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Abstract 

 

A 'FOODOMIC' APPROACH FOR THE EVALUATION OF 
FOOD QUALITY AND ITS IMPACT ON THE HUMAN 
METABOLOME 

ABSTRACT 

In recent years, omic sciences have been increasingly employed in a multitude of research fields 

thanks to their high-throughput capabilities and holistic approach. 

Among the omic sciences, metabolomics and foodomics have recently emerged in the investigation 

of food and nutrition and their relation to the individual health and wellness status (Chapter 1). 

The analytical platforms used are ideal for non-targeted analysis, due to their capability of 

detecting and identifying a large set of variables (or metabolites) in complex biological samples. 

The most employed metabolomics techniques are mass spectrometry and nuclear magnetic 

resonance spectroscopy (Chapters 2.1, 2.2 and 2.3), which can reach high analytical power in the 

non-targeted realm thanks to the advent and advancement of multivariate data analysis (Chapter 

2.4). 

This thesis, which is the result of three years of PhD studies carried out both in Italy and in 

Denmark, outlines the analytical pipeline of the foodomic approach and highlights the current 

challenges in the field (Chapter 2.3). The thesis traces the path of modern foodomics and 

metabolomics from the definition and description of food quality (Chapters 3 to 6), to the profiling 

of the metabolome (Chapters 7 to 8.5), and finally the investigation of the impact of food on the 

human health, the prevention of diseases, and the identification of biomarkers of health status 

(Chapters 8.6 and 8.7). 

The impact of factors such as genetic modification or farming method was investigated in grapes, 

defining the specific changes in the fruit metabolism correlated with these factors (Chapter 4). For 

example, a linear decrement in the content of malic acid in GM grapes in relation to the number of 

transgene copies inserted was observed, showing a shift in the plant metabolism due to the 

increased fruit yield. Moreover, the impact of the food matrix and digestion processes on the 

stability and bioaccessibility of specific, beneficial molecules was assessed (Chapters 5 and 6). 

The animal metabolome was also investigated as a model of the human body. In one of the studies 

reported, the effect of antibiotic treatment on necrotizing enterocolitis was investigated (Chapter 

7.2), proving that the employment of the selected drugs successfully treated the condition and 

impacted on the gut microbiota. This model can be of great help in the investigation of the 
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condition in human newborns, too. 

Many studies have also been carried out on the human metabolome (plasma, serum, urine). These 

studies have helped in the development of specific algorithms for the search of dietary biomarkers 

in observational studies (Chapter 8.6.1). Moreover, food intake biomarkers have been discovered in 

an intervention study (i.e. galactose for milk intake) and will be further investigated (Chapter 

8.6.2). Research was also carried out to investigate on specific disease biomarkers and to discover 

possible trajectories from a disease state to a healthier condition (Chapter 8.7). 
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CHAPTER 1: WHAT IS FOODOMICS? 

1.1 The pathway from metabolomics to foodomics to nutrimetabolomics 

The post-genomic or “omic” sciences are considered incredibly useful tools for the investigation of 

the underlying mechanisms in human biochemistry and health [Lenz et al., 2003] and to describe 

normal and shifted biological functions since they study genes (genomics), gene expression 

(transcriptomics), protein profiles (proteomics) and, finally, metabolic profiles (metabolomics). 

[Kochhar et al., 2006]. Many definitions have been given for the term metabolomics. It has been 

called the science capable of providing a “functional readout of the physiological state of an 

organism” [Roessner & Bowne, 2009], “bridging the gap between genotype and phenotype” 

[Roessner & Bowne, 2009] or a “comprehensive strategy to address the health challenges facing 

the modern world” [German et al., 2005]. In any case, though, this new omic science targets the 

investigation and profiling of the metabolome, the set of all the low-molecular weight molecules 

(metabolites) in a cell, tissue or organism, taking part in all the key metabolic reactions. The 

complete set of the metabolome, which depends on the species and organism considered, can 

vary from 600 metabolites in yeast to over 20 thousands in humans [Fiehn, 2002; Dunn et al., 

2005; Bernini et al., 2009]. Being founded on a holistic approach, metabolomics is not just helpful 

for the study of particular organism, but it has given a great boost also to food science. The field of 

food science, in effect, has been increasingly correlated to other research fields such as medicine, 

biology, veterinary and agricultural sciences or genetics. For this reason the metabolomic approach 

could successfully help in the investigation of the relations between these fields. Metabolomics can 

in fact help in the study of the effects of food quality on health, together with the assessment of 

the shifts in food qualities and characteristics caused by many external factors, such as human or 

environmental. Therefore, foodomics has been developed as the application of metabolomics to 

the investigation of the relation between food quality and nutrition. Thus, an increasing number of 

research studies has been and is now focused on foodomics, assessing for example the impact on 

food quality and nutritional value of genetic modification, geographical origin or new processing 

techniques and technologies (see Chapters 3-4), since factors like these have an expanding 

importance in consumers' choice and opinion. Another important characteristic that is often 

investigated is digestibility (see Chapter 6), since many nutrients, especially the ones added in 

enriched foods, have to be correctly assimilated by our bodies. For all these reasons, the capability 

of describe food quality throroughly is a paramount tool for both food producers and consumers 
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[Capozzi & Trimigno, 2015]. The power of metabolomics and its potential in many applied sciences 

has also been explored, as aforementioned, in the assessment of the link between nutrition, food 

and human health. Due to the aging of population and the increasing number of chronic diseases 

correlated to disfunctional metabolic functions and nutritional habits, new approaches for this kind 

of investigation were developed. Traditional nutritional research, based on typical measurements 

on single or a few nutrients has now been replaced by more high-throughput approaches, founded 

on the study of genes, gene expression, proteins and metabolites. The so called nutritional 

metabolomics (or nutrimetabolomics) is thus the application of metabolomics to nutrition 

sciences for the determination of the metabolic phenotype (metabotype) and its variations due to 

diet and its correlated metabolic and biological impairments (See Chapter 8). This approach could 

help in the future to develop targeted diets to match specific needs for each individual in order to 

improve or mantain a good health status. Up to now, though, much research has been done and 

still needs to be carried out, on the separation of all the effects of intrinsic and extrinsic factors 

playing a role in the characterization of metabolomes. These factors, apart from diet, can be 

genetics, use of specific drugs, lifestyle, gut microbiota, presence of particular diseases, etc. It is 

therefore important to understand the role of each stressor and their combinate effects [Rezzi et 

al., 2013] and to determine the stable part of the metabolome, the so-called metabolic fingerprint 

or metabotype, to then be able to better understand the shifts from this condition. The complex 

interaction between all the described factors and the human health status is depicted in Figure 1. 

 

Fig. 1: Definition of the health status of a human being and the complex factors and effects impacting on it and causing 
its shift from the ideal state [Bordoni & Capozzi, 2014]. 

The wellbeing of a subject can in fact be defined in a three-dimensional space set by the 
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coordinates of: oxidative stress, inflammation status and metabolic stress. In each moment, each 

individual will be in a defined position, which can shift towards better or worse conditions in 

relation to the impact of many internal and external factors, which are, in turn, correlated to each 

other and interdependent. It is thus of great interest to dig into this intricate net of topics and 

characteristics in order to shed a light into the better understanding of human health. Each of the 

factors influencing the various effects outlined above are investigated in this research work, 

highlighting the power of the foodomic approach in modern research. The techniques mainly 

employed in the foodomic research field are described in Chapter 2. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 ANALYTICAL TECHNIQUES: Mass Spectrometry 

One of the most employed metabolomics techniques is mass spectrometry. Mass spectrometry 

(MS) is based on molecular ionization and on the subsequent fragmentation of the molecule in 

ions in relation to the different mass/charge ratio (m/z). Since molecules are ionized in gas phase 

through the expulsion of an electron, MS is a destructive technique. This ionization forms the so-

called “molecular ion”, a radical cation, which in turn will be fragmented, generating both neutral 

molecules and/or radicals (not detectable) and cations and/or radical cations (detectable). The 

spectrometer will thus discriminate between the molecular ion and its fragments in relation to the 

M/z ratio and these will be observed by a final detector. The output of MS analysis is a mass 

spectrum, which represents the relative abundance of the different ions in relation with the M/z 

value. The mass spectrum is composed by an x axis, corresponding to values of mass, and a y axis, 

reporting the intensity of the specific mass value of a determined fragment. Thus, the maximum 

mass value will represent the molecular ion. 

In order to interpret the mass spectrum, the steps to follow will be: 

  identification of the molecular ion 

  identification of the most characteristic ions 

  recognition of the fragmentation pattern 

  identification of the molecule 

Through MS it is thus possible to identify metabolites from their fragmentation profiles. Usually, 

separation techniques such as gas chromatography (GC) or high performance liquid 

chromatography (HPLC) are employed in association with MS, in order to help the separation of 

metabolites and the later identification. 

2.2 ANALYTICAL TECHNIQUES: NMR Spectroscopy 

2.2.1 Principles 

In a NMR experiment, the sample is inserted into a probe, which, in turn, is immersed into a strong 

magnetic field generated by a permanent magnet. The nuclei contained in the sample spin with an 

angular momentum P. Since they are also charged, they will produce a magnetic moment μ. At 

first, all the magnetic moments of the nuclei are randomly oriented, but later become aligned in 

the magnetic field and their sum gives a weak magnetization (M) to the sample. Nuclei magnetic 

moments also have precessions at high frequency (MHz – radio frequencies) in the magnetic field. 
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This precession frequency (ωL) is proportional to the static field strength (B0) by a constant called 

gyromagnetic ratio (γ). An alternating current at radio frequency (RF) is run through the inductor 

(wire coil) arond the sample to produce an oscillating field (B1(t)). The precessing nuclei can 

absorb the energy of the oscillating magnetic field if the energy is on resonance, thus at the same 

frequency of the nuclei's precession. The circuit of the coil will both excite the nuclei and detect 

the RF. The magnetic moments can be aligned parallelly or anti-parallelly to the static magnetic 

field B0 due to quantization. The subset of nuclei aligned paralelly to the field is slightly bigger and 

the energy difference between the parallel and anti-parallel population is called ΔE. If an energy 

equal to is provided by B1(t), which could have a frequency ν so that ΔE=hν, magnetic moments 

can re-orient. This frequency ν is the precession frequency νL= ωL/2π. B1(t) is actually the sum of 

two fields rotating in opposite directions, and one of them is capable of causing resonance. As said, 

when this oscillating field is on, the magnetic moments will get in phase and generate a vector of 

magnetization M, which follows B1(t) in the rotating frame. The excitation field is applied in short 

pulses and sample magnetization will precess about it, with an angle of rotaton Δθ. The time in 

which it rotates is called pulse width (Δt) and if the angle Δθ is 90°, then the magnetization will be 

on the x' axis and the detection on the transverse plane (x,y). After each pulse, the magnetization 

will continue to precess in the transverse plane, responding to B0 and inducing an electromotive 

force in the coil. Pulse will therefore be detected by electromagnetic induction. The precession 

frequency of the nuclei is modified by the magnetic shielding of electron clouds in the molecule 

(so-called “chemical shift effect”) and the magnetic coupling with adjacent nuclei (effects such as 

the J-coupling, the spin-spin or the multiplet). For this reason, the signal measured will have a 

frequency related to chemical structure information on the nuclei and can give a great insight on 

the sample's characteristics. Nuclear relaxation will make the magnetization die. The magneization 

has a component parallel to B0 (longitudinal) and one perpendicular to B0 (transverse). The 

induction signal, as aforementioned, is detected in the transverse plane, thus the signal will reflect 

the decay of magnetization of the transverse component. Another relaxation will be witnessed in 

the experiment, since also the longitudinal component will return to its equilibrium. This is the 

longitudinal or spin-lattice relaxation, characterized by the time constant T1, though, not being in 

the transverse plane, it will not be measured directly, but only with inversion or saturation 

recovery experiments. The Free Induction Decay (FID) will give two main information: 

• the number of resonant nuclei, thus the concentration, since the amplitude at t=0 is 

proportional 
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• physical information on the sample since the decay rate is modified by molecuar motions 

(i.e. slow in liquid phases due to fast motion).  

The NMR signal will thus have a decay rate in the transverse component magnetization called spin-

spin (or transverse) relaxation, composed by both the nuclear relaxation and the inhomogeneity of 

B0. The obtained FID curve will be described by a time constant called T2*, whilst T2 is the true 

nuclear relaxation time. The NMR signal in time-domain will thus give info on the physical state of 

the sample but usualley what is important is the chemical information. For this reason, a Fourier 

Transform (FT) must be applied to obtain the magnetic resonance spectrum we usually employ. If 

the FT is applied to the decay of solid sample, the spectrum will have a single and broad 

resonances, not giving out chemical information, whilst with liquids narrow resonances are 

obtained, with line widths smaller than the separation between the different resonances, so 

chemical information can be acquired. When a sample has many components, each will have its 

own resonance, so the spectrum will be a resulting pattern of resonances. The higher the field 

strength, the better the separation among the resonances and greater sensitivity. The main 

characteristics of the peaks which appear in a spectrum and give information on the sample are: 

• peak area, related to the amount of substance  

• frequency or chemical shift, linked to the chemical type 

• line shape, giving information on the state of the sample and on its molecular structure 

The line width is related to T2* by the equation Δν=1π/T2*. 

2.2.2 The NMR Spectrometer 

The NMR instrument will constitute of the following parts: 

• a superconducting stable magnet 

• a probe 

• a high-power RF transmitter delivering short pulses 

• a receiver amplyfying NMR signals 

• an Analogue to Digital Converter (ADC) to convert signals into a storable form 

• a pulse programmer 

• a computer 

To generate the B0 field, as stated, a stable and permanent superconducting magnet is employed. 

This magnet is made by a wire coil through which current flows and generates the magentic field. 

This wire is superconducting, so at very low temperatures the resistance will be equal to 0, thus 

the current, once set, will go on forever and no electrical power is needed for the magnetic field. 
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The superconducting state of the wire is maintained by having it immersed in a liquid helium bath. 

Outside of this helium layer, stands a heat shield, kept at constant temperature (77K) by a liquid 

nitrogen bath. All of this is contained in a vacuum flask so that the heat flow is reduced. The 

sample, though, will have to be around room temperature, so there is a zone called bore tube, 

built in the magnet, where room temperature is kept. The bore tube consists of a vertical tube 

going through the magnet and the magnetic field will be in its direction. The probe consists in a 

metal cylindrical tube. It is inserted into the bore tube. On top of the probe, the small coil which 

excites and detects the signal is hold in a way that the sample can drop into it from the top of the 

magnet. The coil needs to be as close as possible to the sample, though allowing it to drop down. 

This coil will formed a tuned circuit with the coil and a capacitor so that the inductance and the 

capacitance they form resonates at Larmor frequency. The capacitor needs to be adjusted so that 

the tuned circuit resonates at the Larmor frequency. This operation is called tuning and it is very 

sensitive to solvent or ion concentration changes. In addition, a matching operation needs to be 

carried out, for which the circuit design is adjusted to maximize power transfer between the probe 

and the transmitter/receiver. The probe might also contain arrangements for the cooling or heating 

of the sample. The part of the instruments generating pulses is the RF transmitter. The RF source 

produces a stable frequency that can be precisely defined by the operator, so that the transmitter 

can be moved to various part of the spectrum (i.e. In selective excitation experiments). The RF 

source is usually a frequency synthetizer, since it can generate a stable frequency and this can be 

set by the operator. In addition such RF source is readily controlled by a computer interface. 

The synthetizer output is gated so that it creates the pulse only for the short time that it is needed. 

The gate will be controlled by a computer to define pulse length and time. The RF source is usually 

at the level of few mW so, before being applied to the probe, it will need to be increased to 

provide a useful oscillating field. The B1(t) will be more intense the stronger the power applied to 

the probe is and the resulting 90° pulse length will be shorter. Nonetheless, there is a maximum 

power, stated by the manufacturer, that can be applied, after which a discharge will be generated 

and this can destroy coil and capacitor and give out erratic oscillating fields. The NMR signal 

generated from the probe is of the order of μV, thus it will be amplified before being digitized. 

Modern amplifiers are low-noise, designed so that only minimum extra noise is introduced. A first 

amplifier, the pre-amp, is as close to the probe as possible, generally at the foot of the magnet, to 

boost the signal before sending it to the spectrometer console. A diplexer is also present, as a fast 

switch is needed to prevent the high-power pulse to go into the sensitive receiver. This switch 
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works so that when the pulse is off, the receiver is connected to the probe and the transmitter not, 

whilst when the pulse is on, RF flows to the probe and the receiver is disconnected. Diplexers can 

require external power, while others are passive. One of the last parts of the instrument is the ADC, 

converting the NMR signal from voltage to binary, so that it can be stored in computer memory. 

The signal is sampled by the ADC at regular intervals and the FID is thus represented in data points. 

The number of bits used by the ADC will define the largest output number. The larger the bits 

number, the more output levels present. Generally ADC use between 16 and 32 bits. Since the ADC 

uses approximation of the FID, small sidebands (digitization sidebands) near the base of peaks in 

the spectrum, which can be a problem when a they belong to a strong peak and can hide a close 

weak peak. These sidebands can be reduced by improving the resolution. 

2.2.3 NMR spectra characteristics 

The main type of information retrieved by a NMR spectra derive from the number of signals, their 

position and intensity and their splittings. Protons that are chemically equivalent, thus in the same 

magnetic environment, will absorb at the same frequency, whilst protons in a compound with 

different magnetic environment will five separate signals. Protons in a CH3 or in a CH2 group will be 

generally equivalant, as protons in symmetrical compounds (i.e. benzene). Though, if protons differ 

in any possible way (also stereochemically), they are not equivalent and show separate signals in 

the spectrum. This happens very often since most compounds are not symmetrical. The position 

were signals arise along the x-axis of frequency is the so-called chemical shift and it is measured in 

ppm (parts per million). The chemical shift will depend solely on the changing local magnetic fields 

from adjacent protons and not from the Earth or the NMR magnetic field, since those affect 

similarly all protons in the compound. The chemical shift can be influenced by various effects. 

Firstly, when a magnetic field is applied, the electrons in the electron clouds will produce a small 

but opposing magnetic field that will lower the effective one perceived by protons and will shift 

the signal to the right of the spectrum (upfield). This is the local diamagnetic shielding, since the 

electron cloud shieds the proton from the applied magnetic field. If a proton is attached to 

electronegative atoms, its signal will be more downfield. Moreover, when electronegative atoms 

are present, they will remove electrons from the electron cloud, resulting in a lower shielding 

effect, moving signals lowfield (higher chemical shift). The deshielding effects is inversely 

proportional to the distance between the proton and the electronegative atom. If a molecule is 

charachterized by anisotropy, since the orbitals will not be spherically symmentrical, the proton 

will experience different shielding effects to the applied magnetic field. Similar functional groups 
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will have similar chemical shift, though the variability of molecules will make it difficult to assign 

with 100% certainty a specific chemical shift to a specific type of proton. The integral of a signal 

will be related to the numbers of protons responsible for it, thus the number of proton 

equivalents. This means that the area under the signal will give information on the number of 

protons and on the concentration of that molecule. NMR signals, though, will not be simply single 

signals, but are usually split in doublets, triplets, quartets or multiplets. When signals are splitted 

the distance between the resulting peaks is called J, or coupling constant. Nearby protons can 

interact and orient in a parallel or antiparallel way to the applied magnetic field, producing 

different spin filp energies. When a proton is so close to another than can affect its spin, we have 

spin-spin coupling. The splitting will always be returned, so if Ha is splitting Hb, Hb will in turn split 

Ha. For this reason, splitting will give important information on the closeby protons of a proton in a 

molecule. The general rule is if that a proton has n neighbours, the signal will be split into n+1 

peaks. Other rules that apply for the spin-spin coupling are: 

• protons must not be equivalent to couple: if nuclei are isochronous, thus in the same 

chemical shift, they will not couple. 

• If protons are separated by three bonds (vicinal) they can couple, if they are separated by 

more than three bonds they cannot couple, since they feel a very weak signal from their 

neighbours. An exception to this is allylic coupling, where coupling occurs through 4 bonds if 

one is a pi-bond; this happens because the pi-bond will have a higher electron density. In 

addition, all hydrogens on a benzene will couple with each other, though they cannot couple 

with hydrogens attached to other atoms even within the limit of three bonds. 

• If a hydrogen is linked to a nitrogen or oxygen it generally will not couple and give out 

singlets in the spectra. 

In addition to first-order splitting, producing normal splitting patterns with equal J constants, non-

first order splitting will not be predicted by the N+1 rule. This happens when a proton couples with 

two or more sets of neighbouring protons with different values of J. 

2.2.4 NMR techniques 

The main spectroscopical techniques employed in this thesis are NOESY and Carr-Purcell Meiboom-

Gill (CPMG). A NOESY experiment will show correlation of protons through dipolar coupling, 

observed only in solid or partially oriented phases. The correlation shown is among protons close 

in space, no matter if that is because of bonds or not. The Nuclear Overhauser Effect (NOE) will 

show also a change in the intensity of a signal if the signal of a couple proton is saturated. To wit, 
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NOE occurs when the integrated absorption intensity of a spin changes if another nearby spin is 

saturated. The NO effect is based on the behavior in relaxation and can bring both reduction and 

enhancement of signals. The NOESY pulse sequence, using the NOE principle, consists of three 

pulses of π/2 of which: 

• the first one creates the transverse spin magnetization 

• the second one produces a longitudinal magnetization equal to the transverse component 

perpendicular to the pulse direction 

• the third pulse generates a transverse magnetization from the remaining longitudinal one 

After the third pulse, acquisition starts, observing the transverse magnetization as a function of t2. 

NOESY experiments also have a mixing period τm, initialised during the second pulse and kept 

constant throughout all the 2D experiment. The CPMG sequence allows the measurement of spin-

spin T2 relaxation times. The half-height linewidth measured in the experiment (d) at a defined 

resonance is related to T2* in this way: d=1/(πT2*) 

The pulse sequence, based on the spin-echo pulse one, procedes this way: 

• a 90° pulse generates transverse magnetization 

• a spin-echo period will determine the decay of the transverse magnetization. This period 

(delay-180°-delay block) is repeated for a n number of times 

• acquisition 

The CPMG experiment can measure conventional 1D spectra, where signal intensity are dependent 

on the spin-echo length. If the spin-echo period is short, all signals will have positive intensities, 

though when the period is increased, intensity will decrease, until the period is long that the 

intensities of signals become null. Due to this, CPMG experiments are particularly useful when 

broad signals have to be neutralized, such in the case of samples with protein and large 

polypeptides, like plasma or serum (Figure 1). In these cases, CPMG is applied with parameters 

that will prevent the total suppression of informative and sharp signals, while removing the broad 

bands which can interfere with later analysis. After acquisition, NMR spectra need to undergo a set 

of pre-processing steps which can greatly impact on the results of the following data analysis and 

thus need to be carried out carefully. These steps are reported in the following chapter (Chapter 

2.3). Both NMR and MS have recently reached great analytical power due to the improvement of 

multivariate statistical analysis, which is described in chapter 2.4. Dealing in fact with large 

datasets characterized by the many different factors, it is fundamental to have tools capable of 

dealing with this type of matrices and of carrying out complex data mining procedures. 
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Fig. 1: Serum samples analyzed by NMR spectroscopy employing either a 1D NOESY (red) or a 1D CPMG (blue) pulse 
sequence. Being samples characterized by a large amount of proteins, the CPMG sequence prevents the spectrum to 
be dominated by broad signals and allows the better identification of metabolites through the assignment of their 

sharp signals. 

2.3 NMR Data Processing 

Before both univariate and multivariate statistical analysis, pre-processing steps are necessary and 

fundamental for the preparation of data for the investigation. 

2.3.1 Phase and baseline correction 

Phase correction is a necessary step carried out after Fourier Transform. In effect, after FT, spectra 

tend to look dispersive and “out of phase”, thus they need to be adjusted until they look in pure 

absorption mode. This operation is generally done on specific softwares working with the NMR 

instrument itself, such as TopSpin, by a “click and drag” operation or automatically. There are two 

kinds of phase correction: the zero-order (PH0) and the first-order (PH1). PH0 applies a change of 

phase to all signals equally, whilst PH1 applies a phase change positively correlated to the distance 

from the reference signal. Baseline correction is usually also carried out, since there might be a 

problem in the calculation of integrals and in signal recognition if baselines are not flat. In addition, 

is hard to phase spectra with bad baselines. The distortion of the baseline is usually caused by a 

distortion in the very first FID-points. In all the studies here presented baseline and phase 

correction were applied on FT specta through the software TopSpin. 

2.3.2 Referencing, Alignment and Binning 

One of the first step in spectral processing is the referencing to the internal standard. In case of all 

the studies analysed in this thesis, the reference signal was the one for trimethyl-sylil-propionic 

acid (TSP), which will be put at 0.0 ppm and all other signals will be referenced to that. 



Chapter 2: Materials and Methods 

13 

 

Spectral data, though, as aforementioned, can be affected by numerous external variation and this 

could invalidate statistical analysis and its results. One of the first visible effects of external factors 

is in fact the variation in peak position from sample o sample even after the referencing all all 

signals to the chemical shift of a standard compound. The main factor causing this variation is the 

difference in pH between samples, since the chemical shift is dependent on the ionization state of 

the molecules in the sample. In addition, the concentration of metal ions, binding of metabolites 

with proteins and chemical exchanges can also cause variation in chemical shift values of specific 

metabolites, like citrate [Cloarec et al., 2005]. These differences in chemical shifts between 

samples can lead to false clustering or artificial discriminations after multivariate data analysis, 

especially in the case of urine samples. In fact, urine generally has a pH varying from 5.5 to 6.5, but 

this range can expand as far as 4.6-8.0 due to the health status, specific diets or drug treatments. 

In addition, the carboxylic acids, organic amines and amino acids that mainly compone human 

urine (citrate, hippurate, dimethylamine and trimethylamine, histidine, taurine and glycine) have 

chemical shifts highly dependent on the pH of the sample since the carboxyl and amino groups can 

be ionized, as described by the Henderson-Hasselbach equation. Another factor that can create 

inter-sample variations in chemical shifts is the variable amount of ionic species present in urine. 

This can affect ionic strength and molecular bindings and, thus, the value of chemical shifts for 

specific molecules, such as citrate, which can vary due to different divalent cation concentrations. 

Though adding specifical chemicals to bind the metal ions and avoid chemical shifts problems will 

create other issues, such as the formation of overlapping signals on the metabolites peaks, as for 

examples happens after the addition of EDTA to form comples with divalent cations (Ca2+ or 

Mg2+). This will make it hard to have the right information to be compared among spectra, since it 

would ruin the necessary bilinearity for the analytical approach and the model that can be 

calculated. The principle of bilinearity that is essential for the creation of a valid model: it is 

fundamental that every variable column contains information of the same specific signal, 

generated by the identical metabolite in each sample to have the statistical analysis work and give 

out real results. Recent studies have proved that the chemical shift values are positively correlated 

to ionic strength and negatively correlated to pH and that variations can be reduced to less than 

0.04 ppm if the pH is controlled and kept between 7.1 and 7.7 and the concentration of salt is less 

than 0.15 M. For this reasons, some researchers suggest to control this conditions by the 

employment of specific buffers [Xiao et al., 2009]. The main methods employed to reduce this 

external factors-induced variations still involve the integration of signals within so call bins or 
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buckets, spectral regions with a general width between 0.01 and 0.05 ppm (in most cases of 0.04 

ppm) [Cloarec et al., 2005]. As stated, these intervals will contain the spectral integral and 

information contained in that chemical shift region. The new variable contained in each bin could 

be the integral as the sum or average of spectral intensities or the maximum. Generally the 

average is chosen. One of the major drawbacks of these methods is the fact that spectral 

resolution is lost and, together with that, information on signals shape. In fact, the traditional 

dimension of bins (0.04 ppm) was considered to reduce matrices dimensions and to increase the 

tolerance for the chemical shifts intersample variations, though such bin width will combine in 

many cases different signals for separate metabolites that could change in accordingly in their 

concentration, overshadowing therefore real metabolic changes. In some cases, therefore, smaller 

buckets (0.004 ppm) were considered, though, variations of chemical shifts will still be visible and 

generating problems in subsequent data analysis [Xiao et al., 2009]. More advanced binning 

techniques are now also available, such as Adaptive-Intelligent binning or Gaussian binning, 

focused on a better peak definition identifying conserved minima throughout the spectra and 

applied those as bin edges. In this way it is hoped that signals are not divided into separate bins. 

Other techniques that work in this sense are peak-picking algorithms, capable, sometimes using 

libraries, of identifying peaks – generally after alignment – and dividing them into bins. Also in this 

case, each bin will contain the average, summed or maximum intensity [De Meyer et al., 2010]. In 

any way, though, the problem of loss of spectral information still remains in most of these cases. In 

order to avoid this, more advanced methods such as “dynamic time warping” (DTW) or 

“correlation optimized warping” (COW) were developed. These methods are though based on 

really complex computer calculations and could give out unrealistic relations between shift and 

width of signals, due to the fact that they employ local compressions or expansions and this could 

ruin one of the major character for signal identification. Other techniques find the most relevant 

signals in spectra, transforming each specturm into a list of signals and their characteristics, so to 

reduce the dimensions of the original dataset. In this case, the disadvantage is that some 

information about signal shape can again be lost and, in addition, it is difficult to define the specific 

parameters to be applied for the choice of signals and their alignment. Most modern method are 

instead based on the creation of specific algorithms capable of automatic alignment of spectral 

signals, with the least possible human effect and keeping most of the spectral information. These 

techniques started by using the genetic algorithm as the base for the alignment of spectral regions, 

partial linear adaptation for spectral alignment and a PCA-based algorithm to find the spectral 
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regions which were not correctly aligned. These methods were though not too efficient and 

lengthy calculus-wise, therefore Wong solve the problem of their speed by using a correlation 

engine employing a Fast Fourier Transform (PAFFT), using regular width spectral intervals, in order 

to align both individually and rigidly the regions. This method was later improved, though it still 

holds its intrinsic complexity, since it is always necessary to find the most relevant spectra, whilst a 

simple automated research could be easier [Savorani et al., 2010]. In most cases elucidated in this 

PhD thesis, binning with intervals of 100 points was employed, since it would fix the major shifts 

evident among samples. In some studies, though, the algorithm of icoshift was employed for signal 

alignment. This algorithm, developed by Savorani et al. [Savorani et al., 2010] employs an FFT 

engine to concurrently align all spectra and it is based on correlation shifting, as the name 

suggests. It is a fast algorithm for full-resolution alignment even of large datasets and in this way it 

is possible to keep spectral resolution and all signal information. It independently aligns each signal 

in the NMR spectra with reference to a target that could be a real signal or a calculated signal (i.e. 

Average or median) maximizing the cross-correlation in the spectral intervals defined, which could 

be of regular width or user-defined). Three steps form the icoshift algorithm: firstly the intervals 

are defined, then the cross-correlation is maximized through the employment of the FFT engine 

and finally signals are reconstructed into the aligned spectrum. Many elements in the algorithm 

can be chosen by the user, making this pre-processing step more valuable [Savorani et al., 2010]. 

Still, this method can have some drawbacks, especially in the case of complex spectra, with many 

signals overlapping and misaligned, such as in the case of urine. This can generate spectral artifacts 

or force the alignment of peaks from different metabolites, therefore ruining statistical analysis. It 

is thus necessary to evaluate which kind of technique to employ for misalignment problems in 

each specific case. 

2.3.3 Removal of unwanted regions 

Another fundamental step before data analysis is data reduction. Generally the region between 0.5 

and 9.5 ppm is considered for the analysis, in order to remove noise from the most upfield and 

downfield regions and the internal reference signal. In addition, the residual water signal (generally 

between 4.9 and 4.6 ppm) and the broad urea signal (5.5-6.1 ppm) are excluded from the analysis 

in order to focus on the real information of the spectra and the interesting metabolites.It is in fact 

desirable to remove both the uninteresting signals and the ones who could corrupt further analysis 

and retain quantitative accuracy. In effect, urea signals in urine can exchange with the solvent 

hydrogen, interfering with signal intensities and corrupting quantitation. Signals with similar 
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behaviour should be eliminated from the data matrix, too. Data reduction should be always carried 

out trying not to meddle with overlapping and nearby signals, which could actually be relevant [Dai 

& Eads, 2010]. 

2.3.4 Normalization 

Many variables from the type of experiment, the instrument and from biological characteristics can 

have an influence on NMR spectra and on signal intensity. One of the main factors of variation in 

this sense is sample dilution, which could change to experimental error in buffer addition or to 

different water content [Torgrip et al., 2008]. For example, urine will generally show aspecific 

concentration differences amongst all samples. Usually, the concentration varies in a range as big 

as half an order of magnitude, though in extreme cases, such in starving conditions or when some 

particular medicines are taken, the difference in dilution from normal urine could be as big as ten-

fold [Dieterle et al., 2006]. In this case, though the information on real differences among samples 

is masked by the dilution range and the statistical power of the analysis is greatly decreased. 

Specific metabolic changes due to metabonomic responses to determined factors will in effect 

influence only some metabolites and their signals and not the whole spectra, as dilution does. And 

these are the changes that are the object of metabonomics research studies. In order to have the 

real information on signal intensities differences among samples it is thus necessary to procede 

with a normalization step, in order to compensate for dilution changes and highlight the real shifts 

in metabolites' concentration [Dieterle et al., 2006]. The standard method employed for spectral 

normalization is the so-called integral normalization or constant/total sum normalization (CSN). 

This technique assumes that spectral integrals are mostly related to the total sample 

concentration: a linear series of concentrations in urine will result in a linear series of spectral 

integrals. This presumes that the shifts in individual metabolite concentration is way smaller than 

the global concentration shift. This type of normalization divides each bin or spectral point by the 

integral of the whole spectrum or one of its region, thus normalizing each spectra for the same 

integral. The cons of this method are mostly related to accuracy and robustness, since, as 

aforementioned, it is not always the case that the global 

integral is simply a function of dilution. Most of the 

normalization methods employ this general equation: 

where Ii(i) and I(i) are the intensities for variable i (bin, 

chemical shift point, wavelength, etc.) before and after 

normalization, respectively. k is an index of the spectral regions employed for normalization and jik 
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and juk are the upper and lower limits for k region for which the nth power of I(x) intensity is 

integrated. Integral normalization sets n equal to 1. Generally, metabonomics 1H-NMR urine 

studies will regard the spectral region between 0 and 1 ppm for integration, after the removal, as 

stated, of water and urea signals. Finally, each variable is usually multiplied by 100 in order to have 

a total integral for each spectrum equal to 100. Another method of normalization employed is the 

one on the creatinine signal. This technique derives from clinical chemistry, which generally 

normalizes the concentration of urine analites on creatinine concentration in human and animal 

studies. The hypothesis behind this method is that the creatinine clearance is constant, thus that 

this analite is an indicator of urine dilution. It will employ creatinine signals as references, thus in 

the general equation jik and juk will be for example the left limit of one of the creatinine signal (3.05 

or 4.05 ppm). In the field of metabonomics, some studies employed this normalization, though 

some biological and technical issues arise. The first thing that can occur is that metabolites having 

overlapping signals with those of creatinine will interfere in the correct determination of creatinine 

concentration. In addition, the chemical shift of creatinine at 4.05 ppm, especially, will change with 

pH values, thus a complex and robust algorithm for peak selection is needed. For what concerns 

biology, instead, it was proved that creatinine can actually change in concentration due to different 

metabonomic responses. It can in effect change due to the protein intake, but mostly in correlation 

to the skeletal muscle mass, having therefore generally a higher concentration in male urine. For all 

these reasons, this method is currently less and less employed in metabonomics. Similar “partial 

integrals” normalization techniques, though, can be employed and give good results. If it is known 

that some spectral regions are very stable, these could be taken into account for integral 

normalization. Other normalization techniques employ n equal to 2. In this case spectra are seen 

as vectors, so to correct different concentrations, the length of each vector is set to 1. This 

approach is employed in pattern recognition techniques, which assume that the concentration of a 

sample will influence the vector length, whilst a sample content will determine its direction. Many 

drawbacks, though, have been found in all types of integral normalization. For example, it was 

demonstrated that when samples contain a great concentration of one particular metabolite, 

either from normal metabolism or from the intake of specific xenobiotics, this normalization fails. 

Integral normalization could also negatively influence multivariate analysis and data correlation, 

for the reasions mentioned above, thus it was necessary to find new and alternative algorithms. 

One of the proposed methods is the so-called Probabilistic Quotient Normalization (PQN). This 

tehcnique normalizes spectra using the most probable dilution factors, by estimating them through 
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the analysis of the distribution of quotients between signal amplitude in the analysed spectrum 

and in a reference spectrum [Dieterle et al., 2006]. In this way, PQN does not create the artifacts 

that other techniques generated [Torgrip et al., 2008]. PQN assumes that most of the signals will 

have intensities correlated by dilution, but not every signal present in the spectrum. For this 

reason, the most probable quotient present between signals in a spectrum and a chosen reference 

spectrum is calculated and employed as a normalizing factor. This most probable quotient can be 

calculated in many ways. Generally, the most employed and robust way is to employ the median 

spectrum as a reference for the calculation of the quotient. Other ways are to use a spectrum for 

the database, an average spectrum, or the average/median spectrum calculated on a subset of 

spectra. It was though demonstrated that this choice is not as critical as expected, though the 

median is still the most advisable reference, especially in studies with few samples, which might 

greatly be affected by outliers. In addition, it is advised to employ an integral normalization before 

quotient normalization. For this reason, the general algorithm of PQN is thus divided: 

• Step 1: integral normalization, generally with a constant integral of 100 

• Step 2: choice or calculation of reference spectrum (generally median) 

• Step 3: calculation of all the quotients for each interesting variable in the test spectrum in 

relation to the reference spectrum 

• Step 4: calculation of the median of these quotients 

• Step 5: each spectral variable in the test spectrum is divided by this median 

PQN can be applied both on raw or on binned spectra, though spectral intervals without signals 

should be excluded from the calculation [Dieterle et al., 2006]. Probabilist Quotient Normalization 

was proved very useful for urine samples, though, in this thesis it will be shown that in different 

samples it is advisable not to employ it. This is especially the case of samples in which particular 

metabolites will arise or disappear during time, such in food shelf-life/stability studies. In these 

cases it is advisable to find molecules that are considered stable during storage and normalized all 

samples with reference to the signals of those metabolites, in order to find the real variations 

occurring in analites concentration during the selected shelf-life. Other methods of normalization 

employ an external or internal chemical reference or an electronic one. An external chemical 

reference employs either coaxial inserts with the reference or separate tubes for the compound 

and the reference. The assumption is that the signal area S is directly proportional to the number 

of nuclei (N) resonating at that frequency, correlated to the moles and thus the concentration of 

that molecule. Therefore S is proportional to the concentration [C] by a constant k' through the 
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eqaution S=k'[C]. This constant depends on various measurement factors such as the specific 

spectrometer or the temperature, though in this normalization it is assumed that the k' for the 

reference is equal to that of the compound, by employing the same conditions and, when possible, 

by measuring at the same time. In any case, the accuracy of the measure of k' cannot be better 

than 5% in most cases, though in particular cases where many precautions are taken, a precision 

equal or lower than 1% can be possible and achieved. New and more detailed equations can be 

now used to avoid these errors and employ more robustly external referencing, such as the 

Henderson equation. Anyhow, the advantage of external referencing is that there is no contact 

between the standard and the compound, so that there are no problems in reactivity, solubility, 

polarity or homogeneity between the compound and the reference chemical, as instead happens 

with internal referencing. Internal referencing, instead, consists in mixing a homogeneous solution 

of the reference and the test compound. The reference and the matrix are weighted and selected 

signals from both are integrated in the spectrum. The two, though, should have no chemical 

interaction between them or with the solvent, should dissolve completely, shoud give no slow 

exchange and their signals should not overlap (at least one per each). These conditions are hard to 

meet and that is way there is still no official quantitative NMR reference substance. 

Dimethylsulfone was proposed as an universal standard, since it is very useful for quantitation os 

water or polar soluble samples. In some cases, the residual proton signal from the deuterated 

solvent was proposed as a reference and assumed to be constant in dilute solution. Thus, this 

signal will be set to 100 arbitrarily and will be the internal standard, so other analytes will have 

their concentrations measured in relation to this. Others have proposed the used of the solvent 

signal as a reference for concentration. one of the problems in this approach is radiation damping, 

especially when the signal from the tested compound is much smaller than the solvent. Alternative 

strategies were now introduced and these methods propose a reference signal produced 

electronically. This method, also called ERETIC (Electronic Reference To access In vivo 

Concentrations) started as a way to avoid the introduction of a reference substance in in vivo NMR. 

In the ERETIC method, a pseudo-FID, is generated by an electronic device and transmitted into the 

probe during the reception of the signal. This electronic signal, having the same shape and 

frequency of a FID, will give out a specific peak in the spectra after Fourier Transform. The ERETIC 

peak then needs to be calibrated through this equation: 

[ERETIC]=k[R]SERETIC/SR 

in which [ERETIC] is the resulting concentration of the ERETIC, [R] is the concentration of a 
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calibration solution, SR is the area of the calibration peak, SERETIC the area of the ERETIC and k a 

value which considers the number of protons per chemical group. Thus, for this calibration, a 

sample with known concentration and similar to the test sample should be used. After the 

calibration of the ERETIC peak, any compound can have its concentration determined by the 

equation: 

[C]=k[ERETIC]SC/SERETIC 

in which [C] is the concentration of the analyte to be determed and SC is the area of the peak of 

the molecule to be quantified. To inject the ERETIC signals there are three ways: transmitting it 

through an additional antenna in the probe, through the secondary changel via a directional 

couple and finally by a gradient coil using capacitive coupling. It is clear though, that anyhow, it is 

necessary to have a particular spectrometer, equipped with three RF channels, one gradient output 

and a dual probe. In addition, this procedure is usually lengthy, especially when many samples are 

analyzed. For these reasons, it was recently proposed to generate the ERETIC mathematically and 

subsequently merging it into the spectrym during data processing in order to use it as a 

quantitative reference. The first step is scaling the artificial signal to a reference sample with a 

known concentration in order to attribute it a nominal concentration. The artificial signal is added 

then to the analyzed spectra at a chosen chemical shift. Its intensity is chosen so to consider the 

differences between acquisitions on the reference and on the analyzed samples, such as the 

number of scans, the receiver gain or the solvent. Originally this method was referred to as 

QUANTAS, QUANTification by Artificial Signal and it is now included in Bruker softwares called 

“ERETIC 2”. This method was proved to have similar accuracy (circa 5%) of the internal reference 

method [Giraudeau et al., 2014]. Recently, a work from Hochrein et al. [Hochrein et al., 2015] 

proposed a different approach for the normalization of NMR spectra of samples such as human 

plasma or urine. The new normalization pipeline described surged from the fact that in many cases 

there is unbiased regulation of metabolites in the commonly analysed human biofluids. This study 

proposed firstly to normalized spectra on the internal standard (i.e. TSP) in order to correct for 

eventual variations due to the performance of the NMR spectrometer in time, then unbalanced 

regulation is detected through Shapiro-Wilk test and manual data inspection. In case this occurs, a 

step of reference feature selection based on variance should be applied before employing 

normalization. This study also once again highlights that PQN is generally a good normalization 

procedure for human biofluid spectra, especially if the further step described is applied when data 

shows unbalanced regulation. As described, therefore normalization is a pre-processing step that 
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can be done in many different ways. The choice, though, of the normalization method can have a 

great impact on the outcomes of later statistical analysis. A lot of investigation and trial was done 

in this sense in the projects described in this thesis and in the years of my PhD study. A simple 

example of this trial and the impact of the normalization technique is shown in Figure 2. 

 

Fig. 2: The impact of normalization on the results of statistical analysis, all represented data were from studies carried 
out during the PhD. a) PCA calculated on a dataset normalized in four different ways: no normalization in black, PQN in 
red, constant sum normalizaiton in green and normalization on the area of the anomeric signal of a sugar in blue. The 
sample show very different values in the scoreplot depending on the method of choice. In this case, it was seen that 
the best method was PQN, as shown in subfigure b). c) Shows a PCA calculated on another dataset again normalized in 
four different ways; in this case the fourth method was to normalize on the signal of lactate, which was actually the 
best method for this dataset as shown in subfigure d).  

This proves how the choice of normalization technique to apply is a crucial step in data analysis 

and should be carefully thought of for each individual research study. Knowledge of the spectral 

features and on the sample characteristics are of great importance in this choice. For example, 

being sure that a concentration of a specific metabolite should stay constant in every sample can 

help, since the best option might be to normalize on the signal(s) of that metabolite. Moreover, 

knowing that some molecules should display higher or lower concentration in specific samples 

subgroups can help in validating the normalization procedure of choice. For all these reason, it is 

fundamental to consider all these aspects when normalizing the NMR dataset and not to stick with 

a one-size-fits-all approach. 
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2.3.5 Scaling 

While normalization is a row operation, meaning that it is done spectrum by spectrum, scaling is a 

column operation, performed on each spectral variable across all samples. Each variable in the 

matrix, thus each column, will undergo a certain operation. For example, mean-centering can be 

performed: the mean of each column can be set to zero, substracting the column mean by each 

column value. This a method commonly used in Principal Component Analysis (PCA) so that all the 

calculated component origin from the data centroid. In mean-centering data weighting will reflect 

variable covariance. In other cases, colimns can be divided by the standard deviation of the 

column, thus scaled to unit variance. In this way, the weighting reflects data correlation. Another 

form of scaling is Pareto scaling, dividing each variable by the square root of the standard deviation 

of the column. In this way values, will relate to their scores of order of magnitude [Craig et al., 

2006].  

 2.4 Multivariate Data Analysis  

2.4.1 Multivariate Statistical Analysis 

The non-target power of metabolomics techniques such as mass spectrometry or NMR 

spectroscopy is strongly relying on the development and improvement of multivariate statistics. 

Since MS and NMR generate large datasets, usually with a greater number of variables than that of 

individuals, more powerful and specific statistical tools were needed. Multivariate statistics is 

exactly the definition of this, since it is the method employed when many measures are done on a 

single object or individual (Fig. 3). These measurements are called variables, whilst the 

objects/individuals are refered to as observations. Thanks to the capability of modern computers 

to perform quick and difficult calculations, multivariate analysis (MVA) has been more and more 

employed. The origin of MVA relies in biological and behavioural studies and has then spreaded to 

all kinds of applications and research. Usually, as in all spectroscopical analysis, all variables studied 

with MVA are measured simultaneously in each sample and are correlated. This correlation will 

overlap with the underlying structure that needs to be studied, thus it needs to be untangled and 

simplified by MVA. Thus, exploratory MVA techniques exist, to reduce dataset dimensions and 

generate hypothesis on the analysed sets. Two main area of statistics are usually studied with 

MVA: the descriptive and inferential realm. In descriptive statistics, linear combination of variables 

are seeked and obtained; in interferential statistics MVA techniques, usually deriving from 

univariate ones, try to make inference from data to more general conditions and are useful 

because the significance level can be set by the researcher. 
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Fig. 3: Difference between univariate and multivariate statistical analysis. The first one is helpful when the number of 
measured variables is small and lower than the number of investigated individuals, whilst multivariate statistical 
analysis is useful for spectroscopical techniques, such as NMR, were many variables are simultaneously measured for 
each individual. 

Anyhow, the choice of the methods to use depends on the objectives of the investigation, which 

could be: 

• matrix simplification/data reduction: the need to make interpretation easier by simplifying 

the sample set without sacrificing valuable information to 

• grouping of similar objects or variables 

• study of the relationship among variables 

• prediction of variable values after the identification of their relationships 

• construction and testing of hypothesis 

The most common techniques applied can be divided into two main approaches: 

• UNSUPERVISED ANALYSIS: datasets are investigated without prior information on groupings 

and classes 

• SUPERVISED ANALYSIS: the model is generated on the basis of known classes 

One of the main techniques employed belonging to unsupervised analysis is PCA, whilst PLS or PLS-

DA are techniques in which known classes are fed into the algorithm to create a model. 

2.4.2 Principal Component Analysis (PCA) 

Principal Component Analysis a multivariate projection capable of classifying samples through their 

common traits. It is a technique useful for large complex data sets and it is usually applied at the 



Chapter 2: Materials and Methods 

24 

 

beginning of the statistical investigation, since it can give insight on the major information 

contained in the dataset and on how to reduce dataset dimension by extracting the orthogonal 

principal components describing data variation [Solanky et al., 2005]. PCA thus generates a 

summary of data which can graphically analyzed through the score and the loading plots. The first 

one represents in two dimensions the information underlying in the data set, summarizing the 

relationships between observation and investigating on the possible patterns, trends or outliers 

among data. Loading plot, instead, describes the variables mostly responsible for clustering or 

outliers observed in samples [Zira et al., 2010]. The two plots are thus complementary. PCA can 

help in the simultaneous analysis of complex datasets, such as NMR spectra, and give insight on 

the biochemical variation observed in metabolites and caused by physiological factors and changes 

[Solanky et al., 2005]. The principle behind PCA is a bilinear decomposition, where data will be 

represented in K dimensions (K equals the number of variable) and reduced to few principal 

components (PCs), the ones mostly responsible for data variance. This is done without prior 

knowledge of classes or clusters among samples, thus PCA is considered an “unsupervised” 

techniques. The PCs will thus be linear combination of the input variables (integrals of bins or 

spectral points, in the case of spectra) with their respective weights, so that the first principal 

component will represent maximum data variance and the next PCs will contain decreasingly sized 

values of variance. By plotting the first two or three PCs it is possible to concentrate original N-

dimension data into 2 or 3Ds. These scoreplots are helpful, as stated, to visualized any kind of 

pattern present in data and due to metabolic response. PCA will thus reduce the X number of 

variables into Y latent variables by a linear transformation. The first principal component, for 

example, will be calculated as: 

Y1 = a1,1X1 + a1,2X2 + ....+ a1,pX p
 

and the weight coefficients, the best correlation coefficients between X and Y, will be found 

maximizing the variance for the vector in equation a) by equation b).  

 

These coefficients are the LOADINGS. This way, variance of the first PC will be equal to: 
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in which ΣX is X covariance matrix.  

All other PCs are found similarly, knowing that in those cases variance should be lower and that all 

the coefficients for each component will give a sum of their squares equal to 1. Each principal 

component should be independent from the others. The number of obtainable PCs is equal to the 

number of variables in the original data matrix. Through software calculation, all Principal 

Components can be found, though a number of them should be selected to reduce the dataset and 

remove noise. Generally, the PCs representing 80-90% of variance are kept. Another criterion 

which could be employed is to keep the principal components with a variance bigger than the 

average. To interpret the results of the PCA, the three characters of each PC should be considered: 

• estimated explained and residual variance 

• score values, projects of the observations on the new axes 

• loading values, weight of the variables along that PC and correlation between variables 

Each variable has in fact a loading value for each PC. These loadings will define how much that 

variable is responsible for the definition of that PC and thus, of the possible differences among 

samples along that component. Loadings will be between -1 and +1, being geometrically the cosine 

of the angle between the variable vector and the principal component. The smaller the angle, the 

greatest the link between variable and component and thus, the loading. PCA is therefore a fast 

and powerful technique for data reduction and for initial pattern investigation and outlier removal. 

It is to be kept in mind, though, that any factors creating data variance will be seen in PCA. 

Consequently, even parameters of the experimental analysis (such as the solvent-suppression 

scheme) can influence data variance and distinguish among clusters of data. Hence, all types of 

variations present in data and not object of the study should be reduced or, at least, considered as 

possible factors inducing differences in data and excluded when found in a PCA [Potts et al., 2001]. 

When trends or patterns relative to specific sample classes are found in PCA, supervised MVA is 

the next step. In supervised analysis information on classes to which samples belong is included in 

the analysis. The reason for the performance of this type of MVA could be to correctly classify 

samples or to predict classes of new samples. Supervised data analysis is a two step process: firstly 

the model is trained on representative data and their classes, then the model is validate and 

classification success rate is calculated on new data. Examples of this type of technique are Partial 

Least Squares Regression (PLS), PLS Discriminant Analysis (PLS-DA) or Artificial Probabilistic Neural 

Networks (PNN). 

 



Chapter 2: Materials and Methods 

26 

 

2.4.3 Partial Least Squares Regression (PLS) 

Partial Least Square Regression or PLS is a regression, thus a method of statistical analysis 

employing an independent variable X and a dependent variable Y to highlight possible correlations. 

Regressions consist of two steps: calibration and validation. Calibration generates a multivariate 

model for X and Y through regression. A relation between the two matrix is searched, looking for 

the equation best describing it. A subset of sample needs to be used in this step. During validation, 

the previously created model is used to estimate new Y values given new X values. Usually a “test 

set validation” is employed, considering two sample sets: a training set and a test set for validation. 

PLS will firstly perform a PCA. In the PCA of the X matrix, a matrix T of scores and a matrix P of 

loadings is obtained, whilst for the Y matrix, a U matrix of scores and a Q matrix of loadings will be 

obtained. PLS uses the scores of Y to decompose X and calculate its loadings. It will the substitute Y 

scores with the X scores in order to decompose Y. In this way decomposition is mutually 

influenced. The process is iterated until it converges. The algorithm of partial least squares 

regression revolves around the intercorrelation between X an Y, reducing the variance of X not 

correlated with Y. PLS Discriminant Analysis (PLS-DA) is a multivariate classification method based 

on PLS. PLS-DA explains the maximum separation among defined sample classes, thus a previous 

knowledge of the class which sample belongs to is fundamental. The PLS regression in PLS-DA is 

done against a dummy matrix Y which accounts for the variations among the classes. The PLS-DA 

model is calculated and validated and then can be used for prediction of new samples. [Brindle et 

al., 2002] Classes separation is maximized and thus the research for the metabolites responsible for 

classification is simplified. 

2.4.4 ASCA  

Deriving from the univariate statistical technique of ANOVA, ASCA (ANOVA-Simultaneous 

Component Analysis) is a multivariate statistical tool developed for metabolomics investigations 

capable of dealing with the typical complex datasets. This method, developed by Smilde et al. 

[Smilde et al., 2005] merges the estimation of parameters from ANOVA with PCA, though removing 

the disadvantages of the two techniques and cosidering both the experimental design and the 

variables covariance [Jensen et al., 2005]. Considering a mean-centred data matrix X, with two 

main effects A and B – i.e. A is time and B treatment – which could interact and have different 

levels (A1, A2, A3, etc), then: 

X= A+B+AB+E 

in which E considers the information not assignable to A or B. The ASCA algorithm thus calculates 
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the level estimates for each effects, then performs a Simultaneous Component Analysis (SCA). The 

results of the SCA are the deviations of each sample for the specified effect (scores) and the 

weights of the variables for this effect (loadings). Moreover, the algorithm will also calculate the 

estimates for the effects interaction and its SCA. All the different SCA scores have rotational 

freedom and can thus be orthogonal, assuming that some rules are followed (i.e. Balanced design). 

In this way, the ASCA algorithm allows to investigate simultaneously both the single effect 

contributions and possible interactions. ASCA has been applied successfully in many scientific 

works, such as in psychology, but its peculiar design appears clearly useful in metabolomic studies, 

in which multiple effects impact on the data matrix (e.g. Time, treatment, individual response, 

etc.) and can interact with each other (Fig. 4). 

 

Fig. 4: Schematic representation of ASCA. Three factors impact on the data matrix (time, treatment and dose), 
together with their interactions (time and treatment, dose and treatment). All of these will be captured and included 
in the calculation of the ASCA model, together with information that cannot be described by any of these factors (E). 

2.4.5 MultiLevel Analysis 

In many studies involving both food items and human biofluids, different samples at different time-

points can be taken for each object or individual. This could be done, for example, to study storage 

and matrix stability, ripening of certain foods or human response to a treatment. Thus, in PCA or 

PLS model, sources of variation coming from the different time-points is confounded with the 

variation to be investigated. For this reason, multilevel PCA and PLS are considered now a good 

option when this type of research is carried out. Multilevel models will consist of submodels for all 

the different levels of variance. This means that intra-sample variation will be separated from inter-

sample variation [de Noord & Theobald, 2005]. 
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2.5 Peak Assignment  
A necessary step in spectroscopic analysis is the identification of the molecules present in the 

sample, know as signal/peak assignment. This is fundamental in order to understand the molecular 

profile of the sample (especially in non target analysis) and to find out which metabolites are 

responsible for any possible outlier, sample clustering or separation. This chapter focuses on NMR 

peak assignment, especially through the employment of the Chenomx software, which was greatly 

used in this research work. 

2.5.1 Assignment principles 

As described in chapter 2.2.3, signals in NMR spectra are characterized by some particular features: 

  Intensity: related to the molecule concentration and the number of protons. 

  Chemical Shift: due to the particular functional group and chemical environment. 

  J-coupling: correlated to types of bonds and adjacent protons. 

These features will characterize specifically the NMR spectrum of each particular molecule, 

allowing thus the assignment of that metabolite from the investigation of its spectral 

characteristics. The process of spectrum assignment can therefore be explained as a three-

step operation, which can be iterated for every signal: 

  signal identification; 

  determination of: integration, chemical shift, coupling constant and multiplicity; 

  assignment of the signal to the specific atom in the molecule [Banfi & Patiny, 2008]. 

2.5.2 Assignment through online tools 

Nowadays, online through websites such as NMRDB (nmrdb.org) it is possible to draw the 

structure of a molecule (Fig. 5) or upload its molfile and predict its NMR spectrum, in order to find 

out whether a specific metabolite has signals in the analysed spectra. After having drawn the 

molecule or uploaded the molfile, it is thus possible through this applet to gain the information on 

its NMR spectrum, including chemical shift, J-couping and signal multiplicity (Fig. 6). In this way, it 

is possible to verify if a molecule we expect to be in our sample is actually present in it. The 

opposite process, from the NMR spectra to the molecule structure, can be done using our 

knowledge on the NMR spectrum characteristics or employing online databases (i.e. HMDB 

www.hmdb.ca, BMRB www.bmrb.wisc.edu, etc.). Through these databases, it is possible, by listing 

the chemical shifts of our signals (Fig. 7), to get a list of possible molecule and thus compare their 

spectrum with ours. 
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Fig. 5: Molecule drawn on the editor on NMRDB. 

 

Fig. 6: Calculated 1D 1H-NMR spectrum for the drawn molecule and information on signals (chemical shift, multiplicity 
and J). 

As shown in figure 8, one can list the chemical shifts of the unknown signal and decide the peak 

tolerance before searching the possible molecular matches. This process can be done for MS 

spectra and also 2D-NMR spectra. A list of possible molecules is then showed (Fig. 8). In this way, it 

is possible to visualize their spectrum and match it with the one we are investigating on. 
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Fig. 7: 1D-NMR peak query on HMDB.  

 

Fig. 8: Results from a spectral list query on HMDB. 

2.5.3 Assignment through 2D-NMR spectroscopy 

Another way of assigning unknown signals is through the employing of 2D-NMR techniques. 2D-

NMR sequences employ multipulse sequences, in fact, to gain information that is not possible or 

not easy to obtain from 1D-NMR spectra. A simple 2D experiment will consist of a pulse sequence 

exciting the sample nuclei with two pulses or a group of pulses and then reseiving the FID. 

Acquisition is carried out for many times, incrementing evolution time (t1) between the two pulse 

groups. Acquisition time will be labeled as t2. 2D-NMR spectra will be thus composed by a stack of 

1D spectra, differing from each other by a slight change in the value of t1. Therefore, in each 

successive experiment the parameters are kept the same, expect for the pulse phase. Through the 
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Fourier Transform of the two time domains, it is then possible to draw a map of spin-spin 

correlations. The axes will be represented by the evolution frequency (f1) and the acquisition 

frequency (f2). In some cases, signals can appear at different frequency values in f1 and f2 in case 

their frequencies have changed during t1. For better understanding, usually the 2D spectrum is 

plotted with the 1D projections on the axes. A 2D-spectrum is characterized by two types of peaks: 

 diagonal peaks 

 cross-peaks 

Diagonal peaks represent the correlation of peaks to themselves and therefore are not very 

informative. Cross-peaks, instead, give information on the correlation of two different resonances 

by short inter-atomic distance or by the connection through a bond. In Figure 9 an example of a 

COSY spectrum for a molecule is shown, and the appearence of the signals for a specific group of 

protons is highlighed. 

 

Fig. 9: COSY 2D spectrum for the molecule shown on the right. The hydrogens circled will give the highlighted signals 
on the 2D plot. 

It can be seen that the highlighted protons are correlated to the signal at 1.7 ppm but not to the 

signal at 0.9 ppm. 

2.5.4 Assignment through softwares 

To facilitate the complex and time-consuming process of spectral assignment, nowadays specific 

softwares have been developed for the purpose. These softwares allow the upload of the NMR 

spectrum file and the matching with spectra of possible molecules, providing the possibility of 

composing the spectra of different molecules in order to best match the global and complex 

spectrum from our analysis. One of these softwares is Chenomx, also described in Annex 1. The 
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Chenomx profiler, in fact, allows both the identification and quantification of many molecules 

present in the software database in the NMR spectrum uploaded from the user's experiments.  

