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Summary

This thesis describes the development and demonstrates the potential of fast
multivariate instrumental methods combined with chemometrics for monitoring,
handling and utilisation of quality variations in barley and wheat. The thesis
consists of seven papers (basis of the thesis) and three additional papers
(appendices). In the first part of the thesis, the applied instrumental and
chemometric data evaluation methods are briefly described as a background to the
research papers. The new screening methods presented in the included papers are
discussed in relation to their potential application within plant breeding, handling
and sorting and cereal processing, all of which may assist in improving the end
product quality.

One of the main aspects of this thesis is the development and application of single
seed analysis. The fast instrumental methods applied, including kernel morphology
by image analysis, hardness analysis and near infrared spectroscopy, have therefore
been chosen, since they can provide single seed data. These fast instrumental
methods are utilised as physical and chemical fingerprints which in combination
with chemometrics are used for the characterisation of wheat and barley quality.

Paper 1 demonstrates an exploratory evaluation of classical analytical micro-
malting data in which Principal Component Analysis (PCA) and Partial Least
Squares Regression (PLSR) are used for data reduction and defining of underlying
functional factors. Three papers address the issue of developing screening methods
for prediction of classical malting quality analyses. The use of single seed
morphology and hardness data on bulk samples (Paper 2) and near infrared
spectroscopy on bulk samples (Paper 3) shows potential predictive ability for the
physical and chemical parts of a malt quality profile, but was not able to predict the
biochemical part related to germination capacity. Paper 4 demonstrates the use of
fuzzy logic for the translation of a multivariate malt quality profile into a valid
overall quality index. This index proved to be predictable by near infrared
spectroscopy, and thus may reduce the work devoted to quality evaluation in
malting barley breeding. Paper 5 is an example of how spectroscopy and
chemometrics can be used on the phenotype level to detect the expression of a
regulator gene in barley.

The topic of Paper 6 is the development of non-destructive screening methods for
single seed protein, vitreousness, density and hardness in wheat. Near Infrared




transmittance (NIT) spectroscopy showed excellent ability to predict single seed
protein content, while the non-destructive prediction of vitreousness, density and
hardness were more difficult. The poor NIT prediction of hardness, however,
proved to be mainly due to inaccuracy in the single seed hardness measurements.

Finally, a chemometric multi-way study for an improved use of near infrared
spectroscopy in process monitoring in wheat milling is described in Paper 7.

In addition to the seven papers, three appendices are included, as these are
discussed in the thesis. In these appendices, new chemometric preprocessing
methods in terms of variable selection (Appendix 1, used in Paper 3) and scatter
correction (Appendices 2 and 3) are proposed. All of these proved to considerably
improve predictive models based on near infrared spectroscopy.




Resumé

Denne athandling beskriver udvikling af multivariate hurtigmetoder i kombination
med kemometri og demonstrerer potentialet af disse inden for monitorering og
udnyttelse af kvalitetsvariationer i byg og hvede. Afhandlingen indeholder syv
artikler som er kernen, med tre associerede artikler som appendiks. Indledningsvis
beskriver afhandlingen de anvendte instrumentelle analysemetoder og den
tilknyttede kemometriske databehandling som baggrund for artiklerne. Dernzst
diskuteres de nyudviklede screeningsmetoder i relation til deres potentielle brug
inden for kornforaedling, kornhéndtering, kornsortering og monitorering under
korn-forarbejdning for derigennem at forbedre kvaliteten af slutprodukterne.

Et vigtigt element i dette arbejde er udvikling og anvendelse af enkeltkerne-
analyser. De anvendte hurtigmetoder er derfor valgt, da de giver mulighed for at
maéle pa enkelte kerner, enten i en population eller som reelle enkeltkerneanalyser.
Metoderne er kernemorfologi malt med billedanalyse, hardhedsanalyse og
narinfrared spektroskopi. Disse hurtigmetoder anvendes som et fysisk/kemisk
fingeraftryk af preven, som i kombination med kemometri anvendes til at
karakterisere byg- og hvedekvalitet.

Artikel 1 beskriver anvendelsen af eksplorativ dataanalyse i form af Principal
Component Analysis og Partial Least Squares Regression til analyse af
mikromaltningsdata, hvorved underliggende funktionelle egenskaber kan defineres.
Tre artikler omhandler udvikling af hurtigmetoder til bestemmelse af maltkvalitet.
Béde anvendelse af bygkernemorfologi og hérdhed (Artikel 2) og nerinfrared
spektroskopi (Artikel 3) pa bulk prever kan pradiktere de fysiske og kemiske
maltkvalitets-parametre, men var ikke i stand til at preediktere de biokemiske
parametre relateret til spiringskapacitet. Artikel 4 demonstrerer brugen af fuzzy
logic til oversazttelse af en multivariat maltkvalitetsprofil til et meningsfyldt
overordnet kvalitetsindeks. Dette indeks viste sig ydermere at kunne praedikteres
med nerinfrargd spektroskopi, og derved kan analysearbejdet i maltbyg-
foredlingen reduceres. Artikel 5 er et eksempel pd hvordan spektroskopi og
kemometri kan anvendes til at detektere den feenotypiske expression af et regulator
gen i byg.

Artikel 6 omhandler udvikling af ikke-destruktive screeningsanalyser for
enkeltkerne protein, vitrositet, densitet og hardhed i hvede. Ner infrared
transmittans (NIT) viste sig at vare serdeles velegnet til bestemmelse af




enkeltkerne protein, mens ikke-destruktiv pradiktion af vitrositet, densitet og
hardhed viste sig mere vanskeligt. Den darlige preediktion af hardhed viste sig dog
primert at skyldes for stor usikkerhed p& hdrdhedsmaélingen af enkeltkerner.

Endeligt er Artikel 7 et studie af en kemometrisk multivejsmetode til forbedret
brug at narinfrared spektroskopi som overvagningsredskab under industriel
formaling af hvede.

Ud over de syv artikler indeholder athandlingen tre artikler, der bliver diskuteret og
som derfor er gengivet i appendiks. Disse appendikser foreslédr nye kemometriske
forbehandlingsmetoder, nemlig variabel selektion (Appendiks 1, brugt i Artikel 3)
og signal korrektion af spektrale data (Appendiks 2 og 3). Alle disse metoder viste
sig at give betragtelige forbedringer af preediktionsmodeller baseret pa
narinfrarede spektre.
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1. Introduction

At present, cereals in industry are processed to detailed quality specifications
which demand a range of analyses on the raw material, the process intermediates
and on the final products. Three main aspects are of importance in the
determination of the usability and value of grain raw material, namely its
composition, its functionality and its safety. Grain composition is important from a
nutritional point-of-view and, to a certain extent, to functionality. Grain
composition includes parameters such as moisture, protein, oil, fibre, starch or
other carbohydrates. Functionality means the capability of the grains to serve as
raw material in food and feed processes. Grain functionality is ideally evaluated by
laboratory-scale preparation of the desired end product such as micro-malting and
mashing or test-baking. Kernel hardness, B-glucan content, enzymatic activity and
germination rate highly influence the functionality of barley in malting, while
kernel hardness, gluten quality and gluten strength influence the functionality of
wheat for milling and baking. The safety aspect includes determination of the
presence of toxic substances, such as mycotoxins, the presence of insects and the
presence of residues of pesticides. The safety aspect will not be dealt with in this

thesis.

Grain quality thus includes physical, chemical and functional aspects depending on
the intended purpose. A range of parameters are involved in a full quality
characterisation of cereals (see the manuals of the AACC (Anonymous, 1983) and
EBC Analytica (Anonymous, 1987)). These traditional analyses are both time-
consuming and expensive and thus inadequate to meet the increasing demand for

rapid and cost-effective analyses in the cereal industry.

The aim of this thesis is to contribute to the development and demonstrate the
potential of fast multivariate instrumental methods combined with chemometrics
for the task of monitoring, handling and utilisation of quality variations in barley
and wheat. This will be demonstrated by the seven included papers with examples
of instrumental and chemometric applications to be used within plant breeding,
handling, sorting and cereal process monitoring.

Most of the work presented in this thesis originates from the research projects:
“Fast analysis methods for single seeds” (The Danish Cereal Network-B4, The
Directorate for Food, Fisheries and Agri Business) and “Cascade Refining of

European Wheat for Production of High-Quality Products for the Paper Industry”
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(EU-FAIR CT96-1105). The aim of the first project was the development of
combinatory analytical methods, mainly on a single seed basis. The aim of the
latter project was a full-scale optimisation of the production chain from raw wheat
grain to cationic modified wheat flour to be used in the paper industry, involving
selection of wheat material, seed sorting, milling and chemical modification.

The thesis covers several aspects of different classical and instrumental analyses,
all of which provide multivariate data which after interpretation with chemometrics
are used for an improved quality characterisation in barley and wheat. Chapter 2
introduces the fast multivariate instrumental methods covering image analysis,
hardness analysis and near infrared spectroscopy, all of which are adaptable to
analysis of single kernels. Chapter 3 describes the chemometric tools which are
utilised for full exploration of the large blocks of covariate multivariate data
provided either by the fast instrumental methods or by classical analyses. In
Chapter 4, the potential of the included papers is discussed in the context of the
barley and wheat industry. Chapter 5 summarises the thesis with concluding
remarks and perspectives on the presented results.
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2. Fast instrumental methods

The cereal industry has been a pioneer in the application of fast spectroscopic
analysis methods for monitoring of grain quality. Especially the development and
use of near infrared spectroscopy has provided a tool for quality testing that is fast
and cheap enough on a cost-per-sample basis for widespread use throughout the
industry. Today, there exists a worldwide calibration network using near infrared
transmittance (NIT) spectroscopy in combination with artificial neural networks
(Biichmann et al., 2001) for protein and moisture in various grains, underlining the

success and potential of multivariate based spectroscopic techniques.

Such fast analytical methods are crucial in the primary cereal industry in order to
secure raw materials of high quality for the following processing industries. The
aim is to use a high and consistent quality grain input in order to optimise the
processes and in order to avoid quality deviations in the end products. However,
large variations in quality are often seen in the grain raw material. These grain
quality variations are induced by genetic and environmental effects. The
environmental differences can be seen between different geographical regions,
differences between and within fields, and even between the seeds of a single plant.
Thus, in order to secure cereal end products of high quality, fast analytical methods
may assist at all levels of cereal production from breeding of new varieties, for
trading/handling and cereal sorting, and for process monitoring in the food and
feed processing industries. New fast instrumental methods in combination with
chemometrics will thus assist in the comprehensive quality monitoring throughout
the cereal industry.

In the following, a brief presentation will be given of the fast instrumental methods
for cereal characterisation applied in this thesis: kernel morphology by image

analysis, hardness analysis, and near infrared spectroscopy.

2.1. Kernel morphology by image analysis

Kernel size and shape parameters contain information relevant for the end-use
quality. Automated image analysis has therefore become a promising analysis for
the cereal industry. This technique has been used for discrimination between
kernels of different species (Chtioui et al., 1996), discrimination between wheat

classes and varieties (Zayas et al., 1986) and, used in combination with physical
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measurements, for variety identification (Zayas et al., 1996). Berman et al. (1996)
used the method for screening of flour milling yield in wheat breeding and Ruan et
al. (1998) used image analysis in combination with neural networks for

determination of fusarium scab in wheat.

In this thesis single seed image analysis was carried out by the use of a GrainCheck
instrument (Foss Tecator, Sweden). Figure 2-1A shows the setup of this
instrument. The system automatically acquires digital images (Figure 2-1B) of
several hundred single seeds in a sample within a few minutes. These digital
images are then used to estimate kernel characteristics such as kernel size, shape
and colour of all the analysed kernels. The kernel characteristics are normally used
in a discriminate analysis in order to detect impurities. In this thesis, the kernel
characteristics are exported and used as a single seed “multivariate morphological
fingerprint” (Figure 2-1C).

A

Sprocket Covnter |
Control Usit

Figure 2-1. Image analysis of grains. A) Instrument setup of Foss Tecator GrainCheck. B)
Images of wheat kernels acquired using the GrainCheck instrument, C) Histograms of nine
morphological characteristics of single kernels estimated by the instrument

The single kernel readings are exploited in different ways in this thesis. In Paper 2
they are used for malting barley characterisation. The readings are represented as a
kernel-to-kernel variability value of seed populations within each sample, either as
histogram spectra of the different kernel characteristics or as sample mean and
standard deviations. In Paper 6, each single wheat kernel is placed under the CCD

camera and thereby true single seed recordings are used, retaining the identity of
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each kernel. Afterwards, other single seed analyses are added to the image data and

used for an improved single kernel characterisation of wheat.

2.2. Hardness analysis

New instrumentation has also made automated single kernel hardness analysis
possible. The Single Kernel Characterization System (SKCS) 4100 (Perten
Instruments Inc., Reno, NV, USA) employed here is such an instrument for rapid,
although destructive, measurement of single kernel hardness index (HI), weight
(mg), diameter (mm) and moisture content (%) (Martin et al., 1993). A rotating
vacuum wheel picks up the individual kernels and deposits them one at a time into
a weighing boat. After the weighing, the kernel passes down an inclined crescent
where the diameter is measured and the kernel is then crushed between the crescent
and a toothed rotor. A load cell measures and records the crush force-time profile
for each kernel and its hardness index is calculated. The hardness index values are
based on an algorithm that attempts to segregate wheats on a numeric scale on
which hard wheats are forced toward an average value of 75, and soft wheats
toward an average value of 25. The scale is similar to that used in the near infrared
spectroscopic method (AACC 39-70A) for assessment of texture of bulk wheat
samples. It has been shown that the SKCS provides fast information about
conventional wheat quality factors such as NIR hardness, kernel size and test
weight. It was, however, only found indicative for flour yield in milling (Osborne
et al., 1997; Ohm et al., 1998). The SKCS measurements are normally conducted
on 300 single kernels in a bulk sample in order to classify the sample into soft, hard

or mixed wheat.

In this thesis the SKCS instrument is used for measurements of single seed
hardness in both barley and wheat. In combination with the morphological data
mentioned above, SKCS data are used as variability values (Paper 2) in seed
populations (samples) for malting barley characterisation, and as true single kernel
readings (Paper 6) for an improved characterisation of wheat.

2.3. Near infrared spectroscopy

Near infrared spectroscopy has proven to be a powerful tool in food and
agricultural analysis. According to Williams and Norris (1987), “Near infrared
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reflectance technology is the most practicable and exciting analytical technique to
hit the agricultural and food industries since Johan Kjeldahl introduced the
Kjeldahl test”. There are several reasons for the success of near infrared

spectroscopy in agricultural analysis today:

e Near infrared spectroscopy is a most powerful tool for measurements of
major chemical components in food and agricultural products such as

moisture, protein, fat and carbohydrates.

e Near infrared analysis is fast, precise, non-invasive, easy to use, and only

needs little or no sample preparation.

e The development of chemometric methods has allowed for an effective
extraction of relevant information from the complex multivariate near

infrared spectra.

In common with other spectroscopic methods, near infrared spectroscopy depends
upon the principle that radiation interacts with matter to produce a response related
to the physical and chemical properties of the sample, which through appropriate
instrumentation can be displayed as a spectrum. The near infrared region covers the
range of 780-2500 nm, between the visible and the mid infrared regions. The
absorptions in this region correspond to overtones and combinations of the
fundamental vibrational transitions in the mid infrared region involving, in
particular, C-H, O-H or N-H due to the large anharmonicity of those vibrations
involving the light hydrogen atoms. In near-infrared spectra the different
constituents have broad overlapping peaks, so near infrared measurements have to
be calibrated against samples with known chemical composition in order to extract
the desired information. This is done with chemometrics.

In the beginning, near infrared spectroscopy was based on reflectance
measurements performed on filter instruments, applying diffuse reflectance
measurements on pre-ground grain samples for the measurement of moisture and
protein (Williams and Norris, 1987). The prediction (regression) models were
based on a few wavelengths (filters) calibrated to chemical analysis by multiple
linear regressions (MLR). Later, monochromator-based scanning instruments were
used, yielding continuous spectra, for example, from 1100-2500 nm. This gave a
typical situation with a large number of variables (wavelengths) compared to the
number of samples, which made multiple linear regression inadequate. Martens and

Jensen (1983) therefore introduced the regression method Partial Least Squares
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Regression (PLSR) for calibration of continuous near infrared spectra. The
subsequent widespread use of continuous near infrared spectra thus became closely
linked to the developments and successful use of multivariate regression methods
such as Principal Component Regression (PCR) and PLSR (Martens & Nas, 1993;
Fearn, 2001).

Near infrared radiation in the wavelength range of 1100-2500 nm will penetrate
solid materials typically to a depth of only a fraction of a millimetre (Scotter,
1990). For this reason, heterogencous material requires grinding before
measurements. This, however, destroys the physical (structural) information which
is contained in a near infrared spectrum of an intact sample. The use of the lower
near infrared wavelength range (780-1100 nm) has allowed for transmittance
measurements on whole grains due to more powerful radiation and lower
absorbances in this range. By applying near infrared transmittance (NIT), a larger
portion of the sample is irradiated and the homogenisation and packing of the
sample is thus less critical.

Absorbance

850 900 950 1000 1050
Wavelength [nm]

Figure 2-2. Near infrared spectra of the main components of wheat: gluten (—), starch (---)
and water ()

NIT spectra using an Infratec instrument from Foss Tecator cover the spectral
region from 850 nm to 1050 nm containing primarily the second overtones of O-H
(carbohydrates and water) and N-H (protein) stretching vibrations and the third
overtone of the C-H (fats) stretching vibration. Near infrared spectra of gluten,
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starch and water in the spectral region of 850-1050 nm are shown in Figure 2-2
with assignments of the second and third overtones of fundamental N-H, C-H and

O-H stretching corresponding to the expected band in this region.

This underlines the repetitive holographic nature of near infrared spectra, as the
relevant information found in this narrow spectroscopic window is a consequence
of the fundamental vibrations in the mid infrared region.

Near infrared spectroscopy has become a widely used method in analysis of cereals
and cereal-based products, as extensively reviewed by Osborne et al., (1993),
Williams and Norris, (1987), Williams, 2002 and Meurens and Yan (2002). Today,
NIT instrumentation for whole kernel analysis on bulk samples is used worldwide
in combination with advanced multivariate regression methods (Biichmann et al.,
2001), and it has nearly the status as “the new reference analysis” for protein and
moisture in grains. New instrumentation in near-infrared spectroscopy has made
single seed analysis possible, and as briefly reviewed in Paper 6, the method have
been reported on different types of grains. Most of the single seed applications on
cereals has been dedicated to wheat for classification purposes (Dowell, 2000;
Delwiche and Massie, 1996; Wang et al. 2002) and for the prediction of protein
content (Delwiche, 1995; Delwiche, 1998; Delwiche and Hruschka, 2000) and
hardness (Delwiche, 1993).

Figure 2-3. Single seed adapter in a NIT Infratec 1255 Food and Feed Analyzer, making it
possible to measure near infrared transmittance (NIT) spectra of single seeds
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Near infrared spectroscopy has been exploited in different ways in this thesis for a
range of purposes. Near infrared reflectance (NIR) spectroscopy and NIT
spectroscopy have been applied on whole barley and malt kernels in bulk (Paper 3,
4 and 5). NIR spectroscopy was used to analyse barley flour (Paper 5), malt flour
(Paper 3) and wheat flour (Paper 7). In Paper 6, the potential of single seed NIT
spectroscopy for wheat characterisation is demonstrated. For these measurements a
single seed adapter (Figure 2-3) attached to a NIT Infratec 1255 Food and Feed
Analyzer (Foss Tecator) was employed. Each single kernel was manually placed in
the pockets and NIT spectra in the range of 850-1050 nm were measured and used

for physical and chemical characterisation of single wheat kernels (Paper 6).
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3. Chemometric evaluation tools

The fast instrumental methods used in the work presented in this thesis produce
large blocks of multivariate data. Chemometric analysis of such data allows for a
pattern recognition strategy in which numbers are transformed into graphic display
supporting the interpretation. Complex multivariate data sets are thereby explored
with a minimum of pre-assumptions, by mathematically reducing their
dimensionality into fundamental underlying factors, the nature of which can

subsequently be explained by validation against prior knowledge.

The terms chemometrics and multivariate data analysis are often used
synonymously, where the latter refers to multivariate data analysis applied in any
field of science, while chemometrics is the application of multivariate mathematics
to efficiently extract maximum useful information from chemical data.
Chemometrics was inspired by social sciences such as psychometrics and
econometrics dealing with real world multivariate data. These sciences have been
aware of the importance of presenting data in a user-friendly visual form for
interpretation.

In this thesis Principal Component Analysis (PCA) and Partial Least Squares
Regression (PLSR) are used. PCA is used for decomposition of a single
multivariate matrix for interpretation and data overview. PLSR is used for two-
block multivariate regression models. The following chapter includes a description
of the principles of PCA and PLSR along with a brief discussion on validation,
outliers, preprocessing of data, and variable selection.

3.1. Principal Component Analysis

Principal Component Analysis (PCA) (Wold et al., 1987) is a powerful exploratory
technique for compression of large multivariate data sets for classification
purposes. The earliest approaches towards PCA were taken by Pearson (1901) and
Hotelling (1933). As the name indicates, the PCA algorithm finds the main
directions in a multidimensional data set by creating orthogonal principal
components whose linear combinations approximate the original data in a least-
square sense. The original data matrix (X) is decomposed into a score matrix (T)

and a loading matrix (P) and the residuals are collected in a matrix (E):

X=TP'+E
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Only a limited number of components are relevant for describing the information in
X. The scores (the t’s) contain information about the samples and the loadings
(p’s) contain information about the variables. The loadings are common to all
samples, and the scores specify the amount (concentration) of the common
loadings within each of the samples. Patterns and clusters of the objects are easily
represented in the form of scatter plots of the scores (score plots) by exploring
different combinations of principal components as axes. Figure 3-1 shows an
example of a PCA score plot of scatter-corrected single seed NIT spectra of wheat
(w) and barley (b) kernels.
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Figure 3-1. PCA score plot (PC1 versus PC2) of scatter-corrected NIT spectra of single
wheat (w) and barley (b) kernels

The score plot reveals an almost clear differentiation between the wheat and barley
kernel spectra, however with a “wheat outlier” among the barley spectra and a few
“barley outliers” among the wheat spectra. This is thus an unsupervised “let the
data speak for themselves” approach in which expected and unexpected trends in
complex data can be found.

In this thesis, PCA results are presented in Papers 1, 2, 4 and 5, but in the
remaining investigations PCA has also been used as an initial analysis for detection
of data trends and outliers prior to the more straightforward regression models

using Partial Least Squares Regression.
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3.2. Partial Least Squares Regression

Partial Least Squares Regression (PLSR) (Wold et al., 1983; Martens and Jensen,
1983; Martens and Nes, 1989) is a predictive two-block regression method based
on latent variables and is applied to the simultaneous analysis of two data matrices.
The purpose of the PLSR is to build a linear model between a desired y
characteristic, e.g. protein content, from easily obtainable X data, e.g. near infrared
spectra. While PCA is unsupervised, PLSR is supervised in the sense that it focuses
on finding information in X relevant for describing one or several a priori defined

y characteristics.
In matrix notation we build the linear model:
y=Xb+e

where b contains the regression coefficients that are determined during the
calibration step and “e” the residuals (model errors, noise etc.). In a PLSR
calibration, a multiple linear regression model is built between the significant
scores and the y. Compared to the PCA scores, the significant PLSR scores are
found in a slightly different way, taking into account the variation in y during the
decomposition of X, i.e. the covariance between the scores in X and y is
maximised.

The regression coefficients b computed during the calibration, together with a new
X (e.g. a new measured NIR spectrum), is then used for prediction of the desired

characteristics (Ypreq) Of @ new/future sample:

9 —_
X newb - ypred

One important feature of PLSR is the ability to model covariate data which is in
contrast to Multiple Linear Regression (MLR). MLR is the classical way of
building a regression model using several X-variables, but MLR is designed for
independent variables, and does thus not cope well with covariate data.

Figure 3.2 shows an example of a NIT based PLSR model for prediction of protein
in single kernels of wheat (w) and barley (b) (the same spectra as used in the PCA
score plot in Figure 3-1). This example shows that when applying an exploratory
PCA strategy, it is possible to differentiate between wheat and barley spectra
(Figure 3-1), and at the same time, when applying a supervised regression method
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like PLSR, it is possible to build a calibration model for a common classical

analysis — protein — across both wheat and barley kernel spectra (Figure 3-2).

In this thesis PLSR has been applied in Papers 1 to 6.
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Figure 3-2. Predicted versus measured protein content of a 6 component PLSR model based
on scatter-corrected NIT spectra of single wheat (w) and barley (b) kernels. The correlation
coefficient (r), cross-validated prediction error (RMSECV) and relative prediction error
(RE) are given. These terms are described below.

3.3. Validation

3.3.1. Model validation

Model validation is of great importance in chemometrics in order to provide
information on possible outliers, number of latent factors to include in the model,
and prediction errors. There are basically two ways to validate, namely test-set
validation, and in the case of small data sets, cross-validation. Test-set validation
requires two independent data sets representative of the sample population, where
the model is built on one data set and tested on the other. Cross-validation is used
when too few samples are available to obtain an independent test set. In cross-
validation the data set is either randomly or orderly divided into a number of

segments of one or more samples. Each segment is successively excluded and used
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for testing the model based on the remaining samples. In this way all samples are
used for estimation of the model, and all samples are excluded from the model in

order to validate this effect on the remaining model.

The calibration models in this thesis were mainly validated by cross-validation

(Papers 1-6), but test-set validation was also applied (Paper 6).

The performance of a regression model is normally evaluated by its prediction
error in terms of root mean square error of prediction (RMSEP) for true test set
predictions, and root mean square error of cross-validation (RMSECYV) for cross-
validated models, as given below:

> Vot - Vi f

RMSEP or RMSECYV =4[ N

where y;.q 1 the predicted value using either test-set or cross-validation, y, is the
reference value, and N is the number of samples. In addition, the correlation
coefficient (r) between the reference value (y.r) and the predicted value (yp.q) and
the number of latent factors (model complexity) are used for model evaluation (see
example in Figure 3-2).

Outlying samples can deteriorate a multivariate model and should normally be
eliminated before modelling. Samples may, however, be classified as outliers for
several reasons. Outliers where the data are not valid should, of course, not be
included in a calibration model, while outliers with, for instance, extremely high or
low concentration of the constituent in question may improve the model when
included by extending the limits of the future predictions. Automatic outlier
detection is applied in the NIT Infratec instruments (Lindholm, 2002). When a new
sample is analysed and predicted by the multivariate model in the instrument,
outlying behaviour will be displayed automatically and the problem categorised
(residual, leverage, sub-sample deviations, out of range or temperature deviations).
Hereby, the operator can solve the problem or reject the analysis result and save the
sample for later inclusion in the model. From an analytical point-of-view, outliers
are often problematic, but from a breeding point-of-view, outliers may be a
potential mutant or transformant, as exemplified in Paper 5 where a sample
covering a gene for changed protein composition is a clear outlier in a PCA on a

normal barley population.
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3.3.2. “Practical” validation

When evaluating the usefulness of a chemometric model it is not always sufficient
to consider the model performance parameters (RMSECV, RMSEP etc.). It is often
necessary to evaluate the model with new independent measurements both in the
context in which it was developed and in the context in which it is to be used in the
future. An easy way to evaluate the usefulness of a prediction model is to compare
the prediction error to the variation in the parameter in question. Williams and
Sorbering (1993) suggested the term Relative Prediction Deviation which is
defined as the standard deviation in the population of prediction samples divided
by the standard error of prediction (SEP).

In this thesis (Papers 1, 2, 3, 4 and 6) a similar approach is used, simply by
calculating the relative error (RE) in percent as:

RE - (RMSEP or RMSECVJ 100
y max y min

where the y.. is the highest reference value and the y,;, is the lowest reference
value of the y parameter in question. The RE value is unit-less and can be used
when calibrations for different parameters are to be compared. Low RE indicates
good calibration models which might be used for a precise quality control and in
cereal trade, while calibration models with medium RE might be used for a rough
selection in plant breeding. Models with high RE’s are not suitable for practical

use.

The performance of a chemometric model is highly dependent of the accuracy of
the input data. Thus when validating a model, it is important to consider the
uncertainty of the measurements used in the model, for example, considering NIR
spectra and the protein content determined by Kjeldahl in a PLSR calibration. A
comparison between the uncertainty of the input data and the prediction error will
thus indicate if there is room for improvement of the model. Normally, the quality
of the data can be improved by replicate measurements, for example, by several
spectral recordings on the same sample or several sub-sample analyses of protein
content on each sample. However, this is not possible when applying destructive
single kernel analysis, such as Kjeldahl protein, since only one analysis can be
performed on a kernel. In Paper 6, an alternative way was suggested in order to
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circumvent this problem by mathematically simulating replicate measurements by
averaging data across single kernels that are nearly identical in reference value. By
comparing this approach on a model for protein content (accurate reference
method) and a model for hardness (less accurate reference method) on the same
spectra (X), it was possible to indicate that the inferior predictive ability of the
hardness model was due to inaccuracy in reference method of single seed hardness
determination (SKCS 4100).

From a practical point of view it is also important to consider the potential
advantages, such as speed of analysis, when selecting the predictive model to be
applied in the laboratory. For instance, when predicting malting barley quality
(Papers 2 and 3 and Chapter 4), the fast methods can be applied either on the raw
barley, on the micro-malt or on the final wort. For early selection in malting barley
breeding programs one would probably allow a higher RE, when predicting malt
quality on the level of the barley raw material compared to measurements on the
malt, since the time of analysis (including micro-malting) is considerably lower for
the raw barley measurements. Thus, the choice of application is a compromise
between required accuracy of the predictive model, on one hand, and measuring
ease and sample throughput on the other hand.

A final evaluation of a given grain lot is normally based on several parameters
simultaneously as well as on experience and accumulated knowledge of the
malster/brewer or miller/baker, in which each quality parameter is evaluated
according to a target or target range. The significance of the single analyses are
then summarised in a total evaluation, to be used for final acceptance/rejection and
price determination of a given grain lot. When applying validation in this context,
the ranking of the expert evaluation is recommended as the “reference method” on
the basis of which validation should be made, as shown in the simplifying approach
for malt quality evaluation in Paper 4.

The ultimate validation of any multivariate application is, however, not done until
the models have been implemented in the industry, and have rendered reliable and
useful results. The application of NIT for determination of protein and moisture in
a global network is an excellent example of such an “industrial validation”
(Biichmann et al., 2001).
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3.4. Chemometric pre-processing of near infrared spectra

In addition to the useful chemical and physical information, multivariate spectral
data contain information which may be irrelevant to the parameter in question. This
may be due to instrumental drift or scatter because of different physical and optical
properties of the measured samples. In both cases it will, in a systematic way,
influence the level of signal. In this way, linear modelling becomes difficult, since

the relevant variation is influenced by irrelevant, but systematic, variation.

In order to eliminate or at least reduce the non-relevant spectral information, pre-
processing of the spectra can be performed, which will often lead to simpler and
more robust regression models. Several pre-processing methods have been
developed, e.g. Multiplicative Signal Correction (MSC) (Martens et al., 1983;
Geladi et al., 1985), Piecewise Multiplicative Signal Correction (PMSC) (Isaksson
and Kowalski, 1993), Standard Normal Variate (SNV) (Barnes et al., 1989) and
derivatives (Savitsky and Golay, 1964). Empirical evidence has accumulated for
especially spectral derivatisation and MSC as successful techniques. In this thesis
derivatisation was applied on NIT spectra in Papers 4 and 5, MSC was applied on
the NIR spectra in Paper 5, and the SNV technique was applied on NIR reflectance
spectra in Paper 7.

The single seed protein system studied in Paper 6 uses a combination of the second
derivative followed by MSC, which was originally suggested by de Noord (1994)
and used by Delwiche (1995) for the same purpose. This double transformation
naturally calls for the development of more general and powerful pre-
transformations, as described in collaboration with Martens et al. (2002) and
Pedersen et al. (2002) (Appendices 2 and 3) proposing slight different versions of
the Extended Inverted Signal Correction (EISC). These two new data
transformations are based on the inverted version of MSC; Inverted Scatter
Correction (ISC) (Helland et al., 1995) with chemical and physical extensions. The
MSC and ISC have in common that they are relatively simple, and that they can be
applied without a priori knowledge about the samples. The core of MSC and ISC
involves correction of each spectrum in a set of related samples towards an “ideal”
spectrum where the physical scattering has been removed. Linear regression
between the input spectrum and the ideal spectrum is employed to estimate the
correction coefficients a (additive effect) and b (multiplicative effect).
Theoretically, a priori knowledge about the samples and their spectra can enhance
the performance of the MSC methods. Martens and Stark (1991) included
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information about the major analyte spectra in the MSC estimation of a and b in
their “Extended Multiplicative Signal Correction” (EMSC). In Martens et al.
(2002), different a priori MSC/ISC extensions were applied to NIT spectra (850-
1050 nm) of five binary mixtures of gluten and starch. Different packing of the
cuvette as well as different samplings induced considerable scatter in the NIT

spectra, as shown in Figure 3-3A.
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Figure 3-3. NIT spectra (850-1050 nm) of 5 powder mixtures of gluten and starch shown as

the raw spectra (A) and after full EISC correction (B) (modified from Martens et al. 2002).

These spectra were drastically improved by extending the ISC pre-processing
model with a priori chemical (analyte and interferences) and physical (wavelength
dependence of scatter) spectral information. Both the EMSC and EISC were able to
isolate and remove additive, multiplicative and wavelength-dependent effects of
light scattering so effectively that the pre-processed NIT spectra of the powder
mixtures appeared as if they represented NIT spectra of five “transparent liquid
solutions” (Figure 3-3B).

However, in spectroscopic analysis of complex samples it is often difficult to
include a priori analyte information. This is also the case in the single seed wheat
study (Paper 6) in which the NIT spectra are complex combinations of different
scatter effects together with information of chemical constituents included in the
kernel matrix. Figure 3-4A shows the raw NIT spectra of the 415 calibration wheat
kernels.
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Figure 3-4. NIT spectra (850-1050 nm) of 415 single wheat kernels shown as the raw
spectra (A) and after full EISC correction (B) (modified from Pedersen et al. 2002)

Although the application of EISC was limited only to include physical extensions
(Pedersen et al., 2002), it proved to be a powerful pre-transformation. The EISC-
corrected NIT spectra of the 415 single wheat kernels (Figure 3-4B) performed
equally well as the two-step second-derivative followed by MSC used by Delwiche
(1995) and in Paper 6 for the prediction of protein in single seed of wheat.

3.5. Variable selection

Chemometrics favours the use of principal components or latent factors extracted
from all the recorded multivariate variables. For several reasons it can, however,
often be useful to focus on specific variables or variable regions/intervals in the
multivariate modelling. First of all, the modelling (e.g. PLSR modelling) often
improves when focusing on relevant spectral regions and leaving out interfering
and noisy regions. Such variables or variable regions could also be used for
development of low cost, high speed instruments based on, for instance, filters. For
interpretation purposes variable selection is also valuable in order to validate “hot
spots” in the modelling with spectroscopic knowledge of the absorbers in the

system.

There are several methods for variable selection such as Principal Variables
(Hoskuldsson, 1994), forward stepwise selection and genetic algorithms (Leardi,
2001). The Interval PLS (iPLS) was proposed in collaboration with Ngrgaard et al.
(2000) (Appendix 1). This variable selection method provides a new graphically

oriented local modelling procedure for use on spectral data and is an interactive
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extension to PLS, which develops local PLS models on equidistant subintervals of
the full-spectrum region. Facilitated by graphic display, these subinterval models
are compared with regard to prediction performance. The best equidistant interval
is subsequently optimised by small adjustments of the interval limits by shifting the
interval position and by changing the interval width (both symmetrical and
asymmetrical). On a data set representing NIR spectral data on 60 beer samples
correlated to original extract, the iPLS method proved to represent a sound
compromise combining data reduction with spectral localisation, while still being
able to utilise the multivariate advantage (Ngrgaard et al., 2000).

In Paper 3 the iPLS algorithm has been applied on NIR and NIT spectra of malt
samples in order to improve the prediction of extract, nitrogen in malt,
modification and B-glucan in malt and wort. For all the NIR (400-2500 nm)
models, considerable model improvements in terms of lower prediction errors and
lower model complexity were seen when limiting the analysis to informative
spectral regions found by the iPLS algorithm. In contrast, no improved spectral
region could be found in the NIT spectra. This could be due to the narrow spectral
range (850-1050 nm) together with the fact that this region mainly represents broad

and overlapping peaks of second and third overtones and combinations hereof.

An extension of the iPLS algorithm called synergy iPLS (si-PLS) has been

developed in-house by Associate Professor Lars Ngrgaard (www.models.kvl.dk)

(method unpublished). This algorithm combines all possible combinations of
intervals in order to find the combination of informative spectral regions which
gives the lowest prediction error. The si-PLS was applied in Paper 5 in order to
interpret the link between NIR information and endosperm constituents in a
material representing wild types and a proteome-altering gene mutant in barley.
The results were fully interpretable with regards to gene classification. These
results, however, together with the results in Paper 3, demonstrate that near
infrared spectra contain repetitive overlapping chemical information throughout the
spectrum, so the relationship between selected regions and chemical/physical

compositions are not always fully interpretable.

Martens and Martens (2000) recently proposed the modified Jack-knife validation
for uncertainty estimation of X variables in a PLSR. In this method the regression
coefficients of all the sub models in a cross-validated PLSR are used to estimate
the uncertainty of each variable regressor. It is thus possible to inspect each of the

variables in X used in the PLSR with respect to both importance (magnitude) and
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uncertainty. The method was employed by Westad and Martens (2000) on NIR
spectra and in this thesis for the purpose of interpretation of malting barley quality
parameters (Paper 1) and interpretation of the link between barley kernel

morphology, hardness and malting quality (Paper 2).

33



4. Fast instrumental and chemometric applications
in the cereal industry

The modern processing technologies in the milling, baking, malting and brewing
industries require grain raw material of high and consistent quality. The aim is to
optimise the raw material and the processes in order to avoid unwanted quality
deviations in the end products. Large variations in quality are, however, seen in the
raw grain material, focusing here on barley and wheat. These grain quality
variations are induced by both genetic and environmental differences and their
interactions. The environmental quality differences are due to differences in
weather conditions, soils characteristics and growing practices. These
environmental differences are seen on different levels with regard to geographical
areas, fields, part of fields and even reflecting single seed differences within a

single plant.

This chapter will demonstrate that fast multivariate instrumental methods in
combination with chemometrics can be used in plant breeding (section 4.1), in
handling and exploiting environmental quality differences (section 4.2) and in
quality control in cereal processing (section 4.3).

4.1. Fast screening methods in plant breeding

Plant breeding involves selection and crossing of parents that carry required
characteristics followed by evaluation of the progeny to identify which lines have
inherited the desired characteristics, combining seed quality characteristics with
grain yield and disease resistance. This activity involves screening of very large
populations of early generations in order to eliminate undesired lines, so that the
most promising material can be carried to more advanced stages. Thus, fast
screening methods in breeding need not be completely accurate, but should have

the capability to classify the material into good, acceptable and rejected categories.

In the following, examples will be given of how fast multivariate methods in
combination with chemometrics can be utilised in plant breeding.
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4.1.1. Exploring genotypic and phenotypic variation using NIR
spectroscopy for screening of nutritional protein value in barley

Rapid screening methods for chemical composition and identification of specific
genes and gene effects are important tools in plant breeding and biotechnology.
Paper 5 introduces a new idea in which pleiotropic effects of a gene mutant in an
isogenic background such as in barley and wheat can be detected by spectroscopy
and chemometrics. Recently, NIR spectroscopy has been successfully applied to
detect the phenotypic effects of wheat-rye chromosomal translocation (Delwiche et
al., 1999) and for the identification of waxy wheats (Delwiche and Graybosch,
2002). Wang et al. (1999) used NIR for prediction of the number of dominant R
alleles (coding for red pigmentation in the seed coat) in single wheat kernels, and
Campbell er al. (2000) investigated the use of NIT for classification of starch

mutants in corn.

The investigation described in Paper 5 involves 125 samples of normal barley lines
and the regulator gene /ys3a in different genetic backgrounds. The lys3a is a high-
lysine mutant originally found at the Risg Laboratory, Denmark by a dye-binding
method involving acilane orange developed by Munck (1992). This gene
drastically changes the proteome as displayed by 2-D electrophoresis, resulting in
drastical changes in amino acid profile. Through pleiotropic effects it also changes
the whole cell machinery which is important for the synthesis of chemical
constituents such as starch, fibre and fat. By applying exploratory PCA on NIT
spectra of the samples, a clear clustering was seen between the normal barley lines
and the /ys3a recombinants. This shows that non-destructive NIT analysis on whole
grains could be used in plant breeding to select mutants such as lys3a, as the dye-
binding method was originally used. Furthermore, a PCA on NIR spectra shows a
clear clustering both with regard to genetic (normal versus lys3a) and growing
conditions (field versus green house). These spectral differences were validated to
amino acid and chemical analysis using PLS (full-spectrum PLS, iPLS and si-PLS
(see Chapter 3)). The PLSR models for protein-N and amide-N did not only rely
directly on the protein information in the spectra, but also on information
concerning other components such as fibre and fat differences, exploiting the
pleiotropic effects of the gene. It was also demonstrated that the gene effect could
be represented as a “spectroscopic signature” characteristic for the genotype. The
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NIR method thus provides much more holistic information compared to the

previously used dye-binding method.

In barley lines with the high-lysine gene (/ys3a) the relationship between the
concentration of essential amino acids in the protein and the total protein content is
changed. In normal barley there is a negative relationship, i.e. the higher the
protein content, the lower the concentration of the 8 essential amino acids (e.g.
lysine) in the protein. In the high-lysine mutants this relationship is straightened
out, so that the concentration of lysine is independent of the total protein content
(Paper 5; Munck, 1992). It is hereby possible to increase the total amount of
essential amino acids and decrease the amount of non-essential amino acids

without increasing the total protein content.

The feeding industry has not traditionally been interested in variation of nutritional
quality in cereals. Recently, more attention has been paid to the nutritional value
and digestibility of cereals for pig and poultry feeding in order to improve the
efficiency of the animal production and in order to reduce the leaching problems of
nitrogen and phosphorus from the intensive animal productions. In Paper 5 a
laboratory method for alkali volatile nitrogen (amide-N) is described, and a
“amide-N:total N ratio” is proposed, which is shown to correlate (negatively) to the
concentration of lysine (and other essential amino acids) in the protein. The ratio
clearly separates the normal and /ys3a barley lines. On a limited material it was
possible to predict this ratio using NIR (r=0.96, RMSECV=(.76) and there was
indication of a possibility to predict the lysine concentration in the protein (r=0.95,
RMSECV=0.24) (Paper 5). NIR seems, therefore, to constitute a potentially useful
screening method in breeding of barley with improved nutritional efficiency of

protein.

4.1.2. Fast multivariate characterisation of malt quality

The quality of barley and malt used in the modern malting and brewery industry is
important from both a process technological and an end product quality point-of-
view. A full characterisation of malting barley quality includes a range of reference
parameters reflecting physical, chemical and functional properties. These analyses
are produced by expensive, time-consuming and destructive methods and the need
for screening methods in barley plant breeding is therefore obvious in order to

facilitate a higher sample throughput. The perfect instrument would be a non-
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destructive screening measurement, which by analysing the ungerminated barley
samples would be able to predict all barley, malt and wort parameters. The
conversion of barley into malt involves complex interactions between biochemical
and structural parameters in the germination. The basic physical and chemical
composition is assessable directly from the barley raw material, while the
physiological and biochemical changes during the germination are difficult to
predict from the intact barley kernels.

On a data set of 50 barley samples grown at two locations in Denmark, the use of
barley kernel morphology and hardness for malting barley characterisation was
been investigated using the GrainCheck and the SKCS 4100 (Paper 2). Both
instruments are fully automated and provide single kernel data of 250 kernels
within a few minutes, making them of interest for screening purposes in malting
barley breeding programmes. High barley grain homogeneity is of great
importance to secure uniform germination and thereby secure an evenly modified
malt. The GrainCheck and SKCS 4100 automatically provide seed homogeneity
data for each sample with regard to morphological and hardness characteristics.
These data have been exploited in two different ways, either as means and standard
deviations or as appended histogram spectra of 250 seeds from each bulk sample
and utilised for the prediction of 13 malting barley parameters. Thus it was
investigated whether the single seed information from batches provided additional

information compared to sample average for barley quality characterisation.

