicted by the same linear combination of the predictor data, then the pre-
dictions of the two analytes will be correlated, regardless of how they correlate in the raw data.
On the other hand, if two analytes are predicted independently from the predictor data (and the
models are good), then the predictions of the two analytes will show the same correlation as the
analytes were showing in the raw data. This can be used to show indirect relationships.

In Figure 4.15 the correlations are examined between predicted a; and measured a, (Figure
4.15a), predicted a; and measured a, (Figure 4.15b) and predicted a; and measured a; (Figure
4.15c). This shows how the measured values of the analytes correlates with the predicted values
of a,. These pattern should then be compared with how the predicted values of the analytes cor-
relates with the predicted values of a,. This is done in Figure 4.15d for the predicted values of a;,
in Figure 4.15e for the predicted values of a, and in Figure 4.15f for the predicted values of a;. It
is found that the correlation between predicted a; and measured a, (Figure 4.15b) is similar to
the correlation between predicted a, and predicted a, (Figure 4.15e). This is because a; and a,
are predicted independently of each other, as also shown by the regression vectors (Figure 4.13b).
However, when comparing predicted a; and measured a; (Figure 4.15c) with predicted a; and
predicted as(Figure 4.15f) it is found that the correlation increases. This is because a; and a3 are
modeled by the same linear combination of the predictor variables. The predictions of a; are
trapped in a cage of covariance with the predictions of a;. Hence, the variation in the predicted
values of a3 is determined by the variation in a,. This is of course not ideal, if the purpose of the
calibration model is to obtain information related to as. Furthermore, if the correlation between
a, and a; is broken in a future samples set, then the calibration model built here will obviously
not be valid anymore.
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Figure 4.15. (a-c) correlation structures between predicted a, and measured a,, a, and as. (d-e) correlation struc-

tures between predicted a, and predicted a,, a, and a;. Simulated data.

For simplicity the information found in Figure 4.14 and Figure 4.15 are plotted together in a single
plot (Figure 4.16). The model performance (i.e. information from Figure 4.14a-c) is plotted on the
x-axis. The information found in Figure 4.15a-c is plotted on the y-axis as open squares and the
information found in Figure 4.15d-f is plotted on the y-axis as filled triangles.
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Figure 4.16. Partial least squares regression model performance (x-axis) and correlation with a, for measured and
predicted analyte values, respectively (y-axis). Simulated data

The increase on the y-axis for a; when going from measured values to predicted values (Figure
4.16) clearly indicates that a; and a; are modeled by the same linear combination, whereas the
steady-state for a, indicates that it is modeled independently of a,.

Figure 4.17a shows the results when comparing the FA with total fat content (PAPER IV). Note that
in Figure 4.17a, total protein content and lactose are included. In Figure 4.17a total protein and
lactose have the same relationship with total fat for both measured and predicted values. All the
FA exhibit increased RZ-values with total fat content when going from measured to predicted val-
ues. This clearly indicates that total protein and lactose are modeled independent of total fat con-
tent, whereas the FA, to a large extent, are modeled by the same linear combination as total fat
content (Figure 4.17a). Figure 4.17b tells the same story but for protein fractions (PAPER V). Note
that in Figure 4.17b total fat content and lactose are included. In Figure 4.17b, total fat content
and lactose have the same relationship with total protein content for both measured and predict-
ed values. All protein fractions and coagulation properties exhibit increased R2-values with total
protein content when going from measured to predicted values. Hence, total fat content and lac-
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tose are modeled independent of total protein, whereas all the protein fractions and coagulation
properties are modeled more or less by the same linear combination as total protein content. Fig-
ure 4.17 is a very strong indication that models for individual FA are trapped in a cage of covari-
ance with total fat and that protein fractions are trapped in a cage of covariance with total pro-
tein.
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Figure 4.17. Partial least squares regression model performance (x-axis) and correlation with measured and predicted
phenotype, respectively (y-axis). (a) Fatty acids Profile. (b) Protein composition. TP = total protein; TF = total fat con-
tent.

In PAPER IV a projecting procedure was proposed for visualizing how much common variation is
found in the FA predictions and the interaction of breed and total fat content. In short, PLS models
for individual FA were fitted (Equation 4.1).

Vra=X"bp, Equation 4.1

Where ¥y, is the estimated concentrations of a given FA, X are the preprocessed and centered
FT-IR spectra and BTF is the estimated regression vector. The Idea was to split ¥4 into a part de-
scribed by the interaction of total fat content and breed, ¥4,y p,0eq @Nd @ part orthogonal to the
interaction, ¥pa_rpy preeq (EQUation 4.2).

Yra = YFarpxpreea T YFA_TFxBreed Equation 4.2

This was done by introducing a split on X. Using the matrix, ¥ spanning the interaction of predict-
ed total fat content, Yy and breed (PAPER IV). X was first projected onto V (Equation 4.3) to ob-
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tain the part of X explained by the interaction, X rg«greeq- This part was then subtracted the origi-
nal X to obtain the part orthogonal to the interaction, X _rrxpreeq (Equation 4.4).
Xrrxpreea = VWVT - V)T - X Equation 4.3
X _rrxBreeda = X — X7FxBreed Equation 4.4
By combining Equation 4.1 and Equation 4.4 the following is reached,
Yra =X bpa = X_rrxpreea” Dra + Xrrxpreed * bra Equation 4.5

In Equation 4.5 the prediction of the fatty acid is split into a part related to total fat content and
breed (X rxpreed * Pra) and a part unrelated to total fat content (X _rpxgreeq * Pra). The contri-
bution of each part in the total FA variation is visualized by comparing their sum of squares (Figure
4.18).

I TFxBreed dependent
] TFxBreed independent

100}

% Explained Variation

Figure 4.18. Prediction of FA by partial least squares regression applied to infrared measurements. The percent of ex-
plained variation is divided into a part related with interaction of total fat content and breed (TFxBreed) and a part
unrelated to this interaction. TF = total fat content
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Figure 4.18 shows in a very visual way that the FA predictions contain a large amount of common
variation with the interaction between breed and total fat content. However, it must be stressed
that Figure 4.18 only visualizes the amount of common variation that goes into the predictions and
not exactly model dependencies. The correlations between pure analyte signals are not consid-
ered in the results presented in Figure 4.18. This fact should definitely have been stressed more or
given higher impact in PAPER IV. When applying this projection procedure it is recommended to
accompany Figure 4.18 with, for example, Figure 4.17a that shows model dependencies. Other-
wise the results may be over interpreted.

In order to obtain a better estimate of dependencies between models, a new projec-
tion/orthogonalization based method has been developed, which is believed to be more efficient
than the projection method outlined in PAPER IV. The method presented in PAPER IV and the new
method are in fact very similar but they differ in the way explained variance in the dependent part
and the independent part are compared.

Consider Figure 4.19. Here, the pure analyte signal at unitary concentration is given by a. Two in-
terferents are present and their pure signals are given by k; and k,, respectively. The regression
vector for a, is orthogonal to both k; and k,, and is estimated by b. The vector a_y is the part of
a orthogonal to k;. Hence, a_j is in the null space of k;, N(k,). Furthermore, the vectors k, and
b are also in N(k,). It follows that the magnitude of a projected onto b is identical to the magni-

tude of a_j, projected onto b, as indicated by the dashed lines in Figure 4.19.

ky

Figure 4.19. Regression vector, b for analyte, a. The regression vector is orthogonal to both interferents, kiand k.
N(k,) = null space of k.
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In Equation 2.16 (Chapter 2.2) it was stated that the inner product of a and b is equal to one. If
this is true, then the inner product between a_; and b is also equal to one. Hence, b has predic-
tive power for concentrations of both a and a_j.

Nevertheless, if b is non-orthogonal to k, (as illustrated in Figure 4.20), then b is not the true re-
gression vector of a, and estimated concentraions of a will also depend on k; (outlined in Chapter
2.2). The projection of a onto N(k,) is still given by a_. However, as b and a are both outside
N(k,), then the magnitude of a projected onto b is larger than the magnitude of a_; projected
onto b. The inner product of a and b is still one and therefore, in Figure 4.20 where k; and b are
non-orthogonal, the inner product of a_; and b will be less than one. Hence, b will have poor
predictive relevance for a_j. This fact can be used to highlight model dependencies on k;.

Figure 4.20. Regression vector, b for analyte, a. The regression vector is non-orthogonal to interferent, k,and orthog-
onal to k,. N(k,) = null space of k;.

The regression vector is the translation of the multicomponent spectral space, X into the analyte
concentration space, y,. Hence, a PLS model can be fitted for a given analyte, y, and the regres-

sion vector, b can be estimated. This is shown in Equation 4.6.

Yo=X'b Equation 4.6

Where ¥, is a good model estimate of y,. If the model is independent of an interferent, k then
Equation 4.7 will give a good estimate of y,_ (i.e. the part of y orthogonal to k), as illustrated in
Figure 4.19.
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Vak =X_i*b Equation 4.7

Where X_j is the part of X orthogonal to k. However, if the model depends on k then Equation
4.7 will be a poor estimate of y,_y, as illustrated in Figure 4.20.

Figure 4.21 show the results where PLS models have been fitted individually toward specific pro-
tein fractions, coagulation properties, total fat and lactose (Equation 4.6). The preprocessed spec-
tra were then deflated/orthogonalized with the interaction of rhe estimated total protein content
and breed (TP X Breed) and new predictions were obtained with the deflated spectra but the
original regression vector (Equation 4.7). In order to investigate how dependent the individual
models are on total protein and breed information, it was explored if predictions obtained from
the non-deflated spectra (Equation 4.6) were equally good in describing the non-deflated meas-
ured analyte concentrations as the predictions from the deflated spectra (Equation 4.7) were in
describing the deflated measured analyte concentrations.

The performance of the non-deflated data are the black bars where the performance of the de-
flated data are the gray bars in Figure 4.21.
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Figure 4.21. Partial Least Squares (PLS) model performance (black) and PLS model performance independent of the
interaction between total protein and breed (gray). TP = total protein, CFR = curd firming rate, RCT = rennet coagula-

tion time, TF = total fat.
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Obviously, the model for total protein is very poor for the deflated data but all other protein frac-
tions and coagulation properties also show remarkably worse predictions for the deflated data
than for the non-deflated data (except B-LG and RCT but both are poor models and therefore not
interesting). This clearly indicates that the models for all the protein fractions depend on total pro-
tein and breed. However, total fat and lactoce performs equally good in the non-deflated (Figure
4.21; black bars) and the deflated data set (Figure 4.21; gray bars). This tells that these models are
independent of total protein and breed. Total fat and lactose are also known to have a very differ-
ent absorption pattern than total protein. Hence, it makes sense that these are predicted inde-
pendently.

The best way of ensuring that models are independent of each other is by making sure that the
analyte and interferent concentrations are unrelated by experimental design. For natural reasons,
this is very difficult (if not impossible) in the case of phenotypes in raw cow milk. Nevertheless, in
PAPER VI a spiking experiment was performed. Here, three monoacid triglycerids were spiked to a
similar background of skimmed milk. Pure C14:0, C16:0 and C18:1 cis-9 monoacid triglycerides
were added to a background of commercially bought skimmed milk, 0.1 % fat. The monoacid tri-
glycerides were added to 17 samples (including two replicates) in a three component mixture de-
sign (Montgomery, 2009) as shown in Figure 4.22. Each monoacid triglyceride was added to the
skimmed milk in concentrations from 0 to 3 g. pr. 100 mL skimmed milk. In this way, concentra-
tions of the three FA is unrelated to each other but also importantly, the samples have no varia-

tion in total fat content. Hence, predictions cannot rely on covariance structures.

380

3 C18:1 cis-9 0

Figure 4.22. Three component mixture design. *duplicate samples

FT-IR spectra were obtained from the spiked milk samples and PLS models for each FA were con-
structed. In theory, this is a very simple system with three sources of variation. Hence, it should be
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possible to model the data set by three LV. However, as the three FA (sources of variation) are
orthogonal by the experimental design, a one LV PLS model should be able to model a single FA, if
the FA gives rise to a unique signal in the spectra. Figure 4.23 shows the cross-validated prediction
error from PLS modeling. Note that the error at LV = 0 is the error obtained when the average FA
concentration is used as estimate for all samples. Using one to three LV for PLS modeling is not
very successful compared with the average (no model). However, the error decreases when (over-
fitting) using around five LV. Nevertheless, the errors are still by fare larger than obtained from
raw milk samples (TABLES 4.2). This indicates that the three FA do not provide unique signals in FT-
IR spectra obtained from milk samples.

C14:0 C16:0 C18:1 cis-9
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Figure 4.23. Results from spiking experiment. Root mean squared error of cross-validation (RMSECV) from partial least
squares regression models. #LV = number of latent variables.

3.3.2 Direct estimation of k-casein from IR Measurements — Unpublished attempt

A small experiment was carried out in an attempt to obtain direct information related to k-CN. An
enzymatic hydrolysis reaction, similar to Figure 2.15, was followed over time. In this experiment
chymosin, which is extreamly selective towards Pheigs-Metios bond in k-CN, was used. Chymosin
was added to (heated) milk in a dose of 40 IMCU pr. liter of milk. After addition of chymosin, the
milk was stirred in order to avoid gel formation. Using MilkoScan FT 2, FT-IR spectra were obtained
in 5 min intervals from 0 min to 45 min (Figure 4.24). It was expected to observe changes (over
time) in the absorption spectra due to hydrolysis. The spectral changes were expected to be simi-
lar to what was outlined in Chapter 2.3. However, the spectra did not exhibit any variation that
could be assigned to the hydrolysis, most likely due to lack of sensitivity of the FT-IR instrument.
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Figure 4.24. Fourier transform infra spectra of milk samples with added chymosin measure over time.
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OUTREACH

Collecting the right information sufficiently fast using conventional analytical chemistry is a major
challenge in the food industry. Vibrational spectroscopy offers remote and non-invasive high
speed measurements of quality attributes during all stages of the food production chain, it is com-
patible with the chemical and physical questions involved and thereby it enables process control.
This is not surpassed by any other analytical method and vibrational spectroscopic techniques
such as IR and NIR are therefore widely and increasingly used in the food industry.

Unfortunately, spectroscopic instruments do not directly return concentrations but reflectance or
transmittance spectra. By a logarithmic transformation reflectance or transmittance spectra can
be turned into absorbance spectra, which, through Beer’s law, are linearly related to concentra-
tions. A regression model can be calibrated to contain the specific relationship between absorp-
tion spectra and the concentrations of a given analyte. The translation, done by the calibration
model, from the absorption spectral space to the analyte concentration space is in fact just simple
correlations. Hence, if the relationship between the two spaces changes, the calibration model will
no longer be valid. For this reason, the concept of interfering compounds is highly important and
cannot be neglected in calibration aspects.

For zero order instruments like Kjeldahl digestion units, an interferent makes calibration impossi-
ble. Imagine extracting information on both protein and melamine content from a Kjeldahl diges-
tion analysis, which returns a quantification of total nitrogen. A poorly designed calibration set
could return good looking calibration models in terms of high R? and low RMSEC for both protein
and melamine. The calibration model estimates will be two vectors, one for protein and one for
melamine, and the two vectors can be viewed as two dimensions. However, the space spanned by
the two vectors is only one dimension (total nitrogen estimates from Kjeldahl digestion). There-
fore, viewing the estimates of protein and melamine as being independent of each other would be
an overestimation of the chemical rank, which in this case equals one. In fact, the predictions of
melamine and protein will be trapped in a cage of covariance with the estimates of nitrogen. The
calibration models return information on nitrogen content rather than protein and melamine con-
tent. This compromises prediction accuracy and calibration robustness. Model performances will
depend on how good protein and melamine correlate with nitrogen in the data set.
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The power of first order instruments like IR and NIR instruments is that they can deal with inter-
ferents. The multidimensional measurements enable fitting the regression vector for an analyte in
a dimension orthogonal to the interfering signals. Nevertheless, the number of dimensions availa-
ble for fitting the regression vector is limited by the chemical rank of the spectra. It may happen
that a regression vector for a given analyte is fitted in a direction (partly) describing the signal of
an interferent. Then the analyte model is no longer independent of the interferent. The calibration
model will be indirect and calibration robustness is seriously compromised by the cage of covari-
ance phenomenon. In this thesis, projection/orthogonalization based methods was developed to
visualize the cage of covariance and thereby evaluate calibration robustness.

