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Summary 

The aim with this work is to make untargeted analysis of chromatographic data more 

accessible for those working with chromatography on a daily basis. This task has been 

fulfilled partly by developing some new tools, and partly by describing some existing 
methods with tutorials in this thesis.  

In order to facilitate the choice of method a scheme has been presented which can guide the 

reader to select proper methods for their type of data. In this scheme, data is divided into 

two main categories; data originating from first-order instruments and data from higher-

order instruments. These are then further divided into subcategories depending on the 

complexity of the chromatograms.  

For low complexity chromatograms from first-order instruments, FastChrom has been 

developed. FastChrom is a graphical user interface, running in MATLAB, which removes 

baseline contributions and subsequently finds all peaks in the chromatograms and groups 

those across samples.  

For high complexity chromatograms from first-order instruments, an already existing method 

is suggested and MATLAB code is provided, so users without MATLAB experience can take 

advantage of the method. The principle of the method is to remove artefacts like baseline 

and shifts before using multivariate data analysis on the full chromatograms. 

For low complexity chromatograms obtained from higher-order instruments, PARAFAC2 is 

proposed as the preferred method. In order to make PARAFAC2 more accessible some new 

developments have been made, with automation of the evaluation of how many factors to 

include as the most important. With this, PARAFAC2 can be used to resolve overlapping 

peaks without time consuming manual evaluation which requires considerable chemometric 

and chromatographic knowledge. For intervals which are not well modelled with PARAFAC2, 

MCR is suggested and carefully described. 

For high complexity chromatograms from higher-order instruments it is suggested to use the 

approach describe for the complex chromatograms from first-order instruments on e.g. the 

total ion chromatograms. A number of other methods are also listed, but not further 

described. 
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Resume 

Formålet med denne afhandling, er at gøre u-specifik analyse af kromatografisk data, 

tilgængelig for dem der arbejder med kromatografi i deres daglige arbejde. Dette er til dels 

blevet opnået ved at udvikle nye metoder, og til dels ved at beskrive eksisterende metoder 

med et antal brugervenlige tutorial i denne afhandling. 

For at gøre det enklere at vælge metode, er der blevet udviklet et diagram, der guider 

brugeren til at vælge korrekte metoder til deres data. I dette diagram er data delt i to 

kategorier; data fra første-ordens instrumenter og data fra højere-ordens instrumenter. 

Disse er desuden yderligere inddelt i underkategorier afhængigt af kompleksiteten af 

kromatogrammerne. 

FastChrom er blevet udviklet til kromatogrammer med lav kompleksitet. FastChrom er en 

grafisk brugergrænseflade der køre i MATLAB. FastChrom fjerner basislinje og finder 

efterfølgende alle toppe i kromatogrammerne og gruppere disse på tværs af prøver. 

For kromatogrammer med høj kompleksitet fra første-ordens instrumenter, anbefales en 

eksisterende metode. Metoden er grundigt beskrevet, og der er vist MATLAB kode, så 

brugere uden erfaring i MATLAB kan udnytte denne metode. Princippet bag metoden er at 

fjerne basislinje og retentionstids skred inden analyse af de komplette kromatogrammer med 

multivariate data analyse. 

For kromatogrammer med lav kompleksitet fra højere-ordens instrumenter er det anbefalet 

at bruge PARAFAC2. Får at gøre PARAFAC2 lettere tilgængelig, er der blevet udviklet nogle 

nye redskaber, hvor automatisering af evalueringen af hvor mange faktorer der skal 

inkluderes, er den vigtigste. Med denne automatisering kan PARAFAC2 bruges uden 

tidskrævende manuel evaluering, hvilket desuden kræver kemometrisk og kromatografisk 

viden. Det anbefales at bruge MCR til intervaller der ikke kan modelleres tilfredsstillende 

med PARAFAC2. 

For kromatogrammer med høj kompleksitet fra højere ordens instrumenter anbefales det at 

bruge samme metode som for komplekse kromatogrammer fra første-ordens instrumenter 

på f.eks. total ion chromatograms. En række andre metoder er også foreslået, men ikke 

gennemgået. 
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Chapter 1 

 Introduction 

This thesis is dealing with different aspects of processing of chromatographic data. The 

construction of the thesis is as follows:  

The first chapter gives an overview of the problems sought solved with the work described in 

this thesis.  

Chapter two gives a short introduction to chromatography; the purpose with this chapter is 

to give people, not usually working with chromatography, the tools to read the remaining 

part of the thesis.  

In chapter three the theory of the chemometric methods used later on, is described. It is 

suggested that readers with no chemometric experience read at least the first section in this 

chapter. This section will introduce some basic nomenclature and principles which are useful 

to be familiar with, when reading the remaining part of the thesis. The last four sections of 

chapter three describe the theory of some chemometric methods which are useful when 

handling chromatographic data.  

Chapter four describes some of the considerations one needs to make before starting 

processing the data.  

Finally two sections are included (chapter five – single-channel data and chapter six – multi-

channel data) where solutions to the problems outlined in the next section (1.1) are 

described. These two chapters are written as a number of tutorials, showing how different 

data should be treated. The chapters include new developments as well as well-established 

methods.  In these chapters MATLAB code is provided. All code has been tested using 

MATLAB 2012a (Mathworks, Inc., Natick, Massachusetts, U.S.A.). 

The examples in the thesis are data obtained from analysis with Gas Chromatographs (GC) 

coupled with either Flame Ionisation Detectors (FID) or Mass Spectrometer (MS) detectors, 

however many of the methods described here can easily be applied to other 

chromatographic methods. 
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1.1 Background 
In the study of the metabolome of microbial, plants or any other system, metabolic profiling 

is often the preferred approach. The term “metabolic profiling” has been defined as,  

“Detection of a wide range of metabolites, […] Relative changes in 

response (correlated to changes in metabolite concentration) are used to 

define metabolic differences. Metabolic profiling is normally applied in an 

inductive experimental strategy […] where the metabolites of biological 

interest are not know a priori”  

(Dunn 2008)  

In this definition there are two things which are very important to notice, namely that a wide 

range of metabolites are detected and that the metabolites of interest are not known. This 

has resulted in the development of a number of chromatographic methods with the aim of 

covering as many compounds as possible in one single analysis (Kanani, Chrysanthopoulos & 

Klapa 2008, Büscher et al. 2009). Since the focus in the analysis is shifting away from 

identification and quantification of a specific set of compounds, the approaches used for 

analysis of the chromatographic data also need to be changed. In the traditional methods for 

handling of chromatographic data a search for peaks at specific retention times, or peaks 

with specific mz or UV spectra is conducted. However, with the increase in number of 

samples and data amounts, this approach becomes too time-consuming. Koek et al. (2011) 

have reported that it can easily take a full week to create such a target list for 20-40 samples, 

even for an experienced scientist. Besides the time consumption, the traditional approach 

may result in biased data evaluation with a high risk of missing valuable information since 

only appointed compounds are searched for. Therefore there is an urgent need for 

development of new untargeted methods which can extract information from data in a more 

efficient and unbiased way. 

“A man should look for what is, and not for what he think should be” 

Albert Einstein 

The companies which develop the chromatographic instruments have developed some tools 

for extracting information from the obtained data. The traditional solution for handling data 

obtained from first-order instruments, offered by this commercial software, is that the user 

defines a number of elution time windows. Peaks eluting inside these windows will then be 

evaluated and their height or area reported. However, there are several disadvantages with 

this approach. The main drawback is that peaks eluting outside of the pre-defined windows 



Chapter 1 - Introduction 

 

3 

 

will not be taken into consideration even though they may represent important information. 

Another major disadvantage is that whenever shifts in retention time occur, the elution time 

windows must be re-calibrated. If the calibration of the elution time windows is not carefully 

checked, there is a high risk that peaks will shift outside the windows (situation A, Figure 1), 

or that a peak originating from a different compound shifts into the window (situation B, 

Figure 1).  

 
Figure 1. Illustration of the traditional approach of finding and identifying compounds analysed 

with GC-FID. Only peaks eluting inside the pre-set windows will be reported. If shifts occure, 

peaks might shift out of the window (A) or another compound may shift into the window and be 
wrongly identified (B).  

In this thesis two different approaches are presented, which make all information contained 

in the chromatograms available. The two approaches are optimal for handling 

chromatograms with high and low complexity respectively. The method suggested for low 

complexity chromatograms is the newly developed method presented in paper I. The 

method for handling of high complexity chromatograms is the methodology described by 

Christensen et al. (Christensen et al. 2004, Christensen et al. 2005, Christensen, Tomasi 

2007). 

 The evaluation of data obtained from multi-channel detectors in commercial software is, to 

some extent, based on the same principle as described for single channel detectors. 

However, the identity of the peaks eluting inside the pre-set windows will be confirmed by 

usage of the spectra representing that particular peak. This means that situation B in Figure 

1, most likely, will be reported as the compound of interest being absent. However, this does 

not make the approach problem free, since there is still the problem with unreported peaks 
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outside the windows, as well as erroneous reports of compounds not being present in cases 

with shifts in the retention time. 

An alternative approach, available in newer versions of commercial software, is to perform 

deconvolution (or mathematical resolution) of peaks. This approach is very useful when 

performing metabolic profiling. However, these deconvolution algorithms is not always 

performing in a satisfactory way (Skov, Bro 2008, Murphy et al. 2012). The main problem 

with the deconvolution algorithms is that they consider one sample at a time and do not use 

the information from the other samples to resolve overlapping peaks. This results in 

suboptimal models as illustrated in Figure 2. To the left in the figure the Total Ion 

Chromatograms (TIC) representing the raw data are shown. For one representative sample 

the full data is shown in the middle. Both here and in the TIC a small shift is seen, indicating 

that the datasets represent two overlapping peaks with a small difference in elution times. 

An example of deconvolution performed with an algorithm from commercial software is 

shown to the left in Figure 2. The deconvoltion only describes a total of six peaks in all of the 

45 samples. This means that a lot of information is lost. Furthermore it does not seem like 

the algorithm has been able to separate the two compounds, since a shoulder is present on 

some of the peaks obtained from the algorithm (circle in the rightmost plot in Figure 2). An 

additional problem is that a varying amount of baseline is included in the modelled peaks, 

and that the boundaries of the individual peaks do not seem to be optimally defined. 

 
Figure 2. Left: Total Ion Chromatograms (TIC) from 45 samples. It seems like there are two groups 

of peaks indicating that the two different compounds are eluting in the interval. Middel: Plot of all 

mass channels from one sample. Here there also seems to be a small shift, which supports the 

theori of two different compounds are eluting in the interval. Right: The result from 

deconvolution with a commonly used commercial software, illustrated with elution time profiles. 

Only six peaks are found in total, meaning that a lot of the peaks in the raw data have not been 
properly modelled.  
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A common problem for the approaches in most commercial software is that the algorithms 

are “black boxes” meaning that the user has no knowledge about what the algorithm actually 

is doing, and therefore has a very limited possibility of evaluating the quality of the obtained 

result.  

Curve resolution techniques offer an alternative to the deconvolution algorithms. These 

methods take the entire set of samples in the dataset into account. The curve resolution 

technique, PARAFAC2, has previously been shown to be a very useful tool for comprehensive 

analysis of chromatographic data (Bro, Andersson & Kiers 1999, Amigo et al. 2008, Khakimov 

et al. 2012). However, in order to evaluate how many factors to include in a PARAFAC2 

model, a manual evaluation is required. This will inevitably result in models which are biased 

according to the users’ experience and personal opinion. Besides this it is also a very time 

consuming task and it requires a skilled chemometrician with considerable chromatographic 

knowledge. These obstacles may be why PARAFAC2 is not more widely used in routine 

analysis. In an attempt to make the use of PARAFAC2 more widespread, an automated 

approach for evaluation of PARAFAC2 models has been developed and presented in paper IV. 

This approach will enable non-chemometricians to use PARAFAC2 in comprehensive analysis 

of chromatographic data. In this thesis it is suggested to use this approach when dealing with 

data obtained from hyphenated chromatographic techniques, and tutorials are presented 

both for the automated and the manual approach. It is also described how data which is not 

well modelled with PARAFAC2 can be handled.  
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Chapter 2 

Introduction to chromatography 

The word chromatography originates from the two Greek words “chroma” (colour) and 

“graphein” (to write). The technique was first developed by the Russian botanist M. S. Tswett 

(1872-1919) as described in his two papers from 1906 (Tswett 1906a, Tswett 1906b). During 

his work with plant pigments he discovered that they could be separated on columns packed 

with an adsorbent (he mainly used calcium carbonate). The separation was displayed on the 

column as separated bands in different colours representing the different pigments. 

In modern chromatography, the word covers a wide range of methods, which all have in 

common that they separate compounds in the “mobile” phase based on their affinity to a 

“stationary” phase. The two most common chromatographic methods are Gas 

Chromatography (GC) and High Performance Liquid Chromatography (HPLC). Other methods 

do exist but will not be further described here.  

In both HPLC and GC, the typical design will be as follows: The sample enters the system via 

an injection port; here it will be carried to the column by the mobile phase, which can be 

either gaseous (GC) or liquid (HPLC).  The separation of the compounds will take place during 

the transport through the column. After passing through the column, the compounds will 

enter a detector, which monitors the separated compounds. A schematic overview of the 

design is shown in Figure 3. 

 
Figure 3. The sample enters the system via an injection port which is connected to the column. 
The column will typically be placed in a temperature controlled compartment. 
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In HPLC, the mobile phase is a liquid with low viscosity. The separation can be influenced by 

changing the composition of the mobile phase and the temperature of the column oven 

during the analysis. By changing the temperature also the affinity towards the stationary 

phase is changed, and hereby a better separation can be obtained. The mobile phase in GC is 

typically an inert gas. The composition of the mobile phase will not be changed during the 

analysis; separation is obtained by changing the pressure and temperature of the column. 

Injection of the sample onto the column places all analytes in a narrow band in the beginning 

of the column. The mobile phase will then carry the compounds contained in the sample 

through the column. The analytes will, during the transport through the column, alternate 

between the stationary phase and the mobile phase. In the mobile phase the travelling speed 

will be the same for all compounds. The separation of different compounds therefore occurs 

due to differences in their affinity towards the stationary phase. The longer time a molecule 

is located in the stationary phase the longer time it will spend in the column. The time it 

takes for the compounds to travel through the column will therefore vary according to the 

chemical and physical properties of the individual compounds. During the transport through 

the column some band spreading of the compounds will also occur due to small differences 

in the time spent in the stationary phase. These differences result in a Gaussian distribution 

of the compound. The width (W) of this distribution is dependent on the specific compound 

and the length of the column. The separation process is illustrated in Figure 4. 

 
Figure 4. Separation in the column. All analytes are positioned in one narrow band on the column. 

During the transport through the column, they travel with different velocities and will therefore 
have different retention times. When an analyte reaches the detector a signal is recorded. 
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The total signal representing the individual compounds is normally proportional to 

concentration. This means that a doubling of concentration results in a doubling of the signal. 

The amount of signal can be found by summing the signal in the period where the peak of 

interest is eluting. In other words, the area under the peak will, under normal circumstances, 

be directly proportional to the concentration of the compound (within the linear range of the 

detector).  

Ideally, the signal will only describe the compounds from the sample. However, in reality the 

obtained signal from a chromatographic analysis is consisting of three main contributions: 

desired chemical information, baseline, and noise, as illustrated in Figure 5. Noise is 

characterised by being high frequency variation. The desired chemical information is seen as 

a peak in the chromatogram, and is typically characterized by height (H), area, width (W) 

(determined at half height), and signal-to-noise (S/N) ratio (see Figure 5). The S/N ratio is 

used to state how certain the amount of analyte is determined. Low S/N values indicate that 

a big part of the signal is noise, and thus there will be a high degree of uncertainty. 

Traditionally an S/N limit of 10 has been used for quantification purposes and a limit of three 

for detection purposes.  

 
Figure 5. Composition of the chromatographic signal, and illustration of commonly used peak 
features. H: height of the peak. W: width of the peak. 
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The main objective of performing analytical chromatography is to be able to identify and 

quantify compounds. Traditionally, the peak area has been used for quantification purposes. 

However, as presented in section 4.2 heights are in most situations more robust in GC 

analysis. Regardless of whether height or area is chosen as representation of concentration, 

it is required that the information is separated from especially the baseline, but also to a 

certain degree the noise, so that these contributions are not included in the quantification. A 

high number of pre-processing methods, with the purpose of retrieving the pure information 

from the signal, has been developed during the years. The application of a selection of those, 

together with some new developments, will be described in chapters five and six.  

The detectors used in HPLC and GC can be divided into two main categories: single-channel 

and multi-channel detectors. If the recorded signal is obtained from a single channel detector 

only one value is recorded for each time point. The multi-channel detector records several 

parallel signals for each time point resulting in a two dimensional dataset for each sample. A 

visualization of the difference between the appearance of the single-channel and the multi-

channel signals is shown in Figure 6. 

 
Figure 6. Illustration of the signal obtained from a single-channel detector vs. a multi-channel 

detector. The single-channel signal is from a GC coupled with a Flame Ionisation Detector (FID), 

and the multi-channel signal is from a GC coupled with a Mass Spectrometer (MS) detector. The 

dotted grey line in the multi-channel data is the Total Ion Chromatogram (TIC) which is obtained 

by summing over the m/z direction. The TIC is comparable with the obtained chromatogram from 
the single-channel detector. 
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Several types of both single- and multi-channel detectors with different properties exist. The 

Mass Spectrometer (MS) detector is widely used in both HPLC and GC. The MS measures a 

mass spectrum for each elution time point. This means that information of the size of the 

eluting compounds (and fragments hereof) is obtained, and this information can be used in 

identification. The spectra, obtained from GC-MS, are especially useful for identification 

purposes, since a given compound always results in the same spectrum. This spectrum, 

together with the obtained retention time, provides a unique fingerprint for that particular 

compound (with exception of isomers). Several libraries which can be used for identification 

of GC-MS spectra exist, and one of the most widely used libraries is the NIST mass spectral 

library. 

Another type of multi-channel detector, which is used in HPLC, is the photo diode array. This 

detector measures a UV spectrum at each time point. Since many organic compounds have 

characteristic UV spectra, the obtained spectra can be used for identification purposes in the 

same way as the MS spectra.  

Single-channel detectors do not provide any supplementary information besides the 

retention time (and to some degree peak width) which can be used for identification 

purposes. However, especially the Flame Ionisation Detector (FID), which can be used in 

combination with GC, has a high linear range and is a very robust detector. 

The choice of method used to extract the information from a signal is, to a very high degree, 

dependent on whether the detector is a single- or multi-channel detector and the complexity 

of the signal. A guide on which method to choose is given in section 4.1. 
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Chapter 3 

Introduction to the chemometric methods 

3.1 Nomenclature 
In this section some key-terms used in the remaining part of the thesis will be described. The 

section will be initiated with a description of how different types of data can be arranged. 

This will be followed by brief descriptions of what the terms “uniqueness” and “first- and 

second-order advantage” mean and why these terms are important when dealing with 

processing of chromatographic data. The section will be completed with a table with short 

definitions of key-words which are used throughout this thesis.  

Data from detectors which measure only one value per sample (e.g. pH) will give scalars as 

the output (zero-order data). In cases with more than one sample, the resulting dataset will 

be a vector (one-way data). Data from single channel detectors like GC-FID can be arranged 

in a vector (first-order data). If more than one sample has been analysed, data can be 

arranged in a two-dimensional data matrix with the samples in the rows and the abundance 

at different time points in the columns (two-way data). For multi-channel detectors, like GC-

MS, spectra containing a number of m/z values are measured for every time-point (second-

order data). In cases with more than one sample, an array is a more suitable arrangement of 

data (three-way data).  The different dimensionalities and arrangement of data are shown in 

Figure 7. 
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Figure 7 Illustration of different dimensionalities of data and how they typically will be arranged. 

The following nomenclature is used in the thesis (as suggested by Kiers (Kiers 2000)): Italics 

are indicating scalar numbers – F is reserved to indicate the number of factors included in a 

model and the letters I, J, and K to the number of variables included in each mode. Bold 

lowercase is indicating vectors, bold uppercase is indicating two-way matrices and 

underlined, bold uppercase is indicating three-way arrays. The letter E is always indicating 

residuals and has the same dimensions as the raw data.  

The first- and second- order advantages 

The treatment of data is highly dependent on whether data is obtained from zero-, first- or 

second-order instruments.  

If a signal, obtained from a zero-order instrument, is linearly correlated to the concentration 

of the related compound, the concentration can be estimated by measuring one standard 

sample with known concentration (or two if a background signal is present). By regression, 

the unknown concentration can then be estimated. However, if there, in a future sample, is a 

different background than in that of the standards, the estimated concentration will be 

wrong (Booksh, Kowalski 1994). This means that the signal from interferences must be 

constant, and since it is impossible to detect changes in this signal, substantial purification is 

necessary before quantification can be performed with signals obtained from zero-order 

instruments. 



Chapter 3 – Introduction to the chemometric methods 

 

15 

 

If the signal is obtained from a first-order instrument, it is possible to recognize a sample as 

outlier if unexpected components are present. Furthermore quantification can be performed 

despite of variations in background signal, as long as the same types of variations are present 

in the calibration samples. This is called the first-order advantage (Booksh, Kowalski 1994). 

Since the calibration set should cover as many types of variation in the background as 

possible, a high number of samples must be included in the calibration set. In order to utilise 

the first order advantage proper data handling methods must be applied (e.g. PLS).   

For signals obtained from second-order instruments, quantification is possible, even in cases 

with interferences not included in the calibration sample. This is called the second-order 

advantage (Booksh, Kowalski 1994). The second order advantage means that the purification 

step, which traditionally has been necessary in quantification, no longer is required and 

quantification can be performed using just one standard. In order to take full advantage of 

the second-order advantage proper data handling techniques must of course be applied (e.g. 

PARAFAC2). 

Uniqueness 

Whenever models are used to describe data, it is not enough to create models which are 

mathematically correct, the models must also describe the real underlying chemistry; 

therefore it is problematic when some methods can result in several equally mathematically 

correct answers, since only one of these can describe the actual underlying chemistry. 

Methods which can give more than one mathematically correct solution to the same dataset 

is said to be non-unique, in contrast to unique methods which can only result in one 

mathematically correct model. Often results from non-unique methods are interpreted as if 

they were describing actual chemistry. However, this is not necessarily the case, since it 

might be one of the other possible solutions which are describing the chemistry. On the 

other hand the solution from a unique method will be describing the real chemical variations 

in data (assuming that the method is valid for the data at hand).  

Uniqueness can be exemplified in the following way. Suppose that the amount of y is 

dependent on x in the following way: y = a +bx. Even if we are able to measure a and b it is 

not possible to determine the concentration of y. If, for instance, a is measured to 6 and b be 

to 4, both (x = -1, y = 1) and (x = 2, y = 13), plus an infinite number of other combinations, are 

solutions to the equation. In this case we have a problem without a unique solution (the true 

concentration of y can only be one of the possible solutions). In bilinear models, like MCR, 

there exist a number of different combinations of components, which all result in a model 

with the same fit. This is called rotational freedom, and it is because of this, that the MCR 
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solution is not unique. In order to obtain a unique solution, constraints must be applied to 

the MCR algorithm. Examples of constraints could be non-negativity (which does not always 

provide uniqueness, but often only limits the solution space) or x = 4 (which will result in a 

unique solution to the above-mentioned problem). In section 3.2 constraints often used in 

MCR will be described. 

In trilinear models, like PARAFAC or PARAFAC2, uniqueness is obtained by combining 

information across observations. An example could be observation 1: y = 5 + 4x and 

observation 2: y = 9+3x. In this case only one solution is valid (x = 4, y = 21) and hence the 

solution is unique. 

Alphabetic definition of words 

Compound Is referring to real chemical analytes present in a sample. 

Factor/component Is referring to the factors in factor/component models, and not 

to be confused with the chemical analytes (compound) above. 

First-order advantage Samples with interference can be detected as outliers, and 

quantification can be achieved despite of changes in the 

background signal, as long as the same type of changes is 

included in the calibration samples. For a more thorough 

description see the paragraph above.  

Low-rank The rank of a matrix is the maximum linearly independent 

column (or row) vectors in the matrix. In a chromatographic 

dataset, the rank tells us how many compounds that are 

changing, independently of the others, across samples. Low-rank 

(in a chromatographic perspective) refers to the fact that only a 

limited number of compounds are varying.  

Mode Refers to the matrix or array holding the data. A three-way array 

has three modes (modes one, two and three), whereas an N-way 

array has N modes. See also Figure 7. 