It was shown possible to obtain reasonable PLSR models, based on barley kernel
morphology and hardness, for the structural and physical part of the malting quality
complex associated to malting modification. Not surprisingly, however, it was
impossible on the level of the barley seed to model the biochemical parameters
associated to germination and enzymatic power. The utilisation of the single kernel
advantage from the two applied instruments only seemed to provide additional
information regarding malt homogeneity where the hardness homogeneity within
the samples was the most important variable. The prediction error of this model,
however, was too high for practical use (Paper 2). The SKCS Relative Hardness
Index (RHI) is by far the most important of the investigated variables for
describing the malting performance. The additional use of the morphological data,
as acquired by fast non-destructive image analysis, also reflects some malting
quality information by improving the calibration models based on RHI alone. The
brightness of the kernels is by far the most important morphological variable here.
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To be able to compare the potential of these PLSR models based on morphological
and hardness data with models based on near infrared spectroscopy, the exact same
sample set was analysed using near infrared spectroscopy on whole kernels (both
barley and malt). Near Infrared spectroscopy is widely used for the prediction of

various barley and malting quality traits in the cereal industry.

NIR spectroscopy on bulk samples has been applied on whole barley kernels
(Williams and Sobering, 1993; Halsey, 1987; Roumeliotis et al., 2000), ground
barley (Allison, 1989; Sinnaeveg et al., 1994; Henry, 1985; Henry, 1985a; Faccioli
et al., 2000; Szczodrak et al., 1992) and ground malt (Sinnaeveg et al., 1994,
Henry, 1985) for a range of malting quality traits. NIT spectroscopy has also been
successfully applied on whole barley and whole malt (Williams and Sobering,
1993, Sinnaeveg et al., 1994) for malting quality predictions, and national and
international calibration networks for the prediction of barley and malt quality are
currently is based on this technique (Day, 1999; Biichmann et al. 2001).
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Figure 4-1. PLSR relative prediction errors using morphology and hardness, NIT or NIR
reflectance spectroscopy for nine malting barley quality parameters. *: model excluded due
to too poor predictive ability
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In this thesis, the NIT spectra are recorded using a NIT Infratec 1225 Food and
Feed Analyzer (FossTecator, Hogands, Sweden) and the best models, shown as
white bars in Figure 4-1, are either based on raw (Paper 3) or second derivative
corrected spectra (unpublished, model details not shown). The NIR spectra were
recorded using a NIRSystems 6500 (Foss NIRSystems, Silver Spring, Maryland,
USA) with a coarse sample cell and the best models, shown as grey bars in Figure
4-1, are either based on raw (Paper 3) or MSC-corrected spectra (unpublished,
model details not shown). The results of the PLSR relative prediction errors (RE)
using mean and standard deviations of morphology/hardness data on barley kernels
(Paper 2) are also given in Figure 4-1. The predictions of diastatic power, wort
colour, nitrogen in wort and homogeneity were rather poor using any of the three
methods, and are therefore excluded from the figure. It is seen that models based
on morphology and hardness data perform well for the prediction of the nine
quality parameters shown. For most of the parameters, the prediction results are
even slightly better than the results of the prediction models based on NIT and NIR
spectroscopy on barley.

A comparison of the near infrared measurements on barley (left) and malt (right)
kernels shows, as expected, that the models based on malt are superior to models
based on barley. This underlines the importance of the germination properties in
the barley during malting which cannot be assessed by spectroscopy on the barley
itself. Moreover, it is seen that the NIT measurements for most of the parameters
are superior to the full-spectrum NIR measurements. However, Paper 3 showed
that when focusing on the relevant part of the NIR spectra, these PLSR models can
be improved considerably; underlining that both NIR and NIT on whole kernels
can be used.

4.1.3. Multivariate quality assessment systems

As reviewed by Siebert (2001), chemometric methods are being more and more
used in the brewing area at all levels from barley to final beer. Within the area of
barley and malt, PCA has been demonstrated to be a powerful tool to overview and
simplify several barley and malt parameters into underlying factors (Jacobsen,
1980; Munck, 1991; Lonkhuijsen et al., 1998). PCA and PLSR were used in
Paper 1 for an exploratory study of micro-malting data of spring and winter barley
samples. The underlying principal components form more or less interpretable

functional factors, patterns of which are evaluated by loadings plot (Paper 1). The
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corresponding scores (representing the samples), visually presented as score plots,
revealed clusters and trends and was used in evaluating the tested genotypes and

their interaction with growing location (Paper 1).

The use of PCA for a more supervised ranking of malting barley quality has been
proposed (Nielsen and Munck, 2000). The idea was to construct an “ideal sample”
where an “optimal” value of each of the included parameters has been assessed.
The principle is to include this ideal quality profile as a new artificial sample in a
data set of samples to be evaluated. A PCA is then applied and the scores are used
to calculate the distance between the ideal and the other samples. The shorter the
distance, the better the quality of the sample. This approach was to some extent

successful; however, the ranking was not in full agreement with an expert ranking.

Several indexes have been proposed for calculation of overall malt quality. Most of
these indexes are based on weighted linear combinations of a limited number of
parameters (Molina-Cano et al., 1986; Molina-Cano, 1987; Madre, 2002). A
corresponding approach was tested (Nielsen, 2001) in which the distance from an
“ideal sample” based on a weighted linear combination of ten malt quality
parameters was calculated. This approach turned out to give a reasonable index
which furthermore was predictable by NIT spectra of the malt sample (r=0.88,
RE=10%).

Both the PCA approach and weighted linear combination approach assumes a
linear relationship between the level of a certain parameter throughout the
parameter range and the degree of acceptance by the end-user. This may not be
appropriate. Furthermore, the above approaches do not take into account that the
level of a certain parameter can be completely out of specification and thereby
unacceptable. The idea presented in Paper 4 will allow a simple way of treating the
above problems. This approach in based on expert knowledge, in which fuzzy
membership functions for each of the parameters are defined. A fuzzy membership
function (exemplified in Paper 4) defines to which degree the quality parameter is
acceptable on a scale from zero (unacceptable) to one (optimal). The memberships
(one for each quality parameter) are combined into an overall quality index (OQI)
by means of a simple weighted addition. The weights are defined on the basis of
expert evaluation of the importance of each parameter on a scale from 1 (less
important) to 10 (very important).

This fuzzy logic approach was employed on malt quality data of the same 50
samples as discussed in Papers 1, 2 and 3. The calculated OQI’s of all the samples
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were thoroughly validated and found to be a sound index reflecting prior
knowledge and expectations of the tested malt samples. Eleven malt quality
parameters are hereby combined into one number to be used for overall ranking of
malt samples. In Paper 4 it is furthermore shown that a reasonable PLSR
calibration can be built between the OQI and bulk NIT spectra of the malt samples
(r=0.88, RMSECV=11, RE=15%). This demonstrates that the physical and
chemical information in the NIT spectra contains most of the information in the
OQL The fact that the NIT spectra do not perfectly predict the OQI’s may be due
to the fact that some of the parameters (wort colour, diastatic power, soluble N in
malt and homogeneity) used in the OQI are not predictable by NIT spectra of the
malt samples by a traditional single parameter PLSR calibration, as shown in
Section 4.1.2. Nevertheless, it is demonstrated that fast multivariate near infrared
spectra may be used in a more holistic way for characterising multivariate malting
barley quality to be used in plant breeding.

4.2. Handling and utilisation of grain quality variations

As mentioned earlier, quality variation can be seen between geographical regions,
between different fields, and on the macro and micro level within the same field.
Different handling strategies are to be applied in order to exploit these different

levels of variation.

4.2.1. Bulk variation

The geographical and between-field variations are easily utilised on the bulk level
by handling cereal batches separately at the grain elevators. This handling has been
greatly upgraded by the development of fast near infrared applications to grain
analysis in recent decades. One example is protein determination, where tedious
Kjeldahl analyses was first substituted by NIR analyses on flour, and at the present
by NIT analysis on whole grains, which is performed on a batch before it is
unloaded at the grain elevator. Loads with different qualities can thus be handled

separately and collection can be optimised with regard to its further use.

Quality variations within the same field may be regarded in two different ways.
Either one aims at reducing the quality variation across the field by site-specific

precision agriculture, and thereby producing an improved and more homogenous

41



grain lot from the field. Alternatively, one might utilise this quality variation by
separating batches either directly in the field (selective harvest), or afterwards by

sorting the bulked grains in different quality fractions.

Several studies have shown that crop quality within a field is highly variable
(Mulla et al., 1992; Thylén et al., 1999). This was also seen in a preliminary
investigation on Danish wheat (Jgrgensen and Nielsen, 1999) where site-specific
samples were taken within a 10 ha field (in Jutland) from the harvests of 1997 and
1998. In both years the crop was Terra wheat and 45 and 108 samples,
respectively, were taken from the combine harvester throughout the field where
site-specific fertilizer had been applied according to the yield of the preceding year
and measurements of the crop requirements during the growing season. The range
in protein content was 11.7 — 17.6 % and 9.6 — 13.6 % in the two years,
respectively, showing that part of the field represents good bread wheat, while
other parts of the field represent wheat for starch-requiring purposes, e.g. feed.

In precision agriculture the introduction of Global Positioning Systems (GPS) has
made it possible to monitor within-field variability (Stafford, 2000). The idea is to
monitor the fertility levels of the fields by soil and crop analysis, then transpose the
data into fertilizer application equipment and thereby apply more fertilizer at field
sites where more is needed, and vice versa. Initially, the main purpose was to
improve yield, but more emphasis has been put on the use of this site-specific
cultivation to improve quality. The above results on Terra wheat, together with
other reports (Jgrgensen and Jgrgensen, 2001; Mulla et al., 1992), point out that
even though the fertilizer has been applied according to site-specific soil fertility
and crop requirements, variations throughout the field are still seen. The existing
variation, with or without attempting to reducing it, might not necessarily be seen
as a problem, but could be considered an advantage. The question is how to sort the

grains into different quality fractions?

Today, the GPS and yield meters on the combine harvesters are being extended
with on-line protein sensors based on near infrared spectroscopy (Anonymous,
1999; Thylén and Algerbo, 2001). The protein content can hereby be assessed
throughout the field and then assist in a more site-specific estimation of the
nitrogen balance throughout the field (applied versus removed as estimated by
grain yield in conjunction with protein content). Furthermore, already during
harvest it would be possible to grade the grains into two or more fractions of

different qualities. This selective harvest, of course, requires that spectroscopy-
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based bulk grading equipment is installed in the combine harvesters, and that the
grain fractions are handled separately both in the combine harvester and in the
subsequent handling. These are probable reasons why this approach has not yet

been fully exploited.

4.2.2. Single seed variation

Grain quality variation is also seen within a site-specific position in the field, even
within single seeds in the same plant (Home et al., 1997; Angelino et al., 1997).
This grain quality variation cannot be utilised by applying selective harvest, since
grains of different qualities are harvested together within the operation width of

modern combine harvesters.

In order to utilise this single seed variation, sorting of the grains after harvesting is
needed. It is important to emphasize that sorting is not the same as cleaning.
Sorting is separation of grains due to their inherent properties, while cleaning is the
removal of shrivelled kernels, broken kernels, etc. These waste kernels are easily
removed by conventional cleaning machines and will not be discussed further.

There are two main potentials in sorting grains. Firstly, a grain lot with an average
quality might be fractionated into two or more fractions with new bulk qualities,
which might then be used for different purposes. Secondly, the fractionated grain
lots will exhibit less variation (increased homogeneity) among the single kernels,
which is of interest in both malting (Aastrup et al., 1981) and milling (Ohm et al.,
1998). One example of an existing sorting machine is the gravity table, where each
single seed is sorted according to its density. The new fractions then differ in
kernel density, which as such might be interesting. However, the main potential in
sorting for density is in sorting for other quality parameters, e.g. protein content,
that might be correlated to density. In sorting and grading grains by size, form and
density, the functional unit to be investigated is the single seed. Fast single seed
quality analyses, ideally non-destructive, are therefore most important for an
increased understanding of the variation in quality of the single seeds in a seed lot.
This will provide an evaluation tool for the sorting potential and performance, and
thereby be able to optimise the choice of variety, grading technique and end use.

The development of non-destructive screening methods for single seed protein,
vitreousness, density and hardness index for single kernels of wheat is presented in
Paper 6. A single kernel procedure involving image analysis, near infrared
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transmittance (NIT) spectroscopy, laboratory density determination, Single Kernel
Characterization System (SKCS) and Kjeldahl protein determination on the
crushed single kernels (the output grist of the SKCS) was applied.

Single kernel NIT spectroscopy showed excellent ability to determine protein
content as shown by the predicted versus measured plots in Figure 4-2 for both
calibration and test set with relative prediction errors of RE = 5.6 and RE = 4.8 for
the calibration and test set, respectively. These results are comparable to earlier
reported results (Delwiche, 1995; Delwiche, 1998).

a) b)
Calibration set (N=415) Test set (N=108)

_| Predicted protein content o Predicted protein content

r=0.95 w— r=098
RMSECV = 0.47 - " -1 RMSEP =0.48

= Measured protein content s —| x Measured protein content

6 8 10 12 14 16 18

Figure 4-2. Predicted versus measured plot of a regression model for single seed protein
using scatter-corrected NIT spectra for (a) the calibration set and (b) the subsequent
prediction of test-set kernels

NIT spectroscopy has also been reported useful for determination of wheat
hardness in bulk samples (Williams, 1991), and Delwiche (1993) reported on the
use of single kernel NIT measurements for hardness determination. When
calibrating single seed NIT spectra against bulk hardness data, he found that NIT
spectra of single seeds had some ability to determine wheat hardness. In Paper 6,
the SKCS hardness index as a true single kernel hardness reference in a NIT
prediction model resulted in poor predictability. However, by applying an
averaging approach (Paper 6), in which single seed replicate measurements are
mathematically simulated, a very good NIT prediction model was achieved. This
suggests that the single seed NIT spectra contain hardness information, but that a
single seed hardness reference method with higher accuracy than the one
performed currently by the SKCS instrument is needed in order to achieve a good

NIT prediction model for single kernel hardness.

As reviewed in Chapter 2 and Paper 6, a range of successful single seed NIR and
NIT measurements have been published during the recent years, rendering the
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method a potential tool for homogeneity analysis. The Infratec 1255 single seed
instrument employed in Paper 6 provides excellent single seed protein data that are
easier obtained than by the traditional Kjeldahl method, but the single seed
handling is still not automated, and the measurements are quite time-consuming
when analysing high number of kernels. Prior to any practical use of single seed
near infrared spectroscopy as a homogeneity tool, it is necessary that the
measurements are automated. This is done in the new combined SKCS-NIR
instrument from Perten Instruments (Dowell er al., 1999; Delwiche and Hruschka,
2000). When applied automatically, near infrared spectroscopy on single seeds,
alone or in combination with other automated non-destructive techniques, has great
potential as a routine homogeneity analysis for raw grain evaluation as well as for
performance testing in the sorting industry. This need not be limited only to protein
and hardness, but can also be utilised for other quality parameters in cereals, where
the method currently used is limited to analysis on bulk samples.

As tools become more readily available for monitoring single seed quality, the
question is how we apply these monitoring capabilities in order to utilise the
normal single seed variability in the best way. Let us assume that one aims at
sorting wheat grains for protein content by using density sorting on gravity tables,
assuming there is a correlation between protein and density. The combinatory
single seed approach in Paper 6 allowed us to explore the link between protein
content and other single kernel characteristics on the exact same single seed i.e. on
the exact same functional unit to be sorted. In Paper 6 a correlation (albeit on a
limited number of kernels) between protein and density was found to be r=0.65.
This relatively low correlation indicates that an indirect sorting for protein through
sorting for density may not be sufficient. This agrees with earlier findings (Munck
and Nielsen, 1998), where a two-tonne batch of Terra wheat was graded according
to density on a full-scale density table (Cimbria Heid, Vienna). Apart from a
fraction containing abnormal kernels (shrivelled), the different density fractions did
not significantly differ in protein content (Munck and Nielsen, 1998). It should be
noted that the sorting was only based on one variety, but laboratory testing of 36
Danish varieties using floatation separation of kernels based on kernel density
(Hallgren and Murty, 1983; Munck, 1989) showed only minor differences in
protein content between high- and low-density kernels (Munck and Nielsen, 1998).

Thus on one hand, limitations are seen in the use of traditional sorting techniques

for quality sorting of cereals, while on the other hand, encouraging quality
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determinations (e.g. for protein) using near infrared spectroscopy on single seeds
have been demonstrated, as reviewed previously.

Methods exist by which single seeds are sorted according to the reflectance of a
few filter-based wavelengths (max. three) chosen within the range of visible and
infrared light. These methods are normally used to remove impurities or
discoloured, infected or damaged kernels. In 1996, Brimrose Corp.
(www.brimrose.com) introduced a laboratory instrument (Seed Meister) for single

seed sorting of seeds based on full NIR spectra to be used in plant breeding. The
spectra are acquired using the scanning technique of Acousto-Optic Tunable Filters
(AOTF), and the setup records, predicts and sorts 30-40 kernels per minute (Hill,
2002).

In a recent patent application (Lofqvist and Nielsen, 2002), based on an idea
introduced by BoMill AB, spectroscopic single seed assessment is used in a bulk

sorting device for grains. The invention involves:

- distributing each single seed in a sorting device

- exposing each single seed to energy emitted from a light source
- ultra-fast recording of a multivariate spectrum from each seed

- ultra-fast prediction or classification based on chemometrics

- sorting of single seeds based on the prediction/classification result
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A preliminary trial based on a laboratory-scale version of the invention has been

conducted. A sub-sample of Capo wheat was drawn from a commercial silo.

Raw wheat: Protein content; 12.3 %

~

Number of kernels

5 10

[ 1\

SINGLE SEED SORTING

Sorted wheat: ./ l \.

15 . 20
Protein Content

Protein Content
(%) 10.2 12.0 14.4
Grain yield (%) 26 38 36

Figure 4-3. Results from a laboratory-scale sorting of wheat into three fractions of different
protein content

This sub-sample showed a considerable single seed variation (Figure 4-3, upper
histogram). The sorting device was adjusted to give three fractions; one below
11 % protein, one from 11 to 13 % protein and one above 13 % protein content
(shown as vertical lines in the histogram in Figure 4-3). As seen from the included
table, this wheat can be sorted into three fractions (nearly equal in amount) with
considerable differences in protein content and therefore suitable for different

purposes.
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4.3. Monitoring of cereal processing using near infrared
spectroscopy

The preceding sections in this chapter have dealt with analysis, handling and
utilisation of the raw grains, i.e. the raw material in industrial processing of cereals.
However, modern processing of cereals also calls for analysis methods of the
intermediate materials and the final products in order to ensure that the products
are within the quality specification of the end-user. On-line/at-line installations of
NIR spectrometers can provide quality information during the processing, so that
necessary adjustments can be made in time. In the following, the main focus will
be on milling of wheat, although NIR spectroscopy is equally potential for
monitoring the malting process, as shown by several reports on the development of
at-line NIR applications used for monitoring the malting process (Garden and
Freeman, 1998; Allosio et al., 1997).

Industrial dry-milling of wheat consists of a complex procedure of consecutive
steps of grinding and sifting. The aim is to obtain a high yield of endosperm flour
without contamination of bran particles. The texture of the raw grains strongly
influences the ease of processing the wheat; however, during the milling,
adjustments of the different milling devices can be made by the miller in order to
improve the yield and purity of the flour. In addition to the purity, the particle size
distributions as well as other chemical parameters (moisture content, protein
content, fibre content etc.) of the different flour outlets are important parameters to
be controlled during the milling process. The fact that NIR analyses are rapid and
non-destructive and the spectra are fingerprints of the particle size and the chemical
properties of the flour samples makes NIR spectroscopy an obvious tool for
monitoring and process control in the milling industry. As reviewed by Osborne et
al. (1993), NIR has been widely used for determination of chemical compounds in
wheat flour. The link between NIR spectra and particle size of flours has been
extensively investigated (Chapelle et al., 1989; Obsorne et al., 1981) and NIR has
recently been evaluated as a granulation sensor for first break flour (Pasikatan et
al., 2002).

Paper 7 is a chemometric study in which the relationship between NIR spectra,
particle size distributions and chemical properties of flour samples was investigated
simultaneously by using a qualitative multi-way data analysis called “Analysis of
Common Dimensions and Specific Weights” (COMDIM) (Quannari et al., 2000;

Paper 7). Six wheat flour streams from a full-scale mill were sampled together with
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the final flour (proportional mixture of the six first flours). Each of these seven
samples was fractionated into six sub-samples according to particle size (sieving).
The 42 samples were then recorded by NIR (NIRSystems 6500, Foss NIRSystems)
and analysed for particle size distributions and chemical composition (moisture,

starch, ash, protein and damaged starch).

The COMDIM was applied on three data tables representing the NIR spectra, the
particle size data, and the chemical compositional data of the wheat flour samples.
The output from this analysis that conceptually can be seen as a PCA across several
data tables has been useful in interpreting the relationship between the structural
and chemical composition of flours. In this way, the importance of the information
from the different flour measurements has been assessed and interpreted in a more
straightforward manner than by doing PCA on three data tables separately. The
spectral, particle size and chemical loadings of the underlying dimensions were
interpretable and showed patterns in agreement with prior knowledge regarding
characteristics of wheat flour. The exact same data set has been used for multi-
block analysis (van den Berg, 2001) who by applying multi-block PCA and multi-
block PLSR (Westerhuis et al., 1998) achieved corresponding results.

The multi-way data analysis applied here represents a useful exploratory tool when
NIR spectroscopy is applied for quality control in a flour mill. Normally, acquired
NIR spectra are used in a quantitative way, as in the prediction of chemical
constituents using PLSR. Instead of doing so, it is suggested to perform a
“qualitative calibration” where the flour samples are ranked according to their NIR
score values, or a combination of several scores, for example if the miller prefers
samples having a certain value of the first score and a certain value of the second
score, for example representing a gritty flour with low starch damage. Such a
qualitative calibration can, of course, also be done by a classical PCA on the NIR
spectra, but the advantage of this multi-way approach is that the variation in both
the particle size and chemical data is used simultaneously to guide the
decomposition of the spectral data. This mimics the skill and “fingerspitzengefiihl”
of the miller, and can be used by him for further optimisation of different quality
parameters or for an automatisation of the milling process.
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5. Concluding remarks and perspectives

This thesis describes the development and application of fast multivariate methods
combined with chemometrics for the task of monitoring, handling and utilisation of
quality variations of barley and wheat. The potential in this approach is
demonstrated in the presented examples which cover applications for use within
plant breeding, handling and sorting, and cereal processing, all of which may assist
in improving the end products from the barley and wheat industry.

The investigations have been limited to barley and wheat quality; however, the
methods might equally well be used for other cereals and other plant products in
which a comprehensive quality monitoring is needed. Most of the included
investigations have been limited to a relatively low number of samples and the
presented results are only indications of potential applications. The results are to be
confirmed and even improved through the building of global models including
more samples covering a broader range. In order to do this, a global sample/data
library is to be developed in the same way as the NIT Network has been built to
give robust global calibrations using NIT spectroscopy and neural network on huge

data bases.

The fast multivariate instruments applied, including NIT and NIR spectroscopy,
image analysis and hardness analysis, are all used as multivariate fingerprints of
the samples either in bulk or on single seed. In combination with PLSR these
multivariate fingerprints have been successfully used in the development of fast
prediction models for various traditional quality parameters in barley and wheat
(Paper 2, 3 and 6). This strategy could be seen as the way the instrument suppliers
deliver new instruments today, including a calibration for identified quality
parameters in a “blackbox - press the button and read the result” instrument. For
the purpose of simply substituting slow and costly laboratory analyses, this is
feasible.

In parallel to this, a more qualitative exploratory strategy, typically using PCA, has
been applied in several of the investigations and found to be a very powerful tool,
for instance, in order to explore the underlying factors of morphological data and
hardness data of barley kernels for a malting barley characterisation (Paper 2) or
for exploring near infrared spectra of mutants in barley (Paper 5). Facilitated by
graphic displays and without too many restrictive a priori assumptions, this can

lead to new and unexpected correlations and hypotheses. Thus, for internal use in
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both the cereal industry and in cereal research, a more exploratory software in
cereal quality instruments would allow the user (breeder, malster, brewer, miller,
baker, researcher, etc.) to utilise the multivariate output of the instruments in a
more exploratory way. In this way, the cereal knowledge, the multivariate
measurements and the chemometric evaluations are brought together — a powerful
combination which might be introduced as a new chemometric sub-discipline:
“CereaMetrics”.

Traditional analyses determined either according to approved methods in AACC,
EBC etc. or as predictions by multivariate methods are used throughout the cereal
industry as the “quality language”. However, each of these quality analyses reflects
only a univariate part of a complex multivariate functional quality of a barley or
wheat sample for industrial processing. Thus, multivariate methods are used for
predicting of univariate quality parameters, several of which are subsequently
combined by the end-user in order to evaluate a complex multivariate functional
quality. This calls for a more multivariate approach, as demonstrated by the
exploration of malting data in Paper 1 using PCA and in Paper 4 where fuzzy logic
is successfully applied for the calculation of an overall quality index. Paper 4
moreover indicates that it might be possible to go even a step further and use
multivariate data (NIT spectra) for direct prediction of the multivariate based end
quality, validated by the experience of a malting expert. The multi-way approach in
Paper 7 is also a step in the direction of a multivariate monitoring of the
“fingerspitzengefiihl” of the miller. Among the long-term perspectives of these
ideas may be that fast multivariate spectra, including hundreds or thousands of
variables, could be used as quality fingerprints of the samples instead of, for
example, protein content, starch content etc. By defining spectra of good and bad
cereal samples for a given purpose, chemometric tools can be used to decide
whether or not a given sample is suitable for a given purpose. Thus, within the
limits of the multivariate sensors, fast instrumental methods in combination with
chemometrics may be the new “quality language” to be used in the cereal industry.

Thanks to new instrumentation and larger computers, fast single seed analysis has
become possible. By combining several single seed methods (Paper 6), the
relationships among several parameters can be studied on the exact same kernel
and fast prediction models can be developed.

From a cereal processing point-of-view, the preliminary single seed results
showing that it is possible to sort single seeds in bulk based on quality as predicted
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by spectroscopic measurements is of great practical interest. A full-scale sorting
device based on this principle will make it possible to fractionate average wheat
quality into fractions of different qualities. This could, for example, be sorting into
a low-protein fraction for feed and a high-protein fraction for bread production or
into fractions of “acceptable overall malting quality” and “unacceptable overall
malting quality”. In this way, many of the environmental quality differences may
be utilised (and not regarded as problematic), even if the grains from a whole field
or several fields are harvested and mixed in one batch as is the common practice
today. This approach could, of course, also be applied to other crops such as corn,
soy or coffee beans.
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Abstract

This paper presents an exploratory multivariate approach for analysis of malting
barley quality data. By using Principal Component Analysis (PCA) and Partial
Least Squares Regression (PLSR), complex malting quality data are combined into
functional factors which are used in a malting barley quality characterisation. Fifty
barley samples were used in this investigation, representing 15 spring barley and
10 winter barley varieties grown at two locations in Denmark. The samples were
micro-malted and mashed, and analysed for 13 quality parameters according to the
official methods of the European Brewery Convention. These data were combined
and reduced into a few latent (functional) factors using Principal Component
Analysis (PCA) by which it is demonstrated that the modification of B-glucan plays
a major role in both spring and winter barleys. Additionally, the spring barley and
winter barley samples display different covariate latent structures, mainly in the
nitrogen and diastatic power patterns. It is furthermore shown that graphic display
as facilitated by exploratory data analysis can be utilized in order to evaluate
genotype-environmental interactions by considering the position and movements of
the individual objects (here genotypes) in the score plots. Thus, in contrast to the
classical analysis of variance, the samples can be individually evaluated and the
corresponding loadings can be used to validate the genetic and environmental
effect of a given sample in a quality perspective.

Several of the investigated malting quality parameters are be highly intercorrelated.
This fact is utilized by applying PLSR on barley and malt data for the prediction of
wort quality in order to exclude the mashing step. This approach was successful for
the modification-dependent wort parameters extract, B-glucan in wort and
viscosity.

Introduction

An increasing number of quality criteria are used in the evaluation of malting
barley. A complete quality analysis includes an elaborate and expensive simulation
of the malting and mashing steps in micro-scale, and could involve 10-15 physical
and chemical parameters from analysis of the raw barley, the intermediate malt and
the final wort. The quality of the wort should in this context reflect the demands of
the brewer and the properties of the barley and malt are considered as indirect
predictors of the wort quality. In the classical quality evaluation, each parameter
from the raw barley, the malt and the wort data are carefully controlled to be within
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the limits of the specifications. However, the results of these different analyses are
not independent. In fact, they form characteristic relationships, which by means of
an exploratory Principal Component Analysis (PCA) and validation could be
identified as functional factors to be utilized in a characterisation of malting barley
quality.

The terms multivariate data analysis and chemometrics are often used
synonymously. However, multivariate data analysis is broader and refers to
multivariate data analysis applied in any field of science, while chemometrics is the
application of multivariate mathematics to efficiently extract maximum useful
information from chemical data. Multivariate data analysis facilitates a graphic
displaying of the underlying latent factors (principal components) and the interface
between the individual samples and variables. Multivariate data analysis allows for
an exploratory data analytical strategy, in which complex data sets are explored
with a minimum of pre-assumptions, by mathematically reducing their
dimensionality into fundamental underlying factors followed by validation against
prior knowledge. Thus, with less a priori knowledge, exploratory data analysis can
be exploited to achieve a better understanding of complex data sets.

Back in 1971, Reiner' used factor analysis to reduce 49 parameters from barley,
malt and beer into four significant factors representing water uptake,
yield/protein/extract, kernel development and cytolytic modification, respectively.
Jacobsen (1980)” showed that it was possible to distinguish growing location of the
barley, growing year and micro-malting laboratory using Principal Component
Analysis on trace elements in malt. Munck (1991)° demonstrated the use of
Principal Component Analysis (PCA) in order to compress a complex malt quality
data set into a few principal components interpretable in physical and chemical
terms.

The purpose of this paper is to characterize a set of malting barley quality data
from spring and winter barley grown at two different locations in Denmark by
applying exploratory data analysis. We will demonstrate the use of graphically
oriented exploratory tools for a holistic evaluation of the interaction between
malting quality characteristics due to genotypes and environment. The varieties are
potential malting barley varieties bred by members of the European Brewery
Convention (EBC). The samples in this investigation show considerable variation
in malting quality. The material is thus suitable for an initial study of the malting
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barley quality complex. In a subsequent paper’ the same sample set is used for
studying the use of barley kernel morphology and hardness as a screening method.

Experimental

Sample collection:

The barley samples originate from trials under EBC, harvested in 1995. Fifteen
spring barley varieties and ten winter barley varieties were grown at two different
locations in Denmark, Jutland and Zealand, providing 50 malting barley samples in
total. These are listed in Table 1. The barley has been cultivated according to
common Danish practice, including common fertilizer and plant protection
regimes. The barley grain samples were screened over a 2.5-mm sieve and the

grains above 2.5 mm were subjected to micro-malting procedure.

Table I: List of the 15 spring barley and 10 winter barley varieties
grown in Jutland and Zealand.

Number Spring barley Number | Winter barley
varieties varieties

1 Alexis 16 Plaisant

2 Triumph 17 Angora

3 Nevada 18 Clarine

4 Cooper 19 Puffin

5 Caminant 20 Geneva

6 Miralix 21 Trasco

7 Texana 22 Fanfare

8 Trebon 23 Melanie

9 Cork 24 Rejane

10 Delibes 25 Sunrise

11 Polygena

12 Mentor

13 Mie

14 Reggae

15 Anni

Malting quality analyses:

The screened barley grain samples were micro-malted on an “Automatic
Micromalting System” (Phoenix Systems) involving 15 hours of steeping, 84 hours
of air rest (germination) and 31 hours of kilning. The following 13 quality analyses
were performed according to the official methods of the EBC’: B-glucan in barley
(BGIB) and in malt (BGIM), extract (EXTRACT), nitrogen in malt (NIM),
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Kolbach Index (KOLBACH), viscosity (VISCOS), friability (FRIAB), malt
modification (MODIF), malt homogeneity (HOM), diastatic power (DP), wort
colour (WORTCOL), nitrogen in wort (NIW) and B-glucan in wort (BGIW).

Exploratory data analysis:

Principal Component Analysis (PCA)° and Partial Least Squares Regressions
(PLSR)” were performed using The Unscrambler version 7.6 SR-1 (CAMO A/S,
Norway). Since the methods employed are described in detail in the literature, only
a brief description will be given below. The data was mean centred and weighted
(auto scaling) by the standard deviation prior to the PCA and PLSR calculations in
order to take into account that the measured variables were in different units.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)® is probably the most fundamental
chemometric algorithm. The PCA algorithm finds the main directions in a
multidimensional data set by creating new orthogonal (i.e. independent) linear
combinations (principal components) of the raw data. These linear combinations
approximate the original data set in a least squares sense. PCA provides an
approximation of the data matrix (malting quality profiles) in terms of the product
of the two low dimensional matrices T (scores) and P’ (loadings), where ’ is
transposed. These two matrices capture the systematic variation of the data matrix.
The columns in T (scores) contain information about the samples and the rows in
P’ (loadings) contain information about the variables. The loadings are common to
all samples, and the scores specify the amount (concentration) of the common
loadings within each of the samples. Plots of the columns of T (score plots)
provide a picture of the sample concentrations of the latent variables, while plots of
the rows of P’ (loading plots) depict the variable contribution to the latent

variables.

Partial Least Squares Regression (PLSR)

Partial Least Squares Regression’ is a predictive two-block regression method also
based on latent variables and is applied to the simultancous analysis of two data
matrices. The purpose of the PLSR is to build a linear model between a desired
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y characteristic (e.g. extract yield) from easily obtainable X data (e.g. barley and
malt quality data). In PLSR, a multiple linear regression model is built between the
significant scores (T) and the y. As compared to the PCA scores described above,
the significant PLSR scores T are found in a slightly different way, taking into
account the variation in y during the decomposition of X, i.c. the covariance
between X and y is maximized’. The number of factors (components) to include is
found by validation, preferably test set validation. In the case of small data sets, as
in this investigation, cross-validation is the alternative way of validating the model
number of components and estimating the predictive ability.

The root mean square error of cross-validation (RMSECYV) in combination with the
correlation coefficient (r) is used as a measure of how well a given cross-validated
model performs. The RMSECYV is denoted as follows:

Z(ypred _yref)
RMSECV =& Y

where yprea 15 the predicted value using cross-validation, y.r is the laboratory
measured value, and N is the number of samples. The relative error (RE) in percent
is calculated as:

RE = RMSECV 100
value ., -value

where RMSECYV is the cross-validated prediction error, the valuey, is the highest
value and the value,,;, is the lowest value of the y parameter in question.

The importance of the X variables in PLSR models can be evaluated using the
modified Jack-knife validation proposed by Martens and Martens (2000)°. In this
method the regression coefficients of all the sub-models in the cross validation are
calculated and used to estimate the uncertainty of each variable regressor in the
PLSR models. It is hereby possible to inspect each of the variables in X used in the
PLSR with respect to both importance (magnitude) and uncertainty.
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Results and Discussion

Exploring the malting barlev quality data using PCA:

Results of the 13 malting barley quality analyses are given in Table II. The results
are presented as averages and ranges between samples of the spring barley varieties
grown in Zealand (e), spring barley varieties grown in Jutland (©), winter barley
varieties grown in Zealand (m) and winter barley varieties grown in Jutland ().
The sample set shows considerable variation in malting quality. Good malting
behaviour is normally characterised by low B-glucan in barley, malt and wort, low
viscosity, high extract content, high friability, high modification, high homogeneity
and high diastatic power together with a low level of nitrogen in malt and medium
levels of nitrogen in wort, Kolbach Index and wort colour.

From the averages and ranges in Table II, it is obvious that the winter varieties
grown in Jutland differ from the three other classes in having an overall lower
malting quality, especially in terms of higher viscosity, higher B-glucan in malt,
higher B-glucan in wort, lower modification and friability. The winter barley
varieties grown in Zealand seem to be superior to the winter barley varieties grown
in Jutland and are almost as good as the spring barleys. It is also noteworthy that
the winter barley varieties grown in Jutland have considerably higher levels of
diastatic power, nitrogen in malt and wort than the other three sub-materials.

Table II. Mean and ranges (in parentheses) of samples of the malting barley quality data of
the four sub materials.

D Spring barley Spring barley Winter barley Winter barley
Zealand (8) N=15 [Jutland (0) N=15 | Zealand () N=10 | Jutland (0) N=10

1 | B-glucan in barley

(%) 3.87 (3.14-4.60) | 4.05 (3.49-4.98) | 3.09 (2.77-3.42) | 3.60 (3.20-3.92)
2 | B-glucanin malt (%) | 048 (0.21-1.52) | 0.65 (0.26-1.79) | 0.50 (0.21-1.10) | 1.24 (1.00 - 1.80)
3 | Extractyield (%) 82.8 (81.7-83.9) | 81.6 (80.9-82.4) | 81.8 (80.6-82.7) | 78.9 (77.1-80.5)
4 | Nitrogenin malt (%) | 147 (135-1.55) | 1.60 (1.49-1.71) | 146 (1.33-1.74) | 1.83 (1.68-2.13)
5 | Kolbach Index 39.1 (33.0-43.0) | 34.6 (31.0-40.0) | 383 (32-46) 32.0 (29-34)
6 | Viscosity (mPas) 1.61 (1.48-1.87) | 1.73 (1.57-2.16) | 1.67 (1.54-194) | 191 (1.73-2.14)
7 | Friability (%) 84 (66-93) 76 (58-87) 81 (68-92) 46 (35-5%)
8 | Malt Modification

(%) 90  (73-96) 86 (71-93) 84  (73-94) 65 (51-76)
9 | Homogeneity (%) 74 (63 -85) 68 (58-81) 71 (62-83) 59 (53-68)
10 | Diastatic Power

(WK) 257.5 (146 - 390) 260.1 (166 - 379) 254.7 (151 - 384) 292.5 (166 - 437)
11 | Wort colour (EBC

Units) 2.7 (22-2.38) 23 (1.9-3.0) 2.8 (25-3.1) 2.4 (22-23)
12 | Nitrogen in Wort 64.5 (56 -70) 61.5 (55-70) 62.5 (50-71) 65.4 (58-178)
13 | B-glucan in wort 267 (120 - 830) 389 (150-1200) | 339 (160 - 700) 853 (650 - 1260)
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Only minor differences are seen between the spring varieties in the two growing
location. Considering B-glucan in barley, it is seen that the content is higher in the
spring barley varieties (both locations) than in the winter barley varieties. In malt
and wort, however, the B-glucan values are higher in the winter barley cultivars
than in the spring barley cultivars, most clearly demonstrated by comparing the
samples from Jutland. This suggests a higher level of B-glucan degradation
enzymes (mainly B-glucan solubilase and B-glucanase) in the spring barleys which,
however, is considerably environmentally dependent. This agrees with the fact that
growing of winter barley for malting in Denmark has been limited due to low malt

modification’.

A PCA was initially performed on the malting quality data including 13 quality
parameters of all the 50 samples (30 spring barley samples and 20 winter barley
samples: in all a (50x13 matrix). Three principal components were obtained,
explaining 79 % of the total variation. The score plot (landscape of samples) of the
first and second principal components (PC1 and PC2) are shown in Figure la. The
plot reveals an almost clear separation of the winter barley samples grown in
Jutland (o) in the right part of the plot, while the winter barley varieties grown in
Zealand (m) and all spring barley varicties (both @ and ©) appear almost in one
group. From the plot it could be further concluded that the samples from Jutland
(o and o) are spread more than the samples grown in Zealand (e and m), indicating
that the growing conditions in Jutland induce larger variation in malting quality.
This is especially pronounced for the winter barley samples.

The corresponding loadings plot for PC1 and PC2 is depicted in Figure 1b. The
first component (x-axis) is from the left to the right mainly expanded by a cluster
(a) of parameters, namely Kolbach index (KOLBACH), modification (MODIF),
malt homogeneity (HOM), friability (FRIAB) and extract (EXTRACT) balanced
by a cluster (b) of B-glucan in malt (BGIM), B-glucan in wort (BGIW) and
viscosity (VISCOS) to the right. Variables within the (a) or (b) clusters correlate
positively, while the correlations between a variable from cluster (a) and a variable
from cluster (b) are negative. In other words, the first principal component,
representing 54 % of the variation in the data Figure 1b, can be described as a
functional factor mainly related to malt modification and its further consequences,
expanded by the two highly intercorrelated groups. Samples to the left in Figure la
display good modification behaviour with a high degree of modification, high
friability and high proteolytic activity in terms of Kolbach Index (soluble to total
nitrogen ratio), while samples to the right samples displaying inferior modification
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behaviour in terms of high levels of B-glucan in malt and wort and the
consequently high viscosity level. Thus, PC1 could be identified and named as the
malt modification component, however, also including contributions from other

parameters such as extract and Kolbach Index.
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Figure 1. Score and loading plots of PCA on the 13 malting barley quality parameters for
all 50 samples (Figure la and 1b), spring barley (Figure lc and 1d) and winter barley
(Figure le and 3f). The spring barley samples are marked e (Zealand) and o (Jutland) and
the winter barley samples are marked m (Zealand) and o (Jutland). For variable names, see
text.
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In Figure 1b it is seen that the second component PC2 is mainly described by
enzymatically influenced parameters such as nitrogen in malt (NIM), nitrogen in
wort (NIW) and diastatic power (DP) in the upper part of the plot, with the two
latter in the same part of the plot indicating covariance. Since principal components
are by definition orthogonal, the PC2 is highly independent of the malt
modification component (PC1).

The extract (EXTRACT) loading is situated in the lower left part of the plot and
the loading for nitrogen in malt (NIM) in the upper right part of the plot. These two
parameters seem, therefore, to contribute as a combination of the first and second
principal component, and are, as expected, clearly negatively correlated. The third
component (not shown in this two-dimensional plot) is in this material represented
by B-glucan in barley and wort colour, and is mainly independent of the two first
components when considering the whole material of spring and winter barleys.

When combining the scores (Figure 1a) with the loadings (Figure 1b) it is seen that
the winter barley samples grown in Jutland (o) are the samples with a relatively
inferior malting behaviour represented in the right part of the plot. Thus, the spring
barley (both locations) and the winter barley grown in Zealand represent good
malting behaviour as situated in the lower left part of the plot.

In order to explore lesser trends and differences, the spring and winter barley
samples were analysed in separate PCA’s. A PCA was performed on the 30 spring
barley samples, and the two first components are shown as scores (Figure 1¢). The
first three principal components comprise 77% of the total variation. By
considering the loadings plot first (Figure 1d) it is seen that PC1 is nearly the same
as for the whole material, but now the PC2 has changed. In contrast to the whole
material (Figure 1b), the second PC is now independent of nitrogen in malt (NIM)
and mainly described by diastatic power (DP) (upper part), however with a slight
inversely correlated contribution from wort colour (WORTCOL) in the lower part
of the plot. Nitrogen in malt and, to some extent, nitrogen in wort are now in PC3
(not shown).

The score plot corresponding to the spring barley samples in Figure 1c includes the
numbers of the varieties according to Table I. In general, the Zealand samples (o)
are situated in the lower left part of the plot compared to the Jutland samples (©),
although the two groups are not entirely separated. The Jutland location seems to
give a higher diastatic power, but lower extract. It is further seen that sample No.
15 (variety Anni) grown at both locations has an inferior maltability, as indicated
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by its position in the lower right comer. Its location in the score plot fits very well
with the fact that this variety was never used in Denmark due to a very poor malt

modification’.

