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Abstract 

The main focus of this PhD project was on the development and application of new 

chemometric tools for multivariate exploratory analysis for dealing with data not 

showing simple groupings or trends, even when projected to spaces of lower 

dimensionality. Such data may be so complex that common visualizations tools are only 

shedding limited light on the underlying structures. Starting from these premises, the 

Fused Adjacency Matrix approach was developed as main outcome of the project. The 

approach was tested on a benchmark dataset of beer samples acquired using three 

spectroscopic techniques, namely visible, near-infrared (NIR) and nuclear magnetic 

resonance (NMR) spectroscopies. 

Another important part of the PhD project concerned the extension of methods for 

integration of data sources of very different nature, like numerical and text data, within 

the food chemistry framework. As a matter of fact, analytical chemistry in synergy with 

advanced data analysis methods can be profitably used to build new tools to aid 

consumers to choose and pair foodstuff as well as producers to meet the consumers’ 

expectations and desires. In this perspective, an investigation of the links between the 

“objective” world of analytical chemical profiling and the “subjective” world of 

consumers tasting and describing food was carried out, in the context of beer analysis 

and consumption. By means of text analysis methods, a set of user-generated reviews 

were processed and converted into a numeric format suitable for data analysis, and then 

linked by principal component analysis–generalized canonical analysis (PCA–GCA) to 

the spectral information provided by Visible, NIR and NMR spectroscopies. 
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Dansk Resumé 

Hovedfokus i dette ph.d.-projekt var udvikling og anvendelse af nye kemometriske 

værktøjer til multivariate eksplorative analyser af data, der ikke umiddelbart viser 

simple grupperinger eller tendenser, selv når de projiceres til rum af lavere 

dimensionalitet. Sådanne data kan være så komplekse, at almindelige 

visualiseringsværktøjer kun kaster begrænset lys på de underliggende strukturer. Ud 

fra disse præmisser blev der udviklet et sæt metoder kaldet Fused Adjacency Matrix. 

Denne nye tilgang til data-analyse blev testet på et benchmark datasæt af ølprøver 

erhvervet ved anvendelse af tre spektroskopiske teknikker, nemlig synlige, nær-

infrarøde (NIR) og NMR-spektroskopier. 

En anden vigtig del af ph.d.-projektet vedrørte udvikling af metoder til integration af 

datakilder af meget forskellig art, såsom tal og tekstdata. Analytisk kemi kombineret 

med avancerede dataanalysemetoder kan med fordel anvendes til at opbygge nye 

værktøjer til eksempelvis at hjælpe forbrugerne med at vælge og parre levnedsmidler 

og også hjælpe producenter med at imødekomme forbrugernes forventninger og 

ønsker. I dette perspektiv blev der foretaget en undersøgelse af forbindelserne mellem 

den "objektive" verden af analytisk kemisk profilering og den "subjektive" verden af 

forbrugere, der smager og beskriver mad i forbindelse med øl-analyse. Ved hjælp af 

tekstanalysemetoder blev et sæt brugergenererede anmeldelser behandlet og 

omdannet til et numerisk format, der var egnet til dataanalyse, og derefter komineret 

ved hjælp af ”principal component analysis–generalized canonical analysis” (PCA–GCA) 

med spektralinformation fra Vis, NIR og NMR spektroskopier. 
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Riassunto 

L’obiettivo principale del progetto di Dottorato è stato lo sviluppo e l’applicazione di 

nuovi strumenti chemiometrici per l’analisi esplorativa multivariata atti al trattamento 

di dati caratterizzati dall’assenza di chiari raggruppamenti o tendenze. Dati di questo 

tipo possono rivelarsi complessi a tal punto che i normali strumenti di visualizzazione 

risultano poco efficaci nell’estrarre e descrivere le strutture latenti. Sulla base di queste 

premesse è stato sviluppato l’approccio Fused Adjacency Matrix (matrice di adiacenza 

fusa), il quale rappresenta il risultato principale del progetto. L’approccio è stato testato 

mediante un dataset di riferimento ottenuto da misurazioni spettroscopiche (visibile, 

vicino infrarosso e risonanza magnetica nucleare) su campioni di birra. Inoltre, per 

comprenderne più a fondo le caratteristiche di funzionamento, l’approccio è stato 

testato su altri dataset di diversa natura. 

Un'altra parte importante del progetto di Dottorato ha riguardato lo sviluppo di modelli 

per integrare dati da sorgenti di diversissima natura, come ad esempio dati numerici e 

di testo, nel contesto della scienza degli alimenti. I metodi della chimica analitica 

possono essere utilizzati sinergicamente con l’analisi dei dati avanzata per la creazione 

di strumenti utili al consumatore, fornendo assistenza nella scelta degli alimenti, 

nell’appaiamento dei sapori, e al contempo per aiutare i produttori a soddisfare le 

esigenze e i desideri dei clienti. In questa prospettiva è stato quindi sviluppato uno 

studio dei collegamenti tra il mondo “oggettivo” della chimica analitica e quello 

“soggettivo” del consumo e della valutazione degli alimenti, sulla base dei dati 

spettroscopici sulla birra (già oggetto dello sviluppo di Fused Adjacency Matrix). Una 

serie di recensioni raccolte online è stata processata mediante metodi di analisi del testo 

e trasformata in formato numerico, idoneo per essere analizzato con metodi comuni di 

analisi del dato. Tale dato è stato poi collegato all’informazione spettrale mediante un 

metodo chiamato analisi delle componenti principali–analisi canonica generalizzata 

(principal component analysis–generalized canonical analysis, PCA–GCA), dal quale è 

stata ottenuta informazione utile a collegare le espressioni utilizzate per descrivere la 

birra in relazione ai composti chimici identificati mediante la spettroscopia. 
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Chapter 1 |  Introduction 

 

1.1. General context 

The main focus of this PhD project was on the development and application of new 

chemometric tools for multivariate exploratory analysis for dealing with very 

information rich data. Especially data where it is difficult to elucidate the underlying 

structure in terms of e.g. groupings or trends. Such data may be so complex that common 

visualizations tools are only shedding limited light on the underlying structures. 

Starting from these premises, the Fused Adjacency Matrix approach was developed as 

main outcome of the project. 

The overall idea of the proposed approach was inspired by the concept of combining so-

called “weak sources” of information, which is taken from the supervised classification 

context, where the combination of multiple weak classifiers is aimed at providing better 

discriminatory information [1]. 

The Fused Adjacency Matrix approach is based on the fusion of several adjacency 

matrices (i.e. the weak sources of information) obtained from different distance 

measures [2] and a neural network method [3]. The approach is also suitable as a mid-

level data fusion [4] tool to combine data obtained from different analytical platforms 

(e.g. spectroscopic fingerprints). The approach was tested on a benchmark dataset of 

beer samples acquired using three spectroscopic techniques, namely visible, near-

infrared and nuclear magnetic resonance spectroscopies. The results of this study are 

reported in Chapter 3 of this thesis as well as in a recently published paper [5]. 

Another important part of this PhD project concerned the extension of methods for 

integration of data sources of very different nature, like numerical and text data, within 

the food chemistry framework. As a matter of fact, analytical chemistry in synergy with 

advanced data analysis methods can be profitably used to build new tools to aid 

consumers to choose and pair foodstuff as well as producers to meet the consumers’ 

expectations and desires. In this perspective, an investigation of the links between the 

“objective” world of analytical chemical profiling and the “subjective” world of 
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consumers tasting and describing food was carried out, the results of which are 

reported in Chapter 4 of this dissertation. 

Online reviews about the same beer samples as the aforementioned beer datasets were 

harvested from a social network dedicated to beer reviewing. By means of text analysis 

methods [6,7] these user-generated reviews were processed and converted into a 

numeric format suitable for data analysis. Principal component analysis–generalized 

canonical analysis (PCA–GCA, [8]) was used to investigate the links between spectral 

and text data, leading to very interesting results. 

 

1.2. Organization of the thesis 

The thesis is structured in five chapters, including the Introduction. A brief summary of 

all the remaining parts of the thesis: 

Chapter 2: the chemometric background supporting the whole thesis is given, as 

well as a description of the analytical techniques employed for obtaining 

the data analysed in the other chapters. 

Chapter 3:  the novel proposed method for exploratory analysis and mid-level data 

fusion is first introduced and illustrated, and then tested on the datasets 

described in Chapter 2. 

Chapter 4:  an investigation study of the connections between the analytical world 

of spectroscopy with the world of consumer tasting, in the framework of 

beer analysis is reported; this chapter is the very basis of an article close 

to submission in the present moment. 

Chapter 5:  the final remarks and future perspectives conclude the thesis. 
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Chapter 2 | Materials and Methods 

 

2.1. Chemometric background 

« The art of extracting chemically relevant 

information from data produced in chemical 

experiments is given the name of ‘chemometrics’ 

[…] »  

– Svante Wold [1] 

Extracting chemically relevant information, is the heart of this quote from Svante Wold, 

one of the two widely recognized fathers of Chemometrics. The quote’s message 

should not be a surprise, since the very reason why Chemometrics was born in the 

first place is that there was a strong need for tools able to extract the relevant 

information from the increasingly bigger and more complex data that any scientist 

struggled analysing and fully understanding. As time goes by, with the Digital 

Revolution first and the advent of the Information Age then, computers became 

widespread and powerful enough for both testing and refining “old” methods and for 

developing new ones. 

Nowadays we can use very well-established methods to face a large variety of data 

types and challenges. Depending on the scope, the chemometrician may need to build 

unsupervised models, e.g. when the aim is to explore the data or there is no additional 

information about the set of measures under examination. On the contrary, supervised 

methods may be required when the need is to model a response, for instance if a 

property is not directly measurable or measuring it by traditional means is too time-

consuming or expensive, and one may desire to use other, cheaper and faster 

techniques to achieve the same result. In any case, a sound approach to data analysis 

always involves a step of unsupervised data modelling, to both gain knowledge about 

the quality of the data and to decide which further direction should/can be taken. 

It is important to consider that even though data may only seem numbers on 

spreadsheets, the information they carry, the structures that relate objects and 

variables upon which the measures were made can be very different, therefore an 
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approach tailored to the problem is always required. The chemometrician should 

picture himself/herself at the border between the modelling problem and the 

physical/chemical system under examination, with the overall driving force of 

understanding. For example, spectral data such as near infra-red spectra may seem 

easy to manage, analyse and interpret because of their (sometimes quite boring) look, 

but with strong band overlaps, background effects, scattering and water influence they 

can be as complicated as nuclear magnetic resonance spectra, with their often 

overwhelming abundance of peaks and all the many problems such as peaks shifting 

and heterogeneous baseline effects. 

In such complex cases a different approach may be required. For instance, an interval-

based approach aimed at extracting relevant features from the NMR data may greatly 

improve their interpretability and usability, simplifying the modelling problem from 

both the points of view of data processing and computational resources. 

In this Section, an overview of the chemometric tools used in this thesis for 

exploratory analysis and feature extraction is given. Please refer to Chapter 3 for the 

more specific chemometric background of the Fused Adjacency Matrix approach. 

 

2.1.1. Exploratory data analysis 

The very first step in data analysis is the quality assessment of the collected data, and 

their consequent exploration. Data is not information, and a starting point for 

distinguishing among signals (i.e. information) and sources of, in a broad sense, noise, 

is found in Exploratory Data Analysis (EDA). 

In 1977 John Tukey published a book [2] that is nowadays considered a milestone 

reference for EDA. Tukey described a framework for data analysis based on 

statistically relevant visual representations of datasets, aimed at helping the analyst to 

formulate hypotheses and gain deeper understanding of the phenomena occurring in 

the data [3]. The data and the information they bring is the focus, not any hypothesis 

or prior knowledge on the system under examination. On this basis, the aim of EDA is 

to reveal hidden and unknown information [3]. To this aim, a rather rich set of 

established exploratory tools is available, and new methods are constantly developed. 
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Most EDA methods are unsupervised, which means that no a priori assumptions are 

imposed when modelling the data: the analyst’s intuitions or prior knowledge on the 

set of samples under examination or the experiment is not actively used in the 

modelling process, but instead can be verified/validated more efficiently when 

interpreting the modelling results. 

The unsupervised approach in EDA is a good way to provide new, sometimes 

unexpected, information. Unsupervised methods such as Multivariate Curve 

Resolution (MCR, [4]), Principal Component Analysis (PCA, [5]), some of its variants 

like Maximum Likelihood PCA [6] or Projection Pursuit PCA [7,8], or linear methods 

such as Independent Component Analysis (ICA, [9,10]) and Multidimensional Scaling 

(MDS, [3,11]), provide easy, 2D or 3D representations of the groupings and structures 

present in the data. 

Non-linear mapping methods like Kohonen’s Self-Organizing Maps (SOMs, [12–14]) 

are considered complementary to methods like PCA [15] because of their ability to 

account for non-linear phenomena. SOMs, for instance, is a method that also provides 

an easy, low-dimensional representation of the data structures but it does so by 

training a neural network. Groups, or clusters of objects are also provided by the 

clustering methods [16], whose final aim is to detect and represent how the objects 

group and how distant each cluster and/or sample are. All these approaches are 

commonly applied for inspecting structures in the samples space, but PCA and MCR, 

for instance, also provide easy-to-access information about the variables’ influence on 

these structures. 

From the analyst’s point of view, the fact that these methods supply information about 

the natural groupings present in the data – provided that proper care is taken during 

the data pre-processing and modelling – is of great importance: deeper understanding 

of the phenomena occurring in the data can be attained, when “unbiased”, 

unsupervised sources of information are combined with the analyst’s knowledge of the 

larger picture. 
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2.1.1.1. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA, [5,17]) is probably the most famous multivariate  

tool for exploratory data analysis. It is an unsupervised decomposition method that 

operates a projection of the data from the original high-dimensional space to a space of 

lower dimensionality, which is defined by a set of new variables, called Principal 

Components (PCs). 

The PCs are derived by linear combination of the original variables, and they account 

for the largest sources of variability. PCs are nested, meaning that, starting from the 

first PC describing the direction of maximum variance in the data, each following 

component in turn will have the highest possible variance, under the constraint of 

orthogonality with respect to all the preceding components. Each PC is composed of a 

vector of scores t and a vector of loadings p. The PCA decomposition can be 

represented by Equation 2.1: 

(2.1) 𝐗 = ∑ 𝐭𝑓 ⋅ 𝐩𝑓
T𝐹

𝑓=1 + 𝐄 = 𝐓𝐏T + 𝐄 =  𝐗̂ + 𝐄 

In Equation 2.1 the original data X are modelled using F PCs, therefore the X̂ matrix 

represents the modelled part of the original data, while the E matrix corresponds to 

the unmodeled part, or the residuals. Given that set of PCs corresponds to the axes of 

the low-dimensional space the data are projected to, the values of the score vector tf 

represent the sample’s coordinates on the fth PC or axis, and the loadings vector pf 

represents the contribution weights of the original variables to that PC. Another way of 

representing the PCA model is depicted in Figure 2.1, which highlights how the 

product TPT represents the modelled part of the original data, as opposed to the 

residual matrix E. 

 

Figure 2.1. Graphical representation of a PCA model. 
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Ideally, in a good PCA model all the structured variability is included in X̂, the 

modelled part, while all the random and uninformative variability of the original data 

is left in the residuals matrix E. 

Data described by a PCA model can be inspected by looking at the score plots, the 

loadings plots and the residuals plots. Groups of similar samples and their distribution 

can be inspected with the score plots, which are a 2D or 3D representation of the 

modelled data and are obtained by plotting one score vector t against another. 

Likewise, the loadings plots allow inspecting groups and relations among the original 

variables, whose values on the different PCs (the values contained in the loading 

vectors p) also describe how the original variables influence each PC. For the same 

pair of inspected PCs, directions on the scores and loadings plots are coincident. 

The fact that the original variables are combined into a few new ones makes PCA also a 

good “compression” or features extraction method, which is extensively used for 

handling large datasets and reducing computational time needed for modelling. 

 

2.1.1.2. Multivariate Curve Resolution (MCR) 

Multivariate Curve Resolution (MCR, [4,18]) is a decomposition method that can 

extract pure contributions from overlapped signals. From a mathematical point of 

view, MCR is related to PCA, but its components are not forced to be orthogonal: for 

this reason, to reduce rotational ambiguity it is necessary to constraint the 

components. 

(2.2) 𝐗 = 𝐂𝐒T + 𝐄 =  𝐗̂ + 𝐄 

Even if the decomposition equations of PCA (Eq. 2.1) and MCR (Eq. 2.2) look the same, 

the way MCR works is quite different. Instead of describing the largest sources of 

variability (i.e. maximizing the variance explained by each component), MCR aims to 

obtaining pure signals and their relative concentration in each sample. For this reason, 

PCA’s scores matrix T translates into the pure concentrations matrix C and PCA’s 

loadings matrix P translates into the pure resolved spectra matrix S of Equation 2.2, 

also represented in Figure 2.2. 
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Figure 2.2. Graphical representation of an MCR model. 

MCR is based on Beer’s Law [18], since it treats the input data as a mixture of pure 

signals mixed in different ratios, the concentrations: resolving such a mixture implies 

obtaining the pure contributions (the resolved spectra) and their “mixing ratios”, the 

concentrations. 

Given that pure signals are obtained, MCR also works as a method for filtering the 

data: undesired sources of variability such as noise or background effects can be 

efficiently removed, and end up in the residual matrix E. 

MCR is particularly suitable for resolving overlapped signals, especially on selected 

intervals, where a few signals are present and can be more easily extracted. Since each 

extracted component is characterized by a pure (spectral) profile, it becomes very 

easy to match it with a known chemical compound or at least interpret it in terms of 

the latent phenomena generating the resolved signal. For this reason, MCR is a 

powerful method for obtaining an easy interpretation of data, while achieving strong 

compression at the same time. 

 

2.1.1.3. PARAllel FACtor Analysis 2 (PARAFAC2) 

PARAllel FACtor analysis (PARAFAC, [19,20]) is a multi-way decomposition method 

that can be considered as a generalisation of PCA. If PCA can handle 2D matrices, or 

better, 2-way data, PARAFAC can handle n-way data. The most common application of 

PARAFAC is with three-way data, and an example of the PARAFAC decomposition of a 

three-way dataset 𝐗 (I×J×K) with F components (or factors) is given by Equation 2.3: 
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(2.3) 𝑥𝑖𝑗𝑘 = ∑ 𝑎𝑖𝑓𝑏𝑗𝑓𝑐𝑘𝑓
𝐹
𝑓=1 + 𝑒𝑖𝑗𝑘  

where xijk are the elements of the three-way array X, and aif, bjf and ckf are the elements 

of the three loadings matrices A(I×F), B(J×F) and C(K×F). Similarly to PCA, a three-way 

PARAFAC model can be represented as shown in Figure 2.3. In its common use, the 

first mode is associated with the samples and the remaining two modes are associated 

with the measured variables. 

 

Figure 2.3. Graphical representation of a PARAFAC model. 

A good example of three-way data comes from Gas Chromatography-Mass 

Spectrometry (GC-MS). In this case, the chromatogram’s retention time is associated 

with the second mode, and the mass spectrum is associated with the third mode. This 

kind of data, however, are better modelled using a more general version of PARAFAC, 

called PARAFAC2. 

PARAFAC2 [21,22] operates much the same as the trilinear decomposition of 

PARAFAC(1), with the only difference that the shape and the length of the elution 

profile (keeping the previous example) are not assumed to be the same in each sample 

[23]: this means that in the second mode one elution profile for each sample is 

obtained. In this way it is possible to manage shifts in the retention time direction 

(second mode), which may arise due to experimental factors like column ageing, 

changes in temperature or variation in the mobile phase flux. 

Contrary to PCA, which has solution “rotational freedom”, PARAFAC and PARAFAC2 

lead to unique solutions. To reach an unambiguous solution to the multilinear 

problem, three conditions must be satisfied: 1) data must be trilinear; 2) data must 

show random, not too intense noise; 3) a good estimation of the chemical rank of the 

system (i.e. the number of independent chemical components) must be provided. 
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2.1.1.4. Co-clustering with non-negative matrix factorization 

Coclustering1 is a group of methods for exploratory analysis that has its roots in the 

Seventies [24] but has gained popularity with the growing trend of measuring bigger 

and bigger amounts of data and, at the same time the need of focusing on finding few 

relevant variables. The discovery of biomarkers [25,26] and the omics fields represent 

some of the many promising applications for coclustering methods. 

Contrary to other exploratory methods such as PCA and traditional clustering, the aim 

of coclustering is to find and select areas of interest in the data: instead of modelling 

everything the data matrix is simultaneously clustered in its objects and variables. In 

this way it is possible to obtain sets of objects sharing a particular behaviour in 

relation to a select number of variables.  

Even though this method is related to clustering in the sense that information about 

groups is obtained, one of the main differences is that the same object or variable can 

simultaneously be in different clusters. This feature is referred to as overlapping 

coclustering, in contrast to non-overlapping coclustering or traditional clustering, 

where each object or variable is assigned to at most one cluster. 

One of the mathematical formulations of coclustering consists of performing the 

decomposition of the data matrix X using a bilinear model. The method used in this 

thesis is described by Bro et al. in [27] and is based on Sparse Matrix Regression (SMR, 

[28]). This algorithm can be considered a soft or fuzzy coclustering algorithm, since 

the samples’ and variables’ assignments to a cluster are not binary but can have any 

value between zero and one. The SMR algorithm operates a bilinear decomposition of 

the data matrix X by minimizing the loss function of Equation 2.4: 

(2.4)  ‖𝐗 − 𝐀𝐁T‖𝐹
2 + 𝜆 ∑ |𝐀𝑖𝑘|𝑖,𝑘 + 𝜆 ∑ |𝐁𝑗𝑘|𝑗,𝑘  

where the columns of A (I×K) can be referred to as scores and the columns of B (J×K) 

are the loadings, while K corresponds to the number of extracted factors, or coclusters; 

                                                           
1 An interesting and clear YouTube video about coclustering can be found at: 

 https://www.youtube.com/watch?v=mnDC6hWWbwY (accessed: 08/01/2019) 

https://www.youtube.com/watch?v=mnDC6hWWbwY
https://www.youtube.com/watch?v=mnDC6hWWbwY
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the parameter λ represents the penalty factor imposed to make the scores and 

loadings sparse. 

In SMR each cocluster is represented by a rank-1 component of the decomposition: in 

other words, imposing sparsity allows selecting the suitable rows and columns 

belonging to each cocluster, making all the remaining coefficients correspondent to 

objects and variables not belonging to the coclusters exactly zero. 

Interpreting a coclustering model is very straightforward, since for each group of 

objects a set of variables is provided. Inspecting the coclusters one by one allows to 

identify their specific features and since coclustering’s solutions are approximately 

nested [27], coclusters of low-dimensional models will also be present in models with 

more components. For this reason, it is good practice to inspect many models to 

choose a reasonable number of coclusters. 

Limitations to this method come when the data are very non-quadratic or if they are 

not discrete. Spectral (continuous) data are difficult to process, probably because the 

strong natural correlation among those kind of variables makes it difficult to impose 

sparseness in a meaningful way. A way to bypass this limitation can be to turn the 

elution profiles into resolved features. 

 

2.1.1.5. Data visualization techniques 

This section is devoted to explaining the background theory of the clustering 

structure-revealing OPTICS algorithm and its use in combination with heatmaps. An 

example of this combination is given in Figure 2.5. 

 

2.1.1.5.1. Ordering Points To Identify the Clustering Structure (OPTICS) 

OPTICS [29–31] is a density-based clustering method aimed at revealing the data 

clustering structure. This method consists of an iterative procedure that only needs an 

initial input parameter, namely k, which is the minimal number of objects forming a 

cluster. Daszykowski and Walczak [31] suggested a rule of thumb for choosing the k 

value: 
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(2.5) 𝑘 = integer (
𝑚

25
) where m is the number of samples. 

However, based on the author’s experience working with OPTICS, it often happens that 

values lower than the ones computed with Equation 6.1 provide better results than 

sticking to the value obtained by the rule. It is advisable to slightly change this 

parameter and assess different outputs to obtain a better insight into the structure of 

the data. 

OPTICS is based on the concept of Reachability Distance (RD), an abstract similarity 

measure [31]. RD is basically a Euclidean distance that describes how distant/similar 

is an object from the one processed at the preceding step. The graphical output of 

OPTICS is called Reachability Plot (RP), and it is obtained by plotting the RDs as 

vertical bars arranged along the x-axis according to the processing sequence. 

At each iteration, the OPTICS algorithm selects one object and compares it with all the 

objects that have not been processed yet. This is done by computing all the pairwise 

Euclidean distances between the selected object and the ones to be processed. Then, 

the next object to be processed is selected among the k-nearest neighbours: the 

distance at which this next object is found becomes its RD, which is stored unchanged 

until the end of the procedure. The final output is therefore a vector of RD values, 

which can be plotted as bars in the RP. 

A cluster is generally formed by objects that happen to be very close to each other, so 

it can be expected that these objects would have, on average, a similar number of 

neighbours at similar distances, i.e. they would have similar neighbourhoods: these 

short distances among neighbours also result in similar RD values.  

Generally, when an entire cluster has been processed, then the next object would likely 

belong to another cluster. If the inter-cluster distance is larger than the intra-cluster 

variability, then the next RD value in the processing sequence is going to be larger than 

the values preceding it, which are related to previous cluster. This “jump” from one 

cluster to another is graphically recognizable in the RP because it corresponds to a 

very high bar, standing out among the preceding and following positions. Clusters 

therefore appear as hollows created by groups of samples sharing similarly low RDs, 

separated by high bars representing the jump to another cluster. 
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It is important to consider that the RP does not explicitly cluster the objects [31], but it 

rather allows deducing the number of clusters in the data. The value of k operates as a 

“smoothing parameter”, allowing to obtain deeper or shallower hollows in the RP, 

therefore highlighting a finer or coarser structure in the data. 

 

2.1.1.5.2. Cluster Heatmaps 

The heatmap is a widely used tool all across the fields of science and its earliest 

appearances can be dated back to the end of the 19th century [32]. It consists of a 

rectangular tiling, whose tiles are shaded on a colour scale representing the value 

corresponding to the tile. A two-dimensional data matrix can be easily visually 

displayed by means of a heatmap, potentially providing clear insight into the data. 

However, the origin of data matrices is generally subject to a large variety of factors 

which may affect the way the samples and variables are organized in the matrix. 

Regular experimental practice, for instance, envisages experiment randomization 

when analysing a set of samples, to avoid confusion between time effects 

(instrumental drifts, laboratory conditions) and a very ordered sequence of 

experiments. Therefore, just visualizing the data as a heatmap usually does not 

provide much information about the data structure. 

For this reason, the cluster heatmaps were developed over the years and are now used 

in field like bioinformatics [33] and sensomics [34,35]. Their history and main uses up 

to 2009 is nicely reported by Wilkinson et al. [32]. A cluster heatmap is a clever 

visualization tool which combines a heatmap and one or more clustering methods to 

permute (in other words, to reorder) both the rows and the columns of the heatmap. 

Clustering is then operated once in the samples’ direction and once in the variables’ 

direction. The clustering outputs, such as the common clustering tree, are then 

appended on the sides of the reordered heatmap. The result is a powerful combined 

representation in which similar samples as well as similar variables are grouped 

together, allowing to interpret the patterns in the data by directly linking groups of 

samples to groups of variables. An example with the honey data from Marini et al. [36] 

and OPTICS as a clustering method [30] is given in Figure 2.4. 
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Figure 2.4. Cluster heatmap of the honey data from Marini et al. [36]. 