Multivariate More than two variables per sample, the term is used as 

opposed to univariate or bivariate which refers to dataset with 

only one or two variables per sample, respectively. 

Multi-way Three-way (or higher).  
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Order Refers to the way data is arranged. If data is arranged in a 

matrix, it is said to be second-order (see also Figure 7). The term 

is used interchangeably with the term way. The term order can 

also be used about an instrument. For instance will a GC-FID 

analysis result in first-order data, hence the instrument is said to 

be a first-order instrument (and not a one-way instrument). 

Second-order advantage Compounds can be quantified in presence of new interferences 

and quantification can be achieved using just one standard. For a 

more thorough description see the paragraph above. 

Uniqueness No rotational freedom, or in other words does a unique model 

only provide one possible mathematical solution, which 

therefore also must be the solution which describes the 

underlying chemistry. For a more thorough description see the 

paragraph above. 

Way Refers to the way data is arranged. If data is arranged in a matrix 

it is said to be two-way (see also Figure 7). The term is used 

interchangeably with the term order. 

 

3.2 Multivariate Curve Resolution 
The main goal with Multivariate Curve Resolution (MCR) is to extract the pure responses (e.g. 

spectra and concentrations) from the raw signal. MCR is often used to resolve overlapping 

peaks in individual samples, but MCR can be used to resolve all kinds of overlapping 

phenomena in two-way data. The resolution is achieved by decomposing the raw data matrix 

(D) into two smaller matrices holding pure concentration profiles (C) and pure response 

profiles (S), as illustrated in Figure 8. 

 
Figure 8. With MCR the matrix D (I×J), holding the raw data, is decomposed into C (I×F), holding 

the pure concentration profiles for the F components, and S (J×F), holding the pure responses for 
the F components. 
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The principle behind MCR is very similar to that of PCA; both methods are decomposing a 

matrix, holding the raw data, into two smaller matrices. However, there are fundamental 

differences between the two methods. In PCA the first component is describing the direction 

in the raw data with the highest variability. The second component is then, subsequently, 

found as the direction with the highest variability in the part of the raw data which was not 

described by the first component. This is continued until the desired number of components 

has been found. This means that the first components are unaffected by the total number of 

components included in the model. Furthermore the PCA solution is unique since there can 

only be one direction in data with highest variation.  

In MCR all components are found simultaneously. If a two-factor model is calculated the two 

concentration profiles and two response profiles, which results in the best fit with the raw 

data, will be found simultaneously by iteratively calculating C and S. A consequence of all 

components being calculated simultaneously is that the appearance of the obtained profiles 

becomes dependent on how many components that are included in total. Another thing that 

is different from the PCA model is that the obtained model may not be unique, since 

different combinations of concentration and response profiles can result in the same fit. 

Since the MCR model is not unique, constraints must be applied to identify the model which 

describes the underlying chemistry. The most widely used constraint is non-negativity, this 

constraint is applied on both response and concentration profiles since these, under normal 

circumstances, will never be negative. Other types of commonly used constraints are uni-

modality (each profile can only describe one peak) and closure (the sum of the components 

must remain constant), but also information about where each of the peaks elutes (identify 

species), known spectra (equality constraint in spectra), and a number of other features can 

be applied as constraints. For a more thorough description of MCR the reader is referred to 

other literature (Tauler 1995, Gargallo et al. 1996, Jaumot et al. 2005). 

If MCR is to be applied on three-way datasets, e.g. several samples obtained from second-

order instruments, the three-way array must first be unfolded to a two dimensional matrix as 

illustrated in Figure 9. By unfolding sample wise, shifts in retention time is no longer a 

problem since the resulting matrix will not contain shift in any columns or rows. A side 

benefit of using such a dataset for MCR analysis, is that the problem with rotational freedom 

is decreased (or, if the right experimental design is used, solved) when calculating a model on 

several two-way datasets simultaneously (Tauler, Izquierdo-Ridorsa & Casassas 1993).     
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Figure 9. Sample-wise unfolding of the three-way array into a two-way matrix. 

3.3 PARAFAC 
PARAFAC is a commonly used method for resolution of overlapping phenomena in three-way 

data (or higher). The PARAFAC algorithm is founded on Cattells parallel proportional profiles, 

which are based on the assumption that, “… if a factor is one which corresponds to a true 

functional unity it will be increased or decreased as a whole.” ((Cattell 1944), p. 276). Cattell 

hypothesized that if such functional unities exist, a unique solution could be obtained by 

calculating the model on different occasions (or samples) simultaneously. Cattell was 

originally developing the parallel proportional profiles for general factor analysis, and the 

principle of a functional unity being increased, and decreased, as a whole is applicable to 

many areas. In Gas Chromatography coupled with Mass Spectrometry detectors (GC-MS), 

spectra libraries are routinely used to identify obtained spectra; this is only possible since 

changes in concentrations influence the spectra “as a whole”.  

The PARAFAC algorithm was first simultaneously developed by Harshman (1970) and Carroll 

and Chang (1970)  (who named it canonical decomposition). One of the first to propose using 

the PARAFAC algorithm in chemometrics was Geladi who has made a thorough review of 

how to handle multi-way data (Geladi 1989). In the paper by Bro (1997) a review of the 

theory behind PARAFAC is given. In this section only the most important principles will be 

discussed with the purpose of introducing PARAFAC2 in the next section. 

In principle PARAFAC is simply an extension of PCA to higher order data as illustrated in 

Figure 1. However, the PARAFAC algorithm has the major advantage that it is resolving the 

pure responses and concentrations. E.g. if PARAFAC is applied on a three-way array 

containing masses in mode one, elution time in mode two, and samples in mode three, the 

resulting model will consist of three matrices containing respectively; one mass spectrum for 

each component (A), one elution profile for each component (B), and relative concentrations 

of each of the modelled components in the individual samples (C).  
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Figure 10. Illustration of how similar PARAFAC and PCA are. For PCA, X is a data matrix with 

dimensions I × J, A (I × F) is the matrix holding the score vectors, and B (J × F) the loading vectors. 

F is the number of factors in the model. For PARAFAC Xk  is the kth slab of an I × J × K three-way 

data array. A (I × F), B (J × F) and C (K × F) are all  matrices holding loading vectors and Dk  is a 

diagonal matrix (F × F) with the kth row of C in its diagonal. The loading vectors describing the 
sample dimension are sometimes denoted score vectors. 

One of the main advantages of PARAFAC, compared to many other curve resolution 

techniques, is that the obtained solution is unique. The uniqueness is obtained if the dataset 

contains at least two samples with independent variations in the concentration of the 

underlying phenomena (e.g. chemical compounds), assuming that these phenomena are 

characterised by unique patterns. And even in cases where one compound does not change 

across samples, unique and chemically meaningful solutions can be obtained as long as no 

other compound is constant. In cases where only some compounds are changing across 

samples, the solutions are only unique for these factors, while the solutions for the other 

factors are non-unique (Harshman 1970, Harshman, Lundy 1996). An additional requirement 

for obtaining a unique solution is that two (or more) compounds must not be totally 

overlapping (Manne 1995). 

In order for an obtained PARAFAC model to be describing real chemical variation, some 

additional conditions must be met; there must not be shifts in data and the spectra (or 

pattern) of the compounds must not be too similar. If the present data fulfils these 

requirements, as well as the requirements listed above for uniqueness, chemically 
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meaningful and correct models can be obtained, assuming that the right number of factors is 

included in the model. Traditionally, the appropriate number of factors has been determined 

by manual evaluation of obtained models with different numbers of factors included. There 

exist a considerable number of parameters which can be used in this evaluation; among 

these are the appearances of the obtained loadings, the fit, the residuals, and core 

consistency (see the description below). In section 6.1 it is thoroughly described what to look 

for when determining the number of factors in chromatographic data, modelled with 

PARAFAC2, and to a great extent, the same approach can be used in evaluation of PARAFAC 

models. An alternative, automated, approach has been described by Furbo and Christensen 

(2012). However, this approach will not work on peaks with low S/N values. Another 

automated approach has been described by Hoggard and Synovec (2007). However, with this 

approach a target analyte is required in order to match the spectra, obtained from the 

model, with those from the analyte. To my knowledge there are no automated methods for 

untargeted analysis of low S/N peaks. 

Core consistency is very useful for determination of cases where too many factors have been 

included in the model (Bro, Kiers 2003). It indicates how much of the variation, described by 

the model, that is really low-rank trilinear. Low-rank trilinear variation means that the 

compound described by one component is independent of the compounds described by the 

other components. Independent here does not mean uncorrelated. The components are in 

general correlated, but each such correlated component varies regardless of the other 

components and is therefore unaffected of changes in the concentration of other 

compounds. If a dataset includes four different phenomena (e.g. chemical compounds) and it 

is being modelled with five factors the four phenomena are forced to be divided over the five 

components somehow. The variation described by the five sets of loadings will no longer be 

independent of each other, and the variation described is therefore no longer low-rank 

trilinear. In these cases core consistency will be low.  

Before evaluating and interpreting the obtained models, the problem with sign 

indeterminacy must be solved. Sign indeterminacy is a problem which occurs because one 

component vector can change sign, if one of the other component vectors also changes sign. 

Then, overall, there is no change in the component contribution to the model. This means 

that two models are identical, from a mathematical point of view, if two loadings of the same 

component have flipped. The sign indeterminacy can be illustrated in the following way; If S 

is defined as diagonal matrices, with plus or minus one in their diagonal, the PARAFAC 

algorithm can be re-written as  
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Xk = S1AS2DkS3BT, 

where S1×S2×S3 = I, and I being the identity matrix with ones in the diagonal. As long as the 

overall sign of the model remains the same, the flip (or sign change) will not affect the model 

as such. However, the model can be very difficult to interpret, and evaluation of the numbers 

of factors also becomes much more difficult if the problem with sign indeterminacy is not 

solved. An example of such a flip is shown in Figure 11, where the elution profile and 

corresponding spectra profile of one compound have flipped in the model to the left. Since 

negative values in spectra and retention time profiles may indicate that too many factors 

have been included in the model, the flip might mistakenly be interpreted as a sign of over-

fit. However, once the flip has been fixed (to the right in the figure) the model no longer 

seems over-fitted. 

 
Figure 11. Illustration of sign indeterminacy. Left: One of the loadings in respectively the elution 

and spectra profiles has flipped. Right: No flip. From a mathematical point of view the two models 
are identical.  

In paper III a solution to the problem with sign indeterminacy is suggested. The idea is that 

the data, in the model, should point in the same direction as the raw data. In a 

chromatographic dataset, the model should of course be positive, but in other kinds of data 

the natural sign is not always so obvious.  
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As mentioned above a limitation for PARAFAC is that in cases with shifts, it is not possible to 

find a model with one common elution profile for all samples. This means that for data with 

shifts in retention time (as almost always is the case in chromatographic analysis), data must 

either be aligned using methods like COW or icoshift (which will be further described in 

section 3.5), or alternatively other resolution techniques must be applied. These techniques 

could for instance be MCR (section 3.2) or PARAFAC2 (section 3.4). In cases with peak shape 

changes alignment will not help, but MCR or PARAFAC2 may still be able to provide 

chemically meaningful models. 

3.4 PARAFAC2  
In some cases (e.g. when shift in retention times occurs) PARAFAC becomes too restricted 

since it applies the same elution time profiles to all samples. These problems can sometimes 

be solved by using PARAFAC2 (Kiers, ten Berge & Bro 1999, Bro, Andersson & Kiers 1999) . 

 

Figure 12. Illustration of the PARAFAC2 model. As in PARAFAC Xk  is the kth slab of a I × J × K three-

way data array. The matrices A (I × F), Bk (J × F), and C (K × F) are all  holding loading vectors and 

Dk  is a diagonal matrix (F × F) with the kth row of C in its diagonal. The loading vectors (c) which 

describe the sample dimension are sometimes denoted score vectors. The PARAFAC2 model 

deviates from PARAFAC by modelling unique elution time profiles for each sample (Bk). These 
profiles consist of a common part (H) and a unique part (Pk). 

PARAFAC2 is very similar to PARAFAC; the main difference is that unique elution time profiles 

will be assigned for each of the samples. As the introduction of unique score factors destroy 

the uniqueness properties, an additional constraint is imposed in the PARAFAC2 algorithm, 

namely the cross-product of Bk must be constant. This is obtained by dividing the matrix 

describing the dimension containing the shift (Bk) into an unique part (Pk,, with Pk
TPk = I) and 
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a common part (H) as illustrated in Figure 12. Harsmann and Lundy (1996) and Berge and 

Kiers (1996) have shown, that with these constraints the PARAFAC2 solutions are unique 

under some mild assumptions. For a more detailed description of the algorithm the reader is 

referred to the publication by Kiers et al. (1999).   

As for all other curve resolution methods, the PARAFAC2 model must be made with the right 

number of factors in order for the obtained model to be chemically meaningful. The 

evaluation of how many factors there should be included is basically performed in the same 

way as for PARAFAC; the profiles of the obtained loadings, residuals, fit, and number of 

iterations are also for PARAFAC2 important parameters to take into consideration.  

In paper II it is shown that core consistency, also for PARAFAC2, is a useful parameter for 

evaluation of whether too many factors have been included in the model. Core consistency 

can be determined for PARAFAC2 models by rearranging the PARAFAC2 model into a 

structure similar to that of PARAFAC, as illustrated in Figure 13. Core consistency can then be 

calculated on the PARAFAC model “inside” PARAFAC2. 

 
Figure 13. Illustration of how the PARAFAC2 model can be rearranged into a structure similar to a 
PARAFAC structure. 

A more thorough description of how the right number of factors for a PARAFAC2 model is 

determined can be found in section 6.1. Here it will also be described how to use the 

automated evaluation (as proposed in paper IV). This method is based on classification of 
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when the model becomes over-fitted, with the use of a number of carefully selected 

diagnostics. 

As for PARAFAC, sign indeterminacy is an issue for PARAFAC2 models. However, the issue is 

much more complex for PARAFAC2 since each sample has its own elution profile; this means 

that a single number in the K × F matrix, C, can be flipped as long as the corresponding p 

vector (the sample specific part of the elution profile) is flipped accordingly. A proposal for a 

solution is described in paper III. 

3.5 Alignment 
In chromatographic analysis there will, inevitably, be some degree of shift of the obtained 

retention time between samples. Dependent on the chosen data processing and how severe 

the shifts are, it might be necessary to align the chromatograms prior to the extraction of 

information. Two very useful methods for correcting for such shifts are COW (Nielsen, 

Carstensen & Smedsgaard 1998)  and icoshift (Tomasi, Savorani & Engelsen 2011). These 

methods will be shortly described in the following, but more detailed information can be 

found in the publications. 

COW 

The acronym “COW” means Correlated Optimized Warping. The principle is that all 

chromatograms in a batch are aligned towards a reference chromatogram, one 

chromatogram at a time. This reference must be carefully selected in order for the alignment 

to be successful. The reference can be selected automatically (Skov et al. 2006), but it is the 

user who must decide which type of reference to use. Different types of references could be 

the mean of the signals, the median of the signals, the bi-weighted mean of the signals, the 

maximum of the signals, or the maximum cumulative product of correlation coefficients. The 

first three reference types are very similar, they are all characterised by somewhat broader 

peaks than in the raw data. This is most pronounced in the mean signal, where the median 

signal is being a bit sharper. The bi-weighted mean, where the outliers are down weighted in 

the calculation of the mean, is an average between the two others, and results in a signal 

somewhere in between the mean signal and the median. The maximum signal is found by 

taking the maximum value at each data point (across all samples), this often results in a 

strange signal with very broad peaks, and is seldom the optimal reference signal. The 

maximum cumulative product of correlation coefficients is the only reference type, of those 

listed here, which results in a real chromatogram being used as reference, the reference is 

selected as the chromatogram which matches the others best. 
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After having chosen the reference, the alignment is performed by dividing the reference and 

the chromatograms, which are to be aligned, into a number of segments with flexible sizes.  

The degree of flexibility of each segment is controlled by the slack parameter, which 

indicates the maximum allowed change. After having tested all possible combinations of 

segment sizes, as allowed by the defined slack size, the combination of segment sizes which 

results in the best alignment is chosen. Segments which are of a different size than the 

corresponding segment in the reference are linearly interpolated to match the size in the 

reference. A consequence of this alignment procedure is that the flexibility is large in the 

centre of the chromatograms and lower at the end points. In cases with too low flexibility at 

the end points, segments of noise can be added before the alignment (Nielsen, Carstensen & 

Smedsgaard 1998).  

In order to achieve the best possible alignment, it is necessary to optimize the two 

parameters, segment and slack, in such a way that there is enough flexibility for the 

algorithm to correct for the shifts, but not so much flexibility that misalignment occurs or the 

peak shapes changes. In the publication by Skov et al. (2006) a procedure is presented which, 

in an automated way, optimises these parameters. The optimisation algorithm tests 

combinations of slack and segment sizes, within a given range, by performing a simplex-

based search for the optimal (or near optimal) combination. Two parameters are used to 

evaluate the performance of the alignments; simplicity and peak factor. The so-called 

simplicity value is the singular values taken to the fourth power, a high simplicity indicates 

that a lot of the variation is described by the first components, and hence the numerical rank 

of the system is low. The simplicity is used to evaluate how well aligned the chromatograms 

are. The peak factor is a measure for how much the area under the peaks is changed by the 

alignment, and is included to ensure that the peak shapes are preserved. For a more 

comprehensive description of the optimisation procedure the reader is referred to the 

original paper. In section 5.2 a more thorough description of how to use the automated 

procedure will be given. By using the optimisation procedure, the alignment of 

chromatograms can be performed with a very limited amount of manual work, even though 

the optimisation algorithm is requiring a significant amount of computation time.  

Below an example of the performance of COW is given; this has been included so the reader 

can compare the procedure with icoshift which is described in the next section. 

In Figure 14 it is shown how COW performs on a dataset with significant shifts in retention 

time. After alignment there are very little amounts of shifts in the majority of the 

chromatogram. However, in the area marked with a box in Figure 14B, only two compounds 
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are eluting, but three peak groups are created by COW. Since this misalignment is located in 

the beginning of the chromatograms, it can be solved by adding blocks of noise to each end 

of the unaligned chromatogram and subsequently aligning. In this way also this peak group is 

correctly aligned (area marked with box in Figure 14C). 

 
Figure 14. A: Raw data with varying degrees of shifts. B: After alignment with COW (segment 

length: 30, slack: 19), the automated procedure for determination of the optimal segment length 

and slack has been used. C: After alignment of the raw data with 50 data points of noise added to 
each end. Also here the segment length was 30 and the slack 19. 

The main advantage of COW is that the procedure is completely automated, and that it can 

be used on chromatograms containing very few peaks, as well as in very complex cases. The 
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main disadvantages is the computational time, and more severe, the risk of changing the 

shape of the peaks if the slack size is set too high.  

The COW algorithm, as well as algorithms for selection of references and determination of 

the optimal segment and slack sizes, is available from www.models.life.ku.dk  

icoshift 

icoshift means “interval correlation optimised shifting algorithm” and, as the name indicates, 

it is aligning the chromatograms piecewise, by aligning smaller intervals of the 

chromatograms towards a reference. The main difference from alignment with COW is that 

the intervals (or segments) are not stretched or squeezed. The alignment is simply achieved 

by moving the complete interval back or forth until optimal alignment is achieved relative to 

the reference. Therefore it is also for icoshift important to select a proper reference, but as 

opposed to COW, the intervals do not necessarily need to be aligned against the same 

reference chromatogram. This means that for each interval the reference chromatogram 

which is most optimal for that particular case can be chosen.  The reference could be the 

mean of the signals, the median of the signals, or the specific chromatogram with the highest 

intensity in the individual intervals. In my experience, the latter, in most cases, gives the best 

result. 

The optimal alignments are archived by initially aligning the total chromatogram, and then, 

subsequently, dividing the chromatograms into smaller intervals, which are then aligned 

individually. The intervals can be created by either defining a constant segment length, or by 

user defined intervals. 

Below icoshift is used to align the same chromatograms as aligned in the section describing 

COW (above). 

In Figure 15 the effect of both a full chromatogram alignment (B) and subsequently piecewise 

alignment on user defined intervals (C) are shown. When dividing the chromatograms into 

intervals, the boundaries must be selected in regions with baseline separation to ensure that 

no changes in peak shape occur. The example, in Figure 4, shows, how the alignment of the 

full chromatogram can ease the creation of the intervals. Especially the intervals marked with 

I and II could not have been created without the initial alignment, since the peaks of the two 

different regions were overlapping in the raw data. 
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Figure 15. A: Raw data without any alignment. B: After alignment of the full chromatogram with 

icoshift. The gray areas indicate the interval which is used in the next step. C: After full icoshift, 
the chromatograms are now completely aligned. 

The main advantage of icoshift is that it is a very fast algorithm, and that the peak shape is 

kept constant if the boundaries, of the intervals, are selected in regions with baseline. 

However, in cases with very complex chromatograms and no, or very few, regions with 

baseline, it can be very difficult to create the intervals in a reasonable way. In these cases 

icoshift may not be the right choice.  

The icoshift algorithm for MATLAB is available from www.models.life.ku.dk 
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Chapter 4 

Which methods to choose 

Before a new set of data can be analysed in a prober way, the right techniques must be 

chosen. This choice is of course very dependent on the nature of data at hand, and for some 

it may seem difficult to select the right methods. This chapter will guide the reader to make 

the right decisions.   

The first step in the data processing is to separate the signal representing the analytes of 

interest from the remaining part of the signal (typically baseline + noise). When deciding 

which pre-processing technique to use for this, it is of course important to take the structure 

of the data into account. As described in section 3.1 the second order advantage, obtained 

by using multi-channel detectors, will only be achieved if the right tools are applied. 

Furthermore, the complexity of the data is important to take into consideration, when it is 

chosen which methods to apply. A thorough guide on how to choose the right method for 

extraction of the pure signal is given in the first section (4.1) of this chapter. 

Once the pure signal, representing the analyte, has been found, one needs to decide 

whether height or area should be used for quantification. Especially for single-channel data 

obtained from GC analysis this is an important discussion since height, in this case, is a very 

useful alternative to area; this issue is further discussed in section 4.2. 

4.1 Choosing the right pre-processing 
No matter what the aim with the analysis is, artefacts, like baseline and shifts, should be 

handled in one way or the other. If these artefacts are not dealt with, the final conclusions 

may be severely influenced by these non-informative variations. The actual choice of pre-

processing techniques is to a high degree dependent on the purpose of the analysis and the 

nature of data. The pre-processing should at least be able to handle different baseline issues, 

but also some kind of alignment, or grouping of peaks across samples should be performed in 

order to be able to determine which of the peaks, in the different samples, that originate 

from the same compounds. 
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The diagram, in Figure 16, shows how different types of data are treated in the best way. 

Please be aware that the methods described in this thesis are only designed for cases where 

several samples are included in the dataset. In cases where data represents only one sample, 

the initial considerations will be different from those described below. 

The first thing to consider is whether data is two-way or three-way (or higher). The treatment 

of two-way data will be described in chapter 5, whereas three-way data will be described in 

chapter 6. However, if data is three-way, but so complex that it is impossible to divide the 

chromatograms into smaller baseline separated intervals, data could be summed over 

masses (in case of MS data) and treated in the same way as very complex  two-way data (as 

described in section 5.2). In section 6.3 more details about the different possibilities for very 

complex three-way data will be described.  

For three-way data which can be divided into smaller baseline separated sections, it is 

recommended to try to resolve the individual parts with PARAFAC2, as described in section 

6.1. In some cases PARAFAC2 will be unable to provide a decent solution. Such cases could be 

if data contains peaks which are totally overlapping, changes in peak shape, or other factors 

which cause the trilinearity of the data to be lost. In these cases MCR might be the right 

choice. However, MCR has other problems, e.g. that the right constraint must be applied in 

order for the solution to become unique. Therefore it requires a lot of knowledge about the 

samples (or data) in question to use MCR, and it makes the computation of the models much 

more demanding of hand held adjustments. Furthermore, there is a risk of over-fitting; this is 

not a problem with trilinear models like PARAFAC2. From this point of view, it is 

recommended to first try to use PARAFAC2, and if this does not provide a useful solution, 

then try to apply MCR. Modelling with MCR is further described in section 6.2.  

For two-way data with frequent occasion of baseline it is recommended to use the methods 

incorporated in FastChrom, which is a graphical user interface running in MATLAB. This 

approach is carefully described in section 5.1.  