The score plot (Figure 1¢) might also be used to evaluate the environmental effect
on malting quality for a given genotype by considering the differences in the plot
position of a given variety from one location to another. Such changes in position
in the score plot vary both in distances and in directions. For example, some
varieties display a large distance in the PCA plot going from one location to
another, as seen when comparing sample @06 (Miralix grown in Zealand) with ©06
(Miralix in Jutland). Other varicties seem more independent of the growing
location, as seen for samples 01 (Alexis) and 05 (Caminant), indicated by smaller
movements in the score plot for these samples. For most of the spring barley
varieties the environmental difference is expressed in an upper right movement in
the plot, such as for variety 10 (Delibes) and variety 12 (Mentor), with the latter in
a more vertical direction than variety 10. Only a few varieties show a change in
position to the lower right, such as variety 05 (Caminant). Sample 07 (variety
Texana) seems to have a unique response to the two growing locations, as the
malting quality is slightly superior (607 more to the right) when grown in Jutland,
as compared to Zealand (©07 more to the left).

The PCA on the 20 winter barley samples is shown as scores (Figure le) and
loadings (Figure 1f). The first three principal components comprise 87% of the
total variation. The loadings plot (Figure 1f) reveals a pattern close to that of the
whole material (Figure 1b), although with changes in the loadings for B-glucan in
barley and wort colour. The corresponding score plot Figure le shows a clear-cut
differentiation between the two locations. The environmental differences of the
winter barley genotypes seem quite constant and pronounced. All the varieties have
shifted substantially to the right and, except for variety 21, the shift is in a slightly
upward direction. The general effect of a shift in location from Zealand to Jutland
is similar to the spring barleys; however, for the winter barley it is much more

pronounced.

We have now demonstrated the use of multivariate data analysis, in terms of PCA,
for a detailed graphically based discussion with regard to varieties, growing
locations, the malting quality parameters and their interaction. In an investigation
involving 186 commercial malts of four spring barley varicties Munck® found three
principal components representing 1) chemistry (enzyme activity and
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starch/extract), 2) physics (malting resistance) and 3) nitrogen in malt. In the
current investigation the data structure and the covariance pattern and thereby the
principal components are somewhat differently combined; however, the functional
factor of endosperm modification and its consequences plays a major role as a
functional parameter in both investigations. The difference may be explained by
the fact that the present investigation includes several more genotypes representing
both winter and spring barley types.

In this analysis we have seen that the first principal component (malt modification
component) reveals almost the same loading pattern for the whole material, the
spring barleys and the winter barleys. In contrast, the consecutive components
(PC2 and PC3) involving B-glucan in barley, nitrogen in malt, diastatic power, wort
colour and nitrogen in wort seem to vary considerably between the sub-materials.
The clearest difference is seen in the correlation between diastatic power and
nitrogen in malt and wort, as seen by comparing PC2 in the figures 1d and 1f. For
the spring barleys the correlation between diastatic power and nitrogen in malt is
=-0.06 and it is r=-0.14 for diastatic power and nitrogen in wort. For the winter
barleys these two correlations are =0.49 and r=0.68, respectively. Diastatic power
is a measure of potential of amylotic power mainly contributed by a- and
B-amylase. Inactive B-amylase is found in the ungerminated barley, while
ao-amylase is synthesized during malting. A positive correlation between
B-amylase, diastatic power and nitrogen in malt has been previously reported by
Yan et al.'’. However, our results suggest that the correlations between diastatic
power, nitrogen in malt and wort are different in the investigated spring versus
winter barleys.

The fact that diastatic power in this material is only partly correlated to extract is
shown, since the extract is mainly described in first PC1 and diastatic power
mainly described in PC2. This indicates that the extract yield is more dependent on
physical parameters restricting the migration of the enzyme and accessibility to the
starch than on the amount of amylotic power. This is in agreement with the
findings of Brennan et al."'.

Prediction of wort quality by PLSR from barlev and malt quality data:

We have shown that PCA can reduce the complexity of the malt quality data for
the purpose of exploratory interpretation. The loading plots in Figure 1 show that
some of the measured parameters are highly intercorrelated and some therefore
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might be redundant. This could be utilised in order to reduce the number of malting
barley quality analyses in plant breeding selection for economy and efficiency
purposes. It would be interesting to utilise the barley and malt data for the
prediction of wort quality in order to omit the time-consuming mashing step. This
is done by applying PLSR, in which the parameters in X are easily attainable data
such as barley and malt quality data, and where y is quality parameters that are
more expensive and time-consuming to attain, for example, wort parameters.
Figure 2a shows a predicted versus measured plot of a PLSR model using B-glucan
in barley, B-glucan in malt, nitrogen in malt, friability, homogeneity, modification
and diastatic power as X for the prediction of extract (y) as analysed in the final
wort. As can be seen, a reasonable model using two components is obtained,
having a correlation coefficient (r) of 0.91 and a cross-validated prediction error
(RMSECYV) of 0.62 corresponding to a relative error of 9.1%. In order to evaluate
the importance of the different X variables, i.e. which of the barley and malt
parameters in X that is most important in predicting a given wort quality parameter,
the regression coefficient of the PLSR model for extract (Figure 2a) is considered
in Figure 2b. The significant variables (shown in black) are estimated using the
modified Jack-knife technique’, as referred to in Material and Methods. In this
investigation we use “leave-one-out” validation and for each of the 51 sub-models
(one for each sample left out and one with all samples included) we get estimates
of each regressor in the regression coefficient by which the mean (magnitude) and
the uncertainty can be calculated and used to find the significant variables in X.

Predicted extract

03 | Regression Coefficients

0 Correlation:  0.91
RMSECV:  0.62

Variables

i . . 0 o 2 8 o BGIB BGIM NIM FRIAB  HOM  MODIF DP

Figure 2. a) Predicted versus measured plot and regression line of a PLSR model using the
combined barley and malt data as X for the prediction of extract yield. b) Regression
coefficient with significance determination using Jack-knife validation (significant
variables in black and non-significant in grey)
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The PLSR regression coefficients for the extract model are shown in Figure 2b in
which the significant regressors (variables) are shown in black and the non-
significant variables are shown in grey. As can be seen, nitrogen in malt (negative)
and malt friability (positive) are the most important malt quality parameters in
predicting wort extract yield. The first parameter is mainly related to reduced
starch content, while the latter is dependent on hardness — a resistance parameter in
malting. Moreover, B-glucan in malt, malt modification and diastatic power are
also significant contributors to the model, although at a lower level, while B-glucan
in barley and malt homogeneity are not significant in this model.

Table III. PLSR models using barley and malt quality (X) for the prediction of wort quality

data (v).
Predicted X variables® #PLSR | Correlation | RMSECV | RE (%)
Variable (y) coefficient

EXTRACT |NIM, FRIAB, MODIF, DP, BGIB, BGIM,

HOM 2 0.91 0.62 9.1
KOLBACH | FRIAB, MODIF, BGIM, NIM, HOM, BGIB,

DP 1 0.77 2.58 15.2
VISCOS BGIM, MODIF, FRIAB, DP, BGIB, HOM, NIM 3 0.91 0.07 10.3
WORTCOL - - - -
NIW NIM, MODIF, BGIM, HOM, BGIB, FRIAB, DP 4 0.62 4.42 15.8
BGIW BGIM, MODIF, FRIAB, BGIB, HOM, DP, NIM 3 0.98 65 5.7

* Variables listed according to importance (magnitude); significant variables in bold
- Model information excluded due to low correlation coefficient (r<0.6)

Table III summarises all the PLSR models in which barley and malt data are used
for wort quality predictions. The X variables are listed (in order) according to the
magnitude of their influence and the significant variables are marked in bold. Good
predictions are achieved for extract, viscosity (VISCOS) and B-glucan in wort
(BGIW), while the barley and malt data could not predict the wort colour
(WORTCOL) and only a weak prediction was achieved for Kolbach (KOLBACH)
and nitrogen in wort (NIW). Thus, for prediction of extract yield, viscosity and
B-glucan in wort for screening purposes in a plant breeding material, these results
suggest that the mashing step might be omitted.

Conclusions

Complex malting quality profiles of spring and winter barley consisting of 13
quality parameters have been combined and reduced into a few latent factors using
Principal Component Analysis (PCA). The malt modification plays a major role in
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both spring and winter barleys. The spring barley and winter barley samples
display different covariate latent structures, mainly reflecting differences in the
nitrogen and diastatic power patterns. We have furthermore shown that graphic
display as facilitated by exploratory data analysis can be utilized in order to
evaluate genotype-environmental interactions by considering the position and
movements of the individual objects (here genotypes) in the score plots. Thus, the
samples can be individually evaluated and the corresponding loadings can be used
to validate the genetic and environmental effect of a given sample in a quality
perspective.

Several of the investigated malting quality parameters seem to be highly
intercorrelated. This fact is utilized by applying Partial Least Squares Regression
(PLSR) on barley and malt data for the prediction of wort quality in order to
exclude the mashing step. This approach was successful for the modification-
dependent wort parameters: extract, B-glucan in wort and viscosity. The parameters
related to protein degradation (Kolbach Index and nitrogen in wort) and wort
colour were, however, more difficult to describe by barley and malt predictors.
Even though these PLSR models were inferior and might not be usable directly in
the laboratory, the Jack-knife validated regression coefficients might still be used
for interpretation purposes, i.c. evaluate the influence of the different barley and
malt parameters on the final wort of a given data set. It would be worthwhile in
screening for quality in malting barley to build a broader and more diverse
database than that represented in our limited example, in order to obtain more
reliable models for prediction of wort quality from barley and/or malt analyses.
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Abstract

This paper presents an exploratory investigation of the use of image analysis and
hardness analysis of barley kemels for characterisation and prediction of malting
quality. A sample set of fifty barley samples representing 15 spring barley and 10
winter barley varieties grown at two locations in Denmark was used. The samples
were micro-malted and mashed and analysed for 13 quality parameters according
to the official methods of the European Brewery Convention. A sub-sample of the
barley samples was analysed on two different single kernel instruments: 1) Foss
Tecator GrainCheck was applied for non-destructive recording of single kernel size
and shape (width, length, roundness, area, volume and total light reflectance) and
2) Perten Single Kernel Characterization System 4100 was applied for single
kernel hardness and weight determinations. The eight variables from these single
seed analyses have been used in two different ways, either as means and standard
deviations, or as appended histogram spectra representing 250 kemnels from each
bulk sample. By the two methods, it has been possible to obtain reasonable Partial
Least Squares Regression (PLSR) models for the structural and physical part of the
malting quality complex associated to malt modification, but it was as expected
impossible to predict the biochemical parameters associated with nitrogen
chemistry and enzymatic power. The best model was achieved for B-glucan in
barley. The hardness of the barley kerels is by far the most important variable for
describing malting performance. The additional use of the morphological data as
acquired by fast non-destructive image analysis, however, also reveals some
malting quality information by improving the calibration models based on hardness
alone. The brightness of the kernels is by far the most important GrainCheck
variable but also kemel size and shape is associated to malting performance. In
general, the utilisation of the single kernel readings (used as histogram spectra),
compared to sample mean and standard deviation, did not provide additional
information for an improved prediction of the malting quality parameters.
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Introduction

Testing of barley for malting quality in barley breeding programmes is an
expensive and time-consuming task involving micro-malting and mashing and
followed by several slow chemical analyses. Predicting the malting quality directly
from the barley samples by fast screening methods is therefore of interest to plant
breeders for early quality screening and selection. The attempt to predict malting
quality either as measured directly on the malt or without actually malting the
barley sample has been extensively studied for many years, mainly by means of
near infrared spectroscopic analyses.

Kernel size and shape contain information relevant for the end-use quality of
cereals in general. Thus, image analysis has become a promising analysis for the
cereal industry. Digital images of kermnels can be used to estimate kernel
characteristics such as size, shape and colour. This is a fast and objective analysis
of grain morphology, which can be considered as an advanced version of the first
“quality control” during harvest, when the farmer picks up a handful of kernels in
the combine and visually evaluates size, shape and brightness of the grains.

Several commercial automated instruments based on this technique are now
available for example for purity analyses. In wheat, the technique has been used to
discriminate classes' and to screen for milling yield*. Gebhardt ef al.’ employed
digital image analysis for quantifying kernel morphology variation in six-row
barley in relation to malting quality, Ninomiya et al.* have used the method for
evaluation of wrinkles on husks of malting barley, and Garcia del Moral et al.’
have recently employed image analysis on barley kernels as a predictor for malting

quality.

For wheat, it is further found that kernel hardness is an important characteristic, as
an indicator of the ease of processing in the milling process, and of the end-use
quality, for example, with respect to starch damage and flour yield. It is also known
that barley endosperm texture affects the malt modification process during malting
by affecting water uptake and consequently enzyme synthesis and movement
within the endosperm’. Recently, Andersson et al.” studied the variation and
correlation between chemical and physical characteristics of barley samples
including kernel hardness, but found only a low correlation between kemel
hardness and physical and chemical grain properties.

The purpose of this investigation is to use multivariate data regarding barley seed
size, shape and hardness as a screening method for malting barley quality. This is

79



done by performing image analysis and kernel hardness analysis (SKCS) on spring
and winter barley samples grown in Denmark. The same sample set was used by
Nielsen and Munck (2002) in an exploratory study defining the functional factors
of classical malting barley data®. In this investigation the samples are analysed in
bulk, but the applied instruments conduct single kernel readings, and thus provide
data on each of the single kemels in the sample. Since the kemel-to-kemel
variability in the barley used for malting is of great importance for the malt quality,
the single kemel output of the applied instruments is utilised in order to evaluate
their use in malting barley characterisation.

Experimental

Sample collection:

The barley samples originate from trials under the European Brewery Convention
(EBC) harvested in 1995. Fifteen spring barley varictics and ten winter barley
varieties were grown at two different locations in Denmark, Jutland and Zealand,
providing 50 malting barley samples in total’. The barley grain samples were
screened over a standard 2.5-mm sieve and the grains above 2.5 mm were
subjected to the micro malting procedure.

Malting quality analyses:

The following 13 quality analyses were performed according to the official
methods of the European Brewery Convention’: B-glucan in barley (BGIB) and in
malt (BGIM), extract, nitrogen in malt (NIM), Kolbach Index (KOLBACH),
viscosity (VISCOS), friability (FRIAB); malt modification (MODIF), malt
homogeneity (HOM), diastatic power (DP), wort colour (WORTCOL), nitrogen
(NIW) and B-glucan in wort (BGIW) (see Table I variable number 1 to 13).
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Barlev grain morphologyv measurements:

Barley grain morphology was measured by digital image analysis using a
GrainCheck™ 310 instrument (FossTecator, Hoganas, Sweden). More than 250
barley kemels of the screened barley grain samples were fed onto a conveyer belt,
from which the kernels were automatically imaged by a RGB video camera. The
multi-kemel images were segmented into single kernel images from which several
morphological variables were automatically assessed.

Figure 1. Examples of twelve single-kernel GrainCheck images, from which the registered
morphological data was estimated. The depicted kernels show considerable variations in
size, shape and reflected light intensity.

Figure 1 shows an example of GrainCheck images of single kernels with
differences in size, shape and brightness. The instrument is specifically designed
for purity analysis of grain samples based on morphology and colour data. In this
investigation the following variables were exported from the instrument: kernel
width (WIDTH), kemel length (LENGTH), roundness (ROUND), areca (AREA),
volume (VOLUME), and total light reflectance (INT) (see Table I variable
numbers 14 to 25). These variables were exported from the first 250 single kernels
of an analysed sub-sample of each of the 50 bulk samples.
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Hardness analysis:

A Single Kemel Characterization System (SKCS) 4100 (Perten Instruments Inc.,
Reno, NV, USA) was used for assessment of single barley kernel hardness and

kemnel weight. The SKCS is designed for hardness analysis in wheat, and the

Hardness Index (HI) reported from the instrument is based on the algorithm used to

Table I. Mean and ranges (in parentheses) of the samples of the quality, morphology and
hardness data

D Spring barley Spring barley Winter barley | Winter barley
Zealand (e) Jutland (o) Zealand (m) Jutland (o)
n=15 n=15 n=10 n=10
Malting quality data:
1 B-glucan in barley (%) 3.87 (3.14-4.60) |4.05 (3.49-4.98) |3.09 (2.77-3.42) |3.60 (3.20-3.92)
2 B-glucan in malt (%) 048 (021-1.52) |0.65 (0.26-1.79) |0.50 (0.21-1.10) | 1.24 (1.00 - 1.80)
3 Extract yield (%) 82.8 (81.7-83.9) |81.6 (80.9-82.4) |81.8 (80.6-82.7) |78.9 (77.1-80.5)
4 Nitrogen in malt (%) 147 (135-155) [1.60 (1.49-171) [146 (133-174) [1.83 (1.68-2.13)
5 Kolbach Index 39.1 (33.0-43.0) |34.6 (31.0-40.0) |38.3 (32-46) 320 (29-34)
6 Viscosity (mPas) 1.61 (148-187) | 173 (1.57-2.16) [1.67 (1.54-194) [191 (1.73-2.14)
7 Friability (%) 84 (66-93) 76 (58-87) 81 (68 -92) 46 (35-58)
8 Malt Modification (%) 90 (73 -96) 86 (71-93) 84 (73-94) 65 (51-76)
9 Homogeneity (%) 74 (63 -85) 68 (58-81) 71 (62-83) 59 (53-68)
10 Diastatic Power (WK) 257.5 (146 - 390) 260.1 (166 -379) | 254.7 (151-384) | 292.5 (166 - 437)
11 Wort colour (EBC Units) [2.7 (22-2.8) 23 (1.9-3.0) 28 (2.5-3.1) 24 (22-25)
12 Nitrogen in Wort (mg/100
ml) 64.5 (56 - 70) 61.5 (55-70) 62.5 (50-71) 654 (58-78)
13 B-glucan in wort (mg/l) 267 (120-830) | 389 (150-1200) | 339 (160 - 700) 853 (650 - 1260)
Barley kernel morphology data:
14 Kernel width (mm) 3.7 (3.6-3.8) 3.7 (3.6-3.9) 35 (34-3.6) 36 (35-37)
15 Width homogeneity” 0.21 0.24 0.22 0.23
16 Kernel length (mm) 8.2 (7.9-8.8) 8.5 (8.0-92) 84 (8.1-8.3) 89 (8.4-93)
17 Length homogeneity’ 0.65 0.77 0.64 0.86
18 Kernel roundness (AU)® |03 (0.30-0.35) | 031 (0.27-0.34) |0.30 (0.29-0.31) |0.28 (0.27-0.31)
19 Roundness homogeneity” [ 0.05 0.06 0.04 0.06
20 Kernel area (mm?) 21.8 (20.9-234) | 22.5 (20.9-24.1) |21.6 (203-23.0) |23.1 (21.5-24.7)
21 Area homogeneity” 245 2.86 230 2.79
22 Kernel volume (mm?) 50.9 (47.9-54.9) | 522 (47.7-57.1) | 488 (444-52.7) |53.0 (47.7-57.9)
23 Volume homogeneity” 7.98 9.56 7.50 8.68
24 Total light reflectance
(Int) 745 (71.9-761) | 763 (743-77.8) | 70.8 (68.1-73.5) | 71.2 (70.0-73.0)
25 Int. homogeneity 4.55 3.84 4.11 5.32
Barley kernel texture and weight:
26 Relative Hardness Index
(RHI) 56.0 (48.3-77.2) | 641 (56.0-84.2) |49.7 (43.1-59.0) |67.3 (57.4-762)
27 RHI homogeneity” 12.3 114 13.4 11.6
28 Average Kernel weight
(mg) 50.2 (47.1-54.6) | 50.0 (46.8-54.2) |483 (42.6-53.5) |51.9 (47.3-56.6)
29 Weight homogeneity” 7.2 8.1 6.6 7.7

* Values in the range of 0 — 1. A perfect circle has roundness 1, while a very narrow
clongated object has roundness close to 0.
" Sample homogeneity calculated as standard deviation between the 250 single kernels
analysed
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define differences in wheat hardness and therefore may not be appropriate for
barley. The HI value is based on the amount of force required to crush the kernels
(area integration of the crush profile) corrected by kernel weight and moisture.
Since no apparent hardness standard or reference method has been established for
barley, the hardness will be reported here as a relative hardness index (RHI). The
Relative Hardness Index (RHI) and kernel weight (WEIGHT) (see Table I variable
numbers 26 to 29) variables were exported from each of the first 250 single kernels
of an analysed sub-sample of each of the 50 bulk samples.

Exploratory data analysis:

The methods employed are described in detail in the literature, and a brief
description was given by Nielsen and Munck (2002)°. Principal Component
Analysis (PCA)'® and Partial Least Squares Regressions (PLSR)!! were performed
using Unscrambler version 7.6 SR-1 (CAMO A/S, Norway). The PCA results are
shown as score, loading- and bi- (combining scores and loadings) plots of the
analysed X matrix containing the data from the two instruments. The PLSR models
are presented as correlation coefficients (r), root mean square error of cross-
validation (RMSECV) and relative prediction errors (RE) calculated as
RMSECV/range. The importance of the X variables is evaluated using Jack-knife
validation proposed by Martens and Martens (2000)".

Results and Discussion

Kernel morphology and hardness for malting barley characterisation:

In the following, data based on individual barley kemels will be used in two
different ways, namely as sample histograms or as means and standard deviations.
It should be emphasised that the present investigation on a limited material will
allow for an investigation of the potential usefulness of the methods and not for
development of global calibrations.

Single kernel data as appended histograms:

The chosen methods for analysis of morphology and hardness are based on
readings of the individual kemels in each sample, and even if these methods are
usually used to give average values on a bulk sample only, the advantage of having
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single kernel data will be utilised by performing PCA on “appended histograms™ of
the individual single kemel readings. For a given parameter, the minimum and
maximum single kemel reading is found in the data matrix of all 250 single kernels
readings of the 50 samples, i.e. 12500 single kernel readings, and the found range
is divided into 15 equidistant intervals. For each sample and parameter, a histogram
is made on the basis of 250 single kernel readings. Thus, for each sample, eight
histograms are made, one for each recorded parameter, thereby giving 8x15 equal
to 120 variables for each sample. The appended histograms (shown as curves) for
the 50 samples are given in Figure 2a. A PCA score plot (Figure 2b) of these mean
centred histogram spectra only reveals unclear grouping according to barley type
[winter (o and m) versus spring (© and )] or growing location [Jutland (white
symbols) and Zealand (black symbols)].
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Figure 2. (a) Appended histogram spectra of all recorded characteristics (a). The histograms
from left to right are: width, length, roundness, area, volume, intensity, hardness (RHI) and
weight. (b) PCA score plot of the spectra in a). The spring barley samples are marked e
(Zealand) and o (Jutland) and the winter barley samples are marked m (Zealand) and o

(Jutland). (c) Enlarged appended histogram spectra of intensity, RHI and weight. (d) PCA
score plot of the spectra in ¢).

As seen from the histogram spectra (Figure 2a), the largest variations are in the
histograms of light reflected intensity (INT) from the kernel, in the Relative
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Hardness Index (RHI) and the kernel weight. These parts of the histogram spectra
are enlarged in Figure 2¢ and a PCA on them is shown in the score plot in Figure
2d. Except for a few samples, an almost clear differentiation between the four
groups is seen. In particular, the winter barleys grown in Jutland (o) stand out as a
separate group. This grouping was also demonstrated in a PCA on the malting
quality data of the same samples®. We could therefore preliminarily conclude that
the physical readings in terms of histograms should be considered for a malting
barley quality characterisation.

The above analysed histograms contain information on the different kernel
characteristics regarding both average values and the homogeneity within a sample.
In the further analysis the importance of the different kernel parameters will be
claborated in order to differentiate between the average and the homogeneity
values that are responsible for differentiation of the analysed malting barley
samples.

Single kernel data as mean and standard deviations:

The morphology and hardness data are listed in Table I (variables 14-29) presented
as sample mean and sample homogeneity (standard deviations of the 250 single
kemels) for the four groups, namely the winter and spring barley grown in Jutland
and Zealand, respectively. A PCA was computed on the mean and standard
deviations separately, i.e. 8 variables in each. The biplot combining the score and
loading plots of this PCA is shown in Figure 3a displaying PC1 and PC2. As can
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Figure 3. Bi-plots (scores and loadings) of PCA on mean values (a) and standard deviations
(b) for all the recorded morphology and hardness variables. The spring barley samples are
marked e (Zealand) and o (Jutland) and the winter barley samples are marked m (Zealand)
and o (Jutland).
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be seen, the morphological data are highly correlated, demonstrated by a cluster
mainly representing size variables (WEIGHT, VOLUME, AREA and LENGTH) in
the first PC direction (x-axis). No clear differentiation is seen between the four
sample groups in this direction. The second PC is mainly expanded by the
parameters roundness (ROUND), total light reflectance (Int) and kernel width
(WIDTH) grouped in the upper part, and kemel length (LENGTH) in the lower
part of the plot. This component clearly separates the spring barley samples
(o and e) in the upper part of the plot from the winter barley samples (o0 and m) in
the lower part. The third PC mainly represents kemnel hardness (RHI), however
with no significant sample groupings (plot not shown).

The corresponding PCA on the sample homogeneity data (i.c. on the standard
deviations of the 250 single kernels) was computed in which four significant PC’s
were found, comprising 98% of the variation. A biplot of PC1 and PC2 is shown in
Figure 3b. Except for a few samples a clear clustering of the Jutland (white
symbols) versus Zealand (black symbols) samples is seen along the first PC. From
the loadings it is seen that this component is expanded by the RHI homogeneity to
the left and the homogeneity of the remaining parameters to the right. Thus,
compared to the Zealand samples, the Jutland samples are more inhomogeneous on
all measured parameters except for the relative hardness. The reason for the
considerably higher hardness inhomogeneity in the Zealand samples and the clear
differentiation between the two growing locations based on homogeneity data is
unclear. The material in this investigation should, however, be expanded in order to
claborate these results.

Exploring the link between morphology. hardness and malting barley quality data:

Principal Component Analysis:

In order to investigate the link between the morphological and hardness data on
one hand and the malting barley quality data on the other hand, a PCA was
computed on the 50 samples using all the 29 variables listed in Table 1. Figure 4
shows a loading plot of PC1 and PC2 of this PCA explaining 55 % of the total
variation in the data. By first considering the malting barley parameter, it is seen
that the malt modification component as discussed by Nielsen and Munck® is still
clearly evident, however here as a combination of PC1 and PC2 going from the
upper left to the lower right in the plot. The kernel roundness (ROUND) is situated
near extract (EXTRACT), modification (MODIF), homogeneity (HOM), friability
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(FRIAB) and Kolbach (KOLBACH) variables. Kernel roundness thus seems to be
indicative of good malting behaviour (the rounder the better). To the lower right,
high values of B-glucan in malt (BGIM) and wort (BGIW), viscosity (VISCOS)
and nitrogen in malt (NIM) indicate high malting resistance and low extract. Since
these variables are situated in the same area as kernel length (LENGTH), hardness
(RHI), length and intensity homogeneity (Std_length and Std_int), these variables
seem to indicate inferior malting behaviour.
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Figure 4. Loading plot of all malting barley quality, morphological and hardness variables.
The malting barley quality variables (in capital letters) are: 3-glucan in barley (BGIB), malt
(BGIM) and wort (BGIW), extract, nitrogen in malt (NIM) and wort (NIW), Kolbach,
viscosity (VISCOS), friability (FRIAB), malt modification (MODIF), modification
homogeneity (HOM), diastatic power (DP) and wort colour (WORTCOL).

From the kernel size parameters (length, area, width, volume) it is seen that the
sample means and sample homogeneities (Standard deviations) are correlated, as
they are situated near each other. On the other hand, this is not the case for the
parameters roundness, hardness and light intensity.

Partial Least Squares Regressions:

The loading plot in Figure 4 represents a coarse map of the relationships between
the morphology, hardness and malting quality data. This gives indications of which
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regression models based on morphology and hardness that would be expected to be
useful for the prediction of malting barely quality.

Partial Least Squares Regression models were computed for predicting each of the
13 classical malting quality parameters (y’s) using combined morphology and
hardness data as X variables. This was done in two different ways for each malting
barley quality parameter. First, the means and standard deviations (in total
16 variables) are used as X for the prediction of the y’s. Secondly, the histogram
spectra (Figure 2a) are used as X for prediction of the y’s. Table Il summarises the
obtained PLS prediction models for each of the 13 barley and malt quality
parameters (y) using morphology and hardness parameters.

Table II. PLSR models based on barley kernel morphology and hardness (X) for prediction

of malting quality data (y). Models marked with (MS) are based on the mean and standard
deviation as X data and models marked with (HIS) are based on the histograms as X data.

Predicted Variable #PLS | Corr. Coeff. | RMSECV | RE (%)* | Significant X variables®

o) @

BGIB (MS) RHI, intensity, width, round, length,
4 0.86 0.25 11.3 volume

BGIB (HIS) 3 0.84 0.26 11.8

BGIM (MS) 4 0.74 0.30 19.0 RHI, intensity

BGIM (HIS) 5 0.75 0.30 19.0

EXTRACT (MS) 3 0.75 RHI, intensity, std_length, round, width,

1.0 14.7 length

EXTRACT (HIS) 2 0.71 1.1 16.8

NIM (MS) - - - -

NIM (HIS) - - - - -

KOLBACH (MS) 3 0.74 2,7 15.9 RHI, Std RHI, intensity, std width

KOLBACH (MS) 6 0.71 2.9 17.1

VISCOS (MS) 5 0.71 0.12 17.6 RHI, intensity

VISCOS (HIS) 3 0.65 0.13 19.2

FRIAB (MS) 4 0.82 8.94 15.4 RHI, intensity, Std_intensity

FRIAB (HIS) 3 0.81 9.27 16.0

MODIF (MS) 5 0.84 6.1 13.6 RHI, intensity, round, length

MODIF (HIS) 3 0.78 7.01 15.6

HOM (MS) 4 0.63 6.80 21.3 Std_RHI, RHI, round, length

HOM (HIS) 3 0.65 6.67 20.8

DP (MS) - - - -

DP (HIS)

WORTCOL (MS)

WORTCOL (HIS)

NIW (MS)

NIW (HIS) - - - -

BGIW (MS) 5 0.82 170 14.9 RHI, intensity

BGIW (HIS) 5 0.80 181 15.9

* Calculated as RMSECYV divided by the range of the parameter in question
" Significant variables found by Jack-knifing, listed according to importance (magnitude).
- Model information excluded due to low correlation coefficient (r<0.6)
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For a given malting quality parameter, the first model is based on mean and
standard deviations (labelled MS) in X and the second model in based on the
histogram spectra as X (labelled HIS). The number of PLS components (#PLS), the
correlation coefficients (r), RMSECV’s and relative errors (RE) are listed together
with the significant X variables in order of importance (only for the models based
on mean and standard deviation data). For the parameters nitrogen in malt (NIM),
diastatic power (DP), wort colour (WORTCOL) and nitrogen in wort (NIW), it was
not possible to obtain a reasonably good PLS model (correlation coefficients less
than 0.6), and these models are therefore excluded from the table. For the nine
remaining quality parameters, predictive models have been obtained with
correlation coefficients in the range 0.63 to 0.86 and with relative errors from
11.3% to 21.3% of the range. It should be emphasised that several of these malting
quality parameters are highly correlated and that some of the predictive
performances might be based on these internal correlations. These preliminary
results should be verified and extended by a larger calibration base with regard to
number of samples as well as with regard to variation sources, i.¢. more genotypes,
growing location and growing years. Nevertheless, some of these performances
seem to be in an acceptable range for early screening for quality in breeding

programmes.

Figure 5a shows the prediction versus measured plot of one of the PLS models,
namely for the prediction of B-glucan in barley using the mean and standard
deviation data as X. A correlation coefficient of 0.86 and a prediction error
RMSECYV of 0.25 is achieved, which is an encouraging result and comparable with
results obtained using NIR spectroscopy’”.
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Figure 5. Predicted versus measured plot (a) and regression coefficients (b) of a PLS model
based on mean and standard deviation data of barley morphology and hardness data (X) for
prediction of B-glucan in barley (v). The significant variables are shown in black the non-
significant are shown in grey.
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In order to illustrate the importance of the different X variables, i.e. which of the
morphological/hardness data is most important in describing/predicting the
B-glucan in barley, the regression coefficients are considered in Figure 5b. The
uncertainty of the variables is estimated using the modified Jack-knife technique as
described carlier'?, and the significant variables are shown in black. As seen from
Figure 5b, kernel hardness (RHI), light intensity (INT), kernel width (WIDTH) and
kemnel roundness (ROUND) are the most important X variables in describing the
B-glucan level, as shown by the highest magnitudes of the regressors. Kemel length
and volume are also significant, however less important, since these show lower
magnitudes. The ten remaining X variables depicted in grey colour are not
significant for the PLS prediction of B-glucan in barley in this material. Thus, the
sample homogeneity (standard deviations) for any of the recorded variables does
not contribute to describe the level of B-glucan in barley.

With regard to the significant X variables (Table II) of all the PLSR models, it is
seen that barley kemnel hardness (RHI) plays an important role; the lower the RHI,
the better malting performance. The hardness of the barley kemels is thus a good
predictor for maltability, especially with respect to the physical based parameters in
terms of modification, friability, and the cell wall complex including B-glucan in
barley, malt, wort and viscosity. Direct correlations between RHI and the nine
malting quality parameters of which a PLSR model could be developed range from
=0.52 to r=0.71, but even though hardness as a single parameter is the most
important, the range of correlation coefficients increases considerably to r values
from 0.63 to 0.86 by introducing the other barley kemel morphology data,
especially the light intensity, into the predictive models (Table II).

At the same time it is found that barley kernel morphology and RHI, on the
contrary, are not good predictors for the quality parameters accounting for the
nitrogen chemistry (nitrogen in malt and nitrogen in wort), wort colour and for the
enzymatic activity (diastatic power). This is, however, not surprising. In contrast, it
is interesting to note that reasonable predictive models using morphology and
hardness data from barley were obtained for B-glucan in barley, malt and wort.
This could not be entirely based on indirect correlation between B-glucan in barley
on one hand and with B-glucan in malt and wort on the other hand, since B-glucan
in barley is nearly independent of the two latter, as seen by their orthogonal
directions in the loading plot in Figure 4.
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The overall importance of barley kemel hardness to malting quality as shown in
this investigation is in agreement with earlier investigations. Brennan et al.'* found
that a strong starch-protein binding is related to poor malting barleys and that good
malting quality cultivars have a weak association between starch granules and
protein matrix. This association was independent of the nitrogen level. Chandra ef
al ® recently showed that steely kernels had higher protein and B-glucan levels and
had a slower redistribution of water across the endosperm. This will slow down
migration of modification enzymes during malting and result in an uneven
modification and thus a lower extraction during mashing and high viscosity in the
wort. The SKCS Hardness Index used in the current investigation is based on a
crushing profile acquired during single seed crushing between a rotor and a
crescent. The RHI of the kemels can thus be due to several physical and chemical
characteristics of the barley kemel not necessarily limited to endosperm cell
structure. The thickness of the endosperm cell walls might also contribute to RHI
and thus can be used to predict the malting resistance parameters, but contains no
information of the nitrogen chemistry.

The significance of the sample homogeneities in terms of standard deviations of the
recorded characteristics only seems to play a major role for the prediction of malt
homogeneity (HOM) (Table II). For this prediction, the standard deviation of the
single RHI readings is the most important X variable, thus suggesting that
automated SKCS single kernel hardness measurements might be useful for
modification homogeneity in malt. However, the prediction error is far too high for
practical use.

Generally, only slight differences are seen between the PLSR models based on
histogram spectra versus the PLSR models based on means and standard
deviations, with the latter being a little superior for most of the predictions. Thus,
the utilization of the single kernel readings in terms of histograms does not
improve malting quality predictions, compared to the means and standard
deviations. This indicates that the within sample single kernel variation is normally
distributed and that the reduction of the histograms into simple means and standard
deviations prior to the data analysis seems feasible.
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Conclusions

A characterisation of malting barley quality includes a range of reference
parameters reflecting physical, chemical and enzymatic properties of the barley and
malt. These analyses are produced by expensive, time consuming and destructive
methods and the need for screening methods in barley plant breeding is therefore
obvious in order to facilitate a higher sample throughput. The perfect instrument
would be a non-destructive screening measurement, which by analysing the
un-germinated barley samples could be able to predict all barley, malt and wort
parameters. Since the conversion of barley into malt involves complex interactions
between biochemical and structural parameters in the germination, predictions
directly from measurements on barley could not be expected to take into account
enzymatically induced parameters.

The single seed morphological data was non-destructively registered using the Foss
Tecator GrainCheck and the single kernel hardness and weight was destructively
assessed using the Perten SKCS 4100. Both instruments are fully automated and
single kernel data of 250 kernels can be measured within a few minutes, making
them of interest for screening purposes in malting barley breeding programmes.
The link between barley kernel characteristics based on these two instruments and
malting quality data has been investigated using exploratory data analysis. The
morphological data from the single seed analysis have been used in two different
ways, either as means and standard deviations or as appended histogram spectra
representing 250 seeds from each bulk sample. It has been possible to obtain
reasonable PLS models for the structural and physical part of the malting quality
complex associated to malting resistance, but it was, not surprisingly, impossible to
model the biochemical parameters associated to nitrogen chemistry and enzymatic
power. The best model was achieved for B-glucan in barley.

The SKCS Relative Hardness Index (RHI) is by far the most important variable for
describing the malting performance. The SKCS instrument has a potential for early
screening in barley breeding, although the method is destructive. The additional
use of the morphological data as acquired by fast non-destructive image analysis
also reflects some malting quality information by improving the calibration models
based on RHI alone. The brightness of the kernels is by far the most important
morphological variable.

The utilisation of the single kernel readings from the image and hardness

instruments does not seem to provide additional information for improved
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prediction of the malting quality parameters, except for malt homogeneity where
the RHI homogeneity was the most important variable. The prediction error of this
model, however, was too high for practical use.

Further research on the use of image analysis and hardness for characterisation of
malting barley quality is needed. This should include larger data sets with more
extreme differences and with more samples within each variety, allowing for a
more comprehensive validation of the results.

Acknowledgements

The author is grateful to Carlsberg Research Laboratory for providing the barley
and micro-malted samples and for performing the malt quality analyses. He also
wishes to thank Dr. Jergen Larsen, Carlsberg Research Laboratory, Professor Lars
Munck and Associate Professor Lars Norgaard, Food Technology for constructive
discussions regarding the manuscript. The author is also grateful to The Directorate
for Food, Fisheries and Agri Business for financial support through the Danish
Cereal Network-B4.

References

1. Zayas, 1., Lai, F. S. and Pomeranz, Y. Discrimination Between Wheat Classes
and Varieties by Image Analysis. Cereal Chemistry 63 (1986) 52-56.

2. Berman, M., Bason, M. L., Ellison, F., Peden, G. and C. W. Wrigley. Image
Analysis of Whole Grains to Screen for Flour-Milling Yield in Wheat Breeding.
Cereal Chemistry 73 (1996) 323-327.

3. Gebhardt, D. J., Rasmusson, D. C. and Fulcher, R. G. Kernel Morphology and
Malting Quality Variation in Lateral and Central Kernels of Six-Row Barley.
ASBC Journal 51 (1993) 145-148.

4. Ninomiya, S., Sasaki, A. and Takemura, K. Evaluation of fineness of wrinkles
on husks of malting barely (Hordeum vulgare L.) by texture analysis of digital
image data. Euphytica 64 (1992) 113-121.

5. Garcia del Moral, L.F., Sopena, A., Montoya, J.L.., Polo, P., Voltas, J., Codesal,
P., Ramos, .M. and Molina-Cano, J.L. Image Analysis of Grain and Chemical
Composition of the Barley Plant as Predictors of malting Quality in Mediterranean
Environments. Cereal Chemistry 75 (1998) 755-761.

93



6. Chandra, G. S., Proudlove, M. O. and Baxter, E. D. The structure of barley
endosperm - An important determinant of malt modification. Journal of the Science
of Food and Agriculture 79 (1999) 37-46.

7. Andersson, A. A. M., Elfverson, C. , Andersson, R. , Regnér, S. and P. Aman.
Chemical and physical characteristics of different barley samples. Journal of the
Science of Food and Agriculture 79 (1999) 979-986.

8. Nielsen, J. P. and Munck, L. Evaluation of malting barley quality using
exploratory data analysis. I. Extraction of information from micro-malting data of
spring and winter barley data. Journal of Cereal Science, submitted (2002).

9. Analysis by the European Brewery Convention. Brauerei- und Getréanke-
Rundschau, Zurich (1987).

10. Wold, S., Esbensen, K. and Geladi, P. Principal Component Analysis.
Chemometrics and Intelligent Laboratory Systems 2 (1987) 37-52.

11. Martens, H and Nees, T. 1993, Multivariate Calibration. Wiley, New York.

12. Martens, H. and Martens, M. Modified Jack-knife estimation of parameter
uncertainty in bilinear modelling by partial least squares regression (PLSR). Food
Quality and Preference 11 (2000) 5-16.

13. Czuchajowska, Z., Szczodrak, J. and Pomeranz, Y. Characterization and
Estimation of Barley Polysaccharides by Near-Infrared Spectroscopy. 1. Barleys,
Starches, and B-D-Glucans. Cereal Chemistry 69 (1992) 413-418.

14. Brennan, C. S, Harris, N., Smith, D. and Shewry, P. R. Structural Differences
in the Mature Endosperms of Good and Poor Malting Barley Cultivars. Journal of
Cereal Science 24 (1996) 171-177.

94



Paper 3

Prediction of malt quality on whole grain and ground malt
using near infrared spectroscopy and chemometrics

Jesper Pram Nielsen and Lars Munck

95



709

Prediction of malt quality on whole
grain and ground malt using near
infrared spectroscopy and
chemometrics

Jesper Pram Nielsen and Lars Munck

Department of Dairy and Food Science, Food Technology, The Royal Veterinary and Agricultural
University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark. E-mail: jpn@kvl.dk.

Introduction

The quality of malt used in a brewery is important for the brewing process and the end quality.
Quality evaluation of malting barley and malt is expensive and time-consuming, involving both mi-
cro-malting and mashing. In breeding, as well as in quality documentation, there is a need for fast and
automated instrumental analyses. Near infrared (NIR) spectroscopy is a well-established rapid
method for quality determination in cereals. The objective of the current investigation is to compare
NIR transmission with NIR reflectance spectroscopy. In the NIR reflectance mode, measurements on
whole malt grains are compared with measurements on ground samples and full spectra partial least
squares models are compared with reduced models based on interval partial least squares (iPLS).'

Material and methods

50 micro-malt samples, representing 25 different varieties, grown at two different locations in
Denmark, were analysed. The micro-malt samples are measured in three different modes: NIR trans-
mission, Infratec 1255 Food and Feed Analyzer on whole grains in the range of 850-1048 nm; NIR
reflectance, NIRSystems 6500 on whole grains; and NIR reflectance, NIRSystems on ground sam-
ples, both in the range of 400—2500 nm.

The samples are analysed for the five parameters: B-glucan in malt, nitrogen in malt, extract, modi-
fication and B-glucan in wort, all according to Analytica-EBC.? The chemometric calculations are per-
formed using Unscrambler V. 7.01 (CAMO A/S, Trondheim, Norway) and Matlab V. 5.2 (The
MathWorks, Inc.).

Results and discussion

The NIR transmission spectra are limited to the range of 850—-1048 nm (100 datapoints) and are
compared to the NIR reflectance spectra ranging from 400 to 2500 nm (1050 datapoints), which in-
cludes the visible spectral range. The NIR reflectance spectra of the 50 whole grain micro-malt sam-
ples are shown in Figure 1.

The NIR spectra are used for prediction of the five malt quality parameters using PLS regression.
The 50 samples are divided into five subgroups of ten for validation. The models are compared accord-
ing to their root mean squares error of cross-validation (RMSECYV), by the correlation between mea-
sured and predicted and by the number of PLS components required.
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Figure 1. NIR reflectance spectra of whole malt kernels in the range of 400-2500 nm.
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Figure 2. Interval selection using iPLS for the prediction of nitrogen in malt using the NIR reflectance
spectra of whole malt kernels.

At Food Technology, The Royal Veterinary and Agricultural University, an iPLS algorithm has
been developed' in which local PLS models of the full-spectrum are generated. In this way it is possi-
ble to focus on important spectral regions and remove interferences from other regions, thereby im-
proving the model. After finding the region with the lowest RMSECYV, the interval is further optimised
by shifting the interval and changing the interval width.

