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“And once the storm is over you won't remember how you made 

it through, how you managed to survive. You won't even be 

sure, in fact, whether the storm is really over.  

But one thing is certain. When you come out of the storm you 

won't be the same person who walked in.” 

 
“Quando la tempesta sarà finita, probabilmente non saprai 

neanche tu come hai fatto ad 

attraversarla e a uscirne vivo. Anzi, non sarai neanche 

sicuro se sia finita per davvero.  

Ma su un punto non c’è dubbio.  

Ed è che tu, uscito da quel vento, non sarai lo stesso che 

vi era entrato.” 

 
Haruki Murakami  
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Preface 

This thesis is submitted in order to obtain the PhD degree from the PhD school of 

Science, University of Copenhagen.  

 

The work is based on a project funded by the Research Council of Norway (Project 

number: 225096). 

 

The work belongs to a joint project between the Norwegian research institute for food 

and fishery (NOFIMA) and the University of Copenhagen (KU). The main part of the 

research was conducted at Nofima, in Ås, Norway (approximately 70% of the work), 

and the rest at KU, at the food department. The entire work took three years, from 

September 2013 to September 2016. The PhD research was under the main 

supervision of Prof. Tormod Næs (Nofima, KU) and the co-supervision of Prof. 

Rasmus Bro (KU) and Dr. Ingrid Måge (Nofima).  

 

The present thesis was conceived in order to develop and extend some existing 

statistical/chemometric tools and to propose novel methods in the multi-block field 

with a special focus in food analysis. The idea was to develop methods leading at the 

same time to good and reliable predictions and easy interpretation of data.   

 

The present thesis is divided in two parts. In part I, six chapters are present. Chapter 1 

contains an introduction to the work and its aim. In Chapter 2, a general overview of 

the multi-block field and of the approaches for data analysis adopted in the present 

research is given. Chapter 3 presents an introduction to classification and a description 

of the mostly used methods in this research. Chapter 4 is about variable selection, with 

a specific focus on methods that have been applied in the work. Chapters 5 and 6 

present the conclusions and paper summaries, respectively. Part II includes four 

papers. The first two (Paper I and Paper II) are published, Paper III is submitted and 

Paper IV is a manuscript (tentative submission date: March 2016). 
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Abstract 

In data analysis one could be interested in the relations among a number of data sets (data 

blocks) having different origin. In food science, this can be particularly relevant. For instance, 

developing a new product, one may need to understand the relation between 

physical/chemical data, sensory data and consumer acceptance data. A further example could 

be in process monitoring, where one of the main tasks is to figure out relations among 

spectroscopic measurements on raw materials and/or during the production, process settings, 

and the quality of end-product(s). Additionally, data blocks could have not only different 

origin, but measurements could be taken at different time points or by multi-channel 

instruments. It has been demonstrated, that it is more convenient to extract information from 

multi-block data sets handling all the blocks at the same time. Namely, performing data 

fusion by the means of multi-block methods. Several statistical and chemometric multi-block 

methods are already available. Mainly, these are natural developments and variations of 

previously widely-used methods in multivariate analysis, but the area still needs to be 

explored. This PhD project is centered on method-development and method-testing in the 

multi-block analysis field, with a specific focus on food analysis. Novel approaches will be 

compared with other well-known methods used in the same field and they will be applied both 

in regression and in classification. The new methodologies will be tested on simulations and 

on real data. Attention will be also given to categorical input data (Paper IV).  Additionally, 

variable selection in this context will be investigated, in order to obtain reduced sub-sets, 

easier to interpret (Paper II). In conclusion, due to the increasing need of handling multi-way 

arrays ( i.e., structures resulting from experiments where the data are collected as a function 

of more than two sources of variability), all the considerations done in the first part of the 

study, will be extended to multi-way arrays (Paper III). 

 

This PhD project is centered on method-development 

and method-testing in the multi-block field, with a 

specific focus on food analysis. 
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Resumé 

I dataanalyse kan man være interesseret i at undersøge sammenhængen mellem en række 

datasæt (datablokke) af forskellig art. I fødevarevidenskab, kan dette være særlig relevant. For 

eksempel, kan man ønske at forstå sammenhængen mellem fysisk/kemiske data, sensoriske 

data og forbrugernes accept af data, når man udvikler et nyt produkt. Et andet eksempel kunne 

være i procesovervågning, hvor en af de vigtigste opgaver er at finde relationerne mellem 

spektroskopiske målinger på råvarer, procesindstillinger, og kvaliteten af slutproduktet.  

Blokke af data kommer ikke kun fra forskellige målinger. Det kan også komme fra at man 

måler på forskellige tidspunkter eller ved flere kanaler i et instrument. Det er blevet vist, at 

det kan give mere information fra når man ser samlet på sådanne blokke og dette kaldes 

multi-blok modellering eller data fusion.  

Der findes allerede flere statistiske og kemometriske multi-blok metoder. De er ofte naturlige 

udviklinger og variationer over multivariate analysemetoder, men metoderne er langt mindre 

modent end ønskværdigt. Dette ph.d.-projekt er centreret om metode-udvikling og metode-test 

i multi-blok analyse, med særligt fokus på fødevareanalyse. Nye metoder vil blive 

sammenlignet med kendte metoder, og de vil blive anvendt både til regression og 

klassifikation. De nye metoder vil blive testet på simulerede såvel som på reelle data. Der vil 

blive set på situationer hvor man har kategoriske input data (Papir I og papir IV). Derudover 

vil variabel selektion undersøges, for at opnå mindre datasæt, lettere fortolkning og bedre 

prædiktioner (Paper II).  

På grund af det stigende behov for at håndtere multi-vejs data (dvs. strukturer som følge af 

eksperimenter, hvor oplysningerne indsamles som en funktion af mere end to modi), vil cden 

udviklede metodik også blive udvidet til multi-vejs data (Paper III). 
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Riassunto 

Nella scienza alimentare si è spesso interessato a capire la relazione tra dati provenienti da 

diversi piattaforme e/o differenti ambiti. Ad esempio, nella produzione (e nello sviluppo) di 

un prodotto e’ necessario combinare dati chimici, sensoriali ed opinioni dei consumatori. 

Risulta quindi necessario mettere insieme informazioni provenienti da settori scientifici 

differenti. Nell’ottimizzazione dei processi invece, combinare dati da piattaforme differenti o 

da medesime piattaforme in tempi differenti, ha un ruolo fondamentale. Infatti, un controllo in 

continuo sul ciclo produttivo (effettuando misure chimiche sulle materie prime, nei punti 

critici del processo e sul prodotto finito) garantisce non solo l’efficienza della filiera ma anche 

la qualita’ del prodotto finale. Inoltre, nell’ambito delle scienze alimentari, ci si puo’ trovare 

ad analizzare gli effetti dei prodotti su uomini o animali. Indagini che generalemnte 

avvengono combinando analisi microbiologiche, chimiche (su diversi supporti, come  sangue, 

feci ed urina), dati di espressione genica e descrittori di salute. Queste misurazioni sono 

spesso presi in diversi punti temporali, e generalmente mediante tecniche completamente 

diverse e relative a settori scientifici differenti. In tutte queste situazioni, diversi blocchi di 

informazioni necessitano di essere elaborati insieme al fine di estrarre le informazioni. Si 

tratta infatti dei cosidetti “Multi-block” data sets. Oggigiorno, sono numerosi i metodi 

chemiometrici/statistici disponibili per combinare i dati provenienti da diverse piattaforme. 

Questi metodi sono i cosi’ detti metodi di data fusion (o metodi Multi-block). La maggior 

parte di queste metodologie sono naturali estensioni di metodi di analisi multivariata 

(chemiometrici e statistici) precedentemente consolidate; ma il campo e’ ancora ampiamente 

sotto studio. Molte sono infatti ancora le lacune che affligono questo ramo dell’analisi dati. Il 

presento progetto si situa in questo campo, al fine di sviluppare nuove metodologie analitiche 

multi-block finalizzate in particolare all’analisi nell’ambito alimentare. In particolare, in 

questo studio sono stati realizzati un metodo multi-block e multi-way per la regressione (SO-

N-PLS e due per la regressione (SO-PLS-LDA/ SO-N-PLS-LDA). Inoltre, la 

rappresentazione grafica dei risultati e’ stata studiata ed e’ stato proposto un mezzo 

investigativo per i risultati in classificazione. Nella parte finale del lavoro, l’interpretazione di 

alcuni metodi multi-block e’ stata discussa, ma le considerazioni fatte hanno bisogno di un 

maggiore studio (e di validazione su dati reali) prima di poter essere considerate attendibili.    
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Notation and list of mathematical entities 
 

Notation 

In the text, matrices are indicated by bold capitals (e.g. 𝐗), multi-way arrays by underlined 

bold capitals (e.g.𝐗) and vectors by bold lowercase letters (e.g. 𝐱). Scalars are indicated by 

italics (e.g., 𝑁). 

 

The symbols 𝐗(𝑵×𝑱), 𝐙(𝑵×𝑯), 𝐗(𝑵×𝑱×𝑲), 𝐙(𝑵×𝑯×𝑳), 𝐗un(𝑵×𝑱𝑲) and 𝐙un(𝑵×𝑯𝑳) represent 

predictor matrices, three-way array predictors, and unfolded three-way predictors, 

respectively. The response matrix is represented by 𝐘(𝑵×𝑨), while the response vector is 

𝒚(𝑵×𝟏).  

In Part I, the following letters refer always to the same entity: 

 

𝐴: Number of columns in the response matrix 

𝐁, 𝐛: Regression coefficient matrix, Regression coefficient vector 

𝐶: canonical variate scores 

𝐄: Error matrix 

𝐹: Number of components  

G, g: Total number of groups, Individual group (in classification) 

𝐻: Number of variables in the 𝐙 block; number of variables in the second mode of the 𝒁 

array 

𝐽: Number of variables in the 𝐗 block; number of variables in the second mode of the 𝑿 

array 

𝐾: Number of variables in the third mode of the 𝑿 array 

𝐿: Number of variables in the third mode of the 𝒁 array 

𝑁,𝑛: Total number of samples, sub-set of samples 

𝐏: 𝐗-Loadings in PLS regressions 

𝐐: 𝐘-Loadings in PLS regressions 

𝐑: weights matrix in SO-N-PLS 

𝐒: Variance/covariance matrix 

𝐓: 𝐗-Scores in PLS regression 



7 
 

𝐔: 𝐘-Scores in PLS regression 

𝐕: weights in PLS regression (relating directly scores 𝐓 to un-deflated 𝐗) 

𝐖: weights in PLS regression 

 

 

Mathematical entities 

 

Classification Error: Percentage of samples misclassified 

𝐸𝑪𝒍𝒂𝒔𝒔 =
𝑛𝒎𝒊𝒔𝒄𝒍

𝑁
∙ 100 

 

R2/ Q2: Coefficient of determination (Calibration/Prediction) 

𝑅2(𝑄2) = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 

 

RMSECV: Root Mean Square Error in Cross-Validation 

𝑅𝑀𝑆𝐸𝐶𝑉 = √∑ (𝑦𝑛 − 𝑦̂𝑛,𝐶𝑉)
𝟐𝑵

𝒏=𝟏

𝑁
 

 

RMSEP: Root Mean Square Error in Prediction 

                                  𝑅𝑀𝑆𝐸𝑃 = √
∑ (𝑦𝑡−𝑦𝑡̂)𝟐𝑵𝒕

𝒕=𝟏

𝑁𝑡
   with 𝑁𝑡 number of samples in the test set 

 

RSS: Residual Sum of Squares 

𝑅𝑆𝑆 = ∑(𝑦𝑗 − 𝑦𝑗̂)
𝟐

𝑵

𝒋=𝟏

 

 

TSS: Total Sum of Squares 

𝑇𝑆𝑆 = ∑(𝑦𝑗 − 𝑦̅)
𝟐

𝑵

𝒋=𝟏
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                      Chapter 1: Introduction 

 

 

Figure 1: Conceptual flow chart: Overview among topics discussed in the thesis. 

 

1.1 Food Quality and Chemometrics 

Food quality is a highly relevant topic in modern society; it embraces several important 

aspects and is a field of study that involves a large number of different disciplines. A general 

awareness of the importance of having foodstuffs that reflect certain quality standards, is 

therefore widely spread. These standards do not involve only sanitary features, but also 

nutritional and hedonistic aspects. The first definitions of food quality are actually quite old. 

One pioneer of quality management, M. Juran defined “quality” as “those features of products 

which meet customer needs and thereby provide customer satisfaction” [1]. Nowadays, 

standards of quality for foodstuff are strictly regulated by national or international institutions. 

For instance, EU has enacted several laws to define quality and to protect consumers (like 

ISO 9000:2005 and EC 628/2008 just to mention a couple of them). 

The aim of regulating foodstuff production is not only to have common (national and 

international) rules but it is also to preserve characteristics of traditional food. As a 

consequence, authentication and traceability of foodstuff have become hot topics. In this 

context, chemometrics has an extremely relevant role. In fact, in combination with analytical 

techniques, it represents one of the most powerful ways for the investigation of foodstuff.  
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Among all the physical-chemical techniques used in this field, chromatography and 

spectroscopy are the most common. In particular, the latter is relatively cheap, fast and non-

destructive. Consequently, spectroscopic techniques are well suited for online measurement 

(to inspect intermediate products in the chain) and to check the quality of end-products. 

Several approaches have been developed to combine these techniques with chemometrics in 

order to predict key quality attributes or classify different product qualities.  

Chemometric tools can be used to authenticate products, check for frauds or adulteration and 

also monitor the productive processes, avoiding deficiencies in the final product [2-3].  In 

particular, classification models are widely used in the traceability of the food chain assessing 

the geographical origin of products (or of sub-products). Some examples can be found in [4-

7]; these represent only a small part of the wide number of papers published on this regard.  

In this context, data fusion or multi-block approaches play an important role. Their power 

belongs to their ability of exploiting the underlying relation between all or several of the data 

blocks involved. Often data come naturally as multi-block data sets (also called multi-sets). 

For instance, in process monitoring different measures can be taken on several batches over 

time, generating a multi-block and multi-way set of data. Multi-block data sets are also 

generated when different measures are collected on the same production lot or when a single 

technique is applied on several batches. Additionally, a recipe (presence/absence or 

concentrations of ingredients), assessments on the final product quality and/or consumers 

acceptance could be collected together in order to understand the relation among them; also 

this one represent a multi-set of data. In all these cases, it is more effective to extract info 

handling all the blocks at the same time rather than building individual models for each set of 

data [8-9]. 

Several multi-block methods have been developed for regression and classification purposes 

and they are widely applied in food analysis. Data fusion can be performed at different levels: 

measurements-level (also known as low-level data fusion) and components-level (mid-level 

data fusion). In the first case, the extraction of features is performed after the concatenation of 

data (e.g., as in Multi-block PLS). Instead, in the component-level data fusion, features are 

extracted individually from the blocks and then used for a joint analysis in successive stages. 

Despite the level of the data fusion, multi-block methods show generally good performances, 

with high accuracy in prediction. Anyhow, some aspects still deserve research.  

As already stated, chromatography and spectroscopy are analytical techniques widely used in 

food analysis. Often their outcomes have several regions (of the spectra/chromatogram) that 

are not relevant for the current prediction or classification problem. These regions could 
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negatively affect (both regression or classification) models. This negative influence could 

even be enhanced in multi-block data sets (e.g. having chromatograms and spectra as 

predictor blocks). In order to avoid this effect, a valid solution would be to apply a variable 

selection method to reduce the number of variables. Getting rid of noise and redundancy by 

variable selection, predictions may improve and the model become easier to interpret. 

Consequently, the inclusion of a variable selection step building (regression or classification) 

models, would definitely represent a valid contribution to food analysis. Variable selection is 

not a straightforward task; it is difficult to define which tool would be the most suitable with a 

specific data set. How to proceed in a multi-block data context is even more complex. 

Consequently, how to combine variable selection tools with multi-block methods is definitely 

a topic worth to research.  

Another topic that is becoming more and more interesting is the development of multi-block 

methods for multi-way data arrays. As mentioned, in food analysis it is common to encounter 

data sets constituted by multi-way arrays (i.e., structures resulting from experiments where the 

data are collected as a function of more than two sources of variability). For instance, in 

sensory science assessments are reported as functions of the sample, the judge and the 

attribute. In process monitoring variables may be measured on different batches along time. 

Also, new technologies have made available analytical instruments that can collect multi-way 

arrays of data (e.g., fluorescence or Nuclear Magnetic Resonance). Different method has been 

developed to handle this type of data, but only few can handle several predictor arrays [10-

13].  So far, the common practice is to unfold (i.e. make the array two-way) the multi-way 

arrays, but this presents some issues (more detail in Paragraph 2.2). Therefore, multi-block 

methods for multi-way arrays is definitely a need in food analysis.    

 

1.2  Aim  of the present work 

The aim of the present work is to develop and test new regression methods in the multi-block 

field, with a special focus on food analysis; both prediction ability and interpretation will be 

of interest.  

Although, as reported in the previous paragraph, several multi-block algorithms have already 

been proposed in the literature, still there are many issues that need to be examined in greater 

depth. In this context, the attention will be focused on a particular kind of multi-block 

approach, namely Sequential and Orthogonalized PLS (SO-PLS) [14]. This method 

constitutes the basis of almost all research carried out in the present thesis. As it will be more 

evident in Chapter 2, where the algorithms are described in depth, SO-PLS presents a number 
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of advantages when compared to other existing methodologies. These benefits represent the 

reason why this method has been chosen as the starting point for the development of the novel 

methods. One of these advantages is its sequential nature, which allows evaluating whether 

the additional contribution of successive blocks is relevant and, if so, to interpret it.  This 

characteristic represents a peculiarity, not only if compared to methods which rely only on the 

extraction of components which are common among the blocks (such as Multi-Block-PLS 

(MB-PLS) [15] or Common Components and Specific Weight Analysis (CCSWA) [16]), but 

also with respect to other approaches which use differently the block-specific (distinctive) 

information (e.g., OnPLS [17] or Parallel Orthogonalized-PLS (PO-PLS) [18]). Moreover, 

this makes SO-PLS a suitable method for both prediction and interpretation purposes. 

Applications will focus on predictions of chemical constituents and sensory measurements 

from different analytical techniques.  

In food data analysis it may also be highly relevant to classify objects, in order to identify, 

interpret and visualize classes of individuals. This can be useful in process monitoring, in 

order to check, at different steps of the production process, if there are deviations from the 

usual characteristics of the product. Therefore, multi-block classification will also be focused 

in this work by the same regression methodologies as used in the rest of the thesis. In 

particular, attention will be given to interpretation and visualization tools. In order to avoid 

overfitting and overoptimistic interpretation, these will be based on cross-validation (Paper I).  

Moreover, starting from the assumption that a reduced model is more easily interpretable, 

another goal of the present work is to investigate variable selection in the context of multi-

block analysis. This is important not only for interpretation but also for selecting simplified 

sub-sets of variables to be used in future studies. This issue is particularly demanding when 

the number of variables is larger than the number of objects, and becomes even more 

challenging in a multi-block framework, as more matrices are involved and their mutual 

relation should be taken into account (Paper II). 

All the considerations done in the first part of the work, will be extended and discussed for 

multi-way data. As a consequence, the possibility of opening the multi-block field to multiway 

arrays is investigated and a new method (applicable both in regression and in classification) is 

proposed (Paper III). In the final paper (paper IV) the aim is to investigate in more detail 

interpretability of (some) multi-block methods.  
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Main emphasis in the method-development is on: 

 Classification  

 Graphical representation 

 Variable selection  

 Multi-way input blocks 

 Interpretation 
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Chapter 2: Multi-block regression 

 

Figure 2: Conceptual flow chart: Multi-block Regression 

 

2.1 The background of Multi-block regression     

Multi-block methodologies can be split into two different parts, regression oriented 

approaches with a predictive direction among the blocks and approaches with no predictive 

direction. The first are named multi-block regression problems and the other multi-block 

component problems. A multi-block regression problem is present when different data 

matrices are used to predict one or more responses. In multi-block component problems there 

are different blocks of data (with at least one common mode) and the components which 

summarize information in them are extracted and investigated. The extraction of information 

can be done in various ways; different methods (e.g., CPCA, DISCO, JIVE,CCSWA and all 

the variants of ComDim [16,19-23]) have been proposed.  

As indicated above, multi-block data sets can be obtained for different reasons (summarized 

in Figure 3) and in different fields. Some data sets are “intrinsically” multi-block, as the 

experiments per se generate a set of different matrices. For instance, data can be collected 

from different platforms or at different time points (or both); resulting in diverse sets of 

measures on the same samples.  

Additionally, data sets can become multi-block because of a reorganization of their structures. 

For example, an individual block of data could be rearranged in multiple sub-sets to avoid the 
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number of variables exceeding the number of objects, or it could be reorganized in sub-groups 

because of a priori knowledge (e.g., a spectroscopic measurement taken online, could be split 

in different blocks according with time).  

Currently, there are many methods available to solve multi-block regression problems, such 

as Hierarchical-PLS [24], Multi-Block-PLS (MB-PLS) [15,25-29], Sequential and 

Orthogonalized Partial Least Squares (SO-PLS) [14,30], Parallel Orthogonalized Partial Least 

Squares (PO-PLS)[18,31], On-PLS [17], Multiblock Redundancy Analysis [32-33], 

Predictive-ComDim [23]; and these are just examples of some of them.  In spite of this, multi-

block is a quite new area, and many aspects still need to be inspected. 
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Figure 3 Origin of multi-block data sets 
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2.2 Data structures useful for multi-block models  

Two, three and multi-way arrays 

 

The main part of the multi-block methods handle one- or two-way arrays, but in practice it is 

quite common to have data organized in three-(or more) way arrays. As mentioned in 

Paragraph 1.1, examples of this can be easily found in process monitoring or in sensory 

science. Moreover, modern instruments often produce multi-way arrays. Finally, different 

type of data can be re-organized in higher order arrays. Consequently, the lack of multi-block 

methods handling these data structures is a huge deficiency.  

 

Despite some methods have been proposed to handle higher order arrays [10-13] they are still 

a minority. The most common procedure dealing with multi-way arrays is to unfold them to 

structures suitable for classical multi-block methods (namely, two-way structures). The main 

unfolding procedures are three: row-wise unfolding, column-wise unfolding and tube-wise 

unfolding. Some others can be found in literature, but they can be seen as variations of these 

three. Starting from a three-way array 𝑿 of dimensions 𝑁 × 𝐽 × 𝐾, the application of any type 

of unfolding reorganizes data in a two-mode arrays. The row-wise unfolding provides a 

matrix 𝑿 of dimensions 𝑁 × (𝐽𝐾), the column-wise approach unfolds to a matrix 𝑿 of 

dimensions (𝑁𝐾) × 𝐽 and the tube-wise unfolding gives an 𝑿 matrix of dimensions (𝑁𝐽) × 𝐾.  

 

Handling multi-block and multi-way data sets, the common practice is to perform unfolding 

maintaining unchanged the common mode among blocks (and re-organize the other two). Any 

mode of the arrays can be the common one. Often, it is the first one (samples mode); but it 

happens that data sets have variables in common instead of samples (i.e. psychometrics).  

In all the examples presented in this work, the common mode is the sample mode; 

consequently, when the unfolding procedure is mentioned, it is the row-wise unfolding.   

Unfolding procedures presents some issues that could affect the models. Therefore, 

development of a multi-block method which can handle multi-way sets of data appears a 

reasonable goal that needs to be reached. 
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2. 3 Main Multi-block methods used in this work 

As mentioned, the present work is focused on the application of the Sequential and 

Orthogonalized-Partial Least Squares (SO-PLS) method in the food analysis. The reason for 

this choice is based on a number of interesting properties of the method both with respect to 

interpretation and flexibility to be discussed more in detail below.  At the same time, 

prediction performances are generally good. Moreover, it can easily handle combinations of 

design variables and multi-collinear predictor variables. Finally, it is computationally fast and 

easy to implement. 

   

In order to fully characterize the method and its performances, SO-PLS and its extensions to 

be presented below will be compared to Multi-block-PLS (MB-PLS). MB-PLS has been 

chosen as main counterpart because it is a well-established and a well-performing method. 

On the other hand, in a data fusion perspective, MB-PLS and SO-PLS differ in the way the 

information from the various block of predictors is joined: indeed, in the framework of the 

distinction reported in Paragraph 1.1, MB-PLS represents an example of low-level fusion 

strategy, while in SO-PLS the scores are concatenated, so it can be considered a mid-level 

approach. Additionally, in Paper IV SO-PLS and MB-PLS are also compared with Parallel 

and Orthogonalized-PLS (PO-PLS). PO-PLS shares with SO-PLS some relevant features 

which makes the two approaches rather similar. This similarity is the reason why, in Papers I-

III, PO-PLS was not selected as the method SO-PLS should be compared with. On the other 

hand, since the main differences between PO-PLS and SO-PLS pertain to the interpretation 

aspect, in Paper IV (a discussion-oriented paper focused on interpretation) it was natural to 

include PO-PLS in the comparison.   

 

In the following subparagraph, MB-PLS and PO-PLS are briefly presented, while SO-PLS is 

discussed in detail. Here it should be noted that, in the present chapter, methods’ descriptions 

always refer to the case of two blocks of predictors (𝑿 and 𝒁), used for the regression of the 

response 𝒀. 

 

2.3.1 Brief description of Multi-Block-PLS (MB-PLS) 

Predictive Multi-Block PLS was proposed by Frank et alia [25-26] in 1984. Several variations 

and developments followed [15, 27-29]. 

The MB-PLS algorithm used in this work is the one presented in [29], which is slightly 

different from the original one [27] but provides the same model parameters.  
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Briefly, for two blocks 𝐗 and 𝐙 predicting the response 𝐘, the procedure followed to build 

MB-PLS models is the following: 

 

1. 𝐗 and 𝐙 are pretreated and divided by their Froebenius’ norm (obtaining 𝐗𝑛 and 𝐙𝑛).   

2. 𝐗𝑛 and 𝐙𝑛 are concatenated, resulting in the matrix 𝐗𝐶𝑜𝑛𝑐 (𝐗𝐶𝑜𝑛𝑐 = [𝐗𝑛 𝐙𝑛]). 

3. 𝐘 is then fitted to 𝐗𝐶𝑜𝑛𝑐 by PLS. 

 

As demonstrated in [15], applying PLS on 𝐗𝐶𝑜𝑛𝑐, 𝐗- and 𝐘-scores (𝐓𝑋𝐶𝑜𝑛𝑐 and 𝐓𝑌, 

respectively) correspond to super-scores and 𝒀-scores that would be obtained applying the 

original MB-PLS algorithm [27] to the same predictor blocks. 

Applying Westerhuis’ algorithm [15], parameters such as block weights 𝐖𝑋𝑏 and  𝐖𝑍𝑏, 

super-weights 𝐖𝑇 and block scores 𝐓𝑋𝑏 and 𝐓𝑍𝑏 (present in [27]) are missing. Nevertheless, 

they can be calculated a posteriori. For the 𝑓-th component, it can be demonstrated that:  

 

  𝐰𝑓,𝑋𝑏 = 𝐗𝑛
𝑻𝐭𝑓,𝑌/𝐭𝑓,𝑌

𝑻 𝐭𝑓,𝑌              (1) 

  𝐰𝑓,𝑍𝑏 = 𝐙𝑛
𝑻𝐭𝑓,𝑌/𝐭𝑓,𝑌

𝑻 𝐭𝑓,𝑌              (2) 

   

  𝐭𝑓,𝑋𝑏 = 𝐗𝑛𝐰𝑓,𝑋𝑏     (3) 

  𝐭𝑓,𝑍𝑏 = 𝐙𝑛𝐰𝑓,𝑍𝑏     (4) 

 𝑓 = [𝐭𝑓,𝑋𝑏𝐭𝑓,𝑍𝑏]     (5) 

 𝐰𝑓,𝑇 = 𝑓
𝑻𝐭𝑓,𝑌/𝐭𝑓,𝑌

𝑻 𝐭𝑓,𝑌    (6) 

 

The super-weights 𝐖𝑇 are useful for the interpretation of the models. They express how much 

each block contributes to the prediction of the response; high super-weights’ values mean 

high contributions. On the other hand, the inspection of the block scores, block loadings and 

block weights allows the characterization of the individual blocks.  

  

 2.3.2 Brief description of Parallel Orthogonalized-PLS (PO-PLS) 

Parallel Orthogonalized-PLS [31, 18] is a multi-block regression method which allows the 

identification (and the extraction) of common and distinct components among the predictor 

blocks. The extraction is performed in parallel among the predictors; which means this 

method is suitable when one is interested in common/unique information among blocks rather 

than in the variability added from each matrix to the model. The algorithm applied in the 
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present work is not the original one [31] but its variation presented in [18]. It can be 

summarized by the following steps: 

 

1) 𝐘 is predicted from 𝐗 and 𝐙 by two individual PLS models. Scores from these models are 

called 𝐓𝑿 and 𝐓𝒁.  

2) Common components are identified by canonical correlation analysis [34] between 𝐓𝑿 and 

𝐓𝒁. The number of common components is decided by evaluating the values of canonical 

correlations. The common scores 𝐓𝑪 are the average canonical scores (from each block). 

3) Scores 𝐓𝑿 from 1) are orthogonalized with respect to 𝐓𝑪, giving 𝐓𝑿𝒐𝒓𝒕𝒉. 

4) 𝐘 is then predicted from  𝐓𝑿𝒐𝒓𝒕𝒉 by PLS regression giving 𝐓𝑫𝑿𝒐𝒓𝒕𝒉 (these scores represent 

the distinct information in 𝐗). 

5) Scores 𝐓𝒁 from step 1 are orthogonalized with respect to 𝐓𝑪 and 𝐓𝑫𝑿𝒐𝒓𝒕𝒉, giving 𝐓𝒁𝒐𝒓𝒕𝒉 . 

6) 𝐘 is predicted from  𝐓𝒁𝒐𝒓𝒕𝒉 by PLS regression giving 𝐓𝑫𝒁𝒐𝒓𝒕𝒉 (these scores represent the 

distinct information in 𝐙). 

7) The final predictive model is obtained by : 

 

𝐘 = 𝐓𝑷𝑶𝐁𝑷𝑶     (7) 

 

Where 𝐓𝐏𝐎 is the concatenated matrix of the scores ( 𝐓𝐏𝐎 = [𝐓𝑪 𝐓𝑫𝑿𝒐𝒓𝒕𝒉 𝐓𝑫𝒁𝒐𝒓𝒕𝒉 ]) and 𝐁𝑷𝑶 is 

the regression coefficient matrix. 

Information is extracted from both blocks at the same time (step 1). If there are no common 

components among the blocks, the PO-PLS algorithm is equivalent to SO-PLS (See below).  

 

2.3.3 SO-PLS in detail  

In Sequential and Orthogonalised Partial Least Square Regression (SO-PLS), the general 

multi-block linear regression problem can be represented by the equation: 

  

𝐘 = 𝐗𝐛 + 𝐙𝐜 + 𝐄     (8) 

Where:  

𝐛 and 𝐜 are the regression coefficients of dimensions (𝐽 × 𝐴) and (𝐻 × 𝐴), respectively. 

𝐄 is the residual matrix of dimensions (𝑁 × 𝐴). 

 

The SO-PLS algorithm is quite simple, and it is mainly divided in four steps:  
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1) 𝐘 is fitted to 𝐗 by PLS regression.  

2) 𝐙 is orthogonalised with respect to the scores (𝐓𝑋) of the previous PLS, obtaining 𝐙𝑂𝑟𝑡ℎ. 

3) 𝐘-Residuals from step 1) are fitted to 𝐙𝑂𝑟𝑡ℎ by PLS regression.  

4) The full predictive model can be computed by combining the predictions of the two 

individual PLS models in 1) and 3). 

 

A visual summary of the different step is presented in Figure 4. 

 

Taking an accurate look into the different steps it is possible to find out the characteristics and 

the peculiarities of the method. 

 

Step 1: First regression 

 

As said, 𝐘 is fitted to 𝐗 by PLS regression; this is the starting point of the method. In this step 

the 𝐗-scores 𝐓𝑋, the 𝐗-weights and loadings 𝐖𝑋 and 𝐏𝑋 and the 𝐘-loadings 𝐐𝑋 are obtained. 

The matrix of 𝐘-residuals 𝐄 is then calculated as: 

  

𝐄 = 𝐘 − 𝐓𝑿𝐐𝑿
𝑇      (9) 

 

Step 2: Orthogonalization 

 

Given the sub-space identified by 𝐓𝑿, 𝐙 can be decomposed into the sum of two matrices: 

𝐙𝒐𝒓𝒕𝒉 and 𝐙𝒑𝒓𝒐𝒋. Namely: 

𝐙 = 𝐙𝒐𝒓𝒕𝒉 + 𝐙𝒑𝒓𝒐𝒋             (10) 

Where: 

𝐙𝒐𝒓𝒕𝒉 represents the 𝐙 orthogonalized with respect to 𝐓𝑿.  

𝐙𝒑𝒓𝒐𝒋 is the projection of 𝐙 on 𝐓𝑿 (and it is therefore contained in the column space of 𝐓𝑿). 

From Eq. 10, 𝐙𝒐𝒓𝒕𝒉 = 𝐙 − 𝐙𝒑𝒓𝒐𝒋, which rearranged explicitly for 𝐓𝑿 becomes: 

𝐙𝒐𝒓𝒕𝒉 = 𝐙 − 𝐓𝑿(𝐓𝑿
𝑻𝐓𝑿)−1𝐓𝑿

𝑻𝐙               (11) 

Mainly, orthogonalization “empties” 𝐙 of its projection onto 𝐓𝑿 (𝐙𝒑𝒓𝒐𝒋) removing the part that 

lies in the column space of 𝐓𝑿. 
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This is a crucial step in the algorithm. In fact, orthogonalization allows performing the 

following step without any loss of information from 𝐙. Moreover, it grants to the method 

several benefits that will be exposed in detail in the following subparagraph. 

 

Step 3: Second Regression: 

 

In this case, 𝐄 from Eq. 9 is fitted to 𝐙𝒐𝒓𝒕𝒉 by PLS. Due to the orthogonalization, even if 𝐙𝒑𝒓𝒐𝒋 

is not contributing to the fit, there is no loss of information. Since 𝐙𝒑𝒓𝒐𝒋 is in the column space 

of 𝐓𝑿, it has already implicitly been modelled in the first fit. 

In this step the 𝐙𝒐𝒓𝒕𝒉-scores 𝐓𝒁𝒐𝒓𝒕𝒉
, the 𝐙𝒐𝒓𝒕𝒉-loadings 𝐏𝒁𝒐𝒓𝒕𝒉

, the 𝐙𝒐𝒓𝒕𝒉-weights  𝐖𝒁𝒐𝒓𝒕𝒉
, and 

the 𝐘-loadings 𝐐𝒁𝒐𝒓𝒕𝒉
 are obtained.  

 

Step 4: Predictive model: 

 

𝐓𝑋 and 𝐓𝒁𝒐𝒓𝒕𝒉
are orthogonal by construction. Consequently, the full predictive model can be 

calculated simply summing up the predictions from the individual regressions: 

𝐘̂ = 𝐓𝑋𝐐𝑋
𝑇 + 𝐓 𝒁𝒐𝒓𝒕𝒉

𝐐 𝒁𝒐𝒓𝒕𝒉

𝑇               (12) 

 

If wanted, Eq.12 can be calculated using the original measures: 

  

𝐘̂ = 𝐗𝐕 𝑿𝐐𝑋
𝑇 + 𝐙𝑜𝑟𝑡ℎ𝐕 𝒁𝒐𝒓𝒕𝒉

𝐐 𝒁𝒐𝒓𝒕𝒉

𝑇              (13) 

 

Where 𝐕 𝑿 (= 𝐖𝑋(𝐏𝑿 
𝑇 𝐖𝑋)−𝟏) and 𝐕 𝒁𝒐𝒓𝒕𝒉

(= 𝐖𝒁𝒐𝒓𝒕𝒉
(𝐏𝒁𝒐𝒓𝒕𝒉 

𝑇 𝐖𝒁𝒐𝒓𝒕𝒉
)

−𝟏
) are the weights 

allowing the direct calculation of the scores from the respective data blocks. Additionally, it is 

also possible to rearrange Eq.12 to be expressed in terms of 𝐙 instead of 𝐙𝑜𝑟𝑡ℎ:   

 

𝐘̂ = 𝐗𝐕 𝑿𝐐𝑋
𝑇 + 𝐙𝑜𝑟𝑡ℎ𝐕 𝒁𝒐𝒓𝒕𝒉

𝐐 𝒁𝒐𝒓𝒕𝒉

𝑇              (14) 

                   𝐘̂ = 𝐗𝐕 𝑿𝐐𝑋
𝑇 + (𝐈 − 𝐓𝑿(𝐓𝑿

𝑻𝐓𝑿)−1𝐓𝑿
𝑻𝐙𝐕 𝒁𝒐𝒓𝒕𝒉

𝐐 𝒁𝒐𝒓𝒕𝒉

𝑇           (15) 

𝐘̂ = 𝐗𝐕 𝑿(𝐐𝑋
𝑇 − (𝐓𝑿

𝑻𝐓𝑿)−1𝐓𝐗
𝑻𝐙𝐕 𝒁𝒐𝒓𝒕𝒉

𝐐 𝒁𝒐𝒓𝒕𝒉

𝑇 + 𝐙𝐕 𝒁𝒐𝒓𝒕𝒉
𝐐 𝒁𝒐𝒓𝒕𝒉

𝑇            (16) 
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Figure 4: Summary of SO-PLS’s algorithm: The two predictor blocks case.  