The Chenomx library contains hundreds of molecules together with their information regarding the 

molecular structure and their biological, clinical and industrial meaning and application 

(http://www.chenomx.com/). It is possible to automatically fit a compound by searching for the 

possible compounds on a certain chemical shift by right-clicking on the signal and then fitting 

automatically the best-fitting molecule by simply hitting the space bar. 

An example of a molecule fitting is shown in Figure 10, where dimethylamine was fitted on its 

singlet at 2.72 ppm. 

 

Fig. 10: Signal for dimethylamine fitted on Chenomx. 

It is then possible to combine signals from different molecules in order to best match the analysed 

spectrum, since experimental spectra are usually composed by the combination and 

superimposition of many different spectra (Fig. 11). This is particularly useful since many times 

some interesting features for sample discrimination are composed by many different molecular 

signals and it is usually hard to understand which metabolites are responsible for these signals. It is 

thus clear of the task of spectral assignment is made a lot easier through the employment of this 

software (or similar tools), especially since it is possible to adjust the signals to match the sample's 

pH and other experimental conditions. In this way a table of the assigned metabolites can be easily 

compiled and this is one of the basic features to show in research paper. Thus this makes this 

process faster and a lot more user-friendly. 
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Fig. 11: Composition of a complex signal on a urine spectrum. Through Chenomx it is possible to combine signals from 
different molecules to understand how the signal is composed. 
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CHAPTER 3: DEFINING FOOD QUALITY 

Food quality is a term that is defined by various factors: from the basic composition and safety, to 

technological and microbiological attributes, storage time and behavior, and nutritional value 

[Capozzi & Trimigno, 2015]. It is thus hard to define the concept of quality, though in recent years 

food and nutritional science and technology have tried to answer this question appropriately, also 

facing the ever-changing attributes of food quality. The first issue with food quality has been food 

safety, defined by the microbiological state of the food item, thanks to the discoveries of Pasteur. 

After the rapid growth of Western countries, though, more attributes were linked to food quality 

and the globalization added the influence of foreign materials, technologies and preparations in 

the equation [Giusti et al., 2008]. In the last decades, food quality and food safety have been 

extensively debated by the public, the industry and the scientific community due to many reasons: 

the occurrence of several food scares that have focused the attention of the public to safety issues, 

the increased interest of consumers in the specific methods of food production and the stricter 

requirements and demands of particular consumers' segments. It is evident how these factors 

influenced food production and processing and prompted the introduction of new food products 

with added values to the market, just as required by consumers [Grunert, 2005]. The presence of 

completely innovative food products and the new and greater awareness among consumers, 

producers and food experts, have caused the change from food quality towards the so-called “Total 

Food Quality” (TFQ). This new concept can be defined by these factors, that characterize all food 

products, both by the consumers' and by the scientific point of view: 

 Safety: the pre-requisite of food quality, the absence of toxic compounds, contaminants, 

pathogens or mycotoxins. 

 Sensory and organoleptic characters: such as color, texture, taste or aroma. 

 Nutritional value: the energy content and the composition in carbohydrates, lipids, proteins, 

essential aminoacids, vitamins and minerals and bioactive compounds, together with the 

concepts of digestibility, bioavailability and bioaccessibility of those compounds. 

 Functional properties: characteristics of specific ingredients in respect to processing. 

 Stability and service: resistance to deterioration during processing, storage, transportation 

and shelf-life. 

 Healthiness: capability of food components to have a beneficial effect on human health. 

 Psychological factors: such as price, ease of use or novelty. 
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Therefore, the TFQ principle is both an objective (scientific) and subjective (consumer-based) 

concept [Giusti et al., 2008]. Going through these attributes it is clear how they can deeply affect 

the human body and its wellness state. Scientific advancements and a growing number of 

epidemiological studies have recently proved the role of diet in disease control and prevention and 

the role of specific dietary compounds in the occurrence of particular diseases. It was also proved 

how economic development and globalization shifted lifestyle and diets with a great impact both 

on the nutritional status and on health of the population, especially in developing countries. 

Inappropriate dietary habits such as an high fat or high energy density diets and unhealthy 

lifestyles such as the decline in physical activity or the increased use of tobacco, have increased the 

incidence of chronic diseases, such as obesity, diabetes or hypertension and, as a result, an 

increase in premature death and in the burden on national health budgets. Since nutrition is 

stepping up as one of the main adjustable determinants of chronic disease and scientific evidence 

has shown how shifts in diet can affect strongly the health status, both in a positive or negative 

fashion, it is clear how the scientific community is increasingly interested in the development of 

specific nutritional patterns and foods that could be capable of preventing and/or helping in the 

treatment of the aforementioned chronic disease [FAO/WHO, 1990]. In effect, many scientific 

studies in the last decades have tried to assess the relationship between specific foods or diets and 

the health of individuals. These studies have also prompted the production of novel foods with 

added beneficial attributes, such as the presence of bioactive compounds. For the EU legislation, 

though, it is necessary to prove a specific health claim before having the capability to employ it on 

the label and advertising of a food product. The EU legislator, in effect, enacted the Regulation 

1924/2006, stating the necessary conditions for the use of health claims and the system of scientific 

evaluation employed on those. This Regulation states that a health claim is any claim saying, 

suggesting or implying a relationship between a food, a food component or a food category and 

health. Therefore there needs to be scientific evidence for this relationship demonstrating 

conclusive evidence of cause and effect [Nocella & Kennedy, 2012]. Only pre-approved claims can 

be used on food products and in any marketing related material. This is to prevent misleading of 

consumers; in effect, claims should be worded in a way that is understandable by the average 

consumer, though there is still no reference on how this understanding should be verified. In 

addition, the EU regulation, sets boundaries on the type of food items that are allowed to use 

health claim depending on their nutritional profile (i.e. high saturated fat or sodium content), 

though even in this case there is no well-defined agreement [EC Regulation No 1924/2006; 
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Lähteenmäki, 2013]. 

As stated, there is a lot of interest in the development of bioactive novel foods and in the 

investigation of their actual benefits on the human body. To do so, though, firstly the actual quality 

of the novel product has to be assessed in comparison to non-enriched counterparts (i.e. stability, 

shelf-life, etc.) and secondly the actual effect on humans has to be proved. For this reason, 

nutritional studies on health claims are long and expensive. New sciences like metabolomics are 

helping the boost of this kind of assessment thanks to the holistic approach they bring (see 

Chapter 3.1) and the fact that techniques like NMR are capable of giving insight on many different 

aspect of a sample like a food product (see Chapter 3.2). An example of the complexity of the 

definition of food quality and the helpfulness of the metabolomic approach is described in Chapter 

3.3. 
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3.1 Describing food quality through metabolomics 

F. Capozzi and A. Trimigno (2014): “Using metabolomics to describe food in detail”.  

Book: “Metabolomics as a Tool in Nutrition Research” by Brennan, L., & Sebedio, J.-L. - Woodhead 

Publishing, November 2014 – ISBN: 9781782420842.  
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Abstract 

Food science has been recently more and more linked to other scientific fields such as medicine, 

veterinary, agriculture, biology and genetics. Metabolomics can aid in linking those different 

sciences in the assessment of how food quality might impact on health, while keeping into account 

that food quality changes as the consequence of the influence of human and environmental 

perturbations on the food metabolome. This chapter summarizes some metabolomics applications 

in the evaluation of food quality as affected by genetic selection and modifications, different 

growing (e.g., organic vs. conventional) and rearing conditions, geographical origin, food 

manufacturing protocols, up to assess the effect of digestion on the nutrients availability. 

Keywords 

Foodomics, geographical origin, organic food, digestion, metabolites profile, NMR spectroscopy, 

Mass spectrometry, multivariate data analysis, nutri-metabolomics 

Introduction 

Metabolomics is a relatively new 'omic' science aiming at describing in a snapshot the complete 

set of metabolites constituting a defined biological system. This new omic approach has recently 

become widespread in many research areas, such as the study of human pathologies and diseases, 

drug discovery and toxicity assessment, human nutrition and plant analysis. This was possible 

thanks to technological innovations which nowadays allow the high throughput separation and 

identification of small molecules even from complex biological matrixes. These techniques are 

mainly referred to be mass spectroscopy and high-resolution nuclear magnetic resonance 

spectroscopy, together with some separation methods like capillary electrophoresis and 

chromatography (gas -GC-, liquid -LC-, and ultra high-pressure or high-performance liquid -UPLC 

and HPLC chromatography). Together with these scientific advances, the creation of databases, 
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containing information on spectral data and the corresponding signal assignments, has been a 

powerful input for the progress of metabolomics in various fields. Metabolomics, together with 

genomics, transcriptomics and proteomics, provide the holistic definition of food according to the 

new foodomic approach. Foodomics has been defined as “the discipline that studies the food 

domain as a whole with the nutrition domain, applying the same advanced omics technologies to 

different samples, and integrates all results in order to have an overall vision allowing the 

improvement of health and well-being” (Capozzi et al. 2013). Data obtained through the 

techniques described above are usually then interpreted through statistical and multivariate data 

analyses in order to have robust and comparable information, since generally it is necessary to 

classify samples in separate categories. Thanks to the possibility to identify a great range of 

metabolites with the aforementioned analytical techniques and to the potential of modern 

computers to handle a high quantity of data for multivariate analysis, this kind of approach is now 

widely applied in every life science. Food science has been recently more and more linked to other 

scientific fields such as medicine, veterinary, agriculture, biology and genetics. Metabolomics can 

aid in linking those different sciences in the assessment of how food quality might impact on 

health, while keeping into account that food quality changes as the consequence of the influence 

of human and environmental perturbations on the food metabolome (Figure 1). For this reason 

metabolomics applied to the exploration of possible links between food quality and the nutritional 

value has become one of the main branches in foodomics. More and more studies, in effect, are 

carried out to investigate on the sources of variance for the quality of food: e.g., how genetic 

modification of plants can alter the quality of plant food or their derivatives, or how it is possible to 

assess the origin of a determined food by looking at its metabolic profile. These studies are of 

increasing importance in our society since consumers are more concerned about food quality, 

often associated to its origin, and the consequences of food transformation on the nutritional 

value of the product. Digestibility, as well, is an important attribute of food quality, and its 

assessment by metabolomics is of paramount importance for the development of foods tailored to 

fragile categories of population like infants and elderly. Thus, being able to thoroughly prove food 

quality is a key tool for food producers and factories and for food consumers. This chapter will 

highlight some of the key studies made in this field and the future possibility for metabolomics in 

the evaluation of food quality. 
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Fig. 1: The metabolomics approach using 1H-NMR spectroscopy. After sample collection, NMR spectra are acquired 
and subjected to multivariate analysis. As in the illustrated case, usually spectra do not show much difference at first 
glance. Thus, statistical tools such as multivariate data analysis techniques (PCA, PLS, Cluster Analysis) are employed to 
emphasize possible differences. Using those methods it will be then possible to classify the samples according to their 
different origin and characteristics. 

Assessing the effect of genetic selection 

In recent years a lot of research has focused on the production of genetically modified (GM) or 

transgenic foods, produced by DNA recombination in order to obtain favourable features. These 

new products, however, are still seen as potentially harmful by consumers, and further and 

modification analysis increasing their understanding and investigating their quality and possible 

unintended effects is necessary. Metabolomics is starting to be employed in this sense, thanks to 

its great potential of investigation by high throughput techniques, and many studies have now 

been published. Unintended effects in GMs production can be various: they can have an impact in 

food quality and safety or not, they can be predictable or not; therefore, research is needed to 

prove the nature of these possible effects. The “substantial equivalence” (SE) of GMs to their wild 

type counterpart thus necessitate to be proved by assessing the variation of the overall 

composition of the modified genotype with respect to the original wild type organism and by 

comparing such differences with those naturally occurring within the only wild type category. This 

concept means that two plant variants (GM and not) are similar enough to be considered the 
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same, and then they can be treated in the same way for what food safety concerns. Therefore, no 

unintended or different phenotypical variances should be found in GMs crops, especially variations 

that influence negatively their nutritional profile or can create harmful effects on consumers (Kok 

et al. 2003). It is clear how metabolomics can help in this assessment, generating full metabolite 

profiles for GM products and comparing them to their original, unmodified, counterparts. A study 

from Fraser et al. (2007) examined normal and GM tomatoes with an over expression of phytoene 

synthase1 through different approaches (protein activity, gene expression, physiological 

parameters and metabolomics). This is one of the most thorough studies, employing many 

different techniques: Real-Time PCR for mutant gene expression, enzyme assays, HPLC (to identify 

carotenoids, isoprenoids, flavonoids and phenylpropanoids), and GC-MS. Metabolic profiles were 

obtained through HPLC and TOF-MS, showing that transgenic tomatoes were different from the 

normal ones by various aspects. It was observed that the whole ripening process was different in 

the transgenic lines. Metabolomics was useful to assess the specific changes occurring at the 

different ripening stages, therefore linking gene expression and enzyme activity to the actual 

altered production of metabolites, and allowing to understand even unexpected metabolic 

deviations caused by the different genetic profiles of those tomatoes. Having data from genomic 

and enzymatic assays, it was also possible to link the results from those analyses to the 

metabolomics information, to get a whole panoramic view of what is really happening in the food 

product after genetic insertion and modification. Another study by Levandi et al. (2008) found 

differences between transgenic and conventional maize through CE-TOF-MS and subsequent 

spectral and statistical analysis (PCA and univariate statistical tests). As usual, the best extraction 

and analytical conditions were assessed at first and, after the optimization, metabolites in the 

maize samples were identified thanks to literature and metabolite databases. Peaks areas were 

then compared between GM and wild type samples, to see which molecules were over- or under-

expressed in the former type of maize. Twenty seven metabolites were detected and identified in 

the samples and just two among these were found to have statistical predictivity to differentiate 

the two types of crops. In effect, L-proline-betaine and, even more, L-carnitine, were typical of GM 

maize; this was interpreted as a signal of alteration in the fatty acid and glucose metabolism, since 

L-carnitine is employed in those pathways enhancing the transport of fatty acids in mitochondria 

for their subsequent oxidation and increasing glycogen storage, respectively. Further multivariate 

PCA confirmed these compounds as discriminating between the two classes. It is now clear how 

this kind of approach can provide robust results, since different statistical analysis techniques, both 
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supervised and unsupervised, are In recent years a lot of research has focused on the production of 

genetically modified (GM) or transgenic foods, produced by DNA recombination in order to obtain 

favourable features. These new products, however, are still seen as potentially harmful by 

consumers, and further analysis increasing their understanding and investigating their quality and 

possible unintended effects is necessary. Metabolomics is starting to be employed in this sense, 

thanks to its great potential of investigation by high throughput techniques, and many studies have 

now been published. Unintended effects in GMs production can be various: they can have an 

impact in food quality and safety or not, they can be predictable or not; therefore, research is 

needed to prove the nature of these possible effects. The “substantial equivalence” (SE) of GMs to 

their wild type counterpart thus necessitate to be proved by assessing the variation of the overall 

composition of the modified genotype with respect to the original wild type organism and by 

comparing such differences with those naturally occurring within the only wild type category. This 

concept means that two plant variants (GM and not) are similar enough to be considered the 

same, and then they can be treated in the same way for what food safety concerns. Therefore, no 

unintended or different phenotypical variances should be found in GMs crops, especially variations 

that influence negatively their nutritional profile or can create harmful effects on consumers (Kok 

et al. 2003). It is clear how metabolomics can help in this assessment, generating full metabolite 

profiles for GM products and comparing them to their original, unmodified, counterparts. A study 

from Fraser et al. (2007) examined normal and GM tomatoes with an over expression of phytoene 

synthase1 through different approaches (protein activity, gene expression, physiological 

parameters and metabolomics). This is one of the most thorough studies, employing many 

different techniques: Real-Time PCR for mutant gene expression, enzyme assays, HPLC (to identify 

carotenoids, isoprenoids, flavonoids and phenylpropanoids), and GC-MS. Metabolic profiles were 

obtained through HPLC and TOF-MS, showing that transgenic tomatoes were different from the 

normal ones by various aspects. It was observed that the whole ripening process was different in 

the transgenic lines. Metabolomics was useful to assess the specific changes occurring at the 

different ripening stages, therefore linking gene expression and enzyme activity to the actual 

altered production of metabolites, and allowing to understand even unexpected metabolic 

deviations caused by the different genetic profiles of those tomatoes. Having data from genomic 

and enzymatic assays, it was also possible to link the results from those analyses to the 

metabolomics information, to get a whole panoramic view of what is really happening in the food 

product after genetic insertion and modification. Another study by Levandi et al. (2008) found 
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differences between transgenic and conventional maize through CE-TOF-MS and subsequent 

spectral and statistical analysis (PCA and univariate statistical tests). As usual, the best extraction 

and analytical conditions were assessed at first and, after the optimization, metabolites in the 

maize samples were identified thanks to literature and metabolite databases. Peaks areas were 

then compared between GM and wild type samples, to see which molecules were over- or under-

expressed in the former type of maize. Twenty seven metabolites were detected and identified in 

the samples and just two among these were found to have statistical predictivity to differentiate 

the two types of crops. In effect, L-proline-betaine and, even more, L-carnitine, were typical of GM 

maize; this was interpreted as a signal of alteration in the fatty acid and glucose metabolism, since 

L-carnitine is employed in those pathways enhancing the transport of fatty acids in mitochondria 

for their subsequent oxidation and increasing glycogen storage, respectively. Further multivariate 

PCA confirmed these compounds as discriminating between the two classes. It is now clear how 

this kind of approach can provide robust results, since different statistical analysis techniques, both 

supervised and unsupervised, are employed corroborating each other. A later study on GM maize 

by Leon et al. (2009), employing FT-ICR-MS and CE-TOF-MS followed by PLS-DA, confirmed L-

carnitine as a discriminating marker between GM and conventional maize, and highlighted at least 

other 9 metabolites (mainly from the amino acids pathways) able to distinguish between the two 

types of maize. At first, again, it was necessary to perform an optimization of the analytical 

parameters. In this case, after peak identification, a supervised statistical method, PLS-DA, was 

employed to discriminate among samples, still confirming the results coming out from the previous 

studies, even by exploiting different statistical techniques to increase the robustness of the results. 

Other studies focused on GM wheat vs. conventional wheat (Baker et al. 2006; Baudo et al., 2006) 

showed no clear difference between the two types of wheat, whilst proved a higher differentiation 

due to the environmental and farming conditions. The first example (Baker et al. 2006), employed 

NMR analysis combined with PCA and GC-MS coupled with Analysis of Variance to study the 

metabolome. Conversely, the study from Baudo et al. (2006) mainly focused on transcriptomics 

analysis. Combination of different approaches (metabolomics and complementary traditional 

genomics and transcriptomics techniques) provided more information on how the genetic 

variation can cause effects on the phenotypical behaviour. Another study by Garcìa-Villalba et al. 

(2008) was focused on the comparative analysis between transgenic and conventional soybean 

through CE-ESI-TOF-MS. At first, the optimal conditions for extraction of metabolites from soybean 

samples were assessed, then the best separation and CE-UV parameters were established. 
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Afterward, metabolites were identified and quantified, using the best possible combination. Some 

differences among the samples were found: GM soybean showed greater concentrations of some 

metabolites like liquiritigenin, p-coumaroyl glucoside, naringenin 7-O-glucoside and 6-

methoxytaxifolin; conventional soybean, instead, seemed to contain larger amounts of proline, 

histidine, asparagine, gluconic acid and trihydroxy-pentanoic acid. The main difference, though, 

was found to be 4-hydroxy-L-threonine, found only in conventional soybean and only this 

difference has been ascribed to the genetic modification. Again, this metabolomic study allowed 

the identification of differences in the metabolic profiles of crops, allowing the drawing of the 

biochemical modifications and the identification of the possible control mechanisms of the 

metabolic pathways. In this specific case, the amino acids and derivatives showing different 

concentrations between GM maize and the corresponding wild type counterpart were sharing a 

common precursor. Therefore, it was possible to verify that the 5- enolpyruvylshikimate-3-

phosphate synthase, differentiating the transgenic line, affected the synthesis of aromatic amino 

acids. Picone et al. (2011 a) studied the possible substantial equivalence of GM grapes through a 

metabolomic approach employing NMR spectroscopy. The spectral matrix was subjected to 

multivariate statistical analysis (PCA) in order to project the overall variance of all wild type and 

transgenic grapes on the orthogonal components of a metabolomics space. Subsequent ANOVA 

was applied to the first 20 PC scores, and it was found that only the first two principal components 

were responsible for the discrimination between wild type and GM grapes. Studying the respective 

PC loadings, it was clear that, rather than a few metabolites, the whole metabolic profile was 

responsible for a clear differentiation between GM and conventional grapes. Among the spectral 

regions, however, the most affected were those referring to aromatic molecules (tryptophan and 

indole derivatives), with pathways expected to be affected by the genetic modification. 

Surprisingly, the region with organic acids also showed significant differences, thus pointing out 

that the ripening process could also be affected by the genetic insertion. Interestingly, only one of 

the two studied cultivars showed a discriminant metabolic profile between GM and wild-type, 

being larger the inter- than the intra-category variance. In this case, it was demonstrated that the 

effect of the genetic modification was modulated by the host genotype. This metabolomics study 

proved to be an effective tool in investigating the substantial equivalence, since the whole plant 

metabolic profile was being analyzed and quantified and not just some pre-selected molecules. 

NMR spectroscopy and multivariate data analysis (unsupervised in this case), can give robust 

results in this sense. An untargeted approach in metabolomics is fundamental as a preliminary 
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analysis for the assessment of pros and cons of new products. The studies mentioned above 

demonstrate how metabolomics reveals even the unexpected effects caused by a genetic 

alteration. This is not always predictable by taking into account only the specific modified pathway, 

because cascade effects might occur, generated by feedback regulations. Thanks to the 

metabolomic approach, which allows to analyse the whole metabolic profile, it is possible to 

detect all variations, including those which may not be captured by target analysis. 

Assessing the effect of different growing and rearing conditions  

a. Organic vs. conventional 

Many studies have been performed trying to assess differences in the metabolome of organic or 

conventional products. In effect, in recent years there has been an increasing request for organic 

foods, mainly due to consumer concerns about food quality and safety and the resulting 

perception that organic products are safer and healthier than the conventional counterparts. 

Nowadays, many unprocessed and processed organic food products are present on the market, 

and numerous studies have been so far addressed to compare the actual composition and the 

nutritional value of these food matrices. Organic foods are considered of higher quality than the 

one conventionally produced, since consumers believe that they contain lower levels of pesticide 

and chemical fertilizers, whilst they possess higher level of nutrients and beneficial 

phytochemicals, together with better sensory characteristics (Williams et al., 2001; Harper et al., 

2002; Makatouni et al., 2002). On the contrary, however, organic products may be more 

contaminated by microorganism and, as a consequence, by microbial products such as biogenic 

amines, as a result of the application of manure and the reduced utilization of antibiotics and 

fungicides.. Organic products are usually sold at higher prices in comparison to their conventional 

counterparts and this generates the risk of fraud. Therefore, again, proper analytical techniques 

are required to assess the true organic origin of these foods. Usually, traditional analyses were 

carried out in order to compare organic and conventional food products, these techniques 

including target analyses of specific macro (sugars, lipids, proteins) or micronutrients (minerals, 

vitamins, bioactive compounds, etc.). Other studies have been focused on the analysis of stable 

isotopes of light elements (H, C, N, O, S) in order to verify, for example, the soil of cultivation and 

fertilizers used: synthetic nitrogen fertilizers, banned in organic farming, have, in effect, lower δ 

15N values, whilst manure, used in organically grown crops, has higher content of this isotope. 

However, these techniques resulted mainly in unreliable data for the classification of farming 
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procedures, unless they are combined with other multivariate approaches (Capuano et al., 2012). 

Untargeted screening is therefore promising for the achievement of robust and unbiased results. 

Metabolomics is clearly one of the best applicable strategies in order to identify and quantify 

molecules for the comparison of different products. Since the different farming procedures and 

practices might influence cellular processes and plant response, a metabolomics approach should 

be able to detect a change in the resulting plant metabolites (Wishart, 2008). Mass spectrometry 

(MS) coupled with other separation techniques has been widely used in recent studies with the 

aim of discriminating between organically and conventionally grown food crops. An untargeted 

study carried out by Chen et al. (2010) proved discrimination of organic or conventional grapefruit 

samples (Citrus paradisi cv. Rio Red) analyzed by mass spectrometry with two different separation 

techniques: FI-ESI-TOF-MS (Flow Injection ElectroSpray Ionisation Time-Of-Flight Mass 

Spectroscopy) and FI-ESI-IT-MS (Flow Injection ElectroSpray Ionisation Ion Trap Mass 

Spectroscopy). Data obtained from mass spectrometry were then analyzed by ANOVA and PCA. 

Year of harvest was the first source of variance among spectra, whilst farming mode was the 

second one. This study, though, was not capable of identifying metabolites giving rise to those 

differences, but the metabolomics approach pointed out that a metabolic modification exists 

between the grapefruit cultivated with different protocols. Zorb et al. (2006) found out that it was 

possible, through GC-MS analysis, to discriminate between dynamic, bio-organic and conventional 

wheat grains looking at only 8 out of 52 different detected metabolites (amino acids, sugars, 

alcohols, phosphates, nucleotides and organic acids). Wheat grains extracts were analyzed by GC-

MS. Tukey's test was then applied to the concentrations of 52 metabolites. Seven replicates were 

made and the values were accepted only when the difference between those replicates was below 

5%. Since only 8 metabolites were found to be differently contained in grains according to their 

cultivation practices, it was concluded that the farming does not have much impact on the 

nutritional value of the products, since sugar and sugar alcohols, were not different in their 

content. In addition, there was no sign of limited photosynthesis in organic plants. In 2010, Röhlig 

et al. investigated the influence of the farming system on the metabolome of maize kernels, 

showing that the main differences were due to cultivars and environmental factors, whilst only 

minor variation was caused by the farming system (organic vs. conventional). The molecular GC-MS 

profiles of organic and conventional maize were compared by ANOVA and PCA. Before PCA, data 

were scaled by the standard deviation of each variable in order to reduce the influence of 

abundant metabolites. A clear separation based on the metabolic profiles among the three 
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analysed cultivars resulted by PCA on the first two components, accounting for a total 39-59% of 

expressed variance. Within each cluster, organic productions were slightly separated from 

conventional ones. ANOVA, , applied to the relative amount of each analyte, revealed that 29% of 

125 compounds so far considered in such univariate analysis were capable of discriminating 

between locations/cultivation systems. The main differences were found by ANOVA in the 

concentrations of myo-inositol, malic acid and phosphate, which showed higher levels in the 

organic crops. Myo-inositol, for instance, is an important metabolite in many biochemical 

pathways, intervening in stress response and osmoregulation. Its increased expression in organic 

kernels, though, has not yet been explained. Phosphate, instead, is very important for plant growth 

and has been proved to change in various organically grown plants, depending on their farming 

procedures and protocols (i.e. organic fertilization) (Steiner et al., 2006). A more recent study 

carried out by Bonte et al. (2013) by GC-MS profiling, performed on 11 wheat cultivars grown in 

controlled conditions, directed to compare conventional vs. organic system, found significant 

differences in the concentration of specific metabolites in winter cultivars. Only a few metabolites 

were identified: myo-inositol, in particular, and malic acid, like in the study from Röhlig et al., were 

particularly high in grains from the organic crops whilst some free amino acids (such as aspartate, 

asparagine, alanine) resulted having a higher concentration in the conventional farming system. 

As stated, mass spectrometry is usually employed in metabolomics studies. Ambient mass 

spectrometry was recently found to be a very useful tool, capable to generate a specific fingerprint 

for low molecular weight metabolites (<1kDa). This type of MS requires very little sample 

preparation and does not necessitate any kind of separation prior to spectral acquisition. Newly 

designed ambient MS techniques are DESI (desorption electrospray ionization), ASAP (atmospheric 

solids analysis probe) and DART (direct analysis in real time). A pilot study tried comparing 

tomatoes and sweet bell peppers, either organically or conventionally grown, through the use of 

DART and TOFMS (Time Of Flight Mass Spectrometry) analysis (Novotnà. et al., 2012). This 

research demonstrated that this new technique might be applicable for a rapid assessment of plant 

samples and showed a reasonable differentiation of samples due to the type of farming system, 

though it assigned a greater impact on the metabolic fingerprint given by the production year. 

Models generated through PCA and subsequent LDA on those data, however, were not completely 

reliable since a higher number of samples would be needed to generate a more robust 

classification (Novotnà et al., 2012). Very few researchers have been carried out studies on food 

processed from organic versus conventional farming. One of these studies concerned ketchup 
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(Vallverdù-Queralt et al., 2011) and demonstrated, through LC-ESI-QqQ (Liquid Chromatography 

coupled to MS in tandem mode) and statistical analysis (ANOVA), some differences in the 

composition of the organic or conventional products. The former showed significantly higher 

amounts of caffeoylquinic and dicaffeoylquinic acids, caffeic and caffeic acid hexosides, kaemp-

ferol-3- O-rutinoside, ferulic-O-hexoside, naringenin-7-O-glucoside, naringenin, rutin and 

quercetin. The latter products, instead, contained typical compounds (glutamylphenylalanine and 

Nmalonyltryptophan) that were not found in the organic ones. The authors concluded that the 

metabolites found in organic ketchups are due to secondary metabolism of plant, related to its self-

defence mechanisms. A further step in the application of metabolomics concerns the study from 

Laghi et al. (2014) employing NMR spectroscopy to assess the differences between red wines 

obtained from either organic or biodynamic grapes. Principal component analysis was applied to 

NMR spectra and showed a great variation due to the vinification protocol (biodynamic vs. 

organic). Tyrosine-related metabolites seemed to be the major source of distinction, exhibiting a 

higher concentration in organic wines. The second PC (principal component) showed the effect of 

vineyard management causing a greater concentration of resveratrol and a lower amount of trans-

caffeic acid in organic grapes. Further cluster analysis showed again a marked difference between 

samples due to the vinification procedure and, to less extent, to the vineyard management. Also 

ANOVA applied to NMR spectra pointed out that the concentration of trans-caffeic acid was higher 

in biodynamic wines, whilst containing a lower concentration of glutamine. This inverse correlation 

was described by Megarejo et al. (2010), to wit that some polyphenols might target biogenic 

amines producing enzymes. This was further investigated by studying the spectral differences in 

wines from successive years, proving that switching organic to biodynamic farming modifies the 

phenylpropanoid pathways, thus corroborating the hypothesis that the decrease of glutamine 

concentration is related to an antagonistic effect of polyphenols biosynthesis. The application of 

the metabolomic approach has been thus proved to be helpful in the investigation of the possible 

differences between organic and conventional food products. Mass spectrometry, coupled to 

newly advanced techniques, has been particularly exploited, but also NMR spectroscopy was found 

to be useful in those studies. In this way it is feasible to highlight the patterns of metabolites 

responsible for the discrimination between the different cultivation protocols, and give proof of 

possible distinctive characteristics in organically produced foods that could be investigated by 

nutritionists and food scientists when looking for additional positive properties. Whilst univariate 

statistical analysis is not able to provide a clear set of diagnostic metabolites differentiating organic 
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from conventional products, multivariate data analyses, such as PCA, provides combinations of 

compounds useful for classification, suggesting that patterns of metabolites rather than single 

molecules may be used as biomarkers of quality. 

b. Geographical origin 

Another important parameter for food quality is the geographical origin, which becomes 

fundamental for some products. In effect, a particular geographical origin might give an added 

value to a product in comparison to others, thus generating the necessity of protecting the 

denomination of origin of some particular foods. The added value of such protected products has 

created the increased production of fraudulent fake food products, sold as food with protected 

denomination of origin. It has thus become essential to be able to assess the authenticity of these 

counterfeit products to confirm this attribute of food quality. Metabolomics has been proposed as 

a new technique to aid the certification of geographical origin, to select some suitable metabolic 

markers for the substantiation of the claim. Many recent studies have employed techniques based 

on mass spectrometry (MS) coupled with statistical and multivariate data analysis in order to be 

able to assess metabolic differences in food products related to their geographical origin. Most of 

the researches is made by using an approach based on Induced Couple Plasma coupled to mass 

spectrometry (ICP-MS), combined with multivariate data analysis, such a PCA, canonical or linear 

discriminant analysis, in order to classify samples according to their origin. This approach was 

applied, for example, to honey (Chudizinska et al., 2010), olive oil (Benincasa et al., 2007), paprika 

(Brunner et al., 2010), tomatoes (Savorani et al., 2009; Mallamace et al., 2014) and tomato 

products (Lo Feudo et al., 2010). Meat quality is very important both for health and for nutritional 

reasons and metabolomics studies demonstrate how a great variation can be seen in samples from 

different geographical origin. This can also be exploited for certifications of origin that are now 

requested in many countries, either for security and for quality assessment aims. Jung et al. (2010) 

investigated the effects of geographical origin on the metabolome of beef by applying 1H-NMR 

spectroscopy. PCA and OPLS-DA were employed to establish whether some metabolites were able 

to discriminate between beef from different geographical regions (Australia, Korea, New Zealand, 

USA). At first, PCA was carried out in order to test, in an unsupervised manner, if there were 

differences among the different types of samples showing, indeed, a separation among the four 

groups. Thus, the supervised OPLS-DA approach was used to maximize these differences, the 

model so far obtained further tested with validation procedures, and the results were found 

accurate. A few orthogonal components were sufficient to distinguish between beef origins, and 
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many metabolites were important for that classification: acetate, anserine, betaine, carnitine, 

carnosine, choline, creatine, creatinine, fumarate, glycerol, hypoxanthine, lactate, niacinamide, 

succinate and all amino acids were involved in discriminating patterns. Most of the metabolites are 

clearly higher in the New Zealand samples, especially amino acids, whilst Australian beef exhibited 

lower levels of that molecules; US samples were the highest in succinate concentration. It is clear 

that many conditions can alter beef composition, like breed, feed, rearing system, preand post-

slaughter parameters and environmental conditions. Breed can cause differences in amino acids, 

both essential and non-essential; the amino acids also increase thanks to postmortem aging, due 

to the hydrolysis of peptides and proteins. Diet can also affect the level of amino acids found in 

beef: if fed with silage, meat will show higher concentration of many amino acids in comparison 

with concentrate-fed cattle. Further studies have been addressed to analyze differences in the fatty 

acid composition, metabolites than can again vary due to diet, environmental effects and type of 

production system. Also for vegetable products, metabolomics has been exploited as a tool to 

prevent frauds, where geographical origin certification is a key element for certification of food 

quality. Two case studies were carried out (Savorani et al., 2009; Mallamace et al., 2014) to 

establish differences among cherry tomatoes with respect to their origin (Pachino province in Sicily 

vs. other Italian productions). They both employed NMR techniques and multivariate statistical 

analysis to assess the metabolic profile of those products and identify possible differences from 

cherry tomatoes of other geographical origin. The study showed how the metabolomics approach 

could be useful for tracking food origin, Pachino tomatoes proven to contain higher concentration 

of metabolites like fructose and glucose, glutamine, glutamate, aspartate and 4- aminobutyric acid 

(GABA) and lower levels of fatty acids, alanine, methanol and acetylglutamic acid in comparison to 

products cultivated in other, even neighbouring, areas. Another example of application of 

metabolomics to the geographical origin is described by Cajka et al. (2010) who studied the 

possibility of recognize beer origin through metabolomics, employing DART-TOFMS and statistical 

analysis (PCA, PLS-DA, Linear Discriminant Analysis and Artificial Neural Network with Multilayer 

Perceptrons). Markers were chosen among the DART-TOFMS profiles after careful inspection, in 

order to select the ones which could perform better upon chemometric analysis. At first, the 

prediction ability of both positive and negative ions was tested through leave-one-out cross 

validation of a preliminary LDA model. PCA was then calculated in order to investigate possible 

clustering among samples and it showed how beers from Czech Republic were different from 

Belgian and Dutch beers. PLS-DA was then performed to assess the source of variance between 
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one type of beer over the rest of the productions and between Trappist and non-Trappist beers: 

models with high recognition performances were obtained, though their predictive power was 

lower. LDA was used as an alternative supervised technique to find out the metabolite patterns 

giving maximum separation among sample classes. In this case, a better model from PLS-DA was 

generated for the classification of one beer vs. all the others, rather than that obtained by 

comparing Trappist and non-Trappist beers. Finally ANN-MLP was tested as further approach. The 

latter technique applies for situations in which there is a complex relationship between input 

classifiers and predicted variables. Even in this case, the model built up by comparing one type 

over the other beers was again better than the model obtained when testing if beers were Trappist 

or not. Moreover, models had better performance in the latter approach than in PLS-DA and LDA, 

although the results were found similar. These models, all together, can establish robust statistical 

differences between beer productions, by finding the features of the metabolite fingerprint 

responsible for discrimination. Finally, the same study also compared another different approach 

by applying, on the same samples, SPME-GC-TOFMS instead of DART-TOFMS. The different SPME-

GC-TOFMS trial had proven to be more effective in the classification, while requiring more 

(although simple) preparation steps and thus more analytical time. Although metabolomics proves 

that the geographic origin of a food product may be reflected in a unique molecular fingerprint, 

the actual source of differentiation is still questionable, since multiple factors contribute to define 

a “local production”, including the restriction to use only autochthon genotypes, the practice of 

using traditional productive protocols, and the existence of confined pedoclimatic conditions. For 

this reason, the definition of a geographic origin must rely on updated databases, having the 

purpose to monitor the changes in one or more of the multiple factors affecting the metabolite 

profile of the local production. In this way, robust models developed to predict the geographic 

origin of a product will include correction functions based on the complete set of cofactors 

contributing to define its molecular composition. Only then, robust models are entitled to be 

adopted to assess fraudulent declarations of a certified origin, when the latter is an added value.  

c. Rearing conditions 

Many elements contribute to the establishment of the quality of food products of animal origin, 

like the feeding, the use of antibiotics and medicines or the choice of rearing conditions. Just 

recently metabolomics studies have been challenged to show, in the metabolic profiles of animal 

products, the differences attributable to the rearing protocols. Most studies, though, have been 

focused on the evaluation of differences in food products caused by the use of hormones or other 
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chemicals (i.e. antibiotics) to improve cattle growth. A study from Regal et al. (2011) showed 

statistical differences between LC-HRMS spectra of sera sampled from control cattle and the one 

treated with estradiol and progesterone. This was performed by multivariate statistical analysis 

based on PCA, OPLS and OPLS-DA. First unsupervised PCA was performed, in order to find out 

possible sources of variations among samples. Then, OPLS and OPLS-DA were used to built more 

robust model for samples classification. Eight molecular markers found by OPLS were finally 

selected for discrimination between treated and untreated animals and were therefore associated 

to perturbed metabolic pathways of hormones. Another study by Graham et al. (2012) was focused 

on bovine plasma samples in order to highlight the presence of illicit growth-promoting agents. 

These products are illegally used to improve feed efficiency, increasing animal weight gain. Growth-

promoters cause alteration in blood and tissues composition, and many studies were made to 

detect those biological changes. Since metabolomics could be of great help, being able to give a 

rapid and highthroughput screening of metabolic profile, this research employed two methods of 

NMR spectroscopy (classical 1-D and CPMG pulse sequence), followed by multivariate statistical 

analysis (OPLS-DA) to differentiate treated and non-treated cattle. The two NMR techniques were 

used in order to develop a high-throughput screening technique, since they can show different 

classes of metabolites. NMR peaks were identified through libraries and literature data and OPLS-

DA was then performed on spectral data in order to visualize differences and clusters among 

samples. Treated animals showed altered metabolic profiles, especially in markers of metabolic 

balance and nitrogen flux, proving how growth-promoting agents can alter different biochemical 

processes like protein metabolism, gluconeogenesis and glycogen deposition. The impact of 

different rearing conditions on the quality of bovine milk was investigated by Boudonck et al., 

(2009), through the aid of GC-MS and LC-MS/MS metabolomics, followed by unsupervised data 

analysis (PCA). Ten different types of bovine milk were analyzed. Samples were different in brand, 

percentage of fat, expiring date, rearing method and type of package. Metabolites from GC and LC 

mass spectra were identified by using specific libraries using three criteria: retention time, 

experimental precursor mass match to library standard and MS/MS scores. Internal standards were 

used in both analytical methods in order to calibrate the experiment and control it. Data were then 

normalized dividing the raw metabolite area by its median value in each run-day, in order to 

correct for inter-day possible variation. After this pre-statistical transformation, data were analyzed 

first with the unsupervised PCA technique to explore possible separation and clustering, and then 

the expected and interesting classes were further tested with analysis of variance. Principal 
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component analysis showed that the first PC, accounting for the maximum variance, was related to 

difference in rearing practices (organic vs. conventional), whilst the second orthogonal PC was 

influenced by the fat percentage of milk. One of the most interesting findings was the relation 

between farming (organic vs. conventional) and the consequent metabolic differences. A one-way 

ANOVA was performed on milks and 25 metabolites were found to be significantly different in their 

concentration between the two types of milk (whilst 11 metabolites would be expected different in 

case of random classification). Organic milk showed higher concentrations of tyrosine, isoleucine, 

mannose, glycerate, ribose, carnitine, hyppurate and butyrylcarnitine when compared to 

conventional milk, whilst proline, trans-4-hydroxyproline, glucose-1-phosphate, ribose-5-

phosphate, glycerol-3- phosphate and glycerol-2-phosphate were found in lower concentration. 

Hyppurate was one of the main marker for organic milk and it has been positively linked to i) fiber 

intake in diets (Holmes et al., 2008), ii) consumption of products rich in polyphenols (Walsh et al., 

2007) or iii) exposure to determined environmental conditions (Walsh et al., 2007; Holmes et al., 

2008). Thus, the observed discrimination is consistent with the different diets fed to animals in the 

two types of rearing, since organically raised cattle is mainly fed with forage (grass and clover), 

whilst conventional cows consume grain-based feed with cereals, maize and protein supplements. 

Two studies from Van Ruth et al. (2011, 2013) demonstrated differences in the carotenoid profile 

between organic, free-range and barn eggs through high-performance liquid chromatography 

(HPLC) and multivariate statistical analysis. A model was built with knearest-neighbour clustering 

analysis allowing to correctly predict organic (100% accuracy) and non-organic (free-range and 

barn) samples (92% accuracy). The model calibrated on Dutch eggs was then further tested with 

eggs from different countries and it proved successful again in discriminating samples by their 

production system. This metabolomics approach was again proved to be useful, verifying the 

hypothesis that the different rearing conditions and, in particular, the access to different sources of 

feed for organic hens created differences in carotenoid profiles in eggs. Other studies have focused 

on fish quality in relation to rearing practices. A first study from Savorani et al. (2010) tried to 

assess the differences in the metabolic profiles from gilthead sea bream in relation to aquaculture 

methods through 1H-NMR metabonomics. NMR spectra were acquired on percloric acid extracts. 

After the normal processing steps (Fourier transform, baseline and phase correction), spectra were 

normalized to total unit area in order to correct for possible vertical scale errors due to dilution 

biases. After that, spectra were aligned using the iCoshift algorithm to allow the highest stability in 

the signal position among the different spectra. Finally, multivariate data analyses (PCA, PLS, ECVA 
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and iECVA) were performed on the spectral matrix. Only few out of the many signals present in the 

spectra could be assigned by using literature data; therefore, the nature of the other unknown 

signals was revealed by addition of pure standard compounds, and finally 38 additional peaks were 

assigned. Spectral analysis was useful to follow the evolution of the main metabolites content 

during fish storage, and to capture the most important features to be recorded to describe the 

decay of fish quality. The main metabolites are amino acids and nucleotides. PCA was calculated by 

selecting only the aromatic region of the spectra: the results pointed out that inosine and inosine 

5'-monophosphate were mainly responsible of differentiation due to storage time. However, 

specimens extracted after 16 days of storage under ice, evidenced differences mostly caused by 

the farming system. Supervised ECVA confirmed that aquaculture practices give a higher variance 

of metabolite composition in stored fish rather than fresh fish. By using iECVA, and omitting the 

effect of storage, it was found that the compounds responsible for discrimination were glycine, 

histidine, alanine and glycogen. It was therefore shown that post-mortem glycolysis is faster for 

fish farmed in 'pseudo-natural' environments, like lagoons and off-shore cages, with respect to 

those reared in tanks, therefore suggesting that the former aquaculture systems can induce higher 

levels of stress in animals or that a greater glucose metabolism rate is caused by a higher exercise. 

A later study by Picone et al. (2011 b) was carried out on another fish species, namely Spaurus 

aurata, by applying a different chemometric approach. The same metabolites as those found in the 

previous study were again identified, with a paired t-test, by comparing the metabolic profile 

evolution during the storage: obviously, glycogen decreased significantly as a consequence of 

glycolysis; nucleotides were degraded into hypoxanthine as the consequence of post mortem 

processes, and TMAO was converted into TMA by microbial attack; the amount of lactate, 

conversely, did not change because already depleted at the moment of the starting observation. 

Some differences were captured by PCA depending on the farming system, where PC1 mainly 

collected spectral changes in the hydroxylic region (aminoacids, sugars, hydrophilic molecules), and 

PC2 being dominated by aliphatic signals. The effects of storage temperature in the amino acid 

profile of Bogue fish was studied by Ciampa et al. (2012) by NMR metabolomics on spectra 

acquired at 600 MHz. In this case, the novelty of the approach concerned the normalization 

algorithm which was based on the total nucleotides amount, constituting a pool of inter-converting 

metabolites. In this case, the normalization to the total unitary area was impracticable, since the 

solubilisation of compounds from protein hydrolysis during storage causes a clear increment of the 

total area in the spectra. The alternative normalization step, based on the internal standard 
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addition, was neither a good choice, because of the unknown dilution of extracts. For these 

reasons, the entire pool of metabolites originating from the ATP degradation pathway was used for 

normalization. After this pre-statistical step, the individual amino acid content was studied, 

pointing out different evolutions: the concentration of taurine, not involved in any lysis, did not 

change much during storage; the amount of alanine, phenylalanine, glycine, tryptophan, 

methionine, isoleucine, leucine, valine, glutamate and tyrosine increased during storage whilst a 

simultaneous decrease of histidine and serine was observed. These results confirmed similar 

changes in the amino acids content observed by other techniques. The advantage of using NMR 

spectroscopy is associated to its ability to quantify several classes of compound in one shot. By 

analyzing the same spectra, it was observed that, whilst the amount of amino acids changed at a 

constant rate during storage, some other molecules slowly changed up to day 4, then started 

varying faster, due to bacterial development. To prove this, typical metabolites of bacterial 

development were quantified (i.e. lactate, acetate, glucose, succinate and ethanol) and the 

hypothesis was then demonstrated. This study emphasizes how a holistic view, obtained by 

applying the metabolomics principles to the whole molecular profile, can be helpful to understand 

the processes going on during food storage and this approach can be even more robust when a 

freshness index is built by taking into account all metabolites undergoing transformation. Basing 

their selection on a non-targeted approach some unexpected alteration can be found and be key 

for the product quality assessment. 

Assessing the effect of food processing 

Another key aspect affecting food quality is represented by the production technology and the 

processes which transform the raw material in food (fermentation, pasteurization, cooking, etc.). 

Nowadays, more and more food products are subject to many transformation steps and processes, 

which might alter their nutritional, sensory and biochemical properties. It is therefore necessary to 

assess any possible alteration caused by these procedures, in order to investigate the nature of 

transformed foods and identify any possible differences caused by varying the manufacturing 

protocols or the presence/absence of treatments. For example, milk is usually manipulated to 

lower its fat content, which can change in a range of 3 units of percentage. Only recently, though, 

studies have been carried out to assess the secondary changes occurring in the milk matrix 

regarding other nutrients. The aforementioned study from Boudonck et al. (2009) found further 

differences in milk due to the reduction or not of fat content. GC-MS and LC-MS/MS spectra were 
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subjected to a two sample t-test, in order to compare fat free with whole milk and reduced fat with 

fat free milk. It was found that 78 metabolites differed significantly in at least one of the four 

categories characterized by different fat percentages. Obviously, whole milk compared to reduced 

or fat free milk contained higher amounts of the major free fatty acids (i.e. palmitate, oleate, 

stearate and myristate), more cholesterol, 1,2-dipalmitoylglycerol and alpha-tocopherol. The 

nutritional value related to these nutrients is thus altered in the process of fat extraction, without 

any relation to milk brands. Other metabolites (amino acids, sugars, purines and pyrimidines, 

succinate, fumarate and casein peptides) showed altered concentrations between the groups, 

though these were also related to brands. Another field of application is the production of 

vegetable conserves. The effect of processing in the industrial production of tomato paste was 

studied by Capanoglu et al. (2008). Samples taken from different processing steps and from 

different tomato batches were analyzed by LC-QTOF-MS and untargeted metabolomics. The 

authors concluded that this approach is more high-throughput than a conventional technique 

based on the HPLC simply coupled to an online antioxidants detector. LC-MS, in effect, provided a 

better insight in the actual alteration caused by the processing of tomato for paste production. Not 

just the amount of caroteinoids and vitamin C, indeed, varied, but 40% of the 3177 mapped 

metabolites showed altered signals during the process. It seemed clear that two processing steps 

were accountable for the main differences: the removal of seed and skin and the transition from 

fruit to breaker. The first causes a great reduction in the concentration of flavonoids and alkaloids, 

since seeds and skin are richer in those compounds and they do not get completely extracted in 

the process. The other mentioned step showed, instead, an increase in flavonoids and alkaloids, 

maybe due to a wound response in the fruit tissues, though the total antioxidant activity decreases 

because of loss in vitamin C during tomato breaking. Again, metabolomics proved to be a rapid and 

useful tool to investigate critical processes in the production of foods and in the future it might aid 

factories to assess the best ways to reduce nutrient loss and alteration. In this light, knowledge-

driven industrial production systems would take advantage from metabolomics also in the 

improvement of traditional food. Beleggia et al. (2011), investigated the effect of pasta making, by 

following the process from semolina to the final product. Different techniques were employed: GC-

MS, LC-MS, HPLC for carotenoid profiling, mineral profiling, and successive statistical analysis 

through ANOVA and PCA-FA (factor analysis). Results showed that metabolites varied because of 

the processing steps and also of the processing conditions. PCA scores resulted in the samples 

discrimination according to types of pasta (PC1) and processing phases (PC2). ANOVA confirmed 
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these results. Investigation on the quantities of minerals and metabolites was then performed and 

the differences among pasta samples prepared with varying processing conditions were identified. 

Phytosterols degrade because of oxidation and this is influenced by factors such as temperature 

and reaction time. It was found accordingly that the drying step caused a reduction of this 

metabolites together with hydroxy fatty acids, tocopherols and carotenoids, suggesting also that an 

accurate temperature adjustment (lower drying temperature) might help in the maintenance of 

the levels of these molecules and, thus, of a greater nutritional value, in pasta. Variations were also 

observed in carotenoid degradation probably due to the kneading process, which favours 

lipoxygenase in its oxidation of PUFA and, as a consequence, of carotenoids. Different types of 

semolina showed different behaviours in this step, due to their characteristics and enzyme 

activities. Another change was observed in the content of total sugars, which showed a first 

increase during the mixing step, due to optimal conditions for alpha-amylase, and a later reduction 

after the drying phase, probably due to Maillard reaction and the inactivation of amylase. Again, it 

is clear how the metabolomics approach gives insight in many of the different biochemical changes 

occurring in food matrices during transformation steps, pointing out that the quality of the raw 

material is not the only parameter which influences the final product, but also the optimal 

processing conditions, fundamental to the maintenance of high nutritional values in conventional 

as well as in the functional foods. It is thus clear how an analytical approach employing different 

techniques and ensuing multivariate and statistical data analysis is able to extract the relevant 

information out from the many different operating conditions affecting the behaviour of food 

components and metabolites through the processing procedures. This is necessary for food 

industry in order to assess and then control the processing steps and conditions for the production 

of the best food possible. 

Assessing the effect of digestion 

Having assessed the quality of a food product is not enough to prove the real benefits it might have 

on human health. The food matrix will undergo the whole digestive process and its beneficial 

components will need to be released in a correct form, in order to diffuse, through the digestion 

fluid, towards the gut membrane , where they will be absorbed and transferred to the blood 

stream, thus becoming bioavailable, and ready to exert their bioactivity on the human body. 

Just in recent years, research has started focusing on the effect of digestion on the composition 

and structure of food products and a very few studies were addressed to distinguish foods on the 
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basis of their digestibility. This, though, is fundamental for the understanding of true nutritional 

and health properties of food products and for their promotion. A study from Toydemir et al. 

(2013) investigated the effect of simulated gastrointestinal (GI) digestion for sour cherry fruit and 

nectar samples. They proved that there was a greater anthocyanin recovery after the digestion of 

nectar rather than that of fruits. This might be due to a greater stability of these metabolites in the 

nectar, maybe because of the matrix structure, the pH, the temperature and other components 

present in the nectar. In effect, the nectar had more than 50% sucrose added, and it was already 

shown how this ingredient might preserve and stabilise anthocyanins (Wrolstad et al., 1990). This 

analysis employed spectrophotometric assays and HPLC, in order to get a full phenolic profiling. 

Again, the use of compatible techniques is necessary to test the results obtained with each 

method. Another research by Bordoni et al. (2011) compared in vitro digestion of Parmigiano 

Reggiano cheese, characterized by two different aging times (15 and 30 months), by analysing 

NMR spectra of digestates at different digestive steps. It was assessed that spectra of undigested 

aqueous extracts showed a greater presence of sharp signals (amino acids) in the 30-months-aged 

Parmigiano due to microbial fermentation during aging. The main changes during the digestive 

steps were found to be caused by the increase of broad signals from casein digestion. The study 

then focused on the analysis of particular spectral regions (amide and aromatic protons). It was 

assessed that higher amide areas were found in the 15- month-aged Parmigiano, associated to 

large-sized protein fragments, which were released during digestion of this cheese. The aromatic 

area, instead, showed the same trend in both types of samples, indicating that this kind of amino 

acids gets released majorly as bound to small peptides. This research exploited a metabolomics 

approach, employing two different NMR techniques (1D-NOESY and DOSY), while comparing 

different food products digested with the same protocol, thus highlighting the changes of their 

digestibility, as the consequence of the food production protocol. In this way it is possible to 

evaluate the actual digestibility of foodstuff, and the multivariate data analysis would separate the 

digestion process in different components, each characterized by a different molecular profile, 

observable during the sequential digestion phases (i.e., protein hydrolysis and peptide release in 

the oral, gastric and duodenal tracts). Three studies published in 2014 (Pan et al., Bordoni et al., 

Ferranti et al.) shed light on meat digestion by in vitro simulation and metabolomics. The research 

from Bordoni et al. (2014) focused on the evaluation of protein bio-accessibility of Bresaola 

product (cured beef). Samples were digested and collected at 5 different check points, in order to 

assess the protein hydrolysis pathway during the various digestive steps. Protein digestion was 
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evaluated with a holistic approach, by employing a combination of Bradford assays, SDS-PAGE, 1H-

NMR and TD-NMR. 1H-NMR spectra were normalized with reference to the L-carnitine signal, a 

metabolite which keeps an unaltered concentration during digestion. In this case other recurrent 

normalisation procedures could not be used, because the total spectral area changes during the 

digestive phases, and the internal standard TSP, added for frequency calibration, disappears from 

solution during digestion due to its absorption on the matrix molecules. The obtained spectra were 

used to corroborate the results of the other techniques, by following the appearance of small and 

medium-sized peptides not detectable by either the Bradford assay or the SDS-PAGE, the latter 

techniques only witnessing the disappearance of large proteins. TD-NMR gives further information 

on the modification of the matrix structure, indicating that mastication provokes, in the oral phase, 

the exit of 50% of water from myofibrils and the entrance in the fibre bundles of 15% of digestion 

juices; moreover, the same technique shows unbundling of meat fibres during the gastric phase, 

favouring the action of pepsin. The study from Picone et al. (2014) also focused on the Breasola 

digestibility in order to assess the possible release of bioactive peptides from the food matrix. In 

effect, protein-rich matrices release, during digestion, small peptides with potential benefits on 

human health, since some of them have been proved to have antihypertensive or antioxidant 

effects. This research employed in-vitro digestion and sampling at 5 different check points along 

the digestion process. Samples were then analysed through SDS-PAGE, 2-dimensional 

electrophoresis (2-DE), subsequent protein spot hydrolysis, MALDI-TOF-MS analysis and nano-

HPLC-ESI-Q-TOF-MS/MS analysis of peptides. Through these various techniques the profiles of 

peptide and protein mixtures have been established. 1D-SDS-PAGE and the coupled MS analysis 

showed that some proteins were already hydrolyzed in the Bresaola samples before gastric 

digestion since, in the post-mortem phase, proteins from the sarcoplasmic and myofibrillar tissues 

undergo hydrolysis by calpains and other endogenous proteases. The undigested compounds, 

studied by 2-DE and MALDI-TOF-MS, are found to be serum albumin, actin, tropomyosins, myosin 

light chain 1 and 3, and some of their fragments. During gastric and duodenal digestion, Bresaola 

proteins are subject to the attack of different proteases. The gastric phase showed the degradation 

of some sarcoplasmic proteins and the appearance of polypeptides, the latter undetectable by 

SDS-PAGE. RPHPLC and MALDI-TOF-MS were mainly employed to monitor the evolution of the 

peptide profiles during the digestive steps. RP-HPLC showed that myofibrillar proteins are 

demolished in the duodenal digestion after being released during the gastric phase, whereas 

MALDI-TOF-MS spectra disclosed the size of the newly formed smaller peptides. Nano- HPLC-ESI-Q-
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TOF-MS/MS analysis showed the presence of bioactive, ACE-inhibitors, peptides or their precursors 

after digestion, though it still needs validation of their bioavailability in in-vivo systems. This study 

showed how omics based on complementary analytical techniques can explain many underlying 

processes happening during food digestion. Pan et al. (2014), instead, studied the digestion of ham 

to investigate its nutrients' bioaccessibility using SDS-PAGE, microscopy and 1H-NMR spectroscopy. 

SDS-PAGE and NMR spectra showed the kinetics of protein degradation into smaller peptides. 

Lactate, because unaffected by digestion, was used as a normalisation reference for NMR spectra 

in order to quantify the nutrients in the different digestive steps and understand their fate. It 

appears how lipids and macromolecules increase greatly during gastric and duodenal digestion, 

though they stop growing in quantity after 60 minutes of digestion. NMR spectra also showed the 

presence in samples, after digestion, of potential bioactive or positive compounds, like carnosine 

or choline, and this can be used as an index of product digestibility or food quality, associated to 

the accessibility of nutrients released upon digestion. 

Conclusions 

Metabolomics is nowadays a widespread omic approach fruitfully exploited in many applied 

sciences. The key aspects of this new science, like the use of rapid and effective techniques, made 

it even fundamental in many fields. Food science has not been an exception and it is now 

employing this approach in many researches. The increased consumers’ demand for higher food 

quality and its relative substantiation has made necessary to develop new techniques able to 

screen as much as possible the metabolic and nutritional profile of food products. It is thus clear 

how metabolomics fitted perfectly in this hole and was therefore used as a new explorative and 

classifying tool in this sense. Many studies are now been made in various assessments of food 

quality employing analytical techniques suitable for metabolomics, such as mass spectrometry or 

NMR spectroscopy and subsequent multivariate data analysis (Table 1). This type of research 

methodology is today the basis in many food researches. This chapter highlighted just some of the 

many uses of metabolomics in food science, like in assessing differences between GM and non-GM 

products or in identifying particular metabolites typical of food from a certified geographical origin. 