Figure 2 shows an example in which NIR reflectance spectra of whole malt kernels are divided into
20 intervals. The RMSECYV of the full-spectrum model predicting nitrogen in malt is shown, where the
horizontal line indicates the RMSECYV for the full-spectrum model, together with the average of the
spectra. The bars represent the RMSECYV for the different intervals and, as can be seen, interval number
8 has a considerably lower RMSECYV than the full-spectrum model. Figure 3 shows the predicted v.
measured plot, using the optimised interval ranging from 1130 to 1316 nm where the RMSECV is re-
duced from 0.05 to 0.03% N.
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Figure 3. Prediction of nitrogen in malt using the spectral region of 1130-1316 nm.

Tables 1 and 2 summarise the performances of the NIR reflectance models, based on measure-
ments on whole malt kernels and ground malt, with the full-spectrum models as well as with the mod-
els based on iPLS optimised models. In all ten NIR reflectance models, considerable improvements
are seen, both with regard to prediction error and model complexity, i.e. the number of PLS compo-
nents when using the optimised spectral region. No model improvements are seen when measuring
ground sample compared to whole grain measurements. Transmission studies with the NIRSystems
6500 were unsuccessful (data not shown).

Table 1. Calibration results using NIR reflectance on whole malt grains. The full spectra models are
compared with optimal iPLS interval. The table includes parameter, selected wavelength, correlation
coefficient, number of PLS components (# PLS), root mean square error of cross-validation (RMSECV)
and RMSECV divided by the range of the parameter (RMSECV/range).

Parameter Wavelength (nm) Correlation #PLS RMSECV RMSECV/range (%)
B-glucan in malt 400-2500 0.89 10 0.20 12.6
1330-1442 0.93 7 0.17 10.7
Nitrogen in malt 400-2500 0.95 10 0.05 6.3
1130-1316 0.98 8 0.03 3.8
Extract 400-2500 0.92 9 0.6 8.8
1204-1410 0.97 8 0.39 5.7
Modification 400-2500 0.87 10 5.6 12.4
1348-1410 0.95 7 3.5 7.8
B-glucan in wort 400-2500 0.91 10 118 10.3
1334-1436 0.97 7 75 6.5
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Table 2. Calibration results using NIR reflectance on malt flour. The full spectra models are compared
with optimal iPLS interval. The table includes parameter, selected wavelength, correlation coefficient,
number of PLS components (#PLS), root mean square error of cross-validation (RMSECV) and RMSECV
divided by the range of the parameter (RMSECV/range).

Parameter Wavelength (nm) Correlation #PLS RMSECV RMSECV/range (%)
B-glucan in malt 400-2500 0.82 6 0.26 16.4
1388-1598 0.87 4 0.22 13.9
Nitrogen in malt 400-2500 0.93 7 0.06 7.5
2082-2164 0.95 2 0.05 6.3
Extract 400-2500 0.92 8 0.6 8.9
2110-2140 0.94 3 0.48 7.0
Modification 400-2500 0.82 4 6.4 14.2
2276-2386 0.87 2 54 12.0
B-glucan in wort 400-2500 0.92 10 112 9.8
1368-1436 0.92 6 112 9.8

Table 3. Calibration results using NIR transmission on whole malt grains. The table includes parameter,
selected wavelength, correlation coefficient, number of PLS components (#PLS), root mean square
error of cross-validation (RMSECV) and RMSECV divided by the range of the parameter
(RMSECV/range).

Parameter Wavelength (nm) Correlation #PLS RMSECV RMSECV/range (%)
{3-glucan in malt 850-1048 0.90 10 0.19 12.0
Nitrogen in malt 850-1048 0.97 6 0.04 5.0

Extract 850-1048 0.95 13 0.48 7.0
Modification 850-1048 0.89 10 53 11.7
B-glucan in wort 850-1048 0.91 10 126 11

For the NIR transmission Infratec spectra, no improvements were obtained using the iPLS algo-
rithm, probably due to the narrow range. The performances of the full-spectrum NIR transmission
models are shown in Table 3. Only minor differences in predictive performances are seen when com-
paring the optimised NIR reflectance models with the NIR transmission models, but the NIR
reflectance models are considerably lower in model complexity.

Conclusions

NIR reflectance spectroscopy on whole malt grains can be used for determination of malt quality
with accuracies comparable to near infrared transmission. The iPLS algorithm has improved NIR
reflectance-based models considerably. The iPLS algorithm did not improve NIR transmission-based
models.
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Abstract

An increasing number of quality criteria are involved in the evaluation of the final
malt. This implies a comprehensive quality evaluation, normally based on
experience and prior knowledge by the malster/brewer/breeder. This paper
describes the principle in, and use of, fuzzy logic for the translation of a complex
malt quality profile into a simple univariate overall quality index (OQI). The
approach was tested on a data set of 50 malt samples including eleven quality
parameters according to the European Brewery Convention.

The presented fuzzy logic approach involves three steps: i) an appropriate
definition of how good a certain quality parameter level is, ii) a sound way to
combine several quality parameters and iii) a way to express the overall quality
based on all these individual parameters, taking their individual relative importance
into account. The fuzzy logic based OQI presented here turned out to be a sound
index for the overall quality of the tested malt samples, and thus provides a way of
reducing and automating the quality data evaluation.

It is furthermore shown that near infrared transmittance spectra of the malt samples
showed reasonable ability to predict the calculated OQI. Hereby, both analysis and

evaluation efforts in malting barley breeding can be reduced considerably.
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Introduction

Malting is basically a controlled germination of barley in which the starchy
endosperm is modified into friable malt, ready for enzymatic degradation into
fermentable sugars and amino acids to be used by the brewer’s yeast. An increasing
number of quality criteria are involved in the evaluation of the final malt. A
complete quality analysis might contain 10-15 physical and chemical analyses,
which makes the malt analysis costly and time consuming. Near infrared (NIR)
spectroscopy has been used extensively for the prediction of a range of these malt
quality parameters, as reviewed by Osborne ef al. (1989) and Meurens and Yan
(2002), and thereby contributed to a considerable reduction in the time of analysis.
However, the high number of analyses, either determined by classical reference
methods or by NIR spectroscopy, implies a comprehensive quality evaluation, as a
given malt lot is to be evaluated on several quality parameters simultaneously. This
evaluation is normally based on experience and prior knowledge by the
malster/brewer/breeder, in which each quality parameter is evaluated according to
a target or target range. The single value evaluations are then summarised in a total
evaluation, to be used for final acceptance or rejection of a given malt sample.

The purpose of this investigation is to study the use of fuzzy logic for the
translation of a complex malt quality profile into a simple univariate overall quality
index. By using fuzzy logic it is possible to define in a simple way, i) an
appropriate definition of how good a certain quality parameter level is, ii) a sound
way to combine several quality parameters and iii) a way to express the total
quality based on all these individual parameters taking their individual relative
importance into account. At the heart of fuzzy logic is a membership function for
each quality parameter. As an example of a membership function, consider the
non-fuzzy logic implied when a person is asked to tell whether another person is
young or old. The traditional binary logic implied requires that everyone beyond,
say, 40 years is old (one), while everyone below is not (zero). It is apparent,
however, that a person at 41 years is not much different with respect to age than a
person at 39 years, even though the former would be considered old and the latter
young. In a fuzzy system, the membership function enables age to be defined as a
continuous function of age. For example, persons above 70 years may have a
membership of one, meaning they belong completely to the class old. Persons at
the age of 40 may have a membership of Y2 meaning that these are equally young
and old. Clearly, the fuzziness of the membership function is appropriate in this
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case and as will be shown, such fuzziness is also what is called for when
quantifying the quality of malt with respect to different parameters. Fuzzy logic has
found use in diverse disciplines since its formal introduction (Zadeh, 1965). There
are several different types of fuzzy logic based inference systems (Jang and Sun,
1997; Mamdina and Assilian, 1975; Sugeno, 1985), and they have been applied in
virtually all branches of applied science under slightly different names. Relevant
reviews on fuzzy logic can be found in the literature (Saffiotti, 1997; Center, 1998).
As the fuzzy system built in this paper is particularly simple, only the relevant
theory will be described.

Several indices combining single barley and malt quality variables have been
proposed. In the framework of the European Brewery Convention, a statistical
index for the overall evaluation of malting and brewing quality in barley has been
proposed (Molina-Cano et al., 1986; Molina-Cano, 1987). This index is based on a
weighted linear combination of extract, Kolbach Index, Apparent Final
Attenuation, Viscosity and Diastatic Power. Monnez et al. (1987) proposed an
index based on expert definition of barley groups based on their overall quality
followed by linear discrimination between these groups.

The earlier approaches for calculating an overall quality index build on either a
binary logic where each parameter is assessed compared to one specific target
value or a continuous approach where the actual value of the parameter is used
directly as being proportional to the quality (Molina-Cano et al., 1986; Molina-
Cano, 1987). These approaches are not satisfactory, since they unnaturally change
the apparent expert knowledge into an overly restricted mathematical system.

For example, having one specific target value for a parameter is mostly not
consistent with the a priori knowledge. For example, if a viscosity value of 1.10 is
deemed optimal, then most likely a viscosity value of 1.20 or 1.40 is also optimal.
Having the overall quality being linearly related to the level of a certain parameter
throughout the parameter range is also not appropriate. Naturally, the relation
between the level of a parameter and its evaluated effect on quality is highly
nonlinear. Using the concept of fuzzy membership functions, will allow a simple
way of treating the above problems. The method suggested in the following builds
on membership function, and has no statistically estimated parameters. It is based
on expert knowledge only, and therefore completely transparent from a user point-
of-view.
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Materials and Methods

Sample collection

The samples, provided by Carlsberg Research Laboratory, originate from trials
harvested in 1995, under the European Brewery Convention (EBC). Fifteen spring
barley varieties and ten winter barley varieties were grown at two different
locations in Denmark, Jutland and Zealand, giving 50 malting barley samples in
total. The barley grain samples were screened over a standard 2.5-mm sieve and
the grains above 2.5 mm were subjected to the micro-malting and mashing
procedure.

Malting quality analyses

The following 11 quality analyses were performed according to the official
methods from the European Brewery Convention (EBC Analytica): B-glucan in
malt, extract, N in malt, viscosity, friability, malt modification, homogeneity,
diastatic power, wort colour, soluble N in malt and B-glucan in wort. These
parameters are typical for a malt quality evaluation.

Near infrared transmittance (NIT) measurements

Near infrared transmittance spectra of the 50 malt samples (whole kernels) were
recorded using an Infratec 1225 Food and Feed Analyzer (Foss Tecator, Hoganis,
Sweden). The spectrophotometer records spectra in the range from 850 to 1050 nm
with data collection at every 2 nm, yielding 100 data points as reported in
absorbance (Log (1/T)). The whole malt kernels were loaded in a large vertical
sample cell with a 30 mm path length and inserted into a transport module. Each
spectrum is the average of 10 sub-scans acquired along the vertical sample cell.

Data analysis

The fuzzy logic calculations were performed using MATLAB version 6.1 (The
MathWorks, Inc. Natick, MA) using the associated Fuzzy Logic toolbox. Principal
Component Analysis (Wold et al., 1987) and Partial Least Squares Regression
(Martens and Nas, 1989) were computed using The Unscrambler 7-6 SR-1 (Camo
A/S, Trondheim, Norway).
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The principle of Fuzzy Logic

There are several steps in developing an overall quality index (OQI) using fuzzy
logic. These steps are described in the following.

A simple non-binary (fuzzy) membership function is attached to each individual
parameter, indicating to which degree any level of the parameter is good (with
respect to malting). Thus, the membership function defines to which degree the
quality parameter is acceptable and is defined on the basis of expert knowledge.
Figure 1 shows an example of the membership function of soluble N in malt.

-
o

Membership

0.0

0.2 0.55 0.58 0.66 0.69 1.0

Soluble N in malt
Figure 1. Example of a membership function of soluble N in malt

For any value of soluble N (x-axis), a corresponding membership can be read from
the ordinate axis. For example, if soluble N is between 0.58 and 0.66, the
membership will be one, indicating perfect malting quality (with respect to soluble
N). Below 0.55, the membership, hence quality, is zero. Between 0.55 and 0.58 as
well as between 0.66 and 0.69 is the interesting ‘fuzzy’ area, where the quality
(membership) will increase or decrease. If the parameter lies within these areas, the
malt is not unacceptable, though not optimal. The closer the parameter is to the
optimal region, the better the malt is. This is quantified by the membership
function which is a one-to-one mapping from the parameter space to membership
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space. The membership for any parameter is a number between zero (unacceptable)

and one (optimal).

Membership functions can have virtually any shape (usually convex) but the exact
shape is mostly not important. As long as the shape is in reasonable accordance
with the background knowledge, reasonable results are obtained. For all 11
parameters in this investigation, the membership functions are defined on the basis
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Figure 2. The membership functions for the 11 quality parameters. Two specific malt
samples are also given. The top plots (A) show the least interesting malt sample and the
lower (B) shows the best quality in the current sample set. For each parameter, the level of
the parameter is defined on the x-axis and the membership (between zero and one) read on
the y-axis.
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of current subjective expert quality assessments and are shown in Figure 2. As can
be seen, some parameters are simply better the higher (or lower), such as extract
yield, while others have an optimal target region (e.g. soluble Nitrogen). This is
easily handled by setting the shapes of the membership functions
accordingly.When the membership functions are defined, any parameter can be
converted into a membership degree for any malt sample. These memberships are
then to be combined into one OQIL.

The memberships (one for each quality parameter) are combined into the OQI by
means of a simple weighted addition (sugeno-type). This type turned out to provide
the most intuitive and directly appreciable quality measure. The weights are
defined on the basis of expert evaluation of importance of each parameter where 10
is very important and 1 is less important. In Table I, the expert-defined weights are

shown for the 11 parameters.

Table I. Importance weights of the 11 parameters
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Weights 9 7 4 9 3 9 10 7 8 9 10

As for the definition of the membership functions, these weights are subjectively
defined by the current evaluation of importance. OQI is then simply defined as

0QI = i mw,
i=1

where m; is the membership for parameter i 1 to 11 and w; is the corresponding

weights.

It should be emphasized that the membership functions as well as the importance
weights have been chosen in order to fulfil current malt requirements based on the
experience of the third author, but can be changed according to other requirements.
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Results and Discussion

As an example, the fuzzy logic function described in the previous section was
applied on a limited data set comprising of 50 malt samples representing 25
genotypes grown on two Danish locations. The detailed results of the eleven EBC

malt analyses of the 50 samples used for this investigation are given in Table IL

Table II. Malt quality data of the 50 analysed samples including 15 spring barley and 10
winter barley varieties respectively grown in Jutland (number 1-25) and Zealand (number
26-50).

— c

5 2 5 ¢ 2 g % > 2% ¢ g
& 5§ § ¢ E =z_ 8 s 3. 3 35 §. 5.
2 S § 2 z 88 £ 588 48 & 82 2T It
1 Alexis 81.7 2.2 1.58 0.55 1.64 254 260 83 88 58 0.42
2 Triumph 81.2 25 1.62 0.57 1.81 231 450 74 86 79 0.79
3 Nevada 80.9 1.9 1.59 0.51 1.96 232 580 72 81 62 0.84
4 Cooper 82.0 1.9 1.56 0.57 1.59 166 210 86 93 81 0.42
5 Caminant | 81.4 3.0 1.59 0.63 1.85 201 420 72 82 65 0.84
6 Miralix 81.0 2.2 1.71 0.53 1.91 257 630 65 75 59 1.27
7 Texana 82.3 2.5 1.62 0.61 1.63 167 200 87 92 77 0.32
8 Trebon 81.9 25 1.62 0.58 1.59 307 150 77 92 60 0.26
9 Cork 81.0 2.2 1.49 0.50 1.57 373 180 80 91 59 0.32
10 | Delibes 81.2 2.2 1.56 0.49 1.69 286 290 78 81 65 0.53
11 Polygena | 82.4 2.2 1.62 0.60 1.60 356 240 84 91 78 0.32
12 Mentor 81.3 2.2 1.68 0.57 1.62 379 220 73 93 76 0.27
13 | Mie 81.7 2.2 1.65 0.55 1.70 239 400 73 84 68 0.69
14 Reggae 82.4 2.5 1.53 0.53 1.68 215 400 79 84 70 0.74
15 | Anni 81.0 2.5 1.57 0.50 2.16 239 1200 58 71 69 1.79
16 | Plaisant 78.2 2.2 1.78 0.52 2.10 333 1200 38 51 68 1.79
17 | Angora 79.6 25 1.80 0.61 1.73 378 770 48 71 53 1.15
18 | Clarine 77.9 25 1.85 0.53 2.14 195 1260 35 55 56 1.58
19 | Puffin 78.7 2.2 1.86 0.63 1.91 277 730 53 68 54 1.00
20 | Geneva 771 2.5 2.13 0.70 1.83 437 650 44 71 66 1.00
21 | Trasco 791 25 1.86 0.60 1.75 277 830 49 66 54 1.16
22 Fanfare 80.5 2.5 1.68 0.54 1.86 204 770 49 66 64 1.31
23 | Melanie 79.9 25 1.78 0.60 1.77 388 750 58 71 56 1.15
24 | Rejane 79.5 25 1.83 0.57 1.90 166 680 48 76 59 1.05
25 | Sunrise 78.9 2.2 1.75 0.55 2.11 270 890 42 58 63 1.26
26 | Alexis 82.7 25 1.52 0.59 1.56 305 180 88 93 71 0.26
27 | Triumph 83.1 25 1.47 0.60 1.64 260 280 82 90 80 0.79
28 | Nevada 82.1 25 1.45 0.51 1.78 238 450 79 84 64 0.63
29 | Cooper 83.9 25 1.41 0.61 1.53 258 120 93 96 85 0.21

Continued on next page
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Table Il continued

30 | Caminant | 82.1 2.8 1.52 0.63 1.71 252 300 78 84 69 0.79
31 | Miralix 83.4 2.8 1.50 0.61 1.60 158 180 89 94 75 0.26
32 | Texana 82.7 2.5 1.49 0.55 1.67 146 500 80 87 77 0.68
33 | Trebon 82.5 2.8 1.52 0.61 1.58 313 145 84 94 81 0.31
34 | Cork 82.5 2.2 1.35 0.51 1.48 390 120 88 95 74 0.21
35 | Delibes 82.6 2.7 1.42 0.50 1.56 287 150 89 95 82 0.21
36 | Polygena | 83.2 2.8 1.44 0.62 1.53 279 190 90 92 82 0.31
37 | Mentor 82.6 2.8 1.55 0.63 1.57 316 150 82 92 72 0.31
38 | Mie 83.1 2.8 1.47 0.58 1.56 212 220 86 90 7 0.31
39 | Reggae 83.3 2.8 1.47 0.60 1.52 217 190 88 90 63 0.31
40 | Anni 81.7 2.8 1.54 0.51 1.87 232 830 66 73 64 1.52
41 | Plaisant 80.6 2.8 1.35 0.44 1.94 205 660 72 76 70 1.10
42 | Angora 82.4 2.8 1.43 0.60 1.54 282 170 92 92 83 0.21
43 | Clarine 81.0 3.1 1.49 0.47 1.87 151 700 68 73 64 0.94
44 | Puffin 81.4 25 1.58 0.59 1.63 221 240 84 88 73 0.36
45 | Geneva 80.9 25 1.71 0.63 1.65 384 260 81 85 72 0.42
46 | Trasco 82.2 3.1 1.74 0.60 1.62 376 240 82 81 62 0.31
47 | Fanfare 82.6 2.8 1.33 0.54 1.66 206 380 78 76 62 0.58
48 | Melanie 82.7 3.1 1.33 0.61 1.54 314 170 92 92 76 0.21
49 | Rejane 82.4 25 1.37 0.56 1.57 155 160 86 94 80 0.21
50 | Sunrise 82.1 25 1.33 0.53 1.72 253 410 76 80 66 0.68

A normal evaluation of such a data table of malt quality results is based on
experience and prior knowledge of the malster/brewer, in which each quality
parameter is evaluated according to a target or target range. By applying the
membership functions including the specific weights on to the original data
(Table II) these data are converted from parameter space to weighted membership
space. Thus, the original data matrix (50 samples x 11 variables) is converted into a
new 50x11 matrix, where the variables represent new weighted optimality indices,
one for each parameter. For instance, the first column (extract) has a weight of nine
and is hence converted from the original range of 77.1 - 83.9 % extract yield to a

weighted optimality index ranging from O (unacceptable) to 9 (optimal).

Exploration of this new weighted optimality matrix using PCA reveals five
relatively distinct groups in a score plot of principal component (PC) 1 and PC 2
(Figure 3). These two principal components explain 70% of the variation, where
PC 1 mainly explains differences in malt modification, while PC 2 mainly explains
differences in diastatic power. The clusters can roughly be grouped as follows:
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A: not acceptable modification;  optimal diastatic power
B: partly acceptable modification; optimal diastatic power
C: optimal modification; optimal diastatic power
D: not acceptable modification;  not acceptable diastatic power
E: close to optimal modification; not acceptable diastatic power
PC217 %
10 —
5 —
o —
] 22
7 o Hay
1 14
410 —|
PC153 %

-15 10 5 0 5 10 15
Figure 3. PCA score plot (PC 1 versus PC 2) of the weighted optimality matrix. The variety
identification is given in Table II.

Performing a similar PCA analysis on the “raw” data in Table II (not shown)
instead of the membership functions did not provide as clear results as the above,
which is sensible considering that the two different representations provide
different information. A PCA on the raw data focuses on the main directions in the
original data, where the principal components are linear combinations of the
original data and extreme samples will therefore have a large impact on the
principal components. This is feasible for data overview, sample comparisons and
interpretation of the principal components. However, a completely unsupervised
PCA on the original data does not take into account the non-linear relationship
between the parameter level and the degree of optimality as well as which levels
are acceptable and which are not. Thus, by first converting the data into levels of
optimality (weighted memberships) we supervise the PCA (Figure 3) to focus on
differences in usability instead of the actual levels.
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For each sample, the weighted optimality data are combined into a single overall
quality index (OQI) by simple addition. An optimal sample would thus give an
OQI of 85 (the sum of the weights multiplied by one), while a completely
unacceptable sample would give an OQI of zero (the sum of the weights multiplied
by zero). The OQI’s of the 50 samples are given in Figure 4, showing considerable
variations. Sample number 18 (Clarine grown in Jutland) seems to be the most
unacceptable sample (OQI of 10.8), while sample number 29 (Cooper grown at
Zealand) seems to be the most optimal (OQI of 84.7) of the analysed samples. The
calculated OQI’s of all the samples were thoroughly validated by the third author
and found to be a sound index reflecting prior knowledge and expectations of the

tested samples.
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Figure 4. Bar plot of the calculated Overall Quality Index (OQI) of the 50 analysed malt
samples. The variety identification is given in Table II. High overall quality index means
good malt quality and low means poor. The horizontal lines indicate tentative limits for
optimal (I), medium (II) and unacceptable (IIT) malt quality.

Two tentative limits have been added to Figure 4, indicating near optimal samples
(I), medium samples (II) and not acceptable samples (III). A comparison between
the PCA grouping in Figure 3 and the OQI’s shows that the OQI group I is
comprised of all the C samples in Figure 3, group II is comprised of B and E
samples, while group III is comprised of A and D samples. Thus, the calculated

112



OQI does not clearly differentiate between B and E samples or between A and D
samples. This shows that the calculated OQI as such only aims to determine

whether a given sample is acceptable or not.

Combining the malt quality data into one single number facilitates plotting and
easy data overview of the interactions between genotype and environment. Figure 5
shows the OQI’s of the 25 genotypes grown on the two locations (x-axis Jutland
and y-axis Zealand) including the tentative limits. It is evident that most of the
samples perform considerably better in Zealand compared to Jutland (most
genotypes located above the diagonal), while only Texana performs better in
Jutland.
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Figure 5. Scatter plot of OQI of the 25 genotypes grown on two locations (x-axis: Jutland;
y-axis: Zealand)

Genotypes along the diagonal perform equally well on the two locations, while the
non-diagonal samples are environmentally unstable (based on two locations only).
As discussed earlier, Cooper grown in Zealand was the most optimal single sample.
However, from a stability point of view, Polygena seems to perform similarly on
both locations, even though on a slightly less optimal level. In the lower end, a
group comprising Sunrise, Nevada, Fanfare, Plaisant, Anni and Clarine seems to be

unacceptable on either location.
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The fuzzy logic based OQI presented above is a way of reducing eleven malt
quality parameters and thereby reducing the data evaluation efforts in, for example,
malting barley breeding. However, the eleven input parameters are based on real
malt quality analyses involving micro-malting and mashing. In order to reduce the
analysis efforts as well, it would be of interest to predict this OQI by near-infrared
spectroscopy. NIT spectra were recorded on the 50 malt samples, and the spectra
were pre-transformed by the second derivative (Figure 6A) and used in a partial
least squares regression (PLSR) model for the prediction of OQIL
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Figure 6. A) Second derivative NIT spectra in the range 850-1050 nm of the 50 analysed
malt samples. B) Predicted versus “measured” OQI of a PLSR model using the second
derivative NIT spectra.

Four outliers needed to be removed prior to modelling, namely the samples:
14, OQI=24.9; 16, OQI=23.3; 25, OQI=20.0 and 32, OQI=35.0 (See Table II for
variety ID). These four samples are all in the lower end of the OQI scale, but the
exact reason for these four being outliers remains unclear. The predicted versus
measured plot of the remaining 46 samples is shown in Figure 6B, indicating a
reasonable model with a correlation coefficient (r) of 0.88 and a cross-validated
prediction error (RMSECYV) of 11, which corresponds to approximately 15 % of
the OQI range. This is not a perfect predictive model, but it is probably accurate
enough for screening purposes in malting barley breeding by having the capability
to classify the material into good, medium and bad categories. This will thus

reduce both malt quality analyses and data evaluation.
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Conclusions

This investigation has employed fuzzy logic for the translation of a complex malt
quality profile into a simple univariate overall quality index. The approach was
tested on a data set of 50 malt samples including eleven quality parameters. Fuzzy
membership functions were constructed for each of the quality parameters. These
functions define to which degree the quality parameter is acceptable on a scale
from zero (unacceptable) to one (optimal), taking into account the non-binary and
non-linear relationship between the level of the quality parameter and the degree of
optimality. The memberships (one for each quality parameter) are combined into
an overall quality index (OQI) by means of simple weighted addition. This OQI
turned out to be a sound index for the overall quality. It is furthermore shown that a
reasonable PLSR prediction model based on NIT spectra is obtainable. A relative
prediction error of 15% was achieved, indicating a useful calibration for breeding

purposes.
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Abstract

Evaluating gene effects on proteomes and the resulting indirect pleiotropic effects through the cell machinery on the
chemical phenotype constitutes a formidable challenge to the analytical chemist. This paper demonstrates that near-infrared
(NIR) spectroscopy and chemometrics on the level of the barley seed phenotype is able to differentiate between genetic
and environmental effects in a PCA model involving normal barley lines and the gene regulator /ys3a in different genetic
backgrounds. The gene drastically changes the proteome quantitatively and qualitatively, as displayed in two-dimensional
electrophoresis, resulting in a radically changed amino acid and chemical composition. A synergy interval partial least squares
regression model (si-PLSR) is tested to select combinations of spectral segments which have a high correlation to defined
chemical components indicative of the /ys3a gene, such as direct effects of the changed proteome, for example, the amide
content, or indirect effects due to changes in carbohydrate and fat composition. It is concluded that the redundancy of biological
information on the DNA sequence level is also represented at the phenotypic level in the dataset read by the NIR spectroscopic
sensor from the chemical physical fingerprint. The PLS algorithm chooses spectral intervals which combine both direct and
indirect proteome effects. This explains the robustness of NIR spectral predictions by PLSR for a wide range of chemical
components. The new option of using spectroscopy, analytical chemistry and chemometrics in modeling the genetically
based covariance of physical/chemical fingerprints of the intact phenotype in plant breeding and biotechnology is discussed.
© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Proteome; Near-infrared spectroscopy; Chemometrics; Analytical chemistry; Biotechnology; Barley; Plant breeding

1. Introduction British astronomer William Herschel reported on the
existence of “the invisible thermometrical spectrum”
to the Royal Society [1]. However, spectroscopy first
gained momentum when Abney and Festing in 1881
[2] first measured spectra of organic compounds.

Since then, a number of highly informative spectro-

Spectroscopy has become fundamental in chem-
istry. Its discovery dates back to 1800 when the
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scopic techniques have been developed. One of the
more recent developments is near-infrared (NIR) spec-
troscopy which has invaded analytical chemistry by
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non-destructively predicting chemical composition,
even in complex biological samples from agriculture
[3]. These methods are now routinely used with high
precision locally and internationally for controlling
the composition of agricultural raw materials for feed
and food such as cereals, milk, and meat.

It all started in the 1950s at the USDA laboratory
in Beltsville, Maryland, USA, when Karl Norris and
his group constructed a moisture metre [4] for wheat
by NIR spectroscopy. The problem of interference
in the moisture measurements from other chemical
constituents was solved by data pretreatment through
spectral derivatization and classical statistical wave-
length selection by regression analysis made possible
by the computer followed by multiple linear regres-
sion (MLR) to calibrate a few selected wavelengths to
water measurements.

At the 7th World Cereal and Bread Congress in
1982, Martens and Jensen [5] introduced chemometric
algorithms in utilizing information from whole NIR
spectra. This was in the form of the partial least squares
regression (PLSR) which later became fundamental in
the development of software for NIR equipment ded-
icated for specific functions made by the instrumental
industry.

In plant breeding, rapid screening methods for
chemical composition and identification of specific
genes are essential tools in classical breeding as well
as in gene biotechnology. Recently, NIR spectroscopy
has been shown to be able to detect the phenotypic
effects of wheat-rye chromosomal translocations [6],
and the chemical mechanism behind this classification
was discussed.

In the 1960s, research in cereals was focused on
obtaining genes for improved amino acid composition
for nutritional purposes, especially with regard to the
first limiting amino acid lysine [7]. The senior author
of this paper was involved in developing a dye-binding
method with acilane orange as an expression for the
sum of the basic amino acids — lysine, arginine,
and histidine — which was used as a ratio to protein
(N x 6.25) to select the first high-lysine barley gene
lys] from the world barley collection [8]. A more
drastic ethylenimine-induced mutant M-1508 (gene
lys3a) from the barley variety Bomi was isolated in
1973 by the Risg laboratory group [9] in Denmark
employing the dye-binding method. The regulatory
status of the Mendelian high-lysine gene lys3a was

finally established in 1996 [10]. In a recent study, we
have demonstrated that NIR spectroscopy is able to
differentiate between five different high-lysine mutant
genotypes [11] with characteristically different amino
acid patterns.

In an autopollinated crop such as barley, spectro-
scopic screening is greatly facilitated analytically,
because each line derived after six to nine generations
of self-pollination can be considered homozygotic
and thus genetically homogeneous. A mutation or
a transfer of a specific gene to such a line is thus
expressed in a genetically reproducible, controlled
isogenic background and will show up in the spectro-
scopic physical/chemical fingerprint, if its chemical
implications directly or indirectly are large enough.
In development of NIR analytical methods, the ap-
plications have always been ahead of theory. We
therefore aim at exploring the chemical basis of how
NIR spectroscopy works in differentiating the lys3a
phenotype from normal barley in two different en-
vironments. The genetically based diversity is first
detected on the phenotypic level of biological orga-
nization by non-invasive spectroscopy and afterwards
calibrated to destructive chemical analytical methods.
This dialogue between data from the biological and
chemical levels of organization is made possible by
chemometric software and the computer.

2. Materials and methods

Total 125 different varieties of normal barley (O)
and lys3a (X) lines based on crosses with these vari-
eties were bred at the Carlsberg Research Laboratory,
Valby, Copenhagen from 1973 to 1990, as repre-
sented in the figures and tables. They were grown in
the field and/or in the greenhouse (V) together with
the original /ys3a¢ mutant from Risp (M-1508) and
its isogenic motherline Bomi. Seeds grown in the
greenhouse tended to have a lighter color and higher
protein content compared to those grown in the field.
The whole seed barley samples were measured with a
near-infrared transmission (NIT) instrument, Infratec
(Foss Tecator AB, Hgganis, Sweden). The samples
were milled in a hammermill (sieve 0.5mm) and
the whole flour was measured by a NIR instrument
(Foss-NIR-Systems 6500, USA). The samples were
analyzed for moisture, Kjeldahl protein (N x 6.25)
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(Foss Tecator, Kjeltec) and for amides by alkali
volatile nitrogen by adding 50 ml of 36% NOH alkali
to 3 g of flour in the Kjeldahl destillation unit.

Twenty-one of these samples presented in figures
and tables were also analyzed for starch (AACC
76-13), for fat (Foss Tecator, Soxtech), for 3-glucan
(Foss Tecator 3-glucan analyzer system, Carlsberg),
for soluble and insoluble fiber (Foss Tecator, Fib-
ertech), and for amino acids after hydrolysis [12].
The 21 barley samples were extracted in order
to obtain buffer-soluble (albumins, globulins) and
ethanol-soluble (hordeins) proteins which were sepa-
rated by a two-dimensional gel electrophoresis [13].
Principal component analysis (PCA) and PLSR anal-
yses were performed by the “Unscrambler” software
version 7.5 (Camo A/S Trondheim, Norway) with full
cross-validation. The spectroscopic data were reduced
by 50% by selecting information from every second
wavelength with full cross-validation.

Interval-PLS (i-PLS) employed in the selection of
wavelength areas [14] was performed on the 1050
NIR spectral data points divided into 30 equal inter-
vals numbered 1-30, stating correlation coefficients
(r) and error (RMSECV: root mean square error of
cross-validation). An extension of i-PLS called syn-
ergy i-PLS (si-PLS) was employed to find the interval
combinations of all possible combinations of intervals
which give the highest correlation coefficients and the
lowest errors.

3. Results from observations and experiments

3.1. Exploratory classification of separate
spectral and chemical datasets by PCA

We will first investigate the non-destructive obser-
vation of batches of whole barley seeds by NIT spec-
troscopy and its ability to differentiate between lys3a
and normal phenotypes. In Fig. 1A, second derivative
NIT spectra between 860 and 1035 nm from 51 barley
samples grown in the field are shown. We will now
simulate the discovery of the lys3a gene, as it could
have taken place with NIT spectroscopy instead of the
dye-binding method [6-8]. In Fig. 1B, a PCA of 51
barley NIT spectra displays a normal barley population
(O) and a lys3a mutant outlier (X). When this mutant
is crossed with different normal barley genotypes, the

120

segregants form two clusters (Fig. 1C) representing
normal barley (O) and /ys3a mutant (X) recombinants.

It is obvious that the non-destructive NIT spec-
troscopy on whole seeds is an attractive method for
selection in plant breeding and that it is able to dif-
ferentiate between the two extreme genotypes with
a sufficient degree of precision. However, the short
spectral range of 175 nm of NIT is mainly due to the
third and fourth and partly the second overtones in the
lower range of the near-infrared spectrum as limited
by the silicon sensor. Further development of NIT
spectroscopy with new sensors will reveal how far this
technology can be expanded upwards at higher wave-
lengths to obtain less crude and more detailed spectra
as with near-infrared reflection (compare Fig. 1A with
D). Expanding upwards in the near-infrared spectrum,
will give more specific chemical information, includ-
ing from the combinatory region from 1900 nm and
upwards [15]. Therefore, in order to explore these
possibilities, we have chosen in the following to con-
centrate on NIR spectroscopy with photomultipliers
measuring 1050 data points at every second wave-
length from 400 to 2500 nm (Fig. 1D). This however
introduces the drawback of having to mill the barley
seed samples.

In Fig. 2 in a PCA plot with 125 NIR spectra consti-
tuting the whole barley material, we can identify four
clusters where PC 1 differentiates between the geno-
types normal (O) and lys3a (X) barley, while PC 2
differentiates between the barley grown in the field (O
and X) and in the greenhouse (OV and XV). With few
exceptions, the genetic differentiation is excellent. It
would probably have been even better, if samples of
the mutant had been compared with several samples of
a normal barley with the same isogenic background.

Total 21 of these samples, 15 normal and 6 lys3a
lines, were subjected to a detailed chemical analysis,
including two two-dimensional gel electrophoresis
analyses with a buffer and an ethanol extract of each
sample in order to study the water- and salt-soluble
albumins and globulins as well as the ethanol-soluble
storage proteins, the prolamins (hordeins). By visual
inspection, it was clearly possible to classify the two
electrophoresis patterns of each of the pure samples of
the lys3a genotype as different from those of the nor-
mal barleys. Two representative sets of electrophore-
sis, each for water/salt-soluble and ethanol-soluble
proteins for the original 1508 gene a /ys3a and the
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Fig. 1. (A) NIT spectra (850-1040nm) measured non-destructively on whole seed samples of normal and /ys3a barleys grown in the
field presented as PCA plots in (B-D); (B) PCA of whole seed NIT spectra detecting a lys3a (mutant 1508) outlier (X) among normal
barleys (O); (C) PCA of whole seed NIT spectra showing a segregating population for the /ys3a gene (X) where the original 1508 mutant
(encircled) has been crossed with normal barley (O); (D) 125 NIR spectra (400-2500 nm) from whole flour of milled seeds of normal and
lys3a barleys shown in a PCA plot in Fig. 2. The squared area 2270-2360nm (approximately identical with the i-PLS interval number
28) visually selected for difference between normal and lys3a spectra is presented enlarged in Fig. 6.

isogenic barley line Bomi are displayed in Fig. 3. The
different proteomes give a good, general overview
of the very high chemical complexity on the protein
level which fuels the phenotypical variation discussed
above.

The hordein patterns from a normal barley variety
such as Bomi compared with those of the high-lysine
mutant /ys3a in Bomi shows that the normal line
expresses a number of proteins that the mutant does
not express (Fig. 3a and b). Contrary to this finding,
the albumin/globulin fraction shows that the mutant
line expresses a number of proteins that Bomi does
not express (Fig. 3c and d). In the albumin/globulin
fraction, the picture is rather complicated. A general
conclusion about whether these differences are of
a quantitative or a qualitative nature merits further

studies during which the electrophoresis separation is
optimized.

The changes in the proteome of the barley en-
dosperm due to the lys3a gene are reflected in a
drastic change in the amino acid composition of the
total protein (see Table 1). The basic amino acids, in-
cluding lysine, are increased together with aspargine,
alanine, threonine, and valine, while glutamic acid,
proline, amide nitrogen to protein nitrogen (A/P in-
dex) (see Table 2) and phenylalanine are markedly
decreased. The change in the amino acid pattern of the
21 samples is expressed in the PCA biplot with scores
and loadings in Fig. 4. There is a clear differentiation
between lys3a (X) and normal barley samples (O).
However, two of the samples, X and XV, are more
intermediate, emerging from the same 508 line of the
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Fig. 2. PCA on NIR spectra from Fig. 1D trom normal (O) and lys3a (OX) barleys grown in the field and in the greenhouse, OV and XV,

respectively.

Carlsberg breeding program. The loadings from the
different amino acids appear in three groups. On the
right side of the PCA plot near the lys3a barleys (X
and XV), there is a cluster of amino acids such as

Table 1
Selected barleys for amino acid determination (g per 100 g protein)
from the material in Fig. 2

Normal barley (n = 15) Barley 1508 (n =4)

Asp 4.78 £+ 0.50 8.11 £ 0.57
Arg 4.51 £+ 0.50 6.97 £+ 0.42
Lys 3.10 £ 0.39 4.84 = 0.28
Gly 293 +£ 033 430 + 0.32
His v2.12 £ 0.21 2.76 £+ 0.14
Tyr 2.81 £ 0.26 293 £0.22
Ala 3.07 £ 0.36 4.23 +0.28
Ser 317 £0.28 349 £ 0.33
Thr 2.63 + 0.27 3.28 £ 0.30
Val 432 £ 045 4.92 + 0.37
Met 143 £ 0.15 1.53 £ 0.14
Cys 1.56 + 0.28 1.60 £ 0.41
Leu 598 £ 0.59 5.85 £ 0.49
Ile 312 £0.28 299 £ 0.19
Glu 21.62 £ 2.51 14.60 £+ 1.69
Pro 9.63 = 1.34 5.76 £ 0.64
Phe 451 £+ 0.50 3.67 £ 0.22

lysine and aspartic acid which are increased in this
genotype. Situated above this are the amino acids with
minor changes between the two genotypes, while to
the left near to the normal (O and OV) samples are
the amino acids like glutamic acid, proline, and A/P
which are high in the normal genotypes. It is seen
that the normal barleys grown in the greenhouse (OV)
are near this amino acid cluster, because they have
higher amounts of the amino acids typical for storage
proteins like glutamic acid and proline compared to

Table 2
Chemical composition (% DM) of barleys for the same material
selected for amino acid composition in Table 1

Normal barley Barley 1508

(n =15) (n=4)
Protein (N x 6.25) 12.76 £+ 2.38 14.28 £+ 1.84
Amide-N 0.32 & 0.08 0.25 + 0.05
Amide-N/N (A/P) 15.68 £+ 1.08 11.53 £ 1.98
Beta-glucan 4.76 £ 0.77 388 £ 1.19
Fat 1.88 + 0.18 322 4+ 0.53
Starch 54.83 £+ 4.18 50.95 £ 3.03
Insoluble fiber 1091 + 1.64 1647 £ 091
Soluble fiber 2.87 + 0.67 2.30 £ 0.69

122



176 L. Munck et al./Analytica Chimica Acta 446 (2001) 171-186

i -

N&g«/

- ’”i

. / fw/,%\»‘ L

5
%
»
.Y
e
L
(3

-

W

o

5

Fig. 3. Two-dimensional electrophoretic gels [13] of hordeins and
albumins/globulins from the barley variety Bomi and its lys3a
mutant. The gels were run using an immobilized pH gradient
from 3 to 10 in the first dimension: (a) hordeins from Bomi; (b)
hordeins from its /ys3a mutant; (c) albumins/globulins from Bomi;
(d) the albumins/globulins from its /ys3a mutant. Some protein
spots can be seen in the gels both from Bomi and the mutant, a
subset of these common spots being indicated with dashed arrows
for orientation. The full arrows indicate a subset of proteins that
are only present in either Bomi or lys3a.

those grown in the field (O). This is caused by the
higher protein content of the samples grown in the
greenhouse (V) due to intensive nitrogen fertilization
which especially increases the alcohol-soluble storage
proteins, the hordeins.

Simply inherited Mendelian regulating genes like
lys3a have complicated, indirect effects on the pheno-
type when the changed protein pattern influences the
total endosperm cell machinery. This is reflected in
a change in the total chemical composition with in-
creases in lys3a barley for protein, fat and insoluble
fiber and decreases in amide-N, beta-glucan, starch,
and soluble fiber (Table 2 and Fig. 5). The PCA biplot
of the total chemical composition in Fig. 5 parallels
that of amino acid composition in Fig. 4, elucidating
the different patterns in chemical composition due to
genotype and growth environment. Also here, two of
the lys3a lines, X508 and XV508, are intermediate.
A close inspection of the seeds facilitated by the fact
that /ys3a seeds have a large embryo [7] reveals that
these lines are not pure, but contain 39% (X508) and
60% (XV508) normal barley seeds on weight basis.
This impurity is to some extent reflected in the posi-
tion of the X508 sample adjacent to the normals (O)
in the PCA plot of the whole material in Fig. 2; the
spectrum of the XV508 sample was not included.

3.2. Establishing causal relationships between
spectral, genetic, and chemical information by
PLSR and wavelength selection

In spectroscopic evaluation, it is important from
the onset of the investigation to carefully inspect the
individual spectra. Inspired by the spectral variation,
a trained NIR spectroscopist is able to select several
wavelengths which may contribute to the chemical
validation of the problem. As an example of visual se-
lection, we will discuss a small spectral area display-
ing an interesting, fine structure between 2270 and
2360 nm marked by a square in Fig. 1D and enlarged
about 20 times in Fig. 6A and B. In Fig. 6A, we can
compare the spectrum of the original M-1508 mutant
with that of its isogenic motherline Bomi, displaying
two entirely different patterns. The Bomi spectrum
compared to that of lys3a shows a more marked shoul-
der from about 2283 to 2295 nm and a maximum (in-
stead of a decrease) at about 2320 nm, while the /ys3a
spectrum has a dual peak at about 2315 and 2345 nm.
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Fig. 6. Enlargement of part of the NIR spectrum 2290-2360 nm in Fig. 1D marked with a square. The arrows denote differences between
the spectra which enable a classification discussed in the text — Fig. 1A: spectra of /ys3a and its isogenic motherline Bomi grown in the
field together with that of Bomi grown in the greenhouse (V); Fig. 1B: mean NIR spectra of normal barley (O, n = 52; OV, n = 30) and

lys3a barley (X, n =25; XV, n = 18).

