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Summary

The advancement within the field of analytical technology results in an increasing
amount of data with multivariate dimensionality and complexity. Often
multivariate data problems are approached by standard two-way methods such as
PCA, PCR and PLS regression, but in certain situations specially designed
chemometric methods are required, which are able to handle the data in their full
dimensionality, e.g., multi-way and multi-block methods.

This research has been performed in order to provide a better understanding of the
principles and the contribution of the more advanced chemometric technologies
from the PAT “toolbox”. The area of application has been food, and food products
selected from the categories of vegetables, fish, and dairy products. The
chemometric applications are focused on using the multi-way method, PARAFAC
and two multi-block methods, i.e., multiblock PLS and LSparPLSc. The main analyses
for chemical assessment have been spectroscopy, including NIR, NMR and
fluorescence spectroscopy, but other types of analyses such as various
chromatographic methods, physical measurements and sensory evaluation are also
included. The work has been carried out in an explorative manner where the
selection of the chemometric approach is based on preserving the natural structure
of the data problem. Thus, a single data matrix has been analyzed using two-way
PCA or PLS regression, several data matrices have been approached as individual
block contribution in multi-block analysis, and finally data represented as a three-
way array has been treated as a multi-dimensional problem, and PARAFAC has
been applied.

The work emphasized how chemometrics in general is applicable in food science
and that traditional two-way chemometrics is suited for handling straightforward
two-way data. In PAPER IV a method to determine the protein content in brine was
developed. The novelty of this work is that the measurements are performed on
the brine from barrel salted herring instead of the herring itself. The approach
shows the potential of using NIR spectroscopy and traditional two-way
chemometrics for monitoring ripening characteristics in brine from barrel salted
herring. A section is dedicated to the pre-processing of NIR spectra, and it
illustrates the importance of performing reference measurements as they can be
used to correct for instrumental disturbances which may occur during an
experiment.

This dissertation work also illustrates how feasible it is to approach multivariate
data in their original data structure instead of complicating matters by restructuring
it into more simple structures e.g., two-way and/or one block. Applying advanced



chemometric methods does not complicate the data analysis of more complex data
structures. Instead it provides more intuitive and often directly interpretable
results. Multi-way data problems have been treated in PAPER IIl and PAPER VI and
here it is illustrated how fluorescence spectroscopy measurements are capable of
providing detailed information about fluorophores in food products. These
fluorophores are shown to reflect the chemical composition and the environmental
influences during storage of processed cheese and barrel salted herring,
respectively. PAPER Il is an example of how two-way 'H relaxation curves can be
rearranged into a three-way array and that way provide more detailed information
about the water distribution in potatoes than obtained by direct analysis. Multi-
block problems are treated in PAPER | and PAPER V, where the issues concerning
block scaling and factor selection in multi-block analysis are discussed in a separate
section in the dissertation work. Both multi-block applications illustrate how a more
detailed level of information is obtained when performing multi-block analysis
instead of one block two-way analysis on the concatenated blocks.

There is still a gap between the amount of existing multi-way and multi-block data
problems and the actual amount of problems treated as multi-way and multi-block
data questions. This dissertation work shows that spectroscopy and the
chemometric methods specially designed for two-way, multi-way, and multi-block
problems have great potential as PAT tools as they fulfill the primary goal of PAT
which is to obtain a better process understanding in a faster and more intuitive way
especially when approached in the original data structure and dimensionality.



Sammendrag

Den teknologiske udvikling indenfor analytiske metoder er i kraftig fremdrift, og det
medfgrer en gget maengde af multivariate data af stigende data kompleksitet.
Multivariate data problemer behandles typisk med standard tovejs kemometri
sasom PCA, PCA og PLS regression. Men i nogle situationer vil det vaere mere
passende at analysere data med metoder, som er specielt designet til at handtere
data i deres naturlige datastruktur sdsom multivejs og multiblok struktur.

Indevaerende projekt er udfgrt for at afdaekke principperne bag og bidraget fra de
mere avancerede kemometriske metoder, som er en del af PAT "veerktgjskassen”.
Metoderne er anvendt indenfor fgdevarer og fgdevareproduktion, hvor udvalgte
grgntsags-, fiske- og mejeriprodukter er evalueret. Der er fokuseret pa
kemometriske metoder sdsom multivejsmetoden, PARAFAC og multiblok
metoderne, multiblok PLS og LSparPLSc. Det er hovedsageligt de spektroskopiske
metoder NIR, NMR og fluorescens spektroskopi, som er anvendt til at analysere
fedevareprodukterne, men chromatografiske metoder, fysiske malinger og sensorik
er ogsa anvendt. Den kemometriske indfaldsvinkel har vaeret eksplorativ, hvor
fokus i udvaelgelsen af de kemometriske analyser har vaeret baseret pa at bibeholde
den oprindelige datastruktur. Dermed ment at en enkelt blok af tovejs data
analyseres med de gaengse tovejs analyser PCA og PLS, mens en trevejsstruktur
anses for et multi-dimensionelt data problem, og derfor anvendes PARAFAC.
Situationer hvor flere tovejsblokke bidrag er tilstede, vil udggre et multi-blok
problem.

Projektet viser, at kemometri er et redskab, som med fordel kan anvendes i
fpdevareforskning, og at traditionel tovejs kemometri er velegnet til analyse af
tovejs data. | PAPER IV er udviklet en metode, der ggr det muligt at bestemme
proteinindholdet i sildelage fra gammeldagsmodnede sild, hvor nyhedsvaerdien er,
at man maler pa sildelagen og ikke pa den hele fisk. Med kombinationen af NIR
spektroskopi og kemometri er det muligt at monitorere proteinkoncentrationen i
sildelagen, hvilket er et udtryk for modningsprocessen i sildene. Afhandlingen
indeholder ogsa et afsnit, som omhandler forbehandling af NIR spektre. Dette
redeggr for, hvorfor det er vigtigt at optage referencespektre undervejs i ens
forspg, da de selvsamme spektre vil kunne bruges til at korrigere for eventuelle
instrumentelle forstyrrelser, som kan forekomme undervejs.

Ved at analysere data med multivariat dataanalyse og samtidig tage hgjde for den
naturlige datastruktur undgar man at komplicere dataanalysen ungdigt. Hvis man
endrer datastrukturen ved at konvertere multivejsdata til tovejsdata ved at
udfolde data eller laegger flere blokbidrag sammen til et stort blokbidrag, kan man



besvarliggpre den efterfglgende fortolkning. Ved at bibeholde datastrukturen og
bruge avancerede kemometriske metoder, sa opnar man mere intuitive Igsninger
som ofte kan give direkte fortolkninger. | PAPER Il og Paper IV er det vist hvordan
multivejs problemer i form af fluorescens landskaber kan give detaljerede
informationer omkring de tilstedevaerende fluorophorer i hhv. smelteost og
sildelage, nar man bruger PARAFAC. For begge metoder geelder det, at
fluorophorerne afspejler de kemiske andringer, der sker under lagring og ved
udsaettelse for forskellige typer af stress under lagring. PAPER Il illustrerer, hvordan
'H relaksationskurver, omstrukturet til trevejs data, kan give mere detaljeret
information omkring vanddistributionen i kartofler end givet ved traditionel tovejs
analyse. PAPER | og PAPER V er eksempler pa multiblok data analyse, hvor det vises,
at multiblok analyse giver en mere detaljeret information omkring data, hvilket
giver bedre muligheder for data forstaelse.

Der er stadig en klgft mellem, hvor mange multivejs og multiblok problemer, der
eksisterer og hvor mange problemer der reelt handteres som multivejs og multiblok
problemer. Denne afhandling viser, at spektroskopi og kemometri kan handtere
tovejs, multivejs og multiblok data, og at de udg@r et stort potentiale i PAT regi, idet
de kan bidrage med nogle af de egenskaber, som er formalet med PAT, nemlig at
opna bedre procesforstaelse pa en hurtig og mere intuitiv made.



List of Publications

PAPER|

Vibeke Tglbgl Povisen and Connie Benfeldt: Application of Multiblock PLSR in the
Dairy Industry. PLS and Related Methods, Proceedings of the PLS’01 International
Symposium, V. Esposito Vinzi, C. Lauro A Morineau, M. Tenenhaus (Eds.), 371-383,
2001

PAPERIII

Vibeke Tglbgl Povisen, Asmund Rinnan, Frans van den Berg, Henrik J. Andersen, and
Anette K. Thybo: Direct decomposition of NMR relaxation profiles and prediction of
sensory attributes of potato samples. Lebensmittel-Wissenschaft und Technologie —
Food Science and Technology, 36 (4), 423-432, 2003

PAPER I

Jakob Christensen, Vibeke Tglbgl Povisen and John Sgrensen: Application of
Fluorescence Spectroscopy and Chemometrics in the Evaluation of Processed
Cheese During Storage. Journal of Dairy Science, 86 (4), 1101-1107, 2003

PAPER IV

Vibeke T@lbgl Svensson, Henrik Hauch Nielsen and Rasmus Bro: Determination of
the protein content in brine from salted herring using near-infrared spectroscopy.
Lebensmittel-Wissenschaft und Technologie — Food Science and Technology, 37 (7),
803-809, 2004

PAPER V

Stine Kreutzmann, Vibeke Tglbgl Svensson, Anette K. Thybo, Rasmus Bro and
Mikael A. Petersen: Prediction of sensory quality in raw carrots (Daucus Carota L.)
using multi-block LS-ParPLS, Food Quality and Preference, 19, 609-617, 2008

PAPER VI

Vibeke Tglbgl Svensson and Charlotte Mgller Andersen: Characterization of Brine
from Salted Herring using Fluorescence Spectroscopy. Lebensmittel-Wissenschaft
und Technologie — Food Science and Technology, (submitted), 2008

Vi



List of Abbreviations

2D Two-Dimensional

3D Three-Dimensional

ALS Alternating Least Square

ANOVA ANalysis Of VAriance

BSA Bovine Serum Albumin

CANDECOMP CANonical DECOMPosition

Corcondia Core Consistency

CPCA Consensus Principal Component Analysis

CPMG Carr Purcell Meiboom Gill

DECRA Direct Exponential Curve Resolution Algorithm

DTLD Direct TriLinear Decompositon

EISC Extended Inverted Scatter Correction

EEM Excitation Emission Matrix

EMSC Extended Multiplicative Scatter Correction

FAD Flavin Adenine Dinucleotide

GCCA Generalized Canonical Covariate Analysis

GC-MS Gas chromatography-Mass Spectrometry

GPA Generalized Procusters Analysis

GRAM General Rank Annihilation Method

HPCA Hierachical Principal Component Analysis

HPLC High Pressure Liquid Chromatography

HPLS Hierarchical Partial Least Squares

LF-NMR Low Field Nuclear Magnetic Resonance

LS Least Squares

LS-parPLS Least Squares parallel Partial Least Squares

LS-parPLSc Least Squares parallel Partial Least Squares with common
loadings

NADH Nicotinamide Adenine Dinucleotide

NIR Near InfraRed spectroscopy

NIT Near Infrared Transmission

NMR Nuclear Magnetic Resonance

MB Multi-Block

MBPLS Multi-Block Partial Least Squares

MSC Multiplicative Scatter Correction

MSPC Multivariate Statistical Process Control

oLS Ordinary Least Squares

PARAFAC PARAIllel FACtor Analysis

PAT Process Analytical Technology

PCA Principal Component Analysis

VI



PLS

R
RMSECV
SIS

SNV
S-PLS
TPA

Partial Least Squares

Correlation coefficient

Root Mean Square Error of Cross Validation
Spectral Interference Substraction

Signal Normal Variate

Serial Partial Least Squares

Texture Profile Analysis

Vil



List of Notations

IX X X X

aA
b,B
bl,BL
c,C
ex,Ex
E
ey,Ey
f,F

il

j,J

k,K

}\eXI }\em
A

Mo
m(tymer)
N

p,P
S0,51,52
t,T

tr

T,

T

t

w

WS

1A%
v,Y

Scalar
Vector
Matrix
Three way array

A-score in PARAFAC

B-loading in PARAFAC

Block number in multi-block analysis

C-loading in PARAFAC

X Residual

Three-way residual

Y Residual

Factor

number of samples

number of variables in the second array

number of variables in the third array

wavelengths for excitation and emission

wavelengths

magnitude of the relaxation curve

Total relaxation signal

number of underlying pure mono-exponential relaxation curves
Loading vector and matrix in multi-block and traditional PCA, and PLS
Levels of energy

Score vector and matrix in multi-block and traditional PCA, and PLS
Super score in multi-block PLS

LF-NMR — transverse or spin-spin relaxation time constant

time between NMR pulse

time

weights

super weights

Response variable - true value

Response variable - predicted value



Table of Contents

SUIMIMARY ...cuiiiniitunirenetnncrrnscrenersssersssssnssssnsessssssassssasesssssssssssnssssnsssassssassasassssnses 1
SAMIMENDRAG.....cccituertnerenetenieresierasersssernsssrnsessnsssassssasssssssssnsessssssnsessnsesansssanse v
LIST OF PUBLICATIONS. ....cteuiiteireecrtenerennerenereniernscssnscrasssrassssnsessssessssesnssssnsssansene Vi
LIST OF ABBREVIATIONS ......cocteiiiiinerereetrecrencrecrensesceassessesssnsseserassessenssassanssnnsane Vil
LIST OF NOTATIONS......ceieieeiritteereneenctacrenseessescescressesssnssassssssassssssassasssnssasssnssnne IX
TABLE OF CONTENTS ....ieuiiiuiienitnniiianeienncrensersssesnssssnssssssssnsssssssssssessssssnsssansssnsssss X
1. INTRODUCTION ..ccucituireniernncrenncrencrencerasessnsessssessssssnssssssssassssasessnsessssesnssssnsesans 1
2. MULTIVARIATE DATA IN FOOD SCIENCE ......cccceettuiernecrenncrenerencerasessnsessncsnssanne 9
2.1 CHEMOMETRICS FOR HANDLING MULTIVARIATE DATA . .oeeeeeieciee et eeevvne s 11
3. TRADITIONAL TWO-WAY CHEMOMETRICS OF NIR DATA ....cceeieereerreccencencnenes 15
3.1 NIR SPECTROSCOPY APPLIED TO FISH PRODUCTS ..vvvuueieieiiiiiiiiieeeeeeeeerttiieeeeeeeeeeranens 17
3.2. PRE-PROCESSING OF NIR SPECTRA.....ctttttiiieeiieeittieeeeeeeeeeeitieeeeeeeeeeeraaeeeeeeserssaannnes 19
3.3. HANDLING INSTRUMENTAL ARTIFACTS BY SPECTRAL PRE-PROCESSING .....ceeeeeerereeeeeeennnn. 20
4. BEYOND TRADITIONAL TWO-WAY CHEMOMETRICS .....ccccetueeermnccrnncrenncrenncranes 23
4.1. FLUORESCENCE LANDSCAPES — A THREE-WAY DATA SOURCE ....ccvuueeeeeereerinieneeeeeeevennnns 23
4.2."H NMR RELAXATION CURVES - A THREE-WAY DATA SOURCE +...eveeereeeeeerereerereseeneen. 26
4.3, THE SLICING APPROACH «..ceeeeeeittieeeeeeeeettttieeeeeeeeesssnneeesesesesssnaseeesesssssnnnssessessenes 28
5. MULTI-WAY ANALYSIS ...oituiiiniirnniirniieniieniiiaeissersssessssessssssnssssssssassssssssssseses 31
5.1. PARALLEL FACTOR ANALYSIS - PARAFAC .....ccoe e e 31
5.2. EEM FLUORESCENCE AND PARAFAC ......cci e e e ee e s e 34
5.4. APPLYING SLICING FOR FOOD QUALITY ASSESSMENT .....ccevvuueiereeerrrerenniaeseeeeressnnneees 36
6. MULTI-BLOCK ANALYSIS.....ccecienirereerrecrenerereenseseresseessessescsassesssnssasssnssasssnssanes 39
6.1. THE PRINCIPLES OF THE HIERARCHICAL-PLS......cetrttieee ettt 44
6.2. THE PRINCIPLES OF THE SERIAL-PLS ...covrtiiiiiiiieeeeeee et 45
6.4. THE PRINCIPLES OF THE MIULTIBLOCK PLS ....ccii i e e 46
6.5. THE PRINCIPLE OF THE LS-PAR-PLS.....coii i 47
6.6. SUMMARY OF THE FOUR MAIN MULTI-BLOCK IMETHODS ...cvvvueeeeeerereriniieeeeeeeeersnnneeens 48
6.7. MULTI-BLOCK APPLICATIONS IN FOOD QUALITY ASSESSMENT ..uuveeerererenneeeeeeererrnnneeens 49
7. A MULTI-BLOCK “PLAYGROUNDY ....ceuuuiirrmeiirirencirirneirienesiseenssssessnsssssensssssenns 53
7. 1. MATRIX CORRELATION ..evvvuuunieeeeerersssneeeeesrerssssneeeeessesssssnseeesssessssnneeesesssssssmnneesenes 53



7.2. GENETIC ALGORITHM FOR REGRESSION OF MULTIPLE BLOCKS
7.3. DATA DIMENSIONALITY AND BUILDING-BLOCK WEIGHTS ......

8. CONCLUDING REMARKS AND PERSPECTIVES...............
9. REFERENCES ......coovriiiiiiiiiiiiniinnnnnnnnnnnnnnsnnnnnnssssssssnees

Xl

...................................



Xl



Introduction

1. Introduction

The food industry is continuously working on means to improve, optimize and gain
a better understanding of the way food productions are run. The increased focus
on food quality demands that the industry places a big effort into development and
control of food productions. Ensuring the quality of food products requires
monitoring and evaluation of every step from the raw material, to the production,
to the final product, and in the distribution.

The increased focus on food quality raises the requirements of the analytical
methods which are used in food production. Luckily the technological development
in analytical instruments has kept up, and advanced methods are available today.
This advancement in instrumental technology results in an increased amount of
data with higher complexity and dimensionality, e.g., data of a multivariate nature.
An illustration of an estimated overview of the existing amount of multivariate data
problems represented by two-way, multi-way, and multi-block data is given in
Figure 1.

Figure 1. Approximated diagram over distribution of multivariate data divided into two-way,
multi-way, and multi-block data.

The diagram shows that a large amount of two-way data exists and the regular two-
way data and multi-block data do overlap. Such overlapping data problems can be
two-way data consisting of several block contributions treated as a single block
problem or a single block, which can be split up into several block contributions.
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The multi-way data problems differ from the two-way problems as illustrated by
only having a small overlap. As can be seen the univariate data problems are not
included in the diagram. Univariate data problems still exist but often univariate
data analysis is no longer sufficient when trying to solve the increasing amount of
research questions that arise due to the advancements in technology. Multivariate
data analysis, also known as chemometric analysis, is designed to handle data
problems of multivariate structure. Multivariate data analysis is necessary when
studying food and food systems. The natural variation in the chemical composition
of foods can be expected to be high since most food originates from living
creatures or plants. In order to be able to study and understand this complex
structure and interactions between the food constituents multivariate technologies
are required.

Process Analytical Technology (PAT) has been in focus ever since the U.S. Food and
Drug Administration (FDA) released the “Guidance for Industry PAT — A Framework
for Innovative Pharmaceutical Development, Manufacturing and Quality
Assurance” (www.fda.gov). In fact, PAT has been a focus area in many industries
even years before the term was coined. FDA encourages the pharmaceutical
industry to use PAT to overcome some of the drawbacks associated with the
existing ways of monitoring and controlling pharmaceutical productions. PAT, as
defined by FDA is “a system for the analysis and control of manufacturing processes
based on timely measurements of critical quality parameters and performance
attributes of raw materials and in-process materials”. Besides ensuring the product
quality by demanding that the product is produced within specifications, applying
PAT to food production will give a better process understanding and provide
information targeted towards the relevant specifications within a process-
compatible time frame. This will ensure that quality is built into the product early
on in the process (ideally in the development phase) and this can be continued
throughout the process.

PAT is like a toolbox filled with tools to improve process understanding and process
monitoring. The industry has secretly been peeking in the toolbox but finally the FDA
recognize the potential of the toolbox and permission has been granted (FDA
guidelines) to dig into the toolbox and explore.

Several of today’s food products have existed for centuries e.g., salted herring or
semi-hard ripened cheese, and production of such products is associated with great
traditions and craftsmanship. Even in production up-scaling the craftsmanship is
invaluable, but unfortunately also associated with a high degree of variation and
uncertainty due to the fact that the outcome is dependent on the individual
employee. Implementing PAT can help reduce the productions’ dependency on the
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employee at hand and secure a more uniform evaluation of the productions. PAT is
not meant as a substitute for good craftsmanship, but as a tool that can determine
focus points, speed up the analysis time giving high reproducibility. Where in the
process can PAT make a difference? The processing of food can be split up in five
parts as illustrated in Figure 2. The first step is the assessment of the raw material,
the second step is the pre-processing step, and the third step is the processing of
the food, which can be a multi-step process depending on the product at hand. The
fourth step is the packing and the fifth step is the distribution. Depending on the
product the distribution always has to be in a controlled environment e.g., products
that are refrigerated or frozen. Applying PAT has mainly been focused on the step 1
to 3 but step 4 to 5 can also gain from PAT.

. r Potential PAT

Existing PAT

Figure 2. Food processing divided into 5 steps.

PAT is already a well known phenomenon in the food industry, where spectroscopy
and chemometrics in the last decades has gained recognition due to their ability to
provide fast and relevant information about the food products, especially by Near
Infrared spectroscopy. In most cases the spectroscopic analysis is very fast and
typically little or no sample preparation is needed. This makes it well suited for
implementation on-line or in-line as an automated routine analysis. If the analysis is
used at-line the limited sample preparation ensures that all personnel can carry out
a measurement. In addition most instrumental software packages allow for instant
data processing so the operators can react promptly and take the necessary action.
The PAT initiative emphasizes the use of spectroscopy or similar multivariate
sensors as they represent a fast and automated alternative to current chemical
(laboratory) analysis. Spectroscopy, if implemented and used correctly, can provide
highly detailed (and often highly relevant) information about the chemical
composition of food products in a short period of time. Often, spectroscopic
measurements can either directly, or indirectly through calibration models, provide
much more relevant information than traditional quality measures. This makes it
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ideal for monitoring processes that change rapidly. Furthermore most types of
spectroscopic measurements are non-invasive and non-destructive. This is of great
importance in situations where the sample material is very valuable or limited. If
you can not control or select the quality of the raw materials you have to control
the factors under which a product is produced. Adjusting the production to fit the
raw material, thus selecting the right adjustments is crucial in order to perform
satisfactory monitoring and assessment throughout the food production. In order
to optimize the spectroscopic analysis towards a certain type of production, several
issues must be considered such as selecting the appropriate spectroscopic method
and the best suited data analysis.

Spectroscopy and chemometrics are being recognized as going hand in hand and
are well suited for assessing the quality of food products.

The strength of spectroscopy in combination with multivariate data analysis is that
it opens up a level of information (the exploratory spirit), which otherwise could be
overlooked or neglected. The exploratory aspect of multivariate data analysis is a
gift in process understanding since you can perform a chemometric analysis and
just see where it gets you, without knowing anything about the process
beforehand. In food processing the exploration can take you places you did not
expect especially if you dare to look at a process with open eyes instead of
restricting yourself to see only what you expect to find. Such revelations are due to
the fact that chemometrics makes it possible to view and compare hundreds or
thousands of chemical and/or spectral variables, something which can be quite
overwhelming by univariate data analysis and direct visual inspection.
Chemometric analysis processes the multivariate nature of spectroscopic
measurements in a way that the “essence” of the data will be extracted as
descriptive chemical factors. Chemometrics can also handle traditional precursors
for process monitoring, e.g., pH, pressure, temperature, etc. But often the
traditional monitoring parameters can not explain the chemical composition, the
chemical changes and the covariate nature of food systems as well as spectroscopic
methods can. PAT is also about combining the traditional process parameters with
the multivariate sensors and multivariate data analysis, as the impact of their
interconnectivity can give better process understanding and provide a targeted
process monitoring. Principal component analysis (PCA) and partial least squares
(PLS) regression are among the most common chemometric methods applied to
spectroscopic data and have proved to be useful in many situations™*>*.

Multi-block analysis is superior to the corresponding two-way analysis for data
visualization and interpretation of multiple blocks of data.
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In the initial screening phase or during a monitoring process where a number of
instrumental methods are applied, the intuitively straightforward way to perform
data analysis will be to concatenate the data in one block and perform PCA or PLS
regression. What is not so straightforward is to try and make sense of the models.
An alternative way of evaluating this type of data is to apply multi-block analysis. By
this approach the natural structure of data can be maintained, so concatenation of
the data blocks is not necessary. Instead the data are modeled in a block structure,
thus the data can be treated by their individual block contribution, but also the
overall model of all blocks can be evaluated. When the data are expanded by
increasing the number of dimensions in e.g., batch monitoring or fluorescence
landscapes measurements, multi-way analysis is applicable such as PARAFAC and
multi-way regression.

The present work is an elaboration on the conclusions drawn from Figure 1 which
illustrates that there is large number of multivariate data problems that needs to
be solved. But how much focus is there on using the appropriate multivariate
technique? How often is two-way treated as two-way and not univariate data, how
often are multi-block problems solved by using multi-block modeling and how

about multi-way problems?

Figure 3. Estimated overview of multivariate data problems treated as such.

Figure 3 is an illustration of an estimate as to how many multivariate problems are
treated in their natural data structure. From Figure 3 it clearly appears that there is
a big gap between the actual amount of multivariate data problems (Figure 1) and
how many are solved as multivariate problems in practice.
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As described in the previous sections the “PAT toolbox” includes tools designed to
handle these complex data structures. Two-way chemometrics is used more often
and the recognition of multivariate sensors and multivariate data techniques
expressed through the PAT framework does increase the interest and focus on
these multivariate technologies. Because multivariate data analysis is still fairly
new, it has taken some time for the industry to adapt to the thought of applying
two-way analysis. Because it has taken a while for two-way analysis to be
acknowledged there is a tendency to limit the use of multivariate analysis to only
single block two-way analysis with the excuse that applying more advanced
multivariate modeling may complicate things even more. But it is my belief that it is
simpler and much more rewarding to view the data problem in its natural structure,
thereby handling single block two-way data using PCA and PLS modeling, multiple
block problems by multi-block PCA and PLS modeling and multiple dimensional
data using multi-way analysis. With this approach there is no unnecessary data
compression, no loss of information due to data compression, and interpretation
can often be performed directly.

Multi-block and multi-way analyses provide an overview of complex data by
processing them in their natural structure and without compressing unnecessarily.

The objective of this dissertation work is to use the tools provided in the PAT
framework with the main focus on spectroscopy and advanced chemometrics such
as multi-way and multi-block methods to assess food quality.

How to Read the Dissertation

The “backbone” of this dissertation is the three topics; two-way, multi-way, and
multi-block chemometrics. The dissertation is divided into two parts where the first
part ties the knots between the six papers (PAPER I-VI) which constitute the second
half. The work evolves from the straightforward two-way chemometric approach
into the more advanced methods, e.g., multi-way and multi-block chemometrics. In
between the main subjects the analytical methods which provide the multivariate
data are presented and described with the emphasis on the spectroscopic
methods. Within each of the main data analysis areas applications related to the
analytical measurement, food product and/or chemometric methods are given.

Chapter 2 illustrates what multivariate data structure is and introduces the
assumptions made for spectral analysis in terms of linearity in order for
chemometric analysis to be valid.
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Chapter 3 is an illustration of how most multivariate chemometrics are applied
today in the form of traditional two-way data analysis on NIR spectral data. An
introduction to NIR spectroscopy and applications of NIR spectra treated by two-
way chemometrics are given in relation to PAPER IV, which is performed on brine
from barrel salted herring. This chapter also includes a section about spectral pre-
treatment of NIR and how instrumental disturbances can be treated using such pre-
treatment procedures.

Chapter 4 introduces multi-way data in the form of three-way fluorescence
excitation-emission spectroscopy (landscapes) and construction of three
dimensional data from two-way low field NMR (LF-NMR) relaxation curves
(SLICING).

In Chapter 5 multi-way analysis is the topic and an introduction to Parallel Factor
Analysis (PARAFAC) and the principles of PARAFAC modeling are given. The chapter
also includes applications of PARAFAC modeling of fluorescence landscapes and LF-
NMR data reorganized by SLICING (PAPER Il, PAPER IIl, and PAPER V).

Chapter 6 is all about multi-block analysis. An introduction to four multi-block
methods is given and pros and cons are discussed. An overview of reported multi-
block applications in the area of food science is made (PAPER | and PAPER VI).

Chapter 7 is “the play ground chapter”. It includes the results of a number of topics
that were explored for optimizing multi-block modeling in order to make more
intuitive solutions and make them easier to access for the inexperienced user.
Matrix correlation between blocks and genetic algorithms for optimizing regression
was tested. Finally a semi-automated approach for selecting the optimal factor and
block weighting combinations is also introduced.

Chapter 8 gives some concluding remarks and formulates some future perspectives
on the matters involved in this dissertation work.

Figure 4 gives an overview of the six papers presented in this work with their
application, spectroscopy methods and chemometric analysis.
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Figure 4. Overview of PAPER | to VI. Herring products, processed cheese, potatoes, semi-hard
cheese, and carrots have been analyzed by; NIR spectroscopy, fluorescence spectroscopy, 'y
NMR relaxation, and physical/chemical measurements. Data analysis has been divided into

three categories: Two-way, multi-way and multi-block.



Multivariate Data in Food Science

2. Multivariate Data in Food Science

In the field of food science performing chemical and analytical measurements will
result in data presented in different dimensions. A measurement giving one single
observation is considered a univariate measurement, e.g., a pH analysis. A
measurement resulting in several observations such as spectral measurements is
denoted two-way data. Three-way data consists of a three dimension structure
such as fluorescence excitation-emission landscapes for a series of samples. An
illustration of the data dimensions is given in Figure 5.

Univariate Two-way Three-way

Figure 5. Univariate, two-way and three-way data. Univariate is a single number and several
univariate observations result in a vector. Two-way data is a vector, here represented by a
NIR spectrum and several spectral measurements give a matrix. Three-way data is illustrated
by a fluorescence landscape also denoted a data matrix - several matrices stacked on top of
each other result in a three-way array.

The multivariate data examples used in the figure above are spectral
measurements and this is not a coincidence since spectroscopic techniques are well
suited for analyzing food and food products. They can be applied for both
qualitative and quantitative purposes (Box 1). Spectroscopy is one of the analytical
methods which are emphasized in the PAT approach, due to high level of
information. A full spectrum may contain information about several constituents
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and their interactions, information which can not be obtained via a univariate
approach.

Box 1. Beer’s Law

Beer’s Law (Eq. 1) states that the relationship between the absorbance and
concentration of an absorber of electromagnetic radiation is linear, which is
essential when spectroscopy is used for quantitative purposes. With this
assumption the amount of absorbed light will be proportional to the concentration
of an absorbing substance in a sample.

P
Eq.1 A=-2=abc
P

Where: A is the absorbance

c is the concentration

b is the path length through solution (cm)

a is the absortivity coefficient

Pyis the incident light source

P is the exiting light, which is not absorbed

The spectroscopic methods can, for the majority, be considered as non-invasive,
non-destructive, rapid, environmentally friendly and relatively easy to perform.
Furthermore they can be used in a variety of locations such as laboratories (off-
line), in productions such as in-line, on-line, or at-line measurements and in field
work where it can be used as portable instruments. Spectroscopic methods used
within the food industry include ultraviolet and visual spectroscopy, fluorescence
spectroscopy, nuclear magnetic resonance, microwave absorption, ultrasound
transmission, and infrared techniques such as IR and NIR, and Raman spectroscopy
- covering most regions of the electromagnetic spectrum (Figure 6). In the present
work the following spectroscopic techniques have been applied; NIR (PAPER 1V),
fluorescence spectroscopy (PAPER Ill, PAPER VI) and low field NMR (PAPER Il).
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Figure 6. Overview of the electromagnetic spectrum.
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2.1 Chemometrics for Handling Multivariate Data

“The true exploratory potential of the chemometric technology is to identify the
first unknown principles with a minimum of a priori bias by measuring first and
hypothesizing afterwards.”