Detailed milk composition was estimated from FT-IR measurements. Individual FA, specific protein
fractions and coagulation properties were predicted and the model performances were in agree-
ment with existing literature. In contrast to previous studies, this thesis focuses on important as-
pects like prediction accuracy and calibration robustness. Reported predictions of individual milk
FA, protein fractions and coagulation properties from FT-IR measurements are, by projec-
tion/orthogonalization based methods, shown to rely on indirect correlations, which are confined
to covariance structures in the data set rather than absorption bands directly associated with indi-
vidual FA or protein fractions. Even though this is not a problem in itself, it may be problematic in
terms of prediction accuracy and calibration robustness, which are important but neglected pa-
rameters when evaluating the usefulness of PLS models for predicting individual FA, protein frac-
tions and coagulation properties from FT-IR measurements of milk. If indirect relationships are
used to calibrate a PLS model, the model will not be valid for future samples unless the indirect
relationships are conserved in the new sample set. If the indirect relationships are not conserved,
the model will provide incorrect predictions. The indirect relationships may change with factors
like breed, lactation stage, etc. Therefore, PLS models predicting detailed milk composition are not
valid for milk samples of a different nature (different FA profile or protein composition) as com-
pared with the calibration samples. This aspect is believed to limit the usefulness of applying such
PLS models in e.g. breeding programs, milk recording systems and for process control.

The problems of fitting indirect regression models have been long known but tend to be forgotten.
Osborne and Fearn (1986) touched on the problems in relation to NIR predictions of flour quality.
They suggested that problems are likely to occur when major chemical constituents (like water
and protein) show correlation. However, this thesis suggests that it is important to distinguish cor-
relations in the analyte concentration profiles with correlations in the pure analyte signals. Corre-
lations in the concentration profiles enables indirect models if unique spectral features originating
from the analyte of interest are not present (or if the model is underfitted). However, if unique
spectral features are available, the regression vector can be estimated in the direction of the part
of the pure analyte signal being orthogonal to all other interferents. Hence, correlations in the
concentration profiles are not a problem in itself.
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The problem of predicting detailed milk composition from FT-IR measurements lies in overlapping
signals. Hence, the chemical rank of the spectra will be smaller than the number of phenotypes
and unique regression vectors for each phenotype cannot be obtained. Therefore, if FT-IR spectra
are to be used in, for example, breeding programs it is recommended to “decompose” the de-
tailed milk composition into functional groups and then predict the average proportions of these
groups. For example, FA could be “decomposed” into, for example, methyl, methylene, olefinic
and carboxylic groups. The average proportions of these groups could be predicted by reliable FT-
IR based models and included in, for example, breeding programs and milk recording. Further-
more, it is recommended to increase the wavenumber range of the FT-IR measurements. In this
thesis the region from 3,000 cm™ to 925 cm™ was available. Above 3,000 cm™ the signal to noise
ratio is very poor and the MilkoScan FT2 is not providing measurements below 925 cm™. Never-
theless, valuable information is found in the FT-IR spectra just above 3,000 cm™ in form of sp? C-H
bonds. Furthermore, the CH; rocking (bending in plane) is found at ~720 cm™. This bending motion
is known to appear only if at least three CH, groups are present after each other in the carbon
chain. Hence, this mode could potentially contain information related to conjugation, which could
be useful.

Vibrational spectroscopic techniques are by far cheaper, faster and easier to operate than chroma-
tography based analyses. When large sample sets have to be measured it would be preferable if,
for example, FT-IR could provide the wanted information. However, in the case of detailed milk
composition the FT-IR based predictions may not be the best solution. The predictions for FA and
protein fractions are, in the multidimensional space, estimated by information pointing in the
same direction as total fat content and total protein content, respectively. Therefore, the predic-
tions cannot be regarded independent and the predictions lose value.
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Introduction

The food and food ingredients industry faces strong demands from consumers and regulatory bodies to produce safe and
consistently high-quality products. An ever increasing size of scale in the food industry also makes process optimization an
economic necessity. From a compositional point of view, most foods and food-stuffs can be viewed as multifactorial systems
consisting of mainly water, fats, proteins, and carbohydrates. Food samples are typically highly heterogeneous and present in a
complex matrix (eg, amorphous solids, aqueous liquids, gels, macromolecules, macro-organelles, or cells). Furthermore, raw
materials hold a high degree of natural variation including seasonal, geographical, and genetic. In order to produce food products
of consistent quality, it is a necessity to sort incoming raw materials, control the process between tight limits, and continuously
verifying the final-product quality.

The main objective for the food industry is to increase productivity and find ways to achieve a desired and consistent
end-product quality in a cost effective, safe, traceable, and environmentally responsible way. This can be achieved by, for
example, assuring that the raw materials meet certain quality demands, controlling the process by real-time continuous measure-
ments of core parameters, rapid final-product quality evaluation, and assuring key quality attributes during packaging. Collecting
the right information sufficiently fast using conventional analytical chemistry is a major challenge in the food industry. For this
reason, vibrational spectroscopic techniques such as Raman, infrared (IR), and near-infrared (NIR) spectroscopy are widely used
during all stages of food processing. Spectroscopy enables remote and noninvasive control at all the production steps (Figure 1)
and is compatible with the chemical and physical questions involved.

Food is a challenging (but rewarding) subject to work with, especially due to the raw materials. Imagine, for example, the grain
harvest of one farmer, a truck with pooled milk from different dairy farms, or the catch of a fishing trawler; it is easy to realize that
sorting and grading of incoming raw materials (Figure 1, process inputs) is an essential step in securing quality and increasing
economic gain in many food productions. Proper sorting of lots arriving at the gate — for example, sorting grain by protein content
using an at-line NIR spectrometer — will ensure that incoming materials are of sufficient quality for the next downstream
processing step and thus contribute in fulfilling the promised end-product quality. Hence, sorting not only facilitates that the
best raw materials can be used to produce high-quality and high-value products, but it can also ease the control during further
processing avoiding unwanted quality deviations in end-products. Traditionally, sorting is done by manual inspection, on a
statistical (by chance) nature, but this is no longer acceptable in a modern food processing industry.

Even though sorting of raw materials is performed at the gate, process monitoring and control (Figure 1, process operation) is
often needed in securing consistent product quality. Furthermore, process monitoring and control may increase production
throughput. In terms of process dynamics and kinetics, many food processes are more challenging than, for example, processes
in the chemical industry. As an example, milk coagulation, in the first stages of cheese production, cannot be modeled from
mechanistic or first principles only and there is no natural end-point like a maximum conversion. Moreover, the materials used
(milk composition, starter culture performance, etc.) and the quality of the end-product (the cheese) are magnified during this
production step with no possibility of correction afterwards. Hence, in-line spectroscopy can play a central role in process
optimization and scheduling for the modern dairy.

Encyclopedia of Spectroscopy and Spectrometry, 3rd Edition http://dx.doi.org/10.1016/B978-0-12-409547-2.12156-0 1
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Figure 1 Schematic representation of the different stages and the analytical questions involved of a food production.

The food industry shares one important component with the pharmaceutical industry, namely that humans and animals are at
the end of the chain. This means that safety and quality of the end-product are key parameters (Figure 1, process output). Extensive
product testing by classical analysis is not desirable for foods due to their limited shelf life. Off-line vibrational spectroscopic
methods, situated in walk-in laboratories, can provide swift answers for product-relevant parameters, typically without any sample
preparation or use of reagents. Moreover, high-speed measurement can be utilized at the exit (Figure 1, post process). In principle,
spectroscopic techniques are capable of 100% quality assurance by noninvasive analysis of, for example, every bottle coming by on a
high-speed filling line.

Using the different production stages and analytical questions symbolized in Figure 1 as guideline, the remainder of this chapter
will give examples on how vibrational spectroscopy may be used in the diverse world of the food and food ingredients industry.

Process Inputs

For many years carcass grading in the meat industry has been based on volumetric measures. However, porcine carcass fat
composition is an important quality parameter for grading and should thus be evaluated at the front-end of an abattoir. The
porcine fat quality varies considerably between genotypes, farmers, seasons, and feeding regimes. During further processing (eg,
slicing), the hardness of the fat is a critical attribute; if the fat is too soft it causes problems due to lack of cohesiveness between
muscle and adipose tissue. The iodine value (IV), that is, degree of fatty acid unsaturation, relates to the hardness of the fat.
Furthermore, IV relates to fat flavors, mouth feel, as well as nutritional issues. The IV of fat is thus an important quality parameter to
be evaluated and can be used when sorting the carcasses at the abattoir, and this sorting has to be done real-time for logistic reasons.
Product orders are placed (typically overnight) requesting a specific quality. Hence, for economic optimization and operational
reasons, the fat composition would ideally have to be known immediately after slaughter so carcasses can be sorted according to
quality on dedicated lines in the chiller rooms. Serensen et al.' used NIR transmission (NIT) spectroscopy for predicting IV of fat in
porcine carcasses. The NIR equipment consists of two knife-tipped probes, which are inserted into the carcass by an operator. The
incision is done after veterinary inspection and the equipment fulfill abattoir cleaning and HACCP requirements. During the
motorized extraction of the NIR probes, transmission spectra are obtained as a function of penetration depth (Figure 2A). Going
from left to right in Figure 2A, the NIR spectra are first from the outer fat layer and then the inner fat layer. The two fat layers are
clearly divided by the gab in the NIR spectral landscape (Figure 2A). The NIR spectra can be calibrated to predict the IV using gas
chromatography as a laboratory reference method (IV predictions are shown in Figure 2B). The NIR method is able to predict IV in
the fat of carcasses as a function of penetration depth at full production speed (approximately 1000 carcasses per hour). By this
strategy, NIR can be used for real-time sorting of carcasses at the gate of the abattoir. Additionally, this information can be used in the
payment system and, using the information as feed back to the farmers, this method may assist in optimizing breeding and feeding
programs.

Another example where sorting of raw materials is highly beneficial is when milling wheat kernels into flour. Large variations in
quality are present between grains due to, for example, genetic variations, weather conditions, soils characteristics, and growing
practice. However, quality differences between wheat kernels also exist within the field and even within a single plant. High-speed
sorting of single seeds before milling can result in considerable quality improvements of flours fit for purpose and thereby economic
gain. Protein content is the most important quality attribute of wheat flour. In, for example, bread making high-protein wheat flour
is preferred, whereas low-protein flour is used for, for example, crackers. Traditionally, wheat quality evaluation was performed on
bulk samples using wet chemistry. When analyzing bulk samples the characteristics of the individual kernels is obviously lost and
optimal sorting cannot be performed. Nielsen et al.” developed a nondestructive screening method for single seed protein
determination. The method is based on NIT spectroscopy in the short wave near IR region, which have sufficient energy and
corresponding low molecular extinction coefficients to penetrate whole seeds. The kernels were placed in a sample cassette with
slots for individual kernels. The sample cassette was rotated and NIR measurements of the individual kernels were obtained. The
raw and preprocessed NIR spectra are shown in Figure 3A and B, respectively. In Figure 3B, the spectra are preprocessed by second
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(B) Preprocessed (second derivative and multiplicative scatter correction) NIR spectra colored by protein concentration. (C) Predicted versus
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derivative followed by multiplicative scatter correction.” The protein information is found round the absorption band of the
second overtone of N-H stretching vibrations. Even though the raw spectra (Figure 3A) seem to lack complex information, using
five components in partial least squares regression toward a Kjeldahl reference method, protein content in single kernels can be
predicted with an acceptable low error (Figure 3C). The method described by Nielsen et al.* has been further developed to run at
high speed. At high speed, the seeds are fed into a rotating cylinder, which causes the kernels to pass one-by-one over an NIR probe.
Measurements are obtained and used for sorting the seeds pneumatically. In this way, high-speed sorting of single kernels at the gate
allows for production of flours for specific purposes, price differentiation between products and waste reduction.

Process Operation

While sorting of raw materials can be beneficial for food producers, real-time measurements of an on-going process are essential to
optimize quality, yield, and production throughput. A critical time point in cheese production is cutting the coagulum. Cutting too
early will result in loss of fat, protein, moisture, and thereby decreased yield. Longer cutting times result in smaller losses, but lower
production throughput. Furthermore, the higher moisture content will cause undesirable sensory and microbiological effects. Real-
time monitoring of milk coagulation can help producing cheeses of consistent quality, fat, and protein content as well as optimize
production throughput. Additionally, batches out of specification can be discovered at an earlier stage allowing for the necessary
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actions to be taken more rapidly. Rennet induced milk coagulation consists of three stages: (SI) enzymatic proteolysis of k-casein,
(SII) aggregation of the altered casein micelles (paracasein), and (SIII) network formation. Using NIR reflection spectroscopy
(Figure 4A), Lyndgaard et al.” extracted real-time information of the coagulation process. The main spectral development during
the coagulation is baseline changes. The NIR spectra were decomposed using the principal component analysis and the component
scores as a function of time were used to establish a kinetic model clearly describing the three coagulation stages (Figure 4B). This
estimation can be used to establish automatic cutting time determination and thereby to optimize final-product quality and
consistency.

Equipment cleaning is an integrated part of a process operation in the food industry. IR spectroscopy in combination with
mathematical and statistical data analysis is a valuable tool in cleaning verification where a high frequency of IR measurements can
be performed without too much sample preparation or cost in chemicals. This makes IR spectroscopy an ideal method in industrial
detective work. Jensen et al.® investigated residual fouling on an ultrafiltration membrane used for 5 months in a full-scale dairy
fractionation operation. The destructive analysis was performed to describe the protein pattern on a membrane leave of 1 m? from
a spirally wound module, collected after a cleaning-in-place. For this purpose, a total of 100 spatial measurements were performed
using attenuated total reflection (ATR) measurements. From the spectra (Figure 5A), the membrane material and protein fouling
can be probed. A major challenge in the quantification of protein residuals is the presence of unknown grafting materials added by
the membrane manufacturers (propriety knowledge), and the multi-layer nature of these system (Figure 5B). Using multivariate
curve resolution as a chemometric modeling method, the spectra could be translated into a fouling pattern (Figure 5C). This
information can be used to design new cleaning strategies and to develop new membrane modules.

Process Outputs

Vibrational spectroscopy is also useful in end-product quality control in the food and ingredients industry. Digestibility is an
important parameter of fish meal used for animal feed. The value is often guaranteed by the producer and may determine the end
price. Consequently, the fish meal is not released from the producer before results from the digestibility test are present. The most
direct method for determining digestibility is biological tests in minks, taking 6-8 weeks to perform. Fish meal is produced in
batches of tons and storing fish meal in the warehouse during the testing period is thus expensive. It is therefore profitable to
develop an approximate but less time-consuming and reproducible method to determine the mink digestibility of fish meals. Dahl
et al.” investigated whether NIR reflectance spectroscopy could be used here. In the study it was found that mink digestibility was
negatively correlated with oil and ash content. The NIR measurements of the fish meals are shown in Figure 6A, and the predictions
of mink digestibility from NIR measurements are shown in Figure 6B. Even though mink digestibility is an unorthodox and
complex parameter to be predicted by NIR measurements, an indirect relationship can be established. Obviously the predictions
are not perfect. However, considering the expensive and time-consuming biological tests in mink, which are subjected to large
biological variations, NIR measurements could well function as a rapid and inexpensive alternative for predicting mink digestibility
of fish meals.

Measuring the functional properties of alginate powders is a second example of end-product quality control of a highly complex
bio-material. Alginates are hydrocolloids extracted from brown seaweed. They are used as gelling agents in the food industry.
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Figure 6 Digestibility of fish meal. (A) Near-infrared spectra preprocessed by multiplicative scatter correction. (B) Measured digestibility versus

predicted digestibility.

Alginates are polysaccharides consisting of (1-4) linked p-p-mannuronic acid (M) and its C-5 epimer a-L-guluronic acid (G), and
the functional properties of alginates are related to the M/G ratio. The composition of alginates, and thereby the functional
properties, varies according to season, age of the seaweed population, species, and geographic harvesting location. Nuclear
magnetic resonance (NMR) spectroscopy is the state-of-the-art method for the compositional and structural analysis of alginates.
However, NMR requires sample preparation as well as a high degree of know-how during operation. It would therefore be
beneficial for the industry to have a fast and simple method for measuring the alginate composition that can be done by the
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factory operators, for example, in an on-site walk-in laboratory. Salomonsen et al.® compared ATR-IR (Figure 7A), Raman
(Figure 7B), and NIR reflectance (spectra not shown) for the determination of the M/G ratio in commercial sodium alginate
powders. The spectra in Figure 7A and B are colored by the M/G ratio and it is clear that the fingerprint region contains information
on this parameter. It was also found that all spectroscopic methods yielded good prediction models with errors compatible with the
NMR reference method. In fact vibrational spectroscopy demonstrated to be superior and a more general method to predict the
alginate M/G ratio. Vibrational spectroscopy can be applied directly on the raw alginate powders, whereas NMR needs a diluted and
hydrolyzed solution of the powders. Moreover, vibrational spectroscopy measures all molecules in the sample in contrast to NMR,
which in case of high calcium content samples underestimate the G content (causing overestimation of the M/G ratio). This is
because the junction zone guluronic egg-box fragments becomes rigid and thus not visible to the NMR methods. This is shown in
Figure 7C where three outliers with high calcium content are highlighted. Examination by wet chemistry showed that the IR
estimation of the M/G ratio was the correct one. Vibrational spectroscopy is thus very suited for at-line quality control of alginate
powders as it can drastically reduce the analysis cost and time.