Finally for the very complex two-way data with many overlapping peaks and rear occasions 

of baseline separation, it is recommended to use PCA or MCR on the complete 

chromatograms as described in section 5.2. 
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4.2 Area vs. height 
In GC is the peak width dependent on the chemical compound and not concentration. This 

means that peak width is constant (under normal circumstances). Therefore, also the height 

can be used as a measure of the concentration. In cases where peaks are well separated, and 

the baseline is of limited influence, height and area are equally good measures of 

concentration. However, often peaks will be co-eluting (example A, B, and C in Figure 17), or 

the baseline will not have been determined correctly (example D, E, and F in Figure 17). In 

these case height will be a more robust measure than area, as shown by Bicking (Bicking 

2006a, Bicking 2006b). In Figure 17 it is shown how different problems will influence 

respectively area and height (for a more thorough review on the topic, see the publications 

by Bicking). 

 
Figure 17 Illustration of different problems affecting the estimated height and are of the peaks. A-

C illustrates different situations of fused peaks. D-F illustrates situations where baseline not has 

been successfully removed. The three examples also show how different determinations of the 
peak boundaries affect the areas. The filled areas indicate the peak area. 

The influence of the different issues, illustrated in Figure 17, is shown in Table 1. The table 

shows that for situation A and B, where the two peaks has the same size, both area and 

height are unaffected by the fusion of the two peaks. However, in situation C, where one of 

the peaks is considerably smaller than the other, height is noticeably more robust than area. 

This is also the case in situation D to F, where a baseline is included in the signal. The baseline 

results in an overestimation of approximately 20% with regards to the area, whereas the 
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height is overestimated with less than 10 %. Furthermore, is the overestimation, of the area, 

depended on that the boundaries of the peak to be correctly estimated. In the example 

shown here changes of the boundaries results in a 10% change of the determined area. The 

estimation of peak boundaries is not affecting the determined heights. 

A back draw for height is that if the column becomes overloaded it results in broadening of 

the peaks. In these cases will the height no longer be directly proportional with 

concentration.  

 

 
Table 1. Illustration of the effect of different 

problems with peak estimations. The height and 

area are indicated as percent compared to the 

true value. 

Example Peak Height (%) Area (%) 

A 1 100 100 

2 100 100 

B 1 101 99 

2 101 101 

C 1 100 99 

2 105 80 

D  108 122 

E  108 117 

F  108 128 
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Chapter 5 

Single-channel data 

As described in chapter four, the choice of pre-processing technique dependent is on the 

nature of the data at hand. The present chapter is describing how to handle data obtained 

from first-order instruments. It is divided into two subsections which respectively describe 

how to pre-process chromatograms where the peaks are mainly well separated (section 5.1), 

and where they are not (section 5.2). There is of course a grey area in between these two 

categories. If in doubt about which of the methods to choose, it is recommended to first test 

the method for well behaving chromatograms (FastChrom, section 5.1), and subsequently, if 

the result is not satisfying, the method for analysis of full chromatograms (section 5.2). 

5.1 FastChrom 
The methods described in this section require that the chromatograms are “well behaving”, 

with this is meant that shifts within the experiments are minimal, the peak shapes are 

approximately Gaussian, and the peak width for the individual compounds relatively 

constant. If these requirements are met, the methods incorporated in FastChrom can be 

applied successfully. 

FastChrom is a graphical user interface which runs in MATLAB. It consists of baseline 

estimation for each sample, peak identification and validation, and peak grouping across 

samples. In addition to these features it is possible to assign retention time indexes to the 

peaks. The use of indexes, instead of raw retention times, eases identification and 

comparison between different experiments. The different parts of FastChrom are described 

and critically evaluated in paper I. In the following a more thorough description of how to 

optimise the different parts of FastChrom will be presented.  

The chromatograms illustrated in Figure 18 are used throughout this section. The 

chromatograms are relatively noisy and have a significant baseline which needs to be 

removed before quantification of any compounds is possible.  
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Figure 18. If the baseline estimation does not take the hump in the baseline into consideration, it 

will be of significant consequence for the quantification of the peaks eluting in that interval. The 

zoom to the left shows a representative peak from one of the samples, the peak width is 16 data 

points. In the zoom to the right an area without peaks is shown. It can be seen that the noise has 
a level of approximately 7.5×103. 

Before FastChrom can be used an Excel-file must be created. The file must contain 

information about which of the samples that are control samples, Kovats Index samples (KI), 

and real samples, in a sheet named “Samples”. If KI samples are included the Excel file must 

also contain information about the index of these samples in a sheet named “KI”. The layout 

of these sheets is shown in Figure 19. 

 
Figure 19. The “Samples” and “KI” sheets which must be created before FastChrom can be used. 

The “Samples” sheet contains information about the names and nature of the samples. The “KI” 

sheet contains information about the index of the compounds in the KI standards, their retention 
time, and how much the retention time can vary. KI: Kovats Index. 
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In FastChrom there are a number of settings which must be defined. In Figure 20 the settings 

box is shown. The two settings which are unmarked indicate the part of the chromatogram 

which is being evaluated by FastChrom and the scan frequency in scans/min. It is only 

necessary to provide this last setting if the file format is RAX (which is the output format from 

Perkin Elmers GC-FID instruments). If the file format is CDF, MAT or XLS, the scan frequency 

is calculated by FastChrom.  

 
Figure 20. The “Settings” section in FastChrom. Red square: Settings affecting baseline. Green 
square: Settings affecting peak identification. Blue square: Settings affecting peak grouping 

The first step in handling the chromatograms is to determine a baseline. The baseline 

estimation which is used in FastChrom is a new development and is thoroughly documented 

in paper I. It starts by identifying areas without peaks, in these areas the raw data are used 

directly as baseline. In areas with peaks the baseline is estimated in an iterative way with 

local linear regression.  

FastChrom differentiates between areas with and without peaks by determination of the 

standard deviation in small segments. Areas with standard deviation below a user set 

threshold (“Thres” in Figure 20) are defined as regions without peaks. Besides the threshold 

the user needs to define the width of the windows used to calculate the standard deviation 

across the individual chromatograms (“Noise” in Figure 20).  

The width of the window should be set first since it will affect the determination of the 

threshold. It should be approximately similar to the peak width (at half height) obtained in 

the chromatograms. By zooming in the plot of the raw data, one can simply count how many 

data points one peak spans in half height. In Figure 18 a zoom is shown with a peak with a 
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width of 16 data points. By inspecting a few other peaks, it is found that this is a 

representative peak width for this data set. The “Noise” setting is therefore set to 16. 

After having performed an initial calculation with the “Noise” setting settled, the “Thres” can 

be determined by inspecting the standard deviation for a few chromatograms. When the 

“Thres” is determined it is important that it is the smallest peaks which are inspected. The 

inspection can be performed by clicking the “Thres” button in FastChrom. 

The determination of these two settings (“Thres” and “Noise”) only needs to be done once 

for each application (this means that if the same type of samples are analysed, with the same 

GC method, on the same instruments, the same settings can be used). 

The next step is to locate all peaks in the chromatograms. The settings affecting this are 

maximum and minimum peak width, minimum peak height, and the smoothing window 

(marked with green in Figure 20). The smoothing is only necessary in cases with a relatively 

high noise level, which is the case in the example used here. The width of the smoothing 

window is recommended to be set to one half of the peak width, this ensures that enough 

noise is removed so that the peaks become smooth, and it will not severely affect the peak 

height. If the smoothing window is chosen with this rule in mind, there is a very little 

likelihood that smoothing will have a negative effect, so if in doubt smoothing should simply 

be applied. If one does not want to apply smoothing, the smoothing window should be set to 

one. 

The minimum and maximum peak widths and minimum height are included to ensure that 

noise is not identified as peaks. A recommendation for the minimum peak height could be 

three times the noise level, since this is commonly used as the detection limit. The level of 

noise can be determined by a closer inspection of regions with baseline in the raw data. In 

the example shown in Figure 18, the noise level is approximately 7.5×103 and a 

recommendation for the minimum peak height, in this case, would therefore be 22.3×103. If 

it does not matter if noise is reported in the final peak list, the minimum peak height could 

be set to zero. 

The minimum peak width is included to ensure that spikes are not identified as peaks. The 

minimum peak width is important since such a spike can be of considerable height but it is 

always narrower than an ordinary peak originating from a real chemical compound. This 

feature can only be determined based on knowledge of the data. The minimum peak width 

should be somewhat lower than the observed peak widths, and in the example used in this 

case a minimum peak width of 10 is reasonable. The maximum peak width is not a critical 



 Chapter 5 –Single-channel data 

 

41 

 

parameter, and should just be set to be considerably higher than the normal peak width. In 

the example it has been set to 30. 

Also these settings only need to be optimized once for each application. 

Finally the peaks should be grouped across samples in such a way that peaks which are 

originating from the same chemical compound are clustered in the same group. This is done 

by defining the width of a grouping window (which must be odd). It is recommended to 

inspect the deviation of peaks in the dataset in order to determine the width of this grouping 

window. This could be done by performing a calculation with the settings already 

determined, and exporting the result to Excel. In the resulting Excel file the original retention 

time of all peaks can be found in the 

sheet “Peaks”. The deviation of three 

representative peak groups is shown in 

Figure 21. In this case there are two peak 

groups with a deviation of 13 data points 

and one peak group with a deviation of 

12 points. The “shift” parameter is 

therefore determined as 13. It is not 

always so clear what the optimal shift is, 

in such cases it is recommended to 

choose a width which is a bit too small 

rather than to wide, since it is easier to 

recognize peaks which should have been 

in the same group and manually merge 

these, than the other way around. 

The width of the grouping window 

should be checked by a quick inspection 

of the results for every new batch of 

samples. 

  

 
Figure 21. Distribution of peaks in the 30 

samples and the two KI standards. The three 

peak clusters have internal shifts on 
respectively 13, 12, and 13 data points. 
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5.2 Full chromatogram analysis 
In cases with very complex data, the methods incorporated into FastChrom are insufficient. 

Indeed other methods could be used for baseline estimation and peak identification. 

However, when data are obtained from first-order instruments it is very difficult to resolve 

overlapping peaks in a robust and trustworthy way. My recommendation would therefore be 

to apply the approach suggested by Christensen et al. (Christensen, Tomasi & Hansen 2005, 

Christensen et al. 2005, Christensen, Tomasi 2007, Petersen et al. 2011). This method does 

not aim at being able to quantify the individual compounds, but rather to investigate which 

compounds that vary across samples, and to identify main characteristics of the samples. The 

idea is to remove baseline contributions and shift from the data, and subsequently use 

multivariate data analysis to identify relevant information. Below are the individual steps in 

the procedure presented, and in Box 1 the relevant MATLAB code is shown.  

Throughout this section the chromatograms, shown in Figure 22, are used to illustrate the 

effect of the different steps. The chromatograms are TIC obtained from GC-MS analysis of 

beer. Even though the chromatograms represent data obtained from a second-order 

instrument, they will be treated here as if they were originating from a first-order 

instrument. 

 
Figure 22. The figure shows a section of 26 TIC obtained from GC-MS analysis of beer.  

The first step in the procedure is to remove the baseline. This step is carried out before the 

alignment since differences in baseline may affect the alignment in a negative way (Nielsen, 

Carstensen & Smedsgaard 1998). The removal of baseline contributions is performed by 

calculating the first derivative. However, this may increase the noise level in data. To 



 Chapter 5 –Single-channel data 

 

43 

 

counteract this, smoothing can be applied e.g. with Savitzky-Golay (Savitzky, Golay 1964) to 

minimize the noise level in the derivatives. Smoothing with Savitzky-Golay is obtained by 

local polynomial regression to small segments of the original curve. The main advantage with 

this approach is that peak features such as minima, maxima and width are preserved to a 

high degree. The width of the windows and the order of the polynomial can be changed so it 

fits the noise level and complexity of the raw data, e.g., high noise levels require a wider 

window, while high complexity in data requires a higher order polynomial.  

In Figure 23 the derivatives obtained from the beer chromatograms are shown. The 

derivatives have been calculated after smoothing with Savitsky-Golay (width 15 points, third 

order). The width of the window and the order of the polynomial were found by inspection 

of smoothed data with a number of different settings. The setting which resulted in the 

smoothest signal without removal of small peaks was chosen. The figure shows how the 

baseline, which appeared in the raw chromatograms, is now removed. Since the derivatives 

are equal to the slope of the original curve, a peak from raw data will appear as a double 

peak with a positive part (positive slope in the original peak) and a negative part (negative 

slope in the original peak). The intersection with zero is located at the same retention time as 

the apex of the original peak. In the zoom in Figure 23 the appearance of such a double peak 

is shown.  

 
Figure 23. Illustration of the derivatives calculated on the beer chromatograms after smoothing 

with Savitsky-Golay (width 15 points, third order) has been applied. The zoom shows the 

appearance of a typical peak in the derivatives (only one chromatogram is shown in the zoom). 

The dotted lines in the zoom indicates the boundaries of the double peak, the peak width here is 
29 points. 
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The next step is to align the chromatograms. In cases with severe shift throughout the 

chromatograms, it is recommended to initiate with an alignment of the entire 

chromatograms with icoshift, and subsequently align with COW. However, for the data used 

here, the shift is not so severe, and alignment is performed using only COW. In Figure 24 the 

appearance of five different types of references is shown. Type #4, maximum signal is 

characterised by having very broad peaks, and by not being able to describe the negative 

parts of the peaks appropriately. References #1, #2, and #3 (mean signal, median signal, and 

bi-weighted mean signal) are three different ways of finding the average signal, and perform 

somewhat better than criterion #4. However they are all characterised by having broad peaks 

(right in figure) and small peaks are insufficiently represented in these references (indicated 

with arrows in the left part of the figure). In this specific case criterion #5 (maximum 

cumulative product of correlation coefficient) is best suited as reference, and it is my 

experience that this method, in general, is the best choice. For a more detailed description 

about the different reference types shown here, see section 2.7. 

 
Figure 24. Illustrations of five different types of references; #1: mean signal, #2: median signal, #3: 

bi-weighted mean signal, #4: maximum signal, and #5: maximum cumulative product of 
correlation coefficient.  
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In section 2.7, it is mentioned that the optimisation of the segment length and slack size can 

be performed in an automated way. However, some boundaries for the search space must 

be defined. In the publication by Skov et al. (2006), which originally described the automated 

optimisation, it was recommended to set the boundaries of the segment length to the 

average peak width at baseline ± ½ peak width. As shown in Figure 23 a typical peak in the 

beer data, has a width of 29 data points, the boundaries for the segment length were 

therefore set to 15 and 45. The boundaries for the slack size were, in the original publication, 

recommended to be set to 1 and 15, and then adjusted if the optimisation resulted in a slack 

size near 15. Therefore the boundaries for the slack size were set to 1 and 15. In the beer 

data, the shift was most severe in the middle part of the chromatogram, and pads of noise 

were therefore not added to the ends of the chromatograms before alignment. By using the 

automated optimization of segment length and slack size it was found that a segment length 

of 41 and a slack size of 13 were appropriate for the data at hand. In Figure 25 the result of 

the alignment is shown. It may seem like the middle part (around scan point 3100) has not 

been properly aligned. However, upon a closer inspection it can be seen that there are 

actually more than one peak in this area (zoom not shown).  

 
Figure 25. Derivatives aligned with COW. Segment length (41) and slack size (13) were found by 

the automated optimization procedure, the chromatogram with the highest correlation to the 
others was chosen as reference (reference type #5). 

After having removed baseline contributions and solved the issues with shifts in retention 

time, some normalization should be applied before analysing with PCA. This thesis will not 

cover this subject, but in the publication by van den Berg et al. (2006) different types of 

normalization techniques are carefully described.  
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As an alternative to PCA, MCR can be applied. However, due to the non-negativity constraint 

in MCR, derivatives cannot be used; therefore other types of baseline removal should be 

applied. One alternative approach could be to fit a polynomial to the bottom of the 

chromatogram, or to regions specified as baseline regions.  

Which one of the two methods (PCA or MCR) to choose, depends on the purpose with the 

experiment. It is out of the scope for this thesis to describe how these analyses are 

performed, but in the work done by Svendsen et al. (In preparation) it is described how the 

results can be interpreted, and it is shown that if the samples represent time series, e.g. 

samples are taken out at different time points during a fermentation course, then MCR is in 

general superior to PCA. If, on the other hand, one wishes to explore differences between 

groups of samples, a PCA analysis will most likely give the best result.   

To ease interpretation of the PCA or MCR results, the cumulative sum of the loadings can be 

calculated to restore the chromatographic appearance of the peaks.  

 

Box 1. Pre-processing of the full chromatograms 

The code below shows how to import single-channel data into a matrix (x) with samples in 
mode 2 and retention time in mode 1. It is assumed that data is available in an Excel file, named 
“raw.xlsx” with retention time in the first column and the intensities from samples 1 to N in 
column 2 to N+1, in a sheet named “data”.  

x      = xlsread('raw.xlsx', 'data'); 
rt     = x(:,1); 
x(:,1) = []; 
 
TIC from GC-MS or LC-MS can be imported as shown in Box 2, if this is the case “x” should be 
replaced with “tic” in the code for smoothing below.  

The code below shows how to smooth data with Savitsky-Golay with a window width of 15 and 
a third order polynomium. The effect of smoothing should be checked, therefore the code for 
plotting of the smoothened signal is included. 

x_hat = savgol(x',15,3); % Replace x with tic here 
plot(x_hat')  

Calculation of derivatives: 

d = diff(y_hat'); 
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Box 1, continued. Pre-processing of the full chromatograms 

In cases with severe shift, full chromatogram alignment can be performed with the following 
code which applies icoshift with the maximal signal as reference: 

[dCS,ints,ind,target] = icoshift('max',d','whole','b', [2]); 
 
Alignment with COW can be performed with the following lines of code. After the first line of 
code has been evaluated, the user will be asked for which reference method the algorithm 
should use to select a proper reference. The method should be chosen by inspection of the 
created plots which illustrate the different references.  

[ref,refs,N] = ref_select(dCS'); % Replace dCS with d in case icoshift 
has not been aplied  
[par,OS,diag] = optim_cow(ds', [15 45 1 12], [], ref); 
[W,XW,Diagnos] = cow(ref,ds', par(1), par(2)); 
plot(XW') 
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Chapter 6 

Multi-Channel data 

In this section it is described how to handle data originating from multi-channel detectors. 

The first two sections describe how to handle data where the obtained chromatograms can 

be divided into sub-sections with no more than 5-6 compounds eluting in each. The first 

section is focused on how to use PARAFAC2 for these kinds of data. This approach is 

recommended in general, while it, in some special cases, can be necessary to apply MCR as 

an alternative. This approach is described in section 6.2. 

Throughout sections 6.1 and 6.2 small boxes with thorough guidelines on how to perform the 

individual steps in MATLAB are included. By simply copying those steps and, subsequently, 

pasting them into the MATLAB command window, it should be possible for those which are 

not familiar with MATLAB to take advantage of the methods described. 

Section 6.3 gives some very brief suggestions of how to treat data where it is impossible to 

divide the chromatograms into smaller baseline separated intervals.  

6.1 Baseline separated intervals - PARAFAC2  
The first step is to make a visual inspection of the raw data. If this is done in MATLAB, the 

data must first be imported and plotted as described in Box 2. It is a prerequisite that the 

data is available in CDF format (also denoted netCDF). For a description of this format see the 

publication by Rew and Davis (Rew, Davis 1990). 

After plotting the TIC, the intervals should be defined. This step can with some success be 

performed in an automated way by using the AI-Binning algorithm developed by De Meyer et 

al. (De Meyer et al. 2008). However, in my opinion, it is just as easy to do it manually since 

the intervals created by AI-Binning should be manually validated anyhow and then the time 

saved by the automation is quickly spent. In Figure 26 a section of 55 TICs is shown which 

could be divided into three intervals as indicated in the figure. 
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Figure 26. A small section of 55 total ion chromatograms. In this case three intervals could be 
created: 1) 2267 to 2283, 2) 2283 to 2296, and 3) 2297 to 2327 

After dividing the chromatograms into low-rank-intervals PARAFAC2 should be applied and 

evaluated on each of these separately, either by manually evaluating the models, or by using 

the automated approach described in paper IV. Here both approaches will be described in 

the two sections below, using the intervals from Figure 26 as examples. In both approaches a 

modified version of the PARAFAC2 algorithm is used, the original algorithm is available from 

http://www.models.life.ku.dk. In Box 2 it is shown how to modify the PARAFAC2 algorithm. 
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Box 2. Import, initial visual inspection of raw data, and modification of the parafac2 
algorithm. 

Make sure that the “current folder” is the folder containing the raw data in CDF format.  

The following lines of command will import data and create a three way array (M) containing 
the raw data (mass channels in first mode, elution time in second mode, and samples in third 
mode), a two way matrix (tic) containing the TIC of all samples (with elution time in first mode 
and samples in second mode), and two vectors (mz and rt) containing respectively the mass and 
elution time axes. After data have been imported the TICs are plotted. 

The command requires that the iCDF function (available from http://www.models.life.ku.dk) is 
installed. The function only works on 32-bit computers; alternatively a function working on 64-
bit computers can be obtained from the author upon request. 

files = dir('*.CDF'); 
  
for i = 1:length(files) 
    [m, t, rt, mz] = iCDF_load(files(i).name); 
    M(:,1:size(m,2),i) = m; 
    tic(:,i) = t; 
end 
M = permute(M, [2 1 3]); 
keep M tic mz rt 
 
plot(tic) 
 

Modification of parafac2.m 

The function must be present in either the MATLAB path or in the “current folder”. In the 
“command window” write: 

edit parafac2.m 

Now the function will appear in the “editor” with the first line as follows: 

function [A,H,C,P,fit,AddiOutput] =  
parafac2(X,F,Constraints,Options,A,H,C,P); 
 
Insert “it” and save the modified function: 

function [A,H,C,P,it,fit,AddiOutput] =  
parafac2(X,F,Constraints,Options,A,H,C,P); 
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Manual evaluation of PARAFAC2 models 

The principle behind the manual evaluation of how many compounds to include is to 

calculate and evaluate a number of models with increasing number of factors. This number 

should be increased until the model with one factor too much has been found.  

 
Figure 27. Elution profiles, mass spectra profiles and residuals from interval 1 modeled with 
PARAFAC2. The optimal model is the model with three factors. cc; Core consistency. it; iterations 

The first step is to make an initial guess of how many factors to include. In interval one at 

least one factor should be included plus, probably, one to describe the baseline. A 

reasonable initial guess would therefore be to make a PARAFAC2 model with two factors. 

Upon inspection of this model (leftmost in Figure 27), there is nothing which really indicates 

that the model should not be the optimal. There are some small negative values in the 

obtained spectra, but these values are very low. In order to be sure that two factors result in 

the optimal model, a model with three factors is made. This model is illustrated in the middle 

in Figure 27. In this model the small amount of negative values in the spectra are absent, and 
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there is no indication that the model has too many factors included. So even though it does 

not seem like additional information is found (the extra component merely describes an 

additional baseline) the model seems more appropriate than the two-factor model. In order 

to control that no additional factors should be included, a four-factor model is created. This 

model shows clear signs of over-fit; core consistency is somewhat lowered, the number of 

iterations are considerably increased, and there are high negative values in the spectra 

profile (rightmost in Figure 27).  

When all the different aspects of the three models are taken into account, it may be 

concluded that interval one is best described with three factors. However, the two-factor 

model could also be used, since spectra and concentration profiles obtained from the two-

factor and three-factor models are very similar (not shown). 

 
Figure 28. Elution profiles, mass spectra profiles and residuals from interval 2 modeled with 
PARAFAC2. The optimal model is the model with two factors. cc; Core consistency. it; iterations 
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By evaluating interval 2 in the same way as just described for interval 1, it can be concluded 

that this interval is best described by a model with two factors. This conclusion is based on 

the observation that the residuals in the two-factor model are very unsystematic, and that 

there, in the three-factor model, is an increase in negative values in the obtained spectra as 

well as a considerable increase in the iterations. The two- and three-factor models are shown 

in Figure 28. 

 
Figure 29. Elution profiles, mass spectra profiles and residuals from interval 3 modeled with 
PARAFAC2. The optimal model is the model with four factors. cc; Core consistency. it; iterations  

In interval 3 two distinct peaks are eluting, therefore the initial model is made with three 

factors (one for baseline + two for the chemical compounds). Inspection of this model shows 

that there is some systematic behaviour in the residuals, besides this observation the model 

seems like a reasonable model (left in Figure 29). When one additional factor is included 

(middle plots in Figure 29) the systematic behaviour in residuals is reduced. However, there 

is also a noteworthy increase in the number of iterations which could indicate over-fitting, 
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but since there are no other indications that this model is over-fitted, the overall conclusions 

must be, that this is not an over-fitted model. By including four factors in the model 

(rightmost in Figure 29) the iterations increase even more, the core consistency becomes 

very low, and there is an increase in the negative values in the obtained spectra. All these 

observations indicate that this model is over-fitted. Based on these observations it may be 

concluded that this interval is optimally described by a three-factor model. 