Lars Munck, 2005’

The explorative perspective of chemometrics makes it well suited for analyzing data
from monitoring food systems and food processing, due to food products’ complex
physical and chemical composition. Chemometrics is part of the PAT toolbox,
because it can help to obtain a better understanding on how food and food
production work. Chemometric modeling can be used to study patterns of chemical
parameters in food products and it can detect samples with properties that deviate
from the remaining samples. A chemometric model separates structural
information from un-structured information (residual or noise), where the
structured part is the chemical information. The structured information is
expressed as underlying latent structures which are represented by factors in
accordance with how much of the data variation they explain. Pattern recognition
of the physio-chemical composition is made possible by mapping the descriptive
parameters (principal components or factors) in an intuitive meaningful graphical
representation. This form of data visualization makes data interpretation and data
handling much easier as it becomes possible to overview and analyze large data
material. Hidden patterns, which under normal circumstances would have been
overlooked due to high covariance and correlation between variables, can be
revealed. One of the advantages of chemometric modeling is that it can be
performed with or without prior knowledge about the food product.

A great interest lies in developing and optimizing chemometric methods which
provide better interpretability and intuitive solutions for as many data scenarios as
possible. A typical data set up is chemical and spectral measurements represented
by a data matrix (X) (Figure 7). Such data can be analyzed using two-way analysis
e.g., PCA and PLS regression. In cases where several analyses are performed on the
same material multi-block analysis is an option (Figure 7). Multi-block analysis
treats several blocks [X; X,,...,Xg.] in one model and provides information about the
individual block contribution combined with the overall model of all block
contributions. If the data material exceeds two dimensions such as three-
dimensional data (X) e.g., fluorescence excitation-emission landscapes and
reshaped low field nuclear magnetic resonance (LF-NMR) data, multi-way analysis is
appropriate (PARAFAC) (Figure 7).

11
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Figure 7. Examples of data structures suited for PCA and PLS analysis, the data matrix (X).
Multi-block analysis, data blocks [X;X,,...,Xg ], and multi-way analysis, three-way array X.

In the PAT framework, the role of chemometrics is to build a link between the data
collection and data analysis and in doing so a number of considerations must be
made in order to get valid results. Important issues in PAT analysis for monitoring
food processes are to define the problem at hand and try to understand the
problem. This might seem obvious, but quite often in practice the problem has not
been defined beforehand. In the step designing the experiment, one must
remember to handle issues concerning sampling, e.g., how is sample material
removed from the product and how should the samples be analyzed? Is it by
chemical analysis and/or sensor technology? How are data collected and stored
and what type of data analysis should be performed? And when performing the
data analysis is scaling and signal pre-processing necessary? What is the best way
to visualize and interpret data? All these topics are crucial to consider before and
when applying PAT (Figure 8).

The forthcoming chapters will illustrate how traditional two-way chemometrics can
be performed and then move on to the more advanced chemometric methods
where the focus will be on multi-way analysis methods for analyzing fluorescence
landscapes and LF-NMR relaxation curves on multi-block regression analysis for
handling several blocks of data. The multi-block and multi-way methods are
extensions based on the concepts from PCA and PLS regression. In PAPER |, PAPER
Il, PAPER IIl, PAPER V, PAPER VI, PCA and PLS regression are used for preliminary

12
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data analysis followed by multi-way or multi-block modeling (results not always
included). PAPER IV is based solely on the basic PCA and PLS regression of NIR
measurement on brine. PCA and PLS regression are the most frequently used
chemometric methods within the area of food science; hence it is assumed that the
reader is familiar with terms and expressions connected to PCA and PLS regression
analysis, and therefore it will not be explained further - for more information about
basic two-way analysis the reader is referred to Martens and Nzs® and Martens
and Martens’.

< Identify problem

< Understand the
problem

Select appropriate
sensor

Select Multivariate
data treatment
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Data Pre-processing
Study patterns
Understand patterns
Chemistry
Instrument artifacts

« Test sensor
based methads

< Sampling
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processing

Figure 8. What to be aware of when implementing PAT in food science.
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3. Traditional Two-way Chemometrics of NIR Data

The discovery of infrared light was discovered in 1800 by Sir Frederick
x William Herschel (1738-1822) when he discovered a light radiation
beyond the visible spectrum when passing sunlight through a prism. This
discovery laid the ground work for the vibrational spectroscopy methods such as
Raman, IR and NIR spectroscopy. NIR spectroscopy is the most commonly used
spectroscopy for assessing food products and food processes and is therefore of
great relevance in the PAT framework for evaluating food quality. Analyzing NIR
spectra using chemometrics such as PCA or PLS regression can extract information
based on the entire spectra. This is a huge advantage when looking for patterns,
correlations and in general when trying to obtain a better understanding of NIR
data when limited or no prior information exists.

Box 2: Principles of NIR Spectroscopy

The NIR region covers the range from 4.000 to 13.000 cm™ (780 to 2500 nm). The
NIR spectra reflect the overtones and combination bands from molecules with a
small energy difference in their vibrational and rotational state. The vibrations of a
molecule can be divided into stretching and bending of covalent bonds (scissoring,
rocking, wagging and twisting) as illustrated in Figure 9.

N

Symmetrical Symmetrical Symmetrical

Stretching In-plane Qut-of-plane
Scissoring YWagging
v + :
Asymmetrical Asymmetrical Asymmetrical
Stretching In-plane Qut-of-plane
Rocking Twisting

Figure 9. Overview of the molecular vibrations illustrated by H,0. O: red and H: grey.

The NIR absorption bands are typically broad, overlapping and 10-100 times weaker
than their corresponding fundamental mid-IR absorption bands. The rather weak
absorption bands express mainly the functional groups which have a hydrogen
atom attached to a carbon (CH), nitrogen (NH), and oxygen (OH).
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NIR spectroscopy measurements can provide information about the chemical
composition, since some of the main constituents in food, namely water, fat,
carbohydrates, and proteins absorb in the near infrared region. Because NIR
analysis is fast and non destructive and can handle solid samples as well as liquid
samples, it is well suited for food evaluations. In Table 1 an overview of the most
relevant molecules in food evaluation are listed.

Table 1. Overview of relevant wavelengths for major food components in the near infrared
region (modified from Li-chan and coworkerss).

Food constituent Wavelength (nm) Assignment
Protein 910 C-H stretch 3™ overtone
1020 2*N-H stretch + 2*amide |
1510 N-H stretch 2" overtone
1980 N-H asymmetric stretch + amide Il
2050 N-H- symmetric stretch + amide Il
2180 1*amide | + amide Il
Fat 928 C-H stretch 3™ overtone
1037 2*C-H stretch + 2*C-H deformation + (CH,),
1200 C-H stretch 2™ overtone (CH, groups)
1734 C-H stretch 1% overtone (intramolecul. H bond)
1765 C-H stretch 1% overtone (intramolecul. H bond)
Starch 990 O-H stretch 2™ overtone
1440 (Sucrose) O-H stretch 1* overtone
1528 O-H stretch 1* overtone (intramolecul. H bond)
1540 O-H stretch 1* overtone (intramolecul. H bond)
1580 (Glucose) O-H stretch 1% overtone (intramolecul. H bond)
1900 O-H stretch + 2*C-O stretch
2100 2*0-H deformation + 2*C-O stretch
2252 O-H stretch + O-H deformation
2276 O-H stretch + C-C stretch
2461 C-H stretch + C-C stretch
2488 C-H stretch + C-C stretch
2500 C-H stretch + C-C stretch
Moisture 970 O-H stretch 3™ overtone
1450 (Starch) O-H stretch 1* overtone
1940 O-H stretch + O-H deformation

The potential of NIR spectroscopy as a fast method to assess agricultural and food
products was first introduced in 1961 by Norris and coworkers’ and is to be
considered the primary vibrational spectroscopy used for quantitative analysis of
the major food components. The number of food related NIR publications has
doubled within the last 10 yearss. The latest trends are the pursuit to use NIR real
time process monitoring and control. A recent review outlines the major trends
within NIR on-line/in-line monitoring of food and beverageslo. It shows that the
food industry has acknowledged NIR’s potential for monitoring process quality,
even long before the release of the PAT guidelines. In the recent years the majority
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of NIR data are analyzed using some kind of multivariate data analysis where PCA,
PCR and PLS are the most dominant.

3.1 NIR Spectroscopy Applied to Fish Products

Assessing fish and fish products using NIR spectroscopy and chemometrics are well
known in the field of aquaculture. It turns out that rainbow trout is the most
studied fish by NIR spectroscopy, but also salmon, cod and tuna are assessed
frequently by NIR. The majority of the performed studies have been used to
determine one or more of the major chemical components in fish such as fat,
protein, salt or water content. The first NIR application for assessing fish dates back
to 1987 where Gjerde and Martens'" studied the chemical composition in form of
the main constituents, e.g., water, fat and protein of freeze dried rainbow trout.
Their study was followed by a similar study on freeze dried trout and arctic charr by
Mathias and coworkers™. Since then the major milestones in this area have been to
measure NIR directly on the meat from rainbow trout with no prior treatment
besides freezing . In 1992, a NIR measurement was performed on a whole intact
rainbow trout and studied in the short wave region (700-1100 nm) by Lee and
coworkers'. NIR spectroscopy used for predicting sensory profiles of fish were
reported in 1997 by Jgrgensen and Jensen®, where sensory assessment and water
holding capacity of cod were correlated to NIR spectroscopy. In 2002 Uddin and
coworkers'® applied NIR spectroscopy to detect the end-point temperature and
water holding capacity of three types of fish and shellfish. In 2003, Solberg and
coworkers'” performed a study on live fish under sedation to evaluate the fat
content in farmed Atlantic salmons. Sollid and Solberg18 narrowed down the region
from 850-1050 nm to assess the fat content in salmon. This short wave NIR region
(700-1100 nm) has since been used to asses the major chemical components in
rainbow trout’, salmon and salmon related products (fat/fat and
protein)17’18'19'2°'21’22’23, halibut (fat, protein, drymatter) * tuna %, mackerel 7/,
surimi 2%, A few studies comparing the performance of NIR to other instrumental
methods for assessing fish have been performed. A study comparing NIR to the
Torry Fatmeter, a microwave based method and the fexIKA (Commercial
modification of the Soxhlet procedure), where the microwave based method and
NIR performed equally well when predicting the fat content in herring30. Another
study compared NIR to the Fatmeter and NMR* spectroscopy, and it concluded
that NIR was suited as a method for sorting whole herring or fillets in a production
line. Since texture and the chemical composition are closely related, NIR
spectroscopy has also been studied for classification of salmon based on the
texture profiles by Isaksson and coworkers®>. The study showed that NIR
spectroscopy correlated fairly well with the textural shear force measurement. NIR
has also been studied as a method to express the freshness of fish in terms of
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15,33,34,35

sensory quality. This has been studied in both untreated fish and in

processed fish products34 with promising results.

NIR Spectroscopy for the Assessment of Herring

In PAPER IV NIR spectroscopy was proven to be an excellent and fast method for
determining the protein in brine for barrel salted herring. In general applications
for assessing herring by NIR spectroscopy are very limited, thus only a few studies
of NIR and herring have been reported. Recent work includes a sensory study
where NIR spectroscopy on raw fish species including herring was tested as a
predictor of the sensory quality of cooked fish®. Herring was also used in the two
studies previously mentioned, where NIR spectroscopy was compared to other
instrumental methods to determine the fat content®®*'. PAPER IV presents a
standard two-way analysis (PCA and PLS regression) approach for analyzing NIR
data in order to determine the protein content in brine of barrel salted herring. The
method is an indirect way to monitor the quality of whole salted herring. The
approach of measuring the protein content in the surrounding brine instead of
sampling the whole herring is a big advantage as collecting brine samples and
measuring them is much easier than handling the issues of homogenous sampling
of whole fish carcasses due to the in-homogeniety of the chemical composition in
fish®”*. The results show that performing PLS regression on the NIR spectra can
predict protein content in brine with a correlation of r=0.93 and an RMSECV of 0.25
g/100g when selecting spectral regions. PLS regression on the entire NIR region
resulted in predictions of r= 0.87 and an RMSECV of 0.35 g/100g. This corresponds
well with other studies predicting protein in other fish species. No reported studies
have been performed to determine the protein content in herring or herring
products, but protein assessment based on the NIR region from 1100-2500 nm has
been performed by Mathias and coworkerslz, where freeze dried rainbow trout and
arctic charr were analyzed using two different NIR instruments for the assessment
of protein and resulted in correlations of r= 0.88 and 0.97. A study by Isaksson and
coworkers® did not give the same satisfactory results when predicting protein in
whole fillets of salmon, but instead promising results were obtained for ground
salmon. Other studies of protein show that a correlation of r= 0.85 can be reached
when assessing fishmeal™®. The most recent study by Khadabux and coworkers™!
predicted the protein content of two tuna species, Skipjack and yellow fin tuna with
a high correlation, r= 0.99. In whole sea bass fillets the prediction of crude protein
failed, but r=0.68 was reported in freeze dried fillets*.
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3.2. Pre-processing of NIR Spectra

The ideal situation in spectral analysis would be if the absorption band of every
analyte could be presented as isolated absorption bands - but in NIR spectroscopy
unfortunately this is usually not the case. NIR spectra of food samples are often
broad and diffuse and furthermore they can be influenced by noise. These
disturbances can be due to light scattering, chemical shifts, sample composition
and molecular interactions. In Figure 10 the raw NIR spectra from brine samples are
shown.
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Figure 10. A). The raw NIR spectra from 400 to 2400 nm. B). A zoom of the region from 800
to 1094 nm from brine sample.

In order to be able to extract the chemical information from the NIR spectra with
spectral artifacts pre-processing of the spectra is required. A number of spectral
preprocessing methods exist. The most used methods are the reference based
methods which can be divided into scatter correction methods and smoothing
methods (derivative). The present work has used the scatter correction methods;
multiplicative scatter correction (MSC), extended inverted scatter correction (EISC)
and signal normal variate (SNV) and the derivative method Savitzky-Golay. Other
methods exist, but these will not be mentioned in this work; they can be found in
the reference by Rinnan and coworkers“, where more detailed information about
the presented pre-processing methods can be found.

Multivariate scatter correction, originally designed to handle multiplicative and
additive effects in spectra due to light scattering, can be used to handle other
spectral interferences™. The principle of the MSC method is to use a correction
coefficient to correct the spectra for non-linearties (Figure 11A). A reference
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spectrum (typically the average spectrum) is used when calculating the correction
coefficient.

An extended version of the MSC (EMSC), including wavelength corrections and
corrections based on prior spectral information (spectral interference subtraction
(SIS) has been purposed®. The EISC method is a further development of the
extended MSC methods and is suited in situations where the reference spectrum is
noisier than the measured spectrum46. The standard normal variate®’ approach also
uses a correction coefficient, but in contradiction to MSC it does not require a
reference spectrum.
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Figure 11. A). MSC corrected NIR spectra and B). 1*" derivative Savitzky-Golay corrected NIR
spectra. The illustrations are a zoom from the entire NIR spectra from 400-2500 nm where
spectral preprocessing has been performed.

The Savitzky-Golay derivative®® can be performed as a 1¥ or 2" derivative and is
normally used for smoothing and noise reduction purposes (Figure 11B). The
principle of the Savitzky-Golay derivative is to smooth over a number of points of
the spectra by fitting a predefined polynomial against the spectral points. A number
of factors have to be determined when performing Savitzky-Golay, where the size
of the smoothing window and the order of the polynomial to be fitted against have
to be selected.

3.3. Handling Instrumental Artifacts
by Spectral Pre-processing

The following section focuses on how to manage the type of instrumental
disturbances which occurred when performing NIR spectroscopy measurements on
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the brine samples from PAPER VI. A total of 176 barrels (batches) of salted herring
had samples taken six times during the ripening period.

All samples were evaluated by Near-infrared transmission (NIT) spectroscopy using
an Infraprover Il fourier transform spectrometer (Bran and Luebbe, Germany) over
a period of 10 days and every day a Bovine Serum Albumin (BSA) standard was
measured. After the fourth day of measurements the NIR instrument broke down,
the remaining samples being measured on a similar, second NIR instrument.
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Figure 12. A). Raw NIR spectra from brine samples measured on two instruments. Black —
Instrument | and red — Instrument Il. Circles indicate the areas where there is a difference in
spectra between instrument | and Il. B). Blue -BSA standard NIR spectra and green NIR
spectra from brine samples.

Changing the NIR instrument during the measurement trial resulted in spectral
disturbances which could be assigned to NIR instrument | and instrument Il as
illustrated in Figure 12A and Figure 13. Performing spectral pre-processing in the
form of MSC and differentiation by Savitzky-Golay can not remove information due
to instrument | and Il. Instead correcting using the standard BSA spectra measured
every day of sampling seems to remove the instrument variation. Comparing the
BSA spectra from the two instruments it is obvious that they express the same
spectral curvatures unique for each of the two instruments and it makes sense to
assume that subtracting the reference spectra can correct for the instrument
variation (Figure 12B).
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Figure 13. PCA score plot of the brine samples based on raw NIR spectra. A separation of
samples according to sampling day and instrument can be observed.

After the BSA standard correction day to day variations are still present and in
order to correct for this MSC, 1** and 2™ derivative (Savitzky-Golay) were tested
(results not shown). EISC pre-processing was able to remove the remaining
variation caused by sampling days (Figure 14).
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Figure 14. PCA plot from NIR measurement on brine samples after correction with BSA
standards and pre-processed with EISC.
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4. Beyond Traditional Two-way Chemometrics

Higher data dimensionality and an increased number of data blocks are a result of
the advancements in the instrument technology. Standard two-way chemometrics
is still the most used data analysis when analyzing multi-way and multi-block
problems.

Figure 15. A view of the world of multivariate data. The large circles represent the existing
data problems and the smaller circles the actual problem treated as such.

In order to extract the right information in a more intuitive way the data problems
should be addressed by multivariate methods designed especially to handle multi-
way and multi-block problems. But in order to even out the difference between the
existing number of two-way, multi-block and multi-way problems and the actual
number of problems handled as such (Figure 15), the focus and accessibility of
these more advanced methods must be emphasized. Figure 15 is an illustration of
Figure 1 and Figure 3 merged in order to give a better visual comparison.

4.1. Fluorescence Landscapes — A Three-way Data Source

The first observation of fluorescence was made by Sir John Frederick William
Herschel (1792-1871) in 1845. Similar to his father’s discovery 45 years earlier,
sunlight was the light source for his discovery of fluorescence from a quinine
solution®. The advantage of fluorescence spectroscopy compared to other
spectroscopic methods is its sensitivity and high specificity. Compounds that absorb
at the same wavelength in other spectral regions may be differentiated due to their
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different fluorescence properties and this is a great advantage when analyzing food
samples.

Box 3: Principles of Fluorescence spectroscopy

Fluorescence spectroscopy is of special interest in the UV/Vis region ranging from
200-700 nm. The UV region is colorless for the human eye, but in the visible regions
some of the wavelengths have characteristic colors. Photons in these regions
possess energies which promote electronic transitions in certain molecules that
lead to emission of light. Molecular luminescence spectroscopy describes emission
of light from molecules in electronically excited states, where usually only the
ground state (sg), the first excited state (s;), and the second excited state (s,) are
involved in fluorescence. The emission appears 10" - 107 seconds after excitation
and can arise from excitation by way of absorption of light (photoluminescence) or
by way of a chemical reaction (chemiluminiscence). Photoluminescence can be
divided into fluorescence and phosphorescence, where fluorescence is the focus of
this study. In Figure 16 an illustration of a Jablonski diagram is given.
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Figure 1% Jablonski diagram. The principles of fluorescence spectroscopy (modified after
Lakowitz .

It can be observed that the wavelength of the emitted energy will be lower than
the energy during absorption. This is due to loss of energy in the excited state. The
absorption frequency is usually greater than the fluorescence frequency because
the absorption process puts the molecule in an excited vibrational level of the
excited electron state. Rapid decay to the lowest vibrational level (s;) then occurs
before emission (internal conversion) *° .
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Performing so-called excitation-emission fluorescence spectroscopy consists of a
set of spectra recorded in a range of wavelengths (A.,) and their corresponding
emission spectra. This representation of an excitation-emission matrix (EEM) is also
known as a fluorescence landscape. The three-way structure of fluorescence
landscapes makes them an ideal data source for multi-way modeling. The
advantages of EEM’s are the ability to providing a higher level of information
compared to e.g., uni- or unfolded two-way fluorescence measurements. It is very
powerful when analyzing more complex mixtures such as food products, and the
combination of EEM with multi-way data analysis (PARAFAC) has made the EEM
analysis much more assessable and much easier to interpret due to its more
intuitive solutions. This approach is used in the steady-state fluorescence®
applications presented in PAPER Il and PAPER VI.

In food related studies especially the intrinsic fluorescence from aromatic amino
acids is relevant, where the protein fluorescence is due to tryptophan, tyrosine and
phenylalanine. Other natural occurring fluorophores are the cofactor enzyme
nicotinamide adenine dinucleotide (NADH), pyridozyl phosphate and the flavins
(adenine dinucleotide (FAD)). Vitamin fluorescence is represented by the water
soluble vitamins B,, B, and fat soluble vitamins are vitamin A and vitamin E.
Pigment fluorescence in food is often due to chlorophyll and hematoporphyrin"g’51
The fluorescence properties of the fluorophores are highly dependent on several
environmental factors such as pH, temperature and solvent, and can affect their
fluorescence. The molecular structure also influences how the fluorescence will be
executed. If the fluorescent compound is hidden in the molecular structure or if it
resides close to the surface®®*>. When analyzing biological material by fluorescence
spectroscopy both intrinsic and instrumental factors can give spectral disturbances
which may result in deviations from Beer’s Law. Light scattering from in-
homogenious sample material, containing larger molecules or aggregation of
matter can occur. Raman scatter is caused by scatter and is explained in the
following section. If the optical density of the sample is too high it may hinder
emitted light from a fluorophore to reach the detector. This will result in non-linear
absorption measurements which will deviate from Beer’s Law (Box 1) and thereby
linear modeling is no longer appropriate.

Scatter Effects

When performing fluorescence landscapes measurements the phenomena of
Raman and Rayleigh scattering is almost impossible to avoid. Rayleigh scatter refers
to the scattering of light by particles and molecules smaller than the wavelength of

® Steady-state fluorescence is performed with constant illumination when the
emission is recorded. The opposite of steady-state is time-resolved fluorescence.
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the light. Rayleigh is so-called elastic scatter which means that no energy loss is
involved and therefore the scattered light occurs at the same wavelength as the
incident light. In praxis Rayleigh scatter mainly influences fluorophores with a small
Stoke’s shift. This is because the fluorescence signal of this type of fluorophores will
be excited and emit in the area close to the Rayleigh scatter. Rayleigh scatter can
be present in 1% order Rayleigh and 2" order Rayleigh scatter. 2" order Rayleigh
appears at emission wavelengths twice the given wavelength. Raman scatter is
inelastic scatter. A constant energy loss will appear for Raman scatter which results
in scattered light having a higher wavelength than excited light with a constant
difference in wave numbers (energy). Raman scatter will be a diagonal with a
systematic increasing deviation from the Rayleigh scatter. Scatter may interfere
with the data analysis of EEM'’s, but can be dealt with simply by removing the data
points with scatter 2354

4.2. *H NMR Relaxation Curves - A Three-way Data Source

In contrast to the well-established vibrational spectroscopy and fluorescence
spectroscopy, nuclear magnetic resonance (NMR) has not existed for more than 60
years. The first successful NMR study using bulk magnetization was performed in
the mid 1940s by two independent research groups at Harvard >> and Stanford *°.
Despite the fact, that it is one of the youngest spectroscopic methods, NMR has
shown remarkable growth57 and has been widely used in the analysis of foods™.

Performing CPMG (Carr-Purcell-Meiboom-Gill) experiments on foods can lead to
information about the physical properties of the molecules in foods by studying the
relaxation rates of the protons. Box 4 introduces the basic CPMG measurement
terminology in relation to determination of T, relaxation times for protons. For
basic NMR theory Harris® and Eads and Davis® are recommend and for more
advanced theory Abragam61 is suggested.

PAPER Il focuses on the principles of 'H low field NMR CPMG experimentsez’e?’ with
emphasis on determination of the transverse relaxation time (T,) to study water
distributions in potatoes. The relaxation curve consists of the maximum time points
of each of the spin echoes illustrated in Figure 17.
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Box 4: The Principles of NMR Relaxation

NMR is performed on nuclei whereas the previously described spectroscopic
methods are performed on electrons. Only nuclei with a non-zero spin quantum
number (1) will be NMR active. An example of a nucleus with | = % is hydrogen (*H),
The proton (*H) can provide information about the water distribution and is
therefore of great interest when studying food products and other biological
systems“. Other popular nuclei are Bc, ®N and *'P all with the spin quantum
number of I=)4. When exposed to a strong external magnetic field (By) the nuclei
will be distributed in (21+1) energy levels. AE (= yB,) is the difference in energy
between the two energy levels, where the spin can be parallel or anti-parallel to By.

The CPMG experiment

The following is based on "H which is the most abundant NMR nucleus in food
systems. In the rotating frame (coordinate system rotating with the Larmor
frequency®’), the CPMG experiment consists of a 90° x-pulse to turn the equilibrium
z-magnetization along the y—axis, then a delay 1, a 180° y-pulse (refocusing pulse),
a delay T and then the first spin-echo is formed. After the second t-delay the
magnetization is directed along the y—axis as it was just after the initial 90° x-pulse.
That is the reason for the term “echo”. The echo maximum is the first data point.
Repeating the “delay 1, 180° y-pulse, delay t”-block N times results in creation of
N additional echoes and thereby acquisition of N additional data points separated
in time by 2t. In Figure 17 the CPMG pulse sequence is illustrated.

Figure 17. CPMG sequence.
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The relaxation curve consists of a sum of exponentials and can be described by Eq.
2.

N
Eq.2. m(t, . )= ZMO’" -exp| — e + Ex
n=1 2,n
Where: m(tyug) is the total relaxation signal
N is the number of underlying pure mono-exponential relaxation curves
M, is the magnitude of the relaxation curve
tumr is the time
T, is the transverse relaxation time
Ex is the residual

A short T, indicates low molecular mobility (e.g., crystalline or bound water)
whereas high molecular mobility (e.g., free water) results in a long T, The number
of exponentials present in a relaxation curve reflects the number of underlying
mono-exponentials and equals the number of 'H sites with different relaxation
properties. A number of ways to estimate the number of mono-exponentials
present in the relaxation curves can be used. The most familiar approaches are bi-
exponential fitting and distribution analysis.

4.3. The SLICING Approach

The SLICING method was developed by Pedersen and coworkers® to restructure
CPMG LF-NMR data into a three-way array of relaxation curves. This procedure is
then followed by decomposition of the tri-linear structured data by multi-way
analysis into individual exponentials corresponding to the number of relaxation
compounds. The method is an alternative to the existing fitting methods, e.g., such
as bi-exponential fit, distributed exponential fit, discrete exponential fit. The
method originates from the direct exponential curve resolution algorithm (DECRA)
introduced by Windig and Antalek®. SLICING is a method that reorganizes two-way
relaxation curves into a pseudo-three-way structure and analyzes the data using
PARAFAC modeling. The third dimension is retrieved by reorganizing the data by
forming “slices”, as the name implies.
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_—-lag
/

Figure 18. Principles of SLICING lag and slab.

A relaxation curve expresses the number of relaxation times (T,’s) present in data
and the number of T,’s equals the number of exponentials. Because the relaxation
curve can be described as a sum of exponentials as given in Eq. 2, it is possible to
rearrange data by stacking the data behind each other (slab) introducing a slight
displacement (lag) for each slab. This is illustrated in Figure 18. The first slab will be
equal to the original data and will include relaxation components represented in
the first part of the data, e.g., the fast relaxation components, whereas the second
slab is dominated by the relaxation components with a slower T,. The dimension of
the rearranged data structure will be a three way array, where the first mode is the
number of samples, second mode is the relaxation profiles as a function of time,
and the third mode is the number of slabs (Xj=[object (i) X time (j) X slab (k)]).
Parameters, which can be changed when performing SLICING are the slab size, lags
and number of components. This type of data has a tri-linear structure and is thus
suited for PARAFAC modeling, where the A-scores will be proportional to the
magnitude of the relaxation curve (M,), B-loadings are the estimated relaxation
curves and the C-loadings have no practical function. SLICING as proposed in the
work from Pedersen et al®® has been applied in PAPER II. In a later publication
Engelsen and Bro® addressed some of the disadvantages of the SLICING approach
and proposed a faster and more accurate approach (PowerSlicing). In the original
DECRA®® algorithm the general rank annihilation method (GRAM)68 was used which
limits the size of data resulting in a maximum number of two slabs. The SLICING
method has overcome this problem as it is based on the direct tri-linear
decomposition (DTLD)69 which can handle more than two dimensions in the slab
directions. The advantage of increasing the number of slabs is that it gives more
accurate estimates of the relaxation times (T,). The fast relaxing components will
be resolved based on the first slab, whereas the slower relaxing components will be
dominating in the following slabs, and by including more slabs a more accurate T,
will be obtained. The disadvantage of expanding the number of slabs is that there
are an (almost infinite) number of possibilities for selecting the optimal slab and lag
combination. And the drawback is that determining the optimal number of slabs
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can be rather time consuming. One way to overcome this problem has been
proposed in the PowerSlicing method®’. Both SLICING and PowerSlicing suffer from
the requirement of a minimum of two decaying curves, but this is no longer an
issue since just recently a new method called DoubleSlicing”® was introduced. The
DoubleSlicing method differs from the previous slicing methods as it is designed to
generate a three-dimensional data matrix from a single decay curve.
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5. Multi-way Analysis

Handling data of higher dimensions than two are referred to as multi-

way analysis. This particular work has dealt with analyzing data with

three dimensions. Usually two-way data analysis is performed on a data

matrix, X (I X J) whereas multi-way analysis like three-way data analysis
will be performed on a three-way array, X (/ X J X K). When referring to the
dimensions in multi-way analysis the term “mode” refers to the array direction e.g.,
a three-way array will have the first, second, and third mode. In the previous
chapter excitation-emission fluorescence spectroscopy as a multi-way data source
was described and when evaluating fluorescence landscapes Parallel Factor
Analysis (PARAFAC) is used. PARAFAC is also a part of the second multi-way
approach, SLICING where an “artificial” three-way array from two-way CPMG
relaxation curves is created and then analyzed by PARAFAC in order to extract the
relaxation NMR profiles.

5.1. Parallel Factor Analysis - PARAFAC

PARAFAC’ originates from the field of psychometrics where two independent
research groups in the 1970’s published the method under two different names,
CANDECOMP (Canonical decomposition)’” and PARAFAC’". Bro’® has elaborated on
PARAFAC and exemplified the use of PARAFAC within the area of food science.

PARAFAC analysis is performed on data of three or higher dimensions. In the
following the principles of PARAFAC modeling will be illustrated by a three-way
data example (fluorescence landscapes). The three-way data is organized in a
tensor X, with the dimensions | X | X K, where i=1,...,I is the number of samples,
j=1,...,.J is the excitation wavelengths and k=1,...,K is the emission wavelengths.
PARAFAC tries to minimize the sum of squares of the residuals (e,.jk) for the three-
way array, X with factors, f=1,...,F. The number of factors (F) or the rank of X equals
the minimum number of factors that sum up to 574. The PARAFAC decomposition is
represented by the triple product of vectors in Eq. 3 and a graphical view is given in
Figure 19.

,
EQ.3 x,=)abc +e,  (i=L.,l;j=1,...J; k=1,..,K; f=1,..,F)
f=1

The PARAFAC model can be considered an extension of the bilinear PCA model,
thus one or more dimensions are added. PARAFAC decomposes three-way data (X)
into F number of tri-linear contributions. Each factor consists of a score vector (a)
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and two loading vectors (b and c) and is represented by the loading matrices A
(I X F),B (J X F)and C (K X F), respectively.

Ce
b, be
= +--- 4+ +
X
a ar

Figure 19. PARAFAC decomposition X of a three way into factors f=(1,...F) represented by the
loading vectors a, b and c. E represents the residual.

A great advantage of PARAFAC is that it is unique in the sense that a correct
estimated PARAFAC model can not be rotated without loosing fit. For this reason
the estimated factors in a PARAFAC model, under the right circumstances, will be
equal to the “true” underlying factors or in the case of spectral data, the “true”
underlying spectra. In order to draw a direct conclusion from the extracted factors,
it is @ must that the data fulfills the requirements of tri-linearity and that the
PARAFA model has been performed under the correct conditions such as selecting
the right number of factors and choosing the right model parameters for the
model. Estimating the PARAFAC model is usually done by alternating least squares
(ALS). ALS is an iterative algorithm which will converge when the relative changes in
fit is small. The drawback of ALS is that it is time consuming when a high number of
components are calculated or if the data matrix is large’®. An additional factor that
adds to the time consumption is that the PARAFAC model is not nested like the PCA
is”. This requires calculation of an individual PARAFAC model for each number of
factors needed to be tested.