Different clustering methods can be used for reordering both the columns and the 

rows, but if the original variables are continuous (e.g. chromatograms, spectra) then 

reordering is not advisable: in such cases the variables are already “ordered” in an 

interpretable way, according to their spectral or chromatographic structure. 

Another aspect that must be considered with this visualization tool is the distribution 

of the values of the represented matrix. Extreme values may compromise the 

interpretability by hiding smaller but potentially meaningful structures. This may not 

be the case of data such as NIR or Visible spectra, but discrete data may suffer from 

this effect. A way for dealing with this problem is to normalize the data between zero 

and one, as it was done in Figure 2.4. 

The colour map also plays a role in obtaining a clear and interpretable representation 

of the data. Linear and diverging colour maps usually make pattern interpretation in 

data straightforward, as opposed to rainbow colour maps. Linear colour maps follow a 

linear variation of lightness, either monotonically increasing or decreasing, which is 

very suitable for general purpose data display [37] and continuous data such as NIR or 

visible spectra. On the contrary, diverging colour maps are aimed at displaying the 

data as compared to a well-defined reference value, emphasizing whether a data value 

lies above or below the reference. The most common diverging map is the red-white-

blue map, also used in the large majority of the colored plots of this thesis. Because of 
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its emphasis on the difference between high and low values, the diverging maps are 

also suitable for highlighting the extremes. 

 

2.1.2. Features extraction 

Features extraction goes together with the concept of data compression, since it is 

aimed at selecting what is important/relevant in the data: features are obtained, and 

noise/unwanted variability is largely filtered out. The resulting reduced data are 

generally easier to interpret, as working with fewer variables makes it simpler to 

inspect and manage the data. Moreover, it is often possible to give meaningful names 

to the extracted features, like in the case of relative concentrations from MCR or the 

peak areas from PARAFAC, by identifying and assigning the extracted pure profiles. 

These two examples are the most relevant methods for this thesis, especially their 

application within an interval-based approach [38]. Interval-based approaches or “i-

chemometric” methods, as Savorani et al. [38] also call them, allow extracting large 

amounts of information and, at the same time, taking care of the local characteristics of 

the data. Different spectral regions, chromatographic time intervals or just portions of 

the data may contain very different chemical information, may have different scale or 

dynamics, or may have different density or noise: with an interval-based approach it is 

possible to tailor the feature extraction process to the region of interest. 

A nice and clear example of the whole process of extracting relevant information from 

complex data by means of PARAFAC2 interval-modelling can be found in this article 

[39] by Bevilacqua et al., which focuses on the contributions of chemometrics to the 

foodomics field. 

Finally, another fundamental application of features extraction concerns data-fusion 

methods [40–42]. In so-called mid-level data fusion approaches, features extracted 

from different data blocks are combined into a new dataset, thus reducing the number 

of variables, but also exploiting the different – hopefully complementary – pieces of 

information, often obtained from different analytical techniques. More details about 

data fusion approaches and theory can be found in Section 3.4. 
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2.1.3. Procrustes Analysis (PA) 

When dealing with different sources of information, e.g. if more data blocks of 

measures made on the same samples set are available, it can be useful to compare 

these sources to assess whether they carry the same information or not. For example, 

a set of objects may be described by two distinct sets of PC scores, obtained from two 

different analytical sources: Procrustes Analysis (PA, [43,44]) is a method that can be 

used for the purpose of comparing the two PC sets. 

The aim of PA is to obtain the closest match between the two PC spaces by applying 

operations such as scaling, rotation, reflection and translation. If the two PC sets are 

named Z and Y, the mathematical operations operated by PA on Y to match it to Z are 

described by Equation 2.5 [44]: 

(2.6) 𝐙 = 𝑎𝐘𝐑 + 𝟏𝐦𝐛 + 𝐄 = 𝐙̂ + 𝐄 

where a is a scalar constant for scaling, R is a rotation/reflection matrix, b is a 

translation vector and 1m indicates a vector of ones. The E matrix is the residuals 

matrix, and all operations in PA are optimized towards the minimization of the sum of 

squared residuals: in other words, the set of operations leading to the closest match 

between Z and Y is sought. 

The similarity of the two spaces is expressed using a dissimilarity parameter d 

(Equation 2.6, [44]), ranging from zero (perfect alignment) to one (no similarity): 

(2.7) 𝑑 =
∑ ∑ (𝑧𝑖𝑗−𝑧̂𝑖𝑗)

2
𝑗𝑖

∑ ∑ (𝑧𝑖𝑗−𝑧̅𝑖𝑗)
2

𝑗𝑖

 

 

2.2. Analytical Techniques 

An overview of the analytical techniques applied in the thesis is given in this section, 

the principles and data characteristics of each technique are discussed. 

 

2.2.1. Nuclear Magnetic Resonance (NMR) spectroscopy 

Nuclear Magnetic Resonance (NMR) spectroscopy is an analytical technique widely 

used in the field of metabolomics [45,46] and Food science [47]. Due to the large 
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amount of information that an NMR spectrum can yield, NMR spectroscopy is also a 

very appealing fingerprinting technique. For instance, some examples from the field of 

beeromics [48] include studying the chemical composition [49–53], performing 

product authentication [54,55] or the using NMR spectroscopy for quality control 

purposes [48,56,57]. A very detailed dissertation about the use of NMR spectroscopy 

within the foodomics approach can be found in a paper from 2014 by Laghi et al. [58]. 

NMR spectroscopy only requires little specimen preparation and since the analysis 

does not induce any physical or chemical change in the specimen, it is a non-

destructive technique. However, even if the specimen’s integrity is preserved, some 

purification steps would be required to recover its original composition. 

 

2.2.1.1. Principles and spectral characteristics 

The NMR signal is produced by excitation of the nuclei within the sample using radio 

waves: when a radio frequency pulse is applied, the nuclei start resonating with it. The 

frequency at which each nucleus resonates strongly depends on its chemical 

environment: for this reason, two physically identical nuclei which occupy different 

positions within the structure of a molecule will generate different signals. Such an 

influence from neighbouring atoms and/or molecular structures makes the resonance 

frequency highly characteristic to individual functional groups, therefore allowing to 

match each signal to the position of the nucleus emitting it within the structure of a 

molecule. 

Only the nuclei which possess a magnetic spin momentum can resonate and be 

detected in NMR spectroscopy. The most common isotopes are 1H and 13C. Considering 

the different natural abundances of carbon isotopes2, the occurrence of 13C is only 

1.07%, while 12C represents some 98.93%. The very abundant 12C isotope would be the 

ideal choice for NMR spectroscopy, but unfortunately it is an NMR-silent nucleus. In 

addition to hydrogen and carbon, many other nuclei can be used in NMR spectroscopy, 

if they have a nuclear spin magnetic moment. 

                                                           
2 https://www.webelements.com/carbon/isotopes.html (accessed: 08/01/2019) 

https://www.webelements.com/carbon/isotopes.html
https://www.webelements.com/carbon/isotopes.html
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During an NMR experiment, only a specific isotope is stimulated. All the nuclei of that 

isotope will simultaneously resonate at their own frequency and the signal that is 

collected by the instrument, the “free induction decay” (FID), is composed by all these 

contributions. The FID therefore contains all the information generated by the 

stimulated nuclei. The NMR spectrum is obtained by deconvolution of the FID using 

the Fourier transform. This conversion from the time domain of the FID to the 

frequency domain of the spectrum is fundamental to gain access to the collected 

information, as it allows to obtain the individual contributions to the signal, the NMR 

peaks. 

The peaks’ position is referred to as chemical shift δ and it is conventionally reported 

using the dimensionless unit of parts per million (ppm). Raw frequencies are not used 

because the axis scale would be dependent on the magnetic field strength of the 

instrument, making interpretation and comparisons among spectra more difficult. 

Therefore, all spectra are generally referenced to a selected signal, from which the 

chemical shift δ of a random signal n is thus derived3: 

(2.8) 𝛿𝑛 ≡
𝜈𝑛−𝜈𝑅

𝜈𝑅
∙ 106 

Reference compounds should be as chemically inert as possible, show a well-resolved 

singlet, and have chemical shifts independent of external variables (i.e. temperature or 

ionic strength, which are the largest sources of shifting effects). Tetramethylsilane 

(TMS) and 3-(trimethylsilyl)propanoic acid (TSP) are two of the most commonly used 

reference compounds for 1H NMR analysis. 

 

2.2.1.2. The NMR spectrometer 

Without an intense magnetic field, NMR spectroscopy would not be possible. For this 

reason, a big magnet is at the core of any NMR spectrometer. The required intense 

magnetic field is nowadays provided by superconducting solenoid magnets made of a 

niobium-tin alloy. To exploit the magnet’s superconductivity properties very low 

temperatures are needed. The magnet is therefore fully immersed in a bath of liquid 

                                                           
3 https://goldbook.iupac.org/html/C/C01036.html (accessed: 08/01/2019) 

https://goldbook.iupac.org/html/C/C01036.html
https://goldbook.iupac.org/html/C/C01036.html
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helium (4 K); the helium tank is then surrounded by a thermal jacket filled with liquid 

nitrogen (77 K) which, together with an external high-vacuum jacket, acts as a thermal 

buffer between the core of the system and the surrounding environment. 

To collect any signal, the sample needs to be inserted in the system, and placed at the 

center of the solenoid, where the magnetic field is most intense. An insertion system 

carries the NMR tube through a cavity (usually form the top of the instrument) to the 

center of the magnet, where a zone at room temperature is guaranteed. This part of 

the instrument is provided with the “probe”, a device consisting of a series of coils and 

other systems that represents the “eyes” of the instrument. The probe is both an 

emitter and a receiver as it is dedicated to generating the radio signals for stimulating 

the nuclei and to collecting the FID originating from the nuclei. The probe is also 

equipped with fine tuning systems, which are fundamental for collecting good signals: 

the magnetic fields that are present within the small area occupied by the sample must 

be as homogeneous as possible, so that any equivalent nucleus can resonate in the 

same way. 

Field homogeneity is not the only factor that may affect the quality of the collected 

signal. Temperature fluctuations and vibrations may also cause problems: to keep 

those aspects under control, external control systems allow to directly operate on 

parameters such as temperature and field homogeneity, while possible vibrations are 

reduced using damping systems. The whole instrument is controlled by a dedicated 

computer, with which it is usually possible to operate the autosampler system, if 

equipped. Autosampler systems allow to carry out automated analysis sequences, 

resulting in time savings and human error reduction. 

 

2.2.1.3. Post-acquisition signal processing 

Right after collection, the NMR spectra are usually Fourier transformed and inspected. 

To improve the quality of the original data, some common post-acquisition processing 

tools such as phase correction, baseline correction and zero-filling are generally 

employed [59,60]. Once these operations are completed, the spectra are ready for 

export and further data analysis. 
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2.2.2. Visible/Near-infrared (Vis/NIR) spectroscopy 

Visible (Vis) and Near-infrared (NIR) spectroscopies are fast, non-destructive 

techniques, and modern instruments allow to record large numbers of reproducible 

spectra in a short time, with almost no sample preparation required. NIR spectroscopy 

is especially suitable for very practical applications where a quick response or a pre-

screening is required. 

Interaction between electromagnetic radiation and matter can occur in many ways. 

Figure 2.5 represents the electromagnetic spectrum and the conventional regions that 

are identified and used for technical applications: from signal and information 

transmission (radio waves), to everyday uses such as food heating and cooking 

(microwaves) or all the many applications of X-ray in the medical field. 

 

Figure 2.5. the electromagnetic spectrum. 

Molecular spectroscopies are based on the interaction between molecules and the 

central part of the electromagnetic spectrum. Different phenomena arise depending on 

the considered interval: 

 molecular rotations: collective motions of the molecules stimulated by 

microwave and far-infrared (FIR) radiation; 

 molecular vibrations: relative motions of the atomic nuclei involved in any 

molecular bond, stimulated by infrared radiation; 

 electronic transitions to excited states which occur when visible (Vis) and 

ultraviolet (UV) radiation is involved. 
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2.2.2.1. Visible spectroscopy 

Visible radiation is usually considered together with ultraviolet (UV) radiation, since in 

both cases the absorption of light from these two intervals results in electronic 

transitions of bonding electrons. 

Molecules responsible for colour are called “chromophores” which means “carrier of 

colour”. These molecules contain π-electrons or non-bonding electrons and can absorb 

energy in the form of ultraviolet or visible light to excite these electrons to higher 

energy states. Molecules containing structures such as extended conjugated systems 

(corresponding to moieties with increased electronic density), double bonds or metal 

complexes are generally also chromophores. Biological compounds like carotenoids, 

chlorophylls and anthocyanins are examples of chromophores, as well as melanoidins, 

brownish heterogeneous polymers resulting from the combination of sugars and 

amino acids via the Maillard reaction in foodstuff [61]. 

 

2.2.2.2.  Near-Infrared (NIR) spectroscopy 

Taking as a reference the Visible interval (a very human-based point of view), the 

infra-red (IR) interval is found at lower energy, as the prefix “infra” (“below”) suggests. 

Three sub-regions are generally identified within the IR interval: near-infrared (NIR), 

middle infra-red (MIR) and far infra-red (FIR). The NIR and MIR intervals are at the 

basis of two of the most used spectroscopic techniques in analytical chemistry, and 

even if the physical mechanisms that characterize them are basically the same, they 

are usually treated and used separately. 

MIR radiation directly stimulates the vibrational modes of molecules, while in the case 

of NIR radiation more than one vibrational mode may be stimulated, due to the higher 

energies involved. Signals originating from integer multiples of normal vibrational 

modes are called overtones, while signals resulting from combinations of integer 

multiples of normal vibrational modes are referred to as combination bands.  

If the fundamental vibrational modes are detected by MIR spectroscopy, only the 

overtones and combination bands can be detected by NIR spectroscopy. Compared to 

the MIR interval, signals in the NIR interval are much less intense, because their 
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probability of excitation is much lower than the one associated with the normal 

vibrational modes. A graphical representation of this difference in intensity is given in 

Figure 2.6. 

 

Figure 2.6. Intensity difference between MIR (intense peaks in blue) and NIR (enhanced in red) 
signals in the water spectrum. (from Paolo Belloni, Brucker) 

2.2.2.3. NIR instruments 

NIR spectroscopy has nowadays many industrial applications from process control 

using optical fibres to portable-miniaturized instruments, often dedicated to specific 

purposes for in-field and in-situ measurements [62,63]. 

NIR instruments can generally operate in three different modes: transmittance, 

reflectance and transflectance. Transmittance is, in a sense, the most straightforward 

mode: a light beam is directed through the specimen (usually a liquid) and is recorded 

on the other side: transmitted light will result poorer of certain wavelengths, as a 

result of the interaction between matter and light (i.e. absorption), and the recorded 

pattern is the transmittance (or absorbance) spectrum. The reflectance mode is used 

with solid samples and is used in a large variety of industrial applications. In the 

transflectance mode the light beam goes through the specimen, gets reflected by a 

surface placed on the other side of the cuvette and passes through the specimen again, 

finally reaching the detector. 

The NIR spectra recorded and analysed in this thesis were obtained with an 

instrument operating in transflectance mode, for a detailed description of the 

experimental conditions for the beer datasets, please refer to Section 2.3.2.1.2. 
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2.2.3. Gas Chromatography-Mass Spectrometry (GC-MS) 

Gas Chromatography-Mass Spectrometry (GC-MS) is a hyphenated technique [64] 

which combines the resolution power of chromatography with the high selectivity and 

sensitivity provided by the mass spectrometer. For this reason, it can separate and 

analyse complex mixtures, characterizing all the components both qualitatively and 

quantitatively. 

GC-MS has a long history and one of its most recent and fruitful uses is in the field of 

metabolomics [65]. Like NMR spectroscopy it has been used in many applications in 

food science. Its strong points have made it a successful and reliable technique 

because, in general: 

1. it is a widespread instrument, which can be found and afforded by many 

laboratories; 

2. it is cheap and easy to develop and apply methods; 

3. it is a robust instrument, with high reproducibility (provided that adequate 

and regular maintenance is performed); 

4. due to its “long” history, many rich reference libraries are available. 

However, to balance these strong points, GC-MS also has some drawbacks. Most 

instruments have quite low resolution and high-resolution instruments (such as the 

Quadrupole-Time of Flight, the Quadrupole-Ion Trap or the Orbitrap) can be very 

expensive. Moreover, some sample preparation steps are required, to make the 

analytes volatile. To this aim, large or non-volatile molecules are difficult, if not 

generally impossible to analyse. 

The principles of GC-MS are briefly described in the next section, for more detailed 

dissertation reference [66] can be useful. 

 

2.2.3.1. Principles and data characteristics 

Separation of the sample’s chemical components is achieved by running the sample 

mixture through a capillary column, using an inert carrier gas, also called “mobile 

phase”. Common carrier gases are helium, hydrogen and nitrogen. The 

chromatographic column is located in an oven, whose temperature can be precisely 
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varied, usually following an increasing thermal ramp: the ramp’s slope, its starting and 

ending temperatures depend on the type of experiment. 

Analytes in a mixture get separated because of their different affinity with the 

stationary phase, a thin layer covering the inner surface of the column. Depending on 

the analytes’ polarity, different columns may be required. The overall idea is that 

analytes with little affinity with the stationary phase will travel faster through the 

column than those which, on the contrary, may interact more, getting slowed down. 

The “order of release” from the chromatographer generates the chromatographic 

profile, which is directly related to the amount of analytes detected at the end of the 

column. 

Right after being released from the chromatographer, the analytes enter the mass 

spectrometer, where ionization and fragmentation take place. The mass spectrometer 

acts as a detector and as an analytical instrument, providing both the signal that 

generates the chromatogram and the information about the chemical structures (mass 

spectrum) detected at each point of the chromatogram. 

Different ionization techniques are available, but electron impact ionization is the one 

of interest in the context of this thesis. Electron impact shows good sensitivity and 

produces unique patterns of fragmentation, which are both desired features for 

running many reproducible experiments. Electron impact happens at the interface 

between the chromatographer and the mass spectrometer and it is a “hard” ionization 

method, since highly energetic electrons are used to produce ions. A large amount of 

energy is transferred to the molecule, which will dissipate this excess of energy by 

breaking up and producing many fragments. These fragments are detected by their 

mass-to-charge ratio (m/z). 

Instruments equipped with a quadrupole detector can work in two modes, scan or SIM 

(Selected Ion Monitoring), which generally correspond to two different analytical 

approaches. The scan mode is usually employed for untargeted analyses, therefore 

when the mass profile of the molecule is unknown or when there is no target molecule. 

In this mode, a m/z range is defined, and it is scanned by changing the electric 

potentials of the quadrupole’s bars. The scan mode works very well for collecting large 

amounts of rich data for untargeted analysis, but at the cost of sensibility: compared to 
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focusing on few m/z values, a whole range has to be covered at each scan therefore, for 

this reason, during the time spent recording each m/z value a low amount of signal 

will be recorded. 

The SIM mode, on the contrary, allows to focus on known molecules, which can be set 

as targets to follow by recording their characteristic fragmentation ions. This also 

allows to focus on specific classes of known molecules, which may be related because 

of similar fragmentation patterns, e.g. they all lose a peculiar functional group – i.e. a 

specific ion – which can be traced and quantified. Obviously, all the m/z values that are 

not recorded are lost, but the boost in sensibility is of great value for targeted analyses. 

In both cases, the data that are produced consist of a three-way array: each sample can 

be imagined as a collection of mass spectra, ordered according to the time at which 

they were recorded. The time mode corresponds to the moment when a particular 

analyte or group of analytes was released into the mass spectrometer. Ions generated 

by fragmentation are recorded when they hit the charged bars of the detector: a small 

amount of electric current is associated to each ion hitting the detector, and by 

measuring the impact position and charge, the mass spectrum is generated. 

The amount of detected analyte is usually represented using a chromatogram, which 

corresponds to the total intensity recorded over time. Chromatograms in this case can 

be referred to as “total ion current” profile or TIC. 

 

2.2.3.2. Data pre-processing 

Chromatographic three-way data are usually rather rich in information, and the main 

challenge to the analyst is the process of unravelling it and making it available. 

A very simple approach is to work with TIC profiles. This are 1D-signal and provided 

that peaks are well resolved they may be assigned on the basis of refence databases. 

However, the large majority of the information carried by the data is ignored, since the 

whole mass spectrum dimension is removed when TICs are generated. Co-eluting 

compounds may not be noticed, and even if an internal standard may be used, 

quantification of peaks containing more than one chemical component may easily 

result wrong. Moreover, the same peak may result shifted from one sample to another, 



28 
 

because of small variations in the chromatographic conditions, column aging or matrix 

effects. 

The mass spectra yield the key for resolving these situations, since it provides the 

information about the fragmentation patterns of all the molecules present at that 

specific point in time (i.e. corresponding to a chromatographic peak). Data processing 

therefore needs the power of methods like PARAFAC for understanding how many 

components may be hidden within a single peak. 

The GC-MS whisky data described and analysed in this thesis were processed using the 

PARADISe software [67], a PARAFAC2-based deconvolution and identification system. 

For a more detailed description of how it was used with the whisky data, please refer 

to Section 2.3.3.2.1.  

PARAFAC2 (described in Section 2.1.1.3) can model and extract different components 

from a peak made of more than one chemical co-eluting components, handling at the 

same time possible shifts. The result is that each extracted component can be 

quantified relatively but also it can be identified by means of its resolved mass 

spectrum – i.e. its fingerprint. 

Such an approach requires some time for processing the data, but it results very 

efficient: the whole picture is collected at once to be mathematically deconvoluted; the 

resolved signals can later be matched with digital libraries. Any further analysis will be 

done on resolved components, each one with a chemical name (certain or tentative). 

This also represents a good starting point for further refinement e.g. by focusing on 

specific compounds, their recognition and quantification, which can be made and 

tracked with the use of standards and an instrument operating in the SIM mode. 
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2.3. Experimental section and datasets 

The datasets discussed and analysed in Chapter 3 and 4 are described in this section. 

The approach taken towards the whole experimental process was aimed at ensuring 

the quality of the data from the laboratory to the results. A summary description of the 

datasets is given in Table 2.1. 

Table 2.1. Overview of the datasets. 

dataset origin dimensions variables 

Beer Visible 100 × 600 wavelengths 

 NIR 100 × 3600 wavelengths 

 NMR 100 × 61 features 

    

Whisky GC-MS 54 × 194 features 

    

Globular #1 simulated 300 × 600 / 

Globular #2 simulated 900 × 250 / 

Circles simulated 1000 × 250 / 

t4.8k simulated 2000 × 2 / 

 

2.3.1. Barley’s children: beer and whisky 

The production processes of beer and whisky are so similar that these two beverages 

can be imagined not only as siblings, but also as homozygous twins: almost 

indistinguishable when they are young but destined to grow up very different. 

Everything starts with a mother, which in our case is a source of sugars, barley. Barley 

is tricked into sprouting, but then it gets roasted and dried, in a process called 

“malting”. Malting allows sugars and enzymes to become available for fermentation. 

Malt is then soaked with water to produce a malty-tea called “wort”. This is the first 

time in the twin’s life they start to differentiate: beer likes hops and spices, but whisky 

is pickier, and avoids them. 
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Then yeasts come in as puberty suddenly does and change everything. Fermentation 

yields ethanol and a myriad of other aroma and flavour compounds, and the character 

of the two siblings starts to get defined. However, the most drastic change happens 

next: whisky undergoes double (or even triple! [68]) distillation, while beer ripens for 

a while and quite soon it gets bottled, ready to start exploring the world. Whisky needs 

more time, as it prefers to stay home at least three years before even considering 

leaving the family nest [69]. 

During this very standard life-development, a lot of deviations may occur, resulting in 

very different beer and whisky products: even if both products have proud and long 

traditions, experiments for brewing new flavours has been on the rise for some years 

now. New beer styles, spices and malts are mixed nowadays, and even cross-overs 

between whisky and beer meet the market4. 

In this context, this part of the thesis work was aimed at the characterization, using 

different spectroscopic and chromatographic techniques, of one-hundred samples of 

beer and fifty-four whisky samples. Spectroscopies such as Visible, NIR and NMR were 

employed for studying the beer [56,70], while in the whisky case dynamic headspace 

GC-MS [71] was chosen. Chemometrics tools were used for exploring the data and for 

extracting relevant chemical features. Specifically, interval-based [38] methods were 

employed for the integration of the NMR peaks and for the mathematical 

deconvolution of the GC-MS chromatographic peaks. 

 

2.3.2. Beer datasets 

Beer has been the object of several studies, mostly focused on specific beer types or 

local products, aimed either at analysing its composition [51,56,72,73] or at 

controlling the brewing process [74,75]. To these aims very different analytical 

techniques have been applied: NMR spectroscopy [50–53,56,73], liquid- and gas-

chromatography (LC-MS [50,76,77] and GC-MS [78,79]), vibrational (NIR and IR, 

[56,72,74,80]) and UV-Visible [70] spectroscopies. 

                                                           
4 Elisabeth Sherman, 5 Things to Know About Beer Barrel-Aged Whiskey, Food & Wine (2018),  

 https://www.foodandwine.com/news/beer-barrel-aged-whiskey-jameson-caskmates 
 (accessed: 08/01/2019) 

https://www.foodandwine.com/news/beer-barrel-aged-whiskey-jameson-caskmates
https://www.foodandwine.com/news/beer-barrel-aged-whiskey-jameson-caskmates
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The beer dataset consists of three data blocks obtained from different spectroscopic 

techniques, namely Visible, NIR and NMR, the latter as interval-resolved data. Related 

to the same set of samples, consumer-generated ratings and comments were obtained 

from the RateBeer5 website. Text analysis techniques were applied for processing and 

extracting features from the comments, with the aim of linking them to the chemical 

information represented by the spectroscopic data blocks. Chapter 4 of this thesis is 

devoted to this study. 

 

2.3.2.1. Experimental 

This experimental section is devoted to describing product sampling, sample 

preparation and spectra acquisition, and the subsequent data preprocessing. 

 

2.3.2.1.1. Sampling and sample preparation 

One hundred beer products were purchased from local stores. Only beers rather pale 

in colour and with very low turbidity (i.e. no clearly visible particles suspended in the 

liquid), differing by brand, location of production, percentage of alcohol by volume 

(ABV), colour hue and beer style were selected. 

A collection of 2 mL eppendorfs was prepared directly from the original commercial 

containers (cans or glass bottles): three eppendorfs for each beer sample were 

prepared and kept frozen at –20°C. 

Since all the specimens were clear (i.e. no suspended particles), filtration was not 

required. The degassing procedure is highly recommended by literature studies 

[51,56,73] and it is aimed at reducing measurement interferences due to bubble 

formation which may cause strong interferences in both the Vis/NIR and the NMR 

measurements. Therefore, after thawing, only degassing by ultrasonication was 

performed. The initial steps of thawing and degassing were common across all the 

different spectroscopic techniques, and were performed as follows: 

1) 10 minutes thawing in water bath at room temperature; 

2) 20 minutes of ultrasonic bath in water at room temperature. 