By applying PARAFAC2 on the three intervals, resolution of overlapping compounds and 

removal of baseline were achieved. However, as illustrated in the above, it is not trivial to 

find the optimal model, and it is both time consuming and requires expert evaluation. 

Therefore, it is suggested to start out with the automated approach, which is described in the 

next section. 

After having found the optimal model, the spectra profiles can be exported with the 

algorithm loads2chrom (Murphy et al. 2012), and subsequently be identified with the open 

source software OpenChrom (Wenig, Odermatt 2010) and the Mass Spectral NIST library. The 

concentration profiles can be exported to Excel, and from here imported to other software 

for further interpretation (e.g. PCA analysis). 

Box 3 showns the MATLAB commands, used for calculating a PARAFAC2 model on interval 

one. Also the commands necessary for creating the plots used in the evaluation, as well as 

commands used for creation of the MPL file, which can be used in OpenChrom, and 

exportation of the concentration profiles to Excel are shown. 
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Box 3. Manual calculation and inspection of PARAFAC2 models. 

The following lines of commands calculate a PARAFAC2 model with 3 factors on the first of the 
three intervals shown in Figure 26 (scan 2267 to 2283). 

The command requires that the parafac2, corecondia, sign_flip and loads2chrom files are 
located either in the MATLAB path or in the “current folder” (all these files are available from 
http://www.models.life.ku.dk).  

% Creation of the interval and calculation of the PARAFAC2 model 
F         = 3; % The number of factors to include 
I1        = 2267; % First data point in the interval 
I2        = 2283; % Last data point in the interval 
X         = M((:,I1:I2,:); 
max_it    = 50000; 
[A,H,C,P,it] = parafac2(X, F, [0 0], [0 max_it 0]); 
% Calculation of core consistency 
Y = zeros(size(X,1), F, size(P,2)); 
for i2 = 1:size(X,3) 
    Y(:,:,i2) = X(:,:,i2)*P{i2}; 
end 
cc = corcondia(Y,{A,H,C},[],0); 
% The signs of the loadings are corrected 
m.loads{2}   = C; 
m.loads{1}.H = H; 
m.loads{3}   = A;  
m.loads{1}.P = P; 
m.modeltype  = 'parafac2'; 
x            = permute(X, [2 1 3]); 
[sgns,m]     = sign_flip(m,x); 
% The model is visualized with plots 
Figure 
name = horzcat(num2str(F), ‘factors’, '. Cc = ', num2str(cc)); 
set(gcf,'Name',name,'NumberTitle','off') 
subplot(2,2,1) 
plot(squeeze(sum(X,1))) 
title('TIC from raw data'), xlabel('Scan no.'), axis tight 
subplot(2,2,2) 
d = zeros(size(X,3)); 
E = zeros(size(X)); 
for i = 1:length(P) 
    for ii = 1:size(X,3) 
        d(ii,ii) = m.loads{2}(i,ii); 
    end 

E(:,:,i) = X(:,:,i) - 
(m.loads{3}*d*(m.loads{1}.P{1,i}*m.loads{1}.H)'); 

    plot(m.loads{3}.P{i}* m.loads{3}.H*d), hold on 
end 
hold off 
title('Weighted elution profiles'), xlabel('scan no.'), axis tight 
subplot(2,2,3), plot(m.loads{3}) 
title('Mass spectra'), xlabel('m/z'), axis tight 
subplot(2,2,4), plot(squeeze(sum(E,1))) 
title('TIC from residuals'), xlabel('Scan no.'), axis tight 

The following lines of commands creates a MPL file called “spec” and exports the concentration 
profiles to an Excel file named Conc. 

loads2chrom('spec',model,rt(I1:I2),mz,'minutes'); 
xlswrite('Conc', C); 

 

http://www.models.life.ku.dk/algorithms
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Automated evaluation of PARAFAC2 models 

With the automated approach, models will be calculated for all intervals with one line of 

command. A suggestion for the optimal number of factors will also be made based on a 

classification model which includes some descriptive parameters for over-fit. The 

classification finds the model which is most likely to be the first over-fitted model, the model 

with one less factor is then suggested as the optimal model. The method has been validated 

in paper IV, where a more thorough description is also available. 

After having calculated models for all the desired intervals, the models appointed as optimal 

should be briefly inspected in order to control that they look reasonable. In the inspection 

some of the same considerations, as described in the previous section, must be made.  

The automated approach recommends using three factors for interval 1, three factors for 

interval 2, and four factors for interval 3. This is pretty much in agreement with the 

conclusions drawn from the manual assessment of the models. The only exception is interval 

two which, by the automated approach, is modelled with one additional factor (the models 

are illustrated in Figure 28). However the additional component, is merely describing a 

second baseline, and the peak modelled by the two-factor and three-factor models is 

described by similar mass spectra and concentration profiles as illustrated in Figure 30.  

 
Figure 30. Comparision between obtained mass spectra and concentration profiles from the two-
factor and three-factor model. 
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6.2 Baseline separated intervals - MCR 
Before any MCR models can be calculated data must be inspected and, as for PARAFAC2, the 

chromatograms must be divided into baseline separated intervals containing a limited 

number of compounds. MATLAB code for 

importing and plotting raw data can be found 

in Box 2.  

In the examples in this section an interval 

containing glycine and isotopic labelled (N15 

and C13) glycine is used to illustrate how to 

obtain an MCR model which describes the 

underlying chemistry. A total of five samples 

are included in the dataset with varying 

amounts of respectively the labelled and non-

labelled glycine. The TIC obtained from the 

Box 4. Automated calculation and evaluation of PARAFAC2 models. 

The following lines of commands calculate and evaluate PARAFAC2 models on the three 
intervals shown in Figure 26. Also the code necessary for creating MPL files is shown. These files 
will be named “spec1”, “spec2” and so forth until the number of intervals included in the 
calculations (in this case three). Finally the concentration profiles are exported to Excel. 

The command requires that the parafac2, auto_PF2, and sign_flip functions to be located either 
in the MATLAB path or in the “current folder” (all the functions are available from 
http://www.models.life.ku.dk/algorithms). Furthermore PLS_toolbox (Eigenvector) must be 
installed.  

The first line defines the boundaries of the intervals separated by semicolon. 

I = [2267 2283; 2283 2296; 2297 2327]; 
out = PF2auto(M, I); 
view_models(out, M) 
 
% Creation of the MPL files for identification and export of  
% concentration profiles to Excel: 
 
conc=[]; 
for i = 1:length(out.nfactors) 
    m = out.models{i,out.nfactors(i)}; 
    T = horzcat('spec', num2str(i)); 
 loads2chrom(T,m,out.rt(out.int(i,1):out.int(i,2)),out.mz,'minutes'); 
    conc = [conc m.loads{2}]; 
end 
xlswrite('Conc', conc) 
 
 

 
 

 

 
Figure 31. Raw data illustrated by the total 
ion chromatograms.   

 

http://www.models.life.ku.dk/algorithms
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raw data is illustrated in Figure 31. 

The main difference between MCR and PARAFAC2 is that MCR is a bilinear method, and 

hence is working on two-way matrices, in contradiction to the trilinear method PARAFAC2, 

which is working on three-way arrays. This means that data needs to be arranged in a matrix 

before any modelling can be performed. In Box 5 it is shown how a three-way array can be 

rearranged into a two-way matrix in MATLAB. After having rearranged the data MCR models 

can be calculated. There exist several different algorithms for this. The models described 

here have all been calculated using the MCR-ALS Graphic User Interface (GUI) (Jaumot et al. 

2005) available from http://www.mcrals.info. Guidelines on how to use the GUI are found in 

the publication, and in Box 5, in the end of this section, it is described which settings that 

were used to create the models described throughout this section, also some MATLAB 

commands necessary for using the constraints described below are included in the box. 

As for PARAFAC2 the MCR models must be made with the right number of factors included. 

However, it is even more complex to determine how many the “right number” is when using 

MCR. There are several reasons for this, one of the reasons is that there is no counterpart to 

core consistency for MCR models. Also the evaluation of increased negativity in models is 

useless in evaluation of MCR models, since non-negativity almost always is applied. In 

addition to this the use of different constraints will change the appearance of the models and 

this may make it even more difficult to choose how many factors to include.  

 
Figure 32. Left: Singular values for the data illustrated in Figure 31. Right: Comparison of the 
spectra representing two of the compounds in the three-factor model. 

One approach is to use the appearances of obtained loadings together with Singular Value 

Decomposition (SVD) to determine the optimal number of factors. To the left in Figure 32  

http://www.mcrals.info/
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the singular values from SVD of the data illustrated in Figure 31 are shown. These suggest 

that the rank of data is two, since the singular values are changing very little by inclusion of 

additional components. By evaluating models with respectively two and three factors it is 

clear that the inclusion of the third factor is not resolving additional chemical compounds. As 

shown to the right in Figure 32 two of the three obtained spectra are very similar, this 

indicates that one chemical compound is described by two components. Since both the SVD 

and the evaluation of models indicate that two factors are appropriate for this dataset two-

factor models are used in the remaning part of this section. 

When creating MCR models constraints are used to ensure that the obtained models are 

unique and are describing the underlying chemistry in data. However, if the wrong 

constraints are used the model might describe some artefacts which are not present in data. 

It is therefore very important that the constraints used are based on knowledge about the 

present data. Furthermore it is recommended to use as few constraints as possible in order 

to let the data speak for itself. For this reason, an initial model is made with non-negativity in 

spectra and concentration profiles as the only constraint. At first glance it seems like the 

model is capable of separating the two compounds. However, if the known spectrum for the 

internal standard is compared with the spectrum obtained from the model, it becomes 

obvious that the model is not describing the real underlying chemistry (see Figure 33). 

 
Figure 33. Comparison between the known spectra of the internal standard and the spectra 
obtained with an MCR model constraint with non-negativity alone. 
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Since the spectra of the two compounds are known, we can apply an equality constraint in 

spectra. This means that the algorithm is being constraint to match the known spectra. This 

is in practice done by creating a new matrix (xecs) holding the raw data plus the pure spectra 

from the two compounds. Furthermore a matrix with information about which of the rows 

that are containing these pure spectra must be created. In this way an “xces” matrix with the 

data, shown in Figure 31, plus the raw spectra of labelled and unlabelled glycine were 

created. An MCR model created in xces, constraint so that the rows with the pure spectra is 

forced to have no contribution from the other compound, will provide spectra profiles which 

completely match the profiles of the known compounds (not shown).  

Another option is to apply an equality constraint in concentration profiles. This requires that 

the two eluting compounds are not totally overlapping. In that case a matrix can be created 

with information about where the compounds are not eluting. By constraining the model to 

follow this, the obtained solution will become unique (Manne 1995), but it requires a very 

thorough inspection of data, and in cases with completely overlapping peaks it is not a 

possibility. Therefore this constraint cannot be applied on the models created in this section. 

A last very useful constraint is to identify species which are absent in specific samples. This is 

in practice done by creating a samples-by-components matrix containing ones, except 

positions representing samples where the 

compounds are known to be absent. If 

this constraint is applied, the 

concentration profiles are forced to zero 

in samples where the relevant compound 

is stated to be absent. No matter of the 

compound actually being present. By 

forcing the model to find a solution with 

no labelled glycine present in sample one, 

the elution profiles shown in Figure 34 are 

obtained. In accordance with the applied 

constraint, the concentration profile for 

labelled glycine is zero in sample one, 

even though labelled glycine was added 

to all samples. With this in mind the conclusion must be that the model is not describing 

actual chemistry. An indication of this can be found if the obtained fit of this “identify 

species” constrained model (99.69) is compared with the obtained fit for the model without 

this constraint (99.87). The fact that the fit has decreased by the introduction of the 

 
Figure 34. Elution profiles obtained when 
“identify species” constraint is applied.  
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constraint shows that the solution has been forced away from the optimal solution space, 

and hereby also away from the chemical correct solution. 

As exemplified above constraints should be used with caution, and the obtained model 

should be carefully validated. A key parameter in this validation is to check if the fit is 

decreased by applying the constraints; as explained previously, a decrease strongly indicate 

that the constraint has forced the solution away from the chemically correct solution. 

Another important aspect is to make sure that the constraints are supported by observations 

from raw data. An example could be to check if individual mass traces from raw data support 

the constraints. 

When the model, which describes the underlying chemistry in the most accurate way, has 

been identified, spectra profiles can be exported and identified in the same way as for 

spectra profiles obtained with PARAFAC2. Also the concentrations can be exported to other 

software for further interpretation. In Box 5 it is shown how to export concentrations to XLS 

files and spectra to MPL files. 

 

Box 5. Calculation and evaluation of MCR models. 

A three-way array (I, with mass channels in first mode, elution time in second mode and 
samples in third mode) is created containing the interval from scan # 650 to 670.  Subsequently 
the array is re-arranged into a two-way matrix (x, with elution time in first mode and mass 
channels in second mode), and the matrix is scaled so the highest intensity is equal to one: 

S = 5; %The number of samples included 
I = M(:,650:670,:); 
x = []; 
for i = 1:S 
    x = [x; I(:,:,i)]; 
end 
x = x./max(max(x)); 
 
Now the MCR models can be calculated on the two-way matrix (x) with the MCR-ALS GUI. The 
GUI is initiated by writing mcr_main in the MATLAB command window (assuming that the 
function is located either in the MATLAB path or in the “current folder”).  

By following the steps described below, the models described in this chapter can be created. 

1) The variable containing the relevant data (x) is selected. 
2) The number of components is selected using “SVD”. 
3) Initial estimations are performed using “Pure”. The direction is chosen as “spectra” and the 
allowed noise is set to 5% (between 5 and 10% is generally recommended). After having 
performed the selection, select “Sort the list of purest variable in the output”. This ensures that 
the same chemical compound is modeled with the same component in subsequent models. 
4) Unless the “identify species” constraint is to be applied perform the calculations with “nr. of 
matrices” set to one, otherwise set it to the number of samples included. 
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Box 5, continued. Calculation and evaluation of MCR models. 

5) Select non-negativity both in “conc and spec”. Use “fnnls” and set the number of species to 
the number of components included in the model. 
6) Select any additional constraints. (More about this below). 
7) Initiate the optimization and select normalization to “spectra equal length”. 

The code below exports concentrations to an Excel file named (Conc.xls), and spectra to an MPL 
file (spec.mpl). 

S = 5; %The number of samples included 
m.loads{1} = copt; 
m.loads{2} = sopt; 
m.modeltype  = 'MCR'; 
loads2chrom('spec',m,rt,mz,'minutes'); 
C =[]; 
r = size(x,1)/S; 
for i = 1:S 
    C = [C; sum(copt(i*r-(r-1):i*r,:))]; 
end 
xlswrite('Conc', C); 
 

Equality constraints in spectra: 

The following code create a matrix (ecs) which is to be used in step 6) above, as well as the 
matrix (xecs), which is holding the data and pure spectra, which should be used in the creation 
of the model. The code assumes the pure spectra of the species are available in an Excel file 
named “spectra” in sheets named “spicies1” and “species2”, respectively. It is important to 
ensure that “species1” is representing the compound modeled by the first component in the 
initial model (and the same for other species). When applying the constraint it should be 
selected as “lower or equal than”. 

sp1 = xlsread('spectra','species1'); 
sp1 = sp1./max(max(sp1)); 
sp2 = xlsread('spectra','species2'); 
sp2 = sp2./max(max(sp2)); 
 
xecs = [x; sp1; sp2]; 
  
ecs = NaN(50,2); 
ecs(end-1,2) = 1e-5; 
ecs(end,1) = 1e-5; 
 
Identify species constraint: 

The following codes create a matrix (isc) which is to be used in step 6). The code is constraining 
species two to be absent in sample one. It is important to ensure that “species one” is modeled 
by the first component in the initial model (and the same for other species). 

c   = 2 %The number of components included 
s   = 5 %The number of samples included 
isc = ones(s,c); 
isc(1,2)=0; 
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6.3 More complex data 
For data where it is impossible to divide it into smaller, baseline separated intervals, 

containing only a few compounds, other methods than those described in sections 6.1 and 

6.2 must be applied. 

One very straight-forward approach would be to process the TIC or individual mass traces as 

described in section 5.2. This will give some indications of where the variation of interest 

occurs, as well as similarities and dissimilarities between samples. The drawback with this 

approach is that all the additional information, which was achieved by using the multi-

channel detector, is disregarded during the analysis of the data. 

Other approaches do exist, but they will not be further described in this thesis. Examples 

hereof could be the method described by Dixon et al. (2006), the freeware 

MetaboliteDetector (Hiller et al. 2009), or the R based open source platform XCMS (Smith et 

al. 2006). XCMS is mostly used for LC-MS data, but if combined with the TagFinder software 

(Luedemann et al. 2008) it is also useful for GC-MS data. Recently XCMS was launched as a 

web-based interface (Tautenhahn et al. 2012) enabling users, who are unfamiliar with R, to 

take advantage of the platform.  

Box 5, continued. Calculation and evaluation of MCR models. 

Equality constraints in concentration: 

The following codes create a matrix (ecc) which is to be used in step 6). In the example it is 
assumed that species one is not eluting in the intervals from scan # 1 to 3 and 40 to 65, while 
species two is not eluting in the intervals from scan # 1 to 10 and 62 to 65. It is important to 
ensure that “species one” is modeled by the first component in the initial model (and the same 
for other species). When applying the constraint it should be selected as “lower or equal than”. 

c   = 2 %The number of components included 
ecc = NaN(size(x,1),c)); 
ecs([1:3 40:65],1)  = 1e-5; 
ecs([1:10 62 65],2) = 1e-5; 
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Chapter 7 

Conclusions and perspectives 

This thesis was created with the purpose of making untargeted analysis of chromatographic 

data more accessible for those who are working with chromatography on a daily basis. These 

people are experts within the field of chromatography, but may not have skills in 

chemometrics or be comfortable with command line based software like MATLAB. In this 

thesis, thorough descriptions are given on how different types of chromatographic data can 

be processed in an untargeted manner. In order for the data to be treated adequately a 

guide has been presented which helps the user to choose the right method. The first thing to 

consider is whether data is obtained from first-order or second-order instruments. 

Subsequently the complexity of the chromatograms should be evaluated. In the following the 

recommendations for the four categories of data, will be outlined, and the perspective of 

how these methods can become applicable in the daily work with chromatography will be 

discussed. 

The MATLAB based graphical user interface (GUI), FastChrom, which is presented in paper I, 

is recommended for well behaving chromatograms without too much complexity obtained 

from first-order instruments. This method enables automatic baseline removal, peak 

detection, and peak grouping across samples.  The method does not require any specific 

chemometrics skills; the only parameters the user needs to decide upon are related to 

knowledge about the chromatographic data. The method finds all peaks in the 

chromatogram and reports the height and possibly the retention index (if index samples are 

included), and since it is incorporated into a GUI it does not require that the user has any 

experience in using MATLAB.  

For single-channel data with high complexity, it is recommended to use an approach where 

the chromatograms are pre-processed in a simple manner with the objective to use MCR or 

PCA to find the main sources of variability and to be able to identify characteristics of the 

samples. This approach requires some programming skills in some command line based 

software in order to be able to pre-process the chromatograms. Furthermore must the user 

have knowledge about how MCR and/or PCA models are interpreted. 
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For low complexity-data obtained from second-order instruments, PARAFAC2 is suggested to 

resolve overlapping peaks and to remove baseline contributions. It has previously been 

shown that PARAFAC2 is a suitable method for mathematical chromatography, meaning that 

it can separate co-eluting compounds mathematically. In order to ease interpretation of the 

obtained models, a solution to the problem with sign indeterminacies has been developed 

(paper III). Besides making the interpretation easier, it also helps in the evaluation of how 

many factors that should be included in the PARAFAC2 model. Another new development, 

which will make it easier to determine the appropriate number of factors, is core consistency 

for PARAFAC2 (paper II). Core consistency will be high (close to 100) for models which do not 

have too many factors included, and low for models with too many factors. In order to make 

PARAFAC2 more accessible for those which are not skilled in both chemometrics and 

chromatography, an automated procedure for estimation of how many factors a PARAFAC2 

model should have included has been developed (paper IV). This procedure is based on a 

classification model which, with a number of carefully selected model diagnostics, is able to 

find the first over-fitted model. The model with one factor less is then suggested as the 

model which describes the data in the most appropriate way. The automated approach 

requires only few lines of MATLAB commands and can therefore be used by users without 

skills in MATLAB programming. 

In cases where PARAFAC2 is unable to model the data in an adequate manner, it is 

recommended to use MCR. It has been demonstrated how constraints can be applied to 

MCR, and how these constrains can limit the solution space so the obtained solution is the 

one which describes the underlying chemistry. However, it has also been shown how the 

wrong constraints can force the model to give wrong solutions. The usage of constraints 

should therefore be based on knowledge about data and observations from raw data. The 

calculation of the MCR models can be performed in existing GUIs. However, in order to be 

able to apply the constraints it is necessary to be somewhat familiar with MATLAB. 

For multi-channel data with high complexity it is recommended to use the method for high 

complexity single channel data on e.g. the TIC. A number of other methods suitable for this 

type of data are also suggested, but these methods are not further investigated. 

With the automations developed in this thesis, one more step has been taken towards 

making comprehensive and untargeted analysis of chromatographic data more accessible for 

those working with chromatography. However, there is still some way to go before the 

average scientist, working with chromatography, can take full advantage of the methods 

already available, including the methods described in this work. As outlined above is the 
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usage, of a lot of the methods, still dependent on the user having some knowledge about 

how to use MATLAB (or other command line based software). In order for the methods to be 

really accessible at least GUIs must be developed which completely eliminates the need of 

using the command line to arrange or pre-process data. However, if we really want to reach 

the wider range of end-users, standalone software should be developed or, as the optimal 

solution, the methods should be incorporated into the software developed by the instrument 

vendors. With these improvements comprehensive untargeted analysis could be performed 

routinely, and the average analysis laboratory will be able to utilize the available methods. 
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An automated method (FastChrom) for baseline correction, peak detection and assignment (grouping) of 
similar peaks across samples has been developed. The method has been tested both on artificial data and a 
dataset obtained from gas chromatograph analysis of wine samples. As part of the automated approach, a 
new method for baseline estimation has been developed and compared with other methods. FastChrom 
has been shown to perform at least as well as conventional software. However, compared to other 10 

approaches, FastChrom finds more peaks in the chromatograms and not only those with retention times 
defined by the user. FastChrom is fast and easy to use and offers the possibility of applying a retention 
time index which eases identification of peaks and the comparison between experiments. 

Introduction 
Most manufacturing software for handling of data obtained from 15 

a Gas Chromatograph coupled with a Flame Ionisation Detector 
(GC-FID) is designed to extract information of specific chemical 
compounds. This is normally done by defining a number of 
elution time windows followed by a peak search within each 
window. Only peaks which are eluting in these windows will then 20 

be detected. Such an approach requires knowledge about which 
compounds are important for a given question, and does not 
comply with an explorative and non-targeted approach. 
Furthermore, such an approach requires re-calibration of all 
windows whenever the retention times are changing, e.g. due to 25 

column change or wear of columns. If the calibration is not 
thoroughly checked after each analysis, some peaks might shift 
out of their window and will therefore be assigned incorrectly or 
not be detected at all. Alternatively, a peak originating from the 
wrong compound might shift into the window and will then be 30 

identified as the compound of interest (see illustration in Figure 
1). The re-calibration is a time consuming task, especially for 
experiments performed with worn columns – in such cases the 
windows sometimes need to be re-calibrated for every new 
experiment. 35 

Figure 1. Position of windows to be evaluated before and after a shift in retention time has occurred. The arrows indicate places where 
peaks will be incorrectly assigned due to the shift 
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A method that could automate and improve the task of 
quantifying peaks would be desirable. Such an approach should 
contain automatic baseline estimation, peak finding, peak 
integration, and assignment of peaks in several chromatograms. 
In addition to these requirements, it is preferred that the method 5 

can handle shifts in retention time from one experiment to 
another. The system should not be completely automated, since 
this would prevent a flexible use. However, it should make a 
skilled specialist in chromatography able to perform a 
comprehensive data analysis much simpler and efficient than is 10 

possible today. 
Over the years, several publications have focused on the 
requirements mentioned above. Unfortunately most of them only 
focus on one of the elements and not on making a method 
covering all the aspects (e.g. baseline fitting1-3 or peak detection4-

15 
8). Frenzel et al.9 describe an automated system for handling of 
GC-FID data. However, this system has been designed for overall 
comparison of the general similarity of chromatograms and not 
for extraction of the areas of individual peaks. In the following a 
method (FastChrom) developed to handle all the above 20 

mentioned aspects is presented. 