In order to select the correct PARAFAC model parameters some kind of validation is
needed. The criteria for selecting the right number of factors can be determined by

73,74,75,76
a number of parameters .

e Visual inspection in terms of evaluating scores and loadings in order to see
if they make chemical sense.

e Residuals, for spectral data residuals can be interpreted by plotting the
residuals after each factor to see that all spectral information is extracted.
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e Split half test. The data set is split into a number of subsets and analyzed
individually. Because PARAFAC is unique each PARAFAC solution should
give the same results under the condition that each subset contains the
same chemical information. The split half test results can be evaluated by
visual inspection of the loadings.

e Core consistency (corcondia). A high core consistency (max. 100%) will
indicate that the data does have the rank in question, whereas a low core
consistency indicates over-fitting. The pitfall using the core consistency is
that under-fitting will also give a high core consistency. Thus it is
recommended to over-fit when using the core consistency so that a drop
in core consistency is observed in order to exclude under-fitting.

Constraints in PARAFAC

Mathematics and reality do not always add up to the same solution.
Mathematically there are many possibilities on what can be calculated. PARAFAC-
ALS is not different meaning that no assumptions about the reality of the systems
that are analyzed are made. Therefore it is up to the data analyst to make these
assumptions and to execute them in terms of constraints by limiting the PARAFAC
solution to make chemical sense. Constraints can also secure that the right
solutions are reached and thereby making sure that the solutions are stable and
reproducible.

The way the model is fitted will always be a trade off compared to an
unconstrained model, thus a constrained model will have a lower fit, resulting in a
higher sum-of-squares error ey in Eq. 3”. But constraining a model can still be
justified in terms of interpretability and more chemically correct solutions. Typical
constraints to be applied using PARAFAC:

e Orthogonality constraints can be applied on each of the data arrays if
independent factor interpretations are required. Orthogonality constraints
used for spectral data are not very common as it will disturb the direct
interpretation of the loadings. Orthogonality is not an issue in PCA and PLS
modeling as the factors in PCA and PLS are orthogonal per definition, but
in multi-way analysis orthogonal factors can not be assumed.
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e Unimodality constraints. In chromatography profiles and for some
spectroscopic data e.g., fluorescence spectroscopy the phenomena of
unimodel profiles are present. Imposing unimodality can provide solutions
where only one analyte is present in each spectral profile and thereby in
each factor. The unimodality constraint does require some kind of a prior
knowledge about the problem otherwise a misinterpretation can be
made’”.

e Non-negativity constraints are applied when the scores and loadings of the
PARAFAC model is known or assumed to have no negative values. Typical
data targeted for non-negativity constraints are measurements involving
physical properties such as concentrations or spectral measurements.
They are by nature non-negative and in such cases applying non-negativity
makes scientific sense’®.

Managing missing data in the data set can also be considered a constraint, but has
not been included in this work. For further reading on how to handle missing data
in PARAFAC modeling the following references are recommended’*”.

5.2. EEM Fluorescence and PARAFAC

This section gives examples of applications where PARAFAC analysis has been used
to evaluated excitation-emission fluorescence landscapes from dairy products and
fish products. A review written by Bro®® about multi-way analysis in the area of
chemistry in the years from 2000-2005 states that fluorescence is the most
frequently used data type for multi-way data analysis.

The concept of fluorescence landscapes was first introduced in 1975. The Video
Fluorometer was capable of measuring 241 fluorescence spectra excited at 241
different wavelengths in 16.7 milliseconds and was developed by Warner and
coworkers®’. In the following years several proposals on how to analyze the
fluorescence landscapes by multi-way data analysis was given e.g., a least squares
based methodsz, non-negative least squaresga, factor analysisg4, rank annihilation®.
In 1981, Appellmc86 applied multi-way analysis to resolve fluorescent compounds by
HPLC/EEM and principal component factor analysi587, a method coined by
themselves, which however is identical to PARAFAC.

The first to suggest PARAFAC in the form known today was Ross and coworkers®,
who used PARAFAC to resolve fluorescent spectra from plant pigments complexes.
Since then PARAFAC and fluorescence have been applied in a number of areas, e.g.,
environmental studiesgg'go, soilgl, pharmaceuticalgz'%, and food. In food science, the
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first PARAFAC application was a five-way data array example consisting of five
constituents influencing enzymatic browning in vegetable594. PARAFAC and ANOVA
analysis were compared and PARAFAC provided a much more interpretable
solution than given by the ANOVA. The first mentioning of EEM fluorescence and
PARAFAC in the food area is to my knowledge, by N¢rgaard95 who used PARAFAC to
resolve fluorescence spectra of sugar samples in order to study slit width of
fluorescence instruments. PARAFAC was able to differentiate the effect of both
excitation and emission slit width. In 1997, Bro’ published the PARAFAC tutorial
including examples of PARAFAC and EEM. Munck and coworkers™, laid the ground
work for a more extensive study of sugar beets and sugar beet thick juice by
resolving EEM landscapes using PARAFAC”%%%1% " Other areas include meat,
where the quality of dry cured Parma ham™* was assessed, olive oil was studied by
Guimet and coworkers' %' and benzoic acid studied in a number of non
alcoholic beverageslos. A review by Christensen and coworkers'® shows that the
fluorescence spectroscopy has been applied in a number of food areas with dairy
products being the most dominant application. In contrast only a few studies on
fish and fish products have been reported. One study determines the dioxin
content in fish oil'”. This study found that PARAFAC scores gave spectral
fingerprints describing variations that could be identified and used for calibration
purposes. It revealed that the higher spectral regions with peaks A./Aem maxima at
435/545 nm and 420/675 nm were of special interest. In PAPER VI brine from barrel
salted herring was analyzed by EEM fluorescence spectroscopy. The area of interest
turned out to be the proteins and vitamin fluorescence with A./Aem in the range
280-450/320-530 nm. Four fluorophores were identified by PARAFAC modeling and
are listed in an overview of fluorophores found in fish and dairy products (PAPER
Vi).

In the field of dairy, milk was analyzed to study the effect of heat treatment and
acidification'®. In this study three components were identified and according to
Christensen and coworkers'® yoghurt is likewise consisting of three components.
Milk and yoghurt both contain tryptophan and riboflavin but in yoghurt, the
compound lumichrom was detected whereas vitamin A was identified in milk.
Vitamin A was also found in processed cheese when studying the effects of induced
light and temperature stress (PAPER Ill). In processed cheese, the compound
riboflavin was not found, as it was in milk treated at different temperatures.
Instead the third component in processed cheese was believed to be due to a
product of Maillard reactions. Riboflavin was also identified when characterizing
active photosensitizers in butter'™, and since this study focused on the higher
spectral regions of the spectra the remaining 5 components in butter were not
similar to the compounds mentioned in the above studies of dairy products.
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The findings in PAPER Ill and PAPER VI indicate that fish (brine) and dairy products
do share some similarities in their composition of fluorophores when studying
changes in the chemical composition during storage/ripening. Table 2 gives an
overview of the reported fluorophores identified in fish and dairy products using
EEM fluorescence and PARAFAC.

Table 2. Overview of fluorophores identified in fish and dairy products by EEM fluorescence
and PARAFAC modeling.

AeXmax/ NeMpax  Tryptophan Vit. A Vit. B; Maillard Lumi- Riboflavin
reaction chrom
product
Milk 292/342 323/423 460/520
Yoghurt 290/340 260/445  380,460/520
Butter 530
Proc. Cheese* 280/339 320/411 360/431
300/347
Brine 290/241 330/396 390,440/520
300/350

*Processed cheese

5.4. Applying SLICING for Food Quality Assessment

Only a few applications performing SLICING of CPMG relaxation curves for assessing
food quality have been recorded. | managed to find three dedicated food SLICING
applications which include PAPER II. In addition to the three food related
applications, three papers purposing or optimizing the SLICING methods including
practical application exist™®"7°.

In the paper by Pedersen and coworkers® introducing the SLICING approach an
example for the assessment of fish was given. Two independent studies using
SLICING on relaxation curves of fish have been reported. In the first study by
Andersen and Rinnan®’ SLICING revealed two water populations in fresh cod fillets.
The water population with the shortest relaxation time was present near the head
and the water with the longest relaxation time was present near the tail. The
second study studied herring when caught under different conditions e.g., season
of catch, fishing grounds, fishing vessel and biological variation'™'. Two other
SLICING applications outside the area of food have been published. Both studies
are performed by group of Manetti. The first study tests the POWERSLICING®’
method versus the Marquardt-Levenberg algorithm on a single relaxation curve
obtained by performing a controlled experiment using copper sulphate solutions'*.
POWERSLICING performed satisfactorily as the second study followed up by using
POWERSLICING to study the effect of tears on contact lenses using artificial tear
solution on hydrogel contact lenses™™. This study also compares PCA versus the
scores from the SLICING method and it is shown that the SLICING scores provide
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better and more direct information about the dynamics of the system. The same
conclusions were drawn in PAPER Il which also shows that the PARAFAC scores
from the SLICING approach carry descriptive information about drymatter, cultivars
and storage times of potatoes as illustrated in Figure 20. The same level of
information was not present in the relaxation profiles extracted from distributed or
exponential fitting.
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Figure 20. A. The extracted relaxation loading profiles from the SLICING of the CPMG
relaxation profiles of potatoes. B. The score plot of PARAFAC scores 3 and 4. Potato varieties,
Ditta (¢), Sava (4), Bintje - low dry matter ([), Bintje - high dry matter (®), and Berber (O)
for storage 1999 (filled) and 2000 (open). The numbers from 18 to 22 represent the dry
matter bins (PAPER Il, Figure 4).

Four water populations were found to be represented in the relaxation profiles
from the potatoes. In the second half of the research the CPMG relaxation profiles
are correlated with six of the texture related sensory attributes comparing different
data by PARAFAC scores from the SLICING approach, bi-exponential fit parameters,
distribution analysis parameters and the raw CPMG relaxation profiles. It was
concluded that PARAFAC scores from SLICING data did not improve the prediction
of the sensory attributes as the compared methods performed equally well with
the exception of the relaxation profiles from distributed fitting, which gave the
poorest prediction.
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6. Multi-block Analysis

m In food analysis it is often the case that more than one analysis is

E performed at the same time on the same product. This will result in
. several measurements (data blocks) that need to be compared and
analyzed. The reason for performing several analyses varies, but often the reason is
a lack of understanding in what the measurement can provide information about. It
is often the case in such situations that only one or two analyses are needed to
provide sufficient information about the sample. Other situations where several
analyses are performed are screening studies. Here the aim is to compare several
methods in order to find the method(s) best suited. In both cases the initial step is
to explore the capabilities of the different methods. To perform explorative studies
chemometric methods which are designed to study several measurements (blocks)
are needed. So-called multi-block methods attempt to handle data with several
block contributions. Multi-block methods are designed to look for possible
correlation and covariation between blocks and for unique information from the
individual block.

So-called multi-block methods attempt to handle several blocks of data at once by
keeping the block structure. It is shown that overall multi-block models give the
same results as the regular PCA or PLS model'***", but multi-block analysis adds
the twist of giving you the possibility to “dissect” the model into individual block
contributions. This additional level of information can provide detailed information
about correlations and unique block information which can ease the interpretation
and help in the understanding of a product or process. The local models (block
level) can be studied by their block scores and loadings and the overall model
(super level) by its super scores and loadings. The impact of each block and each
variable can also be studied in terms of the block loadings, and this makes it
possible to identify important parameters/variables and trace them back to the raw
data, if necessary.
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Figure 21. Example of multi-block data consisting of different chemical and physical
measurements performed on the same sample (semi-hard cheese). T is the super scores and
represents the concatenated block scores from each of the block contributions
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Figure 21 is an illustration of multi-block data, where each type of analysis is kept in
separate blocks. The upper level is referred to as the super level and describes the
overall information given in the data and consists of the super scores (t;) and the
super loadings (pr) and the super weights (w;). The T matrix represents the
concatenated block scores from the individual block. For most multi-block methods
one restriction applies and that is that one dimension (mode) of each block
contribution will have to be in common (consensus between blocks).

Multi-block methods are based on the principles from PCA and PLS regression and
are well suited for handling data which can be divided into conceptually meaningful
blocks. Multi-block PCA or multi-block PLS regression can be used when a typical
block structure of several blocks is present. This can be a situation where multiple
analyses have been performed on the same product (PAPER I) or where a single
analysis provides a result that can be split up into blocks, e.g., spectra’™®. The
present study presents applications of multi-block PLS regression (PAPER I, PAPER
V), thus multi-block PLS regression will be the main focus of this section.

The Development in Multi-block Analysis

Multi-block modeling originates from the area of path modelingm'm’“g, and

throughout the years several multi-block PCA and multi-block PLS methods have
been proposed. In the area of multi-block PCA, the best known multi-block PCA
methods are the consensus PCA™*° (CPCA) and hierarchical pca™! (HPCA), but other
approaches have also been suggested'*>**>"**,

The pioneers in performing regression on several blocks of data simultaneously
118,119 . 120 .
were Frank and coworkers . But it was Wold and coworkers™ who laid the
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grounds for the multi-block methods, as they are applied in the fields of chemistry
and food today, by their presentation of the consensus PCA (CPCA) and hierarchical
PLS (HPLS). Shortly after the introduction of the HPLS, Wangen and Kowalski'?®
proposed the multiblock PLS (MBPLS). The main difference between HPLS and the
MBPLS is the level on which the PLS regression is performed. The MBPLS performs a
PLS regression at the block level to obtain the block scores whereas the HPLS
performs the PLS regression on the block scores at the super level obtaining the
super weights and new updated super scores'*%,

Since the first publication on the MBPLS by Wangen and Kowalski'”®>, Westerhuis
and coworkers have given two suggestions as how to optimize the deflation’ step
instead of the way it was done in the original approach where the block scores
were used to deflate X. The first alteration from Westerhuis and coworkers'*
showed that this approach will give misleading predictions as information in X is
removed before it is used to predict Y, and instead they suggested using the super
scores when deflating X. The second change given by Westerhuis and Smilde*”’” was
to only deflate Y using the super scores and use X without deflation™’. The HPLS
has also been the subject for further development. An extension to the HPLS was
made by Berglund and Woldm, who came up with the serial PLS (S-PLS). In this
approach the blocks were handled as a series of blocks where Y variation is
searched for in the first block and what is not explained of Y is searched for in block
two etc.

Optimization studies on how to handle missing values in multi-block modeling and

how to handle data structures deviating from the normal parallel block structure
. 129,130

were performed by Muteki and coworkers .

An important issue in multi-block modeling is scaling as this it crucial for the
outcome of result. When dividing data into blocks it may result in differently sized
blocks, i.e. where the number of variables in each block is different. If no prior
knowledge about the product or process is present it is not unusual in normal one
block modeling to perform auto scaling to unit variance. In this way you do not
favor any of the variables over others and spectral data treatment offsets and
scatter effects can be handled to a certain extent. In multi-block analysis,
performing auto scaling to unit variance without considering the data structure can
give misleading results. When performing auto scaling to unit variance the variance
of each block will equal the number of variables in the block. The impact of blocks

% Deflation of X and/or Y is performed in the PLSR algorithm after each component is
calculated. Subtracting the calculated component from X gives the residual E and subtracting
the component from Y gives the residual, F. When additional components are calculated the
new residuals E and F will be used instead of X and Y, respectively.
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with a few variables will then have less influence on a multi-block model and the
opposite is the case with blocks with many variables. Individual block weighting is a
solution, where it is possible to downscale large blocks and upscale small blocks if
needed. Such weighting require prior knowledge about the process or product at
hand in order to perform the proper scaling. On the other hand this may also force
the solution in a direction where the exploratory aspect is suppressed. As of now
there are no set rules on how to perform scaling and weighting of blocks in multi-
block modeling and therefore weighting of blocks may be considered a drawback in
situations where no prior knowledge is present about the variables. The LS-PLS is a
multi-block method that can overcome this issue and was introduced by Jgrgensen
and coworkers™'. The LS-PLS is based on ordinary least squares (OLS) and PLS
regression and is invariant to scaling. The method is a stepwise approach where
one layer of information is being extracted at a time. The first step is to subtract
prior knowledge e.g., experiment design setup. Subtracting this type of information
may help promote the revelation of underlying factors relevant for prediction and
interpretation. Mage™” elaborated work on the LS-PLS lead to two additions, the
LS-parallel-PLS (LS-parPLS) and the LS-parPLS with common components (LS-
parPLSc). The principle of the LS-parPLS is that after the initial subtraction of the
design information, the unique variation from each block is found. In the LS-parPLSc
approach an additional search for common information is included. Mage’s
dissertation work"*? includes an in-depth study comparing the predictability and
interpretability of the two LS-parPLS methods, least squares PCA (LS-PCA), and a
least squares MBPLS (LS-MBPLS). The LS-PCA performs a PCA on each block
contribution instead of the original PLS step and in the LS-MBPLS the PLS step is
replaced by MBPLS regression'?’”. The issue of scaling in the LS-MBPLS is addressed
by performing scaling of the blocks to equal sum of squares. The comparison is
based on two case studies both including simulated data and real data sets. Both
case studies include design variables and parallel blocks of spectroscopic
measurements.

The overall conclusion of the study is that there is no significant difference in the
predictive performance. The advantage is to be found in the interpretation, where
both LS-parPLS methods were superior to the LS-PCA and LS-MBPLS. The difference
between the two LS-parPLS methods is that the LS-parPLSc is recommended in
situations where overlapping variation between blocks may be present. This is due
to the additional search for common structures. This way a distinction between
common and unique variations are made and this makes the interpretation easier.
On the other hand the LS-parPLS method is best suited for data blocks without
common variation by keeping it simple without complicating matters by searching
for non-existing common variation. It should also be mentioned that other multi-
block PLS regressions have been proposed in the recent years. Eriksson and

42



Multi-block Analysis

coworkers'*® suggested an approach which combines 02-PLS™* with hierarchical

modeling. Vivien"*? introduced the GOMCIA and GOMCIA PLS and Skov*** a method
based on variance partitioning.

The predictive properties of most multi-block PLS methods are more or less the
same as the ordinary PLS regression and also the same diagnostics are used in
multi-block modeling as regular PLS regression. The advantage of the multi-block
regression is the additional descriptor block level. In Figure 21 an example of multi-
block data is given. The additional level of information is given in the data and
consists of the super scores (t;) and the super loadings (pr) and the super weights
(ws). The super block (T) represents the concatenated block scores from the
individual block. For most multi-block methods one restriction applies and that is
that one dimension (mode) of each block contribution will have to be in common
(consensus between blocks). This makes it possible to go back and look at the data
and identify precursors responsible for the outcome of the model.

As mentioned earlier a number of multi-block PLS algorithms exist, but until now
the most familiar algorithms are the HPLS, the S-PLS and the MBPLS. The LS-parPLS
method is a fairly new addition to multi-block modeling, but has been applied in the
present work and will be elaborated on together with the three other multi-block
algorithms.

The multi-block literature can be quite confusing to read, as it can be difficult to
make the distinction between which multi-block methods are used. The term
MBPLS is most often used inconsistently. The original acronym MBPLS is referring
to the algorithm by Wangen and Kowalski'?®, but is used for more or less all multi-
block regression methods. In this particular work the acronym MBPLS is only
assigned to the original multiblock PLS and its revisions.

In the following the principles of the four multi-block methods, HPLS, S-PLS, MBPLS,
and LS-parPLSc algorithms are exemplified with block structures in Figure 22, Figure
23, Figure 24, Figure 25, respectively. The examples are outlined by two X block
contributions and one Y block or a single y variable.
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6.1. The Principles of the Hierarchical-PLS

The original HPLS algorithm120 has been altered a couple of times. The first

suggestion of change was given by Slama who according to Westerhuis and
coworkers™* performed normalization on the super scores (ty) instead of the super
weights (wy). The same approach was used by Wold"! with the addition of
orthogonalising the super scores. The alterations are presumed to be performed in
order to improve the interpretation, as normalizing the super scores may center
them in the model, and orthogonalization of the scores prevents them from being
correlated. There is no overall difference in the result, therefore the H-PLS
presented in Westerhuis and coworkers™* will be illustrated below.

W _a
54y
k u

‘super’ level
P —— e — 1
X, T X, ‘lower’ level

114

Figure 22. The principles of HPLS™"". Lower level: (- ») The super score t; is regressed onto
Xp, separately. The block loadings (py) and block scores (t,) are obtained. The ty are
collected in the super block (T). ( — — ) Super level: A PLS regression is performed between

T and Y to obtain the super weights wy and a new super score t;. Each arrow scheme
represents the regression at the lower level and the super level.

The HPLS algorithm consists of two overall steps. The first step is a CPCA performed
on the block level. The second step is a PLS regression between the concatenated
block scores (T) and the response variable (Y). In Figure 22 the two loops in the
HPLS algorithm are illustrated by Westerhuis and coworkers'**

CPCA cycle between t; and X=[Xy,...,Xza.]
1. Select a super score (t;) (eigenvector of X’X, where X is all the blocks)
2. Regress tronto the blocks Xy, to give the block loadings, Pp=Xy'tr
3. The block scores t, are obtained by multiplying t, =X, p,,
4. The block scores are combined into the super block, T=[t,,...,t5]
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A PLS is performed between T and Y at the super level

5. TheY weights (q), g=Y’t;/ t;’t; are obtained

6. The Y scores (u), u=Yq/ q’q are calculated

7. Calculated the super weights, wr=T’u/u’u

8. The super scores (t;7), tr=Tw; /w; "w; are calculated

9. The super scores are normalized to length one, ||tT|| =1
Return to step 2, until convergence of t;

10. Deflation of Xy using tr, Ep =Xp-trp’wi

11. Deflation of Y using t, F=Y-t:q’y

If more components are needed, the calculations are repeated using X=[E,...,Eg,]
and Y=F instead of X and Y, respectively.

6.2. The Principles of the Serial-PLS

In 1999 Berglund and Wold'*® suggested another approach which was an extension
of the HPLS and referred to as serial-PLS (S-PLS). The principle of the S-PLS is to find
predictive Y information in the first block. Then subtract the information from the
first block from Y. A new PLS regression is performed between the second block
and the residual Y. This way the second block will only explain information not
given in the first block. In this approach the blocks are handled in the order they are
presented, hence the Y variance not explained in the first block will be left for the
second block to explain and so forth. The final model from this approach will clearly
depend on the order of the blocks. It is kind of the first come first served principle,
and depending on who comes first the model will turn out accordingly. Therefore
the SPLS is best suited when the order of the blocks are known.

I T Y-K‘
|
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Figure 23. lllustration of the S-PLS™%.(w...... ») PLS regression between X; and Y (— — ) the

residual from the first regression model (Y.x,) is used to perform a new PLS with X,.
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The output of the S-PLS is a one level model where no super level exists, since it is
already certain that each block contribution describe unique Y variation. The S-PLS
algorithm is illustrated as a block structure in Figure 23.

The S-PLS is outlined as presented in Berglund and Wold'®. The algorithm is given
as a two block example, but if the number of blocks exceed two then X=[Xy,...,Xg]
and PLS is performed on the remaining blocks using Y=[F;,...Fg,].

Perform PLS of Y on X;
1. Calculate a PLS model between X; and Y
2. The residual F; is calculated, F, = Y-t;q;’
Perform PLS of F; on X,
3. Calculate a PLS between X, and Y.y,
4. The residual F, is calculated F, = Y-t,q,

If no convergence repeat the loop

6.4. The Principles of the Multiblock PLS

The main principle in the MBPLS is to find the maximum covariance between the
super block (T) and the response variables (Y) in one big loop and by focusing on
explaining as much of the Y-variation presence in X as possible, where X=[Xy,...,Xg.].
The relationship between the response block Y and the descriptor block T is
established in the ‘super’ level, where the T block is a function of the original
descriptor blocks (Xy) at the ‘lower’ level™. The MBPLS is outlined below and is
based on the version given by Westerhuis and Smilde™’ and a block model is given
in Figure 24.

PLS regression on the block level
1. Select ascore u (a column from Y)
2. Regress u onto the blocks X,=[X;, X,] — obtaining w1=X1'u, w,=X;'u
3. The block weights are normalized to length one, wb||| =1
4. The block scores ty, are obtained by multiplying,
X Wy, =t (t=Xiwy t:=Xow,)
5. The blocks scores, Ty=[t,...,t;,] are combined into the super block
T, T=[T, T)]
PLS regression on the super level
6. RegressuontoT - obtaining wy=T'u
7. The super weights are normalized to length one,
8. Calculate the super scores (ty), tr=Twy
9. Calculate the Y loadings (q), q=Y' t;/ t;"t;
10. Calculate the Y scores (u), u=Yq/ q’q

WT”=1
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Return to step 2, until convergence of t;
11. Deflation step of Y, F=Y-t,q’, where t= Tw..

If more components need to be extracted Y = F and X is unchanged.

‘super’ level
W' —_ —— Y
{—— Py P's 2
X, - . X, ‘lower’ level

ty t,

Figure 24. Illustration of the MB-PLS. First loop (- ») at the lower level and the
second loop (— — #) at the super level.

6.5. The Principle of the LS-par-PLS

The principle in the LSparPLS with common loadings (LS-parPLSc) is to split up the
information into 3 individual contributions: the unique information from the each
individual blocks, common information shared between blocks, and the design of
the experiment. Below the LSparPLSc is described as performed by Mége”2 and
illustrated in Figure 25.

Extract information regarding design of the experiment

1. FitY to the design (D) by LS (the residual Y_p is obtained)

2. Extract the design (D) from the blocks Xy, =[X1,X,], Xbi,orth= Xb, 1D,
Extract common information between blocks

3. fit Y to Xpjortnh by PLS

4. find common information (T.) by CCA between t;. and t,.
Extract unique information from each block

5. fitYto [D T by LS (obtain Y )

6. fit Y.prc to Xpi,ortn BY PLS to obtain Ty, =[T1y Taul
Combine contributions to perform regression

7. fitYto [D T. Ty, To] by LS
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Figure 25. The principles of LS-parPLSc. First step: Extract variation due to design of the
experiment. Second step: Find common structures between blocks. Third step: Extract
unique block contributions.

6.6. Summary of the Four Main Multi-block Methods

Multi-block analysis makes it possible to handle several blocks of data without
concatenating the blocks into one big block contribution. The multi-block approach
maintains the block structure and this improved the data interpretation.
Maintaining the block structure gives you the opportunity to go back and take a
closer look at the individual blocks and identify the important parameters. This
enhances the possibility of obtaining a better understanding of a product or
process and provides means for selecting the right parameters to monitor and
optimize. Four different multi-block methods have been illustrated and even
though they have the same overall aim, they provide different views for data
interpretation. The serial PLS is only well suited for data where a certain order is
given. The serial principle of having the first block capture as much of the Y-
variance as possible and then what is not explained by the first block of the Y-
variance will be the input for the second block etc. This emphasizes that the order
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of the blocks can not be random. Data well suited for the serial PLS will be process
monitoring where the time line will be natural order of the blocks. The hierarchical
PLS is a combination of the consensus PCA performed on the lower level and the
PLS regression between the super block (T) and the response variable (Y) on the
super level. This approach will give satisfactory predictions of Y, if the consensus
PCA captures the relevant variation in X to predict Y.

The multiblock PLS on the other hand focuses on explaining as much of Y as
possible in both the lower level and the super level. The principle of performing a
PLS regression on the lower level is to let the block score capture as much Y-
variance as possible. The PLS step on the super level between the super block (T)
and Y provides information of which block carry the most relevant Y-variation. This
approach does not take the order of the blocks into consideration and is therefore
well suited for data screening or data where several analyses have been performed
on the same sample. The disadvantage of the above mentioned methods is that
some kind of scaling has to be performed. If no prior knowledge about the data is
present it can be difficult to know how to give each block the correct weight
(influence on the model).

The LS-parPLS does not experience the scaling issue and this is one of the
advantages of this method. This approach is also ideal for designed data as the
method can separate the Y-variance explained by the design and prevent you from
making false interpretations based on design instead of relevant variation. In
general, the separation of data, due to their variance contributions makes the
model much easier to interpret and the LS-parPLSc (with common loadings)
provides a fast view of overlapping information.

In the present work the optimized multiblock PLS version™’ (PAPER 1) and the LS-
PLS regression approach with the addition of searching for common structure
between blocks the LS-parPLSc™>> (PAPER V) have been found to be best suited for
the purpose of the two presented papers.

6.7. Multi-block Applications in Food Quality Assessment

Multi-block analysis has been applied in a number of fields where batch monitoring
has been one of the dominant areas™*""***'° A more general discussion on
multi-block analysis in multivariate statistical process control (MSPC) purposes is
given by Kourti**® and Kohonen'*!. Other areas where multi-block analysis has been
applied is in the petro-chemistry where NIR and mid-infrared (MIR) have been
evaluated using MB-PLS and S-PLS for the prediction of three quality parameters in
gas and oil**?. Real time monitoring of a petrol refining process using multi-block
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PCA has also been reported™. Other multi-block applications worth mentioning

are the areas of pharmaceuticalsl43, metabonomicsl44, and environmental
science™®. The first application in the food area was by Frank and Kowalski in
1984"*%, who studied chemical composition of pinot noir wines related to sensory
data. Since then Vivien'*® looked into the relation sensory profiles and NIR
spectroscopy, when splitting the NIR spectra up in block contributions. Tenenhaus
and coworkers performed two food sensory studies. The first study used sensory
data from a wine tasting to demonstrate a multi-blocks PLS approach combining
PLS regression with generalized canonical covariate analysis (GCCA) or generalized
Procrusters analysis (GPA)'’. The second study demonstrates the use of Path
modeling and HPLS when relating sensory and chemical-physical measurements on
orange juice148. Soybean flour*® and peas116 have been studied by spectroscopic
methods and analyzed with multi-block analysis proving that multi-block gives
improved interpretation possibilities. In the present work PAPER | and PAPER V deal
with the prediction of sensory attributes related to semi-hard ripened cheese and
carrots, respectively.

A couple of considerations have to be made before performing the multi-block
analysis. Depending on the multi-block analysis method, decisions about data
complexity (factor selection), block decomposition, and weighting will have to be
addressed. There are no set of rules on how to make these decisions. You will have
to find ways to perform qualified decisions. In PAPER V LS-parPLSc is used to assess
a two block system where dry matter and non-volatiles (HPLC analysis) represent
block I, and volatiles (GC-MS analysis) block II. In order to deal with the issue of
factors selection, a test to help select the optimal factor combination for the two
block contributions was performed. LS-parPLSc models were calculated for all
factor combinations between 1 to 10 factors for block | and block II. In Figure 26 the
RMSECV’s for each block and factors 1 to 10 are plotted and result in a RMSECV
landscape. The optimal factor combination is the solution with the lowest RMSECV
(pointed out by the arrow).

50



Multi-block Analysis

10

gactor Block 1

Figure 26. RMSECV versus the number of components for each of the two block
contributions for the prediction of green flavour. The arrow shows the selected factor
combination (block I, #3 and block II, #5, PAPER V).

PAPER | deals with data which can be divided into blocks in a number of ways. The
way the experimental setup was made, two factors could determine how to
decompose the data. The first thing to consider was the type of analysis, as it could
be categorized as chemical and physical measurements. The second factor was the
storage time, where sampling was performed three times during the storage period
of 16 weeks. The study takes both measurement category and sampling time into
consideration as it illustrates how a whole decomposition scheme can be tested
and viewed and how it may influence the regression when information about which
blocks/variables contain Y related information is searched for. In Figure 27 the
decomposition scheme of storage data of semi-hard cheese is illustrated.

Both multi-block applications in PAPER | and PAPER V show that the multi-block
regression models can be used for prediction. Furthermore they give the same
results as the regular PLS regression. In both cases the prediction is not the main
focus, but the main goal is to utilize the improved interpretation and visualizing
possibilities for assessing each block contribution. This is a major advantage as food
studies are often too complex to overview and from a PAT perspective, methods for
handling large data sets are crucial in order to ensure and improve the quality of
food
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Figure 27. Decomposition scheme for chemical and physical of semi-hard smear ripened
cheese sampled during a time frame of 16 weeks. The data consists of 24 samples and 303
variables. Step 1. Combined physical and chemical data in one matrix. Step 2. Decomposition
into chemical and physical block contributions. Step 3. Decomposition due to storage
time/sampling time. Week 4, week 10, and week 16. Step 4. Decomposition into individual
physical and chemical measurements. Step 5. Block selection based on contribution and
importance in the models from step 1 to 4 (Figure 3, PAPER ).