It is thus evident how metabolomics will increasingly be an aid in this research field and needs to 

develop new high-technology methods and protocols in order to be able to assess completely and 

automatically food quality. 
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Table 1. Metabolomics studies applied to food science 

Type of study Techniques Statistical Tools Food Analysed Discriminant Metabolites 
Reference 
Article 

Genetic modification 
Real Time PCR, enzyme 
assays, HPLC, TOF-MS 

- Tomatoes - 
Fraser et. al 
(2007) 

Genetic modification CE-TOF-MS PCA, Student's t-test Maize 
L-proline-betaine, L-carnitine (typical of GM 
maize) 

Levandi et al. 
(2008) 

Genetic modification FT-ICR-MS, CE-TOF—MS PCA, PLS-DA Maize L-carnitine 
Leon et al. 
(2009) 

Genetic modification NMR, GC-MS PCA, ANOVA Wheat - 
Baker et al. 
(2006) 

Genetic modification Transcriptomic - Wheat - 
Baudo et al. 
(2006) 

Genetic modification CE-ESI-TOF-MS  Soybean 
4-hydroxy-L-threonine (only in conventional 
soybean) 

García-Villalba 
et al. (2008) 

Genetic modification NMR 
PCA, ANOVA, Student's t-
test 

Grapes 
tryptophan and indole derivatives (typical of GM 
grapes) 

Picone et al. 
(2011 a) 

Organic vs. conventional 
FI-ESI-TOF-MS, FI-ESI-IT-
MS 

ANOVA, PCA Grapefruit - 
Chen et al. 
(2010) 

Organic vs. conventional GC-MS Tukey's test Wheat - 
Zörb et al. 
(2006) 

Organic vs. conventional GC-MS ANOVA, PCA Maize 
Myo-inositol, malic acid and phosphate (in organic 
samples) 

Röhlig et al 
(2010) 

Organic vs. conventional GC-MS Student's t-test, PCA Wheat Myo-inositol and malic acid (in organic crops) 
Bonte et al. 
(2013) 

Organic vs. conventional DART, TOFMS PCA, LDA Sweet bell peppers - 
Novotnà et al. 
(2012) 

Organic vs. conventional LC-ESI-QqQ ANOVA Ketchup 

caffeoylquinic and dicaffeoylquinic acids, caffeic 
and caffeic acid hexosides, kaemp-ferol-3-O-
rutinoside, ferulic-O-hexoside, naringenin-7-O-
glucoside, naringenin, rutin and quercetin (in 
organic ketchup); glutamylphenylalanine and N-
malonyltryptophan (in conventional ketchup) 

Vallverdù-
Queralt et al. 
(2011) 

Organic vs. conventional NMR ANOVA, PCA Red wines Tyrosine, trans-caffeic acid, glutamine 
Laghi et al 
(2014) 

Geographical origin NMR PCA, OPLS-DA Beef Different aminoacids depending on the origin Jung et al. 
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(Korea, Australia, US, New Zealand) (2010) 

Geographical origin NMR PCA, LDA Cherry tomatoes - 
Savorani et al. 
(2009) 

Geographical origin HR-MAS NMR PCA, Student's t-test Cherry tomatoes 

fructose and glucose, glutamine, glutamate, 
aspartate and GABA (higher in Pachino tomatoes), 
fatty acids, alanine, methanol and acetylglutamic 
acid (lower in Pachino tomatoes) 

Mallamace et 
al. (2014) 

Geographical origin 
DART-TOFMS, SPME-GC-
TOFMS 

PCA, PLS-DA, LDA, ANN-
MLP 

Beer - 
Cajka et al. 
(2010) 

Rearing conditions GC-MS, LC-MS/MS PCA, ANOVA Bovine milk Hippuric acid (for organic milk) 
Boudonck et 
al. (2009) 

Rearing conditions HPLC k-nearest-neighbour Eggs - 
Van Ruth et al. 
(2011) 

Rearing conditions HPLS k-nearest-neighbour Eggs - 
Van Ruth et al. 
(2013) 

Rearing conditions NMR PCA, PLS, ECVA, iECVA Gilthead sea bream 
Molecules from the glucose metabolism (higher in 
farmed fish) 

Savorani et al. 
(2010) 

Rearing conditions NMR Paired t-test, PCA Sparus aurata Hydroxylic and aliphatic regions 
Picone et al 
(2011 b) 

Rearing conditions NMR - Bogue fish Amino acids 
Ciampa et al. 
(2012) 

Processing LC-QTOF-MS, HPLC  Tomato paste Flavonoids, alkaloids, vitamin C 
Capanoglu et 
al. (2008) 

Processing GC-MS, LC-MS, HPLC ANOVA, PCA-FA Pasta 
Minerals, phytosterols, fatty acids, carotenoids, 
tocopherols, sugars 

Beleggia et al. 
(2011) 

Digestion Spectrophotomer, HPLC - Cherry fruit - 
Toydemir et al. 
(2013) 

Digestion NMR  Parmigiano Reggiano Amino acids 
Bordoni et al. 
(2011) 

Digestion 
SDS-PAGE, microscopy, 
NMR 

PCA Ham - 
Pan et al. 
(2014) 

Digestion 
Bradford assay, SDS-
PAGE, NMR, TD-NMR 

- Breasola - 
Bordoni et al. 
(2014) 

Digestion 
SDS-PAGE, 2-DE, MALDI-
TOF-MS, nano-HPLC-ESI-
Q-TOF-MS/MS 

- Bresaola - 
Ferranti et al. 
(2014) 
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Abstract 

Quality definition of food includes several complex factors like physical, compositional and 

microbial features, modifications induced by technological processes or storage, nutritional value 

and safety. Foodomics is a holistic approach applying omics technologies to observe food along the 

entire production/consumption chain. In the present review, we present key applications of 

nuclear magnetic resonance in foodomics described in the 2012-2015 period, in the quest for 

robust and thorough information required by the scientific community. In doing so, we summarize 

the issues connected to food traceability and authenticity, composition and physical 

characteristics, processing and storage and health, that mostly impact food quality. 

Highlights 

• Foodomics has been proven a promising approach for food quality investigation. 

• NMR has boosted an omic approach to food quality, due to its high reproducibility. 

• A common trait of key foodomics papers is transparency of each investigation step. 

• Advancements in foodomics are foreseen through interdisciplinary networking activity. 
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Introduction 

Soon after the advent of genomics, transcriptomics, proteomics and metabolomics, aimed to a 

holistic understanding of the complex human biology and physiology, it has been natural to apply 

the same approaches to food. The information collected in this way at each step of the 

production/consumption chain has been enclosed into the single definition of foodomics, which 

now is defined as “ the discipline that studies the food and nutrition domains through the 

application and integration of advanced omics technologies to improve consumer's well-being, 

health, and confidence” [1]. Among the techniques used for this discipline, Nuclear Magnetic 

Resonance (NMR) has given a great boost to the new approach, thanks, in particular, to the high 

reproducibility of its observations [2]*. Goodacre [3], in a recent divertissement, has noted that 

the growth of the metabolomics literature reminded that of microorganisms. The lag phase is 

represented by a handful of papers, listed by Goodacre [3], which created the conceptual 

framework. A key element of the initial phase can be identified also in the development of 

software and algorithms (i.e. Projection on Latent Structures [4]) specifically tailored to highlight 

the useful features in the overwhelming information represented by large experimental datasets.  

The phase of rapid growth can be felt in the works focusing on the most diverse biofluids, foods 

and raw materials, aiming at verifying the applicability of the metabolomics approach. A common 

trait of these papers is some degree of failure in making each step of the investigation (i.e. 

experimental design, data generated and analytical tools) totally transparent. The stationary, 

desirable, phase is represented by works where experimental design, data generated and the 

means of analysis are made publicly available, and the level of metabolite identification is properly 

assigned [5], as well as the level of confidence of each key statement. Papers actively contribute to 

a generalized increase of quality, when they fulfill such requirements better than any other of their 

own field, by forcing the scientific community to adapt. In the present review, we mainly focus on 

the literature of the 2012-2015 period and present key applications of NMR in foodomics, in the 

quest for robust and thorough information required by the scientific community. In doing that, we 

will run through the steps of the food production chain, from the origin of the raw material to the 

transformation that food undergoes during storage, that mostly affect food quality, as summarized 

in figure 1.  
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Figure 1. Infografic of the information that can be obtained along the food production/consumption chain by NMR, 
through a foodomic approach. For the spectra, processing steps see reference [2]. 

Traceability, authenticity and safety of food 

A relevant percentage of the commercial value of several foods and beverages relies on the 

ensemble of climate, land, cultural practices and history of the raw material, collectively enclosed 

in the term “terroir”. NMR has been used from the eighties with the purpose of geographic 

characterization, by studying the distribution of stable isotopes of the bio-molecules [6]. A natural 

consequence of the advent of the “omic” analytical techniques has been to consider the entire 

metabolome in the perspective of terroir characterization. This is generally observed in a non-

targeted fashion [7], that is without focusing on specific molecules but letting features of the NMR 

spectra emerge from the entire spectrum profile, through the appropriate mathematical 

treatments. Examples of this approach are the work by Gallo et al. [8] on table grape, and the work 

by Hohman et al. [9] about tomato. Unfortunately, each aspect of a food terroir potentially affects 

the metabolome, so that general applicability represents the weak point of any mathematical 

model trying to relate features of an NMR spectrum with a single aspect of the origin of a food. 

This is probably why no method based on non-targeted fingerprinting has been accepted for food 

official controls [7]. The recently published work that can be considered a to-date benchmark in 
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this respect is the one by Godelmann et al. [10]** testing wine screening method WineScreener™. 

The analysis of 600 German wine samples, produced during 2 years in 5 areas from 10 grape 

varieties, led to the maximum correct prediction of geographical origin, year of vintage and grape 

variety (89%, 97% and 95% respectively). It has been suggested that the studies on food safety, 

similarly to those on terroir, would bring information to a higher level if including an omic-

untargeted approach, because many features that raise concerns about the healthiness of food, as 

genetic modification [11] or microorganisms development [12,13], are likely to influence large 

portions of food or raw material molecular profile [14]. The main challenge for scientists facing 

non-targeted analysis is to correctly define appropriate biomarkers from raw NMR spectra 

containing hundreds of metabolites. The rationale of this practice is that the inclusion of a feature 

of a spectrum unrelated to a characteristic of interest leads to lower correct prediction rates or less 

parsimonious models. Consequentially, an increasing number of papers has been expressly focused 

on metabolites selection as the key part of mathematical data modeling [15,16]*. As a general 

trend, in the last decade data treatment has taken advantages of computer-aided multivariate 

analysis tools that allow the simultaneous model building and variable selection by associating to 

each metabolite a proper weight in the model. Examples are interval partial least square (iPLS), 

interval extended canonical variable analysis (iECVA) [17] and sparse PLS [18]. Those models have 

largely replaced statistical methods based on Normal distributions, for example t-test or ANOVA, 

because less prone to false discoveries, i.e. false positives or negatives, which typically affect 

univariate analysis [19]. Even though computer-aided methods have considerably improved the 

data analysis performance, their incorrect use, typically the lack of a proper validation step, can 

lead to false correlation between metabolites and the characteristic of interest. There is consensus 

that a key step towards reliable non-targeted fingerprinting methods is the exchange and 

comparison of data between the stakeholders involved in foodomics observations, through 

databases dedicated to food, where standard format NMR spectra are enriched by metadata and 

powerful data mining engines [3]. The last few years have seen for the purpose the launch of 

MetaboLights by the European Bioinformatic Institute [20], the launch of NIH Metabolomics 

Workbench (http://www.metabolomicsworkbench.org), establishing similar data storage 

infrastructures, and the collection of huge amount of data on single food products [21,22]. 

Food composition and physical characteristics 

The extensive implementation of automatic spectrometer setup procedures achieved in the last 
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decades has made quantitative investigations on modern NMR instruments limitedly user 

dependent. In addition, the effects of suboptimal instrument setup can be accurately mapped [23]. 

The number of quantitative NMR (qNMR) applications targeted towards specific molecules is 

therefore increasing [24,25], and this is particularly useful when all the legal requirements of a 

food can be entirely assessed by means of NMR spectroscopy. This is the case of egg yolk based 

liqueurs [26], where total sugar and alcohol have been directly quantified, while the egg yolk 

content has been successfully estimated. Targeted NMR based applications are particularly suitable 

for (semi-) automatized signals deconvolution procedures, fundamental in sight of the 

standardized/harmonized operating procedures [7]. Significant steps forward in this respect are 

represented by the software products like Chenomx, (Chenomx inc., Edmonton, Ca) merging 

automatic procedures and users guidance though a game-like interaction with the software, 

Batman [27]** R (www.R-project.org) package, with many pros among which being licenced under 

the GNU general public license, and MVPACK [28], promising to follow the entire pipeline of NMR 

spectra processing and data mining. The quantitative applications targeted towards a priori 

selected molecules is stimulating (and is stimulated by) the marketing of cost-effective bench-top, 

air-cooled, medium field spectrometers. In these instruments, the problems of signal resolution, 

caused by the magnetic field lower than the one of the cryogenic-cooled counterparts, are partially 

solved by working on field homogeneity, with modifications of the permanent magnets 

arrangement originally described by Halbach [29]*. Mathematical relationships granting good rates 

of correct predictions have been established between NMR spectra and even physical 

characteristics of food, of key value for transformation. This is the case of meat, where tenderness 

[30] and water-holding capacity [31], the most important characteristics of meat, together with 

appearance [32], have been successfully modelled through NMR. This is the case also for milk, the 

coagulating properties of which have been successfully related to the metabolites profile, observed 

by 1H-NMR and Principal Component Analysis (PCA) [33]. 

Food processing and storage 

The ideal food combines nutritional and sensorial quality, but the design of the appropriate 

manufacturing processes is still a considerable challenge [34]. Food processing technologies and 

modification phenomena occurring during storage have a general impact on the metabolic 

pathways of food cells and microorganisms and, in turn, on the food metabolome, making holistic 

analytical techniques invaluable for the characterization of food quality. Despite the great 
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potential, their employment in investigations on the consequences of technological processes to 

the quality of food is erratic. Great attention has been paid by the NMR community to chemical 

and microbiological evolution phenomena occurring during food storage, with particular emphasis 

on degradation processes. Observations are accumulating at a fast pace for fish [35,36], meat [12], 

vegetables [37] and spices [38], taking into consideration not just storage time, but also storage 

conditions, such as composition of modified atmospheres and temperature [35]. Mechanical 

treatments, such as peeling, chopping, shredding, and heat transfer treatments still appear to be 

investigated below their potentialities. Lopez-Sanchez [34] was able to follow the effects of 

different combinations of heating and blending on the phytochemical composition of tomato, 

broccoli and carrots purees. In the review by Erikson et al. [39], effects of frying and boiling of 

different species of fish are described. Roasting effects have been observed for coffee [40] and 

laver product [41]. Freezing causes massive water migration among cell compartments and causes 

cell membranes breakage, due to the formation of ice crystals. This may allow freeze stored food to 

be distinguished from the refrigerated one. An example is represented by fish freezing, leading to 

the formation of dimethylamine [42], that instead can be found only in traces in refrigerated fish. 

Effects on fish molecular profile due to mass transfer have also already been noticed because of 

salting [35]. The request for minimally processed food is stimulating the research on non-thermal 

technological treatments for bacteria reduction or degradative enzymes inactivation, such as 

irradiation, use of high pressures or application of gas plasma [43]. NMR-based foodomics 

applications are emerging also in this field, as in the case of ground beef [44]. The high demand for 

functional food is increasing the research on mass transfer processings alternative to osmosis, such 

as vacuum impregnation [45]. We found no examples of foodomics investigation in literature, but 

such gap is likely to be soon filled. The relationships between specific processes applied to food 

and the features of the NMR spectra profile must be considered with caution, due to the presence 

of confounding factors. During fish storage, for example, trimethylamine is produced by bacterial 

spoilage of proteins [39], but its concentration cannot be reliably used as an universal index for the 

correctness of fish conservation, because deeply influenced by fish breeding too. 

Food and health 

Today, we are witnessing an increasingly growing opinion that a proper nutrition, along with an 

adequate lifestyle, plays a key role in the prevention, onset and control of many diseases, among 

which metabolic syndrome, diabetes and cancer [46]. In order to gain insight into this issue, the 
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knowledge of which food components influence the health status and their mechanisms of action 

is crucial. In this context, research in food science and nutrition has started to move in the 

direction of integrative analysis, finding in foodomics an holistic way to study the complex 

hierarchical structure (from genes to proteins to metabolites) linking food and health [47-49]. 

Indeed, the foodomics approach can help the investigation of both the food metabolome and the 

correlated human metabolome: the characterization of the whole metabolic fingerprint of food 

might greatly help the analysis of the mechanisms of nutrition at the molecular level, while, on the 

other side, the investigation of human metabolome in response to a specific diet can be useful to 

identify novel biomarkers of food intake not necessarily predictable by the sole food composition. 

This new methodology, giving insights on the effects of nutritional exposure, thus also on the 

nutritional status and nutritional impact on diseases, is proven to be particularly promising in the 

prospect of the development of tailored dietary and health recommendations. The foodomics 

studies that have been setup to investigate the issues connected to nutrition, often collectively 

considered in the definition of nutri-metabonomics, can be grouped into three main categories. 

The first and more traditional is the nutritional intervention study, where a group of subjects is 

given a particular diet and the consequent metabolome changes are investigated. In this case the 

metabolic profile presents two kinds of metabolites, the exogenous, that can be considered as a 

marker of the specific food intake, and the endogenous, metabolites generated by our bodies as a 

consequence of the consumption of that food product. One example is the NMR study from 

Heinzmann [50] where subjects were followed after the acute ingestion of specific food products 

(fish, fruits, wine and grapes) and both the direct effects (presence of biomarkers) and indirect 

effects (metabolic pathway alterations) were observed on urine samples. Rasmussen et al., [51] 

investigated both the effects of the consumption of a high/low protein diet and of fiber and dietary 

glycemic index. The second type of nutritional assessment is the one that analyses both dietary 

data and metabolome from biofluids of a selected population. In this case, dietary patterns and 

trends are observed in the population by the statistical analysis of the dietary information 

collected. Biomarkers are looked for in the human metabolome as a hint to the real consumption 

of the declared items. Savorani et al., [52] performed this kind of observational study and assessed 

the presence of three distinct dietary patterns both with the employment of the food diaries and 

the urine and plasma metabolome. Similar work has been carried out by De Filippis et al., [53] 

where NMR-based metabolomics was employed to extract the relevant dietary patterns of vegans, 

vegetarians and omnivores and then to find their impacts on the saliva metabolome. The last type 
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of nutri-metabonomic research is the one studying population with different health conditions. In 

this case, a nutritional intervention is usually employed, and dietary data might be collected in 

order to assess the compliance to the diet. Following the intervention, the metabolome is 

analyzed, in order to assess the specific metabolic profile and thus, identify the biomarkers, of the 

effect of food ingestion on health and metabolic pathways. Lehtonen [54] observed the 

modifications of post prandial fingerpirnts of human urine after consumption of lingonberries as a 

supplement to an oil-rich meal. Moazzami [55] investigated the effect of rye bread on 

postmenopausal women, showing that the dietary intervention leads to shifts in metabolic 

pathways that can have beneficial effects on the selected population. 

Conclusions 

In conclusion, foodomics has been proven a powerful tool for many different aspects of food 

quality definition. Its high-throughput approach can give insights on the whole metabolic profile of 

food products, helping the characterization and the definition of specific quality features that make 

certain foods unique. Contributions toward this direction have been provided in studies of food 

authentication or in investigations concerning processing and storage procedures. Furthermore, 

foodomics has been giving boost to new kind of nutritional studies, aimed at understanding how 

metabolites contained in food can influence human metabolism and health. The Foodomics 

community foresees advancements in this new omic field through an intense networking activity. 

Indeed, there is an evident necessity to increase the level of collaboration within experts of 

different disciplines, such as bioinformatics, chemometrics, analytical chemistry, biochemistry or 

statistics [56]. This networking approach will help creating more accessible and reliable 

information through the employment of specific compounds databases and the definition of good 

operating procedures and standard protocols in order to generate a more common perspective 

and more robust data. 
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Role of the PhD candidate: structuring of the chapter, writing of the NMR-related sections, 

assembling of the NMR and MS parts and production of the final draft, then corrected by the 

candidate’s supervisor. 

Introduction to proteomics and metabolomics 

Definition of proteomics and metabolomics 

During the last two decades, the so-called “omics” sciences were emerging and have greatly 

developed in a broad number of research fields. Genomics and transcriptomics originated from the 

discoveries in genetics, focusing on the analysis of DNA and gene expression modulation, 

constituting also a basic approach in food research [Capozzi et al., 2013]. Following this holistic 

approach, proteomics developed as the science capable of analysing the whole set of proteins that 

is expressed in an organism or in its structures (organs, tissues, cells, enzymes) as well as of the 

related multiple isoforms and fragments thereof, also including the different post-translational 

modifications [Paredi et al., 2012; Ferranti et al., 2015]. It is clear how this science can be very 

useful to understand biological processes and the influence of different genotypes and external 

factors on protein expression and how it is relevant for the definition of protein-rich food products 

[D'Alessandro et al., 2011]. To further analyse biological system from its genome to its biological 

functions, metabolomics arose as the research field that studies all the cellular molecules taking 

part into living cells reactions (metabolites) [Ferranti et al., 2015]. Departing from the genome, 

modulated by external modifications and epigenetic alterations, it is necessary, in fact, to study the 

expression of the proteome, which constitutes, together with the metabolome, the whole living 

system. In effect, metabolomics is considered the thorough and concurrent determination of 

endogenous metabolites at the molecular level, and their global and dynamic changes over time, 

in complex multi-cellular systems as a consequence of biological stimuli or genetic manipulation or 

both [Nicholson et al., 2008]. These metabolites represent the mark of specific metabolic pathways 

and biochemical activities, giving insights into how a system's biochemistry responds to specific 
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factors (diseases, drugs, diets) [Hu et al., 2013]. The comprehensive knowledge of the three 

“omes” (genome, proteome and metabolome) will result in a great scientific progress, allowing to 

learn how the whole biological system is regulated. By focusing all omics in the holistic definition of 

the food matter and its link to healthy nutrition, a new discipline has been coined in 2009 taking 

the name of Foodomics [Bordoni et al. 2013]. In the development of the advanced omics 

platforms, because of their potential to profile complex mixtures of biomolecules, mass 

spectrometry techniques have assumed an unquestionable role. The analytical capability of MS 

became highly descriptive, but still merely dependent on the resolution power of the coupled 

separation devices (HPLC, GC, CE, SFC, PAGE): synergistically together, spectrometry and 

chromatography are able to characterize, at the molecular level, the entire panel of the 

components of a complex system [Ferranti et al., 2015]. NMR spectroscopy is the other elective 

platform for metabolomics and, although less sensitive than MS, provides further robust 

information about the whole system, as it does not necessarily require a separation step 

preliminary to analyses. For these reasons MS, together with NMR and other spectroscopic 

techniques, are the core essence of the omics technologies [Ferranti et al., 2015]. Comprehensive 

analysis of omics data can give scientists the power to study not only individual biomarkers, but 

also the occurrence of patterns of proteins, lipids, and metabolites, useful to trace a food from raw 

materials to the end products, also establishing structure/function links for the design of novel 

functional foods and to monitor food chain contamination by microbial and chemical agents 

[Ferranti et al., 2015]. 

Main platforms employed 

Proteomics techniques 

“In the past ten years, scientifical and technological advancements have been made in order to find 

and perfect new methodologies capable of separating, purifying and characterizing different food 

samples. [Ferranti et al., 2015]. In spite of this, food characterization still remains a challenge, due 

to the great variability of food matrices and related samples (i.e. source, type of food, storage 

parameters, processing, contaminants, sampling procedures). [Ferranti et al., 2015] 

In biomedical samples, the most employed chemical and biochemical techniques for sample 

purification and analysis are chromatography (GC), high performance liquid chromatography 

(HPLC), capillary electrophoresis (CE), mono-dimensional (1D) or two-dimensional (2D) 

polyacrylamide gel electrophoresis (PAGE), and ELISA (Enzyme-Linked Immuno-Sorbent Assay). 
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[Ferranti et al., 2015] 

Even though these methods can be extremely helpful for routine analyses, they can merely be 

descriptive. In fact, they can simply compare a reference value or profile with the tested samples, 

analysed employing the same conditions. In order to overcome these limitations, modern omic 

approaches were developed and are now available. Spectroscopic methods such as, most often, 

MS and NMR, usually combined with separation techniques and chemometric and bioinformatic 

tools, are the basis of omic approaches such as proteomics or metabolomics. [Ferranti et al., 2015]. 

In the last decades, mass spectrometry has been more and more employed due to its high 

versatility, sensitivity and specificity, great informative level and capability of high-throughput 

screening. [Hood et al., 2012; Ferranti et al., 2015; Porcari et al., 2016]. 

The output of MS technology is the molecular mass of an analyte, which is a key feature for any 

molecule. Moreover, with the information gained from the fragmentation of the molecules of 

interest, it is possible to identify the separated components of a mixture and even structurally 

characterize unknown compounds. [Ferranti et al., 2015]. In MS-based proteomics, for instance, it 

is possible to explore the whole range of proteins and peptides in a sample employing MS 

technologies coupled with a prior separation step (with high resolution electrophoresis or 

chromatography). 

There are two main ways to perform an MS-based proteomic workflows. These strategies are 

called the bottom-up and the top-down approach, [Angel et al., 2012; Ferranti et al., 2015] and 

differ for the type of MS instruments used and the separation required. 

In the first one (bottom-up), generally a separation by two-dimensional gel electrophoresis (2-DE) 

is followed by the analysis of the peptides produced by in-gel proteolytic digestion (e.g. with 

trypsin) by MALDI-TOF MS or LC-MS/MS and subsequent database search (Peptide Mass 

Fingerprinting, PMF). The employment of 2-DE allows the resolution of complex proteomes, but it 

has the disadvantages of being very laborious and having a limited dynamic range. [Ferranti et al., 

2015]  

Compared to the use of electrophoretic techniques, the coupling of LC with MS seems easier and 

more straightforward. In the past, MS has been generally coupled with GC to be used in both 

environmental and biological analysis. The determination of the most suitable form of LC to be 

coupled to MS or tandem MS depends largely on the application. For example, in the clinical 

screening of bile acids in urine, the best option could be to inject a crude extract. Most generally, 

in LC-MS applications, the ultimate stationary phase employed is a reverse phase (RP), whilst the 
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mobile phase is usually acetonitrile or aqueous alcohol [Ferranti et al., 2015].  

Metabolomics techniques  

Metabolomics studies the subset of metabolites (metabolome) with specific biochemistry and 

functions in the biological sample of interest. The metabolome, in fact, can be considered the 

entire metabolite cohort of an organism, but also the metabolic profile of its specific parts, such as 

organs, tissues or cells. Blood and urine can be studied in their specific metabolome since they also 

are affected by both the genome and external perturbations. Due to the disparateness of 

characteristics and concentrations of those metabolites, suited analytical techniques are necessary 

for qualitative and quantitative metabolomics investigation depending on the studied metabolome 

[Hu et al., 2013]. These technologies require being “high-throughput” and fast in the acquisition of 

a large number of measurements [Capozzi et al., 2013]. 

One of the main technology employed is mass spectrometry (MS), which is usually chosen for its 

great sensitivity and high specificity, capable of the detection and quantification of even small-

molecular and low-concentrated metabolites. 

Mass spectrometry is usually coupled with techniques capable of separating metabolites from the 

sample, in order to be able to discriminate them. Gas chromatography-mass spectrometry (GC-MS) 

is generally employed to analyse volatile components, whilst liquid chromatography-mass 

spectrometry (LC-MS) is chosen for the metabolites that are not volatile at conditions compatible 

with their stability. Hydrophilic Interaction Chromatography (HILIC) is instead used for very polar or 

ionic molecules, whilst Reverse Phase High Performance Liquid Chromatography (RP-HPLC) is able 

to investigate on both polar and non-polar metabolites, such as lipids. New technologies in this 

field are represented by Ambient Desorption Ionization (DESI) techniques since they allow the 

direct examination of the sample in open atmosphere with very little sample preparation, reducing 

therefore the time of analysis per sample (<1 min per sample instead of 15-60 min with GC- or LC-

MS). Similar to DESI, there is Direct Analysis in Real Time Ionization (DART), which represents one 

of the Atmospheric Pressure Chemical Ionization (APCI) methods and it is greatly employed for the 

soft ionization of both polar and non-polar molecules [Cajka et al., 2013]. 

Nuclear magnetic resonance (NMR) spectroscopy is another high-throughput technique employed 

for metabolomics. NMR is in effect direct and fast and it is able to analyse a wide range of 

metabolites without much sample preparation [Hu et al., 2013]. This technique is indeed able to 

provide the whole molecular profile of the sample and thus, the entire metabolome and can be 

applied to a great range of both liquid and solid matrices without sample alteration nor the 
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production of dangerous waste [Capozzi et al., 2013]. 

This technique started to be employed in organic chemistry in the late 40s, in order to investigate 

molecular structure. In the 80s, after the development of new instruments and the development 

of further knowledge, its application was expanded also to food science [Marcone et al., 2013]. 

Table 1: Advantages and disadvantages of the two main technological platforms employed in metabolomics: mass 
spectrometry and nuclear magnetic resonance. 

 
 

Advantages 
 

Disadvantages 
 

MASS SPECTROMETRY 
 

•Higher sensitivity 
•Requires lower sample size 
•Machines cost less than NMR. 
•More databases of spectral information. 

•High dependence on the experimental 
conditions (lab, technicians, etc.) 
•Quantitative analysis can only be comparative 
between samples. 
•Need of separation techniques and sample 
preparation (usually lengthy). 

NUCLEAR MAGNETIC 
RESONANCE 
 

•Fast 
•Non-invasive 
•Low cost per experiment 
•Minimal sample preparation needed 
•Sample can be recovered  
•Information on the molecular structure 
(i.e. position of functional groups) can be 
gained. 
•Quantitative 

•Lower sensitivity 
 
•Expensive instrument 
 
•Greater sample size required. 

Proteomics and metabolomics in the investigation of meat quality 

Meat quality has been defined in literature by four types of product characteristics: (i) nutritional 

value (i.e. content of fat, protein, carbohydrates, minerals, digestibility), (ii) processing quality (pH, 

fatness, water holding capacity, shear-force, length of sarcomeres), (iii) safety (contaminants, 

residues, additives, microbiological status, etc.) and (iv) sensorial quality (texture, colour, flavour) 

[Becker, 2000]. 

These characters can be influenced by various intrinsic and extrinsic factors such as genetics 

(including gender, accounting generally for 30% of variation), breed, feeding, rearing conditions 

(space allowance, activity, climate, etc.), possible diseases, transport and pre-slaughtering 

conditions, type of slaughtering, post-slaughtering handling (e.g. chilling and storage), meat 

processing (e.g. heat treatments), product formulation and additives [Olsson et al., 2005]. The pro-

capita consumption of poultry meat from 1990 to 2009 has increased of almost 80% and in future 

projections it is still expected to grow. The global trends in meat consumption show that income 

and price will be factors losing importance, whilst quality will become a greater influencing factor 

[Henchion et al., 2014]. The quality of meat, in effect, has been recently increasingly recognized as 
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a very important character and a great number of studies has been carried out to evaluate the link 

between the influencing factors and the main features of this quality such as texture, aroma, 

colour, oxidation and drip-loss.  

 

Figure 1: Factors influencing meat and meat-products quality. 

a) Genetics and breed 

As stated, genetics and breeds have a great impact on the final characteristics of meat and meat 

products. Proteomic technologies in food science are capable of defining the entire and detailed 

biochemical composition of a food product and its modifications caused by specific factors 

[Mamone et al., 2013]. 

One of the tools emerging for the discovery of biomarkers and for food authentication is MALDI-

TOF-MS, capable of performing a molecular profiling of a sample. Through this approach, it is thus 

possible to assess species and specific genetic lines. Traditional strategies, such as PCR, can 

therefore be complemented or substituted by MS-based technologies in studies regarding, for 

example, the identification of food-borne bacteria or the authentication of meat and fish. 

[Mamone et al., 2013]. Currently, there is a very poor presence in literature of applications of such 

approaches for studies focused on poultry meat. However, it is not speculative to affirm that the 

same protocols and methods so far employed for different meat (e.g., porcine and bovine) and 

seafood could be easily adapted to assess genetic origin and assist breeding schemes for the 

poultry sector.  

Mazzeo et al., applied a newly developed MALDI-TOF-MS approach for the authentication of fish. 

[Mazzeo et al., 2008]. In this case, 25 different fish species were analysed and their highly specific 
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MS profiles were obtained. The biomarkers found were signals from protein with an approximate 

molecular weight of 11 kDa. The method thus developed can also be employed for the assessment 

of the authenticity of commercial products and to prevent fraudulent substitutions in species 

which are commonly subjected to this [Mamone et al., 2013]. 

Pineiro and colleagues [Pineiro et al., 2003] employed proteomics to spot new protein markers for 

the authentication of seafood. Gel-based methods were used and a polypeptide was chosen to 

differentiate between hake species of high value and the ones considered less valuable. Other 

marker proteins were also suggested for the assessment of seafood freshness and shelf-life and to 

differentiate frozen fish from fresh one [Pineiro et al., 2003; Mamone at al., 2013].  

Breed is an important factor in meat quality also because particular genetic lines are considered 

endowed with higher quality and therefore will be sold at greater prices to consumers. For this 

reason, fraudulent labelling occurs and tests to reduce this crime are recently developed and 

investigated. Many metabolomics studies have been applied to investigate meat in this sense. 

Straadt et al. employed HR-NMR spectroscopy to investigate the potential of metabolomics in the 

assessment of the meat quality as revealed by the metabolic profile of new pig-breeds (uncommon 

and novel pig crossing between Iberian and Mangalitza vs. the typical Duroc and Landrace pigs) 

[Straadt et al., 2011]. The profile of meat, especially affecting the drip, revealed that the post-

mortem formation of lactate, measured through 1H-NMR techniques, is correlated to breed and 

this would explain also the differences in WHC. Ritota et al. employed 1H-NMR-MAS in order to 

acquire the metabolic profiles of two beef muscles from four different breeds (Buffalo, Chianina, 

Holstein Friesian and Maremmana) and tried to discriminate between two muscles in the different 

breed groups through the use of chemometric tools such as PCA, PLS-DA and OPLS-DA [Ritota et 

al., 2012]. It was possible to identify two muscle origins, namely Buffalo and Chianina, and the use 

of VIP (Variable Importance in Projection) values allowed to determine the most relevant 

metabolites for these classifications. Genetics plays also an important role in the selection of 

specific breeds with improved growth rates and, in the case of poultry, breast yield, since these 

factors will also increase commercial meat production. These advances, though, can be associated 

with various alterations in meat quality. For chickens, the genetic improvements related to the 

rapid and large growth of birds, result also in histological and biochemical modifications of muscle 

tissues that lead to different types of myopathies [Mudalal et al., 2015]. The increased rate of 

muscle growth, at a rate which is greater than the physiologically sustainable one, leads to muscle 

damage and myodegeneration. Breast muscle fibres of the fast-growing strains are characterised 
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by a shift towards glycolytic metabolism. In addition, compared to the unselected breeds, they 

have an increased fibre diameter and intercapillary distance, a decreased capillary-to-fibre ratio 

and rate of protein degradation [Mudalal et al., 2015]. Due to these changes, some abnormalities 

related to structure and metabolism have appeared and are usually coupled to muscle 

myodegeneration and regeneration [Petracci and Cavani, 2012]. The main abnormalities observed 

are the so-called “white striping” [Kuttappan et al., 2009] and “wooden breast” [Sihvo et al., 2014]. 

White-striping of breast fillets is an abnormalities characterised by the presence of white striations 

parallel to muscle fibres on the surface of the Pectoralis major muscle and affects severely 

approximately 3% of Italian medium-sized birds (average live weight 2.75 kg) from both standard 

and high-growth genotypes raised under commercial condition [Petracci et al., 2013]. This 

abnormality can also be accompanied by the “wooden breast” defect, which affects the fillet with 

a visible hard, bulging and pale area in the caudal part [Sihvo et al., 2014]. These histological 

abnormalities affect the aesthetic characteristics of meat which are strongly impaired for consumer 

acceptance and the product is consequently downgraded by the poultry industry. Besides the 

detrimental consequence on the sensorial quality, some studies have shown that meat affected 

with white-striping has also inferior technological properties, like a poor texture and a decrease in 

the binding and water holding capacities and poor texture and then used for the production of 

processed meat products with blending with other amending ingredients [Petracci et al., 2013]. It 

is thus important to investigate on the quality of these meat types and classify the production 

according to their composition, in order to decide the best processing chain better valorising the 

product. A study by Bertram et al. has recently investigated the molecular profile of “wooden 

breast” fillets employing metabolomics based on HR-MAS proton NMR spectroscopy [Sundekilde 

et al., 2017]. Different experimental conditions for spectra acquisition have been adopted, namely 

one-dimensional NOESY and CPMG pulse sequences with two different echo times (50 and 400 

ms), in order to enable the best characterization of the molecular profile of the chicken muscle 

tissue. Multivariate data analysis proved that the muscle affected by the abnormality had lower 

concentrations of anserine, carnosine and creatine compared with normal muscles. Since creatine 

is an important energy reservoir in muscle tissue, while anserine and carnosine play a role in 

homeostasis of muscles, these variations imply alterations in the buffering and anti-oxidative 

capacities of the muscle. In addition, lipid fraction was higher in both NOESY and CPMG spectra of 

wooden breast muscles. Because the same result emerges within both experimental conditions, it 

is proven that the occurred modification is consistent with an increased amount of intracellular 
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lipids. All this information is clearly very useful for the understanding of the underlying molecular 

mechanisms that are involved in this abnormality and prove that these metabolomics techniques 

can provide early biomarkers for the definition of chicken quality, especially as a tool to drive the 

newest challenges in the selection of poultry destined to production of meat with quality attributes 

more satisfactory for consumers and industries. 

b) Rearing conditions/Origin of meat 

Geographical origin of meat has been increasingly considered by consumers and producers both 

for safety reasons (i.e. BSE issues) and for quality standards (Certified Origin Products and specific 

rearing conditions such as organic). Usually, this determination was done through the analysis of 

stable isotopes ratios, though NMR has recently started to be employed on this assessment, due to 

its ability to determine rapidly the whole molecular profile of a food product. Again, there are no 

current application reported in literature for poultry meat but the knowledge emerging from 

metabolomics studies applied on meat of different origin could be easily foreseen as applicable 

also to poultry. Jung et al. employed 1H-NMR spectroscopy and multivariate data analysis on 

extracts of beef originated from four different countries (Australia, Korea, New Zealand and USA) in 

order to highlight the differences in the metabolite profile of raw beef depending on its origin 

[Jung et al., 2010]. PCA and OPLS-DA showed significant differences among the four countries; in 

particular OPLS-DA showed that the metabolites mostly responsible for this separation were 

succinate and amino acids such as isoleucine, leucine, methionine, tyrosine and valine. A one-way 

ANOVA was also employed to further validate these results. Thus, metabolomics based on NMR 

provided links between composition and the geographical origin of a meat product, although other 

factors must be kept in mind in the evaluation of the results: in this case, for example, succinate is 

widely used as a substitute for salt in feedings and therefore the differences in this metabolite 

might be due to different dietary regimens. Another aspect that might influence meat quality is the 

animal welfare standards followed within the production systems. The dense rearing conditions 

might in effect cause various level of stress in the animals, influencing the final characteristics of 

meat. The presence of biomarkers in meat related to animal stress may be considered as a further 

indicator of origin due to specific production standards defined by regulations adopted by 

producers consortia, based on specific territories, which could differentiate some farms from 

others. The commercial value of best practise for animal welfare is not negligible, as modern 

consumers tend to prefer products with a certificated production respecting animal welfare. It is 

thus important to have scientific and objective tools to assess indicators of animal welfare to be 
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put in relation to the farm originating the meat. Marco-Ramell et al. investigated serum proteome 

from three groups of cows subjected to three ranges of welfare: good, semiferal conditions and 

hardest conditions (in the mountains) [Marco-Ramell et al., 2012]. Difference gel electrophoresis 

(DIGE) labelling of serum, followed by two-dimensional electrophoresis and MALDI-MS or ion trap 

MS was carried out to demonstrate that the proteins responsible for discrimination among the 

three groups belonged to three main pathways: the oxidative stress (glutathione peroxidase and 

paraoxonase), the acute phase protein family (Heremans Schmid glycoprotein alpha2) and the 

complement system. Other biomarkers of the redox status such as superoxide dismutase and 

glutathione reductase were altered depending on the rearing conditions of the animals. These 

results show that the hardest living conditions, with food restriction and less human care and 

contact, will induce increased levels of carbonyl content in plasma proteins and a greater activity of 

superoxide dismutase and glutathione peroxidase, meaning animals are at a higher level of 

oxidative stress. This study also proved that biomarkers for animal welfare and stress can be 

selected for classification, such as glutathione peroxidase, Heremans Schmid glycoprotein alpha2 

and cholesterol and faecal corticosterone.  

c) Feed 

As already stated, diet can have impact on the metabolic profile of an organism in two ways: feed 

molecules become host metabolites once digested and adsorbed by the animal, and they modulate 

gene transcription by epigenetics modifications. In fact, feed components might directly result as 

meat metabolites and thus influence the characteristics of meat such as flavour or colour, 

oxidizability or its nutritional value. In other cases, the specific nutrition could give rise to 

modifications in the biological performance through epigenetic modulation of the genetic traits. 

In 2015, Watanabe et al. investigated the relationship between feeds and glutamate, the most 

taste-active component of meat [Watanabe et al., 2015]. Broiler chicks of 14 days were fed two 

different diets for 10 days: one containing the 100% of the recommended lysine content (precursor 

for glutamate) and one containing 150% of the recommended lysine intake. The concentration of 

free amino acids were measured in muscle tissue through the employment of CE-TOFMS. It was 

found that, of the 127 metabolites identified, 68 were up-regulated and 22 down-regulated in the 

group on the diet with a higher content of lysine: more specifically, the products from the 

degradation of lysine, saccharopine, alfa-aminoadipic and pipecolid acid, were greatly increased in 

this group. In addition, the muscular content of free glutamate in the 150% lysine diet group was 

increased by 44% in comparison to the control group. The epigenetic mechanism of such effect 
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was further validated by the measurement of the mRNA level of the relative enzymes. These 

results shows that all the products from lysine degradation are increased when lysine content is 

increased in the diet and the content of free glutamate is also regulated by this degradation, 

showing that a higher lysine diet can improve the taste of meat. Another key characteristic in 

modern meat quality is leanness and this trait could be easily linked to the animal diet. Health 

awareness among the consumers has been increased, consequently directing their preference 

towards lean meat. This latter may be produced by abusing feed additives like L-carnitine, 

ractopamine, nucleotides, due to their lipolytic activity and better effect on growth performance of 

birds [Zuo et al., 2010; Yasmeen et al., 2013]. Costa-Lima et al. investigated on the effect of 

ractopamine on the sarcoplasmic proteome of Longissimus thoracis pork muscle [Costa-Lima et al., 

2015]. The relative proteome was analysed through two-dimensional electrophoresis and mass-

spectrometry and nine spots were found different between the treated and control group and 

these were correlated to glycolytic enzymes. In this way they proved how ractopamine had an 

effect, not only by perturbing lipolysis, but also affecting the proteome, thus influencing the 

conversion of muscle to meat. Another important aspect of feed is related to the consumers' 

perception that domestic meat is believed to be of higher quality owing to the feeds employed for 

its production [Henchion et al., 2014]. It is therefore important to develop specific methods to 

determine the link between product quality and feeding, in order to scientifically substantiate 

promotion of local meat consumption only when appropriate. Local productions, besides, usually 

focus on specific characteristics for the meat product, which are recognized and appreciated by the 

consumers, and studies have been focused on the development of specific feeds for selected 

animals enhancing the esteemed sensorial attributes, therefore generating added value products. 

Sánchez del Pulgar et al. identified, through PTR-ToF-MS, the metabolite profile of lean and 

subcutaneus fat from dry-cured Iberian ham in order to identify possible differences due to 

different diets [Sánchez del Pulgar et al., 2013]. Pigs fattened outdoors with pasture and acorn or 

pigs fed with a high-oleic concentrated feed were compared by application of univariate (ANOVA) 

and multivariate data analysis (PCA and PDA, Penalized Discriminant Analysis) to mass spectra. 

Samples were successfully discriminated in relation to the feed employed: the first group, fed on 

acorn and pasture, showed higher concentration of ketones and aldehydes, probably for the 

greater amount of fatty acids in the feed, and lower contents of sulfur-containing compounds. 

Again, the metabolomics approach proved useful for this kind of quality assessment: the method 

employed was very rapid and might be employed in the future for non-destructive on-line 
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monitoring of quality. Jurado et al. also studied Iberian pigs after two different diets: in this case 

“extensive” and “intensive” fattening systems, and focused on the use of 4-methylsterols and 4,4-

dimethylsterols as biomarkers [Jurado et al., 2013]. GC-MS and GC-FID were employed to identify 

and quantify the compounds in the samples and, in this case, six methylsterols were determined 

and described for the first time in these samples. These metabolites were analysed with pattern 

recognition techniques, such as PCA and LDA, in order to discriminate between the two diets. In 

the end, a multilayer perceptron artificial neural network was able to differentiate the two systems 

with a 91.7% classification performance. The importance of feeding as determinant for the 

consumers’ choices is also attributable to the request of locality, i.e. very-short supply chains, for 

animal production because the far industrially produced fodders are negatively perceived in 

comparison to local crops. Zancanaro et al. employed NMR spectroscopy to discriminate muscles 

of pigs fed with either an industrial feed or a 0-miles feed with a similar composition [Zancanaro et 

al., 2011]. Lipidomics showed that the molar percentage of 18C fatty acids and the mean fatty acid 

chain length were different between groups. Principal component analysis was also applied on the 

NMR spectra and showed some discriminating potential markers between the two groups due to 

phosphorylated compounds and some amino acids. Again, NMR metabolomics has not yet 

employed in the poultry sector, but the experimental design adopted in the above studies can be 

usefully employed in the assessment of the effect of external factors such as feed on poultry meat 

quality. Investigation on meat quality in relation to feed could be also correlated to the importance 

of tackling against food frauds. This is of particular importance when frauds have also implications 

on food safety. After food scares such as bovine spongiform encephalopathy (BSE), a 2002 EU 

regulation prohibited the use of animal by-products and processed products of a certain animal 

species from the purpose of feeding the same species (Regulation (EC) No 1774 /2002). 

Nonetheless, feeds with processed animal protein from parts and bodies of animal of the same 

species might be still employed fraudulently, due to their extreme cheapness. Therefore, such a 

fraud might also represent a safety issue. Most recently, therefore, many studies investigating this 

issue were carried out. Unfortunately, only a few of them were addressed to poultry, although 

animal by-products, e.g. protein hydrolysates, are explored as ingredients for their feeds, in the 

effort to promote sustainable systems which more and more ask to exploit and valorise wastes. For 

instance, a purified protein hydrolysate with zero chromium from chrome-tanned leather waste 

has been tested as poultry feed [Chaudhary et al., 2016]. The study produced evidence that protein 

hydrolysate can replace up to 75 % of soybean meal in broiler diets without affecting either growth 
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performance or meat characteristics. However, the traditional analyses employed to evaluate the 

meat quality, e.g. ultimate muscle pH, colour, protein, fat and mineral content, are far away from 

the holistic view provided by the omics approach and a definitive response for the equivalence of 

such feeding is not reached yet. In another study, Cajka et al. investigated on the possible 

differences in chicken meat in relation to a feed with (5-8% w/w) and without the addition of 

chicken bone meal (banned component) employing DART-MS and multivariate data analysis both 

on the feed and on chicken muscle [Cajka et al., 2013]. The metabolite fingerprint was assessed for 

both feed and muscle extracts and these were evaluated through PCA and OPLS-DA. In this way it 

was possible to discriminate between the two diets on polar and non-polar extracts, and this was 

assessed positively also after 6 months. One thing that was questioned, though, was that 

triglycerides (in non-polar extract) showed pattern variation due also to season and other raw 

materials used in feed preparation, thus complicating the assessment of the effect of the chicken 

bone meal. 

d) Pre- and post-slaughter conditions 

Some of the main defects in poultry meat are the so-called pale-soft-exudative (PSE) and dark-firm-

dry (DFD) meat. These defects interest meat colour, mainly, and the texture, with detrimental 

effects provoking consumers discard. PSE and DFD are due to unusual post-mortem pH evolution in 

meat: very low pH in PSE meat and high pH in DFD meat are reached ultimately, giving higher 

chances of microbial growth. These defects are caused by stress-related shocks in the animals 

before death, causing alteration in their metabolism and thus post-mortem variation in meat. For 

PSE meat, genetic links were found in pigs, whilst in chicken this defect is still mainly related to pre-

slaughter stress and inadequate meat chilling. In any case, these factors will cause either a fast 

post-mortem glycolysis and thus a fast pH descent or just abnormally low values of pH for the 

meat. In DFD meats, instead, prolonged stress will cause the use of glycogen supplies and thus, 

post-mortem, the absence of lactate will cause higher pH values. Many test are now available to 

assess these two types of defects; in PSE also genetic tests can be possible for swine, though most 

recently metabolomics was proposed as a fast alternative. In poultry, metabolomics would be 

essential since genetic links are still not evident. However, publications concerning studies for PSE 

and DFD signatures based on metabolomics are still absent in literature for birds and, again, the 

potentiality of this approach will be described below for pork. Nuclear magnetic resonance was 

used to study the possible consequences of pre-slaughter exercise on the metabolic profile of 

plasma, employing 40 pigs divided in different groups: control group and exercise on a treadmill 
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followed by 0, 1 or 3 hours of rest pre-slaughter [Bertram et al., 2010]. It was seen that plasma 

lactate greatly increased in the group with no rest between exercise and slaughter, whilst when 

rest was present, the stress-related variation in the metabolic profile were attenuated. It was found 

that plasma lactate was greatly correlated with WHC, muscle temperature 1 minute post-mortem 

and meat pH. In this way, it was possible to see that even without directly measuring the whole 

metabolic profile of meat it is possible to evaluate meat quality through a specific metabolite 

content in pre-slaughtering animals and adopt it as the marker for predicting the impact of stress. 

The same research group employed 31P-NMR spectroscopy to investigate the phosphorylated 

metabolome in an attempt to determine whether two different post-mortem cooling profiles, 

commercial batch (soft) and tunnel chilling (fast), would generate differences in pork meat quality 

[Bertram et al., 2001]. Phosphocreatine was degraded less rapidly post-mortem in tunnel chilling, 

whilst ATP showed no degradation differences in the two cooling methods. pH values also differed, 

with a maximum variation between groups of 0.25 units after 150 minutes post-mortem. It was 

also calculated that the fraction of inactivated myosin was 2.5 times greater using the soft method, 

indicating that the measured differences in pH and temperature among the two regimes could 

influence protein degradation and WHC of meat. These studies show the great potential of 

metabolomics as a fast tool to assess the presence of meat defects and it could be easily employed 

on chicken meat, too, in order to spot the defects in time and avoid investing PSE/DFD meats for 

the formulation of products which are not suitable for. In effect, PSE meat could be used in special 

products formulated in order to restore a proper colour and protein functionality, so to improve 

the texture and contain yield loss, whilst DFD meat cuts, due to their microbiological instability, 

could be used in heat-processed products [Lesiów et al., 2003]. It is clear that metabolome 

perturbations are mirrors of a more general alteration in the muscle physiology, reflected also at 

the level of the proteome characterising the muscular apparatus, as affected by different 

enzymatic activities, e.g. by hydrolases. Zanetti et al. investigated the proteome of chicken 

Pectoralis major muscle in order to evaluate possible changes due to in transit time before 

slaughtering (90 or 220 minutes) [Zanetti et al., 2013]. Two-dimensional electrophoresis, followed 

by image analysis and LC-MS/MS of the spots of interest, chosen by means of statistical analysis 

(Wilcoxon's test and PCA) were applied as blood tests. They showed that the animals with longer 

transit times had higher stress levels as evidenced by the presence of 2 spots related to time in 

transit, associated to proteins linked to cellular housekeeping functions (metabolism, cell division, 

apoptosis-control). Principal component analysis did not show a clear separation in the proteome 
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of chicken with different in-transit times, though some small differences were identified. For future 

studies, thus, employing more different times and other tissues could be more helpful to gain 

insight on the stress-related proteome changes. It was clear, though, how this pre-slaughtering 

process can hinder good meat quality by causing stress to the birds. Another important factor 

affecting meat quality is the slaughtering procedure itself. Salwani et al. investigated the 

differences in the proteome of the skeletal muscle of broiler chickens with or without gas stunning 

prior to slaughtering [Salwani et al., 2015]. Meat quality parameters (colour, pH, shear-force and 

drip/cooking-loss) were also measured and differences were found between the two treatments. 

Gas-stunned chicken had lower redness, pH and shear-force, whilst they showed greater drip and 

cooking loss both at 4 and 24h post-mortem. In addition, proteomics, through two-dimensional 

polyacrylamide gel electrophoresis on samples at 7 minutes post-mortem, showed that gas-

stunning up-regulated the expression of creatine and pyruvate kinase and beta-enolase. These 

results show that pre-slaughtering treatments having negative effect on meat quality (WHC and 

colour, especially) provoke increased speed of the post-mortem energy metabolism. Most recently, 

Beauclercq and colleagues [Beauclercq et al., 2016], employed high-resolution NMR (1H and 31P) 

in order to investigate on the actual variation in chicken Pectoralis major muscle and serum due to 

the different values of meat ultimate pH, a characteristic that, as was mentioned above, is 

fundamental for the quality of poultry meat and related to DFD/PSE meats. Two genetic lines of 

chickens with either high or low ultimate pH (pHu+ or pHu-) were selected: 20 male broilers were 

chosen from the first one and 19 from the second one. The pHu+ line showed a significantly lower 

glycolytic potential and was darker and less exudative. OPLS-DA was carried out on the 

concentration of spectral metabolites and a total of 26 molecules (from 1H and 1P spectra) were 

found discriminative in muscles and 20 (just from 1H spectra) in serum. The pHu- line was found to 

have higher carbohydrate content in both muscle and serum, together with other metabolites 

linked to production of energy. On the other hand, the pHu+ line, showed a metabolism more 

switched towards ketogenic amino acid degradation and lipid beta-oxidation, since less glucose 

and glycogen are present and thus amino acids such as alanine are employed for energy 

production. This study thus paved the way into the clearing of the mechanisms behind the 

different glycogen levels at slaughter (and thus different quality traits) and suggested a fast 

screening technique to exclude meat cuts with poor quality, by employing a defined set of spectral 

metabolites to exclude pHu+ cuts. 

e) Meat processing 
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Modern consumers require meat products that are both convenient and of high quality, possibly 

appearing as close as possible to minimally processed foods. Thus, it is important for the meat 

producers to develop new technologies capable of providing these products, while maintaining 

good preservation of the quality attributes. Whatever is the processing technology applied, food 

composition and structure evolve during production and storage, and the main purpose of the 

industry is to take control over meat transformation processes, by monitoring opportune markers 

of quality. During a processing step such as ripening, for example, the peptidic profile of a food 

product changes greatly and can give hints on the origin and the evolution of the specific protein 

fraction. In effect, physical, chemical and enzymatic processes occur during ripening and modify 

the food matrix. Reactions such as proteolysis, lipolysis and fermentation (i.e. lactic and propionic), 

change the chemical components of the food product, impacting on its final sensory properties. 

Flavour, for example, is greatly influenced by proteolysis, which could contribute both positively 

(with the release of specific amino acids and peptides), and negatively, with the production of off-

flavours (such as from bitter, hydrophobic peptides). Moreover, it could liberate substrates used in 

other reactions. Therefore, it is fundamental to gain the desired, balanced, break-down of proteins 

into specific amino acids and peptides, in order to obtain an acceptable flavor for that food 

product [Mamone et al., 2013]. Poultry, especially turkey, is more and more sold as a cured 

product to extend shelf-life and increase consumers’ acceptance. Thus, the experience gained so 

far in other more consolidated meat-curing industry, including adoption of omics approaches for 

quality control, is of inspiration for developing analogous systems also in less traditional sectors 

such as that of cured poultry meat.  

Proteomics has investigated the biochemical changes occurring in dry-cured ham during its 

processing: during the post-mortem phase, endogenous proteolytic enzymes are activated and this 

will induce the degradation of muscle proteins [Mamone et al., 2013]. In fact, muscle sarcoplasmic 

proteins have been found to be relevant substrate for proteolysis by the identification of many 

small peptides, which are released by enzymes from the glycolytic pathway. [Mora et al., 2011a].  

Due to the fact that there is a lack of cleavage specificity, it is usually hard to identify the peptides 

released in food products. In spite of this, information on the endogenous proteases both from 

early stages (calpains) and medium- and long-term (cathepsins), and their action, can be gained 

through the employment of multistage MS-based peptide sequencing [Mamone et al., 2013]. 

Mora et al. [Mora et al., 2009] have demonstrated in dry-curing hams that there is an additional 

intense secondary proteolysis from amino- and carboxy-peptidases. This was assessed through the 
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identification of oligopeptides with consecutive loss of terminal amino-acids. 

Moreover, both small and large fragments of heavy and light chains of myosin and actin were 

identified through MS methods in dry-cured ham, proving that also muscle myofibrillar proteins 

experience extensive proteolysis [Di Luccia et al., 2005; Sentandreu et al., 2007; Mora et al., 

2011b]. In fermented sausages, it was studied how lactic acid bacteria cause an even greater 

proteolysis [Picariello et al., 2006]. Nonetheless, only a few studies regarding these products were 

published in the field of peptidomics, and it could be interesting to employ this approach to define 

the specific proteolytic patterns in dry fermented sausages in order to assess, or even predict, the 

stability of determined strains of starter cultures of lactic acid bacteria. [Mamone et al., 2013]. 

Recently, Sentandreu et al. [Sentandreu et al., 2011] have proposed MS for the identification of 

species-specific biomarkers in order to determine the authenticity of meat-derived products 

Moreover, MS analysis allowed the characterization of the domains of food proteins stable to 

digestion. In cured beef Bresaola, which is extensively hydrolysed by endogenous proteases, a large 

variety of peptides are released since the early post-mortem phase. Many of these peptides can 

exert several biological activities in human body [Ferranti et al. 2014]. After ingestion, the proteins, 

polypeptides and peptides from Bresaola are further degraded by the proteases found in the 

gastrointestinal (GI) tract. Ferranti and colleagues [Ferranti et al. 2014] have employed a static in 

vitro digestion model, including oral, gastric and duodenal phases, to evaluate the effect of 

different curing protocols on the digestibility of Bresaola meat. The obtained digestates were 

profiled by mass spectrometry-based proteomic and peptidomics strategies [Ferranti et al. 2014].  

It was seen that, at the end of digestion, all samples were almost identical for the majority of the 

released peptides. Only some slight differences, due, possibly, to differing technological procedures 

or nature of the raw material, were visible. The only thing that could be associated with the 

characteristics of the food was the kinetics of the peptide release, thus the evolution in time of the 

quantitative composition of the profile of the digestates (digestome). 

In this case, sarcoplasmic proteins were degraded relatively fast, whilst the myofibrillar chains 

would not be completely hydrolysed by the action of gastro-duodenal proteases, even after a 

prolonged hydrolysis. Moreover, these chains require a previous step of proteolytic release. 

[Ferranti et al. 2014]. This study identified more than 170 peptides, which were liberated from 

both sarcoplasmic and structural (actin and myosin) muscle proteins. Of note, many of the 

identified peptides are considered precursors of sequences which are potentially antioxidant and 

antihypertensive [Ferranti et al. 2014].  
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Bordoni et al. also investigated on Bresaola samples through the metabolomics approach [Bordoni 

et al., 2014]. Samples were again digested in vitro and digestates were investigated through 1H-

NMR to study the influence of the matrix in the bioavailability of nutrients. In effect, the meat 

matrix has been shown to modulate the free diffusion of specific nutrients, e.g. carnosine, in the 

digestion media towards the absorption sites, thus affecting the nutritional quality of the product. 

The developed protocol is applicable for screening of the nutritional value of protein-rich foods, 

being able to assess the bio-accessibility of proteins end-products.  

f) Product formulation 

The specific formulation of a meat product is important both for sensory and nutritional quality 

and for its technological characteristics, though in some cases it is important to determine it to 

avoid fraudulent practices. A study from Lassoued et al. proved, for chicken meat, that there is a 

link between risk aversion and ethically motivated behaviour on one side, and the trust the 

consumers have in a brand and in the declared quality attributes on the other side [Lassoued et al., 

2015]. It is therefore important for food industries to build trusting relationship with consumers by 

providing scientific evidence, i.e. objective descriptors, to discriminate different products in terms 

of their quality attributes. On the other hand, the promotion of frauds is stimulated because 

producers are facing a very competitive global market, thus they are in need to find the cheapest 

way to produce their meat bypassing the quality check indicators. It is therefore necessary to find 

new scientific methodologies to reinforce the quality check system and to fight food frauds, as also 

mentioned in the case of feeds. One of the main ingredients employed in the formulation of meat 

products is mechanically recovered meat (MRM). This ingredient is industrially obtained by 

recovering residual meat from animal bones or poultry carcasses from which the bulk of the meat 

has been already removed. MRM has the appearance of finely comminuted meat and is 

incorporated in a wide range of meat products, as a cheap source of meat. Similarly to MRM, 

desinewed meat (DSM) is produced using a low pressure technique to remove meat from animal 

bones. MRM and DSM meat are similar to hand de-boned meat (HDM) in their chemical 

composition, though they have a lower commercial value. [Mamone et al. 2013]. Moreover, they 

have been excluded from the EU definition of meat with the Directive of the European Parliament 

N. 101/2001. This was also caused by the fact that consumers were concerned about their safety 

[Mamone et al. 2013]. It is thus necessary to discriminate between MRM and DSM, and HDM with 

reliable analytical methods. Recently, Surowiec and colleagues [Surowiec et al., 2011a] have 

carried out a proteomic study aiming at identifying potential markers capable of detecting chicken 
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from MRM. In this research, proteins were extracted intact from raw meat and analysed by the 

employment of OFF-GEL electrophoresis, SDS-PAGE and, finally, nano-LC-MS/MS to identify the 

markers. Researchers were thus able to define the key proteins from the processed meat samples 

and identify the specific markers for MRM chicken [Surowiec et al., 2011a; Mamone et al. 2013]. 