Theory 
The method established should be able to perform baseline 
fitting, peak finding, peak assignment across samples, and 
retention time indexing with as few parameters as possible to be 25 

set by the user. The parameters should be dependent of the GC-
system, so that it is only necessary to set them once for every new 
application. It is assumed in the following that the 
chromatograms are originating from fairly similar samples, in the 
sense that the majority of the peaks appear in several of the 30 

obtained chromatograms. It is also assumed that any shift in 
retention time is minimal. 
In the following, the different parts of the FastChrom method will 
be outlined. First the baseline fitting procedure will be described. 
This section will be followed by sections describing the peak 35 

detection, the peak assignment and the retention time index. In all 
of the sections it will be discussed, which parameters the user 
needs to adjust when using FastChrom, and how these 
adjustments will affect the result. 

Baseline 40 

Baseline estimation models can in general be divided into non-
parametric and parametric methods. The parametric methods 
have been claimed to outperform the non-parametric methods2. 
However, the majority of the parametric methods have a 
considerable number of parameters that must be optimised. This 45 

can be a time consuming and daunting task. Some of the most 
used parametric methods are based on the Whittaker smoother. 
The Whittaker smoother is an approach where the smoothing of 
the signal is controlled by the relationship between 1) the 
similarity to the original signal (or baseline) and 2) the noise 50 

remaining in the signal. The importance of the two features is 
regulated by the given input parameters10. Two parametric 
methods, both based on the Whittaker smoother, which are often 
used, are adaptive iteratively reweighted Penalized Least Squares 
(airPLS)3 and Asymmetric Least Squares (ALS)11, where ALS 55 

has one parameter less than airPLS, and is slightly easier to 
optimise. 
Most of the non-parametric methods are based on polynomial 
fitting. However, polynomial fitting has been reported not to 
perform optimally in cases with low signal-to-noise ratios, and 60 

when having complex baselines12. Two recently reported non-
parametric methods claim to perform at least as well as methods 
based on the Whittaker smoother: Automated Iterative Moving 
Average (AIMA)2 and quantile regression1. 
Quantile regression was introduced by Koencker and Bassett in 65 

197813, but it was not until 2011 that it was proposed for baseline 
fitting by Komsta1. Baseline estimation with quantile regression 
is based on polynomial fitting and fits the baseline to a small 
quantile of the signal (0.01 is proposed). In this way the 
polynomial is fitted to the lowest values and consequently the 70 

peaks will have little or no effect on the baseline estimated. An 
introduction to quantile regression is given by Koenker and 
Hallock14 and a comprehensive description has been made by  
Koenker15.  
Automated Iterative Moving Average (AIMA) works by 75 

identifying peaks using a combination of two tools. In step one a 
new signal is constructed by finding of local minima in the raw 
signal. Hereafter potential peak areas are identified by the 
original signal being higher than the new. Peak ends and starting 
points are identified by the signal and the local minimum being 80 

identical and between two such points, the local minimum signal 
is replaced by a straight line. The process is repeated until no 
changes occur. Figure 2 illustrates the process. 

Figure 2. Illustration of how the iterative removal of peaks in 
AIMA works. 85 

The optimal baseline fitting method should be either non-
parametric or only be dependent on a few parameters which are 
easily optimised. In our experience, the non-parametric methods 
available are not performing in a satisfactory way. AIMA, for 
instance, has a tendency of estimating the baseline too high below 90 
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peaks and with quantile regression there is a risk of creating 
artificial peaks in the baseline corrected chromatogram (examples 
are shown in the result section). On the other hand, the parametric 
methods are often time consuming to optimise. Therefore we 
propose a new method for baseline estimation to handle these 5 

problems. 
A comparison of the four methods (AIMA, ALS, quantile 
regression and FastChrom-baseline) will be given later. 
The FastChrom-baseline fitting procedure uses information about 
which areas that do not contain any peaks. It is assumed that 10 

these areas are baseline and these are simply subtracted from the 
chromatogram. It is therefore only necessary to determine the 
actual baseline in the remaining areas. The estimation of baseline 
in “peak-regions” is based on the assumption, that the baseline is 
locally linear (see Figure 4). Extensions can easily be envisioned 15 

allowing for a more complex local baseline such as a polynomial 
baseline. 
The first step in the estimation of the baseline is to identify areas 
with no peaks. Peak-regions are here defined as regions (or time 
section within the individual chromatograms) with a standard 20 

deviation above a certain threshold. Everything with a standard 
deviation below this threshold is considered noise/baseline and 
the remaining areas are considered as regions with possible 
peaks. The principle is illustrated in Figure 3. The width of the 
window used for determination of the standard deviation and the 25 

threshold can be changed by the user. It is usually sufficient to 
determine it once for each GC-application. If the analysis is 
performed on a different GC system or the settings of the GC-
method are changed, the width should be re-determined. Further 
guidance on how to choose these parameters is given below. 30 

 
Figure 3. The standard deviation, which is used in determination of the 
peak-regions, is calculated as a moving standard deviation. This means 
that the standard deviation at Rti , is the standard deviation, across the 

chromatogram, inside a window with width W. Peak-regions are 35 

determined as regions where the standard deviation is higher than a user 
determined threshold (vertical line in figure). The dashed lines indicate 

the boundaries of the peak-regions. 

The baseline in peak-regions is determined by linear regression 
between the points surrounding the region. 40 

For resolved peaks and for peaks in regions with an 
approximately linear baseline this approach will give a good 
estimate of the baseline (Figure 4A). However, in some cases it 
will result in a poor estimated baseline (Figure 4B). In such 

cases, the baseline will be estimated using an iterative approach. 45 

The algorithm will detect these cases by searching for areas 
where a number, equal to the minimum peak width at half height, 
of consecutive points in the raw data lies below the estimated 
baseline. If such areas exist, the new baseline will be forced 
through the point in the raw data which has the lowest value 50 

relative to the existing baseline (arrow Figure 4C). This 
procedure is repeated until no point lies below the estimated 
baseline. Figure 4D shows the final estimation of the baseline in 
this region. 

 55 

Figure 4. Illustration of the baseline estimation in peak-regions. A: An 
example of “well behaved” baseline. B: The initial estimation found by 
linear regression over the region. C: The linear regression is split into 

two. The arrow indicates the “anchor point” for the baseline. D: The final 
estimation of the baseline in the region with two anchor points indicated 60 

by arrows. 

In the areas without peaks, the original data points are used as 
baseline. This means that after baseline correction these areas will 
have a zero value baseline. 
Even though the proposed method for baseline fitting is not fully 65 

automated, it only has two parameters which need to be 
determined. The first is the width of the window used in 
determination of the standard deviation. This should not be set 
too narrowly since the apex of the peaks will then be recognised 
as non-peak regions. We recommend a size similar to the average 70 

peak width at half height. The second parameter is the threshold 
for non-peak versus peak-regions. This parameter can be 
determined by inspection of the standard deviation for a few 
chromatograms.  
 75 
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Peak detection 

Several methods have been published for peak detection. Most of 
these are based on derivatives of the signal4-6. By identifying 
where the first derivative intersects zero, the valleys between 
peaks and peak apex are identified as illustrated in Figure 5.  5 

 
Figure 5. Illustration of how derivatives can be used in identifying peak 

apexes and valleys between peaks, by identification of where the 
derivative intersects with zero. The vertical line indicates the valley 

between peak A and peak B. The two arrows indicate peak apex. 10 

In cases with overlapping peaks it is not possible to identify the 
boundaries of the individual peaks with derivatives. This will in 
some cases cause the height or area determinations to be 
incorrect. However, peak height, which is used in the FastChrom 
peak detection, is less sensitive to these kinds of errors than peak 15 

area16, 17. 
Other approaches do exist. Examples hereof are in the 
publications from Tian et al.8 which use neural networks to 
identify and extract peaks from auditory brainstem responses, and 
Vivó-Truyols et al.7 who use higher order derivatives to assess 20 

the number of peaks within a peak cluster. The method described 
by Vivó-Truyols et al. is mainly focused on peak detection with 
the aim of subsequently applying deconvolution. 
Methods based on fitting Gaussian or Lorentzian functions to the 
chromatographic signal also exist (e.g. the publications by 25 

Jianwei18 or Barboni and Chiaramonti19). These methods seek to 
solve the problem with overlapping peaks by resolving the signal 
into individual peaks. The drawbacks of these methods are that 
they often require prior knowledge of the number of compounds 
and that the solution may not be correct even though the right 30 

number of compounds is used20. Furthermore, peaks can be 
tailing or fronting and thus not be Gaussian or Lorentzian. If one 
wishes to resolve overlapping peaks it is in general advised to use 
methods with multi-channel detectors20. 
The peak finding algorithm included in FastChrom is similar to 35 

the peak detection and peak validation described by Dixon et al.6. 
This approach is a simple and automated method with only a few 
parameters to adjust. Peaks are identified from the first derivative 
(d) of the smoothened chromatograms (corrected for baseline). 
The algorithm searches in d for points where the signal sign 40 

changes from zero or negative to positive. These points are used 
as start and/or end points of peaks. The maximum is found by 
searching for points where the first derivative intersects zero. The 
maximum values are grouped with the start/end points 
surrounding it. If the peak width and height do not meet the 45 

requirements set by the user, the peak is discarded. The peak is 
also discarded if the raw signal crosses the mean intensity of the 
peak more than three times, as illustrated in Figure 6.  

 
Figure 6. Two different scenarios are depicted: A) The mean of the signal 50 

is only crossed twice. B) The mean of the signal is crossed four times. 
This region is not detected as a peak  

A total of three parameters, which the user has to adjust, are 
included in the peak finding algorithm. These are the size of 
smoothing window, minimum peak height and minimum peak 55 

width. Minimum peak height and width are found by inspection 
of the raw data. If they are set too high, peaks may not be 
recognised as peaks by FastChrom, and if they are set too low, 
noise may be included in the final peak list. Be aware that in 
cases with fused peaks, the peaks will become considerably 60 

wider. If in doubt, it is recommended to set them a bit too low. 
Hereby some noise may appear in the final peak list as peaks but 
these can, if desired, subsequently be manually removed. 
Smoothing is simply applied by calculating a moving average and 
it is, in our experience, only necessary to apply in cases with very 65 

low signal-to-noise levels. However, smoothing with a small 
smoothing window in cases where it is not strictly necessary will 
have very little effect on the final result. If the smoothing window 
is set too high, small peaks may be flattened and disregarded by 
FastChrom. 70 

The peak finding algorithm was compared with three different 
versions of the peak finding algorithm incorporated in 
PLS_toolbox (Eigenvector). All of the four peak finding 
algorithms gave similar results. As all the methods, like most 
other peak finding approaches, are using derivatives, this was to 75 

be expected, and the result points out that the choice of peak 
finding approach not is the critical part of FastChrom. 

Peak grouping 

In order for two peaks, in different samples, to be recognised as 
originating from the same compound they must be identified as 80 

being the same. For data obtained from a single channel detector 
system the only way this can be determined is by using the 
similarity in retention time. It is assumed that peaks in two 
chromatograms having similar retention time are originating from 
the same chemical compound. Ideally such peaks would have 85 

apex in the same data point. However in practice, this is never the 
case. Therefore, one has to determine boundaries for how much 
the retention times for one specific compound vary across 
samples (sample to sample variation). To our knowledge there are 
no automated methods for this, but we propose the following 90 

approach. 
When all peaks are detected, the sample to sample variation can 
be illustrated by colouring data points with peak apexes as shown  
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Figure 7. A) Illustration of the variation in retention time of peaks across samples. Every red point illustrates a detected peak. In the 
example, at least two peak groups are represented. The variability of the two groups is at respectively 10 (from 3511 to 3520) and 12 

(from 3530 to 3541) data points. The graph to the right shows the peak vector which shows the sum of peaks at each individual retention 
time. B) Shows how the grouping algorithm would group the illustrated peaks. The centres of the groups are controlled by the “density” 5 

of the peaks. The width of the window is set to 13. 
in Figure 7A. The peak vector is defined as a vector indicating 
the sum of peak apexes across samples at each elution time (or 
data point). This peak vector is shown to the right in the figure 
and is used in the grouping. 10 

In the peak grouping across samples, Peak Variability (PV) is the 
width of the grouping window. The parameter PV is defined as 
the maximum difference in retention time (in data points) for any 
given analyte. In the example shown in Figure 7 a PV of 13 
would be appropriate (the number must be odd). If the width of 15 

the window is set too narrow, peaks originating from the same 
compound will be placed in different groups. For example, e.g. 
group 2 in Figure 7B would be divided into two groups. On the 
other hand if the maximal shift is set too high, peaks would be 
wrongly grouped together. It is, in our experience, better to have 20 

the maximal shift a bit too low, since it is easier to recognise peak 
groups which have been divided, and manually merge these, than 
the other way around. 
Whenever the peak grouping is performed on data from a new 
system, the PV should be determined in order to optimise the use 25 

of the method. The PV is found by manual inspection of the 
distribution of peaks, as illustrated in Figure 7A.  
The peak grouping is based on the assumption that the data point 
with the highest number of peaks, within the specific cluster, is 
placed in the middle. The centre of the grouping windows is 30 

therefore controlled by the peak vector and placed at the data 
point with the highest number of peaks, as shown in the right 

most plot (B) in Figure 7. 
A so-called peak grouping algorithm has been developed. The 
algorithm searches for peaks from left to right in the peak vector. 35 

In the identification of peak groups, the parameter c is introduced 
which defines the data point where the previously found window 
stops. The parameter c, is used to prevent that one peak is placed 
in more than one group. The searching begins with setting c to 
zero (no prior window identified) and as the search continues c is 40 

changed so it reflects the location of the previous window (in this 
way c operates along the elution time axis).  
The peak grouping algorithm consists of the following four steps. 
It searches along the elution time axis in the peak vector, which is 
created across samples. Consequently, peaks in all samples are 45 

considered in each search: 
 
1 The first peak in the peak vector with a data point number (n) 

higher than c is found. 
2 The data point (nmax) with the highest number of peaks, in the 50 

range n to n + PV, is identified. If no data point in the interval 
is containing more than one peak, nmax is set to the data point 
with the highest density of peaks by using a moving average 
(see Figure 8). 

3 a) If nmax is less than n + ½ PV the peaks in the interval nmax–  55 

½ PV to nmax +  ½ PV are grouped. 
 b) If nmax is higher than n + ½ PV the peaks in the interval n 

to nmax  –  ½ PV are grouped. 
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4 c is set to nmax+  ½ PV, and the loop starts over until all peaks 
are grouped 

 

Figure 8. Left: illustration of the peak vector in an interval with 
no more than one peak in each data point. Right: the moving 5 

average of the illustrated peak vector is shown. The moving 
average is used to locate the area with the highest density of 
peaks. In this example the centre of the grouping window is 

placed at data point number 3785 (dotted line). 

Retention index 10 

Many of the traditional methods for evaluation of chromatograms 
require adjustment of the peak windows whenever the retention 
time shifts. This is not necessary with FastChrom since all peaks 
are ideally found. However, in order to ease identification, a 
retention index (RI) can be used instead of actual retention time. 15 

In cases where the retention time drifts the RI will remain 
relatively constant. The purpose with the introduction of RI in 
FastChrom is not to align within the sample batch, but to obtain a 
better identification of the peak groups, and to ease the 
comparison across experiments. 20 

The Kovats index is widely used for adjusting for shifts in 
retention times between experiments. It is in general a 
reproducible and robust index, which takes advantage of the 
linear relationship between log(retention time) and the number of 
carbons in alkanes21. The Kovats index can be implemented using 25 

either internal or external standards. Internal standards are more 
accurate but introduce additional peaks and thereby elevate the 
risk of co-elution. With alignment by internal standards, 
additional correction of retention time (warping etc.) is in most 
cases not needed. The alternative approach, using external 30 

standards analysed before and after the samples, assumes a 
relatively constant retention time within the sequence. If the 
retention time is unstable within the experiments, retention time 
correction for the complete chromatograms (see the publication 
by Tomasi et al.22 for details regarding COW and by Tomasi et 35 

al.23 regarding icoshift) can be conducted before calculating the 
retention index. 
We calculate the RI based on at least one RI standard containing 
a number of evenly distributed compounds with an established 
index number. The index number for the compounds in the 40 

sample will then be determined as relative retention times by 

linear regression between the peaks in the RI standards. The 
composition of the RI standards used in this experiment consisted 
of 10 alkanes from 6C to 15C having indexes from 600 to 1500. 
In addition, the standards also contain octanol and decanol with 45 

indexes at 1575 and 1809, respectively. The indexes for the two 
alcohols were determined with Total vaporization Head Space 
GC24, including hexadecane and octadecane in the sample. 

Materials and methods 
All programming has been performed in MATLAB 7.6.0 50 

(R2008a) (Mathworks, Inc., Natick, Massachusetts, U.S.A.). 
Simulated data are obtained with the algorithm used by Komsta1. 
Real data are obtained from analysis of fermented milk analysed 
with a Perkin Elmer Autosystem XL GC coupled with a Perkin 
Elmer TurboMatrix110 Headspace sampler. The retention index 55 

has been validated with chemical standards mixed in water. 
Furthermore, we have used data obtained from analysis of wine 
samples originating from four different countries25,26, in 
validation of the entire method. In the original article 57 aroma 
compounds were extracted in the GC-MS manufacturer software, 60 

ChemStation (Agilent, Santa Clara, California, U.S.A.). PCA 
(Principal Component Analysis) models are calculated using 
PLS_Toolbox 6.5.2 (Eigenvector Research, Inc., Wenatchee, 
Washington, U.S.A.). 

Results/Discussion 65 

Baseline 

Simulated data 
Baseline fitting was performed on 5000 simulated 
chromatograms in order to evaluate the overall performance of 
the four tested methods. The performance was evaluated by 70 

calculating how much the signal obtained after baseline 
correction deviates from the known signal (in %) as well as how 
much the heights of the peaks in the baseline corrected signal, 
deviates from the heights of the peaks in the original signal 
(without baseline). This last comparison was also evaluated as % 75 

deviation. 
The deviations between known and obtained signal, shown in 
Figure 9, indicate that AIMA does not perform well on many of 
the simulated chromatograms. Quantile regression and 
FastChrom performed almost equally well with mean deviations 80 

on respectively 4.9 and 5.8 % and standard deviations on 7.8 and 
6.6. ALS performed very similarly on all the simulated 
chromatograms, but with a higher mean deviation than 
FastChrom and quantile regression, indicating that the result will 
always be deviating from the true baseline. The comparison of 85 

peak heights shows more or less the same pattern, with the only 
exception that ALS and FastChrom are performing very similar. 
Detailed results from the comparison of peak heights are shown 
in the supplementary material. 



Journal Name 

Cite this: DOI: 10.1039/c0xx00000x 

www.rsc.org/xxxxxx 

Dynamic Article Links ► 

ARTICLE TYPE 
 

This journal is © The Royal Society of Chemistry [year] [journal], [year], [vol], 00–00  |  7 

 

Figure 9. Deviation between obtained signal and known signal for four different baseline fitting methods. Top, left: performance of 
AIMA. Top, right:  performance of quantile regression. Bottom, left: performance of FastChrom-baseline method. Bottom, right: 

performance of ALS. 
In an attempt to find the weak spots of the methods, visual 5 

inspection of the chromatograms resulting in the worst baseline 
estimations was performed. This showed that the baseline fit is 
wrong throughout the entire chromatogram when quantile 
regression fails (Figure 10). In addition to this the fluctuation in 
the baseline estimated by quantile regression results in a number 10 

of pseudo-peaks when the chromatograms are corrected for 
baseline (arrows, Figure 10). Furthermore, the inspection showed 
that the cases where FastChrom failed were cases with a very 
steep increase in baseline followed by an equally steep decrease 
and a peak placed at the top of the “hill”. The estimations 15 

performed by ALS are generally worse than those obtained with 
FastChrom and quantile regression. In addition to this, ALS has 
the major drawback that the determination of parameter values is 
not a trivial task.  20 

Figure 10. Examples of poor performance of quantile regression. 
The fluctuation in the baseline estimated with quantile regression 

results in several artificial peaks and affects the entire 
chromatogram 
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Figure 11. A real chromatogram with a very diverging baseline. Region A illustrates a very complex baseline region, region B illustrates 
a nice behaving baseline, and region C illustrates a region with very low signal-to-noise ratio.    

Real data 
All four baseline methods were also tested on real data. As an 5 

example it is shown how the methods perform on a 
chromatogram with a relatively high noise level and with an 
unusual baseline. This example is chosen since all four methods 
perform well on well behaving chromatograms.  
Figure 11 (top) shows a complete chromatogram obtained from 10 

analysis of cheese. Three areas with very different baseline 
characteristics have been chosen. Example A illustrates an area 
with a very unusual baseline. Example B is an example of an 
almost ideal situation and example C is an example with very low 
signal-to-noise levels. In the lower part of the figure it is shown 15 

how the four methods are performing in the three different cases. 
As can be seen all of the methods are performing well in the 
example with the “well behaving” chromatogram (B). Example A 
illustrates how AIMA has a tendency to estimate the baseline too 
high under peaks.  This effect is, to our experience, a general 20 

feature for the baselines fitted by AIMA, and sometimes also 

occurs in well behaving chromatograms. It also illustrates how 
quantile regression fails to estimate a reasonable baseline due to a 
too high degree of flexibility. Both FastChrom and quantile 
regression perform well in this situation. However, example C is 25 

illustrating how both quantile regression and ALS are failing due 
to a too high degree of flexibility. Both FastChrom and AIMA are 
performing well in this case. 

Retention Index 

Validation of the robustness of the retention index was performed 30 

by a number of GC-FID analyses of the same sample, using 
different temperature profiles. The changes in the temperature 
profiles resulted in more than 50% changes in the retention times 
of the later eluting peaks. At each of the different temperature 
profiles, a RI standard was analysed before the sample. The RI 35 

standard was used to calculate the index for each of the peaks in 
the sample. 
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Figure 12. Stability of the RI across analysis with shifting 

retention times.The latest peak in the chromatogram is shifted by 
more than two minutes due to changes in the temperature 5 

program, but the index remains stable.  
The variation in retention times and index is shown in Figure 12. 
Even though the retention time is changed with more than two 
minutes for the last peak, the use of index seems to normalise 
these differences to a very high degree. 10 

The complete FastChrom method 

In order to validate the performance of the complete FastChrom 
method, it has been applied to TIC data from 44 different wine 
samples analysed with GC-MS25,26. When the data were 

processed with the graphical user interface, a total of 85 15 

compounds were extracted, while 57 compounds were found by 
ChemStation. In order to evaluate and indicate the relevance of 
the extracted compounds, Principal Component Analysis (PCA) 
was performed, respectively, on the 57 compounds extracted with 
ChemStation and the 85 compounds extracted with FastChrom 20 

(Figure 13). 
The score plots from the two models only show small differences 
in the separation between the four countries. In order to be able to 
compare the two models, the within class variation and between 
class variation was calculated. The within class variation was 25 

calculated as the area of the convex hull covered by the 
individual classes. The results showed that the within class 
variation was lower in the PCA calculated on data from 
FastChrom (with a mean area of 24 compared to a mean area of 
37 in the ChemStation model).  The between class variation was 30 

evaluated as the number of samples not overlapped by other 
classes than its own (23 in the model based on data from 
FastChrom vs. 15 in the model based on data from ChemStation). 
These numbers show that also the between class variation is 
better in the model based on data from FastChrom.The PCA 35 

indicates that FastChrom performs as well as the manufacturing 
software at least in terms of providing information that can 
separate samples originating from different countries. 

 

Figure 13. Principal Component Analysis models obtained from the compounds extracted respectively with ChemStation and 40 

FastChrom. AUS: Australia, ARG: Argentina, SOU: South Africa, CHI: Chile. Labels in loadings for the ChemStation samples are peak 
numbers while labels in the FastChrom loadings are referring to the data point numbers. 
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Besides the PCA, the performance of FastChrom has been 
validated by comparison of signal-to-noise ratios as determined 
by FastChrom and as determined by Totalchrom Navigator 
(Perkin Elmer, Inc., Waltham, Massachusetts. U.S.A.) on GC-
FID data (Figure 14). This validation shows that the performance 5 

of these two methods is comparable 

 

Figure 14. Comparison of Signal-to-Noise (S/N) found by 
Totalchrom Navigator with S/N found by FastChrom. It is clear 

that there is a nice linear relationship between the two, indicating 10 

that the performance of FastChrom is comparable with the 
performance of the manufacturing software. 