=
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7. A Multi-block “Playground”

The benefits of being able to evaluate multiple blocks of data simultaneously, while
keeping the structural information, are many. It is well-known that the existing
multi-block methods do not give better prediction, but they are superior when it
comes to providing means for data interpretation of multiple sources. The methods
described previously in this section are well documented and they work
satisfactorily under the right conditions such as appropriate block weighting and
correct selection of the number of factors. But, as of now there are no set of rules
on how to make these decisions and this may be part of the reason why multi-block
analysis has not been applied more often. During my time working with multi-block
analysis a couple of more or less “wild” ideas have been tested and this section is
dedicated to sharing some thought on how to handle multiple blocks of data. One
of the overall aims of the multi-block work was to focus on improving the graphical
representation when modeling multiple data blocks. Grasping the concept of
handling several blocks simultaneously can be difficult, so in order to help
understand the results there is a need for tools which provide more intuitive
interpretation, i.e. good visualization of results.

7.1. Matrix Correlation

The idea behind the matrix correlation was to develop a tool which could be used
to compare several blocks of data and if possible provide information on how to
weight the data blocks. Matrix correlation can be used to investigate the relations
between the matrices. In the present work we suggest to use the RV-coefficient as
an indicator of the importance of the individual blocks in relation to each other. The
RV-coefficient is based on the association matrices of the block, W;=XX;’ where X; is
column mean centered. In Eq. 4 the RV-coefficient is givenlSO.

trace(W]WZ )

Eq.4 r =

AY

\/trace(VI(M( ) \/trace(WZWZ )

The diagonal element of the association matrix is the distance of the objects to the
origin. It can be proven that two association W; and W; matrices are similar if and
only if they can be matched by a rigid rotation. The principle behind the RV-
coefficient (or normalized association index) is that it is zero if and only if W; and W,
are found in the orthogonal subspaces, and is equal to 1 if and only if they can be
matched by multiplication with a rotation matrix.
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The RV-coefficient thus ranges from 0 to 1. Where 0 indicates that the matrices are
not correlated and 1 indicates that it is highly correlated. Below are two examples
of how the matrix correlation could be used.

Example I:

The first example is based on data from Nielsen and coworkers™" and consists of
seven blocks of NIR spectra (exposed to different kinds of spectral pre-treatment),
laser-diffraction particle size curves and chemical composition: Raw NIR spectra
(Xnir), SNV corrected NIR spectra (Xsyvnir), MSC NIR spectra (Xwuscair), Second
derivative NIR spectra (X,,qnir), laser size distribution (X.ser), five selected moments
from the laser size distribution(Xmomiaser), and chemical (Xchem)-

The results of the calculated RV-coefficient between blocks are presented in a 7x7
bar-plot (Figure 28). The RV-correlation matrix is a symmetric matrix where the
diagonal will be each block contribution correlation with itself and therefore the
diagonal element is equal to 1. Thus, only the part below the diagonal is of interest
in the interpretation of the results.
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Figure 28. RV-correlation matrix (7X7) presented as a bar-plot.
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The correlation matrix shows a high correlation - almost equal to 1 - between the
2" derivative NIR spectra (2DVNIR) and the raw NIR spectra (NIR). The SNV
(SNVNIR) and the MSC pre-treated NIR spectra (MSCNIR) have a similar correlation.
A general observation is that the NIR spectra raw or pre-treated are highly
correlated, as expected. The laser size distribution shows a reasonable correlation
with the 2" derivative NIR and the raw NIR since these spectra contain the scatter
information. The chemical measurements show modest correlation with the SNV
and MSC treated NIR spectra. This makes sense since the pre-treatment of the NIR
spectra remove the scatter information in order to emphasize the chemical
information in the NIR spectra.

This approach provides information about the correlation between the different
pre-treated NIR spectra and the laser size distribution and chemical measurements.
NIR measurements are typically used as an alternative, substituting measurement
and it is therefore of special interest to find out if NIR correlates with the laser size
distribution and chemical measurements. By performing matrix correlation it is
shown that the NIR spectra are correlated with the two measurements. That is the
SNV pre-treated NIR spectra and MSC pre-treated NIR spectra. They show similar
behaviour where a slight difference in the correlation pattern by the raw NIR
spectra is observed.

Example II:

This example uses the data from processed cheese (PAPER 1). There are eight
different measurements (chemical analysis, aroma analysis, casein, TPA,
compression, stretch, oscillation, and peptide). All analyses have been performed
three times throughout a storage period of 16 weeks (week 4, 10, and 16). All in all
a total of 24 blocks can be arranged as illustrated in Figure 29. In this example the
RV-coefficients are illustrated as a matrix plot where the size of the circle indicates
the level of correlation between the blocks. Small dots equal no correlation and
large dots corresponds a high correlation. The correlation matrix has been cut of at
the diagonal as it makes interpretation easier. From the matrix plot is can be
observed that the physical measurements (TPA, compression, stretch, oscillation)
seem to be correlated, both individually and between sampling times. This example
showed how matrix correlation can be used to find relations between sequences of
blocks which are repeated but in a different time domain. The matrix correlation
shows that some data blocks might contribute with more or less the same
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information and this can e.g.,, be used as an indicator for performing data
reduction.
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Figure 29. RV-coefficients presented in a matrix plot for 24 blocks of data. Big dots represent
a high correlation whereas small dots indicate a low correlation.

7.2. Genetic Algorithm for Regression of Multiple Blocks

An approach for optimizing the predictive performance in a multivariate regression
model through a Genetic Algorithm based selection mechanism was tested. Besides
the purpose of improving the predictive performance, appropriate graphical
representation of the model diagnostics was searched for.

The principle of a genetic algorithm in block selection is illustrated in Figure 30. In
the genetic algorithm the survival of the fittest is the rule and the aim is to find the
strongest combination of blocks (“genes”) using crossover and mutations. This
approach starts by 10 vectors with 24 block contributions which can be included (1)
or excluded (0). Every block is scaled to sum-of-squares 1 which secures equal
influence on the model. For each vector a PLS model using a fixed number of
factors is calculated using cross validation. Minimal prediction error (RMSECV) is
used as the target point. The vectors are ordered by the RMSECV vectors with the
lowest RMSECV as being the best model. A new generation of ten vectors (children)
is created using the five vectors (parents) giving the lowest RMSECV. One vector
with the lowest RMSECV is kept (to guarantee a monotonic non-increasing
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improvement over generations), four vectors are results of crossover by the five
winning vectors, and five vectors by crossover and random mutations between the
five parent vectors with a mutation probability of 12.5 %. This procedure is
repeated 100 times and the vector with the lowest RMSECV after these runs is the
“fittest parent” and the best block-set for predicting the reference value in

question.

An initial population of 10 vectors For each block selection vector a PLS1 factor A new generation is created from
with 24 randomly block-selections model cross-validation error is computed for the old one by crossover and
is generated. F factors (fixed). All selected blocks are mutation.
(1 = block selected; 0 = block not scaled to sum-of squares 1, thus having
selected) equal importance. Vectors are sorted for 24x
fitness (lowest RMSPcv).
ﬂv_inner (fittest) ‘elitism’\
0 to guarantee decrease
R| > | _Fitness 01001 _0
5 fittest parents produce
S VParentst 4 children by crossover
P XX 00X...X

10x TWinner
XXXXX..X

[0oo000..0]
* 10 initiations per model
* 100 generations 5 fittest parents are retained
* Regression model complexity is fixed to Loop is repeated a 100 times with.random
1, 2 or 3 factors (generations) and the fittest (0>1 or 1>0; prob. 12.5%)
* This optimization is repeated 6 times for string (vector) is the optimum

each attribute to study stability and
solution in (near) optimum

* Whole procedure is repeated for all
sensory attributes

* An exhaustive search would require
16777215 evaluations per attribute!

10x

Figure 30. Regression by a genetic algorithm approach.

An example of the genetic algorithm is given using the data from the semi-hard
ripened cheese (PAPER I) and in example Il in the matrix correlation section.
Sensory evaluation on the final cheese product was performed and in order to
indentify which chemical and physical measurements (a total of 24 blocks) a 3 PLS
factor genetic algorithm approach was applied. Twelve sensory attributes were
evaluated and they are presented in a PCA loading plot determined on sensory
attributes in Figure 31. In addition to the regular score-plot a table of 3x24 is placed
below the attributes. The number of rows in the table equals the number of PLS
factors and the number of columns equals the number of blocks. A filled square
indicates that the block was selected by the genetic algorithm and thus has a high
impact on the prediction. An example on how to interpret the sensory attribute
‘cutable’ will follow and a zoom on the table is also shown in Figure 31 where the
right block assignments are listed in Figure 29. The horizontal bar plot shows the
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RMSECV for each factor, and it can be observed that there is a decrease in the
RMSECV from factor 1 to 3. The “cutable” attribute is mainly described by the
physical measurements e.g., compression, texture profile analysis (TPA), and
stretch. But the chemical measurements, the aroma analysis and the peptide
analysis also seem to carry some information in the early weeks of storage (week
4). It is further observed that different building blocks are selected for different PLS
model complexities (different number of factors). This indicates that attribute
“Cutable” has only a weak link with the physical measurements. The “jumpy”
behavior also gives a visible indicator that cross-validation prediction errors for
small data-sets with many variables are not always reliable. For comparison, e.g.,
the attribute “Sticky” shows a much more consistent pattern going from 1 to 3 PLS
factors.
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Figure 31. PCA score-plot of the sensory variables. The three horizontal bars the RMSECV
from a 3 factor PLS model, where each bar represents factor 1, 2, and 3.

Another observation in Figure 31 is the connection between sensory attributes (as
expressed by PCA loading values) and the block structure. E.g., the cluster “Smell”,
“Odor”, “Aftertaste” and “Sharp” (upper-left quadrant) shows preference for
building blocks with higher index numbers in regression modeling (collected in
week 16).
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7.3. Data Dimensionality and Building-Block Weights

This section deals with finding a semi-automated approach to determine the
optimal factor and weighting scheme for the multi-block modeling. In all factor
models (such as PLS regression) the bias-variance trade-off plays an important role,
while for the multi-block models an additional feature besides the regularization by
the number of factors has to be considered (Figure 32).

Bias
asueLieA

Model complexity =

Figure 32. Bias-variance trade off.

The issue block weighting haunts the multi-block approaches. This subject is
considered equally important as the model complexity since the weighting will
influence the final outcome of the model. A (potentially automated) procedure of
the factor and weight selection was pursued by employing the jackknife estimates
of the parameter uncertainty’ in combination with the prediction error of cross
validation (RMSECV). This approach is illustrated by using the data from Nielsen and
coworkers™" explained in example | in the matrix correlation section. The matrix
correlation example concluded that selecting the two blocks - SNV pre-treated NIR
spectra and the raw NIR spectra - will cover the range of spectroscopic information
in relation to laser size distribution and chemical measurements.

A weighting scheme in the range of 0 to 1 is selected where the weights for the two
blocks sum up to 1. For the blocks, Xy the weights are Sw; from 1.0 to 0.0 in 15
equidistant steps and for block, Xyrsny the weights are Sw;, 0.0 to 1.0, resulting in a
total of 15 regression models. The regression model is performed as an ordinary
PLS model. The overall result of a PLS model equals the result of a consensus
MBPLS regressionm”127 and in order to save time regular PLS regression was
chosen. In Figure 33 the principles of how to pick the optimal factor and weighting
combination are illustrated.
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“rmsecv” landscape “Uncertainty”™ landscape “Safe” model

Figure 33. Prediction of the laser size distribution. RMSECV landscapes and uncertainty
landscapes of 12 factors x 15 weighing schemes PLS models based on different factor and
weighting combinations for the two blocks, Xyir and Xyirsny- The black square indicates the
minimum and the green square is the actual factor/weight combination for the “safe model”.

The “RMSECV” landscape consists of factors from 1 to 12 on one axis and the block
weight combinations (Sw;+Sw,). The RMSECV’s are range scaled between 0 and 1.
The front row expresses the model where the SNV pre-treated NIR spectra with the
weight 1, and the last row represents the model with raw NIR spectra and the
weight 1. It can be observed that the RMSECV decreases with an increasing number
of factors as expected.

The uncertainty estimate is presented by the “uncertainty” landscape computed as
a 2-norm of regression vector/matrix errors. The errors are range scaled from 0 to
1. The “uncertainty” landscape shows the opposite tendency as the RMSECV curves
and this indicates that the variance in the prediction errors is higher with an
increasing number of factors. For both the “RMSECV” and the “uncertainty”
landscape it is not clear which weighting is the most appropriate and what model
complexity is the best.

Figure 34. Actual (full line) and predicted
(dotted line) and laser size distribution
using 6 factor PLS regression with the
block weights 0.21/0.79 (NIR/SNV-NIR).

0 size (um) 500
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Following the most applied rule of thumb would be to pick the model with the
minimum prediction error (black square in Figure 33). Applying this rule may lead to
serious overfitting and instead an approach using a combination of the two
estimates is suggested. A combination of the two landscapes can provide a “safe
model” given by the absolute minimum (green square in Figure 33). This model will
have an acceptable predictive performance and it will take the different weighting
possibilities into account. The predictive performance with 6 factors and the
weighting scheme of 0.21/0.79 for NIR/SNVNIR, respectively give a prediction error
of 1.61 and a correlation R of 0.94. An estimate of the predicted laser size
distribution is given in Figure 34.The same approach is used to predict the dry
matter content in Figure 35. The “safe model” suggests using 3 PLS factors and the
weighting of the blocks is 0/1 for NIR/SNVNIR. This shows that only SNVNIR is
relevant when predicting the dry matter content, which makes good sense from a
spectroscopic perspective.

“rmsecv” landscape “Uncertainty”™ landscape “Safe” model

Figure 35. Prediction of the dry matter contents. RMSECV landscapes and uncertainty
landscapes 12x15 PLS models based on different factor and weighting combinations for the
two blocks, Xyr and Xyirsny- The black square indicates the minimum and the red square is
the actual factor/weight combination for the “safe model”.
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The prediction using the suggested factor and weight combination gives a RMSECV
of 0.78 and a correlation R of 0.84. A predicted versus measured plot is shown in
Figure 36.

A closer look at all the predicted compounds (Table 3) shows that NIR spectroscopy
can predict the chemical compounds satisfactorily and it is predominantly the SNV
pre-treated NIR which explains the chemical composition. The laser size distribution
on the other hand included a weight of 0.21 from the raw NIR spectra a
combination which could have been overlooked when performing the ordinary one
block PLS regression or performing equal weighting of the blocks.

Table 3. Overview of the parameter settings and results from prediction using NIR and SNV-
NIR.

Range Weights

(min/mean/max) ' 2ctors (NIR/SNVNIR)  "MSECV R
Laser 0.0/3.1/27.3 6 0.21/0.79 1.61 0.94
Dry matter 86.6/88.8/91.8 3 0.00/1.00 0.78 0.84
Ash 0.4/0.6/1.1 8 0.07/0.93 0.05 0.95
Protein 3.6/7.0/11.8 5 0.00/1.00 0.2 0.99
Starch 76.0/83.2/89.7 6 0.14/0.86 1.25 0.93
Damaged
Starch 1.3/6.8/17.5 5 0.00/1.00 1.42 0.93

In this section | have presented some new ideas on how to treat multiple data
blocks problems. Unfortunately we did not achieve the perfect automated
weighting scheme as the presented “safe model” approach has some pitfalls. There
is still a high risk of overfitting using this approach and many solutions can be
classified as equal in Figure 33 and Figure 35. This highlights another aspect
presented: different ways of visualizing the multi-block results. Emphasizing the
graphical interpretation is something we have been very aware of when working
with multi-block problems. The general aim for this multi-block work has been to
make multi-block analysis more accessible®.  Multi-block analysis is a more
advanced chemometric method, but in the view of PAT it fits well as providing a
way of obtaining better process understanding when several process inputs are
present.

* During this work a Matlab multi-block toolbox was developed by Frans van den
Berg. The toolbox is free and can be downloaded on the department website
www.models.life.ku.dk.
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8. Concluding Remarks and Perspectives

The increased amount of data collected in the industry and the increased
complexity of the data are often more than what can be handled by standard
multivariate methods such like PCA, PCR and PLS regression. There are still gaps
between the actual number of multi-block and multi-way problems and how many
are treated as such. This dissertation work has tried to solve some of these gaps by
applying some of the more advanced chemometric methods included in the PAT
framework in order to obtain focus on handling data structures in their natural
state and make it easier to grasp for the ordinary user.

Two-way Chemometrics

NIR spectroscopy was proven to be a possible fast method for monitoring the
ripening process in barrel salted herring by determining the protein content in the
brine. The novelty of this work was to perform NIR analysis on the surrounding
brine instead of the herring and it is the first demonstrated application of NIR
spectroscopy for assessing the ripening of salted herring. There is still a great need
for performing two-way analysis even though the food industry has overcome its
reluctance towards applying two-way chemometric modeling such as PCA and PLS
regression. NIR spectroscopy is well suited for on-line applications and is also one
of the most commonly used on-line spectrophotometric methods used in PAT
applications. ldentifying processes where NIR spectroscopy can contribute by
providing a faster feedback time during monitoring can help secure the food
quality. This research also demonstrates the importance of instrument
standardization on a daily basis as instrumental disturbances caused by unforeseen
technical problems can occur. Due to a sudden break-down of a NIR instrument
during an experiment the remaining samples had to be measured on another
identical instrument from the same instrument vendor. The two instruments gave
different spectral profiles and in order to cope with this problem a spectral pre-
processing method subtracting the BSA standard spectra measured on the same
day and additionally correction using extended inverse scatter correction (EISC) was
developed. Standardization of instruments is still a common problem and ensuring
that the instruments deliver an optimal measurement requires that procedures and
standards are available. Measuring standard samples throughout an experiment
provides information about the condition of the instrument. And if needed the
standard spectra may be used to correct for variations due to drift or other day to
day changes.
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Pre-processing is performed in order to compensate for these deviations from
linear relations in order to improve the linear relationship between the spectral
signal and the analyte concentration

Multi-way Chemometrics

An important step in PAT is to find methods which quickly can provide information
about food quality during processing for storage, e.g., as part of the process or in
the retail step. Being able to handle more complex data structures such as multi-
way data makes it possible to obtain levels of information in a much more direct
manner. Handling three-way arrays in their three dimensional structures may be
considered far too advanced for the industry today, and since two-way
chemometrics just recently have been accepted in some line of works, it will take a
little persuading and some good examples to make people appreciate the
advantages of multi-way analysis.

This work presents an application of the method of SLICING on low field NMR
relaxation profiles of potatoes. By constructing a three-way array from the two-way
exponential relaxation profiles using the SLICING approach, PARAFAC analysis was
able to separate potatoes according to the variety, This was not possible with the
existing two-way data analysis approaches. This work illustrates that creating an
“artificial” multi-way array can provide a higher level of information, and it has
been recognized to some degree since the latest reported optimization of the
SLICING has been published in 20077°.

Fluorescence excitation-emission spectroscopy is another three-way array which is
ideal for PARAFAC analysis due to its tri-linear structure and the directly
translatable estimated spectral loadings. An approach to monitor stress in
processed cheese is presented. Certain types of stress in cheese can lead to
oxidation and a combined fluorescence analysis and PARAFAC modeling has proven
to provide detailed information about compounds which proves to be affected by
the storage temperature and light exposure. Changes in temperature and light
exposure are two stress factors which can be expected in retail. This research
shows the potential for EEM fluorescence as a fast method for monitoring stress
during storage. On-line fluorescence instruments already exist and pursuing this
application all the way by developing a portable EEM fluorescence could provide a
method which can be used in the production, at the distributor and in retail to get a
fast indication of the quality of cheese, and it would be revealed if the product has
been exposed to elevated levels of stress with a resulting degrade in quality.

64



Concluding Remarks and Perspectives

Another monitoring application is given where EEM fluorescence spectroscopy is
used to analyze brine from barrel salted herring. Applying fluorescence and
PARAFAC gives more detailed information about the chemical composition of brine.
It is revealed that a number of compounds are extracted to the brine during the
ripening of the herring but for some of the constituents the concentration level in
the brine is not increasing during the storage. This indicates that these compounds
do not affect the sensory changes which happen during the entire storage period.
Only the initial extraction which occurs within the first month of storage may
influence the sensory development. Details about the protein composition are
obtained quickly by fluorescence spectroscopy measurements, whereas under
normal circumstances such protein information requires a chemical analysis and
typically these are much more time consuming.

Both fluorescence applications were related to monitoring changes in the chemical
composition during storage. Both studies support that fluorescence spectroscopy
has a future as a relatively fast monitoring method for assessing the chemical
composition in food. The next step is to apply fluorescence as an on-line method
and measure fluorescence directly on the food product. An additional step will be
to bring the fluorescence spectrophotometer into the true environment such as the
production site for barrel salted herring. The area of fluorescence spectroscopy can
also be expanded by testing other food products and production in order to study
where fluorescence spectroscopy can be applied as a fast method to characterize
chemical changes in the product. The future perspectives within this line of work is
to obtain better understanding of how fluorescence spectroscopy provide
information about food and food production and find ways to incorporate this
understanding in the design phase and the process monitoring stage.

Multi-block Chemometrics:

Expanding the direction in the second dimension and thereby adding more
variables in form of several data blocks with measurements is not an unusual
situation. Multi-block analysis is designed to cope with this data structure. The
work presents a multi-block approach on a ripening study of semi-hard cheese. The
works illustrated how the block structure of multiple blocks of data can be
decomposed in different ways and how each model composition can provide
relevant information. Parameters important for the prediction of the sensory
quality are identified and data reduction is performed. In my opinion multi-block
analysis is the ideal PAT tool. Multi-block analysis is designed to provide
information about block contribution as well as the overall information about all
the blocks and their interactions. In the work of applying multi-block analysis it was
emphasized to find a better way of determining how to scale and weight blocks and
to make multi-block analysis more applicable.
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Alternatives and Ideas as to Handle Multiple Blocks of Data

A block correlation method for analyzing several block contributions was
developed. The RV coefficient was used to quantify relations between the blocks.
The correlation between blocks was illustrated as a 3D bar plot or a 2D matrix plot.
The method is not meant as a replacement for the multi-block analysis itself but it
can provide prior knowledge before performing the multi-block analysis. This
knowledge can be used to reduce the data material, provide means for performing
the correct block scaling and weighting.

A genetic algorithm approach for improved data interpretation and block selection
was developed. The aim was to obtain better prediction of blocked data by picking
out blocks with special influence in the regression. The strongest/most important
blocks and combinations of blocks were selected based on how much they
influence the model in a given factor. With focus on graphical interpretation a plot
was presented that illustrated the relations between the response variables, and
including information about the importance of each block contribution for every
calculated factor.

In order to overcome the multi-block methods weighting and scaling issue, a way to
choose factors and weights providing a “safe model” was developed. A semi-
automated approach on how to choose block weights and factors has been
developed and tested. The selection of the “safe model” is based on the criteria of
the RMSECV from models testing factor and weighting combinations and the
uncertainty computing the induced 2-norm of regression vector/matrix error.
Together the RMSECV and the uncertainty can give an estimate of the best factor
and weight combination resulting in the lowest RMSECV and with the lowest
uncertainty.

LS-parPLS. - A Solution to the Weighting and Scaling Issue

The weighting and scaling problems in many multi-block methods was essentially
solved by Mage and coworkers who presented a least squares method (LSparPLSc).
In this work | present the first practical application of LSparPLSc, where the method
is made applicable for PAT applications by modifying the original method to exclude
the design module and a program in Matlab has been made. The work documents
that LSparPLSc is well suited for PAT applications. It provides the possibility to
compare several block contributions and help to understand the differences and
similarities in block structured data. A graphical overview of the optimal factor
combination between blocks is presented.
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Bringing PAT to the Next Level

PAT is a tool for gaining better understanding of a given process/product.
Spectroscopy and chemometrics are some of the tools available in the “PAT
toolbox”. Spectroscopy can provide detailed information about structures and
composition of food products and some spectroscopies are well suited for on-line
monitoring. The multivariate nature of the spectra makes chemometrics an obvious
companion. The food industry has overcome its reluctance towards applying
multivariate analysis, and two-way chemometric modeling such as PCA and PLS
regression is now frequently used. But to be able to approach the complex
structures of food it requires more from the chemometric analysis than “just”
performing PCA and PLS analyses. Since the food industry is less restricted than the
pharmaceutical industry, they can afford to experiment and explore a variety of
spectroscopy and chemometrics applications.

This dissertation work has applied advanced chemometrics methods for handling
data in their true structure. Multi-block analyses, PARAFAC and SLICING analyses
are advanced methods which can decompose complex data structures into intuitive
interpretable solutions. The methods are strong tools in the understanding of food
products and processes by keeping the natural structure of the analyzed data. In
order to bring PAT to the next level, methods like the ones used in the current work
are needed. Advanced chemometric methods are a way to obtain better process
understanding of the more complex processes. Therefore it is crucial to maintain,
test, and continuously developing the methods strength and field of applications
and focus in order to expand PAT. Ideas on how to optimize and improve the multi-
block methods in order to make them easier to perform and how to deal with
instrumental disturbances occurring during the measurements have been included
in the present work.

Time will pass before the more advanced chemometrics methods such as multi-way
and multi-block analyses will be standard PAT tools like the PCA and PLS regression
analyses are today. However, | am convinced that the advanced methods will prove
their worth and will be used as standard methods in the future. So by keeping
things simple when addressing the world of multivariate data, advanced
chemometrics is inevitable.
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Abstract

The handling of the large amount of data collected during a 35 week
ripening period of semihard smear-ripened cheese plus the selection of
important variables in relation to sensory quality from this quantity of
data can be difficult. In the present work a method for handling such a
problem is presented. A standard Partial Least Squares Regression
(PLSR) model was decomposed into block contributions using
multiblock PLSR (MBPLSR). The data was reduced by selecting the
most descriptive variable blocks based on the block weights given in
the MB algorithm. Using MBPLSR1 models for variable selection, an
improvement in the predictive performance was observed, whereas
MBPLSRZ2, in this case, was not well-suited for variable selection
when predicting several sensory variables simultaneously.

Keywords: Multiblock PLSR, block decomposition, block selection,
sensory evaluation, cheese quality.



Introduction

In the food industry large amounts of data are collected in order to
improve and control the food production processes. The data is often
difficult to handle, visualize and explore due to the size of the data
matrices and often much of the data is neglected due to lack of time for
proper data analysis. Food is generally a complex system, and it can be
difficult to investigate the influence and importance of different
measured variables. Multiblock methods (MB) as described in the
literature [1] [2] can provide a useful tool in such situations. These are
data mining tools, which provide a quick graphic overview of data that
consists of several blocks.

Multiblock methods have the feature of modelling several blocks
simultaneously while still providing information about the individual
blocks. The restriction of MB analysis is that one mode in all blocks
has to be common, e.g. the same set of samples for each data table. In
standard Partial Least Squares Regression (PLSR) the descriptor
variables are collected in one large block and it can be difficult to
identify the role of individual blocks or variables in the regression
model. In MBPLSR an additional level is introduced called the
“super” level. The “super” level contains the augmented block, which
give information about the block contribution, whereas the “lower”
level contains the individual blocks showing contributions from
individual variables. The principle of MB modelling is illustrated in
Figure 1. In the MBPLSR the relationship between the response block
Y and the descriptor block T at the “super” level is found. The T block
is a function of the original descriptor X-blocks at the “lower” level. In
the MBPLSR the same tools are present as in the standard PLSR: The
scores and loadings, the percentage of variation explained in X and Y
of each block, etc. But when performing MB regression additional
information about each of the individual blocks is provided in the
loading weight W at the “super” level. This information can be used
e.g. to select the most explanatory variables among the descriptor
blocks.

Before performing MB analysis. it is important to consider the scaling
and weighting of blocks, as this will influence the outcome model.
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Figure 1. Overview of multiblock PLSR.

In this work the MBPLSR method with deflation on the super scores is
used [4]. Previous work has shown that using super score deflation of
X is identical to performing a standard PLSR with all the predictors in
one block. The results from the standard PLSR can then be
decomposed into block contributions, provided that the blocks are
equally scaled and weighed [2,5].

The objective of this study was to explore the application of MB
methods for prediction of the quality of semihard smear-ripened
cheese. The cheese ripening process is a multi-step reaction involving
the formation of rather large and well-defined peptides, their
subsequent digestion into smaller peptides and free amino acids before
final transformation into various aroma compounds [3]. Thus, the
development of body and flavour in the cheese results from the action
of various enzymes involved in proteolysis and amino acid
degradation, their interactions, and the physical conditions e.g. pH in
the cheese and the storage temperature. Data from various physical
and chemical analyses were collected and used for MBPLSR with the
objective to identify and perform a block selection of the important
chemical and physical analyses in relation to prediction of the sensory
attributes.



Experimental

The ripening characteristics of four batches each comprising six
smear-ripened Danbo-type cheeses were monitored after the first 4, 10
and 16 weeks of a 35-week ripening period. The 24 cheeses were
subjected to chemical analyses (pH and the amount of fat, dry matter
salt, protein, intact casein, soluble peptides and various aroma
compounds and physical measurements (compression, stretch, texture
profile analysis and oscillation). Cheese quality was monitored by
sensory evaluation after 35 weeks of ripening using 1 odour (overall
cheese intensity odour), 5 flavour (overall cheese intensity flavour,
aftertaste, acid, sharp and unclean flavour) and 6 textural attributes
(soluble, sticky, elastic, breakable, cutable and hard texture).

The analytical results were examined using standard PLSR and
MBPLSR and were validated by leave one out cross-validation [6]. All
data analysis and modelling was performed using the software
Unscambler 7.5 (Camo) for Principle Component Analysis (PCA) and
Matlab 5.3 (Mathworks) for Windows and algorithms from the
MBtoolbox (www.models.kvl.dk).

Results and Discussion

All data blocks were individually analysed using PCA to view the
different physical and chemical analyses obtained at each sampling
time. Outliers were detected and the behaviour of the batches was
noted. A clear batch variation in the four batches was observed, which
is believed to result primarily from variations in the microbial flora in
the cheese and from small deviations from the cheese production
scheme.

Multiblock PLSR models

The dependent regression block, Y, consists of 12 sensory attributes.
At first, a selection of sensory variables was made based on the
correlation of the 12 sensory attributes. A score plot of factor 1 and
factor 2 from a PCA performed on the 12 sensory attributes is
presented in Figure 2.



Four clusters appear in the score plot (Figure 2) suggesting that
attributes within each of these four groups are somehow correlated.
Correlation between variables can be advantageous for predicting, as
the information in these variables will be more or less the same,
yielding better overall predictions. The group in the upper left corner
consisting of the four sensory attributes (overall cheese intensity odour
(odour), overall cheese intensity flavour (intensity), sharp flavour and
aftertaste) was selected as example predictor variables in this paper.

P2 - X-inadings

q > Breakable

- Hardness

05—

05 -04 -03 -0.2 -01 0 0.1 02 03
RESULTZ, X-expl: 34% 30%

Figure 2. Score plot of factor 1 (35 % explained variance) vs. factor 2 (30%
explained variance) of a PCA performed on the 12 sensory attributes. The
arrow mark the selected four sensory attributes: Odour (overall cheese flavour
odour), intensityste (overall cheese intensity flavour), sharp taste, aftertaste.

The X-block was composed of two measurement types: chemical and
physical, and includes 153 and 150 variables, respectively. The data
was autoscales, but no weighting was performed, as the blocks were
approximately the same size. Thus, expected to carry almost equal
weight. A standard PLSR1 model on the entire X-matrix, displaying an
acceptable predicting ability, was used as a starting point for the MB
analysis, which was continued using the decomposition pattern
illustrated in Figure 3. The block decomposition was based on the
information given by the structure of the experiment. In step 1, the X-
block consisted of all the measured variables combined, whereas step



2 illustrates the decomposition of the X-block into two block
contributions: chemical and physical variables. This split is interesting,
as information about the contribution of the two types of analysis is
retrieved. Step 3 displayed the information hidden in data obtained by
analyses performed at the three sampling times, whereas step 4
provided information of each type of analytical measurement. In step 5
a selection of blocks was made due to the information given in the four
previous steps.

The criteria for block selection are of course a function of the specific
goal of the experiment. The block selection in this work was based on
the block weights, the explained variance of X and Y, and the
correlation coefficients between predicted and reference values.