Postprocess

Postprocess and shelf life are other important food quality attributes that can be measured by vibrational spectroscopy. Softness as
an example is an important sensory quality parameter of barrel salted herring which relates to ripening quality. The ripening period
of barrel salted herring is several months. During ripening the proteins degrade and the degradation relates to the ripening
characteristics. Estimating the ripening quality by sampling the fish would introduce problems as the fish is heterogeneous.
However, throughout the ripening period, the degraded proteins are extracted into the surrounding brine. The protein content in
the brine therefore can be used as an indicator of the ripening process. Svensson et al.'’ used NIT spectroscopy to predict the
protein content in brine from barrel salted herring. NIR spectroscopy proved a good alternative to the time-consuming Kjeldahl
analysis normally used. The results indicate that NIR spectroscopy can be used as a fast and noninvasive method for assessing the
protein content (Figure 8), which may be used as an indicator for the ripening quality of barrel salted herring.
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In another feasibility study, van den Berg et al."' used NIT measurements to predict ethanol content, sugar content, and density
of distils. Ethanol, natural sugars, and water are all NIR active. Together with trace amounts of flavor and color ingredients, these are
the three basic components of alcoholic beverages. The NIR spectra of three different alcoholic beverages are shown in Figure 9A.
In the study, information after 1830 nm was considered unreliable due the insufficient detector response. However, the absorption
bands from 1330 to 1630 nm are caused by water and functional groups in natural sugars, and the band from 1630 to 1830 nm
contains alcohol information. It is supposed that the density information is found in the combination of these absorption bands.
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Using NIR measurements of the distils, sugar content (Figure 9B) and ethanol content (Figure 9C) were predicted with high
accuracy. Hence, NIR spectroscopy could, for example, be used in 100% quality control during bottling for legislative documenting.
During product switch the filling machine is routinely cleaned with detergents followed by an ethanol washing. A memory effect in
the pipelines of the filling machine is likely to occur. Hence, the first bottles after a product switch are expected to have higher
ethanol content. This was also found in the study by van den Berg et al."' where ethanol concentration was plotted for a sequence of
five bottles picked from the bottling line after the washing (Figure 9D). The plot demonstrates the memory effect and shows that
the first few bottles have an above legal/target limit ethanol content.

QOutro

Using six examples, some of the unique features of vibrational spectroscopy in combination with multivariate data analysis in
relation to food processing have been demonstrated. The ability to remotely and noninvasively measure the bulk parameters of
food in its multiple phases and at very high speed is not surpassed by any other analytical technique. Vibrational spectroscopy and
food process analysis are matching just like “herring and snaps.”
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Abstract:

The analysis of raw materials, real-time process control, and end-product plus post process quality evaluations are all crucial steps in food production.
In order to increase production throughput, there is a need for speed when collecting information from the different processing steps. Hence,
conventional methods from analytical chemistry (such as Kjeldahl for protein determination) are not compatible with modern production methods.
By examples, this chapter provides an overview of some of the unique features of vibrational spectroscopy in relation to food processing analysis.
Vibrational spectroscopy offers noninvasive high-speed measurements of quality attributes during all stages of the food production chain. This is not
surpassed by any other analytical method, and vibrational spectroscopic techniques such as Raman, infrared, and near-infrared spectroscopy are
therefore widely and increasingly used in the food industry.

Keywords: Food production; Infrared; Near-infrared; Noninvasive analysis; Process analytical technology; Raman; Rapid quality control; Remote
analysis; Vibrational spectroscopy
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ABSTRACT

The possibility of using mid-infrared spectroscopy for prediction of hydrolysis of whey protein
was explored. Two different protein concentrations (5% and 8%) were trypsinated at different
enzyme-to-substrate ratios (1:100 and 1:200) and followed over time (0—8 h). Degree of
hydrolysis was determined by use of a fluorescamine assay, whereas size exclusion
chromatography (SEC) was used to quantify the loss of intact protein. The results show spectral
changes as hydrolysis proceeded over time. Increased absorbance intensities in the region from
1588-1540 cm™ as well as increased absorbance intensities around 1400 cm™ were observed
with increasing hydrolysis. These changes were assigned to formation of primary amines as well
as an increase in carboxyl groups as hydrolysis proceeded. As the level of free amino terminals
correlates with spectral changes, infrared spectroscopy is a promising tool for prediction of

degree of hydrolysis of whey proteins.




1. Introduction

There is an increasing market for whey protein products, including whey protein isolates
(WPI), concentrates (WPC) and hydrolysates (WPH), given the high nutritional value of whey
proteins and derived peptides as well as their excellent functional properties as foaming and
emulsifying agents. Disruption of the tertiary structure and reduced molecular weight by
enzymatic hydrolysis of whey proteins change their physicochemical and technological
properties (Chobert, Bertrand-Harb, & Nicolas, 1988; de Castro, Bagagli, & Sato, 2015). The
solubility of whey proteins is known to increase overall with increasing degree of hydrolysis
(DH%) (Svenning, Brynhildsvold, Molland, Langsrud, & Vegarud, 2000), and thus improved
uptake as a result of enhanced bioavailability of pre-hydrolysed whey protein products are of
importance for nutrition in segments of hospitalised patients as well as in sports nutrition
(Madureira, Pereira, Gomes, Pintado, & Malcata, 2007). Furthermore, WPH exhibit reduced
immunological reactivities (Heyman, 1999), which can be exploited in infant formulas for
allergic infants (Halken & Hgst, 1997). Predicting DH% is therefore important for all whey
products either during processing of WPC or WPI, where hydrolysis is unwanted, or as a tool for
quality control for finite degrees of enzymatic hydrolysis in WPH.

Fourier transform infrared spectroscopy (FT-IR) is commonly used in the dairy industry
for rapid detection of major milk components, and thus the method is an attractive choice for
process control at the dairies due to its ease of operation, rapid output and non-destructive
sample preparation (Andersen, Hansen, & Andersen, 2002). For milk, promising FT-IR
prediction models have been generated for milk fatty acid composition (Eskildsen et al., 2014;

Soyeurt et al., 2006), protein profiling (Rutten, Bovenhuis, Heck, & van Arendonk, 2011) and



coagulation properties of raw milk (Cecchinato, De Marchi, Gallo, Bittante, & Carnier, 2009),
which suggest that more detailed information on milk composition could be revealed from FT-
IR.

Proteins have three major absorption bands in the mid-infrared (MIR) region, the amide
A, the amide I and amide II bands. The amide A band originates from the N-H stretching
vibration of the peptide backbone, which is found at approximately 3300 cm™. However, due to a
strong water absorption between 4000 and 3000 cm™, the amide A band is rarely used. The
amide I band primarily arises from the stretching vibration of the carbonyl groups in the peptide
backbone. However, this absorption is found at approximately 1660 cm’ and is masked by the
other water signal at approximately 1560—1715 cm™ (Bruice, 2007). The amide Il band is mainly
due to a coupled N-H bending vibration and C—N stretching vibration, which absorbs at
approximately 1540 cm™. The exact vibrational frequencies of the amide I and amide II bands
depend on whether the nitrogen of the N-H and the carbon of the C=0 bonds are engaged in
peptide bonds or not, i.e., hydrolysed. When hydrolysing the peptide bond, a carboxylic acid
from the C-terminus and a primary amine from the N-terminus will be formed. Inside the
peptide, prior to hydrolysis, the carbonyl group will be exposed to electron donation from the
nitrogen atom. However, after peptide bond cleavage the C-terminal carbonyl group will no
longer be exposed to this donation and the vibrational frequency of the carbonyl stretching
vibration will move from the 1640 cm™ region to approximately 1700 cm’. Furthermore, during
hydrolysis the amide II band should decrease as the C—-N bond is cleaved. Moreover, the N-H
bend of a primary amide is found at approximately 1600 cm’. Hence, it is expected that
increased absorbance intensities in the region around 1600 cm™ will be observed as hydrolysis

proceeds. Apart from the N- and C-termini, in intact proteins the only free amino and carboxylic



residues come from the side chains of the Asp, Glu and Lys residues. However, as hydrolysis
proceeds, the amount of free amino and carboxylic residues increases, which is expected to give
a change in the infrared spectrum. Furthermore, changes in secondary structure of proteins affect
the absorbance pattern and forced changes due to pH can result in significant changes of IR
absorption bands (Giiler, Dzafic, Vorob’ev, Vogel, & Mantele, 2011).

Van der Ven et al. (2002) analysed different casein and whey hydrolysates produced
using various commercial enzymes and found that FT-IR could effectively discriminate between
casein and whey hydrolysates and between different enzymatic treatments. However,
development in the spectra as hydrolysis proceeded was not followed. From an industry
perspective, the main interest will be to monitor the level of intact protein and DH%. DH can be
defined as the percentage of peptide bonds cleaved in relation to the total number of peptide
bonds in the protein solution (Adler-Nissen, 1986). Various fluorescent methods based on
fluorimetric o-phthaldialdehyde (OPA), fluorescamine or trinitrobenzene sulphonic acid (TNBS)
have been developed for monitoring the level of free amino groups, and thereby free amino
terminals, in protein solutions. These measurements have been found to correlate to the cleavage
of protein bonds during hydrolysis (Spellman, McEvoy, O’Cuinn, & FitzGerald, 2003).
Likewise, size exclusion chromatography (SEC) could be used to monitor changes in the
hydrodynamic volume of proteins and thus, changes in the molecular weight distribution, which
is affected by hydrolysis.

The objective of the present study was to explore the use of FT-IR for prediction of
hydrolysis in whey protein. Trypsin was used to hydrolyse peptide bonds involving carboxylic
groups of arginine and lysine residues at different time intervals. Thereby the content of intact

versus hydrolysed protein could be followed over time. Fluorescamine assay and SEC were used



as reference methods for quantification of DH% and prediction models were developed based on

the recorded FT-IR spectra.

2. Material and methods

2.1.  Materials

Whey protein concentrate with 80-85% protein, 5-9% lactose, max 8% fat and max 3.5%
ash based on dry weight (Lacprodan®-80, Arla Foods Ingredients, Nr. Vium, Denmark),
produced from whey by ultrafiltration and spray drying, was used as substrate for monitoring
hydrolysis. Aqueous WPC solutions of 5 and 8% (w/w) total protein were prepared and stored at
4 °C until required. Initial protein content (g 100 g”' solution), together with fat, lactose and dry
matter content, of WPC solutions was validated by infrared spectroscopy using Milkoscan™

FT2 (Foss, Hillergd, Denmark) (Table 1).

2.2.  Engzymatic hydrolysis

Enzymatic hydrolysis was performed in 50 mL tubes. Trypsin from porcine pancreas with
13,000-20,000 BAEE units mg’1 protein (T0303, Sigma-Aldrich, St. Louis, MO, USA) in
phosphate buffered saline (PBS) (0.125 M NaH,PO,4-H,0, 0.1 M NaCl, pH 7.4) was added to the
samples in a ratio of 5 or 10 g trypsin per kg of soluble protein resulting in enzyme to substrate
ratios (E/S) of 1:200 or 1:100 (w/w). After trypsin addition, samples were incubated at 37 °C in

time intervals from 0-8 h. pH was monitored for each sample, but was not adjusted throughout



the enzymatic process. Trypsin was inactivated by addition of trypsin inhibitor (TT2011, Sigma-
Aldrich) in 0.067 M sodium phosphate buffer (pH 7.6) in 4.7 x 10~ M excess of trypsin.
Duplicate samples were taken at t =0, 0.5, 1, 2, 3,4, 5, 6, 7 and 8 h for each protein
concentration (5 and 8%, w/w) and E/S (1:100, w/w, for both protein concentrations and 1:200
for 5%). For one of the 8% (w/w) replicates at 1:100 E/S, samples at t = 6 and t = 7 h were not
collected resulting in a total of 58 samples. Immediately after trypsin inactivation, the samples
were analysed by infrared spectroscopy (Milkoscan™ FT2, Foss, Hillergd, Denmark) and
recorded full FT-IR spectra were saved for further analysis. In addition, 3mL of each sample was
frozen at =20 °C for further analysis of DH% using fluorescamine assay and SEC as reference

methods.

2.3.  Fluorescamine assay

Enzymatic hydrolysis was monitored by a modified fluorescamine assay (Pearce, 1979;
Rollema et al., 1989). WPC samples were mixed with 25% trichloroacetic acid (TCA) solution in
ratio of 1:1 and left on ice to precipitate the intact proteins. Subsequently, samples were
centrifuged at 19,400 x g for 20 min at 4 °C to sediment intact proteins. The soluble phase was
diluted (x100) with 1 M HCI, and 37.5 uL of the dilution was mixed with 1130 uL 0.1 M sodium-
borate buffer (pH 8.0) along with 375 pL 20% fluorescamine in a dried acetone solution.
Hereafter, 250 pL of this mixture was transferred to white opaque microtitre plates (Corning Inc.
New York, NY, USA) and subsequently fluorescence was determined with a Synergy2
spectrophotometer (Biotek Instruments Inc., Winooski, VT, USA) using excitation wavelengths

at 400 nm and emission wavelengths at 485 nm at 25 °C. Each sample was measured in



triplicates. The level of primary amino groups reflecting the level of free amino-terminals as L-
leucine equivalents (Leucine eqv.) was calculated according to a standard curve in the range of
0.5-30 mM Leucine eqv.

DH% was calculated as:

Leucine eqv sample

£100% (1)

Leucine eqv total hydrolysis

where Leucine eqv. of total hydrolysis was calculated according to that total hydrolysis of
a definite whey protein solution, which has been estimated to be 8.8 mEq g" of protein for whey
protein (Adler-Nissen, 1986). The theoretical trypsin specific digestions of a-LA and f-LG were
calculated using PeptideMass from ExPASy (www.expasy.org). Resulting DH% were 11.4% for

a-LA and 11.1% for B-LG.

2.4.  Size exclusion chromatography

For peptide and protein separation, SEC was performed by use of a 1260-Infinity semi-
preparative liquid chromatography (LC) system (Agilent Technologies, Santa Clara, CA, USA).
Prior to analysis samples were defrosted and 1 mL denaturing and reducing buffer containing 6
M urea, 0.1 M trisodium citrate and 20 uL 0.5 M dithioerythritol (DTE) was added to 200 uL.
sample. The samples were incubated at 37 °C for 60 min while stirring to denature and reduce
inter- and intra-molecular disulphide bonds. Hereafter the samples were centrifuged at 9300 x g
for 10 min at 4 °C, and the supernatant was collected for further analysis. 25 uL was injected on
a BioSEC-3 Column (3 um, 7.8 x 300 mm, 300 1&, Agilent Technologies) at 30 °C. The mobile
phase comprised 0.2 M sodium phosphate buffer, 0.2 M sodium chloride, pH 7.0. The column

separates protein and peptides in the molecular range 5—1250 kDa. A flow rate of 1 mL min™



was applied and UV signals were detected at 214 nm. All samples were analysed in single
determinations. SEC of individual samples were separated into ten regions integrating major
peaks, which were used for further analysis (3.1-4.8; 4.8-5.7; 5.7-6.1; 6.1-6.4; 6.4-6.9; 6.9-7.1;
7.1-7.5;7.5-8.7; 8.7-8.8 and 8.8—11.8 min). Mass spectrometry was used to identify the major
protein and peptide contents of the WPC using LC coupled with electrospray injection mass

spectrometry (ESI-MS) according to the method described by Rauh et al. (2015).

2.5.  Fourier transform infrared spectroscopy

FT-IR spectra were obtained in transmittance mode in the range from 5008 to 925 cm™,
with a total of 1060 data points for each sample. To obey Beer’s law, the spectra were
transformed from transmittance into absorbance before modelling. The region from 5008 to 2980
cm™ and 979 to 925 cm™ was considered noise and removed from the data set. The region from
2822 to 1769 cm™ contained no valuable information and was also removed. Furthermore, the
saturated water signal (O—H bend) was removed. For spectral interpretation, a narrow band from
1704 to 1588 cm™ around the O—H bend was removed. However, for modelling, a wider band
from 1715 to 1560 cm™ around the O—H bend was removed to avoid instabilities related to water
absorption. Full FT-IR spectra were recorded in triplicate for each sample, and the average

spectrum was calculated and used for further analysis.

2.6.  Data analysis



Data were analysed using MATLAB version R2014a (8.3.0.532, MathWorks Inc.,
Natick, MA, USA) and PLS_Toolbox, version 7.5 (Eigenvector Research Inc., Manson, WA,
USA). The mean centred spectra were modelled by principal component analysis (PCA) (Wold,
Sjostrom, & Eriksson, 2001). Modelling by PCA was done subsequently using the samples
consisting of 5% protein concentration and 1:200 E/S, 5% protein concentration and 1:100 E/S,
and 8% protein concentration and 1:100 E/S. Furthermore, partial least square (PLS) regression
(Wold et al., 2001) was performed on the combined data set. The FT-IR measurements were
used as independent variables and Leucine eqv. was used as dependent variable. The PLS model
was cross-validated with respect to protein and enzyme concentration. Prior to PLS modelling,
the spectra were orthogonalised with respect to protein concentration. This was done to remove
offset differences in the spectra related to initial protein concentration. The orthogonalisation
was done as shown in the equation below,

X_x = (1 —kE&"WKHX ()

where X is the FT-IR spectra (centred) without variation (offsets) related to protein
concentration, I is the identity matrix, k is a vector containing information on the protein content
(centred) and X is the centred FT-IR measurements. Superscript T indicates transpose.