                                                           
5 https://www.ratebeer.com/ (accessed: 08/01/2019) 

https://www.ratebeer.com/
https://www.ratebeer.com/
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2.3.2.1.2. Vis/NIR data acquisition and preprocessing 

The Vis and NIR spectra were acquired together using a NIRS FOSS DS2500 

spectrometer. The range 400–2500 nm was recorded with 0.5 nm resolution. A cup 

with a round quartz window was equipped with a 0.2 mm-gap golden reflector to 

operate in transflectance mode. Each spectrum was obtained by taking the average 

over 16 scans acquired at different positions of the quartz window. 

No additional steps to the preparation procedure described in the previous paragraph 

were necessary prior to recording the Vis/NIR spectra. The specimens were prepared 

in batches of twenty-five samples and then stored inside a thermally insulated 

styrofoam box, equipped with ice chips and a lid. This setup was made to keep the 

specimens in stable conditions while running the experiments. 

For each sample three replicates were acquired, and the order of acquisition was 

randomized both with respect to samples and replicates. A control sample for each 

batch was also prepared under the same conditions as the other specimens: a pack of 

six canned beers was purchased from a local store and kept in a fridge at 4°C; right 

before preparing each batch, one eppendorf was filled with fresh beer and then 

processed together with the other samples. This allowed checking for time drifts 

among different batches, since they were analysed at different points in time. 

Similarity among replicates was assessed by performing a PCA on the data centered 

with respect to the replicates (i.e. subtracting from each sample the average of its 

replicates). The first principal component explained 88.33% of the total variance, and 

the spectra far exceeding the scores confidence limits were identified as anomalous. 

Six outliers were identified and by inspecting the raw spectra it was found that all of 

them were affected by scattering effects. After removing those six outliers, each 

sample had at least two replicates. A new dataset consisting of one hundred spectra 

was finally obtained by taking the average over each set of replicates. 

The Standard Normal Variate (SNV) correction was separately performed on the Vis 

[81] and the NIR [82] datasets. Mean centering was finally applied prior to data 

analysis. 
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2.3.2.1.3. 1H-NMR data acquisition 

After thawing and degassing, the specimens were kept at 5°C. Preparation of the NMR 

tubes was executed in batches of twelve samples, which were collected from the fridge 

and placed within a thermally insulated styrofoam box equipped with a ground of ice 

chips and closed with a lid. The newly prepared tubes were placed into the 

autosampler rack, which was also stored within the thermal box. 

All the specimens were prepared to contain 10% D2O, 0,02% of sodium-3-

(trimethylsilyl)propionate-d4 (TSP-d4) as a chemical shift reference [49–53,56,73,83] 

and 20% phosphate buffer (pH = 3.55). The required volume for the NMR tubes was 

600 µL, and it was obtained by mixing: 420 µL of beer specimen, 60 µL of D2O and 120 

µL of phosphate buffer in H2O. Duarte et al. [83] studied the composition of ale and 

lager beers, reporting pH values in the 3.7–4.4 range. The phosphate buffer (pH = 3.55) 

was added with the aim of obtaining more homogeneous pH values, also reducing the 

signals’ horizontal shifts due to different protonation forms of compounds such as 

organic acids [52,53]. All the 1H-NMR profiles were acquired in random order with 

respect to samples and replicates on a Bruker Avance III 600 spectrometer (Bruker 

Biospin Gmbh, Rheinstetten, Germany) operating at Larmor frequency of 600.13 MHz 

for protons, equipped with a double tuned cryoprobe (TCl) set for 5 mm sample tubes 

and a cooled autosampler (SampleJet, at 5°C). 

Spectra were acquired from all the beer specimens using TOPSPIN 2.1 (Bruker Biospin 

Gmbh, Rheinstetten, Germany), with the NOESYGPPR1D sequence [53,73]. 

Presaturation of the water signal (4.77 ppm, [49–53,56,57,73,83]) was employed, 

while the ethanol signals were not suppressed [52,53,73]. All the experiments were 

performed at 298 K with a fixed receiver gain. Each FID was collected using a total of 

64 scans plus 4 dummy scans. 

Zero-filling to 64k points and 0.3 Hz Lorentzian line broadening were applied to the 

FIDs prior to Fourier transformation. Depending on the results of the automatic 

baseline and phase correction (assessed by a trained NMR user) some of the spectra 

were manually corrected using the TOPSPIN processing tools. For all the spectra, the 

ppm scale was referenced to the TSP peak at 0.00 ppm. The recorded spectral window 

was 20.5 ppm. 
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2.3.2.1.4. 1H-NMR features extraction: peak integration via MCR 

NMR data carry different information in different spectral regions. As a consequence, 

NMR spectra are usually roughly split into three regions [38,83]: the aliphatic/organic 

acids region (0–3 ppm), the carbohydrates region (3–5 ppm) and the aromatic region 

(6–9 ppm). These regions mainly differ because of involved metabolites/molecules, 

baseline noise, and signal’s average intensity [38]. For instance, as it is shown in Figure 

2.7, the carbohydrates region of the beer spectra contains on average signals much 

more intense than the rest of the spectrum. By using an interval-based approach [38] 

it is possible to efficiently handle those differences and to obtain meaningful chemical 

features from each region. 

 

Figure 2.7. The beer NMR spectra. 

The NMR spectra were imported on MATLAB and inspected to promptly spot any low-

quality sample. Then, without aligning the whole spectrum, an interval-by-interval 

processing procedure was performed: 

1) alignment by means of icoshift [84,85]; 

2) peak deconvolution and integration by means of MCR; 

3) peak assignment (comparisons with literature and digital libraries). 

Working on single intervals from their alignment to the assignment of the resolved 

signals allows to focus and to obtain meaningful chemical features, together with a 

deep insight in the nature of the data. One MCR model was built for each custom-

defined interval, using non-negativity constraint (more specifically, the fast non-
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negativity-constrained least squares algorithm [86]) on both profiles and 

concentrations. The initial estimates were selected using the SIMPLISMA [87] 

algorithm, even though in some special cases a set of simulated spectra were used. The 

pure profiles matrix was normalized to the Euclidean norm and the max number of 

iterations was set to 500. 

Those models for which converge was not achieved, but clearly resolved one or more 

plausible components, were inspected in greater detail. It was generally found that the 

reason why the convergence criterion was not met lied in one or more baseline-like or 

just meaningless components which were difficult to model: since the profiles of the 

plausible components were basically constant when the 500th iteration was reached, it 

was decided to keep them. 

For each model, the components representing chemical information were retained, 

whereas components describing baseline variations or noise were excluded. Once all 

the intervals had been processed a new “features dataset” was composed using sixty-

one resolved components: the relative concentrations of each component provided by 

MCR were merged to create the new dataset, including those for which it was not 

found a chemical label either in the literature or in a reference library: in those cases, 

the unassigned resolved signals showed clear peak-like characteristics, and were 

therefore included in the new dataset. Twenty-one of these features were tentatively 

assigned with the procedures described in the next Section. 

 

2.3.2.1.5. 1H-NMR peak assignment 

One of the main goals of features extraction is to make the data analysis simpler, by 

reducing the number of variables and removing at the same time meaningless 

variables and noise. Feature extraction by peak deconvolution allows taking one step 

further towards clarity and interpretability: each extracted feature is ideally a signal, 

or a group of signals directly related to a specific molecule. Assigning a chemical name 

to these new variables makes the data analysis and the consequent model 

interpretation much easier. 
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The assignments given to the resolved peaks were made starting from the signals’ 

shape and position. By comparison with assignments from literature it was possible to 

give a name to most of the resolved profiles. Another source of information was the 

reference library from the Chenomx NMR Suite6, a software dedicated to the 

interpretation of NMR spectra. 

For the purposes of our research, a detailed and extensive assignment was not 

required. However, an interesting guide for thorough identification of metabolites in 

NMR-based metabolomics was published by Dona et al. [88] in 2016. 

 

2.3.3. Whisky dataset 

Whisky, or whiskey outside of Scotland, is a very popular distilled drink obtained from 

fermented grain mash. Whisky has been studied for a long time and a hint about that 

can be found in The Lancet first (1905, [89]) and in Nature right after (1906, [90]) 

where the question “What is whisk(e)y?” was asked. Funny enough, this dilemma came 

after another article from The Lancet titled “The chemistry of whisky-and-soda” (1903, 

[91]), suggesting that bartenders were probably some steps ahead of scientist at that 

time. 

The chemical composition of whisky has been studied at different levels, from general 

[92–94] to quite specific chemical classes of compounds [95–98]. Aroma and flavour 

profiling is another important point of view in whisky analysis [99–105], which is 

directly linked to the sensory analysis approach [106–108]. Moreover, whisky has 

always been very popular, and many whisky products are considered luxury goods. 

For these reasons, whisky is particularly at risk of potential adulteration [109]. 

Authenticity is therefore one of the main issues regarding whisky analysis [110–117]. 

This dataset originates from a project that involves both the University of Copenhagen 

and the University of Modena and Reggio Emilia and has not been published before. 

The overall aim of the project was to explore the “whisky space” to gain information 

about similarities and differences in aroma and flavour of several products, from a 

chemical point of view. The idea is to extract the volatile compounds under conditions 

                                                           
6 https://www.chenomx.com/ (accessed: 08/01/2019) 

https://www.chenomx.com/
https://www.chenomx.com/
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resembling the human oral cavity and separate the extracted mixture through Gas 

Chromatography coupled with Mass Spectroscopy (GC-MS). 

 

2.3.3.1. Experimental 

In this section, an overview of the variety among the selected whisky products is given, 

followed by the description of the procedures and conditions used for collection the 

volatile compounds and analysing them via GC-MS spectrometry. 

 

2.3.3.1.1. Samples collection 

A set of fifty-four whisky small bottles (“miniatures”, size from 2 to 5 mL) was 

purchased from online retailers. The sampling process was aimed at covering the most 

important known whisky features. The selected products differ by type, distillery, 

country of origin, mash bill, cask type, age, alcohol content, peat-drying, colour and 

price. More detailed information is reported in Table 2.2. 

The dataset’s composition is naturally dominated by Scottish whisky, or Scotch, since 

Scotland historically represents the origins of modern whiskies. However, Scotch 

whiskies are traditionally 

associated to their region of 

provenience, with which peculiar 

features are associated. Figure 2.8 

depicts the “whisky regions” of 

Scotland. 

 

 

 

Figure 2.8. Whisky regions of 

Scotland7, and a portion of Ireland on 

the bottom left corner.  

                                                           
7 Scotch regions by Briangotts - Own work. Licensed under the Creative Commons Attribution-Share Alike 

3.0 Unported: https://commons.wikimedia.org/wiki/File:Scotch_regions.svg (accessed: 08/01/2019) 

https://commons.wikimedia.org/wiki/File:Scotch_regions.svg
https://commons.wikimedia.org/wiki/File:Scotch_regions.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Scotch_regions.svg
https://commons.wikimedia.org/wiki/File:Scotch_regions.svg
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Table 2.2. The whisky dataset, features, counts and related studies from literature. 

feature  related studies 

type single malt (33) 

blended (16) 

Tennessee whisky (3) 

bourbon (2) 

[118] 

distillery 

(30 producers) 

Amrut, Antiquary, Ardbeg, Auchentoshan, Ballantine's, Ben Nevis, 

Douglas Laing & Co., BenRiach, Benromach, Buffalo Trace, Chivas, Fary 

Lochan, Glenfarclas, Glenfiddich, Glenlivet, GlenDronach, Jameson, Jack 

Daniel's, Jura, Johnnie Walker, Kilbeggan, Loch Lomond, Nikka 

Taketsuru, Penderyn, Tomatin, Tullamore D.E.W., The Wild Geese, 

Whyte & Mackay, Evan Williams, Thylandia 

[119] 

country of origin Ireland (6), USA (5), Japan (3), India (2), Denmark (2), 

Wales (1), Scotland (35) - Speyside (13) 

 - Highland (7) 

 - Lowland (4) 

 - Islands (3) 

 - Islay (2) 

 - Glasgow (1) 

[120,121] 

mash bill 

(or malt type) 

barley (38) 

rye (3) 

corn (1) 

mixed (11) 

 

cask type ex-bourbon 

ex-sherry 

new charred American oak 

casks for special purposes 

combinations of casks 

[122,123] 

age 
range 4–25 years 

21 samples with non-Age Statement (NAS8) 

[120,123–126] 

alcohol content 
range 40–50% 

one “whisky liquor” with 22%; 

 

peat-drying 
peated (13) 

non-peated (41) 

[127,128] 

colour natural colour (20) 

added colouring (31) 

 

price level9 low (6) 

medium-low (17) 

medium (20) 

medium-high (4) 

high (1) 

no rating available for 5 samples 

 

                                                           
8 https://scotchaddict.com/nas-no-age-statement-whisky.html (accessed: 08/01/2019) 
9 https://distiller.com/ (accessed: 08/01/2019) 

https://scotchaddict.com/nas-no-age-statement-whisky.html
https://scotchaddict.com/nas-no-age-statement-whisky.html
https://distiller.com/
https://distiller.com/
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2.3.3.1.2. Sample randomization and analysis schemes 

All samples were analysed in triplicates and each set of replicates was prepared and 

analysed separately. The randomization scheme described in Figure 2.9 was applied to 

each set of replicates. Due to the limited capacity of the autosampler, it was decided to 

divide the 54 samples of each set of replicates in three groups (GR1-2-3), also to avoid 

overusing the instrument. 

Three GC-MS runs of 18 samples were scheduled (GR1-2-3), and for each run a pair of 

identical control samples (CTRL) was prepared from a cheap whisky: to check for 

instrumental drifts the control samples were placed at the beginning and at the end of 

the processing sequence. 

 

Figure 2.9. Randomization scheme for the whisky analysis. Due to the large majority of Scottish 
products, it was decided to randomize (rand) them separately. To add one additional mixing 
step and obtain the three groups for DHS, a venetian blinds scheme was applied to the 
randomized Scottish list and the randomized rest of the world (W) list. After DHS was carried 
out, all the Tenax-TA traps were collected, randomized and then divided into three new groups 
(GR1-2-3), before undergoing the GC-MS analysis. 
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2.3.3.1.3. Dynamic Headspace Sampling (DHS) 

Volatile compounds were collected using a dynamic headspace sampling (DHS) 

system. For each sample, 5 mL of whisky were placed in a 100 mL gas washing flask 

equipped with a purge head. A trap containing Tenax-TA (250 mg, mesh size 60/80; 

Buchem BV, Apeldoorn, The Netherlands) was attached to the purge head. The flask 

containing the sample was immersed in a laboratory water bath and held at 37 °C 

(temperature resembling the physical conditions of the human mouth). To collect the 

volatiles, the sample was purged with nitrogen (100 mL/min) for 20 minutes and 

under magnetic stirring (200 rpm). The traps were then dry purged with nitrogen 

(100 mL/min) for 15 min to remove excess water trapped during the sampling 

procedure. Finally, the Tenax-TA traps were sealed and kept at 5 ℃ before GC-MS 

analysis. 

 

2.3.3.1.4. Gas Chromatography-Mass Spectrometry (GC-MS) 

The collected volatiles were thermally desorbed from the Tenax-TA traps using an 

automatic thermal desorption unit (ATD 400; Perkin Elmer, Waltham, MA). Primary 

desorption was carried out at 250 ℃ (15 min) to a cold trap (30 mg Tenax TA, 5 ℃), 

with a hydrogen flow of 50 mL/min. Volatiles were desorbed from the cold trap by 

heating to 300 ℃ for 4 min (secondary desorption), using a split ratio of 1:10. The 

volatiles were then transferred through a heated transfer-line (225 ℃) to a gas 

chromatograph-mass spectrometer (GC-MS, 7890A GC-system interfaced with a 5975C 

VL MSD with triple-axis detector from Agilent Technologies, Palo Alto, CA) equipped 

with a J&W Scientific DB-Wax column of 30 m length and 0.25 mm internal diameter, 

with 0.50 µm film thickness. The column pressure was held constant at 2.3 psi, using 

helium as carrier gas (1 mL/min). The column temperature was kept at 30℃ for 10 

min, increased at 8 ℃/min to 240℃, and kept isothermal for 5 min. The mass selective 

detector was in electron impact mode (70 eV). Mass spectra were obtained at a 

mass/charge (m/z) range between 15 and 300. GC-MS data processing was carried out 

under Matlab environment and is described in Section 2.3.3.2. 
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2.3.3.2. Features extraction and data preprocessing 

Chromatograms originating from GC-MS instrument are three-way data. This is 

because for each datapoint along the retention time mode, there is one corresponding 

mass spectrum. These data contain therefore information on both where in time a 

compound is (its retention time) and what its fingerprint is (the mass spectrum). 

As explained in Section 2.1.1.3, this abundance of information can be unravelled by 

means of PARAFAC modelling. Pure resolved components are obtained, so the complex 

starting data can be compressed into fewer variables which represent the relative 

concentrations in the samples of each resolved component. By organizing these 

extracted concentrations (the features) in a 2D matrix and by matching the mass 

spectra to library and literature references, this new features data matrix will have 

columns directly related to chemical compounds. Such a data matrix is easy to process 

and interpret. 

This section is devoted to explaining in more detail the features extraction steps and 

the peak assignment procedure taken for the analysis of the Whisky dataset. 

 

2.3.3.2.1. Mathematical chromatography: features extraction via PARAFAC2 

Features extraction was performed on the GC-MS data using the PARADISe software 

[67], a PARAFAC2-based deconvolution and identification system. The purpose of this 

software is to allow extracting features from the very rich GC-MS data, by providing an 

easy graphical user interface through which the user can inspect the chromatograms 

and define intervals small at will, ideally containing as few as possible peaks. Each 

interval is then processed individually by building many PARAFAC2 models of 

increasing dimensionality. All the models can be later inspected through another 

interface, through which it is possible to select the optimal model for each interval, but 

also the nicest extracted chemical components. Once the components have been 

selected it is possible to compare their mass spectra with digital libraries, using the 
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built-in function that communicates with the NIST MS software10 and produces a 

report of the tentative assignments. 

After aligning the whole dataset using the Dynamic Time Warping (DTW) and 

Correlation Optimized Warping (COW) algorithms [129,130], the data were processed 

with PARADISe by separately modelling small user-defined intervals. For each 

interval, eight PARAFAC2 models of increasing dimensionality (i.e. from one to eight 

components) were built, and the better resolved chemical components were selected. 

A total of 194 resolved components were obtained, and the assignments provided by 

the NIST software were carefully checked and compared with literature sources 

(Section 2.3.3.2.2). 

 

2.3.3.2.2. Peak assignment 

Peak assignment was done using the built-in “Make report” function of PARADISe that 

compares the mass spectra of the resolved components with digital libraries, via the 

NIST software. More specifically, the digital libraries11 used in this work were the Main 

EI MS Database (electron impact mass spectroscopy database, “mainlib”, 212.961 

spectra) and the Replicate spectra Database (“replib”, 30.932 spectra). 

The output report consists of an Excel file with two worksheets, one containing the 

areas of all the resolved chemical components for each sample, and the other one 

containing the first five matches to the compounds libraries for each resolved 

component. Matching probabilities are also provided, so that if an assignment looks 

suspicious, one of the other options may be used. 

All the resolved components were carefully inspected and compared with literature 

sources, both for validating the labels provided by the software and for defining 

chemical classes that could be subsequently used for interpreting the results from data 

analysis. 

 

                                                           
10 https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:start (accessed: 30/01/2019) 
11 https://www.nist.gov/sites/default/files/documents/srd/NIST1a11Ver2-0Man.pdf 

 (accessed: 30/01/2019) 

https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:start
https://www.nist.gov/sites/default/files/documents/srd/NIST1a11Ver2-0Man.pdf
https://www.nist.gov/sites/default/files/documents/srd/NIST1a11Ver2-0Man.pdf
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2.3.3.2.3. Data preprocessing 

Once the resolved areas were obtained, a PCA model was built on the autoscaled data, 

for spotting weird samples and/or variables. All replicates and control samples were 

included and, by taking advantage of their meta-information, possible time drifts 

related to the headspace sampling batch, the GC-MS analysis group or to the replicate 

were checked. No time drifts were found. Instead, four faulty samples were identified: 

those samples have very low intensities, which became very clear when they were 

plotted against their correspondent replicates which, on the contrary, had much 

higher and comparable intensities. A possible explanation for this deficiency could be a 

temporary malfunctioning of the nitrogen pump during the purging phase of the 

headspace sampling procedure. 

After removing the faulty samples, the data were row-normalized to unit area. Finally, 

the average over all the replicates was taken, and a dataset of 54 unique samples was 

obtained, and used for further data analysis. The data were always autoscaled prior to 

modelling, except for the coclustering (Section 2.1.1.4.) analysis, where in order to use 

the non-negativity constraint, the data were scaled to unit variance bay not mean 

centered. This preprocessing is also called unit variance scaling, as described in [131]. 

 

2.3.4. Simulated datasets 

The simulated datasets were chosen and designed for testing different sets of 

parameters of the Fused Adjacency Matrix approach. Variations to these parameters 

are described in more detail in Section 3.6.1. 

Four simulated datasets were used: two of them consist of globular clusters with 

different positions and overlaps (Figures 2.10 and 2.11); the circles dataset consists of 

a non-linear situation with a central dense cluster surrounded by a larger, more 

dispersed set of samples and a third globular-like cluster in a non-central position 

(Figure 2.12); in the fourth dataset six distinct clusters are present, five of which have 

regular-polygonal shapes while the last one is more “curvy” (Figure 2.14). 
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2.3.4.1. Globular clusters datasets (#1 and #2) 

The globular datasets represent the simplest situations for testing the Fused 

Adjacency Matrix approach. Three globular clusters for each dataset were generated, 

and their position and overlap were designed to get a rather confused situation, in 

which, without the class information it would be moderately difficult to distinguish the 

clusters. 

First, a simple error-free set of scores was generated in a two-dimensional space and 

normally distributed random noise (homoscedastic noise) was added to it. A set of 

loadings was generated by combining different gaussian curves, to obtain a NIR-like 

look. Homoscedastic and heteroscedastic noise was added to it. Finally, a multivariate 

dataset was obtained by multiplying the scores and the transposed loadings. 

 

Table 2.3. Characteristics of the globular datasets. 

 clusters noise 

 cluster 1 cluster 2 cluster 3 scores loadings 

globular dataset #1 (450 × 600) 

 

n = 150 

σvar1,2 = 

0.15 

n = 150 

σvar1,2 = 

0.10 

n = 150 

σvar1,2 = 

0.25 

σ = 0.3 

m = 600 

σHomo = 0.05 

σHet =0.05 

      

globular dataset #2 (900 × 250) 

 

n = 300 

σvar1 = 0.08 

σvar2 = 0.08 

n = 300 

σvar1 = 0.05 

σvar2 = 0.1 

n = 300 

σvar1 = 0.05 

σvar2 = 0.15 

σ = 0.15 

m = 250 

σHomo = 0.02 

σHet = 0.015 
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Three clusters for each dataset were built following an approach similar to the one 

described by Wentzell et al. [132]. The objects belonging to each cluster were 

randomly distributed around the desired centres, according to a symmetric bivariate 

normal distribution. Both datasets have three clusters, but with different position and 

distribution properties. Figures 2.10 and 2.11 report the visual descriptions of the two 

datasets. 

 

 

Figure 2.10. The globular dataset #1: error-free scores (a) and with noise (e); error-free 
loadings (b) and with noise (f); error-free reconstructed data (c) and with noise (g); class 

averages from reconstructed data, error-free (d) and with noise (h). 

 

The globular dataset #1 consists of 450 samples, equally divided into three clusters of 

150 objects each. The clusters’ centres in the starting two-dimensional dataset, as 

depicted in Figure 2.10, are located at the vertices of an equilateral triangle, centered 

at the origin and with sides of unit length [132]. As reported in Table 2.3, the three 

clusters have different standard deviations and different noise levels were added to 

the scores and loadings. 
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Figure 2.11. The globular dataset #2: error-free scores (a) and with noise (e); error-free 
loadings (b) and with noise (f); error-free reconstructed data (c) and with noise (g); class 

averages from reconstructed data, error-free (d) and with noise (h). 

The globular dataset #2 consists of 900 samples, equally divided into three clusters of 

300 objects each. The clusters’ centres in the starting two-dimensional dataset, as 

depicted in Figure 2.11, are located so that it is difficult to distinguish the groups along 

the first simulated PC. As reported in Table 2.3, the three clusters have different 

standard deviations and different noise levels were added to the scores and loadings. 

 

2.3.4.2. Circles dataset 

In the circles dataset a peculiar non-linear situation is simulated. A central dense 

cluster (cluster 2, in red in Figure 2.12) is surrounded by a larger, more dispersed set 

of samples (cluster 1, in blue in Figure 2.12). A third cluster (cluster 3, in green in 

Figure 2.12) is partially surrounded by the cluster in blue, but even if its shape 

resembles the globular clusters (Section 2.3.6.1), it was not generated using a normal 

bivariate distribution. 
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Figure 2.12. The circles dataset: error-free scores (a) and with noise (e); error-free loadings (b) 
and with noise (f); error-free reconstructed data (c) and with noise (g); class averages from 

reconstructed data, error-free (d) and with noise (h). 

The circles dataset has 1000 samples divided into three clusters: cluster 1 with 799 

samples, cluster 2 with 74 samples and cluster 3 with 127 samples. The same set of 

loadings as the globular dataset #2 was used and a reconstructed dataset with 

dimensions 1000 × 250 was used. 

 

2.3.4.3. t4.8k dataset 

This dataset was chosen for testing how the Fused Adjacency Matrix approach would 

perform with clusters with very well-defined geometric shapes (Figure 2.13). Density-

based methods like OPTICS and DBSCAN usually are the optimal choice for this type of 

situation and can be taken as a benchmark. 

The dataset was used by Karypis et al. [133] and can be downloaded from the 

“Clustering basic benchmark” [134] webpage of the School of Computing of the 

University of Eastern Finland: http://cs.joensuu.fi/sipu/datasets/. 

The original size of the dataset was 8000 × 2, but due to computational and time 

constraints it was decided to reduce it by randomly selecting 2000 samples. The 

dimensions of the dataset used for testing was therefore 2000 × 2. 

http://cs.joensuu.fi/sipu/datasets/
http://cs.joensuu.fi/sipu/datasets/


48 
 

 

Figure 2.13. The t4.8k dataset. The six clusters are depicted with different colours and the 

samples not belonging to any cluster are depicted in black. 

 

2.4. Software 

All the data analyses described and reported in this thesis were carried out under 

MATLAB environment (2016a/2017b, Mathworks, MA, USA). 

PCA analysis was performed using the PLS Toolbox 8.6 (Eigenvector Research Inc. 

WA, USA). 

NMR spectral alignment was performed using icoshift [84,85], and it can be 

downloaded from:  

 http://www.models.life.ku.dk/icoshift (accessed: 08/01/2019) 

NMR features extraction was performed by means of the MCR-ALS GUI by Joaquim 

Jaumot, Anna de Juan and Romà Tauler [135]. The MATLAB package can be found at: 

 https://mcrals.wordpress.com/ (accessed: 08/01/2019) 

GC-MS alignment was operated using the Dynamic Time Warping (DTW) and 

Correlation Optimized Warping (COW) algorithms [129,130] created by Giorgio 

Tomasi, Thomas Skov and Frans van den Berg; it can be downloaded from: 

 http://www.models.life.ku.dk/DTW_COW (accessed: 08/01/2019) 

http://www.models.life.ku.dk/icoshift
http://www.models.life.ku.dk/icoshift
https://mcrals.wordpress.com/
https://mcrals.wordpress.com/
http://www.models.life.ku.dk/DTW_COW
http://www.models.life.ku.dk/DTW_COW
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GC-MS features extraction was performed using the PARADISe software [67], which 

can be downloaded from: 

 http://www.models.life.ku.dk/paradise (accessed: 08/01/2019) 

The OPTICS algorithm was written by Michal Daszykowski and it can be found at: 

 http://chemometria.us.edu.pl/download/OPTICS.M (accessed: 08/01/2019) 

The MATLAB function for performing co-clustering with non-negative matrix 

factorization can be downloaded from: 

 http://www.models.life.ku.dk/cocluster (accessed: 08/01/2019) 

Kohonen’s Self-Organizing Maps were computed using a homemade routine by 

Federico Marini (Università La Sapienza, Roma). 