1... 303

1
24

1 150

Step
1.

Physical

Phys 10 Phys 16

1 IIII il

Figure 3. Decomposition of the X-matrix [24 x 303] into conceptual meaningful
blocks. Step 1: The entire X-matrix. Step 2: Decomposition into chemical and
physical measurements. Step 3: Decomposition due to sampling time, week 4,
week 10 and week 16. Step 4: Decomposition into individual chemical and
physical measurements. Step 5: Selection of blocks based on contribution and
importance in the models from step 1 to 4.
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In the following, we will focus on the sensory attribute, overall cheese
intensity odour. A PLSR1 using the entire X-matrix as predictor block
indicated the predicting ability that could be expected from the data.
The data was autoscaled but no weighting of the individual
measurement types were made. A four-factor model describing 49% of
X-variance and 96% of the Y-variation was selected based on cross
validation. The correlation coefficient was r = 0.71 when predicting
the overall cheese intensity odour.

This model was then decomposed and the loading weights W+ of the
“super” level of the three decomposition steps are presented in Figure
4. Figure 4A shows W+ of the chemical and physical blocks. The
physical block dominates the two first factors whereas the chemical
block has the highest influence in factors three and four. This indicates
that both types of measurement are used to describe the variation in the
sensory attribute. In the next step, the influence of storage time was
examined. This is illustrated in Figure 4B, where the W+ of week 4,
week 10 and week 16 are shown. Week 4 only primarily seems to
influence the model in factor 3, whereas week 10 is very dominant in
the first two factors. Week 16 clearly dominates the model in the
fourth factor. Comparing the profiles of W+ in Figure 4A and Figure
4B, the influence of the chemical block seems to be caused by the data
obtained analyzing the 10 week old cheeses. The influence of the
physical block in factor 3 can be assigned to analyses performed on 4-
week-old cheeses.

Figure 4C shows the W+ of the chemical and physical blocks for week
4, 10 and 16. The physical measurements of week 10 dominate factor
1 and factor 2. In the third factor, the chemical block of week 10 is
important and in the fourth factor the physical measurements of week
16 show a high influence. This decomposition shows that the physical
domination in the first two factors is due to the physical block of week
10, and the chemical influence in factor three is caused by the
chemical block of week 10, while factor 4 is dominated by physical
analysis of week 16.
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Figure 4. Loading weights (W+) of the X-block when decomposed into block
contribution. A. Chemical and physical block. B. Week 4, 10 and 16. C.
Chemical and Physical blocks at week, 10 and 16.

In the next step (step 5, Figure 3), further decomposition into
individual measurements types was performed. There were 8 different
types of data blocks and they were measured at three times yielding 24
blocks. This decomposition is crucial in the final selection step, since
the importance of each analytical analysis is provided. The loading
weights of the 24 blocks are shown in Figure 5. From Figure 5 it
appears that some of the blocks have a low influence on the model,
whereas other blocks show a high predictive performance. The blocks
with a low influence are the physical measurements of compression
and stretch at all three sampling weeks and the texture profile analysis
at weeks 4 and 16. This is consistent with previous models, which
revealed a high contribution of the physical block obtained after 10
weeks of ripening. The block containing the five chemical variables:
pH, fat, drymatter content, salt, and protein displays a very low
predictive performance. The chemical blocks with high influence in
the model are the peptide analysis of all three sampling weeks and the



aroma analysis measured after 10 and 16 weeks of ripening. The
physical measurement of oscillation for all three weeks shows a high
contribution to the model as does the textile profile analysis of week
10.
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Figure 5. Loading weights (W+) of the 4 blocks corresponding to the analytical
measurements performed at week 4, 10, and 16. A) All 24 WT. Al) W+ of the 15
blocks with the lowest influence. A2) W+ of the 9 blocks with the highest
influence.

A stepwise selection of blocks can be carried out by first dismissing
the blocks with the lowest influence. Further selection of blocks can be
performed by raising the limit of block contribution to the model. In
Table 1 the correlation coefficients of cross validation of the PLSR1
performed on the entire X-matrix and PLSR1 on selected blocks
selected are listed.



Table 1.View of the block selection for the sensory attribute, overall cheese
flavour odour.

No. | Blocks

Week 4 Week 10 Week 16
1]2]3]4]5]6 7891011 ]12]13]14[15]16[17[18[19[20] 21 [22]23]24
I [ XX XX [X[X]X]X[X[X [ X [ X [ X [X [ X | X [X[X|X[X[X|X[|[X[X
2 X XXX |X[X X X [ X | X [X X X [ X | X [X
3 X | X X X | X |X X X | X
4 X X X | X X X | X
5 X X |X X X |X
Table 2. Correlation coefficients of Model no.1 in Table_ 1 includes
the predictions using standard all 24 blocks and in _m0d9| 2
PLSR1 of 5 models on selected the second (compression) and
blocks (Table 1) the third (stretch) blocks in all
No. | Factors/correlation three weeks are excluded. A
minor improvement from 0.714
1 |4/0714 to 0.730 can be observed.
g gﬁg;gg Model 3 corresponds to the
4 1310808 blocks in Figure 5A2 where
5 30811 only the blocks showing high
influence are included.

In this model the predictability increases to 0.807. In the two models 4
and 5, blocks are excluded according to the block weights in Figure 4B
and C. Here it was shown that the influence of the analytical analysis
performed after 10 and 16 weeks of ripening was higher than a
ripening period of 4 weeks. The predictions of the blocks were almost
equal resulting in a correlation of 0.811 for the model using six
descriptor blocks: aroma, peptides, and oscillation of weeks 10 and 16.
The peptide distribution and the composition of the aroma compounds
in the cheeses usually display some correlation due to the fact that the
formation of aroma compounds is highly dependent on the proteolytic
process in the cheese during the ripening period. The amount of intact
casein in cheeses after 10 weeks of ripening is also included in model
3 as the loading weight indicated a contribution, but is then left out in
the following models. The amount of intact casein left in the product is
usually high in the beginning of the ripening process after which these
proteins are sequentially degraded to peptides and free amino acids

10




during the ripening process. Since the caseins are related to the
distribution and content of peptide, this may explain why the analysis
can be left out without decreasing the prediction. The oscillation
measurements play a crucial role in the prediction of the overall cheese
intensity odour, which could result from proteolysis, since the proteins
degradation is responsible of the aroma formation, structure and
consistency.

The procedure described above was repeated for the entire Y-block,
i.e. overall cheese intensity flavour, sharp flavour and aftertaste. The
correlation of the PLSR1 models including all the blocks and the
reduced model using selected blocks are presented in Table 3. All four
sensory attributes display an improved predictive performance
observed when reducing the number of blocks in the model. The
number of blocks included in the four models varies from 4 to 9
blocks, which is a reduction in the number of variables of
approximately 75 to 30 %. This clearly shows that a feasible reduction
in the performed measurements can be made.

Table 3. Correlation coefficient of the PLSR1 when predicting: overall cheese
flavour odour (Y1), overall cheese flavour taste (Y2), sharp taste (Y3), and
aftertaste (Y4).

Method | Model Y1 Y2 Y3 Y4

Fac r Fac r Fac R Fac r
PLSR1 | Allblocks | 4 |0.714 4 0.802 4 10.831] 4 0.840
Selected 3 [0811 4 0.831 4 10876| 3 |0.858
blocks

The predictor variables were selected due to their mutual correlation,
as this should be an advantage when performing PLSR2. In Table 4
the correlations of PLSR2 based on all 24 blocks and on the selected
blocks (5 blocks) are presented.

Table 4. Correlation coefficient of the PLSR2 when predicting: overall cheese
flavour odour (Y1), overall cheese flavour taste (Y2), sharp taste (Y2), and
aftertaste (YY4) simultaneously.

Method | Model fac Y1 Y2 Y3 Y4
PLS2 All blocks |7 0,7119 | 0,7949 | 0,8379 | 0,8552
Selected |5 0,8429 | 0,7906 | 0,7961 | 0,8403
blocks

11



In this model, only the sensory attribute, overall cheese flavour odour
improves. The correlation coefficient of the three other sensory
variables stays the same or decreases. A comparison of the PLSR1 and
PLSR2 models of all 24 blocks reveals a slight improvement in the
prediction when predicting the entire Y-block simultaneously. The
PLSR2 can be used to get an overview of the prediction ability of the
descriptor block, when predicting correlated response variables. But a
slightly better prediction can be gained when predicting a single
regression variable at a time by using MBPLSR to select the important
blocks

Conclusion

A standard PLSR model can be decomposed into block contributions
without changing the predicting performance in order to get a better
view of the data. Multiblock PLSR provides a good tool to interpret
and select important descriptor blocks. A reduction in the number of
predictor variables of 70 to 30 % could be gained by using the
multiblock decomposition procedure in this case. Differences in the
predictive performance were seen when predicting the sensory
response attributes individually or blockwise. The predictive
performance using the entire descriptor block is slightly better when
predicting a block of correlated sensory variables. But the optimization
by blocks selection of high contribution blocks is better when
predicting one response variable at a time.

12
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Abstract

In this paper the decomposition of low-field Carr—Purcel-Meiboom-Gill (CPMG) NMR relaxation measurements on 23 raw
potato categories was investigated. The potato categories were formed from five different cultivars, each binned in 2 or 3 dry matter
intervals, sampled at two storage times. A novel data analytical tool—called SLICING—revealed that different amounts of four
distinct proton relaxation profiles could describe the main variation in the data set. Magnitudes (scores) of the third and fourth
profile separated the potato cultivars, storage times, and dry matter content indicating that properties related to fast relaxation times
explain the differences between cultivars and storage times for the potatoes. The concept of direct decomposition using SLICING on
low-resolution NMR data is a new approach in potato analysis and a promising tool for obtaining more information about the
structure and water distribution in food products.

Furthermore, the texture-related sensory attributes, hardness, cohesiveness, adhesiveness, mealiness, graininess, and moistness of
cooked potatoes were predicted by partial least-squares regression (PLSR). Four different types of predictor variables derived from
the NMR relaxation curves were compared in the regression models: (i) the raw CPMG curves, (ii) the parameters from the
traditional bi-exponential fitting, (iii) the results from a distribution analysis, and (iv) the scores from the SLICING model. The
predictions based on the distribution analysis performed worse than the first three procedures, which all showed similar prediction
ability. The advantage of the SLICING approach is in the possibility to interpret physical properties, e.g. water distribution of the
potato samples.
© 2003 Swiss Society of Food Science and Technology. Published by Elsevier Science Ltd. All rights reserved.

Keywords.: Potato; Low-field NMR; NMR relaxation; PARAFAC; PLSR

1. Introduction heating, water content as well as the subsequent heating

process (Gould, 1999). Evaluation of potato texture

The texture of cooked potatoes is an important
quality attribute when assessing potato quality. In the
potato industry great interest lies in both improving and
developing rapid methods to determine this quality.
Special interest lies in assessing the raw potato samples
and relating them to the sensory quality of cooked
potatoes. The potential perspective could be an early
sorting of the raw material according to quality prior to
packaging or processing. The texture of cooked potatoes
is related to the size and amount of starch, rigidity and
chemistry of the cell walls, enzyme activities, minerals,

*Corresponding author. .
E-mail address: aar@kvl.dk (A. Rinnan).

and quality can be performed by mechanical, analy-
tical and/or sensory methods (VanMarle, DeVries,
Wilkinson, & Yuksel, 1997; Thybo & Martens, 1999;
Ulrich, Hoberg, Neugebauer, Tiemann, & Darsow,
2000). Using sensory evaluation, information about
the human perception of potato quality is obtained, as
the senses of sight, smell, taste, touch and hearing are
studied. In sensory analysis, the texture is evaluated in
terms of moistness, adhesiveness, mealiness, etc. In
addition, mechanical measurements, for example uni-
axial compression and nuclear magnetic resonance
(NMR) relaxation, have been applied in the texture
analysis of vegetables (Tang, Belton, Ng, Waldron, &
Ryden, 1999; Thybo & Martens, 1999; Tang, Godward,

0023-6438/03/$30.00 © 2003 Swiss Society of Food Science and Technology. Published by Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0023-6438(03)00023-9
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& Hills, 2000). NMR has been shown to provide useful
information about molecular structure within a sample
and has become a powerful nondestructive analytical
tool in chemistry (Hemminga, 1992; Ruan & Chen,
1998). In food science, NMR techniques have been used
to study the texture and the state of water in food
samples (Hills & Le Floc’h, 1994; Seow & Teo, 1996;
Hills, Goncalves, Harrison, & Godward, 1997; Ruan
et al., 1997; Tang et al., 1999; Tang et al., 2000) and for
the analysis of fats and oils (Pedersen, Munck, &
Engelsen, 2000). Previous work by Thybo and Martens
(1999) showed a higher correlation between sensory
quality of cooked potatoes and 'H NMR on raw
potatoes compared to using 'H NMR on cooked
potatoes. This work forms the basis for the present
study, where the objective was to compare the
SLICING method (Pedersen, Bro, & Engelsen, 2001)
to existing methods for analysing low-field proton NMR
signals ("H-NMR) from Carr—Purcel-Meiboom-Gill
(CPMG) pulse relaxation curves of raw potatoes. The
comparison was based on the interpretability in data
analysis and the predictive performance of sensory
quality on cooked potatoes using multivariate regres-
sion. The SLICING procedure has previously shown
good results for data analysis purposes when estimating
the underlying relaxation curves of fish (Andersen &
Rinnan, 2002). When handling low-field NMR data,
these underlying relaxation curves ideally correspond to
the different chemical states of water in the measured
samples. Thus, SLICING makes it possible to interpret
the data directly on a physical basis because the model
separates the measured signal, a mixture of exponential
curves, into physically meaningful uni-exponential con-
tributions. It is noted that the SLICING method
assumes that a fairly low number of such curves are
sufficient for describing the actual measurement signal,
in contrary to, e.g. distribution analysis, where it is
assumed that the data consist of a sufficiently large
number of distinguishable exponentials, such that a
distribution of these can be computed. In the bi-
exponential fitting method two contributing exponen-
tials are assumed sufficient to describe the measured
signal. However, the two last methods assume no
relationship between samples—treating each sample
individually—and thus differ from the factor-based
SLICING method. The discussion as to which of these
alternative decomposition methods is most appropriate
will not be the main issue of this paper. Rather, it will be
shown that the SLICING approach as such provides a
solution, which is scientifically sound and useful for
interpretation and further modelling.

The relation between the NMR relaxation curves on
raw potatoes and sensory attributes evaluated on
cooked potatoes was studied by regression modelling.
The prediction performance based on partial least-
squares regression (PLSR, Martens & Nas, 1989) using

the SLICING scores as predictors were compared to
modelling on the raw low-field 'H-NMR curves (CPMG
PLSR). PLSR has previously been used on raw low-field
"H-NMR curves for prediction of fish and potatoes
sensory attributes, showing good performance (Thybo,
Bechmann, Martens, & Engelsen, 2000; Thygesen,
Thybo, & Engelsen, 2001). However, the CPMG PLSR
results are less interpretable because the loadings do not
have a direct physical meaning. The regression perfor-
mance based on the model parameters retrieved from bi-
exponential fitting and distribution analysis was also
compared to the regression methods based on the
SLICING scores. Bi-exponential fitting was applied
because it constitutes one of the main alternatives to
the SLICING approach, while distribution analysis was
applied because it has been used with success in pre-
vious potato studies (Hills & Le Floc’h, 1994; Hills,
Goncalves, Harrison, & Godward, 1997), as well as
other areas of research (Tang et al., 2000).

2. Materials and methods
2.1. Potatoes

The material used in the experiments included five
potato cultivars grown at an experimental field at the
Danish Institute of Agricultural Sciences. Within the
five cultivars the potatoes were graded in salt solutions
according to 1% dry matter bins (Burton, 1989) in the
range of 18.0-22.9%, as described by Thybo and
Martens (1999). Potato samples harvested in September
1999 were analysed in November 1999, and in May 2000
after being stored at 4°C at 95% relative humidity. This
selection procedure gave a total of 23 different potato
samples (see Table 1).

2.2. Sensory analysis

The potatoes were peeled and boiled in water for
20-25 min until they were cooked through. The sensory
analysis was performed on the cooked potatoes by a
trained panel of ten assessors and evaluated on a scale
from 0 to 15. The measurements were performed as
described by Thybo and Martens (1999) using the
average of the ten assessors times four sensory
replicates. The sensory variables hardness, cohesiveness,
adhesiveness, mealiness, graininess, and moistness were
evaluated.

2.3. NMR measurements

The relaxation measurements of the water protons
were performed on a Maran Bench top Pulsed "H-NMR
Analyser (Resonance Instruments Ltd., Witney, UK)
with a magnetic field strength of 0.47 T, corresponding
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Table 1
Tuber samples used in the experiments

Cultivar Dry matter bins (%)
Storage time
November 1999 May 2000
Ditta 20.0-20.9 21.0-21.9
21.0-21.9 22.0-22.9
Sava 18.0-18.9 18.0-18.9
19.0-19.9 19.0-20.9
20.0-20.9 21.0-21.9
Bintje, low dry matter 19.0-19.9 20.0-20.9
20.0-20.9 21.0-21.9
21.0-21.9
Bintje, high dry matter 21.0-21.9 —
22.0-22.9
Berber 18.0-18.9 18.0-18.9
19.0-20.9 19.0-20.9
21.0-21.9 21.0-21.9

to a resonance frequency of 23.2 MHz. The instrument
was equipped with an 18-mm temperature variable
probe. The samples were sized in cylinders of
h x d = 40 x 14mm?. They were stamped longitudinally
from the stem end of the potato, and placed in a
cylindrical glass tube (14 mm in diameter and 50 mm in
height). This tube fitted into the NMR temperature
variable probe 18 mm in diameter. Before the measure-
ment was performed, the sample was temperature
controlled to 25°C in a water-bath for 15-20 min.

Transverse relaxation (7;) was measured using the
CPMG sequence (Carr & Purcell, 1954; Meiboom &
Giil, 1958). The transversal relaxation measurements
were performed with a 7 value (time between 90° and
180° pulse) of 1000us. The data were acquired as
four scan repetitions. The repetition delay between two
succeeding scans was 4s. The signal amplitude was
measured every echo and the relaxation measurements
were performed at 25°C.

2.4. Data treatment

Each potato sample (bin) was measured by NMR in a
number of replicates (tubers) ranging from 12 to 15. If
outliers were detected in any of the replicate series, they
were removed before the computations. Outliers were
defined as replicates that were significantly different
from the other replicates in any of the following
attributes: low initial value, slower relaxing curve or
faster relaxing curve. The initial data consisted of a total
of 324 measurements, which was reduced to 295 after
removing the outliers. Each sample was now represented
by 11-14 NMR measurement replicates. The sensory
analysis was performed on only four replicates with no

direct link to the tubers used in the NMR measure-
ments. To compensate for differences between tubers
from one category, the average of the sensory analysis
was used together with the average of the NMR curves
for each bin. In this study the difference between
cultivars, and not between tubers, was of interest, hence
using the average reduces the natural variety within
the bins.

3. Data analysis and modelling
3.1. Description of the NMR curves

NMR relaxation signals can be expressed mathema-
tically as a sum of exponential decays (see Eq. (1)):

N
10 =3 Mopexp (). n
n=1 M

In this equation the profile I(¢) is parameterized such
that N is the (expected) number of uni-exponentials, M
holds the N magnitude values, ¢ is time, and 75 is the
time constants associated with each uni-exponential
decay. For a set of curves, it is assumed that the
quantitative information, amount of a specific proton
signal, is carried by the M, values and the qualitative
information, the type of proton signal, by the 75 values.
There are several methods to find these parameters.
Three methods are evaluated in this article: bi-exponen-
tial fitting, distribution analysis and SLICING. In
bi-exponential fitting, the assumption is that N in
Eq. (1) is two for any sample and that the T, value
can vary from sample to sample. In the SLICING N is
not known beforehand but determined as part of the
modelling step. It is assumed that all samples can be
described by the same set of 73 values. In distribution
analysis, it is assumed that a distribution of 7, values
generates each profile. Hence, N is assumed to be very
large indicating that each proton has its own distinct
value. This assumption appears reasonable at first
glance, but in practice distribution analysis can be
hampered by numerical instabilities caused by the high
amount of parameters to be determined from a limited
data set with finite signal-to-noise ratio. The discrete
methods, bi-exponential fitting and SLICING, on the
other hand, assume an approximation, which may be
valid in practice due to this limited signal-to-noise ratio
and the similarity of the individual proton relaxations
over samples. Hence, it is not possible on theoretical
grounds to reject any of the proposed methods. One
purpose of this investigation is to show empirically to
what extent, these methods can provide reliable infor-
mation on the current data. In the following the
different modelling approaches for NMR data and
regression are described.
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3.2. Regression by PLS on the raw CPMG curves

One of the advantages of multivariate methods such
as PLS regression (Martens & Nes, 1989) is that they
handle correlated variables well. This feature makes
them suitable for handling data such as NMR relaxation
curves, where neighbouring time points are highly
correlated. Using PLSR on raw data, focus is on the
prediction ability of the model, but the interpretation of
the models might not be as straightforward as the other
methods described in this paper.

3.3. Bi-exponential fitting

A common approach to model NMR curves is bi-
exponential fitting, yielding for each sample individual
values for parameters My;, Moo, T>1, and 7,5 in
Eq. (1). This approach is based on the assumption that
any sample can be described as a weighted sum of two
exponentials and the 7, values are specific for this
sample. The M, and T, values may be used for the
prediction of the sensory attributes by the use of PLSR.

3.4. Distribution analysis

Another method for describing the NMR curves is by
the use of distribution analysis. Distributed exponential
fitting analysis was performed on 7, relaxation data
using the Win-DXP program for Matlab (Butler, Reeds,
& Dawson, 1981). A continuous distribution of ex-
ponentials for a CPMG experiment can be defined by
Eq. (1), setting N to a large number. To use this
distribution information for regression analysis the
results need to be transformed into a suitable set of
variables. In this paper, the position and the amplitude
of the peaks in the distribution were used for regression
analysis.
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4. SLICING

SLICING is a novel method for exploring NMR
relaxation curves (Pedersen et al., 2001). The method
decomposes the relaxation curves from NMR measure-
ments into a few individual archetype proton contribu-
tions. It is based on increasing the dimensionality of the
data from a two-way to a three-way array by a proper
rearrangement. The rearranged data cube (three dimen-
sional) will ideally follow the so-called tri-linear model.
Performing a tri-linear decomposition of the rearranged
data will directly yield a set of normalized exponential
decays (i.e. 7> values) as well as the corresponding
amounts/magnitudes of these decays for each sample
(M, values).

In SLICING the assumption is that all samples can
be represented by a weighted sum of a number of
exponentials, conforming Eq. (1). Thus, there is no
predefined number of exponentials as in the bi-
exponential fitting. On the other hand, it is assumed
that all samples are sums of the same exponentials,
which is not the case for bi-exponential fitting.

The SLICING algorithm uses the principles of direct
exponential curve resolution algorithm (DECRA,
Windig & Antalek, 1997). The idea is to split the
CMPG relaxation curves (see Fig. la) into two (or
more) overlapping parts (slabs), where the size of the
overlap is determined by the lag term, generating a
three-dimensional array. Most of the original relaxation
curve is present in both slabs. This operation is
illustrated in Fig. la. Next, PARAIllel FACtor analysis
(PARAFACQ) is performed on the three-dimensional
array (Bro, 1997). The PARAFAC model is described
by the following equation:

F
Xk = Y airbiciy + ey
=1

(i=1,..I; j

2

[><
I

a

(b)

+
Im

a,

Fig. 1. Going from NMR signal to the data cube for PARAFAC modelling: (a) illustrating the principles of creating a three-way array from NMR
relaxation curves; (b) the data cube X [23 x 1991 x 3] is decomposed into four triads with sample scores a (23 exponential loadings), b (1991) and slab

loadings ¢ (3), plus residual cube E (‘noise’).
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The element xy; is the original value in the position
(i,j,k) of the data cube X. The parameter a.; is the
object score (magnitude) for factor f (first mode), b.¢ is
the exponential decay curve for the pure component f
(second mode), and loading c.g gives the ratio between
the different slabs (third mode). The term e contains
residual variation not captured by the model. The data
cube X is decomposed into F different components
(triads) and a residual cube E (Fig.1b). In the
PARAFAC algorithm used here, the factors (triads)
are found simultaneously via an alternating least-
squares algorithm (Bro, 1997). If the model is correctly
specified, the residual of the exponential loadings
indicates how much structural information remains
unmodelled. If the residuals show random behaviour
and no systematic trend, only noise is left unexplained
and hence the N estimated profiles explain the variation
in the data up to the noise. Furthermore, if the model is
adequate each loading is described by a single exponen-
tial. If too many components are extracted, the
estimated curves will reflect this (one or more being
nonexponential). The residuals were used together with
the appearance of the relaxation loadings to estimate the
correct number of components. The object scores from
the SLICING were then used for prediction of the
sensory attributes.

In this study the data matrix X held the CPMG
relaxation curves of the 23 samples. The SLICING was
performed by splitting the relaxation curves into three
slabs; with a lag of 0, 1, and 4 data points, respectively.
This choice of lags was based on a subjective selection
from initial investigations. The dimension of the rear-
ranged data cube was 23 objects x 1991 relaxation
variables x 3 slabs.

4.1. Validation

The validation of the regression models for the
CPMG PLSR, the SLICING, the bi-exponential, and
the distribution analysis predictions were all performed
by the leave one subset out cross validation (Eastman
& Kranowski, 1982; Martens & Neas, 1989). In this
method the data are split into equally sized, randomly
selected subsets. One subset is left out and a model is
built from the remaining data. The properties of the left-
out objects are then predicted using this model, and the
residuals are calculated for models of increasing model
complexity (number of factors). In the next step a new
subset is removed and the procedure is repeated until
every subset has been left out once. The root mean
square error of cross validation (RMSECYV, see Eq. (3))
indicates the difference between the predicted and the
measured values. In the following equation, y is the
measured values, p is the predicted value, while n
represents the number of samples:

A2
RMSECV = \/Z(V%. 3)

In this study the data sets were divided into four
subsets. RMSECYV and the correlation coefficients (r,
upon plotting measured versus predicted) were used as
indicators of the model’s predictive ability.

All data analysis and modelling were performed using
Matlab 5.3 software (Mathworks) for Windows with
algorithms taken from the PLS-Toolbox (www.eigen-
vector.com) and the N-way Toolbox (Andersson & Bro,
2000). A dedicated SLICING toolbox is available at
www.models.kvl.dk, but was not yet available at the
start of this investigation.

5. Results and discussion

To get an impression on the way the sensory
attributes discriminate potato cultivars a principal
component analysis (PCA) is performed (Martens &
Nes, 1989). Fig. 2 shows the bi-plot of sample scores
and attribute loadings. In this figure clear grouping of
cultivars and storage times are observed, as well as for
the dry matter bins. This proves that the data set
contains information which can distinguish these design
variables. It was of interest to investigate the possibility
to extract the same information from the NMR
measurements via multivariate data analysis, without
the requirement of sensory panel input.

In the present work the region from 12 to 4000 ms of
the NMR measurement signal was used in the analysis.
The first five data points were considered unreliable due
to noise and the last 2000 points had a signal close to
zero, not contributing any significant information. The
average CPMG relaxation curves of the raw potatoes
were investigated prior to any analysis. Upon studying
the raw data, a variation in the decays for the five
potato cultivars and dry matter bins was observed (not
shown). The potato samples of the cultivar Berber were
distinct from the rest of the cultivars showing a
slower exponential decay. The difference was observed
throughout the entire signal, and indicates a deviation in
the composition and distribution of water compared to
the other four cultivars. Within the five cultivars, the
two storage times, November 1999 and May 2000,
appeared different, where the storage time May 2000
showed a faster decay. This implies changes in the water
distribution due to storage time.

5.1. Data analysis using SLICING

A SLICING model of the CPMG curves was
computed. The NMR profile loadings for the optimal
SLICING model, consisting of four factors, are shown
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Fig. 2. Bi-plot from PCA on the sensory data. Ditta (<), Sava (A), Bintje—low dry matter ([J), Bintje—high dry matter (% ), and Berber (O) for
storage 1999 (open) and 2000 (filled). The numbers from 18 to 22 represent the % dry matter bins (see Table 1) where the range of the % dry matter
bin is 18: 18.0-18.9, 19: 19.0-19.9, 20: 20.0-20.9, 21: 21.0-21.9 and 22: 22.0-22.9.
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Fig. 3. Exponential loadings for components one to four from the PARAFAC model.

in Fig. 3. The four loadings are all exponentials as
expected. This was further verified using a Monte Carlo
approach, where 97% of 1000 randomly selected split-
half tests resulted in the same four exponential loadings
(Harshman & De Sarbo, 1994). In each split-half run,
the data set was split into two parts, each part
containing 12 and 11 samples, respectively. Both of
these data sets were then modelled individually.
Obtaining similar results from two such completely

independent sets of data implies that the results are
reproducible in a scientific sound way. l.e. the compo-
nents are not merely an arbitrary result from a specific set
of samples, but rather a fundamental property of all
similar samples. This indicates that a valid estimate of the
CPMG relaxation curves was derived from SLICING
and hence the loadings could be associated with the
water distribution in the potatoes. Previous studies have
made use of bi-exponential fitting of the raw CPMG
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relaxation curves to explain the different states of water
in potatoes (Thygesen et al., 2001). The 7»; and T,
relaxation times from bi-exponential of the raw CPMG
relaxation curves using Eq. (1) (N =2) are listed in
Table 2, together with the uni-exponential fitting of the
four loadings from the SLICING model.

The transversal relaxation times 7> and 75, from bi-
exponential fitting for the 23 objects range from 130 to
180 and 430 to 540 ms, respectively. The relaxation times
for the four exponential loadings in Fig. 3 show that the
fourth loading has the fastest decay with a 75 4 of 52 ms
followed by the third loading 7»p3; of 192ms (“B”
indicating that these 7, values are calculated from the

Table 2

Overview of the transversal relaxation time (77%)

Curves Fitted against 7> (ms)

Exponential loadings (75g) THg1 378
from SLICING Tono 646

Fitted by uni-exponentials Tog3 192

T4 52
Raw curves fitted by bi-exponentials T»,, fast decay  130-180

The range of the 23 potato samples

Raw curves fitted by distribution analysis

T,,, slow decay 430-540

1,1, fast decay

56-82

The range of the 23 potato samples T»,, slow decay 404-540

T, p represent the relaxation times of the uni-exponential fitting of the
four relaxation slicing loadings and the 7>, and T,, represent the
relaxation times of the bi-exponential fitting of the raw CPMG
relaxation curves. The raw curves show the range of the 23 potato
samples.

B-loadings of PARAFAC). The T»p for the first two
exponential loadings are 378 and 646 ms, respectively.
The results from the distribution analysis gave two
peaks, where the first peak ranged from 56 to 82 ms and
the second peak from 404 to 540ms (not shown). A
comparison of the four relaxation time constants
showed that the relaxation times 7, for the SLICING
model span wider than the 7>; and 75, from the bi-
exponential fitting. Both the bi-exponential fitting and
the distribution analysis have a peak around 480 ms,
while the SLICING estimated decays at 378 and 646 ms.
The first peak from the distribution analysis corresponds
approximately with the fastest relaxing component from
the SLICING. In the bi-exponential fitting, the fastest
component lies in between the two fastest components
from the SLICING.