Preprocessing (Savitzky-Golay, Standard Normal Variate or Multiplicative Scatter

Correction) of spectra did not improve PCA or PLS models.

3. Results and discussion

3.1.  Fluorescamine assay and degree of hydrolysis

10



Fig. 1 shows the increase of free amino acid terminals measured by fluorescamine assay
over the 8 h period. Each time point is offset corrected by subtracting the amount of free amino
acid terminals at time zero. The increase varied between treatments, but for all samples the
largest increase in free amino terminals occurred within the first hour followed by a slower
increase up to 2 h, after which the content to some extent levelled off. After 8 h, the lowest
content of amino acid terminals was found for 5% WPC solutions with the lowest E/S (1:200),
whereas the high E/S (1:100) increased similarly independent of protein concentration. The
fluorescamine assay has been successfully applied in other studies targeting proteolysis in high
cell count milk (Larsen, Rasmussen, Bjerring, & Nielsen, 2004; Larsen et al., 2010), or storage
quality of UHT milk (Jansson et al., 2014). Application to whey protein solutions, such as WPC,
did seem to be more challenging, however, as also reflected in the variable results for duplicate
measurements, especially for 5% whey protein (1:100), despite the clear general trends. This
might be related to whey protein aggregates or eventually to modifications of the whey proteins
during processing and storage through modification of the lysine side chains by, e.g., Maillard
reactions.

End point DH%, calculated from the level of free amino acid terminals in the samples,
varied among samples relative to protein content and enzyme concentration. Thus DH% after 8 h
of hydrolysis was 15% for the 5% protein solution with low E/S, while it was 22% for 5%
protein and 12% for 8% protein for the high E/S. Longer hydrolysis time would probably have
resulted in minor DH% increases as the change in fluorescamine had not fully reached its plateau
after the 8 h.

The obtained DH% for the 5% protein solution at low E/S and for the 8% solution at high

E/S were close to the theoretical DH% of 11% for a-LA and B-LG, whereas at high E/S for the
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5% protein solutions, DH% was higher than expected. This could suggest that more unspecific
cleavages by trypsin is going on at high E/S for the 5% protein solutions in contrast to the 8%
substrate solution, and may indicate higher accessibility of the whey proteins in the low protein
solutions as the DH% would otherwise have been the same with similar high E/S irrespective of
WPC protein substrate concentration. Commercial whey hydrolysates can have up to 30% DH.
High DH% in WPH can be unwanted due to increasing number of bitter peptides, which can
limit the utilisation of whey powder solutions (Spellman, O’Cuinn, & FitzGerald, 2009), and
monitoring the development in DH% is of high value in relation to process control in production
of whey protein based ingredients. In a sensory study by Liu, Jiang, and Peterson (2014), WPH
bitterness was assigned to principally four main peptides, which on the other hand also possessed

bioactive properties and removal therefore could also affect the health potential of WPH.

3.2.  Molecular mass distribution

In Fig. 2A, a representative SEC molecular mass distribution profile of the intact WPC
solution and the corresponding hydrolysed samples at different time points is given for the 5%
protein and 1:100 E/S samples. Mass identification of the peak regions confirmed that protein
aggregates eluted first in region 1 and 2, followed by intact B-LG (variant A and B) and o-LA, in
region 3, large peptides, mainly from f-CN in region 4, followed by peptides with decreasing
size in region 57 as and finally as buffers and amino acids in region 8-10. The intact WPC
sample has a molecular mass distribution that is centred to the left, reflecting larger aggregates
and intact protein and only to a lesser degree contains smaller peptides. All the hydrolysed

samples show similar profiles with a distribution towards smaller molecules, reflecting generated
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peptides as a result of hydrolysis. Fig. 2B shows scores for the first principal component (PC1)
as a function of time based on the PCA for the ten SEC regions. Generally, the total absorbance
area was higher for all 8% samples, which explains the separation of 8% and 5% by the first
principal component through the whole elution (Fig. 2B). However, the main separation was
between the unhydrolysed samples and the hydrolysed samples. The unhydrolysed samples had
higher content of fractions with high molecular mass (elution time below 6 min), whereas the
hydrolysed samples had higher content of the low molecular mass regions reflecting the
disappearance of intact protein and aggregates. Enzyme concentration only affected the SEC
profiles to a minor degree even though some differences seem to be apparent after 4 h of
hydrolysis. The low enzyme concentration resulted in a slightly higher total area, which might

reflect a loss of minor peptides at high enzyme concentration, thereby lowering the total area.

3.3.  FT-IR modelling of hydrolysis

Unprocessed FT-IR spectra obtained from the enzymatic hydrolysis of milk samples with
varying protein and enzyme contents are presented in Fig. 3A. Samples with 8% and 5% protein
content are clearly separated with almost parallel spectra across all wavenumbers, reflecting not
only higher protein content but also higher levels of fat and lactose in the 8% sample (Table 1).
Hydrolysis time clearly affected the unprocessed FT-IR spectral output, and changed absorbance
pattern was observed for several spectral regions. Fig. 3B shows that absorbance intensities
increases in the region from 1588 cm™ to ~1540 cm™ at increasing number of Leucine eqyv.
(increasing hydrolysis time) and thereby at increasing DH%. This is due to the formation of

primary amines resulting from the hydrolysis. Furthermore, it is found that the band at ~1400
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cm’ is increasing at increased hydrolysis level (Fig. 3C). It is not clear what is driving the
observed changes in this spectral region, but it may be related to the increase in carboxyl groups
at the C-terminus of the generated peptides, and changes in the side-chains of the residues
becoming more exposed and thereby visible in the spectrum and/or a result of changed hydrogen
bonding as hydrolysis proceeds. Expected changes in the amide II band in the region around
1600 cm™ were not observed. Consequently, hydrolysis directed changes in the C-N stretching
are not evident, which may be due to dominating N-H bending vibrations within this band
(Bruice, 2007), which are becoming stronger at hydrolysis. It was expected to observe hydrolysis
related changes in the 1700 em’ region due to increase in terminal carbonyl groups, being part of
the new carboxyl groups after hydrolysis. However, these changes were not observed in the
spectra. 1700 cm™ is on the edge of the water signal (O—H bend) and this probably masks the
carbonyl signal. Separation by FT-IR of hydrolysates generated from different protein sources
and classes of proteolytic enzymes by van der Ven (2002), was mainly due to changes in the
spectral regions around 1743 and 1705 cm’l, around 1585 cm’l, and around 1400 cm™. The
spectral region around 1400 cm’ was assigned to carboxylate (O—C-O) stretching vibrations.
Byler and Farrell (1989) observed changes in the same region upon binding of Ca™, mainly to
glutamic and aspartic acid residues in the caseins, which have side chains with carboxylic acid
groups. This confirms that the spectral region around 1400 cm™ could be related to carboxylic
acid groups. Apart from the hydrolysis derived spectral changes, these differences could also be
related to pH differences affecting the presence of ionised and non-ionised carboxyl groups, but
neutralisation of pH did not remove the spectral differences (results not shown). Therefore we do
not believe that the small pH differences observed as a function of hydrolysis time (pH decreased

from 6.4 to 6.25) explain the spectral changes observed.

14



Fig. 4 shows scores from the first principal component (PC1) of a PCA model as a
function of hydrolysis time. The PCA scores are offset corrected. The PCA model is based on the
FT-IR spectra. The figure shows a development in the scores (and thereby the spectra) as a
function of hydrolysis time. Dramatic changes in scores are observed within the first 30 min of
hydrolysis comparable with the observations on the development in the level of free N-terminals
and SEC data. Likewise, no clear plateau is reached after 8 h of hydrolysis, which suggests that
there are still some changes occurring in the spectra. To check whether these changes were due
solely to time effects, a control sample without added trypsin was monitored over 8 h. No
changes in the spectra (data not shown) were observed, confirming that our results are derived
from hydrolysis.

In Fig. 5 the scores from PC1 are plotted as a function of Leucine eqv. Expected
correlations are observed. Furthermore, a 1 component (latent variables) PLS model was
constructed to predict Leucine eqv. from the FT-IR measurements. The PLS model was based on
the FT-IR spectra orthogonalised with respect to protein concentration. The measured versus
predicted (cross-validated) values are shown in Fig. 6. Both the correlations between the PCA
scores and the Leucine eqv. (Fig. 5) and the PLS predictions (Fig. 6) indicate that the FT-IR
spectra contain information related to hydrolysis.

It should be noted that Leucine eqv. are used as a measure for hydrolysis. The standard
unit for hydrolysis is DH%. However, as DH% is a relative measure it will not have a linear
relationship with absorbance. On the other hand, Leucine eqv. describes the level of primary

amines and will therefore have a linear relationship with absorbance through Beer’s law.

3.4.  Reference method for degree of hydrolysis
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Use of the fluorescamine assay as reference method for DH still needs to be
optimised to obtain more consistent results. However, as can be seen in Fig. 5, there is a good
correlation between the PCA scores for the first latent variable from the FT-IR and L-leucine
equivalents (R2 =0.87-0.93), and further the increase in free amino acid terminals and the
spectral changes as a course of hydrolysis time are similar (Figs. 1 and 4). In this way, FT-IR
measurements in combination with PCA can be used to describe the hydrolysis. Consequently, a
good PLS model could also be constructed using the FT-IR measurements to predict the Leucine
eqv. (Fig. 6). Compared with IR-prediction of detailed milk composition in raw milk, which
might be driven by indirect covariance structure to, e.g., fat and protein rather than direct
spectroscopic fingerprints (Eskildsen et al., 2014), the spectroscopic fingerprint of hydrolysis
seems to be direct.

Fluorescamine and, e.g., the TNBS method target the free amino groups being generated
during hydrolysis, and in experiments where several small peptides are generated, these methods
can be superior compared with gel electrophoresis, which is better for targeting large fragments
(Chove, Grandison, & Lewis, 2011). Furthermore, the fluorescamine assay is very sensitive at
low levels of proteolysis, which can be important for quality control in bulk milk. However, as a
tool to distinguish changes in WPH over time, FT-IR spectroscopy demonstrates a promising
perspective, due to a strong sensitivity of hydrolysis derived changes even in a complex matrix,
like milk.

The fluorescamine method has a good potential to be reference method, but still needs
some optimisation for WPC solutions, which, compared with raw milk, are more complex due to
potential modifications of the whey protein powders during storage as well as batch to batch

variations.
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4. Conclusions

The aim of the study was to explore the use of FT-IR for prediction of hydrolysis in WPC
products. The results show spectral changes as hydrolysis proceeded over time, resulting in
increased absorbance intensities in specific regions of the FT-IR spectra with increasing
hydrolysis. These changes were assigned to formation of primary amines from new amino
terminals as well as an increase in carboxyl groups as hydrolysis proceeds. As the level of free
amino terminals correlates with spectral changes, we conclude that infrared spectroscopy is a
promising tool for prediction of DH% of whey proteins. FT-IR can easily be applied for quality
control at industry scales; however, the prediction model still needs to be validated for industry

application including more complex enzyme cocktails and higher DH%.
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Figure legends

Fig. 1. Fluorescamine reference method showing level of free amino terminals as L-leucine
equivalents (Leucine eqv.) in whey protein concentrate solution with protein concentrations
of 5% (WPC5) at two different enzyme:substrate ratios (1:100, 1:200) and 8% (WPCS) at
enzyme:substrate ratio of 1:100. Rep1 (closed symbols) and rep2 (open symbols) indicate the
two replicates. Error bars represent SD for the triplicate fluorescamine measurements.

Fluorescamine values are offset-corrected.

Fig. 2. Representative size exclusion chromatography (SEC) chromatograms for the
enzymatic hydrolysis of WPC solution with 5% protein content and E/S of 1:100 followed for
up to 8 h (A) and first principal component (PC1) as a function of time (B) based on ten SEC
fractions, integrating major peaks of the three time series (3.1-4.8, 4.8-5.7, 5.7-6.1, 6.1-6.4,
6.4-6.9,6.9-7.1,7.1-7.5,7.5-8.7, 8.7-8.8 and 8.8—11.8 min); protein concentrations of 5%
(w/w) at two different enzyme:substrate ratios (1:100, 1:200) and protein concentrations of

8% (w/w) at enzyme:substrate ratio 1:100. All samples are in dublicates.

Fig. 3. Full Fourier transform infrared (FT-IR) spectra of aqueous whey protein concentrate
solution with protein concentrations of 5% (w/w) at two different enzyme:substrate ratios
(1:100, 1:200) and protein concentrations of 8% (w/w) at enzyme:substrate ratio 1:100: (A)

raw spectra; (B) zoom-in at 1550 cm’', amide 11 band; (C) zoom-in at 1400 cm.

Fig 4. Score plot from principal component analysis (PCA) showing scores for the first
principal component (PC1) as a function of time. The PCA scores are offset corrected. The

PCA model is based on FT-IR spectra of whey protein concentrate solution with protein



concentrations of 5 g 100 g'1 (WPCS5) at two different enzyme-to-substrate ratios (1:100,
1:200) and 8 g 100 g"1 (WPCS) at enzyme:substrate ratio 1:100. The spectra were collected
over time while hydrolysis was ongoing. Rep1 (closed symbols) and rep2 (open symbols)

indicate the two replicates.

Fig 5. Correlation between leucine equivalents and principal component analysis (PCA)

scores of the first principal component (PC1). The PCA model is based on FT-IR spectra of
whey protein concentrate solution with protein concentrations of 5 g 100 g”' (WPC5) at two
different enzyme:substrate ratios (1:100, 1:200) and 8 g 100 g'1 (WPCS) at enzyme:substarte

ratio 1:100. Repl (closed symbols) and rep2 (open symbols) indicate the two replicates.

Fig 6. Results from partial least squares regression: measured L-leucine equivalents (Leucine
eqv.) versus cross-validated predicted Leucine eqv. LV = number of latent variables;

RMSECYV = root mean square error of cross-validation; R2 = coefficient of determination.



Table 1

Composition of WPC solutions based on Milkoscan measurements. *

WPC solution Protein Fat Lactose  Dry matter
5%, 1:100 5.12 0.73 2.42 8.30

5%, 1:100 5.06 0.72 243 8.25

5%, 1:200 4.99 0.73 243 8.17

5%, 1:200 5.03 0.73 243 8.20

8%, 1:100 7.85 0.91 2.32 11.58

8%, 1:100 7.74 0.90 2.32 11.43

*WPC solutions of 5 and 8% (w/w) total protein were prepared with trypsin added to result in
enzyme to substrate ratios of 1:200 or 1:100 (w/w). Composition was determined before
hydrolysis (0 h); data are expressed in g 100 g milk.
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In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibra-
tion model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide
the same predictions for the same samples using the transferred model. However, sometimes the success of a model transfer is evalu-
ated by comparing the transferred model predictions with the reference values. This is not optimal, as uncertainties in the reference
method will impact the evaluation. This paper proposes a new method for calibration model transfer evaluation. The new method is
based on comparing predictions from different instruments, rather than comparing predictions and reference values. A total of 75 flour
samples were available for the study. All samples were measured on ten near infrared (NIR) instruments from two instrumental plat-
forms, five NIR instruments from each platform. Protein content was quantified for all 75 samples and used as the reference variable
during modelling by partial least squares regression. By adding artificial noise to first the spectroscopic measurements and then the
reference values, this paper highlights the problems of including reference values in the evaluation of a model transfer, as uncertain-
ties in the reference method impact the evaluation. At the same time, this paper highlights the power of the proposed model transfer
evaluation, which is based on comparing predictions obtained from the different instruments. In this way, the impact of uncertainties

originating from the reference method is minimised.

Keywords: calibration, evaluation, model transfer, near infrared spectroscopy

Introduction

Multivariate calibration models are useful for extracting The PLS method estimates one or several dependent vari-
quantitative information from spectroscopic measurements.  ables, Y, by means of a set of predictor variables [spectro-
However, constructing a high quality multivariate calibra-  scopic measurements), X. The regression vector provides the
tion model using partial least squares (PLS] regression may  direct link from the (pre-processed] spectroscopic measure-
require up to hundreds or thousands of samples with reference  ments to the estimated values of Y.34 In an industrial setting
values and collected over a long time period. Consequently,  where multiple spectroscopic instruments are used for the
constructing high quality calibration models is an expensive =~ same measurements, it could be convenient to develop the

and time-consuming task."? calibration model on a single instrument only but apply this
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calibration model to the spectroscopic measurements of all
the instruments. In this case, it is clearly important that all
the instruments provide similar output. Otherwise, the results
(predictions) from the calibration model will be incorrect.’
Likewise, it is important that the instruments provide compa-
rable results over time. A large number of methods have
already been developed for transferring calibration models
from one instrument to another as well as keeping calibra-
tion models valid over time."? The more similar the responses
between instruments are, the more likely it is that the calibra-
tion transfer is successful.