Both these spectra represent samples grown in the
field.

In comparison, Bomi-V (Fig. 6A) grown in the
greenhouse (V) demonstrates essentially the same
spectral form as Bomi grown in the field, but at higher
absorbance reflecting the higher protein content. The
conclusions from Fig. 6A regarding the isogenic lines
and locations are confirmed for the barley varieties (O,
OV) and lys3a crosses (X, XV) in Fig. 6B, displaying
the mean spectra of the four classes: O (n = 52), OV
(n = 30), X (n = 25), and XV (n = 18). Returning to
Fig. 1D for comparison, an impressive reproducibility
of the NIR spectral measurements is demonstrated.
We may conclude that by visual inspection of the re-
gion 2270-2360 nm, it is possible to correctly classify
spectra from normal and /ys3a barley. The two con-
taminated deviating lys3a lines marked 508 discussed
above show spectral characteristics intermediate be-
tween lys3a and the wildtype. Upon consulting the
spectral table for chemical assignment [15], it appears
that at 2294 nm there is an amino acid determinant
(N-H and C=0) at the normal barley plateau of
2283-2295 nm. The normal barley peak at 2320 nm
does not seem to coincide with any nitrogen bond in-
formation, but rather with CH information at 2310 nm
(CH3) and 2323 nm (CHjy). At 2336 nm, there is in-
formation on cellulose. The lys3a peak at 2345nm is
close to the HC=CHCHj; indication at 2347 nm for
unsaturated fat. It can thus be concluded that the small
area of 90 nm between 2270 and 2360 nm, apparently

unique for the lys3a genotype, is characterized not
only by differences to normal barley in amino acids
(protein), but also in carbohydrates (cellulose) and
(unsaturated) fat, as confirmed in the chemical anal-
yses (Table 2 and Fig. 5). These differences are to
be related to the part of the proteome regulated by
the lys3a gene which directs the machinery of the
endosperm and germ tissue cells during development.

We will now supplement wavelength characteriza-
tion by the naked eye with automatic selection using
chemometric algorithms for data reduction into latent
factors (principal components), such as with PLSR [5]
from spectral intervals created by i-PLSR [12]. In or-
der to indicate which wavelengths are dependant on
genotype (normal and lys3a) and location (field and
greenhouse) in the total material from Fig. 2, a dis-
criminant PLSR was made with a 2 x 2 factor setup
(wildtype = 1, lys3a = 0, field = 1, greenhouse =
0). The regression coefficients related to spectral wave-
lengths are presented in Fig. 7. The genotype compo-
nent has a much higher profile than that of the location
with positive and negative peaks at 495, 510, 1040,
1375, 1505, 1650, 1890, 1900, and 2400 nm. There
were however large unique areas in the location load-
ing which explained the satisfactory PCA classifica-
tion in Fig. 2.

In further defining the chemistry behind the NIR
spectroscopy of the barley material, we will now use
PLSR to calibrate spectroscopic information on the
level of the seed phenotype with two basic chemical
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Fig. 7. Regression coefficient from a discriminant PLSR involving NIR spectra, x (n = 125) and genotype (normal and lys3a barley) and
location (grown in greenhouse and in the field) y, from the data in Fig. 2.

analyses, Kjeldahl protein equal to N x 6.25 which
represents univariate expression of a range of nitro-
gen bonds, and the more specific alkali volatile ni-
trogen analysis which mainly represents the amide-N
group and small amounts of ammonium salts avail-
able in the barley seeds. In Fig. 8, high correlation
PLSR models (six to seven PLS components) with full
cross-validation are calculated based on whole spectra
for prediction of protein (Fig. 8A), amide-N (Fig. 8B),
and the ratio between amide-N and total N (Fig. 8C).
It is seen that the barleys grown in the greenhouse
marked V tend to have the highest amount of protein
(Fig. 8A) and amide-N (Fig. 8B) content and that the
lys3a genotype marked X generally has a lower con-
tent of amide-N compared to normal barley (O). This
tendency is further reinforced in the PLSR model for
prediction of the amide-N/total N ratio where there is
a clear-cut clustering which separates the lys3a (X)
genotypes from the normal (O). The amide-N/total
N ratio available as spectroscopic information is thus
one of the many spectral methods effective for screen-
ing for the /ys3a genotype as an alternative to the
dye-binding method [7].

In order to further dissect and explain the spectral
information, the spectra were divided into 30 intervals
of 70 nm each, giving 35 data points after 50% reduc-
tion. These were calibrated to protein and amide-N
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in fully cross-validated i-PLS [14] models. An exam-
ple with the distribution of RMSECV along the spec-
tral intervals is shown for amide-N in Fig. 8D for the
whole barley material (n = 125) where the spectral in-
terval number 23 (1940-2008) shows the lowest error.
The covariance is generally high and the correlation
coefficients with, for example, amide-N content vary
typically between 0.99 (highest) and 0.80 (lowest) for
five principal components for the 30 intervals.

In order to study synergy between the different spec-
tral intervals, a si-PLS model was developed for com-
putational time reasons limited here to two combined
segments. Fig. 8E shows the two selected spectral in-
tervals for amide-N, numbers 23 and 26, and the PLSR
model is displayed in Fig. 8F.

For comparison of interval selection by si-PLSR,
three data materials were constructed: normal barley
(n = 82), lys3a barley (n = 43), and the total barley
material normal + lys3a (n = 125). They were an-
alyzed for si-PLS calibrated to protein and amide-N
with full cross-validation. In Table 3, the intervals
that were selected with maximum correlation coeffi-
cients are presented and the number of PLS compo-
nents noted. The correlation coefficients and errors for
the adjacent principal components were also selected
and compared to a full-spectrum PLSR model. It is
seen that the information is widely confounded and
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Table 4

Chemical characterization [15] of wavelength intervals selected by si-PLSR in Table 3

Interval Selected in Wavelength Chemistry [15]

number correlation with?® interval (nm)

12 A 1170-1238 CH
15 P, A 1380-1448 NH ROH CH
16 P 1450-1518 NH, protein ROH, starch cellulose

18 P 1590-1658 CH
20 P, A 1730-1798 Cellulose CH SH
23 P, A 1940-2008 NH Amide R-OH, starch

24 P, A 2010-2078 NH, protein Amide, C-O

25 P, A 2080-2148 Amide Starch, C=C (fat)

26 P, A 2150-2218 Amide Fat, CHO

27 P, A 2220-2288 Amino acid Starch CH
28b 2290-2358 Amino acid Cellulose, fat CH

2 P: protein; A: amide.
b Visually selected.

there is only a small improvement in the local mod-
els compared to the full-spectral models, except for
amide-N in the lys3a material. In order to determine
if the relatively small improvement in correlation co-
efficients and RMSECVs is significant, the models
should be evaluated with an independent test set, if a
close ranking is desired. Because of the small differ-
ences in correlation coefficients and errors, we have
decided to further discuss all the intervals having the
highest correlation coefficients and the lowest errors
selected by si-PLS in Table 3 as a whole in Table 4.
Two intervals (numbers 16 and 18) are selected for
protein (P) only and one is selected for amide-N (A).
Seven intervals are chosen by both types of correla-
tions marked AP. In Table 4, the spectral regions for
the intervals are defined and the chemical interpreta-
tion given from the literature [15]. We may now also
compare to the previously discussed visually selected
spectral segment 22702360 nm which was indicative
for the lys3a genotype and which best coincides with
the interval number 28 (2290-2358 nm). It is notewor-
thy that this segment is only in the middle of the ranges
of correlations and is not prioritized by the si-PLS se-
lection, although the correlation coefficients are only
about 3% lower than those of the optimal segments.
Interval number 28 contains mixed information from
amino acids (protein) as well as from non-nitrogen
components such as cellulose, fat, and C—H bonds.
The mixed information is also prevalent for most other
selected segments, such as numbers 15, 16, 23, 25,
26, and 27. Only segment 24 seems to be a clear-cut

N indicator, while segment 20 indicates carbohydrates
and SH groups, and numbers 12 and 18 are C-H in-
dicators.

It can thus be concluded that the NIR spectrum
contains repetitive confounded chemical information
throughout the spectrum which gives a high de-
gree of redundancy and which in combination with
the high precision and repeatability of the measure-
ment explains the versatility and robustness of NIR
full-spectrum chemical PLSR predictions brought out
by spectroscopic “multimeters” in practice. The con-
sequences of utilizing the multivariate chemical ana-
lytical advantage in plant breeding and biotechnology
are discussed in Section 4.

4. Discussion

At present, focus in biotechnology tends to be
changing from genome sequencing to the concept
of the proteome to describe the complement of pro-
teins expressed by a cell tissue, for instance an
endosperm. This is called the “the post-genome
revolution” in an article in the 16 December 1999
issue of the journal Nature. The complexity of this
challenge is lucidly illustrated in Fig. 3a—d comparing
the two-dimensional electrophoresis protein patterns
from buffer and ethanol extracts from the original
Risg 1508 mutant lys3a and its isogenic motherline
Bomi. They represent about 60% of the total seed
proteins with the endosperm as the dominating tissue.
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The differences due to just one gene are so great that
they cause confusion in comparison of the electro-
pherograms. However, when superimposing the two
electrophoresis sets from the albumins/globulins and
the prolamins (hordeins), respectively, a pattern of
common spots marked with dashed arrows in Fig. 3
proves that the reproducibility is reasonable. The
2 x 19 electropherograms were made for the 15 nor-
mal barleys and the four pure mutant lines analyzed
for chemical composition in Tables 1 and 2. The
differences between the categories, the wildtype and
lys3a, could be easily discerned in a blind test by
visual inspection where a set of anonymized electro-
pherograms were presented in random order. In the
literature, the effect of the lys3a gene on the synthe-
sis of about 15 proteins has been compared to other
relatively well-studied mutants [7,16]. It constitutes
only a fraction of the differences demonstrated in
Fig. 3a—d. The lys3a gene is situated in chromosome
7 [17] and regulates [10] a range of structural genes
in other chromosomes, for example in chromosome
5, the loci coding for the hordeins B (Hor 2), C (Hor
1), and D (Hor 3) produced in the endosperm [16].
The first two of those constituting a major part of the
hordeins are drastically reduced in /ys3a, contributing
to a total reduction of the hordeins of 85% [18]. At
the same time, however, the D-hordeins increase in
lys3a [18]. The overall reduction of the hordeins was
confirmed in the electropherograms when comparing
the protein patterns of the alcohol soluble proteins in
Fig. 3 (a: Bomi; b: lys3a). On the other hand, the pro-
tein pattern of the buffer-soluble albumins/globulins
in Bomi (Fig. 3c) are in general quantitatively in-
creased in lys3a (Fig. 3d) with great qualitative and
quantitative differences. Thus, it seems as if the re-
tardation through the lys3a gene of the synthesis of
the hydrophobic ethanol-soluble hordeins results in a
range of hydrophilic buffer-soluble fragments.

With regard to buffer-soluble proteins expressed in
the triploid tissue of the endosperm and aleuron in
the barley seed, large changes have been confirmed
due to the gene lys3a. For example, there are de-
creases in beta-amylase and protein Z [19], while oth-
ers are increased, e.g. the potential antifungal proteins
[20], an amylase/subtilisine inhibitor, a chitinase, and
a ribosome-inactivating protein [21,22].

In plant breeding and in biotechnology, there is a
great need for screening methods in order to identify
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genes and gene effects. The genome and proteome
concepts introduce a multivariate challenge, where
multivariate screening methods such as spectroscopy
and data analysis such as chemometrics are central.
Recently, Delwiche et al. have demonstrated [6] that
it is possible to detect certain wheat-rye chromoso-
mal translocations by NIR spectroscopy. We have de-
scribed [11] that in a mixed genetic background, it
is possible by NIR to distinguish normal barley not
only from the drastic high-lysine mutant Risg 1508,
but also from the lesser high-lysine mutants Risg 13,
16, 29, and 95 [23] which have not yet been studied
from a protein chemistry point of view.

In a classical approach, the biochemist and the
biotechnologist tend to focus on specific genes, mech-
anisms and proteins, while forgetting about the side
effects which are considered vital by the geneticist
and the plant breeder and are collected in the concept
of pleiotropic gene effects. Thus, the Risg mutant
56, in contrast to the regulating gene /ys3a [24] is
a mutation (deletion) in a structural gene Hor 2 in
chromosome 5 coding for the B-hordeins, as docu-
mented by the absence of the RNA messenger [24].
There are compensatory increases in the C- and the
gamma-hordeins [24]. Other pleiotropic effects due to
the gene mutant 56, for example on the carbohydrate
composition, have not been described but are most
likely to occur, because mutants affecting hordein
synthesis usually have decreased starch synthesis
[7]. If so, the changes in the proteome as well as
other changes in other chemical components derived
from here could be detected in mutant 56 by NIR
spectroscopy, preferably in an isogenic comparison.

Thus, NIR spectroscopy enables a physicochemical
fingerprint of the phenotype on the level of phenotyp-
ical biological organization which can be compared
and analyzed by chemometrics in a PCA, and vali-
dated to chemical analyses and knowledge by PLSR.
It is thus possible, by defining what is normal bar-
ley, to identify and investigate outliers with unknown
chemical composition and afterwards define their ge-
netic and chemical status [11]. The material should
be grown on the same site, although we have shown
in our lys3a example that it is possible to separately
model the environmental and genetic effects (Figs. 2
and 7). It is clear that a multivariate dataset, col-
lected either by a range of univariate chemical analyses
(Tables 1 and 2, Figs. 4 and 5) or more easily by a
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spectroscopic method (Fig. 2), could facilitate differ-
entiation between genetic and environmental effects
compared to a classical approach. The key to utilizing
this option is the ability to explore and to model covari-
ance in the datasets by using chemometric methods.

As early as 1930, Bishop [25], in his nitrogen-
regulation principle of the Osborne [26] protein
fractions of barley, demonstrated a case of covariance
implying that as a part of the total protein content, the
hordein proteins increased and the albumins and glob-
ulins declined when the protein level was increased,
for example with nitrogen fertilization. This implied
a decline in the total protein content of lysine and es-
sential amino acids and an increase in the content of
amides, glutamic acid, and proline due to the compo-
sition of these proteins. This mechanism was almost
considered a natural law [27] until the discovery of
the first high-lysine mutants. Fig. 9A displays the high
precision of the negative regression lysine g per 16 gN
with total protein content (N x 6.25) for the 15 normal
barleys analyzed for amino acids. The introduction of
the lys3a gene outliers (Fig. 9A) completely changes
this picture. It has been confirmed [7] that both the
lys3a and the lys/ genes straighten out this correla-
tion, so that now the lysine content of protein with
these genes is independent of total protein content.
This change is also reflected in comparing the two
specific total amino acid patterns as a function of the
protein content of the seed, each unique for normal
barley and for the high-lysine mutant lys3a (Table 1)
which is elaborated as a whole in the PCA in Fig. 4.

While the genetic data in our investigation are well
defined and hard, the direct and indirect effects of
this regulating gene on the endosperm proteome and
the phenotype are extremely diverse and multivariate,
thus requiring soft mathematical modeling. It is thus
in practice impossible to study these effects as a whole
without suitable multivariate analytical screening
methods like spectroscopy and without chemometric
evaluation. We might conclude that gene-dependent,
specific, multivariate covariate correlation patterns
like those between amino acids as a function of pro-
tein content in barley seeds are just as deterministic
and environmentally independent a trait as blue and
brown eyes in humans.

We will now discuss how the detection of the lys3a
genotype may work on the NIR spectroscopic level.
As seen in Fig. 9B, lysine can be reasonably predicted

by full-spectrum NIR (RMSECV 0.24 at five PLSR
components). A straight 30-interval i-PLS selects in-
terval 28 (RMSECV 0.20 at seven PLSR components)
which was earlier selected (Fig. 6 and Table 4) as a
unique area for visual /ys3a differentiation from nor-
mal barley. A si-PLSR with two synergy elements se-
lects at five PLS components interval 27 together with
28 (RMSECYV 0.15 at five PLSR components). How-
ever, at seven PLS components, si-PLSR combines
the spectral elements 17 and 26 with a minimal error
of RMSECV 0.13, approximately half of that for the
whole spectral model. These results on lysine, based
on 18 spectra, should be confirmed in studies with
a larger independent material. However, the purpose
of the exercise here is not to differentiate one or two
“hot” areas in the NIR spectra from a close ranking
list in defining the lys3a genotype, but rather to look
at several areas with low prediction errors in order to
explain how full-spectrum NIR works.

In Fig. 9C, it is seen that lysine mol% is highly neg-
atively correlated to amide-N to N ratio (r = —0.97),
which points to the possibility that the spectroscopic
signature of the amide bond in this material (n = 125)
could be a good indicator for a low content of lysine.
Of the spectral elements, numbers 17, 26, 27, and 28,
previously selected by si-PLS correlated with lysine,
number 26 (2150-2218 nm) is indicative of amide [15]
(Table 4) as well as (unsaturated) fat and the alde-
hyde group. Area 17 (1520-1588 nm) has information
about R-NHy, starch and the peptide bond, area 27
(2220-2288 nm) about amino acids, cellulose and (un-
saturated) fat, while area 28 (22902358 nm) includes
fiber in addition to the information kept in area 27. In
classifying the lys3a gene and the wildtype (Figs. 1
and 2) and in predicting chemical constituents such as
lysine (Fig. 9B) and protein and amide-N (Fig. 8A-C),
the models chosen by the PLSR algorithm do not only
rely on direct protein information but also on other
different combinations, exploiting the pleiotropic co-
variate effects of the gene (Table 2). These are due to
the influence of the specific proteome on the parts of
the cell machinery which are important for the starch,
fiber, and fat synthesis (Tables 3 and 4).

It is concluded that the redundancy of biological
information on the genotypic DNA sequence level is
also represented at the phenotypic level in the dataset
read by the NIT/NIR spectroscopic sensor from
the chemical/physical fingerprint containing specific
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Fig. 9. (A) Data from Table 1 (n = 19): the regression line for normal barley (O) for lysine mol% to protein (N x 6.25), X denotes the
lys3a outliers; (B) PLSR NIR prediction of lysine mol%; one outlier removed (n = 18); (C) correlation between lysine mol% and the

ratio amide-N to total N.

genetic information which can be encoded by chemo-
metrics. NIR spectroscopy may in the future find an
extended use in selecting transformants not only cod-
ing for genetically engineered proteins [28], but also
selecting for other genes by exploiting the pleiotropic
effects as markers instead of using antibiotic-resistant
genes. This could be done with great sensitivity and
precision in an isogenic background with material
grown under the same environmental conditions.

In barley, the lys3a gene exerts a negative
pleiotropic effect on the starch content. Conventional
breeding by changing the gene background has im-
proved starch quantity without loss in protein quality
[29]. By using NIR spectroscopy evaluated by chemo-
metric methods, pleiotropic effects can be quantified
as a whole and explained by chemical validation. For
example, NIR spectroscopy combined with chemical
validation makes it possible to define a pleiotropic
covariate complex in high-lysine barley breeding for
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the lys3a gene. Thus, in a high-lysine barley breed-
ing program, a chemometric model of selection in
cross-breeding populations by NIR could be defined
which neutralizes the negative parts of the pleiotropic
complex by restructuring the multigene background.
Classical, exploratory plant breeding could thus be
upgraded to a high-tech analytical status and the
cooperation with normative biotechnology improved.

Our example is a special case of proteome dynam-
ics cast as a covariate chemical imprint in the desic-
cated seed endosperm tissue. The spectroscopic and
chemometric screening concept presented here should
have great advantages in isolating mutants and gene
transformants by revealing covariate gene indicators
in studying the dynamics of growth in cultures of cells
and microorganisms.

The above-cited post-genome revolution by the
proteome claimed by the journal Nature in December
1999 will not constitute the end point of biological
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science. Already now, we are envisaging the possi-
bility of utilizing the high precision and multivariate
advantage of spectroscopy to separately model the
covariate expressions of genetic and environmen-
tal variation by chemometrics. This enables us to
overview and non-destructively, separately model the
genetic and environmental variation at the highest
level of biological organization the chemistry of the
intact phenotype, the chemotype, within the limits of
our sensors and our chemometric evaluation methods.
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Abstract

The development of non-destructive screening methods for single seed protein,
vitreousness, density and hardness index has been studied for single kernels of
European wheat. A single kernel procedure was applied involving, image analysis,
Near Infrared Transmittance (NIT) spectroscopy, laboratory density determination,
Single Kernel Characterization System (SKCS) and finally Kjeldahl protein
determination on the crushed single kernels.

Single kernel NIT spectroscopy showed excellent ability to determine protein
content, and some ability for determination of single kernel vitreousness. Non-
destructive determination of single kernel density, either based on NIT
spectroscopy or based on image analysis and kernel weight, needs to be further

improved for practical use.

The use of SKCS hardness index as a true single kernel hardness reference in a
NIT prediction model resulted in a poor predictability. However, by applying an
averaging approach, in which single seed replicate measurements are
mathematically simulated, a very good NIT prediction model was achieved. This
suggests that the single seed NIT spectra contain hardness information, but that a
single seed hardness method with higher accuracy is needed, in order to achieve a

good NIT prediction model for single kernel hardness.
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Introduction

The purpose of this paper is to apply a combinatory single seed approach involving
several types of single seed measurements on the same individual seeds for an
improved wheat characterisation, with special emphasis on single kernel protein,

vitreousness, density and hardness.

Protein content, kernel density in terms of test weight, and kernel vitreousness by
visual inspection are normally used in the miller’s quality evaluation of wheat for
milling. Protein content largely determines the end use quality, and premiums are
often offered on high protein wheat. Test weight reflects kernel size and density,
and should be above a certain level in order to secure a good flour yield. The
vitreousness is used for evaluation of millability, even though the relationship
between vitreousness and hardness is not straightforward. Vitreousness and/or
hardness affects the milling processing of wheat, including tempering of the grains,
flour yield and the end-use properties such as particle size distributions and the
amount of damaged starch. Grain hardness is mainly determined by the degree of
adhesion between the starch granules and the protein matrix, with a tight adhesion
of the starch granules in the hard wheat and a weaker adhesion in soft wheat. Even
though wheat can be divided into genetically soft and hard, a substantial variation
in texture is seen within the two classes, and the apparent vitreousness of the wheat

is therefore used by the millers in their evaluation of millability.

Wheat quality evaluation has traditionally been performed on bulk samples, which
implies that the characteristics of the individual kernels within the sample is lost,
and thereby the opportunity to evaluate sample homogeneity. In seed sorting and
grading by size, form and density for better and more uniform quality, the single
seed is the functional unit to be investigated. New developments in instrumentation
have made single kernel characterisation possible, and for some quality parameters
rapid enough, to become a valuable tool for homogeneity evaluation in the cereal
industry. The Single Kernel Characterization System (SKCS) 4100 (Perten
Instruments Inc., Reno, NV, USA) is an example of such an instrument for rapid,
albeit destructive, measurement of single kernel hardness, weight, diameter and
moisture content (Martin et al., 1993). The single kernel measurements are
normally conducted on 300 single kernels in a bulk sample in order to classify the
sample into soft, hard or mixed wheat.

One of the limitations of destructive single seed analysis is that several readings on
the same kernels are impossible. It therefore becomes difficult to differentiate
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between instrument variability and kernel-to-kernel variability. By using non-
destructive single seed analyses these problems could be circumvented.
Additionally, fast and non-destructive single kernel quality analyses would be
valuable tools in plant breeding for quality selection in early generations and for

single kernel quality evaluation within the heads.

Near infrared spectroscopy on single kernels fulfils these requirements and the
technique has been used for several single kernel applications. Near Infrared
Transmittance (NIT) spectroscopy has been reported for determination of oil in
maize (Orman and Schumann, 1992) and meadowfoam (Patrick and Jolliff, 1997),
protein in wheat (Delwiche, 1995) and soybeans (Abe et al., 2000) and for wheat
hardness (Delwiche, 1993). Near infrared reflectance spectroscopy has similarly
been applied for wheat classification (Delwiche and Massie, 1996), for
determination of single seed protein (Delwiche, 1998; Delwiche and Hruschka,
2000), for differentiation between vitreous and non-vitreous durum wheat kernels
(Dowell, 2000) and for assessment of heat-damaged wheat kernels (Wang et al.,
2001).

Image analysis is another method for fast non-destructive characterisation of
kernels. Image analysis has been used for discrimination between kernels of
different species (Chtioui et al., 1996), discrimination between wheat classes and
varieties (Zayas et al., 1986) and, used in combination with physical
measurements, for variety identification (Zayas et al., 1996). Berman et al. (1996)
used the method for screening of flour milling yield in wheat breeding.

This investigation involves a combination of image analysis; NIT spectroscopy,
hardness analysis (SKCS), protein analysis as well as a simple laboratory density
analysis applied on single kernels of European wheats. The paper includes a survey
of the use of non-destructive screening methods for prediction of single kernel

protein, vitreousness, density and hardness.

Material and Methods
Samples:

Bulk samples of 43 different wheat cultivars or mixtures of cultivars in common
use, from two different locations in Denmark (Jutland and Funen) were collected,
representing both genetically hard and soft varieties. In order to select full
developed kernels, the samples were screened on a 2.2 mm screen and the fractions
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above 2.2 mm were stored separately in plastic bags. Five kernels were chosen
randomly from each of the 86 bulk samples to make up the calibration set
(430 kernels in total). Another ten kernels from each of 11 of the 86 bulk samples
(11 cultivars from Funen) were selected as the test set (110 kernels in total). Since
the measurements of the kernels in the calibration set showed no significant
differences between the two locations, it was chosen only to use test set kernels
from one of the locations.

Single kernel measurements:

The single kernels were put through the following sequence of measuring steps.
The kernels were analysed one by one with their identity retained during the

measurement procedure.

GrainCheck:

Grain morphology was measured by digital image analysis using a GrainCheck™

310 instrument (FossTecator, Hoganis, Sweden). The instrument was used for
single kernel characterisation by manually placing each kernel under the RGB
camera from which the kernels were imaged and from which several
morphological and color characteristics were automatically assessed. In this
investigation the following nine kernel characteristics were registered from the
instrument and used in the data analysis: kernel width, kernel length, roundness,
area, volume, red reflectance, green reflectance, blue reflectance, and total light
reflectance.

NIT Spectra:

After the GrainCheck analysis, the single kernels were moved to an Infratec 1255
Food and Feed Analyzer (FossTecator, Hoganés, Sweden). Each kernel was placed
in a single seed sample cassette with slots for 23 single kernels, and near infrared
transmittance (NIT) spectra in the range 850-1050 nm were automatically
recorded. Spectra were recorded three times on each kernel and the average of the
three spectra was used. The position of the kernels in the sample cassette was
manually changed between each of the three measurements. The time required for
scanning (single scan) 23 single kernels in the cassette was about 90 s.
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Single kernel density:

A laboratory single kernel density measurement was developed and applied to the
110 test set kernels prior to the SKCS analysis. The kernels were individually
weighed to the nearest 0.1 mg using a Mettler/Toledo scale (Type AB204). When
immersing a wheat kernel in water, the weight of the displaced water divided by
the density of the water equals the kernel volume. This measurement was carried
out by using the equipment shown in Figure 1, which was specially designed for
the purpose. A beaker containing water at 20°C was placed on the Mettler/Toledo
scale.

./\

Figure 1. Illustration of the method for determination of single kernel volume.

A single kernel holder (modified sample spoon) was mounted on a rack outside the
scale chamber (without touching the scale) with the kernel holder end immersed in
the water. The scale was tared and the kernel (one at the time) was placed in the
holder using a needle. The weight of the water displaced by the volume of the
kernel was recorded immediately after, in order to avoid too much water uptake by
the kernel. After the analysis, the kernels were dried for 16 hours at 30°C, and

checked to have returned to the same weight as prior to the volume measurements.

Having determined the kernel volume from the weight of the displaced water, the

single kernel density (in g/cm’) is subsequently calculated by dividing the kernel
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weight (g) by the volume (cm’). Prior to the single seed analyses the volume
method was tested on 10 glass beads differing slightly in volume. The average
deviation between the “real” volume and the volume determined using the method

shown here was 0.0004 cm’ for an average of 0.0142 cm’, i.e. an error of 2.8 %.
Perten SKCS analysis:

The kernels were subsequently analysed using a Single Kernel Characterization
System (SKCS) 4100 (Perten Instruments Inc., Reno, NV, USA). The SKCS
measures a single kernel hardness index (HI), moisture content (%), diameter (mm)
and weight (mg). Normally, the SKCS analysis is carried out on a small bulk
sample (300 kernels), but in this experiment the single kernels were fed one by one
into the vacuum wheel in order to retain their identity. The normal container for
collecting the crushed kernels was removed, and the single kernel grist from the
individual kernels was collected in a small container and used without further
grinding for determination of single seed protein according to Kjeldahl.

Protein determination on single kernels:

Single kernel nitrogen content was finally determined directly by a modified
Kjeldahl (1883) method according to the AACC Method 46-12. The protein
content is reported as percent in dry matter calculated using the moisture content
measured by the SKCS instrument. Prior to the single kernel analysis, the method
was tested on samples of 30-40 mg wheat flour. The analytical error in terms of
standard deviation of 20 replications amounted to 0.16 % (percent protein content
in dry matter).

GrainCheck data, NIT spectra, SKCS data and protein content were then recorded
for each kernel, and single kernel density was determined on each of the kernels in
the test set. A disadvantage of destructive single seed analysis is that if a
measurement fails, there is no sample left for a second analysis. Here, a few of the
SKCS, protein and volume analyses failed, and the following results and discussion
are therefore based on a slightly reduced number of kernels. The calibration set
consists of 415 out of the original 430 kernels, while the test set of 110 kernels
gave valid data for 108 kernels, except for the density measurements where valid
results were obtained for only 99 kernels.

The mean and range of all the 14 non-spectral single kernel characteristics for the
calibration set kernels and the test set kernels are given in Table L.
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Table I: Mean and range of the recorded single kernel characteristics.

Method Parameter Calibration set (n=415) Test set (n=108) Total (n=523)
GrainCheck Mean Min Max Mean Min Max Mean Min Max
Width (mm) 3,7 2,3 5,0 3,8 2,5 4,7 3,7 2,3 5,0
Length (mm) 6,2 5,0 7,5 6,1 5,0 7,2 6,2 5,0 7,5
R d (AU 0,50 0,25 0,83 0,54 0,31 0,82 0,51 0,25 0,83
Area (mm?) 16,9 9,4 25,8 17,1 10,2 24,8 17,0 9,4 25,8
Volumen (mm?) 40,8 14,6 82,8 42,6 16,6 76,0 41,2 14,6 82,8
Red 46,4 31,9 62,4 44,0 25,9 60,5 45,9 25,9 62,4
Green 33,6 22,7 46,5 31,8 17,6 43,9 33,3 17,6 46,5
Blue 24,4 17,4 34,0 23,2 14,8 31,1 24,1 14,8 34,0
Intensity 34,8 24,2 47,4 33,0 19,5 44,9 34,4 19,56 47,4
SKCS
Weight (mg) 45,1 24,5 68,0 45,1 24,1 69,3 45,1 24,1 69,3
Diameter (mm) 2,9 1,7 4,6 3,0 1,7 4,3 2,9 1,7 4,6
Moisture (%) 11,9 10,4 13,3 11,0 10,0 11,6 11,7 10,0 13,3
Hardness (HI) 44,0 -21,4 101,5 32,3 -28,8 82,2 41,6 -28,8 101,56
Reference
Protein (% DM) 10,0 6,8 15,2 9,8 7,0 17,0 10,0 6,8 17,0
Density (g/cm°) 1,16 0,99 1,25

“Values in the range of 0-1. A perfect circle has roundness=1, while a very narrow elongated object
has roundness close to 0.

Data analysis:

Partial Least Squares Regressions (PLSR) (Martens and Nes, 1993) were
performed using Unscrambler version 7.6 (CAMO A/S, Norway) in order to
predict a given quality parameter (y) from fast acquirable X data. The multivariate
prediction results are presented and discussed as correlation coefficients (r)
between predicted and measured values, and prediction error in terms of Root
Mean Square Error of Prediction (RMSEP) for true test set predictions, and Root
Mean Square Error of Cross Validation (RMSECYV) for cross-validated results.
Relative predictions errors (RE) reported in percent are calculated by dividing the
prediction errors (RMSECV or RMSEP) by the range (max. - min. value) of the
given parameter.

Results and discussion
Single kernel protein:

The statistics of the Kjeldahl protein determination are listed in Table 1. The single
seed protein content ranges from 6.8% to 17.0% for all the analysed kernels, and
thus in principle covers the whole range of end-use requirements from low-protein
wheat for crackers to high-protein wheat for bread making. In order to evaluate and
utilise this single seed protein variation, a spectroscopic method would be useful.
For this purpose, we use single seed NIT spectra recorded on each of the 523 wheat
kernels in the spectral region 850-1050 nm. The NIT spectra of the 523 single
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wheat kernels are shown in Figure 2 as both raw spectra (a) and scatter-corrected
spectra (b), applying a combination of second derivative followed by
Multiplicative Scatter Correction (MSC) (Geladi et al., 1985).

a) b)

Log(1/T) AU
s - 0010

850 o0

1050 1050
Wavelength (nm) Wavelength (nm)

Figure 2. Single seed NIT spectra of 523 wheat kernels shown as (a) raw spectra and (b)
corrected spectra using second derivative followed by MSC.

This combined scatter correction has been discussed by de Noord (1994) and
applied to single seed NIT spectra by Delwiche (1995). The raw spectra show large
intensity offsets, as well as less clear multiplicative effects. These scatter effects
are probably due to differences in kernel size and texture together with kernel
orientation in the single seed cassette. With respect to the scatter-corrected spectra
(Figure 2b), it is evident that the spectral scatter has been corrected for, and thereby
more spectral emphasis could be focused to represent chemical composition, e.g.
the level of water, starch and protein content in the kernels. Delwiche (1995)
showed that the combination of second derivative of the single seed NIT spectra
followed by MSC gave the best predictions. Our results are in agreement with this
finding because raw spectra, first derivative spectra, second derivative, MSC or
MSC followed by second derivative corrected spectra (data not shown) were less
efficient in a prediction model. The issue of scatter in single seed NIT spectra,
including suggestions for more general and powerful pre-transformations, is further
investigated by Pedersen et al. (2002).

A prediction model for protein content was developed based on single seed NIT
spectra corrected by the second derivative followed by MSC. The cross-validated
calibration model using 5 PLSR components including 415 single kernel spectra is
shown in Figure 3a. This calibration model is used for independent prediction of
the 108 test set kernels (Figure 3b). The relatively low number of PLSR
components (5) as compared to other PLSR models in the near infrared range
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implies a simple and thus robust model. The prediction error (RMSEP) of 0.48 %
protein when tested independently on 108 new kernels also indicates a good and
robust calibration model. Our results for single seed protein determination are
comparable to results reported earlier using near infrared transmittance
(850-1050 nm) (Delwiche, 1995) and near infrared reflectance (1100-2498 nm)
(Delwiche, 1998).

a) b)
Calibration set (N=415) Test set (N=108)

| Predicted protein content _| Predicted protein content

r=0.95
RMSECV = 0.47

©— r=0.98
RMSEP =0.48

6 — Measured protein content s — Measured protein content

6 7 8 9 10 1 2 13 14 15 16 6 8 10 12 14 18 18

Figure 3. Predicted versus measured plot of a 5 PLSR component regression model for
single seed protein using scatter-corrected NIT spectra for (a) the calibration set and (b) the
subsequent prediction of the test set kernels.

Single kernel vitreousness:

Kernel vitreousness is normally determined by visual inspection, where vitreous
kernels appear glassy and translucent whereas non-vitreous kernels appear starchy
and opaque. Vitreouness is mainly controlled by nitrogen availability in the field as
well as temperature during grain filling (Pomeranz and Williams, 1990). Vitreous
kernels are often harder and have higher protein content. In this investigation we
apply RGB image analysis by the GrainCheck instrument in order to provide a fast
and objective analysis of vitreousness. As a pre-test to the current investigation we
analysed vitreous and non-vitreous kernels (selected by visual inspection) on the
image analyser (GrainCheck). Among the registered color data it was found that
especially the red color reflectance differentiated well between vitreous and non-
vitreous kernels. The red reflectance from GrainCheck was therefore selected as a
quantitative measurement of vitreousness and denoted “GrainCheck vitreousness”.
The more vitreous the kernel, the lower the red reflectance and vice versa, i.e. the
higher the number, the more non-vitreous the kernel appears. A single seed

correlation coefficient of -0.63 (Table II) between protein content and GrainCheck
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vitreousness shows that the kernels with high protein kernels tend to be more

vitreous.

A PLSR model (not shown) was computed using the raw NIT spectra for the
prediction of GrainCheck vitreousness in order to see if the NIT spectra contained
information regarding the GrainCheck vitreousness. The correlation coefficient
between measured and predicted GrainCheck vitreousness was 0.76 with a
prediction error of 4.5 AU. A subsequent test of this model on the 108 test kernels
confirmed the calibration results (r=0.76, RMSEP=4.6 AU). Even though the NIT
model is based on 6 PLSR components, most of the spectral NIT information is
simply based on the level of absorbance. This can be concluded, since the first
score from a Principal Component Analysis (not shown) on the raw NIT spectra
(Figure 2), mainly representing differences in optical densities (offset) correlates
well (r=0.71) with GrainCheck vitreousness. The raw NIT spectra thus contain
information regarding the GrainCheck vitreousness.

Single kernel density:

Kernel density is an important parameter in the milling industry, which is normally
determined on bulk samples as test weight. The test weight measurement is greatly
influenced by kernel packing, kernel size and kernel density, without
differentiation between those factors.

Table II. Correlations coefficients (r) between protein content, density, GrainCheck
vitreousness and SKCS hardness.

Correlation coefficient
(1)
Protein content vs. GrainCheck vitreousness® (-) 0.63
Protein content vs. density” 0.65
Protein content vs. SKCS hardness” 0.38
SKCS hardness vs. GrainCheck vitreousness” (-) 0.55
SKCS hardness vs. density” 0.34
Vitreousness vs. densityb (-) 0.53

% N = 523 kernels
b N = 99 kernels

Utilising differences in kernel density by grading for a better and more uniform

quality on for example gravity tables, the link between single kernel density and
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other single kernel quality parameters is essential, in order to predict if a given
sample is worthwhile sorting for density. For instance, there should be a link
between single kernel density and single kernel protein in order to be able to sort

for higher protein content by indirectly sorting for density.

The single kernel density in the test set of 99 kernels ranges from 0.99 g/cm’ to
1.25 g/cm3. In this material of European wheats, a correlation coefficient of 0.65
(Table II) between protein content and density and a correlation coefficient of -0.53
between GrainCheck vitreousness and density was seen (Table II). A single seed
correlation coefficient of 0.65 between protein and density would probably be too

low to be able to sort for protein by use of density grading on a gravity table.

The “Archimedes” procedure developed and used for single seed volume analysis
in this investigation is rather tedious and it was of interest to investigate whether
the much more rapidly acquirable NIT or GrainCheck data could be used for good
volume and density determinations. The GrainCheck provides a calculated value of
kernel volume based on a 2D-image. Densities derived from these calculated
volumes gave, however, a poor correlation (r=0.07) to the real densities based on
“Archimedes”. This low correlation is most likely due to the approximation of a
3D-volume based on a 2D-image, which even if it gives a correlation coefficient of
0.9 to the “real” volume (Archimedes) is not sufficiently accurate to provide the

basis for an accurate measurement of single kernel density.

a) b)
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Figure 4. a) Predicted versus measured plot of a PLSR model for kernel volume using the
nine GrainCheck variables plus single kernel weight. b) Predicted versus measured plot of a
PLSR model for kernel density using the nine GrainCheck variables plus single kernel
weight.

A second approach, in which the nine GrainCheck variables (see Table I) plus the
kernel weight were used as X in a PLSR model, gave a good prediction of the
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single kernel volume (Figure 4a). This combination of image analysis data with
kernel weight gives an excellent, rapidly acquirable estimate of the single kernel
volume (r=0.99, RMSECV=0.001cm’) using full cross-validation (N=99). The
subsequent calculation of the single kernel density based on this predicted volume
provides a considerably better estimate of kernel density, but still only a correlation
coefficient of 0.68, as compared to the 0.07 above, with a prediction error of 0.04
g/cm’ (plot not shown).

Thirdly, by directly using the nine GrainCheck variables plus the kernel weight for
PLSR prediction of density, the results can be improved slightly, giving r=0.70 and
a lower prediction error (RMSECV=0.03 g/cm’) (Figure 4b).

In a final approach, it was investigated whether the NIT spectra contained
information, which could be used for prediction of single kernel density. For a
PLSR model using the raw NIT spectra for the prediction of the kernel density, the
correlation between measured and predicted density gave 0.63 with a cross-
validated prediction error of 0.035 g/cm’. An attempt to combine GrainCheck and
NIT data for an improved prediction of kernel density was not successful.

Single kernel hardness:

We have now provided data on the single kernel basis for protein content, kernel
density and apparent vitreousness, the tools normally used by the miller for wheat
quality evaluation. Hardness is also used for classification of wheats and its quality
in relation to different end uses. It was of interest to investigate to what extent
hardness added any further information to the structural characterisation of wheat
in addition to kernel vitreousness and density.
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Figure 5. Scatter plots of (a) single seed (N=523) SKCS hardness versus protein content
and (b) single seed SKCS hardness versus GrainCheck vitreousness.
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In this investigation each kernel was fed separately into the SKCS in order to retain
its identity and thereby explore the link between SKCS HI and other single kernel
quality parameters. The range in SKCS HI for the analysed kernels is shown in
Table I. Figure 5 shows a scatter plot of single seed SKCS HI versus a) the protein
content and b) the GrainCheck vitreousness. A low correlation (r=0.38) between
protein content and SKCS HI indicates that the SKCS HI is nearly independent of
the kernel protein content in this wheat material. This is surprising, as it is often
assumed that high protein wheat kernels tend to be harder. The low correlation
between single kernel Kjeldahl protein content and SKCS hardness might be
explained by the fact that the kernels originate from a range of genotypes, and that
the link between seed protein and seed hardness is seen in some genotypes but not
in others. The low number of kernels (10) within each variety in this experiment,
however, does not allow for investigation of the correlations within each of the

varieties.

A higher, yet still low, correlation (r=-0.55) is seen between the GrainCheck
vitreousness and the SKCS HI (Figure 5b). Table II summarises the correlations
between protein content, density, GrainCheck vitreousness and SKCS HI. Only a
small portion of the SKCS HI information seems to be explained in protein content,

vitreousness or density as seen by the relatively low correlations.
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Figure 6. Predicted versus measured plot of a 6 PLSR component regression model for
single seed SKCS hardness using (a) the raw NIT spectra for the calibration set and (b) the
subsequent prediction of the test set kernels

In bulk, NIT has been successfully applied for prediction of texture in wheat.
Williams (1991) concluded that a bulk NIT measurement was capable of predicting
whole-wheat kernel texture with precision equal to that of the Particle Size Index
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(PSI) method and slightly better than the NIR method. Delwiche (1993) reported
on the use of single kernel NIT measurements for hardness determination. When
calibrating single seed NIT spectra against bulk hardness data, he found that NIT

spectra of single seeds had some ability to determine wheat hardness.

Here we attempt to develop a PLSR model between single seed NIT spectra and
true single seed hardness data, namely the SKCS hardness index. In general, we
achieve better prediction models for kernel hardness using the raw NIT spectra
compared to scatter corrected spectra, which agrees with the findings of Delwiche
(1993). A prediction model (6 PLSR components) for SKCS HI based on the raw
single seed NIT spectra using segmented cross validation was performed on the
calibration kernels. A reasonable calibration is achieved (r=0.74,
RMSECV=17.6 HI) as shown in Figure 6a. This calibration was subsequently used
for HI prediction of 107 of the original 108 test set kernels (Figure 6b). A low
correlation coefficient of 0.59 and a high prediction error of 20.2 HI was achieved.
This prediction error corresponds to 20% of the hardness range and thus limits the
practical use. In Figure 6a and Figure 6b the samples are labelled according to the
hardness groups, where "A" is soft (HI<33), "B" is semi-soft (33<HI<46), "C" is
semi-hard (46<HI<59) and "D" is hard (HI>59). It is apparent that the soft kernels
(denoted “A”) give a more scattered picture in the plots, which means that the
hardness index of these kernels are more difficult to predict. However, an exclusion

of the soft “A” kernels did not improve the results.