The Fused Adjacency Matrices were computed using in-house written MATLAB 

routines, which can be downloaded at: 

 http://www.models.life.ku.dk/algorithms (accessed: 08/01/2019) 

The simulated globular (#1 and #2) and circles datasets were generated using in-

house MATLAB routines, based on the simulation approach used by Wentzell et al. 

[132]. 

The t4.8k dataset can be downloaded from the “Clustering basic benchmark” 

webpage of the School of Computing of the University of Eastern Finland: 

 http://cs.joensuu.fi/sipu/datasets/ (accessed: 08/01/2019) 

  

http://www.models.life.ku.dk/paradise
http://www.models.life.ku.dk/paradise
http://chemometria.us.edu.pl/download/OPTICS.M
http://chemometria.us.edu.pl/download/OPTICS.M
http://www.models.life.ku.dk/cocluster
http://www.models.life.ku.dk/cocluster
http://www.models.life.ku.dk/algorithms
http://www.models.life.ku.dk/algorithms
http://cs.joensuu.fi/sipu/datasets/
http://cs.joensuu.fi/sipu/datasets/
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Chapter 3 |  Fused Adjacency Matrix approach 

 

3.1. Introduction 

Despite the large variety of exploratory multivariate data analysis methods available 

nowadays [1], there are still cases in which it is difficult to obtain satisfactory results 

regarding groupings and the latent phenomena buried in the data. Highly complex data 

may not show simple groupings and/or trends even when projected to a space of lower 

dimensionality, as they may be so complex that common visualizations tools are only 

shedding limited light on the underlying structures. 

The Fused Adjacency Matrix approach was developed starting from these premises. The 

overall idea of the approach is to combine multiple “weak sources” of information 

which, when combined, will provide better discriminatory information [2,3]. The 

approach is based on the combination of several adjacency matrices, which represent 

the weak sources of information and contain a “coded version” of the sample-to-sample 

distance information. 

Even if the proposed approach is intended as an unsupervised exploratory tool, it can 

also be used as a method for mid-level data fusion: if more blocks of data are available 

[4], the information can be extracted and encoded into as many fused adjacency 

matrices (AMX in Figure 3.3) as the number of data blocks, and then combined into a 

single final fused adjacency matrix. These two steps – extraction and final data fusion – 

are marked at the bottom of Figure 3.3. 

This Chapter is organized as follows: an overview about the two distance measures 

employed by the approach is given in Section 3.2, while the theory behind the Self-

Organizing Maps is described in Section 3.3; Section 3.4 is devoted to describing the 

framework of data fusion methodologies; a detailed description of the Fused Adjacency 

Matrix approach is given in Section 3.5, while a graphical description of the approach is 

given in Figure 3.3; finally, in Section 3.6 the approach is applied to some dataset as an 

exploratory tool and in Section 3.7 its application as a mid-level data fusion method is 

reported using the Beer datasets as a benchmark. 
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3.2. Distance measures 

This section is devoted to the theory behind Euclidean and Mahalanobis distances, the 

two similarity/dissimilarity measures used in the Fused Adjacency Matrix approach. 

These are the two most commonly used distance measures [5] and also for this reason 

it was decided to use them in the approach, in the perspective of working with relatively 

simple tools, which had to be combined in a more complex system. 

Within the framework of dissimilarity measures, distances D are functions which satisfy 

three axioms (Equations 3.1a-b-c), and both the Euclidean and Mahalanobis satisfy all 

of them: 

(3.1a) 𝐷𝑥𝑦 ≥ 0  non-negativity (negative distances cannot exist) 

(3.1b) 𝐷𝑥𝑥 = 0 reflexivity (an object cannot be dissimilar from itself)  

(3.1c) 𝐷𝑥𝑦 = 𝐷𝑦𝑥  symmetry (the distance between a pair of objects has no direction) 

The Euclidean distance (DEuc) is by far the most common distance measure, and it 

corresponds to the shortest path joining two points [6]. It is unbounded, which means 

that it has no upper limit, so its range is from zero to infinite. It is easy to compute and 

interpret. If we consider two n-dimensional objects x and y belonging to a m × n dataset, 

the DEuc between them can be computed by Equation 3.2 [6]: 

(3.2) 𝐷𝑥𝑦
𝐸𝑢𝑐 = √∑ (𝑥𝑗 − 𝑦𝑗)

2𝑚
𝑗=1 = √(𝐱 − 𝐲)𝑇 ∙ (𝐱 − 𝐲) 

where xj and yj indicate the values for the jth variable of the objects x and y. The 

second part of the equation expresses the vector form. 

The Mahalanobis distance (DMah) works in a similar way to DEuc , but it also considers the 

information on the whole structure of the dataset, so that the possible correlation 

among variables is also taken into account and underweighted, reducing the amount of 

redundant information [5,6]. This is done by means of the data covariance matrix S, as 

it is shown in Equation 3.3 [6]: 

(3.3) 𝐷𝑥𝑦
𝑀𝑎ℎ = √(𝐱 − 𝐲)T ∙ 𝐒−1 ∙ (𝐱 − 𝐲) 
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By comparing Equations 3.2 and 3.3, it becomes clear how DEuc and DMah D are related: 

if the covariance matrix S is replaced by the identity matrix I, the DMah reduces to the 

DEuc. The DMah can therefore be considered as a generalization of the DEuc  [6]. Moreover, 

when working in the principal component space, it is possible to compute the DMah as a 

DEuc in scores space after autoscaling1. The DMah computed on the PC scores operates 

with a diagonal S matrix, because the PCs are orthogonal by definition, i.e. uncorrelated. 

Autoscaling the scores converts the covariance matrix S to the identity matrix I, making 

the DMah equation equivalent to the DEuc equation. 

 

3.3. Kohonen’s Self-Organizing Maps (SOM) 

A way for handling possible non-linearities and more complex structures in the samples’ 

space is the use of the Kohonen’s Self-Organizing Maps (SOMs, [7,8]). The SOM method 

is a type of artificial neural network that is particularly suitable for modelling non-linear 

boundaries between samples belonging to different groups.  

Its aim is to obtain a low-dimensional representation of the high-dimensional input 

space. The high-dimensional space is mapped using a set of representative coordinates, 

which are distributed unevenly over the space, based on data structure and sample 

density. For this reason, this is a non-linear mapping procedure. These coordinates are 

called nodes (or neurons) and are organized on a “top-map”, typically a two-

dimensional grid whose geometry may vary (Figure 3.1). Each node is characterized by 

a weight vector, which has the same dimensions of the original space. 

SOM mapping preserves the topology, and this means that distances and proximity 

relations between samples in the original space are preserved [7]. As a result of this, all 

the nodes that are at the same topological distance from a given node define a 

“neighbourhood”. Depending on the selected neighbourhood shape, each node may 

have 4, 6 or 8 nearest neighbours, which correspond to, respectively, square-, 

hexagonal- and rectangular-shaped neighbourhoods. A representation of the different 

neighbourhood shapes and levels is given in Figure 3.1. 

                                                           
1 Autoscale = the mean value is subtracted from each column which is then divided by its standard deviation; 
the result is that each column has mean = 0 and standard deviation = 1. 
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Figure 3.1. Neighbourhood types – hexagonal (a), square (b) and rectangular (c); the numbers 
indicate the topological distances from the central node (zero). (adapted from Marini et al. [9]) 

The SOM algorithm proceeds by unsupervised competitive learning. “Unsupervised” 

because no desired outcome is imposed a priori, therefore the network must adapt itself 

(hence the name “self-organizing” maps) according to the data structure, iteratively 

accommodating all the input samples on the grid. “Competitive” because a winner-takes-

all approach is implemented: at each iteration, each input is presented to the network, 

compared to all the nodes and finally it is assigned to the most similar one [10]. When 

the winning node is selected, its weight vector gets updated based on the difference 

between its old weight values and the weight vector of the input. This correction is also 

applied to the neighbouring nodes based on a function that considers their topological 

distance and the learning rate parameter. 

The top-map can be used as an exploratory tool for the identification of clusters [7], 

since it allows to assess similarity between samples in a simple and direct way, by 

comparing their position on the top-map. 

 

3.4. Data fusion techniques 

Data fusion methods are strategies for combining different sources of complementary 

information, for instance data blocks obtained from the analysis of the same set of 

samples by means of different analytical techniques. Data fusion strategies are generally 

grouped into three families, low-, mid- and high-level methods [4,10,11], as represented 

in Figure 3.2. 
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In low-level data fusion, two or more data blocks are simply joined together by 

augmentation in the variables’ or samples’ direction. In the case of many data blocks, 

the resulting matrix will have as many columns as the sum of the number of columns of 

all the data blocks. It is generally required little preprocessing of the resulting 

augmented matrix prior to modelling, mainly a scale correction to make each source 

comparable. 

 

Figure 3.2. Data fusion strategies. (from Borràs et al. [4]) 

Mid-level data fusion [10,12] is accomplished by combining relevant features separately 

extracted from each data block into a new data matrix: these extracted features can be 

for instance PCA scores, resolved resonance or chromatographic peaks, or scores from 

partial-least squares discriminant analysis [12]. In general, block-scaling and 

autoscaling are performed on the resulting fused data matrix prior to any further 

modelling. 

High-level data fusion concerns the combination of the outputs of different supervised 

models, and for this reason it is also referred to as “decision level fusion”.  
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3.5. The Fused Adjacency Matrix approach 

The Fused Adjacency Matrix approach is based on the concept of combining different 

weak sources of information [2,3,13,14] as it is done, for instance, in the classification 

context by the Random Forest algorithm [13]. In Random Forest the results of several 

weak classifiers are merged by counting how many times a sample was assigned to one 

of the defined categories; then the sample is assigned to the category to which it was 

more often assigned. Another strategy also used in the supervised context is to combine 

the results obtained from an ensemble of different classification methods [15,16] which, 

individually, may not be good enough. Several fusion rules to combine the different 

classifiers/classifier outcomes were proposed [15–17] and more recently, a 

combination strategy for non-optimized classifiers based on defining a window of 

tuning parameters values for each classifier was proposed by Brownfield et al. [18].  

In our unsupervised case, the distance information is converted into several adjacency 

matrices, which represent the weak sources of information. Adjacency matrices (AMs) 

are squared binary symmetric matrices (m × m) in which a one is present when the 

adjacency condition is fulfilled by the pair of samples under examination, while a zero is 

present when this condition is not fulfilled. In other words, these matrices carry the 

information about the pairwise relations between the objects: a relation exists if a pair 

of objects is close enough (i.e. they are “adjacent”) as compared to, for instance, a 

distance threshold (i.e. the adjacency condition). An example with a hard threshold t as 

the adjacency condition is given in Equation 3.4: 

(3.4) 𝐀𝐌 = {
𝑎𝑖,𝑗 =  1 ⇒  𝑑(𝑖, 𝑗)  ≤  𝑡

𝑎𝑖,𝑗  =  0 ⇒  𝑑(𝑖, 𝑗)  >  𝑡
 

where d(i,j) represents the distance between the ith and the jth objects. 

In the Fused Adjacency Matrix approach, several AMs are generated and merged step-

by-step using a sum rule [15]: the output adjacency matrix AMX, which is still squared 

and symmetric, is eventually obtained as a result. In AMX those pairs of samples that 

were consistently found adjacent will be characterized by high values, while those pairs 

of samples which were consistently found far apart will have low values or, even better, 
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values close to zero. This is the overall idea of the proposed approach, and Figure 3.3 

provides a graphical representation of the whole approach. 

 

Figure 3.3. Graphical representation of the Fused Adjacency Matrix approach; in the top box, the 
adjacency matrices are obtained from Euclidean and Mahalanobis distances, while in the lower 
box they are obtained using SOM. 

For a given data block X, the corresponding output is the matrix AMX, which is obtained 

from the combination of the AMs obtained from the Euclidean distance (5 AMs), the 

Mahalanobis distance (5 AMs) and SOM (4 AMs), as explained by Equations 3.5–3.8: 

(3.5) 𝐀𝐌𝐄𝐮𝐜  =  ∑ 𝐀𝐌𝐄𝐮𝐜,𝒕
5
𝑡=1  

(3.6) 𝐀𝐌𝐌𝐚𝐡 =  ∑ 𝐀𝐌𝐌𝐚𝐡,𝒕
5
𝑡=1  

(3.7) 𝐀𝐌𝐒𝐎𝐌 =  ∑ 𝐀𝐌𝐒𝐎𝐌,𝒈
4
𝑔=1  

(3.8) 𝐀𝐌𝐗 =  𝐀𝐌𝐄𝐮𝐜 + 𝐀𝐌𝐌𝐚𝐡 + 𝐀𝐌𝐒𝐎𝐌 

where t represents the five distance thresholds used for Euclidean and Mahalanobis 

distances, while g corresponds to the four neighbourhoods used with SOM’s top-maps. 
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The output matrix AMX obtained from Equation 3.8 is symmetric, squared and its 

diagonal values are all equal to 14, like the total number of generated AMs. Its values 

are within the range 0–14, and because of the way the AMs from SOM are obtained, they 

may not assume even values, as one would expect from a sum of binary matrices. This 

fact will be better elucidated in the next paragraphs. 

Due to the number of implemented thresholds (Euc = 5, Mah = 5 and SOM = 4), the 

contribution of each distance measure to the AMX is comparable. However, the use of a 

weighted sum can be advised in the more general case. 

 

3.5.1. Use of Euclidean and Mahalanobis distances in the approach 

In an early version of the approach, the Euclidean and Mahalanobis distance matrices 

(DEuc and DMah in Figure 3.3) were both normalized between zero and one, and the same 

window [18] of five threshold values (0.05 / 0.1 / 0.2 / 0.3 / 0.4) was applied to them. 

With this system however, extreme outliers can be very influential on the generation of 

the AMs, because of the normalization step: Figure 3.4a shows how strongly extreme 

outliers can “compress” the distribution of distance values using the Euclidean distance 

and a “toy” dataset of honey samples [19]. The more extreme an outlier, the stronger 

this “compression effect” becomes. 

Since the distance information was coded into the AMs through fixed hard thresholds, 

the result was that all the samples would result equally close, and any similarity or 

difference among the samples that would characterize the dataset would be ironed out. 

On the other hand, it was also necessary to avoid the opposite problem. The distances’ 

distribution may also shift towards the right, meaning that, on average, the samples are 

located further apart from each other. This may be not so influential from the point of 

view of group and data structure, but with the use of fixed hard thresholds, this may 

easily lead to a lacking sampling of the distribution, with the consequence of having all 

the samples equally distant, and very few of them being adjacent. 

To avoid both these potentially disrupting effects, it was decided to use the median and 

the minimum values of the distances’ distribution to define the range in which the 

thresholds would be defined and used. A “moving set” of thresholds was implemented 
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Figure 3.4. (a) The “compression effect” due to the presence of increasingly extreme outliers; 

(b) the moving thresholds can avoid the disruptive effect of extreme outliers. 
(the honey dataset, from Marini et al. [19]) 
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as shown in Figure 3.4b. The normalization step became therefore useless and was 

removed, together with the potential influence of extreme outliers. 

The threshold values are then allowed to change depending on the input data, while the 

use of different distance measures allows to get a more complete representation of the 

data. 

 

3.5.2. Use of SOM in the approach 

SOM does not provide a distance matrix, but instead a grid of nodes (the top-map), on 

which the samples are arranged. In this case, the adjacency condition to be checked is 

whether the two samples under examination are found at a topological distance equal 

to or lower than g, a parameter that defines the considered topological distance. 

Rectangular topological neighbourhoods [9] were defined, and the adjacency condition 

was checked along four levels (g = 0, 1, 2, 3), with the “zeroth level” corresponding to a 

single node (i.e. topological distance is zero). 

Since different SOM runs generally produce slightly different outputs, the average over 

ten runs was taken to make the resulting adjacency matrix AMSOM more robust. 

To work with a basic but general set of parameters, a simple two-dimensional 10 × 10 

squared grid of nodes was used for SOM modelling, as suggested by Kohonen [8]. 

Regarding the grid’s dimensions, as reported by Simon et al. [20], using too small grids 

may increase the chance of class conflicts, while using too big grids may cause the 

samples to end too much spread out, hampering the recognition of clusters. 

The network was trained for at least 5000 epochs, with rectangular neighbourhoods 

and a gaussian function for modulating the distance based-learning. The initial 

neighbourhood size was made coincident with the grid’s size, as suggested by Marini et 

al. [7]. The number of training epochs was set quite high because, from the point of view 

of modelling, the map needs enough time to arrange itself, and the only rule-of-thumb 

for this parameter is that the number should not be too low. Setting such a high value 

increases the likelihood that the map will reach an optimal organization, but also allows 

to model possible smaller differences among samples to a higher degree. Moreover, 

compression was applied prior to SOM modelling, therefore the required computational 
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time was substantially reduced, compared to the same calculation using the 

uncompressed input data. 

This set of parameters was used for modelling the real-case datasets (Beer, Whisky and 

Olive oil datasets), while it was decided to test the algorithm using different, adaptive 

parameters, together with an additional hexagonal grid. In Section 3.6.1 it is described 

how the parameters were chosen. 

It is worth considering that in SOM modelling the fact that a sample is assigned to a 

specific node does not imply that the selected node represents a good approximation 

for describing the sample. Since the aim of the approach is to obtain a “simpler”, coded 

version of the distance information, this uncertainty is probably negligible. For instance, 

in the Euclidean and Mahalanobis distances cases hard thresholds are used, therefore 

the coded information about a pair of samples at a distance slightly shorter than a 

threshold (where a “1” is assigned) would result completely different from a pair of 

similar samples but at a distance slightly longer than the threshold (where a “0” is 

assigned). In the same way, the fact that a node could be a better or worse 

approximation depending on the sample represents a much smaller uncertainty than 

the assignment to a different (even if close) node. 

 

3.5.3. Use of the approach as a mid-level data fusion method 

When more X data blocks are available (like in the benchmark case presented in Section 

3.7.1), the resulting AMX matrices can be combined using, again, a sum rule [18] 

(Equation 3.9). The resulting matrix is the Fused Adjacency Matrix AMFus, depicted in 

black in Figure 3.3. 

(3.9) 𝐀𝐌𝐅𝐮𝐬  =  ∑ 𝐀𝐌𝐗X  

 

3.5.4. Preprocessing of symmetric squared matrices 

The preprocessing of symmetric squared matrices such as distance and adjacency 

matrices or the Fused Adjacency Matrix should be done preserving their symmetric 
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structure. The double centering preprocessing described by Vitale et al. [21] operates on 

an adjacency matrix AM as follows: 

(3.10) 𝐀𝐌𝐝𝐜  =  𝐀𝐌 –  𝐀𝐌̅̅ ̅̅ ̅
𝐜𝐨𝐥𝐮𝐦𝐧𝐬 –  𝐀𝐌̅̅ ̅̅ ̅

𝐫𝐨𝐰𝐬 + 𝐀𝐌̅̅ ̅̅ ̅  

which corresponds to removing both the column mean AM̅̅ ̅̅ ̅
columns and the row mean 

AM̅̅ ̅̅ ̅
rows (which are the same when the matrix is squared and symmetric), and finally 

adding back the overall mean AM̅̅ ̅̅ ̅. The diagonal elements of this matrix are no more all 

equal, but they correspond to the row (or column) sum. 

 

3.6. Exploratory applications 

This section is organized in two parts: first the test results obtained with four simulated 

datasets are reported, followed by the exploratory application of the Fused Adjacency 

Matrix approach on the whisky dataset. 

The simulated datasets were used for testing the influence of different sets of thresholds 

on the final Fused Adjacency Matrix, as well as the contribution of an additional 

hexagonal SOM grid. Parameters such as maximum connectivity and the number of non-

zero elements from the difference of subsequent AMs were used for choosing the 

optimal numbers of thresholds, with the aid of visual inspection of the AMs 

corresponding to each tested threshold value. 

However, the optimal threshold number choice can be still considered work in progress. 

 

3.6.1. Simulated datasets 

As described in Section 2.3.5, four simulated datasets were designed and used to test 

the performances of the Fused Adjacency Matrix approach with different sets of 

parameters. More precisely, some parameters of SOM were adapted to the datasets’ 

characteristics, and an additional SOM grid was used. 

The grids’ dimensions SOMx and SOMy were automatically set using the closer integer to 

the square root of the number of samples m, as a rule of thumb (Eq. 3.11). As described 

in Section 3.5.2, the initial neighbourhood size was made coincident with the grid’s size. 
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(3.11) 𝑆𝑂𝑀𝑥  =  𝑆𝑂𝑀𝑦 = int(√𝑚) 

Just like the distance contributions rely on two different types of distance metric, an 

additional grid for SOM was chosen. Since SOM modelling is the most time-consuming 

step of the whole approach, it was decided to leave out the quadratic grid and focus on 

the hexagonal grid, whose shape is more different compared to the rectangular one. The 

number of g neighbourhoods was automatically set by linking it to the grid’s 

dimensions, as described by Equation 3.12: 

(3.12) 𝑔 =  0, 1, 2, . . . , 𝐺 − 1 with  𝐺 =  int (
𝑆𝑂𝑀𝑥

2.5
) 

The number of SOM replicated runs was left unchanged to 10, mainly for computational 

time constraints. The automatically determined SOM parameters used for modelling the 

simulated datasets are reported in Table 3.1. 

Table 3.1. SOM parameters for the simulated datasets 

 
grid’s dimensions 

(SOMx × SOMy) 
G–1 

Globular #1 21 × 21 8 

Globular #2 30 × 30 12 

Circles 32 × 32 13 

t4.8k 45 × 45 18 

 

To test how different numbers of thresholds affect the structure recovery in the Fused 

Adjacency Matrix approach, the intermediate steps of the procedure were inspected. 

The procedure for this assessment envisages focusing on each distance measure/SOM 

grid shape individually: one-to-one comparisons are made with the Fused Adjacency 

Matrix, starting with the Euclidean distance, then the Mahalanobis distance and then the 

two grids used is SOM (rectangular and hexagonal). From each comparison the best 

number of thresholds is obtained, and the set of optimized numbers of thresholds is 

finally used for computing a new Fused Adjacency Matrix, which is then inspected. 
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3.6.1.1. Globular clusters dataset #1 

 

Figure 3.5. The original distribution of the globular dataset #1. 

The globular dataset #1 (Figure 3.5) consists of three slightly overlapped clusters, 

whose structure can be deducted from Figure 3.6b-d. In this Figure, all rows and 

columns of the Fused Adjacency Matrix (b) and the Euclidean distance matrix (d) were 

reordered according to the known classes, so the three clusters are rather clearly 

separated. By inspecting the same matrices reordered according to the OPTICS 

sequence obtained from the Fused Adjacency Matrix, it can be seen that the original 

structure is partially recovered. The Fused Adjacency Matrix can recover the structure 

in more detail than the distance matrix, which appears more blurred. The three clusters 

can be better seen in the Fused case (Figure 3.6b) than in the Euclidean case (Figure 

3.6d), in which the third cluster appears much less defined than the other two. 

Five AMs were computed from the Euclidean distance matrix and are represented in 

Figure 3.7, in which columns and rows were reordered according to the known classes, 

to allow inspecting if and how the original structure of the data was recovered.  
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Figure 3.6. Comparison between the Fused adjacency matrix (a-b, AMFus) and the Euclidean 

distance matrix (c-d, DEuc) computed from the globular dataset #1. 

 
Figure 3.7.  Five AMs (a-e) computed from the Euclidean distance matrix, each one 

corresponding to a threshold value; in (f) maximum connectivity per single sample (○) and sum 
of non-zero elements in differences of subsequent AM (∆). 
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Each AM corresponds to a threshold value belonging to the moving set described in 

Section 3.5.1. By inspecting the evolution towards increasingly higher threshold values 

it is possible to deduct the point where the original structure was recovered, which is 

also the point where the clustering information is expected to start degrading. To this 

aim, the plot reported in Figure 3.7f is also of help. Depending on the threshold number, 

the evolution of the two parameters reported in the plot can be used for assessing the 

optimal threshold value: 

• the maximum connectivity for a single sample (in blue) at each threshold value 

is obtained by summing along the rows (or columns, since all these matrices are 

symmetrical) the corresponding AM, and picking the maximum value; this 

parameter provides information about the maximum number of connections that 

any sample of the dataset can have at a given threshold value; 

• the number of non-zero elements computed from the difference between 

pairs of subsequent AMs (i.e. corresponding to consecutive threshold values) can 

provide an indication of whether any changes had occurred moving from one 

threshold value to the next; this quantity is expected to grow and then stabilize into 

a plateau, since once any element of the adjacency matrix changes from zero to one 

(a connection between the corresponding couple of samples is found) its value 

would remain unchanged for any successive threshold value. 

Three seems to be the optimal number of thresholds, given that this value corresponds 

to the largest change in number of non-zero elements and that the maximum 

connectivity value is approximately 150, which corresponds to the number of samples 

belonging to each cluster. By inspecting the AMs, it is worth noting that even though the 

fourth AM (Figure 3.7.d) highlights in a clearer way the first two clusters, the 

information about the last one becomes very confused, while the third AM (Figure 3.7c), 

still keeps it distant from the other two groups. The chosen threshold value is therefore 

3. 

Moving on to the Mahalanobis distance, the situation reported in Figure 3.8 closely 

resembles the results obtained in the Euclidean case (Figure 3.6), even if the 

Mahalanobis distance matrix seems more structured than the Euclidean case (Figure 

3.8a). Once again, the third cluster is the most confused with the distance matrix, as it 
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can be seen in Figure 3.8d, while the Fused approach better highlights the overall 

clustering structure (Figure 3.8b). 

Next, to choose the optimal number of thresholds the information provided by Figure 

3.9 can be used. Also, in this case the optimal number of thresholds seems to be three, 

based on the maximum connectivity value (again approximately equal to the number of 

expected connected samples within a cluster) and on the change in the number of non-

zero elements. The visual inspection of the AMs suggests that either three or four 

thresholds can be good options. For the sake of simplicity, three thresholds will be used. 

Then, the results from the use of the two SOM grids must be evaluated. The results 

obtained from the rectangular grid are reported in Figures 3.10 and 3.11, while those 

obtained from the hexagonal grid are reported in Figures 3.12 and 3.13. Since SOM does 

not provide a distance matrix but instead a top-map, the SOM adjacency matrix was 

included in Figures 3.10 and 3.12. 

It is interesting to notice how similar AMSOM and AMFus are since this strong resemblance 

may reveal that SOM had a big influence on the final result. When reordered according 

to the known classes, both grids seem to be able to recover the clustering structure 

(Figures 3.10d and 3.12d). Ordering by OPTICS also leads to highlighting the data 

structure, even if only two clusters are easily recognizable. 