By looking at the average residual over time for each
of the three decomposition methods, it became clear that
the residual from bi-exponential fitting was roughly four
times larger than the residual from distribution analysis,
which was twice as large as the average residual from the
SLICING model. The reason may be caused by a
smoothing constrain in the distribution algorithm.
These observations imply that loadings derived from
the SLICING model provide more information about
the data than a simple bi-exponential fitting or a
distribution analysis. In a four-factor SLICING model,
the best description of the potato cultivars was given by
the sample scores for factors 3 and 4 (the two fastest
decays), where a clear distinction of the five cultivars
was seen. This is shown in the score plot in Fig. 4, where
the samples are marked due to cultivar, storage, and dry

Score A4

21
20
21
o 20 19
L 20
A
20 Per
1
18

Score A3

Fig. 4. Score plot of sample score 3 and 4 for the PARAFAC . Ditta (<), Sava (A), Bintje—low dry matter ([J), Bintje—high dry matter (%), and
Berber (O) for storage 1999 (open) and 2000 (filled). The numbers from 18 to 22 represent the % dry matter bins (see Table 1) where the range of the
% dry matter bin is 18: 18.0-18.9, 19: 19.0-19.9, 20: 20.0-20.9, 21: 21.0-21.9 and 22: 22.0-22.9.
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matter bins. Within the cultivars the storage times for
each bin are explained in the direction from the upper
right corner to the lower left corner. The opposite
direction from the left lower corner to the upper right
corner describes the increase in dry matter bins within
the same cultivar. The separation can be related to the
diversity in the structure of the five cultivars and
the varying water content and distribution of water
(Table 1). There is no such clear distinction between the
cultivars using the results from either the bi-exponential
fitting or the distribution analysis (not shown).
Relaxation times can be related to the distribution of
water within the samples. A high mobility of water
makes it more available, and it will take a long time
before it reaches the equilibrium state, giving rise to a
high 75,. Thus, the highest T, value (7> 32) may reflect
the water used for gelatinization and can be expected to
be of major importance for texture differences. How-
ever, the variation in the potatoes is not captured by the
two slower decaying loadings, indicating that this type
of water is not important for the description of the
differences in the five cultivars. The description of
the cultivars in the SLICING scores 3 versus 4 indicates
that the clear difference in the cultivars is caused by the
distribution of the water with low mobility in the potato
tubers. These low-mobile water components are as-
sumed to describe the less mobile diffusion-hindered
water hypothesized to be located in, e.g. the cell walls,
entrapped in pectin, in sites with high ionic strengths,
and in the vascular tissue (water transport tissue).
Several states and locations of water are possible
within potatoes. Water compartments may be found in
the cytoplasm in the cells and in the pectin network in
the cell walls. Furthermore, very different tissue
segments within a potato tuber exist. This makes the
investigation of the distribution of water in potatoes
very complex. Hills and Le Floc’h (1994) made a
thorough study of the water in potatoes as they froze
them down. Their study give an explanation to three of
the four components found using SLICING. The first

Table 3

one is similar to a peak they find at about 50 ms, coming
from water in cell walls, while the next two resembles
peaks they find at around 200 and 400 ms, which they
state is from water in the cytoplasm. However, they do
not find any component higher than ca. 400 ms. Tang
et al. (2000), on the other hand, found a peak at around
50 ms upon studying water saturated starch granules, so
the exact cause of the fastest decaying component
cannot be given. By the application of the SLICING a
more direct method is introduced. This makes it possible
to get a quick estimate of the parameters related to the
quality, instead of high-cost laboratory analyses.

5.2. Regression models

PLSR has previously been used for the prediction of
sensory attributes and potato quality from CPMG
relaxation curves (Thybo et al., 2000; Thygesen et al.,
2001). In this work six texture-related sensory attri-
butes—hardness, cohesiveness, adhesiveness, mealiness,
graininess, and moistness—of cooked potatoes were
predicted using four different types of predictor
variables. First, the CPMG PLSR was performed on
the raw data set. The right number of components—
four—was selected using the RMSECV values, the
exponential loadings, and the exponential residuals as
diagnostics. The second approach was the bi-exponen-
tial fitting predictions, which was based on the M, and
T, values as independent variables in a PLSR model,
and the third was the predictions using the results from
distribution analysis. Two peaks were found from the
distribution analysis, and the predictions were based
upon the position and the amplitude of these two peaks.
The last type of predictors was the four scores from the
SLICING model referred to as SLICING prediction.
The model complexity for prediction based on bi-
exponential fitting and distribution analysis ranges from
one to four components, depending on the sensory
attribute being regressed. In Table 3, the RMSECV
and correlation coefficients (predicted versus reference

RMSECYV and correlation coefficients (r) for CPMG PLSR prediction (PLSR), the bi-exponential fitting prediction (Bi-exp. fitting) models,
prediction using the parameters from distribution analysis and SLICING on the six sensory attributes hardness, cohesiveness, adhesiveness,

mealiness, graininess, and moistness

Sensory variables PLSR? Bi-exp. fit® Distrib. anal.® SLICING*
Attributes Range® RMSECV r RMSECV r RMSECV r RMSECV R
Hardness 4.9 1.19 0.69 1.22 0.67 1.53 0.33 1.15 0.69
Cohesiveness 5.7 1.10 0.78 1.01 0.83 1.74 0.29 1.31 0.71
Adhesiveness 4.7 1.27 0.58 1.01 0.73 1.14 0.64 1.27 0.57
Mealiness 7.4 1.49 0.74 1.26 0.83 2.00 0.48 1.33 0.79
Graininess 5.2 1.25 0.54 1.07 0.63 1.10 0.64 1.13 0.58
Moistness 7.0 1.11 0.76 0.86 0.87 0.71 0.91 1.05 0.79

#Four-factor models.
®Both M, and T values used. Optimal regression results shown.
¢ Effective range on a scale from 0 to 15.
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values) for the four regression models predicting the six
sensory attributes are shown. The correlation coeffi-
cients are in the range of 0.29-0.91 and the RMSECV is
between 0.71 and 2.00. The CPMG PLSR and the
SLICING prediction show almost equal predicting
performance, whereas the bi-exponential prediction in
some cases gave a slightly better result. Distribution
analysis gave the most varying results, ranging from the
worst to the best predictions. In general, the six sensory
attributes are not well predicted by any of the four
methods except for the moistness attribute where the
bi-exponential model gives a correlation coefficient of
r = 0.84 and an acceptable RMSECYV is observed. This
is sensible as the relaxation curves express the water
content and distribution within the potato starch cells,
whereby the predictions indicate that this attribute was
expressed in the CPMG relaxation curves. The correla-
tion coefficient of the attributes cohesiveness and
mealiness are also acceptable for all four methods, but
taking into consideration the RMSECV and the range
of the scale used by the assessors, the overall prediction
is not impressive.

6. Conclusion

For the investigation of the differences in potatoes
and potato texture by low-field NMR, this study
compared new and established modelling methods to
analyse NMR data: CPMG PLSR, bi-exponential
fitting, distribution analysis, and SLICING. The work
consists of two parts: a qualitative data analysis of the
potato samples where the interpretation of the loadings
was of special interest. Secondly regression analysis was
performed using six sensory attributes as predictor
variables.

In the data analysis part, the results show that the
SLICING method is superior to CPMG PLSR, bi-
exponential fitting, and distribution analysis. The
SLICING method decomposed the CPMG relaxation
curve into four uni-exponential components describing
all the variation in the data set up to the noise. It is
possible to interpret the exponential decaying loadings,
and directly relate them to the design variables: cultivar,
dry matter and storage time. The distinction between the
five potato cultivars is caused by properties related to
the fast decaying loadings, as the properties of water
related to a long transversal relaxation time do not seem
to have the same influence on the separation of the
groups. To understand the role of the water component
more research is required.

In the regression analysis the predictions from CPMG
PLSR and the SLICING scores were very similar. There
is no gain using PLSR on the raw curves if data analysis
is of interest. The predictions using bi-exponential fitting
gave slightly better results (RMSECYV ranging from 0.86

to 1.26 and correlation coefficients ranging from 0.63 to
0.87) than the predictions using the CPMG PLSR or the
SLICING (RMSECYV ranging from 1.05 to 1.49 and
correlation coefficients ranging from 0.54 to 0.79). The
predictions using the results from the distribution
analysis gave varying results, and in general these results
are inferior to the results from bi-exponential fitting.
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ABSTRACT

Front face fluorescence spectroscopy is applied for an
evaluation of the stability of processed cheese during
storage. Fluorescence landscapes with excitation from
240 to 360 nm and emission in the range of 275 to
475 nm were obtained from cheese samples stored in
darkness and light in up to 259 d, at 5, 20 and 37°C,
respectively. Parallel factor (PARAFAC) analysis of the
fluorescence landscapes exhibits four fluorophores pres-
ent in the cheese, all related to the storage conditions.
The chemometric analysis resolves the fluorescence sig-
nal into excitation and emission profiles of the pure
fluorescent compounds, which are suggested to be tryp-
tophan, vitamin A and a compound derived from oxida-
tion. Thus, it is concluded that fluorescence spectro-
scopy in combination with chemometrics has a potential
as a fast method for monitoring the stability of pro-
cessed cheese.

(Key words: cheese, chemometrics, fluorescence spec-
troscopy, PARAFAC)

Abbreviation key: GC-MS = gas chromatography-
mass spectrometry, PARAFAC = parallel factor
analysis.

INTRODUCTION

The development of undesirable flavor caused by lipid
oxidation and nonenzymatic browning are critical qual-
ity factors during storage of processed cheese. The dete-
rioration of the cheese product is dependent on the han-
dling in the post manufacturing processes. Since cheese
mainly consists of protein, fat, minerals and water, oxi-
dation is reflected in the composition of these constit-
uents. Monitoring the changes in structure and compo-
sition of the cheese constituents, especially protein and
fat, will help understand the effect of stress factors
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during storage. Common stress factors in the distribu-
tion retails and production are light exposure and vary-
ing temperature, which can result in reduced shelf life
partly due to increased formation of free radicals.
Therefore, processed cheese samples stored under dif-
ferent light and heat conditions are investigated in the
present study.

Many methods have been developed to shed light on
the degree of oxidation of dairy products, a process that
consists of several stages. The early stage of lipid oxida-
tion can form hydroperoxides, which normally are mea-
sured by HPLC or by evaluation of the peroxide value
(Emmons et al., 1986). Secondary oxidation products
can be analyzed by static or dynamic headspace GC-
MS (Sunesen et al., 2002) or methods using thiobarbi-
turic acid (Kristensen et al., 2001). Methods based on
electron spin resonance spectrometry were recently
suggested for monitoring the formation of radicals dur-
ing the oxidation of processed cheese (Kristensen and
Skibsted, 1999). All these methods for evaluation of the
oxidative levels of dairy products have in common, that
they are destructive and time consuming. In this study,
the potential of front face fluorescence, measured di-
rectly on the cheese surface were investigated, as an
alternative, fast and nondestructive method. Theoreti-
cally the potential of fluorescence seems sound, since
the cheese product contains well known fluorescent
compounds in form of aromatic amino acids, vitamin A
and riboflavin (Duggan et al., 1957), which all have
been reported to be affected during structural changes
in cheese (Dufour et al., 2001) or during light and heat
exposure (Kristensen et al., 2001; Whited et al., 2002;
Wold et al., 2002).

Fluorescence spectroscopy is a sensitive, rapid and
noninvasive analytical technique that can provide in-
formation on the presence of fluorescent molecules and
their environment in all sorts of biological samples. The
development and improvement of chemometric meth-
ods (Bro, 1996; Bro, 1997; Andersson and Bro, 2000)
combined with the technical and optical development
of spectrofluorometers have in recent years increased
the possibilities for the use of fluorescence spectroscopy.
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Thus, online monitoring sensors that enable measure-
ments of complete excitation emission spectra (fluores-
cence landscapes) are now commercially available.

In the last years, a few studies have focused on the
potential of using front face fluorescence of dairy prod-
ucts without any pretreatment of the samples. Pre-
viously heat treatment and structural changes during
coagulation have successfully been investigated in milk
using fluorescence spectroscopy (Dufour and Riaublanc,
1997; Birlouez-Aragon et al., 1998; Herbert et al., 1999).
Changes in fat and protein composition and structure
have been characterized by the means of measuring
the tryptophan and vitamin A fluorescence of cheeses
during ripening (Dufour et al., 2000; Mazerolles et al.,
2001) and for identification of different cheeses at a
molecular level (Dufour et al., 2000; Herbert et al.,
2000). Wold et al. (2002) demonstrated the potential
of fluorescence spectroscopy for measuring the light-
induced oxidation, ascribed to the photodegradation
of riboflavin.

Common to all these studies is that basic chemome-
tric tools like Principal Component Analysis and Partial
Least Squares Regression are applied for the evaluation
of single excitation or emission fluorescence spectra.
The multivariate approach increases the extracted in-
formation and is very useful when handling the fluo-
rescence signal of complex food products. Even more
information can be obtained, if the fluorescence mea-
surements are not limited to single emission or excita-
tion spectra. The possibilities when measuring whole
fluorescence landscapes (excitation emission matrices)
will be investigated here. New chemometric methods
(Andersson and Bro, 2000) make it possible to handle
fluorescence landscapes keeping the 2-dimensional
data structure of each measurement. The techniques
are known as N-way or multiway chemometrics, and
in the case of fluorescence signals, a 3-way (samples X
excitation x emission) data analysis is an obvious
choice. The advantage of the multiway analysis is that
one can utilize the original and true structure in data,
which can stabilize the decomposition of the data, and
potentially increase the interpretability (Bro, 1996;
Bro, 1997).

In the present study Parallel Factor analysis (PARA-
FAC) (Bro, 1997) is applied on the fluorescence land-
scapes of processed cheese exposed to light and varying
temperature during storage. PARAFAC analysis of
fluorescence data is previously used with success on
model system of mixtures of fluorophores and in other
food applications like sugar and fish (Bro, 1999; Bauns-
gaard et al., 2000a; Baunsgaard et al., 2000b; Pedersen
et al., 2002) to investigate the present fluorescent com-
pounds in complex matrices. PARAFAC is based on the
decomposition of the fluorescence data represented in a
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three-way array, into a few spectral loadings expressing
the common structure of the data. The feature of PARA-
FAC is that the retrieved loading spectra can be directly
related to the original fluorescence characteristics of
the present fluorophores, which means that the emis-
sion and excitation maximum of the loadings can be
used in the interpretation and identification of the flu-
orophores (Bro, 1997).

Thus, the overall objective of the present investiga-
tion is to use multivariate analysis on fluorescence spec-
tra keeping the 3-dimensional structure and extract
information about the product at hand regarding age
and storage conditions. This is pursued by using a non-
destructive and rapid high-sensitive fluorescence
method, which is simple to perform, and does not in-
volve sample preparation.

MATERIALS AND METHODS
Processed Cheese: Product and Storage Conditions

The product and storage conditions are identical to
the experimental plan used by Kristensen et al., 2001.
A batch of processed cheese spread samples (density
approximately 1.1 g/mL) with 65% fat in dry matter
was obtained from Arla Foods amba, Denmark. The
processed cheese was produced according to standard
production of processed cheese and was constituted of
bovine milk, starter culture, salt and emulsifier. After
production the product was filled without any head-
space (140 g) in transparent glass containers and sealed
with a metal lid. The samples were stored for 10 months
at three temperatures 5, 20, and 37°C and were exposed
by placing the samples at a distance of approx. 55 cm
from a fluorescent lamp or protected from light by wrap-
ping the glass container in tin foil. The light source was
fluorescent tubes (Phillips TLD 18/83 W) with a light
intensity of 2000 1x as measured by a Topcon IM-1
illumination meter (Tokyo Kogaku Kikai K.K.). Sam-
ples were taken out at the beginning of the experiment
and then after 14, 28, 56, 84, 112 and 256 d. Only the
1 cm outer layer which had been in contact with the
wall of the containers were used and each of the samples
were taken from the glass jars by breaking the original
seal prior to freezing at —80°C. The samples were frozen
for a year before being thawed. Two cheese samples
from each treatment were withdrawn for each analy-
sis time.

Fluorescence Spectroscopy and Sampling

All samples were measured on a Perkin-Elmer LS
50B spectrometer equipped with a Front Surface Acces-
sory and controlled with FLDM software. The stored
cheese samples were mixed thoroughly before spread-
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Figure 1. Illustration of the decomposition scheme into f number
of components of the PARAFAC model for the data array X. The cube
E represents the residual.

ing directly onto the quartz window of a powder cell,
which was then assembled and placed in the light path
in an angle of around 60°. The spectral range of the
experiment was selected upon an exploratory basis. A
preliminary investigation measuring excitation wave-
lengths from 200 to 600 nm, and emission wavelengths
from 220 to 800 nm on different cheeses were per-
formed, and resulted in focusing on excitation wave-
lengths in the UV region. Strong fluorescence signals
were obtained from the cheese samples in this area,
leaving no signal from higher excitation and emission
wavelengths when using this technique and set-up. The
selected spectral range of the excitation wavelength
was 240 to 360 nm with 20 nm intervals. Emission was
obtained for every nm from 275 to 475 nm. The slit
width was 6 nm for excitation and 5 nm for the emission
and a 1% attenuation filter was used.

It should be noted that the selected spectral range
does not cover riboflavin fluorescence, which exhibit
emission around 520 nm (Duggan et al., 1957), despite
it would be an obvious compound to monitor throughout
storage. However, the preliminary studies on cheese
samples showed that no detectable signal was obtained
in this spectral area when using the described measur-
ing set-up.

Data Analysis—PARAFAC

PARAFAC decomposes the fluorescence spectra, into
tri-linear components according to the number of fluor-
ophores present the cheese samples (objects). The num-
ber of fluorophores present in the samples is equal to
the minimal number of factors (f=1, ..., F) needed to
describe the fluorescence matrix X.

A graphical illustration of the decomposition of the
data array X is given in Figure 1. The object mode is
expressed by the A-scores (ay, ..., a5) and the two spec-
tral loadings excitation and emission are expressed as
B loadings (by, ..., by) and C loadings (cy, ..., ¢p), respec-
tively. The loadings in a spectral bilinear decomposition
reflect the pure spectra of the fluorophores and the true
underlying spectra can be recovered in the single com-
ponents.

1103

The principle behind the PARAFAC decomposition
is to minimize the sum of squares of the residual e,
see Equation 1.

F
Xy = Y aibjfcrs + e (1]
=
G=1,. ,Lj=1,.. Jik=1,. K f=1,..F)

The element x;j, represents the raw fluorescence excita-
tion/emission spectra (X) of the stored cheese, where i
is the number of measured samples, j is the number of
excitation wavelengths, %2 is the number of emission
wavelengths and f is the number of factors. a. is the
object score (magnitude of the fluorophore) for factor f
(first mode), b.r is the excitation loading for factor f
(second mode), and loading c., express the emission
spectra (third mode). e;j;, is the residual (E) and contains
the variation not captured by the PARAFAC model
(Bro, 1997). Split half analysis is suggested for valida-
tion of PARAFAC models by Bro (1997). The idea of
this strategy is to divide the data set into two halves
and make a PARAFAC model on both halves. Due to
the uniqueness of the PARAFAC model one will obtain
the same result—same loadings in the nonsplitted
mode e.g., excitation and emission mode—on both data-
sets, if the correct number of components is chosen.

Calculating the PARAFAC Model

The following sampling was performed: 45 samples
x 2 replicates x 2 repetitions = 190 samples. Seven
samples were removed, as they were considered to be
spectral outliers based on a preliminary data inspection
and resulted in a total of 183 samples. The preliminary
PARAFAC modelling indicated that nonnegativity con-
straints on all three modes (samples, excitation, and
emission) were necessary. Validation of the PARAFAC
modelling was performed with split half test, based on
replicated samples, i.e. not splitting of the repetitions.

In addition to the split-half experiment, the residuals
were inspected, and the results were judged, interpre-
ted and compared with external knowledge.

All calculations were performed in Matlab version 6.1
(MathWorks, Inc.) with the N-way Toolbox (Andersson
and Bro, 2000) and the PLS Toolbox (www.Eigen-
vector.com).

RESULTS AND DISCUSSIONS

The fluorescence landscapes of two cheese samples
are shown in Figure 2. The two samples represent the
extremes in the experimental plan, i.e., a fresh cheese
sample (a) and a cheese sample stored under the most
severe conditions (b). The highest fluorescence peak for
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Figure 2. Three dimensional plot of fluorescence landscapes of processed cheese samples. a) fresh cheese sample, and b) cheese sample

stored in 259 d at 37°C exposed to light.

both samples is seen with excitation around 280 nm
and emission around 350 nm, with a significant higher
and apparently broader signal from the fresh cheese.
The excitation and emission characteristics indicate
that the fluorescence peak corresponds to tryptophan
fluorescence, which is reported to have excitation/emis-
sion wavelength maximum at 285/365 nm in pure solu-
tions (Duggan et al., 1957), and previously measured
in cheese products with excitation 290 nm and emission
from 305-400 nm (Herbert et al., 2000; Dufour et al.,
2001; Mazerolles et al., 2001). Apart from this major
peak, a vague peak is observed in the higher wavelength
region with excitation around 320 to 360 nm and emis-
sion round 400 to 460 nm, especially for the cheese
sample stored for 259 d.

The aforementioned patterns in the fluorescence
landscapes were investigated further by the use of PAR-
AFAC analysis with the objective to resolve the fluores-
cence signal into the contributions of each of the fluo-
rescent compounds present in the set of samples, i.e.
estimate the excitation and emission profiles of fluoro-
phores directly from the three-dimensional fluorescence
landscapes. PARAFAC models of the fluorescence data
were estimated with one to five components, but the
four-component model was chosen based on split half
analysis (Bro, 1997). A high explained variation of
99.76% is captured by the PARAFAC model, and the
resulting PARAFAC components are shown in Figure
3. The model indicates that four different fluorophores
are present in the cheese samples with the excitation
and emission profiles shown in the figure. The excita-
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tion/emission maximum for the two compounds are 300/
347 nm and 280/339 nm, respectively, as listed in Table
1. The loading profiles of the second PARAFAC compo-
nent corresponds quite well with the characteristics of
tryptophane, whereas the excitation maximum of the
first component seems a little too high for tryptophan.
Having the rather low resolution of 20 nm in the excita-
tion mode in mind, and knowing that the fluorescence
properties of protein-bound amino-acids are known to
be affected by the structure of protein (Lakowicz, 1999),
we dare to suggest that the first PARAFAC components
is also due to tryptophan fluorescence, but simply
shifted due to inclusion to different protein structures.

The score values in the first column of Figure 3 repre-
sent the concentration mode for each of the fluoro-
phores, and since the excitation and emission loadings
are normalized when calculating the PARAFAC model,
the contribution for each of the components can be com-
pared to the overall variation based on the level of the
scores. The score values are arranged so the develop-
ment of the fluorophores easily can be caught through-
out the storage time. Looking at the two proposed tryp-
tophan components, a significant decrease is observed
throughout the storage period for the samples stored
at 37°C. This shows that alterations in the protein
structure, monitored by the decrease in tryptophan
fluorescence, somehow can reflect the conditions of the
cheese samples during storage. The samples exposed
to light during storage show a systematically higher
tendency to be degraded throughout the storage than
the samples stored in the dark. Compared with the
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at 20 and 37°C are shown with squares and dashed line (- — —) and circles connected with a full line (
samples stored in light, and filled sign illustrates storage in darkness.

effect of different temperatures, the light exposure
seems negligible for the two tryptophan components,
though. The same storage experiment showed a similar
tendency of light exposure having little, if any influence
on the browning of cheese (Kristensen et al., 2001), and
thereby indicate that the observed differences in the
protein structure are somehow related to the browning
reaction i.e. the formation of Maillard products from
the protein and lipid oxidation products in cheese, even
though tryptophan itself may not be part of the brown-
ing reaction scheme. As indicated by the first visual
inspection of the fluorescence landscapes, the level of
the score values for the two first components are much

), respectively. Open signs represent

higher than the third and fourth component, simply
showing that the development in the tryptophan signal
represents the major variation in the fluorescence data.

The development of the third estimated fluorophore
(score values of the third PARAFAC component) shows
a similar pattern as the decrease in the tryptophan
signal. Thus, the cheese samples stored at 37°C contain
less of this component throughout the storage, espe-
cially the samples exposed to light during storage. Com-
paring the fluorescence profiles seen in Figure 3 and
the excitation/emission wavelength maximum of 320/
411 nm (Table 1) with observed maximum of 325/470
nm in pure solution reported (Duggan et al., 1957) and
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Table 1. Excitation and emission maximum of four components in
the PARAFAC model of 45 different cheese samples.

Amax (nm)
Component Excitation Emission
1 300 347
2 280 339
3 320 411
4 360 431

322/412 nm for dairy products (Dufour et al., 2001,
Herbert et al., 2000), vitamin A is an obvious suggestion
for the third component. This is underlined by the fact,
that the observed decrease in vitamin A fluorescence
signal throughout the storage period corresponds well
to reported vitamin A degradation during light expo-
sure in dairy products (Whited et al., 2000).

The fourth PARAFAC component reveals an opposite
and very interesting trend in the score values, as seen
in Figure 3. The level of this fluorophore increases
throughout the storage period, especially for the cheese
samples stored in light. The excitation and emission
loadings look somewhat noisier with several small
peaks, probably caused by the fact that the fluorescence
signal is very low, as can be seen from the levels of the
score values. Scattering effects might be the reason for
the extra emission peak observed around 320 nm for
both the third and the fourth component. The identifi-
cation of the fourth fluorescent compound, showing an
increase signal during the oxidation of the cheese sam-
ples, give rise to more doubt. Taking the increasing
concentration of the fourth component throughout stor-
age in consideration, it is obvious to suggest that the
fourth component can be attributed to some kind of
oxidation product. So-called “Advanced Maillard Prod-
ucts” in milk samples have been reported (Birlouez-
Aragon et al., 1998) to excite around 350 nm with emis-
sion at 440 nm, which is almost identical to the peak
observed in the fourth component. Another suggestion
could be that the fourth component is a secondary oxida-
tion product developed when carbonyl compounds pro-
duced by lipid oxidation interacts, as reported by Dil-
lard and Tappel (1971) with a fluorescent compound
from lipid peroxidation with excitation maximum at
360 nm, and emission maximum at 430 nm, which is
even closer to the fluorescent characteristics of the
fourth component. Finally, Stapelfeldt and Skibsted
(1994), demonstrated that the reaction between second-
ary lipid oxidation products from milk products and -
lactoglobulin in a model system yielded a fluorescent
condensation products with excitation/emission maxi-
mum at 350/410 nm, which could also form an educated
guess for identification of the fourth PARAFAC com-
ponent.
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CONCLUSIONS

This exploratory study of processed cheese demon-
strates the potential of fluorescence spectroscopy and
chemometrics applied to the analysis of dairy products.
The rapid fluorometric analysis reveals information at
a molecular level about the stability of the cheese when
exposed to manufacture handling stress like light and
temperature changes. PARAFAC analysis provides a
unique mathematical decomposition of four fluorescent
compounds present in the cheese samples all showing
a change in the fluorescence signal corresponding the
storage time and the grade of oxidation.

The fluorescent signal from the processed cheese
samples is suggested to derive from tryptophan, vita-
min A and an oxidation product. Thus, the suggested
analytical method provides a fast and simultaneous
determination of the fluorescence level of all these com-
pounds. The observed results still remain to be vali-
dated with chemical reference analyses in order to proof
the identification of the fluorophores, but this investiga-
tion certainly underlines the potential of fluorescence
spectroscopy in combination with chemometrics, as a
fast, nondestructive innovative method, that can be ap-
plied to dairy products for monitoring oxidation, screen-
ing studies and perhaps in development of new fast
quantitative analyses of vitamin A.
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Abstract

Near-infrared reflectance (NIR) spectroscopy in the spectral range of 1000-2500 nm, was measured directly on brine from barrel
salted herring, to investigate the potential of NIR as a fast method to determine the protein content. A principal component analysis
performed on the NIR spectra shows two groups, separating the first 100 days of storage from the storage time exceeding 100 days.
A partial least-squares regression model between selected regions of the NIR spectra and the protein content yields a correlation
coefficient of 0.93 and a prediction error (RMSECYV) of 0.25g/100g. The results clearly indicate that NIR spectroscopy has a
potential as a fast and noninvasive method for assessing the protein content in brine from barrel salted herring, which again may be
used as an indicator for the ripening quality of barrel salted herring.
© 2004 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.

Keywords: Barrel salted herring; Ripening; Protein; Multivariate calibration; NIR spectroscopy

1. Introduction

Barrel salted herring is an important product in the
Nordic fishery industry and the manufacturing process
is bound by tradition, based on human knowledge and
experience (Voskrensensky, 1965). Scientific knowledge
about the ripening process is still limited despite the
progress that has been achieved by a large research
effort in the Nordic and European countries. A great
interest lies in obtaining a better understanding of the
unique taste and texture development that occurs during
the several months of ripening period. During storage,
degradation of protein takes place and is believed to be
one of the main factors reflecting the ripening of salted
herring. It is known that both digestive and muscle
proteases participate in the proteolytic degradation of
the muscle proteins (Nielsen, 1995; Stefansson et al.,
2000). The proteins are divided into peptides and free
amino acids, small peptides and myofibrillar proteins,

*Corresponding author. Tel.: +45-35-28-35-01; fax: +45-35-28-32-
45.
E-mail address: vip@kvl.dk (V.T. Svensson).

which will be extracted into the surrounding brine
(Nielsen 1995; Nielsen & Berresen, 1997). The addition
of salt affects the proteins and contribute to the sensory
quality (Gudmundsdottir & Stefansson, 1997). A pre-
vious study by Nielsen, Bro, Stefansson, and Skara
(1999) aimed to gather knowledge from three Nordic
institutes in order to investigate if further information
about the salting and ripening of herring could be
derived. Principal component analysis (PCA) models
showed correlation between a number of the basic
chemical analyses and important sensory parameters. A
striking result was the correlation between the protein
concentration in the brine and the sensory attribute,
softness. The softness of salted herring is an important
quality parameter of the final product related to the
ripening quality of the fish and as this correlates well
with the protein concentration in brine, it suggests that
the protein concentration in brine may be used as an
indicator variable for the ripening process in barrel
salted herring. It is known that the protein content in
brine correlates with trichloroacetic acid-soluble nitro-
gen in muscles, which expresses the degree of protein
degradation during ripening of salted herring (Bro,

0023-6438/$30.00 © 2004 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.1wt.2004.03.004



804 V.T. Svensson et al. | Lebensm.-Wiss. u.-Technol. 37 (2004) 803—-809

Nielsen, Stefansson, & Skara, 2002; Nielsen et al., 1999).
This particular study is the main motivation for the
present study. Sampling of brine is more accessible and
representative than sampling of a whole fish, where the
inhomogeneity of the fish has to be taken into account
(Andersen & Rinnan, 2002), so the change in protein
concentration in brine instead of the protein degrada-
tion in the fish may be used as an indicator variable for
the ripening of barrel salted herring.

Near-infrared (NIR) spectroscopy is well suited for
determining the major components of foods such as
water, fat, and protein (Osborne, Fearn, & Hindle,
1993). NIR spectroscopy is based on vibrational modes
of molecules. These vibrations can be observed in the
NIR spectra as overtones and combinations. The reason
why NIR spectroscopy is well suited when assessing the
presence of water and protein is due to the specificity of
O-H and N-H bindings. In the overtone region from
1000 to 1900 nm water can be observed around 1400—
1550 nm, and this overlap to some extent with the N-H
regions from 1490 to 1600 nm. In the combinations
region water absorption can be expected in the region of
1900-2000 nm and protein can be detected from 2000 to
2100 and 2150 to 2200nm (Williams, 1987; Osborne
et al., 1993). It is known that high concentration of salt
may cause the absorptions band to change shape and the
spectra may even shift (Lin and Brown, 1992). However,
this is not considered to cause problems in the present
study, as the variation in the salt concentration will be
small. NIR spectroscopy is nondestructive, fast and easy
to implement. NIR spectroscopy has previously been
used to assess fish and its quality (Wold, Esbensen, &
Geladi, 1987; Wold, Jakobsen, & Krane, 1996; Jargen-
sen & Jensen, 1997; Solberg & Fredriksen, 2001;
Bokness, Jensen, Andersen, & Martens, 2002).

The objective of the present study is to test if NIR
spectroscopy can be used to determine the protein
content in brine from traditionally barrel-salted herring.
Previous studies have used NIR spectroscopy to assess
the protein content of whole fish with satisfactory results
(Isaksson, Tegersen, Iversen, & Hildrum, 1995; Solberg,
1997; Bechmann & Jergensen, 1998; Pink, Naczk, &
Pink, 1999). On that basis and due to the short sampling
time, NIR spectroscopy may be considered as a possible
fast method for assessing protein in brine. Multivariate-
data analysis and prediction modelling between NIR

Table 1

Experimental set-up of barrels with salted herring and sampling of brine

spectroscopy and the protein concentration is used as
evaluation tools to study the relation between the
spectroscopic measurements and the protein content.

2. Materials and methods

Two ripening experiments were carried out. In
experiment 1 (ex. 1), herring caught by local fishermen
in The Sound between Sweden and Denmark in August
and September 2001 were used. In experiment 2 (ex. 2),
the herring caught by local fishermen in The Sound in
February 2002 was used. The herring was salted by a
herring manufacturing company. One hundred kilo-
grams of whole-headed herring was mixed with 10 kg of
salt. After 1 day the barrel was filled with saturated
brine and stored at 0—5°C. In ex. 1 eight barrels were
used and in ex. 2 four barrels were used. In Table 1 the
experimental set-up is listed and the days of storage are
specified. At each sampling time 20-25ml brine was
taken for analysis from each barrel. Upon sampling, the
brine was centrifuged at 10,000 g for 20min at 5°C to
remove tissue parts and insoluble matter and kept at
—80°C until analyses were carried out.