Conclusion 
A novel automated method FastChrom for processing of GC-FID 
data has been proposed. The method consists of a baseline 15 

estimation, peak detection, peak grouping across samples and 
assignment of a retention time index. The method for baseline 
estimation is a new method, and it has been shown that the 
performance is better than the non-parametric methods AIMA 
and quantile regression, as well as the parametric method ALS. 20 

FastChrom has been compared with peak extraction performed in 
traditional manufacturing software, and it has been shown that 
FastChrom performs at least as well as the traditional software. 
However, our method finds more peaks in the chromatogram and 
is easier and faster to apply. 25 

FastChrom has been integrated in a Graphical User Interface 
(GUI) allowing users without MATLAB competences to use it. 
The GUI can import data in four different formats: RAX, CDF, 
MAT and XLS and can export height, width, retention time and 
retention index to an Excel spread sheet, or to PLS_Toolbox 30 

where PCA or other multivariate methods can easily be applied. 
In addition, also the original positions of the un-grouped peaks 
are exported to excel. The user interface can be found at 
www.models.life.ku.dk/algorithms. 
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PARAFAC2 is applied in multiple research areas, e.g. where data containing shifts are analysed, but it is a 

challenge to determine the appropriate number of components in the model. In this paper it is 

hypothesized that the core consistency diagnostic, which is currently applied in e.g. PARAFAC1, can be 

used to determine model complexity in PARAFAC2. Theoretically a PARAFAC1 model is fitted ‘inside’ the 

PARAFAC2 algorithm and it should therefore be possible to apply the core consistency diagnostic from 

PARAFAC1 in PARAFAC2. To support this hypothesis three different datasets, as well as simulated 

datasets, have been evaluated by means of PARAFAC2 and the core consistencies have been 

investigated. There is a general trend that if the core consistency is low the model is over-fitted as in 

PARAFAC1. Also, core consistency captures the true variation in the data whereas small peaks are easily 

overlooked by visual inspection of noisy models. However, for determining the number of components 

in a PARAFAC2 model we suggest usage of the core consistency in combination with other model 

parameters such as residuals, loadings, and split-half analysis. 

 

Key words: Core consistency; PARAFAC2; Number of components; Model complexity 
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1. Introduction 

PARAllel FACtor analysis 2 (PARAFAC2) [1;2] has been applied in many different areas [3-5] and has for 

example proven to be useful for mathematical separation of overlapping chromatograms and to 

overcome issues in batch data with different temporal duration and dynamics. The main reason for 

applying PARAFAC2 is that it can sometimes model data containing shifts and related shape changes, 

e.g. chromatograms with shifts in retention time.  

PARAFAC2 is closely related to PARAllel FACtor analysis (PARAFAC). In this paper the PARAFAC model 

will be denoted PARAFAC1, in order to distinguish PARAFAC2 from PARAFAC1 [1]. PARAFAC1 

decomposes three-way data with low-rank trilinear structure into loading matrices which provide mostly 

unique estimates of the underlying variations in data. In PARAFAC2, data do not have to be low-rank 

trilinear – one of the directions in the data array can deviate in certain ways and still be meaningfully 

modelled by PARAFAC2 [2;6]. Despite the deviation from low-rank trilinearity, PARAFAC2 still provides 

unique estimates of the underlying latent variables under fairly mild conditions [7].  

What remains a challenge in using the PARAFAC2 model is to determine the appropriate number of 

components. Harshman and De Sarbo [8] have proposed to use split-half analysis to determine the right 

number of factors. Split-half analysis can be considered as a type of resampling approach where 

PARAFAC2 is applied on different subsets of data. If the right number of factors is used, the result should 

be similar for all subsets. However, there are a number of drawbacks for split-half analysis. First of all, 

the subsets must be carefully selected. For instance all compounds must be present in all subsets in 

order for the resulting models to be similar. Another inconvenience is that the computation time 

increases when using split-half analysis.  

For the PARAFAC1 model, the core consistency diagnostic is useful when determining the number of 

components. The core consistency diagnostic has been described by Bro and Kiers [9]. So far research 
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has dealt with the determination of model complexity in PARAFAC1 by means of core consistency, but 

the core consistency has never been incorporated in a PARAFAC2 setting and no similar alternative 

approaches to determination of model complexity have been suggested. 

The objective of this paper is to develop an approach for calculating a model diagnostic similar to core 

consistency but for PARAFAC2 models. We will show that with some manipulations, we can define a 

core consistency value for a PARAFAC2 model. We will also investigate if this diagnostic can be applied 

to determine the number of components in PARAFAC2 models. First, the theory behind the structure of 

PARAFAC1 and PARAFAC2 will be outlined. Second, the theory behind and the relevance of the core 

consistency will be presented. Three examples on different data sets are given where core consistency is 

used to evaluate the model complexity. In addition the use of core consistency in PARAFAC2 is validated 

using simulated data. 

 

2. Theory 

PARAFAC1 is a multi-way method used to handle three-way (or multi-way in general) arrays and the 

principle is outlined e.g. by Harshman [10] and Bro [11].  

Let Xk be an I × J matrix with k = 1,…,K as the kth slab of an I × J × K three-way array X. I is the number of 

observations (samples) in the first mode, J the number of variables in the second mode and K the 

number of variables in the third mode [2]. Using this terminology and disregarding noise for simplicity, 

the PARAFAC1 model has the following structure 

Xk = ADkBT  , k = 1,…,K          (1)  



4 
 

Here A typically denotes the score matrix and B is the loading matrix for the second mode, which can be 

considered to correspond to the loading matrix in PCA. The extension from PCA then lies in the Dk 

matrix which is a diagonal matrix of dimension R × R, where R is the number of components. This matrix 

contains parameters from the loadings from the third mode. The loading matrix of the third mode is 

usually termed C (K × R) and Dk holds the kth row of C on its diagonal. In multi-way data analysis, the 

component matrices A, B, and C are oftentimes all called loading matrices. The term score matrix can 

then be introduced specifically for the loadings in the sample mode.  

Unlike a bilinear model, PARAFAC1 provides unique estimates of its parameters A, B, and D1,…,DK under 

certain conditions without additional abstract constraints such as orthogonality which is used in PCA. 

The bilinear representation ABT has rotational freedom and PCA is only uniquely identified because of 

the additional constraints that are imposed on the parameters. 

In order to set the stage for PARAFAC2, the PARAFAC1 model is illustrated in the following by means of a 

small part of GC-MS chromatographic data from Amigo et al. [3]. Instead of having samples in the first 

mode, as is common, these will be in the third mode for convenience of introducing PARAFAC2 

subsequently. K chromatographic samples with I mass channels and J retention times have been 

modelled using a PARAFAC1 model. In this example, there is only one analyte present in the K samples, 

which is illustrated as the single peak in the second mode in Figure 1. However, in the kth sample the 

retention time for this analyte is different from that of the first sample, which can also be seen in the 

second mode (Jth direction) in the figure. The second mode loading matrix, B, for a two-component 

PARAFAC1 model is supposed to contain estimates of the retention time profiles. Two components 

seem appropriate for this model, since each component in the second mode estimates the retention 

time profile in each sample. Hence, two components are necessary in order to extract the shifting 

information of the samples and thereby reveal the retention times of the analyte.  
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Figure 1. Chromatographic example to illustrate PARAFAC1. The data matrix Xk is decomposed into estimates of the parameters 

A, B and Dk using two components. 

 

In PARAFAC1 it is assumed that the loading matrix B is representative of the underlying variation in all 

frontal slabs, i.e. that all slabs, Xk, can be described in the row-space using the same B (ADkBT). This 

means that for chromatographic data, the underlying retention time profiles of each analyte have to 

have identical shapes for each sample. This is not the case in the present example, where the samples as 

mentioned have shifting retention times, as illustrated in the second mode in the figure. Using 

PARAFAC1 on such data will typically lead to including more components than underlying chemical 

variations as seen in the example. These subsequent components can be difficult or impossible to 

interpret. Using the PARAFAC2 model is one way to circumvent such problems. The PARAFAC2 model 

can be written: 

Xk = ADkBk
T , k = 1,…,K          (2) 
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The parameters are almost identical to those of PARAFAC1. The only difference between equations (1) 

and (2) is the second mode loading matrix B. In PARAFAC2 Bk is specific for every slab, k, in the third 

mode whereas B is equal for all slabs in PARAFAC1. Note that residuals are not included in equation (2) 

for simplicity. 

In Figure 2 it is illustrated how the use of a sample-specific Bk matrix can help providing a more 

meaningful model of the shifting chromatographic data in Figure 1.  

 

 
Figure 2. Same chromatographic example as illustrated in Figure 1. Here a PARAFAC2 model is fitted to data. Only one 

component is necessary.  

 

In a PARAFAC2 model of these data, each sample will have its own retention time loading matrix Bk and 

a one-component model is then sufficient to estimate the underlying retention time profile for the 

analyte present in the two samples regardless of the shift in retention time. All the information 



7 
 

concerning the shift is extracted by this component and the shift is modelled by the K different B 

loadings.  

However, the parameter estimates in PARAFAC2 would not immediately be unique if the model was 

only defined through equation (2). An additional constraint is also part of the model. The cross-product 

of Bk (Bk
TBk) is required to be constant across k and it can be shown that this constraint leads to 

uniqueness of the model under mild conditions [7]. Constant cross-product across k is obtained by 

defining Bk as 

Bk = PkH , k = 1,…,K            (3) 

where Pk
TPk = I, hence Pk is orthogonal. The matrix Pk handles what is unique for each sample in the 

shifting mode and H handles what is related between samples [12]. With this definition the cross-

product for Bk will be constant because with an orthogonal Pk it holds that, 

Bk
TBk = HTPk

TPkH = HTH            (4) 

If we substitute Bk in equation (2) with equation (3) we can rearrange the PARAFAC2 model in the 

following way 

Xk = ADk(PkH)T    ⇔ 

XkPk = ADkHTPk
TPk   ⇔ 

Yk = ADkHT , k = 1,…,K         (5) 

Equation (5) points to an interesting approach for understanding PARAFAC2. When the orthogonal Pk 

matrices are known, we can rephrase the PARAFAC2 model as a PARAFAC1 model in terms of frontal 

slabs of data ‘compressed’ with their own specific Pk matrix; hence, a PARAFAC1 model can be fitted on 
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a data array of Yk slabs. This is interesting in understanding how PARAFAC2 handles changes such as 

retention time shifts in the second mode and it is also useful for the purpose of this paper in developing 

a core consistency measure for PARAFAC2 models. 

The number of components to use in a PARAFAC1 model can be estimated by means of the core 

consistency diagnostic [9]. PARAFAC1 can be considered as a constrained Tucker3 model [13] but where 

the core array has been fixed to a super-diagonal array of ones. The idea behind the core consistency 

diagnostic is to estimate what the core would actually have been if it was not constrained. This is 

estimated using the PARAFAC1 loadings as fixed loadings in a Tucker3 model; hence only estimating the 

core array. If this estimated core array is close to a super-diagonal of ones, we say that the core 

consistency is high and that the variation described by the PARAFAC1 model is indeed low-rank trilinear. 

If the core is very different, e.g. has high off-diagonal elements, then the core consistency is low and this 

indicates that the PARAFAC1 model, which presumably should be modelling low-rank trilinear variation, 

is really modelling other things as well. This indicates that this particular model is not suitable.  

As mentioned previously, the PARAFAC2 model can be considered a PARAFAC1 model on ‘de-shifted’ 

data with slabs Yk. We hypothesize that the number of components can be equally well assessed from 

this PARAFAC1 model and that we can therefore use the straightforward core consistency of the 

PARAFAC1 model ‘inside’ PARAFAC2 as a tool for determining model complexity. In order to investigate 

the hypothesis, obtained core consistencies have been evaluated for the three different datasets. 

3. Materials and methods 

All models and calculations were performed in Matlab 2012a (Mathworks, Inc., Natick, Massachusetts, 

U.S.A.). PARAFAC2 models were calculated with the algorithm from the N-way toolbox (available from 

www.models.life.ku.dk, July 2012).  
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Fluorescence amino acid data 

The first dataset consists of five samples, each containing tyrosine, tryptophan, and phenylalanine in 

different amounts. Each sample has been measured on a PE LS50B spectrofluorometer (excitation 240-

300 nm, emission 250-450 nm). The dimensions of the dataset are 5 (samples) × 201 (emission) × 61 

(excitation). 

Chromatographic wine and apple data 

The second dataset consists of 36 apples ripened for respectively five, eight and 15 days and the 

samples are analysed using HS-GC-MS. The details concerning the analysis can be found in [14]. The 

dataset has the dimensions 154 (masses) × 5033 (retention times) × 36 (samples). 

The last dataset consists of 24 samples of red wine. The aroma profiles of the samples were measured 

using dynamic headspace gas chromatography coupled to a mass spectrometer (HS-GC-MS). Details 

concerning the measurements can be found in the original papers [3;15]. The dimensions of the dataset 

are 200 (masses) × 6000 (retention times) × 69 (samples).  

4. Results 

The use of core consistency in PARAFAC2 has been tested using three different data sets: fluorescence 

amino acid data [11], chromatographic apple data [14], and finally chromatographic wine data [15]. In 

addition the core consistency has been tested on simulated data. 

4.1. Fluorescence 

In this dataset there are no shifts, so the result from PARAFAC2 should be similar to that of PARAFAC1. 

This enables us to compare the core consistencies obtained from the two methods.  
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Results and discussion 

The models have been calculated without any constraints and with the samples in the last mode. The 

core consistencies and the explained variances of the models are seen in Table I. 

 

Table I. Overview of the core consistencies and the explained variances for PARAFAC1 and PARAFAC2 models with one to five 

factors in the fluorescence amino acids data without shifts. 

Model No. of 
factors 

Core 
consistency 

% Fit 

PARAFAC1 1  100 64.39 
2  100 86.77 
3  99.87 99.94 
4 92.49 99.95 
5  < 0 99.96 

PARAFAC2 1  100 67.03 
2  100 92.94 
3  100 99.96 
4 < 0 99.97 
5 < 0 99.98 

 

 

The core consistencies for the models from the PARAFAC1 algorithm indicate that four factors are 

appropriate for the dataset. Since the data are obtained from simple samples only containing three 

different amino acids, it would be expected that three factors would be appropriate. Visual inspection of 

the model (Figure 3) shows that the emission and excitation profiles for the fourth factor have some 

negative values. In addition the profile for this compound seems rather noisy also indicating that this 

model is over-fitted. It is likely that the fourth component is related to the small amount of Rayleigh 

scattering that is present in the data. In any case, for both the three- and the four-component models, 

the three main components come out similarly. The fourth extra component is of such a small 

magnitude that is does not affect the modelling of the three main components. 
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Figure 3. Illustration of the obtained PARAFAC1 model with four factors. Both the emission and excitation loadings for the 

fourth factor are rather noisy and have negative values, indicating that the model is over-fitted. 

 

The core consistencies for the PARAFAC2 models indicate that three factors are appropriate for this 

dataset and the visual appearance of this three-component model is also appropriate (not shown). 

Hence, core consistency seems to be useful for assessing the number of components for this data set. 

The fact that normal PARAFAC1 and PARAFAC2 do not have the same behaviour with respect to the 

small and somewhat spurious fourth component is not surprising. The Rayleigh scattering that leads to 

the fourth PARAFAC1 component is not low-rank trilinear and hence is not expected to affect a 

PARAFAC1 and a PARAFAC2 model in a similar fashion. 

Be aware that models, which have not converged or have converged in a local minimum, can result in a 

core consistency which is artificially low, and it is therefore very important to make sure that the model 

has converged and has reached the global minimum when core consistency is used in evaluation of 

model quality. A simple ad hoc approach to this is to repeat the PARAFAC2 algorithm a number of times 

and make sure that the best-fitting model is obtained several times.  
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4.2. Chromatography 

Results and discussion 

The apple and wine datasets are very large and consist of several peak regions. Each dataset is divided 

into smaller parts and PARAFAC2 models are fitted on these subsets individually. The apple data are 

divided manually into 26 intervals and the wine data into 50 intervals. The intervals chosen reflect a 

wide range of different features; overloaded peaks (e.g. wine interval 2), low signal-to-noise levels (e.g. 

wine intervals 31 and 32), minimal shifts in retention time (e.g. wine intervals 25 and 31), severe shifts in 

retention time (e.g. wine interval 42 and apple interval 3), and very complex intervals including several 

peaks (e.g. apple intervals 1 and 22). Intervals representing the different features are shown in Figure 4. 

To illustrate the features of core consistency, intervals 31 and 32 from the wine data and interval 1 from 

the apple data are illustrated in some detail below. 
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Figure 4. Examples showing a selection of the 76 intervals. The intervals cover peaks with both low and high signal-to-noise 

ratios, different degrees of shift, and different degrees of complexity. 

 

Core consistency was calculated for models with one to seven factors for all the 76 intervals, and all of 

the intervals were manually inspected in order to find the models with the optimal number of factors. 

Parts of the obtained core consistencies are shown in Figure 5. Models were evaluated based on 

residual analysis, as well as inspection of elution profiles and spectra obtained from the models.  
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Figure 5. Examples showing a selection of the obtained core consistencies, the remaining can be found in the supplementary 

material. The circles are indicating models with the optimal number of factors as initially decided by the authors. The line 

indicates the core consistency of each interval with the number of factors included in the model going from one to seven. 

 

In agreement with the publication by Amigo et al. [14], we find that interval 1 in the apple dataset is 

best described with five factors (elution profiles not shown). As shown in Figure 5 the core consistencies 

are high for the models with one to five factors and low for the models with six and seven factors. So for 

this interval it seems like the core consistency is a useful tool in the determination of the model 

complexity. 

Manual inspection of the models calculated on interval 31 from the wine dataset, suggests that a 

PARAFAC2 model with two factors is optimal (see elution profiles in Figure 6B). However, core 

consistency is indicating that five factors are optimal even though the five factor model is apparently 

over-fitted (see elution profiles in Figure 6C). Please note that the component which does not describe a 

peak in the two factor model is not indicating over-fit, but is merely describing the baseline, which in 

this case is rather high compared to the height of the peak. 
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Figure 6. A) Raw data from wine, interval 31. Elution profiles obtained with a two factor (B) and a five factor (C) PARAFAC2 

model. The arrow indicates a compound which only appears in the five factor model. D) Illustration of the similarity between 

the main peak described by the models with two and five factors. 

 

Figure 6D shows the estimated main peak from the two models illustrated in Figure 6. Clearly the two 

factor model and the five factor model capture the same elution profile. The spectral profiles as well as 

the concentration profiles (plots not shown) support that it is the same chemical variation which is 

described by the two models. This tendency is also seen for other seemingly over-fitted models. In the 

five factor model describing interval 31, the three ‘additional’ components simply describe baseline. The 

last component seems to describe a small peak which is only detected in the five factor model. The 

same behaviour with high core consistency is observed in the models calculated on interval 32 from the 

wine data. The elution profiles from the models of this interval with one to six factors are shown in 

Figure 7. 
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Figure 7. Interval 32, wine: elution profiles of models with one to six factors. The core consistencies (Cc) are high with exception 

of the last model with six factors. Notice that in the model with five factors an additional small peak appears (indicated with the 

arrow). 

 

The inspection of the seemingly over-fitted models from intervals 31 and 32 with high core consistencies 

shows that in both models an additional factor actually appears, but it is very small and therefore 

difficult to locate (Figure 6C, arrow and Figure 7, arrow). In these cases it seems like the data contain 

noise and artefacts which contribute more to the variation than the lastly described small peaks. The 

presence of these additional compounds is supported when the mass channels in the raw data are 

inspected (not shown). Nothing indicates that these peaks are not chemical compounds present in the 

samples and therefore it would be appropriate to use five factors in both intervals.  

The results support that core consistency actually captures the true variation in the data, whereas a 

visual inspection might put too much emphasis on the noise. Thereby small but potentially important 
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peaks may be overlooked. When analysing all the intervals with low signal-to-noise ratios, the same 

conclusion can be made; hence more factors than initially determined need to be included if all chemical 

variation is to be captured as suggested by core consistency. 

 

4.3. Simulated data 

When calculating models on real data it can be difficult to determine the true rank of the data. 

Therefore we have included results from PARAFAC2 models of simulated data as well. 

In the original paper concerning core consistency in PARAFAC1 [9], calculations on simulated data were 

also included. The authors showed that core consistency does not work very well on perfect data; 

meaning data that follow the PARAFAC1 model and only has additional random identically distributed 

Gaussian noise. It was argued that this problem was of limited consequence as 1) perfect data are 

simple to model in any case and 2) it is very rare that such data are met in practice. This was also 

supported by the fact, that the problems observed with ideal data were not observed for any of the 

quite diverse example data sets. 

In order to assess core consistency in the original publication, a certain amount of model error was 

introduced in the simulated data to more adequately simulate real data. The model error introduces 

variance resulting in data which are not truly trilinear. 

A similar approach is adopted here. Data with different ranks (three and five) and different congruence 

values [16] (0, 0.20, 0.50, and 0.90) were generated, in order to cover varying types of data, by creating 

a Y array according to equation (5). The components in these data were drawn from a Gaussian 

distribution and in addition i.i.d. noise was added to the Y array in “low” and high levels (15% and 40%, 

respectively). Then three levels of model errors were introduced (5%, 10%, and 15%) to affect the 
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trilinearity of the data. Subsequently each slab of Y was multiplied by an orthogonal Pk matrix to 

simulate PARAFAC2 data. This resulted in data arrays of size 10 × 15 × 30. One hundred datasets were 

created for each combination of rank, Gaussian noise, model error, and congruence values. For the rank 

three data, PARAFAC2 models with one to five factors were calculated and for each model, the core 

consistency was determined. Similarly for the rank five data, PARAFAC2 models with one to seven 

factors were calculated.  

Upon inspection of the obtained models, it was found that models with congruence values of 0, 0.20, 

and 0.50 in general fit the raw data quite accurately. However, this was, in most cases, not the case for 

models calculated on data with high congruence (0.90) – this was also reflected in the core 

consistencies. For these models, the core consistencies are in general very low for models with too few 

factors included (some core consistencies are below zero), regardless of the different model errors and 

noise levels introduced. Real data are oftentimes correlated, but a congruence value of 0.90 is quite high 

and the problem has not been observed when calculating the core consistency in the three real data 

sets. The high congruence data is not considered further here, but may point to a limited usefulness of 

core consistency with highly correlated data.  

The models based on the remaining data (congruence values of 0, 0.20, and 0.50) are summarized 

according to core consistency in Table II. Since 100 models have been calculated for each combination of 

rank, congruence, noise, and model error, the core consistencies are presented as averages calculated 

on core consistencies where all negative values are set to zero. Otherwise core consistencies with very 

high negative values would dominate the obtained mean value. Positive core consistencies are included 

as is.  

The averaged core consistencies in the table show that there is a significant drop in core consistency 

when the number of factors exceeds the rank of the raw data, suggesting that core consistency indeed 
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can be used as an indication of over-fit. However, the core consistencies rarely approach zero, and in 

some cases the starting point is quite low for the core consistency, i.e. for rank five data with high noise 

and high model error. Nevertheless, there is still a drop in the average core consistency when the 

number of factors included exceeds the true rank of the data.  

 

Table II. Summary of averaged core consistencies from simulated models with different properties. The gray areas mark over-
fitted models 
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3 100 100 100 100 100 100 
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6 9 7 6 43 47 47 

0.50 
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s 4 51 50 61 41 44 42 

5 58 48 58 41 49 55 

6 12 13 7 22 27 19 

 

The observations mentioned above indicate that core consistency can be used to find the true rank of 

data with high and low signal-to-noise ratios and different levels of correlations within the data. When 
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compared to the simulation results in the original publication, the results also indicate that core 

consistency under certain circumstances may be less effective when used for model selection with 

PARAFAC2 than with PARAFAC1. 

5. Conclusion 

After evaluating the suggested core consistency diagnostic on several PARAFAC2 models from different 

real as well as simulated datasets, we conclude that core consistency is a helpful parameter in the 

evaluation of PARAFAC2 models. In some cases, usage of core consistency provides a better estimation 

of the underlying features than solely visual inspection. However, core consistency should not be used 

as the only measure of model complexity. It should be combined with additional measures or 

parameters such as investigation of residuals and loadings. 
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Abstract 
Bi- and multilinear models such as PCA and PARAFAC have intrinsic sign 
indeterminacies. For example, any loading vector can be multiplied by 
minus one if another vector of that particular component is also multiplied 
by minus one without affecting the loss function values. This sometimes 
causes problems, e.g., with respect to interpretation. In this paper, a method 
is developed to fix the sign indeterminacy for the PARAFAC, Tucker3 and 
PARAFAC2 models. 