The optimal number of neighbourhood levels can be estimated with the same procedure 

employed for the distance cases. By inspecting Figures 3.11 and 3.13 it can be deduced 

that the optimal numbers of neighbourhoods for the rectangular and hexagonal grid are, 

respectively, 6 and 5. 

 



76 
 

 
Figure 3.8. Comparison between the Fused adjacency matrix (a-b, AMFus) and the Mahalanobis 

distance matrix (c-d, DMah) computed from the globular dataset #1. 

 
Figure 3.9. Five AMs (a-e) computed from the Mahalanobis distance matrix, each one 

corresponding to a threshold value; in (f) maximum connectivity per single sample (○) and sum 
of non-zero elements in differences of subsequent AM (∆). 
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Figure 3.10. Comparison between the Fused adjacency matrix (a-b, AMFus) and the SOM adjacency 

matrix (c-d, AMSOM) computed from the globular dataset #1 using a rectangular SOM grid. 

 
Figure 3.11. Eight AMs computed from the SOM rectangular top-map, each one corresponding 

to a neighbourhood level; in the bottom-right position, maximum connectivity per single sample 
(○) and sum of non-zero elements in differences of subsequent AM (∆). 
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Figure 3.12. Comparison between the Fused adjacency matrix (a-b, AMFus) and the SOM adjacency 

matrix (c-d, AMSOM) computed from the globular dataset #1 using a hexagonal SOM grid.  

 
Figure 3.13. Eight AMs computed from the SOM hexagonal top-map, each one corresponding to 

a neighbourhood level; in the bottom-right position, maximum connectivity per single sample 
(○) and sum of non-zero elements in differences of subsequent AM (∆). 
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The new Fused Adjacency Matrix of the globular dataset #1, was obtained using the 

manually optimized threshold values/neighbourhoods summarized in Table 3.2. 

Table 3.2. Set of optimized parameters for the globular dataset #1. 

 Euclidean Mahalanobis SOM rectangular SOM hexagonal 

globular #1 3 3 6 5 

At the center of Figure 3.14 (either a or b), there is a void: only some samples belonging 

to Class 2 are present. The samples’ distribution seems to be stretched away from the 

origin of the plot towards three directions of increased samples density. This can also 

be noticed in the colourless version of the score plot (Figure 3.14a). 

 

Figure 3.14. PCA score plot (PC1-PC3) of the optimized Fused Adjacency Matrix of the globular 
dataset #1. 

These three directions probably represent the centres of the clusters, and this is 

confirmed by the fact that the samples closest to their own cluster’s center (computed 

as the mean position of each individual class) almost perfectly lie in the cluster’s 

direction. Those samples are identified by orange crosses on Figure 3.14b. 

These results seem therefore to suggest that in the Fused Adjacency Matrix the cluster’s 

centres tend to move further apart, together with the cluster’s bulk, which becomes 

more grouped (i.e. zones of increased density are obtained). It is worth noticing that 

PC1 and PC3 are the best PCs in relation to the cluster’s distinction. PC2 plotted against 

either PC1 or PC3 results somehow confused, but when it is plotted in a 3D score plot 
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together with these PCs (Figure 3.15), the situation described in Figure 3.14 becomes 

even clearer. Finally, Figure 3.16 shows how OPTICS is able to almost perfectly 

distinguish between class 2 (in red) and class 1 (in blue), but class 3 (in green) is the 

most fragmented. 

 

Figure 3.15. PCA score plot (PC1-PC2-PC3) of the optimized Fused Adjacency Matrix of the 
globular dataset #1. 

 

Figure 3.16. Reachability plot and reordered heatmap obtained from the optimized Fused 

adjacency matrix of  the globular dataset #1. On the left, the class-average signals.  
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3.6.1.2. Globular clusters dataset #2 

The globular dataset #2 consists of three overlapped clusters (Figure 3.17) of which the 

central one (class 2, in red) is by design very mixed with the other two. By the same 

approach as globular dataset #1, the optimal set of threshold values/neighbourhoods 

for the globular dataset #2 was chosen. 

 

Figure 3.17. The original distribution of the globular dataset #2. 

Starting from the Euclidean distance matrix (Figure 3.18), it is possible to notice that 

reordering by OPTICS obtained from the Fused adjacency matrix allows the 

identification of one cluster, while the remaining two still result rather overlapped. 

When reordering according to known classes is performed (Figure 3.18b-d), the 

clustering structure becomes clearer and the second class results the less dense and, as 

expected, the most overlapped with the other two, and also. Three Euclidean thresholds 

seems to be a good compromise between a maximum connectivity value of about 300 

and a good change in non-zero elements (Figure 3.19f). Moreover, in the structure 

highlighted by the AM of the fourth threshold (Figure 3.19d) the overlap between class 

1 and class 2 strongly increases, therefore choosing three thresholds seems the most 

reasonable option. 

The Mahalanobis distance looks similar to the Euclidean case, but more structure seems 

to be recovered by the distance matrix (Figure 3.20c). Again, class 2 is the most 

overlapped, and the cluster information becomes confused when the fourth threshold 



82 
 

is reached (Figure 3.19d). The maximum connectivity value and the number of non-zero 

elements also point to choosing three thresholds for the Mahalanobis distance. 

Since the globular dataset #2 consists of 900 samples, the chosen SOM grid’s dimensions 

were larger than globular dataset #1, also meaning that more threshold values were 

used. Figure 3.23 shows the twelve automatically defined thresholds. In this case, either 

seven or eight thresholds seem good options, even if seven is probably a better choice, 

since the clustering structure highlighted by the corresponding AM (#7) reveals that 

class 2 is less connected to the elements of the other classes, if compared to the next AM 

(#8). The maximum connectivity value is closer to 250 than 300, but this is probably 

still a good compromise, considered that even if the samples are expected to be 

connected to about 300 other samples, preferably belonging to the same cluster, in a 

strongly overlapped structure this value can be set a bit lower. 

The same considerations can be made with the hexagonal grid, for which six thresholds 

seem a good compromise, corresponding to a good AM structure (Figure 3.25, AM 

threshold #6) and to a connectivity value lower than 300. 
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Figure 3.18. Comparison between the Fused adjacency matrix (a-b, AMFus) and the Euclidean 

distance matrix (c-d, DEuc) computed from the globular dataset #2. 

 
Figure 3.19. Five AMs (a-e) computed from the Euclidean distance matrix, each one 

corresponding to a threshold value; in (f) maximum connectivity per single sample (○) and sum 
of non-zero elements in differences of subsequent AM (∆). 
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Figure 3.20. Comparison between the Fused adjacency matrix (a-b, AMFus) and the Mahalanobis 

distance matrix (c-d, DMah) computed from the globular dataset #2. 

 
Figure 3.21. Five AMs (a-e) computed from the Mahalanobis distance matrix, each one 

corresponding to a threshold value; in (f) maximum connectivity per single sample (○) and sum 
of non-zero elements in differences of subsequent AM (∆). 
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Figure 3.22. Comparison between the Fused adjacency matrix (a-b, AMFus) and the SOM 

adjacency matrix (c-d, AMSOM) computed from the globular dataset #2 using a rectangular SOM 
grid. 

 
Figure 3.23. Eight AMs computed from the SOM rectangular top-map, each one corresponding 

to a neighbourhood level; in the bottom-right position, maximum connectivity per single sample 
(○) and sum of non-zero elements in differences of subsequent AM (∆). 
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Figure 3.24. Comparison between the Fused adjacency matrix (a-b, AMFus) and the SOM 

adjacency matrix (c-d, AMSOM) computed from the globular dataset #2 using a hexagonal SOM 
grid. 

 
Figure 3.25. Twelve AMs computed from the SOM hexagonal top-map, each one corresponding 
to a neighbourhood level; in the bottom-right position, maximum connectivity per single sample 

(○) and sum of non-zero elements in differences of subsequent AM (∆). 
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The new Fused Adjacency Matrix of the globular dataset #2, was obtained using the 

manually optimized threshold/neighbourhood values summarized in Table 3.3. 

Table 3.3. Set of optimized parameters for the globular dataset #2. 

 Euclidean Mahalanobis SOM rectangular SOM hexagonal 

globular #2 3 3 7 6 

 

The new optimized Fused adjacency matrix was inspected by PCA and OPTICS (Figure 

3.26 and 3.27, respectively). The distribution highlighted by PC1 and PC2 looks similar 

to the one obtained with the globular dataset #1 (Figure 3.15) The samples’ distribution 

in the PCA, but it is, as expected, more confused. Class 2, the central and most overlapped 

class, is not grouped, while class 1 and 3 tend to group into dense “lobes”, still following 

the cluster centres (represented by orange crosses in Figure 3.26). The center of class 2 

has moved as well, but the cluster has remained rather disperse. 

 

 

Figure 3.26. PCA score plot (PC1-PC2) of the optimized Fused Adjacency Matrix of the globular 
dataset #2. 
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The results obtained by OPTICS on the optimized Fused adjacency matrix are shown in 

Figure 3.27: as anticipated by the PCA score plot, class 2 (in red) does not get grouped, 

while two zones of increased sample density are found for classes 1 and 3. 

 

 

 

Figure 3.27. Reachability plot and reordered heatmap obtained from the optimized Fused 
adjacency matrix of  the globular dataset #2. On the left, the class-average signals. 
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3.6.1.3. Circles dataset 

The circles dataset consists of three unbalanced clusters (Figure 3.28). The optimal set 

of threshold values/neighbourhoods was chosen by the same approach as globular 

datasets #1 and #2. 

 

Figure 3.28. The original distribution of the circles dataset. 

Reordering by OPTICS on the Fused Adjacency Matrix seems to highlight substructures 

that are weakly related to the three designed clusters. The best match is with class 3, 

which corresponds to the square within the interval 300–400 of Figure 3.30a. The last, 

weak group of samples at the end of Figures 3.29a and 3.29c can be linked to class 2. 

Concerning the choice of the number of thresholds to be used in the Euclidean case, 

three seems the most reasonable option: from the corresponding AM (Figure 3.30c) it 

can be noticed how the small class 2 cluster has become very linked, and the structure 

of class 3 is recognized as well. With the fourth threshold value class 2 becomes much 

more connected to the other two, without a substantial gain with regard to class 1, 

whose structure is weakly recovered. Once again, the Mahalanobis distance (Figures 

3.31 and 3.32) resembles the Euclidean case, and in this case as well three thresholds 

seem to be the best compromise. 

Since the circles dataset consists of 1000 samples, the automatically determined 

dimensions of the SOM grid led to defining twelve threshold values/neighbourhoods: 
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Figure 3.34 shows the AMs corresponding to the twelve thresholds. For the same 

reasons as the Euclidean and Mahalanobis distances, the best option seems to be 

threshold #6, as the structure highlighted by the AM is strong enough for class 2 and 

class 3, even if it is still weak for class 1. Concerning the hexagonal SOM grid, the sixth 

threshold value also seems to be the best option. Maximum connectivity is lower than 

250 (Figure 3.36), which is probably still rather high in relation to the unbalanced 

numbers of samples belonging to the three clusters, but the structure highlighted by the 

corresponding AM (Figure 3.36) shows a good balance between the gain in structure of 

class 1 and the not too high connections among the different clusters. 
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Figure 3.29. Comparison between the Fused adjacency matrix (a-b, AMFus) and the Euclidean 

distance matrix (c-d, DEuc) computed from the circles dataset. 

 
Figure 3.30. Five AMs (a-e) computed from the Euclidean distance matrix, each one 

corresponding to a threshold value; in (f) maximum connectivity per single sample (○) and sum 
of non-zero elements in differences of subsequent AM (∆). 
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Figure 3.31. Comparison between the Fused adjacency matrix (a-b, AMFus) and the Mahalanobis 

distance matrix (c-d, DMah) computed from the circles dataset. 

 
Figure 3.32. Five AMs (a-e) computed from the Mahalanobis distance matrix, each one 

corresponding to a threshold value; in (f) maximum connectivity per single sample (○) and sum 
of non-zero elements in differences of subsequent AM (∆). 
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Figure 3.33. Comparison between the Fused adjacency matrix (a-b, AMFus) and the SOM 
adjacency matrix (c-d, AMSOM) computed from the circles using a rectangular SOM grid. 

 
Figure 3.34. Twelve AMs computed from the SOM rectangular top-map, each one corresponding 
to a neighbourhood level; in the bottom-right position, maximum connectivity per single sample 

(○) and sum of non-zero elements in differences of subsequent AM (∆). 
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Figure 3.35. Comparison between the Fused adjacency matrix (a-b, AMFus) and the SOM 

adjacency matrix (c-d, AMSOM) computed from the circles using a hexagonal SOM grid. 

 
Figure 3.36. Twelve AMs computed from the SOM hexagonal top-map, each one corresponding 
to a neighbourhood level; in the bottom-right position, maximum connectivity per single sample 

(○) and sum of non-zero elements in differences of subsequent AM (∆). 
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The new Fused Adjacency Matrix of the circles dataset, was obtained using the manually 

optimized threshold/neighbourhood values summarized in Table 3.4. 

Table 3.4. Set of optimized parameters for the circles dataset. 

 Euclidean Mahalanobis SOM rectangular SOM hexagonal 

circles 3 3 6 6 

 

No direct information about the clusters could be detected by PCA on the new optimized 

Fused adjacency matrix. The best PC combinations showing classes 2 and 3 are reported 

in Figure 3.37. Figure 3.37a is referred to the combination of PC2, PC8 and PC10 which 

provides a rather clear visualization of class 3 (in green), which is found in a lobe of the 

samples’ distribution. Class 2 (which was located at the origin of the original scores 

distribution, as represented in Figure 3.28) is also the less numerous cluster. The PC3-

PC4 score plot (Figure 3.37b) reveals that the cluster’s position, with its center 

represented by an orange cross.  

However, these considerations can be made only with a priori knowledge – i.e. the 

classes are known – therefore with similarly structured datasets the Fused adjacency 

matrix approach may not yield optimal results. 

 
Figure 3.37. PCA score plots of the optimized Fused Adjacency Matrix of the circles dataset. 

Score plot (a) shows the combination of PC2, PC8 and PC10 that better highlights class 3, while 
score plot (b) shows the combination of PC3 and PC4 that better highlights class 2. 
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Figure 3.38. Reachability plot and reordered heatmap obtained from the optimized Fused 
adjacency matrix of  the circles dataset. On the left, the class-average signals. 

By inspecting the reachability plot of Figure 3.38, it can be noticed that the structures 

highlighted by OPTICS are weakly related to the designed clustering structure, even if 

class 3 (in green) is somehow confined within a certain range, as well as most samples 

of class 2, located at the end of the plot. 
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3.6.1.4. t48k dataset 

The t48k simulated dataset is a “perfect” dataset for density-based methods like OPTICS 

and DBSCAN, because of its clustering structure (Figure 3.39). Indeed, as represented in 

Figure 3.43, the best results are obtained by running OPTICS on the raw data. This was 

used as a benchmark for the performance assessment of the Fused Adjacency Matrix 

method. 

 
Figure 3.39. The t48k dataset, raw data and classes. 

Choosing the number of thresholds for each distance measure was rather 

straightforward with the t48k dataset. As it can be seen in Figures 3.40d and 3.42d, both 

distance matrices, if reordered according to the known classes, highlight clear 

structures. By inspecting the AMs (Figures 3.41 and 3.43), the situation becomes even 

clearer: one threshold is indeed enough to capture the clustering structure both in the 

Euclidean and the Mahalanobis cases. 

In SOM, a similar situation is found, even though there are some differences between 

the two types of grid. With the rectangular grid any threshold/neighbourhood lower 

than 5 seems to be fine. Therefore, for the sake of simplicity, only the first 

neighbourhood was selected. Also, for the hexagonal grid only the first threshold was 

selected, because the first two were identical, and something changed once the third 

threshold was reached. 
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This behaviour is linked to the nature of SOM: by sampling unevenly the original space 

and focusing on the zones with higher sample density, SOM was probably able to 

condense each cluster on few adjacent nodes, mapping the nodes further apart from 

each other. For this reason, in the first and closest neighbourhoods no sample “meets” 

samples from any other cluster than its own. 
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Figure 3.40. Comparison between the Fused adjacency matrix (a-b, AMFus) and the Euclidean 

distance matrix (c-d, DEuc) computed from the t48k dataset. 

 
Figure 3.41. Five AMs (a-e) computed from the Euclidean distance matrix, each one 

corresponding to a threshold value; in (f) maximum connectivity per single sample (○) and sum 
of non-zero elements in differences of subsequent AM (∆). 
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Figure 3.42. Comparison between the Fused adjacency matrix (a-b, AMFus) and the Mahalanobis 

distance matrix (c-d, DMah) computed from the t48k dataset. 

 
Figure 3.43. Five AMs (a-e) computed from the Mahalanobis distance matrix, each one 

corresponding to a threshold value; in (f) maximum connectivity per single sample (○) and sum 
of non-zero elements in differences of subsequent AM (∆).  
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Figure 3.44. Comparison between the Fused adjacency matrix (a-b, AMFus) and the SOM 
adjacency matrix (c-d, AMSOM) computed from the circles using a rectangular SOM grid. 

 
Figure 3.45. Eight AMs computed from the SOM rectangular top-map, each one corresponding 

to a neighbourhood level; in the bottom-right position, maximum connectivity per single sample 
(○) and sum of non-zero elements in differences of subsequent AM (∆). 
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Figure 3.46. Comparison between the Fused adjacency matrix (a-b, AMFus) and the SOM 

adjacency matrix (c-d, AMSOM) computed from the circles using a hexagonal SOM grid. 

 
Figure 3.47. Eight AMs computed from the SOM hexagonal top-map, each one corresponding to 

a neighbourhood level; in the bottom-right position, maximum connectivity per single sample 
(○) and sum of non-zero elements in differences of subsequent AM (∆). 
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The new Fused adjacency matrix of the t48k dataset, was obtained using the manually 
optimized threshold/neighbourhood values summarized in Table 3.5. 

Table 3.5. Set of optimized parameters for the t48k dataset. 

 Euclidean Mahalanobis SOM rectangular SOM hexagonal 

t48k 1 1 1 1 

 

Figure 3.48 show the optimized Fused Adjacency Matrix (b) reordered according to its 

OPTICS sequence, which is also represented by the reachability plot (a). It is clearly 

visible that the highlighted structures correspond to the known classes to a very good 

extent. 

 

 
Figure 3.48. (b) Optimized Fused adjacency matrix reordered according to its (a) OPTICS 

reachability plot (k = 10). 
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OPTICS with k = 10 was chosen because of the strong clustering tendency of the dataset, 

where the nearest neighbours of each sample in a cluster is very likely that still belongs 

to that cluster: a low value of k ensures that a small local neighbourhood of each sample 

is explored during OPTICS. 

The reachability plots of all inspected matrices are reported in Figure 3.49. It is very 

clear that the raw data and the distance matrices (DEuc and DMah) perform equally well, 

being practically indistinguishable and therefore equally able to identify the clusters. 

Both distance AM (AMEuc and AMMah) then look pretty much the same as well. 

The Fused adjacency matrix actually performed well, compared to the benchmark 

represented by OPTICS on the raw data. The groups that were obtained are compact and 

only three clusters got split during the analysis (groups in green, red and blue in Figure 

3.49). Even if the non-grouped set (bars in black in Figure 3.49) was not identified like 

in the raw case, just a few of these rogue samples fall within the recognized clusters. 

Many of these rogue samples happen to be however usually very close to the clusters 

the fall in. 
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Figure 3.49. OPTICS reachability plots from the t48k dataset (k = 10). 
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3.6.2. Whisky dataset 

This section is devoted to reporting and comparing the whisky raw data results and the 

results obtained applying the Fused Adjacency Matrix approach.   

 

3.6.2.1. Coclustering results 

Twenty coclusters were extracted by means of SMR (Section 2.1.1.4), and the raw data 

were preprocessed using unit variance scaling [22]. The analysis will only be focused on 

coclusters containing two or more samples, as those with one sample alone may be too 

specific for the purpose of exploratory analysis. Table 3.6 reports the coclusters of 

interest for the exploratory analysis of the whisky paragraphs. 

Table 3.6. Inspected coclusters rom the whisky data. 

cocluster samples most important variables 

1 ARD_1, BRI_1, BPE_1 2-benzothiophene, naphthene, 1-benzofuran, 1-indene,  

1,2-dimethylcyclopent-2-ene-1-carboxylic acid,  

3-ethylcyclopentan-1-one, 2-methylcyclopentan-1-one                                             

2 ARD_1, BRI_1, BRI_2, 

CHI_1, GFA_3, GFA_4, 

GLI_1, LOC_1, NIK_3, 

TOM_2, TOM_3 

1-ethyl-3,5-dimethylbenzene, 1-ethyl-2-methylbenzene,  

1-ethyl-3-methylbenzene, 1,2-xylene, 1,3-xylene, 

propylbenzene, 1,2,3,5-tetramethylbenzene,  

1,2,4,5-tetramethylbenzene, 1,2,3,4-tetrahydronaphthalene, 

1,2,3,5-tetrahydronaphthalene  

11 JDA_1, JDA_2, JDA_3, 

WIL_1 

2-methylpropyl acetate, 1-sulfanylpropan-2-one,  

3-methylbut-3-enenitrile, 3-methylbutyl propanoate,  

1,1-diethoxy-2-methylpropane, heptyl acetate, octan-2-one, 

methyl 14-(2-octylcyclopropyl)tetradecanoate 

 

3.6.2.2. Country of origin 

The first clear feature that is retained in both the raw data and the Fused Adjacency 

Matrix is the group of three Jack Daniel’s samples. These three samples are grouped 

together in all the score plots reported in Figure 3.50 (sub-figures a, c and d, highlighted 

in orange).  
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Their clear grouping tendency and separation from the bulk can be explained 

considering the mash bill used to brew these whisky products: the production of Jack 

Daniel’s envisages the use of corn, rye and barley, as opposed to the use of barley alone 

for the large majority of the remaining (mostly European) samples. Moreover, one of 

these products from Jack Daniel’s is the traditional and very famous “Old No. 7”, while 

the other two are derived from it by finishing them in slightly different way right before 

filling the casks. From the point of view of their “overall chemistry” they look therefore 

almost the same. 

Following the grouping tendency of the Jack Daniel’s samples, the Fused approach also 

provides a more general separation tendency, related to the American whiskeys (Figure 

3.50d). The other two American samples are found close to the bulk of samples, but in 

the direction of the Jack Daniel’s group. This tendency seems to be strongly determined 

by the mash bill, i.e. the type of malt. This piece of information is also contained in 

cocluster #11 (Table 3.6), where the only missing American sample is the farthest from 

the Jack Daniel’s group. 

Moving back to Europe, almost all samples from Ireland are better grouped by the Fused 

Adjacency Matrix approach (Figure 3.50c) than the raw data (Figure 3.50a). 

The three Japanese whiskies are found among the Scotch samples both in the raw data 

and by the Fused Adjacency Matrix. This suggests a close similarity between the narrow 

selection from Japan and the large collection of samples from Scotland. Another fact 

supporting this chemical similarity comes from the history of the Nikka distillery, as its 

founder studied malt whisky production in Scotland2. It is very interesting that products 

from very far and different locations appear so similar, from the point of view of their 

chemistry. 

Finally, the two Indian samples are found closer by the Fused approach (Figure 3.50c) 

than in the raw data (Figure 3.50a). This difference may mean that a piece of information 

was lost, or that the two samples are much more similar than what could be deduced by 

looking at the raw data alone. 

                                                           
2 https://www.nikka.com/eng/story/history/ 

https://www.nikka.com/eng/story/history/
https://www.nikka.com/eng/story/history/
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Figure 3.50. PC1-PC2 score plot (a) and loading plot (b) of the raw data; score plots of the Fused 
Adjacency Matrix (c, PC1-PC2; d, PC1-PC4). 

 

3.6.2.3. Blended vs single malt 

From the point of view of the blended/single malt distinction, the raw data provided 

more satisfactory results than the Fused approach. A PCA on the Fused Adjacency Matrix 

could only highlight a weak distinction tendency in the first two components, as shown 

in Figure 3.51c. On the contrary, even if at higher components, the raw data provided a 

very clear grouping tendency regarding the blended samples (Figure 3.51a). By looking 

at the loadings plot of the raw data (Figure 3.51b) it is not very easy to understand why 
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the blended samples end up being different from the single malt, but an overall feature 

that seems to be shared by these samples is that they tend to have low content of 

pyrolytic compounds (i.e. related to the smoky flavour) and esters. 

 

Figure 3.51. PC2-PC6 score plot (a) and 
loading plot (b) of the raw data; score plot of 
the Fused Adjacency Matrix (c, PC1-PC2). 

 

 

 

 

 

Some blended samples are still located 

among the single malt whiskies. A possible explanation of why these samples seem to 

be more similar to the single malt ones may be found in the blending recipe: if very few 

whiskies are blended, then the mixture may result more similar to a “pure” whisky than 

a more complex blended one. Unfortunately, such a piece of information is very hard to 

obtain: each distillery has its own master blender who would never share the recipe, as 

it usually is a longstanding secret passed down from teacher to student. 
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3.6.2.4. Peated vs non-peated 

No clear separation between the peated and the non-peated samples, neither in OPTICS 

nor in PCA was obtained. This may also be due to the fact that most whisky products are 

not explicitly labelled as “peated” or “non-peated”, therefore this piece of information 

may suffer from some ambiguity. Moreover, depending on the type and provenience 

[23] of peat used for drying the malt and providing the smoky aromas, the bouquet of 

such aromas may be very different among the products. 

The actual content of peat-related compounds may be better investigated by 

coclustering. For instance, two coclusters that can be directly related to pyrolysis 

products, are reported in Table 3.6. The samples belonging to these two coclusters were 

highlighted in the PCA score plots of Figure 3.52, for both the raw data (a) and the Fused 

Adjacency Matrix (b). The Fused approach was able to obtain a clearer separation of the 

peated samples. 

 

Figure 3.52. PCA score plots of the raw data (a, PC2-PC4) and the Fused Adjacency Matrix (b, 
PC1-PC3). The highlighted samples belong to coclusters #1 and #2, reported on Table 3.6. 

On the other hand, if one focuses on the sharp peated/non-peated distinction provided 

by the aforementioned “label” information (which is represented in the PCA score plot 

of Figure 3.53), a trend in the raw data (Figure 3.53a) can be noticed: most of the peated 

whiskies are found at positive scores on PC1 and PC3. This direction is strongly 
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associated with chemical compounds originating from pyrolysis, which are naturally 

linked to the process of malt drying (Figure 3.53b). In the Fused Adjacency Matrix case 

however, a grouping direction can be seen in the PC1-PC2 score plot, highlighted with 

an orange arrow (Figure 3.53c). Those peated samples that are found in the opposite 

direction with respect to the arrow correspond to the samples lying among the non-

peated samples in the PCA on the raw data (Figure 3.53a). 

 

 

Figure 3.53. PC1-PC3 score plot (a) and 
loading plot (b) of the raw data; score plot of 
the Fused Adjacency Matrix (c, PC1-PC2). 
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3.6.2.5. Conclusions 

The Fused Adjacency Matrix approach led satisfactory results regarding features like 

the country of origin and the peaty flavour of whisky, while concerning the distinction 

of blended and single malt whiskies, the analysis of the raw data was much more 

efficient in providing a clear grouping tendency. 

The variables assigned to the chemical class of pyrolytic compounds surely deserve to 

be more deeply investigated, also to gain more knowledge about the smoky flavour, 

which represents one of the key features in producing and marketing a product such as 

whisky. 