SO-PLS is a sequential method, which, in principle, does not present any restriction regarding 

the number of the predictor blocks. When more than two predictor blocks are involved, any 

further block is orthogonalized with respect to the scores of all preceding blocks and then the 

full predictive model is calculated summing the contributions from the different regressions. 

 

Possible benefits of SO-PLS 

SO-PLS provides a number of benefits that make it suitable both for prediction and 

interpretation purposes. The main ones are:  

 

1. Problems related to ill-conditioned matrices are overcome.  

This is obviously due to the fact that PLS is involved. The reduction in latent variables 

solves problems related to ill-conditioned matrices. Note that this is in common with all 

the methods based on feature reduction.  

2. SO-PLS is not affected by the blocks having different variances (scale invariance).  

Many multi-block methods require a preliminary scaling stage, to remove the spurious 

contributions related to the different variance of the matrices to be modeled. On the other 

hand, the characteristics of SO-PLS, i.e. sequential modeling carried out on blocks which 

are orthogonalized with respect to the scores extracted in the previous stages, make the 

method to be scale-invariant.  
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3. It allows the investigation of incremental contributions for each added block. 

Since SO-PLS involves the computation of as many PLS models as the number of 

predictor matrices, rather than a single, global, model, the contribution of each individual 

block can be more easily investigated. Moreover, due to the orthogonalization step, the 

contribution of each added block is additive (incremental) with respect to those already 

modeled. This means, for instance, that the inspection of the second PLS model can allow 

evaluating the effects of the addition of 𝒁 and even assessing whether the inclusion of that 

particular block is worth or not. In this context, it should be highlighted that, since the 

interpretation of the second PLS model is slightly different from the interpretation of the 

first one, a detailed description of how to proceed is given in Paragraph 2.3.3.2. 

4. The number of components for each PLS in the model can be defined for each block 

(independently on the others).  

Information is extracted from the predictors in as many different PLS regressions as the 

number of matrices. This means that the number of components to be used in each 

regression is optimized for that specific block. 

 

Obviously, SO-PLS presents also some disadvantages. It is a quite young method; there are 

not many applications in literature and many aspects have not been explored in depth (in 

particular regarding the interpretation of the models). Another disadvantage is tightly related 

to the possibility of choosing the number of component for each block. In fact, despite this 

can be considered a benefit (point 4 above), it implies the optimization of a number of model 

parameters equal to the number of the blocks. Increasing the number of the optimized 

parameters, even the chance of overfitting could increase. Moreover, the selection of 

components results more complicated if compared to methods that apply the same complexity 

to all the predictor blocks (e.g. MB-PLS). 

 

2.3.3.1 Estimating the optimal number of latent variables in SO-PLS 

There are at least two approaches to define the optimal number of latent variables in SO-PLS: 

the global strategy and the sequential strategy. In the first one, all the possible combinations 

of components (up to a predetermined maximum value) are tested. Namely, SO-PLS models 

are built with all the possible combinations of latent variables in the different blocks, and 

validated by cross-validation. The combination of components to be used will be selected 

based on the values of RMSECV (more details at the end of this paragraph). In the sequential 

strategy, the number of latent variables to be used is separately optimized for each regression 
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step: at first, the best number of latent variables for the regression model between 𝑿 and 𝒀 is 

chosen, and only successively, the number of components for fitting the 𝒀–residuals to 𝒁𝑶𝒓𝒕𝒉 

is separately optimized. Also in this case, the decision is made on the basis of the RMSECV. 

Applying this strategy the order of the blocks is highly relevant.  

It has to be stressed that, in both approaches, the combination of components giving the 

lowest RMSECV is not always the best solution. In fact, in this way the number of latent 

variables could be overestimated, leading to overfitted models. It is possible to impose 

parsimony testing the differences between the different RMSECVs. This is particularly 

relevant when it is not possible to visually inspect the results (i.e., in simulations). A 

suggested procedure to automatize the choice of the optimal complexity (applied in all the 

simulations presented in this work) is described at the end of this paragraph.   

In order to understand the difference between the two approaches for selecting the number of 

components, a simulation study has been conducted. The study is divided in two parts, which 

reflect the different structures of the analyzed data sets. In both cases, data sets were built 

simulating two blocks of predictors and a response vector; moreover, for a proper validation 

of the obtained results, both training and test sets were generated. In order not to be biased by 

chance results, simulations have been replicated one hundred times. 

In the first part of the simulation study, both predictor blocks were conceived to mimic 

spectral data. In the second part, one predictor block is spectra-like, while the other is built to 

mimic a matrix of process variables. More details about the simulations can be found in text 

box 1. 

Both global and sequential strategies were applied to define the optimal complexity for SO-

PLS models. Then, SO-PLS models were built on the training sets and validated on the 

external test sets, which were, then, completely independent, as they were not involved in the 

definition of the optimal complexity. When the optimal number of latent variables for the 𝑿 

and the 𝒁 blocks evaluated with the two approaches are the same, the models also coincide. 

The average values (over the one hundred replicates) of RMSECV and RMSEP are reported 

in Table 1. Additionally, the distribution of optimal number of latent variables is displayed in 

Figure 5. These results have constituted the basis for the evaluation of the two approaches.  
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Table 1: Averaged values (over the one hundred replicates) of RMSECVs and RMSEPs for the 

simulation study 

 

 Simulation study – Part I 

 RMSECV Std. Deviation RMSEP Std. Deviation 

Sequential 0.3375 0.1630 1.0504 0.5250 

Global  0.3245 0.0436 0.3479 0.0261 

 Simulation study – Part II 

 RMSECV Std. Deviation RMSEP Std. Deviation 

Sequential 0.3368 0.1661 1.1678 0.4912 

Global  0.3186 0.0502 0.3230 0.0291 

 

From the table, it is evident that, in this context, the two approaches are leading to different 

results. Independently of the data set structure, the sequential approach results in higher 

RMSECV and RMSEP.  

Another important parameter to look at is the number of latent variables selected by each 

approach. The optimal complexity of the blocks is known a priori from the simulation, and it 

is five components for 𝐗 and two for 𝐙 (one of which is common with 𝐗). Histograms in 

Figure 5 report the number of latent variables suggested by the two different approaches and 

their occurrence over the replicate models. Due to the common component, the “expected” 

optimal complexity is either five plus one or four plus two (for 𝐗 and 𝐙, respectively). As 

shown in the figure, especially for the first study, the global approach leads to the selection of 

the “expected” number of latent variables more frequently than the sequential one. Moreover, 

the sequential approach more often underestimates the number of components. This is 

probably the reason of the observed differences between the RMSECV and RMSEP obtained 

by this approach. All these considerations suggest that the global approach is more 

appropriate in identifying the optimal complexity in the data blocks.  

This study was carried out just as a preliminary investigation in order to choose the approach 

to follow across all the research; therefore, it is not presented in any paper enclosed to this 

thesis. 
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Figure 5: Latent variables selected in the Simulations Study (Text box 1): a) using global approach 

in Simulation Study-Part I; b) using sequential approach in Simulation Study-Part I; c) using global 

approach in Simulation Study-Part II; d) using sequential approach in Simulation Study-Part II. 

 

 



28 
 

 

 

Simulation study: Simulation of data      Text Box 1 

Simulation Study-Part I 

𝑿 and 𝒁  are spectra-like block, 𝑿- and 𝒁-loadings are simulated as sum of 

Gaussians. In order to mimic a real data set, the two blocks are simulated having 

unique components 𝑻𝑼 (specific for each block) and a common component 𝑻𝑪. 

The 𝑿-block has four unique components plus the common one, while 𝒁-block 

presents one unique and one common component. 𝑿-scores 𝑻𝒙 and 𝒁-scores 𝑻𝒛 

are generated as: 

             𝑻𝑿 = [𝑻𝑪 𝑻𝑼𝑿] and 𝑻𝒁 = [𝑻𝑪 𝑻𝑼𝒁]        (Tb1,Tb2) 

 

Where 𝑻𝑼𝑿(𝑵×𝟒) and 𝑻𝑼𝒁(𝑵×𝟏) are the unique components for 𝑿 and 𝒁, 

respectively. All the scores are simulated from the normal distribution N(0,1). 

𝑿 and 𝒁 are generated as a TP-product.  𝑿- and 𝒁-loadings (𝑷𝑿 and 𝑷𝒁) are 

simulated as sum of Gaussians. 𝑿 and 𝒁 dimensions are 100x500 and 100x300, 

respectively. 

Finally, 𝒚 is generated as: 𝒚 = 𝑻𝒃. 𝑻 are the concatenated scores from both 

blocks ( 𝑻 = [𝑻𝑿 𝑻𝒁]) while 𝒃(7×1)is the coefficient vector generated as a matrix 

containing random values drawn from the uniform distribution in the open interval 

(0.05, 1.05). 

 

Simulation Study-Part II 

𝑿 is spectra-like, and 𝒁 mimics a process-block. Consequently, 𝑿-loadings are 

generated as in Part I while 𝒁-loadings are simulated in order to reproduce process 

variables. A random number (between 1 or 2) of variables per component have a 

value between 0.75 and 1.25 while all the others have values between -0.25 and 

0.25. 𝑿 and 𝒁, 𝑻 and 𝒚 are built as in Part I (same number of components and 

same distinction between common and unique). 𝑿 and 𝒁 have dimensions 

100x500 and 100x15, respectively. 

 

  
Text Box 1 – Details on the Simulation Study 
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Accordingly, the global approach is the one followed in all the SO-PLS models presented in 

this work. 

In the global strategy, RMSECV is calculated as a function of all the possible combinations of 

latent variables. Selection of the combination that gives the lowest error can be accomplished 

directly inspecting the numerical values obtained. It is also possible to make a graphical 

visualization of all the values, achieving a more effective and clear idea of which combination 

of latent variables is the most appropriate. These graphs (the so-called the Måge plots) are 

obtained plotting the RMSECVs as a function of the total number of component tested. An 

example is shown in Figure 6, where a maximum number of ten latent variables per block was 

allowed. In the figure, the two numbers in brackets indicate the components of the first and 

the second PLS regression, respectively. Note that, different combinations of latent variables 

present the same total number of latent variables (e.g., a total complexity of six results from 

combinations: one plus five, two plus four, three plus three, four plus two and five plus one). 

In order to obtain a clearer visualization, the combination of latent variables reported in 

brackets is the one (among all the combinations with the same total complexity) resulting in 

the lowest RMSECV (e.g., for a total number of latent variables equal to six, only four plus 

two is reported). This representation leads to two important considerations:  

 

1) Different combinations of latent variables, which sum up to the same total amount of 

latent variables (the entity called total complexity in the plot in Figure 6), can give 

different RMSECVs. Different models having the same total complexity are built using 

different numbers of latent variables per block. Consequently, some models are built 

underestimating the number of components in one block and overestimating it in the 

other; predictions can be negatively affected by this.    

 

2) Combinations of latent variables that lead to models with different total complexity 

could give similar RMSECVs. Looking at Figure 6, this would be the case of 

combinations four plus two and four plus four. They give approximately the same 

RMSECV. For the sake of parsimony, when two RMSECVs are not statistically different, 

the combination of latent variables suggested is the one with the smallest total complexity.  
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Figure 6: Måge Plot for SO-PLS. Number of latent variables per X- and Z-block, are reported in 

brackets in the plot. 

Once the plot is created, it is quite straightforward to find the optimal combination of latent 

variables for the model. It has to be highlighted that the same plot can be prepared for any 

kind of regression model. This could be very useful to compare different (individual or multi-

block) methods. A plot reporting a comparison between RMSECVs from different regression 

methods is shown in Figure 7 in Paper I.  

As mentioned, sometimes it is not possible to inspect Måge plots (or RMSECVs values). In 

simulations the choice of the optimal combination of components needs to be automatic. One 

option would be to simply select the combination of latent variables which result in the lowest 

RMSECV. Nevertheless, this could lead to overestimation of the number of components and 

consequently to overfitted models. Consequently, in all the simulations presented in this work, 

a more parsimonious automatic selection of the optimal complexity was applied. Namely, the 

selected combination of components is the smallest one resulting in an RMSECV not 

statistically different from the absolute minimum of the error curve. Differences are tested by 

a χ2 test (significance level 5%) [35]. 

 

2.3.3.2 Interpretation of SO-PLS models  

Regarding interpretation, SO-PLS provides different possibilities. In particular, the effect of 

the addition of each block can be evaluated and interpreted.   
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Scores Plots 

From SO-PLS models, interpretable scores plot can be obtained. In particular, together with 

the “usual” scores plots of the individual blocks, additional information can be obtained by 

graphing 𝐓𝑋 against 𝐓𝑍𝑜𝑟𝑡ℎ. Scores plot for SO-PLS can be found in Paper I.  These plots can 

be interpreted as it is usually done for scores plots from PLS. 

 

Loadings Plots 

Loading plots can be created for each block involved in the SO-PLS model. These indicate 

which block-variables are influencing each component. In particular, in case of blocks of 

analytical measures, loadings maintain the chemical information. Interpretation of loadings 

from SO-PLS models is one of the focus in Paper IV. Simulation studies have been conducted 

to understand whether their inspection could lead to reasonable (and reliable) interpretation: it 

was found that loadings can be a relevant tool to inspect an SO-PLS model. Often, it came out 

that there is a slight difference between the “expected” number of components (ground truth) 

and the ones identified as interpretable according to the proposed explained variance criterion 

(Paper IV). This could indicate that SO-PLS models sometimes need one additional 

component to get rid of the noise. Nevertheless, this does not represent a huge overestimation 

of the latent variables.  

Note that the procedure to display 𝐗-loadings is different from the procedure used to plot 𝐙-

loadings. 𝐗-loadings plots can be displayed simply plotting 𝐏𝑋 loadings from the first 

regression of the SO-PLS model. Instead, 𝐙-loadings cannot be represented directly. In fact, 

due to the orthogonalization step, 𝐙-loadings may not be in the same row space of 𝐙 (but they 

are in the same column space). They can be projected back in the original space before being 

interpreted. This is done calculating:  

𝑷z = (𝐓𝐙𝐨𝐫𝐭𝐡
𝐓𝐓𝐙𝐨𝐫𝐭𝐡)−1𝐓𝐙𝐨𝐫𝐭𝐡

𝐓𝐙             (17) 

 

Regression coefficients Plot 

Regression coefficients are the coefficients of the linear combination(s) relating the predictors 

to the response(s). Their magnitude and sign may reflect the entity of the contribution of 

individual predictors to the 𝐘-variable(s). Accordingly, plotting the regression vector(s) can 

represent a further interpretation tool.  
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However, it has to be stressed that particular care should be taken when interpreting the 

regression coefficients. First of all, in order for them to truly reflect the relative importance of 

the predictors, proper scaling of the variable should be adopted. Moreover, the presence of 

interferents (whose signals overlap with those of the analyte(s) of interest) leads to regression 

coefficients showing profiles different from those of the pure substances. A wider discussion 

of these problems can be found in [36-37]. 

 

2.3.4 SO-N-PLS in detail 

A novel multi-block and multi-way method 

 

SO-N-PLS is a novel method proposed to build regression (and classification) models 

handling multi-way arrays (Paper III). This method is a natural extension of SO-PLS to the 

multi-way field.  

In principle, multi-block methods can handle multi-way arrays after unfolding, but this 

procedure could lead to some issues; therefore, methods conceived for multi-way arrays are 

an actual need. As said in Paragraph 2.2, in literature there are some methods which allow the 

combination of blocks with a different number of modes. Despite this, this field is still 

relatively unexplored. Consequently, the possibility of having a multi-block method able to 

handle multi-way arrays and, at the same time, which retains the above exposed benefits of 

SO-PLS, was investigated. As a consequence, a novel method called SO-N-PLS was 

developed. This method is conceived to handle any kind of multi-way arrays; in this work, the 

focus has been on two- and three-way arrays. The method has been studied and tested using 

no more than two blocks of predictors at a time. Theoretically, it can be applied on a larger 

number of predictor arrays. The algorithm is, as for SO-PLS, divided in four steps (upon 

centering and possibly scaling of the data). The main difference between SO-PLS and SO-N-

PLS is that PLS regression is replaced by N-PLS regression. Considering the case of two 

three-way predictors 𝐗 and 𝐙, the algorithm can be summarized as follows:  

1) 𝐘 is fitted to 𝐗  by N-PLS regression.  

2) 𝐙  is orthogonalized with respect to the scores (𝐓𝑋) of the previous regression, 

obtaining 𝐙𝑂𝑟𝑡ℎ. 

3) Residuals from step 1) are fitted to 𝐙𝑂𝑟𝑡ℎ by N-PLS regression.  

4) The full predictive model can be computed from the equation: 
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𝐘 = 𝐗un𝛄 + 𝐙un𝛎 + 𝐄             (18) 

 ( 𝛄(𝐽𝐾𝑥𝐴)  and 𝛎(𝐻𝐿𝑥𝐴) are the regression coefficients and 𝐄(𝑁×𝐴)  is the residual matrix) 

 

In each step of the algorithm, some aspects need to be stressed: 

 

Step 1 

N-PLS is a direct extension of classical PLS for N-dimensional data arrays [38-39]. In this 

specific case (three-way arrays), it is called tri-PLS, and the predictor array is decomposed by 

a tri-linear decomposition. Given 𝐗(𝑁×𝐽×𝐾), the 𝐹-component model can be expressed as :  

                              𝑥𝑛𝑗𝑘 = ∑ 𝑡𝑛𝑓𝑤𝑗𝑓
𝐽 𝑤𝑘𝑓

𝐾 + 𝑒𝑛𝑗𝑘
𝐹
𝑓=1               (19) 

Where 𝒕 are the 𝐗-scores and 𝐰J and 𝐰K are the 𝑿-weights of the second and of the third 

mode, respectively. As in Martens’ PLS algorithm [40], N-PLS does not present any 

additional sets of loading vectors 𝐩. Components are extracted sequentially and loading 

weights 𝐰 provide scores having maximum covariance with the still unexplained part of 𝐘. 

These are different from the weights that would be extracted by PLS on a two-mode matrix or 

on an unfolded three-way matrix.  

 

Step 2 

The orthogonalization step is performed on the unfolded three-way block. 𝐙𝑜𝑟𝑡ℎ is obtained 

replacing 𝒁 with 𝐙𝑢𝑛 in Eq. 11.  Finally, 𝐙𝑜𝑟𝑡ℎ is refolded back to the original structure. 

 

Step 3 

Once again regression is performed by N-PLS. Residuals from the first regression are fitted to 

𝐙orth . Comments made for step 1 apply also here. 

 

Step 4 

Finally, the predictive model can be calculated. A regression equation function of the original 

variables (instead of score vectors), can be formulated in terms of unfolded matrices (Eq.18). 

The equation can then be used for prediction of new samples. 

Note that regression coefficients from SO-PLS (on unfolded blocks) and SO-N-PLS models 

have same size, but they are calculated differently. In the case of SO-N-PLS, regression 

coefficients are calculated following Method 2 suggested in De Jong [41]. A weight matrix 𝑾 

is calculated as: 
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𝐖 = [𝒘1
𝐽
 𝒘1

𝐾 𝒘2
𝐽
 𝒘2

𝐾 … 𝒘𝐹
𝐽
 𝒘𝐹

𝐾]            (20) 

Then, the weights 𝐑, allowing the direct calculation of the scores from the unfolded three-way 

array, are obtained as: 

𝐑 = 𝐖/𝛅              (21) 

Where 𝛅 is the upper triangular part of the inner product 𝐖𝐓𝐖.  

Finally, regression coefficients 𝐛N−PLS are calculated as:  

 

𝐛N−PLS = 𝐑𝐐𝐓             (22) 

 

Benefits of SO-N-PLS 

SO-N-PLS has demonstrated to possess different benefits, both from the prediction and 

the interpretation point of view: 

1. Unfolding is not required: SO-N-PLS allows handling multi-way data without 

performing any preliminary unfolding. This represents a huge advantage, since models 

built on unfolded data are more prone to overfitting and therefore less reliable. 

Moreover, being built on the original multi-way data, models result simpler and, in 

particular, info are condensed. Therefore, they lead to more effective interpretations. 

2. Good predictions on small noisy data sets: When data have a clear three-way 

structure and there is linear relationship between predictors and response, SO-N-PLS 

gives accurate predictions. In particular, it performs better than MB-PLS and SO-PLS 

on highly noisy data sets. This indicates that SO-N-PLS filters out the noise better than 

the other two methods.  

3. SO-N-PLS finds the actual underlined complexity in data: SO-N-PLS has 

demonstrated to select the actual complexity in data. This is an advantage from the 

interpretation point of view; in fact, more components would mean more parameters to 

interpret. Instead, selecting the smallest reasonable number of latent variables, 

information is condensed in the simplest model possible.    

4. Graphical interpretation: A number of plots can be created to graphically interpret 

SO-N-PLS models. Scores, weights (outer product of 𝒘𝐽 and 𝒘𝐾) and regression 

coefficients can be plotted and interpreted (More details in the following paragraph). 
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2.3.4.1 Interpretation of SO-N-PLS models  

 

Scores Plots 

Scores plots in SO-N-PLS are displayed as in SO-PLS; they can be interpreted in the same 

way. 

 

Weights Plot 

Weights plots can be obtained in two different ways: 

1. Plotting 𝐰𝐽 and 𝐰𝐾 individually 

2. Plotting the outer product 𝐰𝐽(𝐰𝐾)𝑇 as a landscape 

 

𝐗-weights can be interpreted directly; 𝐙-weights have the same geometrical issue exposed 

above for 𝐙-loadings (see Paragraph 2.3.3.2). Therefore, they also need to be projected back 

in the 𝒁 space: 

𝐖z = (𝐓𝐙𝐨𝐫𝐭𝐡
𝐓𝐓𝐙𝐨𝐫𝐭𝐡)−1𝐓𝐙𝐨𝐫𝐭𝐡

𝐓𝐙un            (23) 

 

Regression coefficients Plot 

Regression coefficients (𝛄 and ν in Eq.18) can be reshaped and plotted as landscapes. For the 

interpretation, the same consideration exposed in Paragraph 2.3.3.2 apply.   
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Chapter 3: Multi-block Classification 

 

Figure 7: Conceptual Flow chart: Multi-block classification. Models are used to predict class-

belonging and to interpret the system.  

 

3.1 Brief introduction to classification  

In data analysis, it can be useful to group objects on the base of some specific characteristics 

they have. Objects with similar features will belong to the same class or category. 

Consequently, the term classification refers to the capability of separating objects depending 

on specific characteristics. These characteristics can be measured, or known a priori. For 

instance, samples can be classified on the basis of the content of a specific compound, or 

because of their geographical origin. Obviously, changing the qualitative information one is 

looking at, the same objects will give rise to different groupings. 

In any case, in order to assign objects to categories, a classification model is needed. Once the 

calibration model is built, it is possible to predict class-belonging for unknown samples.  

In literature, there are plenty of classification methods. They are mainly divided in methods 

that focus on modelling the boundaries among categories (discriminant classification) and 

those which focus on identifying the portion of space occupied by a specific class (class-

modelling classification) [42]. A brief description of the two is given below. 
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Discriminant methods 

Applying discriminant methods, classification is based on differences between samples 

coming from the various categories. These methods divide the space of the variables in as 

many regions as the number of the groups in the calibration set. Consequently, each sample is 

assigned to a specific category.  

These methods define the class-belonging on the base of the Bayes’ rule [43]. Therefore, the 

(posterior) probability that each sample belong to a class is calculated for all the classes. 

Then, it is assigned to the class with the highest probability. Consequently, what mainly differ 

these methods, is the way this probability is calculated.  

Given a sample 𝒙𝒊, its posterior probability 𝑝(𝑔|𝐱𝐢) of belonging to the 𝑔-th class can be 

expressed as:  

𝑝(𝑔|𝐱𝒊) ∝ 𝑝(𝐱𝒊|𝑔)𝑝𝟎(𝑔)             (24) 

Where 𝑝(𝐱𝒊|𝑔) is the likehood and 𝑝0(𝑔) is the a priori probability that a sample belong to 

the specific class 𝑔. 

 

Class-modelling classification methods 

 Class-modelling classification methods are many, and quite different from each other [44-

46]. Applying this classification procedure, the attention is more on intraclass similarities, 

than on interclass differences (as it is for discriminant methods). Consequently, these methods 

focus on specific characteristics of each group. Since each category is modelled independently 

on the others, not all the variable space corresponds to class-belonging regions. Therefore, it 

is possible that some samples are not assigned to any category (or they can pertain to more 

than one group). 

Additionally, classification methods can also be differentiated because of the mathematical 

nature of the classification-rule. This can be linear or non-linear. 

In the present work, the attention has been on discriminant classification. This family of 

methods have been preferred because of the univocity of the response. In particular, the focus 

has been on the Linear Discriminant Analysis (LDA) by Fisher [47].  

 

3.2 Linear Discriminant Analysis (LDA) 

The Linear Discriminant Analysis (LDA) is a method proposed by Fisher [47], and it is one of 

the first of this genre. LDA’s target is to find the linear surfaces that optimize the separation 

between the different class-regions of the system under study [48-49].  

The method relies on two main assumptions: 
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1. Samples are normally distributed (among each class) 

2. The dispersion is the same in each class   

From the first assumption, for the 𝑔-th class, it follows that: 

 

𝑝(𝐱𝒏|𝑔) =
𝟏

(𝟐𝝅)
𝑱
𝟐|𝑺𝒈|

𝑒−
𝟏

𝟐
(𝒙𝒏−𝒙̅𝒈)

𝑻
𝑺𝒈

−𝟏(𝒙𝒏−𝒙̅𝒈)
            (25) 

where:  

𝐱̅𝑔 and 𝐒𝒈 are the centroid and the variance/covariance matrix for class 𝑔, respectively, while 

𝐽 is the number of variables. 

From the second assertion, it comes that the variance/covariance matrix is the same for all the 

categories and it is: 

𝐒 =
∑ (𝑛𝑔−1)𝐺

𝑔=1 𝑺𝑔

𝑁−𝐺
              (26) 

Where 𝑁, 𝑛𝑔 and 𝐺 are the total number of samples, the number of samples in the 𝑔-th class 

and the total number of classes, respectively. 

The probability that a sample belongs to a specific 𝑔 class corresponds to: 

𝑝(𝑔|𝐱𝒏) =
𝒄𝒈𝒑𝟎(𝒈)

(𝟐𝝅)
𝑱
𝟐|𝑺|

𝑒−
𝟏

𝟐
(𝒙𝒏−𝒙̅𝒈)

𝑻
𝑺−𝟏(𝒙𝒏−𝒙̅𝒈)

            (27) 

Where 𝑐𝑔 is a normalization factor which takes into account the requirement that the sum of 

the probabilities that a sample belongs to each category is 1. 

In agreement with the Bayes’ rule, a sample belonging to class 𝐼 will fall in the region defined 

by:  

𝑝(𝐼|𝐱) >  𝑝(𝑀|𝐱)   ∀𝑀 = 1 … 𝐺, 𝑀 ≠ 𝐼           (28) 

Consequently, for more than two categories, more than one hyperplane is needed to divide the 

G classes. Each pair of classes is divided by a decision boundary. The boundary correspond to 

that portion of the space where the probability that a sample belongs to each class of the pair 

is the same. Mathematically, 𝑝(𝐼|𝒙) =  𝑝(𝑀|𝒙). 

Which can be written:  

             log (
𝒄𝒈𝒑𝟎(𝑰)

𝒄𝒈𝒑𝟎(𝑴)
) −

𝟏

𝟐
(𝐱̅𝑰 − 𝐱̅𝑴)𝑻𝐒−𝟏(𝐱̅𝑰 − 𝐱̅𝑴) + (𝐱̅𝑰 − 𝐱̅𝑴)𝑻𝐒−𝟏𝐱 = 𝟎       (29) 

      ∀𝐼, 𝑀 = 1 … 𝐺, 𝐼 ≠ 𝑀  

 



39 
 

Defining 𝑤0 = log (
𝒄𝒈𝒑𝟎(𝑰)

𝒄𝒈𝒑𝟎(𝑴)
) −

𝟏

𝟐
(𝐱̅𝑰 − 𝐱̅𝑴)𝑻𝐒−𝟏(𝐱̅𝑰 − 𝐱̅𝑴) and 𝑤𝑻 = (𝐱̅𝑰 − 𝐱̅𝑴)𝑻𝐒−𝟏, Eq.29 

becomes: 

𝑤0 + 𝐰𝑻𝐱 = 0             (30) 

Equation 30 suggests that the data can be projected onto a direction orthogonal to the decision 

boundaries (𝐰𝑻). Such direction is called a canonical variate, and the corresponding scores 𝐶 

are defined by 𝑤0 + 𝐰𝑻𝐱 = 𝐶. The canonical variate represents the direction (orthogonal to 

the decision boundary, i.e. the hyper-plane represented by Eq. 30) of maximum discrimination 

between the classes. It maximizes the ratio between the between-class variance (the 

covariance between the samples of different classes, i.e. the distance between the centroids) 

and the within-class covariance (the covariance between samples in the same class) [34, 50-

52]. 

In the multi-category case, the between variance/covariance matrix 𝐒𝒃 can be defined as:  

𝐒𝒃 =
1

𝐺
∑ (𝐱̅𝑔 − 𝐱̅)(𝐱̅𝑔 − 𝐱̅)

𝑇𝐺
𝑔=1              (31) 

Where 𝐱̅𝑔 and 𝐱̅ are the mean vectors of class 𝑔 and of all the samples, respectively. 

In this case, the canonical variates that maximize the separation among classes are the 

eigenvectors 𝐰𝒇 corresponding to the largest 𝜆𝑓 in :  

𝐒−𝟏𝐒𝒃𝐰𝑓=𝜆𝑓𝐰𝑓              (32) 

This means canonical variates are the eigenvectors which maximize the ratio 
𝑺𝒃

𝑺
 i.e. which 

simultaneously maximize the distance between the centroids of the groups and minimize the 

distances between samples within each group. This makes the canonical variates particularly 

relevant for the representation of LDA outcomes. A graphical tool conceived for the 

inspection of classification results based on projection of samples in the space of canonical 

variates has been presented in Paper I and Paper III and exposed below in Paragraph 3.3.3 

From Eq. 32 is evident that LDA requires that 𝑺 is an invertible matrix. This means, for 

example, that the number of objects should be at least equal to the number of variables and 

that the predictor are as least correlated as possible. These conditions do not occur often. In 

order to overcome the problem, different solutions have been proposed. One of these is to use 

PLS to obtain few and uncorrelated (latent) variables before applying LDA. This is discussed 

widely in the following paragraph.    
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3.3 PLS based classification methods 

As said above, invertibility of the variance/covariance matrix 𝑺 is one of the constraints for 

the application of LDA. In literature, many of the proposed solutions involve the projection of 

the predictor matrix onto a relevant sub-space of latent variables by PLS [53-56]. 

 

3. 3.1 SO-PLS-LDA in detail  

SO-PLS can be a starting point for a classification model. Paper I is focused on the extension 

of SO-PLS to the classification field. SO-PLS has been combined with LDA since linear 

discriminant analysis fits well with the sequential philosophy of SO-PLS. It has been 

demonstrated in Paper I that this approach gives good prediction ability and that it is easy to 

compute.   

In this work, SO-PLS-LDA has been applied considering two predictor blocks 𝐗 and 𝐙 and a 

categorical dummy matrix 𝐘 (reporting the class information) but in principle this can be 

extended to even more blocks. This method has been tested on both simulated and real data 

sets obtaining good results. From the prediction point of view (See Paper I and Paper III), SO-

PLS-LDA has demonstrated to be comparable to MB-PLS-LDA and SO-N-PLS-LDA (see 

Paragraph 3.3.2). Concerning interpretation, it leads to a number of graphical interpretation 

tools discussed below in Paragraph 3.3.3 and in Papers I and III.  

SO-PLS-LDA algorithm can be summarized as follows:  

 

1. The SO-PLS model is created as exposed in Paragraph 2.3.3. 𝐘 is a categorical 

dummy matrix reporting the class information.  

2. 𝐓𝑿 and 𝐓𝒁𝒐𝒓𝒕𝒉are concatenated obtaining a total score matrix 𝐓 = [𝐓𝑿 𝐓𝒁𝒐𝒓𝒕𝒉] 

3. LDA is applied to the scores 𝐓 [56].  

As demonstrated in [56] LDA can safely be applied on scores instead of on predicted 

values.  

 

3.3.1.1 Estimation of the optimal number of latent variables in SO-PLS-LDA 

The optimal complexity in SO-PLS-LDA is defined similarly as it is in SO-PLS (described in 

Paragraph 2.3.3.1). Also in this case, Måge plots can be exploited for picking the best 

combination of latent variables. In paper I two different ways of displaying the Måge plot for 

classification results are discussed. In fact, these plots can be obtained as explained in 

paragraph 2.3.3.1, or using the classification error instead of the RMSE. The classification 
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error fits better with the classification philosophy and is therefore the suggested approach. 

Nevertheless, when the number of samples per each class are few, it is better to use the 

RMSE. In fact, in this case, the classification error is an unstable measure of model quality.  

Classification error is a (more) crisp criterion while the dummy 𝒚 has continuous values. 

When there are only few samples per class, classification results will be affected by the 

specific sub-set used in each cross-validation loop. This is due to the fact that the 

misclassification of only one sample highly increase the classification error, magnifying the 

difference between two models that are actually giving similar classification rates. As a 

consequence, the resulting classification error could be a non-reliable parameter to define the 

optimal complexity to be used for the final model.  

  

3.3.2 SO-N-PLS-LDA in detail  

As for SO-PLS-LDA, LDA can be applied on the total scores from SO-N-PLS in order to 

create classification models. The number of components are chosen as in SO-PLS-LDA 

(Paragraph 3.3.1.1). Interpretation of results is discussed below.    

 

3.3.3 Interpretation of classification results in SO-PLS-based models  

Classification results are usually reported stating the amount of samples correctly classified 

(or the number of misclassified samples) out of the total amount. The so-called classification 

error corresponds to the ratio of the number of misclassified samples over the total number of 

samples. It can be reported as a decimal number or as a percentage.  

Prediction is not the only goal in classification; interpretation of the results has a high 

relevance as well. Consequently, graphical representation of results is very relevant in the 

inspection of the system under study. PLS-LDA results are generally investigated looking at 

scores plots, regression coefficients plots or inspecting the 𝐘-predicted from the classification 

model. These representations (after small adaptations to the multi-block case) also suit SO-

PLS-LDA models. Examples of scores plots are shown in Papers I and III and displayed in 

Figure 8a. A 𝐘-predicted plot is shown in Figure 8b. Moreover, an additional representation 

(based on canonical variates), which fit the SO-PLS-LDA philosophy, is proposed in Papers I 

and III and displayed in Figure 8c.  

Figure 8 is based on SO-N-PLS models calculated on the reduced Lambrusco data set (for a 

detailed description of the data set and of the classification problem, see [57] and Paper III).  