The two experiments are combined in one overall
dataset (38 samples), in the attempt to make a model
including the seasonal variation.

2.1. Protein content

The protein content of the brine was determined by
the Kjeldahl method (Total N x 6.25) (AOAC, 1996).

2.2. NIR measurements

The NIR spectra were measured with an InfraProver,
II Fourier transform spectrometer (Bran and Luebbe,
Germany) using a cuvette with a lightpath of 2mm
(Hellma fluorescence cell with four windows). Spectral
range of the NIR spectroscopy from 1000 to 2500 nm
(10,000 to 4000 cm ') was used.

2.3. Multivariate-data analysis

Initial multivariate-data analysis was performed with
PCA (Martens & Neas, 1989). This method can be used

Ripening ex. Barrel Salting date Sampling date/days from salting
1 A, B 23-08-01 04-10-01 42 16-02-02 178
C, D 28-08-01 04-10-01 37 30-10-01 68
E, F 05-09-01 04-10-01 29 30-10-01 55
G, H 20-09-01 12-10-01 22 30-10-01 40 16-02-02 149
2 A, B 08-01-02 03-03-02 54 02-04-02 82 25-04-02 112 22-05-02 133
C, D 14-01-02 03-03-02 48 02-04-02 76 25-04-02 106 22-05-02 127
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for exploring the NIR data, to see if information about
the ripening of the salted herring can be extracted from
the data. Multivariate calibration on the NIR spectra
was performed using partial least-squares (PLS) regres-
sion (Martens et al., 1989) and protein concentration as
the dependent variable. The PLS model was validated
using leave-one-out cross-validation (Wold, 1978; East-
man & Krzanowski, 1982). The principle of leave-one-
out cross-validation is to leave one sample out and make
a PLS model using the rest of the samples. This
procedure is repeated until all the samples have been
left out once. The predictive performance is tested using
the root mean-squared error of cross-validation
(RMSECYV) and the correlation (r) of the predicted
versus measured y-values. The RMSECV is given by
comparing the predicted value and the reference value as
shown in Eq. (1).

AN2
RMSECV = \/m%. (1)

The y and p represent the measured reference value
and the predicted value, respectively, and n is the
number of samples. In order to test if the two
experiments cover the same variation range, test-set
validation was used. The principle of test-set validation
is to predict the samples of the test set with a model
based on the calibration data. If the test set is well
described using the same complexity and loadings given
by the calibration, the test set spans the same space as
the calibration set. If the test set is not well described by
the calibration set model, the calibration set does not
explain the same variation as the test set and this is
reflected in poor predictions (Martens & Nes, 1989).
The validation is expressed by the Root Mean-Squared
Error of Prediction (RMSEP). The data analysis was
performed using The Unscrambler® Ver. 7.8 (Camo,
Norway) and MatLAB 6.5, Matworks Inc.

3. Results and discussion
Total nitrogen content in brine expressed as protein

increases up to approx. 5-6 g/100 g (Table 2) during the
storage period. This is in agreement with previous work

Table 2

by Nielsen (1995), who found similar increase in protein
contents in brine from salted herring. In the raw NIR
spectra, scatter effects are present and spectral pre-
treatment by a 2-window first derivative Savitzky—Golay
filter (Martens & Nes, 1989) was performed. In Fig. 1,
raw NIR spectra and pre-treated spectra in the region
from 1000 to 2500 nm are shown. As the protein will be
degraded during the storage of barrel salted herring, the
brine will consist of a mixture of peptides and amino

12 T T
@
Q
c
©
a
2
<}
7
a
<

-02 1 L

1000 1500 2000 2500

(a) Wavelength (nm)

0.05 : .

0.04f -

0.03f -
]
e ooz -
©
a
2
]
8 oot} i
<

ok
001} -
-0.02 L L
1000 1500 2000 2500

(b) Wavelength (nm)

Fig. 1. NIR spectra, (a) raw NIR spectra in the range from 1000 to
2500 nm and (b) first derivative pre-treated spectra in the range from
1000 to 2500 nm.

Protein content (g/100 g) in barrels determined by Kjeldahl method (N x 6.25)

Barrels ex. 1

Barrels ex. 2

Sampling date A B C D E F G H Sampling date A B C D

04-10-01 3.55 3.66 3.04 3.42 3.45 3.58 03-03-02 3.08 3.35 3.46 3.00
12-10-01 2.59 3.33 02-04-02 3.69 3.31 3.78 3.62
30-10-01 3.30 3.40 3.77 3.85 2.89 3.62 25-04-02 4.56 3.93 6.40 4.17
16-02-02 4.48 4.76 4.81 4.79 22-05-02 4.50 4.09 4.57 5.37
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acids. The protein absorption will be due to absorption
of these molecules. In general amides absorb in the
region of 1460-1490nm, and 1570nm which corre-
sponds well with the absorptions band observed in the
region from 1470 to 1587 nm. Amide I absorbs around
2150-2180 nm, amide II around the region of 1960-
2050 nm and amide IIT around 2050, 2110 and 2150—
2180nm. This also makes sense as absorption can be
seen in the region from 2110 to 2300 nm (Williams, 1987,
Osborne et al., 1993).

A preliminary PCA was performed to study the data.
Two samples were removed as outliers and optimization
of the model by selecting a region in the NIR spectra
from 1294 to 1902nm based on loadings, was per-
formed. The resulting PCA model used three principal
components (PC) and explained 96.8% of the variance.
In Fig. 2, two score plots from the three-component
PCA model are shown. The score plots can provide
information about changes that happen during storage
of herring and the capability of NIR spectroscopy to
describe it. The two parameters of special interest are the
storage time and the seasonal variation (batch varia-
tion). The seasonal variation can be observed in Fig. 2a,
where PC1 and PC2 tends to explain the experiments
performed in autumn (ex. 1) and winter (ex. 2). Fig. 2b
describes information related to the storage time, where
storage exceeding 100 days can be distinguished from
the shorter storage times from 0 to 100 days by PC1 and
PC3. Within the two groups it is not possible to
distinguish the storage time further. From the PCA
model it is obvious that the NIR measurements provide
information related to the changes taking place in
herring during the storage period.

3.1. Multivariate regression

Multivariate regression was performed in order to
correlate the actual protein content to first derivative
NIR spectra. Data inspection based on the y-values
revealed one sample as an outlier, which was caused by
high protein content for the specific sample. The
deviation was considered to be a sampling or a
laboratory error and the sample was removed from the
data set. Together with the two samples removed during
the PCA, a total of three samples were removed before
performing the PLS analysis. A PLS regression, on the
entire spectral range is described by five factors,
explaining 90.5% of the X-variance and 78.4% of the
Y-variance, r is 0.87 and the RMSECYV is 0.34g/100 g.
An uncertainty test (Martens & Martens, 2002) was
performed in order to refine the model and to find the
spectral regions contributing the most to the predictive
performance. The use of this procedure can reduce the
number of spectral variables and thereby often the
model complexity. Sixteen regions consisting of variable
regions or individual variables were selected by the
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Fig. 2. Score plot from a three factor PCA model, (a) Score plot of
PC1 versus PC2 explaining the batch/seasonal variation and (b) Score
plot of PCI versus PC3, separating the samples stored less than 100
days and more than 100 days.

uncertainty test approach. This is illustrated in Fig. 3,
where the grey areas are the selected informative
regions. The PLS regression using the uncertainty test
performed equally well, as the first model, which was
based on the entire NIR spectra. This confirms that the
removed wavelengths did not contribute in explaining
the protein content. The relevant part of the spectra was
explained by four factors, fitting 95.1% of the X-
variance and 87.7% of the Y-variance. In Fig. 4 the
prediction error, expressed by RMSECYV, is given as a
function of the number of PLS components for the PLS
model based on the entire spectra and the PLS model
using the uncertainty test. The first two PLS factors
explain the storage time, in a similar way as the first and
third factor of the PCA model. In Fig. 5 the predictive
performance of the PLS regression model is illustrated
with predicted protein (cross-validated) content versus
the actual protein content. By the uncertainty test
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Fig. 3. First derivative NIR spectra marked with the selected regions
based on Martens and Martens (2002) uncertainty test.
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Fig. 4. Prediction errors (RMSECV) versus the model complexity of
the model based on the entire spectra (—) and the model using the
uncertainty test approach (- - -).

approach the resulting model is a four factor model with
rof 0.93 and RMSECYV of 0.25 g/100 g. Interpretation of
the informative spectral regions in relation to chemical
assignments corresponds well with the spectral regions
related to specific N-H vibrations. This indicates that
the NIR spectroscopy is highly correlated to the protein
content in brine and that the protein content can be
determined despite the high water and salt content
present in brine of salted herring.

Another issue is how well each of the two experiments
can describe the variation in the other experiment, which
was tested by test-set validation using the entire NIR
spectra. Two approaches were tested. In the first
approach; ex. 1, was selected as the calibration set and
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Fig. 5. Predicted versus measured plot of protein concentration in
brine of barrel salted herring for a four factor PLS model based on
selected NIR spectra regions.

tested using ex. 2, and in the second approach using ex. 2
as calibration set and ex. 1 as test set. Ex. 1 performed
poor, when predicting ex. 2, whereas ex. 2 is capable of
explaining ex. 1 in a five-component model, explaining
85% of X and 69% of Y, ris 0.87 and RMSEP of 0.4 g/
100 g. Comparing this result with the regression model
based on both experiments, it is obvious that ex. 2, is
dominant in the overall model and that good sampling is
needed to provide proper validation.

It is interesting to investigate if storage time can be
predicted from the NIR spectra. During storage the
protein matrix within the fish and the brine changes, due
to diffusion between the fish and the brine and due to
presence of salt. Furthermore, an enzymatic degradation
of the larger proteins into smaller amino acids occurs.
The changes in protein concentration and the degrada-
tion of protein are dependent on the storage time. In
Fig. 6, a plot of the storage time versus the protein
concentration is shown. The correlation between the
storage time and the protein concentration is 0.87. The
figure indicates a relation between protein concentration
and the time of storage, where the protein concentration
increases by time. A PLS regression performed on the
entire NIR spectra and storage time, gives a 3 factor
model describing 79.7% of the X-variance and 59.8% of
the Y-variance, r is 0.76 and RMSECYV is 33 days. It is
known that the concentration of soluble proteins in
herring during the ripening is not a linear function of the
storage time (Olsen & Skara, 1997). This may reflect the
low correlation and the relative high RMSECYV given by
the PLS model. On the other hand, the scatter plot in
Fig. 6 does indicate linearity in the selected storage
period, and to some extent it seems that the relation
between storage time and the protein concentration can
be approximated by a linear function.
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Fig. 6. Scatter plot of protein concentration in brine from barrel
salted herring versus storage time, correlation is 0.87.

4. Conclusion

Sampling of and measurements on brine are easy to
perform compared to sampling of whole fish. A PCA
suggests that NIR spectroscopy of brine in the range of
1000-2500 nm, carry information related to changes in
the nitrogen fraction of herring and thus can be a
potential indicator for the ripening characteristics of
salted herring, as brine from the early stage of ripening
e.g. before 100 days, can be separated from brine the late
stage of ripening e.g. after 100 days. Furthermore
multivariate-regression modelling shows that the protein
content in brine can be predicted by NIR spectroscopy
using the region from 1000 to 2500nm. Further
optimization by variable selection results in a PLS
regression model with the correlation coefficient of 0.93
and a prediction error of 0.25g/100 g. The study shows
that NIR spectroscopy is an obvious alternative to the
time consuming chemical analysis to determine the
protein concentration. Further studies using the brine of
salted herring instead of sampling a whole fish has to be
performed to investigate whether or not more detailed
information about the ripening of salted herring can be
extracted from the brine using spectroscopy.
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The relations between the sensory quality of 24 different carrot genotypes and content of dry matter,
non-volatile and volatile compounds were studied using a multi-block approach called LS-parPLS. The
prediction of five sensory attributes; bitterness, sweetness, terpene flavour, green flavour and carrot fla-
vour, gave prediction errors (RMSECV) between 0.98 and 1.36 and correlation coefficients (r) between
0.60 and 0.81. The explained Y-variances were between 15.1% and 66.0%. The highest prediction error
was observed for the attribute carrot flavour whereas green flavour gave the best prediction. The
attributes green flavour, bitterness and terpene flavour showed fairly good predictions (r/RMSECV/%
exp-Y =0.81/0.98/66.0, 0.79/1.23/62.3 and 0.71/1.04/50.2) whereas sweetness gave an unexpected poor
prediction (r/RMSECV/% exp-Y = 0.67/1.36/44.6). Non-volatile compounds found to be important predic-
tors were chlorogenic acid (5-CQA), sucrose, 6-methoxymellein (6-MM), falcarindiol (FaDOH), and
falcarinol (FaOH). The volatile compounds found to be important predictors are considered as key flavour
compounds of raw carrots: terpinolene, B-pinene, sabinene, y-terpinene, o-pinene, B-bisabolene,
caryophyllene and cuparene. In general, the overall results show that the sensory quality variation in
the material regarding bitterness, green flavour and terpene flavour are explained by relatively few
parameters. Despite that the results revealed some reliable relationships between the sensory attributes,
aroma and chemical analysis, a large variance (about 40%) in the sensory block of variables remained
unexplained and still needs further investigation for an in-depth understanding of sensory quality.
LS-ParPLSc is shown to be feasible for handling several types of data blocks in one regression model.

© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Horticulturists have been working on genetic approaches for
improving nutrient content and visual appeal of vegetables in
hopes of increasing consumer consumption of beneficial phyto-
chemicals. Consumers have shown an increased interest in healthy
food and an increased demand for diversity in vegetables (Jongen,
2000) and in order to be able to act on changing consumer de-
mands, it is important to have quantitative means for assessing
quality and quality changes in vegetables. Biological materials such
as carrots are complex substances that usually have uncontrollable
variations in quality. These variations can arise from genetics, envi-
ronmental conditions or be due to pre-processing (Baardseth et al.,
1996; Hogstad, Risvik, & Steinsholt, 1997; Rosenfeld, Aaby, & Lea,
2002; Seljasen, Bengtsson, Hoftun, & Vogt, 2001a; Simon, Peterson,
& Lindsay, 1980). Carrot genotypes with different colours (orange,
red, yellow, purple and white) are now available on the market and
they show a large diversity in quality (Alasalvar, Grigor, Zhang,

* Corresponding author. Tel.: +45 89 99 34 13; fax: +45 89 99 34 95.
E-mail address: Stine.Kreutzmann@agrsci.dk (S. Kreutzmann).

0950-3293/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.foodqual.2008.03.007

Quantick, & Shahidi, 2001; Kreutzmann, Christensen, & Edelenbos,
2008; Kreutzmann, Thybo, & Bredie, 2006).

Carrots have a number of chemical and physical quality charac-
teristics and the eating quality can be probed directly by sensory
methods or indirectly by chemical, mechanical, or optical measure-
ments. Important properties are contents of sugars, dry matter,
non-volatile bitter compounds and volatile compounds. However,
it is a challenge to understand exactly which chemical compounds
and combination of compounds that affect the sensory-perceived
quality.

Multivariate data analysis using ordinary principal component
analysis (PCA) and partial least squares (PLS) regression are well
known when trying to understand the sensory quality in relation
to physical and chemical properties of carrots (Kreutzmann et al.,
2008; Kreutzmann, Thybo, Christensen, & Edelenbos, in press;
Rosenfeld et al., 2002; Seljdsen et al., 2001a). Trying to identify
which chemical analysis and individual components that are hav-
ing high impact on the sensory attributes can be overwhelming
even with general PCA and PLS regression. Multi-block (MB) anal-
ysis is one approach capable of handling data where several types
of analysis or blocks structures are present. Several approaches for
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performing MB analysis have been suggested and compared
through out the years. Wangen and Kowalski (1988) suggested a
MBPLS algorithm based on the MBPLS algorithm from Wold, Mar-
tens, and Wold (1984). Wold, Kettaneh, and Tjessam (1996) pub-
lished an approach referred to as hierarchical MBPLS. The
hierarchical MBPLS and the MBPLS are similar in the way they
combine the common information in a super level described by
super scores and super loadings. Westerhuis, Kourti, and MacGre-
gor (1998) showed that MBPLS provides the same predictions as an
ordinary PLS under the condition that the weighting and scaling
are the same. Furthermore they suggested another approach where
deflation is to be performed on the super scores instead of the
block scores of the X blocks as Wangen and Kowalski originally
suggested. Westerhuis and Smilde (2001) altered the deflation step
of the method suggested by Westerhuis et al. (1998) using only the
super scores to deflate the Y response and not change the X blocks.
An alternative MB approach is the serial-PLS (S-PLS) suggested by
Berglund and Wold (1999). This method shows resemblance to
the iterative least squares PLS (LS-PLS) purposed by Jergensen,
Segtnan, Thyholt, and Nzs (2004), Jergensen, Mekvik, and Nees
(2007). Mage (2006) followed up on the LS-PLS and suggested
the LS-parallel-PLS (LS-parPLS) and LS-parPLS with common com-
ponents (LS-parPLSc). These methods will be described in detail la-
ter in the data analysis section.

One of the main problems with most MB methods have been
how to determine the proper block scaling. Depending on how
the data blocks are scaled, very different results, hence interpreta-
tions can be obtained. The LS-parPLS and LS-parPLSc methods both
avoid the block scaling effect as they are invariant to scaling and
are capable of handling different complexities of the individual
block contributions. Mage (2006) compared the most frequently
used MB methods based on two case studies with design variables
and parallel blocks of spectroscopic measurements. The predictive
performance and interpretability were compared. The study con-
cludes that the models performed equally well in their predictive
performance if properly used whereas differences were be found
in the ability to provide meaningful interpretation of the models.
When the information in the X blocks was overlapping the LS-par-
PLSc model reflected the true data structure in the best way
whereas situations with no overlapping information was best
modelled by the LS-parPLS. The present study will focus on the
LS-parPLSc method. Originally, this method was suggested when
modelling designed data where information in addition to a design
can be split up into intuitively meaningful blocks (e.g. volatile and
non-volatile compounds) (Mekvik, Jergensen, Mdge, & Nas, sub-
mitted for publication). The information in the dependent variables
related to the design matrix is extracted from additional blocks be-
fore modelling the influence of these. If the experiment is not de-
signed the design step can be eliminated and the remaining
blocks are then analysed in such a way that any common structure
between the blocks is analysed separately from unique informa-
tion. LS-parPLSc provides an excellent visualizing and data inter-
pretation tool, as scores and loadings for each data block
contribution are given. This is where the LS-parPLSc distinguishes
itself from the ordinary PLS regression as it calculates a regression
model based on all data material but keep the structure of individ-
ual block contributions. An ordinary PLS regression has to be per-
formed either on one single block at a time or if many blocks are
present they have to be combined in on big block.

The aim of the present work was to investigate which chemical
compounds or combinations of compounds are important for the
sensory quality of raw carrots. In order to predict the sensory qual-
ity from the raw material measurements the non-volatile com-
pounds, contents of sugars, dry matter (Block I) are combined
with the volatile compounds (Block II) in one regression model
using LS-parPLSc. The main goal is to find a good model that

explains the variation in the end product well and to interpret
the given model parameters in order to obtain information about
which variables are important and in what way they seem to affect
the sensory quality.

2. Materials and methods
2.1. Plant material and sample preparation

Twenty-four different carrot genotypes were selected to repre-
sent a large variation in odour and taste by sensory screening of 50
genotypes. The genotypes were grown in Denmark, Norway and
Holland during 2004 and harvested at the end of October 2004.
The carrots obtained from Denmark were cultivated at Research
Centre Aarslev, those from Norway were cultivated at Plante Forsk,
The Norwegian Crop Research Institute, Hedmark and those ob-
tained from Holland were cultivated by Bejo Zaden B.V., Warm-
enhuizen. The roots were transported to Research Centre Aarslev
and stored at 1 °C until February 2005 at >95% relative humidity
(RH). All roots were stored in an ethylene free atmosphere except
for Bolero. A sample of this cultivar was moved to apple storage
facilities and exposed to ethylene generated by the apples one
month before sensory evaluation (Kidmose et al., 2004; Seljasen,
Hoftun, & Bengtsson, 2001b). The root weight varied from approx-
imately 50-150 g. However, the most representative size within
each genotype was selected for analysis. Samples (8 kg) of carrots
were taken from each genotype and divided into sub-samples of
1.5-2.0 kg carrots of first class quality, i.e. carrots with no visible
damage representing each replicate. The carrots were then care-
fully washed, manually hand-peeled and trimmed. Approximately
0.65-1.00 mm of the periderm was removed by peeling and 2 cm
of the tip and 2 cm of the top was also removed by trimming.
The peeled carrots were cut into 2 x 2x20 mm sticks using a food
processor (Robot Coupe CL50, Vincennes Cedex, France), carefully
mixed and samples of 1500 g were taken for immediately analysis
of sensory quality, volatile compounds and phenolic acids. All anal-
ysis was carried out in three replicates. The rest of the raw carrots
were frozen at -24 °C until analyzed for polyacetylenes, isocoum-
arin, sugars and dry matter content 2-4 months later.

2.2. Sensory analysis

Quantitative descriptive analysis was performed as previously
described (Kreutzmann et al.,, 2008). A panel consisting of 10
trained assessors (5 females/5 males, aged from 26 to 54 years)
evaluated the sensory quality in terms of 4 odour attributes, 7 fla-
vour attributes, 2 taste attributes, and 1 aftertaste attribute. The
fourteen attributes were: terpene aroma, carrot aroma, green aro-
ma, faded aroma, terpene flavour, carrot flavour, green flavour,
faded flavour, nutty flavour, soapiness, sickenly sweet flavour, bit-
terness, sweetness and burning aftertaste. The sensory laboratory
and the computer screens were illuminated with red light during
evaluation to mask visual differences between samples. The panel-
lists evaluated the samples at individual speed by descriptive anal-
ysis on an unstructured 15 cm line scale with intensity ratings
ranging from low (value 0) to high intensity (value 15). All data
was registered on a direct computerised registration system (FIZZ,
ver. 2.00 M, Couternon, F).

2.3. Chemical analysis

Extraction and quantification of the polyacetylenes falcarindiol
(FaDOH)), falcarindiol 3-acetate (FaDOAC), falcarinol (FaOH) and 6-
methoxymellein (6-MM) were performed by solvent extraction
and reversed phase-high performance liquid chromatographic
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(RP-HPLC) according to the method of Kreutzmann et al. (2008).
Polyacetylenes and 6-MM were identified by peak addition of
authentic standards and quantified using calibration curves of
authentic standards isolated from carrots.

Extraction and quantification of phenolic acids were performed
by solvent extraction and RP-HPLC according to the method of
Kreutzmann et al. (2008). Phenolic acids were identified on an Agi-
lent HPLC-DAD-MS station also previously described by Kreutz-
mann et al. (2008). Phenolic acids derived from p-coumaric acid,
ferulic acid and caffeic acid were identified based on retention time
and their LC-MS and UV-data.

Extraction and quantification of sugars were performed with ul-
tra pure water and analysed by analytical high performance anion
exchange chromatography (HPAEC) according to the method of
Kaack, Christensen, Hansen, and Grevsen (2004). Quantification
was performed on a Dionex Series 300DX ion chromatograph pre-
viously described by Kreutzmann et al. (2008). Sugars (fructose,
glucose and sucrose) were identified by authentic standards and
quantified using calibration curves. In total 18 non-volatile com-
pounds were identified and quantified.

2.4. Volatile analysis

Volatile compounds were collected from 50 g fresh-cut carrots
by dynamic headspace sampling according to the method de-
scribed by Kjeldsen, Christensen, and Edelenbos (2001). Volatile
compounds were quantified by gas chromatography (GC) and iden-
tified by GC-mass spectrometry (MS). The individual volatiles
were tentatively quantified from the FID peak areas relative to that
of the internal standard ((E)-2-hexen-1-ol). The response factor
was set to 1 for all compounds. Compounds suggested by the MS
database (NIST, 1998) were verified by comparison of the relative
retention indices (RI) and mass spectra of authentic reference com-
pounds unless noted. Thirty volatile compounds were identified
and quantified.

2.5. Dry matter

Dry matter was determined gravimetrically by weighing before
and after lyophilisation in a ventilated oven at 80 °C for 20 h (Lyt-
zen A/S, Herlev, Denmark).

2.6. Data analysis

Principal component analysis (PCA) (The Unscrambler 9.2,
CAMO ASA, Trondheim, Norway) was performed to describe the
correlation between sensory quality and instrumental measure-
ments of volatile and non-volatile compounds. Average sensory re-
sponse values over replicates were used in data analysis. Results
are presented by score and loading plots (Martens & Nas, 1989).
GC-data and HPLC-data was standardised (each variable divided
with its standard deviation) prior to data analysis and leave one
out cross validation was used as validation criterion (Eastman &
Kranowski, 1982).

2.6.1. LS-ParPLS with common loadings (LS-ParPLSc)

The model LS-ParPLSc aims to model the predictive information
in several blocks of data simultaneously. The principle is to split
the information in each block into three parts:

1. Information in a possible design matrix which can be used to
predict is firstly determined by a least squares regression (LS
part).

2. Additional common information between the two blocks
(c-part).

1.3
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Fig. 1. RMSECV versus the number of components for the each of the two blocks
contributions for the prediction of green flavour. The arrow shows the selected
factor combination (block I: #3 and block II: #5).

Table 1
List of attributes used for sensory profiling raw carrots with descriptions

Characteristics Description

Aroma*® Terpene Odour related to mixtures of turpentine-like flavour
aroma (a-pinene, caryophyllene, terpinolene)
Carrot Relate to a carrot odour
aroma
Silage Relate to faded hay odour
aroma
Green Smell like green carrot leaves
aroma
Hay aroma  Relate to hay odour
Flavour® Terpene Flavour related to mixtures of turpentine-like flavour
flavour (a-pinene, caryophyllene, terpinolene)
Carrot Like the flavour of carrot
flavour
Green Like the flavour of green carrot leaves
flavour
Soapiness Like the flavour of soft soap
Nutty Flavour of fresh hazelnut (green)
flavour
Taste® Sweetness Taste related to the taste of sucrose
Bitterness Sharp taste related to the taste of caffeine
Aftertaste®  Burning Related to sharp, burning taste in the mouth after 60 s
aftertaste

2 The term "aroma” is used for retro-nasal odour perception.

" The term “flavour” is used for intra-nasal detection of responses.

¢ The term "taste” is used for basic taste responses on the tongue.

4 The term “aftertaste” is used for responses received after evaporating the
sample.

Table 2

Mean values, standard deviation, min and max values for each sensory attribute
Sensory attribute Mean (std.) Min-Max
Carrot aroma 8.55 (1.08) 6.30-10.39
Terpene aroma 8.06 (1.66) 4.80-10.89
Green aroma 3.90 (1.15) 1.66-6.37
Carrot flavour 9.14 (1.33) 5.97-11.27
Terpene flavour 7.59 (1.32) 4.82-10.13
Sickenly sweet 1.96 (0.88) 0.75-4.44
Green flavour 5.56 (1.56) 2.10-8.89
Nutty flavour 2.99 (0.69) 1.49-4.41
Sweetness 7.18 (1.64) 4.13-10.79
Bitterness 4.30 (1.89) 2.13-10.35
Burning aftertaste 3.77 (0.80) 2.82-5.64

The data are averaged over assessors and replicates.
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3. Parallel extraction of additional individual predictive informa-
tion in the two blocks (ParPLS part).

Step 1 is avoided if, as here, there is no design and step 2 is
avoided if the blocks do not have common variation. The algorithm
for LS-ParPLSc is given below (Madge, 2006).

1. Remove design related information in y: Fit y to the design
matrix D using LS regression, calculating the residual f=y-
(D™D)"! Dy.

2. Remove design information from Data set 1 (X;) and Data set 2
(X,) by orthogonalization against D. X; oren = X1-D(D'D)~'D'X;
and X; ortn = Xo-D(D'D) ! DX,

3. Predict the extracted residual (f) calculated in step 1 by PLS
regression using the orthogonalised Data set 1 (X oren) and Data
set 2 (X2 orth)-
al. The residual f is fitted to (X; oren) — the Al first scores T1,

loadings P1 and weights W1 are calculated.
a2. The residual f is fitted to(X; ortn) — the A2 first scores T2,
loadings P2 and weights W2 are calculated.

Table 3
LS-parPLSc correlation coefficients, RMSECV, explained Y-variance and factor combi-
nation for block I and II of five selected sensory attributes

Sensory Correlation RMSECV # Fac Exp. Y-variance
attribute coefficients (r) CV model (%)
Bitterness 0.79 1.23 Block I -3 62.30
Block II -6
Sweetness 0.67 1.36 Block I -3 44.64
Block II -2
Green flavour 0.81 0.98 Block I -3 66.03
Block II -5
Terpene flavour 0.71 1.04 Block I -1 50.21
Block II -5
Carrot flavour 0.60 1.37 Block I -1 15.08
Block II -5

b. The scores T1 and T2 are analyzed by CCA. Using the
scores, the CCA only considers the relevant information
describing Y. If common components are present (evalu-
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Fig. 2. (A) Sensory profile of 24 different carrot genotypes. The radar plot includes the sensory attributes analysed by LS-parPLSc. (B) PCA loadings plot for factor 1 versus

factor 2.
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A and B are obtained. The common scores will be
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d1. The residual f is fitted to Xjoren by PLS regression.

Xiorth is orthogonalised against both D and T. scores.
The A,y scores T,y, loadings P;y and weight W,y are

c. Combine T, and the design [D T,] and fit y on these using LS calculated.
regression in order to calculate new residuals f.
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Fig. 3. Correlation plots of Y-predicted vs. Y-measured for the five sensory attributes.
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d2. The residual f is fitted to X ortnh by PLS regression. X; oren iS
orthogonalised against both D and T,y. The A,y scores Ty
loadings P,y and weights W,y are calculated.
e. Final LS regression step combining the design matrix (D) and
the scores Ty, Toy and T, and fit y against [D T, Tyy Touy].

The final LS-parPLSc model can be expressed:
V =Dfp +Tcfc + Twpiu + Taufou + €

Note that the canonical components in step 3b are determined
from the score matrices rather than the raw material. Hence spuri-
ous correlations are avoided as the noise is essentially filtered off
beforehand. Also, CCA is only used if high correlations exists within
the score matrices. If no common components are present the
method is equal to the LS-parPLS (Mdge, 2006).

The calculations were performed in MATLAB R2006a (The
Mathworks Inc). Before performing LS-ParPLSc, the data was di-
vided into two block contributions. Block I consisted of 18 vari-
ables - dry matter and HPLC analyses. Block II was a larger block
with 30 aroma variables analysed by GC-MS. The data set is not
based on a designed experiment, thus the design part of the algo-
rithm (step 1 and 2) is left out. A test using the LS-ParPLSc algo-
rithm to find the optimal number of components for each data
block was performed testing 1-10 factors on Block I and 1-10 fac-
tors on Block II. The test was evaluated by leave one out cross val-

o
idation and the prediction error (RMSECV = \/W). Fig. 1

illustrates the RMSECV versus the number of components for the
two blocks. The factor combination is picked based on a plateau
in the RMSECV curve, absolute or local minimum. The data was
studied in order to detect possible outliers and one outlier was re-
moved due to high leverage in the aroma analysis. After removing
the outlier the test was rerun to find the right number of factors
(see Table 1).

3. Results and discussion
3.1. Sensory profile

The carrot material was selected to span a relevant variation in
sensory quality of carrots and consists of 24 different carrot geno-
types. Mean values, standard deviation and the range of variation
(min-max values) of each sensory attribute are given in Table 2.
The attributes nutty flavour and burning aftertaste reveal the
smallest differences, while the attributes more characteristic for
carrot flavour, like terpene aroma, green flavour, sweetness and
bitterness show the largest differences between genotypes. In the
model used for LS-parPLSc the attributes interesting for carrot
quality and for the variation in the material will be analysed,
namely carrot flavour, terpene flavour, green flavour, sweetness
and bitterness. The interpretation of the sensory analysis is visual-
ized by a radar plot in Fig. 2a. The data is averaged over assessors
and replicates. Fig. 2a shows the differences in range for the sen-
sory attributes which are included in the analysis. The figure indi-
cates that genotype influences the variation in sensory quality.
Previous studies have also revealed that genotype largely influ-
ences the sensory quality (Kreutzmann et al., 2006, 2008, in press;
Seljasen et al., 2001a; Simon, Peterson, & Lindsay, 1982). From
Fig. 2a it is observed that the large differences are not caused by
one extreme genotype but by the fact that the genotypes used have
a large variation span. Furthermore PCA confirms the large varia-
tion between the 24 genotypes and the sensory attributes
(Fig. 2b). The PCA explaining 47% in component one and 22%
explained variance in component two shows bitterness and green
flavour are highly correlated but they are also slighty correlated to

terpene flavour. Component one mainly describes the harsh flavour
variation e.g. bitterness and green flavour whereas the sweeter fla-
vour components are described by component e.g. sweetness and
carrot flavour.