No trends related to the cask type used for aging the whisky were found, however, by 

selecting only a couple of cask types or by means of variable selection better results may 

be obtained, also with the application of the Fused Adjacency Matrix approach. For 

instance, an ad hoc variable selection approach may be applied to the data, with the aim 

of including only those compounds that can be directly related to the whisky-wood 

interaction: for instance, a study by Kew et al. [24] found some possible discriminant 

molecules for distinguishing between ex-Sherry and ex-Bourbon casks. 
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3.7. Mid-level data fusion application: the beer benchmark 

As explained in Chapter 2, Section 2.3.2, the beer dataset consists of three data blocks, 

obtained by three different analytical techniques, namely Vis, NIR and NMR 

spectroscopies. This dataset represents the origin of the approach’s development. Due 

to its potential richness in analytical information acquired, associated with its weak 

grouping structure and limited a priori knowledge (rather general such as beer style, 

alcohol content and colour), it is a challenging benchmark to test the approach’s 

potential. 

The approach was tested by processing each data block individually, and then merging 

the three output matrices AMX to form the AMFus matrix depicted in black in Figure 3.3. 

The results of the Fused adjacency matrix approach were compared with those obtained 

from a traditional mid-level fused dataset, consisting of seventy-seven features 

extracted from the three data blocks, and with the exploratory analyses performed on 

each data block individually. 

 

3.7.1. Mid-level fused dataset using a traditional approach 

The traditional mid-level data fusion dataset was obtained by merging 7 PCA scores 

from the Vis dataset, 6 PCA scores from the NIR dataset and the 64 NMR features. To 

represent the three different blocks evenly, autoscaling followed by block-scaling was 

performed. 

 

3.7.2. Results 

The results reported in this section are almost identical to the paper Fused Adjacency 

Matrices to enhance information extraction: the beer benchmark (Cavallini et al., [25]), 

except for minor parts, mostly extensions obtained by adapting parts from the 

supplementary materials of the paper. More specifically, Sections 3.7.2.5 and 3.7.2.6.3 

were not included in the paper. Please note that all sections and figures were newly 

numbered and, in some cases, expanded. 
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3.7.2.1. Visible dataset 

The Visible spectra, after preprocessing, were analysed by PCA and OPTICS. Figure 3.54 

reports the results, namely the OPTICS reachability plot (RP) in Figure 3.54a, and the 

PC1-PC2 score plot in Figures 3.54b and 3.54c, colored according to beer style (b) and 

colour intensity (c). 

Two main groups were identified by OPTICS. The first one, the Ales group, is mainly 

composed by ale-style samples and it is less homogeneous compared to the second, the 

Lagers group, which is largely composed by lager-style samples. The two groups also 

have different density: the Lagers group results denser than the Ales group, and this can 

be seen in both the RP (Figure 3.54a) and the score plot (Figure 3.54b). The colour scale 

employed in Figure 3.54c describes the beer colour intensity, that is defined as the 

absorption of the sample at 430 nm, taken as reference wavelength [26]. A colour 

intensity gradient is recognizable along PC1 (Figure 3.54c). The sample distribution 

along PC2 is, on the contrary, much less clear. Some of the mid-coloured samples are 

spread along PC2, and the four samples with the strongest absorption have negative 

scores on this component. These four samples belong to very different beer styles but 

look rather grouped in the PC1-PC2 score plot. This is not reflected by the RP, where the 

samples show increasingly higher distances. Actually, by inspecting the score plots of 

higher PCs (not shown) these non-grouped samples are always found at extreme 

positions with respect to the rest of the samples. Since OPTICS operates on the full 

spectra, the increasing RD trend is due to the piece of information that is not included 

in the PC1-PC2 score plot. 

 

3.7.2.2. NIR dataset 

The information that could be extracted from the NIR dataset is rather limited, and this 

can be seen by inspecting the RP (Figure 3.55a) and the PC1 score plot (Figure 3.55b), 

both obtained from the NIR preprocessed spectra. 

A clear alcohol content (% alcohol by volume, ABV%) gradient is recognizable along 

PC1, as shown in Figure 3.55b. Ethanol content is therefore efficiently represented by 
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PC1, whose corresponding loadings (not shown) are characterized by two intense 

ethanol bands within the region 2200-2400 nm [27]. 

 

Figure 3.54. Visible spectra dataset: (a) Reachability Plot; (b) PC1 vs PC2 score plot, different 
symbols refer to top (▲) and bottom (▼) fermentation, while colours are by beer style, as 

detailed in the legend; (c) PC1 vs PC2 score plot coloured according to beer colour intensity: one 
intensity value for each spectrum is calculated by taking the average of intensity values in the 
interval 430±5 nm. The background patches in (b) highlight the OPTICS groups defined in (a). 
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Two main clusters of samples were identified by inspecting the RP (Figure 3.55a), a 

small one which contains a mix of beer types (“mixed group”) and the Lagers group. The 

Light beer samples appear rather grouped, as it is indicated by the shaded light blue 

rectangular area in Figures 3.55a and 3.55b. The samples located at the right end of the 

plot can be considered as non-grouped. This was also found in PCA, where the two 

identified clusters have reduced variability along PC1 with respect to the non-grouped 

samples (Figure 3.55b). The non-grouped set is much more scattered, as it has both 

higher bars in the RP (Figure 3.55a) and a large variability range along PC1 (Figure 

3.55b). 

 

Figure 3.55. NIR spectra dataset: (a) Reachability Plot, bars are colored by beer style, as 
detailed in the legend; and (b) PCA score plot colored by ABV content. Samples in both in (a) and 

(b) were reordered according to OPTICS order. 

 

3.7.2.3. NMR dataset 

A data representation from the field of sensomics [28,29], was used for inspecting the 

NMR features and the results are shown in Figure 3.56. The heatmap [29] in the central 
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part of the figure represents the data values. The columns of the heatmap represent the 

samples while the rows represent the variables (concentrations of MCR-resolved 

features in the different samples). Rows and columns were reordered according to the 

sequences obtained by running OPTICS first in the samples’ direction (RP on top) and 

then also in the variables’ direction (RP on the left side). This allows highlighting both 

groups of samples and variables, making it easier to relate the most influent groups of 

variables to each group of samples [29]. 

To obtain clearer groupings in the variables’ direction, correlation among the NMR 

features was used, instead of distance, to calculate the reachability distance for the RP 

plot. Three main groups of variables can be identified (Figure 3.56 variables’ RP, on the 

left side): the first group mainly contains amino acids, together with uridine and gallate; 

the second group is composed of yet unassigned variables, and the third group is 

partially related to maltose and to two unassigned variables. 

 

Figure 3.56. Heatmap of NMR features with Reachability Plots: variable’s RP on the left side 
(k = 3), samples’ RP on top (k = 5). OPTICS in the variables’ direction was performed on the 
correlation matrix, instead of the variables themselves. In the central part of the figure it is 

shown the heatmap obtained by reordering both the samples and the variables according to the 
respective OPTICS sequences. The dataset was normalized between zero and one to enhance its 

visual representation and interpretability. 
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The samples’ RP shows a cluster that can be identified as the Lagers group. The rest of 

the plot is rather uninformative from a group-spotting point of view, since its largest 

part consists of a sequence of increasing RDs (non-grouped set). Interestingly, the Light 

beer samples constitute a recognizable sub-group which, as expected, has generally low 

values for all the variables. Also, a small group can be spotted at the centre of the RP plot 

(group D in Figure 3.56), and it is characterized by medium-low values in amino acids 

and medium values for the second group of variables. The non-grouped set contains 

very different beer styles. The samples belonging to this group generally have higher 

amino acids content, but also maltose (third group of variables). 

 

3.7.2.4. Traditional mid-level fused dataset 

The PCA and OPTICS results obtained from the preprocessed mid-level fused dataset 

are shown in Figure 3.57. The OPTICS results resemble those of the NMR features 

dataset: a slightly defined Lagers group at the beginning of the RP, followed by a tail of 

slowly increasing RDs forming a non-grouped set (Figure 3.57a). However, the sample 

distribution obtained by PCA (score plot in Figure 3.57b) is mainly determined by few 

variables, according to the loadings plot (Figure 3.57c). Features related to ABV (“Scores 

PC1–NIR”) and colour (“Scores PC1–Vis”, “Scores PC2–Vis”) are the most influential. 

All the Light beer samples are located at negative PC1 and positive PC2 scores, while 

two of the strongest samples lie far away in the opposite direction. This defines an ABV 

direction (light blue arrow in Figure 5b). Even though the Light beer samples seem to 

be rather grouped in PCA, they are not found grouped in the RP. Again, an explanation 

for this discrepancy can be found in the different amount of information described by 

the RP (the whole preprocessed data) and the first two PCs shown in Figure 5b, which 

only account for 29.63% of the total variance of the mid-level fused dataset. Almost 

perpendicularly to the ABV direction, the variable “Scores PC1–Vis” (Figure 3.57c) tends 

to separate the most coloured samples (Figure 3.57b, highlighted in orange), and helps 

to separate along PC1 the Lagers from the Ales, which usually have more intense 

colours. 
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Figure 3.57. Mid-level fused dataset: (a) Reachability Plot, (b) PC2 vs PC1 score plot, (c) PC2 vs 
PC1 loadings plot; colours and symbols explained in the legend on the plot. The area highlighted 

in orange corresponds to the most coloured beer samples. 
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3.7.2.5. Fused Adjacency Matrix results 

The results obtained by OPTICS and PCA on the Fused Adjacency Matrix preprocessed 

as explained in Section 3.5.4 are discussed here and shown in Figure 3.58. 

Two clusters of samples and a non-grouped set can be identified in the RP (Figure 

3.58a). These three groups have a correspondence in the PC3-PC1 score plot of the same 

matrix (Figure 3.58b) The non-grouped set is more scattered in PCA (blue patch in 

Figure 3.58b), and it contains the strongest one and three of the five Light beer samples. 

The Ales and Lagers groups are much more defined compared to the results found with 

the single techniques and the mid-level data fusion approach. It is also interesting to 

notice the sample distribution within the Lagers group, where the “simple” lager 

samples (in red in Figure 3.58b) are very grouped on the right side, which is in an 

opposite position compared to the Ales group. 

PC1 is related to the colour, and when combined with PC4 the samples adopt an arch-

like distribution (Figure 3.58c). The PC1-PC4 score plot not only shows the colour trend, 

but also suggests new groups of samples, which are highlighted in grey in Figure 3.58c. 

To gather which characteristic features are shared within these sub-groups the sub-

group average NIR spectra (Fig 3.59) and NMR resolved features (Figure 3.60) were 

compared. Most of the groups have some distinctive regions, e.g. sub-groups 6 and 7 

have higher content of amino acids content, while the three close IPAs (sub-group 4) 

have high values in NMR for maltose and a set of features not yet completely identified, 

among which ethanal, isopentanol and higher alcohols were tentatively assigned. 

Based on our current knowledge, it is not possible to fully explain these groupings, 

however work is in progress analysing a database of consumer preferences obtained 

from the website ratebeer.com  to assess if some of the grouping may be related to such 

information. Preliminary results show that PC1 of the Fused Adjacency Matrix seems to 

have a strong inverse relationship (R2 = –0.973) with the overall score computed by the 

website from the users’ evaluations (Figure 3.61). 
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Figure 3.58. Fused Adjacency Matrix: (a) Reachability Plot; (b) PC3 vs PC1 score plot, colours 
and symbols explained in the legend on the plot; the background patches in (b) highlight the 
OPTICS groups defined in (a). (c) PC4 vs PC1 score plot, colours and symbols explained in the 
legend on the plot; the curved arrow in (c) describes the beer colour intensity trend; the red 

background patches in (c) highlight possible new groups. 
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Figure 3.59. Sub-groups identified in Figure 3.58c, and their corresponding average NIR 
spectra. 

 

 

 

Figure 3.60. Sub-groups identified in Figure 3.58c, and their corresponding average NMR 
features. 
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Figure 3.61. Sub-groups identified in Figure 3.58c, and their corresponding average RateBeer 
ratings. 

 

3.7.2.6. Beer features comparison summary 

In this section, more detailed comparisons among the results obtained by the different 

data blocks and data fusion approaches are reported. Table 3.7 is organized as a 

summary of these comparisons. Some overall samples’ sets and beer features were 

tracked along the single data blocks. 

 

3.7.2.6.1. Lagers group 

The Lagers group was identifiable in all representations of the data, and it appears to be 

rather stable. The Vis and AMFus datasets showed the best results in terms of samples 

grouping, which is probably reflected by their similarity, as highlighted by Procrustes 

Analysis (Section 3.7.2.8). 

An interesting group of lager-style samples is the HI samples set, which includes beer 

products from the same brand, Hite. This set of samples is organized in couples of 

replicates: “Pale Lager” (HI.1-2, HI.3-4), “Dry Finish” (HI.6-7), “Golden” (HI.8-9) and 

“Fresh” (HI.10-11-12-13), where the second replicate underwent thermal treatment to 

simulate ageing. Only sample HI.5 does not have a replicate and it is also a different beer 

product (“MAX”). The HI samples were generally found in the Lagers group, with some 
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exceptions: HI.1 and HI.5 in NIR (Fig.3a); HI.8-9 and HI.5 in NMR (Fig.4). No fixed order 

related to thermal treatment was found, neither with OPTICS nor with PCA, in any 

dataset. Moreover, no consistent order of the replicates was found neither in the 

spectral datasets, nor in the mid-level fused dataset, even though in the NMR case some 

of the HI samples were found gathered in two sub-groups: group B (HI.10-11 and HI.12-

13) and group C (HI.4-3, HI.6-7) in Figure 3.56. Group B has higher content of some 

amino acids, acetate, uridine and an unassigned variable between the two last ones. On 

the contrary, this piece of information clearly emerged by analysis of AMFus dataset. In 

fact, the HI samples were found very well grouped together in the RP (HI in Figure 

3.58a), forming a rather ordered sequence of couples of HI replicates; couple HI.3-4 was 

not found among the other HI samples, but some positions further in the sequence of 

the RP (Figure 3.58a). 

Another interesting set of samples is represented by the EU beers. They belong to the 

same brand and three of them are the same product (EU.1-2-3, “Brüger Premium Pils”), 

while EU.4 (“Servus”) is different. However, sample EU.2, differently from the other 

three EU samples, did not undergo thermal treatment. These samples were not found 

grouped in the Vis and NIR cases, while in NMR, mid-level data fusion and AMFus the EU 

group was recovered in the RPs, albeit to different extents. In the NMR case, the samples 

are ordered (group A in Figure 3.56) as EU.1, EU.3 (“Brüger” treated), then EU.2 

(“Brüger” non-treated) and finally EU.4 (“Servus” treated). In the case of mid-level data 

fusion, a similar situation was found, but EU.4 was found further in the RP. Interestingly, 

in the AMFus case, the three thermal treated samples (EU.1, EU.3 and EU.4) were found 

grouped together  (group A in Figure 3.58a), while EU.2 one was found further in the 

OPTICS sequence, suggesting that, only by this approach, a clearer difference based on 

the treatment was recovered. 

Three “unclassified” samples (LE.1, OE.4, KR.1) were consistently found in the Lagers 

group. These products are described as “summer beers”, therefore their presence in the 

Lagers groups is not unforeseen: this product type is intended to be refreshing and easy-

to-drink, and it usually is lighter in aromas and alcohol content. For these reasons it can 

be expected to find these summer beers more similar to the lagers than the ales. 
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3.7.2.6.2. Light samples set 

The Light samples set includes five beers of different styles (KR.2, Classic light / LE.2, 

IPA light / FB.2, Lager light / TO.4, Lager light / NO.2, Light Ale). These beers are labelled 

as “light” and they are produced with the aim of obtaining a lower content of ethanol 

and flavours. 

The NIR and the NMR datasets gave the best results in terms of grouping the Light 

samples set. In the NIR case the Light samples were found grouped both in the RP and 

the PCA scores (light blue patches in Figure 3.55). They lie at extreme positive values 

along PC1, which is a component that describes ethanol content. A confirmation of the 

generally lower content in flavours was found from the NMR results: all the Light 

samples share a similar pattern of very low values along all the variables of the dataset 

(Light sub-group in Figure 3.56). 

The Light samples set was found rather grouped in the data fusion cases (Figures 3.57b 

and 3.58b), but only in PCA. In the Vis case, the Light samples are neither grouped in RP 

or PCA but belong to the Lagers group: lighter beers are usually less 

processed/fermented, so they tend to develop less intense colour. 

 

3.7.2.6.3. ABV trend 

No ABV trend was evident in the Vis case. This is naturally present in the NIR case 

(Figure 3.55b), since PC1 describes the ethanol content. The trend is also present in the 

mid-level data fusion case, since variable PC1 from NIR is highly influential (Figure 

3.57c). No clear ABV trend was found in the RP for the NMR case, even if it was found in 

PCA, which is reported in Figure 3.62. 

The ABV trend in Figure 3.62 is clearly recognizable, even though sample FB.3 is in a 

quite strange position, among the 4-6% alcohol beers. This sample has the highest ABV 

content (10%), and its position could be explained by the fact that no direct information 

about ethanol is present in the NMR dataset (i.e. no peaks directly related to ethanol are 

included). The ABV trend could be related to the sugar content: during fermentation, the 

yeasts consume sugars to produce ethanol, therefore the higher the ABV content, the 

lower the sugar content. To reach very high ABV values more sugar is needed, and this 
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can be achieved by adding fermentable sugars. This addition may break the inverse 

“balance” between sugar and ethanol content: if sugar was added to sample FB.3, the 

residual amount of sugars could be the cause of its position, far from the low-

sugars/high-ABV samples. 

 

Figure 3.62. NMR PC1-PC2 score plot, colored according to ABV content. 

The AMFus case is rather different. The ABV trend is present in PC1-PC3 (score plot 

reported in Figure 3.63), but in a transformed way. The strongest and the lightest beers 

all lie in the top part of the plot and they all belong to the non-grouped set (as in Figure 

3.58b). These samples represent the extremes in ABV, so their position is probably due 

to the fact that the approach is just able to detect their dissimilarity from the bulk of 

“ABV-average” samples. 
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Figure 3.63. Fused Adjacency Matrix PC1-PC3 score plot colored according to ABV content. 

 

3.7.2.6.4. Lagers Strong set 

The Lagers Strong set includes six beers (ordered by increasing ABV, MA.3, SI.9, MA.5, 

MA.6, MA.2, FB.3) and it is interesting to track their position because of their style: lagers 

strong are beers brewed with lager yeasts, but more alcohol is obtained during the 

brewing process.  

The Lagers Strong set was generally found split into two groups: four “low-ABV” and 

two “high-ABV” samples. The low-ABV samples (MA.3, SI.9, MA.5, MA.6) were found in 

the Lagers group in the cases of Vis, mid-level data fusion and AMFus, while the NIR and 

NMR cases provided two different situations. In the NIR case, the three lowest ABV 

samples were found in the mixed group, closer to the Lagers than the three highest ABV 

samples (Figure 3.55a). On the contrary, in the NMR case, the Lager Strong samples are 

all in the Lagers group and do not follow any ABV order (Fig.4). Both the data fusion 

approaches, in RP by OPTICS (Figure 3.57a and Figure 3.58a) is clearly highlighted that 

the four low-ABV samples are more similar to the lagers (they belong to the Lagers 

group) but are also located closer to each other within the RP sequence. However, the 
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separation between high- and low-ABV samples is much better appreciable in the PCA 

of the AMFus (Figure 3.58b) than in the mid-level data fusion score plot (Figure 3.57b). 

In AMFus, moving along PC1 from the Lagers group towards the Ales group, the four low-

ABV samples are found, while the two high-ABV samples are much more distant, and 

closer to the strongest samples in the dataset. On the contrary, the same samples in the 

mid-level data fusion score plot (Figure 3.57b) are located in the same area. 

 

3.7.2.6.5. Colour trend 

The colour trend naturally originates from the Vis dataset (Figure 3.54c). No trace of it 

was found neither in the NIR nor the NMR cases. Both the data fusion methods were 

able to recover this piece of information, even though the AMFus (Figure 3.58c) provides 

a clearer trend than the mid-level data fusion (Figure 3.57b). 

 

3.7.2.6.6. Summary Remarks 

The trends and groupings described above generally correspond to the main known 

traits of the beer styles under examination. While the single spectral data blocks can 

primarily provide one aspect each, both the data fusion approaches were able to collect 

and keep most pieces of information. The Fused Adjacency Matrix, however, could 

capture finer structures in the main groups, for instance the very well-ordered HITE 

group, with the replicates of each product found in a sequence by OPTICS, or the EU set, 

where the treated samples were found grouped together and the non-treated one was 

found much further away. Trends like colour intensity and lager/ales distinction were 

recovered more clearly by the Fused Adjacency Matrix, while others like ABV content 

and the Light samples set were slightly better retrieved by the mid-level data fusion 

approach. 

It is also very promising that the Fused Adjacency Matrix approach can highlight small 

sub-groups (Figure 3.58c) which may be worth further investigation of their 

chemical/sensory characteristics. A deeper characterization of these sub-groups may, 

for instance, provide new inspiration in beer production, helping to define intersections 

between established and more general styles.
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Table 3.7. Comparison summary (*ordered by increasing ABV) 
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3.7.2.7. Comparisons by means of Procrustes Analysis 

In Sections from 3.7.2.6.1. to 3.7.2.6.6. we have graphically inspected and compared the 

information gathered by the different data blocks as depicted in the principal 

components space, with the aim of highlighting similarities and differences among 

them. This way of visually exploring the data easily allows spotting trends and 

peculiarities, but subjectivity and limited availability of metadata (i.e. additional 

information such as the beer style or the ABV content) can sometimes be a drawback. 

A more objective evaluation of how similar/different are the results obtained from the 

different data blocks by comparing their PCA spaces can be obtained by means of 

Procrustes Analysis (PA, [30,31]). Like in our beer benchmark case, the same set of 

objects can be described by two distinct sets of PC scores, obtained for instance from 

two different analytical sources. The aim of PA is to obtain the closest match between 

these two PC spaces by applying operations such as scaling, rotation, reflection and 

translation. The similarity of the two spaces is expressed using a dissimilarity 

parameter d, ranging from zero to one [31]. 

In this work, the PCA spaces obtained from the different blocks (i.e. each single 

analytical platform, the mid-level fused data set and the AMFus data set, referred to as 

inter-block comparison) are compared by PA analysis. Also, the data obtained from the 

different steps of the procedure, going from the raw data to the AMs for each single data 

set (which will be named AMX, with the suffix X being Vis, NIR and NMR, in turn) have 

been compared by PA. The latter case is referred to as intra-block comparisons. An 

overview of the results is given hereinafter, while the visual representation is reported 

in Figures 3.64 and 3.65. 

Inter-block comparisons were made, in pairs, using the PC scores of the Visible spectra 

(7 PCs), the NIR spectra (6 PCs), the NMR features (6 PCs), the mid-level fused data (5 

PCs) and the Fused Adjacency Matrix (AMFus, 7 PCs). The same number of principal 

components as that considered to build the mid-level fused dataset were used in PA, to 

keep it constant, and the results are shown in Figure 3.64, where the dissimilarity value 

between each pair of data sets is reported. AMFus is substantially different (dissimilarity 

higher than 0.5) from the mid-level fused data, which suggests that these two datasets 

carry different information. AMFus was also found rather different from the other 
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datasets: this is a desirable situation, since we are dealing with a data fusion approach. 

A too strong resemblance with any single source dataset would have meant that the 

fusion process was giving too much importance to that source, while a too loose 

similarity would have meant that the information was either too reduced or not 

captured by the approach. 

 

Figure 3.64. Inter-block comparisons by means of Procrustes Analysis. The numbers reported 
at each comparison’s cross are the Procrustes’ dissimilarity values. Vis, NIR and NMR represent 

the spectral (features in the NMR case) data from which the PCA scores were obtained. 

The effect of the different fusion steps was also assessed. These intra-block comparisons 

were made for each data block individually (using the same number of PCs as specified 

above), and the results are shown in Figure 3.65. One interesting point is the transition 

from the distance information to its correspondent AMX. The Euclidean distance DEuc 

resulted consistently similar to the Euclidean AMEuc meaning that the “coded” AM 

version of the data is keeping a large part of the original distance information. The same 

was observed with the Mahalanobis distance, albeit for the NMR case the similarity 

between DMah and AMMah was found lower (Figure 3.65). By inspecting the 

corresponding score plot it appears that this difference is due to a limited number of 

samples which have extreme values on the second component in PCA of DMah and are 

not in AMMah (adjacency being assigned on interval values is less sensitive to extreme 
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values).  Another interesting relation is between the Euclidean and SOM AMs: the 

matrices AMEuc and AMSOM are very similar, either because the samples pattern in the 

beer data can be well described by a linear model or because the Euclidean distance 

(which is a non-linear transform) is sufficient to model the non-linearity present in the 

data pattern. These two AMs also represent the two major contributions to the single-

data block AMX. The Mahalanobis distance was consistently found rather different from 

AMX and the other distance measures. This is probably due to the fact that higher PCs 

bring in rather different information with respect to the first ones, as in order to avoid 

singularities we have calculated the Mahalanobis distance on PCA-compressed data and 

thus it corresponds to Euclidean distances on the autoscaled PCs. However, a systematic 

different behaviour of the Mahalanobis distance with respect to other metrics (including 

Euclidean) has been previously observed in a study considering several data sets [6]. 

 

Figure 3.65. Intra-block comparisons by 
means of Procrustes Analysis; the numbers 
reported at each comparison’s cross are the 
Procrustes’ dissimilarity values.  
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3.7.3. Link to the original variables 

One of the major issues when dealing with adjacency matrices is that the link with the 

original variables is lost. When an adjacency matrix is built, the “adjacency condition” 

for each pair of samples is evaluated, therefore the focus is on how distant the two 

samples are: the original variables are only used to compute the distances. 

A way for linking back the Fused Adjacency Matrix results to the original variables is 

presented in Figure 3.66 using the NMR features dataset as an example. By using the 

same representation used in Figure 3.56, the samples were reordered using the RP 

sequence obtained from the Fused Adjacency Matrix. Therefore, the heatmaps of the 

two figures only differ in the order of their columns. Such a new column sorting allows 

a direct comparison between the observed sample clusters and the chemical features 

linked to specific class of compounds, as detailed in the following section. 

The Ales group in Figure 3.66 shows medium-high values in correspondence of the 

amino acids. The non-grouped set also has some samples with comparable values for 

the amino acids, but the Ales group has a more uniform composition. The amino acids 

region also represents the main difference between the Ales and the Lagers groups. This 

is in accordance with the results obtained by Duarte et al. [32], who suggested that the 

aromatic region could be used to distinguish between ales and lagers. 

Two sub-groups can be noticed within the Ales group (A and B in Figure 3.66). The first 

sub-group (A) is mixed, and consists of seven ales, four lagers and one unclassified beer. 

These samples have medium values for variables from 3 to 11, which include 

compounds such as tryptophan, gallate, phenylalanine, uridine and two signals from 

proline. Their amino acid content is on the other hand much lower if compared to the 

other samples belonging to the Ales group. The second sub-group (B in Figure 3.66) 

consists of five ales and two lagers. This sub-group is characterized by high values 

related to the first 20 variables, which include all the identified amino acids together 

with gallate and uridine. 