Traditionally, calibration transfers are done in a master/
slave setting. The calibration model is developed on one
instrument (the master] and tested on other instruments (the
slaves). The root mean squared errors of prediction (RMSEP)
obtained for the slave instruments are then sometimes used
to evaluate the model transfer.®"" This RMSEP value is used
to verify how successful the model transfer was. The RMSEP
value includes uncertainties introduced by inadequacies in
the modelling steps, which can be related to differences in
the spectroscopic measurements of the master and slave
instruments. Nevertheless, the RMSEP value also includes
uncertainties originating from the reference method. This is a
fact which is often forgotten. Hence, large uncertainties in the
reference measurements would make the RMSEP value larger
and thereby make the model transfer appear poor even in the
ideal/perfect case, where the predictions of the master and
the salve instrument are identical.

Figure 1 illustrates how uncertainties introduced by
modelling and reference method affect the prediction error.
Uncertainties in the reference method will contribute to
imprecision along the horizontal direction, whereas those

Uncertainty in
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Figure 1. Influence of uncertainties originating from the
reference method and near infrared predictions, respectively,
on calibration model evaluation.

from the model (in the predictions) will cause the data points
to be uncertain in the vertical direction. Hence, if the reference
method is imprecise, the modelling will appear poor.'?™

In this paper, we show that the success of a model transfer
should not be determined based on a relationship with the
reference values. The aim of a model transfer is to obtain the
same results (i.e. predictions] on different instruments with
the same samples by applying only one model, as was also
done by, for example, Yoon et al." In this paper we propose
a new method for model transfer evaluation. This model
transfer evaluation will also be based on similarities in predic-
tions obtained from different instruments. In this way, the
impact of uncertainties related to the reference method will be
minimised. The assumption is, of course, that the developed
model performs at an acceptable level when benchmarked
against real reference values.

Materials and methods
Near infrared measurements

A total of 75 flour samples were measured on ten different
near infrared [NIR] instruments. Five NIR instruments were
DS2500 (FOSS Analytical A/S, Hillergd, Denmark] models and
five were InfraXact (FOSS Analytical A/S, Hillersd, Denmark])
models. The spectra from the five DS2500 instruments were
obtained in the wavelength range from 400 nm to 2499.5 nm,
with a total of 4200 data points. The spectra from the five
InfraXact instruments were obtained in the wavelength range
from 570 nm to 1848 nm, with a total of 640 data points. All
spectra were obtained in reflectance mode. To obey Beer’s law,
all spectra were transformed from reflectance into pseudo-
absorbance before modelling. The absorption spectra from
the five InfraXact and the five DS2500 are shown in Figure 2A
and Figure 2B, respectively.

It
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Figure 2. Raw near infrared spectra of flour samples.
(A) InfraXact. (B) DS2500.
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Figure 3. Leave-One-Instrument-Out cross-validation.

Protein content was quantified by Kjeldahl digestion for all
75 samples and used as the reference variable during PLS
modelling.*

Data analysis

Data were analysed using MATLAB version R2014a (8.3.0.532,
The MathWorks Inc., Natick, MA, USA) and PLS_Toolbox
version 7.5 [Eigenvector Research Inc., Manson, WA, USA).
Prior to PLS modelling, spectra were pre-processed by
standard normal variate and mean centring.’®

Model transfer evaluation

To evaluate model transfer performance two PLS models were
calculated. One PLS model was based on the five InfraXact
instruments and one on the five DS2500 instruments. Each
PLS model was validated by Leave-One-Instrument-Out cross-
validation (Figure 3). Predictions obtained from cross-valida-
tion were collected and the medians across samples were
found (Figure 4). The root mean squared error (RMSE) between
these medians and the cross-validated predictions (for each
instrument) was calculated. This RMSE relates to the simi-
larities between the predicted values from the instruments
and can thereby be used for evaluating model transfer. The
median is used as “the true prediction value” as it is (almost]
insensitive to outlying predictions, which would have affected,

Cross-Validated .
predictions Medlaq of
1 Cross-Validated
predictions
1

so|dweg

~
o

Figure 4. Median of cross-validated predictions.

for example, the mean of predictions. It is important to note
that the RMSE is not a measure of how well the “true” protein
content can be modelled by the spectroscopic measurements.
This RMSE is only a measure of how similar protein content
is modelled from the measurements obtained from different
instruments (i.e. the model transfer performance).

Simulation of error

In order to investigate how the methods responded to uncer-
tainties in the spectral and the reference measurements,
respectively, simulated deterioration of the data belonging
to the fifth InfraXact instrument (IX5) was performed. First,
deterioration of data was done by adding random noise to
the spectroscopic measurements of instrument IX5. Figure 5
shows the deterioration of the spectra from IX5. Second, the
reference data belonging to IX5 were deteriorated by random
noise. Figure 6 shows the deterioration of the reference values
belonging to IX5.

Results and discussion

This new method for evaluating model transfer should only
be based on inadequacies in the modelling. Therefore, it is
based on comparing predictions (i.e. model output) of the
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Figure 5. Simulated deterioration of spectra from instrument IX5 (InfraXact).
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Figure 6. Simulated deterioration of reference values
belonging to instrument IX5 (InfraXact).

same sample set. In order to highlight the power of this new
method, it will be compared below with model transfer evalua-
tion by means of comparing reference values with predictions.

First, the spectra of IX5 have been deteriorated by random
noise. This deterioration will change the relationship between
the spectroscopic measurements of IX5 and the reference
values. Hence, a model calibrated on the remaining InfraXact
instruments will not be valid for IX5. Applying this model to
IX5 will return erroneous predictions. This will show up both
when evaluating the model transfer by means of comparing
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transferred model prediction with reference values and when
evaluating by the new method. In the first case, errors will
show up because the predictions of IX5 are wrong and there-
fore not comparable with the reference values. In the new
method, errors will show up because the predictions of I1X5
will be different from the predictions of the other instrument.
Figure 7 shows the results when the spectra of IX5 are dete-
riorated. Instrument IX5 has a high RMSE when evaluated both
by comparing transferred model predictions with reference
values (Figure 7A] and by the new approach (Figure 7B).
However, comparing the two approaches for model transfer
evaluation becomes interesting when adding noise to the
reference values belonging to IX5. The model calibrated on
the remaining InfraXact instruments will still be valid for IX5.
The link between the spectroscopic measurements of the
calibration set and the estimation of the reference values
(i.e. the predictions) will also be valid for the (undeteriorated)
measurements from IX5. Nevertheless, evaluating the model
transfer by means of comparing transferred model predic-
tion with erroneous reference values, the predictions of IX5
will appear to have a large RMSE. Using the new method
for model transfer evaluation, the predictions obtained from
IX5 will be compared with the predictions obtained from the
remaining instruments. Figure 8 shows the results where
the reference values belonging to IX5 have been deteriorated.
Figure 8A shows the errors obtained when evaluating by
means of comparing transferred model prediction with refer-
ence values. Here it is found that IX5 has a high RMSE. Figure
8B shows the errors obtained using the new method. Here the
predictions are compared and it is found that the predictions
obtained from the measurements of IX5 are very similar to the
predictions obtained from the measurements of the remaining
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Figure 7. Results obtained with simulated deterioration of spectra from instrument IX5. (A] Model predictions vs reference values.
(B) Model predictions vs median of model predictions (new approach).
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Figure 8. Results obtained with simulated deterioration of reference values belonging to instrument IX5. (A) Model predictions vs
reference values. (B) Model predictions vs median of model predictions (new approach).

InfraXact instruments. Hence, Figure 8A indicates that the
model transfer is not successful, whereas Figure 8B indicates
that the model transfer indeed is successful.

In model transfer, a model is developed on one instrument
and then applied to other instruments. The spectroscopic
measurements are the model input to the predictions, which
are the model output. In an industrial setting where one model
is applied to the measurements of multiple instruments it
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is important that the predictions are identical for identical
samples. Therefore, the right way of evaluating model transfer
is by comparing predictions. Hence, Figure 8B (the new
method) gives a more direct and accurate picture of the model
transfer than Figure 8A (comparing transferred model predic-
tions with reference values).

When using multiple instruments for the same measure-
ments it can be convenient to do a model transfer. We believe
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Figure 9. Evaluated by new approach. Comparison of InfraXact instruments (A) and DS2500 instruments (B).
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that the task of model transfer is easier to overcome success-
fully if the original spectra from the multiple instruments are
already providing similar results. Therefore, we also believe
that this new method can be used as a quality criterion for
instruments. Figure 9 shows the comparison of InfraXact
and DS2500 using the new method. The results for the five
InfraXact instruments are shown in Figure 9A. The results
for the five DS2500 instruments are shown in Figure 9B. It
was found that the DS2500 instruments provide very similar
results compared with the InfraXact instruments, which show
a minor bias. Such evaluation would not have been possible if
the evaluation was performed by comparing the transferred
model predictions with the reference values, as the bias varia-
tion in InfraXact would be masked by the errors in the refer-
ence values.

Conclusions

This paper shows how model transfer evaluation may be influ-
enced by uncertainties in the reference method. In this paper
a new method for evaluating model transfer is proposed. The
new method is based on comparing predictions from multiple
instruments. Therefore, the new method is insensitive to
uncertainties in the reference values. For that reason, this new
method gives a direct measure for model transfer performance.
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ABSTRACT

Predicting individual fatty acids (FA) in bovine milk
from Fourier transform infrared (FT-IR) measurements
is desirable. However, such predictions may rely on
covariance structures among individual FA and total
fat content. These covariance structures may change
with factors such as breed and feed, among others.
The aim of this study was to estimate how spectral
variation associated with total fat content and breed
contributes to predictions of individual FA. This study
comprised 890 bovine milk samples from 2 breeds (455
Holstein and 435 Jersey). Holstein samples were col-
lected from 20 Danish dairy herds from October to
December 2009; Jersey samples were collected from 22
Danish dairy herds from February to April 2010. All
samples were from conventional herds and taken while
cows were housed. Moreover, in a spiking experiment,
FA (C14:0, C16:0, and C18:1 ¢is-9) were added (spiked)
to a background of commercial skim milk to determine
whether signals specific to those individual FA could
be obtained from the FT-IR measurements. This study
demonstrated that variation associated with total fat
content and breed was responsible for successful FT-
IR~based predictions of FA in the raw milk samples.
This was confirmed in the spiking experiment, which
showed that signals specific to individual FA could not
be identified in FT-IR measurements when several FA
were present in the same mixture. Hence, predicted
concentrations of individual FA in milk rely on covari-
ance structures with total fat content rather than ab-
sorption bands directly associated with individual FA.
If covariance structures between FA and total fat used
to calibrate partial least squares (PLS) models are not
conserved in future samples, these samples will show
incorrect and biased FA predictions. This was demon-
strated by using samples of one breed to calibrate and
samples of the other breed to validate PLS models for
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individual FA. The 2 breeds had different covariance
structures between individual FA and total fat content.
The results showed that the validation samples yielded
biased predictions. This may limit the usefulness of FT-
IR-based predictions of individual FA in milk recording
as indirect covariance structures in the calibration set
must be valid for future samples. Otherwise, future
samples will show incorrect predictions.

Key words: bovine, fatty acid, infrared spectroscopy,
milk, quantification

INTRODUCTION

Traditionally, detailed milk composition is measured
through time-consuming analyses such as gas chroma-
tography (GC). A high-throughput method is needed
to make it feasible for the dairy industry to measure
detailed milk composition as a routine quality param-
eter. Fourier transform infrared (FT-IR) spectroscopy
is currently used by commercial milk recording agen-
cies and dairies, which makes the method attractive
for providing high-throughput information on detailed
milk composition, including FA profile. Such high-
throughput information would be useful in relation to
documentation, process control, and breeding.

Bovine milk contains, on average, 4% fat with more
than 400 different FA (Jensen, 2002). Most fat in milk
is found as triglycerides. In the current study, the term
“FA” includes FA bound as triglycerides. The major
FA found in milk are palmitic acid (C16:0), stearic
acid (C18:0), oleic acid (C18:1 c¢is-9), and myristic acid
(C14:0; Jensen, 2002). The FA profile in milk depends
on several factors, including breed, feeding, stage of
lactation, and yield (Jensen, 2002). The content and
composition of FA in milk are important as quality
characteristics of dairy products (Couvreur et al., 2006)
as well as in human health (German et al., 2009); there-
fore, a high-throughput method measuring individual
FA is of interest.

Several studies have investigated the potential of
predicting the FA profile of milk from FT-IR measure-
ments (Soyeurt et al., 2011; De Marchi et al., 2014;
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Ferrand-Calmels et al., 2014). In general, these studies
conclude that milk FA present in high concentrations
are predicted with good accuracy; in particular, C14:0
and C16:0 have been highlighted as FA that could be
quantified routinely from FT-IR measurements.

Nevertheless, in traditional spectroscopy, FA are
divided into functional groups such as methane,
methylene, methyl, ester, ether, olefinic, aliphatic, and
carboxylic groups with their own characteristic group
frequencies. Whereas the average proportions of these
functional groups may be measured by FT-IR, it is not
likely that individual FA would show distinct absorption
patterns in FT-IR measurements of a complex mixture.
Chapman (1965) investigated infrared absorption of
pure lipids and found that differences in chain length of
solid FA yielded minimal differences in the fingerprint
region of the infrared spectra. However, these minimal
differences are expected to disappear when FA are pres-
ent in a complex liquid mixture such as milk.

Therefore, reported predictions of individual milk
FA from FT-IR measurements are likely to rely on
indirect correlations, which are confined to covariance
structures in the data set rather than absorption bands
directly associated with individual FA. Even though
this is not a problem in itself, it may be problematic
in terms of prediction accuracy and calibration robust-
ness, which are important but neglected parameters
when evaluating the usefulness of partial least squares
(PLS) regression models for predicting individual FA
from FT-IR measurements of milk. If indirect correla-
tions are used to calibrate a PLS model, the model will
not be valid for future samples unless the indirect cor-
relations are conserved for these samples. If the indirect
correlations are not conserved, the model will provide
incorrect predictions.

Individual FA may be highly correlated with total fat
content (TF), which in turn is easily quantified from
FT-IR measurements (Luinge et al., 1993). Hence, FA
may be predicted by covariation with TF. Furthermore,
if factors known to alter the FA profile (such as differ-
ent breeds) provide significant absorption patterns in
the FT-IR measurements, the possibility of FA being
predicted by interactions of TF and one or more of
these factors must be taken into account. Figure 1 il-
lustrates how a given FA (9“) may be predicted from
FT-IR measurements (X). Here, the prediction is split
into that part predicted by the indirect correlations
between the FA and the interaction of TF and breed
(TF x Breed) and the part predicted by information
independent of the TF x Breed interaction (Figure 1).
The more shared variation between X and the TF x
Breed interaction used for predicting a specific FA
(y 7 A), the more the prediction will depend on the indi-
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Figure 1. Prediction of a given fatty acid (y 7 A) from Fourier trans-
form infrared measurements (X); ¥ p is partly predicted by variation
described by the interaction of total fat content (TF) and breed (TF
x Breed) and partly by variation independent of this interaction; o is
a number between 0 and 1 and expresses how much each part contrib-
utes to y,; TF is given by y,» and breed is given by yp..,-

rect correlations between FA and the TF x Breed inter-
action. In Figure 1, o defines how dependent the FA
prediction is on the TF x Breed interaction. The FA
prediction is more dependent on the TF x Breed inter-
action as « increases toward 1.

This study investigated how PLS models for predict-
ing individual FA depend on spectral variation asso-
ciated with the TF x Breed interaction in raw milk
samples from 2 Danish dairy breeds. Furthermore, FA
(C14:0, C16:0, and C18:1 ¢is-9) were added to an iden-
tical background of skim milk in a spiking experiment
to investigate the contribution of individual FA to the
FT-IR absorption pattern of milk.

MATERIALS AND METHODS
Raw Milk Samples

A total number of 890 a.m. milk samples from indi-
vidual cows (435 Jersey and 455 Holsteins) were includ-
ed in this study. Samples originated from the Danish-
Swedish Milk Genomics Initiative (www.milkgenomics.
dk). The sampling strategy aimed to minimize environ-
mental variation but maximize the genetic variation
of the sample population. The Holstein samples were
collected from 20 Danish dairy herds from October to
December 2009. The Jersey samples were collected from
22 Danish dairy herds from February to April 2010. All
samples were from conventional herds and taken while
cows were housed (Poulsen et al., 2012).