42 
 

 

Figure 8: Proposed graphical representation tools for SO-PLS-LDA models (Reduced Lambrusco 

data set): Each class is represented by a type of Lambrusco wine: Lambrusco Salamino (in green) and 

Lambrusco Sorbara (in blue). Of these thirty nine samples (twenty for Salamino and nintheen for 

Sorbara), SO-N-PLS-LDA (but also SO-PLS and MB-PLS) misclassified five samples in total (two for 

Salamino and three for Sorbara). a) Scores Plot; b) Y-predicted plot; c) Canonical Variates plot.  

  

Scores Plots Interpretation 

A straightforward way of inquiring classification results is looking at the scores plot. Looking 

at samples in the space of the latent variables it is easier to observe groupings or to spot 

“suspicious” samples (like outliers). In SO-(N)-PLS-LDA contributions from different blocks 

of predictors have to be accounted for at the same time. Samples can be projected in the space 

of the first 𝐗- and 𝐙𝑜𝑟𝑡ℎ-scores (as in Figure 5 in Paper I). In Figure 8a, samples are displayed 

in the space of the first two 𝐗-components and the first 𝐙𝑜𝑟𝑡ℎ-component; misclassified 

samples are circled in black. The model is built using two components for the 𝐗-block and 

one for 𝐙. Even if samples are shown in the space of all these components, the two classes 

look overlapped. Consequently, the investigation of the scores plot would not be a particularly 

suitable tool for the interpretation of this system.  

 

Inspection of Predicted 𝒀 

A further interpretation of the classification results can be done plotting the 𝐘 predicted from 

the classification model. This kind of interpretation results particularly useful for two-class 

problems. In fact, in this case, the threshold, used to define the class belonging, acts as a 

boundary which distinguish the two classes. An example of this representation is reported in 

Figure 8b. The class boundary is estimated by applying LDA directly on the predicted 𝐘 

vector. This plot gives a good representation of the results. The two groups appear separated 

except for the misclassified samples (circled in black).  
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Inspection of samples projected onto the canonical variates space 

An additional way of interpreting the classification results looking at samples in the space of 

the canonical variates is here proposed. This graphical tool is presented in Paper I and applied 

also in Paper III. As explained in Paragraph 3.2, canonical variates are intrinsically related to 

classification; consequently, their use for interpretation of the results is natural. A graphical 

tool for interpretation based on them has been developed. An example is displayed in Figure 

8c. This plot is created using the cross-validated 𝐘-values to calculate the covariance matrices 

used for the extraction of the canonical variates. For the reasons explained above in Paragraph 

3.2, projecting samples onto this sub-space represents the most effective way of graphically 

highlighting the different grouping tendencies. In Figure 8c the two classes appear separated. 

Salamino samples have positive values, while Sorbara samples have negative ones. 

Misclassified samples are those which do not follow this trend (except for sample number 

eight, which has a very low but positive value).  

 

Interpretation of regression coefficients  

Outcomes from a PLS-based classification model can be interpreted examining the regression 

coefficients from the PLS (or N-PLS) involved. In fact, since the coefficient represent the 

relation between each block of predictors and the dummy matrix, they can provide 

information about which variable is more relevant for classification. Additionally, they can 

also indicate the “direction” of the discrimination, i.e., whether a predictor is higher (or lower) 

in a class than the other(s). However, it should be recalled that this type of interpretation is not 

so straightforward and not always completely reliable, as already discussed in Paragraph 

2.3.3.2.  
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Chapter 4: Variable Selection 

 

Figure 9: Conceptual Flow Chart: Variable selection. Different tools for interpreting multi-block 

model can be obtained. Variable selection can be seen as one of them.  

 

Variable selection is a procedure proposed in order to select a sub-set of variables to be used 

for the creation of a reduced regression model. It was originally introduced for handling 

stability problems in situations with high collinearity in data [58-59]. Often, removing non-

informative and noisy variables generally improves prediction ability. Moreover, reducing 

variables, the system becomes simpler, with the consequence that it can be more easily 

interpreted. It has to be stressed that, since the selection of variables represent an additional 

model optimization step, validation is particularly relevant to avoid overfitted models [60].  

Another important topic to be aware of is the presence of outliers. Variable selection relies on 

evaluating (often very little) differences in quality indices (e.g., RMSECV) or on the 

evaluation of significance model parameters. Consequently, the presence of outliers could 

mislead the selection of variables with the risk of ending up with a non-reliable sub-set of 

predictors.   

Different categories of methods to select variables have been proposed in classical regression. 

The importance of the variables can be assessed through model parameters, diagnostic tools, 

classical statistical testing approaches or by a combination of these [61-66]. In some cases, 

(e.g.in spectroscopy or chromatography) it is more reasonable to selected interval of 
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contiguous variables instead of inspecting each individual predictor (e.g., as in iPLS and in 

related methods [67-68]).  

Paper II is focused on the introduction of variable selection in a multi-block context. These 

two fields are seldom combined, and the literature lacks discussion on it. Some strategies for 

combining multi-block and variable selection are discussed in detail in Paragraph 4.2. The 

thesis is restricted to variable selection in the two methods: MB-PLS and SO-PLS. 

In order to decide which standard variable selection method to use in the combination with 

multi-block regression, seven published variable selection methods have been taken into 

consideration. The three most promising have been selected: selectivity ratio, VIP and 

forward selection. This additional reduction has been based on an explorative simulation 

study described in Paper II. In particular, a desirability index (𝑑𝑖) has been developed in order 

to evaluate the suitability of the different approaches in this context. The idea behind the 

index is to find methods that select the best sub-set of variables from the interpretation point 

of view. This index is based on relative percentage of selected: 

 

1. ‘selective’ variables (𝑅𝑠𝑒𝑙) 

2. ‘irrelevant’ variables (𝑅𝑖𝑟𝑟) 

3. ‘relevant but not selective’ variables (𝑅𝑟𝑛𝑠)  

4. noise-variables (𝑅𝑛𝑜𝑖𝑠𝑒)  

 

In this case, all of them are used as fractions between zero and one (for more details about 

these factors, please look at Appendix B in Paper II). 

High values (close to one) of ‘selective’ variables and ‘relevant but not selective’ variables 

have a good influence on the final model while close to one values of ‘irrelevant’ and noise 

variables have a bad one. Consequently, the desirability index has been calculated as:  

 

𝑑𝑖 = √𝑅𝑠𝑒𝑙 ∙ (1 − 𝑅𝑖𝑟𝑟) ∙ 𝑅𝑟𝑛𝑠 ∙ (1 − 𝑅𝑛𝑜𝑖𝑠𝑒)4
            (33) 

 

Another desirability index is suggested in Paper II. This is more prediction-oriented, meaning 

that it is conceived to figure out which variable selection method selects the sub-sets of 

variables leading to the best predictions. In fact, it takes into account the explained variance 

(𝑉𝑎𝑟𝑠𝑒𝑙) and those factors deemed to mislead more the predictions, namely the relative 
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percentage of selected ‘irrelevant’ and noise variables. Desirability index for predictions (𝑑𝑖𝑝) 

is calculated as:  

 

𝑑𝑖𝑝 = √𝑉𝑎𝑟𝑠𝑒𝑙 ∙ (1 − 𝑅𝑖𝑟𝑟) ∙ (1 − 𝑅𝑛𝑜𝑖𝑠𝑒)3
            (34) 

 

All the variable selection methods inspected are described in the following paragraph. The 

different procedures for variable selection in multi-block are mentioned in Paragraph 4.2 and 

described in detail in Paper II.  

 

4.1 Variable selection methods used in the work 

Different variable selection methods have been used in this work. These are:  

 

1. Selectivity Ratio (SR) 

2. Variable Importance in Projection (VIP) 

3. Significance multivariate correlation (sMC) 

4. Elimination of Uninformative Variables for multivariate calibration (UVE) 

5. Truncation-PLS (t-PLS) 

6. Forward Selection 

7. Jackknifing 

 

Some of the methods rely on the evaluation of (regression) model parameters. Regression 

coefficients or loadings can indicate how variables are affecting the model. Usually, high 

values correspond to high relevance of the variable, while low ones indicate their irrelevance. 

Additionally, these model parameters can be used to generate further indices with the same 

aim, but that are supposed to be more accurate in same situations.  

Other methods are based on classical statistics approaches, readapted in the light of 

chemometrics. A brief description of the listed methods is reported below. 

 

Selectivity Ratio (SR) 

Selectivity ratio (SR) [69-71] is the ratio between the variance explained by each predictor 

and the residual variance. For a 𝐗 matrix with 𝑁 observations and 𝐽 variables, it can be 

expressed like: 
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       𝑆𝑅𝑗 =
∑ 𝑥̂𝑖𝑗

2𝑁
𝑖=1

∑ 𝑒𝑖𝑗
2𝑁

𝑖=1

                         (35) 

The approach followed is the one suggested by Kvalheim in [70] where it is shown that 𝐗 can 

be estimated by the means of the Target Projection (TP)-loadings (𝐩𝑇𝑃). 

These 𝐩𝑇𝑃 are considered a useful tool to interpret PLS-models since the corresponding TP-

scores (𝐭𝑇𝑃) are proportional to the predictive response 𝐲̂. 

TP-weights are defined as:  

𝐰𝑇𝑃 =
𝒃

‖𝒃‖
              (36) 

TP-scores (𝐭𝑇𝑃) can be calculated as:  

 

          𝐭𝑇𝑃 = 𝐗𝐰𝑇𝑃 =
𝑦̂

‖𝒃‖
             (37) 

 

And TP-loadings (𝐩𝑇𝑃) can be obtained simply projecting the 𝐗 on the 𝐭𝑇𝑃: 

 

     𝐩𝑇𝑃 =
𝑿𝑇𝒕𝑇𝑃

𝒕𝑇𝑃
𝑇𝒕𝑇𝑃

                                    (38) 

   

   At the end, 𝐗̂ can be written as :  

𝐗̂ =  𝐭𝑇𝑃𝐩𝑇𝑃
𝑇              (39) 

 

The variance and the residuals can be estimated by Eq. 39, and then replaced in Eq. 35. 

Originally [70], an F-distribution-based cut off was proposed to point out relevant variables. 

This value is the one that would be chosen testing the statistical difference between numerator 

and denominator in Eq. 35. If a 𝑆𝑅𝑗 is greater than the critical value of the F-distribution, the 

corresponding variable is considered significant and it is selected (F-test with fixed false-

rejection probability at 0.05 and 𝑁-2 and 𝑁-3 degrees of freedom). 

As discussed in [71], this cut off value is not always the most appropriate choice. 

In fact, for a relatively high number of samples, the critical value of the F-distribution 

approaches one. This could lead to two opposite scenarios: Selectivity Ratio is a too 

parsimonious method, or plenty of variables are selected as relevant. A critical F-value close 

to one cuts off variables that are explaining around 50% of the total variance; which is 

actually not that low. If this occurs for few variables, the F-test appears as a proper cut off. On 

the contrary, for some data, it could result an extremely low threshold, nullifying the variable 
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selection intent. For this reason, an alternative cut off value (to be used if the F-test critical 

value presents the above exposed problem) has been proposed in Paper II.   

This alternative cut off value is the mean of the 𝑆𝑅𝑗  values. This is a robust threshold, 

conceived to fit SR in its own range of distribution. In particular, in Paper II, the mean 𝑆𝑅 has 

been preferred as a cut off value for the multi-block simulations. 

 

Variable Importance in Projection (VIP) 

The variable importance in projection (VIP) [72-73] is another model-based method widely 

used to select features. It is an index of the significance of variables in defining the 𝑿- and 𝒀-

spaces in a PLS model. Mathematically, VIPs are defined as:  

       𝑉𝐼𝑃𝑗 = √
∑ 𝑤𝑗𝑓

2 ‖𝐘̂𝑓‖
2

𝐽𝐹
𝑓=1

‖𝐘̂‖
2

𝐹
             (40) 

Where 𝐽 is the number of predictors.  

𝑤𝑗𝑓 is the weight of the j-th predictor for the f-th PLS-component. 

𝐘̂𝑓 and 𝐘̂ are the matrix of responses predicted using the 𝑓-th component only and the full 

model, respectively. 

𝐘̂𝑓 and 𝐘̂ are calculated, respectively, as:  

 

𝐘̂𝑓 =  𝐭𝑓𝐪𝑓
𝑇  and  𝐘̂ =  𝐓𝐐T                                   (41,42) 

Where: 

𝐭𝑓 and 𝐓 are the scores for the f-th variable and the scores matrix of the regression, 

respectively. 

𝐪𝑓 and 𝐐 are the 𝐘-loadings for the f-th variable and the scores matrix of the regression, 

respectively. 

 

Therefore, VIPs are a measure of how much of the variance of 𝐗 is explained by each 

variables and, at the same time, of the correlation of 𝐗’s with 𝐘. 

The average value of the index is, by construction, equal to one. Then, the contribution of 

those variables which result in a VIP bigger than one is considered relevant (and therefore 

those variables are selected). 
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Significance multivariate correlation (sMC) 

Significance multivariate correlation (sMC) estimates the sources of variability (for each 

variable) coming from a PLS-regression [74]. 

The starting point of significance multivariate correlation is Selectivity Ratio, but the 

estimation of 𝐗 is done dropping the calculation of the loadings. In fact, according to the 

authors, the loadings 𝐏 coincide with the TP-weights: 

 

𝐏𝑠𝑀𝐶 =
𝒃𝑷𝑳𝑺̂

‖𝒃𝑷𝑳𝑺̂‖
               (43) 

Therefore: 

      𝐓𝑠𝑀𝐶 = 𝐗𝐏𝑠𝑀𝐶 = 𝐗
𝒃𝑷𝑳𝑺̂

‖𝒃𝑷𝑳𝑺̂‖
             (44) 

That is equivalent to: 

𝐓𝑠𝑀𝐶 = 𝐗
𝒚̂

‖𝒃𝑷𝑳𝑺̂‖
              (45) 

In the end, 𝐗 can be estimated as:  

      𝐗 = 𝐓𝑠𝑀𝐶𝐏𝑠𝑀𝐶
𝑇 + 𝐄𝑠𝑀𝐶 =

𝒚̂𝒃𝑷𝑳𝑺̂
𝑻

‖𝒃𝑷𝑳𝑺̂‖
𝟐 + 𝐄𝑠𝑀𝐶              (46) 

 

Then, in order to define which variables are relevant, the ratio between the (variable-wise) 

Mean Squared Error of the model (MSE) and its mean squared residuals are compared to an 

F-test with 1 and 𝑁 − 2 degree of freedom. 

        𝑠𝑀𝐶𝑖 =
𝑀𝑆𝑖𝑃𝐿𝑆𝑟𝑒𝑔.

𝑀𝑆𝑖_𝑃𝐿𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
=

𝑆𝑆𝑖𝑃𝐿𝑆𝑟𝑒𝑔.

1
𝑆𝑆𝑖_𝑃𝐿𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑁−2

=
‖

𝒚̂𝒃𝑷𝑳𝑺
̂ 𝑻

‖𝒃𝑷𝑳𝑺
̂ ‖

𝟐‖

2

‖𝑥𝑖−
𝒚̂𝒃𝑷𝑳𝑺

̂ 𝑻

‖𝒃𝑷𝑳𝑺
̂ ‖

𝟐‖

2

𝑁−2⁄

               (47) 

Variables that exceed the F-test threshold value are considered statistically relevant and then 

they will be selected. 

 

Elimination of Uninformative Variables for multivariate calibration (UVE)  

The method is based on the analysis of the 𝐛 regression coefficients [75]. 

First of all 𝐘 is fitted to 𝐗 by PLS regression. Then, an artificial variable matrix  (generated 

randomly and multiplied by a small constant like 10-10) of the same dimension of 𝑿 is created. 

These two matrices are then concatenated resulting in the matrix 𝐗 of dimensions  𝑁 × 2𝐽. 

Another PLS-model for 𝐗 is calculated using leave one out procedure and taking the same 

complexity of the previous PLS model. In this way, 𝑁 estimates of the 2𝐽 regression 
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coefficients are obtained and organized in a matrix 𝐁 of dimensions  𝑁 × 2𝐽. Then, the mean 

of each column of 𝐁 and the standard deviation for each variable are calculated. Then the 

reliability 𝑐𝑗  can be estimated as:  

 

              𝑐𝑗 =
𝑏𝑗

𝑠(𝑏𝑗)
=

∑
𝑏𝑖𝑗

𝑛
𝑁
𝑖=1

√∑
(𝑏𝑖𝑗−𝑏𝑗)2

𝑛−1
𝑁
𝑖=1

        𝑓𝑜𝑟 𝑗 = 1, … , 𝐽           (48) 

 

Defining 𝑐𝑗𝑎𝑟𝑡 the values of 𝑐𝑗 calculated for the artificial variables, those (non random) 

variables that give 𝑐𝑗 such as: 

  

|𝑐𝑗| <  |max 𝑐𝑗𝑎𝑟𝑡|             (49) 

    

are considered not significant for the regression purpose and eliminated. 

  

Truncation-PLS 

Truncation-PLS can be based on different regression parameters; in this work it is based on 

loading weights, as in [76]. 

The starting point of the method is that, if a variable is uncorrelated to the response, loading 

weights are equally distributed random variables (not diverse from random normal noise). 

Instead, if the 𝐗-variables are correlated to 𝐘, loading weights are normally distributed as well 

but with non-zero mean. Hence, established a confidence interval around the median of the 

loading weights, it is possible to eliminate everything inside those intervals. Here the outlier 

detection has been conducted following the so-called Lenth approach, as suggested in [76].  

 

Forward selection 

The forward selection approach consists in starting with no variables in the model and then 

testing the inclusion of each variable. The process is repeated until the addition of a further 

variable does not improve the model. In particular, in this work, the inclusion of variables 

stops when the RMSECV does not decrease significantly with a further addition (the 

significance is checked by CVANOVA [77] with a confidence level of 95%). 

 

 Jackknifing 
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The jackknifing is a resampling procedure used for significance testing.  

The uncertainty (𝑠) of a specific parameter is evaluated iteratively leaving out one observation 

at a time [78]. Then, uncertainty is estimated as:  

𝑠 = √
Ω−1

Ω
∑(𝜃𝑖 − 𝜃̅)2                         (50) 

 

Where Ω is the number of models, and 𝜃𝑖 and 𝜃̅ are the 𝑖-th estimate of the parameter and the 

mean of the parameter over the different models, respectively.   

 

 In this work, the uncertainty has been based on PLS-regression coefficients and calculated 

following the method proposed by Martens et alia in [79]:  

  

     ∑ ((𝐁 − 𝐁𝐵)𝜁)2𝑀
𝑚               (51) 

 

Where 𝐁 and 𝐁𝐵 are the regression coefficient using all the objects and the regression 

coefficients using all the object except those left out in the m-th segment, respectively. 

𝜁 is a scaling factor equal to: √
Ω−1

Ω
. 

Regression coefficients of each variable are tested to be significantly different from zero. The 

variables related to those that result different (from zero), are selected.  

 

4.2 Introduction of a variable selection step building multi-block models 

As explained above, this work tries to cover, at least in part, the lack present in literature 

concerning the implementation of variable selection in multi-block model building. For the 

reasons explained above and in paper II, the different procedures proposed for combining 

Selectivity ratio, VIP and forward selection with MB-PLS and SO-PLS are the following:  

 

1) MB-PLS combined with VIP 

2) MB-PLS combined with SR 

3) SO-PLS with pre-selected variables using VIP on each block 

4) SO-PLS with pre-selected variables using SR on each block 

5) SO-PLS combined with VIP 

6) SO-PLS combined with SR 

7) SO-PLS combined with forward selection 
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1-2) MB-PLS combined with VIP or SR 

In this procedures, MB-PLS models are (re)calculated after VIP or SR are used to reduce the 

number of variables of the predictor blocks. Following the MB-PLS procedure described in 

Paragraph 2.3.1, block-scaled predictor blocks are concatenated and then PLS is performed on 

the resulting matrix 𝐗𝐶𝑜𝑛𝑐. Variable selection (VIP or SR) is performed on this PLS model, 

obtaining the reduced matrix 𝐗𝑅𝑒𝑑. Subsequently, a new MB-PLS model is calculated using 

the reduced matrix 𝐗𝑅𝑒𝑑. 

 

 3-4) SO-PLS with pre-selected variables using VIP or SR on each block 

In these approaches the variable selection is performed on the individual blocks and then the 

SO-PLS model is built on the reduced blocks. Namely, the response is fitted to 𝐗 and 𝐙 by 

two different PLS regressions. Then, VIP or SR are used to reduce the two predictor blocks, 

obtaining 𝐗𝑅𝑒𝑑 and 𝐙𝑅𝑒𝑑. Finally, the SO-PLS model is built using the reduced blocks. If 

wanted, it is also possible to select variable only in one block, and leave the other one 

unchanged.   

 

5-6) SO-PLS combined with VIP or SR 

Due to the sequential nature of SO-PLS, variable selection can be integrated into the 

algorithm. In this case, after the first PLS is performed (step 1 in paragraph 2.3.3), variables 

are selected by VIP or SR and then the response is fitted to 𝐗𝑅𝑒𝑑. Subsequently, 𝐙 is 

orthogonalized with respect to the scores of the previous PLS and used to predict the residual 

matrix from that regression (namely, the one involving 𝐗𝑅𝑒𝑑). Also 𝐙𝑂𝑟𝑡ℎ is reduced by VIP 

or SR (obtaining 𝐙𝑂𝑟𝑡ℎ,𝑅𝑒𝑑) and then the residual matrix is fitted to 𝐙𝑂𝑟𝑡ℎ,𝑅𝑒𝑑. Finally, the full 

predictive model is calculated combining the contributions from the regressions which 

involve the 𝐗𝑅𝑒𝑑 and the 𝐙𝑂𝑟𝑡ℎ,𝑅𝑒𝑑. Also these two procedures could be applied to only one 

predictor block. If only the 𝐗 block is reduced (and 𝐙 is left untouched), results obtained from 

procedures 3 and 5 and 4 and 6 coincide.   

 

    7) SO-PLS combined with forward selection 

SO-PLS has been combined with forward selection, in order to have regression models based 

on a reduced set of variables. The procedure can be applied following the steps below:  
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1) Any variable (from either 𝐗 or 𝐙) is used to predict 𝐲 by PLS regression. The “best” 

predictor variable is selected looking at the RMSECVs obtained. It could be either an 

𝐗- or a 𝐙-variable. 

2) Calling 𝛹 the total number of variables in both blocks ( 𝛹 = 𝐽 +  𝐾), 𝒚 is fitted 𝛹 − 1 

times, using the variable selected in step 1 and any one of the other variables (one 

variable per time). This means that 𝒚 is predicted using only two predictor variables. If 

both variables come from the same block, 𝒚 is predicted by PLS regression, otherwise 

(one variable from 𝐗 and one from 𝐙), 𝐲 is predicted by SO-PLS regression. The 

selected variable is the one which, together with the predictor selected in step 1, leads 

to the best prediction (lowest RMSECV) of 𝐲. 

3) PLS or SO-PLS models are built adding one variable per time to the two previously 

selected. The addition of all the variables (from both 𝐗 and 𝐙) is tested. The selected 

variable is the one involved in the regression resulting in the lowest RMSECV. This 

step is repeated until any further addition improves predictions. The significance of the 

addition is checked by CVANOVA [77]. 

 

These procedures were tested in a simulation study, on a sensory data set and on a 

spectroscopic (Raman) data set. Performing variable selection, one could be particularly 

focused on having a reduced set of variables or pointing out the most meaningful variables in 

the system. From this study emerged that, independently of which one of these two is the aim 

of the variable selection, procedures based on SO-PLS appeared the most suitable in both 

cases. In particular, SO-PLS combined with forward selection is the best choice to obtain the 

most reduced sub-set of variables (still achieving acceptable predictive accuracy) for both the 

sensory and the spectroscopic data sets. When the focus is picking the most relevant variables 

(for prediction and interpretation), the suggested choice is different and more depending on 

the nature of the data set. In particular, VIP has demonstrated to be particularly efficient in 

getting rid of noise. This makes VIP the suitable choice in case of noisy data sets. On the 

other hand, selectivity ratio appears to be more effective in reducing/eliminating the 

systematic errors related to the presence of interferents. These characteristics may be used as a 

sort of guideline to indicate whether one or the other should be preferred. For instance, if one 

is interested in predicting the amount of all the constituents of a mixture based on the 

measured signal (e.g. spectroscopic or chromatographic), then VIP should be the most 

suitable approach. On the other hand, if the emphasis is placed on the prediction of a single 
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analyte, the others being considered as interferents, then selectivity ratio should be the most 

appropriate choice.       
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Chapter 5: Conclusion 

The present study has tried to make a significant leap forward in the area of multi-block 

analysis. Crucial aspects that were not yet covered have been investigated and this has led to a 

number of important findings. Particular attention has been given to the use of multi-block 

methodologies in connection with food science. An extension of a pre-existing method to the 

classification field (SO-PLS-LDA) and a novel method for both regression and classification 

(SO-N-PLS/ SO-N-PLS-LDA) have been proposed. Practical applications of these to different 

fields of food science (e.g., chemical analysis, sensory assessments) have been reported. SO-

(N)-PLS’ performances have been inquired and they have been compared with well-known 

and widely applied methods. The novel approaches developed in the present thesis introduce 

some novelties (e.g., a graphical interpretation tool for classification results) and represent a 

solution for some issues (e.g., those related to the unfolding step required handling multi-way 

arrays); or at least they are a valid alternative to competing state of the art methodologies 

(Paper I, Paper III, Paper IV). 

The study covers aspects of the multi-block field which have not been widely explored, i.e. 

the link between multi-block methods and three-way data structures (Paper III) and between 

multi-block methods and variables selection techniques (Paper II). Different procedures to 

perform variable selection have been studied. Some suggestions are given dependently of the 

nature of the data and of the final aim of the variable reduction. 

The last part of the work has been focused more on interpretation of multi-block models 

rather than on predictions. Discussing this topic, different aspects about the interpretation of 

model parameters have been pointed out. 

 

5.1 Main results 

The project covered different topics and a quite wide area of research. The present research 

aimed to develop some new tools for prediction and interpretation purposes in the multi-block 

field. Additionally, the thesis was finalized to give a comprehensive look to data fusion. 

Consequently, part of the work was focused on method development, and part opens up a 

discussion on the interpretation of the discussed models. Some theoretical and practical 

aspects have been discussed and investigated. Different targets has been achieved; some 

others still need to be studied more extensively.    
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Concerning the method-development part of the study, three methods (SO-PLS-LDA, SO-N-

PLS and SO-N-PLS-LDA) have been proposed, tested and discussed. All of them are 

contributing to their state of the art under different aspects.   

SO-PLS-LDA is a classification method for multi-block data sets obtained combining SO-

PLS with LDA. From the prediction point of view, it is comparable to MB-PLS-LDA. Its 

importance belongs mainly to the benefits intrinsically present in the SO-PLS algorithm. It is 

therefore particularly relevant for the interpretation point of view.  

SO-N-PLS is a multi-block regression method which can handle multi-way predictor arrays 

avoiding unfolding. This method has been developed to overcome issues related to the 

unfolding step. It has been tested only on three-way arrays, but, in principle, it can be applied 

to any multi-way array. It has demonstrated to have prediction ability comparable with (or 

higher than) other state of the art methods. Additionally, it allows obtaining some graphical 

interpretation tools that take into account the original structure of the data. The same 

characteristics are retained by SO-N-PLS-LDA. Consequently, these methods represent a 

good contribution to a field that had not been much explored so far.  

Despite a great part of the work has been dedicated to the development of novel tools, 

attention has been given also to the interpretation of the multi-block models.  

In Paper I, together with SO-PLS-LDA, a graphical representation of classification results 

based on cross-validated predicted values in the calculation of canonical variates has been 

presented. This fits well with the LDA philosophy and it is developed to ease the 

interpretation of classification models. Note that this kind of representation is not constrained 

to the use of SO-PLS-LDA as classification method. Consequently, it represents a general 

contribution to the classification field.  

Another aspect that has been investigated in order to enhance the interpretation of multi-block 

models, is how to include variable selection in the data fusion context. Different procedures 

and considerations on how to proceed handling different data sets has been discussed. In 

particular, two different scenarios have been taken into account: a sensory data set and a 

spectroscopic (Raman) data set. It has been shown that, in both context, variable selection 

represent a reasonable tool to ease the interpretation of complex models such as the multi-

block ones. 

Finally, a discussion over the interpretation of some multi-block model parameters has been 

started. A preliminary investigation based on simulated data sets has been carried out; it has to 

be stressed that results still need to be investigated deeply and the discussion should be made 

wider and validated on real data sets. From the simulation study, some indications on the 



57 
 

interpretation of loadings have been pointed out. A criterion to estimate the number of 

interpretable components in a model has been proposed.  

In conclusion, many of the planned goals have been achieved contributing to the data fusion 

context in different ways. In particular, the novel regression/classification methods could be 

easily used in the food industry to check the quality of foodstuff. Some MATLAB routines 

are already publicly available (www.nofimamodeling.org) and a reasonable future perspective 

would be to realized user friendly GUI to make them even more widely utilizable by workers 

of the sector.  

 

 5.2 Future Perspectives 

As mentioned in the previous paragraph, one obvious future perspective would be to make all 

the novel methodologies developed available in GUIs in order to make them easily usable in 

the industries. All the tools discussed in the thesis are thought for being applied in relation 

with the food industry (e.g., quality check, or predictions on consumer acceptance). 

Nevertheless, the presented tools could be applied in several other domains. Multi-block 

regression and classification models are used in several field of science e.g. medical sciences, 

environmental studies, cosmology, or several others [80].    

More conceptually speaking, interpretation of multi-block models definitely need further 

investigation. The achievements reached in Paper IV can be considered only indications, and 

need to be tested on real data sets and investigated/discussed deeply before they can be 

assumed to be generally valid and applicable.  

Another topic to be further investigated is the complexity required by the methods. It would 

be interesting to carry out a simulation study varying the amount of noise in data and see 

whether and how the required complexity changes as a consequence. 

Further perspectives cover also the algorithmic part of the study. In particular, it is natural to 

extend all the SO-PLS-based methods to the case of three (or more) block of predictors. 

Models based on several blocks should be investigated and probably additional tools to 

interpret these (more) complex data should be created.  

Finally, a more challenging (but definitely worth investigating) perspective would be to study 

and develop a variable selection method suitable for SO-N-PLS (and multi-way regression 

methods in general). Firstly, the same procedures exposed in Paper II could be applied on 

unfolded three-way data to see if results vary from those obtained for SO-PLS. Then, model 

parameters could be studied to see if it is possible to find indices of the relevance of variables 

in the two (experimental/non-sample) modes in the prediction of the response. In this way the 
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selection of variables could be conducted on the original (multi-way) data (probably) granting 

the benefits due to the avoid of the unfolding step. It has to be stressed that the selection of 

variables on a three-way array is much more complex than on a two-way data matrix. In fact, 

to keep the multi-way data structure, the relevance of each variable in a mode should be tested 

in combination with all the predictors in the other; this may lead to the need of finding a 

compromise between parsimony and removal of potentially useful information.   
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Chapter 6: Paper Summaries and References 
 

6.1 Summary of Paper I 

 The focus of the paper is inspecting the possibility of using multi-block methods for 

classification purposes. In particular, the aim was to extend the SO-PLS regression method 

combining it with LDA. Consequently, the resulting method has been called SO-PLS-LDA. 

The novel method has been tested on a simulated data set and a real one. Both prediction and 

interpretation aspects are discussed. SO-PLS-LDA has been compared with other two 

classification methods: PLS-LDA and MB-PLS-LDA. The novel method show good results 

compared with the other multi-block approach. Both are definitely better than the individual 

block approach. Moreover, a graphical interpretation tool based on canonical variates is 

presented.  

 

6.2 Summary of Paper II 

 The focus of this paper is to discuss and propose different procedures to perform variable 

selection in a multi-block context. In particular, the attention has been focused on two multi-

block regression methods: Multi-Block Partial Least Squares (MB-PLS) and Sequential and 

Orthogonalized Partial Least Squares (SO-PLS). Firstly, seven variable selection methods 

were taken into account. A simulation study was conducted for regular PLS regression, 

selecting the variable selection methods to consider further in the multi-block context. Three 

methods were selected: Variance Importance in Projection (VIP) Selectivity Ratio (SR) and 

forward selection. Seven different procedures to combine MB-PLS and SO-PLS with these 

variable selection methods have been thoroughly examined. The benefits of performing 

variable selection can be better predictions and/or clearer interpretation. Both these aspects 

have been inspected. The different strategies have been tested out on simulation studies and 

on two different real data sets (one sensory and one spectroscopic data set).   

 

6.3 Summary of Paper III 

Due to the progress in modern instrumentations, it is becoming common to handle multi-way 

data. In order to make these data suitable for the classical data analysis, often they are 

unfolded. Unluckily, the unfolding procedure leads to some issues. Thus, a multi-way version 

of SO-PLS has been developed. The proposed method is called SO-N-PLS. It is an extension 

of SO-PLS where PLS is replaced by N-PLS. Obviously, this leads to other differences, 
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regarding both the algorithm and the structure of the parameters involved. In the paper, the 

method is exposed for three-way blocks, but it can be applied to any kind of multi-way array. 

SO-N-PLS has been tested in a simulation study and on two real data sets (in two cases in 

prediction and in one case in classification). Pros and cons of the method and its comparison 

with other multi-block methodologies (SO-PLS and MB-PLS on unfolded data sets) are 

described in the paper. 

  

6.4 Summary of Paper IV 

This paper is a discussion-oriented paper focused on interpretation of multi-block regression 

models. In particular, the discussion is restricted to SO-PLS, MB-PLS and PO-PLS methods 

and based on a simulation study. These methods are applied to solve regressions between 

blocks with different number of variables and different underlying components. Simulations 

are used to understand the reasonability of the interpretation of the loadings estimated from 

the different methods. On this regard, a specific approach to evaluate the “interpretability” of 

models is proposed. It has been called explained variance criterion.  
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The aim of the present work is to extend the Sequentially Orthogonalized-Partial Least Squares (SO-PLS)
regression method, usually used for continuous output, to situations where classification is the main purpose.
For this reason SO-PLS discriminant analysis will be compared with other commonly used techniques such as
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the information, taking into account both interpretation and predictive aspects.
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1. Introduction

In recent years, the advancement of new analytical technologies has
generated an increased need for interpreting large and complex data
sets and also the relationship between them. Often, variables can be
separated into conceptually meaningful blocks of data which can
represent for instance measurements taken by different instruments
or at different time points in a process. This kind of multi-block data
can be found in various fields, such as industrial processes monitoring,
consumer and sensory science, in the -omics area, in microbiology and
in medical protocols [1,2]. It is therefore crucial to develop and
implement methods which can process this large amount of data and
that allow for combining multiple blocks of data from different experi-
mental conditions. Several useful methods have been proposed for the
purpose, for instance Multiblock-PLS, Multiblock-Principal Component
Analysis (MB-PCA), SO-PLS, Parallel Orthogonalized Partial Least
Squares (PO-PLS) and OnPLS [3–6], but the area is still new and there
are many unsolved problems. These range from issues related to exper-
imental design and variable selection to how to handle non-linearities,
interactions and classification. In the present paper the focus will be
. Box 210, N-1431 Ås, Norway.

iancolillo).
on extending regression oriented multi-block methodology to the area
of multi-block classification.

The aim of this work is to extend the SO-PLS regression method,
until now only used for continuous output, to situations where classifi-
cation is themain purpose. In order to do that, SO-PLS is combinedwith
Linear Discriminant Analysis (LDA). How this can be done in practice is
discussed and demonstrated in two examples. An important aspect is to
focus on how multiblock strategies can give better discrimination than
analyzing the individual blocks separately. Main focus will be on classi-
fication ability, but the importance of interpretation will also be
highlighted. Interpretation tools of more general interest for classifica-
tion will also be proposed. The classification ability of the SO-PLS-LDA
will also be compared with other standard techniques such as
PLS-LDA and MB-PLS-LDA. Two data sets will be used for illustration;
a data set established for distinguishing between wines from different
countries and a data set based on simulations.