The Lagers group generally has medium-low values, especially in the case of the second 

group of variables and the amino acids group. Several sub-groups can be identified 

within the Lagers group (C, D, E, F and G in Figure 3.66). A couple of samples at the 
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beginning of the group (C) have almost identical patterns, especially for the amino acids 

content. These two samples are the same beer product, but the second one underwent 

thermal treatment. Some differences can be spotted along the two patterns, and the 

second sample always has higher values at these points. A second sub-group (D) 

consists of four lager samples of the same brand, which are among the poorest in amino 

acids content. Their patterns look very similar to sub-group E, which contains two beers 

of the previous brand, two more lagers and one lager strong. Sub-groups F and G also 

have similar patterns, but the samples in F tend to have higher values in amino acids, 

but lower values for the variables in the upper part of the map. At the boundary between 

the Lagers group and the non-grouped set, a sub-group of four samples (H) can be found. 

This small group is characterized by high values in amino acids and medium values for 

the maltose group. 

 

 

Figure 3.66. Heatmap of NMR features with Reachability Plots: variables’ RP on the left side 
(OPTICS performed as described in the caption of Figure 4), samples’ RP on top (k = 5). The 

samples are reordered according to the OPTICS sequence obtained from the Fused Adjacency 
Matrix (as in Figure 6). The dataset was normalized between zero and one to enhance its visual 

representation and interpretability. 
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This visualization approach is very efficient when dealing with data such as extracted 

features, while in the case of continuous data (e.g. spectra, chromatograms) reordering 

the original variables would make the visual interpretation very difficult. 

An example with the Vis and NIR cases is given in Figure 3.67 and 3.68 respectively, 

without having performed variables reordering. In the case of Vis (Figure 3.67) different 

intensity of the absorption bands between the two main Ales and Lagers group can be 

observed, while for the NIR case (Figure 3.68) the pattern is not so clear to interpret and 

differences in absorption intensity, for most of the spectral regions, are highlighted only 

for the non-grouped set. 

 

Figure 3.67. Heatmap of the Visible spectra with the samples’ RP on top (k = 5). In the central 
part of the figure it is shown the heatmap obtained by reordering the samples according to the 

OPTICS sequence. The dataset was normalized between zero and one to enhance its visual 
representation and interpretability. 
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Figure 3.68. Heatmap of the NIR spectra with the samples’ RP on top (k = 5). In the central part 

of the figure it is shown the heatmap obtained by reordering the samples according to the 
OPTICS sequence. The dataset was normalized between zero and one to enhance its visual 

representation and interpretability. 

 

3.8. Conclusions 

The Fused Adjacency Matrix approach and some of its applications were described in 

this chapter. It has been shown that the approach can recover coherent information 

from datasets of different nature with highly complex structures, highlighting groups 

and trends. 

Two different (but somehow linked, see Section 2.3.1) food datasets were used to test 

the approach, one for exploratory analysis, and the other both for exploratory and mid-

level data fusion purposes. As it should be expected from a data fusion approach, the 

Fused Adjacency Matrix is able to retain the information of the original datasets, but also 

to reveal other features arising from the combination of the fused sources. 
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Four simulated datasets were also used for testing the approach, with the aim of 

assessing the influence of its different steps on the final output, i.e. the Fused Adjacency 

Matrix. The approach performed quite well in almost all cases, but even if these results 

are promising, it is no secret that the further tests and improvements are needed. 

For instance, the issue of linking back to the original variables should be investigated, 

as the representations given in Figures like 3.66, 3.67 and 3.68 can be of help, but do not 

address the core of the problem: when distances are computed, the link with the original 

variables is lost, therefore a way of mathematically linking the obtained clusters to the 

starting variables would be the best direction to investigate. Automatic selection of the 

optimal parameters for building the AMs should be also considered, as tools like 

maximum connectivity and the number of non-zero elements in differences of 

subsequent AMs have proven to be useful, but in this way the selection still needs to be 

done manually. 

Finally, a series of tests with new and even more various types of data can be 

recommended, also for studying how the different distance measures behave and 

influence the final output. Different data type may be better suitable for certain distance 

measures or for SOM, and the different possibilities should be investigated as well. An 

example of this variability due to the type of data can be found in Figure 3.65, where the 

different steps of the approach are compared using Procrustes analysis: it was found 

that the NMR data block used in that part of the study yielded a Mahalanobis adjacency 

matrix very different from the parent Mahalanobis distance matrix and the rest of the 

distance and adjacency matrices too. A possible explanation was found in the nature of 

the data block, since the NMR information was present as resolved features, instead of 

original preprocessed spectra, like the other two Visible and NIR data blocks. 
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Chapter 4 |   

Beer’s linguistics and chemistry: an investigation 

 

4.1. Introduction 

During the last decade the consumers’ interest in how food is produced and prepared 

has strongly increased. Consumers tend nowadays to be more aware about the different 

aspects regarding food consumption and, in line with this trend, new-concept 

restaurants, new food production techniques and experiments on recipes and food 

pairings are constantly developed. This phenomenon is driven by high quality standards 

and often speaks a language based on what can be called the “craft rhetoric”, for which 

craft/handmade is opposed to industrial [1], and mass production is opposed to 

artisanal [2]. Certainly, this kind of rhetoric is not confined to food consumption, but the 

food world provides clear examples of this trend [3]. During the last two decades, the 

beer industry has undergone massive changes, led by the explosion of craft and micro-

breweries [4,5] and the spread of home brewing. 

Analytical chemistry in synergy with advanced data analysis can be profitably used to 

build new tools to aid consumers when choosing and pairing foodstuff, and producers 

to meet the consumers’ expectations. In this perspective, the aim of the present study is 

to investigate the links between the “objective” world of analytical chemical profiling – 

e.g. using spectroscopy – and the “subjective” world of consumers tasting and describing 

food. 

Beer has been investigated both from the point of view of its chemistry and composition 

[6–8] and also from the point of view of the consumers’ preferences [1,9]. Consumer’s 

preferences are traditionally assessed by directly interviewing small groups of people, 

but with the growth of the Internet and its web communities, mining online-posted 

reviews has become an interesting approach for assessing product appreciation and 

reception [10,11]. Huge amounts of user-generated data are available today in very 

different formats, such as numeric scores, logical scores (in the form of like/dislike), 

geotags and written descriptions.  
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The case under examination is about the Beer datasets described in Section 2.3.2 and 

their combinations with user-generated reviews mined from a website1.  Text analysis 

methods [12,13] were applied to process the user-generated reviews and convert them 

into numeric format, by the bag-of-words approach [12]. Principal component analysis–

generalized canonical analysis (PCA–GCA, [14]) was used to investigate the links 

between spectral and text data. To select subsets of terms from the text data two 

approaches were used: topics extraction [15] using penalized matrix decomposition 

[16] and manually-defined sets of terms related to specific aspects of beer making and 

tasting. 

 

4.2. Materials and methods 

This materials and methods section is structured as follows: the first part is devoted to 

introducing the text analysis methods used for processing (Section 4.2.1.3) and 

visualizing (Section 4.2.1.1) the user-generated reviews; then, the text data collection 

will be described in Section 4.2.1.2 and some notes about the spectral datasets used in 

this study will be given in Section 4.2.2; finally, the method used for linking the spectral 

data to the text data will be introduced in Section 4.2.3. 

 

4.2.1. Text analysis 

The aim of text analysis [12,17] methods is to extract information from text documents 

by converting the text data to a format suitable for analysis. With these methods, it is 

possible to operate on different levels of detail [12,17], from the simplest approach of 

counting the occurrences of words or groups of words (i.e. their count or frequency of 

appearance in the processed documents) to the analysis of whole sentences with 

methods like latent semantic analysis ([18] i.e. extraction of the semantic structure of 

text by considering relationships and relative positions among words) and sentiment 

analysis [19,20]. 

In the present study, the text data were converted to wordcounts. This approach 

envisages the creation of a so-called bag-of-words model [12], which consists of a list of 

                                                           
1 https://www.ratebeer.com/ (accessed: 16/02/2019) 

https://www.ratebeer.com/
https://www.ratebeer.com/
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terms or vocabulary, and their counts in each document used for building the model. 

The wordcounts are arranged in an array whose rows usually represent the documents 

(or samples) and each column is associated with one term. This matrix can be analysed 

with common multivariate methods, and the results can be interpreted according to the 

most influent terms. 

This section is dedicated to describing the text data collection (4.2.1.2) and the 

processing methods used in the present work (Section 4.2.1.3), as well as the 

visualization techniques useful for inspecting and representing the extracted 

information (Section 4.2.1.1). Then, the preprocessing of the wordcounts matrix is 

described (Section 4.2.1.4) and the method for extracting meaningful topics from the 

data is reported (Section 4.2.1.5). 

 

4.2.1.1. Text data visualization using word clouds 

Word clouds are a visualization tool [21] that allows to clearly highlight the most 

important terms of a collection of words. The importance of a term is usually 

determined by its frequency of appearance within the text corpus. 

Many online tools2 and software-specific toolboxes3 allow to generate word clouds, but 

the resulting representations may be very different from the points of view of 

interpretation and clarity. Online and basic tools usually provide a representation in 

which the words assume a quite cluttered distribution and may also end up being 

rotated, depending on the packing scheme of the tool. Such a representation is usually 

difficult to read and interpret [22], especially if a colour- or size-code is not 

implemented. The word clouds of this chapter were generated using the MATLAB Text 

Analytics toolbox, which provides a clear, uncluttered visualization: the terms’ relative 

importance is depicted by using both a colour code and a size code, with the most 

important/frequent words in orange (by default) and bigger sizes, and the less 

frequent/important ones smaller and in black. 

                                                           
2  Online word clouds generator tools: 
 https://www.wordclouds.com/, https://www.jasondavies.com/wordcloud/ 

3  MATLAB function: https://se.mathworks.com/help/matlab/ref/wordcloud.html (accessed: 11/02/2019) 
 R function: https://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf (accessed: 11/02/2019) 
 Python function: https://github.com/amueller/word_cloud (accessed: 11/02/2019) 

https://www.wordclouds.com/
https://www.wordclouds.com/
https://www.jasondavies.com/wordcloud/
https://www.jasondavies.com/wordcloud/
https://se.mathworks.com/help/matlab/ref/wordcloud.html
https://se.mathworks.com/help/matlab/ref/wordcloud.html
https://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf
https://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf
https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
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4.2.1.2. Text data collection 

All the user’s comments and ratings were obtained from Ratebeer.com, a free online 

community consisting of a website on which the users can review any beer they have 

tasted by writing a comment and giving scores according to five parameters (aroma, 

appearance, taste, palate, overall, described in Table 4.1). Many users, especially the 

most prolific in tasting and reviewing, also use descriptors taken from the sensory 

“standard” terminology in their written comments, probably following the approach of 

considering the different aspects of the rating parameters. A more detailed description 

of the standard terminology of beer tasting assessment is given in Section 4.3. 

Table 4.1. Definitions of the rating parameters of RateBeer.com 

parameter definition 

aroma /10 what can be appreciated with the smell (both ortho- and retro-nasal) 

appearance /5 anything concerning the beer look (colour, liquid's visual texture, head) 

taste /10 what can be appreciated with the tongue (sweet, bitter, sour, salt and umami) 

palate /5 what can be physically sensed with the lips, tongue, gums and roof of the mouth 

(also called “mouthfeel”) 

overall /20 evaluation of the overall sensory experience, as a measurement of the person’s own 

appreciation 

The text dataset contains 88 samples instead of 100 (as the Beer spectral datasets 

described in Section 2.3.2) because some of the beer samples were replicates that 

underwent thermal treatment. The thermally treated samples were removed, since the 

non-treated samples can be considered more like the common products that consumers 

can buy, taste and review. 

 

4.2.1.3. Text processing 

Text processing consists of a series of tools aimed at converting the input text corpus 

into a format suitable for further analysis. To this aim, tools from Natural Language 

Processing (NLP, [23,24]) are generally used. A “natural language” is any naturally 
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evolved language, as developed by humans through its use and repetition, without 

conscious premeditation or planning. 

The result of converting text into numbers is a text dataset characterized by its own 

vocabulary, i.e. all the single words/entities contained in the dataset. The approach of 

counting how many times each word has occurred in the input text corpora is called 

bag-of-words modelling [10,12,25,26]. If only the occurrence of single words is 

considered (e.g. “warpigs”, “galaxy”, “awesome”), then the distance relationships among 

words are neglected (“warpigs galaxy is awesome”, “warpigs”, “galaxy” and “awesome” 

are be considered separately) and the model would be a bag-of-words of unigrams. If 

instead the occurrences of groups of n words are considered (e.g. “warpigs galaxy 

awesome”), the model would be a bag-of-words of on n-grams. Each bag-of-words has 

its own vocabulary and wordcount matrix, an array whose rows correspond to the input 

single documents and the columns correspond to one term of the vocabulary each. In 

the present work the unigrams bag-of-words model was used. 

The information stored in a bag-of-words model can be represented using word clouds, 

which are visual devices for representing the most frequent terms (Section 4.2.1.1). 

Figure 4.1 shows the data processing pipeline, with one word cloud corresponding to 

each step. The first step (a) shows very clearly how important the cleaning processing 

is, since if nothing was removed, punctuation and very common and uninformative 

particles (e.g. “and”, “the”, “is”, “with”) would be strongly predominant. 

 

Figure 4.1. Text processing pipeline, (a) from the raw data to the clean data and (b) from the 
clean data to the clean data after selecting the English language. Because of the strong 

predominance of English over the other languages, no apparent difference is detectable before 
and after step (b). 
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4.2.1.3.1. Text cleaning 

To convert the data from text to a numeric format suitable for analysis, a series of 

cleaning steps is required. Operations such as conversion to lower case and removal of 

numbers, punctuation, stop words, very short or long words are generally implemented.  

In the present study, the following list of cleaning steps was followed (references 

suggesting each operation are also provided): 

1. remove HTML tags [25,26]; 

2. remove HTML entities [25,26]; 

3. remove URLs [25]; 

4. correct special characters; 

5. remove numbers [10]; 

6. convert to lower case [10,26]; 

7. erase punctuation [10,25]; 

8. remove very common words, stop words and syntactic particles [10,13,27]; 

9. remove short (<3 characters) and long words (>10 characters); 

10. words normalization4 or lemmization (Porter stemmer, [28]) [13]; 

11. remove uninformative terms; 

12. select English (see Section 4.2.1.3.2); 

13. remove more uninformative terms; 

14. remove infrequent terms (document-wise at least 5% of the documents) [13,26,27]; 

15. remove infrequent terms (<50 overall) [13]. 

This cleaning sequence resulted in a bag-of-words consisting of 662 terms. The 

procedure for selecting the English terms is described in the next Section. 

 

4.2.1.3.2. English selection 

In the present work it was decided to focus on the English language only. This allows to 

work with a more “homogeneous” dataset, avoiding spreading parts of the same 

information across different terms/variables. For instance, the occurrences of the 

words “hop”, “hops” and “hoppy” would be gathered under the term “hop” by the 

                                                           
4 In this context, “normalization” has the meaning of “reducing to the same root”. Also, the used MATLAB 
function for doing this type of lemmization reduced all words ending in -y to their root, ending in -i. This is 
why some of the terms represented in the wordclouds of this chapter strangeli end in -i. 
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lemmization preprocessing step (Porter stemmer, bullet point 10 in Section 4.2.1.3.1). 

However, the words for “hop” in other languages can be very different: “luppolo” in 

Italian, “humle” in Danish, “hopfen” in German, “houblon” in French, “chmiel” in Polish. 

Without translating and merging all these variants of the same word information may 

end up quite fragmented over many variables. 

The reason why the English language is strongly predominant is found in the source 

website, which is US-based: it is therefore very likely the most people using it are 

English native speakers. The success of the platform has also attracted foreign users, 

who in many cases decided to write in English as well. A cross-section of the languages 

used on the website is given in Figure 4.2. 

 

Figure 4.2. Language clusters form the text data: (a) scatter plot obtained by t-SNE, colored 
according to the clusters identified by OPTICS (b), operated on the two-dimensional output of t-

SNE. 
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Each point on the scatter plot represents one term from the text dataset, without any 

regard to its count (as opposed to the word cloud representation). The recognizable 

languages rank in this decreasing order: English (62,83%), Danish (8,57%), Spanish 

(6,98%), Polish (5,61%), French (5,08%), Italian (3,44%), German (3,29%), Dutch 

(1,83%), Hungarian and Finnish (2,36%). 

The procedure for selecting the English terms consisted of three steps: 

i. Train a word embedding 

First, a word embedding was trained using the word2vec function from MATLAB’s 

Text Analytics toolbox. Word embeddings5 are a family of techniques for language 

modelling in the NLP context: in a word embedding, each word or phrase from the 

input text corpus is mapped to a vector of real numbers. The word2vec6 [29] 

function is based on the original algorithm developed by Mikolov et al. [30] while 

working at Google in 2013. The word embedding model dimensionality was set to 

100, meaning that each word was represented by a vector consisting of 100 

elements. 

ii. Plot the word embedding using t-SNE 

Then, the t-distributed stochastic neighbour embedding (t-SNE, [31]) algorithm 

was used for dimensionality reduction on the word embedding, resulting in the 

two-dimensional representation of Figure 4.2a. The very clearly defined clusters of 

terms corresponded to the individual languages used of the RateBeer website. 

iii. Cluster identification and English selection using OPTICS 

To efficiently select the English cluster of terms, OPTICS (described in Section 

2.1.1.5.1), which is a density-based method, was used. Each detected cluster 

(reachability plot in Figure 4.2b) was investigated and matched with the t-SNE 

scatter plot, leading to the identification of cluster #1 as the set of English terms. 

All the terms belonging to the other clusters/languages were therefore removed from 

the dataset. 

                                                           
5  Marcus Sahlgren - A brief history of word embeddings (and some clarifications): 
 https://www.linkedin.com/pulse/brief-history-word-embeddings-some-clarifications-magnus-sahlgren/ 

6  word2vec can be freely downloaded from: https://code.google.com/archive/p/word2vec/ (accessed: 
 30/01/2019) 

https://www.linkedin.com/pulse/brief-history-word-embeddings-some-clarifications-magnus-sahlgren/
https://www.linkedin.com/pulse/brief-history-word-embeddings-some-clarifications-magnus-sahlgren/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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4.2.1.4. Wordcount data preprocessing 

The traditional preprocessing of word counts matrices goes under the acronym of tf-idf 

(term frequency–inverse document frequency, [32]). This approach is usually employed 

for machine learning purposes and in the classification context [33,34]. The approach 

adopted in the present work is however based on a “chemometric perspective”, in which 

one of the fundamental aims is to interpret the data and understand their structure, 

instead of “only using” them. 

Therefore, a preprocessing consisting of row-normalization and autoscale was chosen. 

The wordcounts matrix was normalized using the sum along the rows, for accounting 

for the different numbers of reviews associated with each sample. 

The actual number of reviews was also used for scaling when studying the most suitable 

preprocessing method, and it was found less efficient than the row sum. This is probably 

due to the fact that not only the number of reviews is important, but also their length 

and complexity, whose information may be better captured by the word counts. 

However, an effect related to the number of reviews was still found on PC1, but with 

reduced magnitude (Figure 4.3). 

 

Figure 4.3. PCA on preprocessed word counts, colored according to the number of reviews. 
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4.2.1.5. Extraction of meaningful topics via penalized matrix decomposition 

(PMD) 

In order to work with subsets of the wordcount matrix, many different ways for 

automatically defining groups of related terms can be used. A set of related words can 

be defined as a topic [15]. 

Many methods for automatically extracting meaningful topics were considered and 

tested, e.g. PCA ([35], Section 2.1.1.1), MCR ([36], Section 2.1.1.2), archetypical analysis 

[37,38], coclustering ([39], Section 2.1.1.4), latent Dirichlet allocation [40] and 

penalized matrix decomposition (PMD, [16]). Since the two main aims were obtaining 

meaningful groups of terms and that these groups should have reduced dimensionality, 

PMD was chosen for the quality of the obtained topics and the sparseness of the groups 

(groups with maximum 10 terms were obtained). 

PMD is a method for obtaining meaningful clusters based on non-negative matrix 

factorization [41] which applies two-sided sparsity. This means that both scores and 

loadings are sparse, and this corresponds to the desired situation: the groups of terms 

that we are looking for should correspond to groups of beers, capturing the peculiar 

aspect that groups them. In other words, a topic can emerge if a specific feature or set 

of features is shared among groups of beers (i.e. the scores are sparse). 

 

4.2.2. Spectral data 

As described in Section 2.3.2, the beer spectral datasets were obtained using Visible, NIR 

and NMR spectroscopies. For the present study, a more refined version of the NMR 

features dataset than the one used in the data-fusion application of the Fused Adjacency 

Matrix approach (Chapter 3, Section 3.7) was used. Sixty-one instead of sixty-four 

features were newly extracted, and 56 out of 61 of them were given chemical names. 

This refinement was done at a later stage, for improving the interpretability of the 

present study, where the link between the sensory-like consumers’ descriptions and the 

chemical features of beer is investigated. 

Procrustes Analysis (Section 2.1.3) was done on the two versions of the NMR features 

dataset, resulting in an average Procrustes dissimilarity value of 0.15 (over twenty 
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principal components), which means that the two datasets carry similar information. 

The dissimilarity values according to the number of components is depicted in Figure 

4.4. 

 

Figure 4.4. Procrustes similarity between the NMR datasets, over 20 principal components. 

As stated in Section 4.2.1, eighty-eight samples were included in the text dataset and the 

same samples were selected from the original spectral datasets for the analysis of this 

study. The identified metabolites are reported on Table 4.2, together with their 

assignment, chemical shift, chemical class and the references that were used for the 

assignment. 

Table 4.2. List of assigned compounds, and literature references. (*m = multiplicity, Chenomx is 

cited in Section 2.3.2.1.5.) 

compound m*, chemical shift (δ, ppm), assignment chemical class references 

2-butanone s, 2.19 misc. Chenomx 

2'-deoxyuridine d, 7.84 nucleoside Chenomx 

2'-deoxyuridine t, 6.28 nucleoside Chenomx 

2-octenoic acid m, 5.79 acids Chenomx 

acetaldehyde q, 9.67 aldehydes [6] 

acetaldehyde d, 2.23, CH3 aldehydes [6] 

acetic acid s, 2.22 acids [42] 

adenine s, 8.21 nucleoside [43], Chenomx 

adenine s, 8.18 nucleoside [43] 

alanine d, 1.47 amino acid [42] 

alcohols t, 0.88, CH3 

d, 0.88, CH3 

alcohols [6,44] 
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compound m*, chemical shift (δ, ppm), assignment chemical class references 

d, 0.88, CH3 

arginine m, 1.95, γ-CH2 amino acid [45] 

choline s, 3.18 cholines [43] 

dextrins  carbohydrates [6,42]  

dextrins d, 5.09, α(1→6) glycosidic linkages carbohydrates [46,47]  

dextrins d, 5.08, α(1→6) glycosidic linkages carbohydrates [46,47]  

dextrins d, 5.01, α(1→6) glycosidic linkages carbohydrates [46,47] 

dextrins m, 4.57 carbohydrates Chenomx 

dextrins  carbohydrates Chenomx 

glucose dd, 3.23 carbohydrates [47], Chenomx 

guanosine s, 8.0 nucleoside Chenomx 

histidine s, 7.99, C2H amino acid [6,42,48] 

histidine s, 7.03, C4H amino acid [6,42,48,49] 

inosine s, 8.28, CH4 nucleoside [6], Chenomx 

isoleucine d, 0.995 amino acid Chenomx 

isopentanol 1.42, CH alcohols [6], Chenomx 

lactic acid d, 1.35, CH3 acids [6,42,43,49] 

leucine+isoleucine bt, 0.96, δ-CH3 

t, 0.95, δ-CH3 

amino acid [45] 

maltose d, 5.22, α-C1H carbohydrates [6,42] 

maltose d, 4.64, β-C1H carbohydrates [6,42] 

maltose t, 3.42 carbohydrates [6], Chenomx 

maltose dd, 3.26, β-C2H carbohydrates [6] 

methionine m, 2.26, beta-CH2 amino acid [45] 

N-acetyltyrosine m, 6.83 amino acid Chenomx 

phenylalanine m, 7.35, C2H, C6H amino acid [45,48] 

phosphocholine s, 3.21, N-CH3 cholines [43] 

polyphenols polyphenols polyphenols [48,49] 

polyphenols polyphenols polyphenols [48,49] 

polyphenols polyphenols polyphenols [48,49] 

proline m, 2.39, β-CH2 amino acid [43,45] 

proline m, 2.34 amino acid [42], Chenomx 

proline m, 2.34, β-CH2 amino acid [6,42], Chenomx 

propanol m, 1.53, CH2 alcohols [6] 

pyruvate hydrate s, 2.36, CH3 acids [6,42,45,49] 

pyruvate hydrate s, 1.58, CH3 acids [45] 

trehalose d, 5.18 carbohydrates Chenomx 

trigonelline s, 9.11 misc. [50], Chenomx 

trigonelline m, 8.82 misc. [50], Chenomx 

tryptophan bd, 7.7, Ar-H amino acid [45] 

tyrosine d, 7.17, Ar-H amino acid [6,42,43,45,48,49] 

tyrosine d, 6.88, C3H, C5H amino acid [6,42,43,45,49] 
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compound m*, chemical shift (δ, ppm), assignment chemical class references 

unknown 1 s, 10.2   

unknown 2 s, 9.445   

unknown 3 s, 6.35   

unknown 4 s, 2.21   

unknown 5 s, 2.12   

uracil d, 5.79 nucleoside Chenomx 

uridine d, 7.86 nucleoside [6,42,48,49] 

uridine m, 5.89, C1'H nucleoside [6,42,43,48] 

valine d, 1.06, γ-CH3 amino acid [6,45,48,50] 

valine d, 1.02, γ-CH3 amino acid [6,45,48,50] 

 

4.2.3. Principal component analysis–generalized canonical correlation (PCA–

GCA) 

The issue of linking two datasets is at the core of the present study. Different approaches 

can be taken, and one of the most established chemometric methods for inspecting the 

relations between two data blocks is partial least squares (PLS, [51,52]) regression. 

However, even if PLS regression models using topics extracted from the text data were 

attempted, very poor results were obtained, suggesting that a strict prediction of single 

terms or even topics is probably not attainable. 

For this reason, it was decided to investigate the connections between spectral and text 

data using a method able to find common subspaces among data blocks, which is a 

combination of principal component analysis and generalized canonical correlation 

(PCA–GCA, [14]). 

The aim of PCA–GCA is to find linear combinations of the blocks under examination, 

fitting as well as possible a set of orthogonal common components. This set of common 

components is not necessarily contained in the column space of any data block, but it is 

instead in the combined space represented by the concatenated matrix obtained by 

joining the data blocks in the variables’ direction [14]. 

GCA aim at finding the trends in the data blocks that correlate the strongest. Since this 

method only focuses on correlation, within-block variability may be not captured at 

best. PCA operated on the individual blocks prior to GCA helps enhancing the stability 

of the extracted common components [14]. Combining PCA with GCA leads to a stepwise 

procedure in which the first step is devoted at determining the subspaces’ 
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dimensionalities (each block having its own dimensionality). Then, the correlation 

coefficients and the block-wise explained variances are obtained by GCA and are used 

for deciding the number of common components. Each common component is in fact 

obtained by separately estimating one component from each data block, in a way that 

all the block-related components are as similar as possible (i.e. they are as strongly 

correlated as possible).  