Quantification of FA was done using GC as described
by Poulsen et al. (2012). Full FT-IR spectra were re-
corded on all samples using MilkoScan FT2 (Foss Ana-
lytical A/S, Hillerod, Denmark). Spectra were obtained
from fresh whole milk and TF was determined using
MilkoScan FT2; samples were measured in triplicate.
For each FT-IR measurement, a FT-IR water spec-
trum was subtracted and the difference spectrum was
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obtained. For further analysis, the average difference
spectrum of each sample (across the 3 replicates) was
calculated and used.

Spiked Milk Samples

Pure C14:0, C16:0, and C18:1 cis-9 monoacid triglyc-
erides (Sigma-Aldrich, Brgndby, Denmark) were added
to a background of commercial skim milk containing
0.1% fat (Arla Foods amba, Viby J, Denmark). The
monoacid triglycerides were added to 17 samples (in-
cluding 2 replicates) in a 3-component mixture design
(Montgomery, 2009), as shown in Figure 2. Each mono-
acid triglyceride was added to the skim milk in concen-
trations from 0 to 3 g/100 mL of skim milk, following
the procedure of Kaylegian et al. (2009). Cold skim
milk and monoacid triglycerides were heated to 70°C
to ensure that C16:0 triglyceride was melted before
mixing. Immediately after mixing, the skim milk and
monoacid triglycerides were stirred for 20 to 30 s us-
ing a high speed stirrer (Ultra-Turrax T18, IKA Works
Inc., Wilmington, NC) operating at 18,000 rpm. After
stirring, the mixture was homogenized (EmulsiFlex-C5,
Avestin Inc., Ottawa, ON, Canada) at approximately
20,000 kPa. Homogenization was repeated twice, as pro-
posed by Kaylegian et al. (2009). Samples were cooled
to 5°C in glass bottles. The stability of the samples was
visually assessed, and no phase separation was found in
any of the samples.

Additional background samples were prepared to
detect whether sample preparation (heating, stirring,
homogenizing, or cooling) would introduce variation
in the samples. No monoacid triglyceride was added
to the background samples. Stirring, homogenization,
and cooling did not affect the sample background. In
contrast, heating led to changes in the FT-IR spectra
(data not shown). Thus, the time each sample spent in
the water bath could introduce variation in the spectra.

The FT-IR full spectra were recorded for all samples
(including the background samples) using the MilkoScan
FT2. Samples were measured twice. For each FT-IR
measurement, a FT-IR water spectrum was subtracted
to obtain the difference spectrum. For each sample, the
average difference spectrum was calculated and used
for further analysis.

Data Analysis

Data were analyzed using Matlab version R2013b
(8.2.0.701, MathWorks Inc., Natick, MA) and PLS_
Toolbox version 7.3.1 (Eigenvector Research Inc., Man-
son, WA).

The FT-IR spectra were obtained in transmittance
mode in the range from 5,008 to 925 cm™', with a total
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of 1,060 data points for each sample. To obey Beer’s
law, the spectra were transformed from transmittance
into absorbance before modeling. The difference spectra
of the raw milk samples are depicted in Figure 3a. The
region from 2,968 to 5,008 em™ ' was considered as noise
and removed from the data set. The region from 1,773
to 2,802 ¢cm™!' contained no valuable information and
was also removed, together with the saturated water
signal (O-H bend) from 1,692 to 1,604 cm . Having
saturation of the single beam spectra in mind (i.e., no
signal going through to the detector), we decided to
remove the narrow wavenumber region from 2,915 to
2,930 em™'. In Figure 3b, the spectral parts of raw milk
samples included for modeling are shown. The same
wavenumber regions were included for modeling of both
the raw milk samples and spiked milk samples.

No obvious slope (multiplicative) effects were found
in the FT-IR measurements of raw (Figure 3) or spiked
milk samples (data not shown). However, minor offset
(additive) effects were found in the spectra. Offset dif-
ferences between spectra may affect the PLS models
and thus these were removed before PLS modeling by
preprocessing the spectra of both raw and spiked milk
samples using Savitzky-Golay first derivative (window
size of 9 points and second-order polynomial) followed
by mean centering. In order to obtain easier interpreta-
ble loadings, the spectra were preprocessed by standard
normal variate method followed by mean centering
before principal components analysis (PCA). Differ-

3n0

3 C18:1 cis-9 0

Figure 2. Three-component mixture design: each monoacid tri-
glyceride (C14:0, C16:0, and C18:1 ¢is-9) was added (spiked) to skim
milk in concentrations from 0 to 3 g/100 mL of skim milk; * indicates
samples made in duplicate.



INFRARED QUANTIFICATION OF MILK FATTY ACIDS

7943

a
. 1.5F Saturated Saturated
3 water signal water signal
Py 1r (O-H stretch) (O-H bend)
o
§ 05
=
2 0
o]
<
< -0.5

1 1 L L 1 1 1 L
5000 4500 4000 3500 3000 2500 2000 1500 1000
b Wavenumber (cm™)
1|, Fat /I Fat
— C-H C=0
%
]
© 05
©
£
o
2 5l
<
<
1 /i | 1 1 1

1
2900 2800 1800 1700 1600

1 1 1 1 1
1500 1400 1300 1200 1100 1000

Wavenumber (cm™)

2 3 4 5 6

7 8 9 10 "

Total Fat Content (g of fat/100 g of milk)

Figure 3. (a) Fourier transform infrared (FT-IR) difference spectra (water spectrum subtracted from each milk measurement); (b) parts of
the FT-IR difference spectra included for PLS modeling. Spectra in both plots were from raw milk samples and are shaded (colored) by total
fat content. AU = arbitrary units. Color version available in the online PDF.

ent preprocessing methods (multiplicative scatter cor-
rection, standard normal variate, and Savitzky-Golay
with varying window size, polynomial order and deriva-
tive) had only minor effects on model performance in
both data sets (data not shown). Variable selection by
interval PLS (Nergaard et al., 2000) did not improve
models and further variable selection (compared with
Figure 3b) was not performed in either experiment. All
PLS models were built with a mean centered univariate
response variable.

The PLS models calibrated using raw milk samples
were cross-validated by the venetian blind method with
10 data splits (i.e., each validation set is determined by
selecting every 10th sample in the data set, starting at
sample 1 through 10). Model parameters (coefficient
of determination, R?, and root mean squared error of
cross-validation, RMSECYV) are reported and were
used to choose the number of latent variables (LV).

The PLS models calibrated using spiked milk samples
were validated by leave-one-out cross-validation.

Predicting FA—Contribution from TF and Breed

A given FA is predicted by PLS regression as shown
in Equation [1], where y,, is a vector containing the
predicted values of the FA, X are the preprocessed FT-
IR spectra, and by, is the regression vector. The gen-
eral idea is to split the FA prediction (yF A) into a part

explained by the TF x Breed interaction (yFATFmed
and a part orthogonal (unrelated) to the TF x Breed
interaction (5' A, ), as shown in Equation [2]:

[1]
2]
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In Equation [3], TF is estimated by PLS, where §,,
is a vector containing the predicted TF values, X are
the preprocessed FT-IR spectra, and b, is the regres-
sion vector. In this study, y,;» was obtained from the
MilkoScan FT2:

Yor =X byp. (3]

To obtain the variation derived from the TF x Breed
interaction, a matrix V was constructed (Equation 4).
The first 2 columns of V consist of a vector of ones
(offset) and yp (slope) for Holstein samples and zeroes
for Jersey samples. The subsequent 2 columns of V
consist of zeroes for Holstein samples and a vector of
ones (offset) and y, (slope) for Jersey samples. Hence,
the matrix V spans the variation of the TF x Breed
interaction:

L gppy O 0
: : : : Holstein samples
L Uppass 0 0

0 o (4]

1 g ase
: : Jersey samples

0 0

1 G s00

As shown by Strang (2006), the spectra, X, may
(column-wise) be projected onto a space spanned by V.
This projection is done in Equation [5]. Hence, every
column of X 75, peeq is @ linear combination of V. Then,
X (the part of X orthogonal to V) is obtained by
subtracting Xyp.prea from X, as shown in Equation
[6]. Every column of X, will then be orthogonal to V.
Hence, X solely contains information not related to
TF and breed. The projection and orthogonalization
carried out in Equations [5] and [6] are commonly used
in methods such as external parameter orthogonaliza-
tion PLS (Roger et al., 2003), multiblock variance
partitioning (Skov et al., 2008), and sequential and
orthogonalized PLS (Nees et al., 2011):

Xppupreed = VOV - V)V X, [5]
Xo =X = Xpepreea- [6]

Note that X = Xyppre + Xo. Hence, the FA predic-
tion (yFA) may be split into a part explained by the TF

x Breed interaction (5' Fhppprens = XTFxBrecd * P A) and a
part orthogonal to the TF x Breed interaction
(yFAO =X, -bFA) without loss of information. This is

shown in Equation [7] and, thereby, the requirement
presented in Equation [2] is formalized:
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Yia =X bpy = Xppupreea - Pra + X -bpy- [7]

RESULTS AND DISCUSSION

The FT-IR measurements obtained on raw milk
samples are presented in Figure 3. The absorption band
located just above 3,000 em ™' (Figure 3a) remains from
the olefinic, =C-H stretch and should correlate to the
degree of unsaturated fat in the milk samples. How-
ever, in this study, it was not possible to establish such
a relationship, most likely because water absorption
caused saturation of the single beam spectrum in this
wavenumber region.

A PCA was performed on the combined data set of
FT-IR spectra of both raw and spiked milk samples.
Wavenumber regions included in the PCA are found in
Figure 3b and the results from PCA are presented in
Figure 4. The first LV of the PCA explained 90.9% of
the total variation. The score plot (Figure 4a) shows
that Holstein and Jersey samples were separated, to a
large extent, by the first LV. The loading plot (Figure
4b) shows that the first LV was related to the TF of the
samples. The second LV of the PCA explained 7.2% of
the total variation. The loading plot (Figure 4b) shows
that the second LV was related to total protein content
of the samples. The spiked milk samples are shown on
the left in the score plot (negative score on the first LV;
Figure 4a). This indicates that the spiked milk samples
were low in TF compared with the raw milk samples.
However, this was expected because FA were spiked
to match concentrations of the individual FA in raw
milk samples rather than the TF of raw milk samples.
Figure 4a reveals that the spiked milk samples did not
show FT-IR absorption remarkably different from that
of the raw milk samples.

Raw Milk Samples

The FA reference values obtained from GC were
converted into quantities per unit of milk (g of FA/100
g of milk). The FA quantities per unit of fat are not
directly comparable with F'T-IR absorption in milk and
resulted, not surprisingly, in poor predictions (data not
shown). In accordance with previous studies, the major
FA fractions were C14:0, C16:0, C18:0, and C18:1 cis-9.

The results of PLS models for individual FA are
shown in Table 1. Both breeds were combined in Table
1 to increase variation in the data set, even though
the FA profiles from Jersey and Holstein cows show
distinct characteristics (Poulsen et al., 2012). Our re-
sults in Table 1 are in agreement with previous stud-
ies, which revealed that the major FA, especially, are
predicted well (Soyeurt et al., 2008; De Marchi et al.,
2011; Maurice-Van Eijndhoven et al., 2013).
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Color version available in the online PDF.

However, the validity and usefulness of PLS models
estimating individual FA should not be based solely
on evaluating model performance parameters such as
R? and RMSECV. As mentioned, absorption patterns
specific to individual FA are very unlikely to be found
from FT-IR measurements in a complex mixture such
as milk. Therefore, FA predictions must rely on indi-
rect covariance structures. Several studies investigating
the usefulness of FT-IR for predicting FA in milk have
found that the most important spectral regions for
predicting FA are the aliphatic C-H stretches (~2,900
cm ') and the carbonyl stretch (~1,745 cm™') (Rutten
et al., 2009; Ferrand et al., 2011; De Marchi et al.,
2011). However, these are also the regions associated
with prediction of TF (Luinge et al., 1993; Kaylegian
et al., 2009). If the same spectral regions are used for
predicting both individual FA and TF, the predictions
cannot be independent. Increased TF of new samples

will then result in increased predictions of an individual
FA, even though other FA are responsible for the in-
crease in TF. Hence, if the FA-to-TF ratio found in the
calibration set is not conserved in future samples, fu-
ture samples will show incorrect and biased predictions.

To emphasize this point, the relationship between TF
and C14:0 was examined for Jersey and Holstein sam-
ples and shown not to be the same (Figure 5a). A PLS
model calibrated on the Jersey samples would be valid
for the Holstein samples if the PLS model is based on
direct relationships. However, if the model is based on
the indirect correlation between C14:0 and TF in Jer-
sey samples, the model would not be valid for Holstein
samples. From Figure 5b, we found that concentrations
of C14:0 of Holstein samples were predicted with a bias
toward lower values, which suggests that the C14:0 pre-
dictions were based on an indirect correlation with TF.
This finding illustrates the problem of models based on
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Table 1. Results from partial least squares models based on raw milk samples'

Relative
Fatty acid Range Mean SD ()% v R*CV RMSECV error
C6:0 0.03-0.25 0.13 0.04 0.29 5 0.88 0.01 0.10
C8:0 0.02-0.16 0.07 0.02 0.32 5 0.89 0.01 0.11
C10:0 0.04-0.36 0.16 0.05 0.43 9 0.91 0.02 0.11
C12:0 0.05-0.45 0.18 0.06 0.35 9 0.91 0.02 0.11
C13:0 0.00-0.03 0.01 0.01 0.54 2 0.60 0.01 0.35
C14:0 0.16-0.90 0.51 0.12 0.24 9 0.90 0.04 0.08
Cl14:1 0.01-0.09 0.04 0.01 0.30 1 0.37 0.01 0.30
C15:0 0.01-0.13 0.05 0.02 0.35 2 0.74 0.01 0.18
C16:0 0.41-3.07 141 0.44 0.31 7 0.91 0.14 0.10
C16:1 0.01-0.34 0.07 0.03 0.37 8 0.63 0.02 0.23
C17:0 0.00-0.09 0.02 0.01 0.37 1 0.54 0.01 0.36
C18:0 0.14-1.55 0.53 0.19 0.35 7 0.82 0.08 0.16
C18:1 trans-11 0.01-0.21 0.07 0.03 0.34 1 0.30 0.02 0.34
C18:1 cis-9 0.32-2.94 0.85 0.21 0.24 8 0.82 0.09 0.11
C18:2 cis-9,cis-12 0.02-0.25 0.07 0.02 0.28 7 0.65 0.01 0.18
C18:3 0.01-0.04 0.02 0.01 0.26 1 0.39 0.01 0.26
C18:2 cis-9,trans-11 (CLA) 0.01-0.06 0.02 0.01 0.28 7 0.37 0.01 0.24

'LV = number of latent variables; R*CV = cross-validated coefficient of determination; RMSECV = root mean squared error of cross-validation;
relative error = RMSECV /mean. Range, mean, SD, CV, and RMSECYV are in units of grams of FA/100 g of milk.

indirect correlations. In this study, all FA showed biased
predictions when models were calibrated on one breed
and validated on the other breed (data not shown).
In a study by Rutten et al. (2009), samples were col-
lected in both winter and summer, and it was found
that calibrating PLS models with summer samples and
predicting winter samples, or vice versa, resulted in
prediction bias. In that study, different feedings were
used during summer and winter. Different feedings are
known to alter the FA profile (Jensen, 2002). Hence,
the indirect correlation between FA and TF in summer
samples are probably not conserved for winter samples.
This is similar to the example illustrated in Figure 5:
when indirect correlations in the calibration set are not
conserved for the test set, incorrect and biased predic-
tions are obtained.

In a study based on 49 samples (using approximately
10 LV per PLS model), Soyeurt et al. (2006) found
that the correlation coefficients (r) obtained from PLS
models (measured vs. predicted FA) were greater than
those between the measured FA and TF. Based on these
findings, Soyeurt et al. (2006) suggested that predicted
concentrations of FA were based on infrared absorp-
tion bands specific to individual FA rather than to TF.
As TF (estimated from MilkoScan) is already a linear
combination of the FT-IR measurements, correlations
obtained from PLS models (measured vs. predicted FA)
will always be greater than or equal to the correlation
between measured FA and TF. If correlations from
PLS models are greater, this indicates that informa-
tion additional to TF is used for predicting the FA.
However, this additional information is not necessarily
the major contributor to the FA predictions. Further-
more, the additional information cannot be assigned as
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absorption directly associated with FA without further
investigations. In the current study, R* from PLS mod-
els (measured vs. predicted FA) were compared with
R? between measured FA and TF (Figure 6a). Results
similar to those obtained by Soyeurt et al. (2006) were
found. However, when comparing R? from PLS models
with R? between predicted FA and TF (Figure 6b), we
found that the degree of correlation between predicted
FA and TF exceeded model performance for most of
the FA. In particular, the increased R? values between
most FA and TF from Figure 6a to Figure 6b is an in-
dication of the FA being primarily modeled (indirectly)
by their relationship to TF.