Various aspects have been considered when interpreting the reason for the
relatively poor NIT prediction of SKCS HI we achieve in this investigation. First,
there might not be a link between single seed NIT spectra and single seed kernel
hardness, but, as mentioned above, earlier reports have demonstrated the use of
NIT spectroscopy on whole-wheat kernels for hardness determination. Secondly,
irrelevant noise in the NIT spectra (X) and the SKCS hardness data (y) might
impair the model. Our single seed NIT spectra are averages of three spectra
recorded on each kernel. As shown earlier, these spectra correlate very well with
kernel protein, so the quality of the NIT spectra seems to be satisfactory. On the
other hand, the single seed HI, as determined by the SKCS, might be too inaccurate
and thereby problematic as y-values in a NIT prediction model. Since the SKCS HI
measurement is destructive, multiple HI readings on the same kernel are not
possible and an average of replicate readings is thereby impossible to obtain. This
essential condition also makes it difficult to quantify the uncertainty of the

instrument measurement. If it was possible to prepare a uniform set of kernel
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shaped particles from a polymer material, it could be an opportunity to estimate the
single kernel uncertainty of the SKCS HI measurements. In the current
investigation, a possible way to investigate this problem of uncertainty is to
mathematically simulate replicate measurements by averaging across single kernels
that are nearly identical. First, we have applied such an averaging approach for the
NIT model to protein content where we are certain of both the NIT spectra and the
Kjeldahl protein content determinations. Since this method requires a great number
of samples, we use all the 523 analysed kernels. The NIT spectra and
corresponding protein content values are sorted according to protein content. As a
start, a PLSR model is developed on the basis of all the 523 calibration kernels.
Then, the sorted data are averaged across two kernels. Since the kernel data are
sorted according to protein content, the two-kernel average is an average, which
might be taken as an average of two duplicated analyses on one kernel. A
subsequent PLSR model is then developed for the 262 averaged data objects
(averaged kernels). This procedure is repeated another 4 times in which PLSR
models are developed averaging across 1 (N=523), 2 (N=262), 4 (N=131),
8 (N=66), 16 (N=33) and 32 (N=17) kernels, respectively. For each model the
percent of non-explained variation of the total variation is calculated. The trend of
non-explained variation of the protein data for the different PLSR models can then
be evaluated (Figure 7, dotted line). In an ideal situation i.e. with no noise in the
NIT spectra and with determinations of Kjeldahl protein content without any
errors, together with a perfect description of the protein content by the NIT spectra,
a horizontal line at an ordinate value of O would have appeared. In a situation in
which we only have model error, i.e. not perfect description of the protein content
by the NIT spectra, but still with no noise in the NIT spectra and Kjeldahl protein
content measurements, we would expect a horizontal line at a certain level above
an ordinate value of 0. The decrease in non-explained variation when averaging
(moving from left to right in the plot) represents the noise and errors in the NIT
spectra and in the Kjeldahl protein content determinations, reaching a horizontal
level representing only model error as mentioned above. As seen from the dotted
line, approximately 13% of the protein data variation is not explained by the NIT
PLSR model using all kernel data (original single kernel data), but already after
averaging over 4 kernels (2°), a nearly horizontal line is appearing at approximately
4% non-explained variation. This means that after 4 simulated replicates, nearly all
data noise and errors have been eliminated.
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The exact same strategy was applied to the NIT model for SKCS HI (only 522 out
of the original 523 kernels had valid data and were used). The results are shown in
Figure 7 (solid line). It is evident that the non-explained variation in the HI model
is considerably higher than for the protein model. As much as 50% of the HI data
variation is not explained by the NIT PLSR model using all kernel data, and even
after averaging 32 kernels (2°) the curve is still declining slightly, reaching a level
around 15% non-explained variation. When comparing the two models which are
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HI model

Protein model

Non-explained variation (% of total variation)

1 2 4 8 16 32
Number of kernels averaged

Figure 7. Plot of non-explained variation in percent of total variation versus levels of
averaging for the NIT prediction model for hardness (solid line) and protein content (dotted
line)

based on the exact same NIT spectra, it is apparent that the decrease in non-
explained variation when averaging is much smaller for the protein model
compared to the HI model, thus indicating considerably higher measurement errors
in the HI measurement. Table III summarises the averaging approach in terms of
correlation coefficients (r) and RMSECV for the protein content and SKCS HI
prediction models. It is seen that by averaging 32 times a good prediction model
for HI is developed reaching a correlation coefficient of 0.93 and a prediction error
of 10.4 HI, which corresponds to 10% of the range. This good model suggests that
the raw NIT spectra can be used for single seed prediction of SKCS HI. However,
the results also show that the single SKCS HI values are not sufficiently accurate to
be used as reference values in a NIT-based prediction model.
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Table III. Correlation coefficients (r) and prediction errors (RMSECV) of the replicate
simulation by averaging kernels for the NIT prediction models for Kjeldahl protein content
and SKCS hardness

Number of kernels Protein model SKCS HI model
averaged
r RMSECV r RMSECV
1 0.93 0.58 0.70 18.6
2 0.96 0.44 0.80 15.8
4 0.98 0.32 0.85 13.7
8 0.98 0.31 0.90 11.9
16 0.98 0.31 0.91 11.0
32 0.99 0.31 0.93 10.4
Conclusions

By applying a single kernel procedure in which the non-destructive analyses are
conducted prior to the destructive ones, several single kernel characteristics can be
linked directly to the same functional unit, the single seed, to be used in cereal
processing and breeding. In this investigation, the development of non-destructive
screening methods for single seed protein content, vitreousness, density and SKCS
hardness index for the same set of kernels has been studied by applying this type of

procedure.

Table IV. Summary of the non-destructive screening methods on single kernels

Data (X) Parameter (y) r RMSEP® | RE°

NIT 850-1050 nm (scatter corrected) | Protein 0.98 0.48 4.7%
NIT 850-1050 nm (raw) Vitreousness® 0.76 4.6 12.6%
NIT 850-1050 nm (raw) Density 0.63 | 0.035° | 13,4%
GrainCheck data plus kernel weight Volume 0.99 0.001° 2.9%
GrainCheck data plus kernel weight Density 0.70 | 0.030° 11.5%
NIT 850-1050 nm (raw) Hardness 0.59 20.2 15.5%

% 1 is the correlation coefficient between measured and predicted
®. RMSEP is the average prediction error
©. Relative error (RE); RMSECYV or RMSECYV divided by the range (max-min values);
reported in percent
: Determined using GrainCheck
©: Models are validated using cross-validation and RMSEP should be RMSECV

The results of the non-destructive prediction models for single kernel protein,

vitreousness, hardness, volume and density are summarised in Table IV. NIT
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spectroscopy, in combination with multivariate analysis, shows excellent ability to
determine protein content, and only shows some ability for determination of single
kernel vitreousness. It is concluded that the non-destructive determination of kernel
density, on the other hand, either based on NIT spectroscopy or a combination of

kernel weight and image analysis, needs further improvement for practical use.

The use of a true single seed hardness determination, in terms of SKCS HI, as
reference values in a NIT prediction model resulted in poor predictability.
However, the results shown in Figure 7 and Table III suggest that raw NIT spectra
actually contain more information about kernel texture than the poor prediction
model in Figure 6 suggests. It seems that a single seed reference method for
hardness determination with greater accuracy is needed in order to achieve a good
and useful NIT prediction model. If this is possible, there seems to be a potential
for the development of a model, which would allow the use of raw NIT spectra for

a non-destructive single seed hardness analysis.

For practical use of single seed near infrared spectroscopy as an homogeneity tool,
it is important that the measurements are automated, as in the new combined
SKCS-NIR instrument (Delwiche and Hruschka, 2000; Dowell et al., 1999). The
Infratec 1255 single seed measurements provides excellent single seed protein data
that are much easier to obtained than the traditional Kjeldahl method, but the single
seed handling is still not automated and the measurements are quite time
consuming when analysing high number of kernels. When applied automatically,
near infrared spectroscopy on single seeds, alone or in combination with other
automated non-destructive techniques, has a great potential as routine homogeneity
analysis. This might not only be limited to protein and hardness, but also for other
quality parameters in cereals, as the method is used today on bulk samples.
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Study of NIR spectra, particle size
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wheat flours: a multi-way approach
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Near infrared (NIR) reflectance spectra contain information about both physical and chemical characteristics of
flour samples and have great potential for on-line/at-line quality control in a flour mill. The addition of physical
characteristics such as particle size distribution data to the NIR spectra and chemical composition data of wheat
flour samples was anticipated to provide a better understanding and translation of multivariate measurements into
the operational routines and experiences of mill operators. This was studied using a multi-way model called “Anal-
ysis of Common Dimensions and Specific Weights” (COMDIM). By this method the underlying dimensions across
several data tables with different numbers of variables are defined and the scores and loadings are interpretable in
the same way asin a classical Principal Component Analysis. The method was applied on raw NIR spectra as well as
after correcting the NIR spectra using the Standard Normal Variate (SNV). The model output in terms of weights,
scores and loadings were highly interpretable and in agreement with common characteristics of wheat flour sam-
ples. Four underlying dimensions explained 99.4% of the total variation, both when analysing raw and SNV-
corrected spectra. A comparison of the two analyses clearly shows that correcting the spectra puts more emphasis
on the chemical information in the spectra. However, even corrected NIR spectra contain considerable information
about the particle size properties of the flour samples. It is suggested that the COMDIM model can be a useful tool
in the process control in a flour mill and it can be used on a wide range of multi-way data problems to assure a high
degree of interpretability.

Keywords: wheat flours, NIR spectra, particle size, chemical quality, multi-way analysis

Introduction

Industrial dry-milling of wheat consists of a com-
plex procedure of consecutive steps of grinding and
size separation. The aim is to obtain a high yield of
endosperm flour without contamination of bran par-
ticles. The texture of the grain endosperm, i.e. hard
or soft, strongly influences the ease of processing
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the wheat. However, during the milling, adjustments
of the different milling devices can be made by the
operator in order to improve the yield and purity of
the flour. Since the ash content of the bran is consid-
erably higher than in the endosperm, the ash content
of the flour is normally used as index of bran con-
tamination.! In addition to the purity, the particle
size distribution of the different flour outlets is an
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important parameter to be controlled during the
milling process. Several methods are available for
measuring the particle size distribution, of which
sieving and laser diffraction are among the most
commonly used. The two techniques were compared
by Nathier-Dufour et al.? The advantage of the laser
diffraction method is that very fine particles (less
than 1 pm) can be measured and additionally the
method can be installed on-line.

The wheat flour quality is, however, not only lim-
ited to the purity and the particle size distribution, it
is also defined by other chemical parameters which
characterise, for example, good baking quality, stor-
age ability etc. Accordingly, chemical parameters
such as moisture content, protein content, fibre con-
tent, fat content, starch content and the amount of
damaged starch are important for the end product
quality. The miller thus has to adjust the different
milling machines and mix flour outlets from differ-
ent milling machines, in order to fulfil these quality
requirements as well.

This process control is a multivariate task, since a
minor adjustment on one milling machine will have
an impact not only on the chemical composition of
the flour produced, but also on its physical charac-
teristics and yield. For example, too fine flour has a
poor flowability, i.e. it is difficult to transport and
handle.

NIR spectroscopy has become a widely used
method in analysis of cereals and cereal based prod-
ucts. As reviewed by Osborne et al.,® determination
of quality of wheat flour using NIR has been exten-
sively investigated. In addition, NIR spectra of
flours contain information about the particle size, as
investigated by Chapelle ef al.,* and the method is
currently used as a reference method for wheatendo-
sperm hardness (AACC Method 39-70A).

Since NIR analyses are rapid and non-destructive
and the spectra are fingerprints of the physical and
chemical properties of the flour samples, this
method has great potential as an at-line/on-line mon-
itoring and process control in the milling industry. In
the current work, the relationship between NIR
spectra, particle size distributions and chemical
properties of the samples was investigated by using a
multi-way data analysis. In a classical multivariate
data analysis, data can be arranged in a two-way ma-
trix with the samples (objects) as rows and the mea-

sured variables as columns. The data structure thus
has two modes, a sample mode and a variable mode.
A two-way data structure can be extended to a three-
way data array, where the same variables are mea-
sured on the same samples under different circum-
stances, thus including a third mode, for example,
time or temperature. In this way the data structure is
no longer a two-way data matrix, but a three-way
data array. For a thorough description of multi-way
analysis in the field of chemometrics, see Bro.
Multi-way analysis has been used to interpret fluo-
rescence spectra® and is used in sensometrics.” Only
few publications have reported the use of multi-way
data analysis involving NIR data. Recently, Allosio
et al.® used the PARAFAC algorithm® on NIR spec-
tra collected during the processing of barley into
malt.

In most multi-way methods the size of a slice of
the data array must be the same, i.e. the number of
rows and columns at all the measured points in the
third mode must be the same. In the present work,
this is not the case. In fact, only the sample mode is
the same, since the third direction consists of differ-
ent types of measurements, in which the first data
slice is NIR spectra, the second slice is laser particle
distributions and the third slice is chemical data, all
with different numbers of variables. The objective of
this study is therefore to apply a qualitative multi-
way method allowing different number of variables
in the third mode on NIR spectra, particle size distri-
bution and chemical data tables of wheat flour sam-
ples.

Experimental

Sample collection

During full-scale milling of wheat (variety
Ritmo), a representative sample of each of six flour
outlets was collected (labelled 1-6) together with
one sample containing a proportional mix of the six
flours (labelled 7). Each of these seven samples was
then separated into six sub-samples according to
particle size using laboratory equipment. The coarse
fraction labelled “a” was separated on a 150 pm
sieve using a JEL Laboratory Sifter (JEL,
Ludwighafen, Germany). The throughs from the
JEL sifter were sifted at 70 pm on an Alpine Air Jet
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Sifter (Model A 200 LS). The fraction labelled “b”
with a particle size of 70—-150 pm was collected. The
throughs were further fractionated on an Alpine Air-
Classifier (type 132 MP) at different rate settings,
giving the following fractions: “c” was separated at a
rate setting of 2.5; “d” was separated at a rate setting
of 3.4; “e” was separated at a rate setting of 4.0; “f”
was the rest remaining after separation of fraction
“e”.

This set of samples (42 samples in total) should be
seen as a “model flour sample set”, mainly con-
structed to expand the chemical quality and granu-
larity of milling flours, and it should not be seen as a
sample set representing all flows of material in a
wheat mill.

NIR measurements

The NIR reflectance spectra were recorded using
a NIRSystems 6500 (Foss NIRSystems, Silver
Spring, MD, USA). The flour samples were loaded
in Mini Sample Cup Rings (IH-0307) and placed in a
Spinning Sample Module (NR-6506). Spectra were
collected in the range of 1100-2500 nm with a reso-
lution of 2 nm, which gives 700 variables for each
spectrum. Each spectrum was an average of 16 sub-
scans.

Particle size measurements

The particle size distributions of the flours were
analysed using a laser diffraction instrument (Mas-
ter Sizer IP, Malvern Instruments, Malvern, UK) fit-
ted with a lens of focal length 300 mm. Under these
conditions, the range of measurement was from 0.5
t0492.5 pm. The particle size intervals were defined
by the manufacturer and respected a logarithmic
scale, yielding 32 data points. In order to avoid ag-
gregates of particles, water was used as a medium for
immediate dispersion prior to measurements. Mea-
surements were achieved in duplicates, and the aver-
ages were assessed for further analysis. The volume
of each particle was calculated using the diameter by
assuming the particles to be spherical in shape. The
particle size distributions were expressed as the vol-
ume proportions (in percentage) in each class of par-
ticle size. The total volume of each distribution was
set equal to one.
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Chemical analysis

Due to lack of material, a full chemical analysis
could not be performed on three of the 42 samples.
The following chemical analyses were therefore
only performed on 39 of the 42 flour samples. Ash
content was estimated using the ICC-standard no.
104/1 method, dry matter using the AACC Method
44-15A, protein content by the Kjeldahl method,
starch content using the method of Aman ef al.'% and
damaged starch using the AACC Method 76-30A.

Mathematical methods

Often, the same collection of samples is studied
using various physical methods, which produce in-
dependent measurements. In such situations, the re-
sults can be gathered in data matrices, in which the
rows represent the samples and the columns the mea-
sured variables. Let m be the number of data matri-
ces that have the same number of rows n. The
complete collection is then represented by a series of
matrices, X;, X, ..., X}, . In the more general case,
the number of columns p1, p2, ..., p of these matri-
ces is not identical. The most well-known method
for processing such data is INDSCAL, proposed by
Carroll and Chang.!! Qannari et al.!? have proposed
a new version of INDSCAL called “Analysis of
Common Dimensions and Specific Weights”, which
we will refer to as COMDIM.

Throughout this presentation it is assumed that
the matrices X1, X», ..., X,;, are centred and normal-
ised in order to have equal sums of squares. The pur-
pose of COMDIM is to summarise the information
of the different data matrices by a set of vectors of n
elements (scores) qi, 42, 43 ..., g, representing the
common underlying dimensions. The basic idea of
COMDIM is to consider each association matrix
such as X;X; T rather than the matrix X; itself. The ma-
trix X;X;" reflects similarities among the rows of ma-
trix X;. In COMDIM, a first modelling of matrix
X:X;T is expressed as A,(Vq,¢,". The weight A, is
specific both for the dimension 1 and for table i. Sim-
ilarly, another association matrix, X,X,T, corre-
sponding to matrix X; will therefore be
approximated by A;#gq,¢,". Figure 1 shows a graphi-
cal representation of COMDIM.
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Figure 1. Graphical representation of COMDIM.

In order to estimate the weights AV, 4, ...,
L1 and the (single) component g1, itis necessary to
define a criterion of quality, represented by a loss
function L,. It seems logical to minimise the sum of
squares of the differences between estimated and ob-
served association matrices. L; is therefore ex-
pressed as:

L =3xx -2qq |
i=l

Qannari et al.'> have given a simple algorithm
(not presented here) based on an alternating least
square procedure, making it possible to estimate the
weights A1) and the component ¢;.

The normalised vector q; represents the first com-
mon dimension. We can now consider the informa-
tion in the data set that is not already in the first
component ¢;. This information is estimated by the
residuals from the regression of all variables in X.
As g1 is normalised to one, the residual X;? is esti-
mated by X,'(z) = X,‘ - qlqlTX,-.

The matrices of residuals X;@, X,@, ..., X,®
contain the information which was not taken into ac-
count by the first component g;. A second compo-
nent ¢, can therefore be found by replacing X, X»,

1% dimension

qlql“ + 4 2“) qlqu

9,9, + 4@ 9,9,"

22 dimension rth dimension

+ 40 a9,

+ 49 a9

n n
n n n
aeT  + 4@ e’ 4w | qqT
n n

oo, X with X1, X,®, .., X,,2. Once ¢, has been
found, the second loss function (to be minimised) is
obtained from:

5

m

2) 3 (2T Y T

L,= Z"X,( X; _7‘(2’ 9.9,
i=1

This leads to the calculation of ¢, and the weights
M@, withi = 1,2, ..., m. The same procedure can be
reiterated, in order to estimate other components g3,
q4, ..., . The components are constructed to have
norm equal to one, and are orthogonal to each other.
The number of relevant dimensions can be appreci-
ated by considering the residuals associated with
each component.

It can be useful to calculate loadings that have the
same spectral interpretation as the ones obtained in
Principal Component Analysis (PCA) or in Partial
Least Squares (PLS) regression. They are calculated
as the covariance between each component g;and the
columns of the original matrices:

VI,(I) - Xiqu

Itis easy to see that from the components (scores)
q1- 42, 43 ..., qr and the corresponding loadings v,
vy, p3@0 .. v, an approximation of X;is given by:
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’

X, =Y qvW +E

j=1

For each dimension, there are as many loadings as
the number of data matrices. If the original data table
represents digitised curves such as spectra, itis com-
mon practice to represent the loadings as “spectral
profiles”, emphasising the continuous nature of the
data.

The COMDIM method basically gives three main
outputs: components ¢g;, weights A and loadings
v with i = 1, ..., m (number of data tables) and
j =1, ..., (number of dimensions in the model). The
components and loadings are interpretable in the
same way as in PCA: the scatter plot of components
q; and g reflects the similarities of the observations
according to the corresponding components, taking
into account all the data matrices. The loadings
emphasise the importance of each variable. Both
positive and negative values of the loadings can be
interpreted. For each component g;, the weight A,
gives the importance of the data table i/ in the con-
struction of the dimension j.

In this study, the method described above is ap-
plied to three data matrices, corresponding to NIR
spectra, laser particle size and chemical data. These
tables have the same number of rows (n = 39) and the
number of columns are 700, 32 and 5, respectively.
Initially, COMDIM was applied directly on these
three data matrices. Using the raw NIR spectra gives
alarge importance to the particle size effect. In order
to give a larger role to the chemical information that
is present in the NIR spectra, the COMDIM was also
applied after correcting the NIR spectra using the
Standard Normal Variate (SNV) method, as de-
scribed by Barnes et al.3

Matlab version 5.3 (MathWorks, Inc.) was used
for the data analysis.

Results and discussion

Data collection

The results of the five chemical analyses are
shown in Table 1. The flour samples are seen to have
a large variation in the amounts of ash, protein and
starch as well as in the amount of damaged starch,
which fits the purpose of the design of the trial. A
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Table 1. Chemical composition of the 39 flour samples.

Chemical parameter Mean Range

Dry matter (%) 88.8 | 86.6-91.8
Ash (% of DM) 0.56 | 0.38-1.13
Protein (% of DM) 7.0 3.6-11.8
Starch (% of DM) 83.2 | 76.0-89.7
Damaged starch (% of DM) 6.8 1.3-17.5

considerable variation is, however, also seen in the
dry matter content. This can be caused by uneven
distribution of water within the wheat kernels as well
as by drying during the milling and fractionation.
The samples also show a large variation in particle
size distribution. Figure 2 shows the laser diffraction
results of the flour samples as the average curves of
the six size separations. The particle size ranges
from a mode around 222 pm in the most coarse frac-
tion (a) to 17 pm in the finest fraction (f).

The NIR spectra of the 39 flour samples are dis-
played in Figure 3 and are presented as raw spectra
(a) and SNV-corrected spectra (b). As expected, the
raw spectra in Figure 3(a), contain considerable
multiplicative scatter mainly due to differences in
the average particle size, but are otherwise very sim-

Percentage of flour particles

50 100 150 200 250 300 350 400 450
Particle size (micron)

Figure 2. Particle size distributions of the wheat flour sam-
ples. “a” to “f” denotes the different particle size fractions
with “a” being the most coarse and “f” the finest particles.
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Figure 3. NIR spectra of the flour samples, presented as raw spectra (a) and SNV-corrected spectra (b).

ilar in shape. When corrected for scatter [Figure
3(b)], several well-known absorbance peaks arise
corresponding to major chemical constituents of the
flour. In general, peaks at around 1450 nm and
1940 nm correspond to the O—H group of for exam-
ple water.? Starch also absorbs at 1450 nm and at
2100 nm and 2460 nm. The absorbance areas of pro-
tein are difficult to detect because the protein bands
overlap the water and starch.

Multi-way approach

The traditional way of analysing the data set pre-
sented here, would be to perform classical
multivariate data analysis on the three different data
tables separately using methods such as PCA and af-
terwards try to find the relationships between the
three PCA models, or merge the three data tables

(with a proper scaling) and perform a PCA on the
merged data table. In the multi-way table approach
presented here, the three data tables of the flour sam-
ples are analysed simultaneously by finding the
common dimensions of the three matrices.

Table 2 shows the weights of the analysis of
COMDIM using the raw NIR spectra together with
the particle size distributions and chemical data. For
a given data table, the weights of all possible dimen-
sions sum to one, so a weight for a given dimension
within a data table can be considered as percent ex-
plained variation. Thus, as seen in Table 2, the first
dimension explains 99.44% of the total variation in
the NIR spectra, 46.84% of the variation in the parti-
cle size data and only 21.22% of the variation in the
chemical data. In COMDIM the common compo-
nents are calculated in order to explain as much vari-

Table 2. Table of the weights of the analysis of common dimensions using raw NIR spectra.

Dimensions — 1 2 3 4
Tables

NIR (raw) data 0.9944 0.0011 0.0007 0.0016
Particle size data 0.4684 0.0577 0.2860 0.1152
Chemical data 0.2122 0.5860 0.0110 0.0117
Explained variation (%) 80.5 15.4 3.0 0.5
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Figure 4. First spectral loading of COMDIM using raw
NIR spectra ( ) and SNV-corrected NIR spectra (- - -).

ation as possible of all the three matrices combined;
here the first component explains 80.5% of the total
variation in the three data tables. The scatter in the
NIR spectra mainly causes this first dimension, and
this dimension can therefore be considered as an av-
erage particle size dimension. The NIR loading (Fig-
ure 4, solid line) of the first dimension verifies this
nicely, since the loading is almost equal to a mean
spectrum of the 39 flour samples.

From Table 2 it is further seen that the second di-
mension mainly explains the chemical data
(58.60%) and only contributes slightly to the de-
scription of the NIR and the particle data. The third
and fourth dimensions, only explaining 3.5% of the
total variation, are almost not influenced by the
spectral or chemical data, but describe 28.6% and
11.52% of the particle size variation, respectively.

Since it is considered that the first dimension mainly
describes the average particle size, these compo-
nents might describe differences in the particle size
distributions.

Itis well known that changes in particle size cause
achange in the scatter of light. In order to investigate
the effect of spectral scatter correction an analogue
analysis of COMDIM was performed using the
SNV-corrected spectra. Table 3 shows the weights of
this analysis. The first dimension now comprises
78.6% of the total variation, which is nearly the same
as for raw NIR spectra, but the explained variation
within the three data matrices has changed consider-
ably. The explained variation of the NIR spectra has
decreased from 99.44% using the raw spectra to
86.94% using the SNV-corrected. The explained
variation of the particle size data has also decreased,
whereas the explained variation of the chemical data
has increased considerably from 21.22% to 34.14%.
This shows that removal of the light scatter from the
NIR spectra reduces the spectral information of the
physical characteristics of the samples and increases
the weight of spectral information of the chemical
properties of the samples. The NIR loading of the
first dimension is shown in Figure 4 (dashed line).
This loading, as compared to the first loading using
raw NIR spectra (solid line), seems to be a combina-
tion of scatter and chemical information. In the area
of 1100-1600 nm the two curves seem quite similar,
mainly representing pure spectral offset, whereas
the loading of the SN'V-corrected NIR spectra seems
to show a more chemically influenced pattern in the
range of 1600-2500 nm. A broad overlapping peak
between 1920-2000 nm is seen, which is mainly due
to the absorption of water.

Table 3. Table of weights of the analysis of common dimensions using SNV-corrected NIR spectra.

Dimensions — 1 2 3 4
Tables 4

NIR (SNV-corrected) data 0.8694 0.0691 0.0139 0.0048
Particle size data 0.3188 0.1615 0.3035 0.1268
Chemical data 0.3414 0.4822 0.0030 0.0251
Explained variation (%) 78.6 16.2 4.0 0.6
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Figure 5. Plot of sample scores of the first and the second
dimension using the SNV-corrected NIR spectra. The first
digit (1 to 7) refers to the flour outlet and the second digit
(a to f) refers to the particle size fraction.

The weights of the second dimension (Table 3)
show that this is mainly a chemical dimension, al-
though there is some contribution from the particle
size distribution and a minor contribution from the
spectra. Asinthe analysis based on raw NIR spectra,
the third and fourth dimensions describe the particle
size distributions.

The weights of the two analyses of COMDIM
show that SNV gives patterns that would be expected
when comparing the use of raw and SNV-corrected
spectra. The COMDIM on the SNV-corrected spec-
tra gives higher weights and more interpretable
chemical information and only these results will be
discussed in the following.

Figure 5 shows the sample scores of the first and
second dimension, which are conceptually analo-
gous to the scores in a PCA sense. The first dimen-
sion shows a clear distribution according to particle
size fraction going from “a” to “f” when moving
from right to left in the plot. By considering the sec-
ond dimension and consulting the raw chemical data
table (not shown), a nice distribution according to
chemical properties is seen, when moving from the
upper part of the plot with samples having high
starch, low protein and low ash content to the lower
part of the plot with samples having low starch, high
protein and high ash content. This dimension ex-
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Figure 6. Second spectral loading of COMDIM using
SNV-corrected NIR spectra. s: absorption of starch; p: ab-
sorption of protein; I: absorption of lipids; ¢: absorption of
cellulose.

plains 48.22% of the variation in the chemical data,
but only 6.91% of the spectral variation. The corre-
sponding NIR loading, shown in Figure 6, can be
easily interpreted with regard to chemical composi-
tion. Intense positive peaks corresponding to the
absorbance of starch are seen at approximately
1450 nm, 1575 nm, 2100 nm and 2490 nm. Nega-
tive peaks seen around 1980 nm and 2200 nm are
due to protein absorption and some minor negative
peaks at 1725 nm and 1880 nm and in the range of
2330-2360 nm are also visible. These peaks are
mainly due to absorbance of cellulose and lipids,
which are substances at high concentration in the
outer part of the endosperm and in the bran of the
kernel, and are therefore indicative of bran contami-
nation and high ash content in the flour.

This spectral NIR loading of the second dimen-
sion can be further verified by looking at the chemi-
cal loading. The chemical loadings for the first and
second dimensions are shown in Figure 7. These are
presented as bars. The second loading (shown in
grey) has a high positive value for starch content and
negative values for both ash and protein content
which fully agrees with the spectral loading of the
second dimension (Figure 6) and complies with
common knowledge regarding milling of wheat. The
dry matter content and the amount of damaged
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Figure 7. Firstand second chemical loadings of COMDIM
using SNV-corrected NIR spectra.

starch only seem to have minor influence on the sec-
ond dimension; however, these two parameters seem
to have great influence on the first dimension (load-
ing shown in black). In addition, these two variables
seem to be correlated. The first dimension is mainly
thought to describe the average particle size, even
though the NIR spectra have been SNV-corrected, as
shown in Figure 5. This dimension, however, also
explains 34.14% of the chemical variation, which
seems mainly to be founded in dry matter and dam-
aged starch. This might be due to the fact that the av-
erage particle size, the dry matter content and the
content of damaged starch are correlated: the
smaller the particles, the more damaged starch and
the higher the content of dry matter. The NIR loading
of the first dimension (Figure 4, dashed line) might
then be considered as the loading for these two
chemical parameters, however, it could also be
based on internal correlations.

Thus so far, the interpretation has been focused
on the spectra and the chemical loadings, but when
using this multi-table approach, it is possible to con-
sider the corresponding particle size dimensions.
These two loadings are shown in Figure 8. The first
loading (solid line) nicely reflects the average parti-
cle size curve (using centred data) having a negative
peak at 17 um corresponding to the mode of the fine
particles and a positive peak around 222 um repre-
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Figure 8. First (— ) and second (- - - ) particle size loadings
of COMDIM using SN V-corrected NIR spectra.

senting the mode of the coarse particles. In the score
plot (Figure 5), the first dimension is expanded by
the samples “f” in the left part of the plot having fine
particles, and the samples “a” in the right part of the
plot having coarse particles. The second particle size
loading, explaining only 16.15% of the particle size
variation shows a clear positive peak at approxi-
mately 27 um. This means that particles around this
size have a high amount of the chemical profile
shown in the second chemical loading in Figure 7
(grey), thus having a high starch content and a low
protein and ash content. These relatively fine, high-
starch particles are mainly the samples “d” and “e”
in the upper part of the score plot in Figure 5, where
the samples labelled “6” in the lower part of the plot
are the most impure (highest in ash content).

When considering dry milling from a practical
point of view, the aim is to produce a pure high-
yielding flour with a given quality and still keep the
particle size as large as possible, in order to secure a
high flowability in the transportation and sieving de-
vices. The miller must therefore find a compromise
between the chemical properties of the flour and the
flour particle size when operating and optimising the
mill. The location of a given sample in the score plot
in Figure 5 indicates whether this sample has the
right quality and particle size properties. When opti-
mising the mill, newly acquired NIR spectra of the
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flour outlets could be projected onto the COMDIM
NIR loadings and the particle size and chemical
properties of the flour sample could be evaluated
only on the basis of the location (or movements) in
the score plot.

Conclusion

The COMDIM was applied on three data tables
representing NIR spectra, particle size data and
chemical data of wheat flour samples. The output
from this analysis that conceptually can be seenasa
PCA across several data tables has been useful in
interpreting the relationship between the three data
tables. In this way, the importance of the information
from the different flour measurements has been as-
sessed and interpreted in a more straightforward
manner than doing PCA on three data tables sepa-
rately. The analyses showed that both when using
raw and SNV-corrected NIR spectra 99.4% of the to-
tal variation was described in only four underlying
dimensions. A comparison of the two analyses
clearly shows that SNV-correcting the spectra puts
more emphasis on the chemical information in the
spectra. However, even corrected spectra contain
considerable information on the particle size proper-
ties of the samples. The spectral, particle size and
chemical loadings of the underlying dimensions
were interpretable and showed patterns in agree-
ment with prior knowledge regarding characteristics
of wheat flour, and it is therefore concluded that the
current multi-way method is applicable for investi-
gating of different types of measurements on the
same sample set.

In the present context, this multi-table approach
can beused to obtain a betterunderstanding of the re-
lationship between physical and chemical properties
of wheat flours by getting a direct link, in terms of
loadings, between the two types of data. By compar-
ing the results of the analyses of COMDIM per-
formed on different pre-treated spectra, the effect of
spectral pre-treatments can be analysed. The current
data analysis can, of course, be applied on more or
fewer data tables, for example the NIR and particle
size data, or the particle size and chemical datain or-
der to emphasise on more specific relationships.

Data analysis as presented here could be a useful
tool when NIR spectroscopy is applied as a quality
controlina flour mill. Normally, acquired NIR spec-
tra are used in a quantitative way as in predicting the
chemical constituents using PLS regression. Instead
of doing so, it could be possible to perform a “quali-
tative calibration” where the flour samples are
ranked according to their NIR score values, or a
combination of several scores, for example if the
miller prefers samples having a high value of the
first score and alow value of the second score. Sucha
qualitative calibration can, of course, also be done
by aclassical PCA onthe NIR spectra, but the advan-
tage of this multi-way approach is that the variation
in both the particle size and chemical data is used si-
multaneously to guide the decomposition of the
spectral data. The miller can use this to optimise for
different quality parameters.
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Interval partial least squares regression (iPLS): A
comparative chemometric study with an example from near
infrared spectroscopy
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Interval Partial Least-Squares Regression (iPLS): A
Comparative Chemometric Study with an Example from

Near-Infrared Spectroscopy
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S. B. ENGELSEN

The Royal Veterinary and Agricultural University, Food Technology, Chemometrics Group, Department of Dairy and Food Science,

Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark

A new graphically oriented local modeling procedure called interval
partial least-squares (iPLS) is presented for use on spectral data.
The iPLS method is compared to full-spectrum partial least-squares
and the variable selection methods principal variables (PV), for-
ward stepwise selection (FSS), and recursively weighted regression
(RWR). The methods are tested on a near-infrared (NIR) spectral
data set recorded on 60 beer samples correlated to original extract
concentration. The error of the full-spectrum correlation model be-
tween NIR and original extract concentration was reduced by a
factor of 4 with the use of iPLS (r = 0.998, and root mean square
error of prediction equal to 0.17% plato), and the graphic output
contributed to the interpretation of the chemical system under ob-
servation. The other methods tested gave a comparable reduction
in the prediction error but suffered from the interpretation advan-
tage of the graphic interface. The intervals chosen by iPLS cover
both the variables found by FSS and all possible combinations as
well as the variables found by PV and RWR, and iPLS is still able
to utilize the first-order advantage.

Index Headings: Interval PLS; Variable selection; NIR, Principal
variables; Forward stepwise selection; Recursively weighted regres-
sion; Beer; Extract.

INTRODUCTION

Full-spectrum regression methods such as partial least-
squares regression (PLS) and principal component re-
gression (PCR) have abundantly documented their effi-
ciency within the development of rapid spectral analytical
screening methods.!2 We have previously applied this ap-
proach in exploratory spectral investigations of sugar,?
pectins,* and frying oils’* employing fluorescence and
near-infrared (NIR) as well as Fourier transform infrared
and Fourier transform Raman spectroscopy. Chemome-
tricians and data analysts are familiar with the concepts
and often favor the use of principal components or latent
variables as these aim to represent global orthogonal non-
correlated data structures deduced from the highly inter-
correlated spectral ensembles. Spectroscopists, on the
other hand, usually have a preference for variables or
intervals of variables in the original variable space be-
cause these represent interpretable chromophores, fluo-
rophores, or vibraphores and because a strict orthogonal
decomposition is not realistic. Other important reasons
for the development of methods for spectral variable or
interval selection are the improvement of models with
respect to predictive ability and the possibility for devel-
opment of very fast instruments including reduction of

Received 7 June 1999; accepted 25 September 1999.
* Author to whom correspondence should be sent.
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the production costs for such instruments by employing
a few critical regions; e.g., in a filter instrument. A short
time of analysis makes the instruments suitable for rapid
on-line measurements; e.g., within the area of process
monitoring and control. With respect to data reduction,
variable selection may also be a realistic method since
spectral data contain a high degree of covariance and, as
such, large amounts of redundant information. The need
for chemometric methods for variable or interval selec-
tion where information is optimally preserved is therefore
very large.

One of the main advantages in multivariate data anal-
ysis and latent variable methods is the possibility of pro-
jecting multivariate data into few dimensions in a graph-
ical interface. We propose a new type of graphical output
which will enhance the information content for standard
multivariate regression methods such as PCR or PLS.
The method that we will focus on is a new graphically
oriented approach for local regression modeling of spec-
tral data called interval partial least-squares regression
(iPLS). An NIR spectral data set is investigated, which
has proven to give suboptimal solutions in standard full-
spectrum PLS applications. The purpose of the interval
and variable selection is to optimize the predictive power
of PLS regression models and to aid in interpretation. The
investigation has the aim of making a comparative study
of the prediction performance of selected different meth-
ods for selection of manifest variables or intervals of
manifest variables compared to the results based on full-
spectrum models. In addition to iPLS, the principal var-
iables (PV) method as developed by Hoskuldsson,¢ for-
ward stepwise selection (FSS) of variables, and a newly
presented method called recursively weighted regression
(RWR) will be investigated.” The results from using these
methods will be compared to results from using full-spec-
trum PLS results. Common to the methods investigated
is that they are based on no, or simple, search strategies.
Methods based on intensive heuristic search strategies
such as genetic algorithms will not be investigated in this
paper.? An important contribution to the discussion of
spectral variable selection was recently given by Spie-
gelman et al. in their paper on a theoretical justification
of wavelength selection in partial least-squares regres-
sion.? In the literature, the use of principal variables as
an alternative to principal components for a single matrix
was presented by McCabe,!? and this topic was also treat-
ed by Krzanowski in a study on how to preserve multi-
variate data structure using principal components analysis
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Fic. 1. NIR/visible spectra recorded on 60 beer samples in the wave-
length range 400 to 2250 nm; in total 926 variables per sample.

(PCA)."" Subsequently, Hoskuldsson presented a general
method capable of dealing with variable selection either
in the PCA situation or in the regression situation.’

EXPERIMENTAL

Programs. Calculations were performed with Matlab
Version 5.2.0 (MathWorks, Inc., Natick, MA) installed
with the PLS_Toolbox Ver. 2.0.0b (Wise & Gallagher;
Eigenvector Research, Manson, WA) and Unscrambler
Version 7.01 (CAMO A/S, Norway). A modified version
of a Matlab program made by Agnar Hoskuldsson was
used for the principal variable selection. The algorithms
for iPLS, forward stepwise selection, and recursively
weighted regression were programmed in the Matlab lan-
guage by the authors.f

Data Set and Measurement Conditions. We will
demonstrate the use and performance of the different var-
iable selection methods by a comparative application to
a spectroscopic data set dealing with the determination
of the amount of extract from NIR spectra of beers. This
data set is an interesting NIR spectral ensemble of 60
beer samples containing a rather large noisy part due to
an absorbancy that is too strong, in a region (Fig. 1)
dominated by the water component.

Dispersive near-infrared data (including the visual re-
gion) at 25 °C were collected with the use of a NIRSys-
tems Inc. (Model 6500) spectrophotometer. The spectro-
photometer uses a split detector system with a silicon (Si)
detector between 400 and 1100 nm and a lead sulfide
(PbS) detector from 1100 to 2500 nm. The NIR/visible
transmission spectra were recorded with a 30 mm quartz
cell directly on the undiluted degassed beer, and spectral
data collected at 2 nm intervals in the range from 400 to
2250 nm were converted to absorbance units.

Original extract concentration is an important quality
parameter in the brewing industry, indicating the sub-
strate potential for the yeast to ferment alcohol and serv-
ing as a taxation parameter. Original extract concentration
was determined by Carlsberg A/S in the range of 4.23—

+ The iPLS algorithm including the optimization module and the NIR
data set studied in this work is available from our Web site: http://
www.mli.kvl.dk/foodtech/special/specials.htm.
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18.76% plato. The data were sorted by extract value, and
an independent test set was constructed by selecting ev-
ery third sample of this full set. There are thus two data
sets: one for calibration (40 samples) and one for esti-
mation of prediction error (20 samples). It is assumed
that overfitting will be revealed by the independent test
set.

CHEMOMETRIC THEORY

Partial Least-Squares Regression. Partial least-
squares regression is a predictive two-block regression
method based on estimated latent variables and is applied
to the simultaneous analysis of two data sets (e.g., spectra
and physical/chemical tests) on the same objects'? (e.g.,
beer samples). The purpose of the PLS regression is to
build a linear model enabling prediction of a desired
characteristic (y) from a measured spectrum (x). In matrix
notation we have the linear model y = Xb where b con-
tains the regression coefficients that are determined dur-
ing the calibration step, and X is the matrix of collected
spectra. PLS was first applied to evaluate NIR spectra by
Martens and Jensen in 1983,' and is now used routinely
in academia and industry to correlate (rapid) spectro-
scopic measurements with related chemical/physical data.

Interval PLS. Interval PLS is an in-house developed
interactive extension to PLS, which develops local PLS
models on equidistant subintervals of the full-spectrum
region. Its main force is to provide an overall picture of
the relevant information in different spectral subdivi-
sions, thereby focusing on important spectral regions and
removing interferences from other regions. The sensitiv-
ity of the PLS algorithm to noisy variables is highlighted
by the informative iPLS plots.

Interval PLS models are developed on spectral subin-
tervals of equal width, and the prediction performance of
these local models and the global (full-spectrum) model
is compared. The comparison is mainly based on the val-
idation parameter RMSECV (root mean squared error of
cross-validation), but other parameters such as r?
(squared correlation coefficient), slope, and offset are also
evaluated to ensure a comprehensive model overview.
Sample and/or measurement abnormalities (outliers) as
detected by PLS inner relation plots should generally be
removed prior to the application of /PLS.

Models based upon the various intervals (X, erva) USU-
ally need a different number of PLS components than do
full-spectrum models to catch the relevant variation in y.
This condition is caused by the varying amount of y-
correlated information carried by the interval variables
(the larger the spectral interval, the greater the number
of substances that are likely to absorb/interfere) and is
also related to the noise/interference carried by the vari-
ables. However, the selected model dimension has to be
common to all the local models in order to make a com-
parison possible. In order to favor the ““best” spectral
region, it is natural to let the simplest interval model (i.e.,
the one with the smallest number of PLS components)
guide the selection of the model dimension. A fair com-
parison of the global and local models requires that the
global and local model dimensions be selected separately.