2. Theory and methods

Wewill start with a short description of discriminant analysis based
on one data matrix (X), where X consists of N objects (rows) and p var-
iables (columns). The N objects come from J different classes, with Nj

samples in each class. We then proceed with describing discriminant
analysis based onmultiple data blocks, where an additional data matrix
Z (with dimensionsN× r) is also available for describing the differences

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2014.12.001&domain=pdf
http://dx.doi.org/10.1016/j.chemolab.2014.12.001
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Journal logo
http://dx.doi.org/10.1016/j.chemolab.2014.12.001
Imprint logo
http://www.sciencedirect.com/science/journal/01697439
www.elsevier.com/locate/chemolab


59A. Biancolillo et al. / Chemometrics and Intelligent Laboratory Systems 141 (2015) 58–67
between classes. Finally, we will propose some novel tools for statistical
testing of contributions fromX andZ, and somegraphical interpretation
tools for the multiblock models.

2.1. Discriminant analysis

Classification is the process of assigning objects to a set of different
classes or categories. Methods that require a training set where the
categories are known in advance are called “supervised methods” or
“discriminant analysis”, which will be the focus in this paper.

2.1.1. Linear discriminant analysis (LDA)
One of the oldest discriminant analysis methods is called linear

discriminant analysis (LDA) and was proposed by Fisher [7] in 1936.
This method is based on the assumption that the probability distribu-
tion within each class follows Gaussian (normal) distribution. In addi-
tion to the normality assumption, the LDA assumes that a priori
probabilities πj for each of the J classes are defined. These probabilities
can for instance be estimated by the training set as Nj/N or set equal
for each class as 1

J : In this paper will use the second approach. Following

Bayes rule, each sample is assigned to the groupwith the highest poste-
rior probability. With the above assumptions, this implies that each
sample is assigned to the class j that gives the smallest value of Cj:

C j ¼ xi−μ j

� �t
Σ−1 xi−μ j

� �
þ log Σj j−2 log π j

� �
ð1Þ

where μj s are the class means and Σ is the variance/covariance matrix
common to all the classes (the so-called pooled variance/covariance
matrix). Note that with equal prior probabilities for each class this
criterion reduces to a Mahalanobis distance only.

The mean and covariance matrices need to be estimated from the
data. The means are usually calculated as the group means x j. For the
common covariance matrix Σ, the following estimate is usually used:

S ¼
X J

j¼1

Nj−1
� �

Sj

N− Jð Þ ð2Þ

where Sj is the empirical variance/covariance matrix for class j.
The main limitation of LDA is that it requires a well-conditioned

covariance matrix. This means that the method cannot be used when
the number of variables exceeds the number of samples, or when the
variables themselves are highly correlated. To overcome this limitation,
methods that use latent variables have been proposed. One of these
methods, that will be discussed in the next session, is the partial least
squares—discriminant analysis (PLS-DA).

2.1.1.1. Canonical variates. It can be demonstrated that, in a two category
case, there is only one specific direction that gives the maximum
separation between the classes, i.e. which maximizes the ratio of the
distances between the means of classes and the variances within each
class. This idea can be generalized to several classes, ending up with
linear combinations of the data that separate the classes as much as
possible. The Sb between-group variance/covariance matrix is
defined as:

Sb ¼
XJ

j¼1

xj−x
� �

xj−x
� �T ð3Þ

where x j and x represent the mean vector of class j and of the whole
dataset, respectively.
In the general multi-category case, canonical variates (wi) can be
calculated by solving the generalized eigenvalue problem:

S−1Sbwi ¼ λiwi ð4Þ

As for the LDA formula, the canonical variates are sensitive to
overfitting and one needs to be careful when interpreting them. In
Section 2.3.3 we will therefore propose an alternative procedure based
on the predictions from the cross-validation.

2.1.2. PLS-DA and PLS-LDA
PLS-DA removes the drawbacks arising from an ill-conditioned co-

variance matrix since it is based on the transformation of original vari-
ables into a smaller number of latent, orthogonal variables. In PLS-DA,
the Y matrix used as response is a particular matrix consisting of 0's
and 1'a (called Dummy) containing the information about the class
membership [8–11].

The variability present in the blocks X and Y is described by two sets
of latent variables: the scores T and U, which are chosen in the way to
maximize their covariance. The model structure for PLS regression can
be written as [11–13]:

X ¼ TPT þ EX ð5Þ

Y ¼ UQT þ EY ð6Þ

U ¼ TK ð7Þ

where T and U are the scores of the blocks X and Y, P and Q are the
respective loadings,EX and EY are the residual matrices that represent
the unexplained variance, andK is the diagonal matrix of the regression
coefficients of the linear relationship between the scores; Eq. (7) is the
one called Inner relation. Recombining these expressions it is possible
to obtain the matrix of the regression coefficients B that is necessary
for the prediction of the vector ŶNew.

ŶNew ¼ XNewB ð8Þ

Classification for the standard PLS-DA is then usually done by
assigning theunknown sample to the class corresponding to the column
of ŶNew that has the largest value [8,9].

Another possible way of using the information in the PLS-DAmodel
was suggested by Indahl et al. [8,14]. Instead of using the highest value
of the predicted Y, one can apply LDA on the PLS scores. In other words,
the PLS with dummy Y is used as a data compression before the use of
the standard LDA. This method will here be called PLS-LDA. As shown
in [8], this method allows extracting relevant and stable components
for classification. Moreover, it represents a way to overcome problems
concerning the dimensionality. Therefore, this will be the approach to
be pursued below. Note that it can be shown that doing LDA on the
scores from the PLS regression is identical to doing LDA on predicted
values from PLS regression [8].

2.2. Discriminant analysis with multiple data sets

When considering multi-block methods, we will focus on the
two-block case in this paper, but the methodologies can easily be
expanded to any number of blocks. We assume the following linear
model structure:

Y ¼ XBþ ZCþ E ð9Þ

where Y is the dummymatrix representing class belonging, X and Z are
the two descriptive data blocks, and E contains residuals.



Table 1
Contingency table.

Method 1 correct Method 1 wrong Row total

Method 2 correct A B A + B
Method 2 wrong C D C + D
Column total A + C B + D N
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2.2.1. Sequentially orthogonalized PLS (SO-PLS) discriminant analysis
The SO-PLS regression [14] extracts information sequentially from

each data block, whichmeans that the chosen order of the blocks can in-
fluence the end result. The SO-PLS algorithm starts by fitting Y to X by
PLS regression. In this step X-scores (Tx), X- and Y-loadings (Px and
Qx, respectively) and the matrix of the residual (E = Y − TXQX

T) are
calculated.

After that, the Z block is orthogonalised with respect to the scores of
the previous PLS:

Zorth ¼ Z−Tx TT
xTx

� �−1
TT
xZ ð10Þ

and then Zorth is fitted to the Y-residuals (E). In this way, it is possible
to extract further information from Z that explains the remaining
variance in Y. Since Z can be decomposed into a contribution
projected onto the PLS scores of X (i.e. Tx) and a contribution orthog-
onal to the PLS scores of X, the column spaces spanned by TX, Z and
TX, ZOrth are the same (see also reference [3]). This means that
from a prediction point of view the orthogonalization does not
represent any loss of information. In the following and last step,
since TX and TZOrth are orthogonal due to the orthogonalization in
the second step, the full predictive model is obtained by adding the
two contributions, i.e.:

Ŷ ¼ TXQ
T
X þ TOrth

Z QOrth
Z

� �T ð11Þ

where the Q's are the regression coefficients. The full predictive
model can also be written as function of the original measures, and
it can be computed as explained in [15].

It should, however, be emphasized that the row spaces of TX, Z and
TX, ZOrth are not the same. In other words, the ZOrth is not in the space
spanned by Z. This may possibly be seen as a drawback from an
interpretation point of view (for Z) with the SO-PLS approach as it
Fig. 1.Distribution of samples in thefirst two component of bothX- and Z-block. a) In theX-bloc
classes are overlapped on the second one. b) In the Z-block Class 3 (blue squares) is separated
second one and even on the third (not shown). (For interpretation of the references to color in
stands now, but the consequences have not yet been explored. This is
clearly a place where improvement may be possible and more research
is needed. For this paper, only tools related to the original SO-PLS
proposal are used.

The natural tools for interpretation of the first PLS model (for X) are
the scores and loadings for thefirst PLSmodel. For the secondmodel it is
also natural to use the PLS scores for ZOrth, representing the additional
information obtained by incorporating Z in the regression model, but
in this case it is better (see also [15]) to look at the projection of Z
onto the PLS scores than considering the PLS loadings (for ZOrth)
themselves. The reason for this is that in this way one obtains a more
direct interpretation of how the real Z relates to the extra variability
from Z that is incorporated in the model.

The number of latent variables is decided independently for each
block, usually by cross-validation. There are two strategies for selecting
the number of components: sequential or global [15]. The latter is the
one used in this work. In the global approach the best possible combina-
tion is determined evaluating a so-called Måge plot [15]. This is a graph
which shows all the possible combinations of latent variables (LVs)
reporting theRMSECVs as a function of the total number of components.
For practical use of the methods one should as always test the method
with the selected number of components on an independent data set.

An important advantage of SO-PLS is that it is invariant to block scal-
ing and it provides interpretation tools for investigating both the contri-
bution of X, the additional information of block Z, as well as their joint
influence on Y [3]. The X-block is typically interpreted by the PLS model
itself while the additional contribution of Z may be interpreted by
projecting the true Z onto the PLS scores of ZOrth, showing how the true
Z related to the additional information extracted after X has been
modeled. It can also explicitly handle situations with different numbers
of underlying components in each of the blocks, which may potentially
be an advantage for understanding better the individual dimensionalities
of the blocks. Addingmore blocks than two can easily be done by repeat-
ing orthogonalization with respect to the scores of the previous PLS
regression, and fitting the orthogonalized block with the preceding
residual matrices.

2.2.2. Multiblock PLS (MB-PLS) discriminant analysis
The standard MB-PLS (Westerhuis et al. [16]) approach consists in

concatenating the input blocks and then performing PLS regression on
the resultant matrix. This means that the units used for the different
blocks will have an effect on the solution. To overcome this possible
drawback, blocks are usually block-scaled. When MB-PLS is used for
kClass 1 (reddots) is separated from the other two along thefirst componentwhile all the
from the other two along the first component while all the classes are overlapped on the
this figure legend, the reader is referred to the web version of this article.)



Fig. 2. Simulated dataset: a) Block X training and X test b) Block Z training and Z test.
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classification, LDA is applied on the super-scores, and not the block-
scores. The method will be called MB-PLS-LDA.

In this work, in order to build the MB-PLS-LDA model, both blocks
are divided by their respective Euclidean norms and then concatenated.
LDA is then applied to the super-scores. The general experience is that
MB-PLS regression is easy to calculate and implement, and that it
gives good results [16–19].
2.3. Interpretation tools

In addition to the canonical variates plots discussed above and regu-
lar plotting of scores and loadings for the PLS models obtained, we pro-
pose the following tools for interpretation.
2.3.1. Comparing correct and wrong classifications
The most obvious way of comparing methods is to set up a table as

indicated in Table 1. In that case both correct and wrong classifications
are counted for two different methods, for instance a one-block and a
multi-block method.

A more detailed study considering all blocks and their classification
error can also be undertaken as will be discussed when presenting
Table 6 below. The idea is most interesting when comparing a full
SO-PLS-LDA model with models based on X and Z separately. For all
samples that are correctly classified by SO-PLS-LDA, one can count
how many are correctly and erroneously classified for X and Z
Fig. 3. a) IR spectra of wines. b) Bar representatio
separately. The same can be done for the sampleswhich are erroneously
classified by the full SO-PLS-LDA model.
2.3.2. Statistical testing of improvements incorporating Z
In order to evaluate the actual usefulness of the addition of the

Z-block different statistical tests will be used here. Note that these
tests are always based on results from cross-validation and they are as
such analogous to the use of the CV-ANOVA test of additional contribu-
tions for the continuous Y case described in Næs et al. [3]. It should be
mentioned that this test could also be used here, but it is more natural
to use the more directly interpretable tables below.

In this paper we will focus on the Mc Nemar Test [20]
(with Yates's continuity correction [21]). This is a statistical test usu-
ally applied to 2 × 2 contingency tables and it is used to compare the
proportions of paired data (see Table 1). It can be used to test for sta-
tistical significance of the null hypothesis of equality of classification
error of two methods (here called method 1 and method 2). In our
case, the two methods will be classification methods based on two
different types of input, X and X, Z.

The hypothesis that is relevant to test here is that the two methods
have the same classification error. The test statistic χ2 is calculated as
stated in the following equation:

χ2 ¼ B−Cð Þ2
Bþ C

ð12Þ
n of the Aroma compounds chromatogram.



Fig. 4.Måge Plot: a) Values of classification error when different numbers of components are used in SO-PLS-LDA. b) Values of classification error when different numbers of components
are used in MB-PLS-LDA and when PLS is applied on only X- or only Z-block.
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where B and C are as defined in the table above. When values of
frequency distribution are small, it is recommended to use the Yates's
continuity correction; so Eq. (12) becomes:

χ2 ¼ B−Cj j−0:5ð Þ2
Bþ Cð Þ ð13Þ

On the base of the χ2 's value the null hypothesis is accepted or
rejected.

McNemars' test is simple to use, but suffers from the fact that it is
less suitable for small data sets. For this reason, also Fisher's exact test
can be performed [22]. This is a statistical test of significance used in
the analysis of categorical data when chi-square test can't be used.

2.3.3. Canonical variates based on cross-validation
Above we stated that canonical variates calculated the normal way

can give an overoptimistic view on classification ability. In the following
we will propose an alternative based on cross-validation Y-values. The
method can be used for any of the approaches discussed above.

The procedure goes as follows:

Let us callY ̂ thematrix of cross-validated-predicted Y-values, whose
dimensions are N × J. This can be considered as a partitioned matrix
constituted by J submatrices of cross-validated-predicted Y-values,
one for each of the categories in the training set.

Ŷ ¼
Ŷ1
⋮
Ŷ J

2
4

3
5 ð14Þ
Table 2
Classification error for PLS-LDA performed on the only X- and Z-block (Test sets).

X-block

PLS-LDA

LVs Class Predicted class 1 Predicted class 2 Predicted class 3

1 1 60 0 0
2 0 28 32
3 0 26 34

Z-block

PLS-LDA

1 1 44 10 6
2 4 56 0
3 5 0 55
For each of these submatrices Ŷj, the mean prediction vector

(centroid) can be defined as y j
T and calculated by taking the average

of each column in Ŷj. Accordingly, the S covariance is calculated as in
Eq. (2) where Sj is:

Sj ¼ Ŷ j−1yTj
� �T

Ŷ j−1yTj
� �

ð15Þ

While Sb is calculated as:

Sb ¼
XJ

j¼1

yj−y
� �

yj−y
� �T ð16Þ

At the end, canonical variates are obtained solving Eq. (4).
Note that the canonical variates can be calculated on the predicted

values since these are linear functions of the scores. In order to obtain
full rank one column has to be discarded from the Ŷ matrix.

In this way, the plot will be based on objectively predicted values
found without the influence from the true group membership and are
therefore safer to look at than the standard canonical variates. This
type of canonical variates can also be obtained in a test set by using
predicted values.

2.4. Selection of PLS components

The number of components in PLS regression is usually based on the
cross-validated root mean squared prediction error (RMSECV). For all
the methods where PLS regression is combined with LDA, the optimal
number of components can be selected based on either RMSECV
(reflecting the dummy Y-matrix) or on the percentage of correct classi-
fications (also cross-validated) from LDA. In principle, the latter is the
one to be recommended since it better fits with the objective of classifi-
cation. However, when the number of samples in each category is low,
we have observed that the correct classification rates may become un-
stable and overfitted. This is due to the fact that the LDA corresponds
to a crisp classification (either 0 or 1), while the predicted dummy ma-
trix is analogous to a fuzzy classification (continuous values). For small
data sets, we therefore recommendbasing the estimation of thenumber
of components on the RMSECV, and then use this when applying the
LDA. An alternative which could also be of interest here is the methods
proposed by Westerhuis et al. [23], but this is not pursued here.

In SO-PLS the number of components in each PLS can be defined
using two different approaches: the global optimization and the
sequential optimization [15]. The approach pursued in this work is the
global one. In order to verify if the two approaches give different results,



Fig. 5. SO-PLS Model. Samples projected in the space of the first X- and Zorth-scores.
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the sequential optimization has also been calculated for both datasets. It
leads to the selection of the same number of components as the global
approach.

3. Data sets

3.1. Simulated dataset

The simulateddata set consists of three groups and two spectroscopic
blocks. Two X-blocks and two Z-blocks (one for the training and one for
the test set) with spectra-like loadings have been generated.

The X-block was designed as a two-component system in which
separation between class 1 and classes 2 and 3 occurs along the first
component. The three classes are overlapped along the second axis.
Three components were used to simulate the Z-block, which was de-
signed to have perfect separation between class 3 and the other two cat-
egories along the first component. The three classes overlap along the
other two components. A further visualization of the distribution of
samples along components 1 and 2 is shown in Fig. 1.

The relative variances of the X-components are 96.3% (for the
first one) and 3.7% (for the second one), while the variances of the
Z-components are 79.6%, 9.8% and 10.6% for each, respectively.

For both the X and Z blocks, spectra-like loadings were built as or-
thogonalized combinations of Gaussians functions. These Gaussians
(six for the X-block and ten for the Z block) with different means and
Fig. 6. Crossvalidated scores of the training samples onto the relevant canonical variates: a) PL
random variances are used. After the building of loadings, they are or-
thogonalized and they are divided by their Euclidean norm. Therefore,
each block is built of not necessarily orthogonal scores but the loadings
of each block are orthonormal. At last 5% (of the average of the recon-
structed spectral signal) Gaussian noise was added to the matrices
after reconstruction from the components space. The blocks X are
180 × 200 matrices while the blocks Z are 180 × 400. For both training
and test sets, sampleswere divided into three groups of equal size. Sim-
ulated spectra are reported in Fig. 2.

3.2. Wine data

38 samples of red wines, produced from the same grape (100%
Cabernet Sauvignon), harvested in different geographical areas, have
been collected from local supermarkets in the area of Copenhagen,
Denmark. Wines are produced in Australia, Chile, and South Africa. Of
the 38 samples, 12 are from Australia, 15 from Chile and 13 from
South Africa. The wines are characterized by two different data blocks:
FT-IR spectra (842 variables spanning the wavelength region 5011–
929 cm−1) and Aroma compounds (estimated by integration of 57 se-
lected GC-MS peaks). The objective was then to see if the measured
data can be used to discriminate between geographical origins.

This is a subset of a larger data set, and detailed description of the
samples and laboratory measurements can be found in [24].

In Fig. 3, the spectra and the aroma compounds are plotted. In Fig. 3a
are shown merely the IR spectra of all the samples. In Fig. 3b is shown
the bar plot of the averages of the concentrations of the various aroma
compounds in the different samples. The aroma compounds were
scaled to unit variance prior to analysis, as their variation ranges were
considerably different.

3.3. Data analysis

All data analysis was performed using MATLAB (r2012b, The
Mathworks, Natick, MA), using in-house routines for PLS-LDA, SO-PLS-
LDA andMB-PLS-LDA. TheMATLAB routines are available for download
at www.nofimamodeling.org.

4. Results

Both data sets were first analyzed by PLS-LDA using only X or Z as
input blocks. Then, SO-PLS-LDA was applied using both X- and
Z-blocks. In the end, MB-PLS-LDA was performed for comparison. For
all these models, the same validation criterion and the same way of
choosing the number of latent variables were used. In LDA, the a priori
probability was set to 1/J for all classes.
S-LDA on X-block (Training set); b) SO-PLS-LDA on both X- and Z-blocks (Training set).

http://www.nofimamodeling.org


Table 3
Contingency table on simulated data. Method 1 stands for SO-PLS-LDA on both X- and Z-
block and Method 2 stands for PLS-LDA for X-block only.

Method 1 correct Method 1 wrong Row total

Method 2 correct 122 0 122
Method 2 wrong 58 0 58
Column total 180 0 180

Table 4
Classification error of PLS-LDA performed on the only Aroma block and on the only IR
block.

X-block: Aroma (A)

PLS-LDA

LVs Class Predicted
“Australia”

Predicted
“Chile”

Predicted
“South Africa”

4 1 9 1 2
2 1 12 2
3 0 3 8

Z-block: IR (I)

PLS-LDA

6 1 8 2 3
2 0 14 1
3 3 1 6
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Since both datasets proposed have more than two classes, the Y
block contains variableswithout an intrinsic low-dimensional structure.
Therefore, the adaptation proposed by Barker and Rayens [10] has been
considered. Overall classification errors obtained applying SO-PLS-LDA
with or without this correction are the same (see also [8]) and this
method is therefore not pursued further here.

4.1. Results on dataset 1: simulated data

4.1.1. Optimal complexity
This data set is large enough to allow model optimization based on

LDA classification instead of RMSECV as will be used for the data set
below. Themodelwas optimized using cross-validationwith seven can-
celation groups. The Måge plot based on classification errors in Fig. 4
shows that the lowest error for SO-PLS-LDA is given by 1 latent variable
for the first PLS and 1 for the second one. The 0 solutions do not seem
relevant for the choice of SO-PLS components so they are not shown
in the plot. For PLS-LDA, 1LV is used both for the X- and Z-blocks and
two LVs were selected for MB-PLS-LDA.

4.1.2. PLS-LDA classification using one block only
In order to assess the classification error using only one block, a reg-

ular PLS-LDA on the X-and Z-block was performed and then the classi-
fication error is calculated on predictions based on the test set. For the
X-block the overall classification error is 32% (58misclassified samples)
while for the Z-block the global error is 14% (25 misclassified samples).
Test set results related to each specific class are reported in Table 2. It is
clear from the table that the X-block is able to separate class 1 from the
other two, while the Z-block is able to separate class 3 from the other
two. Both these results are as expected according to how the data are
generated.

4.1.3. SO-PLS-LDA and MB-PLS-LDA
The two multiblock methods allow making much better classifica-

tions than the previous ones. In particular, SO-PLS-LDA reaches the
100% of correct classification. MB-PLS-LDA misclassifies one sample
Fig. 7. a) Values of RMSECV when different numbers of components are used in SO-PLS-LDA. b
when PLS is applied on onlyX- or only Z-block. Thefigure is based on amodel built using the pe
LDA curve the first number is the number of latent variables chosen for the first PLS and the se
components in either Z or X are omitted from Fig. 7a since they are presented in Fig. 7b and si
belonging to class 2 assigning it to the class 3 and one sample from
class 3 assigning it to class 2. Therefore, the global error for this method
is 1%. In other words, themethods are very comparable for this data set.
As can be seen, when putting together the X- and Z-block in a single
model, the classification becomes perfect (or close to perfect for the
MB-PLS-LDA).

4.1.4. Visual inspection of classification results
In Fig. 5 are reported samples in the space of the first X- and Zorth-

Scores for the SO-PLS-LDA. The figure clearly shows that only one
component from each of the groups is enough for separating the groups
perfectly. This corresponds very well to how the data were generated;
one component in X for separating class 1 from the other two and one
component in Z for separating mainly class 3 from the other two. As
can also be seen, there is some overlap between class 1 and class 3
along the second axis, but in the two dimensional space, the three clas-
ses are completely separated.

As already proposed, a natural way for interpreting and visualizing
SO-PLS-LDA (and other) models is to use the canonical variates ap-
proach (based on predicted values from cross-validation or prediction
testing on independent data).

Fig. 6a shows projections along the first canonical variates when
PLS-LDA is applied on only one block (X-block). Note that only one
canonical variate can be calculated here due to the fact that only on
component is used in the model. It is clear that class 1 can be separated
by the other two on this direction but it is not possible to discriminate
class 2 from class 3.
) Values of RMSECV when different numbers of components are used in MB-PLS-LDA and
ak areas of the Aroma compounds asX-block and the IR spectra as Z-block). On the SO-PLS-
cond one is the number of latent variables chosen for the second PLS. The solutions with 0
nce they are also not relevant for the selection of components.



Table 5
Comparison between SO-PLS-LDA and MB-PLS-DA on wines.

X-block: Aroma (A); Z-block: IR (I); (model AIY)

LVs Class Predicted
“Australia”

Predicted
“Chile”

Predicted
“South Africa”

SO-PLS-DA
4,2 1 9 1 2

2 1 14 0
3 1 2 8

MB-PLS-DA
4 1 9 1 2

2 1 14 0
3 1 1 9

Table 6
Global view of results: comparison between LDA applied on only X- or Z-block after PLS-
LDA and SO-PLS-LDA. The table shows howmany samples correctly classified by SO-PLS-
LDA (full model) are correctly/uncorrectly classified by PLS-LDA and therefore, howmany
samples misclassified by SO-PLS-LDA are correctly/uncorrectly classified by PLS-LDA.
(PLS-LDA has been applied on only X-, Z- and Zorth-block).

Full model
correct: 31

Full model
wrong: 7

X-only correct 29 0
X-only wrong 2 7
Z-only correct 23 5
Z-only wrong 8 2
Zorth-only correct 10 6
Zorth-only wrong 21 1
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Fig. 6b on the other hand shows crossvalidated scores of the sam-
ples onto the two canonical variates when SO-PLS-LDA is applied on
both X- and Z-block. The plot shown is based on predicted values
from cross-validation. As can be seen, the three classes are perfectly
separated. The first canonical variate separates between class 1 and
the other two, while the second one separates class 2 from other
two. The same plot has been made using predicted values for the
test set samples and it is not reported here as it is very similar to
the plot in Fig. 6b.

4.1.5. Testing improvements incorporating Z
Although the multi-block approach is obviously much better than

using only one block, we incorporate the abovementioned contingency
table and theMcNemar test. Table 3 shows the actual number of correct
and incorrect classifications. Method 1 means SO-PLS-LDA and Method
2 means the PLS-LDA used for X only.

The calculated Mc Nemar test statistics is in this case equal to χ2 =
57.004. The tabulated value of χ2 for one degree of freedom at 95% of
confidence is 3.84. This would mean that the two can be considered ex-
tremely statistically different, as expected.

The other table tool that is mentioned above does not provide much
additional insight when the differences are as obvious as here. So we
leave further visual inspection to the next section.

4.2. Results on dataset 2: wines

4.2.1. Optimal complexity
The data set was not considered large enough to use the LDA classi-

fication for selecting number of components, so the component selec-
tion was based on RMSECV as described in Section 2.4.

Fig. 7 shows the RMSECVas a function of numbers of components for
SO-PLS-LDA, MB-PLS-LDA and PLS-LDA.

Concerning SO-PLS-LDA, the plot shows all the possible combina-
tions of latent variables under a fixed maximum value. (In this case,
the number of latent variables was limited to ten). Even in this case, it
doesn't seem relevant to show the RMSECVwhen 0 components are se-
lected for one of the two blocks in SO-PLS-LDA. The lowest value of
RMSECV is obtained by taking four latent variables for the first PLS
and six for the second one, but as can be seen, four and two components
give almost the same results. We therefore decided to use four and two
components in further comparisons.

For MB-PLS-LDA, four LVs were chosen. Concerning PLS-LDA on
X- and Z-block the numbers of LVs used are set to four and six
respectively.

4.2.2. PLS-LDA classification using one block only
In order to assess the classification error using only one block, a reg-

ular PLS-LDA on the Aroma block was performed. The overall classifica-
tion error is 24% (9 misclassified samples). Classification results related
to each specific class are reported in Table 4.
PLS-LDA was applied on the IR-block also. The model gives a global
classification error of 26% (10 misclassified samples).

From Table 4 we see that the Aroma block is slightly better at
discriminating class 1 and class 3, while the IR block is better at discrim-
inating class 2.

4.2.3. SO-PLS-LDA and MB-PLS-LDA
As stated in [14] the order of the blocks in SO-PLS is not so important

for prediction purposes, although it may be important for interpretation.
In order to check if this statement is reasonable also in this case, the two
different SO-PLSmodels with the opposite order of the blocks have been
created. Even if the number of latent variables selected in the two
models is different, both give the same number of misclassified samples.
Hereafter, we will focus on the model using aroma as X and IR as Z.

The SO-PLS-LDA and MB-PLS-LDA results are reported in Table 5.
Concerning SO-PLS-LDA, only seven samples are now misclassified
which corresponds to a global classification error of 18%. MB-PLS-LDA
instead misclassifies six samples, reaching a global classification error
of 16%. As can be seen, results are somewhat better when using both
blocks X and Z than when using only one of them. Again, the two
multi-block methods are comparable. The two multi-block methods
give similar results. More details can be found in Table 6. For such a
small data set there is, however, such a difference is not significant.

It is interesting to note that even though Fig. 7 gives a lower RMSECV
for X only than forMB-PLS, the actual classification results are better for
the multi-block approach.

4.2.4. Testing improvements incorporating Z
TheMc Nemar test returns a value: χ2 = 1.125. This corresponds to

a p-value of 0.239. The tabulated value of χ2 for one degree of freedom
at 95% of confidence is 3.84. As can be seen even though the differences
are quite clear from the canonical variates plot, the classification im-
provement is not significant at 5% level. Fisher's exact test was also cal-
culated. The p-value obtained from the test supports the same
conclusion. A typical procedure for obtaining a more firm assessment
of significance or not would be to increase the data set, but this is out-
side the scope of the paper.

4.2.5. Further analysis of tables
For the same reason exposed above, even in this case, it could be

useful to have a table with a more detailed view of the results. These
are reported in Table 6. Note that this is essentially a series of tables of
the same type as Table 3.

From the table it is possible to see that results obtained from the
Aromablock (indicated asX-only in Table 6) are similar to those obtained
by SO-PLS-LDA. Indeed, it shows that of the thirty one samples correctly
classified by SO-PLS-LDA on X- and Z-block, twenty nine are rightly
classified even by PLS-LDA on X. But as can also be seen, two of the
samples thatwere correctly classified by the full model were erroneously
classified by using X only. The remaining seven samples are erroneously
classified by bothmethods. It should be stressed that, even if the number



Fig. 8. Prediction in the space on canonical variates using only Aroma block (a) or Aroma and IR blocks (b). Samples marked by circles are the misclassified ones.
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of incorrectly classified samples are the same, they are not always
assigned to the same (wrong) class by the two models. Concerning the
IR block (Z-only in Table 6), it is possible to observe that PLS-LDA on
this block gives results more different from SO-PLS-LDA. For instance
eight of the thirty one samples that were correctly classified by SO-PLS-
LDA are erroneously classified byZ alone (hence, as reported in the fourth
row of Table 6, eight of the thirty one samples properly classified by
SO-PLS-LDA are misclassified by PLS-LDA on Z). One can also see the
somewhat interesting phenomenon that among the seven erroneously
classified samples by SO-PLS-LDA, five of them were correctly classified
by PLS-LDA on Z. This result also points to the possibility of combining
the Z-blocks andX-block in an even better way, but this is not considered
further here. Afterwards, in the last two rows of Table 6, even the results
obtained when PLS-LDA is applied on Zorth are reported. In this case, only
ten of the thirty one samples correctly classified by SO-PLS-LDA are
properly classified by PLS-LDA (and so twenty one of these thirty one
are misclassified by PLS-LDA on Zorth). In conclusion, it is clear also here
that the Aroma block dominates the model more than the IR block.
4.2.6. Visual inspection of classification results
In Fig. 8 we present samples in the space of the canonical variates,

when these are extracted by using the predicted values obtained by
cross validation both for X and for X, Z used together.
Fig. 9. a) Scores plot on the orthogonalized I
From theplot it is clear that classes are better separated in SO-PLS-DA.
In Fig. 8a samples assigned to different classes are overlapped. While in
8b overlapping between samples is almost completely avoided. Samples
marked by a circle are the misclassified ones.
4.2.6.1. Investigating sequential PLS models. In order to get more deep in-
sight in the modeling results, on can use scores and loadings plot from
the X and Z model separately. Doing a full interpretation of the blocks
is beyond the scope of the present paper, so here we just add two
plots for illustrating the potential.

In Fig. 9a the scores plot for the Zorth block is shown. There is a not
clear grouping tendency along the two components, it is quite weak;
but it can be investigated for interpretation purposes. In Fig. 9b is
shown the loading plot. In this particular case, instead of discussing
interpretation of the PLS model for Zorth, which is not in the row space
spanned by Z, we consider the projection of Z itself onto the scores of
this PLS model. The procedure is simple, fits well with the philosophy
of the method and it gives us a direct way of seeing how the original
Z relates to the extra information obtained after X has been fitted
(see also reference [3]). From this it is possible to identify the chemical
profile of the components. In fact, the first two components clearly have
an IR spectra-like shape and the main variables of the spectra are
quickly identifiable. The most evident are the ones related to the
R-block; b) loading plot of the IR-block.
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stretching of theO\HandN\Hbounds, or the absorptions given by the
ester bond C\O.
5. Conclusions

In this paper, a novel classification method for multi-block data
configurations was proposed as the combination of SO-PLS and LDA.
Its characteristics and outcomes are compared to other existing
approaches either involving a single datamatrix ormore than one block.

In general, it was found that, at least when the blocks have comple-
mentary information, multi-block methods give better results as
compared to methods that use one block a time. In the present work,
the use of the multi-block approaches on one simulated and one real
dataset resulted in better classification ability, as compared to the
cases where PLS-LDA was used on the individual blocks. In particular,
for both datasets, SO-PLS-LDA gives comparable accuracy to MB-PLS-
LDA (based on combining regular multi-block PLS regression with LDA).

Even though the prediction ability of the two multi-blolck methods
was comparable for the data sets tested here, the proposed SO-PLS-LDA
possesses a number of properties with a potential benefit for prediction
and interpretation, due to the orthogonalization. In particular, the
SO-PLS-LDA does not need any type of block scaling since it is invariant
to the relative scale of the blocks. Another advantage is that it can be
used to compute and assess the number of components separately for
the different blocks, meaning that it can easily handle for instance
combinations of design variables (full rank blocks) and multicollinear
blocks. This may have advantages both for prediction ability and
interpretation of the different blocks. A power of the method is also its
ability of directly assessing and visualizing separately the contributions
of each block. We refer to reference [3] for a more general discussion of
SO-PLS based interpretation. The advantage of the standard MB-PLS
approach is, however, its simplicity and easy access to software. There
are also a larger number of successful applications of the method, in
particular for regression. A deeper study of the advantages and possible
disadvantages of the twomethods in light of these aspectswith focus on
both regression and classification, is needed.

A number of interpretation tools of general interest have been
proposed and illustrated. In particular, different tools based on inter-
pretation and statistical handling of data tables containing the num-
ber of correct/wrong classifications have been proposed. A more
general tool based on using cross-validated predicted values in the
calculation of canonical variates has been proposed. The advantage
of this approach is that it does not base the canonical variates on
overoptimistic results.
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The focus of the present paper is to propose and discuss different procedures for performing variable selection in
a multi-block regression context. In particular, the focus is on two multi-block regression methods: Multi-Block
Partial Least Squares (MB-PLS) and Sequential and Orthogonalized Partial Least Squares (SO-PLS) regression.
A small simulation study for regular PLS regressionwas conducted in order to select themost promisingmethods
to investigate further in themulti-block context. The combinations of three variable selectionmethodswithMB-
PLS and SO-PLS are examined in detail. These methods are Variable Importance in Projection (VIP) Selectivity
Ratio (SR) and forward selection. In this paper we focus on both prediction ability and interpretation. The differ-
ent approaches are tested on three types of data: one sensory data set, one spectroscopic (Raman) data set and a
number of simulated multi-block data sets.
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1. Introduction

With the advancement of technology, data collected in many fields
of science are getting more informative, but at the same time also
more complex. For example, analyticalmeasurements can now typically
be obtained with different instruments, in different places and at differ-
ent times of a production process [1]. In consumer and sensory science,
it is common that several data sets represent aspects that need to be
considered together in order to obtain the information wanted [2].
Even in medical protocols, data can be represented by blocks of inde-
pendent variables [3] that need to be considered together. Different
multi-blockmethods have been proposed, e.g. Multiblock PCA, general-
ized Procrustes analysis, Multi-Block-PLS (MB-PLS), Sequential and Or-
thogonalized Partial Least Squares (SO-PLS), Parallel Orthogonalized
Partial Least Squares (PO-PLS), OnPLS and others [4–9]. Multi-block
analysis is still a young field and several problems and challenges are
unsolved. One of these is variable selection for the purpose of improved
interpretation and prediction in regression models.