Surowiec et al. also employed metabolomics techniques for the same kind of assessment on HDM 

pork and chicken meat, MRM meat and DSM meat samples of different origin [Surowiec et al., 

2011b]. In this case, GC-MS was used to determine the molecular profiles of samples and 

chemometric tools (PCA and OPLS-DA) were employed for the identification of specific differences 

between types of meat. It was found that the supervised statistical technique (OPLS-DA) was 

capable to separate all classes of meat-products (HDM, MRM, DSM) for both pork and chicken. The 

metabolites that generated this separation were then confirmed by Student's t-test and were 

tentatively identified by comparison with specific databases. However, these metabolites appeared 

to belong to numerous chemical classes and were mostly fat-related, thus, currently, none could 

serve as a specific biomarker, but future research could help in this assessment, in order to develop 

a fast methodology for the identification of HDM, MRM and DSM meats. The blending of meat 

from different species in a food product might be considered fraud when not declared, and can be 

a relevant character of quality control for determined consumers, such as the ones concerned 

about ethical aspects (i.e. against the use of horse meat) or religious requirements (e.g. no pork 

consumption). Recently, also, some food scandals occurred in Europe with horse-meat 

contamination of “beef” lasagna and traces of pork in Muslims school meals of chicken in the UK 

[D'Alessandro et al., 2013]. It is necessary, therefore, to be able to identify these frauds in order to 

protect consumers. Von Bargen et al. employed mass spectrometry in order to detect trace 

contamination of pork and horse meat and determine the specific biomarkers of these two types 

of meat against beef, chicken and lamb [von Bargen et al., 2013]. Through a proteomic approach, 

the typical biomarker peptides of the 5 different species were identified and these were taken into 

consideration in the study. Researchers were able to detect 0.55% horse contamination and 0.13% 

of pork contamination in beef matrices, showing that this proteomics technique can be of great 

help in the assessment of frauds. A fast and sensitive method, based on multiple reaction 

monitoring was developed and this can be applied in a routine manner in quality control 

laboratories employing tripe-quadrupole MS instruments, representing an alternative to genomics 

and classical proteomics techniques that are more expensive (i.e. ELISA) or still problematic for this 

type of assessment (i.e. PCR). Sentandreu et al. [Sentandreu et al., 2010] employed a proteomic 
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approach capable of detecting chicken meat in mixed meat preparations. In this study, myofibrillar 

proteins are extracted, the OFFGEL isoelectric focusing is used to enrich target proteins, then 

myosin light chain 3 is digested through in-solution trypsin digestion. Finally, LC-MS/MS was 

employed to analysed the peptides thus generated. Through this method, researchers were 

capable of detecting, with a high confidence, 0.5% of contaminating chicken in pork meat. AQUA 

stable isotope peptides, synthesized using sequences of species-specific peptide biomarkers, which 

were selected previously, allowed the quantitative detection of chicken meat. There was a linearity 

between the amount of chicken in the meat mixture and the amount of peptide biomarkers found. 

The method now needs to be validated by other independent replications, though it proved to be 

very simple and effective. This method could be used with both cooked and raw meat. It could also 

be adapted and employed for highly processed food, where immunoassays are precluded due to 

the modifications occurring to the tertiary protein structure during processing. Moreover, the 

proteomic analysis employed in this study was capable in identifying a definitive discriminatory 

sequence of peptides. The traditional DNA and PCR based methods can not allow this, instead. The 

researchers also proposed and expect future applications of this method as a regular procedure, by 

translating this technology into routine MS instruments. This will be very useful in laboratories 

used for public inspections [Sentandreu et al., 2010; Mamone et al., 2013]. Another important 

application in the determination of specific food ingredients in a formulation is in the case of food 

allergens, such as soy. Soy proteins can be added as emulsifiers in meat-derived proteins, to work 

during heat-treatment. Their use, though, could be limited or forbidden by specific regulatory 

authorities in some countries. Suitable analytical methods, capable of detecting and/or quantifying 

soybean proteins (Soy Protein Isolate, SPI) in meat products are thus needed, so that it will be 

possible to assess whether the threshold levels for their contents are respected [Mamone et al., 

2013]. At the moment, only a few methods are available for their semi-quantitative determination. 

Authorities such as the FDA (USA Food and Drug Administration) have criticized the Official 

Method (AOAC Official Method of Analysis 988.10), which is based on an ELISA assay. This method 

is, in fact, not considered too reliable or accurate. [Mamone et al., 2013]. Moreover, methods 

capable of detecting even low ppm concentrations of soybean proteins are needed, since, as 

stated, these molecules have an allergenic potential [Koppelman et al., 2004; Mamone et al., 

2013]. The alternative to the traditional method, are LC-based assays, but these could only work 

with raw meats. Recently, a proteomic study [Leitner et al., 2006] aimed at identifying SPI 

adulteration in heat-processed meat products from differen origins (chicken, turkey, pork, beef), 
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employed multi-dimensional HPLC-MS/MS. In this research, in order to isolate the interesting 

peaks originating from SPI-containing meat products, it was necessary to pre-fractionate samples 

through the employment of perfusion chromatography. The fractions were then digested using 

trypsin and finally anlysed by nanoflow LC-MS/MS. Glycinin and conglycinin (major seed proteins), 

in many variants and subunits, were spotted in SPI samples, together with other two proteins. 

Meat samples containing SPI were characterized by peak from different glycinin A subunits. The 

subunit A4 from glycinin G4 was in fact found in all SPI samples and could be used for new 

analytical methods for the identification of SPI in processed meat [Leitner et al., 2006; Mamone et 

al., 2013]. 

Conclusions and future applications 

Proteomics and metabolomics techniques and their associated methodologies have helped in 

many research field to find interactions between genome and external factors able to modify the 

characteristics of a biological system. The three approaches have been increasingly employed also 

in food science and in the assessment of meat quality. As stated, the quality of meat products 

depends on many different characteristics that, in turn, are influenced by genetics, but also by 

various external factors, such as the rearing methods and feeds employed, the handling of 

slaughtering and the processing and formulation of meat-based products. 

Table 2: Reported proteomics and metabolomics studies on the factors that impact on meat quality. 
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A lot of reported studies were based on cattle or swine, though the same principles stands and 

could be applied to chicken meat. This is especially the case for the investigation of the occurrence 

of PSE and DFD meat. In this sense, the employment of conjoint genomics, proteomics and 

metabolomics studies could help to have a complete insight on these defects that majorly impact 

chicken meat. In addition, these techniques could be helpful for the investigation of other defects 

such as white striping or wooden breast. The development of fast methodologies that could be 

applied on-line would be of great help in the determination of the destination of specific meat cuts 

(i.e. meat-based products or full cuts). Moreover, in the modern market it is necessary to give 

consumers as much objective and biomarker-assisted information as possible and it is thus of great 

help to have techniques such as proteomics or metabolomics to be able to confirm the quality of a 

product and the absence of frauds. This is important, for example, in the determination of the 

nutritional quality of chicken meat, considered a lean food, with many important bioactives, or for 

the certification of specific types of rearing (i.e. free-range) considering the increasing interest in 

animal welfare. To conclude, both proteomics and metabolomics will have a great impact on the 

evaluation of chicken meat quality and could help breeders and industries to evaluate genetic 

selection on the quality of the food products in their future. 
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CHAPTER 4: FOODOMICS FOR THE INVESTIGATION OF FOOD 
QUALITY IN PLANT-DERIVED PRODUCTS 

4.1 Investigation on the impact of farming system 

Recently, due to the increasing demand for organic foods, many studies have been carried out 

trying to investigate the possible metabolite difference between conventional and organic foods. 

In the last decades, consumers have become more and more concerned about the quality and 

safety of food products and the general perception is that organic food items are healthier and 

safer than the conventional ones due to the fact that they are thought to have lower levels of 

chemical fertilizers and pesticides and higher nutritional and sensory quality. This is why organic 

food products now represent a big subset in the food market and why it is necessary to assess the 

real benefits and nutritional qualities of this type of products. [Williams & Hammit, 2001; Harper & 

Makatouni, 2002; Makatouni, 2002; Capozzi & Trimigno, 2015]. On the other hand, though, organic 

foods can actually experience more microbiological contamination and, as a consequence, higher 

concentration of molecules such as biogenic amines, since less antibiotics and fungicides are used 

and manure is employed as a fertilizer. Organic foods are sold on the market at higher prices in 

opposition to conventional products and this is why, sometimes, fraud occurs. For all these 

reasons, it is thus necessary to establish correct analytical methods to assess the organic quality of 

food products and their possible higher quality traits. Traditionally, target analysis on macro and 

micro nutrients - from sugar to vitamin contents – were employed. In other cases, stable isotopes 

of elements such as hydrogen, carbon or nitrogen were analysed to assess the soil were products 

were cultivated on and the type of fertilizer employed, since organic farming mostly employes 

manure, which causes a higher content of the 15N isotope. Traditional approaches, though, lack 

the proper reliability unless they were actually combined with multivariate methods. For this 

reason, untarget analysis employing metabolomic techniques can be a better choice for the 

attainment of reliable and robust results, also due to the fact that the different methods of farming 

and cultivation can influence metabolic processes and responses. [Wishart, 2008; Capozzi & 

Trimigno, 2015]. In addition, new farming approaches, derived from the organic one, have been 

lately developed and still need to be assessed in their outcomes. In effect, biodynamic agriculture 

was developed from the organic farming system. Biodynamic farming employes organic fertilizers, 

but specifically particular fermented herbal preparations added to compost and field sprays. These 

 preparations are composed by minerals or fermented plant with animal organs, water and/or soil 
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and are used to improve the quality of soil and crops. Biodynamic farming thus aims to reproduce 

the natural cycle of energy and nutrients. By doing this, biodynamic methods should affect the 

microorganisms found in soil and, as a consequence, their products. It is thus interesting also to 

find out how this farming management affects crops. In order to investigate the effects or organic 

and biodynamic farming, a metabolomic approach was applied on grapes and reported in this 

thesis. 
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Abstract 

The increasing demand for natural foods and beverages has boosted the adoption of organic and 

biodynamic cultivation methods which are based on protocols avoiding use of synthetic pesticides. 

This trend is striking in viticulture, since wine production is largely shaped by the varying drinking 

attitudes of environment-friendly consumers. Using 1H-NMR, the compositions of cv. Sangiovese 

(Vitis vinifera L.) grape berries, collected at harvest in 2009 and 2011, in experimental plots 
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cultivated either with biodynamic or organic methods, were compared. Although the analysis 

provides a comprehensive metabolic profile of berries, the resulting distinctive pattern between 

the two cultivation methods consists of a few molecules. Lower content of sugars, coumaric and 

caffeic acids, as well as higher amount of γ-aminobutyric acid (GABA) were observed in biodynamic 

grapes with respect to the organic ones. The 1H-NMR foodomics approach, applied for the first 

time to assess the effect of the biodynamic practice on the composition of grape berries, 

evidenced a diverse fruit metabolome that could be associated to a different physiological 

response of plants to the agronomic environment. 

Keywords 

Foodomics; Grape; Organic; Biodynamic, HR-NMR; Metabolomics; GABA, Polyphenols.  

Introduction 

The increasing demand for safe food products have boosted the diffusion of alternative 

agronomical strategies, such as organic and biodynamic farming which can provide numerous 

benefits in terms of sustainability and soil quality. This trend is remarkable in viticulture , mainly as 

a consequence of the cultural and social prominent role of wine and of the special attention 

historically devoted to viticulture and winemaking. Over 280,000 ha of organic grapes were grown 

in 2014, according to FIBL and IFOAM surveys. Worldwide approximately 147,000 ha are managed 

according to Demeter biodynamic standards. There are 520 Demeter wineries in the world, with 

8000 ha of vineyards. Organic and conventional farming adopt distinct management practices and 

processing methods , which in many countries are regulated by specific laws. For example, the 

European Community recently enacted a regulation which states that “organic wines” should only 

originate from organic grapes with limited use of sulphur dioxide during the vinification process 

and storage, whereas other oenological practices are either restricted or prohibited. By contrast, 

there is still a lack of official European regulation for biodynamic viticulture and winemaking. 

Regardless of certification procedures, biodynamic agriculture differs from organic management in 

the use of specific fermented preparations, applied on crops or soil in very small amounts, which 

are claimed to stimulate soil nutrient cycle, photosynthesis and optimal evolution of compost, 

enhancing both soil and crop quality. Few scientific studies have been devoted to understand the 

effects of biodynamic preparations/method on plant physiology and yield, edible parts 

composition and nutritional value. Recently it has been reported that some biodynamic 

preparations (500, 500K, 501 and Fladen) led to an increase in leaf enzymatic activities of chitinase 
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and β-1,3-glucanase, which are typically correlated with plant biotic and abiotic stresses and 

associated with induced plant resistance. Regarding to yields, both Reeve, et al. (2005) and 

Botelho, et al. (2015) detected similar values when the organic cultivated vines where compared to 

the biodynamic ones. In addition, Döring, et al. (2015) observed similar yields in vines under 

biodynamic and organic farming; however, these cultivation methods showed lower values when 

compared to the integrated management. Scant information is available on the characteristics of 

biodynamic grapes and wine. With regard to berry chemistry, a pioneering study from Reeve, et al. 

(2005) showed that biodynamically cultivated wine grapes had significantly higher soluble solids, 

total phenols and anthocyanins in the last harvest year compared to those from organically 

managed plants. In the white cv. Riesling no differences on must soluble solids, pH and total acidity 

were detected among organic, biodynamic and integrated treatments, whereas α-amino-acids 

changed according to the cultivation method (Döring et al., 2015). A study by Tassoni, et al. (2013) 

compared the biogenic amine content and the polyphenol profiles of berries (cvs. Pignoletto and 

Sangiovese) grown with conventional, organic and biodynamic practices, highlighting no significant 

differences among samples. In a recent work with other cultivars (Albana and Lambrusco), Tassoni, 

et al. (2014) recorded changes in the concentration of catechins and stilbens. However, the analysis 

did not generally evidence significant differences among wine samples coming from different 

agricultural and winemaking practices. A recent study demonstrated that the quality of cv. 

Sangiovese red wines was largely influenced by the application of biodynamic preparations. 

Moreover, by using 1H-NMR, it was possible to discriminate between red wines from organic and 

biodynamic grapes. The present paper, based on the foodomics approach , proposes a holistic 

approach combining high resolution nuclear magnetic resonance spectroscopy (HR-NMR) with 

multivariate data analysis, to reveal differences between the metabolomes of organic and 

biodynamic grape berry. To date, there are no studies using NMR and foodomics to evaluate the 

effect of the biodynamic agronomical practices on the grape berry metabolic composition. The 

NMR spectroscopy is a method of choice for foodomics due to ease of sample preparation, 

reducing the risks of manipulation artefacts, and shortening the overall analysis time, largely used 

in high-throughput applications. Despite the lower sensitivity, with respect to some other 

techniques commonly applied for metabolite profiling, NMR spectroscopy has the advantage to 

acquire spectra that directly represent the molecular composition of the extracts. NMR spectra, 

indeed, may be subjected to immediate data analysis, taking advantage of their extreme 

reproducibility, high dynamic concentration range, and the universal correlation between the 
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concentration and the area of the corresponding signal, as the response factor is the same for 

every hydrogen atom irrespective of the molecule it belongs to. Thus, the NMR spectrum of a 

biological extract reflects, as a whole, its metabolic status, while the loss of important information 

is reduced as much as possible. Most of the redundant information associated to the NMR spectra 

is condensed in a few orthogonal patterns by application of multivariate data analysis, Such a 

simplification allows the recognition of meaningful information about the response of an organism 

to external perturbations. The main aim of the current study is to measure the overall molecular 

profile of biodynamic grapes and compare it to the organic ones. The proposed approach applies 

metabolomics to evaluate the metabolic profile of grapes, as determined on their perchloric acid 

extracts. The changes induced by agronomic techniques on the composition of the fruit are 

combined to other meta-information related to the sample nature in order to interpret the 

chemical perturbations. To the best of the authors’ knowledge, this is the first study which, starting 

from the analysis of the overall NMR spectra of samples produced with different agronomic 

practices, identifies a pool of compounds able to discriminate between grape berries produced by 

biodynamic and organic cultivation methods. We discuss here possible interpretation of 

mechanisms of action underlying the observed modifications. 

Material and Methods 

Site description, experimental design and vineyard management 

The experiment was performed in a mature vineyard of cv. Sangiovese (clone FEDIT 30 ESAVE), 

Vitis vinifera L., grafted on Kober 5BB, trained to Cordon du Royat. The vineyard was located in 

Tebano, Italy (44°17′7″ N, 11°52′59″E, 117 m a.s.l.), in a medium hill slope, with South-East/North-

West and downhill oriented rows. Vines were spaced in 2.8 m x 1.0 m (3,571 plants ha-1). Starting 

in 2007, the vineyard was managed as organic (ORG) in accordance with Regulation EC 834/2007.  

Then, in 2008, the total surface (20,000 m2) was divided in two large uniform areas with similar soil 

physic-chemical characteristics, each of them submitted to a specific cultivation method: organic 

(ORG) farming, managed according to the same Regulation CE 834/2007 ; biodynamic (BD) farming, 

based on organic management, except for the applications of biodynamic preparations. Each 

treatment, ORG and BD, was applied to 7 replications, for a total of 14 experimental plots, each 

including 12 sample plants (total 168 sample plants). The biodynamic preparations 500, fladen, 500 

K, 501 were used from 2008 until 2011 and trunk paste in 2010, as described in Botelho, et al. 

(2015). To prepare fladen, a hole was dug, covered with sticks of birch, filled with fresh and 
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compact cow manure, without straw and subsequently inoculated with compost preparations. 

Eggshells and basalt were mixed together for 1 h with a spade, then placed in the ground, inside a 

box with its base open to the soil, for 8 weeks. The fladen preparation was used when dark brown, 

crumbly and free of manure smell. In 2008, fladen was applied 3 times, twice in spring and once in 

autumn; 501 4 times during summer; 500 once in autumn. In 2009, fladen was sprayed 3 times in 

spring; 500 4 times in spring; 501, twice in summer; 500 K twice in autumn. In 2010, fladen was 

applied twice in spring; 500 twice in spring, 501 three times in summer, 500 K once in autumn. In 

2011 500 was applied twice in spring; fladen twice in spring; 501 three times in summer; of 500 K 

once in autumn. The application time was modulated according to environmental conditions and 

observations on plants. In 2008–2011, the number of buds (12–14) was adjusted by winter 

pruning, whereas the number of bunches (11–15) was adjusted by cluster thinning only in 2011. At 

the end of each vegetative season herbaceous species were sown in alternate planting rows, such 

as fava bean (Vicia faba), barley (Hordeum vulgare), subterranean clover (Trifolium subterraneum) 

and mustard green (Brassica juncea) in both ORG and BD plots. Soil was managed by mowing the 

vegetation during late spring, which maintained biomass on the soil surface. Both, ORG and BD 

experimental plots were treated against diseases and pests in the same manner, using the 

biological products that are allowed by Regulations EC 2092/91 Treatments consisted mainly of 

copper (an average of 6 kg/ha/yr) and sulfur (an average of 70 kg/ha/yr), enabling control of fungal 

pathogens. In 2009, the average T recorded from the end of April to harvest (September 22nd) was 

22.0 °C; maximum T of 38.7 °C occurred on July 22nd, total rainfall was 190 mm and predominantly 

took place in April and during the first week of July. Overall, the 2011 vegetative season was 

marked by average temperatures well above the seasonal normal, with temperature peaks of 30°C 

in August. From bud burst to harvest, the average relative humidity (RH) varied from 40 to 70%; 

highest values were observed during spring (92%) and the lowest (38%) during the latter part of 

August. The total rainfall (204 mm) from bud burst to harvest was sporadic during spring and 

almost absent during ripening. 

Analysis of berries 

At harvest, on 50 berries randomly collected in each experimental plot, the following parameters 

were evaluated: berry weight; expressed as g per berry (Gibertini Elettronica S.r.l., Milan, Italy); 

total soluble solids (TSS; Brix; Electronic Refractometer Maselli Misure S.P.A., Parma, Italy), 

titratable acidity (TA; expressed as g/L) and pH (Crison Compact Titrator, Crison Instrument SA, 

Barcelona, Spain). At harvest, two sub-samples of 50 berries per plot were randomly collected from 



Chapter 4: Foodomics for the investigation of food quality in plant-derived products 

112 

 

the same side, North-West oriented, of the vegetative wall. The samples were brought on ice to 

the laboratory and stored at -80° C until extraction. 

HR 1H-NMR Sample Preparation 

Polar metabolites were extracted from a single berry per time (2009 and 2011) using a 3M 

perchloric acid (PCA, 65%, Sigma-Aldrich Inc., St. Louis, MO, USA) to stop enzymatic activity and to 

remove proteins. Subsequently, the acid mixtures were subjected to a first centrifugation for 5 min 

at 14,000 rpm (Microfuge® 18 centrifuge, Beckman Coulter, Brea, California) in order to remove 

insoluble tissues. Each resulting supernatant was dispensed in 1.00 mL aliquots and neutralized 

using 9 M KOH to pH 7.5 and then centrifuged at 8000 rpm for 5 min at 4 °C in order to remove 

potassium perchlorate precipitate. NMR samples were prepared by adding 100 μL of deuterium 

oxide (D2O) and 10 μL of 3-TrimethylSilyl-Propanoic-2,2,3,3-d4 acid sodium salt (TSP) at a final 

concentration of 1.4 mM to 600 µL of supernatant. 

1H-NMR spectra acquisition and processing 

All NMR spectra were recorded at 300 K on a Bruker US+ Avance III spectrometer operating at 600 

MHz, equipped with a BBI-z probe and a B-ACS 60 sampler for automation (Bruker BioSpin, 

Karlsruhe, Germany) according to a protocol already published. Each spectrum was acquired using 

32 K data points over a 7211.54 Hz spectral width and adding 32 transients and an acquisition time 

of 2.27 s. A recycle delay of 5 s and a 90° pulse of 11.4 μs were set up. HOD residual signal was 

suppressed by applying the ZGPR sequence (a standard pulse sequence included in the Bruker 

library) by irradiating it during the recycle delay at δ equal to 4.703 ppm (parts per million by 

frequency). Each spectrum was automatically processed adjusting phase and baseline with the 

command apk0.noe using TopSpin version 3.0 (Bruker BioSpin, Karlsruhe, Germany) and applying a 

line broadening factor of 0.3 Hz. The chemical shifts were internally referenced to the Trimethylsilyl 

propanoic acid (TSP, Cambridge Isotope Laboratories, USA) at 0.00 ppm. After the Fourier 

Transformation (FT) and prior to multivariate analysis, data underwent to a pre statistical 

improvement, such as normalization by Probabilistic Quotient Normalization (PQN) and peaks’ 

alignment by spectral reduction into 192 bins of 0.04 ppm of length. The first step is aimed at 

removing possible dilution effects , while the second step avoids the effect of peaks misalignments 

among different spectra due to variations in chemical shift of signals belonging to some titratable 

acids. Both these treatments, normalization and binning, were performed by using homemade 

algorithms written in the R 3.2.2 program language (http://www.r-project.org/). The spectral peaks 

were assigned by comparing their chemical shift and multiplicity with the literature and by using 
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Chenomx software (Chenomx Inc., Edmonton, Canada). 

Statistical analysis of berries data 

Comparison of means and analysis of variance between treatments were done by using SAS 6.04 

software (SAS INSTITUTE, CARY, NC, USA). Means were compared by the Student-Newman-Keuls 

test (P = 0.05).  

Multivariate statistical analysis of NMR data 

Multivariate data analysis of the NMR spectra was carried out by using homemade algorithms 

written in the R 3.2.2 program language. A mean-centered principal component analysis (PCA) was 

applied on the PQN and binned data set as an explorative analysis to examine the intrinsic 

variation in the data set. 

Results and Discussion  

Analysis of berries 

The cultivation method did not modify berry growth and technological parameters, regardless of 

the year. In fact, in 2009, BD and ORG vines displayed similar values of berry weight (ORG: 

2.15±0.26 g; BD 1.93±0.29 g), TSS (ORG: 22.5±1.6 Brix; BD 20.9±2.6 Brix), pH (ORG: 3.31±0.13; BD 

3.3±0.071) and TA (ORG: 4.03±0,46 g L-1; BD: 4.26±0,77 g L-1). Also in 2011 BD and ORG plants 

showed similar berry weight (ORG: 2.91±0.24 g; BD 1.65±0.281 g), TSS (ORG: 25.5±0.7 Brix; BD 

25.6±1.0 Brix), pH (ORG: 3.38±0.049; BD 3.41±0.0) and TA (ORG: 7.58±0.51 g L-1; BD: 7.64±0.61 g L-

1). 

NMR analysis.  

A representative one dimensional 1H-NMR spectrum of ORG grape berry, from 2009 harvest, 

acquired from pulp and skin extracts is represented in Fig. 1. Twenty-eight metabolites were 

identified in the spectrum and their assignments are reported in the picture with their relative 

chemical shifts. The grape berry extract is characterized by the presence of high concentration of 

sugar compounds which resonances in the 1H-NMR spectrum are dominant. This is reflected by 

their weight as source of variance among all samples, as shown in Fig. 2B which represents the 

loadings’ plot resulting from PCA applied to the entire data array, according to standard protocols 

for metabolomics. The PC scores plot in Figure 2A shows a tendency of samples to differentiate 

along PC1according to the cultivation method (BD and ORG), and along PC2 according the year 

(2009 white and black circles and 2011 white and black squares). As sugar compounds are 

abundant in grape berry, PC1 loadings’ plot is mainly characterized by sugar resonances. Positive 
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loadings, in the sugar region, mainly involve glucose and fructose signals. Thus, it appears that 

sugars are more abundant in ORG than in BD, since the latter are in the negative right part of the 

plot. This trend is confirmed for both 2009 and 2011 years (Table 1 and 2). 
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Fig. 1. 1H-NMR spectrum registered on a grape berry. The spectrum has been split into three parts for the sake of 
clarity. Some resonances have been assigned and labelled accordingly in the following regions: A) Aliphatic region, 
characterized by the presence of signals belonging to amino acids and organic acids; B) Carbohydrate regions, 
characterized by the presence of signals belonging to sugars and C) Aromatic region, characterized by the presence of 
signals belonging to phenolic and other aromatic compounds. 

In order to have information from the other parts of the spectrum, a PCA was applied separately 

on both aliphatic (Fig. 3) and aromatic (Fig. 4) regions. 

 

Fig. 2. Biodynamic and organic grape berry sample multivariate analysis. A) PC score plot from 84 NMR spectra of skins 
and pulp extract of BD (open symbols) and ORG (filled symbols) berries harvested in 2009 (circle) and 2011 (square). 
The first two PCs explain 87% (PC1) and 10% (PC2), respectively, of the total variance. B) Loading bar-plot for spectral 
bins along PC1. C) Boxplot of sugar regions from 3.21 to 4.20 ppm, characterized by the presence of fructose and 
glucose signals. 

The loadings’ bar-plot along PC1 highlights the metabolites of the aliphatic spectral region 

contributing to the differentiation between BD and ORG grape berries. Most of these, especially 

organic acids malate and lactate, are more abundant in the BD samples. Although the differences 

between refractometric °Brix index of ORG and BD grapes are not statistically significant, it has to 

be point out that the water content may be the main source of variance, thus enlarging the 

standard deviations of each group masking possible differences among groups. The NMR data, 

operated in a way that spectra are normalized on the organic compounds content, indeed point 

out that a different amount of water among berries (dilution factors) are responsible for a large 

intra-group variance, preventing the differences between groups to be statistically significant. The 
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PQN algorithm, so far adopted to normalize spectra, emancipates from dilutions. Together with 

organic acids, also some amino acids such as proline, valine and isoleucine are much higher in 

biodynamic samples together with γ-aminobutyric acid (GABA) (Fig. 3B). As far as the aromatic 

compounds are concerned, it is worth noting here that only molecules soluble in the water phase 

are extracted and visible in the NMR spectra. 

 

Fig. 3. Biodynamic and organic grape berry samples multivariate analysis. A) PC score plot of aliphatic region (from 
0.51 to 3.21 ppm) from 84 spectra of extracts from skins and pulp of BD (open symbols) and ORG (filled symbols) 
berries harvested in 2009 (circle) and 2011 (square). The first two PCs explain 56% (PC1) and 17% (PC2), respectively, 
of the total variance. B) Loadings bar-plot for spectral bins along PC1. C) Boxplot of GABA interval from 1.82 to 1.93 
ppm. 

Although the intensity of signals reflects a poor abundance with respect to organic acids and 

sugars, a multitude of peaks is present revealing a complex mixture of monomeric phenolic 

compounds as evidenced by the PC analysis confined on the aromatic part of the NMR spectrum 

with exclusion of the formic acid singlet (Fig. 4). Along the main component (PC1), which explains 

the 45% of the total variance, there is a clear separation of the two groups, BD and ORG. The 

analysis of the loadings (Figure 4) confirms that ORG samples are characterized by higher levels of 

coumaric acid (Fig. 4C) and trans caffeic acid (Fig. 4D). The experimental conditions (experimental 

design, number of replicates, sampling methods, etc.), adopted in the present study, allowed us to 

minimize possible interference exerted by environmental and agronomical factors in the 

comparison of the cultivation method. The vineyard hosting the trial was accurately controlled by 
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monitoring physiological parameters (e.g. leaf chlorophyll and nutrient concentration, 

photosynthetic activity, leaf water potential), yield and fruit quality. Plants subjected to both BD 

and ORG methods displayed similar vegetative (e.g. pruning weight), productive (e.g. yield) (data 

not shown) and technological parameters (e.g. berry soluble solids, pH and titratable acidity). 

 

Fig. 4. Biodynamic and organic berry samples multivariate analysis. A) PC score plot of aromatic region (from 5.55 to 
8.4 ppm) from 84 spectra from extracts of skins and pulp of BD (open symbols) and ORG (filled symbols) berries 
harvested in 2009 (circle) and 2011 (square). The first two PCs explain 45% (PC1) and 18% (PC2), respectively, of the 
total variance. B) Loadings bar-plot for spectral bins along PC1. C) Boxplot of Coumaric Acid interval from 6.87 to 6.99 
ppm. D) Boxplot of Trans Caffeic Acid interval from 7.57 to 7.68 ppm. 

Therefore, the differences detected by 1H-NMR on berries from the two cultivation methods 

should be ascribed to the use of biodynamic preparations. Based on the results of this work it can 

be referred that berries from BD agriculture, compared to those from ORG cultivation, display an 

activation of glycolysis toward fermentative pathway. The fermentative pathway, occurring under 

the absence or low oxygen concentration, implies that pyruvate is converted into lactate or 

ethanol. Under non limiting oxygen levels, pyruvate is oxidized to yield acetyl CoA that enters in 

the Krebs cycle. Indeed, the lower concentration of sugars (mainly glucose and fructose) along with 

the increase concentration of organic acids such as lactate and malate and ethanol might suggest 

the activation of the anaerobic metabolism in the BD berries respect to ORG berries. Grapevines of 

cv. Sangiovese, under BD management exhibited lower leaf stomatal conductance as compared to 

organically cultivated vines. In a study conducted on cv. Riesling this parameter did not differ 
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between ORG and BD vines (Döring et al., 2015). The different effects of the cultivation method 

could be related to plant water status and genotypic responsiveness toward it (Chaves et al., 2010). 

Furthermore, reduction in stomatal conductance has been associated with enhanced plant 

tolerance toward biotic and abiotic stresses , which is considered to be one of the key aspects of 

BD viticulture. A lower stomatal conductance is associated with an increase in the concentration of 

internal CO2. These findings might support the possible predominance of anaerobic metabolism in 

BD berries. Accordingly, the observed accumulation of formic acid in BD berries would result from 

the activation of formate dehydrogenase that under specific conditions might consume CO2 and 

NADH to produce formate. Considering that this reaction might regenerate NAD+, the 

accumulation of formate in BD berries might suggests the occurrence of an enhanced turnover of 

reducing power presumably associated to compensate the deficit of aerobic metabolism 

(mitochondrial respiration and Krebs cycle). In fact, together with organic acids, also some amino 

acids such as proline, valine and isoleucine are much higher in biodynamic samples together with 

γ-aminobutyric acid (GABA) (Fig. 3). In particular, isoleucine and valine are formed from pyruvate: 

the increase in their concentration in the BD berries suggests that a reduced amount of pyruvate 

enters in the Krebs cycle and could be directed to other routes. Since the vines submitted to BD 

cultivation method exhibited lower leaf stomatal conductance , it would be interesting to further 

explore the possible relationship between this physiological parameter and the fruit anaerobic 

metabolism. The 1H-NMR technique, by emancipating from possible detrimental artefacts 

introduced by more manipulating methods, provided complex information on the chemical 

composition of berries, embedded in hundreds signals generated by as much compounds. 

However, the complexity of information is simplified by multivariate data analysis, which mines the 

relevant spectral features responsible for variance, and this approach highlighted the prevalent 

role of few molecules that clearly discriminated between the two cultivation methods. Among 

these substances there are some polyphenols, such as coumaric and caffeic acids that represent a 

class of phenolic acids largely important for their influence on the wine sensory value. In fact, they 

contributes to the colour, astringency, bitterness and the aroma of wine, either directly or as a 

result of a whole interactions with other molecules such as proteins, polysaccharides or other 

polyphenols. In our experiment, coumaric and caffeic acids, together with other polyphenolic 

compounds, were lower in BD grapes with respect to ORG ones. Thus, between BD and ORG 

berries there are differences in the polyphenolic profile that may reflect in the deriving wine. 

Wines derived from BD grapes harvest in 2009 were characterized by a lower concentration of 
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total polyphenols and anthocyanins than ORG wines of the same year , and the observed trend is 

confirmed in the corresponding berries in the present work. In spite of their importance in grape 

and wine quality, polyphenols are hard to compare among different cultivation methods, because 

their content is heavily affected by environmental and other agronomical practices (e.g. canopy 

and soil management) as well as vegetal material (e.g. variety, rootstock). Therefore, limited 

published literature is present on this subject. The conclusions drawn by Tassoni, et al. (2013) and 

are based on a single investigated vineyard per each cultivation method. Moreover, the 

concentration of specific polyphenols was not reported by Reeve, et al. (2005). It is noteworthy 

that the concentration of GABA, significantly higher in berries obtained by the BD management in 

the 2009 harvest, effectively discriminated between the two cultivation methods. Although the 

difference in not significant in 2011, the same trend is observed confirming the tendency to be 

more accumulated in BD than in ORG. However, it has to be argued that the environmental 

conditions, fluctuating year by year, may have influence in attenuating such a difference. This 

molecule appears ubiquitously in living organisms and is considered an indicator of the capability 

of plants to react to environmental stimuli, including attacks by insects and pathogens. GABA has 

different functions within the plant: defense against insects , protection from oxidative stress and 

transmission of signals in the plant. In particular, in response to a signal mediated by cytosolic Ca2+ 

ions, GABA is rapidly synthesized at high amounts. In addition, GABA represents a substrate for 

yeasts. Saccharomyces cerevisiae can in fact efficiently use it as a source of assimilable nitrogen, 

especially in conditions of poor availability of YAN. The biodynamic cultivation method induced in 

wines effects on GABA concentration similar to those found in the present paper. The new 

information may suggest that the source of such a difference could be assigned prevalently to the 

cultivation practice rather than to yeasts co-metabolism. Consequently, GABA represents an 

interesting molecule as putative marker for sustainable agricultural systems. Furthermore, in 

humans GABA works an inhibitory neurotransmitter with beneficial health effects; hence special 

attention is devoted to improve its concentration in food and beverages. As a component of food 

imparting health benefits (relief from stress, better immune system), biodynamic applications 

could be object of future research in the. As a component of food impaeastudy that highlights 

changes of GABA in grape berries associated to biodynamic BD method.  

Conclusions 

The comparison of grape composition between two different cultivation methods by 1H-NMR-
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based foodomics demonstrated changes in molecular composition, related to quality attributes, 

here assigned to specific compounds testifying the extraordinary capability of plants to respond to 

challenging surrounding environment. The foodomics approach, previously applied to berries for 

the first time to evaluate a possible substantial equivalence between conventional and transgenic 

genotypes , stimulated us to further explore plant responses to the biodynamic cultivation method 

with special attention to edible parts. The comparison of grape composition between two different 

cultivation methods by 1H-NMR-based foodomics demonstrated changes in molecular 

composition, related to quality attributes, here assigned to specific compounds, which are relevant 

for their food and enological implications.  
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Table 1. Sugars, Coumaric acid, Caffeic acid and GABA Area arbitrary unitsin cv. Sangiovese berries obtained in 2009 
from experimental plots under organic (ORG) and biodynamic (BD) management.  

2009 

Treatment Sugars Coumaric Caffeic GABA 
ORG 103501,8638 12,696081 5,079097 14,477993 
BD 92253,38848 7,471296 3,205697 18,007534 

Significance ** ** *** ** 
**Significant at P ≤ 0.01; ** significant at P ≤ 0.001.  

Table 2. Sugars, Coumaric acid, Caffeic acid and GABA Area arbitrary unitsin cv. Sangiovese berries obtained in 2011 
from experimental plots under organic (ORG) and biodynamic (BD) management.  

2011 

Treatment Sugars Coumaric Caffeic GABA 
ORG 106975,6726 17,656448 9,096597 14,536449 
BD 96410,60039 15,207398 8,162619 16,682954 

Significance ** ** ** n.s. 
** significant at P ≤ 0.01; n.s., not significant.  
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4.2 Foodomics to investigate genetic modification 

Another recent trend in food production is the employment of genetically modified (GM) crops 

and transgenic foods. These are obtained by the recombination of the DNA in order to achieve 

specific and favourable characters (higher yield, better nutritional quality, etc.). Research is though 

needed to understand if these genetic modifications can induce changes that could be harmful for 

the consumers and metabolomics could give answers in this topic, thanks to its great analytical 

power. Genetic modification can in fact impact on food safety and quality, thus the so-called 

“substantial equivalence” of GMO in relation to the wild type (WT) counterpart needs to be 

assessed. The substantial equivalence means that the two variants are similar enough that can be 

considered the same and treated equally in regards of food safety. In addition to the necessary 

assessment of the substantial equivalence, the beneficial effects of the GM need to be proved and 

this is way modern research and, more specifically omic sciences, have been more and more 

employed to investigate on GMOs. In 2011, Picone et al., tried to assess the substantial equivalence 

of GM table grapes employing 1H-NMR spectroscopy and metabolomics. This study showed that 

the whole grape metabolome, but more specifically organic acids and aromatic compounds, could 

discriminate between GM and wild-type and this difference was more significant for one GM 

cultivar, thus the genetic modification was modulated by the host genotype. This study also proved 

that the metabolomic approach employing NMR spectroscopy and multivariate statistical analysis 

could help in the investigation of GM crops and products. Starting from this study, then, the 

characteristics of the GM lines compared to the WT one of the investigated cultivars were 

investigated in the following study. This was done in order to better understand what happens 

when the transgene is inserted. 
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Abstract 

Introduction: The Deficiens Homologue 9-iaaM (DefH9-iaaM) gene is an ovule-specific auxin-

synthesizing gene which is expressed specifically in placenta/ovules and promotes auxin-synthesis. 

It was introduced into the genome of two grape cultivars Thompson Seedless and Silcora (SIL) and 

both transgenic cultivars had an increased number of berries per bunch.  

Objectives: This study investigates the down-stream metabolic changes of Silcora and Thompson 

seedless grape cultivars when genetically modified through the insertion of the DefH9-iaaM gene 

into their genome. 

Methods: The effects of the genetic modification upon the grape metabolome were evaluated 

through 1H-NMR and exploratory data analysis. Chemometric tools such as Interval Partial Least 

Squares regression and metabolite heatmaps were employed for scrutinizing the changes in the 

transgenic metabolome as compared to the wild type one. 

Results: The results show that the pleiotropic effect on the grape metabolome as a function of the 

gene modifications is relatively low, although the insertion of the transgene caused a decrement in 

malic acid and proline and an increment in p-coumaric acid content. In addition, the concentration 

of malic acid was successfully correlated with the number of inserted copies of transgene in the 

Silcora cultivar, proving that the increased production of berries, promoted by the inserted gene, is 

achieved at the expense of a decrement in malic acid concentration. 

Conclusion: NMR together with chemometrics is able to identify specific metabolites that were up- 
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or down regulated in the genetically engineered plants allowing highlighting alterations in the 

down-stream metabolic pathways due to the up-stream genetic modifications. 

Keywords: Vitis vinifera L.; GMO grape; 1H-NMR, metabolomics; chemometrics; iPLS 

Introduction 

Grape berries (Vitis vinifera L.) present a double sigmoid developing growth pattern that can be 

divided into three phases. The first phase (fruit set, Supplementary Fig. S1) represents the initial 

rapid size increment along with the formation of the berry skin and flesh (berry pericarp). During 

the second phase (ripening), grape berries reach full ripeness with a rapid accumulation of sugars 

as well as a decrement in acidity. The two phases are separated by a transition phase characterized 

by the so-called véraison or onset of grape ripening. In the first phase, tartaric acid together with 

hydroxycinnamic acids, tannins and monomeric catechins are accumulated in the berries. 

Hydroxycinnamic acids play an important role as precursors of volatile phenols like p-coumaric 

acid, caffeic acid, and ferulic acid , as well as for the non-volatile tannins that are responsible for 

the bitter and astringent sensory properties of red wine. At the later stages of grape berry 

development, accumulation of other compounds occurs, such as sugars (sucrose, glucose and 

fructose), amino acids such as proline and arginine that represent most of the nitrogen content in 

grape berries , minerals and micronutrients related to the plant survival as well as some aroma 

compounds such as methoxypyrazines. The second phase, representing the fruit ripening, starts 

with the véraison that marks the end of the lag phase in which berries have remained steady and is 

characterized by drastic morphological and chemical changes. In this phase the berries become 

larger, softer, sweeter, less acidic and strongly colored and flavored. The enhancement in flavor is a 

consequence of a double ripening effect: firstly, the production of flavor and aromatic compounds 

such as norisoprenoids, terpenes and thiols in the form of sugar or amino acid conjugates and, 

secondly, the modification of the balance between organic acids and sugars. Just after the véraison 

there is a sudden and massive increment in the monosaccharides glucose and fructose due to the 

breakdown of sucrose that has been transported into the berries from the leaves. Also organic 

acids are synthesized at this stage, the largest part is represented by tartaric and malic acids, which 

typically account for 90% of acids in grapes. The remaining part of organic acids is characterized by 

minor amounts of citric, succinic, lactic and acetic acid. After véraison, malic acid decreases rapidly 

because its production ceases while the respiration increases. In contrast, tartaric acid only 

decreases slightly, mainly because of dilution effects and a partial conversion to its salt forms. The 
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Deficiens Homologue 9-iaaM (DefH9-iaaM) gene, an ovule-specific auxin-synthesizing gene, was 

introduced into the genome of two grape cultivars with different flowering habit: Thompson 

Seedless (THS) long cane flowering habit and Silcora (SIL) short cane flowering habit. Both 

transgenic cultivars had an increased number of berries per bunch, but this effect was stronger for 

THS than for SIL. In a preliminary study, Picone et al. (2011) showed first that the effect of the 

insertion of different copies of the DefH9-iaaM construct on the entire metabolome of SIL and THS 

could be detected by the application of unsupervised multivariate analysis of 1H-NMR spectra data 

of grape hydro-alcoholic extracts. In addition, it was assessed whether the genetic modification 

shifts the metabolome towards the same direction by investigating both cultivars. This study 

instead, is aimed at characterizing and understanding the changes in the downstream grape 

metabolome induced by the up-stream genetic modifications. For this purpose an advanced 

chemometric tool, the interval Partial Least Squares regression (iPLS) has been employed in order 

to characterize the minute metabolic changes resulting from the genetic modification in 

comparison with the no GM corresponding control. 1H-NMR in combination with chemometrics 

have proven great potential for the generation of unambiguous biological information on how an 

organism responds to an external perturbation such as genetic factors or environmental factors. 

For this reason, the NMR based metabolomics approach has been largely employed in the enology 

field for the exploration of the changes in the non-volatile metabolome of wine and grape berries 

due to these effects. Recently the NMR techniques started to be considered as a tool for the 

detection of both intended and unintended effects due to the genetic modification of organisms. 

The main advantage of NMR spectroscopy undoubtedly relies in its very large dynamic range so 

that major compounds, like sugars, can be evaluated together with minor components, like 

phenols and other aromatic compounds, in a single analysis. The total amount of sugars, acids, 

aromatics, and all other compounds is directly proportional to the area in the corresponding 

spectral regions. The same NMR spectrum simultaneously provides information on the presence 

and amount of acids, aromatics and other chemicals, provided they are soluble and above the 

detection limit, whilst with other analytical techniques separate runs are often necessary. This 

advantage, along with its high reproducibility, non-destructivity and easy sample preparation, 

make NMR spectroscopy one of the most exploited techniques for metabolomics, complementary 

to GC- and HPLC-MS platforms which excel for their much higher sensitivity. Since the metabolomic 

study of genetically modified food is commonly based on MS-based approaches , to the authors’ 

knowledge this is the first study in which the metabolic effects of genetically engineered grapes are 
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investigated using NMR spectroscopy. 

Materials and methods 

Plant Material 

The experiment was performed on both control, wild type (WT) samples, and transgenic lines of 

THS and SIL. For the SIL grape cultivar, two different genetic lines were considered, distinguishable 

by the number of copies of the transgene introduced into the host genome: SIL line with a single 

copy of the new inserted gene (SIL-GM1) and SIL line with three copies of the transgene (SIL-GM2). 

For what concerns the THS cultivar, only the genetic line with one copy of transgene inserted was 

considered (THS-GM1). The transgene consists of the iaaM gene from Pseudomonas syringae pv. 

Savastanoi, under the control of the placenta and ovule-specific promoter DefH9 gene isolated 

from Antirrhinum majus. The iaaM gene encodes the Trp-2-monooxygenase enzyme that catalyzes 

the conversion of tryptophan (Trp) into indole-3-acetamide (IAM) which is then hydrolyzed into 

indole-3-acetic acid, (IAA) , as shown in Supplementary Fig. S2. 

Experimental trial 

Transgenic DefH9-iaaM lines of both cultivars were cultivated (1999-2006) under open field 

conditions to compare their plant development, yield and fruit quality with the corresponding non-

transgenic lines of THS and SIL. The open field experimental trial with transgenic and control clones 

was established at the Experimental Farm of the Marche Polytechnic University in March 2001, 

following the EC (CE 2001/18) rules for transgenic plants field evaluation. All plants, both transgenic 

and wild type, were cultivated in the same vineyards according to identical agronomic practices. 

Field trial was set including 4 plots of 4 plants for each clone (control and transgenic lines).  

Experimental design and sample preparation 

Fruit sampling: NMR samples were prepared from the extracts of berries of THS-WT and of the 

DefH9-iaaM line (THS-GM1), and berries of SIL-WT and of the two DefH9-iaaM modified lines, SIL-

GM1 and SIL-GM2. All berries were harvested in the same period (year 2007). At harvest, samples 

were freeze dried at -80° and then shipped in dry ice at the laboratory of analyses.  

Samples preparation: For each genotype (control and transgenic lines of both cultivars), a bulk of 

100 ± 1 grams of berries was treated; both skin and pulps of each sample were homogenized under 

ice chilling and three aliquots of about 10.0 g were vortexed separately with 10.0 ml of a mixture of 

methanol and 50 mM CH3COOH/Na+ buffer pH 5.0 (2:1) in order to perform the solvent extraction. 

The suspensions were centrifuged at 10,000 rpm for 20 minutes at 4° C. The resulting hydro-
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alcoholic solution was dispensed in different Eppendorf tubes, as 1 ml aliquots, and stored at -80° 

C. Before the NMR acquisition, 10% (v/v) D2O was added to each 1 ml extract, thus centrifuged at 

14,000 rpm for 5 minutes at room temperature. pH was not further adjusted, but it was measured 

for each sample yielding an average of 4.29 with a standard deviation of 0.08, confirming the 

buffer efficacy. A volume of 800 µl was transferred to a 5-mm NMR tube in order to acquire a 

single NMR FID (Free Induction Decay). Three extracts (E1-3) for each homogenate (H1-3) obtained 

from all genotypes (G1-5) were subjected to NMR analysis, by alternating samples so that the five 

extracts E1:H1:G1-5 were firstly analyzed, then followed by the series E2:H2:G1-5. When the last 

series E3:H3:G1-5 was analyzed, a total of 45 spectra was acquired. With this experimental design, 

represented in Supplementary Fig. S3, it was also possible to asses both accuracy and precision of 

the instrumental analysis.  

Chemicals 

All chemical reagents were of analytical grade and were purchased from SIGMA-ALDRICH, Inc., St. 

Louis, MO. 

1H-NMR Data acquisition and processing 

The 1H-NMR spectra were recorded at T= 300K using a Varian Mercury AS/400 NMR spectrometer 

operating at 9.4 T, corresponding to 400.098 MHz 1H Larmor frequency. For each spectrum a WET 

(Water suppression Enhanced through T1 effects) sequence was used. The WET sequence was 

employed in order to remove water and methanol singlets from the spectra and this is carried out 

through the generation of a shaped pulse which solely excites these solvent’s resonances and, after 

that, these excited resonances are suppressed. The advantage of the WET method is that it can 

also facilitate the decoupling and removal of 13C satellites of organic solvents as methanol. The 

sequence has been created using the following command: wet1D_setpulses(‘30’,’1H water 

frequency’, ‘30’, ‘1H methanol frequency’). A total of 2048 scans were accumulated, with data 

collected into 16k data points with a spectral width of 16 ppm, a pulse angle of 60°, a recycle delay 

of 1.0 s and acquisition time of 2.561 s. Prior to Fourier transformation, each FID was apodized by 

Lorentzian line broadening of 1 Hz and the corresponding spectra were phase and baseline 

corrected manually using MestRe-C 4.9.8.0 (www.mestrec.com, Mestreab Research SL, Santiago de 

Compostela, Spain). The same software was used to export data in ASCII file format. Chemical shift 

referencing was performed by setting the glucose’s β-anomeric signal to 4.60 ppm. The following 

spectral regions were removed prior to data analysis: the regions including only noise (the 

spectrum edges between 14.05 and 8.7 ppm and between 0.4 and -1.93 ppm) and the NMR signals 
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which are strongly affected by the residual solvent peak (water, between 5.15 and 4.65 ppm, 

methanol, between 3.28 and 3.41 ppm and acetic acid, between 1.97 and 2.18 ppm). As a result, 

the total number of spectral data points was reduced to 7585 points. A spectral dataset matrix with 

the dimensions 45 × 7585 was then constructed for subsequent multivariate data analysis. 

NMR data preprocessing and analysis 

Prior to multivariate analysis, the NMR data was preprocessed in order to minimize unwanted 

sources of variation due to slightly different instrumental conditions, imperfect baseline and phase 

corrections, and sample preparation artifacts. Firstly, as no internal standard was used all 1H-NMR 

spectra were normalized to unit area ; secondly, the signals were aligned in order to correct for 

small differences (<0.05 units) in the pH of the extract. The alignment of the spectra was 

performed using the icoshift tool available at http://www.models.life.ku.dk/algorithms/. This 

algorithm is able to perform a tailored alignment in specific regions of the spectrum, allowing the 

correction of single shift differences instead of the entire spectrum. Spectral alignment is required 

in order to conserve the bilinearity of the data and to avoid using binning which is a crude method 

to “align by peak-broadening” which may cause the loss of valuable spectral information.  

Chemometric tools 

In order to explore the data, unsupervised Principal Component Analysis (PCA) was initially carried 

out on the mean-centered data matrix, divided into three different 1H-NMR spectral regions: 

phenolic region, carbohydrate region and organic acid region (see Fig. 1). Using this segmentation, 

it was possible to investigate which spectral region contains most information about the grape 

metabolome perturbations induced by the genotype changes. The three different 1H-NMR 

spectrum regions were analyzed using the chemometric software LatentiX™ 2.0 

(www.latentix.com, Latent5, Copenhagen, Denmark). In order to maximize the separation between 

the genotypes and thus enable the identification of important and descriptive regions in NMR 

spectroscopic data, iPLS regression has been performed for both grape cultivars separately: this 

method has been carried out in Matlab version R2014a (MathWorks Inc., Natick, MA, USA) using 

the iToolbox freely available for download from http://www.models.life.ku.dk/algorithms/. Finally, 

a metabolic correlation analysis was conducted in order to highlight the interactions amongst 

metabolites, and the relationship between metabolites and the gene copies.  

The Pearson correlation analysis generates a coefficient called the Pearson correlation coefficient, 

denoted as r. Its value can range from -1 for a perfect negative linear relationship to +1 for a 

perfect positive linear relationship. A value of 0 (zero) indicates no relationship between two 
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variables. 

Results  

As previously shown by Costantini , the genetic modification by the DefH9-iaaM gene induces in 

THS a larger increment in number of inflorescences per shoot, in comparison to the control (THS-

WT). Gene expression studies showed that this effect corresponded to a high expression of the 

iaaM gene which increased the production of IAA at the fruit set (first phase in Supplementary Fig. 

1) with a consequent increment of auxins accumulation in the first stage of fruit development. For 

the SIL cultivar, the SIL-GM1 line showed a higher effect on increasing fruit set and total 

production. For all lines very small differences were detected in terms of fruit quality in 

comparison to the corresponding controls (THS-WT and SIL-WT) as reported in a previous study .  

3.1 1H-NMR profiles 

In order to further investigate the effect of these genetic modifications on the metabolome, NMR 

spectroscopy was employed on THS and SIL samples, both WT and GM and the results are 

presented and discussed in the following. Fig. 1 shows a representative 1H-NMR spectrum of a 

methanol-water extract of THS-WT including the metabolite assignment numbers used in the 

assignment table (Table 1).  

 

Fig. 1 1H-NMR spectrum of hydro-alcoholic extract of THS-WT grape (Vitis vinifera L) recorded at 400 MHz. Downfield 
and upfield regions are magnified on the vertical scale, respectively 400 and 20 times, in order to better represent the 
presence of low-intensity signals. 



Chapter 4: Foodomics for the investigation of food quality in plant-derived products 

134 

 

Table 1 lists the molecular assignments obtained through a combination of literature assignments , 

standard addition (spiking) and by the use of a multimedia library of pure compounds believed to 

be present in the extracts (http://www.bmrb.wisc.edu/).  

Table 1  Assignment table of the identified metabolites present in the 1H-NMR spectra of hydro-alcoholic extracts of 
grape cultivars at pH 4.29. Chemical shift values are referenced to the glucose’s β-anomeric proton signal at 4.60 ppm* 

Number Compound Functional group Multiplicitya δ (ppm) 

1 Valine γ-CH3 D 0.96 
2 Valine γ1-CH3 D 1.02 
3 Ethanol CH2 T 1.17 
4 Lactate β-CH3 D 1.33 
5 Alanine β-CH3 D 1.47 
6 Arginine γ-CH2 M 1.69 
7 GABA β-CH2 M 1.90 
8 Acetate CH3 S 2.07 
9 Proline β-CH M 2.35 

7a GABA α-CH2 T 2.430 
10 Malate β-CH Dd 2.63 
11 Citrate α-CH + γ-CH D 2.77 
12 Malate β1-CH Dd 2.81 
7b GABA γ-CH2 T 3.02 
13 Glucose-Fructose-Sucrose CH M 3.49-4.08 
14 Fructose  CH D 4.08 
15 Ascorbate CH D 4.55 
16 β-D-Glucopyranose CH D 4.60 
17 α-D-Glucopyranose CH D 5.21 
18 Fumarate α, β-CH=CH S 6.57 
19 p-Coumarate CH D 6.88 
20 Cinnamic acids Ring Protons M 7.30-7.80 
21 Trigonelline CH M 8.05 
22 Trigonelline CH M 8.85 

 ad, doublet; dd, doublet of doublets; m, multiplet; s, singlet; t, triplet 
*All the identified compounds correspond to the second level of metabolite identification (putatively annotated 
compounds) according to MSI  

 

The 1H-NMR spectrum is mainly dominated by the overlapping of carbohydrate peaks belonging to 

sucrose, glucose and fructose (between 3.49 and 4.49 ppm) which characterized the midfield 

region of the spectrum. In this region there are also peaks belonging to the α- and β-anomeric of 

glucose whose protons can be found at 5.25 (α) and 4.60 (β) ppm. In the upfield region (between 

0.99 and 3.49 ppm), the most abundant peaks correspond to amino acids: valine (0.96 and 1.02 

ppm), alanine (1.47 ppm), arginine (1.69 ppm) and proline (2.34 ppm), and to the organic acids 

malate and citrate (from 2.87 to 2.64 ppm). Also signals from lactic acid (1.33 ppm), 4-

aminobutanoic acid (GABA - 1.907, 2.430 and 3.025 ppm) and acetic acid (2.07 ppm) are present, 

the latter used in the extraction buffer. In the downfield region some signals of different phenolic 

compounds can be observed, but only the signals of p-coumaric acid from 6.84 to 6.94 ppm has 
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been assigned. 

Multivariate data analysis 

In order to explore differences in the metabolome of the five different genotypes, individual PCA 

models were calculated on the three main spectral regions: aromatic, carbohydrate and organic 

acid regions, respectively. The results are shown in Fig. 2 and the loadings plots for the aromatic 

and organic acid regions are presented in Supplementary Fig. 5a and 5b respectively. In order to 

further identify specific metabolites which are correlated to the genetic modification and to the 

number of transgene copies, different iPLS models were calculated on the spectra from each 

cultivar. For this purpose, the spectral data sets were subdivided into 37 meaningful equidistant 

intervals by the iPLS routine. Fig. 3 and 4 show the iPLS summarizing plots for the prediction of the 

number of transgene’s copies for the THS and SIL grapes, respectively. The two figures show, 

superimposed onto the corresponding average spectra, interval bars representing the PLS model 

Root-Mean-Square Error of Cross-Validation (RMSECV) for each spectral interval. The interval PLS 

performance is conveniently compared to the PLS performance obtained using the full spectral 

area (global RMSECV) indicated by the stipulated horizontal line. The digits in the bars indicate the 

number of components, i.e. the latent variables (LVs) used for calculating each local PLS model. 

Models were calculated both with a fixed number of LVs, equal for each interval and with the 

optimal number of LV’s obtained through Cross Validation for each interval (data not shown). The 

first approach resulted in the most meaningful outcome by describing the relevance of each 

interval in characterizing the metabolic changes due to the genetic modification. Because of their 

higher complexity, only the models using the full spectral area were left free to use their optimal 

number of LVs. Fig. 3 shows the global PLS model for THS samples which has a RMSECV of 0.25 (in 

the range from 0 (WT) to 1 for the (THS-GM1)) and requires 6 LVs (black dotted line).  
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Fig. 2 Scores plot of the first two principal components of the PCAs for the three regions of the 1H-NMR spectra; a) 
Downfield region (phenolic compounds region); b) Midfield region (carbohydrate compounds region) and c) Upfield 
region (Acid and aminoacidic compounds region). 
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Fig. 3 iPLS plot with interval number versus RMSECV for the prediction of the number of transgenic copies in THS (zero 
for WT and 1 for the THS-GM1). The figure shows the bars representing the RMSECV for each spectral interval 
compared to the global PLS performance (the stipulated horizontal line) and superimposed onto the average spectrum. 
Digits in the columns indicate the number of latent variables (LV) used in each local PLS model. The selected intervals 
(11 and 31) provide a performance superior to the overall calibration obtained using the full 1H-NMR spectrum 
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Fig. 4 iPLS plot with interval number versus RMSECV for the prediction of the number of transgenic copies in SIL (zero 
for WT, 1 and 3 for the transgenic types SIL-GM1 and SIL-GM2 respectively). The figure shows the bars representing 
the RMSECV for each spectral interval compared to the global PLS performance (the stipulated horizontal line) and 
superimposed onto the average spectrum. Digits in the columns indicate the number of latent variables (LV) used in 
each local PLS model. The selected intervals (28 and 29) provide a performance superior to the overall calibration 
obtained using the full 1H-NMR spectrum. 