Simple Optimization of the Best Interval from Equidis-
tant iPLS. There is a minimal probability for hitting the

171



optimal interval with the equidistant subdivisions. A
more optimal interval might be found by carrying out
small adjustments in the interval limits. The optimization
performed consists of the following steps: (1) interval
shift; (2) changes in interval width: two-sided (symmet-
rical), one-sided (asymmetrical, left), or one-sided (asym-
metrical, right). Each step is initiated with the optimal
interval limits from the previous step. The interval limits
are changed one variable at a time and evaluated by the
RMSECYV provided by application of PLS regression to
the interval; this approach works in practice but could be
done more elegantly.

Principal Variables. Principal variables is a method
for selection of a limited number of original variables
(e.g., wavelengths) that describe, as much as possible, the
variance in the data matrix (spectra) or, alternatively, co-
variance in the matrix with a vector with a desired char-
acteristic (chemical/physical measurement).® The PV
method is initiated by finding the variable (wavelength)
that co-varies most with the y vector (physical/chemical
measurement). This variable is the first principal variable.
The original spectral data matrix is then reduced (orthog-
onalized) with respect to the first principal variable. Then
the next covariant variable in the reduced data matrix is
selected, and this procedure is followed until the wanted
number of principal variables has been calculated. The
result of the PV selection is a limited number of the orig-
inal variables (e.g., wavelengths), while PLS selects la-
tent factors based on information from all original vari-
ables. The PV method also works on a single data matrix,
in which case the method will search for columns that
describe the largest variation; i.e., the method is a general
tool for variable selection.

Forward Stepwise Selection of Variables. Forward
stepwise selection is a most simple and pragmatic search
method in which subsequent variables are selected step-
wise by their capability to improve a multiple linear re-
gression (MLR) model. First, all spectral variables are
tested individually in univariate linear regression models
with extract concentration as the dependent variable. All
these models are test set validated, and the variable with
the lowest RMSEP (dependent test set) is chosen. Next,
all two-variable MLR models are investigated on the ba-
sis of the chosen variable in combination with all the
remaining variables (one by one). All these models are
also test set validated, and the variable that (in combi-
nation with the first chosen variable) gives the lowest
RMSEP (dependent test set) is chosen. This procedure is
continued until the RMSEP (dependent test set) increases
by the introduction of a new variable. In the FSS case, a
dependent test set is chosen to evaluate the selection of
new variables, since an evaluation procedure based on
cross-validation leads to severe overfitting.!2!3

Recursively Weighted Regression. This method is
based on an recursive re-weighting of the independent
variable block (X) by the regression vector b calculated
from a PLS regression model between X and y: xi,, =
xixbi, i = 1 to number of variables, where b} is the ith
element in the PLS regression coefficient vector (b,) of
step number n, and x/ is the ith column of X,.” The al-
gorithm is started with a standard PLS model between
X, (equal to X) and y, giving b,. The re-weighting is
repeated 50 times (n = 1 to 50) in the calculations pre-
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sented in this paper in order to ensure that a final solution
has been reached. The result is a regression vector by,
that contains only ones and zeros (this binary result is a
direct output from the RWR algorithm; i.e., no rescaling
of the final regression vector is performed). In the simple
case, the number of variables selected (i.e., variables with
a corresponding regression coefficient of one) corre-
sponds to the number of latent factors chosen in the orig-
inal PLS model. This is not the case in more complicated
situations. This simple method, which combines multi-
variate regression and variable selection, has not yet been
thoroughly investigated but certainly deserves more at-
tention.

Error Measures. The root mean square error in com-
bination with the correlation coefficient (r) is used as a
measure of how a given model performs. RMSE is de-
fined as follows:

Dprea ~ Prer)
N

where y,., is the predicted value, y, is the laboratory-
measured value, and N is the number of samples.

RMSEC is RMSE calculated from the calibration sam-
ples, i.e., a measure of fitt RMSECYV is calculated from
the cross-validated samples, and RMSEP is calculated
from the independent test (or prediction) set.!2!3 Corre-
spondingly, r., r.. and r,., are the correlation coeffi-
cients for these three situations.

RMSE =

RESULTS AND DISCUSSION

All models are developed on the basis of NIR/visible
spectra (X) and the response variable extract concentra-
tion (y). The spectra are shown in Fig. 1. Both mean-
centered and autoscaled X data!? are tested, and all the
models developed are validated by segmented cross-val-
idation.!2!3 Five segments are used and they are selected
systematically among the 40 calibration samples; i.e., in
CV segment number one, the samples 1, 6, 11, 16, 21,
26, 31, and 36 are represented. RMSECYV is the param-
eter governing the variable selection for all tested meth-
ods; i.e., the set of variables chosen for a given method
is the set that gives the lowest RMSECYV among the com-
binations tested with that method. RMSEP is an estimate
of the prediction error based on 20 samples, and its value
also reveals whether there are problems with overfitting
for some of the methods. In Table I all results on NIR
spectral ensemble are compiled.

PLS Full-Spectrum Results. Mean-centered and au-
toscaled full-spectrum PLS results indicate unstable mod-
els when the three RMSE values in Table 1 are compared.
Both models are suboptimal, and for the mean-centered
model two local minima are seen before the global one
at nine PLS components. The improvement in RMSECV
when going from five PLS components to nine PLS com-
ponents is negligible for the model based on autoscaled
data (not shown).

iPLS Results. In this section focus is on the situation
where the data are autoscaled to provide uniform variance
over the entire spectral range (according to the comments
made above) and divided into 20 subintervals to show
how iPLS works. Figure 2 shows y-residual variance
characteristics: one for the full-spectrum model and one

APPLIED SPECTROSCOPY 415



TABLE 1.

Results for NIR on beer samples when using different chemometric methods for variable selection.

Preprocess- # Vari-

Method ing # PCs ables Interval (nm) RMSEC Fear RMSECV Foy RMSEP Tred
PLS Auto 9 926 400-2250 0.001 1.000 0.80 0.948 0.40 0.993
Mean 9 926 400-2250 0.005 1.000 1.31 0.849 0.73 0.961

iPLS Auto 4 46 1228-1318 0.10 0.999 0.15 0.998 0.20 0.997
20 intervals Mean 4 46 1228-1318 0.12 0.999 0.16 0.998 0.21 0.997
iPLS Auto 3 15 1270-1298 0.24 0.995 0.30 0.992 0.21 0.997
60 intervals Mean 3 15 1270-1298 0.24 0.995 0.31 0.992 0.22 0.997
iPLS Auto 4 48 1228-1322 0.10 0.999 0.13 0.999 0.18 0.998
optimized? Auto 2 49 1202-1298 0.11 0.999 0.15 0.998 0.17 0.998
PV Auto MLR 2 1326, 1184 0.21 0.996 0.24 0.995 0.14 0.999
Mean MLR 3 440, 536, 13220 0.41 0.986 0.52 0.977 0.34 0.991

RWR Auto 2¢/MLR 2 1184, 1326 0.21 0.996 0.24 0.995 0.14 0.999
Auto 3¢</MLR 3 1184, 1320, 1950 0.18 0.997 0.21 0.996 0.15 0.999

Mean 3¢/MLR 3 1326, 2234, 2246 0.38 0.988 0.44 0.983 0.37 0.991

FSS None MLR 2 1326, 1134® 0.16¢ 0.998¢ 0.18¢ 0.997¢ 0.17 0.998
All comb.c None MLR 2 1128, 1314 0.15 0.998 0.16 0.998 0.20 0.997

2 Results after optimization based on a 20 interval subdivision.
®The variables are found in the written order.
¢ Number of PLS components used in the recursive latent models.

4 Test set validated with a calibration set of 20 samples and a dependent test set of 20 samples. The RMSECYV error corresponds to a dependent

test set error, while the RMSEP error is the independent error.

< All possible two-variable combinations are tested; in total 428 275 models.
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Fig. 2. (A) Cross-validated residual y-variance for the full-spectrum

model (-0-0) and 20 local models as a function of number of PLS
components. (B) Enlargement of A to show the first minimum at four
PLS components for interval 10.
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for each of the 20 spectral subdivisions. From Fig. 2 both
the local and the global model dimensions are selected.
Variance characteristics approaching the abscissa repre-
sent promising local models describing most of the sys-
tematic variance in the spectral data. In this case there
are seven such models, and three of these differ from the
rest in having a significant y-residual variance reduction
for the very first latent variable. Four PLS components
are appropriate for the local models, and in contrast nine
PLS components are optimal for the full-spectrum PLS
model based on autoscaled data. Figure 3, which dem-
onstrates the central iPLS plots, shows expected predic-
tion error (RMSECYV) for 20 interval models (bars) and
for the full-spectrum model (line) plotted together with a
normalized mean spectrum. In Fig. 3A, one PLS com-
ponent is used in the interval models and for Figs. 3B,
3C, and 3D the number is two, three, and four, respec-
tively. The full-spectrum model (line) is based on nine
PLS components in all four plots. It appears from Fig.
3A that only one interval model (number 10) with one
latent variable can compete with the full-spectrum model
using nine PLS components. However, when two to four
(optimal) PLS components are used, several interval
models surpass the full-spectrum model.

Interval number 10 (46 variables) was chosen for fur-
ther optimization: (1) an interval shift of 30 variables to
each side was performed, followed by (2) changes in in-
terval width from a chosen minimum of 30 to a chosen
maximum of 110 variables [first two-sided symmetrical
optimization, then one-sided asymmetrical (left) and one-
sided asymmetrical (right) optimization]. The optimiza-
tion results in an interval in the range 1228-1322 nm
(see Table I) with the use of four PLS components. A
thorough optimization procedure might include different
numbers of PLS components, since a smaller interval
might be modeled by a lower number of PLS compo-
nents. This approach is illustrated by the results from a
two-PLS-components solution given in Table I.

Furthermore, the effect of the number of start intervals
can be optimized to see how this number influences the
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Cross-validated prediction performance (RMSECV) for 20 interval models (bars) and for full-spectrum model (line) plotted together with

the normalized mean spectrum. The interval models used one (A), two (B), three (C), and four (D) PLS components, respectively, in the four
plots, while the full-spectrum model was kept at nine PLS components (autoscaled data).

results. In Table I results from using both 20 and 60 in-
tervals are shown. The results from using 20 intervals
(46 variables in each model) seem more robust than those
from the use of 60 intervals (15 variables in each model).
Different numbers of intervals can be tested in new ap-
plications to see how the information changes with re-
spect to the variables included in the modeling.

Results from Other Methods (PV, FSS, RWR, and
All Possible Combinations). Results from principal var-
iables, forward stepwise selection, and recursively
weighted regression selection of variables are shown in
Table 1. Also the optimal result from all possible two-
variable combinations (=428 275) are shown. All select-
ed variables are based on the lowest value of RMSECV.

Discussion. Comparing Figs. 1 and 3D, we see that
both the noisy region from 1400 to 2250 nm and the
systematic visual region from 400 to 800 nm are found
to be of no relevance when building correlation models
to the original extract. In this way /PLS gives an over-
view of the spectral data and reveals the interesting parts
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of the spectrum, helping in chemical interpretation. In
this case the transparent spectral NIR region between the
visual region (400-800 nm) and the NIR region where
the strongly absorbing O—H vibrations of the water begin
to appear (from 1400 nm and up) holds the predictive
performance with respect to the original extract measure-
ment. Except for the second overtone of the O-H stretch
at ~ 970 nm, this NIR region is dominated by C-H and
N-H stretching overtones. It is seen that this data set
without @ priori knowledge may cause severe troubles
for the PLS algorithm. The experienced spectroscopist
would remove the noisy spectral region prior to PLS cal-
ibration, but this investigation aims at illustrating the use-
fulness of variable or interval selection when (PLS) cal-
ibration is performed on new data to which no prior
knowledge is available, or when PLS is applied to data
sets which are too large and/or inhomogeneous for stan-
dard exploratory PLS investigation.

From Table I we see that none of the full-spectrum
models perform well compared to the selection methods.
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There is no systematic trend between the RMSEC,
RMSECYV, and RMSEP values, which is to be expected
for a robust model. This observation is due to the rather
noisy region in the range 1400-2250 nm, which spoils
the full-spectrum PLS model. Also mean-centered PV
and RWR fail to find a suitable combination of variables.
Compared with all possible two-variable combinations,
the methods of iPLS, PV, and RWR work well on auto-
scaled data; iPLS also works well on mean-centered data.
FSS is scaling independent, and it is the only variable
selection method that finds a pair of variables that com-
pares very well to the result found by all possible com-
binations of two variables. Both the RWR and PV meth-
ods select a different combination of variables that is al-
most alike for the two methods. The intervals chosen by
iPLS cover both the variables found by FSS and all pos-
sible combinations as well as the variables found by PV
and RWR. The RWR method is robust with respect to
the number of PLS components chosen as a starting point
(two or three) for the PLS models when using autoscal-
ing. This observation is reflected in the regression coef-
ficients of the RWR model based on three PLS compo-
nents resulting in a three-variable multiple linear regres-
sion model with the following regression coefficients: (b,
by, b,, by) = (83.94, 84.06, —88.94, —2.87). The regres-
sion coefficient b, of the noisy variable at 1950 nm has
a low numerical value compared to b,, b,, and b, when
considering the absorbance values at the three variables,
indicating that the first two variables (1184 and 1320 nm)
are sufficient for building a regression model; b, is the
offset in the regression model.

The optimized PLS model does not give a decrease in
RMSECYV, reflecting that it is difficult to optimize the
actual model further. The decrease from 0.15 to 0.13 is
not significant when we take into account the uncertainty
of the original extract measurement (estimated to be
~0.02-0.04% plato). This observation is supported by
the fact that the optimized interval (1228-1322 nm) is
almost exactly the same as the first chosen interval
(1228-1318 nm), reflecting a chance improvement. Fur-
thermore, by using the interval 1202-1298 it is possible
to obtain comparable RMSECV results with only two
PLS components.

In Fig. 4 the predicted vs. measured plots for a full-
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spectrum model and the best interval model (without op-
timization) are given to show the significant decrease in
RMSECYV and RMSEP. In this case the interval model is
superior to the full-spectrum model. It should be stressed
that knowledge of the reproducibility of the spectral mea-
surements (not available here) might be used in prepro-
cessing of the spectral data so that the noisy part of the
spectrum is down-weighted in a PLS analysis.

Furthermore, it should be emphasized that especially
minimalistic variable selection reduces the power of mul-
tivariate outlier control and increases the influence of
spectral noise. The trade-off between the measurement of
few variables and a reduced quality of outlier detection
must be evaluated for each application, and the optimal
choice might be different depending on the actual spec-
troscopic technique.

Finally, it should be mentioned that the /PLS method
was preliminarily tested on an NIR data set of pectins
with different degrees of esterification. With 50 /PLS in-
tervals, one interval with two PLS components improved
the performance of a four-PLS-component full-spectrum
model by a factor of 2 with respect to RMSECV.!* All
other intervals gave higher RMSECV values compared
to the RMSECV of the full-spectrum model.

CONCLUSION

It might be very useful to select variables or intervals
of variables from spectroscopic data ensembles. In this
paper a new graphically oriented local modeling ap-
proach (iPLS) is described and compared to three differ-
ent variable selection methods by evaluation on a near-
infrared spectroscopic data set. For these data it has been
shown that /PLS is an attractive method in providing an
overview of interesting spectral areas which could be se-
lected. The results from using /PLS are comparable to the
other effective methods tested, but the main contribution
from using iPLS is the graphic output giving an overview
of the spectral data. For specific selection of variables,
forward stepwise selection proved to be a good alterna-
tive, while methods such as recursively weighted regres-
sion and principal variables work well in some cases,
depending on the preprocessing of the data. Basically,
iPLS has proven to represent a sound compromise be-
tween data reduction and spectral localization and yet be-
ing able to utilize the first-order advantage.

Further research on /PLS might include an investiga-
tion of all possible combinations of the selected intervals
in order to investigate the synergy between different
spectral regions. If the number of intervals chosen is less
than approximately 20-30, it is possible to evaluate all
possible interval combinations depending on how much
computer time one can spend. Work is also currently un-
derway with respect to improving and generalizing the
interval optimization.'’
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Appendix 2

Light scattering and light absorbance separated by
Extended Multiplicative Signal Correction (EMSC).
Application to NIT analysis of powder mixtures

Harald Martens, Jesper Pram Nielsen and Sgren Balling Engelsen
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Abstract

The Extended Multiplicative Signal Correction (EMSC) pre-processing method
allows a separation of physical light scattering effects from chemical (vibrational)
light absorbance effects in spectra from e.g. powders or turbid solutions. It is here
applied to diffuse Near Infrared Transmission (NIT) spectra of mixtures of wheat
gluten (protein) and starch (carbohydrate) powders, linearised by conventional
log(1/T). Without any correction for uncontrolled light scattering variation between
the powder samples, these absorbance spectra could give reasonable predictions of
the analyte [gluten], but only when using multivariate calibration with a much
more complex model than expected. Standard MSC pre-processing did not work
for these data at all; it removed too much analyte information. However, the EMSC
pre-processing yielded powder spectra that obeyed Beer’s Law more or less as if
they had been obtained from transparent liquid solutions, apparently by isolating
the chemical light absorption from additive, multiplicative and wavelength-
dependent effects of uncontrolled light scattering variations. The model-based
EMSC and its converse, the Extended Inverted Signal Correction (EISC), gave
rather complete description of the diffuse absorbance spectra, and virtually

indistinguishable performance in the calibration set and the test set of samples.
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Introduction

Pre-processing for multivariate calibration. Multivariable electromagnetic
spectrophotometry in the near or mid-infrared region offers great practical and
economical advantages for analysis of large sample series, as demonstrated by
diffuse reflectance or transmittance spectroscopy in areas such as agriculture, food
technology, pharmaceutics and petrochemistry. Today, such high-speed
instruments are routinely designed to yield precise quantitative determination for a
variety of chemical and physical properties, using multivariate calibration to solve
the selectivity problems caused by the lack of sample preparation and for automatic
detection of outliers'. Pre-processing of the spectral measurements is used for
optimising the subsequent multivariate calibration. An example of this is the
common linearization of transmittance T into absorbance log(1/T), which under
ideal conditions is linearly related to chemical composition according to Beer’s

law.

When analysing more or less intact complex samples by diffuse reflectance or
transmittance spectroscopy, uncontrolled variations in light scattering is often a
dominating artefact, which complicates subsequent quantitative chemical analysis.
This undesired scattering variation is due to uncontrolled physical variations in the
measured samples — particle size and shape, sample packing, sample surface, etc. If
the light scattering could be modelled and corrected for mathematically in a more
elaborate pre-processing stage, these problems should be reduced or eliminated.
The cost of NIR analysis could then be reduced, because the need for controlled
sample preparation could be further reduced, the number of calibration samples
could be reduced and the statistical calibration modelling process could be
simplified. Moreover, a pragmatic, but reasonably accurate model-based light
scatter correction may shed new light on the light scattering processes themselves.
If successful, such a method for light scatter correction might also be used for other
types of instruments, for example, for reducing the need to remove uncontrolled
turbidity prior to UV or VIS spectroscopy in general. The problem is how to

describe light scattering mathematically in practice.

Additive and multiplicative models for light scattering. In some simple systems, a
purely multiplicative effect of light scattering may be observed. In transmittance

spectroscopy of e.g. transparent solutions, a change in the optical path length (e.g.

cuvette width) scales the whole absorbance spectrum by a given factor, according

179



to the Beer-Lambert law. In diffuse reflectance of powders under ideal conditions,
a variation in the overall light scatter coefficient between the samples likewise
scales their chemical light absorption spectra, according to the Kubelka-Munk
theory”. In either case, if the scaling factor for each sample is known or can be
measured, the multiplicative interference effect is easy to correct for by a simple
re-scaling.

In other systems, a purely additive effect of light scattering may under certain rare
conditions be observed. In visible-range “transflection” spectroscopy in turbid
aqueous solutions, a variation in turbidity level sometimes causes a simple baseline
shift’, which may be corrected for by a baseline subtraction, according to Beer’s
law,

However, in practical diffuse spectroscopy of complex samples under realistic
measurement conditions, such a fixed, purely multiplicative or purely additive
modelling of light scattering appears to be an oversimplification. A more extensive
modelling of light scattering variations is generally required. This modelling may
be done as an implicit part of the multivariate calibration process, or in an explicit
pre-processing stage.

Implicit scatter correction during multivariate calibration regression. Pragmatic
multivariate calibration techniques' can to some extent implicitly compensate for
unknown scatter variations. Multivariate techniques based on additive regression
models, such as bilinear regression using Partial Least Squares Regression®, can
automatically pick up and account for various unknown types of “scatter” by
introducing extra regression components. The price for this implicit scatter
compensation is a higher complexity of the calibration models, which then become
prone to noise and difficult to interpret, and require more calibration samples’.
Bilinear additive modelling can be regarded as an implicit Taylor expansion of the
underlying, unknown relationships in the data®, and for multiplicative scatter-
affected relationships the first-order (additive) approximation of bilinear models
like PCA or PLSR is simply not good enough'.

Explicit data analytical pre-processing prior to calibration can sometimes eliminate
non-relevant systematic sources of covariance and may then lead to more simple
and robust regression models. Several additive pre-processing methods exist for
removing irrelevant spectral contributions, using covariance-based linear (additive)

methods to subtract or down-weigh spectral components expected to represent
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interferants such as Spectral Interference Subtraction’, Direct Orthogonalization®,
Orthogonal Signal Correction (OSC)*’ and GLS Pre-processing'’. However, light
scatter effects tend to give more or less multiplicative contributions to the spectral
data, for which these purely additive pre-processing methods' cannot be expected

to work very well.

Explicit methods for scatter correction in “dirty” systems. A common pre-
processing alternative is to reduce the scattering problems by replacing the input
spectra by their first or second derivatives, which will remove between-sample
variations in baseline offset and linear baseline trends in the spectra. The trade-off
is usually noisier spectra, due to the numerical calculation of the derivatives and

the derivative spectra may be more difficult to interpret.

Explicit multiplicative AND additive pre-processing methods have also been

developed, e.g. Multiplicative Signal Correction (MSC)'"'?, Piecewise
Multiplicative Signal Correction (PMSC)", Standard Normal Variate (SNV)'* and
the path length correction method PLC-MS". Particularly the spectral derivative
and MSC methods are now being used successfully in many applications, possibly
because they have been built into several standard software systems for
multivariate calibration. The mentioned data transformations have in common that
they are relatively simple and that they can be applied without a priori knowledge

about the samples and their spectra.

Using prior knowledge in the pre-processing. If spectral regions are present where
the target analyte or certain chemical interferants exhibit strong absorption, then
the MSC parameter estimation may confuse chemical absorption and physical light
scattering effects, with dramatically bad results. An example of this will be
demonstrated in the present paper. However, if a priori theory or quantitative data
exist on the kind of samples and spectra involved, this can enhance the
performance of the pre-processing. The simplest way is to use prior spectroscopic
knowledge about the constituents’ spectra, to ignore (down-weigh) spectral regions
where dominating chemical constituents absorb very strongly, when determining

how to scatter-correct each spectrum in the MSC.

A more ambitious way to use prior knowledge is to extend the MSC model to
include new parameters to account for the physical and chemical phenomena that
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affect the measured absorbance spectra. One such approach is the Extended
Multiplicative Signal Correction (EMSC). The basic version of EMSC was
originally published by Martens and Stark’. In the present study the EMSC is

modified and applied to a different kind of spectral data, from powder mixtures.

The inverse of the MSC model was first described by Helland et al. who named it
Inverted Scatter Correction (ISC)'°. In preparation for the present study, the
method was extended in analogy to the EMSC, and is here referred to as Extended
Inverted Signal Correction (EISC). In a parallel application study'’ a simpler
version of the EISC (ISC with wavelength-dependent scattering correction) was
then found to improve the calibration to protein content in wheat kernels from

single seed NIT spectra.

The aim of this study is to first describe the EMSC method and compare it
theoretically to the MSC, then to test the performance of MSC and EMSC on a set
of diffuse transmittance spectra of powder mixtures and to compare the EMSC
results to those from EISC.

Theory
Modified Beer-Lambert’s law and the EMSC model

For transparent solutions of a set of J absorbing chemical constituents, when Beer’s
law is obeyed, the theoretical chemical absorbance spectrum for sample i over a
certain range of wavelength channels A=1,2,..., A, row vector zcpem =[Zichemas
A=12...., A] may be assumed to be a linear combination of the absorbance

contributions of the J constituents:
Z; chem = ciki ™+ ...+ Cijkj, + ...+ cky” (eq 1)

where ¢;; is the concentration and column vector k; =[ky;, A=1,2,..., A]" the
absorptivity spectrum of the jth constituent. Under near-ideal conditions, with fixed
optical path length, the measured absorbance spectrum for sample i, row vector

z=[zi), A=12,..,A4],isz; = Z; chem-

If the constituent spectra k;, j=1,2,....J are sufficiently distinct to be linearly

independent of each other, eq. (1) may be used for quantitative analysis in
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multicomponent systems based on multivariate calibration', assuming that the data

have an additive chemical information structure.

To approximate physical effects related to light scatter variations, the measured
absorbance spectra z; of each sample i may be modelled as a scaled version of the
ideal spectrum Zz;em according to Lambert’s law, or some other linear
transformation. Moreover, the light scattering effect depends on the wavelength A,
for which reason a smooth, polynomial wavelength dependency should also be

taken into account.
The EMSC model may be written:
Z, = a4 + bZi chemt dih + €A’ (eq.2)

where the coefficients a; and b; represent the baseline offset a; and the path length
b;, relative to the baseline offset and path length in a reference spectrum.
Coefficients d; and ¢; allow for unknown, smoothly wavelength—dependent spectral

variations from sample to sample.

If the coefficients in eq. (2) had been known theoretically, or estimated perfectly,
then the EMSC correction

Zi corrected = (Zi - Qi - dih - 617»2)/ b; (eq. 3)

would remove the baseline and path length variations as well as the wavelength—
dependent spectral effects, yielding corrected spectra with only chemical
absorbance information left; Zcomected = Zichem- Ideally, it would then be
advantageous to replace the measured spectra z; With Zj oreced IN Subsequent
multivariate calibration, since the latter have a simpler and more linear relationship
to the analyte concentration. Unfortunately, the parameters are usually unknown
and have to be estimated from the available spectrum z;.

EMSC parameter estimation

The success of EMSC requires that good statistical estimates of the model
parameters a;, b;, d; and e;in eq. 2) are found from the measured spectrum z; in
such a way that they are insensitive to variations in the unknown chemical
constituents’ concentrations cjj, Cp, ..., y. This is done by including a quantitative
description of the constituents’ spectra ki, Kks,..., k; in the EMSC model.
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If the model for a sample’s ideal chemical absorbance spectrum z;cpem (€q. 1) is
inserted directly into the physical model (eq. 2), then the model obtains non-linear
parameter products bicii, biCizsees bicyy. This complicates the parameter estimation,
because the important path length parameter ; cannot be observed and estimated
independently of the unknown chemical compositions c;j, Cp,.., €. In order to have
only a sum of linear parameters, Beer’s Law expression in eq. (1) can instead be
rewritten in terms of variations around a chosen reference spectrum, which will be

termed row vector m:
Zichem = M + ACilkl + ACizkz, + ...+ ACiJk]’ (Cq 4a)

where m is some reference spectrum, for example, measured in a “typical” sample
or computed as the mean of a set of spectra, and Ac;; represents the difference in
constituent # j’s concentration between the sample i and reference m. Equation (4a)
may be inserted into the physical model (eq. 2), which now gets a purely additive
term bym. This construction removes the problem of parameter products bic;j
biCizgess biciy as b; is obtained without other unknown terms. However this generates
another, more statistical problem of “collinearity”: If the reference spectrum m in
eq. (4a) is more or less equal to a linear combination of the constituent spectra
ki, ky,....K;, then it will be impossible for the parameter estimation to distinguish
clearly between the contributions b; from the reference m and the combined
contributions Acjj from all the individual constituents, even if the constituent

spectra themselves, k;, j=1,2,...,J, are linearly independent of each other.

This collinearity problem between reference m and the constituent spectra
[k, Ks,....K;] may be overcome in different ways7, for example by replacing the J
constituent spectra with J-1 (or fewer) linear combinations of them. This new set
of “chemical constituent spectra” to be used in the EMSC model may be obtained
by singular value decomposition of the centred constituent matrix G=[(k, —m),
(k—m), ..., (k; -m)], using only the loadings/eigenvectors that correspond to

clearly non-zero singular values.

The binary case: Assume, for example, that the samples are expected to contain
only two main chemical constituents, with different, linearly independent spectra
k, and k,. Then, if m represents their average spectrum, there is only one non-zero
singular value in G=[( k; -m), (k, —m)]. Its loading is proportional to k= k; — k.
Thus eq. 1) may be rewritten for this two-constituent model, as

Zichem = N + Acik (eq 4b)

184



In the example of gluten/starch mixtures studied in this paper, the pure constituent
spectra were defined from two calibration samples known to represent the pure
constituents, namely a spectrum of pure gluten (sample 3) and a sample of pure
starch (sample 93). With k; = Kguen = 23 and k; = Kguen = Zo3, the reference
spectrum m was defined by their average, m = (Kgen  + Kswren)/2, and the
chemical variation spectrum k by their difference, kK = Kguen™ - Kstaren -

A quantitative understanding of the resulting EMSC model may in this example be
obtained from the fact that the constituent concentrations here add up to 1; ¢;Gen +
Ci,Sla.rch =]- Wlth eq- (]) reWritten as Zi,chem = Ci,GlulenkGlulen, + Ci,Sla.rchkSla.rch,’ then eq-

(4b) may be rewritten more explicitly as
Z; chem =m + (CiGlutcn_O-S)k’ (eq 4C)

This binary mixture model in eq. (4b or 4c) may now be inserted into the physical
model in eq. (2), yielding a linear statistical model with only additive terms, even
for b;:

z,=al+ bm + b K"+ dd - e\ +¢; (eq. 5)

where vector 1 =[1,1,1,....,1] is introduced for matrix formality. Vector g; is added
to represent the residual spectrum of sample i, containing random measurement
noise and possible un-modelled spectral structures. Note that & = b;Aci. =
b; (CiGen-0.5). Vectors m and k™ were already assumed to be sufficiently different
from each other. Ideally, all the five row “’spectra” or “model vectors” 1, m, k”, A,
and A in eq. 5 should be clearly linearly independent of each other. Then the
EMSC parameters in vector p; =[a;, by, &, di and e;] (eq. 5) may be estimated by
least squares regression of each input spectrum z; to the model regressor matrix

M=[1; m; k’; A ; A ] according to the regression model ;= p; M + €.

A versatile solution for the EMSC parameters in sample i is the conventional

weighted least squares estimator
pi=zVM (MVM")" (eq. 6)

where the diagonal matrix V allows different weights for different wavelengths.
Subsequently, the fit of the individual spectra to the model may be assessed by
summarising the estimated residual spectrum € = z - p; M, for each sample
i=1,2,... . The weights may be defined on the basis of prior knowledge, or by
default set to 1.0.
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After the unknown physical and chemical parameters [a;, b;, h;, di, €;] have been
estimated for every sample in the calibration and test sets, their corrected spectra
Zi comecteds i=1,2,...,100 may be obtained by eq. (3). These corrected spectra may then

be used as X in subsequent multivariate calibration for y = [gluten].

If there are more than two chemical constituents, an expression similar to eq. 5 may
be obtained by inserting eq. 4a) into eq. 2. The EMSC model will then have more
than one chemical difference spectrum, and more than one chemical parameter #4;;,
hp, ...., but eq. 6 may still be used for the parameter estimation, and eq. 3 for the

scattering correction.

Causality and approximation. If the EMSC model in eq. (5) and EMSC parameter
estimation in eq. (6) were perfect, the corrected spectra would be linearly related to
the concentration of the chemical analyte, in this case Zjcorectea = M+ (CiGluten~
0.5)k’+ &/b;, and this would be optimal for subsequent linear multivariate
calibration modelling. In practice, the EMSC model will usually not be causally
perfect, due to, for example, un-modelled constituent interactions, stray light and
more intricate wavelength dependencies. Nor will the parameter estimates be
perfect, due to for example measurement noise in m, k and/or z;. However, while
the modelling inside the EMSC may be rather ambitious, the EMSC correction
itself is rather conservative, since eq. (2) also passes un-modelled information g;
from z; t0 Z;comectea (@lthough scaled by factor b;). As a consequence, the EMSC
correction (eq. 3) may be seen as just an approximation tool, analogous to the
subsequent multivariate calibration modelling itself: If the EMSC is found to
simplify the structure without losing too much valuable information, then it has had

a net positive effect on the calibration process as a whole.

The EMSC is intended primarily as a spectral pre-processing method to simplify
the subsequent multivariate calibration, where zZcomeced in @ set of samples
i=1,2,...,N is used as X in multivariate calibration for some chemical constituent y.
However, the EMSC parameters themselves may also provide valuable
information. First of all, if the EMSC model gives a sufficiently complete
description of the absorbance spectra, a reasonably good estimate of the analyte
concentration may be obtained already during the EMSC pre-processing, before
any multivariate calibration. In the present case a good EMSC modelling would
yield good gluten estimates from ciGen = #/b; + 0.5. Secondly, if the desired

information in the absorbance measurements z; are of a physical, rather than
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chemical nature, then the parameter estimates a;, b;, d; and/or e¢; may be used for
extracting various types of physical variations. For instance, the matrix of EMSC
parameters from eq. (6), [p;; i=1,2,..., N], could be used as X in the calibration step
to describe a physical property y, such as particle size, sample packing, cuvette
thickness etc.

Conventional MSC

The conventional MSC may be seen as a simplification of the EMSC. It assumes
the same structure as the EMSC in a reduced version of eq. (2),

Z; = a; + bizi,chem (eq 7)

However, the MSC uses a much simpler model of z; .., than egs. (4a-c), as it
assumes Z; pe= M+9;, where & represents “unknown and irrelevant types of
variation”, including the spectral contributions due to chemical constituents. For
estimating the MSC parameters «; and b;, §; is simply ignored and the basic MSC

model is therefore written
Z;, = dil + bim + & (eq 8)

With the simplified model regressor matrix M=[1; m] with the only two rows
presumably linearly independent, eq. (6) yields estimates of the physical @; and b;
parameters. The MSC correction, of course, is correspondingly simpler form, and
eq. 3 reduces to Zicomected = (Z - @; )/bi. The MSC may in many cases give useful
light scattering correction, because the unknown chemical contributions 8; are often
relatively uncorrelated with vectors 1 and m and hence do not affect the estimation
of parameters a; and b; very much. However, major spectral effects due to changes
in the chemical composition of the samples may render MSC inappropriate.

The results from the inverse version of EMSC, the EISC, will be briefly
summarised at the end of the Results and Discussion section.

Material and Methods

Spectral measurement: Transmittance spectra (T) in the range of 850-1050 nm
were collected using an Infratec 1255 Food and Feed Analyzer (FossTecator,
Hoganis, Sweden) fitted with a standard sample holder for 5 cylindrical cuvettes.

A tungsten lamp (50 W) and a diffraction grating were used to create
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monochromatic light. The light passed through the powders and reached the silicon

detector, and transmittance was recorded as T=I/I,.

Samples: Industrial-grade wheat gluten (approx. 80% protein) and pure wheat
starch (Merck Eurolab 73502-250) were used for the binary mixture design. Five
mixtures with different ratios of gluten/starch (by weight, Table I) were prepared

by weighing on a precision balance, and mixed thoroughly.

Table 1. Experimental design for the N=100 measured spectra

Samples Mixture |[gluten]/[starch] |Packing Reps 1,2 Use
1-10 1 1/0 loose 1-5, 6-10 Calibr.
11-20 1 1/0 firm 11-15, 16-20 Calibr.
21-30 2 0.75/0.25 loose 21-25,26-30 Test
31-40 2 0.75/0.25 firm 31-35, 36-40 Test
41-50 3 0.5/0.5 loose 41-45, 46-50 Calibr.
51-60 3 0.5/0.5 firm 51-55, 56-60 Calibr.
61-70 4 0.25/0.75 loose 61-65, 66-70 Test
71-80 4 0.25/0.75 firm 71-75, 76-80 Test
81-90 5 0/1 loose 81-85, 86-90 Calibr.
91-100 5 0/1 firm 91-95, 96-100 Calibr.

For each of these mixtures, approximately 2 g was taken out randomly in five
sampling replicates, and filled loosely into five different glass cuvettes (horisontal
diameter of 25mm) to a vertical sample thickness of about 8mm. The NIT spectra
of the five sampling replicates were measured vertically, in two consecutive
spectral replicates. Then the powder in each of the five cuvettes was packed more
firmly, compressed by hand to a sample thickness of about 5-6 mm, and their NIT
spectra measured again in two consecutive spectral replicates. In total, the five
mixtures x two powder packings x two spectral replicates x five sample
holders/powder sampling replicates amounted to a factorial design with N=100
samples (5 x 2 x 2 x 5 =100 spectra).

Data analysis: Each transmittance spectrum T was first changed into absorbance
A = logo(1/T). These absorbance spectra were then subjected to various pre-
processing methods. The corrected spectra from eq. (3) were submitted to

multivariate calibration and prediction': The 100 wavelength channels between 850
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and 1050 nm were used in regressor matrix X=[Z; omectedsi=1,2,....N], and the
concentration of the analyte, [gluten], was used as regressand Y=[c;gGiutens
i=1,2,...,N]. Bilinear modelling by Partial Least Squares Regression* (PLSR) was
used as a low-rank calibration method. To ensure the validity of the obtained
results, only the spectra from three of the five mixtures (mixtures 1, 3 and 5; in
total 60 spectra) were used as calibration samples for developing the calibration

model (y=f(X)). The remaining mixtures (mixtures 2 and 4; in total 40 spectra)

were used as an “independent” test set, for predictions Q:f(X). The predictive
validity for models with 0,/,2,... latent variables (PCs) in the PLSR model was then
estimated in two different ways, as described in Martens and Martens™: 1)
RMSEPr. = the prediction error in the independent test set, and 2) RMSEPqy =
the corresponding Cross-Validated Root Mean Square Error of Prediction in the
calibration set, using a 3-segment version of cross-validation, keeping all replicates
for one of the three calibration mixtures out at a time for independent prediction
testing. The pre-processing, multivariate calibration and graphics were performed
using software written in MatLab version 6.1 (The Matworks, Inc., Natick, MA,
USA).

Results and Discussion
No correction for light scattering

Figure 1 shows the performance or the spectral measurements without any pre-
processing, i.e. log(1/T). Figure 1A) illustrates traditional univariate calibration:
The wavelength with the best correlation to the analyte, y=[gluten], 994 nm (x73),
was used as regressor for y in the calibration samples, and the resulting model was
applied to the 40 samples in the independent test set. The figure shows how
selectivity problems render such traditional calibration useless in diffuse
spectroscopy of light scattering samples, even at the “best” wavelength, which also
agrees with the knowledge gained through experience with NIR spectroscopy over
the last decades.
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Figure 1. Calibrations without pre-processing of the log(1/T) measurements. A) Univariate
calibration, using the best wavelength channel, 994 nm (x;3), B) Multivariate calibration,
combining all wavelength-channels between 950 and 1050 nm (x;-X;99) via a PLSR model
with 5 PCs. Abscissa: Analyte concentration y ([gluten] in powders), ordinate: Prediction
at the optimal model rank. Dotted line: Theoretically correct predictions, +=calibration
samples, 0O=independent test samples.

In contrast, Figure 1B) shows that multivariate calibration — in this case by PLSR —
can overcome most of the selectivity problems, if there are enough calibration
samples, and enough PCs are used in the model. The cross-validation within the
calibration sample set (+) showed that 5 PCs gave the best compromise between
predictive error and model complexity. The figure also shows that this model gives
fairly good predictive ability also for the test samples (0).

Considering the simplicity of the chemical composition of these gluten/starch
mixtures, the complexity of the input spectra shown in figure 2A is surprising. Yet,
a 5-PC model (Figure 1B) gave relatively good predictive ability for y=[gluten]
from these spectra. However, since the samples represent binary mixtures, where
the analyte concentrations add up to 1, only one single PC should ideally suffice in
the calibration model, if the spectral response had been truly bilinear. Figure 2B
clearly illustrates that a single-PC model of the absorbance spectra does not give a

satisfactory selectivity for the analyte.

Conventional Multiplicative Signal Correction (MSC)

It is expected that most of the selectivity problems in this study are due to physical
variations caused by uncontrolled variations in light scattering due to sample

packing, sample surface topology, particle size and possible variations in amount
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of sample in the cuvettes. In order to separate such physical light scattering
variations from the chemical absorbance variations, MSC was first applied to the

spectra in Figure 2A. Assuming the simplified chemical model that ignores the
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Figure 2. Different pre-processing methods. Left: NIR spectra of 5 gluten/starch mixtures in
20 replicates. Right: Analyte concentration predicted from spectra at the expected model
rank (1 PC) vs. input y. Dotted line: Theoretically correct predictions, +=calibration
samples, o=independent test samples. A) and B): No pre-processing other than
linearization, log(1/T); C) and D): Multiplicative Scatter Correction (MSC) of the log(1/T)
spectra; E) and F): Extended Multiplicative Scatter Correction (EMSC) of the log(1/T)
spectra.
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systematic chemical variations, each calibration and test set spectrum z;
i=1,2,...,100 was modelled by eq. (8), with parameter estimation according to eq.
(6). As usual in MSC, the reference spectrum m was defined as the average of the
calibration samples’ spectra. Changing the weights V in eq. (6) did not appreciably
improve the present results; hence, for simplicity, equal weights of 1 were used for
all wavelength channels. Figure 2C shows the corrected log(1/T) spectra z; comected
after MSC pre-processing. While it is clear that the absorbance spectra now look a
lot less complex, the variation in some of the spectra (the pure gluten samples)
seems to have become exaggerated, while the others have become virtually
indistinguishable. This is confirmed in Figure 2D, which shows the predictive
performance for y from MSC corrected absorbance spectra X, using the
multivariate calibration model with the expected model complexity, 1 PC. The 20
replicates of the pure gluten samples give very different predictions, while the
remaining samples give almost identical and quite erroneous results, both within
the calibration set and the test set. Apparently, because the simple MSC ignored the
large, systematic chemical variations caused by the gluten and starch differences,
9, these differences contaminated the estimates of a; and b; in eq. (6), whereby
much of the chemical information in the spectra was erroneously removed by the
MSC correction.

Extended Multiplicative Signal Correction (EMSC)

Each of the 100 NIT absorbance input spectra log(1/T) in Figure 2A were instead
modelled according to eq. (5), submitted to EMSC parameter estimation by eq. (6)
and corrected according to eq. (3). The lowest part of Figure 2 shows the effect of
the EMSC pre-treatment.The pre-processed spectra are shown in Figure 2E, where
the five mixtures are seen as five distinct spectral patterns. The 20 replicate
samples for each mixture, so clearly different in the input spectra (Figure 2A), now
appear more or less superimposed and indistinguishable.

Figure 2F shows the predictive performance of the EMSC corrected spectra
(Figure 2E) using the expected model complexity (1 PC) in the PLSR calibration
model. The five mixtures gives gluten concentration predictions close to the
theoretical expectation (dotted line). Hence, almost all of the selectivity and
linearity problems evident in Figure 2B and 2D have been eliminated by the EMSC
pre-processing.
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The EMSC pre-treatment in this data set provided a good reduction of the light
scattering problems, and this simplified the subsequent calibration for the analyte,
y=[gluten]. The results are seen to be equally good for the three mixtures used for
calibration (+) and the two intermediate mixtures used for the independent test set
(0). A small response curvature may be observed, indicating room for possible
improvement of the EMSC pre-processing or the subsequent calibration.

The problem of the MSC: mixed chemical and physical variation

Figure 3 illustrates the reason for the poor performance of the simple MSC. While
the upper half of Figure 3 shows how the spectra behave when all the input spectra
resemble each other chemically, the lower half demonstrates how the spectra
behave when chemical variations are dominant. Figure 3A shows the twenty
replicate input spectra of mixture #3 (containing equal amounts of gluten and
starch). The measured samples only differ in physical properties like light
scattering. Since the mean msgso of the spectra in Figure 3A also represents this
50/50 mixture, the “unknown spectral variability” &; is actually equal to zero, and
every spectrum in Figure 3a) should therefore follow the MSC model (eq. 8), z; =
a;1 + bimssy. Therefore, when one of the spectra z; in Figure 3A is plotted against
this mean spectrum msys, the consecutive wavelength channels should form a
series of spots which generates a straight line with a certain offset a; and a certain
slope b;. Figure 3B shows two spectra selected from Figure 3A (# 41 and 58)
together with this mean spectrum msyso. When the individual spectra are plottet
against the mean spectrum (Figure 3C), they are indeed seen to form nice straight
lines, from which their different offsets a; and slopes b; may be unambiguously

estimated.