Jersey and Holstein cows show distinct characteris-
tics in their FA profiles (Poulsen et al., 2012). When
information on breed differences is found in the FT-IR
measurements, this information can likely be used to
refine FA predictions derived from TF. To investigate
how much spectral variation associated with the TF
x Breed interaction contributes to predictions of in-
dividual FA, the projection procedure outlined in
Equations [3] to [7] was applied. In Figure 7, the per-
centage of explained variation of each individual FA
is presented. The percentage of explained variation is
split into a part that is a linear combination of the TF
X Breed interaction and a part that is independent
of this interaction. The results in Figure 7 are from
cross-validated models (as explained in the Appendix)
and show that all FA (except C18:2 ¢is-9,trans-11) are
mainly predicted as a linear combination of the TF x
Breed interaction; C18:2 cis-9,trans-11 appears to be
predicted more by information independent of the TF
x Breed interaction, but the overall prediction of C18:2
cis-9,trans-11 is poor and therefore of no interest. The
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ratio of the TF x Breed dependent part and the total
percentage of explained variation for each individual
FA will define o (from Figure 1). The ratio between
the part dependent on the TF x Breed interaction and
the part independent of the TF x Breed interaction
is influenced by the nature of the sample set, as well
as by the number of LV used in the particular model.
Hence, results outlined in Figure 7 are not universal
and the projection method should be viewed as a model
diagnostic tool.

To further explore the relationship between individu-
al FA and FT-IR absorption, R? values were calculated
between the absorption intensities of each wavenumber
of the raw FT-IR spectra and measured values of the
individual FA (g of FA/100 g of milk). The R? values
are presented in Figure 8 as a heat map. Figure 8 shows
that individual FA primarily correlate with the regions
associated with TF. None of the individual FA seem
to have a unique relationship with the FT-IR spectra.
Regions in the FT-IR measurements showing high cor-
relation with individual FA correlate better with TF.
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Figure 7. Prediction of FA by partial least squares regression ap-
plied to Fourier transform infrared measurements. The percent of ex-
plained variation in FA predictions was divided into that part related
to the interaction of total fat content (TF) and breed (TF x Breed
dependent; black) and a part independent of the interaction (TF x
Breed independent; gray). The ratio between the TF x Breed depen-
dent part and the total percent explained variation of each FA cor-
responds to a (from Figure 1).
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This further documents that individual FA do not have
unique absorption patterns in FT-IR measurements
obtained from milk.

Spiked Milk Samples

The results of the spiking experiment are shown in
Figure 9. The 3 plots show the RMSECV versus the
number of LV for each of the 3 FA (C14:0, C16:0, and
C18:1 cis-9). The RMSECV at 0 LV is the error ob-
tained when all samples are predicted as the average
value. Each monoglyceride was added to the skim milk
in concentrations from 0 to 3 g/100 mL of skim milk.
This corresponds approximately to the concentration
range of C16:0 and C18:1 ¢is-9 in the raw milk samples
(Table 1). Hence, for spiked and raw milk samples, the
cross-validation error of C16:0 and C18:1 cis-9 is (to
some extent) comparable. The FA C14:0 was found in
smaller quantities in the raw milk samples compared
with the spiked milk samples (Table 1); hence, the
cross-validation error of C14:0 is expected to be smaller
in raw milk samples than in spiked milk samples.

In theory, it should be possible to model the FT-IR
measurements using 2 LV, as the experimental design
(Figure 2) has closure and thus results in a rank 2
system. It may be argued to include 1 additional LV to
model variation introduced by different heating times
during sample preparation. However, even though
C14:0, C16:0, and C18:1 c¢is-9 are modeled with 5 to 6
LV (imposing the risk of over-fitting), the RMSECV for
the spiked milk samples (Figure 9) are notably greater
than those reported in the literature (De Marchi et
al., 2011; Soyeurt et al., 2011; Ferrand-Calmels et al.,
2014) and observed in the current study for raw milk
samples (Table 1). This indicates that good predictions
of these FA in raw milk samples are most likely due
to indirect correlations, which are not present in the
spiked samples.

For C14:0, increased values of RMSECV were found
when going from 2 to 3 LV; for C16:0, increased RM-
SECV were found going from 1 to 2 LV; and for C18:1
cis-9, increased RMSECV values were observed going
from 1 to 3 LV (Figure 9). Different preprocessing did
not remove the increase in RMSECV with increasing
numbers of LV (data not shown). An increase in RM-
SECV with an increasing number of LV indicates that
finding systematic variation in the spectra that corre-
lates with individual FA is difficult. The behavior of the
RMSECYV may be due to the fact that the information
in the FT-IR spectra specific to the individual FA is mi-
nor and accounts for a limited amount of the variation
in the spectra. A few LV may then be needed to model
(remove) the major systematic spectral variation before
the information specific to the FA can be captured.
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However, as FA were spiked to a similar background, tion specific to the individual FA is present in the FT-
spectral variation that could hide information specific IR spectra. The lower RMSECV at 5 to 6 LV may be
to the FA must be minimal and it seems more plausible the consequence of over-fitting due to the combination
that the increase in RMSECYV is because no informa- of a limited number of samples (17) and the relatively
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Figure 9. Prediction of monoacid triglycerides (C14:0, C16:0, and C18:1 ¢is-9) in spiked milk samples by partial least squares (PLS) regres-
sion applied to Fourier transform infrared measurements. Root mean squared error of cross-validation (RMSECV) from PLS models as a func-
tion of number of latent variables (LV) included in the model.
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high number of LV. Furthermore, some indirect correla-
tions between FA and the FT-IR measurements may
still occur in the spiked milk samples. As the 3 FA
do not have the same molecular weight, the FA are
not spiked in equal amounts (i.e., moles of FA per 100
mL of milk). Hence, C14:0 would in general be present
at a higher molarity than either C16:0 or C18:1 cis-9.
Therefore, FT-IR absorption associated with carbonyl
and the glycerol backbone would be affected more by
C14:0 than by the other FA. Even though the errors of
Figure 9 were notably greater than those obtained from
raw milk samples, the errors of Figure 9 may still be
overoptimistic, because indirect correlations may occur
due to the simple experimental setup.

CONCLUSIONS

Concentrations of individual FA were predicted by
applying PLS to FT-IR measurements of raw milk
samples. Spectral variation associated with the inter-
action of TF and breed was important in predicting
the FA concentrations of the samples available in this
study. Using a spiking experiment, we found that FT-
IR absorption signals due to specific FA (C14:0, C16:0,
and C18:1 cis-9) cannot be detected when FA are
mixed in a matrix of skim milk. Similarly, FA calibra-
tions made on one breed and applied to another breed
exhibited biased prediction results. Thus, predictions
of individual FA by FT-IR measurements in milk are
indirect and are based primarily on covariation between
the FA and TF. The FA calibration models are not
based on causal relationships but indirect correlations.
Recommendations on implementing FT-IR-based FA
models in milk recording schemes, for example, must
account for the universal validity of these indirect cor-
relations. Recommendations cannot be done solely on
the basis of PLS model performance parameters such as
R? and RMSECV. In contrast to previous studies, we
suggest that indirect FA models may not be useful in
milk recording systems or breeding programs because
the FA models are providing information related to
total fat rather than to individual FA. The indirect
correlations responsible for successful FA predictions in
a sample set may not be valid for samples of a different
nature (different FA profiles), meaning that developed
models may result in incorrect predictions of FA in
future samples.
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APPENDIX: Cross-Validation
of the Projection Procedure

The FT-IR measurements (X), the FA (yp), and the
matrix V (Equation [4]) are split into calibration sets
(Xun Yearas Vew) and validation sets (X, ¥ vatid, pas
Vvuia); Xew and yeoup are centered in Equations [8]
and [9], respectively:

XCal.mncn = XCal -1 iCal'/ [8}

where Xy men 18 the mean centered calibration spec-
tra, 1 is a vector of ones, and X, is a row vector con-
taining the average value of each of the columns in
X and

yC’al,FA,mnm = YcCal,FA — 1 y(f’al,FA7 [9]

where ¥y pamnen 15 the mean centered FA calibration
set, You pa s the average value of y ¢y pa-

Likewise, X4 and ¥ yqrm are centered by X, and
Yow,ra in Equations [10] and [11], respectively:

XValid,mncn = XValz'd -1 iCal7 [10}
where Xy, mnen 18 the centered validation spectra, and

YValid, FAmnen = yValid,FA -1 g(,'aLF/U [11]

7951

where Yy, pamnen 15 the centered FA validation set.
The multiple linear regression (MLR) model between

X Camnen and 'V gy is found in Equation [12]:

XCal.mncn = VCal D+ E7 [12]

where D is the regression coefficients and E is the re-
siduals.

The solution to V¢, - D will obviously be a linear
combination of Vg, (i.e., the TF x Breed interaction).
The regression coefficients D are estimated from Equa-
tion [13]:

T —1y T
D= (VCal : VCaZ) VCal ) XCaLmncn’ [13]

where Vgal is the transpose of V¢

The part of X g men being a linear combination of
the TF x Breed interaction is estimated in Equation
[14]:

XVah'd,TFxBreed = Vg - D, [14}

and the part of Xy, e, being independent of the TF
x Breed interaction is estimated in Equation [15]:

XVah'dA,O = XValid.mnm - XVaZidIFXBreed' [15]

A PLS model is fitted between Xcy e — and
Y calpAmnen, @nd the regression coefficients b are ob-
tained. The part of ¥y, pamne, Peing a linear combina-
tion of the TF x Breed interaction is estimated in
Equation [16]:

yValLd,FA“.vxﬁreed = XVaZid,TFXBmed : b7 [16]
and the part of §y,4 pa e, Peing orthogonal to the TF
x Breed interaction is estimated in Equation [17]:

yVahd‘,FAO = Xyaiqo b (17]

In the current study, the projection procedure was
cross-validated by the venetian blind method with 10
data splits (i.e., each validation set is determined by
selecting every 10th sample in the data set, starting at
sample 1 through 10).
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ABSTRACT

Predicting protein fractions and coagulation properties in bovine milk from Fourier
transform infrared (FT-IR) measurements is desirable. However, such predictions may rely on
correlations with total protein content. The aim of this study is to show how correlations between total
protein content, protein fractions and coagulation properties are responsible for successful predictions
of protein fractions and rennet-induced coagulation properties in milk samples. This study comprised
832 bovine milk samples from two breeds (426 Holstein and 406 Jersey). Holstein samples were
collected from 20 Danish dairy herds from October to December 2009; Jersey samples were collected
from 22 Danish dairy herds from February to April 2010. All samples were from conventional herds
and taken while cows were housed. The results showed that k-CN, as1-CN, as1-CN 8P and curd firming
rate could be predicted from FT-IR measurements of the milk samples (with coefficient of
determination, R? between 0.66 and 0.71). However, the study further demonstrated that the
successfulness of these FT-IR based predictions is based on indirect relationships with total protein
content. Hence, the FT-IR predictions rely on covariance structures with total protein content rather
than absorption bands directly associated with the protein fractions and coagulation properties. If
covariance structures between the protein fractions, coagulation properties and total protein content,
used to calibrate Partial Least Squares (PLS) models, are not conserved in future samples, these
samples will show incorrect predictions of the protein fractions and coagulation properties. This was
demonstrated using samples of one breed to calibrate and samples of the other breed to validate PLS
models for B-CN. The 2 breeds have different covariance structures between B-CN and total protein
content. The results showed that the validation samples yielded incorrect predictions. This may limit
the usefulness of FT-IR-based predictions of protein fractions in milk recording, as indirect covariance
structures in the calibration set must be valid for future samples. Otherwise, future samples will show

incorrect predictions.

Key Words: bovine, coagulation properties, infrared spectroscopy, milk, protein composition



INTRODUCTION

In recent years, Fourier transform infrared (FT-IR) spectroscopy has been suggested as
a method with the ability to outcompete chromatography based analyses for detailed milk analyses
(Soyeurt et al., 2006; Rutten et al., 2011; De Marchi et al., 2014). Especially the high-throughput
measurements of FT-IR analyses is an advantage over the more time-consuming chromatography based
analyses. If FT-IR based predictions do not compromise quality of the estimated detailed milk
composition this would open possibilities for using FT-IR as a phenotyping tool in relation to e.g.
breeding programs (Bovenhuis et al., 2013). Particularly the major fatty acids have been proposed to be
routinely estimated from FT-IR measurements (Soyeurt et al., 2006; Rutten et al., 2009) whereas
protein fractions in general have been predicted with less accuracy from FT-IR measurements (Bonfatti
etal., 2011; Rutten et al., 2011).

Combined, the four caseins (as1-CN, as2-CN, B-CN and «-CN) and two whey proteins o-
lactalbumin and B-lactoglobulin (a-LA and B-LG) comprise approximately 90% of the bovine protein
fraction (wt/wt; Walstra, 1999). Heterogeneity in the major milk proteins is related to underlying
genetic polymorphism (Heck et al., 2009), as well as affected by e.g. days in milking and parity
(Poulsen et al., 2016). In addition, post translational modification of the proteins adds to their isoform
complexity and is shown to affect technological properties of the milk including milk coagulation
(Frederiksen et al., 2011; Jensen et al., 2012). In particular, the relative fraction of k-CN to total protein
is important for milk coagulation together with the level of glycosylated k-CN (Jensen et al., 2012;
Bonfatti et al., 2014). Furthermore, bovine milk proteins are sold as ingredients based on their
nutritional or functional properties and reliable high-throughput estimation of these are therefore
warranted.

Several studies attempted using FT-IR measurements for predicting protein fractions or
coagulation properties of bovine milk samples (Dal Zotto et al., 2008; Bonfatti et al., 2011; Rutten et
al., 2011). Infrared radiation is absorbed by exciting fundamental vibrations of molecular bonds
expressing a change in the dipole moment. For proteins in a milk matrix, the most pronounced
absorption signal is related to the amide II band (primarily N-H bending vibration) located at approx.
1,540 cm™ (Luinge et al., 1993). This band is originating from the peptide backbone. Specific milk
proteins are differentiated by the composition of their amino acid residues. The different amino acids

are present in more or less all the protein fractions, though in varying relative contents. However, the



FT-IR active groups in the amino acids are more or less the same (Walstra et al., 2006). Therefore, it
might be difficult to obtain unique FT-IR signals for specific protein fractions in milk.

Eskildsen et al. (2014) argued that successful predictions of individual fatty acids in
milk by FT-IR measurements were due to covariance between individual fatty acids and total fat
content. Bonfatti et al. (2015) speculated that a similar covariance phenomenon between protein
fractions and total protein (TP) content is responsible for successful predictions of protein fractions.
The TP content is easily predicted from FT-IR measurements using primarily the amide II band
(Luinge et al., 1993). Therefore, good correlations between TP and individual protein fractions might
enable indirect predictions of protein fractions using the amide II. The indirect relationships between
TP and protein fractions may change with factors like breed, feed, etc. Therefore, indirect relationships
for calibrating e.g. partial least squares (PLS) regression models may compromise calibration
robustness. If an indirect relationship is used to calibrate a regression model, the model will not be
valid for future samples unless the indirect relationship is conserved in the new samples. If such an
indirect relationship is not conserved, the model will provide incorrect predictions as shown by
Eskildsen et al. (2014).

McDermott et al. (2016) argued that when predicting protein fractions from FT-IR
measurements, it is not only TP related information that is being used during prediction but the FT-IR
spectra are providing additional information. However, if information being related with TP is just
partly used for predicting a given protein fraction, this prediction will be indirect and a change in TP
will affect the prediction of the protein fraction. Furthermore, McDermott et al. (2016) did not identify
this additional information. It could as well be related to additional indirect relationships with other
major milk components or be a consequence of overfitting.

This study investigated if FT-IR can be used to obtain reliable prediction models for the
major milk proteins and coagulation properties and how PLS models for predicting these protein
fractions as well as curd firming rate (CFR) and rennet coagulation time (RCT) depend on correlations

between these traits and TP in raw milk samples from 2 Danish dairy breeds.

MATERIALS AND METHODS
Morning milk samples from 406 Jersey cows, collected from 22 Danish dairy herds from

February to April 2010, and 426 Holstein cows, collected from 20 Danish dairy herds from October to



december 2009, were included in this study. All samples were from conventional herds and taken while
cows were housed. The sample set used in this study is a subset of the sample set used in Eskildsen et
al. (2014) for prediction of individual fatty acids. As compared with Eskildsen et al. (2014) some
samples were excluded in this present study as the samples were not analyzed for content of protein
fractions. As also pointed out by Eskildsen et al. (2014) the sampling strategy aimed at minimizing
environmental variation but maximizing the genetic variation of the sample population (Poulsen et al.,
2012). The milk samples were placed on ice during transport to the laboratory and analyzed the same
day using MilkoScan FT2 (FOSS Analytical A/S, Hillered, Denmark) and ReoRox4 rheometer
(MediRox AB, Nykoping, Sweden). The FT-IR measurements were performed on the raw milk
samples but the rheological analysis was performed on skimmed milk samples (Jensen et al., 2012). A
part of each skim milk sample was stored at -20°C for quantification of protein fractions by
electrospray mass spectrometry coupled to liquid chromatography (LC-ESI/MS).