However, by only considering interval 11 (6.80-6.95 ppm) or interval 31 (2.20-2.40 ppm) the PLS 

prediction error (RMSECV) drastically decreases to lower than 0.1 in the range from 0 for WT to 1 

for the THS-GM1. Moreover, these intervals provide a more parsimonious PLS models as they 

require only three latent variables. Accordingly, these two intervals contain the primary or best 

information for distinguishing the metabolome of THS with one transgenic copy and the 

metabolome of the wild type. The same data mining approach was used for the SIL samples, this 

time with zero, one or three copies of the gene, and the results are summarized in Fig. 4. The 

global model obtained using the SIL samples has RMSECV= 0.39 [0; 2] and requires 8 LV. The most 

informative intervals are the neighboring no. 28 and no. 29 (2.90-2.60 ppm) requiring only four 

latent variables to develop a regression model with a RMSECV lower than 0.3 [0; 2]. In addition, in 

order to investigate the perturbation on the grape metabolomes of the two grape varieties, 

metabolite-metabolite correlations were established and represented using the so-called heat 
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maps (Fig. 5). 

 

Fig. 5 Heat maps (Pearson Correlation) representing the r coefficients (left side) and the corresponding p values (right 
side) for the correlation of selected and identified metabolites listed in Table 1: A) using all THS spectra (WT and GM1) 
and B) using all SIL spectra (WT, GM1 and GM2). 

Discussion 

Exploratory data analysis 

As it can be observed from Fig. 2, the phenolic (Fig. 2a) and the organic acid (Fig. 2c) regions both 

show some clustering of the genotypes. Curiously, the carbohydrate region (Fig. 2b), which in 

intensity dominates the spectra, contains no information that can discriminate between the 

diverse genotypes. This behavior demonstrates that the genetic modifications do not significantly 

and consistently alter the carbohydrate composition and content of the berries. As the 

carbohydrate content largely dominates the berries metabolome, a PCA performed on the whole 

spectral region will yield practically identical result as the carbohydrates region alone 

(Supplementary Fig. S4). Thus, in order not to overlook minor metabolic differences among the 

different grape lines, it is of paramount importance that the three spectral regions are considered 

separately. For both the phenolic and the organic acid regions, the difference between the grape 

cultivars, THS and SIL, is dominant (along the first principal component), whereas the variation 

between the transgenic grapes and the WT only accounts for a smaller variation, still mainly along 

PC1. Inspection of the variance described shows that the PCA of the organic acid region explains 

the highest percentage of the total systematic variance (92.7%) (Fig. 2c). Scrutinizing this PCA 

scores plot reveals that the genotypes are clustered according to the number of transgene’s copies: 

THS-WT; THS-GM1 (one copy), SIL-WT; SIL-GM1 (one copy) and SIL-GM2 (three copies). A similar 
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trend is observed also in the aromatic region but to a lesser extent, as previously demonstrated by 

Picone et al. (2011). This clustering is evident in the iPLS modelling performed separately for each 

cultivar (Fig. 3 and 4), in which the number of copies of inserted transgene was used as y 

regression vector.  

Thompson seedless data mining 

In Fig. 3, interval 31 includes both signals belonging to proline and another signal which we were 

not able to assign, also considering that there is no such reference in literature. In order to verify 

the predictive power of proline, a PLS-DA was calculated and validated by Cross Validation 

(Supplementary Fig. S6). Using 3 LVs, a RMSECV of 0.175 and R2 of 0.8778 were obtained for the 

obtained model. The concentration of proline decreases from the THS-WT to the THS-GM1. Proline 

is commonly the predominant free amino acid in grape berry, and its accumulation depends on 

several factors such as grape berry maturity and cultivar. Moreover, this amino acid appears to 

accumulate in the berry when this is grown under high salinity and/or water deficit conditions.  

Interval 11 (6.80-6.95 ppm) contains signals belonging to p-coumaric acid, a hydroxycinnamic acid, 

which is biosynthesized from cinnamic acid by a hydroxylation controlled by cinnamate-4-

hydroxylase. Variations in the concentration of phenolic components occur only around and after 

véraison. As demonstrated by Fernández de Simón et al. (1992), the phenolic composition changes 

from one rich in hydroxycinnamic acids (HCA), such as caftaric (caffeic acid conjugated with tartaric 

acid), p-coutaric (p-coumaric acid conjugated with tartaric acid) and fertaric (ferulic acid 

conjugated with tartaric acid) acids into another rich in a variety of benzoic and cinnamic acids 

which are derivatives of HCA. Ali et al. (2010) reported that the HCA concentration depends on 

different factors including grape variety and growing conditions; it seems likely that also genetic 

modifications can induce changes in the concentration of these metabolites by up-regulating or 

down-regulating the production of HCA. The increasing area of the p-coumaric acid signals in 

interval 11, from THS-WT to THS-GM1, appears to substantiate this hypothesis. Also intervals 28 

and 29 performed significantly better than the global spectrum but this was more evident for the 

iPLS models obtained for the SIL cultivar and it is discussed in the following. 

Silcora data mining 

According to the iPLS on SIL cultivar (Fig. 4), the two intervals contain the same chemical 

information since they split the complex NMR signal from the malic acid protons in two. It is 

therefore not surprising to see that they are performing nearly identically, quantitatively speaking. 

Indeed, malic acid concentration is found to be significantly higher in wild type samples. As 
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mentioned in the introduction, malic acid, together with tartaric acid, represents the most 

abundant organic acid in grape berries and, together, they account for 69–92% of all organic acids. 

After véraison malic acid decreases drastically since its biosynthesis is stopped and the respiration 

continues to increase. As malic acid is identified as the most discriminating compound, an attempt 

to model its concentration by means of PLS regression was conducted using the average 

concentrations of this organic acid as measured by Costantini et al. (2007) in both cultivars and 

genotypes (except for SIL-GM2 in which it was not measured). The aim was to test the correlation 

between the concentration of malic acid and the number of copies of the inserted transgene and 

to evaluate the quantitative effect on the metabolome when multiples copies of the same 

transgene are inserted (as it was done for SIL). As it can be observed from Fig. 4, the concentration 

of the malic acid decreases when the number of transgene copies increases; the more the gene 

copies the lower the concentration of malic acid. This is also demonstrated by a PLS regression 

performed on the intervals containing the malic acid’s signals (Supplementary Fig. S7). The 

obtained model shows that the difference in concentration (g/l) from THS-WT to THS-GM1 is 

estimated to be smaller than what reported by Costantini et al. (2007). In particular, the predicted 

values for the samples THS-WT are dispersed in a range between 3.02 and 3.29 g/l (consistently 

lower than the previously reported 3.40 average value), which is in perfect agreement with the 

concentrations showed by the THS-GM1 predicted samples ranging between 2.63 and 2.83 g/l 

(consistently higher than the previously reported 2.40 average value). For what it concerns the SIL 

samples, it is possible to test also the hypothesized correlation between malic acid content and 

number of transgene copies, but it must be remembered that only the average values relative to 

malic acid concentrations in SIL-WT (1.5 g/l) and GM1 (1.3 g/l) were available and used in the PLS 

model as actual values. The obtained regression model not only confirms that these values are a 

good estimate of the average predicted values, but also predicts the amounts to be ascribed to SIL-

GM2 samples, containing 3 copies of the transgene, to be, in average, 0.92 g/l. This result is in 

nearly perfect agreement with a Δ-concentration between SIL-WT and SIL-GM2 being three times 

lower than that obtained between SIL-WT and SIL-GM1 in which only one copy of the transgene is 

involved, and thus chemically substantiates the validity of the obtained models.  

Metabolite-Metabolite correlation analysis 

The two heat maps presented in Fig. 5a and 5b, related to THS and SIL respectively, appear to 

exhibit a similar type of perturbation. However, the SIL heat map presents both more positive and 

negative strong correlations. For example, the amino acids are highly positively inter-correlated 
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and alanine strongly positively correlated to malic acid. In contrast the amino acids are strongly 

negatively correlated to p-coumaric acid (and partially to cinnamic acid). p-coumaric acid further 

exhibit a strong negative correlation to malic acid. The THS heat map appear flatter, presumably 

due to the lower correlation dimension (only WT and GM1) but similar trends as observed for the 

SIL heat map may be observed. The most noticeable difference is a strong correlation between 

malic acid and GABA. These results largely confirm the findings from the multivariate statistical 

analysis (iPLS and iPLS-DA), showing that the insertion of the transgene caused a decrement in the 

intensities of malate and proline and an increment in p-coumarate concentration.  

Conclusions 

The combination of NMR spectroscopy and chemometrics was able to identify specific metabolites 

that were up- or down regulated in the genetically engineered plants, and thus able to highlight 

alterations in the down-stream metabolic pathways of grape berries due to the up-stream genetic 

modifications. This study shows that plant metabolomics can play an important role as the missing 

link in functional genomics. The performed study also proves that 1H-NMR spectroscopy is able to 

measure metabolic differences both among agronomic varieties of grapes as well as between 

various levels of genetic modification. The results show that the concentration of malic acid is 

correlated with the gene copy number in each genetically modified grape line, proving that the 

increased production of berries, promoted by the inserted gene, is achieved at the expense of a 

greater and greater decrement in malic acid concentration in the berries. Overall, these findings 

are confirming that the DefH9-iaaM gene is inducing positive benefits in table grape production 

with reduced changes in berry chemical composition and with no negative effects on its sensorial 

quality, which is in fact associated to compounds influencing the taste, e.g. sugars, acids and 

tannins. 
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SUPPLEMENTARY MATERIAL 
 
Supplementary Figures 
 

 

Supplementary Figure S1. Schematic representation of grape berry development. The curve indicates changes in berry 
size (y-axis) as a function of days after flowering (x-axis). Accumulated compounds during growing and ripening days 
after flowering are also reported (modified from Ali et al. (2011)) 

 

Supplementary Figure S2. IAA synthetic pathway starting from Trp (molecules have been drawn by using 
ACD/ChemSketch (freeware) 2015.2.5.) 
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Supplementary Figure S3. Experimental setup. For each genotype, 9 1H-NMR spectra (3 extractions × 3 replicates) 
were acquired, adding up to a total of 45 samples 

 

Supplementary Figure S4. PCA scores plot of the entire spectral region 
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Supplementary Figure S5. Loadings plot for the PCA models shown in Fig. 2; a) Loadings #1 and #2 of the organic acids 
region; b) Loadings #1 and #2 of the aromatic acids region. The most discriminant metabolites are highlighted 

 

Supplementary Figure S6. a) Superimposition of the THS spectra showing the proline signal NMR region; b) PLS-DA 
actual vs. predicted plot of the model calculated on the proline interval predicting THS-WT and -GM1 
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Supplementary Figure S7. PLS actual vs predicted cross validated plot calculated using only the NMR spectral intervals 
containing the malic acid signal (ints. 28-29). A nearly perfect correlation between the NMR estimated values and the 
chemical analysis is obtained (R2=0.953). The values for the circled samples, referring to SIL-GM2, were predicted 
through the PLS model 
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CHAPTER 5: FOODOMICS TO INVESTIGATE THE “MATRIX EFFECT” 

Food industries are nowadays facing increasing demands from customers and consumers, who are 

requesting more and more beneficial effects associated to food products. [Kilcast & Subramaniam, 

2000]. One of the greatest challenge and trend in the last decades is, in effect, the production of 

food products enriched with bioactive compounds exerting positive actions on health. This was 

driven by recent discoveries on the preventive and beneficial potential of foods and, in some cases, 

individual molecules isolated from them [Sinn et al., 2012; Samuelsen et al., 2014; Yousouf et al., 

2015]. After the assessment of the biological function of specific bioactive compounds, the latter 

are included in foods with a widespread consumption, in order to favour their regular intake 

[Ganesh et al., 2015; Augustin & Sanguansri, 2015; Li-Chan, 2015]. The main issue with these new 

enriched products is the investigation on their residual effect when embedded in complex food 

matrices [Yang et al., 2011; Moro et al., 2015], which modulate the bio-accessibility and 

consequently the bio-availability of the beneficial molecules.  

In addition, these molecules are generally added not in their pure form, but employed as food-

grade ingredients (i.e. plant extracts, egg products enriched with PUFA, from hens fed with 

enriched feeds, etc.). These ingredients are commonly added in high percentages and, 

consequently, may impact the stability of the foodstuff and the release of bio-active molecules 

during the shelf-life of the product. For these reasons, the assessment of the matrix stability should 

be a mandatory task during the formulation of enriched food products. In order to investigate the 

characteristic of the matrix before and after the enrichment with bioactive compounds, several 

techniques were traditionally employed. The first aspect that must be taken into consideration is 

the structure of the matrix itself. The knowledge about the specific interactions between the 

ingredients added and the basic food matrix can drive the formulation of specific products, starting 

from the selection of the best matrices for each type of enrichment. Traditional methods usually 

involves image techniques like light or electron microscopy. Other techniques focused on the 

assessment of functional properties due to the matrix’ structure, like rheological studies. [Heertje, 

2014]. The other important thing to know is the total content of bioactive compounds contained in 

the food matrix. These studies are in effect very useful also to understand whether the structure 

and the characteristics of the matrix protect the bioactive compounds added during storage. The 

employed methods are usually destructive, with different level of aggressiveness towards the food 

matrix. In order to obtain a complete recover of the bioactive molecule, in effect, the matrix needs 
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to be modified and, in most cases, destroyed. For these reasons, no real information on the matrix 

and its effect on bio-accessibility is obtained, apart from its protective effect in case the quantity of 

bioactive recovered is the same as its initial quantity. There are no direct molecular methods for 

this type of assessment, while the indirect techniques concentrate on the evaluation of different 

characteristics, such as the (1) water status, (2) release of bioactive compound upon in-vitro 

simulated digestion of the matrix, (3) release of soluble components by dispersing the matrix in 

aqueous media. 

Water is usually one of the main components of foods and it will thus greatly influence structure 

and physico-chemical properties of the food matrix, therefore, the knowledge of its normal 

behaviour and its variation is of great importance when evaluating food stability. The main 

techniques employed are: the evaluation of the water activity (aw), the assessment of the glass 

transition temperature (Tg) and most recently the measurement of water proton relaxation time 

through NMR spectroscopy [Mc Clements, 2015]. Other methods increasingly carried out, employ 

in vitro and in vivo digestion techniques and are very useful for the determination of how the 

molecules are released and, eventually, absorbed during the digestive processes and how the 

complex structure of the food product and the processes it has been through influence this 

behaviour [Turgeon et al., 2011; Norton et al., 2014; Fundo et al., 2015]. Finally, other destructive 

techniques focus on the study of the soluble molecules that can be released by the matrix. The 

molecular method employed to assess the matrix stability should not introduce artefacts due to 

the solvent employed for extraction: for this reason the analysis should be conducted on media, 

which simulate as much as possible the physiological environment of the fluid that makes the 

nutrients and the other bioactive molecules accessible. The composition of such fluid must be 

determined in order to find variation in the concentration of the soluble fraction of the matrix as 

affected by the enrichment. Then, the formation of new solutes or the consumption of some other 

expected molecules during the food storage, due, respectively, to hydrolysis of or to condensation 

with the solid phase, could be used as a mirror of changes in the matrix itself. The analytical 

technique, must be able to detect all soluble products in an extent directly proportional to the 

mass of product formed or consumed, and not dependent on the response factors of the 

detection. 

The traditional techniques employed generally focused on the identification and quantification of 

specific components of the matrix [López-Córdoba et al., 2014; Salcedo-Sandoval et al., 2015], or 

on the determination of specifically related properties [Dave et al., 2014; Edel et al., 2015], but not 
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on the whole picture of the food matrix. Nowadays, though, new molecular methods capable of 

giving information on the total soluble profile are available. One of these techniques is 1H-NMR 

spectroscopy, capable of giving an insight on how the matrix impacts on the bioaccessibility of the 

bioactive molecules. This is made possible by the employment of an extracting fluid simulating the 

physiological compartment of our body in which the bioactive compound becomes available. This 

can be considered a different form of in-vitro digestion since here the solid matrix is simply 

extracted by dispersion in a fluid, in the easiest way. The extract can then be measured by NMR 

spectroscopy many times. When samples are already in a solution, there is no need for the 

extraction step, thus in this case samples are not destroyed. The NMR technique has the advantage 

of supplying detailed information on the molecular structure of the biological material observed. It 

can register the complexity of a mixture since every component contains at least one visible 

hydrogen atom and thus can generate signals on the NMR spectrum that form the unique pattern 

specific for that molecule. For this reason, in a typical sample, almost all metabolites will give rise 

to signals in an 1H NMR spectrum, as long as they are present in concentrations above the 

detection limit. In this way, the NMR spectrum results to be the superposition, also commonly 

called “fingerprint”, of the spectra of all soluble metabolites in the sample. One of the advantages 

of NMR is that the sample requires minimal treatment prior to the analysis [Laghi et al., 2014], 

making it easier and quicker, and this is what is required by food industries. Even in the case where 

the ingredients of the matrix are oxidised during storage and the bioactive compounds might be 

polymerised and condensed, the NMR analysis will detect a change between spectra at different 

time-points of storage [Ciampa et al., 2012], even though the specific molecules will become 

undetectable in the latter time-point due to their new insolubility. Since the NMR technique is 

sensitive to all these small changes in the matrix, it is clear how it can provide a useful insight into 

the investigation of the stability of the product during storage. The matrices investigated in this 

study were thus analysed by means of NMR spectroscopy, with the purpose of achieving a more 

global overview during shelf-life. In this study, at first, three enriched products were overwied and 

investigated. The molecular profile of three foods (Pancake, Biscuit and Milkshake powder), 

enriched with two combination of three different bioactives (docosahexaenoic acid and 

anthocyanins, DHA+AC, and docosahexaenoic acid and beta-glucans, DHA+BG), was in fact 

evaluated by high-resolution proton nuclear magnetic resonance (HR-1HNMR). After this, a more 

specific analysis of the enriched pancakes and their placebo counterparts was carried out. The 

products were selected on the basis of their frequency of consumption in Europe, and as 
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representative of a food category with peculiar matrix effects. Pancakes have, in effect, a high 

protein content, giving origin to an entrapping wet network during cooking, that must be 

destroyed during digestion in order to release the bioactive compounds. 

The NMR spectra of the selected products were acquired and compared at different time-points 

during storage. Since no previous methodology was defined, this work tried to write up a protocol 

for the definition of the parameters that could be employed to measure the similarities and 

differences among spectral profiles of the matrix during shelf-life. 

5.1 Investigation on the stability of three different food matrices 

Samples and storage designs 

Milkshakes samples were enriched with BG-DHA, whilst cookies and pancakes were enriched with 

AC-DHA. Bioactive enriched foods (BEF) were compared to placebo (PLA) counterparts. Four 

sampling times were selected: at the beginning of storage (T0) and after 20, 40 and 60 days of 

storage (T20, T40, T60). The first sampling point was the day when samples arrived in the 

laboratory. Then, samples were stored at -20°C and sampled after 20, 40 and 60 days from the day 

of their arrival. 

Sample preparation and NMR analysis 

For pancakes and milkshakes, at each sampling time a trichloroacetic acid extraction (TCA) was 

performed on each sample: for this purpose, 5 g of product were added to 15 mL of 7% (w/w) TCA 

and minced by means of a vertical homogenizer (Ultra-Turrax, Ika®). The resulting product was 

filtered with filter paper (No. 4) from Whatman (Little Chalfont, Buckinghamshire, HP7 9NA, UK). 

The pH of a 850 µL aliquot was adjusted to 7.5 using 9 M KOH in an Eppendorf microfuge tube and 

centrifuged at 14k rpm for 5 min in order to remove the potassium trichloroacetate precipitate. For 

biscuits samples, a different protocol was adopted, since samples showed an acid hydrolysis during 

time. The TCA solution was substituted by a phosphate buffer 50 mM, pH 7.4. The so obtained 

supernatant was stored at −80 °C un�l 1H-NMR measurements were performed. The samples were 

prepared for NMR analysis by adding 150 μL of a D2O and 10 μL solution of 3-(trimethylsilyl)-

propionic-2,2,3,3-d4 acid sodium salt (TSP) 100 mM to the thawed samples. 1H- Samples were 

analysed by applying the NOESY 1D pulse sequence. NMR spectra were recorded at 298 K with a 

Bruker (Milano, Italy) AVANCE spectrometer, operating at a frequency of 600.13 MHz, equipped 

with an autosampler with 60 holders. Each spectrum was acquired using 32K data points over a 

7211.54 Hz spectral width and adding 256 transients. A recycle delay of 5 s and a 90° pulse of 11.4 
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μs were set up. Acquisition time (2.27 s) and recycle delay were adjusted to be 5 times longer than 

the T1 of the protons under investigation, which was considered not to be longer than 1.4 s. 

Saturation of residual water signal was achieved by irradiating it during the recycle delay at δ equal 

to 4.703 ppm. Each spectrum was processed with Top Spin 3.0 (Bruker) by using an automatic 

command apk0.noe, which performs in one shot the baseline and phase correction and by 

applying a line-broadening factor of 0.3 Hz. The peaks were assigned by comparing their chemical 

shift and multiplicity with the literature and by using Chenomx NMR suit 8.1 software. 

Pre-processing 

After Fourier Transformation, phase and baseline correction, spectra were calibrated with 

reference to the chemical shift of 0.0 ppm assigned to the internal standard TSP, spectral 

peripheral regions and the water signal were removed. After this, spectra were normalized 

referring to the anomeric signals of sugars: sucrose in the case of biscuits, lactose in the case of 

milkshakes. After normalization and prior to any possible statistical analysis, spectra are binned 

into intervals of 100 data-points. As a result, the new spectral profile consisted of 655 data-points 

instead of 65535. 

Results and discussion 

Milkshake 

Enriched samples show different signals in milkshake spectra, as shown in the example in Figure 1. 

 

Fig. 1: T0 NOESY1D NMR spectra of enriched (black, red and green) and placebo (blue, light-blue and purple) samples 
from the first batch. As visible, enriched spectra show many different signals in comparison to placebo samples and 
also seem to be less reproducible.  

Apart from the sugar region, enriched samples all show many different signals not visible in 
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placebo spectra. These signals are mainly due to organic acids, amino acids (as in Fig. 1) and to 

aromatic molecules. 

 

Fig. 2: PCA scoreplot calculated for NOESY1D NMR spectra of enriched and placebo milkshake samples from the first 
two batches during the 4 different time points.  

When samples from different time-points and different batches are evaluated through PCA, it is 

clear how there are many differences among samples and not mainly caused by the shelf-life itself. 

As visible in Figure 2, samples from different time-points later than T0 tend to cluster, though with 

no specific storage-related behavior. Samples from the first batch at T0 seem to differ from any 

other sample and samples from the second batch at T60 move far from any other type of sample 

at later storage points and closer to samples at T0 from the first batch.  

This behavior might just prove that a lot of difference is there already in the powders at the 

beginning of storage and these differences can be attenuate by storage time, though this is not 

always the case. No real differences between placebo and enriched samples is visible by this 

analysis. In fact, samples seem to differ from each other independently of the enrichment as 

visible in Figure 3. This shows that the enrichment has no real effect on the matrix behavior during 

storage. 

Biscuits 

From the first visual inspection of biscuits spectra, BEF samples had distinctive signals, though just 

in the aromatic region, whilst other signals just seemed to have a higher intensity for BEF samples, 

such as in the aliphatic region. Samples from different batches were investigated during the chosen 

shelf-life to study their behavior. 
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Fig. 3: PCA scoreplot calculated on NOESY1D NMR spectra of enriched and placebo milkshake samples from the first 
two batches (first represented with squares and second with dots) during the 4 different time points colored according 
to the matrix composition, PLA in red and BEF in black. 

 

Fig. 4: PCA scoreplot calculated on NOESY1D NMR spectra of BEF and PLA biscuit samples from the first three batches 
during the 4 different time points. Batches are represented as follows: 1) squares, 2) dots, 3) triangles; time-points are 
coloured in black fro T0, red for T20, green for T40 and blue for T60. As visible, some samples from the second batch 
appear to be very different from any other samples and T0 samples from the third batches seemed more similar to the 
other samples at later shelf-life stages. 

PCA was calculated on the spectra after normalization and binning at it showed some interesting 

results (Fig. 4). Difference between batches and due to the storage behavior generated more 

differences among samples than BEF vs PLA, as also visible in the zoomed region shown in Figure 

5. The main differences seen in spectra causing the groupings in the PCA scoreplot are investigated 

through the PCA loadings. These show that some differences exist in the sugar region, where 

signals change in shape and position during storage time. As it can be seen from Figure 6 for the 

samples of the second batch, the signal around 3.83 ppm changes greatly from T0 (black) to the 
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later shelf-life stages. The two T60 samples and one T40 sample showing as outliers in the PCA 

scoreplot are the ones here showing other differences in the signal (lower intensity at 3.83 ppm 

and different chemical shift also at 3.76-3.8 ppm). One T0 sample, instead, seems more similar to 

T20 and T40 spectra and this, again, can be seen in the PCA scoreplot shown before. 

 

Fig. 5: Zoomed PCA scoreplot to show that there is a very little difference between BEF (black) and PLA (red) biscuit 
samples. Two batches are shown: first one as squares and second one as dots. 

 

Fig. 6: Part of the sugar region of the NOESY1D NMR spectra for samples from the second batch. Time-points are 
colored as follows: T0 in black, T20 in red, T40 in green and T60 in blue. 

All other samples in later shelf-life stages from batch 1 and batch 3 show a spectra very similar to 

that of batch 2 samples at T20, and T0 samples of batch 3 also have a this kind of signal shape, 

showing how they are more similar to samples at a higher shelf-life level. These alterations in the 

sugar signals might be due to structural changes in the molecules that occur during storage 

(conformational or configurational changes of monosaccharides, different linkages, etc.). 
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Pancakes 

Pancake samples were analyzed during the whole storage time for one particular batch. Other 

samples were available from other batches, but it was immediately clear from PCA that the 

samples were different and could not be considered together for the analysis of storage behavior. 

For this reason, we focused on the assessment of the matrix behavior during storage only on the 

aforementioned batch. 

 

Fig. 7: PCA of pancakes, BEF on the left side and PLA on the right side, showing the behavior during storage. 

As visible from the PCA scoreplot shown in Figure 7, BEF samples seemed to be more reproducible 

and more stable during storage. This image shows how the PLA counterparts are more spread out 

in the plot and move more along both PC axes during storage. This means that PLA samples show a 

lot of difference among them from the beginning and then are affected by greater changes in the 

matrix composition during shelf-life. 

 

Fig. 8: Some differences in the aromatic region observed for BEF (black) and PLA (red) NOESY1D NMR spectra.  

As visible in Figure 8, BEF samples showed a higher concentration of metabolites in the aromatic 

region at the end of the storage period. This was observed in all time points, though the profile of 
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both types of samples slightly changed during shelf-life. 

Conclusion 

These analyses of different batches of pancakes, milkshakes and biscuits have given us a greater 

insight on the variability and stability of the products. Through the analysis of a batch of pancakes 

during storage it was proved that BEF samples were more stable and more standardized than their 

PLA counterparts. In this case, the separation caused by the additional ingredients was greater 

than the one caused by storage, though batches seemed to be a lot more different between them. 

The research on biscuits, instead, has shown how there are more differences caused by storage 

and, in some part, by the batch, than from the presence or absence of bioactive ingredients.  

This shows how the matrix itself has a greater effect in determining the shelf-life behavior for 

biscuits and the addition of the bioactive compounds does not affect it. For what concerns 

milkshakes, samples seem to have more differences intrinsically than for any other possible effect 

(enrichment, batch or storage) and that the enrichment with bioactive compounds does not affect 

the behavior of the matrix along the shelf-life, being the matrix itself very stable. 

5.2 Investigation on the stability of enriched pancakes 

Materials and Methods 

Spectral acquisition 

Five different batches of pancakes were employed for this study in order to test the product 

reproducibility. Four sampling times were selected: at the beginning of storage (T0) and after 20, 

40 and 60 days of storage (T20, T40, T60). At each sampling point, a trichloroacetic acid extraction 

(TCA) was performed on each sample: for this purpose, 5 g of product were added to 15 mL of 7% 

(w/w) TCA and minced by means of a vertical homogenizer (Ultra-Turrax, Ika®). The resulting 

product was filtered with filter paper (No. 4) from Whatman (Little Chalfont, Buckinghamshire, HP7 

9NA, UK). The pH of a 850 µL aliquot was adjusted to 7.5 using 9 M KOH in an Eppendorf microfuge 

tube and centrifuged at 14 K rpm for 5 min in order to remove the potassium trichloroacetate 

precipitate. The so obtained supernatant was stored at −80 °C un�l 1H-NMR measurements were 

performed [Picone et al., 2011]. The samples were prepared for NMR analysis by adding 150 μL of 

a D2O and 10 μL solution of 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP) 100 mM 

to the thawed samples. 1H- Samples were analysed by applying the NOESY 1D pulse sequence. 

NMR spectra were recorded at 298 K with a Bruker (Milano, Italy) AVANCE spectrometer, operating 



Chapter 5: Foodomics to investigate the “Matrix Effect” 

160 

 

at a frequency of 600.13 MHz, equipped with an autosampler with 60 holders. Each spectrum was 

acquired using 32K data points over a 7211.54 Hz spectral width and adding 256 transients. A 

recycle delay of 5 s and a 90° pulse of 11.4 μs were set up. Acquisition time (2.27 s) and recycle 

delay were adjusted to be 5 times longer than the T1 of the protons under investigation, which was 

considered not to be longer than 1.4 s. Saturation of residual water signal was achieved by 

irradiating it during the recycle delay at δ equal to 4.703 ppm. Each spectrum was processed with 

Top Spin 3.0 (Bruker) by using an automatic command apk0.noe, which performs in one shot the 

baseline and phase correction and by applying a line-broadening factor of 0.3 Hz. The peaks were 

assigned by comparing their chemical shift and multiplicity with the literature and by using 

Chenomx NMR suite 8.2 software. 

Pre-processing 

After Fourier Transformation, phase and baseline correction, spectra were calibrated with 

reference to the chemical shift of 0.0 ppm assigned to the internal standard TSP and binned into 

intervals of 100 data-points. As a result, the new spectral profile consisted of 655 data-points 

instead of 65535. Samples at T0 were selected to be normalized by the Probabilistic Quotient 

Normalization algorithm [Dieterle et al., 2006]. The median of these samples was calculated and 

employed then as the reference spectra for the PQN among every separate batch (without T0). 

After normalization, all the spectra were put together again and investigated through multivariate 

statistical analysis. 

Multivariate statistical analysis 

Principal component analysis (PCA) was calculated to assess if the two types of pancakes (PLA and 

BEF) showed differences. Thus, after assessing that the main difference among samples was due to 

the enrichment, the samples were treated in order to remove the variables (bins) responsible for 

this bias. This was done through the employment of Principal Least Squares Discriminant Analysis 

(PLS-DA), setting the classes to be BEF and PLA and removing the bins mostly correlated to this 

separation (cut-off: 0.5). Spectra formed by the remaining bins were then investigated through 

correlation analysis to find the spectral clusters of correlated bins (corr > 0.7). These clusters were 

selected and their area was calculated and compared in its average between the different batches.  

Results and discussion 

1H-NMR spectrum 

The NMR spectra recorded for each sample are a measure of the molecular profile of the food 
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matrix and will contain the signals of the chemical and functional groups of the soluble molecules 

composing the product analysed.  

Most of the soluble fraction is composed of sugars (central part of the spectra), though other 

molecules are clearly visible through visual inspection of the spectrum, both in the upfield and 

downfield regions of the spectrum. The upfield region contains signals from aliphatic molecules, 

whilst the downfield region is where aromatic molecules, such as polyphenols are found. The 

assigned metabolites are listed in Table 1. 

Table 1: List of assigned metabolites, with the main peaks found and the relative chemical shift and multiplicity. 

Metabolite Ppm 

Acetate 1.92 (s) 
Alanine 1.49 (d) 
Citrate 2.53 (d); 2.67 (d) 

Formate 8.46 (s) 
Fumarate 6.52 (s) 
Glucose 3.2-4; 4.68 (d) 

Isoleucine 0.99 (d) 
Lactate 1.33 (d) 
Lactose 3.2-4; 4.5 (d) 
Leucine 0.96 (d); 0.97 (d) 
Maltose 3.2-4; 5.42 (d) 

Phenylalanine 7.34 (d); 7.38 (t); 7.43 (t) 
Succinate 2.41 (s) 

Tryptophan 7.55 (d); 7.74 (d) 
Tyrosine 6.91 (d); 7.20 (d) 

Valine 1.045 (d) 

Stability analysis 

Samples from T0 of the first batch were immediately removed from this analysis, since the 

appeared as clear outliers, differing from all other T0 samples (data not shown). 

PCA (Fig. 9) showed a clear separation along the first principal component (PC1), explaining most 

of the variance (76.3%), between BEF samples (on the left) and PLA samples (on the right). BEF 

samples also seemed more reproducible, being less scattered in the scoreplot. A trend seem to be 

visible, where samples at T20 (in red) seem to differ from other time-points as seen from PC2. 

Investigating the spectral loadings, it seemed that T20 samples had a lower sugar concentration 

(Fig. 10), so this had to be further investigated. 
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Fig. 9: PCA calculated on the NOESY1D NMR spectra of the samples after the removal of T0 samples from batch 1. 
Samples are coloured according to time points: T0 in black, T20 in red, T40 in green and T60 in blue. 

 

Fig. 10: Loadings for PC2, showing mostly sugar signals responsible for the variation along that principal components, 
with samples at low PC2 values having higher sugar concentrations. 

For this reason, it was decided to eliminate the enrichment bias by removing the bins who were 

mostly responsible for this discrimination. As stated above, this was done by calculating a PLS-DA 

for BEF vs. PLA. The removed bins were 264 out of 453 and the remaining area corresponded on 

average to the 41% of the original spectral area. After the selection of the bins through PLS-DA, 

correlation analysis was performed to observe the clusters in which bins would group. After careful 

consideration, a threshold of p>0.7 was selected to generate 14 clusters of bins, forming a total of 

92 selected bins and 92% of the total area of the bins selected through PLS-DA. 

These clusters would represent the spectral regions with most information on the samples and on 

their differences along time-points. Some sample outliers were removed, thus the matrix was 
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reduced to 14 clusters in 220 samples (spectra). 

ANOVA was then performed on the selected clusters in order to assess possible differences due to: 

 time-points amongts the two separate pancake types (BEF and PLA) 

 enrichment (BEF vs. PLA) at each different time-point 

 enrichment (BEF vs PLA) 

Results are shown in Table 2. It was found that most of the variance was found in cluster 6, which 

consisted of 5 bins from the sugar region, mainly corresponding to an anomeric signal at 4.2 ppm 

(sucrose). In effect, this signal is higher for PLA pancakes and seems to have differences also along 

time-points in some batches, resulting in a significant difference between T0 and T20, T20 and T40 

and T0 and T40. At the same time-points, BEF vs PLA differences are also mostly significant, whilst 

at T60 ANOVA reuslts in not-statistically significant differences between the two types of pancakes. 

The regions where organic acids and amino acids signals are present are also statistically different 

between BEF and PLA (Clusters 12, 13 and 14) and show also some differents among each group 

between time-points. In cluster 13, BEF samples seem to slightly decrease area during time, again 

showing lower concentrations in this region at T20, especially for batches 2 and 3. PLA samples, 

instead, have a greater area at later time-points for the first batch, whilst the other ones only show 

a slightly similar trend to BEF spectra. Cluster 14, appears to have a significant difference between 

T40 and T60, though when investigating the signals, this difference becomes less evident and the 

batches show different behaviour for the areas at these two time-points. The differences seen in 

cluster 4, appear only from a signal that arises at 6.07 ppm at T60 for the fourth batch and in all 

the fifth batch. This signal might be a sample impurity. In addition, also the differences seen in 

Cluster 1 appear not interesting, since the cluster is mainly composed by signal tails. The trend that 

was visible from the first PCA, where sugars seemed to be lower in concentration at T20, is still 

visible in the selected clusters, though the statistical significance is mostly masked by single 

batches effect. In effect, by visual inspection of the sample areas, in the last batches this trend is 

not present.  

In effect, the large difference present in the pancake batches seemed to be the main issue in this 

study and proves how important reproducibility is in food production, also in matters of food 

stability, due to the different behavior experienced in pancake samples in relation to their batch. 

 

 

 



Chapter 5: Foodomics to investigate the “Matrix Effect” 

164 

 

Table 2: Results of the ANOVA calculated on the 14 separate clusters for different combinations. 

 Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 Cl9 Cl10 Cl11 Cl12 Cl13 Cl14 

BEF vs PLA 1,00 0,482 0,920 0,227 0,494 0,000 0,178 0,878 0,959 0,854 0,052 0,006 0,000 0,036 

               

BEF  Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 Cl9 Cl10 Cl11 Cl12 Cl13 Cl14 

T0 vs T20 0,757 0,632 0,313 0,951 0,966 0,187 0,633 0,259 0,533 0,243 0,398 0,348 0,517 0,609 

T0 vs T40 0,008 0,382 0,141 0,733 0,425 0,008 0,796 0,893 0,931 0,063 0,946 0,146 0,452 0,931 

T0 vs T60 0,823 0,203 0,866 0,574 0,513 0,456 0,007 0,309 0,723 0,243 0,057 0,919 0,929 0,894 

T20 vs T40 0,216 0,706 0,189 0,145 0,205 0,379 0,933 0,777 0,587 0,994 0,103 0,218 0,012 0,380 

T20 vs T60 0,897 0,693 0,034 0,213 0,668 0,807 0,027 0,796 0,980 0,693 0,016 0,706 0,029 0,116 

T40 vs T60 0,069 0,620 0,361 0,396 0,485 0,450 0,193 0,840 0,929 0,697 0,281 0,524 0,109 0,002 

               

PLA Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 Cl9 Cl10 Cl11 Cl12 Cl13 Cl14 

T0 vs T20 0,839 0,901 0,960 0,003 0,128 0,000 0,179 0,525 0,241 0,231 0,498 0,206 0,133 0,723 

T0 vs T40 0,827 0,722 0,099 0,134 0,418 0,008 0,576 0,168 0,097 0,199 0,215 0,032 0,048 0,758 

T0 vs T60 0,349 0,499 0,588 0,434 0,944 0,927 0,094 0,172 0,982 0,563 0,661 0,669 0,613 0,856 

T20 vs T40 0,025 0,364 0,294 0,005 0,870 0,013 0,899 0,461 0,192 0,371 0,441 0,694 0,000 0,267 

T20 vs T60 0,932 0,249 0,430 0,825 0,479 0,078 0,347 0,792 0,705 0,592 0,601 0,613 0,217 0,891 

T40 vs T60 0,042 0,574 0,567 0,228 0,108 0,163 0,582 0,817 0,371 0,814 0,298 0,710 0,009 0,068 

               

BEF vs PLA 
– Time 
points 

Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 Cl9 Cl10 Cl11 Cl12 Cl13 Cl14 

T0  
BEF vs PLA 

0,923 0,098 0,872 0,486 0,009 0,007 0,369 0,532 0,494 0,474 0,138 0,489 0,133 0,295 

T20 BEF vs 
PLA 

0,296 0,949 0,069 0,513 0,850 0,001 0,432 0,634 0,454 0,701 0,500 0,341 0,043 0,602 

T40 BEF vs 
PLA 

0,352 0,860 0,376 0,641 0,969 0,042 0,449 0,415 0,242 0,526 0,694 0,536 0,000 0,064 

T60 BEF vs 
PLA 

0,078 0,800 0,271 0,223 0,074 0,096 0,614 0,560 0,425 0,798 0,067 0,661 0,085 0,051 

BEF and PLA samples had differences in their profiles, though these were not that evident along 

the storage, proving that the enrichment did not effectively affect the shelf-life of the product. The 

trend observed for some signals, where the area decreases at T20 to later increase again, might be 

due to the reorganization of carbohydrates and sugar molecules during storage (i.e. staling 

processes, starch retrogradation, etc.), though no literature is present on 1H-NMR study of this 

specific behaviour. 

Conclusion 

The proposed method for the evaluation of the food matrix stability is based on the molecular 

profile of its aqueous extract, acquired through NMR spectroscopy. In this study two different 
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types of pancakes, enriched with two bioactive ingredients or controls, were evaluated during their 

shelf-lives. The method employed consisted in the acquisition of NMR spectra of samples and the 

evaluation of their profile variations during storage. It was seen that PLA and BEF pancakes had 

different molecular profiles, though the effect of storage was masked by differences in the 

production of the pancake batches. Further studies are needed for the evaluation of the shelf-life 

of the products, though no major impact on the matrix was seen in the selected conditions and 

period of storage, proving that the enrichment did not cause any major stress to the food matrix. 

The study proposes an effective analytical pipeline for this kind of evaluations and can be 

employed in further stability assessments. 

5.3 Final conclusions 

The present studies on various enriched food products represent the first step towards the 

devlopment of a specific analytical method employing NMR for the investigation of the stability of 

a food matrix. These studies have shown the capability of NMR spectroscopy to capture a lot of 

information on what occurs in a food items in relation to many concurrent factors (enrichment, 

bacth production, storage) and the consequences of these factors and their interaction on the 

molecular profile of the food item analyzed. In effect, the non-target approach of NMR analysis 

allows to define a more complex metabolite profile for the food product and observe even 

unforeseen and otherwise not visible changes in its matrix. This is particularly important in 

enriched products which have to undergo a great variety of testing before being ready for the 

market. It is in fact fundamental that the bioactive molecules added in the product are stable 

during shelf-life but can easily become available when the product is consumed and the capability 

of this method to picture the interaction between the food matrxi and the added molecule is of 

great help in this kind of assay. 
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CHAPTER 6: FOODOMICS TO INVESTIGATE THE DIGESTION 
PROCESS 

INTRODUCTION 

Nutrition is nowadays recognized as key factor in human health. This has spurred an increasing 

number of food and nutritional studies aiming at the assessment of the real nutrient intake and at 

the optimization of food items matching human needs. One of the aspects that is generally 

forgotten in these kinds of investigation is the so-called “matrix-effect”, the complex interaction 

between specific nutrients/molecules and the food matrix itself (see Chapter 5). This regards the 

supra-molecular organization of foods and makes food items with similar composition actually 

different. The matrix effect, as mentioned in the previous chapter, can greatly affect nutrient 

bioavailability and bio-accessibility. Bio-accessibility regards the extraction of the molecules made 

accessible to the solvent through the digestion and their diffusion to the absorption site. 

Bioavailability is instead the amount of a nutrient that can be used for normal physiological 

functions and it therefore concerns digestion and absorption of molecules in the guts.  

Many different factors can impact on the food composition, the matrix organization and the 

complex network of molecular interactions and the compartmentalization of nutrients, thus 

modifying nutrient bioavailability and nutritional value of a food product. For these reasons, it is 

necessary in nutritional evaluations to study the behaviour of a food product during the various 

digestive steps and the influence of particular processing procedures on the final nutritional 

quality. In order to investigate on these qualities, in vitro digestion is a fundamental tool, allowing 

the study of the processes occurring in the human body during digestion with lower costs and 

without all the implications and difficulties of in vivo studies. Proton NMR spectra registered on 

liquid extracts may represent an extremely versatile tool to have an overview of digestion, 

especially for what concerns proteins, since it allows the simultaneous observation of free amino 

acids, peptides and proteins, also giving for these latter qualitative information about their 

dimension [Bordoni et al. ,2011; Bordoni et al., 2014]. This research work has investigated 

digestion in many different food products employing an in vitro model developed and perfected in 

the last few years, in order to assess the impact of different food characteristic on their final 

nutritional value and on the bioavailability of specific important nutrients. More focus was put on 

protein-rich foods, since the digestive step can play a fundamental role in their digestibility and 

nutritional value. In fact, through digestion, protein-based food can liberate important molecules 
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such as aminoacids and bioactive peptides. It is thus of great interest to understand whether these 

high-value metabolites are made accessible to the human body through digestion and how 

different factors can impact on this. In this chapter, the digestibility of different products is 

evaluated, here intended as the result of solubilisation and hydrolysis of molecules which are thus 

made ready for absorption. 

6.1 Genetic impact on digestibility – Investigation on two cultivars of peppers (Capsicum 

annuum) 

Materials and methods 

In this study two different cultivars of peppers (Cornelio and Lamuyo) in two different colours 

(yellow and red) were analysed. This was a preliminary study so only a total of 6 samples for each 

cultivar were given (2 red and one yellow). Digestion was applied in duplicate employing the 

method developed by Minekus et al. (2014), therefore a total of 12 samples were obtained. For 

each sample of pepper, 4 grams were weighted and diluted in a 7% TCA (trichloroacetic acid). 

Samples were then weighted and mixed at 150 rpm at room temperature. 1 mL of the obtained 

sample was taken and centrifuged for 5 minutes at 4° C and 14000 rpm. 900 µL of the centrifuged 

sample were then mixed with 160 µL of deuterated water (D2O) with the internal standard (TSP - 

Trimethylsilylpropanoic acid). The pH was then adjusted to 7, the sample was centrifuged again for 

10 minutes at 14000 rpm and finally it was inserted in the NMR tube for the analysis. Spectra were 

acquired through the NOESY1GPPR1D sequence, with acquisition time of 2.27 s and 256 scans for a 

total time of 31min 44s. 12 spectra for digested peppers and 12 spectra for non-digested peppers 

were acquired. In addition, the spectrum of all the reagents and enzymes used for digestion was 

acquired (“blank”), in order to be able to subtract the signal from the digestion system from the 

NMR spectra of digested samples. Spectra were automatically baseline and phase corrected on the 

software TopSpin, then saved as ASCII files and imported on R for further processing and statistical 

analysis. Spectral chemical shifts were referred to the internal standard TSP at 0.0 ppm. Then 

peripheral regions and the signal of the solvent were removed. Normalization was carried out on 

the anomeric proton of lactose, since this molecule was contained in equal measure in all samples 

(including the “blank”). A binning step was also carried out in order to reduce matrix dimension 

and avoid misalignment. After this, the spectral difference between spectra of digested peppers 

and the “blank” was calculated. In this way, only the signals belonging to the molecules originating 

from digestion or from the pepper itself were left and ready for statistical analysis. Spectra of 
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digested samples were then normalized through the PQN algorithm (Dieterle et al., 2006). 

Correlation between the spectral results and traditional nutritional assays was calculated for the 

values of vitamin C, phenols and antioxidant activity. Signals (bins) with a correlation higher than 

0.8 were selected and evaluated. 

Student's t test was carried out in the the following six spectral regions through the software 

Graphpad Prism, in order to test for differences between the two cultivars: 

 Acids/Aliphatic region: 0.5-2.5 ppm; 

 Sugars: 3-4.5 ppm; 

 Aromatic molecules: 7-8.5 ppm; 

 Phenols: 7.225-7.475 ppm; 

 Vitamin C: 4.49-4.56 ppm – correlated with antioxidant activity; 

 Phenol signal: 7.29 ppm – correlated with the phenolic content; 

Results 

Non digested peppers gave a spectrum with an area that was lower in comparison to their digested 

counterpart and the “blank”, simply composed by the digestive fluids used in the protocol (Figure 

1). Many enzymes and reagents are used for digestion, thus this is why the spectrum for the 

“blank” is particularly rich of signals. 

 

Fig. 1: NOESY1D NMR spectra for the “blank” (black), composed by the digestive fluids employed in the in vitro 
digestion method, a non-digested pepper (green) and its digested counterpart (red) after referencing to the internal 
standard TSP. As visible, some small signals derive from the non-digested pepper, whilst the majority seem to be 
caused by the “blank” due to the high concentration of the digestive fluid employed.  

For this reason, the “blank” spectrum was subtracted from each spectrum of digested peppers. 

After this step, the spectra are more comparable to the non-digested sample spectra in the 

carbohydrate region (fig. 2).  
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Digestion clearly liberates a great amount of aliphatic and aromatic molecules. This is evident from 

the increase in intensity of these regions and the appearence of new signals (Fig. 2).  

In fact, on average the digested samples spectra have an area 27% greater than their non-digested 

counterparts. This is limited to 15% in the carbohydrate regions, whilst it is a lot higher in the 

aromatic and aliphatic regions (73 and 79% respectively).  

 

Fig. 2: NOESY1D NMR spectra for non digested peppers (in black) and digested peppers (Cornelio in red and Lamuyo in 
green) after binning and PQN normalization. In the carbohydrate region displayed in the middle (3-4.5 ppm) spectra 
are very similar. On the other hand, some signals are higher after digestion, especially in the aromatic region (on the 
left, zoomed 33 times) and the aliphatic region (on the right, zoomed 3 times). Moreover, some signals like the one at 
7.29 ppm appear only after digestion. This signal is highly correlated to the phenolic content. 

Correlation between NMR spectral data and spectrophotometric data 

For what concerns phenols, many spectral bins are highly correlated with the quantities measured 

with a spectrophotometer. The region mostly correlated is the one between 7.26 and 7.44 ppm. 

Moreover, the signal mostly related to the phenolic content is the one at 7.29 ppm for which the 

correlation is reported in Figure 3.  

 

Fig. 3: Correlation between the area of the signal at 7.29 ppm (y-axis) and the phenol values measured by 
spectrophotometry (x-axis). The regression line is shown.  
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A similar correlation is experienced between the same spectrophotometric values and the area of 

the NMR spectral region between 7.26 and 7.44 ppm, as reported in Figure 4. This region is the 

one where signals from phenolic molecules appear. When the whole aromatic region is considered, 

though, the R2 between its area and the phenolic content measured traditionally is only 0.29%. 

This proves that the traditional technique only measures a part of the phenolic molecules, whilst 

the NMR method is capable of picturing aromatic molecules not detectable through the traditional 

assay. This is due to the fact that the traditional assay is based on the bond between the measured 

metabolites and the specific reagents which will give out a determined colour, measured by a 

spectrophotometer, thus possibly leaving out of the quantitation some small molecules. In 

contrast, the NMR method is capable of observing such metabolites. 

 

Fig. 4: Correlation between the area of the aromatic region between 7.26 and 7.44 ppm (y-axis) and the phenol 
content measured by spectophotometric assay (x-axis). The regression line is shown. 

For what concerns the antioxidant power of pepper, signals which mostly correlates with the 

values from traditional analysis are the ones at 8.02, 7.86, 4.55, 4.49, 4.4, 4.29 e 2.08 ppm.  

Among these, the best result is obtained for the spectral region between 4.5 and 4.56 ppm, where 

the signal from ascorbic acid is present (Fig. 5).  

Univariate statistical analysis was carried out on the area of six different spectral regions to 

understand if differences exist between the different cultivars. Table 1 reports the mean values 

with standard deviations for the selected areas in the two cultivars.  

As shown, no significant difference was experienced. 
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Table 1: Mean values and standard deviation for the various spectral region selected in the two different cultivars. 

 
Aromatic 
region 

Sugar region Aliphatic region Phenolic region Vitamin C Phenolic signal 

CORNELIO 
n=6 

113.78±8.28a 5921.67±436.20a 1544.30±77.55a 36.30±3.29a 16.72±1.73a 1.59±0.17a 

LAMUYO 
n=6 

114.35±11.19a 6016.33±553.51a 1520.83±127.30a 36.11±3.56a 17.02±2.48a 1.62±0.21a 

Number of samples in each class is reported (n).  

 

Fig. 5: Correlation between the area of the region between 4.49 and 4.55 ppm (y-axis) and the antioxidant activity 
measured by traditional assays (x-axis). The regression line is shown (R2= 0.66).  

Conclusion 

To conclude, the two cultivars of pepper did not show any statistical diffeence in the NMR spectra. 

This, though, can be due to the fact that only a small number of samples was available. The study 

needs to be carried out with a larger sample cohort in order to obtain better and more robust 

statistical results. The NMR method has proved to be fast and highly reproducible since it 

confirmed the results from traditional assays of spectrophotometry. The capability of NMR 

spectroscopy to capture a great range of molecule proved to be fundamental for this kind of 

assessment, helping in the understanding of the digestibility. 

6.2 Processing impact on digestibility – Investigation on a traditional cured meat product 

(Bresaola) 

Materials and Methods 

This study investigated the digestibility of Bresaola, a cured meat typical of Northern Italy, 

depending on its ripening time. Bresaola samples were cured for three different time-lenght: 

“Time 0” (after 10 days of salting), “Time 2” (after 2 weeks of ripening) and “Time 4” (after 4 
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weeks of ripening). These samples were then sent from Cesena, University of Bologna, to Teagasc 

institute for the simulation of gastric and intestinal digestion following the protocol described in 

figure 6 for a static in vitro digestion method suitable for food. In total, fourteen digestions were 

carried out, both with and without substrates as control. The enzymes assays were also carried out 

following the described digestion protocol. The samples of cured meat were digested in triplicate 

according to Bordoni et al. (2014), following the scheme reported in Figure 6.  

 

Fig. 6: Scheme of the in vitro digestion protocol employed (from Bordoni et al., 2014). 

Human digestion was simulated in vitro inside a 100 mL flask, kept at 37 °C in a water bath on a 

magnetic stirrer equipped with a heating plate. Chemical composition of the digestive fluid, pH and 

residence periods were adjusted to mimic the physiological conditions. Two samples were 

collected during digestion: P1, at the end of gastric phase, and P2, at the end of the duodenal 

phase. In samples P1 the pH was increased to 8 with 35% NaOH to prevent possible modifications 

induced by acidic conditions. Samples at P2 were acidified to pH 2 with 37% HCl to stop pancreatic 

hydrolysis and to avoid bias caused by different pH values. P1 and P2 samples were stored at -80 °C 

before 1H-NMR experiments. A mock digestion without the enzymes was also carried out on meat 

samples in order to investigate the simple effect of pH on the meat and to compare the digested 

samples with non-digested ones. Even in this case, P1 and P2 samples were collected. Samples 
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were prepared for 1H-NMR by adding to 1 mL of each sample 160 μL of 100 mM phosphate buffer 

in deuterium oxide (D2O), containing 10 mM 3-TrimethylSilyl-Propanoic-2,2,3,3-d4 acid sodium salt 

(TSP) as internal standard. After adjusting the pH to 7.00, the samples were centrifuged at 14000 

rpm for 5 min in order to further remove impurities. All 1H-NMR spectra were recorded at 25 °C on 

a Bruker US+ Avance III spectrometer operating at 600 MHz, equipped with a BBI-z probe and a B-

ACS 60 sampler for automation (Bruker BioSpin, Karlsruhe, Germany). The spectra were collected 

with a 90° pulse of 14 μsec with 10 W of power, a relaxation delay of 5 sec and an acquisition time 

of 2.28 sec. The spectra were registered by means of the first increment of a NOESY sequence, 

designed to suppress the residual signal of the solvent, while giving, for each proton, peaks 

proportional to the concentration of the substance they belong.  

Results and discussion 

The acquired NMR spectra were investigated in order to assess the variation occurring in samples 

along ripening and after digestion. Spectra were referenced to the TSP signal at 0.0 ppm, solvent 

signal and noise were removed from the spectrum and the matrix was aligned with reference to 

the signal of lactate, also employed as a signal for normalization, after careful consideration. The 

spectra of digestive enzymes were also acquired and these were subtracted from the spectra of the 

digested samples, in order to remove signals belonging just to the digestive fluids employed in the 

protocol. Variance of non-digested samples was considered between ripening time-points, so 

between T0 and T2 and T0 and T4, calculated as the average and standard deviation of this 

variance: 

(T2-T0)/(area T2)*100 or (T4-T0)/(area T4)*100 

For digested samples, instead, the variance was calculated for each time-point and sample as: 

(T0 dig-T0 non dig)/(area T0 non dig)*100 or (T2 dig-T2 non dig)/(area T2 non dig)*100  

or (T4 dig-T4 non dig)/(area T4 non dig)*100 

therefore considering the spectra of non-digested meat as a reference. 

This was done in several spectral regions chosen for their informative power: 

 Total spectra 

 Aromatic region (6-7.85 ppm) 

 Alpha region (3.6-5 ppm) 

 Amides region (7.9-9 ppm) 

 Gamma-1 region (0.72-1.1 ppm) 
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 Gamma-2 region (0.56-0.72 ppm) 

The results are shown in the tables below (Table 2 and 3) 

Table 2: Results of the variance for the non-digested samples among different ripening points. * are samples for which 
the variance was negative. T0-T2 represents the difference between the starting ripening point T0 and the ripening 
time-point T2. T0-T4 represents the difference between the start of the ripening (time point T0) and the end of 
ripening (time-point T4). 

 Gastric T0-T2 Gastric T0-T4 Intestinal T0-T2 Intestinal T0-T4 

Total area 11.84±0.14 10.99±0.63 8.44±2.14 7.97±0.42 

Aromatic area 9.43±6.67 3.23±3.01 3.21±1.97 5.98±4.18* 

Alpha area 15.45±2.81 14.40±1.31 11.32±1.73 8.71±1.80 

Amides Area 9.48±4.79* 11.76±5.52* 7.80±6.27 9.57±8.19* 

Gamma 1 Area 30.86±6.45 37.71±16.48 8.27±7.61 13.47±10.54* 

Gamma 2 Area 11.67±12.14 12.21±5.49 12.80±12.01 10.51±6.38 

Table 3: Results of the variance for the digested samples among different ripening points. * are samples for which the 
variance was negative. NI is a non-informative region for that type of spectra. T0 is the time-point of the start of the 
ripening, T2 and T4 are a mid-point and the end of ripening of Bresaola, respectively. 

 Gastric T0 Gastric T2 Gastric T4 Intestinal T0 Intestinal T2 Intestinal T4 

Total area 29.43±9.83 26.06±2.56 20.89±13.44* 778.25±121.26 845.08±46.86 701.46±230.57 

Aromatic area 36.13±4.08* 30.80±5.05* 30.61±3.01* 346.46±51.70 346.23±18.16 330.88±97.75 

Alpha area 12.91±8.10* 12.00±3.23* 11.41±0.90* 178.1±30.26 145.10±5.76 135.07±80.55 

Amides Area 47.32±8.85* 31.95±4.85* 35.04±3.45* 138.66±40.54 197.81±31.65 213.78±71.58 

Gamma 1 Area NI NI NI 919.21±509.28 629.83±80.39 1740.52±567.22 

Gamma 2 Area 14.64±8.51* 11.87±7.79* 22.55±3.12* 500.26±178.25 532.83±85.45 483.17±201.85 

As it can be seen from Table 2, in the gastric phase most regions increase in area, apart from the 

amide region. In the intestinal phase, samples at the end of ripening show an area lower than T0 

for the aromatic, amides and gamma 1 area. This proves that the effect of pH can simply modify 

the capability of the matrix of liberating molecules, though it shows how there is a tendency for 

the product to be more digestible along the ripening time. For what concerns the amide area, 

which seems to decrease during ripening time, this effect can be due to various reasons: molecules 

present in the samples can get broken up into smaller molecules and their signal show up in other 

parts of the spectra, the broad signals from big proteins or peptides are altered into sharper and 

smaller amino acid signals or the molecules with signals in this spectral region become less 

available during ripening due to modifications in the matrix structure. In Table 3 we can see that in 

the gastric phase, the non-digested spectra are generally higher than the digested one in the 

selected regions, whilst the opposite is for intestinal samples. This shows that is mainly during the 

duodenal phase that molecules are liberated from the matrix from enzyme action and can 

therefore be available for absorption and, later, for their functions. 
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Conclusions 

This preliminary study proved the investigative power of the NMR technique. In this research the 

digestibility of Bresaola was tested in relation to the ripening time. It was seen that the process of 

curing can increase the bioavailability of molecules such as aminoacids and small peptides, which 

are released mostly during the duodenal phase of digestion. Through the analysis of NMR spectra 

it was in fact possible to understand first the impact of the curing process on the capability of the 

matrix of releasing these molecule. Moreover the digestion of the matrix was studied, in order to 

understand whether the product was easily digested and in which phase the molecules of interest 

where made available for absorption. 

6.3 Cooking impact on digestibility – Investigation on different meat-based recipes. 

Materials and methods 

Four different meat preparation were studied. Each type of meat was either cooked through a 

traditional method (TR) or with sous-vide (vacuum) cooking (SV). Three samples for each cooking 

method were analyzed for each meat type, so to have a total of 6 samples for 4 products. Each 

sample was digested in vitro employing the method described in 13.2. Digested samples were 

centrifuged and filtered. Before digestion, the protein content of each sample was measured 

through the Kjeldhal method. Digested samples were analyzed through NMR spectroscopy. 

In a 1.5 mL eppendorf, 160 μl of phosphate buffer in deuterated water (D2O) were added to 900 μL 

of digested samples. pH was adjusted to 7.0 by means of addition of 1M solutions of either HCl or 

NaOH. Samples were then centrifuged at 14000 rpm and 4°C for 10 minutes. 800 μl of surnatant 

were then transferred in NMR tubes for the analysis. NMR spectra were acquired through a 600 

MHz spectromoter using an acquisition time of approximately 30 minutes and a NOESY1GPPR 

sequence. Spectra were referred to the internal standard (TSP) at 0.0 ppm. Peripheral spectral 

regions and the signal from the solvent were removed from the spectra. First, spectra of the 

digested samples and the “blank” (only digestive fluids and enzymes) were normalized on the TSP 

signal to be compared. After a binning procedure the spectrum of the blank was subtracted from 

all spectra, in order to just observe the signals from the food matrix. The area of the region 

between 4.15 and 4.66 ppm (“alpha region”) was then calculated, in order to measure the protein 

release after digestion. To have the real value of the aminoacid in the alpha region, the obtained 

values were corrected through this equation (Eq. 1):  
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where: 

R = Area of the Alpha region/Total protein content (measured by Kjeldahl method);  

N = number of protons in the internal standard (N=9); 

C(std) = concentration of the internal standard (TSP);  

Vs = sample volume;  

Vb = buffer volume;  

Vt = total volume;  

PM = average molecular weight of amino acids (PM=110 g/mol). 