Introduction 
Latent variable models such as PCA [1-3], PARAFAC [4,5]  and Tucker 
[6,7] have intrinsic sign indeterminacies. E.g., in a PCA model it holds that 
the scores (T) and loadings (P) are found to minimize the least squares loss 

function �X-TPT�𝐹
2

. This loss function is identical to �X-(-T)(−PT)�𝐹
2
 and 

hence, the score matrix can be exchanged with –T as long as the loading 
matrix is replaced with –P. Mathematically, there is no way to distinguish 
the two solutions.  

In a two-way model, changing the sign of e.g. the score vector of 
component number three is explicitly countered by having to change the 
sign of the corresponding third loading vector. Samples that have high 
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positive scores on this original component have high values on the 
variables with high loading elements. This interpretation is unchanged, 
even when signs are switched, so the sign indeterminacy is of moderate 
consequence for a two-way model. In  Bro et al. [8] a method was 
developed to assign meaningful signs to scores and loadings in PCA 
models. In this paper, this method is further developed to allow a similar 
sign correction of common multi-way models. 

In a PARAFAC model, it is also possible to change the sign of say the first 
column of the first mode component matrix A (a1), and it must be 
countered by either changing the sign of the corresponding second mode 
loading vector, b1, or third mode loading vector, c1. Hence, for a one-
component PARAFAC model it holds that this component can consist of 
one of the vectors 

(a1, b1, c1), (-a1, -b1, c1), (-a1, b1, -c1), or (a1, -b1, -c1). 

Any of these representations of the component will have the same loss 
function value and are hence equally valid from a mathematical point of 
view.  

For data such as many kinds of spectroscopy, the signs are easy to deduce 
from the appearance of the components, because underlying spectra, 
concentrations, or time profiles are positive. In other situations though, 
there is no intrinsic convention that can help guide the appropriate choice 
of signs.  

In 2008, the sign problem for PCA was suggested resolved using an 
assumption that the ‘natural’ sign is the one that leads to a component that 
points in the direction where the majority of the data is pointing [8]. The 
basic premise of this approach is hinted at in Figure 11. 
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Figure 1. A set of spectra (thin lines) modeled by a one-component PCA 
model. The first loading vector (estimated using the built-in function SVD 
in MATLAB R2011b) is shown with a thick line. It is apparent that the 
loading has a direction opposite to the majority of the data. Switching the 
sign of the loading (and the corresponding score) will give a model that is 
in better accordance with the data. 

 

In this paper, similar approaches will be developed for PARAFAC, 
Tucker3 and PARAFAC2 models. In the following we will use standard 
notation as given by Kiers [9]. Furthermore, residuals are excluded in all 
equations throughout, as the residuals are immaterial for the points made 
here. 

Theory 
PARAFAC 

In PARAFAC, sign indeterminacies arise in the low-rank trilinear model 
because 

Xk = ADkBk
T = AS1S3DkS2Bk

T, for k = 1,..,K 

240 260 280 300
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where S1, S2 and S3 are diagonal matrices with plus or minus one on the 
diagonal. Together, they fulfill that S1S2S3 = I. Hence, the model given by 
A, B and C can be replaced by a model given by AS1, BS2 and CS3 
without changing the loss function. This extends without problems to 
PARAFAC models of higher order than three. 

In order to determine the appropriate sign, it is sufficient to consider one 
component at a time. The contribution from other components can be 
removed from the data before assessing the sign of any given component 
[8].  

When assessing the appropriate sign for e.g. the first mode component, the 
PARAFAC model is re-expressed as a bilinear model  

Xunfold = azT 

Where a is the component (column of A) currently considered and z is the 
Khatri-Rao product of the corresponding columns of B and C. Xunfold is the 
three-way array unfolded/matricized appropriately. The vector a is 
normalized. For each column of Xunfold, the inner product with a is 
calculated, squared, and multiplied with the sign of the inner product as 
was suggested in the original PCA sign correction approach [8]. If a vector 
is in the same direction as a (corrected for the size), then this number is 
large and positive and if it points in the opposite direction, then the number 
is negative. The sum of all numbers indicates how strongly a is in the same 
or opposite direction as the majority of the data: 

sa = ∑ 𝑠𝑖𝑔𝑛(aTx𝒋)(aTx𝒋)2
𝐽
𝑗=1    Eq. 1 

where xj is the jth column of the matricized array. The same procedure is 
repeated in each mode giving a preferred sign for the component in each 
mode as well as a magnitude of how preferred the sign is.  

If the number of negative signs is even, then the signs of each mode s1, s2, 
and s3 will have a combined product of one, and the signs of component 
vectors can hence be changed accordingly without changing the loss 
function. For example, if both a1 and b1 has a negative s value, but c1 does 
not. Then a1 is replaced with –a1 in the model and likewise for b1. As the 
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product of -a1, -b1 and c1 remains the same as of a1, b1 and c1, the model 
is unchanged.  

If the number of negative signs is odd, the magnitudes are used to decide 
which one of the signs should be disregarded. The vector which has the 
sign with the lowest associated magnitude is modified opposite to what the 
sign suggests, thus making the product of signs equal to one.  Conflicting 
numbers of negative signs occur e.g. when data are centered, because then 
the direction in the centered mode can become arbitrary (yet of small 
magnitude). For more information on the basic procedure please consult 
Bro et al. [8]. 

Tucker3 

In essence, the above defines how to assign proper signs for the PARAFAC 
model. Next, the Tucker3 model is considered. The Tucker3 model is a 
complicated model to explore and visualize because of the core array. 
Essentially all vectors in one mode interact with all the vectors in all other 
modes. This makes it impossible to visualize all modes of a Tucker3 model 
simultaneously as also described by Kroonenberg in his work on so-called 
joint plots [10]. It also makes it impossible to rigorously define a preferred 
overall direction/sign of a vector because any one component vector can 
have different preferred directions depending on interactions in the other 
modes. Hence, a generic sign convention for Tucker3 will have to be 
somewhat ad hoc. One possible and feasible solution can be to focus on 
models that have approximately superdiagonal cores. Such rotated models 
can be simpler to interpret if the rotated model does indeed end up having 
an approximately superdiagonal core [11,12]. In such cases, we will 
advocate that the model be interpreted as a PARAFAC model disregarding 
the off-superdiagonal core elements when defining appropriate signs of 
components. That way, the signs of the components are switched solely 
reflecting the interactions of vectors in different modes with similar 
component number. 

A slightly more general solution is also developed. This approach can be 
used whenever the model is not interpreted as a PARAFAC model; that is 
when the user also pays consideration to off-superdiagonal elements of the 
core in the intepretation. This method is also the one we have implemented 
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in the software associated with this paper, but the ‘PARAFAC-approach’ is 
of course still viable. The general procedure proceeds as follows. Assuming 
at first, that the core array has no preferred sign, the sign of loading vectors 
in each mode can be assigned independent of all the other modes because 
any sign switch in one component matrix can be countered by a sign switch 
of the core.  

The data to use for calculating the sign for a given vector is found by 
subtracting the remaining components. This means using all components in 
the other modes and using all but the given component in the mode of 
interest and the corresponding core array. This can be exemplified as 
follows. Assume that the sign of the fth component in mode one is sought. 
The Tucker3 model of the three-way array is given by the components in 
A, B, C and the core array G. To remove the influence of remaining 
components, the model is subtracted as 

Xres = X-AfGf(C⊗B)T.    Eq. 2 

Here X is the matricized three-way array and Af is the first mode 
component matrix with column f excluded. The matrix Gf is the matricized 
core array where the fth horizontal slab has been excluded. The residual 
matrix Xres now contains the part of the original data which the fth column 
of A is modeling. Hence, the part of the Tucker3 model pertaining to that 
column can be written 

Xres = afzf
T + E    Eq. 3 

where af is the fth column of A and E is the original residual array of the 
Tucker3 model. The vector zf is defined by  

zf = gf(C⊗B)T.    Eq. 4 

where the vector gf is the vectorized fth horizontal slab of the core array. 

Using the model representation in Eq. 3, the appropriate sign of the fth 
column of A can be determined from Eq. 1.  

If the sign of column f is switched in A, then correspondingly, the fth 
horizontal slab of the core array is multiplied by minus one. With this 
approach, all vectors in all component matrices point in a preferred 
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direction all other things being equal. It may happen, though, that some 
core elements are negative and we argue that in interpreting a Tucker3 
model it is most natural that core elements are positive. This can be 
compared to having negative singular values in a singular value 
decomposition. While mathematically feasible, a positive value is more 
natural. It is not necessarily possible to transform any Tucker3 model to 
have all core elements positive. Rather than attempting this, only the largest 
core elements are investigated. Starting with the largest (negative) core 
element, the sign of this is switched by looking at the three vectors in each 
mode that it reflects. Assume that the core element is element (i,j,k), then 
the magnitude of s for the corresponding vectors ai, bj,and ck are assessed 
according to Equation 1. Each of these three vectors has been sign 
corrected as outlined above but the corresponding (large) core element is 
negative. It is therefore suggested to switch the sign of the one of these 
three vectors that has the smallest value of s. This way, the largest 
combinations of core elements will end up having a ‘natural’ core sign. 
This defines the sign convention for Tucker3. 

 

PARAFAC2 

Finally, the PARAFAC2 model is considered. This is, by far, a more 
complicated model to deal with. The PARAFAC2 model can be written 

Xk = ADkHTPk
T = (A)(DkHTPk

T) = AGk
T, for k = 1,..,K 

which implies that the concatenated frontal slabs can be written 

[X1 X2 .. XK] = A[G1 G2 .. GK]T 

This is a bilinear model and the sign ambiguity within the product of Dk 
and Pk is essentially eliminated in this representation because only their 
product appears (inside Gk). From this bilinear model, the overall sign of A 
and the concatenated matrix can be determined using the two-way sign-
correction approach described in Eq. 1 [8]. This also extends to higher-
order PARAFAC2 models, where instead of A, the Khatri-Rao product of 
all but the two ‘special’ modes would take the position of A. Because the 
sign of A is then fixed, each slab, Xk, can now be assessed using that 
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Xk = (ADk)(HTPk
T) = (ADk)SkSk(HTPk

T), for k = 1,..,K 

where Sk is a diagonal matrix with 1 or -1 on the diagonal. We can further 
develop this as 

Xk = (ADk)SkSk(HTPk
T) = (ADkSk)(SkHTPk

T). for k = 1,..,K 

Because the matrix Sk is specific to k we cannot apply Sk to H. This would 
change H and hence invalidate the model of other slabs. However, it can be 
shown that  

SkHTPk
T = HTMkPk

T 

where Mk = HT+SkHT because it follows that HTMk = HT(HT+SkHT) = 
SkHT because H is a square and full rank matrix per definition. Hence, we 
can sign correct Pk using Mk instead of Sk. With this, the preferred sign for 
each pair of Pk and Dk can be determined and corrected. Note, that the 
PARAFAC2 model is quite special in that each element of the diagonal of 
Dk can switch sign independently because of Pk. This means that each and 
every element of the loading matrix C can change sign independently of all 
others. Also note that we do need to obtain the appropriate signs of the 
columns of Pk (and H). Even though only the product of the two appear in 
the actual PARAFAC2 model, the correct signs of H are needed to find the 
appropriate signs of the remaining parameters (see below). 

Having fixed the sign of C there is still a potential sign indeterminacy 
within PkH because PkH = PkSSH. Notice, that S is common to all slabs. 
We take a pragmatic approach and determine the appropriate sign for each 
slab as  

Xk = ADkHSkSkPk
T, for k = 1,..,K 

Subsequently, the most abundant sign is chosen by using the sign of the 
sum of all Sk. 

Thus, having fixed the sign ambiguity of the Pk matrices, the model is now 
corrected. For higher order models, it may be necessary to express the 
model as a PARAFAC model given the fixed Pk matrices. Assuming a 
higher order model where components of several modes are held as a 
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Khatri-Rao product matrix ([13]) in A, a model of the slabs XkPk can be 
expressed as a PARAFAC model as 

Yk = XkPk = ADkHTPk
TPk = ADkHT. for k = 1,..,K 

From this, the signs within the several modes in A (see above) can be 
determined by using the sign fix approach of an ordinary PARAFAC 
model. Hence, all signs are thereby fixed. 

Results 
In order to verify that the sign correction is meaningful, a few examples are 
given. One example on a Tucker model is given and two examples focusing 
on the PARAFAC2 model. The PARAFAC corrections are more 
straightforward extensions of the original sign correction of [8], so these 
are not further discussed here. 

For exemplifying Tucker sign corrections, a data set is analyzed which 
describes the average daily amount of pollen for 40 weeks (first mode) for 
16 plant families (second mode) during five years (third mode) in an area 
close to Tortona, Piedmont, Northern Italy [14]. The weeks taken into 
account go from week six (mid-February) to week 45 (beginning of 
November). 

The 16 families are the following: Betulaceae, Corylaceae, Cupressaceae-
Taxaceae, Fagaceae, Oleaceae, Pinaceae, Salicaceae, Chenopodiaceae-
Amarantaceae, Compositae, Graminaceae, Plantaginaceae, Poligonaceae, 
Urticaceae, Alternaria, Cladosporium, Others + non identified. 

The years covered are 2006-2010. For the final Tucker3 model, the number 
of components chosen was two in the first mode, two in the second mode 
and one in the third mode. The model is rotated to be superdiagonal in the 
2×2 plane of the core and this is perfectly achievable when the last mode 
has only one component. Hence, components can be compared across 
modes. That is, score one in mode one is only related to score one in mode 
two and likewise for score two. After sign correction, the loading plots are 
as shown in Figure 22. 
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Figure 2. Sign-corrected scores and loadings of a Tucker3 model of pollen 
data with a diagonal core array.  

 

As opposed to the “original” orientation in the model, the sign correction 
allows to have a direct joint interpretation of the loading plots. The period 
of pollination of each family can be easily seen (e.g., Salicaceae, 
Cupressaceae, Betulaceae and Corylaceae in spring, Fagaceae, 
Graminaceae and Polygonaceae in summer, Compositae, Cladiosporium 
and Alternaria in autumn) and e.g. that in 2010, the spring pollination was 
slightly larger than in 2008 and 2009.  

For an example of sign correcting a PARAFAC2 model, a data set of 44 
red wine samples is used. The volatiles of the samples were collected from 
ten mL of each wine on a Tenax-TA trap. The trapped volatiles were 
desorbed using an automatic thermal desorption unit and transferred to a 
gas chromatography system (HP 6890 GC). The GC was equipped with a 
mass spectrometric detector operating in the electron ionization mode at 70 
eV. More experimental details can be found in [15].  

An example of a typical PARAFAC2 model from a part of the elution time 
is shown in Figure 33. A three-component unconstrained PARAFAC2 
model seems to be appropriate but several loadings are turned upside down. 
This is readily seen in the mass spectral mode, where two loading vectors 
are exclusively negative. Also note, that in the sample mode, the sign 
indeterminacy means that every element in a given loading vector can 
change sign independent of the others. It is very easy to see in the right-
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most sign corrected version that the sign correction not only is meaningful, 
but also greatly helps in discerning more subtle details of the model. 

 

 

Figure 3. Left is the result of three-component PARAFAC2 model of a 
chromatographic data set (top – elution mode loadings (Bk), middle – mass 
spectral loadings (A), bottom – sample mode loadings (C)). To the right is 
the same model upon sign correction. 

 

Another example can be seen in Figure 44. This data comes from GC-MS 
analysis of cheese after the samples have been oximated with 
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methoxyamine (20mg/mL in pyridine) followed by derivatization with 
MSTFA (as suggested by Kanani et al [16]). The samples were analysed on 
an Agilent Technologies 7890A GC-system coupled with a 5975C inert 
XCMSD detector. In the un-corrected model, it is clear that the loadings for 
one of the components are turned upside down in the elution time mode as 
well as in the mass spectral mode. After sign correction the model appears 
as chemically meaningful with respect to the signs. 

 

 

Figure 4. Left is the result of a two-factor PARAFAC2 model of a 
chromatographic data set (top – elution mode loadings (Bk), middle – mass 
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spectral loadings (A), bottom – sample mode loadings (C)). To the right is 
the same model upon sign correction. In this example one of the spectral 
profiles has been flipped as well as the corresponding elution profiles. 

 

Conclusion 
A formal approach has been developed for correcting for sign 
indeterminacies in various multi-way models. Some illustrative examples 
have been given to show that the correction indeed makes sense from an 
interpretational point of view.  

The sign-correcting function is available at http://www.models.life.ku.dk as 
a MATLAB routine. 
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ABSTRACT PARAllel FACtor analysis 2 (PARAFAC2) has been shown to be a powerful tool 

for resolution of complex overlapping peaks in chromatographic analyses. It is particularly 

useful due to its ability to handle shifts in the elution time mode and peak shape changes. Like all 

curve resolution techniques, PARAFAC2 will only find chemically meaningful parameters 

(elution time profiles and mass spectra) if the correct number of factors are determined. So far, 

the only way to determine an appropriate number of factors is to calculate models with different 

number of factors, and then inspect the models manually. This approach is time consuming and 

the result may be biased due to the manual assessment of the model quality, making PARAFAC2 

inaccessible for analytical chemists in general.  
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Here we develop a method which can determine an appropriate number of factors in an 

automated way. The automation is based on a number of model diagnostics (quality criteria) 

collected from models with different numbers of factors. Combining these diagnostics it is 

possible to assess what the appropriate number of components is.  In this work only GC-MS data 

is considered. However, it will most likely be fairly straight forward to expand the work to also 

cover LC data. Automating the model quality evaluation of the PARAFAC2 model enables both 

the inexperienced and trained user to perform comprehensive and advanced analysis of 

chromatographic data with a minimum of manual work. 

Introduction 
Nowadays, the most widespread approach for chromatographic data analysis is using the 

software provided by the manufacturer of the instrument. However, it has been shown that the 

algorithms implemented in many commercial packages can result in suboptimal utilization of the 

information in the data, compared to what can be provided by curve resolution techniques like 

multivariate curve resolution (MCR) or parallel factor analysis (PARAFAC or PARAFAC2)1, 2. 

A quite typical example is shown in Figure 1, where the deconvolution procedure from 

commonly used manufactures software has been applied to the data from the 45 samples. The 

peaks in the TIC (left in the figure) seem to be divided into two groups indicating that the data 

represents two different chemical compounds. If the individual mass traces (not shown) are 

inspected it is clearly seen that there are indeed two chemical compounds. The result from the 

manufactures software is shown in the middle plot in Figure 1. Several problems can be observed 

with this result. First of all, the software only finds a total of six peaks in all samples; this means 

that a lot of the peaks from the raw data are not described by this model. Furthermore, several of 

the peaks contain a shoulder (circle in Figure 1) indicating that the resolution of the two co-
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eluting peaks has not been successful. A third problem is that none of the peaks in the model 

have been separated from the baseline, and that the level of the included baseline is fluctuating. 

On the other hand, by using PARAFAC2 on the dataset, these problems are seemingly solved. 

The PARAFAC2 model is able to split the peak into three main contributions arising from the 

two chemical compounds and signal from the baseline (right-most plot in Figure 1). 

 

 
Figure 1. To the left, TIC of 45 elution profiles. The example shows the performance of respectively manufacturing 

software deconvolution algorithm (middle) and PARAFAC2 (right) on the raw data (illustrated with the TIC 

leftmost in the figure). The manufactures software finds a total of six compounds in all the 45 samples (illustrated 

with six elution profiles in the figure). The PARAFAC2 model finds three components in each sample (illustrated 

with estimated elution profiles to the right) one of these are describing baseline (grey) and two are describing two 

different chemical compounds (orange and purple). 

 

PARAFAC2 is a method able to resolve many chromatographic artefacts (e.g., baseline drift, 

overlapping, elution time shifts, etc.)3. PARAFAC2 allows separating each source of variability 

in the data by using the spectral information gathered for each elution time. The resulting model 

provides three important sets of parameters: an estimated elution time profile for each compound 

in each sample, an estimated pure spectrum for each compound, and relative concentrations for 

each of these chemical compounds4. 
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Previous publications5-7 have shown that the use of PARAFAC2 enables a comprehensive 

analysis of chromatographic data, including resolution of overlapping peaks. However, a 

common practical issue in all curve resolution techniques is that the right number of factors must 

be determined in order to obtain chemically meaningful profiles8. Unfortunately, it is not straight 

forward to determine how many factors to include. This may be one reason why curve resolution 

methods are not usually seen in routine chemical analysis. Therefore, an automated selection of 

the appropriate PARAFAC2 model would provide a significant improvement in terms of 

allowing non-chemometrically skilled chemists to take advantage of modern data analysis 

solutions. 

When a PARAFAC2 model is calculated, several statistical and empirical diagnostics can be 

used to evaluate the reliability of the model. Traditionally, only explained variance, residuals, 

and mere observation of the obtained elution time and spectral profiles have been used when 

determining the appropriate number of factors in PARAFAC2. Additionally, it has recently been 

suggested to use core consistency in the evaluation of PARAFAC2 models9. Nevertheless, there 

exist a number of additional diagnostics which can be used to evaluate the obtained PARAFAC2 

model. In this manuscript, we suggest 102 different diagnostics which all aim to describe some 

aspect of the quality of a PARAFAC2 model. 

From these initial statistical and empirical diagnostics, we determine a classification model, 

which, in an automated way, can find an appropriate number of factors to include in the 

PARAFAC2 model. In order to obtain a good classification model, we determine which of the 

initial descriptive quality criteria are most important for the classification, and only those will be 

used in the final classification model. The proposed method is tested on four different GC-MS 
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datasets originating from different chromatographic instruments and from different sample 

matrices (apples, wine, aroma standards, and cheese). 

The manuscript will be initiated by a section describing the theory behind PARAFAC2 and a 

brief description of the diagnostics developed for assessing PARAFAC2 model complexity. The 

theory behind the classification will not be described in this paper, but can be found described 

elsewhere in the literature10, 11. The description of the diagnostics will be followed by a section 

which describes how the classification model is optimized and a validation of the final 

classification model. 

Throughout this paper the word compound refers to the chemical compounds contained in a 

sample, while the words factor and component refers to the outcomes of the model. 

Theory 

PARAFAC was introduced simultaneously by Harshman8 and Carroll and Chang12 (who 

named it canonical decomposition). Harshman based his PARAFAC model on the idea of 

parallel proportional profiles by Cattell13. The idea behind parallel proportional profiles is that if 

the relative amounts of overlapping phenomena are changing across samples, then it is possible 

to resolve the unique patterns for each of these phenomena.  

The PARAFAC solution is uniquely identified (up to scaling and permutations) under mild 

conditions. This indirectly implies that a correctly specified PARAFAC model, applied to e.g. 

GC-MS data, can provide estimates of the pure mass spectra, concentration profiles, and pure 

elution time profiles when there are not elution time shifts (as illustrated in Figure 2).  
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Figure 2. Illustration of the differences between PARAFAC and PARAFAC2. In PARAFAC one common elution 

profile is used to describe each compound in all samples, whereas in PARAFAC2 each compound in each sample is 

modelled with a distinct elution profile. Adapted with permission from Amigo et al.3. Copyright © 2010 American 

Chemical Society. 

 

Chromatographic data often contains shift in the elution time dimension and PARAFAC is 

unable to handle shifted data efficiently without the data being aligned prior to modeling, since 

only one common elution time profile is estimated for each compound. Hence, PARAFAC 

assumes that the same elution profile can model the compound in all samples. However, it has 

been shown that PARAFAC2 can be used to solve the problem with shifts in retention time4, 14. 

In PARAFAC2, an elution time profile is found for each compound in each sample as illustrated 

in Figure 2. As for PARAFAC, the PARAFAC2 solutions are also unique. A thorough 

description of PARAFAC2 has been made by Bro et al. elsewhere4, 14. 
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For both PARAFAC and PARAFAC2, a model with too many factors will describe variation 

which is not chemically meaningful. Sometimes, one or a few extra components do not disturb 

the model. For example, for PARAFAC it has been shown that in some cases more than one 

model can be chemically meaningful and provide estimates of the underlying patterns even 

though the models have different numbers of factors8. This implies that in some cases, there is 

not one optimal model but rather a range of appropriate models. In our experience the same goes 

for PARAFAC2. 