Variable selection in regression can lead to a number of advantages.
For instance, removing noisy or irrelevant variables may result in im-
proved predictions and a reduction of themodel complexity. Feature se-
lection can also ease interpretation. From a practical point of view,
selecting variables can make future acquisition of data cheaper and
less time-consuming [10–11].
. Box 210, N-1431, Ås, Norway.
iancolillo).
The aim of this paper is to discuss different variable selection
procedures for multi-block regression data. In particular, the selection
of variables will here be coupled with MB-PLS [4,12] and SO-PLS [6,13]
models, which are both based on PLS regression. A simulation study
will be conducted for regular one-block PLS regression, in order to select
which variable selection methods to include in the multi-block study.
Details on this simulation are reported in Appendices A and B. Three
candidate variable selection methods will be used in order to obtain in-
sight into the influence of the choice of the variable selection method.
The different procedures will be illustrated with different data sets;
one sensory data set with relatively few samples and variables, one
spectroscopic data set with more samples and many correlated
variables and a number of simulated multi-block data sets.

2. Multi-block methods

In this section, we present the multi-block methods applied in the
paper and also an overview of the procedures used for implementing
variable selection. A more detailed discussion of the choice of the actual
PLS variable selection methods to be used within MB-PLS and SO-PLS is
given in Appendices A and B. Only one Y-variable and two input blocks
are considered here, but the multi-block methodology can easily be
extended. In this paper we will assume the linear model structure:

Y ¼ X f þ Zg þ E ð1Þ

where: X (N× J) and Z (N×L) are the predictor blocks and Y (N×1) is
the response variable. E (N×1) is the residual matrix and f and g are

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2016.05.016&domain=pdf
mailto:alessandra.biancolillo@nofima.no
Journal logo
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Table 1
Combined multiblock and variable selection methods.

Variable selection method Multiblock method

MB-PLS SO-PLS

VIP ✓ ✓

SR ✓ ✓

Forward selection ✓
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the regression coefficients of dimension (L×1) and (J×1), respectively.
All variables are assumed to be mean centered.

2.1. Multi-Block-PLS regression

TheMulti-Block-PLSmethod (MB-PLS) [4,12] is based on concatenat-
ing the input blocks and then performing PLS regression on the resulting
matrix Xconc. In general, the matrices are block-scaled before concatena-
tion. Block-scaling can be performed in different ways; the one pursued
in this work is based on dividing each block by its Frobenius norm. This
scaling aims to ensure that no block will bemore dominant than others
because of the number of variables and their variance.

2.2. Sequential and Orthogonalized Partial Least Squares regression

Sequential and Orthogonalized Partial Least Squares (SO-PLS) [6,13]
is a multi-block method that in the case of two blocks can be described
as follows:

1. Y is fitted to X by PLS-regression
2. Z is orthogonalized (obtaining Zorth) with respect to the scores of the

previous PLS model
3. Y residuals from the first PLS are fitted to Zorth
4. The full predictive model is computed by summing up the two

contributions from X and Z.

If more than two predictor blocks are involved, it is possible to
perform SO-PLS repeating the steps, as explained in [13]. The optimal
complexity is estimated from the so-called Måge-plot as described in
[13]. Two different approaches can be chosen: global optimization and
sequential optimization. The strategy pursued here is the former one.

The SO-PLS method is invariant to block scaling and explicitly
permits the interpretation of the contributions of the blocks and
their relationship with the response. It can also be used to handle
blocks with very different underlying dimensionality, such as for in-
stance design variables and multivariate spectra, in the same model.
The X-block is interpreted by inspecting the PLS model in step 1. The
interpretation of the Z-block is best done by calculating loadings by
projecting Z onto the scores obtained in step 3 [14].

3. PLS variable selections methods

There are many methods for variable selection in general and for
PLS in particular [15–18,20–26]. For the purpose of doing a sensible
multi-block variable selection, we tested a number of established
PLS variable selection methods in a preliminary simulation study
(Appendices A and B). Based on the results, two candidate methods
were selected to be used in the different PLS based multi-block models.
These are Variable Importance in Projection (VIP) and Selectivity Ratio. In
addition to these two, forward selectionwas also included for compari-
son. More details about these choices can be found in Appendix B,
together with a description of all the tested methods, details on the
ANOVA used and main results.

3.1. Variable selection for multi-block methods

In the following,wewill describe different procedures for combining
variable selection with MB-PLS and SO-PLS. In particular, we will focus
our discussion on:

1) MB-PLS combined with VIP
2) MB-PLS combined with SR
3) SO-PLS with pre-selected variables using VIP on each block
4) SO-PLS with pre-selected variables using SR on each block
5) SO-PLS combined with VIP
6) SO-PLS combined with SR
7) SO-PLS combined with forward selection.
All the different procedures are described below and summarized in
Table 1. We will refer to blocks X and Z after variable selection as XRed

and ZRed.

3.1.1. Proposed procedure for variable selection in MB-PLS
The selection of variables in MB-PLS is an issue that has not yet been

explored, although a reinterpretation of MB-PLS as a variable selection
method itself [19] has been suggested. The procedure proposed in this
paper (points 1 and 2 in the list at the beginning of Section 3.1) is to per-
form variable selection (using SR or VIP) directly on the concatenated
input matrix. Following the standard MB-PLS procedure, predictor
blocks are block-scaled, concatenated, and then PLS is performed on
the resulting matrix XConc. Variable selection is then based on the ob-
tained PLS model. This leads to a number of variables being selected
and XConc is reduced obtaining XRed. Finally, a new calibration model is
obtained for Y using the reduced matrix XRed in a new MB-PLS model.

3.1.2. Proposed procedures for variable selection in SO-PLS
One possible approach in SO-PLS is to select variables from each

block separately (points 3 and 4 in the list in Section 3.1). In other
words, Y is fitted to X and to Z independently, creating two different
PLS models. Variables in each block are selected (by SR or VIP) and the
two sets of variables are then used in SO-PLS. Note that it is possible
to leave one of the blocks untouched; i.e. to perform variable selection
on only one of the blocks. When selection is done on both, XRed and
ZRed are obtained and used in the SO-PLS regression. Compared to the
procedure in Section 3.1.1, however, there is a risk of overlooking possi-
ble synergies between the blocks with this approach.

An alternative is to integrate variable selection directly into the SO-
PLS algorithm (points 5 and 6 in the list in Section 3.1). Due to the se-
quential nature of the SO-PLS method, variables can be selected (by
VIP or SR) from the X-block, from the ZOrth-block or from both. When
the variable selection involves both blocks, the algorithm is the
following:

1. Y is fitted to X by a PLS model.
2. A variable selection method is applied to X obtaining XRed.
3. Y is refitted to XRed.
4. Z is orthogonalized with respect to the scores of the PLS model

in step 3.
5. The residual matrix from step 3 is fitted to ZOrth.
6. A variable selection method is applied to ZOrth obtaining ZOrth ,Red.
7. A newPLS regression is carried out using the reducedmatrix ZOrth ,Red

to fit the residual matrix.
8. The full predictive model is computed by combining the contribu-

tions in the same way as in the original model.

When the variable selection involves only one block, the steps relat-
ed to the reduction of variables in the other block (steps 2 and 3 or 6
and 7) are skipped. When for instance only the X-block is reduced, the
model will coincide with the one built from SO-PLS using XRed and Z
in the previous procedure.

After the reduction of the blocks the model is rebuilt using the re-
duced blocks and the optimal number of latent variables is redefined
on the reduced blocks by means of the Måge plot. The algorithm is
forced to select at least one latent variable for each block. Hence,
solutions that do not select any latent variables in one of the two blocks
are skipped.
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The final proposed procedure to perform variable selection in SO-
PLS is an extension of the forward selection method (point 7 in the list
at the beginning of Section 3.1).

First, the best predictor is selected from either X or Z based on
RMSECV. Next, each of the successively added variableswill come either
from X or Z. The algorithmwill test all the possible combinations which
result from either adding one variable from the X-block keeping the Z-
block as in the previous step or vice versa. At the v + 1th iteration, v1
and v2 variables (with v1 + v2 = v) have already been selected from
the X- and the Z-blocks, respectively. Then, the algorithm proceeds by
building J − v1 SO-PLS models, considering all the possible combina-
tions resulting from the addition of one more X-variable. Likewise,
L − v2 SO-PLS models are built adding one further Z-variable to ZRed
(retaining only the previously selected v1 predictors in the X-block).
The combination that results in the lowest RMSECV is selected. The pro-
cedure is then repeated for the selection of further variables. It is
stopped when the addition of another predictor does not significantly
improve the RMSECV (the significance of the addition is checked by
CVANOVA [27] with a confidence level of 95%). Here it must be stressed
that, if in the initial iterations all the selected variables come from a
single block, the effect of the addition of a further variable to that
block is tested effectively using PLS instead of SO-PLS.

Note that this method is very time consuming when the number of
variables is large. However, it can be speeded up to handle for instance
spectroscopic intervals instead of individual variables [28]. This will be
applied to the spectroscopic data set below. Using intervals on, e.g. spec-
troscopic data not only speeds up the algorithm, but can also minimize
overfitting tendencies which is a danger for all variable selection
methods.

4. Data sets

The different proposed procedures (described above in Section 3.1)
have been tested on simulated multi-block data sets and on two real
data sets, a spectroscopic one (Raman) and a sensory data set.

4.1. Simulated multi-block data sets

Six different multi-block data sets were simulated. In all data sets,
the X- and Z-blocks have the same number of objects (two hundred)
but different numbers of variables. Variables are divided into ‘selective’,
‘relevant but not selective’, systematic but ‘irrelevant’ and noise vari-
ables. Those called ‘selective’ are only related to the response, while
the ‘irrelevant’ variables are not. The ‘relevant but not selective’ ones
contain information about both ‘selective’ and ‘irrelevant’ variability.
Finally, some noise variables are randomly generated. The structure of
this data set resembles the one used for the simulations used for
selecting the most appropriate PLS variable selection method and
therefore important details can be found in Appendix A. The different
dimensions of the blocks are reported in Table 2.

For all thedata sets, theX-block is simulated bymultiplying random-
ly generated scores (TX) and loadings (PX). Both scores (TX) and
loadings (PX) are simulated from the normal distribution N(0,1).
Table 2
Parameters used for the generation of the six different simulated multiblock datasets.

Simulation X-block

# Selective variables # Relevant but non-selective
variables

# Irrelevant variab

Sim1 30 30 30
Sim2 50 20 20
Sim3 80 20 20
Sim4 120 0 0
Sim5 350 100 50
Sim6 350 100 100
The TX has fixed dimensionality (200×4) where only the first three
components are ‘selective’. PX is a partitioned matrix constructed to re-
flect the fact that there are variables in the four different categories
‘unique-selective’, ‘unique-irrelevant’, ‘relevant but not selective’ and
noise. (For details regarding score and loading structures, please look
at the simulated Dataset-1 described in Appendix A. The X-block here
is generated following the same procedure used for the generation of
X in the simulation presented in Appendix A).

The Z scores are correlated with X. Z-scores TZ are divided into
TZsel (200×2) and in TZirr (200×1). TZsel is a partitioned matrix of the
form:

TZsel ¼ TZ1 TZ2½ � ð2Þ

where TZ1 (200×1) is a linear combination of thefirst two columns of Tx
and TZ2 (200×1) containing random values drawn from the normal
distribution N(0,1).

The Z loading matrix (PZ) is a partitioned matrix (as PX) reflecting
the four different categories of variables. The data matrices X and Z
are generated asX=TXPX

T andZ=TZPZ
T and subsequently,Y is calculated

as:

Y ¼ TXsel TZsel½ ��β ð3Þ

The vector β (5×1) is generated as a matrix containing random
values drawn from the uniform distribution (mean is 0.55) in the
open interval (0.05, 1.05). The Z-Loadings and test sets are generated
as in Dataset-1 (see Appendix A).

Finally, random noise corresponding to 10% of the signal was added
to all the predictors of the data sets. For the responses, the added noise
corresponded to 5% of the signal.

As shown in Table 2, four data sets (Sim1, Sim2, Sim3 and Sim4) have
comparable amount of samples and variables. Instead, the last two
(Sim5 and Sim6) have blocks with more variables than objects.

Each data set was generated one hundred times. All the proposed
variable selection procedures for multi-block data have been tested on
all the training sets. Test sets were generated in the same way as the
training data but with 300 samples. Reduced test sets were then obtain-
ed (taking only the variables thatwere selected on the training sets) and
used for the validation. It is important to stress that the test sets were
not involved in the selection of the variables. Test sets are reduced
after the selection is done on the training sets, then they are used to
perform the external validation.

4.2. Flavored waters data set

The data set is based on sensory analysis and consumer liking of
eighteen flavored waters [6]. The purpose is to get insight into which
sensory attributes that are most related to consumer liking. Samples
have been recorded based on a full factorial design. Three factors are
taken into account: flavor type (A and B), sugar dose (2%, 6% and 8%)
and flavor dose (Low, Medium and High). This gives 18 samples in
total. Eleven trained assessors evaluated samples by smelling and
Z-block

les # Selective variables # Relevant but non-selective
variables

# Irrelevant variables

40 40 40
60 20 40
60 30 0

100 0 30
300 100 50
300 100 0
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tasting. The evaluation of the smell attributes resulted in the Smell-
block, while the evaluation of the taste attributes constitute the Taste-
Block (see Table 3).

The smell data are used in the following analysis as the X-block, and
the taste as Z-block. Amajor interest in this setup is to assess howmuch
extra information about liking one obtains by adding taste to the smell
variables. All sensory data used here were averaged over assessors. Fi-
nally, the consumers' rating of the waters (ranked from 1-“Dislikes
very much” to 9-“Likes very much”) are collected. The average rates
over the consumers are used as response.

4.3. Polyunsaturated fatty acids (PUFA) data set

Sixty-nine emulsions of defatted whey protein concentrate, water,
and five different oils, (olive oil, coconut oil, soy oil, cod oil enriched
with polyunsaturated omega-3 fatty acids, and salmon oil) were analyzed
by Raman spectroscopy. Each sample represents a different amount of
the various constituents. These amounts were defined based on an ex-
perimental design;moredetails can be found in [29]. The Raman spectra
have been divided into two blocks. One block is the one containing the
so-called Fingerprint region (wavelengths from 675 to 1197 cm−1), and
is the one used as the X-block in the analysis. The relevance of the fin-
gerprint region is that each compound produces a characteristic pattern
in this part of the spectrum. Therefore, it is relevant to investigate this
data block separately and togetherwith the remaining spectral informa-
tion. The secondblock is constituted by spectra from1198 to 1770 cm−1

and is used as the Z-block. This is the region of the spectrum where the
main absorptions of the functional groups of each compound take place.
Concentrations of PUFA in the emulsions are used as response.

4.4. Data analysis

All data analyses were performed using MATLAB (R2012b, The
Mathworks, Natick, MA), using in-house routines for PLS, MB-PLS,
SO-PLS and for all the variable selection methods. The MATLAB rou-
tines for MB-PLS and SO-PLS are available for download at www.
nofimamodeling.org.

5. Results

All the proposed procedures discussed in Section 3.1 have been
applied to the multi-block simulated data sets and to the real data
sets. Selectivity Ratio has been applied using two different cut-off
values: one based on the F-test and one based on its mean (see
Appendix B for details). Results obtained using both cut-off values are
reported for the sensory data set. For the simulated multi-block
data sets only the cut-off based on the mean was used. Instead, only
Table 3
Sensory descriptors in the flavored waters data set. Numeration of variables is reported to
help the comprehension of the discussion in Section 5.

Var. number Smell Var. number Taste

1 Ripe 1 Ripe
2 Tropical 2 Tropical
3 Candy 3 Candy
4 Synthetic 4 Synthetic
5 Lactonic 5 Lactonic
6 Sulfuric 6 Sulfuric
7 Skin 7 Skin
8 Green 8 Green
9 Floral 9 Floral

10 Sweet
11 Sour
12 Bitter
13 Dry
14 Sticky
the F-test based cut-off was applied for the spectroscopic data set. The
reasons for these choices are reported in the relevant subparagraphs.

5.1. Simulated multi-block data sets

The predictive ability of themodelswas assessed by the external test
set using the Root Mean Square Error of Predictions (RMSEPs). The se-
lected variables for two different data sets (Sim1 and Sim5) are reported
in Table 4. Results from the other data sets are in agreement with these,
both for predictions and interpretations and are therefore not shown in
detail.

Variable selection tends to improve the predictions compared to the
full models. The best predictions, both in Sim1 and in Sim5, are obtained
using SR in combination with SO-PLS.

From an interpretation point of view, the results are similar to what
was observed in the simulation study of regular PLS regression reported
in Appendix B. SR retains its ability in skipping almost all the ‘irrelevant’
variables. In fact, it does not select any ‘irrelevant’ variablewhen applied
toMB-PLS. The SR behaves differently when implemented in procedure
6 and when applied in procedure 4 (from the list in Section 3.1). In pro-
cedure 6, it selects few ‘irrelevant’ variables from the X-block and none
from the Z-block (in both Sim1 and Sim5).When applied in procedure 4,
it also selects few ‘irrelevant’ variables (2% and 4% in Sim1 and Sim5, re-
spectively) from the X-block, but many from the Z-block (34% and 35%
for both data sets). SR combined with SO-PLS selects several ‘selective’
variables, but always fewer than when using VIP. Moreover, SR selects
fewer or a comparable number of ‘relevant but not selective’ variables
than VIP when selecting from the X-block, but more than VIP when it
comes to the Z. Furthermore, SR is good at removing noise variables.
In conclusion, SR is best in skipping unrelated information when it is
integrated into the model (procedure 6) and not done beforehand on
the individual blocks (procedure 4).

VIP is good at selecting the ‘selective’ variables. Looking at Table 4, it
is always selecting many ‘selective’ variables from both blocks and in
both data sets. It also selects a high number of ‘relevant but not selective’
ones. In accordance with to the simulation in Appendix B.3, it skips
completely the noise variables. Consequently, VIP is suggested for
selecting the relevant information inmulti-block data sets, independent
of the regression method used to handle them. Additionally, it is
recommended for noisy multi-block data sets.

Applying the forward selection to SO-PLS, a rather small number of
‘selective’ and ‘relevant not selective’ variables is selected. Here this
method does not show any particular ability in skipping the ‘irrelevant’
variables and the noise.

In conclusion, from the simulated multi-block data sets, it appears
that SR, in general, is able to eliminate noise variables. It selects a sub-
stantial number of ‘selective’ and ‘relevant but not selective’ variables
from X and it selects more ‘relevant but not selective’ variables than
VIP from Z. It skips completely the ‘irrelevant’ variables when combined
with MB-PLS and when implemented in SO-PLS. Moreover, when SR is
combinedwith SO-PLS (both procedures 4 and 6 in Section 3.1) the low-
est RMSEPs are obtained. VIP selects many ‘selective’ and ‘relevant but
not selective’ variables, and it is efficient in skipping the noise variables.
It is the recommendedmethod for noisymulti-block data setswhen the
main aim is interpretation. Forward selection selects some ‘relevant’
variables, but also ‘irrelevant’ and noisy ones.

5.2. Flavored waters data set

Since the flavoredwaters data set has a limited number of samples it
was not possible to have an external validation set. Therefore, all the
models are cross-validated (by leave-one-out cross-validation). The
prediction results for all the different methods described in Section 3
are reported in Table 5. SR was applied using both the F-test and SR's
mean as cut-off values (see Appendix B for details). From the prediction
point of view, results obtained using the two different cut-off values are

http://www.nofimamodeling.org
http://www.nofimamodeling.org


Table 4
RMSEPs for the prediction of y (from the simulated multiblock datasets Sim1 and Sim5) by PLS, MS-PLS, SO-PLS and by MS-PLS and SO-PLS combined with variable selection methods.
Relative percentages of the different type of variables selected from the procedures are also reported.

Procedure Variable selection method Var. selected in X-block (%) Var. selected in Z-block (%) RMSEP

Sim1
Sel (%) RelnSel (%) Irr (%) Noise (%) Sel (%) RelnSel (%) Irr (%) Noise (%)

MB-PLS No var. sel All All All All All All All All 1.22
VIP 85 75 16 0 68 48 31 0 1.12
SR 20 24 0 0 41 71 0 0 1.11

Selection on individual block + SO-PLS No var. sel All All All All All All All All
VIP 78 64 28 0 74 50 34 0 0.79
SR 45 59 2 0 14 70 34 0 0.64

Selection integrated in SO-PLS No var. sel All All All All All All
VIP 80 64 28 0 72 47 45 0 0.80
SR 45 59 2 0 11 73 0 0 0.59
Forw. sel. 16 3 4 23 19 1 9 8 0.64

Sim5
MB-PLS No var. sel All All All All All All 1.21

VIP 49 10 4 0 59 14 27 0 1.25
SR 17 6 0 0 37 23 0 0 1.14

Selection on individual block + SO-PLS No var. sel All All All All All All
VIP 47 12 24 0 56 13 36 0 0.66
SR 34 13 4 0 13 24 35 0 0.59

Selection integrated in SO-PLS No var. sel All All All All All All
VIP 47 12 24 0 56 14 41 0 0.69
SR 34 13 4 0 11 25 0 0 0.59
Forw. sel. 8 6 12 40 6 2 14 10 0.70
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comparable. Concerning the interpretation, themain difference is that a
different number of variables (in particular in the second block) are
selected. In the discussion below, when not stated differently, we are
referring to SR with F-test as cut-off value.

As can be seen from Table 5, the RMSECV obtained from PLS on the
smell block alone is comparable to those obtained by the multi-block
approaches, meaning that from a prediction point of view the taste
block adds little information. The only substantial improvement in
RMSECV is given by SO-PLS using forward selection as variable selection
method. A possible reason for this could be that it selects variables
according to predictive ability and is then more sensitive to overfitting,
especially for such a small data set. But it could also be an indication of
real improvement. However, it is still of interest to apply variable
selection using a multi-block approach, for the sake of interpretation.

In most models, SR selects more variables than VIP in X, but when it
comes to Z it depends on the procedure used. Variable selection by SR
does not select Z-variables when applied in MB-PLS. Concerning SO-
PLS, the number of selected variables in each blocks depends on when
the variables are selected. If variables are selected on the individual
blocks before creating the SO-PLS model (procedures 3–4 from the list
in Section 3.1), VIP selects more Z-variables than SR; when it is
Table 5
RMSECVs and explained variance for theprediction of y (Sensory dataset) by PLS,MS-PLS, SO-PL
block: Taste-block). Selected variables from the different methods and number of variables use

Procedure Variable selection method Selected varia

No variable selection Only smell (PLS) All
Only taste (PLS) None
MB-PLS All
SO-PLS All

MB-PLS VIP 1; 2; 4; 5; 6
SR 1; 2; 4; 5; 6; 8
SR(mean) 1; 4; 5; 6; 8

Selection on individual block + SO-PLS VIP 1; 4; 5; 6
SR 1; 2; 4; 5; 6; 8
SR(mean) 1; 4; 8

Selection integrated in SO-PLS VIP 1; 4; 5; 6
SR 1; 2; 4; 5; 6; 8
SR(mean) 1; 4; 8
Forw. sel. 2; 3; 6
implemented in the SO-PLS building (procedures 5–6 from the list in
Section 3.1), it is the other way around. When SR is applied for the indi-
vidual blocks before building the SO-PLSmodel (procedure 4), it selects
just one variable. In the preliminary PLS study (Appendix B.3), SR
shows a good ability to not select ‘irrelevant’ variables. That suggests
that Z-variables could be considered ‘irrelevant’, confirming the results
above that the taste block is not addingmuch to the predictive ability of
models. The situation is quite different when SR is integrated into
the SO-PLS model. This is probably due to the fact that, in this case,
variables are not selected directly on the Z-block, but on Zorth. One of
the drawbacks of the orthogonalization in SO-PLS is that, after the first
regression, some of the noise goes into the residuals. Residuals are
then fitted to Zorth; consequently, noisy data can affect this part of the
modeling.

In simulations, VIP has demonstrated a better ability to handle
the noise than SR. This explains why the number of variables selected
from Z by VIP when combined with SO-PLS is quite the same (three
when the selection is done beforehand and four when it is imple-
mented in the SO-PLS), while SR behaves differently (one variable
when the selection is done beforehand and nine when it is imple-
mented in SO-PLS).
S andby thedifferent variable selection procedures inmultiblock (X-block: Smell-block; Z-
d in each model are also reported.

bles smell Selected variables taste LVs REMSECV Explained
variance Y (%)

None 1 0.25 53
All 1 0.33 18
All 1 0.26 50
All 1,1 0.26 48
4 1 0.26 50
None 1 0.25 54
None 1 0.25 54
1; 4; 5; 9 2, 1 0.24 56
4 1, 1 0.23 60
1; 2; 4; 5; 6 1 0.26 48
1; 4; 10 2, 1 0.24 55
1; 2; 4; 7; 8; 10; 11; 13; 14 1, 1 0.25 53
1; 7; 10; 11; 13 1 0.28 48
8 1, 1 0.21 66



Fig. 2. Selected variables by the forward selection combined with SO-PLS. Selected
variables are highlighted in blue. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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For VIP, it is quite consistent in its selection on X, independently of
the method/model. VIP always selects variables number 1, 4, 5, 6 (ripe,
synthetic, lactonic and sulfuric, respectively). When applied to MB-PLS
it also selects variable number 2, tropical. On the Z-block the selection
is less consistent, but variable number 4 (synthetic) is always selected.

This data set is useful for investigating how SO-PLS handles a multi-
block set since it has the interesting characteristic of having the first
nine attributes in common in the two blocks. Fig. 1 shows the selected
variables in the two blocks when Both VIP and SR are integrated into
the SO-PLS model. Fig. 1(a) shows the selected variables by VIP and
Fig. 1(b) those selected by SR. For VIP, it seems that the relevant vari-
ables belong mainly to the “common” ones (same attributes for smell
and taste). In fact, when VIP is used to select variables, only one “unique
feature” (an attribute not present in both blocks) is selected in the
Taste-Block (number 10, Sweet). SR is less parsimonious and selects
four of the variables that belong only to the Taste-Block.

In SO-PLS we expect that the common variation between X and Z is
explained by X and then removed from the Z-Block. Therefore, smell
variables that are selected in the X-Block are not expected to be selected
again as taste variables in the Z-block. As can be seen in Fig. 1, some
common variables are selected from both blocks in this example. The
reason for this is likely that the same attributes are sometimes perceived
differently when tasting, so even if they have the same name, the corre-
lationbetween smell and tastemight be low. This is for instance the case
for variable 1 (ripe), 2 (tropical), 4 (synthetic), and 8 (green), which are
selected from both smell and taste with the SR method. The correlation
between smell and taste for these attributes are 0.6, 0.6, 0.7 and 0.4
respectively. On the contrary, variable 5 (lactonic) and 6 (sulfuric) are
selected only from the smell block. They both have correlation 0.8,
indicating that the attributes are perceived similarly by tasting and
smelling. Variable number 7 (skin), on the other hand, is only selected
from the taste block. For this attribute, the correlation is actually zero,
and hence it is a completely different perception in the taste block. In
addition, we noticed that all the variables selected by both blocks have
a higher SR value in X than in Z. This means that the variation that is
“left” in Z is less important, since some of it is already accounted for
by X.

The forward selection approach is extremely focused on selecting
only non-common variables between the predictors. As shown in
Fig. 2, there is no overlap between the selected variables in the two
blocks.
Fig. 1. Selected variables in X- and Z-blocks by variable selection integrated into SO-PLS mod
selected by SR. (For interpretation of the references to color in this figure legend, the reader is
5.3. Results on the PUFA data set

The PUFA data set was split into training and test sets (by the Duplex
algorithm [30]) in order to use the latter for validation. Forty-nine sam-
ples were selected for the training set, while the test set is composed of
twenty samples. The training set was used to select variables, build dif-
ferent calibrationmodels and select number of components. The test set
was then used for calculating RMSEP. Results are reported in Table 6. For
SR, the cut-off value used is the one based on the F-test. Also the other
cut-off value was tested, but led to worse predictions. Therefore, it is
not mentioned further in the following. From Table 6 one can see that
96%of the variation in the response is explainedbyZ alone, and combin-
ing X and Z does not improve the prediction ability much. This means
that also in this case, themainmotivation for doingmulti-block analysis
is interpretation.

In order to perform the forward selection on the spectroscopic data
set, the training set (both X and Z) is divided into 20 intervals (with
approximately the same number of variables for each interval belonging
to the same block), and then the forward selection is applied as
els. Selected variables are highlighted in blue; (a) variables selected by VIP (b) variables
referred to the web version of this article.)



Table 6
RMSECVs and explained variance for the prediction of y (Raman dataset) by PLS, MB-PLS and SO-PLS in combination or not with variable selection methods. The number of selected
variables from different methods and the total number of variables used in each model are also reported.

Procedure Variable selection method Selected variables X Selected variables Z LVs REMSEP Explained
variance Y (%)

No variable selection Only X (PLS) All None 3 1.61 86
Only Z (PLS) None All 4 0.88 96
MB-PLS All All 4 1.00 95
SO-PLS All All 3, 3 0.90 96

MB-PLS VIP 230/523 202/574 4 1.02 94
SR 83/523 112/574 4 2.02 75
SR(mean) 157/523 202/574 3 2.72 62

Selection on individual block + SO-PLS VIP 182/523 136/574 3, 4 1.07 96
SR 52/523 65/574 1, 7 0.79 97
SR(mean) 152/523 193/574 3, 2 1.16 93

Selection integrated in SO-PLS VIP 182/523 129/574 4, 5 1.24 96
SR 52/523 53/574 4, 1 1.30 95
SR(mean) 152/523 102/574 3, 2 1.09 94
Forw. Sel. 52/523 29/574 4, 1 1.19 94
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described in Section 3.1.2, but using intervals of contiguous variables
instead of individual variables. Consequently, the best combinations
of intervals are selected. Three intervals in total gave the lowest
RMSECV; two interval for the X-block and one interval from the Z-
block. This amounts to 52 variables from the X-block and 29 from
the Z-block.

As can be seen from Table 6, the number of variables is strongly re-
duced by all methods but, as opposed to the flavored waters example,
the VIP method consistently selects 2–3 times more variables than SR
in both X and Z, regardless of the variable selection method.

Looking more into the selected variables, VIP and SR select different
variables from the two blocks. In Fig. 3 one can seewhich variableswere
selected by VIP, SR and forward selection when integrated into the SO-
PLSmodel. Fig. 3(a) and (b) represents spectra in X and Z, respectively.
The upper curves are the average spectra (offset tomake themmore vis-
ible) where selected variables by SR are presented in boldface. In the
middle line, the boldface variables are those selected by VIP. The lines
at the bottom (offset downwards) show in boldface the variables
selected by the forward selection. From the interpretation point of
view, VIP is the more interesting. Indeed, looking at the fingerprint re-
gion, (Fig. 3a, middle line), it selects areas related to the skeletal C–C,
C–N and to the C–O stretching (1080, 1060, 925, and 864 cm−1). For
the Z-block (Fig. 3b), VIP is able to select the most relevant bands. In
fact, selected variables are those around 1263 cm−1, where the sym-
metric rocking of _C–H takes place. Moreover, it selects variables
around 1445 cm−1where the CH2's scissoring takes place, and variables
Fig. 3. Selected variables when VIP, SR and forward selection are implemented in SOPLS (proce
spectra (offset to make themmore visible) where the selected variables by SR are bolded. The m
selected by VIP. The lowest lines are average spectra (offset downwards) where the bolded va
around 1656 cm−1 where there are the C_C(cis) stretching and amide I
absorptions.

When variable selection is done beforehand on the individual
blocks (procedures 3 and 4 in the list in Section 3.1), VIP selects only
seven variables more that those selected following the procedure 5 in
Section 3.1.

The differences in the behavior of SR and VIP can be explained
from the results of the simulation studies. Here, it is evident that some
wavelengths selected from VIP are not selected by SR (in particular on
the X-block). Since the Raman spectra are measurements of mixtures
of water, whey proteins and oils, this finding could be due to the fact
that not only PUFA is contributing to the Raman signal. Some wave-
lengths are related to functional groups present both in PUFA and in
whey proteins. These variables are ‘relevant but not selective’ (because
they are not univocally related to the PUFA). As observed in the simula-
tion study in Appendix B.3, SR selects less ‘relevant but not selective’
variables than VIP. Consequently, the behaviors observed are not
surprising.

Predictions made without variable selection are similar to those ob-
tained by reduced models. This could be taken as an indication that the
presence of the whey proteins has, at best, a moderate additional effect
on the spectroscopic signal.

The forward selection applied to SO-PLS gives less interesting results
than VIP from the interpretation point of view. It selects many seeming-
ly relevant peaks but some are also missed out. Concerning the finger-
print part of the Raman spectrum (Fig. 3(a), bottom line), it selects
dures 5–7). (a) Lines represent the average spectra in X. The upmost lines are the average
iddle lines are average spectra (offset downwards) where the bolded variables are those

riables are those selected by the forward selection (b) corresponding plot for Z.
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variables related to the skeletal C–O stretching (around 925 cm−1).
Looking at the rest of the Raman spectra (Fig. 3(b), bottom line) it
picks the CH2′ twisting and the _CH ′ symmetric rocking (variables
between 1200 and 1356 cm−1).

6. Discussion and conclusions

In the present paper, different approaches for performing variable
selection in amulti-block context have been proposed. All the proposed
procedures conceived for selecting variables in the framework of MB-
PLS and SO-PLS were tested on different simulated data sets and on
two real ones.

Below we present some suggestions for selecting an appropriate
approach for variable selection in multi-block regression. The results
are also summarized in a flow chart in Fig. 4.

6.1. Prediction

Inspecting the simulated multi-block data sets, it appears that SO-
PLS combined with any of the proposed variable selection methods
(also the SO-PLS in itself) givesmodels with good predictions. In partic-
ular, SO-PLS (with or without variable selection) performs better than
the MB-PLS models. Predictions are particularly good when SO-PLS is
combined with SR.

It has to be highlighted that, from a practical point of view, the effort
required by selection methods based on the evaluation of parameters
(filter methods [11]) is different from the effort required by methods
that need the rebuilding of the model every time one variable is
removed/added. Consequently, among all the variable selectionmethod
used in this study, the forward selection method is definitely the most
computational demanding. Moreover, it has to be taken into account
that, since it selects variables in accordance with the predictive capabil-
ity, the forward selection can be more sensitive to overfitting when a
double validation is not adopted.

6.2. Interpretation

In general, the interpretation of MB-PLS models (when no vari-
able selection method is involved) is not straightforward. For SO-
PLS, the interpretation of the blocks can be done investigating the
X- and Zorth-PLS-scores and loadings [13,14]. After Y is fitted
to XRed, Z is orthogonalizedwith respect to the scores of this regression.
Consequently, Zorth only contains information not present in XRed.
Interpreting the Zorth-PLS-scores means interpreting the Z-block
Fig. 4. Suggested variable selection approache
without the redundant information already present in XRed. Since the
Zorth-block is less complex than the Z-block, it is easier to interpret.

6.3. Simulation study

According to the simulation studies (Appendices A and B), VIP and
SR always select a large number of ‘selective’ variables and skip the
‘irrelevant’. The main difference between VIP and SR is that SR is
particularly efficient in not selecting systematic ‘irrelevant’ variables,
while VIP does not select noise. This gives an indication of whichmeth-
od has to be used for handling different type of data. If the aim of the
variable selection is to get rid of systematic errors, SR should be the
first choice. On the other hand, handlingdatawithmanynoisy variables,
VIP should be preferred.

6.4. Sensory data set

In the sensory data set, reducedMB-PLSmodels and reduced SO-PLS
models gave similar results, in particular regarding the selection on
the Smell-block. SR is in general the most parsimonious method
for selecting from the Taste-block, (except when implemented in the
SO-PLS model, where various relevant variables are pointed out). Also
VIP selects a modest amount of variables, both with MB-PLS and with
SO-PLS.

The forward selection offers the most reduced set of selected vari-
ables but, at the same time, it gives themost different scenario. It selects
three variable in X; one of these has never been selected from the other
methods. Concerning the Z-block, forward selection selects only one
variable; this variable has been selected just once from the other
procedures.

In conclusion, if the purpose of the variable selection is to obtain the
most reduced set of variables possible without sacrificing the predictive
ability, the forward selection combined with SO-PLS is the suggested
approach. If the aim is to point out the most relevant variables, SO-PLS
combined with VIP or SR is preferable.