Means and standard deviations of the obtained values were calculated and compared for each 

product in the two cooking methods. 

Results and discussion 

As visible in Figure 7, samples did not show much difference in the amino acid content between 

the two types of cooking: only slight differences are visible in the average values and when the 

standard deviation is considered the difference is not statistically significant.  

 

 

 
 
 
 

 

Fig. 7: Mean values with standard deviation for the aminoacid content of digested samples cooked with the traditional 
method (blue) or in vacuum (red), measured through NMR spectroscopy and calculated applying equation 1. 

The only product showing an increased protein digestibility is pork, where the new cooking 

method in vacuum proved to increase the product’s protein digestibility. It is clear though that 

there might exist a particular matrix-related response to the cooking method. Recent studies have 

confirmed that vacuum cooking is an efficient technique for the improvement of food digestibility. 

Sangsawad and colleagues [Sangsawad et al., 2016] showed that chicken breast cooked in vacuum 

at 70°C for 30 minutes had a greater protein digestibility and antioxidant power compared to 
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samples cooked at higher temperatures and longer.  

In fact, cooking at higher temperatures could cause the formation of indigestible protein 

aggregates, which could reduce digestion proteolysis and which, in turn, could be fermented by the 

gut microbiota into potentially damaging molecules (i.e. ammonia) [Oberli et al., 2015]. In this case 

only one product showed greater protein digestibility, measured as the amount of aminoacids 

made available through digestion, when the new cooking technique was employed, though this 

can be due to the fact that a small number of samples was available. For this reason, more 

research is necessary with greater sample numerosity, in order to further test the possible 

difference in protein digestibility between the two cooking techniques. With a larger number of 

samples a lower value of standard deviation can be obtain and significant difference could be 

found among samples. Moreover, different cooking time and temperature combinations should be 

evaluated, in order to understand the influence of both factors in the final meat quality and 

aminoacid realease, as carried out in other studies [Roldan et al., 2014; Oberli et al., 2015]. In fact, 

both the temperature and the cooking time can impact on meat quality, for example affecting the 

production of free radicals and thus protein and lipid oxidation. For this reason, it is important to 

find the best combination of these factors in order to gain greater protein digestibility. 

Conclusions 

The nutritional value of protein-based food is deeply related to their digestibility and thus to the 

amount of aminoacid that becomes available during digestion. Vacuum cooking seemed to 

improve protein digestibility in just one of the four analysed samples (pork meat), showing how 

the technique can improve the nutritional value of a meat product but the matrix itself can 

influence the results. Further research with more samples is necessary to prove these findings and 

gain more robust results. In addition, different combinations of time and temperature of cooking 

should be tested to understand the impact of each factor and to find the best possible cooking 

procedure to obtain a higher protein digestibility for each product. 

6.4 Digestibility of food supplements – Lowpept Study 

Materials and methods 

Lowpept is a powdered food supplement of dairy peptides with the aim of lowering and stabilizing 

blood pressure. This product is obtain through the hydrolisis of casein with food-grade pepsin 

[Recio et al., 2006; Contreras et al., 2009] and contains antihypertensive peptides RYLGY and 
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AYFYPEL [Anadón et al., 2010]. In this study Lowpept and casein were digested through the in vitro 

protocol described in Figure 8 in order to assess their behaviour during digestion and the real 

bioaccessibility of the peptides contained in Lowpept. Samples were collected in triplicate after 

each digestive phase (oral, gastric and duodenal) for both products (casein and Lowpept). 700μl of 

100mM phosphate buffer in deuterium oxide (D2O), containing 10mM 3-TrimethylSilyl-Propanoic-

2,2,3,3-d4 acid sodium salt (TSP) as internal standard was added to all the samples. After pH 

adjustment to 7.00, all samples were centrifuged at 14,000g for 5 minutes for further particulate 

removal. 1H-NMR spectra were recorded at 300K on a Bruker US+ Avance III spectrometer 

operating at 600MHz, equipped with a BBI-z probe and a B-ACS 60 sampler for automation (Bruker 

BioSpin; Karlsruhe, Germany). Spectra were collected with a 90° pulse of 14μs with 10W of power, 

a relaxation delay of 5s and an acquisition time of 2.28s [Bordoni et al., 2011]. Two different NMR 

experiments were carried out on the samples: NOESY and JRES. 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Scheme of the digestion protocol employed, adapted from the COST Infogest protocol (Minekus et al., 2014). 

Noesy. Spectra were obtained by collecting 64 scans into 32K data points, covering a 20 ppm 

spectral width. The NOESYGPPR1D sequence (a standard pulse sequence in the Bruker library)  was 

applied to suppress the residual signal from HOD, this sequence incorporates the first increment of 

the NOESY pulse sequence and a spoil gradient. Phase and baseline corrections were performed 

automatically using TopSpin version 3.0 (Bruker BioSpin; Karlsruhe, Germany). The chemical shifts 

were internally referenced to the TSP signal at 0.00 ppm [Bordoni et al., 2011].  

Jres. 2D J-resolved 1H spectra were acquired using a double spin echo sequence 9,26, with 2 scans 

per increment, collecting 8k data points for 512 increments. The first 128 increments were used for 
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further processing based on T2*-relaxation rates. Spectral width was 7.2 kHz for direct dimension 

and 80 Hz for indirect (spin-spin coupling) dimension. The interpulse delay was 2.6 s. Data were 

multiplied with a nonshifted sine-bell function in both dimensions, then Fourier-transformed 

followed by calculation of the magnitude spectra, which were tilted and symmetrized using 

functions in Topspin (ver. 3.0, Bruker Biospin, Karlsruhe, Germany). 1D 1H NMR spectra were 

acquired using a sequence corresponding to one increment of the NOESY pulse sequence with 

homospoil-gradients and presaturation of the water signal during relaxation (2.0 s) and mixing 

period (0.1 s). The number of scans was 256, with 64k data points over a spectral width of 12 kHz 

[Yilmaz et al., 2011]. After the Fourier transform, spectra were normalized so that spectral 

amplitude was adjusted for solute concentration and for the p1 parameter, to wit the reciprocity 

coefficient [Hoult, 2000; Tropp et al., 2013] In this way, spectra were comparable according to their 

absolute intensity. All the pre-processing steps were performed using R-project® platform version 

2.15.1. Signal assignment was carried out on the base of literature [Lamanna et al., 2008; Consonni 

& Cagliani, 2008; Bordoni et al., 2011] and by using Amix software (version 2.1.3, Bruker). 

Statistical analysis of spectral areas was carried out using R. The analysis of variance (ANOVA) was 

performed by the command 'anova'. In this way a two-way analysis of variance, comparing both 

the type of sample and the digestion step, was carried out. This analysis was validated by means of 

the post-hoc LSD-test (Fisher's Least Significant Difference test), comparing the mean of one group 

with the mean of another using a set of individual t-test. In this way, it shows in which way samples 

are different from one other. 

Results and discussion 

To follow the solubilization of molecules as a result of digestion, spectra were registered by means 

of the NOESY pulse sequence. This sequence is designed to suppress the water residual signal, 

while giving for each kind of proton of each substance peaks proportional to the concentration of 

the substance itself. Through HR-NMR spectroscopy, only soluble molecules can be seen. Insoluble 

molecules, even if present in suspension in centrifuged sample, will not be shown; they will 

eventually generate very broad and flat signals. For this reason, only some rare milk proteins, the 

soluble part such as lactoglobulin, will be seen by NMR before digestion. The rest of the protein 

content will appear only after the enzymatic disruption and solubilization. HR-NMR spectra of the 

casein digested in the oral phase, shows mainly broad peaks due to soluble proteins which are too 

big or denatured to give clear signals. 
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The only sharp signals appearing in the oral spectra are organic acids (citric acid, acetic acid, formic 

acid), ethanol, acetone and sugars (lactose). After gastric digestion, the broad signals increase, as a 

result of a higher solubilization of big molecules (as seen in Figure 9). 

 
 

 

 

 

 

 

 

 

Fig. 9: NOESY1D NMR spectra for the oral (black), gastric (red) and duodenal (green) phase digestates of casein in the 
sugar region. 

Duodenal digestion gives a further increase in those signals, but results also in the appearance of 

other sharp peaks, belonging to free amino acids. The only observable difference between casein 

and Lowpept spectra is present after the oral phase of digestion (Fig. 10), since Lowpept is already 

undergone a peptic digestion. Thus, Lowpept oral spectra show a greater presence in broad signals, 

belonging to soluble proteins and big peptides. 

 

Fig. 10: NOESY1D NMR spectra of oral digestates for casein (black) and Lowpept (red). 

Observing total spectral areas it is possible to highlight how, already after gastric digestion, the 

quantity of small and big peptides increases. In effect, endopeptidases (pepsin) start digesting 

proteins in the stomach, forming smaller fragments, which can be, according to their dimensions, 
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visible by NMR. A greater increase in spectral areas is seen, as stated, after the duodenal step of 

digestion, since the multiple action of the enzymes trypsin and chymotrypsin allows the formation 

of free aminoacids and small peptides, which can be easily observed by NMR spectroscopy. These 

molecules, in effect, and aminoacids in particular, can generate sharp peaks, which are observed 

greatly in the area of the duodenal digested samples.  

With the observation of specific spectral areas where aromatic and branched amino acids and 

amidic residues can be found, it is possible to find out what happens in food products during 

digestion, especially after the gastric and duodenal steps. We decided to focus our attention on 

three areas, which show a great variation during these digestive phases. The chosen regions are: 

 AROMATIC AMINO ACIDS: from 6.78 to 6.88 ppm especially between oral and gastric phase, 

since a large signal is present and from 6.88 to 6.92 ppm in particular for the duodenal 

phase, since sharp peaks appear, like the aminoacid tyrosine. 

 BRANCHED AMINO ACIDS: from 0.84 to 0.94 ppm for the gastric digestion, since here again 

broad peaks appear, and between 0.94 and 1.06 ppm for the duodenal phase since sharp 

signals occur after this digestion step, such as valine, leucine and isoleucine. 

 AMIDIC NH: between 7.3 and 8.9 ppm 

Concentrating the analysis on these regions allows the comparison of the two different products 

digested, to understand their specific profiles and behaviour during and after digestion, in order to 

underline possible differences between the two.  

These regions were compared both for the spectra obtained with the NOESY sequence than for the 

ones registered with the JRES technique. In both cases, as reported, the Lowpept samples show 

greater areas than casein, either for gastric and for duodenal phase, even if in a lower measure.  

After oral digestion, Lowpept is obviously showing greater spectral areas, since it is already 

undergone through pepsin hydrolysis. In order to validate the hypothesis of a true difference 

between the samples, statistical analysis was performed. The technique employed was a two-way 

analysis of variance (ANOVA) and a post-hoc LSD validation test. In this way, the ANOVA should 

prove if there are statistically significant differences in samples depending either on the product 

(Casein or Lowpept) or on the digestive step (oral, gastric or duodenal). Results, reported in Table 

4, show significant difference just concerning the phases of digestion.  

Through the LSD-test validation, it is demonstrated how these differences are evident only 

between duodenal phase and the earlier two steps, whilst there's no significant difference 

between oral and gastric steps. 
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Table 4: Mean and standard deviation of the spectral areas calculated for casein and Lowpept, both for duodenal and 
gastric phase. Letters a and b indicate the significance of the difference after LSD post-hoc test comparing the two 
products, first, and the digestive step, secondly. 

 NOESY JRES 

areas Casein Lowpept Casein Lowpept 

gastric 3.66±0.30 a,a 3.99±0.24 a,a 3.33±0.05 a,a 3.82±0.05 a,a 

duodenal 106.02±0.71 a,b 100.00±5.67 a,b 107.41±14.73 a,b 100.00±9.03 a,b 

 

These notions are validated by the observation of NMR spectra obtained through the NOESY 

technique. Visualizing the lowfield region, which shows proton amidic signals (7.3-8.9 ppm), it is 

possible to gain information regarding water accessibility in exchange sites in peptides. This 

chemical exchange determines the disappearance, under the water suppressed signal, of amidic 

signals when peptides are small enough to make all their amidic proton accessible to the solvent. 

The aromatic region (6.5-7.5 ppm), instead, shows information on non-exchangeable protons 

belonging to aromatic amino acids, thus approximately 10% of the entire protein composition. The 

diagnostic power of this two region is clear observing the evolution of spectral profiles during 

digestion. Initially, the lowfield area is basically flat before gastric digestion, for what concerns 

casein, and becomes crowded with broad signals after this digestive step, increasing even more the 

area after the duodenal phase. In Lowpept, this area seems decreasing after the gastric phase, but 

it shows another great increase after the intestinal digestion. This can be explained by the fact that, 

after gastric phase, NH2 show that peptones go into solution more slowly than the rate in which 

peptones become peptides. In the duodenal phase, the solubilization of peptones starts being 

preponderant again, therefore the net result is a great increase in NH2 signals. To resume the 

digestive process of these two different samples some spectral parameters where chosen: the ratio 

between the area of the two food matrices in the regions corresponding to aromatic (AaA) and 

branched (AaR) aminoacids and the lowfield region where amidic NH2 (ANH) can be found. The 

chosen regions where found to be very informative and among the most variable between the 

digestive steps. By comparison of the areas of these regions it is possible to assess which sample is 

greatly digested, generating a higher value in the spectral area considered. This can mean that this 

type of sample could generate a greater quantity of compounds easily accessible for our bodies, 

such as free aminoacids. Table 5 and 6 show the values of these areas both for casein and Lowpept 

after gastric and duodenal digestion. The ratio between casein and Lowpept is usually less than 1 

in value (Table 7 and 8). Lowpept seems to generate a greater amount of digestive products such 
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as peptides and aminoacids. 

Table 5 and 6: Mean values and standard deviations for the areas of samples in the different regions. AaA: aromatic 
aminoacids region, AaR: branched aminoacids region, ANH: amidic NH2 region. CN stands for casein and LP for 
LowPept. Letters a and b indicate the significance of the difference after LSD post-hoc test comparing the two 
products, first, and the digestive step, secondly. 

NOESY AaA AaA AaR AaR ANH ANH 

Area Casein Lowpept casein Lowpept casein Lowpept 

Gastric 0.0451±0.0043a, a 0.3746±0.0370b, a 0.2474±0.0186 a, a 7.1613±0.1265 a, a 0.1813±0.0233 a, a 2.8566±0.0539 a, a 

Duodenal 0.0518±0.0021a, b 0.3904±0.0196 b, b 0.3046±0.144 a, b 6.9446±0.3468 a, b 0.1860±0.0197 a, b 2.9810±0.1171 a, b 

 

JRES AaA AaA AaR AaR ANH ANH 

Area casein Lowpept casein Lowpept casein Lowpept 

Gastric 0.0337±0.0050 a, a 0.0719±0.0098 a, a 0.6387±0.0829 a, a 4.7137±0.5895 a, a 0.2725±0.0077 a, a 2.4819±0.3280 a, a 

Duodenal 0.0497±0.0012 a, b 0.1033±0.0011a, b 0.7411±0.0384 a, b 5.0639±0.3447 a, b 0.2358±0.0015 a, b 2.1098±0.1221 a, b 

Table 7: Results from the comparison of spectral areas in the region chosen for aromatic (AaA) and branched (AaR) 
aminoacids using NOESY spectra. 

Type of AA Phase ppm (start) ppm (end) Casein/Lowpept ratio 

AaA Oral 6.78 6.88 0.05 

AaR Oral 0.84 0.94 0.11 

AaA Gastric 6.78 6.88 0.87 

AaR Gastric 0.84 0.94 0.96 

AaA Duodenal 6.88 6.92 0.81 

AaR Duodenal 0.94 1.06 1.03 

Table 8: Results from the comparison of spectral areas in the region chosen for aromatic (AaA) and branched (AaR) 
aminoacids using JRES spectra 

Type of AA Phase ppm (start) ppm (end) Casein/Lowpept ratio 

AaA Oral 6.78 6.88 0.23 

AaR Oral 0.84 0.94 0.12 

AaA Gastric 6.78 6.88 0.66 

AaR Gastric 0.84 0.94 0.69 

AaA Duodenal 6.88 6.92 0.86 

AaR Duodenal 0.94 1.06 0.93 

Comparing the values of areas in these regions, both for branched and aromatic aminoacids, 

through a two-way Analysis of Variance, the results were the one represented in Tables 5 and 6, 

the first letter (a or b) shows the difference between casein and Lowpept, whilst the second letter 

(a or b) shows the difference between gastric and duodenal phase. The difference between 

digestive steps is always significant, in specific between the duodenal step and the previous two, in 
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every region and with every NMR method performed. In addition, NOESY technique, both in the 

amidic and the aromatic region, shows significant differences among the type of samples, 

therefore between casein and Lowpept. This is particularly important to understand how real 

differences between the samples are possible and how this distinction can have an effect on 

human nutrition. Tyrosine, in effect, lying in the aromatic region, is an aminoacid with many 

positive functions in the human organisms, such as the synthesis of neurotransmitters like 

dopamine and norepinephrine [O'Brien et al., 2007], and it has been proven how its assumption is 

particularly beneficial in conditions of stress or fatigue [Deijen et al., 1999; O'Brien et al., 2007; 

Mahoney et al., 2007]. In addition to that, other studies have demonstrated how tyrosine can 

reduce blood pressure in rats [Sved et al., 1979; Yamori et al., 1980]. The branched amino acids 

analysed, instead, thus leucine, isoleucine and valine, show very similar levels in casein and 

Lowpept, especially observing NOESY spectra, whilst in JRES spectra, the ratio between the areas 

of the two samples, shows again a greater value for the Lowpept sample. These amino acids are 

used for their role in protein synthesis and to produce energy thanks to their aliphatic portion 

[Brestenský et al., 2015]. They can also contrast fatigue and preserve the immune defense system 

[Blomstrand, 2006; Calder, 2006], therefore resulting to be very important for our bodies. From 

these results, it is possible to understand how Lowpept has potentially better nutritional 

characteristics than casein. Moreover, the fact that a higher quantity of tyrosine is potentially 

released during digestion from Lowpept further proves the anti-hypertensive properties of this 

product. 

Conclusions 

Observing the spectral behaviour of the two samples during digestion, it is possible to see how the 

area of NMR spectra shows a great increase from the original food product (casein), already in the 

gastric phase, thanks to protein digestion. Through the study of spectral areas shows it was 

assessed that the most important step for the further assimilation and absorption of nutrient is the 

duodenal phase, during which proteins and previously-formed peptides are cut into smaller 

peptides and free aminoacids. It is evident, therefore, how the digestion of these food matrices is a 

double step: initially food is digested into big molecules and then, these are split into dimensionally 

smaller molecules, capable of being absorbed by the intestines. 1H-NMR technique is very useful 

for the observation of the various steps in protein digestion, allowing to see what happens in every 

digestive phase and during the entire digestion. As shown, the analysis of determined spectral 
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areas, can give many informations on the specific hydrolysis of metabolites of interest, such as 

protein, in order to understand how a sample can be more digested than another and if molecules 

of greater nutritional and health interested are formed. In this case, it was demonstrated how 

Lowpept shows, once again, better nutritional properties, in specific resulting more digestible and 

assimilable than casein. In this way Lowpept can perform more effectively its anti-hypertensive 

effect, also thanks to the liberation of a greater quantity of beneficial aminoacids such as tyrosine. 
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CHAPTER 7: FOODOMICS IN THE INVESTIGATION OF THE 
ANIMAL METABOLOME 

Animals can be studied through metabolomics just as humans. In effect, the investigation of animal 

biofluids through metabolomic techniques is now more and more employed for many reasons. 

First of all, the holistic approach of metabolomics can be of great help in veterinary studies, 

allowing the full profiling of animals together with genomics and proteomics assays. Moreover, the 

foodomics/metabolomics approach can be applied in animal studies in order to investigate on the 

later quality of animal-derived food products. As stated before, the metabolome is an inventory of 

small molecules, thus the animal metabolome can represent potential human nutrients and 

health-promoting compounds and can be associated to a nutrient profile. [Harnly et al., 2007]. 

Moreover, the animal metabolome can be studied as a model of the human metabolome due to 

similarities in animal and human metabolism [Dessì et al., 2014]. For all these reasons, the animal 

metabolome is of great importance in many research field and of great interest. One of the most 

employed animal model in metabolomics studies is the pig. The pig has been employed as an 

animal model for many different reasons. In fact, it has been defined as the best “non-primate” 

model for the investigation of human nutrition [Miller & Ullrey, 1987]. In addition, being a large 

single-stomached omnivore mammal, the pig's gut physiology is very similar to that of humans. For 

these reasons it has been employed in recent years in many studies to investigate risk factors for 

various diseases such as stress, obesity or diabetes and to study the effectiveness and metabolism 

of drugs [Bustad & McClellan, 1966]. Moreover, the fact that the pig represent an important food 

source and is employed for development of surgery and for transplants has boosted the research 

on this animal in many fields, ranging from genomics to immunology [Merrifield et al., 2011]. 

Therefore, the metabolic characterization of pigs represents the next step to fully profile porcine 

metabolism and to better understand also the human metabolome and its variations. In this 

research work, two studies were carried out on pigs. The first one regarded pig colostrum (Chapter 

7.1). The scope of this research was to investigate the composition of this peculiar biofluid and 

assess any possible relation between its profile, sow breeds and piglets' mortality and growth 

rates. This assessment is particularly important both for for veterinary reasons, in order to help the 

growing conditions of piglets, and for the profiling of this particular biofluid. The second study 

(Chapter 7.2) investigated on piglets' plasma and urine. This study investigated the differences in 

the metabolome of newborn piglets due to the effect of antibiotics and to the presence or absence 
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of a particular pathology: necrotizing enterocolitis. This disease affects both human and animal 

premature newborns and therefore the study is very useful also for human medicine. In addition, 

since the study focused on both the direct effect of the antibiotics (i.e. presence of antibiotic 

metabolites) and also on the indirect consequences (e.g. absence of disease, thus alteration of 

metabolic pathways), it is of great value for human application, since it allows to understand the 

influence of specific factors on different metabolome characteristics. 

This study was also particularly useful for the development and improvement of an analytical 

workflow on the metabolome of plasma and urine and for the assignment of NMR signals. 
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Abstract 

Colostrum differs from milk and is the first secretion of mammary gland produced in late 

pregnancy and during the hours immediately preceding and succeeding parturition. This secretion 

represents an essential vehicle of passive immunity, prebiotic compounds and growth factors 

involved in intestinal development. Its composition has been investigated mainly in human and 

cow, but very little is known about pig colostrum metabolome and how it varies between pig 

breeds and different farrowing parity. Thus, the aim of the present research is to provide new 

information about pig colostrum composition and the associations between some metabolites, the 

breed of the sow and the survival and growth rates of their litters. Colostrum samples were 

gathered from 58 parturitions of sows belonging to three different breeds chosen for their 

importance in the Italian heavy pig production: 31 Large White, 15 Landrace and 12 Duroc, 

respectively. Farrowing was not induced, and colostrum samples were collected after the first birth 

and before the last piglet was born, defatted and centrifuged in a 10kDa cut-off membrane. The 
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eluted was analysed using 1H-NMR spectroscopy. The Principal Components Analysis (PCA) was 

assessed on the obtained spectra. In addition, using a Stepwise Regression and a Linear Regression 

analyses the metabolites named after the signals assignment were tested for their associations 

with piglets’ performances. 25 metabolites were identified, comprehending monosaccharides, 

disaccharides (such as lactose), organic acids (lactate, citrate, acetate and formate), peptides (such 

as creatine) and others compounds, including nucleotides. PCA results evidence a clustering due to 

breed and season effects. Lactose was the main compound determining the assignment of the 

samples into different clusters according to the sow breed. The amount of dimethylamine 

identified in colostrum was associated with the piglets’ mortality at three days after birth (P = 

0.004). This is the first study characterizing swine colostrum metabolome using the 1H-NMR 

spectroscopy technology and the results obtained will contribute to improve the knowledge on 

colostrum’s deeper composition and variability. Furthermore, this work may help understanding 

the compounds that influence piglets’ survival and growth in addition to the best- known 

immunoglobulin colostrum fraction. 

Key words: metabolome; pig breeds; colostrum; 1H-NMR spectroscopy; lactose; piglet survival 

Introduction 

The pre-weaning litter environment has been proven to affect the pigs development and 

performances during later life (Vallet et al., 2016) and in particular colostrum intake, coupled with 

birth weight, was found to influence piglets’ growth and mortality (Devillers et al., 2011; Ferrari et 

al., 2014; Decaluwé et al., 2014b). Colostrum provides new-borns with energy and passive 

immunity (Noblet et al., 1997; Rooke and Bland, 2002): in particular, most of the literature 

concerns the effects of the different immunoglobulins on piglets’ health and survival capacities . 

Studies assessed on human and bovine colostrum suggested important roles in new-borns’ health 

also for other bioactive molecules, such as nucleotides, oligosaccharides, organic acids and 

peptides (Gopal and Gill, 2000; Schlimme et al., 2000; Korhonen, 2013; He et al., 2014), but little is 

still known about the presence of these metabolites in sows’ colostrum and their association with 

piglets’ performances. Furthermore, to date little or no information about pig breed influence on 

colostrum composition is available and most of the knowledge about metabolites composition of 

swine colostrum was produced on samples gathered after farrowing induction, fact that may alter 

colostrum composition (Foisnet et al., 2011). In this study, 58 colostrum samples were collected 

during a natural parturition with the aims i) to analyse through a NMR-based metabolomics 



Chapter 7: Foodomics in the investigation of the animal metabolome 

195 

 

approach the colostrum compounds with a maximum 10 kDa molecular weight in three pig breeds, 

ii) to evaluate which factors mostly affect the colostrum composition, iii) to test the associations 

between the identified metabolites, the sow maternal attitude, and the piglets’ survival and 

growth rates. 

Materials and methods 

The procedures complied with Italian law pertaining to experimental animals and were approved 

by the Ethic-Scientific Committee for Experiments on Animals of the University of Bologna, Italy. 

Animals and sampling 

Fifty-eight colostrum samples were collected from 58 different farrowing of pure breed sows: 12 

Duroc (D), 15 Landrace (L) and 31 Large White (LW). All sows were raised in the same farm and 

were not treated with antibiotics and medical products during gestation. Farrowing was not 

induced, and the colostrum sampling was carried out during natural parturition, after the birth of 

the first piglet and before the parturition of the last, across all teats. All samples were immediately 

frozen at -20 °C and then stored at -80 °C until the samples preparation for NMR analysis. For each 

sow, parity and data related with the reproductive performances were recorded: the number of 

piglets alive and the litter body weight (LBW) were recorded at birth and at day 3, cleansed from 

the weight of the piglets dead. The litter weight gain (BWG) was then calculated for the period 

from birth to day 3. Furthermore, the number of weaners per litter was recorded as well as the 

occurrence of diarrhoea during suckling (1= presence of diarrhoea events from piglets’ birth until 

weaning, 0= absence of diarrhoea event). 

Colostrum preparation for 1H-NMR analysis 

Colostrum was de-frozen, carefully mixed by inversion, and 15 ml of each colostrum sample were 

diluted 1:1 with pure water. To each diluted sample, 0.02% of sodium azide was added, to inhibit 

bacterial growth during the sample preparation. Then the sample was defatted through a 

centrifugation at 4 °C for 30 minutes at 1500 x g. The aqueous phase was transferred to a clean 

falcon avoiding the outer layer of fat, and centrifuged again; this procedure was repeated three 

times. 5 ml of the obtained aqueous phase were then transferred in Amicon Ultra 10 kDa 

membrane centrifugal filters (Merck Millipore, Merck KGaA, Darmstadt, Germany) and filtered by 

centrifugation at room temperature for 90 minutes at 5500 x g. This step was needed to eliminate 

immunoglobulins and other proteins with high molecular weight. The eluted sample was then 

weighted and lyophilized.  



Chapter 7: Foodomics in the investigation of the animal metabolome 

196 

 

1H-NMR measurements 

At the time of sample processing, for each gram of lyophilized sample 250 μl distilled water was 

added. Eighty µl of thawed sample was centrifuged at 14,000 × g for 5 min (Scilogex D3024 High 

Speed Micro-Centrifuge, Rocky Hill, CT, USA) and then added to 720 μl of distilled water and 100 μl 

of a D2O solution of 3-(trimethylsilyl)-propioniate-2,2,3,3-d4 (TMSP) (Cambridge Isotope 

Laboratories Inc, Tewksbury, MA, USA) with a final concentration of 6.25 mM. 1H-NMR spectra 

were recorded at 298 K with an AVANCE spectrometer (Bruker BioSpin, Karlsruhe, Germany) 

operating at a frequency of 600.13 MHz, equipped with an autosampler with 60 holders. The HOD 

residual signal was suppressed by applying the NOESYGPPR1D sequence (a standard pulse 

sequence included in the Bruker library) incorporating the first increment of the NOESY pulse 

sequence and a spoil gradient. The HOD residual signal was suppressed by applying the first 

increment of the NOESY pulse sequence and a spoil gradient. Each spectrum was acquired using 32 

K data points over a 7211.54 Hz spectral width (12 ppm) and adding 256 transients. A recycle delay 

of 5 s and a 90° pulse of 11.4 μs were set up. Acquisition time (2.27 s) and recycle delay were 

adjusted to be 5 times longer than the longitudinal relaxation time of the protons under 

investigation, which has been not longer than 1.4 s. The data were Fourier transformed and phase 

and baseline corrections were automatically performed using TopSpin version 3.0 (Bruker BioSpin, 

Karlsruhe, Germany). Signals were assigned through a combination of literature assignments and 

by the use of a multimedia library included in Chenomx NMR suite 8.2 professional software 

(Chenomx, Edmonton, Alberta, Canada). 

Data analysis 

The collected data were aggregated to create homogenous classes. The farrowing parity (from 1 to 

3 were classified as 1, parity order > 4 were considered as 2), the parturition season (from 1 to 4). 

The seasons were assigned as follows: 1= parturition between the 1st of December and the 28th of 

February; 2= between the 1st of March and the 31st of May; 3= between the 1st of June and the 31st 

of August; 4= between the 1st of September and the 30th of November. Among the studied animals, 

6 sows gave birth during season 1, 19 during season 2, 21 during season 3 and 12 during season 4. 

Statistical analyses on spectra data were performed using R computational language (ver. 3.1.2) 

and MATLAB (ver R2014b, MathWorks Inc.). Each NMR spectrum was processed by means of 

scripts developed in-house as follows: spectra baseline was adjusted by employing the signals 

identification algorithm named “baseline.peakDetection” from R (version 3.1.2) package “Baseline” 

(https://cran.r project.org/web/packages/baseline/index.html). Chemical shift referencing was 
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performed by setting the TMSP signal to 0.00 ppm. The following spectral regions were removed 

prior to data analysis: the regions including only noise (the spectrum edges between 11.00 and 

8.65 ppm and between 0.15 and -1.00 ppm), the NMR signal which is strongly affected by the 

residual solvent signals (water, between 4.90 and 4.50 ppm) and the glycerol’s signals from 3.82 

and 3.76 ppm, from 3.69 and 3.63 ppm and from 3.60 and 3.54 ppm. Spectra were then 

normalized by means of probabilistic quotient normalization method (PQN) and binned. The first 

operation is aimed at removing possible dilution effects. The second one avoids the effect of 

signals misalignments among different spectra due to variations in chemical shift of signals 

belonging to some titratable acids. The binning operation is performed by subdividing the spectra 

into 369 bins, each integrating 120 data points (0.0219 ppm each). In order to focus on the real 

information contained in the spectra, bins that an average higher value than noise were selected. 

In this way, a total of 201 bins were kept. The spectra obtained were then analysed through an 

unsupervised multivariate approach using Principal Component Analysis (PCA). The PCA was 

conducted on the 201 bins matrix to identify the outlier samples, and test the existence variables 

contributing to samples clustering. The multivariate models were calculated and the results were 

visualized on both scores and loadings’ plot. This multivariate analysis is the predominant linear 

dimensionality reduction technique used when dealing with scientific dataset and it is defined as 

an unsupervised method as it does not use class labels for discriminating between groups. After 

reducing the dimensionality of the dataset, it produces new linear combinations of the originals 

variables which can be plotted in a score plot (Bailey et al., 2003). In order to determine the 

spectral regions encompassing most of the discriminative information, bins with a loading value 

greater than 1% of the overall standard deviation of all loading values were selected. The identified 

metabolites included in the significant bins emerged from the loadings’ plot and additional 

metabolites relevant for their biological function were selected and grouped in a new dataset 

named C-dataset. The C-dataset was used to conduct an analysis of variance (ANOVA) with the aim 

to confirm if the amounts of the identified compounds were influenced by the effects of breed and 

farrowing season identified with the PCA and parity order. The model utilized for this analysis was: 

y = β0 + βp*b + βp*s + βp*o + E 

Where: 

β0 was the intercept; 

βp was the corresponding regression coefficient; 

y was the amount of each identified metabolite; 
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b was the sow breed (LW; D; L); 

s was the farrowing season (1; 2; 3; 4); 

o was the parity order (1; 2); 

E was the error. 

This first part was conducted to test if sows breed influences colostrum profile, and if in addition to 

breed there are other “environmental” variables affecting colostrum quality (in this case the 

farrowing season and the parity order were tested). 

Then, a stepwise regression analysis was used to select, among the metabolites included in the C-

dataset and sows’ reproductive performances, the variables that had to be included with the 

breed, the farrowing season and the parity order in the final GLM model for the identification of 

the metabolites related to piglets’ performances. This statistical analysis involves starting with no 

variables in the model and adding gradually each metabolite and sow reproductive parameter (the 

litter weight and the number of alive piglets at birth) to evaluate which one of the colostrum 

identified compounds and sows’ reproductive abilities most influenced the piglets’ survival and 

growth. The results obtained from the stepwise regression analysis were then confirmed through 

General Regression Analysis (GLM), considering as y variables the BWG, the number of weaned 

piglets, the number of dead piglets from birth until day 3 or the number of piglets dead from day 3 

to weaning; as independent variables were considered the sows breed, the farrowing season, the 

parity order of the sow and the significant factors identified through the stepwise regression 

analysis. The utilized GLM model was: 

y = β0+ βp*b + βp*s + βp*o + βp*p + βp*q + βp*r +…+ E  

Where: 

y was BWG, the number of weaned piglets, the number of piglets dead from the birth day until day 

3 or the number of dead from day 3 to weaning; 

β0 was the intercept; 

βp was the corresponding regression coefficient; 

b was the sow breed (LW; D; L); 

s was the farrowing season (1; 2; 3; 4); 

o was the parity order (1; 2); 

p; q; r were the significant metabolites identified through the stepwise regression analysis; 

E was the error. 

Finally, all the variables that did not show an effect on the dependent variables were removed 
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from the model and only the significant effects were maintained. The prcomp function of R 

environment was used to perform the PCA analysis on bins matrix (R Core Team, 2015). The 

ANOVA analysis, the stepwise regression analysis and the regression model were carried out on 

SAS software using PROC REG and PROC GLM respectively (SAS® 9.4, SAS Inst. Inc., Cary, NC). 

Results 

Dataset description 

In Table 1 the complete dataset is detailed Duroc sows had on average a lower number of piglets at 

birth (8.92 ± 2.28) respect to Landrace (12.60 ± 1.72) and Large White (11.90 ± 2.26), while the 

newborns of Landrace and Large White breeds presented a lower weight at birth (1.38 ± 0.15 kg 

and 1.43 ± 0.16 kg, respectively) compared to Duroc piglets (on average 1.59 ± 0.23 kg). 

Colostrum spectra 

In Figure 1 a NMR molecular profile of sow colostrum is represented. The 1H spectrum is mainly 

dominated by the carbohydrate signals overlapping in the midfield region between 3.49 and 4.49 

ppm (Figure 1B). Those belong to lactose and nucleotides sugars such as UDP-glucose and UDP-

galactose and nucleotide as UMP. In this area, also signals from creatine and its products arise 

(3.04-3.05 ppm). Amino acids mainly fall in the upfield region, between 0.99 and 3.49 ppm, 

together with signals from organic acids (Figure 1A). In this part of the spectrum fall also signals 

from threonine (1.33 ppm) and alanine (1.49 ppm), lactic acid (1.33 ppm), acetic acid (1.92 ppm), 

succinic acid (2.41 ppm) and citric acid (2.54 and 2.67 ppm). Finally, in the downfield region (Figure 

1C) signals of different phenolic compounds can be observed, but in this case, only formic acid was 

assigned (8.4 ppm), together with signals from the nucleotide sugars UDP-glucose and UDP-

galactose (5.5-6 ppm, 7.9-8 ppm) and UMP (8.1 ppm, 5.98-5.99 ppm, 4.42 ppm) as listed in table 2. 

The 25 compounds have been identified through a combination of literature assignments and by 

the use of a multimedia library included in Chenomx NMR suite 8.2 professional software 

(Chenomx, Edmonton, Alberta, Canada). 
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Figure 1. Typical 1H-NMR spectrum of aqueous extract of colostrum. 1H-NMR spectrum registered on a colostrum 
sample. The spectrum has been split into three parts for the sake of clarity. Some resonances have been assigned by 
using Chenomx software and listed in table 2: A) Aliphatic or upfield region; B) Carbohydrate or midfield region, 
characterized by the presence of signals belonging to sugars and glycerol and C) Aromatic region or downfield region. 

Factors affecting colostrum composition  

After alignment, normalization and binning, the dataset contained a total of 58 colostrum spectra 

characterized by 201 bins and PCA was applied on it to investigate differences on the metabolome 
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between groups. For sow’s parity order, in the total colostrum spectra no PCA clustering was 

identified (data not showed). While Figure 2A and B shows that samples clustered on PC1-PC2 due 

to the effects of the sow breeds (Figure 2A) and on PC2-PC3 due to the farrowing seasons (Figure 

2B).  

 

Figure 2. Scoreplots of PCA on 1H-NMR binned spectra of colostrum obtained from different sow breed: A) PC1 vs PC2 
and B) PC2 vs PC3. The first two PCs represent the 91% of the total variance. C-D) Loadings bar-plot for spectral bins 
along PC 1 and 2 respectively. Downfield (C1 and D1) and upfield (C2 and D2) regions of C and D loadings bar-plot were 
expanded on the vertical scale to appreciate the presence of small bar plot. 

The PC1 explained the 81% of the total variance and separated the colostrum spectra of D and LW, 

while PC2 (10% of the variance) discriminated the L colostrum composition from the ones of LW 
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and D sows. The PC2-PC3 plot highlighted the season effect, in particular along PC2 the differences 

in the colostrum spectra due to seasons 1 and 4 (winter-autumn) against season 2 and 3 (spring-

summer). The weighting of each variable (bin) is represented by the loadings plot in Figure 2C and 

2D in which are displayed the loadings from PC1 and PC2 respectively as a bar plot, where each bar 

corresponds to a single spectral variable (bin). The main bins accounting for the spectral 

differentiation and their relative chemical shift were listed in the Supplementary Table 1 (SS1). As 

emerging from SS1 table, most of the signals included in these discriminant bins were assigned to 

the corresponding metabolites. The C-dataset, which was used for the following statistical 

analyses, resulted to be composed of 25 metabolites, listed in Table 2. The parity, breed and season 

effects on colostrum composition were then confirmed through the ANOVA analysis on the 

identified metabolites described in the C-dataset, and the results are reported in Table 3. For sow’s 

parity order, not significant data are obtained. Parity order showed only trends nearing statistical 

significance for succinate (P = 0.097), creatine phosphate (P = 0.091), creatinine (P = 0.061) and 

UDP-glucose (P = 0.061) (data not show). Breed and season resulted to be the major factors 

affecting the assigned compounds. Indeed, the amounts of alanine (P = 0.004; P = 0.004), citrate (P 

< 0.0001; P = 0.006), succinate (P < 0.0001; P = 0.024), dimethylamine (P = 0.030; P = 0.0001), 

creatine (P <0.0005; P < 0.0005), creatine phosphate (P = 0.003; P < 0.0001), cis-aconitate (P = 

0.030; P < 0.0001), taurine (P = 0.002; P = 0.001), glycolate (P < 0.0001; P = 0.001) and UMP (P = 

0.001; P = 0.009) were affected by both breed and the season of the farrowing respectively. Season 

affects significantly (P < 0.0001) the amount of acetate, creatinine and formate, where a higher 

level was registered for all the metabolites during the cold months. On the other hand, the 

amounts of o-acetylcholine (P < 0.0001), sn-glycerophosphocholine (P = 0.036), UDP-n-

acetylglucosamine (P = 0.001), lactose (P < 0.0001), myo-inositol (P = 0.001) and UDP-glucose (P < 

0.0001) were affected only by sow breed. In particular, the colostrum of L samples showed upper 

signals for UDP-Glucose, UDP-galactose and sn-glycerophosphocholine compared to the other two 

breeds, while LW colostrum was characterized by a major quantity of lactose, taurine, myo-inositol 

and glycolate. 

Factors affecting litter performances 

The stepwise regression analysis revealed that, in addition to the influence of sows’ reproductive 

performances (the litter weight and the number of alive piglets at birth) some peculiar metabolites 

can contribute to piglets’ survival and growth parameters (Table 4). In particular, the litter weight 

at birth and the concentration of acetate significantly entered in the model for BWG (P < 0.0001 
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and P = 0.003, respectively); the higher number of alive piglets at birth and the increased 

concentration of colostrum cis-aconitate resulted to be important variables affecting positively the 

number of weaned piglets (P < 0.0001 and P = 0.019, respectively), while dimethylamine (P = 

0.0002) and taurine (P = 0.013) entered as variables in the model for the number of dead piglets 

per litter at day 3. There was no influence of farrowing season and parity order on BWG, the 

number of weaned pigs or the number of dead piglets at day 3. The outcomes of the stepwise 

regression analysis were then tested with the GLM, and the results reported in Table 5. Both the 

higher average piglets’ weight at birth (P < 0.0001) and the colostrum acetate concentration (P = 

0.003) affected positively BWG (Table 5). The number of dead piglets at day 3 was mainly 

influenced by the concentration of dimethylamine (P = 0.001) and taurine (P = 0.027) in colostrum 

and partially by the litter size at birth (P < 0.1). In addition, the litter size at birth (P = 0.001) and a 

lower level of cis-aconitate in colostrum (P = 0.010) and the sow breed showed a trend (P = 0.021) 

were significantly associated with the number of weaned piglets. 

Discussion 

This is the first study based on 1H-NMR metabolomics approach describing in three pig breeds the 

colostrum metabolome profile, the factors underlying its composition and the associations 

between colostrum metabolites and litter's fitness during suckling. The three breeds showed 

different reproductive abilities in accordance with literature (Blasco et al., 1995; Sonderman and 

Luebbe, 2008), with L and LW sows exhibiting a higher average number of piglets alive at birth 

compared to D sows. These differences between breeds are also visible at the colostrum 

composition level (Simmen et al., 1990): considering the whole spectrum, the three breeds display 

clustering tendency, with the colostrum lactose amount explaining most of the colostrum 

composition differences between breeds. In particular, L and LW breed samples presented higher 

values of lactose. Lactose rate in cow milk is commonly associated with the health status of 

mammary gland, as higher lactose concentrations are positively correlated to healthier mammary 

glands and low amounts of this compound indicate the existence of intrammamary infections (Park 

et al., 2007). Considering the data available for the present work, it is not possible to support the 

same consideration in lactating sows, due to the absence of reference value for sow milk. 

Furthermore, differences on UDP-n-acetylglucosamine. UDP-glucose and UDP-galactose were 

observed between breeds. UDP-sugars are intermediate products in cellular protein glycosylation 

and in the synthesis of lactose and other sugars, and are known to have also autocrine/paracrine 
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signalling functions (Lazarowski and Harden, 2015). UDP-sugars are detected by the purinergic 

receptor P2Y14, a G Protein Coupled Receptor, found in many epithelia and in immune and 

inflammatory cells (Lazarowski and Harden, 2015). In weaned pigs, P2Y14 is expressed in the 

gastro-intestinal tract, particularly in the pyloric area (Colombo et al., 2014). We are not aware of 

the entity of the gastrointestinal expression of this receptor in piglets included in the present 

study; however it can be hypothesized that the presence of UDP-sugars may be involved in the 

activation/maturation of the neonate pig gastrointestinal immunity. The breed effect on colostrum 

composition is not exclusively confined to sugars profile, which for sure are the most abundant 

metabolites between the identified, but also to other compounds, including alanine, citrate, 

succinate, creatine phosphate, creatinine, dimethylamine, cis-aconitate, myo-inositol and o-

acetilcholine. Furthermore, the obtained colostrum spectra were affected also by the farrowing 

season: the samples gathered during winter and autumn exhibited differences in colostrum 

compositions respect to colostrum secreted during spring and summer. These differences could be 

ascribed to the environmental conditions affecting sows’ performances: compounds such as 

acetate, which showed to be more abundant during cold seasons, may reflect the nutritional state 

of sows during cold months. Acetate in sows, typically fed high fibre diets in gestation, is the main 

product of hindgut fermentations; acetate is also a precursor for mammary synthesis of fat milk. 

Thus the season effect may reflect a reduced presence of fibre in diet during the warmer seasons 

or a different mammary usage of acetate in favour of the more efficient use of glucose (Linzel et 

al., 1969). Indeed, during cold seasons, the higher feed intake makes available larger amounts of 

energy and nourishing compounds respect to the lower daily feed intake characterizing sows living 

at higher environmental temperatures (Gourdine et al., 2006). In addition, farrowing season 

affected also the creatine pathway: in particular, creatine and creatine-phosphate amounts during 

the period ranging from September to February were significantly lower than in spring and 

summer; on the contrary creatinine was higher during the same period. Creatine is an important 

nutrient for the newborn (Brosnan and Brosnan, 2007), thus variations in creatine content of 

colostrum may have nutritional relevance. In mice, it has been shown that milk creatine is 

extracted from the circulating plasma by the mammary gland, which conversely has little or no 

capacity to synthesize creatine (Lamarre et al., 2010). No research data is available for sow 

colostrum, but it can be assumed that also in this case variations in colostrum may reflect 

variations in blood creatine concentration. Here the variations in the ratio creatine and creatine-

phosphate to creatinine may have resulted from a higher degradation of the first two compounds 
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into creatinine, but there is no evidence that this reaction occurs in the mammary gland. The 

increasing amount of creatinine level is in general associated with a higher mobilization of stored 

proteins and indirectly with fat and lean levels in the body mass (Van Niekerk et al., 1963). A recent 

study of Decaluwé et al. (2014a) associated an increased amount of blood creatinine on 1st day of 

lactation with lower feeding levels in sows during late gestation period. However, we could not 

control feed intake in the days before farrowing and do not know if it changed with season. Thus 

further research is necessary to explain variations of creatine and related compounds in colostrum. 

Some of the identified compounds were associated with litter weight gain during the first three 

days of life and to piglets’ survival rates at day 3 and at weaning. In particular, we suppose that the 

positive effect of acetate on BWG was linked to the role of this compound in de novo synthesis of 

lipids and glucose (den Besten et al., 2013) and adipogenesis stimulation (Hong et al., 2005). 

Additionally, taurine colostrum concentration showed a positive correlation with piglets’ survival 

rate at three days of life. Taurine was already proven to play a critical role in neonatal 

development, including the development of central nervous system and other tissues (Bryson et 

al., 2001; Aerts and Van Assche, 2002). Due to the essential role of this compound in neonatal 

period, it can be easily understood why a higher concentration of taurine in sows’ colostrum 

exerted positive effects on piglets’ survival during first days of life, independently from sows’ 

breed. As regards the number of dead piglets at three days of life, this performance was associated 

with the concentration of dimethylamine secreted in colostrum. Dimethylamine is a biogenic 

amine, synthesised by bacterial action, known for its mutagenic, irritative and barrier-disrupting 

properties (Galli et al., 1993; Fluhr et al., 2005). The irritative effect of this compound can explain 

the significant negative association found in the present research between the colostrum 

dimethylamine amount and the piglets’ survival capacity. The observed increase in dimethylamine 

secretion could be a direct effect of the higher occurrence of bacteria fermentations in animal 

feeds (Juszkiewicz et al., 1980), then ingested by sows and secreted in colostrum and milk.  

Similarly to dimethylamine, also cis-aconitate was negatively associated to piglets’ survival capacity 

from birth to weaning. As cis-aconitate is an intermediate compound synthesized by several enteric 

bacteria, comprising Salmonella enterica (Lewis and Escalante-Semerena, 2006) and Escherichia 

coli (Shimizu, 2013), the increased amount of this tricarboxylic acid in colostrum may be a marker 

of the presence of pathogenic bacteria strains infecting maternal gut and mammary gland. 

Maternal microbiome is proved to affect newborn digestive tract, and pathogenic strains can easily 

pass from sow’s gut to piglets’ enteric tract. Thus, the increase of cis-aconitate in colostrum 
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secretion might be the first sign of gut dysbiosis, which may then affect also piglets’ microbiome 

and digestive tract homeostasis. 

In conclusion, this study demonstrates that colostrum metabolome is greatly affected by breed 

and, in particular, Duroc sows showed colostrum compositions unlike any other. This result agrees 

with the generally accepted view that the differences among Duroc and white coated pig breeds 

may originate from distinct genetic origins, and consequently suggests that further genetic studies 

may help explaining the variations found among breeds in colostrum compositions. From the 

observation of the results obtained it can be suggested that the different temperatures occurring 

during the year affect sows’ metabolism and, in turn, can also affect colostrum composition. 

Among the identified metabolites, acetate and taurine showed their positive effects on piglets’ 

performances and survival rate, while dimethylamine and cis-aconitate exerted a negative 

influence on new-borns capacity to survive. This research represents a preliminary step towards 

the knowledge of pig colostrum composition and it is one of the first studies focusing on the 

associations between different swine colostrum compositions and litter performances using the 

1H-NMR technique. Further investigations are needed to extend the identification of the different 

compounds in swine colostrum and to elucidate their effects on new-borns. Furthermore, the 

possible interaction between sows' feeding and microbiota in the modulation of colostrum 

metabolome deserves further investigations. 
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TABLES 

Table 1. Mean and standard deviation of the measured parameters for each breed and for the total population. 

  1 D  2 L 3 LW Total 

Number of sows 12 15 31 58 

Order of parturition 2.750 4.067 4.161 3.845 

Number of piglets born alive per litter     

Mean 8.917 12.600 11.903 11.466 

SD 2.275 1.724 2.256 2.494 

4Average LBW at birth, kg     

Mean 14.033 17.207 16.890 16.381 

SD 3.679 2.081 2.828 3.060 

Average piglet’s weight at birth, kg     

Mean 1.588 1.376 1.432 1.450 

SD 0.226 0.153 0.155 0.184 

Number of alive piglets per litter at 3 days     

Mean 8.250 12.133 10.871 10.655 

SD 1.865 1.767 2.291 2.453 

Number of dead piglets per litter at 3 
Days     

Mean 1.600 1.750 1.583 1.619 

SD 1.342 0.500 0.996 0.974 

4Average LBW at 3 days, kg      

Mean 16.400 21.167 19.758 19.428 

SD 3.993 3.059 4.264 4.211 

Average piglet’s weight at 3 days, kg     

Mean 2.001 1.761 1.826 1.846 

SD 0.275 0.240 0.213 0.244 

5BWG, kg     

Mean 3.085 4.453 4.103 3.983 

SD 0.864 1.461 1.771 1.598 

Number of weaned piglets      

Mean 7.333 11.133 10.032 9.759 

SD 1.875 1.552 2.316 2.423 

Incidence of diarrhoea      

Mean 3 1 4 8 
1 D stands for Duroc. 

2 L stands for Landrace. 

3 LW stands for Large White. 

4LBW stands for litter Body Weight. 

5 BWG stands for the average litter Body Weight Gain from birth to day 3. 
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Table 2. Assignment table of the identified metabolites present in the 1H-NMR spectra of colostrum at pH 7.420 
and considered in the C-dataset. Chemical shift values are referenced to TMSP proton signals at 0.00 ppm. 
Chemical shift values are referenced to TMSP proton signals at 0.00 ppm. Glycerol (3.568, 3.661 and 3.793 ppm has 
not been listed as it has not been included in the PC analysis). 

Assigned 
number 

 
1H chemical shift (ppm) a  Compound 

1  1.332 (d) Lactate 
2  1.486 (d) Alanine* 
3  1.923 (s) Acetate 
4  2.028 (s) N-Acetylglutamate* 
5  2.063 (s) N-Acetylglucosamine* 
6  2.089 (s) - 5.552(dd) - 5.967 (d) - 7.944 (d) - 8.287 (d) UDP-N-Acetylglucosamine 
7  2.147 (s) -3.222 (s) O-Acetylcholine 
8  2.408 (s) Succinate* 
9  2.539 (d) - 2.667 (d) Citrate 
10  2.720 (s) Dimethylamine 
11  3.039 (s) Creatine 
12  3.046 (s) Creatine phosphate 
13  3.050 (s) Creatinine 
14  3.119 (d) - 5.712 (m) cis-Aconitate 
15  3.204 (s) Choline 
16  3.231(s) - 4.330 (m) sn-Glycerophosphocholine 
17  3.272(t) - 3.532 (dd) - 4.073 (t) Myo-Inositol 
18  3.259 (t) - 3.428 (t) Taurine 
19  3.302 (t) -3.684:3.906 (m), 3.980 (d) 4.461 (d) - 4.679 

(d) - 5.243 (d) 
Lactose 

20  3.480 (s) - 4.142:4.278 (m) -5.607 (dd) -5.967 (m) -
7.940 (d) 

UDP-glucose 

21  3.935 (s) Glycolate 
22  4.142:4.278 (m) - 4.379 (m) - 5.664 (dd)- 5.990 (m) - 

7.942 - 7.995(d) 
UDP-Galactose 

23  5.917 (d) - 7.879 (d) Uridine 
24  8.406 (s) Formate 
25  4.423 (t) - 5.990 (m) - 8.102 (d) UMP 

a d, doublet; dd, doublet of doublets; m, multiplet; s, singlet; t, tripleTable 3. Effects of sow breed and season on 
identified colostrum metabolites. 
* These compounds were included in the C- dataset for their specific biological role. 
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Table 3. Effects of sow breed and season on identified colostrum metabolites 

Metabolite Breed1 SEM P-value Season2 SEM P-value 

 D L LW   1 2 3 4   
Acetate 9.57 11.17 9.90 0.91 0.673 13.59 7.55 5.95 13.77 0.89 <0.0001 
Lactate 5.38 6.70 8.88 1.85 0.456 4.93 10.18 8.71 4.13 1.81 0.137 
Alanine 1.77 2.20 2.44 0.17 0.004 1.65 2.50 2.51 1.88 0.17 0.004 
Citrate 209 301 257 13 <0.0001 246 286 265 228 12 0.006 
Succinate3 2.21 3.26 3.50 0.19 <0.0001 2.59 3.26 3.55 2.55 0.21 0.024 
Dimethylamine 2.86 4.44 4.51 0.49 0.029 2.30 5.19 5.39 2.85 0.48 0.0001 
Creatine 39.8 59.9 58.7 3.4 <0.0005 40.9 59.0 64.7 46.6 3.3 <0.0005 
Creatine Phosphate 3.40 7.99 8.01 0.88 0.003 1.90 8.50 10.78 4.69 0.86 <0.0001 
Creatinine 13.6 16.7 16.5 1.1 0.400 19.9 11.8 11.6 19.2 1.1 <0.0001 
Cis-Aconitate 1.41 1.93 1.74 0.14 0.030 1.10 2.14 2.28 1.26 0.14 <0.0001 
O-Acetylcholine 77.1 196.9 156.6 13.9 <0.0001 101.7 148.4 171.7 152.3 13.6 0.093 
sn-Glycerophosphocholine 446 543 414 38 0.018 430 457 507 477 37 0.816 
Choline 7.82 10.62 9.91 1.19 0.455 8.86 11.64 9.43 7.87 1.16 0.340 
N-Acetilglutamate 6.35 9.90 14.03 3.77 0.134 7.94 9.69 8.53 14.21 3.69 0.683 
N-Acetilglucosamine 10.9 15.4 11.7 1.6 0.072 10.6 14.0 13.8 12.3 1.6 0.621 
UDP-N-Acetilglucosamine 22.4 34.4 33.9 2.2 0.001 26.2 33.4 33.8 27.4 2.1 0.072 
Lactose 458 579 811 30 <0.0001 535 644 667 619 30 0.168 
Taurine 1.57 4.10 6.05 0.87 0.002 0.98 6.23 6.19 2.21 0.85 0.001 
Myo-Inositol 63.53 76.95 82.86 3.76 0.001 62.58 73.17 81.13 80.91 3.68 0.070 
UDP-Glucose 6.07 9.78 6.23 0.54 <0.0001 6.08 7.30 8.09 7.97 0.54 0.280 
Glycolate 28.1 39.8 45.8 2.4 <0.0001 28.4 41.8 45.9 35.6 2.3 0.001 
Uridine 3.14 3.72 3.23 0.38 0.551 3.05 3.55 3.49 3.37 0.38 0.936 
UDP-Galactose 32.6 74.0 42.5 4.0 <0.0001 39.3 54.2 61.4 44.0 3.9 0.006 
Formate 4.49 4.43 4.03 0.35 0.380 6.27 3.04 2.29 5.67 0.34 <0.0001 
UMP 13.30 24.20 21.60 1.70 0.001 21.82 16.04 16.84 24.08 1.91 0.009 

Mean of the identified metabolites are expressed as absolute area 

1 The Breed is assigned as D for Duroc, L for Landrace and LW for Large White. 

2 The seasons were assigned as follows: 1= if the parturition was included in the period between the 1st of December and the 28th of February; 2= between the 1st of March 
and the 31st of May; 3= between the 1st of June and the 31st of August; 4= between the 1st of September and the 30th of November. 

3Succinate is the only metabolite showing an effect of the parity order (P value = 0.039), in particular with a parity order less than 4 succinate has a mean of 2.77, while the 
same metabolite with a parity order more than or equal to 4 has a mean of 3.20, a SEM of 0.15. 



Chapter 7: Foodomics in the investigation of the animal metabolome 

210 

 

Table 4. Results of the stepwise regression analysis. 

Variables Coefficient SE coefficient F value P-value 

Model for BWG1 (R2 = 0.4286; C(p) = 0.8735) 

Intercept 0.715 0.533 1.79 0.186 
Acetate 0.10433 0.03348 9.71 0.0029 
Average piglet’s weight at 
birth 

0.00846 0.00164 26.63 <.0001 

Model for the number of weaned piglets (R2 = 0.4343; C(p) = 2.0849) 

Intercept 4.801 1.385 12.01 0.001 
Cis- Aconitate -0.90181 0.37157 5.89 0.0185 
The number of alive piglets 
at birth 

0.58395 0.09863 35.05 <.0001 

Model for the number of piglets dead per litter at day 3 (R2 = 0.2304; C(p) = 29.1881) 

Intercept -0.333 0.27 1.44 0.2352 
Dimethylamine 0.33082 0.08318 15.82 0.0002 
Taurine -0.11423 0.04432 6.64 0.0127 

1BWG stands for the litter Body Weight Gain from birth to day 3. 

Table 5. Results of the GLM analysis with the significant variables affecting litter body weight gain at day 3, the 
number of dead piglets at day 3 and the number of weaned pigs.  

Variables Coefficient SE  P-value 

GLM for BWG1 

Acetate2 0.104 0.033 0.003 
Average piglet’s weight at birth 0.008 0.002 <.0001 

GLM for Number of dead piglets at day 3 

Intercept -1.219 0.557 0.033 
Dimethylamine2 0.296 0.084 0.001 
Taurine2 -0.100 0.044 0.027 
Number of alive piglets at birth  0.084 0.046 0.074 

GLM for Number of weaned pigs 

Breed:  0.46 0.021 
LW3 9.92   
L4 10.59   
D5 8.31   
Cis-Aconitate2 -0.952 0.354 0.010 
Number of alive piglets at birth 0.413 0.111 0.001 

1BWG stands for litter Body Weight Gain from birth to day 3 of life. 

2Metabolites concentrations were considered in area arbitrary unit. 

3LW stands for Large White. 
 4L stands for Landrace. 