3.2. Prediction of sensory quality from instrumental measurements

The selection of factor combinations for prediction of the five
sensory attributes, bitterness, sweetness, terpene flavour, green
flavour and carrot flavour was based on RMSECV and are listed in
Table 3. The same number of factors from block I are selected for
bitterness, sweetness and green flavour, whereas the factor combi-
nations from block II are six, two and five, respectively. Terpene fla-
vour and carrot flavour both have a factor combination of one
factor for block I and five factors for block II. Fig. 1 shows RMSECV
versus the number of components for each of the two blocks con-
tributions for the prediction of green flavour. The arrow shows the
selected factor combination (block I: #3 and block II: #5).

The search for common factors did not result in any common
scores between the sensory attributes and the two blocks. Thus,
the following data interpretation is based on the individual block
contributions from block I to block II.

The prediction of the five sensory attributes gave prediction er-
rors (RMSECV) between 0.98 and 1.36 and correlation coefficients
(r) between 0.60 and 0.81 (Fig. 3, Table 3). The explained Y-vari-
ances were between 15.1% and 66.0% (Table 3). The worst predic-
tion was observed for the attribute carrot flavour and the best
prediction was seen for green flavour. The attributes green flavour,
bitterness and terpene flavour showed fairly good predictions (r/
RMSECV/% exp-Y=0.81/0.98/66.0, 0.79/1.23/62.3 and 0.71/1.04/
50.2) whereas an unexpected poor prediction was seen for sweet-
ness (r/RMSECV/% exp-Y=0.67/1.36/44.6). This was unexpected
since the carrot samples showed a large span in the total sugar
content ranging from 5.53 to 9.32 mg/100 g FW and the sensory
evaluation had a wide span in sensory score of sweetness (Table
2). During the sugar analysis, the individual sugars (sucrose, fruc-
tose and glucose) content was determined, though none of these
variables contributed to the prediction of sweetness in accordance
with results by Rosenfeld, Samuelsen, and Lea (1998). In contrast,
Seljasen et al. (2001a, 2000b) found a correlation between sweet
taste and sucrose. Similarly to sweetness, carrot flavour showed
poor prediction (r/RMSECV/% exp-Y =0.60/1.37/15.1). Carrot fla-
vour is a complex sensory attribute that is likely to be determined
by terpene content but also sweetness could play a role for carrot
flavour. The result indicates that carrot flavour might represent an
attribute difficult for the judges to evaluate. In general a better
overall prediction between the flavour attributes and the volatile
compounds was expected since sensory-perceived flavours in
raw carrots such as green, carrot and terpene have earlier been cor-

Table 4
Important predictors based on biplots and regression coefficients

Bitterness Green flavour Terpene flavour
Dry matter Dry matter 5-CQA
5-CQA 5-CQA Sucrose
Sucrose 6MM FaDOH
FaDOH Sucrose FAOH
Terpinolene FaDOH 6 MM
y-Terpinene FAOH Terpinolene
B-Bisabolene Terpinolene y-Terpinene
o-Pinene v-Terpinene Caryophyllene
B-Pinene Cuparene B-Bisabolene
Caryophyllene Limonene a-Pinene
Sabinene B-Myrcene B-Pinene
Cuparene B-Pinene Cuparene
Sabinene

The list is not ordered according to importance.
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related well with the volatile compounds (Rosenfeld et al., 2002;
Seljasen et al., 2001b; Simon et al., 1980).

The flavour attributes are expected to be described mainly by
the volatile compounds (Rosenfeld et al., 2002; Seljdsen et al.,
2001b; Simon et al., 1980). The present study does confirm previ-
ous findings to a certain extent but it also shows a contribution
from dry matter and non-volatile compounds (block I). The pres-
ence of block I in the prediction model improves the prediction
with the exception for carrot flavour where less than 1% is ex-
plained by block I. Green flavour is described by both blocks but
block II is responsible for explaining 60% of the explained Y-vari-
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ance. A smaller contribution from block I is observed for terpene
flavour where the ratio between the two blocks is 1-9, respec-
tively. The same ratio between blocks is observed for bitterness.
Sweetness is the only attribute where block I constitutes to a high-
er explained Y-variance of approximately 10% in comparison to
block II.

One of the forces of LS-parPLSc is the ability to provide informa-
tion about individual block contributions and significant variables.
In order to take a closer look at the relationships between the sen-
sory quality, dry matter, non-volatile and the volatile measure-
ments for the best performing predictions, green flavour, terpene
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Fig. 4. Bi-plots of factor 1-3 for (A) block I and (B) block II. The descriptors in bold represent the variables spanning the space of the PLS regression model of green flavour in

block I and block II.
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Fig. 5. Illustration of (A) regression coefficients for block I. (B) regression coefficients for block II.
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flavour and bitterness are further investigated. Table 4 lists the
important predictors for bitterness, green flavour, and terpene
flavour.

For green flavour a model with dry matter and non-volatiles
(block I) explains one third of the Y-variance. According to loadings
and regression coefficients (Figs. 4A and 5A) the important predic-
tors are dry matter, chlorogenic acid (5-CQA), 6-MM, FaDOH, and
FaOH and sucrose. The main contributors in explaining the remain-
ing Y-variance from block II are terpinolene, sabinene, -pinene, y-
terpinene, B-myrcene, limonene and cuparene (Figs. 4B and 5B).

For terpene flavour, the major contributors are 5-CQA, 6MM, Fa-
DOH, FaOH and sucrose based on loadings and regression coeffi-
cients (Table 4 and Fig. 5A). The second block main contributors
are terpinolene, y-terpinene, o-pinene, B-pinene, caroyphyllene,
cuparene and B-bisabolene. The two most outstanding volatile
compounds are terpinolene, which mainly seems to influence the
first two factors, and y-terpinene, which has higher impact on
the higher factors. Both compounds show a fairly reasonable corre-
lation to terpene flavour. A three factors model on block I show
that dry matter, 5-CQA, FaDOH and sucrose are most important
variables in describing bitterness. Block II gives the largest contri-
bution when explaining bitterness using six factors, which count
for more than 80% of the explained Y-variance. The important vari-
ables are terpinolene, B-pinene, sabinene, y-terpinene, a-pinene, -
bisabolene, caryophyllene and cuparene.

Green flavour and bitterness seem to have common features
when it comes to chemical and physical properties because the
profiles of the regression coefficients of block I appear to be very
similar (Fig. 5A). On the contrary, the aroma profiles seem to sep-

arate the two attributes as the regression coefficients differ for
block II (Fig. 5B). The similarity in prediction of these two sensory
attributes is supported by the initial PCA (Fig. 2B) which also indi-
cated that the two attributes were highly correlated. Intercorrelat-
ed sensory attributes with nearly equal regression coefficients are
assumed to represent some redundancy and likely explain the
same basic information. The prediction of bitterness, green flavour
and terpene flavour were explained by almost similar chemical
components, due to the high correlation between these sensory
attributes.

Dry matter is naturally related to texture attributes. However,
Table 4 indicates that this variable is an important predictor for
the sensory quality with respect to flavours and bitterness. Previ-
ously, high correlation between sucrose and dry matter was found
and relationship between bitter tasting flavour compounds and dry
matter were observed in carrots grown at high temperatures
(Rosenfeld, Samuelsen, & Lea, 1998).

Previously, falcarindiol have been correlated to bitterness in
raw carrots whereas falcarinol, the most abundant and bioactive
of the polyacetylenes, was inversely correlated to bitterness of car-
rots (Kreutzmann et al., 2008). Kreutzmann et al. (2008) did not
find 5-CQA to be correlated to bitterness or other flavours and
the contribution of 5-CQA and other phenolic acids to taste in
raw carrots is still unclear.

The volatile compounds found to be important predictors are all
considered as key flavour compounds of raw carrots (Kjeldsen,
Christensen, & Edelenbos, 2003; Rosenfeld et al., 2002; Seljdsen
et al.,, 2001b). Harsh flavour attributes (terpene flavour, green fla-
vour, bitterness and burning aftertaste) are found to increase in
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intensity with increasing terpene content (Kreutzmann et al., in
press). According to Burdock (2002) caryophyllene is characterised
by terpene odour, like cloves or turpentine while y-terpinene is
characterised as having citrus-like odour and significant correla-
tions between green flavour and terpene flavour and y-terpinene
and caryophyllene, respectively, have previously been found
(Rosenfeld et al., 2002; Seljdsen et al., 2001b). The rest of the vol-
atile compounds isolated in this study were highly intercorrelated
and did not contribute to further explanation of the sensory quality
(Fig. 4).

4. Conclusion

The overall results show that the sensory quality variation in
the material regarding bitterness, green flavour and terpene fla-
vour can be reasonably predicted by relatively few volatile and
non-volatile compounds. Non-volatile compound predictors were
cholorogenic acid (5-CQA), sucrose, 6-methoxymellein (6-MM),
falcarindiol (FaDOH), and falcarinol (FaOH) whereas the volatile
compounds with the highest prediction impact are the flavour
compounds terpinolene, B-pinene, sabinene, y-terpinene, a-pinene,
B-bisabolene, caryophyllene and cuparene. Despite that the results
revealed some reliable relationships, a large variance (about 40%)
in the sensory block of variables remained unexplained and still
needs further investigation for an in-depth understanding of the
sensory quality.

LS-ParPLS/LS-parPLSc is shown to be a useful tool when han-
dling several types of data blocks in one regression model. The
method does not pose mathematically induced scaling problems
and associated interpretation issues as in some of the existing mul-
ti-block regression methods where scaling can influence the
regression model and especially interpretation significantly. The
study confirmed that the predictive performance of the LS-parPLS
is not improved compared to the ordinary PLS but information
on the individual block level is easy to access.
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EEM fluorescence spectroscopy as a fast method to assess the brine composition of

salted herring

Abstract

Ripening of barrel-salted herring (Clupea harengus) is evaluated by the use of
fluorescence spectroscopy and protein determinations. During ripening, protein
degradation takes place in the herring and protein is extracted into the brine. The
present study aims at identifying parameters which are correlated to the ripening
characteristics of barrel-salted herring and which can provide a better understanding
of the ripening process. Front face fluorescence landscapes were obtained by
measuring directly on the brine from barrel-salted herring. These data were analyzed
by parallel factor analysis (PARAFAC), which revealed four fluorophores,
tryptophan (two states), vitamin B6 and riboflavin. All four parameters showed an
increase in concentration during the storage period corresponding to an increase in
protein content that varied from 3g/100g at day 60 to 5g/100g after 277 days of
storage. It was not possible to see a difference in the development of the four
fluorophores during the ripening period. The protein content was predicted from the
fluorescence landscapes by partial least squares (PLS). The use of unfolded
fluorescence spectra gave an RMSECV of 0.26 g/100g and a correlation between the

measured protein content and the predicted values of 0.86.



Introduction

Herring (Clupea harengus) has always been of special interest in the Scandinavian
countries and the production of salted herring has been carried out for centuries
(Cutting, 1955). In recent years, focus on promoting fish and fish products has
increased, which has required improvement and optimization of the traditional
production processes. In the herring industry, the understanding of how the herring
changes during manufacturing is crucial in order to optimize the process.

Salting of herring is performed by an initial soaking of the fish in salt, which initiates
the extraction of fluids from the fish (Vokresensky, 1965). After the soaking period,
saturated brine consisting of water and salt is added and the herring is stored for a
period of up to 12 months. During this time, the fish undergo changes which will
result in the distinct taste and texture associated with salted herring. The proteins
undergo a degradation process (Nielsen, 1995) in which the protein fractions will be
extracted into the brine and the concentration of protein in the brine will increase as it
decreases in the herring. This exchange in protein constituents was observed by
Andersen and co-workers and Stefansson et al. (Stefansson, Nielsen and
Gudmundsdottir, 1995; Andersen, Andersen and Baron, 2007). The degradation
products released into the brine consist of soluble nitrogenous compounds like
peptides, free amino acids, smaller peptides and myofibrillar proteins (Nielsen, 1995).
As the changes in the protein concentration and the composition of nitrogenous
compounds are believed to reflect the ripening process, monitoring the changes in
protein in the brine could be a good indicator of the ripening stage of the herring.
Today’s monitoring of barrel-salted herring typically consists of conventional
chemical analysis or visual inspection. The result of the visual inspection depends
solely on the experience of the process operator who performs the evaluation. Thus,
monitoring tools, which secure a uniform evaluation of the ripening process of

herring, are needed to secure high product quality. A variety of well-suited analyses



for chemical composition (Nielsen, 1995) and texture analysis of fish exists (Nielsen,
Hyldig, Nielsen and Nielsen, 2005), but the majority of the analyses are time-
consuming and require laboratory skilled staff. In order to ensure better monitoring,
an alternative method is needed. Such an alternative analysis would be required to be
time efficient and easy to perform, thus not requiring specially trained laboratory
staff. Spectroscopy may be able to meet these requirements. Spectroscopic analysis
has the advantage of being fast and non-destructive. Near infrared (NIR) spectroscopy
has previously shown potential as a screening method for sorting herring based on fat
content (Nielsen et al., 2005). Furthermore, in a previous study of brine from salted
herring, NIR spectra correlated well with protein concentration (Svensson, Nielsen
and Bro, 2004). Fluorescence spectroscopy can be an alternative method due to its
high specificity and sensitivity and the possibility of measuring small changes in
protein concentrations. It has shown promising possibilities for assessing the quality
of various fish products such as oxidation of fish oils (Hasegawa et al., 1992),
determination of dioxin content (Pedersen et al., 2002), storage of canned sardines
(Aubourg and Medina, 1997; Aubourg et al., 1997) and differentiation of fresh and
aged cod, mackerel, salmon and whiting (Dufour et al., 2003). Performing
fluorescence measurements at several excitation wavelengths and measuring the
corresponding emission spectra will result in a fluorescence landscape also referred to
as an excitation-emission matrix (EEM). Fluorescence landscapes can be particularly
well analyzed by multi-way analysis, giving a unique decomposition of the
underlying structure, as shown by Pedersen et al. (Pedersen, Munck and Engelsen,

2002) and Andersen and Bro (Andersen and Bro, 2003) .

The objective of the present study is to investigate whether fluorescence
spectroscopic measurements on brine can provide useful information about the

ripening process of barrel-salted herring. The brine and fish constitute a closed



system in which any compound that leaves the herring is extracted into the brine.
Thus, the brine can be used to describe the changes taking place in the herring. The
main focus of the paper will be on protein and its degradation products to see if they
can be related to the ripening of salted herring. Parallel factor analysis (PARAFAC)
will be applied to decompose the fluorescence landscapes and multivariate or multi-
way partial least squares regression (PLS and N-PLS) will be used to correlate the

protein content in the brine with the fluorescence measurements.

Material and Methods

Production of Barrel-Salted Herring

Herring (Claupea harengus) caught in the Baltic Sea by commercial vessels was
brought to the manufacturing company, Lykkeberg A/S (Herve, Denmark). The
herring was processed according to Lykkeberg A/S production protocol for barrel-
salted herring. 100 kg of whole-headed herring was mixed with 10 kg of salt and
placed in a 100 L plastic barrel. After 24 hours, the barrel was filled with saturated
brine and stored at 0-5°C for 277 days. A total of ten barrels (batches) were monitored
and sampling was performed six times during the storage period, yielding 60 samples.
Sampling times were at days 60, 96, 123, 172, 213 and 277. At each sampling time,
20-25 ml brine was taken for analysis from each barrel. Upon sampling, the brine was
centrifuged at 10,000 g for 20 min at 5°C to remove tissue parts and insoluble matter.

The samples were kept in the freezer until analyses were carried out.

Protein Analysis — Kjeldahl

The protein content was determined by the Kjeldahl method (Total N x 6.25) (AOAC,

1996).

Fluorescence Spectroscopy



All samples were measured on a Perkin-Elmer LS50B spectrometer (Beaconsfield;
Buckinghamshire; UK) equipped with FLDM software. The brine samples were kept
in plastic vials and placed to thaw for 10 to 15 min. at room temperature. 3 mL of
brine was transferred to a quartz cell (11 ¢cm) and the sample was measured at room
temperature. Fluorescence measurements were performed in the range of 250-550 nm
for excitation with 10 nm intervals (30 excitation wavelengths) and emission was
measured for every nm in the interval from 260-650 nm (391 emission wavelengths).
The slit width was 5 nm for both excitation and emission and a 1% attenuation filter
was used. The measurements started with the highest excitation wavelength and

ended with the lowest to minimize photodecomposition of the sample.

Parallel Factor Analysis (PARAFAC)

Multi-way analysis in the form of PARAFAC (Harshman 1970) was used to
decompose the fluorescence landscapes. The fluorescence data were held in a three-
way array of the size 60 x 391 x 30 corresponding to 60 samples (objects), 391
emission wavelengths and 30 excitation wavelengths. PARAFAC decomposes the
fluorescence landscapes into a number of factors (F) by minimizing the sum of
squares of the residual (ejj) (Eq. 1). The number of factors is a reflection on how

many fluorescent compounds are present in the fluorescence data.

F
ik :Zaif bjf Cit t €k
f=I (=1,....I; j=1,...,J; k=1,.. . .K; =1,...,F) (D

Each PARAFAC factor consists of A-scores (ay, ... ,ar) and two sets of loadings, the
B-loadings (b, ... , br) and the C-loadings (cy, ... , cr). The A-scores represent the
sample direction and give the relative concentrations of the estimated components.

The B-loadings are estimates of the underlying emission spectra and the C-loadings



are estimates of the corresponding excitation spectra. Rayleigh and Raman scatter
was removed and the parameters constrained to be non-negative, in order for the
estimated model to make chemical sense (Bro and Sidiropoulos, 1998). The non-
negativity constraints were applied on all three dimensions, sample, emission and

excitation.

The factor selection was based on split-half tests. The data set was split up in two sets
of 30 samples and a PARAFAC model on each of the two sets was calculated. A
valid model has approximately similar loadings in the two split-half models. In
addition to the split-half test, the residuals and core consistency were assessed using
common sense and prior knowledge about the ripening process and PARAFAC

modeling of fluorescence spectroscopic data (Andersen and Bro, 2003)

Multivariate regression

Partial least squares regression (PLS) was applied to predict the chemically measured
protein concentration from the fluorescence measurements. Multivariate calibration
was performed using the scores from the PARAFAC model as well as the raw
unfolded fluorescence spectra (Martens and Nes, 1989). Furthermore, N-PLS was
also applied (Bro, 1996). The regression models were evaluated by the correlation
coefficients between predicted protein and measured protein content and by the root
mean squared error of cross validation (RMSECV) (Eq. 2) using segmented cross
validation (Eastment and Krzanowski, 1982). The segments were selected as batches,

thus one batch was left out each time.

RMSECV =

2



All calculations were performed in Matlab Version 7.4.0 (R2007a) (MathWorks,
Inc.), the PLS Toolbox (www.Eigenvector.com) and The Unscrambler ® v. 9.2

(Camo A/S).

Results and Discussion

Protein concentration in the brine

The Kjeldahl analysis shows that the protein content in the brine increases to approx.
3 g/100g after 60 days of storage (Figure 1). From day 60 to day 277, an increase in
the protein content from 3 g/100g to 5 g/100g is observed. The protein content still
seems to increase until the last day of sampling, which was performed on day 277.
The changes in the individual batches show that the protein concentration does not
follow exactly the same development in all the batches, but the overall trend is
similar.

These initial observations on the development in the protein content in brine are in
agreement with the findings by Andersen et al. (2007) who reported the same
development in protein content as a function of time. That study also showed that the
dry matter content in brine increased with 4% w/w, mainly due to protein and

peptides with a molecular weight below 55 kDa (Andersen et al., 2007).

Fluorescence measurements

The raw fluorescence landscapes show that fluorescence compounds are present in
the brine samples. In Figure 2, a fluorescence landscape of a representative brine
sample is shown. The landscape is shown without the Rayleigh and Raman scatter.
The first peak observed is the most dominant peak with AeXyax around 280-290 nm

and Aemp,x at 330-350 nm. This region is normally associated with tryptophan



fluorescence. The same peak has a shoulder with Aexpax/Aempax at 340/400 nm. Due
to the strong signal of the first peak, the peaks in th2e higher spectral region can not
be visualized, but a closer look reveals that more peaks are present with

A€Xmax/AMeMmax around 400/450 nm and 460/525 nm.

PARAFAC modeling

A four-component PARAFAC model seems to perform best. The four components
explain 99.6% of the variation in data. One may argue that a fifth component is
present at 390/460 nm, but according to the split-half analysis with five factors, this is
not plausible (results not shown). In Table 1, the AeXmax and Aemp,, for the four

estimated PARAFAC components are listed.

The aromatic amino acids tryptophan, tyrosine and phenylalanine are known to
exhibit fluorescence in the region of Aemmax/AeXmax 260-300/340-350 nm. They all
exhibit natural fluorescence and are known to be present in herring. However,
phenylalanine and tyrosine show much less fluorescence than tryptophan (Burnstein,
Vedenkina, and Ivkova, 1973; Wolfbeis, 1985).

The first and the second component with Aempax/A€Xmax 290/341 nm and 300/350 nm,
respectively, can be assigned to tryptophan fluorescence. Different peak
characteristics have been reported for tryptophan, depending on the state of the
molecule and the molecular environment (Duggan, Bowman, Brodie and Udenfriend,
1957; Pajot, 1976; Duggan et al., 1957). There may be several reasons why there are
two tryptophan contributions. When assessing the estimated excitation maxima, it has
to be taken into account that the maximum fluorescence intensity of the fluorescence
spectrophotometer was reached for samples with high tryptophan content and that
excitation was performed with a 10 nm step between each excitation. Thus, it can be

expected that both components would have excitation maximum between 290 and



300 nm. In addition, previous studies have shown that emission spectra of tryptophan
can shift in accordance to its surroundings. The physico-chemical conditions of the
surroundings such as polarity, viscosity and availability of charged groups will affect
the tryptophan residue and thereby the fluorescence properties of tryptophan. The
polarity of the solvent may cause the fluorescence maximum to shift to shorter or
longer wavelengths. If tryptophan residues are exposed to water, the maximum
emission wavelengths are found between 340-350 nm, whereas the totally buried
residues will emit around 330 nm. Thus, both components describe tryptophan
exposed to water, but they experience somewhat different solvent polarity (Lakowicz,

1999).

The third component has AeXpax/AeMpax at 330/394 nm. Two compounds in herring,
collagen and pyridoxine (vitamin B6), have fluorescence characteristics similar to
this. However, collagen is not soluble in water and it will not be present in the brine.
Instead, the component is believed to be vitamin B6. Vitamin B6 covers the three
vitamin B6 active components: pyridoxal, pyridoxine and pyridoxamine. Vitamin B6
is soluble in water and is present in plant and animal tissue (Swatland, 1987; Duggan
et al., 1957; Torres-Sequeiros, Garda-Falcon and Simal-Gandara, 2001). Each of the
vitamin B6 compounds show different fluorescence characteristics, depending on the
surroundings such as pH (Wolfbeis, 1985). At pH 7, the following AeXmax/A€Mmax
have been reported for pyridoxal; 330/385 nm, pyridoxamin; 335/400 nm and
pyridoxine; 340/400 nm (Duggan et al., 1957). These values are quite similar to the
properties of component 3.

Riboflavin is the flavin with the most intense fluorescence and is believed to be
described by the fourth component with AeXpax at 390 and 440 nm and Aemy,.x at 521
nm. In neutral aqueous solution, emission has been reported to be around 515 nm

(Woltbeis, 1985). Duggan et al. (1957) reported riboflavin to have Aemy,ax at 520 nm



with AeXmax at 270, 370 and 445 nm. The excitation in the lower region is not
observed, but may be drowned by the signal from tryptophan. Furthermore, the
characteristics of the riboflavin component are similar to the riboflavin component
identified in yoghurt which showed AeXmax at 370 nm and 445 nm and Aemyp,, at 530
nm (Christensen, Becker and Frederiksen, 2005).

In Figure 3, the four excitation and emission loadings are presented. The third and
fourth factor emission spectra look a bit peculiar in that they are not smooth and both
spectra indicate that more that one peak are present. There is no obvious reason for
this appearance, but it could be due to the low intensity of the two fluorophores in
question - close to the signal-to-noise limit. Another guess would be that one more
fluorophore is present, whose concentration correlates with the scores of components
3 and 4. The excitation loading for the third component has a shoulder at 380/390 nm

and both emission spectra have a shoulder at 460 nm.

For the region above excitation 320 nm, it was difficult to decide how many
compounds were present, probably due to a lower signal in this region. Local
PARAFAC models based on selected areas in this region were calculated in order to
see if more compounds were present (results are not shown). The conclusion was that

the system is most adequately described as a four-component system.

The development in scores compared with the protein concentration as a function of
time show that the scores follow the protein concentration fairly well with a general
increase throughout the storage period. In the first 60 days, an increase of 3 % is
observed, whereas the development in protein slows down after day 60 with an
increase in protein of 2 % during the remaining 210 days. In Figure 5, it can be
observed that batch 3 looks different from the others and one sampling time in batch

4 at day 123 deviates. A closer look at the fluorescence log book for batch 3 reveals
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that problems were experienced with the instrument when measuring batch 3. Due to
this, batch 3 is left out in the remainder of this study. Furthermore, day 123 in batch 4
is also considered as an outlier. In the initial data inspection, these outliers were not
recognized, because the samples do not deviate from the overall distribution of
samples. However, when looking at the scores and the development in time, it is
obvious that these samples are different. The estimated loadings do not change when
excluding the samples in question in the PARAFAC modeling. This shows that the
batches and outlier sampling times do not introduce a shift in the fluorescence and the
PARAFAC model is not affected. The increase in tryptophan scores as a function of
time can be explained by the degradation of protein into aromatic amino acids,
increasing the content of water soluble amino acids in the brine. The vitamin B6 and
riboflavin also increase in the brine throughout the ripening period. It is not possible
to distinguish between the four fluorophores based on their development in scores.
The correlation between the protein content and the PARAFAC scores is calculated to
get an indication of how the four factors are related to protein. The correlations of the
factors assigned to tryptophan are 0.77 and 0.76 for factors 1 and 2, respectively.
Factor 3 has a correlation of 0.74 and factor 4 has a correlation of 0.78. The relatively
high correlation between factor 4 (riboflavin) and the protein content is remarkable,
but riboflavin in the brine may be connected to the protein content and thus it must be

riboflavin bound to protein which is present in the brine.

A difference between the concentrations of the four components in the brine was
expected, especially in the beginning of the storage period. If sampling had been
performed more frequently in the first weeks of the storage period, more information
on this development of fluorophores in the early phase of the ripening might have
been obtained. Sampling of fish can be rather difficult to do uniformly (Andersen and

Bro, 2004; Jepsen, Pedersen and Engelsen, 1999) due to the non-homogeneity of fish.

11



Measurements obtained from the brine can hence be a simple alternative to measuring
directly on the fish and will also give a more uniform picture of the changes that a
batch undergoes as a whole. However, it is difficult to obtain a precise sample
representation of the entire barrel. The brine is surrounding the herring and it is not
possible to access the brine in the bottom of the barrel or in the middle of the barrel.
Therefore, sampling was performed on the top brine, which may vary according to

the location of the herring in the barrel.

Multivariate regression

Protein content in the brine is predicted from the fluorescence data to verify if the
identified fluorophores are related to the protein content in brine. The prediction is
performed in three ways: 1) using PARAFAC scores in a PLS regression, 2) using the
raw fluorescence landscapes in an N-PLS regression and 3) using the unfold
landscapes in a PLS regression. Regression was performed excluding the outliers
mentioned above and two samples for which the protein determinations were missing.
A total of 51 samples were included. The three regression approaches do not differ
much in their performance. Table 2 presents the results from the multivariate
calibration. All models required two PLS components. The correlation between the
chemically measured protein content and the predicted values (r) and the RMSECV
indicate that the model made on the unfolded fluorescence landscapes performed
somewhat better than the other models. The model made using the PARAFAC scores
gave the highest explained variance of X and the lowest explained variance of Y,
which seems reasonable, since PARAFAC decomposed the fluorescence landscapes
with the focus of obtaining the best description of X, whereas the two other methods
did not decompose the data before the prediction of protein content. However, the
predictive ability obtained using PARAFAC scores indicates that the four extracted

fluorescence compounds are connected to the changes in protein concentration. The
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results are satisfactory in comparison to a previous study which predicted the protein
content using NIR spectroscopy. The error estimates of this study showed an
RMSECYV of 0.25 g/100g (Svensson et al., 2004). However, the NIR spectra do not
provide detailed information about the smaller fractions present in herring or brine,
such as the degradation products of protein like peptides and amino acids. In order to
study the smaller protein fragments in brine, fluorescence spectroscopy can be a

better possibility.

Overall, it is shown that fluorescence spectroscopy is a fast alternative to the standard
methods used to assess the chemical composition of brine. It is fairly simple to
perform and it can provide a detailed picture of the changes that occur in the
constituents tryptophan, riboflavin, and vitamin B6. Probably, similar results or even
better predictions could have been obtained if measurements had been performed
directly on the herring. However, the brine has the advantage of being a fluid, which
reduces the sampling heterogeneity and makes it easier to handle the samples when
performing the measurements. Furthermore, measurements on brine can be
considered as a non-destructive measurement. This opens up for the use of
fluorescence spectroscopy in process control. Typically, it takes around 15 minutes to
obtain a fluorescence landscape, depending on the instrumental settings. For most
industrial purposes, this is too long to be used as a fast, on-line or at-line
measurement. However, in relation to the measurement of ripening of herring, which
can last for many months, it may not be a problem. Furthermore, with the knowledge
of the specific fluorophores that are correlated to the ripening, it is possible to design
dedicated fluorescence probes that only measure the most important excitation and

emission wavelengths.

Conclusion
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Front face fluorescence spectroscopy of brine from barrel-salted herring is measured
and the data analyzed with PARAFAC. The modeling reveals the presence of four
fluorophores in the brine. They are believed to be tryptophan (two states), vitamin B6
and riboflavin. All four compounds show similar overall development in scores
throughout the ripening period. The protein content increases similarly from approx.
3g/100g at day 60 to 5g/100g after 277 days of storage. PLS regression on unfolded
fluorescence spectra gives the best prediction (RMSECV of 0.26 g/100g and r of
0.86) of protein concentration compared to PLS regression using scores from a
PARAFAC model and N-PLS performed on the raw fluorescence landscapes. The
present study shows that fluorescence spectroscopy can reflect the overall changes in

protein concentration in brine with the same accuracy as NIR.
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Figure Legends

Figure 1. Protein concentration in brine as a function of storage time

Figure 1. PARAFAC emission and excitation loadings from split-half test with 4

factors. (-) split-half model I and ( -- ) split-half model II

Figure 2. Fluorescence landscapes of brine samples from barrel-salted herring. A)
Raw spectra AeXma/Aempax of 250-550/270-650 nm. B) Zoom in on the landscape.

The arrows indicate possible peaks.

Figure 3. Estimated PARAFAC loadings of four excitation and emission loadings

Figure 4. PARAFAC scores (1-4) and protein concentration (- - - -) as a function of

time for 10 batches. Protein concentration and PARAFAC scores have been

normalized. The legends for the PARAFAC scores are not given, as they show

approximately the same increasing pattern.
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Figure
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Figure 3

Figure 4
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Figure 5
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Table 1. AeXmax and Aempa, for a four-factor PARAFAC model

AeXmax Aempax
Factor 1 290 341
Factor 2 300 350
Factor 3 330 396
Factor 4 390/440 521

Table 2. Results from PLS regression and N-PLS regression

# Factors r RMSECV Exp. X Exp.Y

(g/100g) (%) (%)

PLS on PARAFAC scores 0.818 0.287 95.9 69.2
PLS on unfold EEMs 0.855 0.257 82.9 75.0
N-PLS on EEM 0.828 0.282 76.3 77.58
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