6.5. Spectroscopic data

For the more collinear spectroscopy data set, it appears that the
selection method used affects the results a lot. The performance of
MB-PLS (when variable selection is performed by VIP) is comparable
with that of SO-PLS, but with slightly poorer results from an interpreta-
tion point of view. VIP, especially when combined with SO-PLS,
gives promising results in terms of chemical interpretation. When the
s for sensory data and spectroscopy data.



Fig. A.1. Graphical representation of the simulation of the matrices X, TX and PX. The
figure shows the partition of PX in ‘relevant but not selective’-variables Prns, ‘irrelevant’-
variables Pirr, ‘selective’-variables Psel, and noise-variables Pnoise; and their specific
dimensions. Prns, Pirr and Psel are partitioned matrices. Prns is constituted by the
concatenation of Asel (Ksc×Mrns) and Airr (Kirr×Mrns). Pirr is partitioned in a submatrix
of zeros and Birr (Kirr×Mirr). Psel is partitioned in Bsel (Ksel×Msel) and a submatrix of
zeros. Tx-scoresmatrix ismade by the concatenation of TXsel (N×Ksel) and TXirr (N×Mirr).
More details on the submatrices can be found in the text.
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selection is performed by this method, themost chemically-meaningful
peaks are selected. SR performs parsimoniously in combination with
both SO-PLS and MB-PLS to the extent that fewer chemically relevant
peaks are selected.

This is a major difference between VIP and SR when applied to the
sensory and to the spectroscopic data sets. When they are applied to
the sensory data set, they both give good results from the interpretation
point of view. When applied to the spectroscopic data set, SR misses
some variables relevant for the interpretation. This may be caused by
the fact that in the spectroscopic data there are more ‘relevant non-
selective’ variables which SR has problems with (Section 5.3). Hence,
VIP is preferred if the important variables are of this type. The forward
selection gives once again the most different conclusions. It is the
method that gives the most reduced set of selected variables and it
skips different meaningful peaks.

In conclusion, the SO-PLS method coupled with forward selection
appears to be themost preferable procedure if the focus is mainly to ob-
tain the most reduced set of variables. On the other hand, SO-PLS in
combination with VIP appear the most efficient in providing the chem-
ical interpretation of the system. At the same time, it (VIP) also provides
a reduction of the number of variables. Therefore, this is definitely the
preferable approach when the focus is the exploration of the chemical
meaning of the spectroscopic system.
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Appendices

In these appendices we present the structure and the results from
the simulation conducted in order to select the most relevant PLS vari-
able selection methods to be used together with SO-PLS and MB-PLS
in a multi-block context. The multi-block simulation reported above
shares several of the aspects with the structure in Appendix A and it is
important for understanding the details of that simulation as well.

Appendix A. General structure for the simulated data sets

In the first part of this work, two different data sets have been simu-
lated in order to evaluate the power of the different variable selection
methods (for PLS regression) in situations similar to the real data sets
considered. The scope is to reduce the number of variable selection
methods to bring into a multi-blocks PLS framework. The data sets
represent an ordinary two-block regression problem, but contain sever-
al of the features of interest in a multi-block context. These same
features or aspects are later on considered also in themulti-block simu-
lation (see Section 4.1). The details on settings of the parameters are
presented in Appendix B.

Dataset-1 is created in order to mimic spectroscopic data. Therefore,
the number of variables considerably exceeds the number of the sam-
ples (N). Dataset-2 is built with the purpose of being sensory-like in
the sense that the number of columns is slightly higher than the number
of rows.

Particular attention has been given to the variables' structure from a
prediction point of view. The procedure used to build Dataset-1 is
described below in detail.

Dataset-1 is constituted of a training set (X and Y) and a test set
(Xt and Yt). The number of samples (N) in the training set is defined
according to an experimental design. The X and Ymatrices have dimen-
sions N×400 and N×1, respectively. The Xmatrix is generated as TxPx

T.
The X-scores Tx are simulated from the normal distribution N(0,1). The
construction of Px is explained in detail below. The X-block is designed
as a five-components (K) system, hence the dimensionality of Txwill be
N×5. For the scope of this work, it is natural that only some of the com-
ponentswill later contribute toY; those are the components thatwill be
called ‘selective components’. The components that are not involved in
the construction of Y are called ‘irrelevant’. Here, we have chosen three
(out of five) components to be ‘selective’ and the other two as ‘irrele-
vant’. The first ones will here be indicated as ‘selective components’
(Ksel) and the others will be called ‘irrelevant components’ (Kirr).
Therefore, the Tx is built as the concatenation of TXsel and TXirr scores,
where TXsel represents the ‘selective scores’ based on the ‘selective
components’, and TXirr represents the ‘irrelevant’ ones. These two
matrices will have dimensions (N×Ksel) and (N×Kirr), respectively.
Consequently, the Tx-matrix is built as:

Tx ¼ TXsel TXirr½ � ðA:1Þ

Then, the coefficient vector b (Ksel×1) is generated as a matrix
containing random values drawn from the uniform distribution in the
open interval (0.05, 1.05).

The response Y is built as:

Y ¼ TXsel�b ðA:2Þ

Therefore, only the ‘selective’ scores are involved in the creation of Y.
As for the scores, the distinction between a ‘selective’ and an ‘irrele-

vant’ part will apply also to the X-loadings (Px). In particular, in order to
produce simulated data closer to real data, loadings will not only have a
‘selective’ and an ‘irrelevant’ part, but they will also have a part that is
‘relevant but not selective’ and some noise variables. The ‘relevant but
not selective’ part is built by overlapping selective and irrelevant infor-
mation, as shown above and in Fig. A.1. All the different types of vari-
ables that constitute the loadings are variables generated using the
normal distribution N(0,1).
This means that each blockwill be constituted of a certain amount of

‘selective ’-variables, ‘irrelevant’-variables, ‘relevant but not selective’-
variables and some noise variables. More details about the structure of
the loadings are reported below. The total number of variables is fixed
for each block, but the relative amount of the different “type” of vari-
ables varies according to the design (the number of noisy variables is
changing in order to sum up to the total). Here, we denote the number
of ‘selective’ variables, ‘irrelevant’ variables, ‘relevant but not selective’
variables and the noise variables by call Msel ,Mirr ,Mrns and Me. The
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‘relevant but not selective’-loadings matrix of dimension (K×Mrns)
is denoted by Prns, the ‘selective’-loadings matrix of dimension
(Ksel×Msel) is denoted by Psel,the ‘irrelevant’-loadings matrix of
dimension (Kirr×Mirr) is denoted by Pirr and the part representing
the noise variables by PNoise.

The Prns is a block matrix of the form:

Prns ¼ Psel
rns

Pirr
rns

" #
ðA:3Þ

where Prns
sel (Ksel×Mrns) and Prns

irr (Kirr×Mrns) are matrices of random
numbers normally generated. Performing the TP-product to create the
X-block, the sub-matrix Prns

sel will be multiplied by TXsel, while Prns
irr is

the part multiplied by TXirr. This creates an overlapping between the
‘selective’ and the ‘irrelevant’ information. The Pirr and Psel are in the
form:

Pirr ¼ 0
Puniq
irr

� �
and Psel ¼ Puniq

sel
0

� �
ðA:4Þ

where Pirr
uniq has dimensions (Kirr×Mirr) and Pirr will be of dimensions:

(K×Mirr).
Psel
uniq has dimension (Ksel×Msel) and Psel will be of dimensions

(K×Msel). The PNoise consist of zeros only.
Thismeans thatPx can then be represented as a partitionedmatrix of

the form:

PT
X ¼ Prns

K �Mrnsð Þ
Pirr

K �Mirrð Þ
Psel

K �Mselð Þ
PNoise
K �Með Þ

� �
ðA:5Þ

Fig. A.1 gives a graphical illustration of how the loadings PX are
partitioned.

Then, the X-block can be calculated:

X ¼ TXP
T
X ðA:6Þ

Noise is added to theX- and Y-blocks. ForY, the noise corresponds to
a certain percentage of the standard deviation of Y as reported below in
Appendix B. For X, the standard deviation for each column of X is first
calculated. Then, the pooled standard deviation is calculated, but only
taking into account the columns that are not related to the noisy vari-
ables. In conclusion, the noise that is added to the X-block is a certain
percentage (according to the design), of this pooled standard deviation.

The test set for the external validation is built in the same way, but
the number of samples (Nt) is higher. The dimensionality of Xt and Yt

is fixed; these are 1000×400 and 1000×1, respectively. The X-scores
for the test set TXtest, are generated as before and have dimensions
(Nt×K).

The distinction among the variables that has been defined for the
training set also applies to the test sets. Yt is calculated by the selective
scores for the test set, TXselt:

Yt ¼ TXselt � b ðA:7Þ

Since the loadings are the same as in the training set, Xt is calculated
as:

Xt ¼ TXtestP
T
X ðA:8Þ

and noise is added in the same way as above.
Dataset-2 is simulated in the same way as Dataset-1. The difference

between the data sets is only in the dimensions. The number of rows
of X in Dataset-2 varies following the design described in Appendix B,
while the number of columns is fixed to 40.
Appendix B. Design of the experiment, methods and model
parameters

B.1. Experimental design for simulations

The experimental design for the study in Appendix A (for selecting
the best variable selection methods) consists of seven factors with
different numbers of levels. The seven factors are:

1. Variable selection method
2. Number of samples (N)
3. Number of ‘relevant but not selective variables’ (Mrns)
4. Number of ‘selective variables’ (Msel)
5. Number of ‘irrelevant variables’ (Mirr)
6. Noise added to the Y vector
7. Noise added to X.

The factor ‘Variable selectionmethod’has eight levels. These are the PLS
regression for the full model plus the following seven selectionmethods:

1. VIP
2. Selectivity Ratio
3. Jackknifing
4. sMC
5. UVE
6. Trunc-PLS
7. Forward Selection.

These variable selectionmethods can bemainly divided intomethods
based on the observation of model parameters and statistical/
chemometric approaches. Below follows a brief description of
each of them.

B.1.1. Variable selectionmethods based on the observation of the estimated
model parameters

If a model is reliable, its parameters are good indicators of the
sources of variation. Therefore, the regression coefficients and the
loadings can be used to get indications of which variables are influenc-
ing the model strongly. When these estimated values are close to zero,
the associated variables are presumably not relevant, at least together
with all the other variables in the model. Estimated model parameters
can also be used to calculate indicators that show which predictors are
the more relevant (or less relevant).

Selectivity Ratio (SR). The so-called Selectivity Ratio (SR) [18] is the ratio
between the variance explained by each predictor and the residual var-
iance. The approachpursued in thepresentwork, is the oneproposed by
Kvalheim in [20]. In the literature, there are different ways of defining
cut-off values. In this work, two cut-off values will be used. One of
them is the one proposed in [20] and it is based on a threshold calculat-
ed on the basis of an F-test (with fixed false-rejection probability at
0.05). For each variable, the corresponding Selectivity Ratio SRj is de-
fined as the ratio of two variances and, therefore, under the null hypoth-
esis should be distributed as an F-distribution with N − 2 and N − 3
degrees of freedom, respectively [20]. Accordingly, if a SRj is greater
than the critical value of the F-distribution, the corresponding variable
is considered significant and it is selected. Nevertheless, the application
of a cut-off value based on the F-test is not always the most appropriate
choice. For some data, this is a too parsimonious criterion. This is an
issue recognized and discussed in [31].

Consequently, SR's mean is here proposed as an alternative cut-off
value, to be used when this problem arises. In the present paper, this
alternative cut-off value is used for the simulated multi-block data sets
(Section 5.1). Both cut-off values have been used and compared for
the flavored waters data set (Section 5.2). For the spectroscopy data
set, the cut-off based on the F-test has been preferred. Also in this case
both were used, but appeared that the cut-off based on the mean was
influencing negatively the predictions.



V
SR
Jk
SM
U

99A. Biancolillo et al. / Chemometrics and Intelligent Laboratory Systems 156 (2016) 89–101
Variable Importance in Projection (VIP)
The Variable Importance in Projection (VIP) [15,17] is another model-

based method widely used to select features. VIP is a measure of how
much of the variance of X is explained by each variable and, at the
same time, of the X's correlation with Y. The mean of the squared VIP
scores, by construction, is equal to one. Variables with a VIP bigger
than one are considered the most relevant (and therefore those are
selected).

Significance Multivariate Correlation (sMC)
Significance Multivariate Correlation (sMC) is a method that has

been developed in order to estimate, for each variable, the sources of
variability coming from a PLS-regression [21]. In order to assess which
variables are important for the regression purpose, the ratios between
the variable-wise Mean Squared Errors (MSE) of the PLS model and
the mean squared of its residuals are compared to an F-test with
1 and N − 2 degrees of freedom [21]. The variables that exceed the F-
test threshold are selected.

Elimination of Uninformative Variables for multivariate calibration (UVE).
Themethod is based on the analysis of the regression coefficients obtain-
ed from a PLS-regression of Y on X [22]. Those are then compared to the
regression coefficients of a second regression, in which Y is fitted to an
XRmatrix of dimensions N×2J (where the last J variables are generated
randomly). Then, an entity called reliability cj (based on regression coeffi-
cients) is defined [22]. The variables that will result in a reliability bigger
(in absolute value) than random variables' reliability are selected.

Truncation PLS. Truncation-PLS can be based on different regression pa-
rameters. In this work it is based on loading weights, as suggested in
[23]. The method is based on the idea that if a variable is uncorrelated
to the response, loadingweightswill be equally distributed randomvar-
iables, not different from random normal noise. Otherwise, they are
normally distributed but with non-zero mean. Feature selection is con-
ducted by observing which variables deviate from the median of the
loading weights.

Forward selection. The forward selection approach starts with no vari-
ables in the model and then tests the inclusion of each variable by the
means of a specific criterion [24]. The process is repeated until no vari-
able improves themodel. When the number of the variables is high, e.g.
in spectroscopy, it is more reasonable, to perform the forward selection
on intervals instead of on each variable.

Jackknifing. Jackknifing is a resampling procedure that can also be used
for significance testing. The basic idea behind themethod is that the un-
certainty of a specific parameter is estimated by leaving out one obser-
vation at a time [25]. In this work, the estimated parameters are the
regression coefficients. The uncertainty has been calculated following
the modification to the original method by Martens et al. in [26].

Levels related to the other factors are reported in Table B.1 for both
data sets.

Table B.1
Levels of six factors of the experimental design used (Factors: number of samples, number
of relevant but non-selective variables, number of selective variables, number of irrelevant
variables, noise added to the Y vector, noise added to X) for both datasets. The missing
factor in the table, the variable selection method, is illustrated in the text.
Dataset
D

D

# samples
 # Relevant but
non-selective
variables
# Selective
variables
# Irrelevant
variables
Noise of
Y (%)
Noise of
X (%)
ataset-1
 10
 10
 10
 10
 15
 10

50
 50
 50
 50
 25
 20
100
 100
 100
 100
 35
 30

ataset-2
 15
 5
 5
 5
 20
 10
30
 10
 10
 10
 30
 20
At the end, following a full factorial design, 5832 (36 ∗ 8) experi-
ments are simulated for Dataset-1 and 512 (26 ∗ 8) for Dataset-2.

B.2. Evaluation criteria for assessing the PLS variable selection methods

Dataset-1 and Dataset-2 have been simulated following the above
design repeated one hundred times. The ANOVA analysis that follows
is based on the averages over these replicates. Following the full factori-
al design described above, PLS-regressionmodels using all the variables
were built and then the different selection methods have been applied.
After the application of each variable selection method, a new PLS-
regression using the selected variables has been performed. Different
properties of the models were investigated. Many of these properties
are expressed as relative percentages of a specific type of variables.
Thismeans that this value corresponds to the ratio between the number
of a specific type of selected variables and the total number of that type
of variables in the data set multiplied by 100. E.g., the relative percent-
age of ‘selective’ variables selected is calculated as the ratio between
the number of the selected ‘selective’ variables and the total number of
the ‘selective’ variables in the data set multiplied by 100. The same is
done for the other types of variables.

The different properties investigated are:

• The explained test set variance of Y
• Relative percentage of ‘selective’ variables selected (Rsel)
• Relative percentage of ‘irrelevant’ variables selected (Rirr)
• Relative percentage of the ‘relevant but not selective’ variables select-
ed (Rrns)

• Relative percentage of noise-variables selected (Rnoise)
• Relative percentage of total variables selected (Rtot).

B.2.1. ANOVA analysis
The ANOVA analysis performed included all the factors plus all the

possible two-way interactions. Concerning Dataset-1, all the factors in
the ANOVA are significant (independent of which property it was
based on). This assumption is based on p-values, using a significance
level of 5%. Concerning the interactions, all are significant, except inter-
actions between ‘selective’ and ‘relevant but not selective’, ‘irrelevant’
and ‘selective’, and ‘selective’ and Noise X.

Averaged RMSEPs, Rsel, Rirr, Rrns and Rtot for each variable selection
method are reported in Table B.2. These values are grandmeans obtain-
ed by averaging across the (one hundred) replicates and the (729)
models.

Table B.2
Dataset-1: Means (over all the experiments) of RMSEP, Rrns, Rirr, Rsel, and Rtot for each
variable selection method.
RMSEP
 Rrns
 Rirr
 Rsel
 Rtot
IP
 0.141
 66
 8
 58
 16

0.141
 60
 0
 82
 18

0.143
 76
 69
 90
 30
C
 0.144
 67
 70
 92
 28

VE
 0.145
 65
 57
 85
 26

unc-PLS
 0.144
 59
 8
 57
 14
Tr
PLS-models (both with or without variable selection) result in an
averaged (grand mean across replicates and models) RMSEP of 0.14.
Also the explained Y-variance of PLS on the full models (all the variables
are used) is comparable to the explained variance frommodels after the
variable selection.

Investigating deeply data, it comes out that, when the noise in Y is
at the lower level (15% of the standard deviation of Y), the averaged
(over the replicates) explained variances are 85% both for the full and
the reduced models. This means that all the variance that could be
modeled is actually captured by the models. Similarly, when the noise
inY is at the highest level (35%), the averaged explained variance is 65%.
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For the number and type of selected variables, the various variable
selection methods show different behavior. All the methods select
high percentages of ‘relevant but not selective’ variables which is an at-
tractive property. The one that selects less variables is Trunc-PLS (59%),
but the one that selects themost (Jackknifing) selects 76%, so the differ-
ences are not dramatic. Some methods, such as jackknifing, SMC and
UVE select high percentages of total variables. Nevertheless, they pres-
ent high percentages of selected variables of all types. Consequently,
they are those that select more ‘selective’ variables but, at the same
time, they select many ‘irrelevant’ ones (both systematic and noise).
SR (and to a lesser extent), VIP and Trunc-PLS skip the systematic but
‘irrelevant’ variables which is an interesting property. These three
methods are also the best in avoiding the selection of noise (VIP in
particular). Hence, SR is in general the best at avoiding inclusion of
unrelated information and maintaining the relevant ones.

In order to investigate whether the different variable selection
methods behave differently at the different points of the design, also
results averaged only over the one hundred replicates have been
inspected (So, in this case they are averaged only over replicates and
not over the 729 models). Consequently, specific trends for each
variable selection method were pointed out. For instance, VIP is
skipping less ‘irrelevant’ variables when the different types of variables
(‘selective’, ‘irrelevant’ and ‘relevant but not selective’) are at the lowest
levels. In these cases, it selects around 20% of the ‘irrelevant’ variables.
This ability does not seem to be affected by the level of the noise in Y.
Concerning the jackknifing, it seems to be more influenced by the
level of the noise. It selects less ‘irrelevant’ variables (both systematic
and noise) when the noise in X and in Y are at the lowest levels. The
sMC method is not good at skipping the ‘irrelevant’ variables when
there are few of them (lowest level) regardless of noise level in Y. The
averaged amount of ‘irrelevant’ variables selected in these cases is
88%. UVE has good performance; it is particularly efficient in skipping
a high percentage of ‘irrelevant’ variables when the number of the
‘selective’ and ‘relevant but not selective’ is high. In the same points, it
selects also a high percentage of ‘selective’ and ‘relevant but not selec-
tive’ variables. Finally, t-PLS is not very stable in its selection, so it is
not showing a clear trend.

Also in Dataset-2, all the factors are significant in the ANOVA analy-
sis. Regarding the interactions, those betweenmethod and the other fac-
tors are all significant. Interactions between number of samples and the
other factors are significant except for the interaction between number
of samples and Noise X and the interaction between number of samples
and relevant variables. All the other interactions are non-significant.
Consequently, it appears that, reducing the dimensions of the data
sets, the interactions between the different types of variables have no
significant effect on themodels (because all the possible interaction be-
tween Rrns, Rirr and Rrel are non-significant). This is an indication that,
at these conditions, models are mainly dominated by factors method
and number of samples.

Concerning the percentages of selected variables, the different
methods follow trends similar to those presented for Dataset-1.

In conclusion, the methods show in general high ability in selecting
relevant variables in the simulated data sets. Nevertheless, each of them
has specific characteristic that would make it more suitable than other
ones in different situations. For example, to avoid including information
fromnon-related interferents, the best choicewould be to use amethod
that is able to remove the systematic-‘irrelevant’ variables. Therefore,
the choice would fall on SR, VIP and Trunc-PLS. On the other hand, if
data are highly affected by non-systematic noise, the best option
would be VIP, while the most unsuitable would be jackknifing.

As can be seen, there are many aspects that characterize a good
method for variable selection, therefore, a compromise is required.

Ideally, from the interpretation point of view, the “best” method is
the one that gives high values of Rsel, Rrns and low values of Rirr and
Rnoise. For prediction purposes, the “best” method is the one giving a
small RMSEP or a high explained variance.
Below, wewill develop an approach based on a desirability index for
a combined look at all the aspects.

B.2.2. Selection of the most appropriate variable selection method

B.2.2.1. Desirability index. The desirability index (di) proposed here is
based on the relative percentage of ‘selective’ variables (Rsel), relative
percentage of ‘irrelevant’ variables (Rirr), relative percentage of the ‘rel-
evant but not selective’ variables selected (Rrns) and relative percentage
of Noise-variables selected (Rnoise). In this case, all of them are used as
fractions between zero and one. This index is conceived to point out
the “best” method from the interpretation point of view, therefore,
explained variances or RMSEPs are not involved.

Rsel and Rrns were used as they are (since a high value of these is
considered to have a good influence on the final model). For the ‘Irrele-
vant’ variables and the noise, 1-Rirr and 1- Rnoisewere used to calculate
the index.

The desirability index is calculated by taking the geometric average
of those quantities in the 729 (for Dataset-1) and 64 (for Dataset-2)
different points of the designs. The closer to 1 the index is, the better
the method is performing.

Another desirability index is also calculated, focusing more on pre-
dictions and on removal of ‘irrelevant’ variables. This is done to check
if developing the index from a more prediction-oriented prospective
could give different results. Consequently, the additional index is
based on averaged explained variance, Rirr and Rnoise. The two indices
are in agreement, therefore, only results for di are shown and discussed.

di's values for Dataset-1 are reported in Table B.3. The highest values
were obtained for SR and VIP (in decreasing order) which fits well with
the observations from the ANOVA above. Consequently, these are the
two chosen methods to be applied to the multi-block data sets.
Concerning the other methods, Trunc-PLS gives a slightly lower value
than VIP. Jackknifing's and UVE's values are comparable and a bit
lower than Trunc-PLS'. This is due to the high amount of ‘irrelevant’
variables selected by these methods. Finally, sMC is the one giving the
lowest di.

Table B.3
Desirability indices for each variable selection method: desirability indices are calculated
as the geometric means of four properties (relative percentage of selective variables
(Rsel), relative percentage of irrelevant variables (Rirr), relative percentage of the relevant
but non-selective variables selected (Rrns) and relative percentage of noise-variables
selected (Rnoise) for each variable selectionmethod present in thedesign. The two highest
desirability indices are reported in bold.
Method
 VIP
 SR
 Jackknifing
 sMC
 tPLS
 UVE
i
 0.77
 0.84
 0.60
 0.55
 0.72
 0.65
d
The desirability index was also calculated for Dataset-2; the same
method appeared to be the most recommended. Therefore, VIP and SR
are used in the multi-block part of this study.

B.3. Conclusions on the simulation study and prospective for inclusion in a
multi-block regression context

Apparently, VIP and SR are the most suitable methods under the
considerations presented in the previous paragraphs. From the predic-
tion point of view, they give comparable results. Considering the inter-
pretation, the two methods reduce the amount of variables, but retain
relevant ones. Both are powerful in skipping ‘irrelevant’ variables. In
particular, SR is able to get rid of the systematic ‘irrelevant’ variables;
which indicates that this method would be suitable to remove system-
atic errors in real data. The VIP is more efficient in removing random
noise.

In addition to VIP and SR, also the forward selection method will be
used for multi-block data sets. This is included in the work for the sake
of completeness and to achieve a more general discussion. The forward
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selection method will be used in two different versions: one selecting
individual variables and one selecting windows of variables. The latter
is suitable for highly collinear spectral data with very many variables.
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Abstract 

Multi-way data arrays are becoming more common in several fields of science. For instance, 

analytical instruments can sometimes collect signals at different modes simultaneously, as e.g. 

fluorescence and LC/GC-MS. Higher order data can also arise from sensory science, were product 

scores can be reported as function of sample, judge and attribute. Another example is process 

monitoring, where several process variables can be measured over time for several batches. In 

addition, so-called multi-block data sets where several blocks of data explain the same set of 

samples are becoming more common. The same samples are for instance analyzed by different 

techniques, or in different times and places. Several methods exist for analyzing either multi-way 

or multi-block data, but there has been little attention on methods that combine these two data 

properties. A common procedure is to “unfold” multi-way arrays in order to obtain two-way data 

tables on which classical multi-block methods can be applied. However, it is a known fact that 

unfolding can lead to overfitted models due to increased flexibility in parameter estimation. In 

this paper we present a novel multi-block regression method that can handle multi-way data 

blocks. This method is a combination of a multi-block method called Sequential and 

Orthogonalized-PLS (SO-PLS) and the multi-way version of PLS, N-PLS. The new method is 

therefore called SO-N-PLS. We have compared the method to Multi-block-PLS (MB-PLS) and SO-

PLS on unfolded data. We investigate the hypotheses that SO-N-PLS has better performances on 

small data sets and noisy data, and that SO-N-PLS models are easier to interpret. The hypothesis 

are investigated by a simulation study and two real data examples; one dealing with regression 

and one with classification. The simulation study show that SO-N-PLS performs better than the 

unfolded methods when the sample size is small and the data is noisy. This is due to the fact that 

it filters out the noise better than MB-PLS and SO-PLS. For the two real data examples, the 

superiority of SO-N-PLS method is not so noticeable, but it performed well. Additionally, SO-N-

PLS gives rise to a number of graphical interpretation tools, which are described and discussed in 

the paper. 

 

Keywords 

Multi-block; N-PLS; SO-PLS; multi-way; MB-PLS; regression; classification 



 

1. Introduction 

Data tables with more than two modes are called multi-way arrays, and can arise from many 
different fields in modern science. Important examples of three-way arrays (the most common 
multi-way arrays) are data from various analytical instrumental techniques, e.g. spectroscopy 
(NMR, EEM), chromatography (GC/LC-MS) and multispectral imaging. In addition, time series 
data from, for instance, process monitoring (modes: batch, variable, time) and environmental 
analysis (modes: location, variable, time) are three-way. Sensory data can also be collected in a 
three-way array (modes: samples, judges and attributes), and data from experimental designs 
can be reported as functions of the experimental factors [1-3] with the factors representing the 
different ways. 
 
The most common approach for handling multi-way arrays is to reorganize data in a two-way 
array. This is called unfolding, and it can be performed in different ways. In the case of three-way 
arrays we have row-wise unfolding, column-wise unfolding and tube-wise unfolding. Applying the 
first approach, a three-way array 𝑿 of dimensions 𝑁 × 𝐽 × 𝐾 can be unfolded to a matrix 𝑿 of 
dimensions 𝑁 × (𝐽𝐾).  In the column-wise approach, a three-way array 𝑿 of dimensions 𝑁 × 𝐽 ×

𝐾 is unfolded to a matrix 𝑿 of dimensions(𝑁𝐾) × 𝐽. Finally, in the tube-wise approach, the 𝑿 
matrix’s dimensions become(𝑁𝐽) × 𝐾.  
 
The unfolding procedure makes multi-way arrays suitable for classical multivariate data analysis, 
but there are also some drawbacks with this approach. Firstly, model building using unfolded 
matrices can lead to overfitting since the number of estimated model parameters increases, 
often without improving the predictive power. Hence, the increased complexity is mainly used 
for fitting noise. Interpretation can also be more difficult when the original data structure is lost, 
both because of overfitting and of the increased number of parameters. Multi-way methods have 
been developed to overcome these drawbacks. PARAFAC [4-5], N-PLS [6] and Tucker-2 and 
Tucker-3 models [7] are some of the main methods that retain the original dimensions of a multi-
way array. 
 
It is often relevant to join multiple blocks of data in order to understand and exploit all the actual 
information on the system at study.  Multi-block methods can handle several blocks of data at 
the same time, and examples of such methods are Multi-Block-PLS (MB-PLS), Sequential and 
Orthogonalized Partial Least Squares (SO-PLS), Parallel Orthogonalized Partial Least Squares (PO-
PLS), OnPLS and Coupled Matrix and Tensor Factorization (CMTF) [8-14]. This is a new and 
emerging field, and many research challenges remain unsolved.  

Previous work [11,15] has shown that the SO-PLS regression method provides similar (and 
sometimes better) predictions than MB-PLS, and that it has some properties that makes it 
particularly useful for interpretation purposes. So far, SO-PLS has been developed for two-way 
arrays only. In this paper we show how SO-PLS and N-PLS for multi-way regression can be 
combined to form a new regression method that we call SO-N-PLS. It can be used to analyze 
multiple multi-way predictor blocks or a combination of multi-way and two-way blocks. In Fig. 1 
we show a graphical representation of the data structures that can be handled by SO-N-PLS, and 
also how they can be unfolded in order to be analyzed by two-way methods. In this paper the 
focus will be on two- and three-way arrays, but more general situations can also be handled 
within the same framework.   

We will discuss how SO-N-PLS can be applied to both regression and classification problems. The 
novel method will be compared to SO-PLS and MB-PLS on unfolded data, and we will in particular 
investigate the following hypotheses: 



 SO-N-PLS can provide better predictions than unfolded analysis. This is especially so for 
small sample sizes and noisy data, since the risk of overfitting is higher. 

 SO-N-PLS can give simpler or improved interpretation than unfolded analysis. 

In order to investigate these aspects, both real data and a simulation study will be used.    

 

Figure 1: Graphical representation of SO-N-PLS and the multi-block methods on unfolded data.  SO-N-PLS can be directly 
applied on the multi-way arrays avoiding unfolding. a) the 𝐗-block is three-way, while 𝐙 is a matrix. b) both 𝐗- and 𝐙-blocks 
are three-way arrays. SO-PLS and MB-PLS are always applied on the row-wise unfolded matrices. 

2. Material and methods 

2.1 Sequential and Orthogonalized Partial Least Squares (SO-PLS) regression 

 Sequential and Orthogonalized Partial Least Squares (SO-PLS) [11] is a multi-block regression 
method for multiple predictor blocks. The model is assumed to be linear, and with two blocks the 
general formula is:  

𝐘 = 𝐗𝐠 + 𝐙𝐡 + 𝐄 (1) 

where 𝑿(𝑁×𝐽) and 𝒁(𝑁×𝑀)  are the two predictors blocks, 𝒀(𝑁×𝑅)  is the response (categorical if 

the model is used for classification), 𝐠(𝐽×𝑅)  and 𝐡(𝑀×𝑅)  are the regression coefficients for each 



of the two blocks and 𝐄(𝑁×𝑅)  is the residual matrix. In all cases, the data sets are assumed to be 

centered.  

In this work we consider multi-block models with two predictor blocks, but it is straightforward to 
extend the method to more than two blocks [11].   
 

The SO-PLS algorithm with two predictor blocks requires four steps (in addition to centering and 
possibly scaling the data): 

1. 𝐘 is fitted to 𝐗 by PLS-regression, giving PLS scores 𝐓𝐗. 
2. 𝐙 is orthogonalized with respect to the scores 𝐓𝐗 from step 1 (obtaining 𝐙orth): 

𝐙𝐨𝐫𝐭𝐡 = 𝐙 − 𝐓𝐗(𝐓𝐗
𝐓𝐓𝐗)−1𝐓𝐗

𝐓𝐙  (2) 
3. Residuals from the first PLS are fitted to 𝐙orth, giving PLS scores 𝐓𝐙𝐨𝐫𝐭𝐡. 
4. The full predictive model is computed as the ordinary least squares fit of 𝐘 to 𝐓𝐗 and 𝐓𝐙𝐨𝐫𝐭𝐡. 

Since the first set of scores are linear functions of 𝐗 and the second set of scores are linear 
functions of 𝐙orth which again is a linear function of 𝐙, this means that the equation can be 
reformulated into Eq. (1).  

When more blocks are available, the procedure can be repeated as explained in [11]. Compared 
to MB-PLS, SO-PLS has the benefit of being invariant to block scaling, it allows different numbers 
of components from each block, and it permits individual interpretation of the contributions of 
each block. The 𝐗-block is interpreted by looking at the first PLS model. The 𝐙-block can be 
interpreted by looking at the scores 𝐓𝐙𝐨𝐫𝐭𝐡 obtained in step 3 and the loadings obtained by 
regressing Z onto 𝐓𝐙𝐨𝐫𝐭𝐡.  

SO-PLS can be combined with Linear Discriminant Analysis (LDA) [16] in order to create 
classification models [15]. The method is then called SO-PLS-LDA, and the only difference is that 
LDA is applied to the concatenated scores [𝐓𝐗 𝐓𝐙𝐨𝐫𝐭𝐡] instead of ordinary least squares in step 4.  

 2.2 Multi-Block Partial Least Squares (MB-PLS) regression 

Multi-block PLS is a well-established regression method [8-9]. The prediction model is estimated 
by classical PLS regression on the concatenated predictor blocks 𝐗 and 𝐙. In order to avoid that 
blocks of high dimensionality or large values dominate the model, data are usually scaled by 
dividing each block by its Frobenius norm. The PLS scores are called super-scores, and it is 
possible to calculate so-called block-scores, block-weights and block-loadings for interpretation 
purposes [8,9]. In the same way as classical PLS, MB-PLS can be used as a starting point for 
classification models. In this work, classification is performed by applying LDA to the super-scores 
[17]; we are going to refer to this method as MB-PLS-LDA. 
 
2.3 N-PLS 

 

N-PLS is a direct extension of classical PLS for multi-way arrays. In the three-way case it is called 

tri-PLS, and the bilinear decomposition of the predictor array is replaced by a tri-linear 

decomposition. For 𝐗(𝑁×𝐽×𝐾), the 𝐹-component model corresponds to:  

 

𝑥𝑛𝑗𝑘 = ∑ 𝑡𝑛𝑓𝑤𝑗𝑓
𝐽 𝑤𝑘𝑓

𝐾 + 𝑒𝑛𝑗𝑘
𝐹
𝑓=1              (3) 

 

where 𝒕 are the scores and 𝐰J and 𝐰K are the weights of the second and third mode, 

respectively. The model corresponds to the so-called Martens PLS algorithm [18], in that there 

are no additional sets of loading vectors 𝐩 as in the two-way PLS algorithm. The loadings 𝐩 are 



not used in N-PLS, as they would not provide orthogonality of the scores in the same way as in 

two-way PLS. The components are determined sequentially, and for each one the loading 

weights 𝐰 are found for the two variable modes in such a way that they provide scores 𝒕 that 

have maximum covariance with the still unexplained part of the response 𝐘.  

  

The method can easily be extended to higher order data, and it can also be applied for more than 

one response variable; in which case it becomes iterative [6]. N-PLS can be combined with LDA 

for classification purposes. Similarly to MB-PLS-LDA, LDA is applied to the scores. We refer to this 

method as N-PLS-LDA. 

 

2.4 SO-N-PLS 

 

The algorithm proposed here combines the SO-PLS algorithm with N-PLS regression in order to 

build multi-block models with multi-way arrays as predictors. It is here presented only for three-

way arrays, but as for N-PLS itself, it can easily be extended to arrays of a higher order. 