5D stands for Duroc 
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 7.2 Foodomics for the investigation of the pig metabolome 

DATA SOON TO BE PUBLISHED – Here only the NMR findings are reported 
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ABSTRACT 

Prophylactic oral and systemic antibiotics prevent necrotising enterocolitis (NEC) in premature 

neonates, which is a severe microbiome-involving gut disorder. It is hypothesised that 

prophylactic antibiotics can affect the metabolism of preterm neonates, reflected as change in 

the plasma and urinary metabolome. In the current study, plasma and urinary metabolomes of 

formula-fed preterm pigs, serving as a model for NEC, that received antibiotics immediately 

after birth for four days were profiled by LC-MS and 1H-NMR in parallel, and were compared 

with those of pigs that did not receive antibiotics. In total, 44 metabolites were detected with 

significantly differential abundance in plasma and/or urine by both technologies. In antibiotics-
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treated pigs, tryptophan metabolism is inclined towards the kynurenine pathway over the 

serotonin pathway shown by specific metabolites. Metabolites associated with the gut 

microbiome, including 3-phenyllactic acid, 4-hydroxyphenylacetic acid and phenylacetylglycine, 

all from phenylalanine, and three bile acids showed lower levels in AB pigs where the gut 

microbiome was extensively attenuated. The appearance of microbial metabolites in body fluids 

may serve as early signs of NEC, which is important for timely clinical interventions. Besides the 

evident NEC-preventing effect, longer-term effects of antibiotics on nutrient homeostasis in 

preterm neonates warrant further investigations. 

Keywords: antibiotics, metabolomics, necrotising enterocolitis, UPLC-MS, NMR, preterm pigs 

Introduction 

Necrotizing enterocolitis (NEC) is a very common disease occurring in pre-term newborns. Its 

causes and treatments are still currently discussed, though some risk factors have been proved. 

In effect, NEC is believed to be triggered by prematurity, firstly, type of nutrition (i.e. enteral) 

and gut microbiota [Schnabl et al., 2008]. Nowadays, many studies have in fact linked the 

microbiome as one of the main causes of NEC [Mai et al., 2011], though it is not proved to be 

one determined pathogen causing NEC alone, but more a generic bacterial overgrowth [Lee & 

Polin, 2003; Lin & Stoll, 2006]. This can be caused by many characteristics of a newborn 

intestine, such as weak immunological response, diet malabsorption, reduced gut motility and 

function; these factors can increase the immobility of gut contents and both things can induce a 

greater microbial fermentation, which will impact on the already weak mucosal epithelium of 

the infant intestines [Neu et al., 2005]. As a consequence, this barrier can be even more 

weakened by the growing bacterial population, causing a greater and spreading inflammation, 

which could results in other medical conditions [Neu & Walker, 2011]. In last four decades 

antibiotics have been used for the treatment of NEC [Bell et al., 1973]. Some doubts on their 

employment, though, still exist, since they might cause resistance and later intestinal diseases, 

while long-term effects are not known. Most studies have shown that employment of 

antibiotics for the treatment of NEC greatly reduces the disease incidence in premature and 

low-birth-weight infants [Bury & Tudehope, 2001; Downard et al., 2012]. Jensen and co-workers 

investigated the impact of the prophylaxis with three antibiotics on the health status and the 

incidence and pathogenesis of NEC in pre-term delivered piglets. The hypothesis of a positive 

impact of the broad-spectrum antibiotics was proven, since no treated piglet developed NEC, 
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whilst the contrary was experienced in the control group. In this study we investigated blood 

plasma and urine samples derived from the same piglets and applied untargeted metabolomics 

approach prior to investigating metabolic effects of the treatment on the piglets and to better 

understand the effect of the antibiotics.  

Materials and methods 

Experimental design 

Through caesarean section, twenty-four piglets (Landrace X Large White X Duroc) were 

delivered pre-term on day 105 of gestation from two healthy sows. Piglets were immediately 

transferred to thermally-regulated incubators with oxygen supply until respiration was stable. 

Then, they were fitted with umbilical and orogastric catheters and immunized with maternal 

plasma. All these procedures and further experimental details are described in a previously 

published work [Jensen et al., 2014] and were approved by the National Committee on Animal 

Experimentation in Denmark (protocol number 2004/561-910). Piglets were stratified in relation 

to birth weight and sex and divided into two groups: control and intervention. The intervention 

group received three oral and systemic broad-spectrum antibiotics: Ampicillin, Gentamycin and 

Metronidazole, commonly used for the treatment of NEC and/or sepsis in intensive care units 

for newborns. The antibiotics were given both orally and by intramuscular injection to ensure 

good systemic and intraluminal concentrations (Table 1). The treatment was given right after 

feeding with an oral bolus. Control pig received instead a corresponding quantity of saline 

solution. Pigs were checked for signs of discomfort or weakness and euthanized if necessary. 

Blood samples were taken 24h and 48h after the first feed after an in vivo absorption test with 

galactose, useful for the investigation of the galactose absorption capacity by the apical 

sodium/glucose cotransporter 1 [Jensen et al., 2014]. After five days, pigs given a bolus of 

lactulose and mannitol for in vivo intestinal permeability tests. Then, they were all euthanized 

and tissue and urine samples were collected [Jensen et al., 2014]. 

NMR sample preparation 

Urine samples were stored at room temperature for 20-30 minutes, then centrifuged at 6000 

rpm for 5-10 mins. 540 microliters were taken and inserted into 1.5 mL Eppendorf tubes and 60 

microliters of 7.4 pH phosphate buffer 1.5 M KH2PO4 in deuterated water with 0.1% internal 

reference trimethylsylilpropionic acid (TSP) were added and NaN3. Samples are then strongly 

mixed and ready for spectral acquisition. In total, 12 samples of urine were available: 7 controls 
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and 5 treated. EDTA Tubes from BD (Becton, Dickinson and Company) are used for containing 

500 microliters of plasma and 500 microliter of buffer B. 500 mL of buffer is so composed: 380 

mL of water, 0.4 g of TSP, 10.05 g of NA2HPO4*7H20, 5 mL 4% NaN3. The buffer is set at pH 7.4 

by addition of 1M solutions of either NaOH or HCl. The remaining volume to 400 mL is water, 

then 100 mL of deuterated water are added. Plasma samples are not shaken nor centrifuged 

not to form bubbles or foam, thus are ready for spectral acquisition. A total of 21 (11 controls 

and 10 treated) plasma samples were available. 

Table 1: Dosages, Reasons of Use and Treatment time for the three antibiotics employed. 

 
Antibiotic 

  Dosage, mg/kg 
Oral    Systemic    

 
Target Bacteria 

 
Treatment time 

Ampicillin 50      50 Gram + (-) Twice a day 
Gentamycin 2.5      2.5 Gram – (+), Aerobes, 

Mycoplasma 
Once a day 

Metronidazole 10      10 Anaerobes  

NMR acquisition 

Data Analysis 

12 urine and 21 plasma spectra were ready for data analysis after phase and baseline correction 

on Topspin (Bruker Topspin 3.5, Bruker BioSpin). The assignment of metabolites’ resonances 

was carried out through literature, web databases and the Chenomx software (Chenomx NMR 

Suite 8.2, Chenomx Inc.). Further data analysis was carried out on MatLab (MatLab R2014b 

8.4.0, MathWorks . The internal standard TSP was employed as a chemical shift reference in 

both cases. Spectral alignment was performed only in regions of interest where found 

necessary, through the employment of the icoshift algorithm [Savorani et al.,2010]. Solvent 

regions and uninteresting regions (water, urea, TSP) were removed, as well as signals from 

impurities. Samples were then normalized through the probabilistic quotient algorithm 

[Dieterle et al., 2006] and analysed by means of visual inspection and principal component 

analysis (PCA), applied both on the whole spectrum and on fixed intervals (iPCA). Pareto scaling 

was applied as a pre-processing tool before the calculation of the PCA models. After the first 

inspection, informative regions were selected for their discriminative power and analyzed 

through Analysis of Variance (ANOVA). 

Results and discussion 

Urine spectra 

Already by careful visual inspection, urine spectra show some peculiar markers of both the 



Chapter 7: Foodomics in the investigation of the animal metabolome 

218 

 

disease and the intervention. These signals were later investigated by statistical analysis. 

Nonetheless, the urine NMR spectra of anti-biotic treated piglets were dominated by the signals 

corresponding to mannitol, which was one of the major metabolite fed to piglets together with 

antibiotics. In addition, several signals of antibiotics including ampicillin and metronidazole 

were exclusively detected in treated piglets only (Fig. 1). The mannitol region was tendenciously 

higher in the antibiotics group (Fig. 2), as also found by LC-MS (data not shown). The piglets are 

fed with mannitol and lactulose 3-5 h prior to euthanasia in order to test for intestinal 

permeability. Lactulose/mannitol ratio is in fact an index of gut permeability: mannitol is a small 

molecule, thus index of small intestinal permeability, whilst lactulose, slightly bigger, is an index 

of colonic permeability [Camilleri et al., 2010]. Lactulose employs paracellular transport, whilst 

mannitol transcellular transport, though they are both absorbed passively and not metabolized. 

In patients with Chron’s disease or cirrhosis the L/M ratio is higher [Dastych et al., 2008], 

meaning that lactulose is more absorbed. The ratio has been used also to investigate the 

permeability in prenatal babies, to test whether the use of human milk and not formula was 

better [Taylor et al., 2009] and it was found that when babies were fed human milk, the ratio 

was lower. 

 

Fig. 1: Representative NOESY1D 1H NMR spectrum obtained on a piglet urine sample.  
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Fig. 2.: Mannitol signals recorded in urine NOESY1D NMR spectra. In red are the signals from piglets treated with 
antibiotics, with the average represented in purple, and in blue the spectra from control piglets, with the average 
represented in light blue. 

The ratio of L/M was found to be higher in rats with NEC than compared to healthy rats [Zani et 

al., 2010]. In this case, the level of mannitol appear generally higher in treated piglets: in fact, if 

the surface area is reduced, like in the case of NEC, the output of mannitol is reduced, thus its 

urinary concentration will decrease [Pearson et al., 1982]. Likewise, in this study it was not 

surprising that mannitol was the major metabolite discriminating the two groups of piglets 

(data not shown). It is worth mentioning that the level of mannitol measured in the urine of 

piglets by NMR and enzymatic assay depicted high correlation (R2=0.86), as shown in Figure 3. 

 

Fig. 3: Correlation between the mannitol measured by enzymatic assay and the mannitol seen through NMR 
spectroscopy in urine. 
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In order to investigate metabolic effects other than mannitol, PCA was perfomed on the pareto-

scaled NMR spectra after removal of the chemical shift regions that corrrespond to mannitol 

(Fig. 4). 

 

Fig. 4: PC1 vs PC1 scoreplot of the PCA model calculated for urine NOESY1D NMR spectra without the region 
containing mannitol signals. A separation is seen between control (green) and treated (red) samples. 

PC1 loadings of the newly calculated PCA model was mostly dominated by the signals 

corresponding to antibiotics including Ampicillin and Metronidazole. Interval PCA (iPCA) 

calculated on 100 consecutive regions of the entire NMR spectra for whole dataset confirmed 

these findings, and these regions were further inspected. A metabolite heatmap which 

represents correlation coefficients between iPCA based selected NMR spectral regions over 

samples showed positive and/or negative significant correlation of spectral regions. This 

enabled ready interpretation of spectral regions and interactions of identified biomarker 

metabolites. The results of this calculation are shown in Figure 5. 

It is clear how the signals from the antibiotics are highly correlated. Signals from ampicillin at 

1.44 ppm and 7.4-7.5 ppm are highly correlated, and also correlated with the signal at 0.6 ppm 

which is a penicilloic acid from ampicillin–also seen by LC-MS (data not shown)-, and the 

metronidazole signals at 2.5 ppm. Signals from ampicillin in the region between 5 and 5.5 ppm 

are also highly correlated (highlighted in red). When only the antibiotic treated piglets are 

selected (data not shown), the correlations are even stronger between the 0.6 ppm signal, 1.4 

ppm signal and 7.5 ppm signal, and the same occurs for the two regions between 5 and 5.5 

ppm.  
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Fig. 5: Metabolite heatmap for the whole spectral set, showing only the significant (p<0.05) r values. Signals highly 
correlated and important for discrimination between the two groups are shown, with the antibiotic group 
represented in red and the control group in blue. 

The antibiotic metabolites’ resonances have been assigned differently and variously in 

literature, but in our assessment the signals that can be defined are listed in Table 2, with some 

references. Signals from the third antibiotic, gentamycin, and its metabolites have not been 

found either in urine or in plasma spectra. This is due to the fact that this molecule is not 

metabolized and has a very fast wash-out time of 6 hours. For this reason, since samples have 

been drawn at least 12 hours later, it is clear how no sign of this metabolite can be found in the 

biofluid samples, as also seen by LC-MS (data not shown). 

Table 2: Chemical shifts and information on the antibiotic signals found in the spectra. 

Chemical shift (ppm) Multiplicity Molecule References 

0.57 s Ampicillin 
Penicilloic acids 

Shamsipur et al., 2002; 
Connor et al., 1994 

1.44 d Ampicillin (methyl alpha and 
beta) 

Tung et al., 2000 

2.52 s (shape of doublet due to 
metabolism) 

Metronidazole Allars et al., 1985 

4.96 d Ampicillin NMRDB 
5.35 d Ampicillin NMRDB 
5.5 d Ampicillin NMRDB 
7.4-7.5 m Ampicillin NMRDB 

These signals, and other informative regions, were tested through ANOVA to investigate where 



Chapter 7: Foodomics in the investigation of the animal metabolome 

222 

 

there was significant difference between the two groups. Other regions that showed significant 

differences between the two groups were a doublet at 4.2-4.4 ppm, which could arise from the 

resonance of some carbohydrate, and the region between 1.45 and 1.95 ppm, where the two 

groups display very different profiles. In this region, aminoacids such as lysine, leucine, 

glutamine, alanine, arginine and threonine are found. These aminoacids have been found to 

decrease with the occurrence of NEC in serum of pre-term infants [Becker et al., 2000]. The 

observed spectra tend to confirm this difference (Fig. 6). 

 

Fig. 6: Urine NOESY1D NMR spectra of the region between 1.45 and 1.95 ppm, displaying significant difference 
between the two groups due to the presence of very different spectral profile. Amino acid signals are in fact higher 
in treated samples (red), whilst two controls (blue) show signals from 2-aminoadipate. 

In addition, by visual inspection, it is possible to see that 1-methylnicotinamide is higher in the 

urine of the antibiotic group, whilst the control group showed no signal for this molecule. The 

LC-MS data have found differences in urinary nicotinamide (data not shown). The methylated 

metabolite can be found in urine. 

Plasma spectra 

Plasma NOESY1D spectra show very broad signals from lipids and proteins (Fig. 7). When 

analyzed through PCA, also in this case some separation was seen between the two groups 

(data not shown). To understand the regions responsible for this discrimination, iPCA was 

performed, together with visual inspection, and some regions were then investigated, also 

through ANOVA, to assess independent discriminative power of separate spectral regions. 

Again, the signals corresponding to antibiotics were found to be major discriminating variables. 

Signals at 2.52 and 8.07 ppm derived from metronidazole appeared to be significantly higher in 
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anti-biotic treated piglets. The ratio between these signals (Fig. 8) was calculated to further 

prove the metabolite assignment and corresponded to a 1:3.5 ratio between the singlet at 8.07 

ppm and at 2.5 ppm which corespond to H-4 and 2-CH3, respectively, that are in approximately 

a 1:3 ratio in metronidazole. 

 

Fig. 7: Plasma NOESY1D NMR spectrum with metabolites found from databases and literature. 

 

Fig. 8: Plasma NOESY1D NMR signals from metronidazole, appearing in antibiotic-treated samples (red) and not in 
control samples (blue) 
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Fig. 9: Scoreplot of PC1 vs PC2 for the plasma NOESY1D NMR signals of galactose at 5.25 ppm. Samples in green 
are controls and in blue are treated. 

Another signal that appeared different was a doublet at 5.25 ppm. As seen in Figure 9, 

separation can in fact be seen in this region when PCA is calculated on it. The region of the 

anomeric signal of either glucose or galactose, in fact, appears higher in the antibiotic cohort. 

Galactose was given to the pigs through an orogastric catheter 24 and 48 hours after the first 

fed to test for its absorption capacity by the apical Na+/glucose cotransporter. Blood test did 

not show statistically significant differences [Jensen et al., 2014]. The plasma here employed 

was collected at time of death, therefore should not come from this feeding, though it might 

arise from the formula fed to the pigs, containing lactose. For this signal, plasma spectra show 

some difference with a greater galactose/glucose absorption in the treated cohort. Again, the 

mannitol region also appears discriminative, with the treated samples having higher 

concentration of this metabolite, as seen in urine. Regions where the signals from lipids are 

found also appear to discriminate among the two groups: the antibiotic-treated cohort shows 

higher concentration in both cholesterol-related and lipid-related protons. As seen also by LC-

MS (data not shown), nicotinamide appears higher in treated piglets, its significance, though, 

lacks, being in very noisy regions of the spectra. Some signals, this time, appear just for control 

samples, though, due to regions in which they appear, they do not arise as statistically 

significant through ANOVA. Doublets from 4-phenylacetate appear just in the control samples, 

as also reported by the LC-MS results (data not shown). This metabolite of phenylalanine 
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derives from the gut microbiota and its lower levels might be related to the effect of the 

antibiotics on the bacterial population. The other metabolites from phenylalanine bacterial 

metabolism found in higher levels in control by LC-MS (data not shown) are not clearly visible in 

NMR spectra due to the fact that they are overruled by bigger signals, such as the ones from 

the antibiotics. Another signal appearing just for control samples is shown in Figure 10. 

 

Fig. 10: Plasma NOESY1D NMR signal appearing at 1.15 ppm only in control (blue) samples and not in treated (red) 
ones. 

A doublet at 1.15 ppm, in fact, clearly appears for control samples. The chemical shift might 

indicate that this resonance belongs to ß-hydroxybutyrate. Elevated plasma/serum levels of ß -

hydroxybutyrate have been linked to diseases such as colorectal cancer [Ni et al., 2014] or 

cirrhosis [Qi et al., 2012]. In addition, this molecule was also found to be more elevated in pre-

term piglets fed a carbohydrate formula that was more likely to have them develop NEC [Call et 

al., 2014]. Ketone bodies are generally mildly higher in newborns and they can be employed for 

brain and lung development [Yeh & Sheehan, 1985]. This signal was also observed by Brown 

and colleagues [Brown et al., 1989] in the urine of a baby that was born too small and had 

prenatal brain damage. In their paper the signal was though attributed to propilen-glycol 

assuming a contamination in the injection of an anticonvulsant. It might be the case that this 

metabolite is either coming from higher carbohydrate fermentation (which induces NEC) or is 

less employed in brain development, a condition also found to be correlated with NEC. 

Summary of NMR results 

To sum up, NMR spectroscopy was able to confirm some of the findings of LC-MS analysis (here 

not shown) and highlight other metabolic shifts related with both the antibiotic treatment or 

the presence of NEC. Nicotinamide was also linked to the treatment by NMR, being found as it 

is or methylated in both urine and plasma spectra. The same correspondence between the two 

methods was seen for plasma kynurenine, whilst glutamate was seen to be typical of control in 
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plasma samples by both techniques. Other metabolites were only spotted significantly different 

by NMR, such as aliphatic aminoacids for treatment and beta-hydroxybutyrate for control. The 

findings of both metabolomics approaches are summarized in the following Table 3. 

Table 3: Metabolites found to be discriminant between the two groups in either one or both of the metabolomics 
approaches. 

Discriminative metabolita Group with higher 
concentration 

Biofluid Technique 

3-Hydroxykynurenine AB urine; plasma LC-MS 

3-Phenyllactate C urine;plasma LC-MS 

4-Hydroxyphenylacetate C urine;plasma LC-MS 

5-Hydroxyindoleacetate C urine; plasma LC-MS 

Aliphatic aminoacids AB Urine NMR 

Ampicillin AB urine; plasma LC-MS; NMR (urine) 

ß-Hydroxybutyrate C Plasma NMR 

Cholate C Plasma LC-MS 

Galactose/Glucose AB Plasma NMR 

Glutamate C Plasma LC-MS; NMR 

Glycochenodeoxycholate C Plasma LC-MS 

Hydroxyphenylacetylglycine C Urine LC-MS 

Hyodeoxycholate/Taurodeoxycholate C Plasma LC-MS 

Hypoxanthine C Urine LC-MS 

Inosine C Urine LC-MS 

Kynurenine AB urine; plasma LC-MS; NMR (plasma - Not 
Significant) 

Lipids (=CH); VLDL; LDL; Cholesterol AB Plasma NMR 

Mannitol AB urine; plasma LC-MS; NMR  

Metronidazole AB urine;plasma LC-MS; NMR 

N-Acetylglutamate C Plasma LC-MS 

N-Acetylmethionine AB Plasma LC-MS 

Nicotinamide AB urine; plasma LC-MS; NMR (1-
methylnicotinamide in urine) 

N-Phenyl-L-Phenylalanine C Urine LC-MS 

Phenylacetylglycine C Urine LC-MS 

Pseudouridine C Urine LC-MS 

Pyroglutamate C Plasma LC-MS 

These results prove how the two metabolomics techniques can go hand in hand in this type of 

investigations, both convalidating and completing findings. In effect, LC-MS and NMR, due to 

their different characteristics –sensitivity for the former and simplicity and non-specificity for 

the latter- can help in the identification of many metabolic markers of different chemical 

natures, as was the case in this study. 
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CHAPTER 8: THE HUMAN METABOLOME 

The human metabolome is the set of metabolites in a human, more specifically in determined 

biofluids or tissues. The metabolome was defined as “the complete complement of all small 

molecule (<1500 Da) metabolites found in a specific cell, organ or organisim” [Wishart et al., 

2007]. The metabolome is a very useful tool for medical and biological sciences since it is 

directly linked to the physiological status of an individual. [Beecher, 2003]. In fact, the 

metabolome represents the final product of the chain reactions occurring biologically from 

genes to transcripts to proteins to finally metabolites, constituting together with the relative 

'omic' science, the four main blocks of system biology. For this reason, the biochemical 

knowledge that can be gained through the investigation of metabolomic profiles is of great 

dimensions. Many metabolomics studies started with diagnostic purposes, such as inborn 

errors, cancer, Chron's disease, etc. For many diseases it is now possible to identify specific 

biomarkers, though it is still of great interest how to specifically draw the line between a 

disease and healthy status, especially since many factors affect the metabolome. For this 

reason, most diagnostic metabolomics studies are carried out with subjects in a fasted state. 

[Krug et al., 2012] Though it would be more interesting to understand all the mechanisms 

involved in the characterization of the human metabolome and identify their possible 

interaction in the definition of the global health status. 

8.1 Urine 

Urination is the way our bodies eliminate hydrosoluble waste products. In effect, urine is the 

product of the extraction of kidneys of soluble wastes and excess water, sugars and other 

compounds from the bloodstream. This transparent and sterile biofluid will therefore consists 

mainly of urea – generated by the metabolism of aminoacids -, salts, creatinine, ammonia, 

organic acids, water-soluble toxins and pigments from the break-down of haemoglobin – i.e. 

urobilin, which gives the amber colour to urine. Despite being considered a waste product, the 

diagnostic value of urine is great and started from the ancient Egyptians. In fact, urine physical 

characteristics, starting from the colour, were considered a tool for disease diagnostics also 

during the Byzantine era and up to the Middle ages. Up to now, many assays done on urine are 

normally employed to define the health state, especially due to the fact that it a really 

accessible biofluid. In recent years, science has been more and more interested in the 

generation of the whole metabolic profile of urine, employing many different techniques, from 
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GC-MS to HPLC to NMR. It was demonstrated that up to 294 different metabolites can be 

identified in urine, though the quantification can be done to sligthly less than 100, being far 

more difficult. In addition to this number, many other metabolites were also found and 

quantified in specifically “targeted” studies or researches involving single metabolites. Up to 

now, the Urine Metabolome Database (UMDB: http://urinemetabolome.ca) contains 

information on approximately 3 thousand metabolites or metabolites species, all detected in 

human urine using various techniques and technologies. The majority are of exogenous origin 

(diet, medicines, exposure, etc.), many are endogenous and some have microbial origin. Most 

of these metabolites are hydrophilic molecules. In fact, urine mostly contains amino acids, 

carbohydrates and their derivatives and conjugates, and only very low concentration of lipids, 

though lipids and fatty acids contribute to many chemicals present in urine. Other molecules 

that are found in high concentration are, as stated, ammonia, urea, creatinine, hippuric acid and 

hydroxy acids with their derivatives. In effect, the most abundant metabolites in urine are urea, 

creatinine, hippurate and citrate (deriving from hydroxy acids). Some other metabolites might 

be found with concentrations spanning in great ranges and those are generally due to dietary 

intake. All the metabolites found belong to 230 different chemical classes – and 25 “super 

classes” - depicting the great chemical diversity of this biofluid. The differences between urine 

and other biofluids are many and the reasons why urine is generally preferrable are many. 

Saliva and cerebrospinal fluid (CSF) have far less compounds (5 to 10 times less) and chemical 

diversity (2 to 3 times lower). Serum is richer in lipids than urine and every compound found in 

urine can be also found in blood, being th urine metabolome a subset of the serum one. In spite 

of this, many compounds found in urine were not found in blood and this occurs because 

kidneys concentrate metabolites from blood, where they are below detection limits, into urine. 

In fact, some compounds may have 1000-fold concentration differences between these two 

biofluids. For all these reasons, urine is particularly useful for medical diagnostics and drug or 

diet monitoring, since kidneys will be able to concentrate specific metabolites correlated to 

diseases and to filter toxins and xenobiotics [Bouatra et al., 2013]. 

8.2 Plasma and serum  

Plasma is another commonly used matrix for both biological and clinical study. Plasma is one of 

the two components of blood, it represents the liquid carrier in which blood cells (platelets, 

erythrocytes, leukocytes) are suspended, accounting for 50-55% of blood volume [Psychogios et 

al., 2011]. To obtain plasma, blood is treated with an anticoagulant, such as heparin or EDTA, 
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then the sample is centrifuged and the non-cellular portion is removed or decanted [Yu et al., 

2011]. It is often analysed together with serum, though they each can be preferred in specific 

cases. Plasma, for example, works best when testing oral glucose tolerance in diabetic subjects 

[Yu et al., 2011]. Serum, instead, is the supernatant fluid obtain from blood when no 

anticoagulant is added. Serum has no clotting proteins and is less viscous than plasma. Serum 

and plasma are both aqueous solution (95% water approximately) and they are composed by 

many different substances, such as proteins and peptides (albumins, enzymes, hormones, 

lipoproteins, globulins, etc.), electrolyties, nutrients (amino acids, lipids and carbohydrates) and 

other molecules from waste or other origins [Psychogios et al., 2011]. For what concerns small 

molecules, it was demonstrated that most molecules present in plasma are the same as those in 

serum, though some differences could be seen, especially in their concentration [Liu et al., 

2010], which was generally higher in serum [Yu et al., 2011]. The main differences is found in 

the compounds related to clotting, which stimulates eicosanoid biosynthesis, thus related 

metabolites are generally lower in serum [Psychogios et al., 2011]. In addition, recent studies 

[Yu et al., 2011] have proved that plasma has a better reproducibility, possibly due to the fact 

that its collecting procedure it is easier, not requiring coagulation time, as plasma instead does. 

The importance of the analysis of blood is due to the fact that it acts as liquid carrier for all the 

metabolites discarded, secreted and exctreted by tissues and that altered state or lesions in 

organs and tissues will result in plasma and serum chemical alteration. For these reasons, blood 

serum and blood plasma are often used for clinical and diagnostic analysis, also due to the fact 

that it is a very accessible biofluid. Nowadays, many modern techniques such as HPLC or MS or 

NMR are employed for blood profiling. The Serum Metabolome Database (SMDB: 

http://www.serummetabolome.ca) now contains more than 4 thousand analytes found in 

serum and/or plasma and their relative informations (origin, concentration, etc.). Most of these 

molecules are hydrophobic or related to lipids, such as di- and tri-glycerides, fatty acids, 

phospholipids, steroids and their derivatives. In addition, amino acids, lactate, glycerol, glucose 

and other metabolic byproducts can be found. Generally the concentration of metabolites can 

vary in a range of +/- 50%, though some can reach even +/- 100% variation (e.g. Lactic acid, 

glycine, glucose), due to various effects like diet, gender, age, genetics or lifestyle. 

8.3 Faeces 

Another biofluid that is on the rise in metabolomics research is stool. In fact, due to the great 

interest in the interaction between the gut microbiota, the host and metabolism, the faecal 
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metabolome can be a great tool for the assessment of this sort of interaction. The microbiota 

found in the gut is demonstrated to have a huge influence in many the host's physiological 

functions, such as the regulation of the immune system or the response to pathogens and 

diseases [Smirnov et al., 2016]. Most of the studies carried out up to now were focused on rats 

and mice, though the same interactions should occur into human systems. Stool samples are 

thus the easier sample to collect and analyse for metabolomics analysis investigating 

microbiota-host interactions. Faecal microbiota is only a subset of the gut population, though it 

could help in the interpretation of metabolic patterns, together with genetics and protein 

expression. Faecal water will be able to give information on the gut microbial activity and also 

on the digestive processes, being a solution of the metabolites originating from diet and 

digestive biochemistry. A database of the human faecal metabolome is currently under 

construction (http://www.fecalmetabolome.ca/) and it is a subset of the human metabolome 

database. 

8.4 Research work overview 

As stated in Chapter 1, numerous factor impact on the human metabolome and in different 

measure. In this research work, at first a general investigation on the genetical and 

environmental factors mostly impacting on the metabolome, such as gender, was carried out 

(Chapter 8.5), together with the evaluation of the possible existance of disease-related markers 

(Chapter 8.7). Moreover, the search of dietary biomarkers was pursued, both in observational 

and intervention studies (Chapter 8.6). As mentioned in the first chapter, it is in fact 

fundamental for current nutritional and health studies to be able to identify the specific 

biomarkers of food consumption and diets. In addition, it is interesting to understand whether 

the adherence to a particular diet can help in the human capability of contrasting particular 

diseases (Chapter 8.7). This will help in the definition of the markers of wellness state and to 

better understand the shifts it undergoes caused by the various external and internal factors 

impacting on it. 

8.5 Foodomics For The Investigation Of The Human Urinary Metabolome – The CHANCE 

Project 

8.5.1 Impact of different factors on the human urinary metabolome 

After the assessment of the food fingerprint, it is necessary to understand the different dietary 

patterns in which the analysed food are consumed and the impact of these specific diets on the 

human body. As stated at the beginning of this chapter, though, it is fundamental to separate 
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the effect of the different factors impacting on the human metabolome and characterizing 

groups of subjects. In order to do this, it is of great help to have the availability of large sample 

cohorts, in order to have the greatest possible variation of conditions and peculiarities. Part of 

this research work was thus carried out on the spectral information collected throught the EU 

FP7 Study CHANCE (“Low cost technologies and traditional ingredients for the production of 

affordable, nutritionally correct foods improving health in population groups at risk of 

poverty”). The aim of the CHANCE project was to identify the relative existing nutritional 

deficiency and find nutritional strategies for the prevention of malnutrition in population 

groups at risk of poverty, through the development of affordable but nutritionally-rich food 

products. According to 2007 Eurostat statistics, there is a robust need to better understanding 

the existing nutritional barriers to healthy nutrition of 79 million EU-27 citizens considered “at-

risk-of-poverty” (ROP). There are different ways to describe this economical condition, though 

all these European subclusters and ethnic populations have in common low purchasing power, 

limited education and the highest risk of diet-related diseases due to sub-optimal nutrition. 

Being this a large population set, it is clear how this project could have a great impact. One of 

the objectives of CHANCE was to evaluate the actual impact of the assessed nutritional 

criticalities on the metabolic profile by using innovative methodologies based on multivariate 

statistical analysis of NMR spectra acquired on urine samples. A representative sample of 

volunteers was recruited and surveys on the eating habits and food intake were collected 

together with urine samples. Samples were collected in five recruitment centres and sent to 

two analytical laboratories for storage and processing according with European standard 

operative procedures (SOP). The volunteers belonged to the selected subpopulation that was 

considered mostly at-risk-of-poverty in the relative country. A number of volunteers considered 

affluents but within the same age and gender classes were considered, too, as a control 

population. Having such a complex and large dataset was thus a key advantage in this study, 

allowing to investigate all the underlying complex information contained in the metabolic 

profile of urine samples. In effect, different biometric and anthropometric characteristics of the 

selected subjects - gender, ethnicity, presence of diseases, lifestyle and typical diet, etc. - 

generate specific metabolic patterns and those factors could cover the important information 

researched in experimental studies. It is thus very interesting to understand which metabolic 

patterns and/or the metabolites are related to these peculiar attributes and to verify the 

existing literature on this topic. To do this, a metabolomics approach was employed, involving 
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the use of 1H-NMR spectroscopy and chemometric tools. This combination has been proven of 

great potential for this kind of investigation on human biofluids. In this case, the power of NMR 

spectroscopy combined with multivariate statistical tools is employed to assess which factors 

have the most effect in the metabolic profile of the analysed subjects and to find specific 

metabolic patterns for those factors. The pros of having a dataset this large were the possibility 

to not simply stick to the assessment of the eventual differences between ROP and affluents, 

but also to ivnestigate on many different characteristics impacting on the human metabolome, 

as mentioned above. In addition, the large amount of meta-data was also of incredible help in 

the investigation of the power and robustness of the dietary tools usually employed in this kind 

of investigation: food frequency questionnaires and 24 hour dietary recalls. The work done in 

the CHANCE project was therefore very useful for the determination of the best analytical 

protocols for the investigation on human diet, human metabolome and their relationship. 

8.5.2 Materials and Methods 

Five recruiting centers were selected to collect samples: Finland, Italy, Lithuania, Serbia and UK. 

In each center a different population was selected according to which population range was 

considered at risk of povery in that country, thus the selected populations were: 

 Finland: males and females > 65 years old 

 Italy: females from 25 to 65 years old 

 Lithuania: males and females from 25 to 65 years old 

 Serbia: males and females from 25 to 65 years old 

 UK: males and females > 65 years old 

In each center both ROP subjects and control (affluent, AFF) counterpart from the same age and 

gender subgroup were selected and the samples were thus as described in table 1. 

For each subject two urine samples were collected, together with informaiton on their 

anthropometric measures and physical activity. The nutritent intake and dietary patterns were 

assesd by means of two 24 hour dietary recalls and one food frequency questionnaire per 

subject. The urine samples were analysed by 1H-NMR spectroscopy. 

630 μl of urine sample were centrifuged to remove debris, then 540 μl of surnatant were placed 

in a clean eppendorf containing 60 μl of D2O-based phosphate buffer containing also tri-

methyl-silyl propionate (TSP) as internal standard and sodium azide (NaN3) as an antibacterial 

agent. A total of 450 μl of the mixture was transferred into 4.25-mm-outer-diameter NMR tubes 
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(for Bruker Match holder). 

Table 1: Number of ROP and AFF (control) samples for each recruiting center. 

Recruiting center N° ROP subjects N° AFF subjects 

Finland 74 163 

Italy 200 100 

Lithuania 146 103 

Serbia 200 100 

UK 161 43 

The 1H-NMR spectra were acquired using a Bruker 600 MHz spectrometer (Bruker BioSpin) 

operating at 600.13 MHz proton Larmor frequency and equipped with a 5 mm CPTCI 1H- 

13C/31P-2H cryo-probe including a z-axis gradient coil, an automatic tuning-matching (ATM) 

and an automatic sample changer. A PT 100 thermocouple provided temperature stabilization 

at the level of approximately 0.1 K for the sample. In order to obtain temperature equilibration 

(303.1 K), before measurement, samples were kept for at least 3 minutes inside the NMR 

probe-head. For each urine sample, a one-dimensional NMR spectrum was acquired with water 

peak suppression, using a standard pulse sequence (NOESYPRESAT; Bruker), with 64 free 

induction decays (FIDs), 64k data points, a spectral width of 12.019 Hz, an acquisition time of 

2.7 s, a relaxation delay of 4 s, and a mixing time of 100 ms. Free induction decays were 

multiplied by an exponential function. Data processing followed this procedure: 

 data cleaning: exclusion of non-informative NMR regions 

 data organization: uniformity of labels, sorting of data, use of class identifiers 

 pre-processing: signal alignment, 2-Norm normalization and binning (each bin = 10 

spectral points) 

 averaging: calculation of the average of the two existing time points per subject to avoid 

noise 

 scaling: mean centering and Pareto scaling 

 exploratory data analysis: removal of outliers (diabetic subjects, etc.) 

The final spectral matrix consisted of 1289 spectra of 5800 points. All data processing and data 

mining was carried out on the Matlab software (Mathworks). 

Results and discussion 

The analysis of the spectra consisted firstly in the assessment of any kind of grouping among 

samples. This was particularly useful since it is possible to prove information found in literature 
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having such a large data cohort. The first thing that was observed through simple spectral 

visualization and principal component analysis (PCA) was the presence of clear outliers. These 

outliers were characterized by specific signals that were easily assigned. 

Most of the cases found could be grouped in three types of outliers: 

 diabetic subjects, displaying signals from glucose 

 subjects using medications i.e. Paracetamol 

 subjects consuming alcohol, showing the ethanol signals 

This information was particularly useful for many reasons: firstly it proved that the information 

declared by the subject was not always accountable, since these subjects found to be outliers 

did not declare use of drugs, alcohol or the presence of diabetes. In addition, it proved the 

efficiency of the NMR technique and multivariate data analysis for the detection of molecules in 

urine. After the removal of these outliers, spectra were analysed in order to assess any possible 

gender bias. This was done, again, by means of PCA. A gender bias was clearly seen in the 

Finnish cohort, especially when considering PC1 and PC5 (Fig. 1). By inspection of the PCA 

loadings, it was possible to prove that female subjects were characterized by higher 

concentrations of citrate, hippurate and TMAO, whilst males showed higher concentration of 

creatinine. This was confirmed by literature [Psihogios et al., 2008], since citrate is believed to 

be regulated by sex hormones and creatinine is correlated with muscle mass [Kochhar et al., 

2006.]. Other clusterings that were visible were due to the recruitment center. Most of the 

variation was seen between Finland and UK clusters, especially when considered alone and 

without the influence on the PCA model of the other clusters (Fig. 2). 

In this case, separation was caused by hippuric acid. This separation can be generated by 

different factors: firstly, the geographical origin can cause some genetical differences among 

subjects, and this is also stressed by the fact that the British cohort was composed by a specific 

ethnicity (subjects from India, Pakistan or Bangladesh). Moreover, the difference can also be 

due to specific diets: hippurate is believed to increase in urine due to increased consumption of 

tea [Daykin et al., 2005; van Dorsten et al., 2006], fruit juices or wine [Jacobs et al., 2012] and 

other authors have associated it with food preservatives [Zuppi et al., 1997]. The main aim of 

the study, though, was to find differences between ROP and AFF subjects.  
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Fig. 1: PCA scoreplot of PC1 vs PC5 for the Finnish cohort. Female subjects are represented in black and male 
subjects in red. 

Fig. 2: PCA calculated only with the Finnish (black) and British (red) cohort. 

This was done firstly by simple PCA and the cohorts with less biases (i.e. Italian cohort – only 

female subjects) were considered to see whether removing other factors could show some 

separation among the two classes, though this was not the case. Interval Partial Least Square 

Discriminant Analysis was also perfomed, leaving one recruitment center out at the time as 

cross validation, to assess whether some signals could be responsible of some separation 

among the two classes, but no results were found. As a final option, median spectra for the two 
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classes were calculated and subtracted from each other using the formula: median ROP – 

median AFF. This was done to check whether some signals appeared to be very different 

between the two groups. The median and not the average spectrum was employed, in order to 

avoid outliers' biases. The spectral difference thus obtained was then investigated: the signals 

that seemed to be appearing most different between the two medians were analysed by PLS 

regression. These signals, though, appeared not to be informative of any possible difference 

between the two populations. 

Conclusions 

The CHANCE project allowed the investigation on a large cohort of metabolome samples with 

many different peculiarities. This allowed the investigation of some spectral characteristics of 

the human urine metabolome that were described in literature and were confirmed from this 

study: gender is one of the main factors influencing the human metabolome and ethnicity and 

diet can impact greatly on the spectral features and subject clustering, too. All of this proved 

that the human metabolome is a great source of information and that much more can be found 

after “peeling off” the layers of the overlapping bias of other factors such as the one described 

above. For this reason, some differences due to the economic status might be present in the 

spectrum, though it was not found in this preliminary study. Moreover, there might even be no 

real differentiation between the two selected classes since their general diet - and therefore its 

chronic effect on the metabolome - might, in the end, be more similar than expected and not as 

related to the economic status as thought. 

8.6 Foodomics for the search of food intake biomarkers 

The importance of food intake biomarkers in nutritional and health studies is nowadays fully 

recognized by the increasing number of related studies and international research projects and 

joint initiatives. One of the reason for the increasing interest in biomarkers is to obtain robust 

compliance markers, in order to simplify the interpretation of both observational and clinical 

studies [Esko et al., 2017]. Moreover, the identification of dietary biomarkers can help in the 

validation of measurements of diet quality and in the identification of specific metabolic 

pathways that it could influence. [Playdon et al., 2016] In addition, the role of food biomarkers 

is fundamental when there is no or little knowledge on food composition (i.e. Bioactive 

compounds and food contaminanta) and in recent researches correlating specific biomarkers 

with increased risk of diseases [Scalbert et al., 2014]. For all these reasons, it is necessary to 
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develop a foodomic approach capable of identifying specific food and diet biomarkers both in 

intervention cohorts and in observational studies in free-living population. In this research 

work, at first an attempt at the development of an algorithm for automatic biomarker 

identification was carried out on the CHANCE cohort (see section 8.6.1), then, thanks to the 

involvement in an acute intervention study, specific food biomarkers were searched (see 

section 8.6.2). The approach that is currently being developed and the biomarkers that were 

and will be found could later be applied to other observationals studies.  

8.6.1 The quest for dietary biomarkers in observational studies 

The CHANCE dataset mentioned in chapter 8.5 was employed for further research. Having such 

a large dataset at hand, it was in fact possible to further investigate the spectral and nutritional 

information collected, in order to outline an analytical pipeline capable of extracting 

information on food biomarkers from the analysis of both dietary records and metabolome 

spectra. After much trial and implemention, a specific algorithm, capable of extracting 

information on the dietary data and comparing this information with the signals composing the 

spectra, was developed in order to spot possible food intake biomarkers. The algorithm was 

developed on the software R and runs as described in Figure 3 below. Firstly, the algorithm 

makes sure that both the nutritional and food information from dietary questionnaires and the 

spectra are ordered in the same way and that subject names are coherent. After that, the 

algorithm starts analysing the information on the nutritional and dietary data, assessing the 

dimension of the subgroup of subjects declaring 0 consumption/intake for that food/nutrient. 

This is done in order to understand if there is a sufficiently big “zero intake” subgroup, 

otherwise the subgroup declaring the highest intake (fourth quartile) will be compared with the 

first quartile subgroup, ordered by intake. Having selected these two subgroups to be 

compared, the same subjects will be selected in the spectral matrix. In order to have a 

comparable measure of the two subgroups, the larger one will be redimensioned to match the 

size of the smaller one and the subjects will be randomly selected. After this, the mean, median 

and standard deviation spectra for each group will be calculated and the points matching the 

required threshold will be selected. In addition, a plot of the two subgroups spectra (mean +/- 

standard deviation) and of the selected thresholds in different spectral regions will be 

generated and saved, in order to be later inspected. This makes the analysis quite fast and easy, 

approachable for any kind of researcher. The problems faced, though, are mostly related to the 
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choice of subgroups and of threshold (as highlighted by the arrows in Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Algorithm developed for the automatic detection of food intake biomarkers. 

When employed in the CHANCE dataset, the algorithm did not perform perfectly and this can 

be ascribed to many factors: 

• firstly, as stated, the reported thresholds might not be optimal and should still be 

improved 

• the information reported in the dietary questionnaires is not always accurate, since 

subjects tend to forget or over/underestimate their intakes [Trimigno, 2013] 

• when nutrients are used to select subgroups a greater mistake can be included in the 

analysis since a lot of error is made when transforming the dietary information of food 

consumption into intake of nutrients [Trimigno, 2013] 
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• the signals reported to be biomarkers for specific foods might actually vary due to the 

intake of other products and/or their metabolism might depend on the individual subject. 

Future research will be carried out to implement and improve the algorithm and test it on other 

data matrices, where nutritional data is more robust. 

8.6.2 Search of food intake biomarkers in an intervention study 

As stated, the search of food intake biomarkers has given rise to many international 

collaborations and research projects. One of these is the Joint Programming Initiative called 

FoodBAll, which is still ongoing. FoodBAll stands for Food Biomarker Alliance and aims at 

identifying and quantifying specific food biomarkers in the human metabolome. This goal will 

aid the nutrition scientists in the assessment of human diets and their actual impact on the 

human body and in the development of tailor-made dietary guidelines. The main bullet-points 

that are and will be covered by the project are: 

 discovery of the food intake biomarkers 

 assessment of nutritional status biomarkers 

 classification and validation of the identified food biomarkers 

 correlate food biomarkers to health status and disease risk modulation 

In addition, the project aims at compiling various online databases and standard operating 

procedures (SOPs) that could be useful and employed in any other metabolomic assessment. 

My collaboration with the FoodBAll project consisted and consists in the analysis of specific 

foods and the human serum and urine of subjects that have consumed those products and 

controlled standard meals. In this way, the acute effect of the selected food items and the 

metabolic kinetics can be assessed in the different biofluids and the specific food biomarkers 

can be spotted and quantified. 

Materials and methods 

The samples analysed for now for the FoodBAll Project had the following study design: it was a 

randomized controlled cross-over study, including 12 subjects and with a maximum 20% drop-

out rate. Participants were healthy females and males from 18 to 40 years old and with a 

normal BMI (18.5<x<30 kg/m2). Eleven subjects completed the study. Subjects were 

randomized in order to consume a different food item at each time-point. Three were the food 

items considered: full fat pasteurized milk, Swiss Cheese and soy milk. For each intervention 

two run-in days were considered, during this period subjects had to avoid the analysed food 
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and products related and keep a food diary. In the last run-in day they had a standardized 

dinner and then had to fast. Then, during test day, the food product was given, then 

standardized lunch and dinner were served. During this day urine samples were collected at 

fasted state and in the intervals: 0-1h, 1-2h, 2-4h, 4-6h, 6-12h, 12-24h from the test meal. The 

wash out period then lasted from 96 hours to 8 weeks. After the wash out, the cycle described 

above started again with a different test product, until all subjects had consumed all three test 

meals. Urine samples were kept at 4°C between collection, then 1 mL aliquots were taken (10 

maximum), after centrifugation at 1800g for 10 mins. These aliquots were then stored at -80°C 

until NMR analysis. 630 μl of urine sample were centrifuged to remove debris, then 540 μl of 

surnatant were placed in a clean eppendorf containing 60 μl of D2O-based phosphate buffer 

containing also tri-methyl-silyl propionate (TSP) as internal standard and sodium azide (NaN3) as 

an antibacterial agent. A total of 450 μl of the mixture was transferred into 4.25-mm-outer-

diameter NMR tubes (for Bruker Match holder). The 1H-NMR spectra were acquired using a 

Bruker 600 MHz spectrometer (Bruker BioSpin) operating at 600.13 MHz proton Larmor 

frequency and equipped with a 5 mm CPTCI 1H- 13C/31P-2H cryo-probe including a z-axis 

gradient coil, an automatic tuning-matching (ATM) and an automatic sample changer. A PT 100 

thermocouple provided temperature stabilization at the level of approximately 0.1 K for the 

sample. In order to obtain temperature equilibration (303.1 K), before measurement, samples 

were kept for at least 3 minutes inside the NMR probe-head. For each urine sample, a one-

dimensional NMR spectrum was acquired with water peak suppression, using a standard pulse 

sequence (NOESYpresat; Bruker), with 64 free induction decays (FIDs), 64k data points, a 

spectral width of 12.019 Hz, an acquisition time of 2.7 s, a relaxation delay of 4 s, and a mixing 

time of 100 ms. Prior to Fourier transformation, each FID was apodized by Lorentzian line 

broadening of 1 Hz and the corresponding spectra were phase and baseline corrected manually 

using TopSpin (TopSpin 3.5, Bruker).  

The same software was used to export data in ASCII file format. Spectra were then imported 

into R software. Chemical shift referencing was performed by setting the TSP signal to 0.0 ppm. 

The spectral regions including only noise (the spectrum edges below 0.5 and above 10 ppm), 

the NMR signals which are strongly affected by the residual solvent peak of water (between 

4.95 and 4.7 ppm) and the urea signal (5.45-6.1 ppm) were removed prior to data analysis. 

Normalization was carried out using the PQN algorithm (Dieterle et al., 2006).  

The number of spectral data points was then reduced by a binning operation, choosing a bin 
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size of 100 points. Multivariate data analysis was then carried out on the reduced data matrix. 

Preliminary results 

Firstly, multilevel PLSDA was carried out on the dataset in order to select the variables (bins) 

mostly responsible for the separation between treatments (cut-off=0.5) and calculate PCA 

employing these bins. In this way a nice separation is achieved (Figure 4), though not many bins 

are selected in this way and it is difficult to define the variables mostly responsible for this 

grouping. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 4: PCA calculated on the variables selected by ML-PLSDA. Samples in black were collected after the subjects 
received milk as test-meal, in red during cheese intervention and in cyan during control (soy). 

The main differences observed in the PCA were ascribable at signals originating for the 

standardized meals (chicken and rice – data not shown -), therefore a new approach had to be 

followed in order to focus on the real kinetics of the test meal metabolism. For this reason, only 

four data points were selected: T0-1, T1-2, T2-4 and T4-6 and OPLSDA was carried out on the 

matrix comparing two food interventions at the time. This allowed to focus more on the 

metabolome differences caused by the single food items and eliminating noise and bias from 

other factors (i.e. gender, individual responses, etc.). To better understand the variables causing 

separation, the OPLSDA was carried out on a reduced data matrix composed by the integrals of 

identified metabolites or clear unidentified signals. This spectral matrix consisted therefore in 

44 variables. Autoscaling was performed before carrying out OPLSDA. The best separation was 

obtained in the comparison between milk and soy intervention. In this case, as expected, sugars 
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were mostly responsible for the discrimination between the two reported treatments (Fig. 5) 

 

 

 

 

 

 

 

Fig. 5: OPLS-DA loadings for the comparison of soy and milk treatments. The sugar signals are the one mainly 
characterizing the spectra of subjects who consumed milk as the test-meal. The signal which mainly described the 
milk treatment was the one related to galactose. This metabolite, in fact, is strictly correlated with milk 
consumption, since it derives from the metabolism of lactose, the main sugar in milk. 

In order to investigate better the kinetics of galactose metabolism, the integral of its signal is 

measured in the different time-points and compared between subjects and with the same 

region in spectra measured after the soy treatment. 

Fig. 6: Area of galactose for each subject during the different time-points (ordered) and for the two different 
treatments: soy in white and milk in black. 

As shown in Figure 6, for most subjects the kinetic shows an increase of the galactose 

concentration in the first hour after the meal, which then rapidly decrease and stabilize. It is 

interesting to observe how galactose kinetics and concentration are though highly variable 
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among the individual subjects, proving how even in a simple investigation such as this one, the 

individual factor can be of great impact and thus how that effect must always be kept in mind in 

metabolomics investigations. After this first investigation, for each subject, spectra from 

samples at the following time-points were summed, in order to mimick a 6 hours urine pool: T0-

1, T1-2, T2-4 and T4-6. Only samples with 4 time-points were kept, therefore obtaining a data-

set consisting of 10 spectra for milk and soy intervention and 7 spectra for the cheese 

intervention. This spectral matrix was then imported in MatLab (R2014b, MathWorks). 95 bins 

with significant signals were then selected manually after visual inspection of the spectra. These 

signals were then imported into R software again, where orthogonal partial least squares 

discriminant analysis (OPLSDA) was carried out through the “biocLite” package 

(https://www.bioconductor.org/). Treatment were compared 2 by 2 in order to be able to 

calculate OPLS-DA (Fig. 7).  

Fig. 7: OPLS-DA scoreplots for the three different comparisons: milk (A) vs soy (C), cheese (B) vs soy and milk vs 

cheese. 

Signals characterising most of the variance of the model were then selected: the loadings with 

greater values than the standard deviation were identified. These consisted in 60 variables 

(signals). These signals, most significant for the discrimination, were then analysed through 

univariate statistical analysis by means of Kruskal Wallis test. 30 metabolites were statistically 

different with p<0.05 and among these, 23 had a p value lower than 0.01. Four signals appeared 

to be biomarkers for cheese intake, fourteen for milk and twelve for soy. These are listed in 

Table 2. Biomarkers for milk intake mainly correspond to the typical sugars contained in milk: 

lactose and galactose. A slight trend for higher concentration after milk treatment can be seen 

also in dimethylamine and hippurate, the latter though seems significant only in one of its 

signals, probably since this chemical shifts overlaps with signals from lactose and galactose. 
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Therefore, these metabolites do not really qualify as specific milk biomarkers. Moreover, a 

signal which was assigned to galactonate appeared to be present only in milk-treated samples. 

This is an intermediate compound originating from galactose metabolism, thus this is why it 

only comes up during milk intervention.  

Table 2: list of discriminative signals for each product, with the corresponding p-value calculated with ANOVA and 
Kruskal-Wallis. * are two peaks from the same triplet, divided because the signal from succinate fell over the mid-
peak and altered the results for the whole signal. ** have a p-value < 0.01 

Chemical shift Multiplicity Molecule p-value Food 

1.22 ppm s Unassigned 0,041222316 Milk 

2.05-2.07 ppm - Glycine+Glutamine derivatives 0,044324702 Milk 

2.72 ppm s Dimethylamine 0,048483555 Milk 

3.36 ppm s Unassigned 0,044204254 Milk 

3.48-3.52 ppm - Galactose 0,001077383 ** Milk 

3.64-3.67 ppm - Lactose 0,001461257 ** Milk 

3.74-3.78 ppm - Galactose 0,002072213 ** Milk 

3.98 ppm d Hippurate 0,035156028 Milk 

4.28 ppm s Galactonate 0,000132142 ** Milk 

4.47 ppm d Lactose 0,000103439 ** Milk 

4.6 ppm d Galactose 0,000353543 ** Milk 

5.25 ppm d Lactose 0,024962944 Milk 

5.28 ppm d Galactose 5,21052E-05 ** Milk 

5.39 ppm s Allantoin 9,14346E-05 ** Milk 

1.06 ppm t Propionate 0,045377279 Cheese 

1.49 ppm d Alanine 0,003255039 ** Cheese 

2.39 ppm m Pyroglutamate* 0,00198528 ** Cheese 

2.42 ppm m Pyroglutamate* 0,001269751 ** Cheese 

2.48 ppm s Pyridoxine 0,000110658 ** Soy 

3.59 ppm s Unassigned 0,000193435 ** Soy 

4.44 ppm s Trigonelline 0,000100879 ** Soy 

6.56 ppm d+d Unassigned 8,78076E-05 ** Soy 

6.59 ppm s Trans-aconitate 0,008365213 ** Soy 

7.02 ppm s Unassigned 0,001000726 ** Soy 

7.03 ppm s Unassigned 0,000520769 ** Soy 

8.05 ppm t Trigonelline 8,4E-05 ** Soy 

8.17-8.22 ppm - Unassigned 0,000371796 ** Soy 

8.29 ppm s Unassigned 0,002891678 ** Soy 

8.84 ppm dd Trigonelline 0,000221678 ** Soy 

9.13 ppm s Trigonelline 0,006814776 ** Soy 
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In the region at 2.05-2.07 ppm where glycine and glutamine N-acetyl derivatives show signals, a 

particular singlet can be seen for some samples after milk-treatment. These metabolites could 

derive from the amino-acid metabolism and the reason why only some subjects show these 

higher concentration might be due to the employment of different metabolic pathways. The 

signal from allantoin at 5.39 ppm is also observed as a biomarker of milk intake. This metabolite 

originates from purine metabolism and is also found in milk (Gonda & Lindberg, 1997). A clear 

singlet is also visible after milk intake at 1.218 ppm. In this region signals from aliphatic 

molecules such as amino acids and fatty acids are observed. Therefore, this signals could most 

possibly belong to a molecule from one of these classes. For what concerns cheese intake, the 

main biomarkers found are propionate, alanine and pyroglutamic acid. Propionic acid was 

found in increased fecal concentration after cheese consumption by Zheng et al. (2015). The 

increased concentration of this SCFA might be due to a higher concentration of this metabolite 

in cheese and, moreover, to the effect of the gut microbiota (St-Onge et al., 2000). The greater 

concentration of alanine after cheese consumption might be due to the high level of this amino 

acid in Gruyere cheese. Pyroglutamic acid, instead, is a typical compound of cheese, especially 

ripened ones. The production of this metabolite is highly dependent on the whey starter 

microflora and not on milk (Mucchetti et al., 2000) and this is why it can be found as a cheese 

intake biomarker. The main biomarker found for soy intake is trigonelline. This metabolite is a 

typical compound accumulating in legumes and coffee seeds and is being studied for many 

possible beneficial effects, such as inhibition of the proliferation of cancer cells (Ashihara et al., 

2015). Pyridoxine is vitamin B6 and soy products are a good source of this metabolite, although 

sometimes soy-derived products show much lower concentrations in respect to soybeans. 

Anyhow, soybean and soy-products could represent a good source of vitamin B6 and this is why 

it was found that there could be a higher risk of B6-deficiency in non-vegetarians (Lebiedzińska 

et al., 2006). Trans-aconitate is another plant metabolite occurring in wheat and soybean 

(Yuhara et al., 2015), therefore this organic acid could be identified as a soy intake biomaker. 

Other signals found to be discriminative for soy consumption could not be assigned. The 

chemical shifts of these signals, though, hint at possible isoflavone-like molecules. Caligiani et 

al. (2010), characterized soybean extracts by 1H-NMR spectroscopy and observed how many 

signals from isoflavones were characterizing the aromatic region of the spectrum (6-8 ppm). 

Further investigation could prove that these signals belong to compounds deriving from 

isoflavone metabolism. When the selected signals are used to calculated a PCA on the samples, 
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a good discrimination is thus obtained, as shown in Figure 8. 

 

Fig. 8: PCA calculated on the 30 most discriminative signals. 

The metabolites found through both multivariate and univariate statistical analysis could 

therefore be good candidate biomarkers of food intake for the three selected products: milk, 

cheese and soy. 

Conclusions 

The search for food intake biomarkers is one of the main challenges in current nutritional and 

metabolomics studies. This research profiled two possible analytical pipelines that could be 

perfected and then employed in both intervention and observational studies. Firstly, the 

developed algorithm for the automatic detection of biomarkers of food consumption can be 

improved by a better definition of the employed threshold. This could be done by the 

application of the algorithm on more robust data. Moreover, the biomarkers that have been 

and will be discovered through the targeted approach applied in the FoodBAll project can be 

then looked for, more specifically, in larger cohorts also from observational studies, in order to 

obtain validation. 
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8.7 Foodomics for the definition of the health status 

A human being can be seen as a complex system, made by the genetic make-up, the lifestyle, 

the diet, the microbiome and, as a results, the physiology. This complex system defines how the 

single person responds to treatments and other external effects. For all this reasons, modern 

science has started to analyse more individuals than groups, employing each subject as his/her 

own control. Moreover, the knowledge that each specific disease can be derived from different 

pathway alterations, has made clear that the reduction of a disorder to a simple factor or 

marker cannot be employed anymore. Omics sciences have therefore come in use for the 

development of holistic and high-throughput approaches capable of understanding all the 

interactions between nutrient intakes, lifestyle, genetics, environmental factors and human 

physiology. Modern health science, therefore, is on the quest for the discovery of specific early 

on-set disease biomarkers. Traditionally, the molecoles associated to diseases were found at 

clinical end-points and thus not much helpful for early discovery. Nowadays, though, modern 

omics, especially metabolomics, are focused on the research of specific early alterations of 

patterns of metabolites that could hint at disease risk due to the related modification of 

metabolic pathways [Kaput, 2016]. It is thus fundamental to be able to define the specific 

health status of an individual and discover the shifts occurring when specific diseases (or risk of 

those) are involved. In order to do so, it is necessary to understand both the individual 

metabolome as the snap-shot of the health-status and to discover all the possible shifts that 

could occur in a population leading to an increased disease risk or, on the contrary, to a 

reduction of it and an improvement of the wellness state. In the future then, the few (chemical) 

analysis now employed in medicine will give place to the complex definition of the “metabolic 

signature”, capable of describing all the alterations from the state of wellness, i.e. type of 

disease occurring, stage of progression. This signature will therefore be a great tool for disease 

prediction, prognosis and diagnosis. Moreover, it will be possible to understand underlying 

disease mechanisms and stratify patients in relation to their different metabolic and molecular 

alteration and drug-response [Beger et al., 2016]. In this way, the old “treatment-failure” 

approach, based on different trials and follow-ups with different treatments until the wanted 

results was obtained, is substituted by a tailor-made medicine approach (Figure 9), where each 

patient is firstly described by its metabotype and peculiarities (clinical data, lifestyle 

information, etc.) and predictively assigned to a profile which should respond to a specific 
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treatment, reducing the chances of failure. 