Figure 3 shows two examples of under-fitted models obtained from the data presented in 

Figure 1. In these cases both residuals and elution profiles indicate that the models do not have 

enough factors included. The residuals are, especially in the one-factor model, behaving in a very 

systematic way. This indicates that there is still chemical information in the data which is not 

explained by the model. In the elution profiles, the under-fitting is indicated by the modelled 

peak-shapes which suggest that two (or more) co-eluting compounds are described by the same 

elution profile.  
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Figure 3. PARAFAC2 models with too few factors applied to the data presented in Figure 1. Left: one factor. Core 

consistency: 100, iterations: 2. Right: two factors. Core consistency: 99, iterations 2. Core consistency and iterations 

are used in the evaluation of the models. 

 

In Figure 4, a good model is shown to the left and an over-fitted model to the right. Both 

models show how the residuals become highly unsystematic when a sufficient number of factors 

are included. The over-fitted model, in this example, is characterized by having low core 

consistency (below zero) as well as an increase in negative values in the obtained mass spectra, 
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compared to the model with one less factor. Also the number of iterations, which has increased 

considerably, compared to the model with one less factor, indirectly indicates that this model is 

over-fitted. 

 

 
Figure 4. Best model: core consistency: 97, iterations: 30. Over-fitted model: core consistency: <0, iterations: 383. 

Core consistency and iterations are used in the evaluation of the models. 
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One disadvantage in the above evaluation of obtained models is that all of the diagnostics are 

subjective, such evaluations will inevitably be biased by different personal opinions on which of 

the diagnostics one thinks is more important in the evaluation. Another disadvantage is that the 

evaluation is a time consuming task. To counter these problems, an automated quality control is 

proposed herein by investigating the diagnostics, listed in Table 1, as descriptors for quality of 

the PARAFAC2 model. All the diagnostics are calculated on models where the problem with 

sign-indeterminacy has been solved with the method proposed by Bro et al.15. 

 

 
Table 1. Main features of 34 diagnostics which are used to describe the PARAFAC2 models.  

# Diagnostic Brief description 

1 Time Over-fitted models often require longer calculation times. 

2 Iterations As #1 but measured in number of iterations. 

3 Log(iterations) Differs from #2 by leveling out smaller changes caused by different starting 
points or difficult datasets. 

4 Smoothness* Over-fitted models can result in noisy elution profiles. 

5 Number of peaks* 
Models with too few factors will sometimes result in estimated elution 
profiles with more than one peak. The average number of peaks in the 
elution profiles can tell something about if the model is under-fitted. 

6 Non-one-peakness* Addresses the same feature as #5, but measured as how much the profile 
deviates from having only one peak. 

7 SSQ residuals 
The residuals for models with too few factors are often relatively high. The 
sum of the squared residuals is weighted against noise level in raw data in 
order to make them independent of differences between dataset. 

8 Explained variance Explained variances are often low for models with too few factors. 

9 Negative area in elution* In models with too many factors included there will often be considerable 
negative values in the estimated elution profile. 

10 Abs(Spec area)/(Spec 
area)* 

As for elution profiles, negative values in the estimated spectral profile can 
indicate that the model is over-fitted. Here assessed as the relation between 
the absolute area and the area. 

11 (Pos spec area)/(Neg spec 
area)* 

As #10, but assessed as the relation between positive and negative area in 
the spectral profile. 

12 SSQ(Epca) mz 
PCA can be used to investigate the true rank of the data. Here assessed as 
the sum of the squared residuals from a PCA model of data unfolded in the 
mass direction. 
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13 SSQ(Epca) rt As #12, but data is unfolded in the elution time direction. 

14 SSQ(Epca) samp As #12, but data are unfolded sample wise. 

15 SSQ(Epca)/SSQ(Epf2) mz The relation between #12 and #7. 

16 SSQ(Epca)/SSQ(Epf2) rt The relation between #13 and #7. 

17 SSQ(Epca)/SSQ(Epf2) 
samp The relation between #14 and #7. 

18 Poss. Corr. Spectra* 
Very similar spectra within a model may indicate that the model is over-
fitted. This is assessed as the maximal correlation between spectra within 
the model. 

19 Neg. Corr. Spectra* Two-factor-degeneracy16 may indicate over-fit. This is assessed as the 
maximal negative correlation between estimated spectra within the model. 

20 Core consistency* Low (or negative) core consistency indicates over-fitted models. 

21 Split half* 
Solutions obtained from models with many factors are not chemically 
unique and therefore the resulting models for subsets (sample wise) of data 
should only be identical if the right number of factors is used. 

22 Baseline found* If no factors are describing the systematic baseline this may indicate that 
more factors should be included in the model. 

23 Epca rt/mz The relation between #13 and #12. 

24 Epca rt/samp The relation between #13 and #14. 

25 Epca mz/samp The relation between #12 and #14. 

26 TIC corr. 

Data, reconstructed from models with too few factors, are not likely to be 
very similar to raw data, whereas reconstructed data from models with the 
right number or too many factors most likely are very similar to raw data. 
This is assessed as the correlation between the TIC from raw data and the 
model. 

27 Positive congruence* As #18, but assessed as congruence instead of correlation. 

28 Negative congruence* As #19, but assessed as congruence instead of correlation. 

29 Max Durbin Watson 
(TIC)* 

High amounts of systematic behaviour in the residuals indicate that more 
factors should be included in the model. This is assessed as the maximal 
Durbin Watson criteria17 on the TIC of the residuals. 

30 Median Durbin Watson 
(TIC)* As #29, assessed as the median. 

31 Max Durbin Watson 
(summed over time)* As #29, but determined on residuals summed over time. 

32 Median Durbin Watson 
(summed over time)* As #30, but determined on residuals summed over time. 

33 Simplicity (TIC)* As #29 but assessed using summed squared eigenvalues from SVD on 
residuals (as TIC). 

34 Simplicity (summed over 
time)* As #33, but on residuals summed over time. 

The diagnostics indicated with * are described more thoroughly in the supplementary material. 
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For all of the above 34 diagnostics also the difference (“diff”) between the diagnostic value of 

the present model and the model with one factor less was included (diagnostics #35-68). This 

approach was inspired by the DIFFIT approach described by Timmerman and Kiers18. The “diff” 

value for a model with k factors is defined as the value at k factors minus the value at k-1 factors. 

Also the relative change is determined for all 34 diagnostics (diagnostics #69-102). The relative 

change is defined as the “diff” divided by the original value. This gives a total of 102 

diagnostics. 

 

Materials and methods 
Datasets 

A total of four different GC-MS datasets have been included in this study: One from analysis 

of apples6, one from analysis of wine19, one from analysis of standards with different additions of 

aroma compounds1, and one from analysis of cheese derivatized with methoxamine (20mg/mL in 

pyridine) followed by derivatization with N-methyl-N-(trimethylsilyl) trifluoroacetamide as 

described by Kanani et al.20.  
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Figure 5. Overview of the raw data, the zooms are showing examples of different intervals.  

 

The four datasets were divided into smaller intervals with an estimated maximum of five 

compounds in each interval. The TICs from the four datasets are shown in Figure 5, with zooms 

showing examples of these intervals. In total 155 intervals were created. PARAFAC2 models 

with one to seven factors were calculated for each of these intervals and the diagnostics 

described in Table 1 were determined for each of these 1085 models. By working on baseline-

separated intervals, the problems are typically much easier to analyse and more unambiguous 
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results are obtained. PARAFAC2 models were calculated without any constraints (such as non-

negativity) since these constraints might disguise indications of over-fit. 

The ‘correct’ number of factors for each model was determined by having a skilled 

chromatographic chemometrician evaluating the core consistencies, number of iteration used, 

obtained elution and spectral profile, as well as residuals, considering the chemical information 

that the interval contains (as described in the section above).  

The classification model was constructed with PLS-DA as follows: The 155 intervals were 

randomly divided into a calibration (75 intervals) and a validation (80 intervals) set. Some of the 

intervals were not modelled well by PARAFAC2. The reason for that could be that two 

compounds were totally overlapping (embedded), the peak shapes were severely changed, or that 

the spectra of different compounds were too similar.  These intervals were removed from the 

calibration set before any variable selection was performed in order for them not to influence the 

selection.  

Software 

All algorithms and models have been developed using MATLAB R2012a (Mathworks, Inc., 

Natick, Massachusetts, U.S.A.). PLS_Toolbox (Eigenvector Research, Inc., Washington, 

Wenatchee) has been used for principal component analysis (PCA) and partial least squares-

discriminant analysis (PLS-DA) models. PARAFAC2 models have been calculated using the 

algorithm available from www.models.life.ku.dk (Dec. 2012). 

Results/Discussion 
By visual inspection of the raw diagnostics it became obvious that the majority was following 

an overall pattern. In Figure 6, the values of core consistency (diagnostic 20), the number of 

iterations (diagnostic 2), and the relation between the absolute area and the area of the spectral 

http://www.models.life.ku.dk/
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profile (diagnostic 10) are shown. The values are obtained from the PARAFAC2 models 

illustrated in Figure 3 and Figure 4. 

 

 
Figure 6. Development of a typical diagnostic with increasing number of factors included. Here illustrated with 

three of the 34 diagnostics listed in Table 1. The diagnostics are obtained from the PARAFAC2 models illustrated in 

Figure 3 and Figure 4. Red triangles: Under-fitted models. Green stars: Best model. Blue squares: Over-fitted model. 

 

Small changes in the diagnostic value are observed as more and more factors are included until 

the model becomes over-fitted. At this point there is a significant change after which the 

diagnostic value only changes slowly again. Due to the way we have defined the “diff” 

diagnostic, the value obtained from the first over-fitted model will describe this jump in the raw 

diagnostic values. Therefore, the first over-fitted model will be distinguishable from the ones 

with fewer components. This approach is similar to what was described by Hoggard and 

Synovec21 in their paper concerning automated determination of the number of factors to include 

in PARAFAC models. 

In order to determine which of the 102 selected diagnostics were useful in classification of the 

first over-fitted model, variable selection was conducted. By using a combination of different 

variable selection techniques22, the most important diagnostics were selected. 
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The following seven diagnostics represents a good compromise between having a good 

classification power without too many variables: 

- Core consistency (20) 

- Change in the negative area in the elution profile (43) 

- Change in negative correlation between spectra (53) 

- Logarithm of the number of iterations (3) 

- The positive correlation between spectra (18) 

- The relative change in how systematic the residuals are (indicated with Durbin Watson) (97) 

- The relative change in the correlation between the TIC from raw data and the TIC from the 

obtained model (94) 

The specificity (0.97 for over-fit and 0.95 for not over-fit) obtained with a model including 

these seven diagnostics is very similar to the model with highest specificity but including five 

additional diagnostics. None of these seven final diagnostics could be removed without a 

significant loss of classification power.  

The regression vector obtained in the PLS-DA model (Figure 7) indicated that the core 

consistency, changes in the negative area in the elution profile, and changes in negative 

correlation between spectra are negatively correlated to over-fit. On the other hand, the following 

diagnostics were positively correlated with the first over-fitted model: the logarithm of the 

number of iterations, the positive correlation between spectra, the relative change in how 

systematic the residuals are (indicated with Durbin Watson), and the relative change in the 

correlation between the TIC from raw data and the reconstructed TIC from the obtained model.  
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Figure 7. Regression vector for the PLS-DA model. 

 

The PLS-DA model based on these seven diagnostics was used to classify the models in the 

test set (a total of 80 intervals). Most of these intervals were correctly classified according to the 

manual evaluation. Furthermore, it was found that the majority of the apparently misclassified 

models were either; models which may have been misclassified by the manual evaluation, or 

cases where PARAFAC2 where unable to describe the data in an appropriate way.  

Rightmost in Figure 8, the elution profiles from three of over-fitted models, with very different 

characteristics are shown. These were all correctly classified as being the first over-fitted models, 

leading to the models with one factor less, shown to the left in the figure, to be determined as 

being appropriate models. The diversity in these models indicates that the classification is 

performing well for many different types of GC-MS data. 
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Figure 8. Right: Examples of models correctly classified by the PLS-DA model as being the over-fitted model. Left: 

The models with one factor less, concluded to be the appropriate models. 

 

In Table 2 the apparently misclassified models are listed. Misclassifications can be divided into 

three categories; really misclassified (nine models), intervals not well described by any 

PARAFAC2 model (nine models), and models where the classification might be assessed as 

correct (nine models). In the table it can be seen which of these categories the individual models 
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falls into. In the following, a thorough inspection of the three types of misclassifications will be 

given. 

 
Table 2. Models that may be incorrectly classified from the test-set with a total of 80 intervals. 

 Dataset Interval # factors Comments 

M
is

cl
as

si
fie

d 
as

 n
ot

 o
ve

r-
fit

 

Apple 19 3 May be correct 
 22 4 PARAFAC2 inappropriate 
 24 3 May be correct 
Cheese 2 2 PARAFAC2 inappropriate 
 22 3 May be correct 
 38 3 PARAFAC2 inappropriate 
 31 3 May be correct 
 46 3 May be correct 
Aroma 1 2 May be correct 
 5 2 PARAFAC2 inappropriate 
 7 2 May be correct 
 8 2 May be correct 
 11 3 PARAFAC2 inappropriate 

M
is

cl
as

si
fie

d 
as

 o
ve

r-
fit

 

Apple 1 5 Misclassified 
 13 3 Misclassified 
 22 4-5 PARAFAC2 inappropriate 
Cheese 5 4 Misclassified 
 10 3 Misclassified 
 12 4-6 Misclassified 
 14 4 PARAFAC2 inappropriate 
 16 2-3 PARAFAC2 inappropriate 
 20 3 Misclassified 
 58 3 PARAFAC2 inappropriate 
 65 2 Misclassified 
Wine 30 4 Misclassified 
 38 3 May be correct 
 41 2-4 PARAFAC2 inappropriate 

 

Intervals not well described by PARAFAC2  

These are cases where it is not possible to get a model which looks meaningful from a 

chemical point of view. An example of this is interval 2 from the cheese data (Figure 9). In the 

model with two factors (to the left), the two peaks have not been separated. Furthermore, the 
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factor which describes the baseline contains a number of small peaks. This indicates that this 

component is actually describing baseline plus at least one chemical compound. These 

observations indicate that additional factors should be included. In the model with three factors 

(to the right) there is still one elution profile which describes both of the peaks. Additionally, the 

spectra from component two (green profiles) are exclusively negative, which indicates that the 

model is over-fitted. In models with more than three factors included, the signs of over-fit 

become even more obvious. When inspecting the mass spectra of the two peaks (not shown) it 

can be seen that the two compounds have many fragments in common, but that they also have 

some differences. In this case we must therefore conclude that this interval cannot be well 

described with PARAFAC2. Imposing non-negativity in the estimated spectral profile and 

concentrations did not improve the models. 
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Figure 9. Interval 2 from the cheese data modelled with respectively two and three factors. The model with two 

factors seems to have too few factors, whereas the model with three seems to have too many factors included.  

 

It might be possible to identify these kinds of models by including the right diagnostics. The 

development of such a method is out beyond the scope of this paper, but is definitely something 

which should be investigated further in future work. 
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May be correct 

In cases assessed here as the classification might be right, there exists more than one number 

of factors for which it could be argued that the model is appropriate. An example of this could be 

interval 24 from the apple data. In Figure 10, the PARAFAC2 models with two and three factors, 

respectively, are illustrated. In the model with two factors (to the left) there is still a small 

amount of systematic behaviour in the residuals indicating that an additional factor should be 

included in the model. However, if an additional factor is included (to the right) there is an 

increase in negative values in the spectral profile indicating that too many factors have been 

included. By constraining the model with non-negativity in spectral profiles and concentration 

the model with three factors no longer have indications of being over-fitted. This indicates that 

the model with three factors indeed is not over-fitted as also suggested by the classification 

model. 
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Figure 10. Interval 24 from the apple data modelled with respectively two and three factors. The model with two 

factors seems to have too few factors since there still is some systematic behaviour in the residuals, but otherwise it 

seems like a nice model. The model with three factors seems to have too many factors included, due to the increase 

in negative values in the spectra profile; otherwise it is a nice model. 

 

Another example of a model which might not be misclassified after all is from cheese, interval 

22. Upon thorough inspection of the model and raw data, there are indications that this three 

factor model may have been correctly classified as not over-fitted and that it is the initial manual 

assessment which is wrong. The spectral profile obtained by the model (middle plot, Figure 11) 
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shows that there are some masses that separate the two peaks. If these masses are inspected in the 

raw data (leftmost plot in Figure 11), it can be seen that there actually seems to be a shift, 

indicating that two chemical compounds are eluting. However, the two compounds are poorly 

resolved (as also shown by the modelled elution time profiles (leftmost in Figure 11) and this 

might be the reason why PARAFAC2 are having some difficulties in modelling them.  

 
Figure 11. Illustration of the elution time profiles (left) and mass spectral profiles (middle) obtained from Cheese, 

interval 22, modelled with three factors. The leftmost plot shows the mass traces of the masses which separates the 

two peaks (indicated with circles in the middle plot). 

 

Misclassified 

These models can be further divided into two sub-categories: misclassified as not over-fitted 

and misclassified as over-fit. However, there are no models which fall into the first category, 

indicating that the actual specificity of the classification model is very high. In the second 

category there are eight models.  

In the cheese interval 5 there is a small amount of tailing which is not caught in the model 

identified as the correct one. However, neither the obtained spectral profile nor the concentration 

profiles (not shown) are affected by this. So from all practical aspects this will not affect any 
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further interpretation of data. In the apple data interval 13, a small peak is missing in the model 

identified as being appropriate. However, this peak is of such small magnitude that it does not 

affect the obtained concentration profiles and mass spectra, which are very similar in the two 

models. The same situation is observed for cheese, int. 20. In this case the missing peak is having 

a higher magnitude, but nevertheless the compounds are modeled meaningfully, and very similar 

to those in the appropriate model (illustrated in Figure 12). Furthermore both spectra and 

concentration profiles (not shown) of the main peak (which is present in both models) are 

practically unaffected.  This means that further interpretation not will be affected besides the fact 

that a compound is missed. 

 

 
Figure 12. Illustration of the difference in elution time profiles between the model appointed as being appropriate 

and the actually appropriate model (apple data, Interval 20). 

 

The misclassifications of the remaining five intervals (apple, int. 1; cheese, int. 10, 12, and 65; 

wine, int. 30) result in models which deviate more severely from the appropriate model.  

Summing up, these observations actually show that over 90% of the models are identified as 

correct with the suggested approach, are describing real underlying chemical information 
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(assuming that such a model can be found using PARAFAC2). This is to our best belief a 

significant improvement compared to the alternatives offered by the manufactures software. 

Conclusion 
By the usage of different variable selection techniques we have found that a PLS-DA model 

based on seven quality criteria can be used to automate selection of the number of components in 

PARAFAC2. The seven quality criteria which turned out to be of most importance for the 

classification are:  

1) Core consistency 

2) Change in the negative area in the elution profile 

3) Change in negative correlation between spectra 

4) Logarithm to the number of iterations 

5) The positive correlation between spectra 

6) The relative change in how systematic the residuals are (indicated with Durbin Watson) 

7) The relative change in the correlation between the TIC from raw data and the TIC from the 

obtained model. 

The obtained PLS-DA model was evaluated on an independent test set. This validation showed 

that over 90% of the models which were determined to be appropriate by the automated 

procedure were describing the underlying chemistry. This makes the approach very useful for 

handling huge amounts of data, without the need of a skilled chemometrician to manually 

evaluate every model. 

A MATLAB routine has been written which calculates PARAFAC2 models and finds valid 

models using the approach described in this paper. The function, which is called AutoChrome, is 

available at www.models.life.ku.dk (Dec. 2012). If the prediction of the number of compounds is 

http://www.models.life.ku.dk/
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combined with additional tools2, identification can be accomplished using the open source 

software OpenChrom23 combined with the NIST mass spectral library. 

Supporting Information  

Thorough explanation of appointed diagnostics and illustration of estimated elutions profiles 

for cheese, interval 5 and apple, interval 13 are available as supplementary material. This 

material is available free of charge via the Internet at http://pubs.acs.org. 
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Supporting information 

Automated resolution of overlapping peaks in 

chromatographic data 

 

Lea G. Johnsen, José Manuel Amigo, Thomas Skov, Rasmus Bro 

Quality & Technology, Department of Food Science, Faculty of Science,  

University of Copenhagen, Denmark 

 

The supporting information contains an additional explanation of some of the diagnostics used in 

the main part. Furthermore a figure is included illustrating the estimated elution profiles for 

cheese, interval 5 and apple, interval 13. 
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Additional descriptions of selected parameters 

Smoothness (#4) 

To our experience, models with too many factors tend to have increased noise content. The 

smoothness is assessed as the mean of the sum of squared differences between the elution profile 

obtained from the model, and the smoothed profile. The smoothing was performed using 

Savitzky-Golay smoothing1 with a width of 7 and a second order derivative.  

Number of peaks/non-one-peakness (#5 and 6) 

For models with two few factors one elution profile may have more than one peak. The 

number of peaks is assessed by the peakfind algorithm available in the PLS_Toolbox 

(Eigenvector Research). Non-one-peakness is defined as how much the elution profiles deviates 

from only containing one peak. It is determined as the difference between the modelled elution 

profile and the elution profile with unimodality constrains applied. 

Negativity (#9-11) 

When PARAFAC2 models without non-negativity constraints are used, the model describing 

real components from a GC-MS dataset should not contain any negative values. However, when 

the model becomes over-fitted, it no longer describes real compounds and the negativity starts to 

increase. This is assessed both for elution profiles and spectral profiles. In both modes the 

negativity is assessed as the ratio between the sums of negative and positive values across the 

factors. In spectral mode, negativity is also assessed as the ratio between the sum of absolute 

values and raw values as: 

𝑃 =  
∑�𝑥𝑖𝑗�
∑𝑥𝑖𝑗

      

where xij is the loading values for the ith variable and the jthfactor. 
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Positive and negative correlation and congruence (#18-19 and 27-28) 

When a model with too many factors is applied on a dataset, two factors may be describing the 

same compound and hence spectra might be very similar. Lorenzo-Seva and ten Berge2 has 

shown that Tucker’s congruence coefficient is a useful index for the similarity of factors. The 

Tucker congruence coefficient is calculated as  

𝜙(𝑥, 𝑦) =  ∑𝑥𝑖𝑦𝑖

�∑𝑥𝑖
2 ∑𝑦𝑖

2
    

where xi and yi are the loading values for the ith variable in factor x and y respectively. 

Tucker’s congruence coefficient differs from the more widely used correlation coefficient in that 

it is sensitive to additive constants, meaning that not only the shape of the factors but also the 

level is taken into account2.  

The correlation and congruence are both assessed as the maximal positive and negative 

coefficient between any two spectra from that particular model. High negative coefficients could 

indicate two factor degeneracy3 which also in some cases is an indication of over-fit. 

Core consistency (#20) 

It has been shown that core consistency is a good indicator for when a model is over-fitted 

both in PARAFAC4 and PARAFAC25. For PARAFAC, core consistency is a measure of 

whether the modelled variation is low-rank trilinear or if other kinds of variation also are 

included in the model.  In cases where the variation described by the model is truly low-rank 

trilinear core consistency is 100 and it decreases with more and more non-trilinear variation 

included in the model. The core consistency algorithm from PLS_Toolbox (Eigenvector 

Research) is used to calculate the core consistency. 
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Split half (#21) 

In split half analysis the dataset is split into a number of subsets and a model is found for each 

of these. Solutions obtained from models with too many factors are not describing the true 

underlying chemistry and therefore the resulting models will not be identical  

Baseline (#22) 

Furbo et al.6 have shown that for PARAFAC, the appearance of a baseline is a useful indicator 

for proper models. Elution profiles describing baseline is defined as profiles where the peakfind 

available in the PLS_Toolbox (Eigenvector Research) finds no peaks. 

Systematic residuals (#29-32) 

Models with too few factors will often be characterised by having systematic residuals. The 

Durbin Watson7 criteria can be used as a measure for continuity; it calculates the ratio between 

the sum of the first derivate of a vector and the sum of the raw vector. High values indicate 

randomness whereas low values indicate correlation. The most intuitive approach is to sum the 

residuals across the spectral mode, and look for continuity in the “TIC” from the residuals. 

However, in addition we also calculated the Durbin Watson criteria for data summed over the 

retention time mode since we suspect that shift in retention time may cause problems. The 

parameter for each model is then assessed as both the maximal and median Durbin Watson 

criteria across samples. 

Simplicity (#33 and 34) 

Simplicity8 is using the summed squared eigenvalues from SVD to assess how systematic the 

variation of the residuals is. Simplicity is assessed both on residuals summed over time and 

masses. 
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Illustration of cheese, int 5 and apple, int 13 
 

 

Figure S-1. Illustration of the difference in estimated elution time profiles between the model appointed as being 

appropriate and the appropriate models. 
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