 

The algorithm is the same as explained in paragraph 2.1, with the main difference that 

regressions which involve multi-way blocks are performed applying N-PLS instead of PLS. One 

then ends up with two sets of scores (𝐓𝐗 and 𝐓𝐙𝐨𝐫𝐭𝐡) as for SO-PLS, and can run an ordinary least 

squares fit of 𝐘 onto the scores. Note that it does not matter whether the three-way array is first 

or last. All the properties described for SO-PLS in section 2.1 are retained. 

 

The orthogonalization in SO-N-PLS is slightly different than in SO-PLS when the second block is 

multi-way. The three-way 𝐙-block of dimension N x M x I is first unfolded row-wise to 𝐙un, a 

matrix of dimensions 𝑁 × 𝑀𝐼. Then, 𝐙orth is obtained replacing 𝐙 with 𝐙un in Eq.2 before 𝐙orth is 

refolded back to the original three-way structure.  

 

In order to obtain a regression equation in the original variables (instead of score vectors), the 

model needs to be formulated in terms of unfolded matrices. With two sets of unfolded 

matrices, i.e. if two three-way blocks are involved, the equation corresponding to Eq. 1 becomes: 

 

𝐘 = 𝐗un𝛄 + 𝐙un𝛎 + 𝐄  (4) 

 

Where 𝐗un, is the unfolded 𝐗, a matrix of dimensions 𝑁 × 𝐽𝐾. 𝛄(𝐽𝐾𝑥𝑅)  and 𝛎(𝑀𝐼𝑥𝑅)  are the 

regression coefficients. Note that N-PLS involves two sets of weights, 𝐰J and 𝐰K. These weights 

are different from the weights extracted by PLS on an unfolded three-way matrix. Likewise, the 

𝐠 and 𝐡 (from Eq.1) and 𝛄 and 𝛎, are not the same. Regression coefficients from SO-PLS and SO-

N-PLS models have same size, but they are calculated differently.  

Here, regression coefficient are calculated as suggested by De Jong in [19] (procedure called 

Method 2). 

Firstly, weights 𝑾 are calculated as the inner product of the weights 𝐰J and 𝐰K. Then, the 

loading-weights 𝐑 are obtained as: 

          𝑹 = 𝑾/𝜹           (5) 



Where 𝛿 is the upper triangular part of 𝑾𝑻𝐖.  
Then,  𝐛N−PLS can be calculated as:  

                       𝐛N−PLS = 𝐑𝑸𝑻  (6) 

where 𝑸 are the 𝒀-loadings.  

SO-N-PLS can be used for classification problems by applying LDA on the concatenated 𝐓X and 

𝐓Zorth, as described for MB-PLS and SO-PLS. We call this method SO-N-PLS-LDA. 

2.5 Estimating the number of optimal components in multi-block models 
 

The number of latent variables to be used in each PLS regression can be decided by either a 
global or sequential strategy. In the global strategy, all combinations of components from each 
block are tested and evaluated using the so-called Måge-plot [11]. In the sequential strategy (not 
used here), the number of components to use for the first block is determined before the 
number of components for second block is assessed. With this strategy one extracts all relevant 
information from 𝐗 before 𝐙 is introduced. In both cases, it is important to validate the model 
carefully since many combinations of components are tested.  
 
In this work, the root mean square error of cross-validation (RMSECV) is used for selecting 
components in the regression models. For classification problems, the cross-validated 
classification error is used [15]. 
 
2.6 Graphical inspection of the model parameters 

The interpretation tools used for SO-PLS are also applicable for SO-N-PLS, as for instance the 

interpretation of the scores plot discussed in [11,15]. The scores can be used to investigate the 

distribution of samples and look for clusters and groupings, just like for regular PLS. Scores can be 

plotted internally for each block, or scores from 𝐗 and 𝒁 may be plotted against each other since 

they are all orthogonal.  

 

As explained in Paragraph 2.3, N-PLS follows the Martens PLS algorithm, in which the weights 𝐖 

are used to calculate the scores. For the 𝐗-block, these weights can be used directly to interpret 

the variable contributions for each component in SO-N-PLS. For three-way arrays, there are two 

possible visualizations of the weights. One is obtained by plotting 𝐰J and 𝐰K  individually. 

Another alternative is to plot the outer product of (𝒘𝐽𝒘𝐾)𝑇 as a landscape.  

 

For MB-PLS and SO-PLS, 𝑿-loading weights for each component will be of size 𝑱𝑲 × 𝟏. They can 

be plotted as they are, or folded back to an 𝑱 × 𝑲 matrix and plotted as a landscape similarly to 

the outer product 𝐰J and 𝐰K for SO-N-PLS.  

 

Interpretation of the 𝐙-block is slightly different than for the 𝐗-block since 𝐙orth is not in the row 

space spanned by 𝐙. In SO-PLS it has been shown that the 𝐙-block can be interpreted by 

calculating loadings 𝐏z as projections of 𝐙 itself on 𝐓Zorth [15]: 

 

𝐏z = (𝐓𝐙𝐨𝐫𝐭𝐡
𝐓𝐓𝐙𝐨𝐫𝐭𝐡)−1𝐓𝐙𝐨𝐫𝐭𝐡

𝐓𝐙    (7) 

 

In this way, loadings are showing the relation between 𝐙 and the extracted information (after 𝐗 

has been modelled).  



In the three-way case, the 𝐙-weights can be re-calculated in a similar way by projecting the 

unfolded 𝐙 on 𝐓𝐙𝐨𝐫𝐭𝐡: 

  

𝐖z = (𝐓𝐙𝐨𝐫𝐭𝐡
𝐓𝐓𝐙𝐨𝐫𝐭𝐡)−1𝐓𝐙𝐨𝐫𝐭𝐡

𝐓𝐙un (8) 

 

By Eq. 8 we obtain unfolded 𝐖z. These can then be reshaped and plotted in the same ways as for 

𝐖x. 

 

Additionally, regression coefficients can be used to interpret variable contributions. One can, for 

instance, plot (one block at a time) regression coefficients from SO-N-PLS (𝛄 and ν in Eq.4) and 

SO-PLS (𝐠 and 𝐡 in Eq.1) as shown in Fig. 6. As for the weights, coefficients can be reshaped and 

plotted as landscapes.  

2.7. Data analysis 

All data analyses were performed using MATLAB (R2012b, The Mathworks, Natick, MA), using in-
house routines. MATLAB routines for MB-PLS, SO-PLS, SO-N-PLS are available for download at 
www.nofimamodeling.org.  
 
3. Data sets 

3.1 Simulated Data 

Data sets consisting of two three-way predictor blocks (𝐗 and 𝐙) and a response vector (𝐲) were 

simulated to investigate differences between SO-N-PLS, MB-PLS and SO-PLS under various 

scenarios. The data sets are constructed in such a way that they fit a low-dimensional three-way 

structure. The main focus is to compare the method performances on small and noisy data sets, 

since these are most prone to overfitting. Data sets were simulated following a full factorial 

design of the factors “number of samples” (six levels), and “amount of random noise” (four 

levels) ending up with 6×4=24 different factor combinations. Noise was added to each variable of 

𝐗 and 𝐙. The six different samples sizes (𝑁𝑖  ) are 15, 20, 25, 35, 50 and 60, while the four levels of 

added noise (𝐿1, 𝐿2, 𝐿3, 𝐿4) correspond to 10%, 30%, 40% and 50% of the signal. Noise was added 

also to 𝐲, at a fixed level of 1.5% of the signal. All noise added was homoscedastic independent 

Gaussian. 

Each factor combination was replicated one hundred times, resulting in 6 × 4 × 100 = 2400 

different data sets. For each data set, an independent test set (𝐗𝐭, 𝐙𝐭 and 𝐲𝐭 ) of 600 samples was 

constructed for validation purposes. 

The three-way 𝐗 , 𝐙 , 𝐗𝐭 and 𝐙𝐭 predictor blocks were simulated to mimic fluorescence spectra, 

and were created in the following way:  

𝐗( 𝑁𝑖 × 201 × 61) is generated as the outer product of 𝐓𝐗, 𝐁𝐗 and 𝐂𝐗 while 𝐙( 𝑁𝑖 × 201 × 61) 

as the outer product of 𝐓𝐙, 𝐁𝐙 and 𝐂𝐙. Scores 𝐓𝐗 and 𝐓𝐙 are both (𝑁𝑖 × 2) matrices of normally 

distributed random numbers. 𝐁𝐗 and 𝐁𝐙 (both 201 × 2), and 𝐂𝐗 and 𝐂𝐙 (both 61 × 2) are 

loadings extracted from real fluorescence spectra of mixtures of aminoacids (data set described 

in [20]). Consequently, the loading vectors are not orthogonal. Correlations between 

components within each loading are -0.21, -0.48, 0.93 and -0.15,for 𝐁𝐗, 𝐁𝐙 , 𝐂𝐗 and 𝐂𝐙, 

respectively. 

The response vector 𝐲 is built as:  

http://www.nofimamodeling.org/


                               𝐲 = [𝐓𝐗 𝐓𝐙] ∗ 𝛃         (9) 

Where 𝛃  (4 × 1) is the coefficient vector generated as a matrix containing random values drawn 

from the uniform distribution on the interval (0.05, 1.05).  

𝐓𝐗, 𝐓𝐙 and 𝛃 (and consequently all the blocks) as well as the added noise are regenerated in each 

simulation. 

 

3.2 Chemical mixture data set 

 

28 samples of mixtures of five different biochemical compounds were analyzed by EEM and 

NMR. These compounds are two peptides, Valine-Tyrosine-Valine (Val-Tyr-Val) and Tryptophan-

Glycine (Trp-Gly), a single amino acid, Phenylalanine (Phe), a sugar, Maltoheptaose (Malto), and 

an alcohol, Propanol. More details can be found in [21]. The two cubes of measures are used as 

𝐗 (28 × 251 × 21) and  𝐙 (28 × 13324 × 8) blocks in an SO-N-PLS regression model, in order to 

predict the concentration of compounds in the mixture. The same predictor blocks will be used 

to predict the five different responses 𝐲VTV, 𝐲TG,  𝐲Phe, 𝐲Mal and 𝐲Pro using five individual 

regression models. The response vectors correspond to the concentrations of Val-Tyr-Val, Trp-

Gly, Phenylalanine, Maltoheptaose and Propanol, respectively. 
 

3.3 Lambrusco data set 

Lambrusco is a typical wine of the district of Modena (Italy) with protected denomination of 
origin (PDO). Lambrusco can be produced using mixtures of different species of grapes harvested 
in the area close to Modena. The fraction of the different grapes used is strictly fixed by the law 
under the PDO legislation. Unfortunately, frauds attempts in the food sector are quite common  
and wine is one of the main targets. Typical wine frauds can for instance be to use different 
fractions or lower quality grapes in PDO wines. Characterization and authentication of the grape 
cultivars used in wine production is therefore an important task, although not straightforward. In 
this work, the ability to distinguish between three different types of PDO Lambrusco wines based 
on instrumental analysis is tested. A total of fifty-eight samples of wines (all produced in 2009) 
were analyzed by EEM and NMR. Of these, nineteen are of “Lambrusco Grasparossa di 
Castelvetro PDO”, twenty of “Lambrusco Salamino di Santa Croce PDO”, and nineteen of 
“Lambrusco di Sorbara PDO”. In the following analysis, the EEM three-way array is used as 
𝐗 (58 × 161 × 21) while the NMR is used as 𝒁 (58 × 9168). SO-N-PLS-LDA model is then built 
to classify wines belonging to the three classes Grasparossa, Sorbara and Salamino. The response 
block is a categorical matrix carrying the class-belonging information. For a detailed description 
of the data set, see [22].  
 

4. Results and Discussion  

The simulated data sets were validated by independent test sets. The mixture and Lambrusco 

data sets were not considered large enough for a test set validation. Therefore, these models are 

validated by leave one out cross validation.  

4.1 Results for the simulation study 

SO-PLS and MB-PLS on the unfolded arrays and SO-N-PLS on the original data were performed on 
all the 2400 simulated data sets. The simulation study is divided in two parts: Part I and Part II, 
differing in how the model complexity is estimated. In the first one, the true number of latent 



variables (LVs) is used, namely two for each block in SO(-N)-PLS and four in MB-PLS. This is done 
in order to compare the performances of models when the definition of optimal model 
complexity is not affecting the results. In part II, the numbers of components are selected for 
both blocks simultaneously using the Måge-plot (as described in paragraph 2.5). Instead of 
selecting the number of component resulting in the lowest RMSECV, an adjustment to ensure 
parsimony in the selection was carried out. The selected number/combination of components in 
MB-PLS/SO-(N)-PLS models is the smallest one giving an RMSECV not significantly different from 
the absolute minimum, decided by a χ2 test (significance level 5%) [23]. Part II is more relevant 
for a real data analysis when the true complexity is unknown. 
 

ANOVA was used to evaluate the effects of Method, Samples (N) and Noise (L) on the RMSEPs 

(averaged over 100 replicates). For results, see Table 1. In the simulation study Part I, the largest 

effects (as measured by MS’s and F-values) are given by Method and Samples. For the simulation 

study Part II, Samples gives the largest effect followed by Method and Noise. It is clear that, 

relative to the number of samples, the effect of Method is smaller when selecting the number of 

components rather than knowing the ‘correct’ number a priori. This means that, when each 

method is allowed to find the optimal number of components, the differences between methods 

become smaller. Even though the underlying complexity of the two blocks is two, a different 

number of components could be optimal for the model. This aspect will be discussed further 

below. 

 
Table 1: ANOVA analysis of RMSEP for the simulation studies. 

 

 

 

 

Noise has a smaller effect than Samples in both studies. This suggests that the prediction error is 

more affected by a reduction in sample size than by increased noise. The prediction errors for the 

two simulation parts are plotted in Fig. 2 and Fig. 3 respectively, and it is clear that all methods 

have higher prediction errors when the number of samples is low. Also the differences between 

methods are larger at high noise levels.  

 

  Simulation Part I Simulation Part II 

Effect D.o.f. Mean Sq. 

(×10-3) 

F-

value 

p-

value 

Mean Sq. 

(×10-3) 

F-

value 

p-

value 

Method 2 3.1 21.0 0.000 0.8 6.3 0.005 

Samples (N) 5 3.3 22.7 0.000 2.38 18.8 0.000 

Noise (L) 3 0.5 3.2 0.037 0.65 5.2 0.005 

Method*Samples 10 0.3 2.2 0.048 0.16 1.3 0.294 

Method*Noise 6 0.1 0.6 0.707 0.08 0.6 0.721 

Samples*Noise 15 1.3 9.1 0.000 1.06 8.4 0.00 

Error 30 0.2   0.13   

R-squared 0.92     0.9  



As expected, the interaction between Samples and Noise is quite large, meaning that small data 

sets with high noise perform even poorer than data set having only low sample size or only high 

noise. 

 

Figure 2: Average RMSEPs for the simulation study Part I. Each subplot shows a different noise level (L), while the 
number of samples (N) are given on the abscissa. The curves represent the three methods; SO-N-PLS (red), SO-PLS 

(green) and MB-PLS (blue). 

        

The averaged RMSEPs for Part I are presented in Fig. 2. The three regression methods show 

comparable performance for 10% of added noise, and at this noise level the number of samples 

has little effect on the prediction error. When the noise is higher, SO-N-PLS consistently gives 

better predictions than the other methods. The difference is largest when the noise level is high 

and the number of samples is low. These results are in agreement with the initial hypothesis; SO-

N-PLS will provide better predictions than unfolded analysis on small sample sizes and on noisy 

data.  

Fig. 3 shows averaged RMSEP values for Part II of the simulation study, where the number of 

latent variables are chosen to minimize the RMSEP in each model.  



 

Figure 3: Average RMSEPs for the simulation study Part II. Each subplot shows a different noise level (L), while the 
number of samples (N) are given on the abscissa. The curves represent the three methods; SO-N-PLS (red), SO-PLS 
(green) and MB-PLS (blue). 

The results in Fig. 3 can be compared to Fig. 2, and the trends are very similar: SO-N-PLS 

outperforms the other methods when the noise is high and number of samples is small. Note 

however that the differences between methods become much smaller when the number of 

latent variables is selected as part of the modeling. This is in close correspondence with the 

ANOVA: the differences between methods are smaller in Part II. Here, there is no relevant 

difference between any of the methods when the number of samples is 25 or more (30-40% 

noise) and 35 or more (50% noise). The results from SO-PLS and MB-PLS are also comparable, 

which suggests that SO-PLS and MB-PLS are similar from a prediction point of view when the 

number of latent components can be adjusted freely.   

 

SO-PLS gives the highest prediction errors in both parts of the simulation study, but in Part II the 

results were very similar to MB-PLS. This shows that using the “correct” number of components 

for both blocks is not optimal for SO-PLS. This is likely due to the fact that residuals from the first 

fit carry information about the noise and the unmodelled structure in 𝐗.  This needs to be 

corrected when fitting 𝐘 to the orthogonalized 𝐙. As a consequence, SO-PLS could need more 

components than the “correct” number for the second block.  

 

An additional simulation was run to investigate how SO-PLS and MB-PLS handle noise in 𝐘. One 

hundred data sets were simulated as described above, and 20% noise was added to 𝐘 each time. 

SO-PLS and MB-PLS models were fitted both before and after the addition of noise. Results show 

that SO-PLS gives slightly better predictions than MB-PLS when 𝐘 is without noise, but these 

results are reversed when noise is added. This supports the conclusion in the previous paragraph.  

 

Fig. 4 shows the average number of latent variables selected for each level of noise and sample 

size. SO-N-PLS uses the same number of components as used to generate the data (two 

components are always chosen) and is therefore not included in Fig. 4. The unfolded methods 

always select a number of components higher than used to generate the data. MB-PLS (in blue) 



generally selects five latent variables for the low noise level, and six when the noise is higher. SO-

PLS (in green) generally selects three latent variables for the 𝐗-block and between four and six 

latent variables for the 𝐙-block (dashed green line). These results suggest that the second initial 

hypothesis is also valid; SO-N-PLS gives models that are more parsimonious, which is an 

advantage from the interpretation point of view.  

 

Figure 4: Each subplot shows a different noise level (L), while the number of samples (N) are given on the abscissa. The 
curves represent the two methods; SO-PLS (green) and MB-PLS (blue). Red and black continuous lines represent the 
proper complexity for SO-PLS and MB-PLS, respectively. Dashed lines represent the regression involving the 𝒁. SO-N-PLS 

not shown because two LVs were always selected for both blocks. 

 

In order to further investigate the differences in interpretation, the 𝐗-weights from SO-PLS and 

SO-N-PLS on one of the simulated data sets are shown in Fig. 5. The selected data set consists of 

60 samples and the noise level is 50% for both 𝐗  and 𝐙. 



 

Figure 5: X-weights from models on one of the simulated data sets with sixty samples and 50% noise. 

 

Looking at Fig. 5, it is clear that the 𝐗-weights from SO-N-PLS are smoother than those from the 

SO-PLS model. Even if the shape of the weights are similar for the two methods, it is evident 

already in the first component that SO-PLS models more noise than SO-N-PLS. The third 

component is strongly influenced by noise, which is reasonable since the number of components 

used to generate the data is two. The same conclusion is reached looking at the 𝐙-weights from 

SO-N-PLS and the 𝐙-loadings from SO-PLS, and therefore the plots are not reported here. The 

same behavior is also observed for lower noise levels.   

 

As explained in paragraph 2.6, the regression coefficients can also be used to graphically 

interpret models. Regression coefficients from SO-PLS and SO-N-PLS built on a simulated data set 

(the same data set shown in Fig. 5) are shown in Fig. 6. 

These coefficients correspond to 𝐠 and γ in Eq.1 and Eq.4, respectively. Both sets of coefficients 

have been refolded to the three-way structure before plotting Fig. 6.  The visual appearance 

confirms that SO-PLS’ regression coefficients are more affected by noise than SO-N-PLS’.  

 



 

Figure 6: Comparison of 𝑿-regression coefficients from SO-N-PLS (left plot) and from SO-PLS (right plot), from a 
simulated data set with sixty samples and 50% noise. 

The results illustrate that SO-N-PLS is better at filtering out noise when an underlying three-way 

structure is present, while it is included in the model in the unfolded analysis. The plot for MB-

PLS is similar and therefore not shown.  

 

4.2 Results on chemical mixture data set 

Prediction models for each of the five chemical compounds were fitted by N-PLS using only one 

block at a time, and by SO-N-PLS, MB-PLS and SO-PLS on both blocks. Results are reported in 

Table 2.  

 

Table 2: Chemical mixtures data set: RMSECVs and Explained variances for the prediction of the concentrations of 
compounds in the mixture. 

 

 

 

 

 N-PLS (Only X-block) N-PLS(Only Z-block) SO-N-PLS MB-PLS SO-PLS 

Compound LV

s 

RMSCV Expl. 

Var. 

(%) 

LVs RMSCV Expl. 

Var. 

(%) 

LVs RMSCV Expl. 

Var. 

(%) 

LVs RMSCV Expl. 

Var. 

(%) 

LVs RMSCV Expl. 

Var. 

(%) 

Valine-

Tyrosine-Valine 

3 0.59 97 2 0.74 96 2,2 0.19 99 3 0.19 99 2,4 0.14 99 

Tryptophan-

Glycine 

2 0.20 99 2 0.86 96 2,2 0.12 100 3 0.15 99 3,5 0.11 100 

Phenylalanine 2 0.30 98 2 0.91 95 1,2 0.26 99 3 0.26 99 3,4 0.21 98 

Maltoheptaose 1 2.00 84 2 0.15 99 1,2 0.14 99 2 0.14 99 3,2 0.12 100 

Propanol 1 2.22 84 2 0.7 96 2,2 0.51 97 5 0.20 99 1,5 0.09 100 



Explained variances for all compounds are generally high for at least one of the one-block 

models, but were sometimes slightly improved by using both blocks. These differences are more 

evident when looking at the RMSECVs.  In all cases, the SO-PLS model gave the best prediction 

results. SO-N-PLS results were comparable except from one case (propanol) where the difference 

is large. The MB-PLS predictions were in all cases less precise than SO-PLS.   

These results are not in accordance with the hypothesis, since the unfolded methods perform 

better than SO-N-PLS. A thorough examination of the model revealed that the reason possibly 

stems from the handling of non-linearity in the data. Fig. 7 shows the concentration of propanol 

as a function of the first two Zorth-components from SO-PLS and SO-N-PLS. The second 

component from SO-PLS is the only one that has a clear, linear relationship with propanol. This 

suggests that SO-PLS due to its flexibility may be better at finding relevant linear combinations of 

the data than the SO-N-PLS which always obeys a tree-way data structure. The high number of 

components SO-PLS selected from the 𝐙-block also confirms this hypothesis.   

 

Figure 7: 𝐲Provs 𝐓Zorth from the SO-N-PLS and SO-PLS models: a) and b) 𝐲Pro is reported as a function of the first 
𝐓Zorthh from SO-N-PLS and the first 𝐓Zorth from SO-PLS, respectively. c) and d) 𝐲Pro plotted against the second 
𝐓Zorthfrom SO-N-PLS and from SO-PLS, respectively. 

 

The methods differ slightly in the number of selected latent variables. In general, MB-PLS selects 

less components than SO-PLS, which selects the highest number (among the three methods). SO-

N-PLS selects less components than MB-PLS only in one case (two plus two components selected 

for SO-N-PLS and five for MB-PLS). In another case, the two methods select the same number of 

latent variables (one plus two and three); in all the other models SO-N-PLS selects one 

component more than MB-PLS. This is different from the simulation study, where SO-N-PLS gives 

the most parsimonious models. This could also be due to the presence of non-linearity, SO-(N)-

PLS needs more components to handle it. Alternatively, it could stem from the fact that in the 

simulations, the response was affected by independent components from both 𝑿 and 𝒁, while 

the relevant information might be overlapping in this data set.   



The aim of this study is not to give a detailed chemical interpretation of the system, but rather to 

highlight differences between the graphical interpretations of the methods. As an example, 

weights from the SO-N-PLS, SO-PLS and the MB-PLS models (related to the 𝐗-block) for the 

prediction of Valine-Tyrosine-Valine are reported in Fig. 8. For SO-N-PLS, the outer product of the 

second and third mode weights is plotted. For MB-PLS and SO-PLS, weights are refolded before 

being plotted. As mentioned in the initial hypothesis, models built with a small number of 

components are easier to interpret. Note that, even if MB-PLS has the lowest number of latent 

variables (three versus two plus two) we need to interpret three plus three weights for MB-PLS 

(three latent variables correspond to three components per each block) versus two plus two for 

SO-N-PLS. Consequently, SO-N-PLS model has the least number of weights to plot and interpret.  

The 𝐗-weights from the SO-N-PLS model show that the two components represent two different 

compounds, one that has emission around 300 nm and excitation around 275; and the other that 

has emission around 280 nm and excitation around 260 nm. Looking at the fluorescence spectra 

of the pure compounds, these correspond to Valine-Tyrosine-Valine and Phenylalanine, 

respectively. The same interpretation is not so straightforward from the SO-PLS loadings weights. 

The first component (Fig. 8b) is similar to SO-N-PLS’, but the negative peak has a wider shape. 

This makes the identification of the excitation peak more difficult. In the second component (Fig. 

8e) it would be possible to identify the excitation peak, but the emission one is too wide to make 

a clear interpretation. Peaks identification looks even more difficult for MB-PLS (Figg. 8c, 8f and 

8g). Due to the wide shape of the peaks, component one from MB-PLS is difficult to interpret.  

Components two and three are similar to components one and two (respectively) from the SO-

(N)-PLS models; but even in this case the width of the peaks would make the chemical 

interpretation weak. Note that MB-PLS is in general more complicated to interpret, since each 

component presents contributions from both blocks. 

 

Figure 8: Chemical mixture data set. Weights (for SO-N-PLS, SO –PLS and MB-PLS) plots (related to the 𝐗-block) for 
prediction of the Valine-Tyrosine-Valine compound. 



In order to check the starting hypothesis, a further investigation has been conducted on the 

chemical data set. Some random noise (simulated as it is described in 3.1 for the simulation 

study, and correspondent to the 50% of the signal of each block) was added to each predictor 

and new SO-N-PLS, SO-PLS and MB-PLS models were built. This was replicated ten times, and 

averaged RMSECVs and selected number of latent variables are reported in Table 3. 

 

Table 3: Averaged (over the 10 replicates) RMSECVs and number of components from SO-N-PLS, MB-PLS and SO-PLS 
models after the addition of 50% random noise to 𝑿 and 𝒁. 

 

The averaged RMSECVs from the new models agree with the results from the simulation study, 

supporting the first hypothesis. Except for the prediction of the propanol, SO-N-PLS is giving the 

lowest RMSECVs. For chemical reasons, the use of fluorescence spectra (𝐗-block) to predict 

propanol cannot be completely reliable from the analytic point of view and its prediction cannot 

be consider an indicator of the model performances. Consequently, SO-N-PLS is confirmed as the 

best predictor method (among these three) for noisy data. 

Concerning the number of latent variables, SO-N-PLS is once again the most parsimonious 

method in selecting latent variables. These results are also in agreement with the simulation 

study, supporting the second hypothesis. 

 

4.3 Results on the Lambrusco data set 

Classification results 

Classifications of Lambrusco wines were first performed by single block methods; N-PLS-LDA on 

the three-way 𝑿 (GC-MS) and PLS-LDA on the two-way 𝒁 (NMR). Then, these models were 

compared to the multi-block methods MB-PLS-LDA, SO-PLS-LDA and SO-N-PLS-LDA. Results for all 

models are reported in Table 4. It is clear that the 𝐗-block has the highest discriminating power, 

giving a total classification error of 24% versus 59% for the 𝐙-block. By combining 𝐗 and 𝐙,  the 

error is unchanged for SO-N-PLS-LDA and SO-PLS-LDA and one sample more is misclassified by 

MB-PLS. In other words, the multi-block models gave almost identical results to the model using 

only 𝐗. The numbers of latent variables are the same for all multi-block models: six for MB-PLS 

and two plus four for SO-(N)-PLS.  

 

 SO-N-PLS MB-PLS SO-PLS 

Compound RMSCV # components RMSCV # components RMSCV # components 

X Z Z Z 

Valine-Tyrosine-Valine 0.31 1.3 2.0 0.32 4.0 0.50 1.5 5.1 

Tryptophan-Glycine 0.13 1.2 2.0 0.49 3.8 0.22 3.3 5.0 

  Phenylalanine 0.24 1.4 2.0 0.38 4.1 0.25 1.9 2.9 

Maltoheptaose 0.14 1.4 2.0 0.15 3.3 0.17 1.9 5.0 

Propanol 0.72 1.5 2.0 0.55 4.1 0.75 1.0 5.4 



Table 4: Lambrusco Data set: Classification errors by single-block and multi-block methods. 

Method LVs: Miscl. 

Grasparossa  

Misclassified 

Salamino  

Misclassified 

Sorbara  

Tot.Error (%) 

N-PLS (Only X) 3 7 4 3 24 

PLS (Only Z) 3 16 13 5 59 

SO-N-PLS-LDA 2,4 7 4 3 24 

MB-PLS-LDA 6 6 7 2 26 

SO-PLS-LDA 2,4 6 5 3 24 

 

One way to interpret the SO-N-PLS-LDA models is to look at the cross-validated predictions in the 

space of the canonical variates, as shown in Fig. 9. In order to do that, the cross-validated 𝐘-

values are used to calculate the covariance matrix necessary to extract the canonical variates. 

More details can be found in [15].    

 

Figure 9:  Classification of Lambrusco wines. Predictions in the space on canonical variates using both 𝐗 (GC-MS) and 𝐙 
(NMR) blocks. Circled samples are the misclassified ones. 

 

There is a strong overlap between the Grasparossa and Salamino classes. The reason for this is 

that both wines are made from mixtures. According to law, Lambrusco Salamino di Santa Croce 

PDO contains 85% of Salamino grape and the rest 15% is of grapes harvest in Modena’s area (so 

they could be Grasparossa or Sorbara). The same applies to “Lambrusco Grasparossa di 

Castelvetro PDO”, while “Lambrusco di Sorbara PDO” contains 60% of Sorbara grape plus 40% 

Salamino grape. 

In order to focus on the differences between Salamino and Sorbara, and to check the possibility 

of distinguishing between the two, a new classification models were fitted only to the thirty-nine 

Salamino and Sorbara samples. Cross-validated predictions in the space of the canonical variates 

(from the SO-N-PLS-LDA model) are visualized in Fig. 10. Some misclassification cannot be 



avoided due to the nature of wines: two Salamino and three Sorbara samples are misclassified in 

this model (Fig. 10, red bars), and the classification error is 10% and 16% for Salamino and 

Sorbara respectively. N-PLS-LDA on 𝑿, MB-PLS-LDA and SO-PLS-LDA misclassify the same 

samples, indicating that these are intrinsically hard to distinguish. PLS-LDA on 𝒁 misclassifies 

even more samples (six and three misclassified for Salamino and Sorbara, respectively).   

 

Figure 10: Classification of Lambrusco wines: Cross-validated predictions in the CVA space using both blocks restricted 

to only two classes (Salamino and Sorbara). Red bars are the misclassified samples. 

 

4.4 Discussion of the hypotheses mentioned in the introduction 

 

The first hypothesis was that SO-N-PLS is expected to give better predictions for small sample 

sizes and noisy data. The simulation study confirms this, since SO-N-PLS performs better than the 

unfolded methods except when the noise is low (10%). For the low noise level, the three 

methods are comparable regardless of sample size. SO-N-PLS also filters the noise better than 

the other methods, which is clearly seen in Fig. 5 and 6. SO-N-PLS outperforms the other 

regression methods in particular when the number of components is set equal to the true 

number (Part I of the simulation). In all cases, the difference between SO-N-PLS and SO-PLS is 

higher than the difference between SO-N-PLS and MB-PLS. In the more realistic scenario where 

the number of components is determined by cross-validation (Part II of the simulation), the 

difference between MB-PLS and SO-PLS became negligible.  

 

The superiority of SO-N-PLS is not visible in the real data sets, which is probably due to non-

linearities and less clear three-way structure in data. In the chemical mixtures data set, the SO-

PLS was the best in prediction. Nevertheless, in the further study made on this data set, the 

behaviors shown in the simulation study are visible again. In fact, after the addition of random 

noise to 𝐗 and 𝐙, SO-N-PLS gives the best predictions. Concerning predictions in the Lambrusco 

data set, the methods were indistinguishable. In the chemical mixtures data set, multi-block 

methods improved predictions slightly as measured by RMSECV, while in the Lambrusco data set 

they did not. It is important to mention, however, that for practical use of the methods these 



results should be validated more carefully using a new test set, the reason being that the both 

selection of components and the actual prediction results are based on the same cross-

validation.     

 

The second hypothesis was that SO-N-PLS leads to simpler models that could be more easily 

interpreted. This is not completely confirmed, but some clear indications are given in the 

simulation study. In the simulations, SO-N-PLS always selects the actual underlining complexity, 

while MB-PLS and SO-PLS generally need more latent variables (in particular for the 𝐙-block). This 

may lead to less stable predictions and more model parameters (weights) to interpret.   

 

Looking at the real data sets, this overestimation of latent variables by MB-PLS and SO-PLS is less 

evident. For the mixture data set, MB-PLS needs less latent variables than SO-N-PLS. 

Nevertheless, MB-PLS leads to a more complicated interpretation since all the parameters that 

have to be investigated are doubled (each component gives loadings for both blocks). SO-PLS still 

needs more latent variables than SO-N-PLS. In the further study on this data set with addition of 

noise to 𝐗 and 𝐙, SO-N-PLS confirms its parsimony in the latent variable selection.  

 

Considering the graphical interpretation of the models, SO-N-PLS’ weights can be represented 

directly or mode-wise. Anyhow, comparable plots of weights and regression coefficients can be 

made based on all three methods. In these, we have shown that SO-N-PLS is better at filtering 

out noise and thereby gives more clear/interpretable plots. 

 

5. Conclusions 

 

The novel method SO-N-PLS can be used to fit multi-block models when predictor blocks are 

multi-way arrays, without unfolding the arrays. The method can be applied for both prediction 

and classification. It shows some benefits when compared to methods based on unfolded data 

(SO-PLS and MB-PLS), given that the three-way data satisfies a low-dimensional three-way 

structure. 

 

Simulation studies showed that SO-N-PLS performs better than the unfolded methods when the 

sample size is small and the data is noisy. This is due to the fact that it filters out the noise better 

than MB-PLS and SO-PLS. For the two real data examples, the superiority of SO-N-PLS method is 

not so evident, but it performed well also for these cases.  

 

SO-N-PLS has many of the same properties as SO-PLS: it is invariant to block scaling and it allows 

for different numbers of components for each block. It also has some benefits related to 

interpretation, since the contribution from each block can be interpreted individually. 

Additionally, SO-N-PLS gives rise also to a number of graphical interpretation tools. The 

advantage of these is that they take into account the original three-way structure of the data.  
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Abstract 

Data-fusion is very useful for the extraction of information from multi-block data, but the choice of 

the most appropriate multi-block method is not straightforward. Which method would be the most 

suitable depends on the data and on the purpose of the analysis. In this work, the behavior of three 

multi-block methods handling data sets which present different underlying dimensionality and, at the 

same time, a different number of variables, is investigated. The discussion will be mainly focused on 

interpretation rather than on predictions. The three multi-block methods are MB-PLS, SO-PLS and 

PO-PLS; they will be applied on simulated data sets. In one part of the simulation study, multi-block 

methods are used to combine process-like and spectra-like data. In the second part, the same three 

methods handle a categorical and a spectra-like block. Special attention will be given to the 

interpretation of the loadings; in particular, a method to investigate their interpretability is proposed. 

Additionally, the selection of the number of components in the different data structures will be 

discussed. In particular, the agreement between the “expected” number of components (namely, 

the actual inner dimensionality of the data) and the optimal complexity required by the models will 

be discussed. 

1.  Introduction 

Many methods for handling multi-block regression problems have been developed, mainly driven by 

advances in sensor technologies [1,2]. The choice of method depends on both the objective of the 

data analysis and the nature of the data sets. Previous work has shown that different methods 

usually give models with similar predictive performance, but the interpretation of model parameters 

differs and is not straightforward [2-7]. Therefore, there is a strong need to investigate the 

interpretation of these models further.  

The interpretation might depend on method characteristics such as the selection of components and 

how the model parameters are calculated, as well as on the properties of the data blocks. In that 

regard, it is of especial interest to investigate how data blocks with different sizes and covariance 

structures are handled. 