Fig. 9: new personalized approach for treatment in medicine (adapted from Beger et al., 2006). 

In this research work, two studies were involved in the definition of the disease biomarkers for 

different chronic pathologies (leukemia and cancer), unfortunately nowadays widespread. In 

addition, the possibility of investigating the specific diet of the analysed subjects has paved the 

way to the later investigation of possible diet-disease interaction in recovery and, eventually, 

prevention. 

8.7.1 Foodomics for the search of disease specific biomarkers 

Materials and methods 

Samples of urine and serum from 73 acute myeloid leukemia (AML) and 127 healthy controls 

were collected as the first part of the study. For many patients samples were collected in 

duplicate, in order to avoid possible biases related to external factors such as daily diet or 

medication. Together with the biological samples, information on anthropological parameters, 

clinical data, lifestyle and diet were collected for each analyzed subject. 540 μL of sample (urine 

or serum) were adjusted with 60 μL of 1.5 M KH2PO4 potassium phosphate buffer (pH 7.4) in 

deuterium oxide (D2O) containing 0.1% TSP (3-TrimethylSilyl-Propanoic-2,2,3,3-d4 acid sodium 

salt) . The samples were then centrifuged for 10 minutes at 4° C and 14k rpm. 590 μL were then 

collected and transferred in a 5mM NMR tube. NMR spectra were recorded at 300 K on a 

Bruker US+ Avance III spectrometer operating at 600 MHz, equipped with a BBI-z probe and a B-

ACS 60 sampler for automation (Bruker BioSpin). Urine samples were acquired employing a 1D 

NOESY-presat pulse sequence, with 64 scans, whilst serum spectra were acquired using both a 

1D-NOESY-presat pulse sequence, with 4 scans and a CPMG sequence with 256 scans. Each 

spectrum was automatically processed adjusting phase and baseline with the command 
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apk0.noe using TopSpin version 3.0 (Bruker BioSpin) and applying a line broadening factor of 1 

Hz. The chemical shifts were internally referenced to the Trimethylsilyl propanoic acid (TSP, 

Cambridge Isotope Laboratories) at 0.00 ppm (part per million of frequency). After the Fourier 

Transformation (FT) and prior to multivariate analysis, data underwent pre-processing using the 

R 3.2.2 software (http://www.r-project.org/). Signal assignment was carried out by comparing 

their chemical shift, multiplicity and J-coupling values with literature [Wang et al., 2013] and by 

using Chenomx software (Chenomx Inc.). Spectral regions without consistent information, 

including peripheral regions, regions of the solvent signal and, in the case of urine, also the urea 

signal, were removed from the spectra. Urine spectra were then binned in order to reduce 

misalignments among signals, while serum spectra did not need this step. The last pre-

processing step regarded normalization through the Probabilistic Quotient (PQN) algorithm 

[Dieterle et al., 2006].  

Results and discussion 

After normalization, the duplicates from the same subject were compared, in order to check 

whether some major difference was presence. Moreover, to check for possible outliers, a first 

principal component analysis (PCA) was calculated. Some AML patients immediately resulted as 

peculiar: the spectra from these subjects were characterized by the presence of signals of a 

particular metabolite, not found in databases and libraries and probably belonging to a drug 

metabolite. These subjects were thus excluded from the following multivariate data analysis. 

Urine samples were then evaluated for potential spectral clustering due to gender, which was 

confirmed. For this reason, it was chosen to separate female samples from male samples and 

analyze them independently. This analysis revealed some differences, between AML (both in 

the female and male cohort) and control spectra (see Fig. 10). In particular, control samples 

showed higher intensities of the signals for citrate and hippurate. In serum samples, we 

confirmed the presence of a higher signal for 2-hydroxyglutarate (2HG) in some patients 

carrying mutated IDH2 (isocitrate dehydrogenase) [Wen et al., 2015] (Fig. 11).  
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Fig. 10: PCA scoreplot of female subjects calculated on urine NOESY1D NMR spectra, showing a separation 
between AML patients (black) and healthy controls (red). 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Region of the serum NMR CPMG spectra where the signal from 2-HG is found (arrow). In black are samples 
with wild-type gene, in red a IDH-1 mutant and in green IDH-2 mutants. It is visible how two IDH-2 mutant subjects 
show a higher signal intensity. 

Female and male serum samples were analyzed separately as well, in order to remove any 

potential gender-bias. PCA revealed differences between patients and control spectra, which 

were mainly due to increased lactate and glucose signals and lower alanine signals for males 

and mainly increased lactate concentration in females, compared with controls. The reported 

difference in glucose and alanine concentrations were also found in literature [Wang et al., 

2013]. 
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8.7.2 Foodomics for the investigation of the dietary changes in breast cancer patients 

The aim of this research was to investigate the possible link between dietary habits and the 

metabolic profile of a population of women affected by premature stage breast cancer with 

respect to a control cohort of healthy women. This study was a preliminary attempt to develop 

a protocol in light of a much bigger investigation done in collaboration with an important center 

for Cancer Research and Cure (IRST – IRCCS, Meldola (FC)). The following step in the research 

will be to evaluate the presence of clustering among subjects in relation to their prognosis and 

clinical information and to relate with dietary data. 

Materials and methods 

The pilot study recruited 16 subjects from 45 to 74 years old. All subjects were female and 

included 6 healthy controls and 6 patients. The study was approved by the Ethical Committee 

IRST IRCCS-AVR (CEIIAV). Patients were characterized by histological diagnosis of operable 

mammary carcinoma. They were all non-smokers, did not have any previous cancer and had no 

other important condition. Controls were recruited from the breast cancer screening program 

and were healthy non-smoker subjects with similar demographical characteristics to the 

patients (i.e. age). Anthropometric data were collected, together with dietary information (food 

frequency questionnaires and 24-hour dietary recall). Five urine and blood samples were 

collected from patients at fast and in the morning in the days -14, -7, -1, +14, +28 from the day 

of surgery. Controls had instead only one sample of urine and blood collected, again in the 

morning and fasted state. The 24-hour dietary recall (24HDR) was filled the day before 

sampling. 5 mL of blood and 5 mL of urine were centrifuged at 2500 rpm for 15 minutes. 2 

aliquots of serum of 2 mL and 1 aliquot of urine of 2 mL were then transferred in criovials and 

frozen at -80°C. 540 μL of sample (urine or plasma) were adjusted with 60 μL of 1.5 M KH2PO4 

potassium phosphate buffer (pH 7.4) in deuterium oxide (D2O) containing 0.1% TSP (3-

TrimethylSilyl-Propanoic-2,2,3,3-d4 acid sodium salt). The samples were then centrifuged for 10 

minutes at 4° C and 14k rpm. 590 μL were then collected and transferred in a 5mM NMR tube. 

NMR spectra were recorded at 300 K on a Bruker US+ Avance III spectrometer operating at 600 

MHz, equipped with a BBI-z probe and a B-ACS 60 sampler for automation (Bruker BioSpin). 

Urine samples were acquired employing a 1D-NOESY-presat pulse sequence, with 64 scans, 

whilst serum spectra were acquired using both a 1D-NOESY-presat pulse sequence, with 4 scans 

and a CPMG sequence with 256 scans. Each spectrum was automatically processed adjusting 
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phase and baseline with the command apk0.noe using TopSpin version 3.0 (Bruker BioSpin) and 

applying a line broadening factor of 1 Hz. Each spectrum was automatically processed adjusting 

phase and baseline with the command apk0.noe using TopSpin version 3.0 (Bruker BioSpin) and 

applying a line broadening factor of 1 Hz. The chemical shifts were internally referenced to the 

Trimethylsilyl propanoic acid (TSP, Cambridge Isotope Laboratories) at 0.00 ppm (part per 

million of frequency). After the Fourier Transformation (FT) and prior to multivariate analysis, 

data underwent pre-processing using the R 3.2.2 software (http://www.r-project.org/). Signal 

assignment was carried out by comparing their chemical shift, multiplicity and J-coupling values 

with literature and by using Chenomx software (Chenomx Inc.). Spectral peripheral regions, 

solvent signal and, in the case of urine, also the urea signal, were removed from the spectra. 

Spectra were then then normalization through the Probabilistic Quotient (PQN) algorithm 

[Dieterle et al., 2006] and reduced in dimension through binning (100 points width). 

The information collected from dietary recalls and food frequency questionnaires (FFQ) was 

reported in an Excel sheet as food dose (S/M/L) and frequency (per day/per week). The 

quantity for each dose of each food item was calculated using the Metadieta software (Meteda 

S.r.l.). The same software was employed for the calculation of nutritional values for 100 g of 

each food item. A tailor-made algorithm developed on Qbasic was then employed to elaborate 

all data in order to gain information on the daily intake of food and nutrients for each subjects, 

both from the FFQs and 24HDR. 

Results and discussion 

First analysis of NMR spectra was carried out through Principal Component Analysis (PCA), in 

order to detect possible outliers and clusterings. Immediately one sample resulted as outliers 

and, after removal of this one, a group of subjects was spotted as completely different from the 

other samples due to an abnormal high intesity of the signal for trimethylamine-N-oxide 

(TMAO) (data not shown). The removal of these outliers showed the presence of further 

outlying subjects, in this case due to the signals from mannitol, a molecule that is usually found 

in candies or chewing-gums [Lenz et al. 2004]. After the final removal of these outlying samples, 

a PCA without outliers was calculated. In the scoreplot of this PCA, though, no clear separation 

or clustering among samples is visible, neither due to the belonging to the patients or control 

groups nor to the sampling time-point. Anyhow, some patients show a clear distinction from 

patients, therefore to better investigate this possible difference and avoid a big influence of 
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inter-day variation, two approaches were selected. In the first one, the average PC scores for 

patients before and after surgery were calculated and re-plotted on the score-plot (Fig. 12). 

 

 

 

 

 

 

 

Fig. 12: Average scores for each patient before (black) and after (red) surgery. One subject (downward facing 
triangle) only has post-surgery average, since all the pre-surgery spectra were spotted as outliers. 

Different behaviours can be spotted: most subjects shift towards the left of the scoreplot, some 

also move towards low PC 2 levels, whilst others just move downwards. Two subjects, instead, 

move upwards, in contrast with all the other ones. A similar analysis was carried out 

considering the median spectra for pre and post-surgery spectra and the median spectrum for 

controls, since generally the median value is more robust than the average, especially when 

outliers are present. A PCA was then calculated on these median values (Fig. 13). 

 

 

 

 

 

 

 

Fig. 13: PCA calculated on the median spectra for controls (blue) and for each patient before (black) and after (red) 
surgery. One subject (downward facing triangle) only has post-surgery average, since all the pre-surgery spectra 
were spotted as outliers. 
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This PCA showed results extremely similar to the ones previously described (fig. 12). Controls 

seem to be on the lower-right side of the score-plot, the direction to which the two patients 

going in the opposite directions from all others move. Anyhow, it can not be affirmed that this 

simply means a return to a “normal” and healthy state. The metabolites mostly responsible for 

the movements along PC1 and PC2 are creatinine and hippurate, together with TMAO and 

citrate. Controls show higher concentrations for these metabolites. This information will have to 

be proved with a larger cohort and then, the reasons for these metabolic shifts will be more 

throroughly investigated. After this initial investigation on the NMR spectra, the dietary patterns 

that could be observed from the nutritional questionnaires were investigated. Modern nutrition 

is in fact now focused on the relation between these dietary patterns and the occurrance of 

specific chronic diseases. Dietary patterns in this cohort were thus obtained from the 

multivariate analysis of the dietary and nutritional information. At first, macro-categories of 

food were selected through recurring principal component analysis until all foods were 

grouped. The selected categories were: 

A: olive oil, oil, butter and mayonnaise 

B: cheese and nuts 

C: pulses, whole-grains and offal meat 

D: cereal-based foods (pizza, bread, egg-pasta, cake, etc.) 

E: fish and beef 

F: eggs, poultry, pork and seafood 

G: breakfast food 

H: potatoes, fries, pasta 

I: vegetables 

L: fruits 

M: red wine and beer 

N: milk 

O: jam, juice, sodas, caffeinated drinks 

These food groups will then be employed for the analysis of dietary patterns in the larger cohort 

of this project. Information about the intake of these macro-food categories will be summed up 

and subjects will be then clustered in relation to their specific consumptions. In this way it will 

be possible to assess whether there is a link between the metabolic behaviour and the dietary 

habits. 
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Conclusions 

The two studies here reported defined an initial approach into the definition of specific 

metabolomes related to different disease (leukemia or cancer) and the relation between the 

health state and nutrition. In the first study, metabolite biomarkers for leukemia were found 

and further study could also help in the stratification of AML patients in relation to other 

characteristics (i.e. Genomics). The continuation of the study on more sample could improve 

the characterization of AML through metabolomics. This could be of help in other research, 

since the definition of disease-specific metabolotypes could aid in the description of the human 

metabolome. The second study helped in the definition of an analytical pipeline with the scope 

of defining the metabolic state of cancer patients before and after surgery and later relate this 

information to dietary patterns found through the statistical analysis of the nutritional and 

dietary data. This pipeline will be employed in the larger sample cohort that will be available 

from this project, but could also be of use in other investigations of the same kind. 
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CHAPTER 9: CONCLUSIONS 

The research work carried out during this PhD was focused on the application of the foodomics 

approach in many different, though correlated, topics. Foodomics is a new omic science 

researching the relations between food and nutrition in order to allow tailor-made dietary 

recommendation and help in the understanding of the individual wellness state. 

Of course, in order to reach such knowledge, the starting point is the definition of food itself. In 

this research work, literature on the subject was investigated to define all the possible 

characteristics and factor affecting food quality and the foodomics platforms and technologies 

applied and applicable for this kind of investigation. Moreover, some of these factors and their 

influence on specific food parameters were investigated. It is in fact fundamental to understand 

how different farming and transforming techniques, such as organic cultivation or food 

enrichment with bioactive compounds impact on the final nutritional values of products. It is 

not always simple to define how specific factors alter the final content in nutrients of a food 

product, since transformation processes and storage can greatly influence this. This is why the 

storage behaviour of food products was investigated, in order to understand how the food 

matrix itself could protect bioactive molecules added in the food product. An analytical 

approach employing NMR spectroscopy was thus developed and could be applied in similar 

investigation. This approach will be further tested in more batches of the analysed enriched 

foods, in order to strengthen the algorithm and validate the obtained results. In the future, the 

developed algorithm can be employed on different food products, both traditional and novel, so 

that a greater understanding of the interaction between the food matrix and specific nutrients 

and non-nutrients during shelf-life can be gained. This is particularly useful for the knowledge 

on the real nutritional value of foods, which is of particular interest for enriched products, 

containing specific bioactive molecules with health benefits and which need to be able to carry 

out the desired function when consumed. For this reason, it is fundamental to know whether 

these molecules are protected during the shelf-life of the product and then released during 

digestion. A more thorough approach investigating the whole path from shelf-life matrix 

behavior to digestion will be employed in future studies, so that it is possible to follow the 

whole destiny of specific molecules of interest. 

In effect, even when a product is found to contain beneficial molecules and those can be 

protected during the product's shelf-life, their actual bioaccessibility and bioavailability can be 
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very different than that expected. This is why in vitro digestion studies are carried out. During 

this research work, many different food products (from simple bell peppers to cooked meat-

based meals) were investigated after in vitro digestion to assess whether the most important 

and beneficial molecules (such as amino acis) are actually more available for human use after 

specific modification in the original product.  

Further studies will be carried out to better understand the role of specific production and 

processing steps, such as cooking, in the final fate of the molecules of interest. It would be of 

particular use, in fact, to understand the relationship between all the different variables 

impacting on the production of a food item and the bioavailability of beneficial molecules 

through digestion, especially since nowadays many food companies are trying to claim greater 

digestibility for their products and are developing enriched food items. 

As stated, a thorough investigation of the whole route of a metabolite from the food to its 

metabolism by the human body and the microbiota would be the goal of foodomics.  

The next step for this foodomics goal, is thus the understanding of the human metabolome and 

all the different factors impacting on it. One small step towards this can be done using animal 

models, such as the pig. Pigs are believed to have a very similar in their metabolism to humans, 

therefore the research on their specific metabolome can be of great help for further human 

studies. Moreover, since many pig-derived food products exist, the study of the impact of 

nutrition or diseases on the pig metabolome is of great importance also for the food industry 

and for veterinary research. In this research work, two studies were carried out on pigs, 

investigating colostrum, urine and plasma. In this way the impact of diseases, drug-treatments 

and genetic was investigated. In addition, more knowledge on the molecular profiling of these 

biofluids was gained.  

Finally, the human metabolome was investigated. Single factors such as gender or geographical 

origin were found to greatly impact on the human metabolic profile. Moreover, a foodomic 

approach was defined in order to search for specific dietary and food intake biomarkers. This 

will be particularly helpful for nutritional and health studies where it is necessary to define the 

compliance of investigated subjects and understand possible relationships between diet and 

wellness state. In this sense, it is also necessary, thus, to understand how different diseases 

impact on the human metabolome, and this is why two studies with this goal were included in 

this research work.  

Forthcoming studies will continue these investigation, since more knowledge on the human 
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metabolome is still needed. The aspiration is to obtain a full view on the factors impacting on 

the metabolome and the derived patterns and to compile a related database, which will render 

more straightforward the identification of the causes of specific metabotypes and sample 

clustering in observational studies and the assessment of the metabolic alterations happening 

in analysed cohorts. 

To sum up, this research work helped in the profiling of a full foodomic approach from the food 

item to a tailor-made nutrition capable of helping subjects in prevention or recovery from 

diseases. The studies carried out have helped in the definition of specific and robust analytical 

pipelines and metabolomics standard operating procedures that can be of great help in future 

foodomics studies. Moreover, the great power of NMR spectroscopy was once again 

underlined. The capability of NMR spectroscopy of quickly picturing a great range of molecules 

with very little sample preparation and without destroying samples makes it possible to analyse 

easily many different samples. 
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ANNEX 1 – MATERIALS AND METHODS (SOPs) 

Equipment  

Laboratories supplies  
• Pipettes Standard – Gilson’s Pipetman® P (P10, P20, P100, P200, P1000, P5000 and P10000. Range of 

volumes from 5 μl to 10000 μl) with suitable tips (Diamond ® precision tip) 
• Eppendorf ® safe lock microcentrifuge tubes volumes 0.5, 1.5 and 2 ml 
• Bottle in polypropylene (PP) from 100-250-500 and 1000 ml 
• Laboratory ceramic mortar grinder with pestle 
• Laboratory glassware 
• Beakers, low form, with spout (50-250-500 ml) by Simax  
• Beute from 50 ml (SCHORR DURAN)  
• Cylinders from 50-1000 ml (PIREX) 
• Quartz cuvets from 3 ml (EXACTA) 
• Corning® Disposable Pasteur Pipettes, Bulk Pack, Non sterile (SIGMA ALDRICH®) 
• Graduated pipette from 5 to 20 ml (class A) 
• Inox steel Spatulas 
• Inox steel Scalpels  
• Syringe filter in cellulose with diameter 0.20 μm  
• Pipette controller 
• AMPOL NMR sample tuber for use up to 700 MHz NMR (203, round bottom) 

Safety and protection supplies  
• Safety Eyewear Glasses 
• Natural Latex Powdered and Powder – Free Exam Gloves 
• White lab coat  

Reagents  
• Trichloroacetic acid (CCl3COOH, 163.39 g/mol, TCA) 6.1 N, SIGMA ALDRICH 
• Potassium hydroxide (KOH, 56.11 g/mol), SIGMA ALDRICH 
• Sodium sulfate (Na2SO4, 142.04 g/mol ) granular anhydrous, SIGMA ALDRICH 
• Potasssium dihydrogen phospate (KH2PO4, 136.09 g/mol), PANREAC 
• 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt, ((CH3)3SiCD2CD2CO2Na, 127.27 g/mol TSP), 98 

atom % D, BRUKER 
• Potassium hydrogen phosphate anhydrous (K2HPO4, 174.18 g/mol), PANREAC  
• Hydrochloric Acid (HCl, 36.01 g/mol) 37% purity, SIGMA ALDRICH 
• Milli-Q demineralized water, SIGMA-ALDRICH  
• Deuterium oxide (D2O, 20.04 g/mol, 99.9% purity), BRUKER 
• Deuterated Chloroform (CHCl3, 99.96% purity) SIGMA ALDRICH  
• Pancreatin (Sigma-Aldrich, P7545) 
• Human salivary α-amylase (Sigma-Aldrich, 1031)  
• Porcine pepsin (Sigma -Aldrich, P7012)  
• Porcine trypsin (Sigma-Aldrich, T0303)  
• Bile (Sigma-Aldrich, P8631)  
• CaCl2(H2O)2 (Merck 2382)  
• NaOH (Merck 9141)  
• HCl (J. T. Baker 6081)  
• KCl (Merck 4936)  
• KH2PO4 (J. T. Baker 0240 ) 
• NaHCO3 (Merck 6329)  
• MgCl2(H2O)6 (Merck 5833)  
• (NH4)2CO3 (Sigma-Aldrich, 207861)  
• Pefabloc SC (4-(2-Aminoetyl)benenesulfonyl fluoride) (Fluka, Sigma-Aldrich, Ref: 76307)  
• Ultrapure type I water, generated by a Milli-Q system (referred in text as water) 
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Solutions – Solutions preparation 
• KOH (25% w/w): 25g KOH dissolved carefully and with stirring in 75 ml of distilled water 
• Trichloroacetic acid (7.5%): 7.5 g of TCA dissolved in 92.5 ml of distilled water 
• Solution HCl (1 M): 82.85 ml of HCl (37% or 12.07 M) dissolved in 917.15 ml of distilled water  
• 500 mM Pefabloc: 119.85 mg of Pefabloc weighted and diluted in 1 mL of Milli-Q water 
• 0.3M CaCl2(H2O)2: 2.205 g of CaCl2•2 H2O weighted and diluted in 50 mL of Milli-Q water 
• 0.5M KCl: 7.456 g of KCl weighted and diluted in 200 mL of Milli-Q water  
• 0.5M KH2PO4: 6.804 g of KH2PO4 weighted and diluted in 100 mL of Milli-Q water 
• 1M NaHCO3: 16.802 g of NaHCO3 weighted and diluted it in 200 mL of Milli-Q water 
• 2M NaCl: 23.378 g of NaCl weighted and diluted in 200 mL of Milli-Q water 
• 0.15M MgCl2(H2O)6: 1.525 g of MgCl2(H2O)6 weighted and diluted in 50 mL of Milli-Q water 
• 0.5M (NH4)2CO3 : 2.4025 g of (NH4)2CO3 weighted and diluted it in 50 mL of Milli-Q water 
• 1M NaOH and 1M HCl: employed for pH adjustment of stock solutions of simulated digestion fluids  

Buffer Solution  
• Phosphate Buffer, 0.1 M and at pH 7.00  

Instruments  
• Eletronic digital tecnica Balance (max 2200 g, d=0.01 g), SCALTEC (SBA 52)  
• Eletronic digital analytical Balance (max 220g, d=0.0001g), SCALTEC (SBA 31)  
• IKA ® ULTRA-TURRAX® homogenizer T18, basic, AC input 115 V  
• JENWAY Model 3310 pH Meter with glass bodied combination electrode swing arm electrode holder & 

ATC 
• Heating magnetic stirrer mod. ARE, VELP Scientifica® 
• Beckman Coulter TM Microfuge® 18 Microcentrifuge (max 14000 rpm adjustable in 500  

increments)  
• Spectrophotometer UV-Vis (UV-1601-Shimadzu) 
• FT-NMR Avance Bruker AvIII (600 MHz) spectrometer Ultra Shield Plus equipped with:  

- Electronic 3-channel RF consisting amplifiers from 100 - Watt 1H and broadband for X 300 Watt  
- Control unit gradients GCU  
- Control system of the temperature BVT3000  
- Probe 5 mm with Z grad 1H-13C-15N  
- Autosampler with 60 holders  
- Software Topspin 3.0  

Software  

NMR data processing  

  MESTREC 
MestRe-C (http://mestrelab.com) is a software suite designed for the processing, visualization and analysis 
of HR-NMR data. It can display and manipulate single or multiple spectra, allowing their analysis and 
interpretation. It can handle various spectral formats, from different instrument vendors and it is capable 
to recognize different data format and convert them into MestRe-C format in an automatic fashion. 

 TOPSPIN 
Topspin is an integrated software from Bruker (https://www.bruker.com/products/mr/nmr/nmr-
software/software/topspin/overview.html) employed both for the acquisition of NMR spectra through the 
Bruker Avance spectrometer and consequent spectral processing and analysis. The software allows the 
access to a great experimental library, containing both standard Bruker pulse sequences and user-defined 
experimental libraries. Through Topspin it is possible to set up many different experiments. Topspin also 
allows the import and export of NMR data and spectra in various formats. The software is particularly 
useful for spectral processing through steps like transforms (i.e. Fourier Transform), phase correction, 
baseline correction, peak-picking or signal integration. 

Chemometrics and data processing  
Multivariate statistical analysis was carried out employing various softwares, such as R, MatLab, or Latentix 
depending on the purpose of the analysis and the chosen statistical technique. 

 R 
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R (http://www.r-project.org) is a GNU project offering a free language and software for graphics and 
statistical computing. Through the R software it is possible to carry out a vast range of statistical analyses, 
such as classification or clustering, and graphical displays. It can effectively handle and storage data, 
operate with matrices and allows users to add further functions and implement statistical and graphical 
techniques. 

 MATLAB 
MatLab (Matrix Laboratory, http://www.mathworks.com) is a platform employing the so-called MatLab 
language, based on matrix operations. The software offers a great variety of toolboxes, allowing the 
performance of many algorithms and graphical displays. This computing environment is particularly 
useful, therefore, for the manipulation and plotting of data and for the creation of new algorithms and 
user interfaces, permitting the cross-link with programs written in languages such as Fortran, Java, Python, 
C or C++. 

 LATENTIX 
Latentix (http://www.latentix.com/) is a software built for the examination and plotting of raw data and 
data analysis through PCA or PLS. It allows a user-friendly variable selection and validation, together with 
data pre-processing tools and the possibility to export the generated analysed matrices and plots. 

Spectral assignment 

 CHENOMX 
Chenomx NMR Suite is a software for the identification and quantitation of metabolites in NMR spectra. 
The Chenomx software contains a vast reference library with hundreds of compound models, together 
with information about their pH sensitivity, line shapes, chemical shifts and width. In addition, Chenomx 
offers information about the presence of these compounds in biofluids, displaying compound cards with 
chemical, biological and clinical data. 

Main SOPs employed 

 Collection and storage of Urine samples (S.O.P.) 
A schematic work flow for the management of urine samples is shown in Figure 1. Urine will be collected 
only from donors who have freely given their informed consent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Work flow for the optimal processing and management of urine samples (from Bernini et al., 2011) 
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Health and safety warnings 

Due to the fact that it is often impossible to know what might be infectious, all specimens are treatedas infectious 
and handled according to “standard precautions”. Urine must be processed only within a level 2 containment 
laboratory and only by designated and trained staff. White coat, gloves, safety glasses and other individual 
protection devices must always be worn while collecting and handling samples. All the operations made by 
operator on the biological samples must be performed using a 4 microbiological safety cabinet. Working with liquid 
nitrogen and other chemical products is hazardous therefore all procedures must comply with safety rules and 
regulations. 

Recommendations for the subjects 

In order to avoid any alteration of the urine sample, the donor must fast overnight before morning pre-prandial 
collection. Thoroughly clean the genitals with normal saline, if possible. If not indicated in an explicit way, female 
subjects must not collect urine samples during menstruation. The urine must be collected in a labeled sterile 
container, after discarding the first urine flow. 

Equipment and Supplies needed 

 Sterile plastic cup with lid (of 50 ml or more, to be given to the donors) 

 Gauze pads 

 Soap and clean water (or normal saline) if possible 

 Microbiological safety cabinet 

 Sterile 50 ml tubes 

 Centrifuge with sealed buckets or sealed rotor 

 1 ml pipettor 

 Sterile tips for pipettor 

 Sterile cryovials (2 ml) to aliquot urine 

 Cryoboxes to store the aliquots 

 At least -20°C refrigerators 

Quality control 

The instruments must be checked, calibrated, cleaned and disinfected regularly according to the manufacturer 
recommendations. All controls must be registered. 

Specimen identification 

The donor’s specimen must be unambiguously identified at the time of collection. Specimens should be labeled 
and handled respecting patient privacy in accordance with regulations. Each specimen must be labeled with an 
identifier that links it to the donor unique identification number; this ensures traceability of the specimen and 
separation of personal and clinical data. 

Urine collection 

1) Subject must collect the first urine of the morning on empty stomach. 
2) The patient must receive clear instructions to discard urine for a few seconds and then to hold the cup in the 
urine stream for a few seconds to catch a midstream urine sample. This should decrease the risk of contamination 
from microorganisms living in the urethra; 
3) The subject must collect at least 15 ml of urine (for particular analytical demand this minimum value could be 
increased). To decrease the risk of contamination from skin microorganisms, the patient should be trained to avoid 
touching the inside or rim of the plastic cup with the skin of the hands, legs or external genitals. The cap must be 
firmly tightened when the patient has finished; 
4) For hospitalized or debilitated patients, it may be necessary to wash the external genitals with soapy water to 
reduce the risk of contamination. If soap and clean water are not available, the area may be rinsed with normal 
saline. The area must be dried thoroughly with gauze pads before collecting the urine; 
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5) Donors identity must be confirmed verbally by checking that name and signature are correct on the informed 
consent and that name, address and date of birth match those on the specimen accompanying sheet; 
6) The specimen receptacle must be labeled with a simple and self-explained 15 digits sample code e.g. 
XXX Y 00001 UR 001 A(B,C,..) , attributed as following: 
XXX identify the research project 
Y identify the recruitment center 
00001 identify the donor (e.g. donor No. 1) 
UR identify the sample type (in this case UR = urine) 
001 identify the sample given by the donor No. 1 on the collection date 
A, B, C, D, E,... identify the sample aliquot corresponding to a specific sample 
7) For each sample the donor is going to donate, he must fill the appropriate form concerning data 
about the diet the day before collection, and attach it to the urine sample; 
8) The urine sample can be stored at room temperature no longer than 3 hours. 
9) The personnel of the collection center takes the sample with respective form which must contain: identifier and 
anamnesis of donor; copy or reference of informed consent; date and time of collection and shipping; number and 
type of specimens; approximate temperature of transport; notes. 
10) The specimen must be kept refrigerated at 2-8°C maximum and must not be frozen prior to storage. Keeping 
the specimen refrigerated will decrease the risk of overgrowth of contaminating 
microorganisms. 
11) The specimen should be carried to the laboratory for aliquoting as soon as possible and certainly within 6 
hours from morning pre-prandial collection. When in transit, urine collections should be maintained refrigerated. 
Sample receptacles must be leak-proof and tightly sealed. The laboratory must be informed about arrival of the 
sample. 

Processing procedures 

1) Check that all specimens and respective documentation are present; if something is missing, contact collection 
center; in case of failure, discard the specimen according to safety rules and regulations. 
2) Data of each specimen must be registered in electronic and paper archive. 
3) The urine should be centrifuged for 5 minutes at 810 Å~ g prior aliquoting. Supernatant should be transferred in 
a new sterile tube and split at least into five aliquots (1.0 ml each), using the appropriate labeled cryovials; 
4) Samples must be stored at -80°C. If it is possible, for long term storage is better to keep the samples in liquid 
nitrogen or liquid nitrogen vapor. 
5) Check that all the data regarding the sample (including processing procedures) and the subject have been 
collected and registered in an electronic database. 

Transportation 

Transport must be performed following bio-safety guidelines. 
The specimens should be enclosed a sheet containing: number and type of aliquots with their uniqueidentification 
codes, anamnesis of donor; date and details of production; date of shipping; temperature of transport; notes; 
instructions for opening the packaging and the sample receptacle; negative results of microbiological tests (if 
available); eventually, presence of cryogenic gas. Special handling requirements should be provided to couriers 
responsible for the transport of the specimens. 

Transport of frozen samples 

It is critical to maintain the cold chain all the times during transport, storage and delivery. The tubes must be 
transported upright and secured in a leak-proof secondary packaging. Dry ice shall be placed around the secondary 
packaging or alternatively in an overpack with one or more complete packaging. 
The external container must bear: the name, phone number and address of the recipient; the person to contact in 
case of problems; the inscriptions “biological substance category B” in letters at least 6 mm high, “handle with 
care”; the diamond-shaped mark (50 mm by 50 mm) reporting inside the UN3373; transport indications; 
eventually, presence of cryogenic gas. 
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Sample handling 

Equipment and Supplies needed 

 Microbiological safety cabinet 

 Centrifuge with sealed buckets or sealed rotor 

 1 ml and 200 ul pipettor 

 Sterile eppendorf 

 Sterile H (2 ml) to aliquot urine 

 NMR tubes 

Preparation of solvents 

Reagents 
• KH2PO4 (sodium dihydrogen phosphate) Mw = 119.98 
• NaN3 (sodium azide) Mw = 65.01 
• TSP (sodium 3-trimethylsilyl [2,2,3,3 2H4] propionate) Mw = 172.27 
• H2O (HPLC-grade or MilliQ water) 
• D2O (deuterium oxide) 
• Concentrated KOH (around 20 M) 

Solution 1: Buffer for samples (100 mL 0.3 M phosphate buffer). 
a) 1.5M KH2PO4/D2O, pH 7.4 (with KOD/D2O) 
b) 2mM NaN3. 
c) 0.1% TSP (=3-(trimethyl-silyl)propionic acid-d4, Aldrich 269913) 
first step: dissolve 10.2g KH2PO4 in 40ml d2O 
second step: dissolve 50mg TSP in 3-5ml d2O 
third step: mix both solution very well (ultra sonic) 
fourth step: adjust pH to 7.4 with KOH-tablets or strong KOD-solution (KOH-tablets in D2O) 
The buffer dissolves completely at pH >5 
fifth step: fill it up to 50ml and mix very well 
Add 10% of this buffer to the urine sample, mix very well 

Sample preparation 

The sample preparation procedure is described using relative measures in order to make it more general. Adjust 
these volumes to the NMR probe used. 
1. Frozen samples are defrosted at room temperature for 30 min. After thawing the sample preparation procedure 
has to be completed within 2 hours. The samples have to be gently shaken before use. 
2. Centrifuge 630 μL of urine at 14000 RCF (Relative centrifugal force) for 5 min, in order to eliminate the residual 
cells. 
3. Add 540 μL of the supernatant to 60 μL of potassium phosphate buffer (see Section 2.4.2). Mix by inversion or 
gentle vortex stirring. 
4. Put 540 μL of the mixture into a 4.25 mm disposable NMR tube. Store at 4°C until ready for analysis. 
3. NMR Analysis and Data storage 

Sample handling 

• Before placing new samples, remove any other samples from previous run, in order to avoid 
• mistakes 
• Place the NMR in the autosampler 
• Carefully take note of the position in which the tubes are placed 
Remember to always randomize samples in order to not introduce spurious effects: if the analysis contemplate 
comparison between control and treated groups, be sure to not acquire all samples from one group first and then 
(for example after several days and/or with a new stock of buffer) all the samples form the other groups. In a such 
situations, it is hard to understand whether or not some differences are due to the metabolic state or to different 
operative conditions. 



Annex 1: Materials and Methods (SOPs) 

270 

 

Preacquisition procedures 

Temperature 
• Calibrate temperature using e.g., a standard methanol sample (optional) 
• Perform experiments at constant temperature, 300 K. Edit temperatures using the command 
• [edte] 
• Equilibrate 
• Load the sample into the probe and allow the sample to equilibrate in the spectrometer (4-5 min in tube 

probes) 
• Tune and match ([wobb]) 
• Automatically tune and match every biofluid sample using the command [atma] 
• Control tuning and matching using the command [wobb] 
• If tune and match is not sufficiently good, tune and match a representative sample (QC sample or first 

biofluid sample) manually using the command [atmm] 

Shimming 

 Run the ‘topshim gui’ 

 Within the user interface: TUNE Z only, then TUNE X only, then TUNE Y only 

 Pulse length([p1, pl1]) 

 Determine 90° pulse length for a representative sample using the automatic ‘pulsecal’ routine. 

 Receiver gain ([rg]) 

 Receiver gain is not adjusted for each sample. It is fixed to a value of 36. 

 RF carrier frequency offset for water ([O1]) 

 Determine the offset of the water signal for a representative sample (e.g., QC sample or the first biofluid 
sample) 

 This parameter is used for the whole data set. Use the ‘gs’ command to optimize the O1. A fine 

 Tuning of o1 can be also done using an iterative optimization procedure described below: 

 Run a simple zg with 1 scan on the first sample 

 Transform the FID (fp) 

 Phase all signal right from the residual water peak, do not care about water phase 

 Increase or decrease the O1 depending on the shape of the water signal: if the water signal has a negative 
dip on the left side that means that O1 is too far left, i.e. too big. Similarly, if the negative dip is on the 
right hand side O1 is too small. Change accordingly the O1 value and repeat the above procedure until the 
O1 is optimized 

Transfer 

 Transfer all settings to the experiments to be acquired 
Automation setup: 
• Start ICON-NMR by using the command [iconnmr]. Choose [automation] 
• Prepare the firs data set 
• Give a name to the data set corresponding to the sample’s name 
• Chose the experiments and the solvent parameters 
• Set a title reporting the project, the date, the temperature and the nature of sample. Use the title field to 

add any significant information, such as the sample code 
• Use the “copy” command to create the data sets for all the other samples to be acquired 
• Double check everything and start the run 

 Do not forsake your samples during the acquisition, especially in case of long run: from time to time come 
back to the instrument and check if everything is working fine 

NMR acquisition 
Acquire all NMR spectra using the following parameters 
• The 1D NOESY-presat pulse sequence: [-RD-90°-t-90°-tm-90-ACQ] 
• Create a new data set with edt 
• Read the parameter set rpa 
• Set the correct solvent eda solvent (H2O + D20) 
• eda|Pulprog = noesygppr1d.comp (double presaturation 1D NOESY version) 
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• eda|TD = 64k (Number of time domain data point) 
• eda|SW = 20 ppm (Spectral width) 
• eda|NS = 64 (Number of scans) 
• eda|DS = 4 (Dummy scans) 
• eda|AQ = 2.72 s (Acquisition time) 
• eda|D "array" [D1] = 4.0 s (Relaxation delay - RD) 
• eda|D "array" [D8] = 100 ms (Mixing time (tm) ) (presaturation quality not highly influenced by this value) 
• eda|D "array" [D16] = 200 μs) 
• Total acquisition time ~ 4-5 min for 64 scans 

NMR processing 
Processing of 600 MHz 1H NMR spectra 
• Reference the spectra to TSP at δ = 0.00 ppm 
• edp|LB = 1 Hz (Line broadening) 
• edp|SI = 128k (double the number of Fourier domain points (TD)) 
• A target line width of not more than 0.5 Hz for the TSP peak at half height is desirable 
• Automatically phase the spectra using the command [apk]. If the phasing is not sufficiently good, phase 

the spectra manually 
• Baseline correction using the command [abs] 

NMR data storage 
• Before storing acquired data, do a visual inspection of the spectra in order to detect any macroscopic 

problem in the dataset. 
• FID (Free Induction Decay) must be stored as it is. 
• Raw NMR data should be stored in ASCII format prior to normalization (vertical alignment) and alignment 

(horizontal alignment) and solvent removal. 
• The spectral region containing the water peak and urea must be discarded (e.g. 6-4.5 ppm). 
Before any statistical analysis, spectra must be normalized in order to compensate for different dilution factors. 
The most used scaling techniques are total area scaling, which scales all spectra by the total sum of the intensities, 
assumes that the total concentration of metabolites in a sample is more or less constant, or probabilistic quotient 
normalization (PQN), which calculates the most probable normalization coefficients.  

 

Troubleshooting 

Check carefully the quality of your spectra. Large peaks width or difficulties in shimming can be due to the 
presence of air micro-bubbles in the samples. In this case a good solution is to vigorously spin the tube with an 
hand centrifuge immediately before the analysis. Imidazole proton peaks of histidine are good indicators of the pH 
of urine samples. If too large misalignments of these pecks are found, some error in the buffer preparation is likely. 
If the shift between samples due to pH differences is a problem, the application of a bucketing step with size 0.02 
to 0.04 ppm can be a solution. If some spectra show extremely higher peaks than the average, it is better to 
exclude that peaks from the normalization algorithm. 

Collection and storage of serum samples (S.O.P.) 

A schematic work flow for the management of serum samples is depicted in Figure 2. Serum will be collected only 
from donors who have freely given their informed consent. 
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Fig. 2: Work flow for the optimal processing and management of serum samples (from Bernini et al.,2011)  

Health and safety warnings 

Due to the fact that it is often impossible to know what might be infectious, all specimens are treated as infectious 
and handled according to “standard precautions”. Serum must be processed only within a level 2 containment 
laboratory and only by designated and trained staff. White coat, gloves, safety glasses and other individual 
protection devices must always be worn while collecting and handling samples. All the operations made by 
operator on the biological samples must be performed using a microbiological safety cabinet. Working with liquid 
nitrogen and other chemical products is hazardous therefore all procedures must comply with safety rules and 
regulations. 

Recommendations for the subjects 

In order to avoid any unwanted source of variation in the serum sample, the donor must observe the 
recommendation for the inclusion in the study and his compliance to the whole experimental protocol must be 
checked by appropriate investigation. The serum must be collected in sterile conditions. 
Equipment and Supplies needed 
• Refrigerated centrifuge with sealed buckets or sealed rotor 
• 1 ml pipettor 
• Sterile tips for pipettor 
• Sterile cryovials (2 ml) to aliquot serum 
• Cryoboxes to store the aliquots 
• At least -20°C refrigerators, better -80°C Refrigerators 
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Quality control 

The instruments must be checked, calibrated, cleaned and disinfected regularly according to the manufacturer 
recommendations. All controls must be registered. 
Specimen identification 
The donor’s specimen must be unambiguously identified at the time of collection. Specimens should be labelled 
and handled respecting patient privacy in accordance with regulations. Each specimen must be labelled with an 
identifier that links it to the donor unique identification number; this ensures traceability of the specimen and 
separation of personal and clinical data. 

Serum collection 

• Donors identity must be confirmed verbally by checking that name and signature are correct on the 
informed consent and that name, address and date of birth match those on the specimen accompanying 
sheet 

• Blood samples are withdrawn from healthy donors using different SSTTM II Advance BD Vacutainers®, or 
equivalent, for serum isolation 

• At least 2 aliquots of 5 ml serum must be collected for each subject 
• The vacutainer must be labelled with a simple and self-explained sample code, identifying the research 

project, the recruitment centre, the donor, the sample given by the donor on the collection time and date, 
the sample aliquot 

• For each sample the donor is going to donate, he must fill the appropriate form concerning data about the 
diet the day before collection, and attach it to the serum sample 

• The serum sample is incubated for clotting at room temperature for 30 min 
• After the incubation, vacutainers for serum collection are centrifuged at 1,500 RCF (Relative Centrifugal 

Force) for 10 min at 25°C 

Processing procedures 

• Supernatant should be transferred in a new sterile tube and split at least into five aliquots (1.0 ml each), 
using the appropriate labelled cryovials 

• Samples must be stored at -80°C. If it is possible, for long term storage (>1 year) is better to keep the 
samples in liquid nitrogen or liquid nitrogen vapor 

• Check that all the data regarding the sample (including processing procedures) and the subject have been 
collected and registered in an electronic database 

Transportation 

Transport must be performed following bio-safety guidelines. The specimens should be enclosed a sheet 
containing: number and type of aliquots with their unique identification codes, anamnesis of donor; date and 
details of production; date of shipping; temperature of transport; notes; instructions for opening the packaging 
and the sample receptacle; negative results of microbiological tests (if available); eventually, presence of cryogenic 
gas. Special handling requirements should be provided to couriers responsible for the transport of the specimens. 
At the arrival, the operators in the NMR lab must: 
• Check that all specimens and respective documentation are present; if something is missing, contact 

collection centre; in case of failure, discard the specimen according to safety rules and regulations. 
• Data of each specimen must be registered in electronic and paper archive. 

Transport of frozen samples 

It is critical to maintain the cold chain all the times during transport, storage and delivery. The tubes must be 
transported upright and secured in a leak-proof secondary packaging. Dry ice shall be placed around the secondary 
packaging or alternatively in an overpack with one or more complete packaging. The external container must bear: 
the name, phone number and address of the recipient; the person to contact in case of problems; the inscriptions 
“biological substance category B” in letters at least 6 mm high, “handle with care”; the diamond-shaped mark (50 
mm by 50 mm) reporting inside the UN3373; transport indications; eventually, presence of cryogenic gas. 
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Sample handling 

Equipment and Supplies needed 
• Microbiological safety cabinet 
• Refrigerated centrifuge with sealed buckets or sealed rotor 
• 1 ml and 200 uL pipettor 
• Sterile 2 mL eppendorf 
• NMR tubes 

Preparation of solvents 

• Na2HPO4 (sodium dihydrogen phosphate) Mw = 141.96 
• NaN3 (sodium azide) Mw = 65.01 
• d6-DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) Mw = 224 
• H2O (HPLC-grade or MilliQ water) 
• D2O (deuterium oxide) 
• Concentrated KOH (around 20 M) 
• 2-chloropyrimidine-5-carboxylic acid (2CLPYR5CA) Mw =158.54 
Solution 1: Buffer for samples (10 mL 0.07 M phosphate buffer)* 
• 0.07 M Na2HPO4/D2O, pH 7.4 (with KOD/D2O) 
• 0.038 M NaN3 
• 0.02 M d6-DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) 
• 0.02 M 2-chloropyrimidine-5-carboxylic acid (2CLPYR5CA)  
first step: dissolve 0.0993g Na2HPO4 + 0.022g DSS +0.0247g NaN3 + 0.0216g 2C5CA in 10ml D2O 
second step: mix solution very well (ultra sonic) 
third step: adjust pH to 7.4 with KOH-tablets or strong KOD-solution (KOH-tablets in D2O) 
The buffer dissolves completely at pH >5. 
Add 3/5 of this buffer to the serum sample, mix very well (400 µL of serum + 240 µL of buffer) 
* The inclusion of 2-chloro pyrimidine-5-carboxylic acid provides a down field signal that greatly improves phasing 
result during automatic spectral processing. Poorly phased spectra give rise to quantification errors due to 
erroneous area calculations under each peak. It is stable at room temperature for more than 1 week and shifts at 
8.773 ppm at pH 7.40, which does not overlap with any biological metabolites we have been able to identify in 
serum. 

Sample preparation 

The sample preparation procedure is described using relative measures in order to make it more general. Protocols 
that can be considered, depending on the laboratory routine used to build their current database and on the 
software adopted for assignments, are the following: 
• Using the serum sample as it is, without any preliminary processing, then mixing with the buffer system at 

pH=7.4 containing d6-DSS and 2CLPYR5CA (described above) and applying the CPMG pulse sequence 
• Filtrate the serum sample through 3kDa molecular weight cut off, then mixing with the buffer system at 

pH=7.0 containing d6-DSS (0.5mM) and 2CLPYR5CA (0.5mM) and applying the 1D-NOESY pulse sequence 
• Elute the serum sample through SPE plate (Ostro 96-well plates, Waters) and dry, then reconstitute with 

D2O and the buffer system at pH=7.0 containing TSP and applying the NOESY pulse sequence 
• Precipitate the serum sample with methanol (2:1 solvent/sample) and dry, then reconstitute with D2O and 

the buffer system at pH=7.0 containing TSP and applying the NOESY pulse sequence 
• Adjust these volumes to the NMR probe used 
Protocol a) 
• Frozen samples are defrosted at room temperature for 30 min. After thawing the sample preparation 

procedure has to be completed within 2 hours. The samples have to be gently shaken before use 
• Centrifuge 500 μL of serum at 14000 RCF (Relative centrifugal force) for 5 min, in order to eliminate 

possible precipitates 
• Add 400 μL of the supernatant to 240 μL of sodium phosphate buffer. Mix by inversion or gentle vortex 

stirring 
• Put 500 μL of the mixture into a 5 mm (or 4.25 mm, depending on the probe bore) disposable NMR tube. 
• Store at 4°C until ready for analysis 
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Protocol b) 
• Pre-rinse the 3 kDa filter (washed 7X with sterile double-distilled water) 
• Filter sample through 3 kDa filters at 4 °C using a centrifuge (12,000 g force) 
• Adjust pH to 7.0 with 20 mM K2HPO4 
• Add d6-DSS for chemical shift referencing 
• For optimal automated phase correction add 2-chloropyrimidine-5-carboxylic acid 
• Check the pH of each sample prior to spectrum acquisition to ensure the pH is about 7.0 
Protocol c) 
• Put thawed samples into Ostro 96-well plates followed by the forceful addition of 1% formic acid in 

acetonitrile (3:1 solvent/sample) for in-well protein precipitation 
• Hold the plate at 4° C for 10 min for further protein precipitation 
• Insert the collection plate at the bottom of the Ostro plate and place the entire plate above the Positive-

Pressure Manifold (Waters) 
• Elute in the collection plate and dry the solvent completely 
• Reconstitute with D2O containing the buffer system 
• Put the mixture into a NMR tube 
• Store at 4°C until ready for analysis 
• Protocol d) 
• Mix thawed samples with methanol in 1:2 ratio (v/v), vortex, and incubate at −20 °C for 20 min. 
• Centrifuge at 13 400 rcf for 30 min to pellet proteins 
• Decant supernatants to fresh vials and dry 
• Reconstitute dried samples with D2O containing the buffer system. 
• Put the mixture into a NMR tube 
• Store at 4°C until ready for analysis 

NMR Analysis and Data storage 

Sample handling 
• Before placing new samples, remove any other samples from previous run, in order to avoid mistakes. 
• Place the NMR in the autosampler. 
• Carefully take note of the position in which the tubes are placed 
Remember to always randomize samples in order to not introduce spurious effects: if the analysis contemplate 
comparison between control and treated groups, be sure to not acquire all samples from one group first and then 
(for example after several days and/or with a new stock of buffer) all the samples from the other groups. In a such 
situations, it is hard to understand whether or not some differences are due to the metabolic state or to different 
operative conditions. 

Preacquisition procedures 

Temperature 
• Calibrate temperature using e.g., a standard methanol sample (once a week) 
• Perform experiments at constant temperature, 300 K. Protocol a) and b) use 298K 

Equilibrate 
Load the sample into the probe and allow the sample to equilibrate in the spectrometer (5 min in tube probes) 

Tune and match 
• Automatically tune and match every biofluid sample 
• Control tuning and matching 
• If tune and match is not sufficiently good, tune and match a representative sample (QC sample or first biofluid 
sample) manually 

Shimming 
• Run the shimming routine (for Bruker ‘topshim gui’) 
• Within the user interface: TUNE Z only, then TUNE X only, then TUNE Y only 
• Pulse length 
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• Determine 90° pulse length for a representative sample 
• Receiver gain ([rg]) 
• Receiver gain is not adjusted for each sample but it is set to a constant value (in our case 36). 
• RF carrier frequency offset for water ([O1]) 
• Determine the offset of the water signal for a representative sample (e.g., QC sample or the first biofluid 

sample). This parameter is used for the whole data set. Use the standard routine of the laboratory to 
optimize the O1. A fine tuning of o1 can be also done using an iterative optimization procedure described 
below: 

• run a simple zg with 1 scan on the first sample 
• transform the FID (fp) 
• phase all signal right from the residual water peak, do not care about water phase 
• increase or decrease the O1 depending on the shape of the water signal: if the water signal has a negative 

dip on the left side that means that O1 is too far left, i.e. too big. Similarly, if the negative dip is on the 
right hand side O1 is too small. Change accordingly the O1 value and repeat the above procedure until the 
O1 is optimized 

Transfer 
Transfer all settings to the experiments to be acquired. Automation setup (only for Bruker) 
• Start ICON-NMR by using the command [iconnmr]. Choose [automation] 
• Prepare the first data set 
• Give a name to the data set corresponding to the sample’s name 
• Chose the experiments and the solvent parameters 
• Set a title reporting the project, the date, the temperature and the nature of sample. Use the title field to 

add any significant information, such as the sample code 
• Use the “copy” command to create the data sets for all the other samples to be acquired 
• Double check everything and start the run 
Do not forsake your samples during the acquisition, especially in case of long run: from time to time come back to 
the instrument and check if everything is working fine. 

NMR acquisition 
Protocol a) 
Acquire all NMR spectra using the following parameters: 
• The Carr-Purcell-Meiboom-Gill (CPMG) spin-echo sequence [-RD-90x°-(t-180y°-t)l4-ACQ] 
• Create a new data set with edt 
• Read the parameter set rpa 
• Set the correct solvent eda|solvent (H2O + D2O) 
• eda|Pulprog = cpmgpr1d.comp (presaturation CPMG version) 
• eda|TD = 32k (Number of time domain data point) 
• eda|SW = 12 ppm (Spectral width) 
• eda|NS = 8 (Number of scans per block) 
• eda|TD0 = 32 (Number blocks) 
• eda|DS = 16 (Dummy scans) 
• eda|AQ = 2.28 s (Acquisition time ACQ) 
• eda|D "array" [D1] = 4.0 s (Relaxation delay - RD) 
• eda|D "array" [D20] = 30 μs (spin echo delay t) 
• eda|L "array" [L4] = 128 (loop counter) 
• Total acquisition time ~ 28 min 59 s for 256 scans 

NMR processing 
Processing of 600 MHz 1H NMR spectra 
• Reference the spectra to d6-DSS at δ = 0.00 ppm 
• edp|LB = 1 Hz (Line broadening) 
• edp|SI = 64k (double the number of Fourier domain points (TD)) 
• A target line width of not more than 1.5 Hz for the 2CLPYR5CA peak at half height is desirable (with LB=0). 
• Automatically phase and baseline correction the spectra using the command [apk0.noe]. If the phasing is 

not sufficiently good, phase the spectra manually. 
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NMR data storage 
Before storing acquired data, do a visual inspection of the spectra in order to detect any macroscopic problem in 
the dataset. 
• FID (Free Induction Decay) must be stored as it is. 
• Raw NMR data should be stored in ASCII format prior to normalization (vertical alignment) and alignment 

(horizontal alignment) and solvent removal. 
The spectral region containing the water peak must be discarded (e.g. 5.1-4.7 ppm). 
Before any statistical analysis, spectra must be normalized in order to compensate for different dilution factors. 
The most used scaling techniques are total area scaling, which scales all spectra by the total sum of the intensities, 
assumes that the total concentration of metabolites in a sample is more or less constant, or probabilistic quotient 
normalization (PQN), which calculates the most probable normalization coefficients.  

Troubleshooting 

Check carefully the quality of your spectra. Large peaks width or difficulties in shimming can be due to the 
presence of air micro-bubbles in the samples. In this case a good solution is to vigorously spin the tube with an 
hand centrifuge immediately before the analysis. Imidazole proton peaks of histidine are good indicators of the pH 
of serum samples. If too large misalignments of these peaks are found, some error in the buffer preparation is 
likely. If the shift between samples due to pH differences is a problem, the application of a bucketing step with size 
0.02 to 0.04 ppm can be a solution. If some spectra show extremely higher peaks than the average, it is better to 
exclude that peaks from the normalization algorithm. Quality Check parameters @ LB=0 Hz Signal/Noise ratio: 
Signal at 0.00 ppm (2CLPYR5CA) / Noise: region between -0.5 and -0.8 ppm SI/NO > 1000 Line-width at half height 
for 2CLPYR5CA < 1.5 Hz (including 0 LB and fitting to Lorentzian). 
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ANNEX 2 – LIST OF ABBREVIATIONS 

 
2-DE = 2-Dimensional Electrophoresis 
24HDR = 24-Hour Dietary Recall 
2HG = 2-Hydroxy Glutarate 
AaA = Aromatic Amino acids 
AaR = Branched Chain Amino acids 
AB = Anti-Biotics 
AC = Anthocyanins 
ADC = Analogue to Digital Converter 
AFF = Affluent 
AML = Acute Myeloid Leukemia 
ANH = Amidic NH2 
ANN-MLP = Artificial Neural Network with MultiLayer Perceptrons 
ANOVA = Analysis Of Variance 
APCI = Atmospheric Pressure Chemical Ionization 
ASAP = Atmospheric Solids Analysis Probe 
ASCA = ANOVA Simultaneous Component Analysis 
BD = Bio-Dynamic 
BEF = Bioactive Enriched Food 
BG = Beta-Glucans 
BMRB = Biological Magnetic Resonance Bank 
BSE = Bovine Spongiform Encephalopathy 
BWG = Body Weight Gain 
C = Controls 
CE = Capillary Electrophoresis 
COSY = Correlated Spectroscopy 
COW = Correlation Optimized Warping 
CPMG = Carr-Purcell Meiboom-Gill 
CSF = Cerebro-Spinal Fluid 
D = Duroc 
DART = Direct Analysis in Real Time 
DESI = Desorption ElectroSpray Ionization 
DFD = Dark-Firm-Dry 
DHA = DocosaHexaenoic Acid 
DSM = DeSinewed Meat 
DTW = Dynamic Time Warping 
(i)ECVA = (interval) Extended Canonical Variate Analysis 
ELISA = Enzyme-Linked Immuno-Sorbent Assay 
ERETIC = Electronic Reference To access In vivo Concentrations 
FA = Factor Analysis 
FFQ = Food Frequency Questionnaire 
FFT = Fast Fourier Transform 
FI-ESI-IT-MS = Flow Injection ElectroSpray Ionization Ion Trap Mass Spectrometry 
FI-ESI-TOF-MS = Flow Injection ElectroSpray Ionization Time-Of-Flight Mass Spectrometry 
FID = Free Induction Decay 
FT = Fourier Transform 
GABA = Gamma Amino Butyric Acid 
GC = Gas Chromatography 
GI = GastroIntestinal 
GLM = General Regression Analysis 
GM = Genetically Modified 
GMO = Genetically Modified Organism 
HDM = Hand Deboned Meat 
HILIC = Hydrophilic Interaction Chromatography 
HMDB = Human Metabolome Database 
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HPLC = High-Performance Liquid Chromatography  
HR-MAS = High Resolution Magic Angle Spinning 
ICP-MS = Induced Couple Plasma Mass Spectrometry 
IDH = Isocitrate DeHydrogenase 
L = Landrace 
L/M = Lactulose/Mannitol 
LBW = Litter Body Weight 
LDA = Linear Discriminant Analysis 
LSD = Least Significant Difference 
LV = Latent Variable 
LW = Large White 
MALDI = Matrix-Assisted Laser Desorption/Ionization 
MRM = Mechanically Recovered Meat 
MS = Mass Spectrometry 
MVA = MultiVariate Analysis 
NAD+/NADH = Nicotinamide Adenine Dinucleotide/ + Hydrogen 
NEC = Necrotizing Enterocolitis 
NMR = Nuclear Magnetic Resonance 
NOE = Nuclear Overhauser Effect 
OPLS = Orthogonal Partial Least Squares regression 
OPLSDA = Orthogonal Partial Least Squares Discriminant Analysis 
ORG = Organic 
PC = Principal Component 
PCA = Principal Component Analysis 
PCR = Polymerase Chain Reaction 
PH0 = zero-order Phase Correction 
PH1 = first-order Phase Correction 
PLA = Placebo 
(i)PLS = (interval) Partial Least Squares regression 
(i)PLS-DA = (interval) Partial Least Squares Discriminant Analysis 
PNN = Probabilistic Neural Network 
PQN = Probabilistic Quotient Normalization 
PSE = Pale-Soft-Exudative 
PUFA = Poly Unsaturated Fatty Acids 
QUANTAS = Quantification by Artifical Signal  
RF = Radio Frequency 
RH = Relative Humidity 
RMSECV = Root Mean Square Error of Cross Validation 
ROP = at Risk Of Poverty 
RP = Reverse Phase 
SDS-PAGE = Sodium Dodecyl Sulphate - PolyAcrylamide Gel Electrophoresis 
SE = Substantial Equivalence 
SIL = Silcora 
SMDB = Serum Metabolome Database 
SPI = Soy Protein Isolate 
SV = Sous-Vide (Vacuum) 
TA = Titrable Acidity 
TD-NMR = Time Domain Nuclear Magnetic Resonance 
TFQ = Total Food Quality 
THS = Thompson Seedless 
TMA = Tri-Methyl Amine 
TMAO = Tri-Methyl Amine N-Oxide 
TOF-MS = Time-Of-Flight Mass Spectrometry 
TR = Traditional 
TSP/TMSP = 3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt 
TTS = Total Soluble Solids 
UDP = Uridine DiPhosphate 
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UMDB = Urine Metabolome Database 
UMP = Uridine MonoPhosphate 
UPLC = Ultra high-Pressure Liquid Chromatography 
VIP = Variable Importance in Projection 
WET = Water suppression Enhanced through T1 effects 
WHC = Water Holding Capacity 
WT = Wild Type 
YAN = Yeast Assimilable Nitrogen 
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