The number of common components is chosen according to how strong the correlation 

is and by evaluating the amount of variance explained from each data block. 

 

4.2.4. Software 

All analyses were carried out under MATLAB environment (2017b, Mathworks, MA, 

USA). 

Text data processing was done using the functions provided by the Text Analytics 

Toolbox (version 1, Mathworks, MA, USA) and in-house written scripts. 

Word embedding visualization was performed using the t-SNE function contained in the 

MATLAB’s Statistics and Machine Learning Toolbox (version 11.2). 

The PMD algorithm used for topics extraction was written by Jose Camacho Paez and 

it is based on the work by Witten et al. [16]. 

The PCA-GCA toolbox for MATLAB [14] was written by Ingrid Måge and can be found 

at: 

https://nofimamodeling.org/software-downloads-list/pca-gca-toolbox-for-matlab/ 

(last access 13/02/2019) 

 

4.3. Terminology of beer flavour and aroma 

Sensory description of foodstuff is generally done by means of a lexicon [53,54], which 

is a set of terms used for documenting and describing the sensory perceptions of a 

selected food [53]. By defining a lexicon, it is possible to perform sensory studies with a 

panel of evaluators who are “talking the same language”, so that the results of their 

assessments can be compared and quantitatively elaborated. During the years, the beer 

https://nofimamodeling.org/software-downloads-list/pca-gca-toolbox-for-matlab/
https://nofimamodeling.org/software-downloads-list/pca-gca-toolbox-for-matlab/
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flavour terminology [55] has been constantly enriched, updated and used for 

characterizing [56] different beer products, but it also made easier the communication 

between stakeholders, scientists and also consumers: a clear example of how this 

terminology has spread and reached the consumers is given in Section 4.3.2 and in 

Figure 4.6, where the experimental beer vocabulary is described. In text analysis, a set 

of terms is usually referred to as a vocabulary. 

 

4.3.1. The beer flavour wheel 

 

Figure 4.5. The beer flavour wheel7. 

                                                           
7 Downloaded from: http://www.beerflavorwheel.com/ (accessed: 16/02/2019) 

http://www.beerflavorwheel.com/
http://www.beerflavorwheel.com/
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Figure 4.5 shows an example of the beer flavour wheel, which was first introduced by 

Meilgaard et al. [55]. The purpose of this visual device is to allow locating quickly and 

easily any sensory term.  

Meilgaard grouped the sensory terms into classes and organized them in tiers within 

each class. The middle ring with stronger background colour in Figure 4.5 represents 

the classes. On the external ring of the wheel are located the second-tier terms, which 

represent the highest level of detail in this classification system: as defined by 

Meilgaard, each “separately identifiable flavour characteristic has its own name” [55]. 

If the second-tier terms represent the most detailed description of a flavour 

characteristic, the first-tier terms represent the family to which these terms belong to: 

for instance, within the Aromatic, fragrant, fruity, floral class, the first-tier term fruity 

represents the flavour characteristics directly related to typical fruit flavours, like citrus, 

apple, banana, blackcurrant, melon, pear, raspberry and strawberry. 

 

4.3.2. The experimental beer vocabulary 

Using the cleaning procedure described in Section 4.2.1.3, the text data were reduced to 

a vocabulary of 662 terms, corresponding to a reduction of 99.09% from the starting 

text corpus. Figure 4.6 shows the top one-hundred terms of the experimental beer 

vocabulary, by frequency of use: many of these terms are clearly derived from the 

standard beer flavour terminology, as introduced with the flavour wheel of Section 

4.3.1. In this study however, the vocabulary also includes many other “sensory-like” 

terms (which often are just synonyms of the reference sensory terms), but also many 

other descriptors covering the different aspects of beer tasting, e.g. its appearance, the 

situation/occasion of consuming it and the consumer’s opinion about the product. 

A more detailed representation of these different aspects is given in Figure 4.7. Seven 

categories were manually defined, according to macro aspects of beer tasting, such as 

appearance/colour (4.7d), recognition of malt- or hops-related flavours (4.7b and 4.7c), 

general sensory-like terms (4.7a), personal judgement (4.7f) and experience-memory 

(4.7e) linked to the consumption of beer. 
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Figure 4.6. Top one-hundred terms of the experimental beer vocabulary, by frequency. 

 

Figure 4.7. The experimental beer vocabulary divided into sub-groups: (a) sensory-like, (b) 
malt-related, (c) hops-related, (d) appearance/colour-related, (e) situation/experience-related, 

(f) judgement-related and (g) mixed/confused terms.  
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As it will be clarified in the next section, of these seven manually-defined groups of 

terms, only the hops- and appearance/colour-related groups (c and d in Figure 4.7) 

were used in the modelling steps, mainly as a sort of benchmark for assessing some of 

the topics automatically extracted by PMD (Section 4.2.1.5). A summary of the use of 

groups c and d is given in Table 4.3. 
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4.3.3. Extracted topics 

 

Figure 4.8. Twenty topics extracted using PMD. Highlighted in yellow the topics that are 
discussed in the Results section. 

Twenty topics were extracted from the wordcounts data using PMD and are represented 

in Figure 4.8. Twelve of them (#1, #5, #6, #7, #8, #10, #11, #12, #15, #16, #18 and #20) 

have clear links to the sensory world, being characterized by terms such as pine, 
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hophead, wood, roast, syrup, earth, copper, alcohol, mint, vanilla, lime, lemon, caramel, 

pear, papaya, clove, spice, yeast, banana, wheat, caramel, coffee and pepper. Many of these 

terms come directly from the standard beer flavour terminology. 

Other topics, like #2 and #9, seem to be related to negative experiences, with 

characteristic terms, sometimes vulgar, such as waste, ass, piss, urine, suck, headache, 

blah or cost, probably originated from products that did not quite match quality/price 

expectations. On the contrary, topics like #4, #17 and #19 seem to be related to positive 

experiences (goto, gateway, reliable, staple, favorit, flagship), bringing back memories 

(memory, reliable) and specific situations in which thirst needs to be quenched (summer, 

beach). Finally, topics like #3 and #13 include very mixed terms that hinder the 

identification of a common theme. 

 

4.3.4. Use of the text data and summary on data analysis workflow 

At this point, it can be useful to explain how the text data will be used as well as 

summarise the data analysis flow, which is represented in Figure 4.9. After the 

vocabulary was refined by applying the text cleaning steps of Section 4.2.1.3.1, subsets 

of words were identified with two methods: 

a. manual definition of groups of terms (Figure 4.7); 

b. automatic topic extraction by PMD (Section 4.2.1.5). 

Please notice that even if groups of terms and topics are basically synonyms, it was 

decided to refer to the manually-defined topics as “groups of terms” and to use “topics” 

for referring to the ones automatically obtained  by PMD. 

All topics (Figure 4.8) were associated to the spectral data by PCA–GCA, and only those 

showing correlations above 0.7–0.75 were further inspected. The results of four of them 

(in yellow in Figure 4.8) were then reported in this Chapter. Since two of the topics, 

namely #1 and #5, had an “overall theme” logically connected with two of the manually 

defined groups, it was decided to compare them, in relation to the same spectral data. A 

summary of these comparisons is given in Table 4.3. 
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Figure 4.9. Data analysis workflow. 

 

4.4. Results 

The results obtained by PCA–GCA linking the spectral datasets with subsets (i.e. the 

topics) of the text data are reported in this section. First, twenty topics were extracted 

by PMD (Section 4.4.1, Figure 4.8) from the preprocessed wordcounts (Section 4.2.1.4). 

 

4.4.1. Linking the spectral data to the topics 

In general, only results with common component correlations > 0.75 were considered, 

with a minor exception of topic #8, whose PCA–GCA models resulted in correlations of 

0.74 (Figures 4.16 and 4.15). In this section, four topics from Figure 4.8 are discussed, 

in relation to their correlation with the spectral datasets. 

 

4.4.1.1. Hops 

Topic #1 provided the best common component correlation result with the NMR data 

(0.91) and seems related to the hops [58]. Terms like resin and pine (in the Counts 

loadings) naturally refer to the resins extracted from the hops’ cones during the boiling 
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step of beer wort [59]. Piney is also a term from the beer flavour terminology, and it can 

be found under the vegetal class and the first-tier term resinous, in the beer flavour 

wheel (Figure 4.5). This also confirms the topic’s association with the hops. 

Trigonelline, from the NMR loadings, is a plant metabolite generally found and studied 

in relation to coffee [60,61] for its pharmacological [62,63] and health benefits [61]. It 

has recently been found in beer and described as a plant-associate metabolite whose 

concentration increases with boiling [50]. Hops are generally added right before boiling 

the beer wort, so that heat allows converting the hop acids to become soluble and 

extracting them. For these reasons, trigonelline can also be associated with the hops. 

Finally, since the loadings associated with resin, pine and trigonelline share the same 

direction, a connection between them can be deduced, confirming that topic #1 can be 

related to the hops. 

 

Figure 4.10. Hops. PCA–GCA scores obtained by comparing the NMR dataset (88×61) and 
topic#1 (88×10). 
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By inspecting the samples’ distribution in the score plot of Figure 4.10, at negative 

scores values mostly IIPAs, IPAs and ales are found. The presence of three lagers can be 

explained with their recipes, which are rich in hops: sample MI.3 (Helping Hand, 

Mikkeller) is described as a “hoppy pilsner” 8; sample TO.1 (Hop Love Pils, To Øl) has 

“hop” in the name and is described as “brewed with lots of hops” 9; sample MI.4 

(American Dream, Mikkeller) is described as “packed with American hops” 10. Terms like 

bold and potent also contribute to the samples’ separation along the scores: the most 

extreme samples at negative scores in Figure 4.10 belong to IIPA style, which is an 

acronym for Imperial India Pale Ale. The attribute “imperial” is generally used for very 

strong beers, both from the point of view of alcoholic strength and flavour richness. A 

clear link with the terms bold and potent can therefore be recognized. 

On the opposite end of the plot, at positive scores, only lagers from producers such as 

Hite, Heineken, Budwiser, Pilsner Urquell and San Miguel are present. These are very 

widespread products, and their style does not involve much addition of hops or spices. 

They seem to be mainly characterized by variables mostly related to sugars (dextrins 

and trehalose) and malt (polyphenols), as if in absence of a rich/peculiar bouquet of 

flavours the most basic taste of beer emerges. This is also confirmed by the opposite 

direction of the topic’s terms bold and potent, which are logically distant from beers with 

more common flavours. 

An interesting contrast can be identified between two metabolites from the NMR 

loadings: trehalose and pyruvate (hydrate). Trehalose [64] is a disaccharide that is 

involved in the anaerobic carbohydrate metabolism in yeast cells, as an intermediate on 

the path for the formation of glycogen [65], an “energy storage” compound for yeast 

cells. Pyruvate, on the contrary is an intermediate on the path that leads to the 

production of ethanol, alcohols, aldehydes and esters. The opposite directions that 

trehalose and pyruvate have also correspond to the two main beer style families, ales 

and lagers. Ales beers tend to be richer in flavour and have higher alcoholic strength, a 

                                                           
8 “Helping Hand” on Untappd: https://untappd.com/b/mikkeller-helping-hand/818743 (accessed: 
15/02/2019) 
9 “Hop Love Pils” on RateBeer: https://www.ratebeer.com/beer/to-ol-hop-love-pils/250560/ (accessed:  
 15/02/2019) 
10 “American Dream” on RateBeer: https://www.ratebeer.com/beer/mikkeller-american-dream/110815/  
 (accessed: 15/02/2019) 

https://untappd.com/b/mikkeller-helping-hand/818743
https://untappd.com/b/mikkeller-helping-hand/818743
https://www.ratebeer.com/beer/to-ol-hop-love-pils/250560/
https://www.ratebeer.com/beer/to-ol-hop-love-pils/250560/
https://www.ratebeer.com/beer/mikkeller-american-dream/110815/
https://www.ratebeer.com/beer/mikkeller-american-dream/110815/
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product that can be related to a fermentation process in which the yeasts produce a 

larger variety of metabolites. A link with the pyruvate path can therefore be traced, as 

opposed to the production of lagers, where the yeasts may also express to a large extent 

the metabolic path related to trehalose and glycogen. 

It is interesting to notice that in the Counts scores there is a set of samples that all share 

the same score value: the words belonging to this topic may have been used in an 

extremely similar way for these samples, which may have ended up practically identical 

from the terms’ point of view. 

The results shown in Figure 4.10 closely resemble those obtained from the model built 

using all the terms related to the hops: as shown in Figure 4.11, similar common 

component correlation values were obtained, and the inclusion of more terms (not 

limited to 10, like in the topic’s case) made possible to break the group of samples with 

very similar values along the Counts scores (Figure 4.10). 

 

Figure 4.11. Hops. PCA–GCA scores obtained by comparing the NMR dataset (88×61) and the 
hops-related terms (88×25, group c in Figure 4.7). 
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4.4.1.2. Brown colour 

Topic #5 is characterized by interesting terms such as wood, brown, roast, syrup and 

dark. This combination suggests that features related to beers with darker colours and 

brownish hues were captured by the topic. At first glance, the common component 

correlation value looks good as well, but just inspecting the distribution in the score plot 

of Figure 4.12 it is clear that one sample may be driving the correlation. 

As a matter of fact, if sample SL.1 (at very negative scores in both components) is 

removed, the correlation value drops to 0.51, meaning that even if a connection between 

glucose and maltose and the brown/roasted colour of topic #5 seems plausible, the 

situation described in the figure may not be real. 

 

 

Figure 4.12. Brown colour. PCA–GCA scores obtained by comparing the NMR dataset (88×61) 
and topic#5 (88×10). 



166 
 

However, by inspecting the same topic in relation to the Vis data, a completely different 

situation is found: the result is a common component correlation of 0.75, as shown in 

Figure 4.13. Dark, roast, brown and roasty are the most correlated terms to the Vis data, 

whose interpretation results quite difficult. 

 

Figure 4.13. Brown colour. PCA–GCA scores obtained by comparing the Vis dataset and topic #5 
(88×10). The Vis data were compressed by PCA, and 3 PCs were used for computing the PCA–

GCA model; for this reason, there are three loading vectors in this figure. 

In this case, the common component correlation is mainly driven by the samples at 

positive scores in Figure 4.13: OR.3 strong ale, FU.1 amber lager, TY.2 amber lager, SL.1 

brown ale, MA.2 lager strong, SL.3 Oktoberfest. These samples are mainly strong and 

darker beers, which is in line with the terms they are associated with. 

Topic #5 seems therefore to be related to some extent to the appearance of the beer, 

mainly to its colour. If all the appearance related-terms of the experimental beer 
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vocabulary are considered, both the NMR and Vis datasets perform well: NMR provides 

a correlation of 0.86 (Figure 4.14), while Vis provides a slightly better correlation of 0.88 

(Figure 4.15). 

 

Figure 4.14. Brown colour. PCA–GCA scores obtained by comparing the NMR dataset (88×61) 
and the appearance/colour-related terms, manually selected (88×95, group d in Figure 4.7). 

In the case of all the appearance/colour-related terms (group d in Figure 4.7), the most 

frequent ones are directly linked to beer colour: orange, amber, golden, clear, pale and 

colour followed by more specific terms such as hazy, foamy, dark, lace (the web-like 

pattern produced by the beer’s foam when it dries on the glass’ walls), copper, clean, 

yellow and so on. For the NMR dataset, terms referring to darker (orange, black, amber, 

copper) and hazy (cloudy, hazy, murky, opaque) beers results related to metabolites 

typical of ales and hopped beers (trigonelline, pyruvate and propanol). On the contrary, 

NMR signals such as trehalose, dextrins and polyphenols result more linked to terms like 

clear, thin, yellow, pale, golden, straw and gold, which are characteristic of lighter and 
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clearer beers. The direction of the loadings of Figure 4.14 corresponds to the trend in 

which at negative scores mainly ales are found, and on the other end of the distribution 

almost only lagers are found. 

 

Figure 4.15. Brown colour. PCA–GCA scores obtained by comparing the Vis dataset and the 
appearance/colour-related terms, manually selected (88×95, group d in Figure 4.7). 

A situation similar to Figure 4.14 is reported in Figure 4.15: the Count loadings are 

ordered in almost the same way, with the light/clear beer characteristic terms on one 

end, and the terms related to darker colours on the other end. The Vis loadings seem to 

indicate that stronger absorption occurs in the 400–500 nm region, which corresponds 

to the blue/violet absorption interval, whose observed colour is yellow/orange, the 

colour of beer [66]. Positive association with the Vis loadings may therefore be linked 

to stronger absorption of light, which means darker colour; on the contrary, in the case 

of terms like yellow, pale, straw and golden, which are negatively correlated with the 

Visible loadings, this means that less light is absorbed, and therefore the observed 
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colour should results less intense, as it is generally observed with the lagers and light 

beers linked to these terms. 

 

4.4.1.3. Booze 

Topic #8 is very interesting because of its most important terms: boozy, alcohol and 

syrupy. According to Urban Dictionary11, the top definition for the term booze in 

everyday English slang is: “An alcoholic beverage, specifically any type of beer. It doesn't 

matter which […]”. This suggests that the information captured by topic #8 may be 

related both to the sensory-like detection of alcohol and to the beer drinking aimed to 

drunkenness. It was not found any meaningful interpretation for terms like hidden or 

hide. 

 

Figure 4.16. Booze. PCA–GCA scores obtained by comparing the NMR dataset (88×61) and 
topic#8 (88×10). 

                                                           
11 https://www.urbandictionary.com/define.php?term=Booze (accessed: 16/02/2019) 

https://www.urbandictionary.com/define.php?term=Booze
https://www.urbandictionary.com/define.php?term=Booze
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The NMR dataset performs quite well, with a common component correlation of 0.74. 

However, the strongest beers in the dataset do not end up at positive scores, as the 

loading sign of the terms boozy and alcohol may suggest. A quite strong association with 

polyphenols is however found, and since the source of most polyphenols in beer is barley 

[67], it is possible that the syrupy term is related to the sweet/malty taste of beer. 

However, no terms such as sweet, malty or barley are associated with this topic, 

therefore this link is just hypothetical. 

 

Figure 4.17. Booze. scores obtained by comparing the NIR dataset and topic#8 (88×10). The 
NIR data were compressed by PCA, and 7 PCs were used for computing the PCA–GCA model. For 

the sake of clarity, only the first three loading vectors are depicted together with the 
assignments of various carbohydrates. 

The same situation is found with the NIR dataset, with a common component 

correlation of 0.74. However, the samples’ distribution suggests that this correlation is 

highly influenced by few samples, which are located at negative scores values. These 
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samples are FB.3 and TO.2 and are the strongest beers in the dataset (ABV respectively 

10% and 9.3%). If these two samples are excluded, the common component correlation 

drops to 0.56. The rather grouped set of samples close to the origin of the score plot 

represent the bulk beers that have ethanol content lover than 7%. 

This unbalanced situation is probably the direct result of having very few extreme 

samples and a substantial group of “average” samples. However, the fact that terms like 

alcohol and boozy are the most related to these samples and the NIR signals of ethanol 

(they both have negative loadings) suggests that this correlation may actually exist. 

 

4.4.1.4. Refreshment 

Topic #12 is mainly characterized by terms like lemony, chill, thirst, quencher and lime. 

Fresh and light beers can be found at positive scores, corresponding to the direction of 

these terms. Metabolites such as acetaldehyde, dextrins and trehalose also share this 

direction, as opposed to the strongly hops-related metabolites trigonelline, propanol and 

pyruvate. Acetaldehyde is a key component of lemon [68], and may be associated to 

freshness. Samples like LE.1 – Sommerøl (= “summer beer”), MA.4 – San Miguel Fresca 

(= ”fresh”), TO.4 – Sun Dancer and NO.2 – Lemon Ale are found at positive scores, in line 

with this “freshness” trend. 

In slight opposition to this groups of freshness-related terms is zesty, a term generally 

related to the citrus flavour, but also very used in the beer flavour description in 

association with the flavour of hops. 

At negative scores are most ales and IPAs, in the same direction as trigonelline, but also 

propanol, which is linked to alcohol, ripe fruit aromas [69]. If topic #12 is about getting 

refreshment by looking for fresh, lemony flavours, IPAs and ales do not fit for this 

purpose, being more spiced and stronger in general (higher ABV, but also richer in 

flavour). 
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Figure 4.18. Refreshment. PCA–GCA scores obtained by comparing the NMR dataset (88×61) 
and topic#12 (88×10). 

 

4.5. Conclusions and further developments 

The present study was aimed at assessing the links between the analytical information 

and the user-generated description of a set of beer samples. From the point of view of 

text data, both automatic and manual approaches for selecting subsets of terms, i.e. the 

topics, were employed, with different outcomes. 

In the case of topic #1 (hops-related topic) it was shown that the automatic topic 

extraction provided very good results, which were comparable with the results 

obtained by manually selecting all the hops-related terms in the experimental beer 

vocabulary. In other cases, like with topic #5 (brown colour) the Vis dataset was more 

correlated with the topic’s information with respect to the NMR dataset. However, even 



173 
 

if the correlation improved, interpreting the Vis loadings is more complex, since Vis 

bands cannot be directly related to specific chemical compounds. 

Even though many of the twenty extracted topics made sense, no significant correlation 

with any of the spectral datasets was found. However, this part of distinct information 

surely deserved to be more deeply investigated. 

Manually selecting the terms generally provided good correlation results: NMR 

correlated well with the hops-related terms and the Vis data correlated with the 

appearance/colour-related terms. A summary of the correlation findings is given in 

Table 4.3. 

From this basis, different directions may be taken. For instance, different automatic 

topic extraction methods may be evaluated with the same approach employed in the 

present study. Moreover, many topics may be combined based on some sort of 

correlation index, as well as combinations of the spectral dataset through low- or mid-

level data fusion approaches may be worth investigating. 

Table 4.3. List of discussed comparisons. 

title 
data blocks 
(spectra + text) 

correlation 
value 

Figure 

Hops NMR + topic #1 0.91 4.10 

 NMR + hop-terms (group c*) 0.91 4.11 

    

Brown colour NMR + topic #5 0.85 (0.51**) 4.12 

 Vis + topic #5 0.75 4.13 

 
NMR + appearance/colour terms (group 
d*) 

0.86 4.14 

 
Vis + appearance/colour terms (group 
d*) 

0.88 4.15 

    

Booze NMR + topic #8 0.74 4.16 

 NIR + topic #8 0.74 (0.56**) 4.17 

    

Refreshment NMR + topic #12 0.76 4.18 

*groups of terms in Figure 4.7; **highly influential sample(s) removed 
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Following on from Section 4.4.3.3, the issue of working with a more homogeneous beer 

dataset should also be tackled. The aim could be expanding the view, either by collecting 

a much larger pool of beer samples (with particular attention to balancing the beer 

styles, production sites, producers, etc.) and replicate the whole study on a larger scale, 

and/or by gathering a larger text dataset to study how the current dataset is related to 

the “rest of the world” of beer, from the point of view of the consumer. 

Finally, improvements to the text analysis procedure should be investigated as well, 

focusing on further refinement and deeper study of the text data of the present study. 

For instance, n-grams instead of unigrams may be used for creating the bags-of-words, 

so that the relations linking more words can also be included in the text data for 

modelling. 

Another direction for improving the current data may also be the “recovering” of the 

languages removed when English was selected. Each language may be individually 

analysed to detect language-specific patterns and relevant terms, which could then be 

translated and merged with their corresponding English term. At the same time, by 

translating into the different languages those English terms that were identified as 

important, more relevant pieces of information may be recovered. This could also lead 

to the recovery of neglected English terms, which may be brought back into the dataset 

by translating relevant terms of other languages with which they may match. 
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Chapter 5 |  Conclusions 

 

5.1. Final remarks and perspectives 

The main aim of the present PhD project was to develop new methods for unravelling 

similarity and dissimilarity in data with highly complex structure, by developing and 

applying new chemometric tools for multivariate exploratory analysis. Starting from a 

dataset of Visible, NIR and NMR spectra of beer samples, its weak clustering structure 

was the inspiration for trying a different approach: adjacency matrices were brought on 

the scene, and were used to combine different distance measures and a non-linear 

approach such as SOM. 

The developed approach was named Fused Adjacency Matrix and is intended for 

exploratory analysis and as a mid-level data fusion strategy, if more data blocks are 

available [1]. Chapter 3 of the present dissertation was devoted to describing the 

method, providing the theoretical background and some test applications. The 

exploratory results provided insight in both the examined data and the approach itself. 

Based on that, a strategy for assessing the influence of the different fusion steps that are 

involved in the approach was devised and applied to four simulated datasets, used as 

benchmarks. 

The Fused Adjacency Matrix approach surely needs to be further developed and tested 

on more datasets and the major proposed research lines are provided in the next 

section. An embryo of a toolbox able to compute the Fused Adjacency Matrix was also 

developed, and it is available at http://www.models.life.ku.dk/algorithms. 

One of the most important lessons that I have learned during my thesis work in the 

chemometrics field, is that a good chemometrician must have a feeling about the data 

he/she handles. I luckily had the chance of starting early working in the laboratory to 

carry out experiments and thus generating the data to be analysed, in first person. When 

this PhD project started, I required that at least some laboratory work was also included 

in it, and both my supervisors agreed on this point. 

http://www.models.life.ku.dk/algorithms
http://www.models.life.ku.dk/algorithms
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By taking care of the whole arch of the beer and whisky experiments, I was able to gain 

deep insight into the data, keeping at the same time the link with reality alive and well. 

Chapter 4 of the present thesis is a clear example of this link: the peak integration of the 

NMR beer data not only taught me how to manage this type of data, but also forced me 

to study and understand the role of the identified molecules. The beer’s linguistics study 

of Chapter 4 represents a first conclusion of a complete arch of data analysis: from the 

NMR laboratory to the connection with what consumers taste and recognize in beer. A 

link between two seemingly distant worlds was drawn, and the language that it speaks 

is a mixture of data analysis and chemistry. That is, chemometrics. 

 

5.2. Further developments 

Future lines of research in the Fused Adjacency Matrix framework will include: 

- more tests with datasets of different nature and comparisons with other benchmark 

datasets [2]; 

- automate how parameters such as the threshold values, the SOM grids’ sizes and 

shapes are chosen; 

- thorough assessment of the different fusion steps, concerning their effect on the 

final output and how information is captured and embedded in the adjacency 

matrices; 

- investigation of different distances measures [3]and/or similarity indexes [4]; 

- comparison with kernel methods [5,6]. 

Concerning the investigation of the links between analytical signals and consumer’s 

preference, that is beer’s linguistics and chemistry, some directions were already 

anticipated at the end of Chapter 4. Among these are included: 

- evaluate different automatic topic extraction methods [7–9]; 

- combine different topics based on some sort of correlation index; 

- combine the spectral datasets through different data fusion approaches [10]; 

- generate new wordcounts including also n-grams [11], in order to try to capture 

expressions and descriptors with stronger characterization. 
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Finally, based on the beer’s results, an interesting research line would be to try to 

replicate the same study with the whisky dataset. Since whisky represents a kind of 

niche market often driven by quality and experts in the field, whisky enthusiasts tend to 

be interested in all aspects regarding this product, making it likely that user-generated 

text data harvested from the whisky community would work well in connection to our 

analytical data. 

The collection of online reviews about the whisky data was recently started, but it was 

then decided to put it on hold due to time schedule priorities and to the fact that even if 

a website about whisky similar to RateBeer was found, the procedure for downloading 

the review data was much more time consuming than expected. 
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