In this paper, three multi-block regression methods based on Partial Least Squares (PLS) regression 

are compared and discussed from the interpretation point of view. The methods are Multiblock-PLS 

(MB-PLS) [8-11], Sequential Orthogonalized PLS (SO-PLS) [12-13] and Parallel Orthogonalized PLS 

(PO-PLS) [14-15].  MB-PLS is a well-established method which is easy to implement for any number of 

blocks, since it essentially is a regular PLS regression on the concatenated blocks. SO-PLS and PO-PLS 

were developed to give better interpretation for specific data analytical objectives: SO-PLS fits the 

blocks sequentially, which allows interpretation of the incremental information in each block. PO-

PLS, on the other hand, identifies common and distinct components in the data blocks and is 

therefore more suited for interpreting the correspondence between blocks. Both SO-PLS and PO-PLS 

allow for different numbers of components in each block, which can be seen as an advantage from 

an interpretation point of view. The hypothesis of this paper is therefore that SO-PLS and PO-PLS 

provide a better insight into the underlying phenomena in the data set, especially when the blocks 

have different sizes and covariance structures. 

2.  Materials and methods 

All the methods used in this paper can handle any number of predictor blocks, but we will focus on 

the two-block case represented by the equation:  

𝒀 = 𝑿𝜷 + 𝒁𝜸 + 𝑬   (1) 

Where 𝒀(𝑵×𝑰) is the response, 𝑿(𝑵×𝑱) and 𝒁(𝑵×𝑲) are the predictor blocks and 𝑬(𝑵×𝑰) is the residual 

matrix. Both predictors and responses are assumed to be mean-centered (when not differently 

specified).  

In the following we present briefly the three methods considered in the paper. In Section 2.5 we 

discuss more deeply how to interpret the models.  

                2.1 MB-PLS 

In Multi-Block-PLS [8-11], the concatenated matrix 𝑿𝒄𝒐𝒏𝒄 (𝑿(𝑵×(𝑱+𝑲))
𝑪𝒐𝒏𝒄 = [𝑿 𝒁]) is used to predict the 

response 𝒀 by PLS regression. In order to avoid that blocks with several variables drive the 

regression, predictor blocks need to be block-scaled before the concatenation. In this work, block-

scaling is carried out dividing each block by its Froebenius norm.  

                2.2 SO-PLS 

 As the name suggests, Sequential and Orthogonalized-PLS [12-13] is a multiblock regression method 

where the information from the different predictors are extracted sequentially to achieve the final 

model. The algorithm is divided in four steps: 

1) 𝒀 is fitted to 𝑿 by PLS, obtaining scores 𝑻𝑿  

2) 𝒁 is orthogonalized with respect to the scores of PLS in 1 (𝑻𝑿) 

3) Residuals from 1 are fitted to 𝒁𝒐𝒓𝒕𝒉 by PLS, obtaining 𝑻𝒁𝑶𝒓𝒕𝒉 

4) The final model is calculated as in Eq. (1)  

This method has a number of properties that make it particularly suitable for interpretation 

purposes. The number of components can be defined for each block involved in the regression. 

Moreover, the contribution of each block can be evaluated individually. The investigation of each 

PLS-regression involved in the model allow understanding which info come from which block. More 

details can be found in [12-13]. 

2.3 PO-PLS 



PO-PLS [14-15] distinguishes between common and distinctive components in the predictor blocks. 

The PO-PLS algorithm applied for this work is not the original one [14] but its variation presented in 

[15]. It can be summed up in the following steps: 

1) 𝒀 is predicted from 𝑿 and 𝒁 by two individual PLS models. Scores from this model are called 

𝑻𝑿 and 𝑻𝒁.  

2) Common components are identified by canonical correlation analysis [16-17] of 𝑻𝑿 and 𝑻𝒁, 

and the number of common components is decided by evaluating the canonical correlations 

and the explained variances in each block. The common scores 𝑻𝑪 (𝐶 for common) are then 

defined as the average canonical scores from each block, and 𝒀 is fitted to 𝑻𝑪 by ordinary 

least squares regression. 

3) Scores 𝑻𝑿 from 1) are orthogonalized with respect to 𝑻𝑪, giving 𝑻𝑿𝒐𝒓𝒕𝒉, and 𝒀 is then 

predicted from  𝑻𝑿𝒐𝒓𝒕𝒉 by PLS regression giving 𝑻𝑫𝑿𝒐𝒓𝒕𝒉 (𝐷 for distinct). These scores 

represent the distinct information in 𝑿. 

4) Scores 𝑻𝒁 from 1) are orthogonalized with respect to 𝑻𝑪 and 𝑻𝑫𝑿𝒐𝒓𝒕𝒉, giving 𝑻𝒁𝒐𝒓𝒕𝒉, and 𝒀 

is then predicted from  𝑻𝒁𝒐𝒓𝒕𝒉 by PLS regression giving 𝑻𝑫𝒁𝒐𝒓𝒕𝒉. These scores represent the 

distinct information in 𝒁. 

5) The final predictive model is obtained in the same way as for SO-PLS by regressing 𝒀 on  

𝑻𝑷𝑶 (= [𝑻𝑪 𝑻𝑫𝑿𝒐𝒓𝒕𝒉 𝑻𝑫𝒁𝒐𝒓𝒕𝒉 ]). If there are no common components (in step 2) the model 

is identical to SO-PLS. 

2.4 Choosing the optimal number of components in MB-PLS, SO-PLS and PO-PLS 

The number of components needs to be selected for each method. For MB-PLS, there is only one 
number of components to choose, which can be decided by e.g. evaluating the cross-validated root 
mean squared errors (RMSECV). In SO-PLS one needs to select the number of components for each 
block, i.e. two numbers for the model in Eq. 1. In PO-PLS one needs to select the number of common 
components as well as the number of distinctive components in each block, which amounts to three 
numbers for the model in Eq. 1. 
 
In SO-PLS and PO-PLS, selection of the optimal complexity can be done in two ways: the sequential or 
the global approach [12]. In the sequential approach, one starts by selecting the optimal number of 
components for the first regression. Once the optimal complexity is fixed for the first regression, the 
number of components to be used in the second one is chosen. In the global approach, all possible 
combinations of components (below a fixed maximal amount) are used to build models. In both 
approaches, the optimal complexity is defined looking at the root mean square error in cross-
validation (RMSECV). In order to ease the selection in the global approach, the so-called Måge plot 
[12] can be investigated. In this, RMSECVs from the different models are shown as function of the 
total number of components. In real applications, it is advisable to manually inspect Måge plots and 
select the optimal number of components as a tradeoff between model size and predictive ability. 
The optimal number is often not the absolute minimum. In simulation studies is not possible to look 
at plots for all the repetitions, and we therefore define the optimal number of components as the 
smallest number of components giving an RMSECV not significantly different from the absolute 
minimum (Each RMSECV is tested by a χ2 test with 5% significance level [18]). If none of the 
RMSECVs in the error distribution is comparable to the absolute minimum, then the number of 
components corresponding to the lowest RMSECV is chosen. 
 
Since MB-PLS involves only one regression on the concatenated predictors, only one number of 

components has to be selected. Consequently, it could be that the optimal complexity for 𝑿𝒄𝒐𝒏𝒄 is 

not reflecting the optimal complexity for each individual block, leading to an 



overestimation/underestimation of its components. Obviously, this affects the interpretation of the 

contribution of each block to the model. Instead, in PO- and SO-PLS, the number of components is 

defined independently per block. Therefore, it is possible to extract from each block exactly the 

number of components that is considered to be optimal for it. 

 

2.5 Interpretation of multiblock models   

MB-, SO- and PO-PLS have different model parameters that can be investigated for interpretation 

purposes. For all these methods, parameters such as scores, loadings and regression coefficients can 

be interpreted as in regular PLS. 

Interpretation of loadings in SO-PLS and PO-PLS is slightly different than in PLS. In particular 

regarding the interpretation of 𝒁-loadings in SO-PLS and 𝑿- and 𝒁-loadings in PO-PLS. Due to the 

orthogonalization step, these loadings require a slight modification before being interpreted. This has 

been shown in a previous work [19] for 𝒁-loadings in SO-PLS; the same reasoning applies also to 𝑿- 

and 𝒁-loadings in PO-PLS. A matrix and its orthogonalized counterpart do not necessarily belong to 

the same row space; this means that 𝑿𝒐𝒓𝒕𝒉 and 𝑿 (in PO-PLS) and 𝒁𝒐𝒓𝒕𝒉 and 𝒁 (in both SO- and PO-

PLS) may be in different row spaces. When interpreting these models, the original 𝒁 (and 𝑿) can be 

projected down onto the orthogonalized scores 𝐓Zorth (or 𝐓Xorth), obtaining “recalculated” loadings 

𝐏z for interpretation [19]: 

𝐏z = (𝐓𝐙𝐨𝐫𝐭𝐡
𝐓𝐓𝐙𝐨𝐫𝐭𝐡)−1𝐓𝐙𝐨𝐫𝐭𝐡

𝐓𝐙  (2) 

These loadings will then be in the same row space as the original data.  

In the present paper, high relevance is given to the interpretation of loadings from MB-, SO- and PO-

PLS models based on simulated data sets. One of the advantages of simulation studies lies in the 

possibility of comparing “true” model parameters with the estimated ones. It is, however, not 

straightforward to define an objective measure of interpretability. We will therefore propose a way 

of quantifying how well the estimated loadings represent the space spanned by the true (simulated) 

loadings (Π). This approach can be used to have an indication about each method’s “interpretability” 

in the simulation study. We are going to refer to this as explained variance criterion. Note that it is 

conceived to fit well with simulations (in order to investigate the methods’ behavior) but it is not 

applicable to models based on real data.  

Once multi-block regression models have been built (on simulated data sets), the procedure consists 

of only three steps:  

1. Loadings extracted from regression models are collected in a matrix (with 𝐽 or 𝐾 rows and 

# of components columns). 

2. The loadings matrix obtained in step 1 is regressed on the true loadings Π by ordinary least 

squares.  

3. Explained variances can be investigated as an index of the goodness of how well the 

models span the right variable subspaces. Hence, to some extent it gives an indication on 

how well the interpretability of the estimated loadings can be trusted.  

In order to avoid confusion, the variance explained by the OLS-regression in step 2 will be called 

variance span.    



For the geometrical issue exposed at the beginning of the paragraph, applying the explained variance 

criterion to 𝒁-loadings from SO-PLS, two additional steps (step 1b and 1c) can be added between 

step 1 and step 2 in the previous list: 

1b. True 𝒁-scores 𝚯𝐙 are orthogonalized with respect to the true (simulated) 𝑿-scores (𝚯𝐗):  

𝚯𝐙𝐎𝐫𝐭𝐡 = 𝚯𝐙 − 𝚯𝐗(𝚯𝐗
𝑻𝚯𝐗)−𝟏𝚯𝐗

𝑻𝚯𝐙   (3) 

1c. True 𝒁-loadings 𝚷𝐙 are projected onto the true (simulated) orthogonalized 𝒁-scores 

(𝚯𝐙𝐎𝐫𝐭𝐡). 

𝚷𝐙 = (𝚯𝐙𝐎𝐫𝐭𝐡
𝐓𝚯𝐙𝐎𝐫𝐭𝐡)−1𝚯𝐙𝐎𝐫𝐭𝐡

𝐓𝐙   (4) 

Applying the explained variance criterion to the 𝑿- and 𝒁-loadings from PO-PLS, 𝚯𝐗𝐎𝐫𝐭𝐡 are 

orthogonalized with respect to the true (simulated) common scores (𝚯𝐂 ) in the same way it is done 

in Eq. 3 (𝚯𝐗𝐎𝐫𝐭𝐡 = 𝚯𝐗 − 𝚯𝐂(𝚯𝐂
𝑻𝚯𝐂)−𝟏𝚯𝐂

𝑻𝚯𝐗) and then the true loadings 𝚷𝐗 are projected onto the 

true orthogonalized scores 𝚯𝐗𝐎𝐫𝐭𝐡. 

In the previous lines it is suggested that, for simulations, the explained variance criterion should be 

operated by investigating the loading matrices after projection of the true loadings to the 

orthogonalized scores. This is different from what is suggested for the interpretation of loadings 

(Eq.2) [19]. The reason of this difference is that, in this case, it is possible to interpret the extracted 

loadings as they are (without being projected back in the original space). This gives the opportunity 

to interpret the individual contributions of the 𝑿-block (for PO-PLS) and the 𝒁-blocks (for both PO- 

and SO-PLS). In fact, the redundant information has been accounted in the previous PLS-regression 

and it has been removed by orthogonalization. This is definitely in a good agreement with the 

philosophy behind the two methodologies.        

 However, it is also possible to do not deviate too much from the standard procedure proposed in 

[19] applying the explained variance criterion comparing the “true” simulated 𝑿-loadings (for PO-

PLS) and 𝒁-loadings (for both PO-PLS and SO-PLS) with the correspondent extracted loadings 

projected back in the original space (as indicated in Eq 2). For the back projection of the extracted 𝑿-

loadings from PO-PLS, equation is: 𝐏X = (𝐓𝐗𝐨𝐫𝐭𝐡
𝐓𝐓𝐗𝐨𝐫𝐭𝐡)−1𝐓𝐗𝐨𝐫𝐭𝐡

𝐓𝐗 ). 

Indeed, a simulation study carried out for the sake of confirming this intuition, demonstrated that 

the results of the two approaches are in good agreement.  

 Three different scenarios can arise: 

1. Models can be built with the theoretically “true” number of components (according to the 
simulation parameters) and they can present shapes of loadings similar to the originals. 
These models will have: 

- Variance span close to 100% for all estimated loadings.  
-The averaged variance span will be close to 100%. 

2. Models can be built overestimating the number of components. They will present:   
-Mid/Low variance span for the components that exceed the proper number of 
components (due to overestimation). 
-The averaged variance span will be lower the more overestimated components are 
in the model. 

3. Models can be built with an appropriate number of components but they can present wrong 
shape of loadings. These will show: 

-Low variance span per component 
-Low averaged variance span. 



 
For MB-PLS, we have seen that one can have a high variance span even for exceeding components. 
When results from the explained variance criterion are not clear, (namely, when the variance span is 
neither definitely close to one, nor very low) we suggest to match it with the investigation of the 
correlation coefficients between the simulated scores/loadings and the scores/loadings estimated 
from the model. This further inspection gives an additional overview on the relationship between the 
model parameters and the original ones.  
Additionally, MB-PLS presents further model parameters (missing in SO-PLS and PO-PLS), the super-

weights [8-11], which can be interpreted. They can be investigated to understand the contribution of 

the different blocks to the prediction of the response; high super-weights’ values correspond to high 

contributions.  

 
3. Simulation study 

Different simulations were conducted to investigate the behavior of MB-PLS, SO-PLS and PO-PLS in 
handling blocks of different dimensionality (underlying dimensionality and the number of variables) 
and handling together categorical (design variable blocks) and non-categorical blocks. Predictions 
from the three methods will be compared, but the discussion will be more focused on the 
interpretation of the different models than on predictions. In order to achieve more general results, 
simulations have been replicated one hundred times. This means that all the simulated model 
parameters have been re-generated for each one of the one hundred data sets. 
 
All the simulated data sets are divided into training data set (constituted by 𝑿, 𝒁 and 𝒚) for the 

construction of the calibration models, and test data set (constituted by 𝑿𝒕, 𝒁𝒕 and 𝒚𝒕 ) used only for 

the validation of the models’ predictive ability. The selection of the optimal number of components is 

based on the training set (evaluating the RMSECVs, as explained in Section 2.4). The simulation study 

is divided in Part I and Part II. 

3.1 Simulation study Part I 

Simulated Data sets 

The 𝑿-block is constructed to resemble spectroscopic measurements with five hundred variables and 

eight components (𝑪𝑿). 𝒁 mimics process variables, and has only fifteen variables and two 

components (𝑪𝒁). The two blocks are constructed to have one common component 𝑻𝑪(𝑵×𝟏). 

Consequently, 𝑿 has one common and seven distinct components (𝑻𝑫𝑿(𝑵×𝟕)) and 𝒁 has the 

common component and one distinct (𝑻𝑫𝒁(𝑵×𝟏)). 𝑿-scores 𝑻𝒙 and 𝒁-scores 𝑻𝒛 are generated as 

𝑻𝒙 = [𝑻𝑪 𝑻𝑫𝒙] and  𝑻𝒛 = [𝑻𝑪 𝑻𝑫𝒛]. 

All the scores are simulated from the normal distribution N(0,1). 

Both 𝑿 and 𝒁 are generated as a TP-product, i.e. scores multiplied by loadings. The 𝑿-loadings, 𝑷𝑿, 
are simulated as sums of Gaussians distributions. The 𝒁-loadings, 𝑷𝒁, are simulated in such a way 
that one or two of the variables per component have a value between 0.75 and 1.25 while all the 
others have values between -0.25 and 0.25. This means that only a few of the fifteen variables affect 
the response.  
 
An example of simulated loadings is shown in Figure 1; 𝑿-loadings are shown in Figure 1(a) and 𝒁-
loadings for the two components in Figure 1(b). 
 



 

The response, 𝒚(𝑁×1), is generated as:  

𝒚 = 𝑻𝒃 
Where 𝒃(10×1)is the coefficient vector generated as a matrix containing random values drawn from 

the uniform distribution in the open interval (0.05, 1.05). 𝑻 is obtained by: 𝑻 = [𝑻𝒄 𝑻𝑫𝒙 𝑻𝑫𝒛]. Finally, 
random noise (corresponding to the 5% of the signal) was added to all the blocks (predictors and 
response), both in the training and in the test set.   
 
All the blocks in the training set have 70 samples. The test set is simulated in the same way but with 
1000 samples.   
In order to check the behavior of the methods in handling noise, a further study was conducted 
simulating one hundred additional (training and test) data sets where the amount of noise added to 
predictors was 50% (of the signal) and for 𝒚 it was 10%.  
 
3.2 Simulation study Part II 

The aim is here to investigate the behavior of MB-PLS, SO-PLS and PO-PLS handling a categorical 

block and a spectroscopic block.  𝑿𝒅𝒆𝒔 is simulated as a 23 full factorial design which is repeated nine 

times (in the row direction), giving a matrix of dimensions 72× 3. 𝒁 and 𝒚 are simulated as explained 

above, but the number of samples is 72. Blocks in the test set (𝑿𝒅𝒆𝒔𝒕
, 𝒁𝒕 and 𝒚𝒕) are simulated as 

𝑿𝒅𝒆𝒔, 𝒁 and 𝒚 but test samples are 1000. Finally, random noise (correspondent to the 5% of the 

signal) is added to 𝒁, 𝒁𝒕, 𝒚 and 𝒚𝒕. 

Design data can be found in different sample sizes. For the sake of completeness, an additional 

simulation (equal to the one above exposed, except for the sample size) was conducted repeating 

the full factorial design matrix two times, ending up with an 𝑿𝒅𝒆𝒔 of dimension 16× 3. Results were 

comparable to those with 72 samples, therefore they are not reported.  

4. Results  

4.1 Simulation study part I-results and discussion 

MB-PLS, SO-PLS and PO-PLS models have been constructed using the simulated training set described 

above and then external validation of predictive ability was carried out by the test set. Prediction 

Figure 1 Loadings for the simulation study. a) X-loadings (eight components) b) Z-loadings (two components) 



results are reported in Table 1 and the interpretation of the models is given below in the specific 

sections.  

4.1.1 Simulation study part I-Predictions 

Firstly, the most appropriate approach (sequential or global) for selecting the number of components 

in SO-PLS and PO-PLS is investigated. In order to do it, in a preliminary simulation study we compared 

sequential and global estimation of components and found global to be substantially better than 

sequential for prediction purposes.  We therefore chose to use this throughout the paper.   

For the simulation study Part I, averaged (over one hundred replicates) RMSEPs from MB-PLS, SO-PLS 

and PO-PLS are reported in Table 1. MB-PLS predicts slightly better than SO-PLS and PO-PLS. 

Statistical relevance of the differences has been tested by two way ANOVA (significance level 5% ). 

Then, Tukey's honestly significant difference criterion was used to evaluate which means differ from 

the others. A graphical representation of results from Tuckey’s test is reported in Figure 2.  

 

Table 1 Root Mean Squares Errors for MB-PLS, SO-PLS and PO-PLS in the simulation study Part I (different level of added 
noise) and Part II 

Simulation study Part I 

Added Noise (%) RMSEP 
MB-PLS 
(averaged 
over 100 
replicates) 

Std. Deviation RMSEP 
SO-PLS 
(averaged 
over 100 
replicates) 

Std. Deviation RMSEP 
PO-PLS 
(averaged 
over 100 
replicates) 

Std. Deviation 

X and Z Y    

5 5  0.37 0.04 0.36 0.03 0.38 0.06 

50 10 1.58 0.25 1.86 0.24 2.14 0.38 

Simulation study Part II 

5 5 0.37 0.04 0.34 0.03 0.38 0.04 

                 

The same simulation has been repeated adding 50% (of the signal) noise to 𝑿- and 𝒁-block and 10% 

to 𝒚, in order to check how methods handle very noisy data sets. With such a high noise level, there 

is a clear difference between the models: MB-PLS has the lowest RMSEP and PO-PLS has the highest.  



 

Figure 2 Graphical representation of Tukey’s test. a) results after the addition of 5% noise on both predictors and responses. 
b) results after the addition of 50% noise to predictors and 10% to responses. 

 

In sequential methods such as SO- and PO-PLS, the order of the blocks could affect the models. The 

same simulation has been repeated inverting the order of the blocks. This means that the 𝑿-block is 

the process-like one, while 𝒁 is the spectra-like. Results (not shown) are in agreement with those in 

Table 1; confirming that the order of the blocks is not affecting predictions. 

4.1.2 Simulation study part I-Interpretation 

Interpretation is here focused on models where the added noise is 5% of the signal. As explained in 

Section 4.1, the 𝑿-block is simulated using eight components (one common component between the 

blocks and seven distinct components). The 𝒁-block is based on the common component and the 

distinct one. Since the noise is not that high, the number of components selected in each model is 

expected to be close to these numbers.  

Number/combinations of components selected in the one hundred models are shown in Figure 3 

 

Figure 3: Histograms showing the number of components selected in the one hundred MB-PLS, SO-PLS and PO-PLS models. 
Left subplot: selected components in MB-PLS models. Central subplot: selected components in SO-PLS models. Right subplot: 
selected components in PO-PLS models. One common component is selected in each repetition (not shown).  

In MB-PLS, the expected number of selected components is nine (one common component plus 

seven distinct in 𝑿 and one distinct in 𝒁). In Figure 3 is shown that MB-PLS selects mainly from eight 

to eleven components.  In SO-PLS, the optimal complexity corresponds to eight plus one or seven 

plus two components (depending on in which block the model extracts the common component). 

Eight plus one occurs in 50% of models and seven plus two components are chosen ten times, 

showing that the common component is mainly extracted from the 𝑿-block. In conclusion, SO-PLS 



selects the expected number of components in 60% of models. In the other models, components are 

overestimated (30%). Only in ten models, the total components are less than nine. Concerning PO-

PLS, the expected number of components is one (common) plus seven (distinct) for the 𝑿-block plus 

one (distinct) for the 𝒁-block. One common component has been extracted one hundred times (not 

shown). Instead, the combination of seven plus one distinct components has never been used. Often, 

variables in both blocks are overestimated.   

The explained variance criterion has been applied on a model built on a simulated data set with 5% 
noise. Results are discussed below and summarized in Table 2.  
Simulated and estimated loadings appeared comparable, confirming that the interpretation of these 
loadings would lead to the interpretation of actual information present in the blocks.  
In the example reported, in order to show the potential of this kind of investigation, more 

component than necessary have been extracted from the model. Looking at the variance span, one 

can have an indication on which (and how many) loadings resemble the originals.  

Table 2 Variance span from the prediction of loadings extracted from MB-PLS, SO-PLS and PO-PLS model by OPLS on the 
original loadings .In the last row is reported the actual number (by construction) of components for the blocks. 

 MB-PLS SO-PLS PO-PLS 

Components 𝑿 𝒁 𝑿 𝒁 Distinct 𝑿 Distinct 𝒁 Common 𝑿 Common 𝒁 

1 0.97 1.00 1.00 0.98 1.00 0.98 1.00 1.00 

2 0.94 1.00 1.00 0.89 1.00 0.04   

3 0.95 1.00 1.00 0.38 1.00 0.27   

4 0.94 1.00 1.00 0.05 1.00 0.63   

5 0.78 0.99 1.00 0.03 1.00 0.01   

6 0.95 0.99 1.00  1.00    

7 0.90 1.00 1.00  1.00    

8 0.79 1.00 1.00  0.96    

9 0.82 0.82 0.98  0.00    

10 0.90 0.02 0.00  0.00    

11 0.62 0.18 0.00  0.00    

12 0.56 0.28 0.00  0.00    

# of 
expected 
LVs 

8+2  7 
8 

2 
1 

7 1 1 1 

 

This approach reveals the actual complexity required by each method. In SO-PLS, the variance span 

drop after nine components in 𝑿 and two in 𝒁; this suggest the SO-PLS model has one interpretable 

component more than expected per block. For PO-PLS, the explained variance criterion indicates to 

interpret eight and one distinct components plus the common; so one component (on 𝑿) more than 

expected is interpretable. In MB-PLS variance span are slightly fluctuant, probably due to the 

combined contribution of the two blocks to the model. Variance span relevantly drop after 𝒁-loading  

nine, but they only decrease after 𝑿-loading ten. In order to achieve a more clear conclusion, further 

inspections of MB-PLS’ loadings and super-scores is reported below.  

The overestimation of components presented can be due to the fact that models may need 

additional components to handle noise.   

In Figures 4, 6 and 7 loadings extracted from MB-, SO- and PO-PLS models respectively, are shown. 



Looking at 𝑿-loadings in Figure 4 (MB-PLS), it is quite evident that after loading vector seven, noise 

starts being modelled. The 𝑿-block contributes to all the loading vectors, instead, the 𝒁-block 

contributes mainly to loading vectors one, two, three and twelve (i.e. four components in total). This 

is also confirmed from the super-weights plot reported in Figure 5. 

 

Figure 4: Loadings extracted from the MB-PLS model. 

It is clear from the super-weights that 𝑿 contributes to all components, while 𝒁 contributes mainly to 

components one, two, three, and five. Consequently, components from six to eleven plus component 

four are constituted mainly by 𝑿, while the other components get contributions from both blocks.   

 

 



 

Figure 5: Super-weights: Contribution from the X-block in blue, from the Z-block in red. 

A further tool to inspect the number of interpretable components is checking the correlation 

between simulated scores and scores estimated from the MB-PLS model. Inspecting these 

correlations it comes out that estimated scores eleven and twelve have low correlation with 

simulated 𝑿-scores, and 𝑿-score ten has medium correlation with simulated 𝑿-scores. Concerning 𝒁- 

scores, only those higher than three have low correlation with simulated 𝒁-scores. Looking at this 

together with the explained variance criterion, it appears that nine 𝑿-components and three 𝒁-

components could be interpreted. These results are in a quite good agreement with the expected 

actual complexity of the system.   

Concerning the interpretation of the SO-PLS models, one should take into account that one 
important aspect of the SO-PLS method is the possibility of interpreting the additional contribution 
added from the 𝒁-block to the model. Investigating SOPLS’ 𝒁-loadings, one gets an overview of 
information present in 𝒁 but not in 𝑿. 
In Figure 6 are shown loadings from the SO-PLS model. 𝑿-loadings are in blue on the left side of the 

plot, while 𝒁-loadings are on the right side in red.  



 

Figure 6: Loadings extracted from the SO-PLS model. 𝑿-loadings in blue, left side. 𝒁-loadings in red, right side. 

Both blocks seem to contribute to the components, but the interpretation of 𝑿-components higher 

than nine and 𝒁-components higher than two would be misleading. It is possible to recognize noise 

from 𝑿-loading nine to 𝑿-loading twelve. Looking at 𝒁-loadings (Figure 6, red bars), one could 

(erroneously) interpret all of them. This highlights the relevance of the choice of a proper number of 

components to be used building the calibration model.   

In Figure 7 loadings extracted from the PO-PLS model are shown. 𝑿-components are on the left side, 

while 𝒁-components are on the right one. The first subplot on both sides represent the common 

components (extracted from 𝑿 and 𝒁, respectively). The conclusions regarding the interpretation of 

these loadings are similar to those from SO-PLS. Namely, components seem constituted from both 

blocks. It is possible to recognize noise in 𝑿-components higher than seven; it is not straightforward 

to see noise in 𝒁-components higher than one. Additionally to the relevance of the determination of 

the optimal complexity for calibration models, this indicates that avoiding the interpretation of noise 

in process variables is intrinsically trickier than avoiding it interpreting instrumental signals with a 

pattern.  



 

Figure 7: Loadings extracted from the PO-PLS model. 𝑿-loadings in blue, left side. 𝒁-loadings in red, right side 

4.2 Simulation study part II-results and discussion 

MB-PLS has been constructed as exposed in Section 2.1. For SO-PLS and PO-PLS, the number of 

components for the 𝑿-block has been fixed to three. In this way, the regression on 𝑿 is identical to 

ordinary least squares. Then, external validation was carried out by the test set.  

Since the 𝑿-block is  a categorical block and SO-PLS and PO-PLS models have been forced to select 

three components the interpretation of 𝑿-loadings is not discussed (and 𝑿-loadings plots are not 

shown). 

4.2.1 Simulation study part II-Predictions 

Averaged (over the one hundred replicates) RMSEPs from MB-PLS, SO-PLS and PO-PLS are reported 

in Table 1. In table, the difference between SO-PLS and the other two methods is appreciable. In fact, 

MB-PLS and PO-PLS give comparable results, definitely worse than SO-PLS. The differences between 

RMSEPs have been tested by two way ANOVA and Tuckey’s test (see Section 4.1.1 for more details). 

Test’s results are graphically reported in Figure 8. SO-PLS handles the categorical block better than 

the other two methods. Considering MB-PLS, this is not completely surprising. In fact, the presence 

of categorical data could lead to an overestimation of the components needed from the model, 

affecting negatively predictions [20].  

 



 

Figure 8: Graphical representation of Tuckey’s test. 

4.2.2 Simulation study part II-Interpretation 

As explained above, the number of components required by the regression involving the 𝑿-block in 

SO- and PO-PLS was fixed to three. Components for MB-PLS, and for 𝒁-block in SO-PLS and PO-PLS 

are defined as explained in Section 2.4. In Figure 9 selected number of components and their 

occurrence over the one hundred replicates are shown. In PO-PLS, only one common component has 

always been selected, therefore it is not reported in the figure.  

 

Figure 9: Histograms showing the number of components selected in the one hundred MB-PLS, SO-PLS and PO-PLS models. 
Left subplot: selected components in MB-PLS models. Central subplot: selected components from Z in SO-PLS models. Right 
subplot: selected distinct Z-components in PO-PLS models  

 

According to the simulation, the expected number of components is ten (three for 𝑿 plus seven for 

𝒁) for MB-PLS, and the expected number of 𝒁-components is seven for SO-PLS. For PO-PLS, we 

expect one common component plus (two distinct for the 𝑿-block and) seven distinct for the 𝒁-

block. In Figure 9 is evident that MB-PLS is always overestimating the number of components. In SO-

PLS, the most frequent selected number of components is the expected one (seven components are 

required in 40% of the models). Otherwise, six or ten components are selected (in twenty and fifteen 

models over one hundred, respectively). In PO-PLS, mainly eight or nine components are selected. 

Overestimation of components is an expected drawback of applying PLS regression on categorical 

data [20]. 



In order to inspect models built combining categorical plus spectra-like blocks, one of the one 

hundred data sets has been deeply investigated and described below.  

MB-PLS model required nine components. In SO-PLS, seven components were selected on 𝒁. PO-PLS 

has one common component and eight distinct components for the 𝒁-block. The similarity between 

the original loadings and those extracted from the models has been tested as explained in 2.5. As can 

be seen in Table 3, all the extracted loadings result interpretable. Loadings are reported in Figures 10, 

12 and 13. 

Table 3 Variance span from the prediction of loadings extracted from MB-PLS, SO-PLS and PO-PLS model by OPLS on the 
original loadings. 

 MB-PLS SO-PLS PO-PLS 

LVs 𝒁 𝒁 Distinct 𝒁 Common 𝒁 

1 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00  

3 1.00 1.00 1.00  

4 1.00 1.00 1.00  

5 1.00 1.00 1.00  

6 1.00 1.00 1.00  

7 1.00 1.00 0.99  

8 1.00  1.00  

9 0.99    

 

 

Figure 10: Loadings extracted from the MB-PLS model. 

In Figure 10 are reported loadings extracted from the MB-PLS model. The categorical block mainly 

contributes to loadings one, two, five and six (and to a lesser extent, three). 𝒁 contributes (with 



different emphasis) to all the components. Components four, seven, eight and nine consist mainly of 

spectral variables, while 𝒁’s contribution to components two and six is weak. This interpretation is 

confirmed also looking at the super-weights in Figure 11. 

 

Figure 11: Super-weights: Contribution from the X-block in blue, from the Z-block in red. 

 

 

Figure 12: 𝒁-Loadings extracted from the SO-PLS model. 

 



In Figure 12 are shown loadings from the SO-PLS model. 𝒁-loadings show clearly their shape, and 

would be easily interpreted. Only loading vector six present a bit of noise, but not enough to enable 

the interpretation.   

In Figure 13 the 𝒁-loadings from the PO-PLS model are reported.   

 

Figure 13: Loadings extracted from the PO-PLS model 

The first subplots on the left side in Figure 13 show the common component in the 𝒁-block, all the 

others display distinct ones. The spectra-like block is visibly contributing to all the distinct 

components, except for loading seven (and to a lesser extent, loading one). 

5.  Discussion and Conclusions 

5.1 Combination of process and spectra variables 

MB-PLS gives slightly better predictions than SO-PLS and PO-PLS, especially when the data is very 

noisy. 

In MB-PLS, the number of components cannot be fixed separately for each block, which leads to a 

natural overestimation of components. This makes MB-PLS the most complicated method (among 

the three) to interpret. In the data set presented in Section 4.1.2, the actual complexity is nine. The 

explained variance criterion did not give a straight indication about the number of interpretable 

components. The investigation of the super-weights (Figure 5) and the inspection of the correlation 

among scores reveal that no more than nine and three components could be interpreted for 𝑿 and 

𝒁, respectively. This indicates that a slight overestimation is required by MB-PLS (probably to handle 

noise). 

SO-PLS generally requires a number of components in agreement with the actual complexity of the 

blocks or slightly higher. This overestimation is not huge, and probably due to noise.  

Over the one hundred replicates, PO-PLS overestimates the number of components required, but 

less than MB-PLS.  

A comparison between the actual and the required complexity among the three methods is reported 

in Table 4.  



Table 4. Actual and required complexity among MB-PLS, SO-PLS and PO-PLS. 

 MB-PLS SO-PLS (𝑿 + 𝒁) PO-PLS (Com. + 𝑿dist.+ 𝒁𝑑ist.) 

Actual complexity 9 7+2/8+1 1+7+1 

Interpretable 9 9+3 1+8+1 

 

5.2 Combination of categorical blocks and spectra variables 

In the simulation study, SO-PLS gives better predictions than MB-PLS and PO-PLS. 

From the study appears that SO-PLS often requires a number of components close to the expected 

one. Instead, PO-PLS and (even more) MB-PLS overestimate the number of components required; 

which may lead to overfitted models.  

Loadings extracted from the different models result interpretable for all the methods. SO-PLS shows 

that it is modelling a bit of noise, but its entity is not enough to enable the interpretation.   

5.3 Conclusions 

From the interpretation point of view, the same conclusions are reached in the different simulation 

studies: for investigation of model parameters such as loadings, MB-PLS is the less preferable 

method among the three. This is due to the fact that in MB-PLS, components cannot be chosen 

independently for 𝑿 and 𝒁. As a consequence, the number of components selected is not the most 

appropriate for each block, and the interpretation of the model parameters could be misleading/too 

complex. SO- and PO-PLS give interpretable models, the main issue is the definition of the optimal 

complexity, in particular for PO-PLS, which is much more prone (than SO-PLS) to overestimate 

components.  
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