In contrast, the lower part of the figure illustrates what happens when the input
spectra exhibit clear chemical variations (Figure 3D). In this case, two arbitrarily
chosen spectra (#3 and 93) (Figure 3E) now display strange wiggles when plotted
against the mean spectrum of all the calibration samples m (Figure 3F). Clearly, in
this case it is difficult to estimate and correct for by spectral slopes b; and offsets g;
without removing chemical information. The chemical and the physical effects are
seriously entangled in these spectra, and it is difficult to isolate wavelength ranges
where they can be disentangled. The purpose of the EMSC is to reduce this

problem.
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Figure 3. The MSC and its problem when the chemical differences are large. A) NIR
spectra of 20 samples of identical chemical composition (50/50 gluten/starch mixture). B)
NIR spectra of two of the samples, z,; (star) and zsg (triangle), and the mean spectrum
msgs0 of 20 samples (x). C) zy4; (star), zsg (triangle) and ms 50 (diagonal x ) plotted against
msgs0 (abscissa). Lower row: Different chemistry, different physics: D) NIR spectra of 20
replicate spectra of each of the 5 mixtures of gluten and starch. E) Two of the NIR spectra,
z; (diamonds) and zo; (squares), and the mean spectrum m of all the spectra (x). F) z;
(diamonds), z¢; (squares) and m (diagonal, x) plotted against m (abscissa).

The EMSC model and its parameter estimates

While the EMSC may be used in a software module for “black box™ pre-
processing, it is interesting to study the reasons for the good EMSC modelling
reported in Figures 2E and 2F. An overview of the EMSC process is given by
Figure 4 which shows the spectra in the EMSC model (eq. 5) and the
corresponding parameter estimates for the 100 samples obtained by eq. (6). The
first row in Figure 4(ACE) illustrates the offset and slope (the “MSC part”) of the
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EMSC model. Figure 4A shows vectors 1 and m =((Kgyen” + Kstaren )/2), and Figure
4B the corresponding additive and multiplicative parameter estimates a; and b;.
These parameter estimates are seen to vary in a complex pattern around their
expected values (0 and 1, respectively). For example it is observed that among the
first 20 samples (pure gluten), the first 10 (loosely packed) differ markedly from
the next 10 (densely packed), illustrating that the EMSC parameters may be used in
their own right for quantifying physical properties such as sample packing. This
pattern is also seen clearly in the next samples 21-40 and 41-60 representing the
75% and 50% gluten, but less clearly for samples 61-80 and 81-100, i.e. 25% and
0% gluten. Parameter estimates a; and b; are seen to be strongly negatively
correlated; r(a;,b;) = -0.998 over all 100 samples. The reason for this correlation is
presently unclear, but could reflect instrument geometry; work is in progress to
check this.

The second row in Figure 4(BDF) illustrates the chemical part of the EMSC model.
The two dotted curves in Figure 4C represent the two input spectra z; (Kguen > tOp)
and Zo; (Ksuen”) used for defining m and the chemical difference spectrum k =
KGuten” - Ksuren” (s0lid curve). Figure 4D shows the resulting estimate of the analyte
concentration c¢;, obtained already during the EMSC pre-processing. For
comparison, the true analyte fractions, elements y; in vector y, are shown as dotted
lines. The figure reveals that good concentration estimates c¢; in this case were
obtained already during the EMSC pre-processing, both for the calibration samples
(+) as well as for the test samples (o).

The third row in Figure 4 shows the wavelength correction part of the EMSC
model. Figure 4E shows wavelength vector A as a linear function of the number of
nanometers, ranging from —1 to +1, as well as its square. Figure 4F shows their
coefficient estimates d; and ¢;. Both effects are seen to be centred around 0, and
their variations are rather small compared to that of offset a; (Figure 4B). A
negative correlation between d; and e; is observed; r(di,e;)= -0.80 over all 100

samples, but the reason for this is not yet clear.
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Figure 4. The EMSC model and its estimated parameters. Left: EMSC model spectra (eq.5)
as functions of wavelength. Right: Estimated EMSC model parameters from eq. (6) shown
as functions of sample #. A) The MSC part of the model: Vector 1 (+++) and reference
spectrum m (xxx). B) Additive parameter a; (+++) and multiplicative parameter b; (xxx). C)
The chemical model extension: Spectra of two sample’s, z; (diamond) and zy; (squares),
and the EMSC model vector k=z3-z9; (+). D) Chemical EMSC parameter: Analyte
concentration estimated already during the EMSC, ¢;, for the calibration samples (*) and
the independent test samples (). The true analyte fractions are given by the dotted line. E)
The physical model extensions: Wavelength index A (triangles, between —1 and 1) and its
square A’(asterisk). F) Physical EMSC parameters: Wavelength coefficients ¢; (triangle)
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How the different pre-processing methods perform for multivariate calibration

Figure 5 summarises the three ways to pre-process the NIT absorbance spectra in
terms of their ability to predict y=[gluten] when used as X in the subsequent
multivariate linear calibration modelling by PLSR. Each curve represents a Root
Mean Square Error of Prediction (RMSEP), i.e. an “average” of the prediction
error in y, plotted against calibration model complexity (0, 1, 2,..., 6 PCs in the
PLSR model). The three line-symbols (dotted, dashed and solid) were obtained
using the three different pre-processing methods reported above: Dotted curves
represent the untreated NIT absorbance spectra shown in Figure 2A, dashed curves
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represent the MSC pre-treated spectra (Figure 2C) and solid curves the new EMSC
pre-treated spectra (Figure 2E). Curves marked with the symbol “+” (RMSEPcy)
were estimated by the cross-validation within the calibration set, while the curves
marked with symbol “0” were obtained for the test set (RMSEPr). At 1 PC, the
curves summarise the predictions already shown in Figures 2B, 2D, and 2F,

respectively.
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Figure 5. Comparison of pre-processings. Prediction error (RMSEP) for analyte y =[gluten]
vs # of PCs in the multivariate calibration. + = Calibration set (mixtures 1, 3 and 5); cross-
validation between mixtures. o = Independent test set (mixtures 2 and 4). Pre-processing:
... = input absorbance spectra log(1/T), ---- = after MSC, ___ = after EMSC.

As usual, the cross-validation and the test-set methods gave rather similar RMSEP
error estimates, when enough PCs were used to avoid underfitting. An example of
this is seen at the “optimal” 5 PC solution for the EMSC pre-processed spectra,
where RMSEPcy = RMSEPr.=0.005. Since all RMSEP errors are given in y’s
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concentration scale 0-1, this latter corresponds to an ‘“‘average” prediction
uncertainty of +/-0.5% on a scale of 0-100%, which is quite low, considering the

complexity of the original input spectra (Figure 2A).

Figure 5 confirms that the conventional MSC had a detrimental effect in the
present case: The subsequent bilinear modelling behaved much worse than the
untreated log(1/T) spectra and required more PCs. With the ideal model complexity
(1 PC), both of these simple methods displayed poor performance. In contrast,
already after 1 PC the EMSC solution yielded very low prediction errors
(RMSEPy=0.013 and RMSEPr.,=0.019). In fact, this solution was better than any
of the other solutions using raw log(1/T) or MSC pre-treated spectra. The EMSC
model (eq. 5) fitted the 100 spectra quite well. Averaged over all N=100 samples
and all K=100 wavelength channels, the variability of the spectra was reduced from
a total initial standard deviation of 0.2 absorbance units in the spectra z; (Figure
2A) to a total standard deviation of only 0.0005 absorbance units in the EMSC
residuals g (eq. 5).

The choice of samples 3 and 93 to represent the pure constituents in the EMSC
model was somewhat arbitrary. Work is in progress to study the effect of using
other pairs of samples and to simplify and optimise the EMSC modelling.

Extended Inverse Scatter Correction: EISC

As mentioned previously the EISC is an extension of the ISC method, which
switches the roles of z; and m compared to MSC. The ISC model was recently
extended with smooth wavelength-dependent terms, d;A and e\, for successful
pre-processing of NIT spectra of intact wheat kernels'’. Presently, it was further
extended with the chemical term %k, to yield the Extended ISC (EISC) model with

residual vector i
m =ag;1+bz;+ hk + dh+el+y; (eq. 9)

After having estimated the parameters a;, b;, h;, d; and e; by regressing m on M=[1
z. k* A A7] in analogy to eq. (6), the spectra were corrected by Zicomeced =
dil'l‘bili'l‘di)vl‘ei)\,z.

The pre-treated NIT spectra zicomecea resulting from the EISC were visually
indistinguishable from those of EMSC (Figure 4A), and so was their predictive
performance in subsequent multivariate calibration by PLSR (Figures 2B and 5),
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hence they are not reported here. The similarity between the present EMSC and
EISC modelling results are interesting, since the difference between the two
methods is analogous to the difference between reverse (“classical”) and forward
(“inverse”) calibration methods, except that EMSC and EISC employ regression
over wavelengths, while calibration employs regression over samples. It is well
known that forward and reverse calibration' give almost identical results when the
models fit the data very well. Hence, the small residuals g from EMSC and *y; from

EISC explain the similarity in the results from the EMSC and EISC pre-processing.

In the present study the EMSC (and EISC) method was applied to diffuse
transmittance spectra of binary powder mixtures. More work is needed to test the
method on more complex data. But this type of pre-processing is expected be
useful for diffuse reflectance or transmittance spectra obtained in other spectral
ranges, e.g in UV, VIS or IR, and from more complex types of mixtures and for
other light scattering materials. Preliminary experience has also shown benefits
from applying EMSC or EISC to very different types of data, e.g. in
chromatography to correct of uncontrolled variations in baseline offset and total
sample concentration, and in descriptive sensory analysis to correct for
uncontrolled variations in how individual assessors use the sensory scale (work is
in progress in this respect).

In many cases the measured data cannot be expected to be completely modelled
already at the pre-processing stage. However, pre-processing could still be quite
useful by simplifying the subsequent multivariate calibration regression as well as
by revealing something about the nature of the selectivity problems. The ambitious,
theory-driven EMSC and EISC pre-processing may then describe and correct for
interference phenomena that are more or less expected and understood, while the
subsequent data-driven multivariate calibration regression can reveal and correct
for unexpected or poorly understood phenomena. In summary, this could be seen as
a flexible and powerful combination of deductive and inductive traditions in
analytical chemistry.

Conclusion

The EMSC pre-processing simplified a set of diffuse NIT absorbance spectra
measured in the lower NIR range by transmittance through 5-8 mm of highly light
scattering mixtures of gluten and starch powders. The success is presumably due to
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the ability of spectral modelling to separate chemical light absorbance and physical
light scatter effects. Using prior knowledge about the absorbance spectra of the
major constituents, and assumptions about smooth wavelength-dependency of the
light scattering variation, the corrected spectra became insensitive to light
scattering variations, and responded linearly to the analyte concentration. Thus, the
subsequent multivariate calibration regression model became much simpler and
had better predictive performance. In fact, the pre-processing proved so effective in
the present study that the multivariate calibration regression became superfluous,
since the analyte fraction estimate from the EMSC modelling itself provided a
direct measure of the desired analyte fraction. Extended Inverted Signal Correction
(EISC) yielded corrected spectra and calibration models that were almost

indistinguishable from those of the corresponding EMSC.
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Near-Infrared Absorption and Scattering Separated by
Extended Inverted Signal Correction (EISC): Analysis of
Near-Infrared Transmittance Spectra of Single Wheat Seeds
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Center for Advanced Food Studies, Food Technology, Department of Dairy and Food Science, The Royal Veterinary and
Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark

A new extended method for separating, e.g., scattering from absor-
bance in spectroscopic measurements, extended inverted signal cor-
rection (EISC), is presented and compared to multiplicative signal
correction (MSC) and existing modifications of this. EISC prepro-
cessing is applied to near-infrared transmittance (NIT) spectra of
single wheat kernels with the aim of improving the multivariate
calibration for protein content by partial least-squares regression
(PLSR). The primary justification of the EISC method is to facili-
tate removal of spectral artifacts and interferences that are uncor-
related to target analyte concentration. In this study, EISC is ap-
plied in a general form, including additive terms, multiplicative
terms, wavelength dependency of the light scatter coefficient, and
simple polynomial terms. It is compared to conventional MSC and
derivative methods for spectral preprocessing. Performance of the
EISC was found to be comparable to a more complex dual-trans-
formation model obtained by first calculating the second derivative
NIT spectra followed by MSC. The calibration model based on
EISC preprocessing performed better than models based on the raw
data, second derivatives, MSC, and MSC followed by second deriv-
atives.

Index Headings: Additive; Multiplicative; Interference; Inverted
scatter correction; ISC; Extended inverted signal correction; EISC;
Multiplicative signal correction; MSC; Near-infrared transmit-
tance; NIT; Partial least-squares regression; PLSR; Protein; Single
seed; Light scattering.

INTRODUCTION

The extended inverted signal correction (EISC) meth-
od, originally developed with chemical analyte exten-
sions,! is here presented with spectroscopic extensions.
This new method is then applied to near-infrared trans-
mittance (NIT) spectra of single wheat kernels prior to
multivariate calibration? for protein content, with the cal-
ibration model estimated by cross-validated partial least-
squares regression (PLSR).3>* The most basic version of
EISC, ISC, was originally called “inverted scatter cor-
rection”” (ISC).> Martens et al.! explains the rationale be-
hind the EISC method and its chemically based exten-
sions, in relation to its heritage, the multiplicative signal
correction (MSC)%7 and the extended MSC (EMSC).8 In
the present study, the EISC method is extended with
some general physical approximation parameters (wave-
length dependency and curvatures), and compared to de-
rivative-based preprocessing.

Today, near-infrared (NIR) spectroscopy in combina-
tion with multivariate calibration has become the estab-
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lished method for protein determination in cereal breed-
ing as well as for quality determination in the cereal in-
dustry, relieving the more than 100-year-old, slow, chem-
ical analysis invented at the Carlsberg Laboratories by
the Danish chemist Johan G. Kjeldahl in 1883.% The ad-
vantages of using NIR spectroscopic methods for cereal
quality are mainly the speed of the analysis and their
noninvasive character, which is essential if seed fertility
is the aim in breeding programs. As an important spin-
off, NIR methods provide possibilities for simultaneous
determination of additional quality parameters such as
moisture, starch, and fiber content.

In low-cost/high-speed analyses of complex systems
such as whole-wheat grain, the pattern of optical paths is
very complex, and several physical phenomena may con-
tribute to the apparent pattern of “light scatter’’. The in-
formation in NIR spectra usually results from both dif-
fuse light scatter and chemically (vibrationally) absorbed
light by the sample, and the NIT spectra of single seeds
can be considered a worst case with large additive and
multiplicative scatter effects due to differences in kernel
size, structure, and presentation angle. It is not uncom-
mon to see more than 95% of the variance in NIR
log(1/T) or log(1/R) data caused by uncontrolled light
scattering variations, which usually will dominate the first
latent variable in PCA (principal component analysis) or
PLSR modeling. In some cases this is desirable, as when
the quality to be calibrated for is physical and related to
light scattering, e.g., hardness variation of wheat kernels
or particle size variation in powders. However, in most
cases light scattering creates selectivity and linearity
problems for simple quality attributes related to chemical
concentrations. In such cases it is imperative that scatter
is isolated from the NIT spectra prior to calibration in
order to provide a robust and accurate quantitative method.

The single seed protein system has been studied in depth
by Delwiche,'® who found that an optimal data transfor-
mation prior to PLSR calibration was obtained by first cal-
culating the second derivative spectra and then correcting
them by MSC. The performance of this double transfor-
mation model is confirmed by this study,!! but such a com-
plex pre-transformation naturally calls for the development
of more general and powerful pre-transformations. In the
present study it is demonstrated that a general form of EISC
is able to provide a quantitative protein model with a pre-
cision equal to Delwiche’s doubly pre-transformed model.

THEORY

In its most basic “ISC” form, the EISC data transfor-
mation can correct a combination of additive and multipli-
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cative interference effects in measured spectra, analogous
to the original MSC method.%” Both the MSC and the ISC/
EISC adjust the input spectrum of each sample, z; in a set
of samples, i = 1, 2, ..., towards a common reference
spectrum, m, in order to separate possible physical effects
from possible chemical absorption effects. The difference
between the methods is that the ISC simply reverses re-
gressor and regressand in each sample’s regression model
between z, and m. Like the conventional MSC, the ISC
(“basic EISC”) preprocessing method estimates and iso-
lates two presumably physical effects for each sample: an
additive baseline offset effect and a multiplicative scaling
effect. If the input information z; represents absorbance (A
= log(1,/I) = log(1/T)) values, the additive baseline offset
is intended to model an unknown, fixed amount of absor-
bance lost at every wavelength, e.g., due to light failing to
reach the detector because of dispersion of light in the sam-
ple. Multiplicative scaling is intended to model an unknown
amplification of the absorbance at every wavelength, e.g.,
due to a change in the effective optical path length because
of light scattering effects in the sample.

In the original EISC paper,! the basic version of EISC
was extended with chemical information known a priori to
represent absorbance spectra from interfering constituents.
In the present paper the EISC is instead extended with phys-
ical information representing wavelength and polynomial
extensions when compared to MSC.

Multiplicative Signal Correction. The multiplicative
signal correction, originally named multiplicative scatter
correction, MSC, involves correcting each input spectrum
Z, = (21, Zip» -+ - » Zgo - - - » Zixl i @ set of related samples i
=1,2,...towards an ideal spectrum m where the influence
of physical scattering variations has been removed from the
effects of chemical absorbance (K is the number of vari-
ables in the spectrum). The basic MSC consists of estimat-
ing two coefficients, a; and b, that ideally contain all the
physical information in z;, based on the linear regression
model

z,=a,+ bm + ¢ %))

where €, = g, &, ..., &, ..., &/ are the residuals that
ideally contain all the chemically relevant information in z,,
plus other unmodeled effects and random noise. Vector m
= |my, m,y, ..., my, ..., mg| is a common reference spec-
trum. After parameters a; and b, have been estimated, the
corrected spectrum z; ... for this sample is then generated
by reversing Eq. 1, from the estimates of a; and b,, in an
analogy to the univariate “reverse”? calibration:

— aylb; 2)

Zicoeced — (Z;

These corrected spectra may be used as regressors in the
subsequent multivariate calibration modeling of the analyte
y; from X; = Z; . ...q OVEr a set of samples, y, = f(x), i =
1,2,....

The common reference spectrum m in Eq. 1 may, for
example, be defined as the mean of a set of N spectra of
calibration samples:

z;
|
N 3)

M=

i

m =

This reference spectrum m from the spectra of the N cali-
bration samples z,, i = 1, 2, ..., N may also be applied to
MSC of new spectra z, i = 1, 2, 3, ... e.g., from future
prediction samples; Eqs. 1 and 2 are the same for both kinds
of samples.

In each calibration or prediction sample i, the un-
known additive and multiplicative MSC coefficients a;
and b, in Eq. 1 may be estimated by ordinary least-
squares regression of z, on m, minimizing the sum of
squared residuals in €,.

la, bl =1 mT[l m'D[1l mlz @
However, the process for estimating and correcting for
scattering parameters a; and b, is only safe if the effects
of chemical variation between z; and m can be ignored;
otherwise, the coefficients a; and b, may be contaminated
with information about, e.g., the analyte, which will then
be partially lost in z; . .qa (Eq. 2). If applied to pure
baseline separated absorbance bands, MSC (and basic
EISC) will remove all relevant chemical information, as
concentration will have a simple multiplicative effect on
the spectral band. For this reason it is good practice to
test the scatter coefficients a; and b, for information about
the analyte or quality to be calibrated for. If a; and b, are
found to be informative, they may even be included as
additional regressor variables in the subsequent multivar-
iate calibration models.

The problem of mixing chemical and physical infor-
mation in the MSC may alternatively be reduced by
down-weighting wavelength regions that carry chemical
information. However, in some applications, like NIT of
single wheat grains in the 850-1050 nm range, it is dif-
ficult to find wavelength regions that are sufficiently in-
formative about the light scattering, but which do not
carry chemical information. A more elegant approach
would be an MSC model that includes information about
the spectra of the chemical constituents.">8 However, in
some applications like the present one, the in situ con-
stituent spectra are not known and are difficult to mea-
sure.

Basic Extended Inverted Signal Correction. The ba-
sic form of the EISC, ISC, is similar to MSC, but it may
be more flexible and easier to understand for spectros-
copists using multivariate calibration modeling by, for
instance, PLSR. MSC, like its extensions, is based on a
“reverse’’® correction in Eq. 2, compared to the model in
Eq. 1. In contrast, the basic EISC, like its extensions, uses
a “forward”’® model: the same direction of the relation-
ship between spectrum z; and reference spectrum m is
kept, both in the model specification:

m =a; + bz, + € 5)
and in the final correction of the spectra:
Ziorrected = i T bDZ; (6)

Hence, instead of regressing z, on m in the model (Eq.
1) and then reversing this model in the signal correction
step (Eq. 2), the inversed MSC (ISC/EISC) regresses m
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Fic. 1. Plot of a wheat kernel sample’s input spectrum z; vs. the mean
(m) spectrum of the NIT wavelength range (850-1050 nm). While the
MSC models the error horizontally on the individual spectra, the EISC
models the error vertically on the average spectrum.

on z; and uses this “forward” model directly in the signal
correction step (Eq. 6).

The estimation of the parameters a; and b; may be done
by ordinary least-squares regression

la; b1 =1 zl'[l zD 'l z]'m 7

Like in MSC, weighted least-squares regression may be
used instead if certain wavelengths are to be eliminated
because of too-strong overlap between constituent spectra
and light scattering effects. The rationale behind this
model is explained by Martens et al.! The statistical dif-
ference between EISC and MSC in their basic form, dis-
cussed more theoretically by Helland et al.,’ is illustrated
in Fig. 1. In the plot of reference spectrum m vs. a sam-
ple’s input spectrum z, the residuals &, are minimized
horizontally in MSC (noise modeled on the individual
spectra) and vertically in ISC/EISC (noise modeled on
the average/reference spectrum).

General Spectroscopic Extensions of EISC. Just as
the MSC can be extended into extended multiplicative
signal correction (EMSC),? the basic EISC can be ex-
tended to accommodate various types of physical or
chemical a priori knowledge. In the present case, it is
impossible to find wavelength ranges that distinguish the
physical light scattering information from the chemical
absorbance information. That must be expected to create
problems for the MSC or basic EISC methods, but EMSC
as well as EISC extended with chemical constituent spec-
tra might solve the problems. However, contrary to the
case in Martens et al.,! the present in situ chemical con-
stituent spectra are not known. In the grain, water is prob-
ably bound to a greater or lesser extent to the protein,
starch, and cellulose biopolymers, and the NIR in situ
spectral contributions from the constituents may therefore
be rather different from those of isolated constituents in
a pure state.

On the other hand, the heterogeneity of the intact
wheat grains may cause rather complex optical phenom-
ena that are difficult to model explicitly, but which may
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be approximated in more detail by polynomial extension
of Eq. 5, e.g.,

m =a; + bz, + cz? + € (8)

Moreover, we expect the light scattering coefficient to
have some dependency on the wave number. The expo-
nent of this dependency depends on particle size, which
is unknown. A first order approximation of this is to in-
clude the wavelength vector N, with polynomial terms,
e.g.:

m=a;, + bz, +cz?+ d\N + e\ + € 9)

The parameters a;, b;, ¢;, d;, and e, may be estimated by
some sort of linear regression that makes the residual
elements in €, small, with one separate model for each
sample i = 1, 2, .. .. To ensure statistical and numerical
stability, regression on standardized regressors was used,
with a small ridge parameter.!

The primary purpose of the EISC extension terms z?,
N\, and A% in Eq. 9 is to improve the estimation of the
basic interference effects, the additive offset a; (reflecting
“baseline differences’”) and the multiplicative slope b;
(reflecting “‘relative scatter coefficient differences’). But
the extensions may also be used explicitly in the subse-
quent correction. Depending on whether or not one ex-
pects the corresponding coefficient estimates ¢;, d;, and e;
to carry information about the analyte, one may choose
whether or not to use them in the subsequent correction.
If they are thought (or found) to pick up irrelevant com-
plexity from the data, the subsequent calibration model-
ing may be simplified after the EISC correction:

z =a;,+ bz, + cz?+ dN + e\ (10)

i,corrected
This is the EISC correction used in the present paper.
Alternatively, if the extension coefficients d; and e; for
the wavelength are expected to have picked up variation
in the analyte that one does not want to lose, the effects
d)\ and e\? may be retained in the spectra by reducing
the correction to

=a, + bz, +cz? (11)

Zi,corrcclcd
Note that Eq. 8 is still a simple, linear (additive) model,
but Eq. 9 works as a mixed additive/multiplicative pre-
processing, in the sense that b; is a multiplier that may
reflect the relative scatter coefficient, while a; may rep-
resent its additive baseline offset. In that sense the EISC
correction (Eq. 10 or 11) is analogous to the correction
by MSC (Eq. 2) and its extension.!

MATERIAL AND METHODS

Samples. Wheat kernels (415) representing 43 differ-
ent varieties or variety mixtures from two different lo-
cations in Denmark made up the calibration set, while
wheat kernels (108) representing 11 different varieties
from one location made up the test set.!' All kernels were
randomly chosen from bulk samples. The test samples
were acquired with the calibration samples, but stored for
about two additional months before measurement in order
to provide a check for temporal drift in the samples and
instrumentation. The NIT single seed data set is made
available on the World Wide Web (Pedersen, Pram Niel-
sen, Munck & Engelsen, NITSingleSeed, www.models.
kvl.dk).



Spectra Recordings. The single kernel transmittance
spectra were collected on an Infratec 1255 Food and Feed
Analyzer (Tecator AB, Hoganids, Sweden). Each kernel
was placed in a single seed sample cassette, and trans-
mittance spectra in the range 850-1050 nm were record-
ed. A tungsten lamp (50 W) and a diffraction grating
were used to create monochromatic light. The light
passed through the kernel, reaching the silicon detector
in a diffuse pattern. Spectra were recorded three times
for each kernel and the average of the three spectra was
used for the calibrations. The time required for scanning
(single scan) 23 single kernels in the cassette was about
90 s.

Protein Determination in Single Kernels. After the
spectral recording of the intact wheat kernels each kernel
was crushed in the single kernel characterization system
(SKCS 4100, Perten Instruments Inc., Reno, NV) and the
moisture content necessary for calculation of protein con-
tent in dry matter was determined. Subsequently, single
kernel nitrogen content was determined directly by a
modified Kjeldahl method.!? Nitrogen in single kernel
grits was transformed into ammonium sulfate by diges-
tion (410 °C for 1 h) with 6 mL sulfuric acid (98%). The
solution was then alkalized (25 mL 35% NaOH and 75
mL H,0) and distilled into 25 mL boric acid (0.2%) with
methyl red and bromcresol green indicator. The amount
of resulting ammonia produced was determined by titra-
tion (0.0050 M HCI1). The method is based on the as-
sumptions that proteins contain 16 percent nitrogen and
that non-protein nitrogen content can be neglected. The
protein content is reported as 5.7 times the total nitrogen
content for wheat kernels. This unusual calculation factor
is due to the high nitrogen content of glutamine. Based
on previous experience with samples of 30-40 mg of
wheat flour, the analytical error of the analyte was ex-
pected to have an absolute standard uncertainty of 0.16%
(percent protein content in dry matter).

Data Analysis. Multivariate data analysis was carried
out using The Unscrambler version 7.6 (www.camo.
com), except for the EISC calculations, which were pro-
grammed and carried out using MatLab version 6.1 (The
Matworks, Inc., Natick, MA). Conventional multivariate
calibration models were developed from the 415 calibra-
tion samples using PLSR for protein content (y) from
NIT spectra (X) after different types of spectral pre-trans-
formation (MSC, basic EISC (Eq. 6), EISC with physi-
cally extensions (Eq. 10), second derivatives, and com-
binations of MSC and second derivatives). Optimal num-
bers of PLSR components (PCs), A, as well as apparent
root mean square error of Y-prediction, RMSECYV, were
estimated by cross validation within the calibration set.
To ensure robust and representative segmentation in the
cross validation, the 415 calibration samples were sorted
for increasing value of protein content (y), and then split
systematically into 10 cross-validation segments. Perfor-
mance of calibration models was validated by predicting
the protein content in the 108 samples (validation set),
yielding the root mean square error of Y-prediction,
RMSEP.

RESULTS AND DISCUSSION

Protein Content. The statistics of the Kjeldahl protein
determination of the two sample sets are listed in Table

TABLE 1. Means and standard deviations (SD) of single kernel
protein data in the calibration and test sets.

# of Mean
Sample set kernels protein (%) SD (%) Min. (%) Max. (%)
Calibration 415 10.0 1.56 6.8 15.2
Test 108 9.8 1.75 7.0 17.0

I. The protein concentration in the calibration set ranges
from 6.8 to 15.2%, while the concentration in the test set
ranges from 7.0 to 17.0%. As indicated by the standard
deviations in Table I, relatively few kernels have extreme
protein content; however, a certain degree of extrapola-
tion is required for the PLSR calibration model to cover
the protein range of the test set. The higher protein con-
tent in the test samples is probably the result of a certain
loss of moisture during the additional storage period.

Near-Infrared Transmittance Spectra. The NIT
spectra of the single wheat kernels presented in this study
cover the spectral region from 850 to 1050 nm in 2 nm
steps containing primarily the second overtones of O-H
(carbohydrates and water) and N-H (protein) stretching
vibrations and the third overtone of the C-H (fats)
stretching vibration. The fundamental O—H stretch for hy-
drogen bonded systems is typically found between 3400
and 3300 cm~! (IR), corresponding to 2940-3030 nm,
which will ideally give second overtones in the NIR re-
gion 980-1010 nm. Secondary amides (proteins) give
rise to a fundamental N-H stretching vibration located
near 3300 cm~! (IR), corresponding to an ideal second
NIR overtone near 1010 nm. Aliphatic C—H stretching
vibrations are located between 3000 and 2840 cm~!, cor-
responding to 3333-3521 nm, which will ideally give rise
to third overtones in the Vis/NIR region between 833 and
880 nm. This spectral region is thus of utmost importance
to food-related samples, as most of the important func-
tional components are represented. The electromagnetic
radiation is relatively high in energy, yet still absolutely
nondestructive. Moreover, the absorption of the second
and third overtones is much lower than the fundamental
and first overtone vibrations, enabling larger sample vol-
umes to be measured, which is very important when mea-
suring heterogeneous systems.

Figure 2 displays raw NIT absorbance spectra of the
415 samples in the calibration set. From the figure, large
additive offset and multiplicative scaling effects are read-
ily observed. These are probably due to dispersive loss
of light and changes in optical path length, caused by
variations in kernel size and texture as well as kernel
orientation in the sample cassette. These observed differ-
ences in light lost due to physical effects probably over-
shadow the absorbance changes due to concentration var-
iations in the chemical constituent like starch, water, and
protein.

Figure 3A displays the same NIT spectra after EISC
pre-transformation according to Eq. 10. In comparison,
Fig. 3B shows MSC pre-transformed spectra (Eq. 2), Fig.
3C shows second derivatives of the spectra followed by
MSC, and Fig. 3D shows MSC-transformed spectra fol-
lowed by second derivatives. Compared to the raw spec-
tra in Fig. 2, all the calibration samples appear almost
identical after the EISC. However, Fig. 4A shows that
after mean centering to remove the average spectral pat-
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Fic. 2. Raw NIT spectra (850-1050 nm) of the 415 wheat kernels

from the calibration set.

tern in the NIT data, the EISC pre-transformed spectra
are quite different. Likewise, the mean-centered MSC
pre-transformed spectra (Fig. 4B), mean-centered second
derivatives of the spectra followed by MSC (Fig. 4C),
and mean-centered MSC-transformed spectra followed
by second derivatives (Fig. 4D) show clear differences
between the samples. The question is whether these dif-
ferences relate to variations in the protein content.
Figure 5 compares the calibration models from the raw
(dotted) spectra (Fig. 2) and the EISC-transformed (solid)
spectra (Fig. 3A), both after mean centering. It shows the
regression coefficient summary for the two models ob-
tained at a conservative model rank (i.e., 9 and 6 PCs,
Fig. 5A) and at the number of PCs that appeared to be
near optimal (11 and 7 PCs, Fig. 5B) judging from the
cross validation. In general, the EISC has reduced the
number of PCs required. Particularly in Fig. 5B, the two

predictors are relatively similar, although some differ-
ences can be observed. At the slightly lower rank in Fig.
SA the models are even more distinct.

Figure 6 compares the apparent performance of the raw
NIT data and the EISC pre-transformation to various oth-
er pre-transformations for the single seed protein calibra-
tion models. The prediction errors (RMSECYV) are plotted
against the number of PLSR components. The figure re-
veals a significant reduction in the number of PLSR com-
ponents needed, from the raw spectra to the pre-trans-
formed spectra. Secondly and most interestingly, the plot
reveals that only the EISC pre-transformation (solid) and
the second derivative followed by MSC pre-transforma-
tion (densely dotted) are able to provide an optimal mod-
el according to the level of the prediction error in the
calibration set.

The prediction error in the calibration set for the PLSR
model based on EISC-transformed spectra was estimated
by cross validation to 0.49% protein (7 PCs). The cor-
responding prediction error for the PLSR model based on
the second derivatives followed by MSC-transformed
spectra was also estimated to 0.47% protein (5 PCs),
while PLSR models based on raw, differentiated, basic
EISC or MSC-treated spectra never reached a prediction
error less than 0.55% protein, regardless of the number
of PLSR components applied. The improved prediction
performance agrees with the findings of Delwiche,'® who
showed that the two-step procedure of using second de-
rivatives followed by MSC gave a better single seed NIT
model for prediction of protein content. The most signif-
icant result of this comparison is that the single-step EISC
performs equally as well as the double transformation,
but it is perhaps also noteworthy that basic EISC (ISC)
performs just as the sister algorithm MSC on the calibra-
tion set, but with a significantly better result on the test
set.

The two-step method based on second derivatives fol-

Log 1T Log YT
A \

300 3.000%

295 500

290
290

285
2.85 .

850 900 950 10000 1050 850 900 950 1000 1050

nm

nm

Fic. 3.

850 9200 950 1000 1050
nm

850 900 260 1000 1050
nm

NIT spectra (850-1050 nm) of the 415 wheat kernels from the calibration set: (A) EISC transformed (Eq. 10), (B) MSC transformed (Eq.

2), (C) second derivatives followed by MSC, and (D) MSC followed by second derivatives.
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Mean-centered NIT spectra (850-1050 nm) of the kernels from the calibration set; (A) EISC transformed, (B) MSC transformed, (C)

second derivatives followed by MSC, and (D) MSC followed by second derivatives.

lowed by MSC-corrected spectra performs considerably
better than the opposite two-step method, MSC followed
by second derivatives (Fig. 6). This emphasises that the
order of the applied pre-transformations is important and
that conventional MSC is a poor model when the scatter
is not linear.’® In the MSC it is assumed that the scatter
is linear throughout the spectral range, since the whole
spectrum is linearly adjusted by one slope and one offset.
However, if the loss of light due to light scattering and
other effects is not this simple, the MSC correction is not
suitable and, consequently, a model based on MSC fol-
lowed by the second derivatives will not be optimal. On
the contrary, by using the second derivatives, it appears

~n Raw, 9 PCs
-— EISC, 6 PCs

A
1000,
500
a o0
500
-1000
850 900 950 1000 1050
nm
R Raw, 11 PCs
B — EISC,7PCs
2000
1000,
a 0
-1000} *
-2000
850 900 950 1000 1050
nm

F1G. 5. The regression coefficients for the calibration of raw input
spectra (s ) for 9 PCs (A) and the optimal 11 PCs (B), and for the
calibration of EISC-transformed spectra ( ) for 6 PCs (A) and the
optimal 7 PCs (B).

that the spectra are successfully corrected for local offsets
and linear trend variations.

Validation. The test set (108 single wheat kernels rep-
resenting 11 of the varieties included in the calibration,
but stored for an additional two months) was measured
on the same NIT instrument, analyzed for protein content
by the same method, and used for testing the (long-term)
stability of various calibration models. Figure 7 shows
the EISC parameter estimates according to Eq. 9, the co-
efficients a; (additive offset), b, (multiplicative scaling),
¢, (for squared spectrum), d; (for wavelength), and e; (for
squared wavelength) for the 415 calibration samples as
well as for the 108 test samples. Figure 7F illustrates that
the samples have been sorted for increasing protein con-
tent (y) within each of the two sample sets for simpler

18
Raw I
16 ISC ——
EISC
MSC
14 2nd+MSC
£ MSC+2nd
2
1<
812
s\’
3
w 1.0
[}
=
4
0.8
0.6
.""'-co-.. Pescccceve el
0.4
0 5 10 15
#of PCs
Fig. 6. RMSECYV vs. PLSR components (PCs) for models based on

different pre-transformed NIT spectra; raw spectra, ISC-corrected spec-
tra, EISC-corrected spectra, MSC-corrected spectra, spectra transformed
to the second derivative followed by MSC correction (2nd + MSC) and
MSC correction followed by second derivative (MSC + 2nd).

APPLIED SPECTROSCOPY 1211

209



EISC parameter # 1

0 100 200 300 400 500
EISC parameter # 3

0 100 200 300 400 500
x10° EISC parameter# 5
2

“o 100 200 300 400 500

FiG. 7.

EISC parameter # 2

05 -
0 100 200 300 400 500
x10°  EISC parameter # 4
2

Y

20
F

15 |

{

= ¢

1

10 o

5

i 100 200 300 400 500

The estimated EISC parameters (Eq. 9) plotted against sample i for the 415 calibration samples (black) as well as for the 108 test samples

(grey), sorted according to increasing protein content in the two data sets; (A) EISC parameter # 1: a; (additive/offset); (B) EISC parameter # 2:
b; (multiplicative/relative scatter scaling of input spectrum): (C) EISC parameter # 3: ¢; (effect of squared spectrum); (D) EISC parameter # 4: d;
(effect of wavelength); and (E) e, (effect of squared wavelength). The increasing protein content y; within each of the two sample sets is shown in

subplot F.

cross validation in the calibration set and simpler visual
interpretation of the EISC parameters in both sets. The
EISC parameters (Figs. 7A-7E) show highly erratic var-
iations, especially in b, (multiplicative scaling) and d;
(wavelength). But some systematic changes with the pro-
tein content may be observed in both sets, particularly at
the highest protein levels (>11%). This is an indication
that the EISC may have picked up and removed some
variation related to the analyte. The cause and nature of
this lost analyte information is unclear, but needs to be
studied in more detail.

Figure 8 compares the calibration set and the test set,
before and after the EISC. Spectroscopically, the mean-
centered spectra of the test samples appear normal in the
raw data (Fig. 8B), compared to the calibration set (Fig.
8A), while they show a very distinct pattern after the
EISC (Fig. 8E vs. Fig. 8D). This is an indication that all
test samples deviate in the same systematic way from the
calibration mean spectrum m. If this type of deviation is
also present among the calibration samples, it may be
modeled and corrected for in the calibration model; if not,
the systematic deviations will cause grave errors in the
predicted percent protein in the test set. The peaks just
below 950 nm in Fig. 8D indicate that some of the cal-
ibration samples indeed display the same general pattern,
but this needs to be verified in the prediction of protein.

Figures 8C and 8F compare the predictive performance
before and after EISC. The long curves show the esti-
mated error for protein content y predicted from the 100
NIT wavelength channels X for PLSR calibration models
using between 0 and 15 PCs, for the cross-validated cal-
ibration set (RMSECYV, solid) and the test set (RMSEP,
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dashed). When using the raw spectra in Fig. 8C as X, the
cross validation shows that several of the first PCs (2, 3,
4, 5) have little or no predictive relevance for the protein
content; hence, they must reflect very strong covariance
structures in the NIT spectra. More importantly, the pre-
dictive ability in the test set changes erratically with the
increasing number of PCs; obviously, a wrong choice in
the number of PCs to be used for prediction may cause
very high prediction errors in the test set.

In contrast, when using the spectra after EISC in Fig.
8F as X, the cross-validation curve falls smoothly, as
desired. The model is shown to require at least 4 PCs.
The test set curve is very similar to the cross-validation
curve after 4 PCs.

The two short curves in Fig. 8F show the estimated
prediction errors using instead the 5 EISC parameters
la, b, c;, d;, el (Eq. 9) from the different samples as X,
instead of the 100 wavelength channels. Some predictive
ability for the protein content (y) is evident in the cross-
validation curve (squares). Hence, the EISC may have
removed Y-relevant information. However, in the test set
(diamonds) the predictive ability for y is not as good.
Attempts (not shown here) at joining the NIT data with
the EISC parameters as extra variables, X = [Z; . cciear @io
b, ¢;, d;, e;], using weighted least-squares PLSR, gave a
slight but insignificant improvement in RMSECV (cali-
bration set), but no improvement in RMSEP (test set). It
thus appears that the ‘“‘physical”” information apparently
removed by the EISC in these data was not important or
reliable for the prediction of chemical protein content:
the errors that they contribute to the calibration model
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FIG. 8.

The mean-centered NIT spectra for (A) the calibration samples and (B) the test samples, and the EISC transformed mean-centered NIT spectra
for (D) the calibration samples and (E) the test samples. Prediction error vs. the number of PCs for the calibration samples (

) and the test

samples (———) (C) before EISC transformation and (F) after EISC transformation. The two short curves in subplot F show the prediction errors

calibrating only with the five EISC parameters (Eq. 9), X = [a;, b;, ¢;, d;, &]: the calibration samples (

are greater than the otherwise unmodeled Y-variation that
they can remove.

The calibration and the test set results for all the tested
pre-transformation methods are summarized in Table II
in terms of the RMSECYV (calibration set) and RMSEP
(test set) read at the optimal number of PCs, and of the
correlation coefficients based thereon. Compared to the
untransformed raw data, the basic EISC/ISC did not af-
fect the results very much. However, there is an improved
correlation, both for the calibration set (from 0.93 to
0.95) and for the test set (0.96 to 0.98), after applying
the full EISC (Eq. 10) to the NIT spectra. The protein
calibration model predicts the test kernels well through-
out the protein range; the prediction error (RMSECV and
RMSEP) ends as low as 0.49% protein in a protein range
of 7 to 17%. This RMSE level approaches the sampling
and measurement error on the single seed protein deter-
mination (0.16% determined for samples of 30—-40 mg of
flour), and the results demonstrate a very good and robust
protein calibration on single wheat kernels.

TABLE II. Performance statistics of the PLSR models for single seed
protein predictions using single seed NIT spectra from the calibration
set (415 Kernels) and the subsequent test set (108 kernels). CV is cross
validation. RMSECYV is the root mean square error of cross validation,
and RMSEDP is the root mean square error of prediction.

Prediction error

# of PLSR Correlation (% protein)

Pre- compo-  Cal. set Cal. set Test set
transformation  nents (CV) Testset RMSECV RMSEP
Raw 11 0.93 0.96 0.55 0.70
ISC 9 0.93 0.95 0.58 0.69
EISC 7 0.95 0.98 0.49 0.49
MSC 9 0.93 0.95 0.57 0.78
2nd + MSC 5 0.95 0.98 0.47 0.48
MSC + 2nd 7 0.92 0.93 0.60 0.66

) and the test samples (——-).

The conclusion is that the basic ISC performs equally
as well as the traditional MSC, perhaps even slightly less
aggressively on the calibration set, resulting in an im-
proved test set prediction. Both the EISC with general
(physical) extensions and the two-step “‘second deriva-
tives followed by MSC” in this data set can correct for
spectra interferences that are not corrected by the more
“classical” pre-transformations, MSC or second deriva-
tives. The EISC is particularly promising because it is
more flexible and easier to understand than the ‘“‘classi-
cal” MSC and two-step methods. In this study we have
emphasized a general applicable version of the EISC, but
its flexible approach allows simple implementation of
system-specific interferences such as known analytes.! In
a future implementation, we will work on a version in
which the correction coefficients are constrained to be
orthogonal to the reference value y, with the aim of op-
timizing subsequent regression models with even less
loss of analyte information.
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