Protein fractions were quantified using LC-ESI/MS as described by Jensen et al. (2012).
The relative reference values obtained from LC-ESI/MS were multiplied by TP in order to convert the
protein fractions into quantities per unit milk (g of specific protein/100 g of milk) as quantities of
protein fractions in units of TP are not comparable with FT-IR spectra obtained from liquid milk.

Rennet-induced coagulation of skimmed milk samples was determined by a ReoRox4
rheometer, as outlined in Poulsen et al. (2013) using addition of chymosin (ChyMax, Chr. Hansen,
Hersholm, Denmark). Milk coagulation properties for individual samples were described as RCT and
CFR. The RCT was defined as the amount of time from chymosin addition to when the phase angle
reached 45° (6 = 45°). The CFR was calculated from consecutive points of the linear part of the gelation
profile [AG’/At]in. The descriptive statistics (including breed differences) for protein composition and
milk coagulation properties of the samples are described by Poulsen et al. (2013) and Poulsen et al.
(2016).

As also described by Eskildsen et al. (2014) FT-IR full-spectra were recorded on all
samples using MilkoScan FT2. Each FT-IR measurement, was ratioed against a FT-IR water spectrum
(as background). Spectra were obtained in triplicates from fresh whole milk samples and the average
difference spectrum across the three replicates was used for further analysis. The TP content, total fat
and total lactose content were determined using MilkoScan FT2 as also outlined by Eskildsen et al.

(2014).



Data Analysis

The MATLAB version R2014a (8.3.0.532, MathWorks Inc., Natick, MA, USA) and
PLS Toolbox version 7.5 (Eigenvector Research Inc., Manson, WA, USA) was used for data analysis.

FT-IR spectra were obtained in transmittance and transformed into absorbance to obey
Beer’s law. Spectra were obtained in the range from 5,008 cm™ to 925 cm’!, with a total of 1,060 data
points, for each sample. The FT-IR spectra were preprocessed by Savitzky-Golay 1% derivative
(window size of 9 points and second-order polynomial) to remove offset differences between samples
and then mean centered before PLS modeling. Both Holstein and Jersey samples were included
(simultaneous) in fitting the PLS models. All PLS models were built with a mean centered univariate
response variable.

Venetian blinds with 10 data splits (starting at sample 1 through 10, each validation set
was determined by selecting every 10" sample in the data set) was used for validating PLS models
calibrated on both Jersey and Holstein samples. Model parameters (cross-validated coefficient of
determination, R2CV and root mean squared error of cross-validation, RMSECYV) are reported and
were used for choosing number of Latent Variables.

In order to investigate whether indirect relationships are responsible for successful
predictions of the protein fractions, 3 parameters are calculated and compared. The first parameter is
the R?CV from PLS models (measured vs. predicted). This parameter shows how good the individual
milk proteins (or coagulation properties) are predicted. The second parameter is the coefficient of
determination (R?) between the measured values of the individual proteins (or coagulation properties)
and predicted TP. In the cases where the protein fractions are only predicted by the correlation to TP,
the second parameter will equal the model performance (the first parameter). If the protein fractions are
modeled only by the correlation with TP, then the protein fractions and TP will be modeled by the
same wavenumbers of the FT-IR spectra (i.e. the same linear combination of the wavenumbers). This
would cause the correlation between the predicted values and predicted TP to be 1. Hence, if the third
parameter is 1 then the protein fractions are modelled only by the correlation with TP.

To highlight the consequences of indirect models, one additional PLS model predicting
B-CN was calibrated on a subset of the Holstein samples. The subset included 16 Holstein herds (338
samples). The remaining 4 Holstein herds (88 samples) were used as one test set and all the Jersey

samples were used as another test set. The 4 Holstein herds were randomly selected. The data were



preprocessed similar to the multi-breed PLS models. The root mean squared error of calibration
(RMSEC) for the Holstein calibration samples was compared with the root mean squared error of

prediction (RMSEP) for the Holstein test set samples and the Jersey samples, respectively.

RESULTS AND DISCUSSION
The FT-IR absorption spectra of the milk samples are presented in Figure la. The
spectra are colored by TP. The region from 2,968 cm™ to 5,008 cm™ and from 1,692 cm™ to 1,604 cm!
was not included for modeling due to low signal-to-noise ratio. No peaks are found in the region from
1,773 cm™ to 2,802 cm™ and therefore this region was also not included for modeling. Furthermore,
due to possible saturation of the single beam spectra, a narrow region from 2,915 cm™ to 2,930 cm’!
was not included for modeling. Figure 1b shows the spectral parts included for modeling. The spectra

in Figure 1b are also colored by TP.

-
_1sr Saturated | Saturated
) water signal water signal
ST |(O-H streteh) | (O-H bend)
Q
§ 05
£
2 0
<
< .05

5000 4500 4000 3500 3000 2500 2000 1500 1000

b Wavenumber (cm‘1)
; "

=)

< Protein

@ ] N-H (peptide bond)

2054 (amide 1)

© -

2 N

]

2

< Q

<

L 1 ] L \. 1 1 1 L 1
2900 2800 1800 1700 1600 1500 1400 1300 1200 1100 1000
Wavenumber (cm“)

2 3 4 5 6 7 8 9 10 1"
Total Protein Content (g of protein/100 g of milk)

Figure 1. (a) Fourier transform infrared (FT-IR) difference spectra (water spectrum subtracted from each milk
measurement); (b) parts of the FT-IR difference spectra included for PLS modeling. Spectra are colored (shaded) by total
protein content. AU = absorbance units. Color version available in the online PDF. The figure is modified from Eskildsen et

al. (2014).



Offset differences between spectra may affect the PLS models. In order to remove offset
differences the spectra were preprocessed by Savitzky-Golay 1% derivative prior modeling, also done in
Eskildsen et al. (2014).

The spectral data were modeled by principal component analysis (results not shown).
The spectral sample set used in this study only differ slightly from the spectral sample set used by
Eskildsen et al. (2014). Therefore, the results from principal component analysis are also very similar.
Eskildsen et al. (2014) found that Holstein and Jersey samples were to a large extent separated by
spectral variation associated with total fat and TP, where the Jersey samples are having higher content

of both total fat and TP.
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Figure 2. Coefficient of determination (R?) between measured specific proteins (g/100 g of milk) and Fourier transform
infrared measurements preprocessed by Savitzky-Golay first derivative. TP = total protein content. RCT = rennet

coagulation time, CFR = curd firming rate. Color version available in the online PDF.



To explore how individual fatty acids related with the FT-IR spectra, Eskildsen et al.
(2014) calculated R? values between the absorption intensities of each wavenumber and concentrations
of individual fatty acids. Eskildsen et al. (2014) found that the fatty acids showed a similar correlation
pattern as total fat content with FT-IR absorption intensities. Hence, the fatty acids primarily correlated
with the spectral regions associated with symmetric and anti-symmetric stretching vibrations of
methylene groups and the stretching vibration of carbonyl groups. In a similar fashion, R%-values were
calculated between absorption intensities of each wavenumber of the preprocessed (Savitzky-Golay 1%
derivative) FT-IR spectra and the measured values of the individual protein fractions, CFR and RCT
(Figure 2). Figure 2 shows a similar trend for TP and protein fractions as Eskildsen et al. (2014) found
for total fat content and fatty acids. The individual protein fractions (like x¥-CN and asi-CN 8P) and
CFR have more or less the same correlation pattern as TP, which is having high correlation with the
expected area between 1,600 cm™ and 1,500 cm™ related to the amide II band. This could very well
indicate that the individual proteins and coagulation properties do not give rise to specific absorption
bands in FT-IR and are predicted mainly be the amide II band.

Table 1 shows the results of the PLS models for protein fractions, CFR and RCT.
Acceptable predictions were obtained for k-CN, as1-CN, as1-CN 8P as well as CFR, which all yielded
R2CV-values round 0.7. The results for asi-CN and x-CN are in agreement to what was reported by De
Marchi et al. (2009b) and Bonfatti et al. (2011). In this study poor predictions were obtained for
glycosylated k-CN (k-CN G), as2-CN, as2-CN 11P, B-CN, a-LA, B-LG, as well as RCT, which all have
R2CV-values from 0.06 to 0.47. The results for as2-CN and p-CN are in agreement with De Marchi et
al. (2009b) and Bonfatti et al. (2011). However, our predictions for k-CN G, B-CN, a-LA and B-LG are
worse than what have been previously reported (De Marchi et al., 2009b; Bonfatti et al., 2011; Rutten
et al., 2011). Moreover, in this study the prediction of RCT is remarkably worse compared to other
studies (Dal Zotto et al., 2008; De Marchi et al., 2009a; De Marchi et al., 2013). It is worth noticing
that some protein fractions and coagulation properties are well predicted in some studies and poorly
predicted in other studies. As highlighted by De Marchi et al. (2014) different reference methods are
used across studies. When calibration models are evaluated and compared based on R>CV-values,
differences in uncertainties among the reference methods will impact the R?*CV-values (DiFoggio,
1995; Faber and Kowalski, 1997; De Marchi et al., 2014). Furthermore, in this present study milk

coagulation properties were determined on skimmed milk whereas this is not the case in other studies



(Dal Zotto et al., 2008; De Marchi et al., 2009a; De Marchi et al., 2013). This makes it difficult to
directly compare calibration models across studies. Moreover, if protein fractions and coagulation
properties are predicted by indirect relationships, then these indirect relationships will also impact
evaluations of the calibration models. In some studies, certain indirect relationships may enable good
predictions for specific traits, whereas these indirect relationships may not be present in other studies

due to differences in e.g. sampling strategies and consequently the traits are showing poor predictions.

Table 1. Results from partial least squares models!

Protein fraction or
. . Range Mean SD CV LV R*CV RMSECV Relative
coagulation trait

error
k-CN 0.11-040 025 0.06 0.25 2 0.71 0.03 0.13
k-CN G 0.01-0.15 0.05 0.02 034 4 0.20 0.02 0.30
asi-CN 0.50-1.64 1.05 0.18 0.18 2 0.66 0.11 0.10
as1-CN 8P 029-140 080 0.16 0.20 2 0.71 0.09 0.11
as2-CN 0.09-047 020 0.06 030 2 0.36 0.05 0.24
as2-CN 11P 0.05-0.32 0.13 0.04 034 2 0.47 0.03 0.25
B-CN 0.57-1.81 1.25 0.16 0.13 7 0.25 0.14 0.11
a-LA 0.02-020 0.11 0.02 0.22 4 0.06 0.02 0.21
B-LG 0.09-0.51 027 0.06 024 9 0.34 0.05 0.19
CFR 0—-44.85 14.80 842 0.57 2 0.66 4.90 0.33
RCT 5.53-3035 1329 233 0.18 4 0.12 2.19 0.17

ISD = Standard deviation; CV = Coefficient of variation; LV = number of latent variables; R?CV = cross-validated
coefficient of determination; RMSECV = root mean squared error of cross-validation; relative error = RMSECV/mean;
CFR = curd firming rate; RCT = rennet coagulation time. Range, mean, SD, CV and RMSECYV are in units of grams/100

grams of milk for protein fractions, units of Pa/min for CFR and units of min for RCT.

In order to investigate these indirect relationships the three parameters, R2CV (model
performance), R? (measured traits vs predicted TP) and R? (predicted traits and predicted TP), were

calculated and compared. Model performance (the first parameter) is plotted on the X-axis in Figure 3.
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The further to the right the protein fractions are located in Figure 3, the better the protein fractions are
predicted. On the Y-axis (Figure 3) the R? between the measured traits and predicted TP (the second
parameter) is plotted with an open square and R? between predicted traits and predicted TP (the third
parameter) is plotted with a filled triangle.

Figure 3 reveals that the protein fractions asi-CN 8P, k-CN and as1-CN as well as CFR,
which are all modeled well, are very dependent on the correlation with TP (note that R?-values for asi-
CN coincide with R%-values for CFR and R2-values for asi-CN 8P coincide with R?-values for x-CN
coincide in Figure 3). Total fat and lactose are also modeled very well (Figure 3). However, these
models are not dependent on the correlation with TP. This is shown by the R? between the measured
values and TP (parameter 2) and the R? between the predicted values and TP (parameter 3) are almost
the same. Hence, total fat and lactose must be predicted by parts of the FT-IR spectra, which are
different from the parts used for predicting TP as also shown by (Luinge et al., 1993).
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Figure 3. Relationship between cross-validated coefficient of determination (R2CV) from cross-validated PLS models (X-
axis) and coefficient of determination (R?) between measured and predicted values of individual proteins, coagulation
properties, lactose, total fat and predicted total protein (TP) content (Y-axis). RCT = rennet coagulation time, CFR = curd

firming rate.
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Figure 4 illustrates the problems in modeling individual proteins by the indirect
relationship with TP. In Figure 4a, B-CN is plotted against TP for the 2 breeds (Holstein and Jersey).
From Figure 4a it is clear that the relationship between B-CN and TP is different for the 2 breeds. There
is a fairly good correlation between B-CN and TP for the Holstein samples, whereas this correlation is
poor for the Jersey samples. Samples of the 4 randomly selected Holstein herds are highlighted with
triangular symbols in Figure 4a. These 4 herds are kept aside together with the Jersey samples for
testing and a PLS model is calibrated on the remaining Holstein samples belonging to 16 herds. Figure
4b shows the measured vs. predicted B-CN values for the calibration set and the two test sets. The
RMSEC for the Holstein calibration set is 0.09 g B-CN pr. 100 g of milk. The RMSEP for the Holstein
test set is also 0.09 g B-CN pr. 100 g of milk, whereas the RMSEP for the Jersey samples is 0.29 g B-
CN pr. 100 g of milk, which is remarkably higher than the error for the Holstein test set. Hence, Figure
4 highlights the problems using models based on indirect correlations. The indirect relationship used to
calibrate the PLS model on Holstein samples is not valid for Jersey samples. In order for a model based
on indirect relationships to be valid, the indirect relationships used for calibrating the model must be
conserved in the new data set.

Building universal models (using e.g. a high number of samples from multiple breeds in
the calibration set) will not necessarily solve the problem of indirect models. Including a high amount
of variation in the calibration set (different breeds, feeding systems, lactation stages, etc.) will most
likely break the indirect relationship between protein fractions and TP. However, the consequence will
presumably be a poor global model as the links between the FT-IR spectra and the protein fractions are
lost. In Figure 4b the PLS model is calibrated on the Holstein samples only. There is a good
relationship between B-CN and TP for the Holstein samples and consequently the Holstein samples are
predicted well (Figure 4b). The PLS models presented in Table 1 are calibrated on both Jersey and
Holstein samples. Figure 4a reveals that the overall correlation between TP and B-CN is poor if taking
both breeds into account simultaneously. Consequently, the model for -CN is poor when both breeds
are included in the calibration set (Table 1). An option would then be to only construct indirect local
models on e.g. single breeds. Here the correlations between protein fractions and TP are expected to be
strong and thereby is the link between the FT-IR spectra and the protein fractions established.

Nevertheless, such indirect relationships need to be validated. Furthermore, the indirect predictions of
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protein fractions are of limited use as they (in principle) do not provide additional information (or very

limited additional information) if compared to a model predicting TP.
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Figure 4. (a) Relationship between measured B-CN and total protein content (TP) in milk samples from individual Jersey
and Holstein cows; (b) measured versus predicted values of B-CN; B-CN was predicted by Partial Least Squares (PLS)
regression applied to Fourier transform infrared measurements. The PLS model is calibrated on a subset of Holstein sample
and tested with the remaining Holstein samples and the Jersey samples. LV = latent variables, RMSEC = root mean squared

error of calibration, RMSEP = root mean squared error of prediction. Color version available in the online PDF.

CONCLUSIONS

Concentrations of protein fractions as well as coagulation properties were predicted by
applying PLS to FT-IR measurements of milk samples. This paper has illustrated that predictions of
protein fractions and coagulation properties, for the samples available in this study, rely on indirect
relationships with TP. This fact compromises robustness of the calibration models for protein fractions
and coagulation properties. The calibration models will no longer be valid if these indirect relationships
change. Hence, calibration models may not be valid for samples of a different nature (e.g. different
breeds or lactation stages). Therefore, recommendations on applying FT-IR based estimates of protein
fractions and coagulation properties for e.g. breeding purposes must account for these indirect

relationships. It is simply not sufficient just evaluating model performance parameters like R?CV and

13



RMSECV as done in previous studies. The indirect relationships must be fully understood and
controlled. Furthermore, one should be aware that the indirect models are providing very limited

additional information as compared with models on TP.
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